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ABSTRACT 

Early detection of neurodegenerative diseases (NDs) has remained challenging for 

clinicians. To improve diagnostic confidence across the ND spectrum, there is considerable 

research devoted to the discovery of potential biomarkers of disease onset and progression. NDs 

share the common feature of progressive loss of structure and function of neurons resulting from 

different protein aggregates responsible for the various diseases. Alzheimer’s Disease (AD), the 

most prevalent ND, is characterized by amyloid plaques (composed of amyloid ß (Aß) protein) 

and neurofibrillary tangles (composed of tau protein) within the hippocampal and cortex regions 

of the brain. Parkinson’s Disease (PD), the second most common ND, is caused by dopaminergic 

neuronal loss within the basal ganglia, which controls voluntary movement, as a result from α-

synuclein (α-syn) aggregation within the same region. Biologically relevant transition metals such 

as iron, copper, and zinc are reportedly accumulating and causing the aggregation of known 

neurotoxic protein aggregates at sites afflicted by neurodegenerative diseases. Detecting such 

metal ions may provide a means of early detection of these otherwise hard to diagnose diseases 

using positron emission tomography (PET) imaging agents. Radiopharmaceuticals available today 

for imaging of the central nervous system (CNS) are limited to those imaging the mid- to late-

stages of CNS disease progression. This imaging modality provides information at the molecular 

level of living organisms that clinicians can use to confirm a diagnosis or assess the effectiveness 

of a treatment. Small molecules, peptides, and large proteins can be radiolabeled with a wide range 

of positron emitting isotopes with various half-lives such as carbon-11 (C-11, 11C, t1/2 = 20 min) 
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and fluorine-18 (F-18, 18F, t1/2 = 109.7 min). The overall objective of the work described in this 

thesis is to design and analyze novel PET tracers ([11C]deferiprone (Chapter 2) and [18F]FL2-b 

(Chapter 3)) that bind physiological transition metals (Cu, Zn, and Fe) which are hypothesized to 

accumulate abnormally in the brain early in NDs. Known metal chelators will be radiolabeled and 

used in preclinical animal studies to determine brain uptake, binding kinetics, metabolism, 

biodistribution, and be evaluated in both diseased brains and healthy controls. Additional work 

described includes development of a novel radiotracer, [11C]AZ683, for neuroinflammation 

imaging (Chapter 4), where it is thought that inflammation is a result of toxic metal accumulation. 

Lastly, although several PET tracers are approved by the Food and Drug Administration, some of 

them are challenging to synthesize for routine production. Efforts to improve the synthesis of such 

a tracer ([18F]FDOPA) using copper-mediated radiofluorination in accordance with current good 

manufacturing processes (cGMP) are also discussed (Chapter 5). 
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CHAPTER 1 

Application of Positron Emission Tomography (PET) as a Molecular Imaging Tool to 

Investigate the Metal Hypothesis of Neurodegeneration 

 

1.1. Introduction 

 Positron Emission Tomography (PET) is a noninvasive imaging technique that uses 

radioactive compounds (termed radiotracer since the concentration of the compound is injected at 

tracer concentrations) to image specific biomarkers of disease.1 This provides information at the 

molecular level of living organisms that clinicians can use to confirm a diagnosis or assess the 

effectiveness of a treatment. Small molecules, peptides, and large proteins can be radiolabeled with 

a wide range of positron emitting isotopes with various half-lives such as carbon-11 (C-11, 11C, 

t1/2 = 20 min), fluorine-18 (F-18, 18F, t1/2 = 109.7 min), gallium-68 (Ga-68, 68Ga, t1/2 = 68 min), 

copper-64 (Cu-64, 64Cu, t1/2 = 12.8 hr), nitrogen-13 (N-13, 13N, t1/2 = 10 min), oxygen-15 (O-15, 

15O, t1/2 = 2 min)and others.2 The list of PET isotopes in clinical use is still expanding as new 

isotopes continue to be translated for PET imaging (and theragnostic) purposes (e.g. zirconium-

89, scandium-44).2,3 Whilst PET has its usefulness in the assessment and treatment of patients, it 

can also be applied to drug discovery by determining drug occupancy, biodistribution, 

pharmacokinetic (PK) properties of pharmaceutical assets in development (i.e. binding affinity = 

Kd, target density = Bmax).
4 

The life of a PET radiotracer begins at the on-site production of the PET radioisotope. 

These isotopes are generated by bombarding a nonradioactive element (i.e. 14N or 18O) with a high 

energy proton beam originating from a cyclotron (Figure 1.1).5 During bombardment, a neutron 
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(or alpha particle if 11C is being created) is ejected from the nucleus of the atom, successfully 

creating the unstable and short-lived radionuclide. The PET radionuclide is then transferred to the 

radiochemistry laboratory where it is incorporated into a bioactive molecule to generate the 

radiotracer. Following purification, formulation and quality control testing, the radiotracer is then 

injected into a patient (or animal) intravenously. The radiotracer accumulates at its target site (e.g. 

tumor) and the PET radionuclide undergoes positive beta decay, releasing a neutrino as well as a 

beta particle (+e, +, positron, antielectron) that can travel through tissue until its kinetic energy is 

low enough to interact with its antiparticle, the electron (Figure 1.2). When matter and antimatter 

collide, an annihilation event occurs where the energy released is in the form of two 511 kEV 

gamma photons traveling in opposite directions at 180°. A PET scanner is equipped with 

scintillators which produce a signal after gamma detection. This signal is interpreted by software 

to determine the point of origin of the annihilation event which is used to construct a 2D or 3D 

image (Figure 1.2). Systems with a higher time resolution of three nanoseconds use a time of flight 

method to monitor the precise difference in time of the photon detection in order to calculate the 

line of response, thus leading to a more accurate determination of the point of origin.6 

 

Fig. 1. 1: Overview of PET radioisotope production where a cyclotron produces a proton beam, and irradiates a particular atom 

that undergoes a nuclear reaction to product an unstable isotope with a short half-life and delivered to a hot cell for safety 
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Fig. 1. 2: Schematic of acquisition of a PET scan and reconstruction of the data to create a PET image 

The process of radiolabeling a molecule takes place inside a lead-shielded, automated 

synthesis module to limit exposure of radioactivity to the chemist (Figure 1.2).7 To optimize this 

process, conditions can be tested manually outside of the synthesis module to ensure high 

radiochemical yields and purification can be achieved prior to automation and scale-up. Due to the 

short-lived radionuclides used, the most desirable reaction process to produce a radiotracer is 

simply the radiolabeling step without any further reactions (e.g. deprotection). However, drug like 

molecules often contain multiple chemical moieties that can interfere with the radiolabeling 

conditions. Protecting groups can be used to prevent undesirable side reactions from taking place, 

but conditions for rapid and straightforward deprotection after radiolabeling are essential.8 Though 

the radiolabeling step is preferred to be the last step in the process (late-stage radiolabeling), novel 

compounds sometimes require manipulation to make the radiolabeling site reactive, in which case 

multiple chemical reactions follow the radiolabeling step. Each step is manually performed to 

optimize the conditions of the reaction. These conditions are assessed by radiochemical yield 

(RCY)9 with the use of a radio-thin layer chromatography (radio-TLC) and/or high-performance 

liquid chromatography (HPLC) equipped with a radioactivity detector.10 Radio-TLC can 

determine how much of the radioisotope was incorporated into the molecule (referred to as 
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radiochemical conversion (RCC) or RCY), and identity can be determined by co-injection of the 

radiotracer on HPLC with its nonradioactive reference standard.9 One important characteristic of 

a radiotracer is the molar activity (MA, AM), which is the measured radioactivity per mole of 

compound measured.9 The quantification of molar activity represents how much mass in the dose 

is radiolabeled versus how much is not. The cold mass (i.e. carbon-12 isotopologue of the tracer) 

can inhibit specific binding of the radiotracer and thus lead to a decreased signal during a PET 

image. Once each chemical reaction step is optimized, purification is needed to separate the 

radiotracer from other reaction components. This can be achieved with solid-phase extraction 

(SPE) cartridges or a semi-preparative HPLC. The latter is usually reverse phase, and numerous 

different solid-phase materials are available and are chosen depending on the physiochemical 

properties of the radiotracer being purified. Purification relies on polarity, pH, and hydrophobic 

interactions.11 The eluent required for purification can sometimes rely on organic solvents such as 

acetonitrile, and the product will need to be reformulated into an injectable buffer like 10% ethanol, 

0.9% saline, or phosphate-buffered saline (PBS).12,13 Ideally the pH of the formulated radiotracer 

should match physiological conditions of the blood, being pH 7.4, but in practice can range from 

pH 4.5-8 depending on the stability of the compound.14  

This production of PET tracers can be tedious and, if complicated production affects 

reliability of clinical delivery, this can limit use of a radiotracer in the clinic. To combat this, efforts 

to improve the synthesis of clinical PET tracers are constantly being undertaken by our lab and 

others15,16 so that straightforward and reliable routine production is possible. For example, our lab 

introduced copper-mediated radiofluorination (CMRF) to improve the late stage radiofluorination 

of bioactive molecules. Chapter 5 of this thesis reports the application of CMRF to the synthesis 
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of [18F]6-fluoro-DOPA, an historical radiotracer that has long been challenging to synthesize for 

routine clinical use.17,18 

Once a radiotracer has been translated into the clinic, physicians can determine if an 

imaging target is a suitable biomarker of disease by monitoring the accumulation or disappearance 

of the radiotracer throughout, for example, the course of a disease. Reflecting this, novel imaging 

biomarkers are eagerly sought after and development of novel PET tracers and is an active area of 

research development. For example, PET imaging has revolutionized dementia research. Brain 

PET with imaging agents targeting misfolded amyloid-/tau proteins, cerebral glucose 

hypometabolism and cholinergic markers in the central nervous system (CNS) has provided a 

wealth of information on the mechanisms underpinning dementias including Alzheimer’s disease 

and related disorders (ADRD), allowed clinical trial enrichment and enabled monitoring patient 

response to experimental therapies.19 Despite these advances, effective treatments for ADRD 

remain elusive. The recent implication of neuroinflammatory pathways and disruption of metal 

homeostasis in ADRD offer potential solutions but require equally sophisticated imaging 

biomarkers. The remainder of this thesis describes our efforts to develop new radiotracers for 

ADRD targeting neuroinflammatory targets (Colony Stimulating Factor 1 Receptor (CSF1R), 

Chapter 4), metal-protein aggregates (Chapter 3) and toxic iron (Chapter 2). Chapter 6 concludes 

and provides future directions for each project. To put this work into the context of functional 

neuroimaging, the remainder of this introduction surveys the current state-of-the-art in brain PET 

imaging. 

1.2. What Makes a Good CNS PET Target? 

 There are two important factors to consider when determining if a novel target is suitable 

for viable CNS PET imaging: its maximum concentration, represented as Bmax, and its 
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biodistribution. Ideally, these factors should change considerably in a diseased state so that 

differences can be visualized for clinicians to make proper assessments when interpreting a PET 

scan. For quantitative analysis and obtaining meaningful data, the Bmax should be greater than 1 

nM as the binding affinity of successful radiotracers usually have sub-nanomolar to single 

nanomolar affinity.20 During the development of a successful PET tracer, its binding potential (BP 

= Bmax/Kd)
21 is used to quantitate its usefulness in imaging a target. When a radiotracer is injected, 

the concentration can be in the picomolar range, and would thus only occupy about 0.05% of its 

available target. If the affinity of a radiotracer to its target exceeds the concentration of its target, 

then the signal obtained would hardly represent the bound target in the allotted time of a PET scan, 

which is about 1 – 2 hours. Therefore, in quantitative terms, if a target is to be viable for PET 

imaging, the Bmax should be greater than the binding affinity of the radiotracer being used to assess 

it and, at least, have a threefold difference, or more, in the diseased state compared to a normal 

control.22 A target’s density can either increase or decrease in one or more regions during the 

progression of a disease of interest. This would allow for a larger or smaller BP for the radiotracer 

during the disease and, thus, a large difference in signal during the PET scan.23 An ideal target can 

either be diffusely and ubiquitously distributed across the human brain or located in one (or more) 

brain region that is sizeable, as the resolution of a PET image is limited to at least 1 mm.24–26 As 

long as the expression or density of the target varies in specific regions during disease, this would 

make it useful for assessing diseased patients by quantifying changes in the imaging biomarker 

during disease progression. 

 Unfortunately, the data corresponding to target density in normal or diseased human brains 

is often lacking for novel targets. When literature values are available, the in vitro assessment of 

target density from various studies are usually expressed in units of fmol/g of brain tissue or 
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fmol/mg of protein. If it is assumed that the brain contains 100 mg of protein per g of wet tissue, 

which is generally the case,27 then 1 fmol/g of brain tissue simply equates to 1 nM and 1 fmol/mg 

protein to 0.1 nM. Targets that have been assessed in PET scans of normal human brains have 

ranged from 0.5 nM to 150 nM.28,29 When the data for a novel target is hard to obtain, quantitative 

autoradiography can be performed to estimate the value of the target’s Bmax. The factors for a good 

PET tracer that can be used in this data collection are discussed in the section explaining what 

makes a good CNS PET tracer (Section 1.4). It should be noted that target density estimates in 

animals and disease models may vary from the true Bmax value for the target in human disease, as 

animal data does not necessarily always translate well to human studies.27 This is likely due to 

differential density of targets that vary from species to species, or disease models not truly 

representing the entire molecular array of a human disease. Nonetheless, in vitro saturation binding 

studies on human brain tissue can be used with a suitable PET radiotracer to estimate the Bmax and 

expert reviews are available that discuss the problems with translating target density estimated by 

autoradiography to PET scans.30 Briefly, targets are more exposed during in vitro measurements 

and Blood-Brain Barrier (BBB) penetration is not a limiting factor in obtaining in vitro data. For 

a more detailed discussion on what makes a good molecular target for PET imaging, please refer 

to other reviews.20,31 

1.3. Current Neurodegeneration Imaging Approaches and their Limitations 

 To date, only small numbers of clinical biomarkers specific to neurodegeneration have 

been targeted by PET radiotracers. During neurodegenerative disease (ND) progression, it is 

known that specific peptides aggregate into plaques and tangles in the brain regions associated 

with deterioration that are specific to the disease. The cause of the formation of these plaques and 

their subsequent consequences are currently under heated debate.32 Nonetheless, such protein 



 

8 
 

aggregates have provided a valuable target for PET radiotracers to enable the differentiation of 

ND that have clinical overlap.33–35 Noninvasive imaging of protein aggregates with PET mimics 

the stages defined years ago by Braak et al. that determined the brain regions that accumulate 

protein aggregates during AD through immunohistochemical (IHC) staining.36 Building on this 

initial work, other potential imaging biomarkers for ND have been the focus of several clinical 

PET radiotracer development programs including, but not limited to, proteins and enzymes 

expressed specifically in the synapses affected during a specific disease as well as inflammation 

biomarkers that are thought to occur before and lead to protein aggregates.37,38 As this information 

has been thoroughly and extensively reviewed elsewhere, the main points will be discussed briefly 

on the current approaches to ND PET imaging and their limitations. 

1.3.1. Alzheimer’s Disease 

 Protein aggregates primarily associated with AD are composed of amyloid ß (Aß) and 

hyperphosphorylated tau (pTau).39 Aß is the main component of senile plaques and pTau is the 

main component of neurofibrillary tangles (NFTs). Braak staging indicates that senile plaques 

begin in the transentorhinal cortex (Stage I/II) and spreads to the limbic system (Stage III/IV) that 

includes the hippocampus, amygdala, temporal cortex, and basal frontal cortex, and then finally 

widely distributed amongst the neocortex (Stage V/VI).40 The spread of NFTs follows that of senile 

plaques, albeit starting just after senile plaques start to spread.41 In other words, the spread of NFTs 

lags just behind that of senile plaques during progression of the disease. Aß is a cleaved product 

of the protein Amyloid Precursor Protein (APP). APP can be cleaved at the amino terminus by 

either α-secretase resulting in a non-amyloidogenic end-product, or ß-secretase, which results in 

the amyloidogenic end-product, Aß, which can be 36-43 amino acids (aa) long.42 These peptides 

can misfold and aggregate together to form soluble oligomeric complexes, and eventually 
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insoluble plaques that are the target of current PET tracers.43 The formation of NFTs is not as well 

understood as senile plaques but is believed to occur due to hyperphosphorylation of tau protein.44 

The kinase associated with hyperphosphorylation of tau is thought to be glycogen synthase kinase 

3ß (GSK3ß).45 In the amyloid hypothesis, it is believed that the formation of senile plaques and 

subsequent NFTs eventually cause apoptosis and thus, neuronal cell death, which primarily effects 

the glutaminergic and cholinergic neurons.39 

 There are several PET tracers that have been developed to image Aß plaques, including 

[11C]Pittsburg Compound B ([11C]PiB),46,47 [18F]FDDNP,48 [18F]florbetaben,49,50 [18F]florbetapir 

(AV-45),51,52 flutemetamol,53 and [18F]NAV4694.54,55 All of these have been used to image 

amyloid plaque burden (Figure 1.3), and this information has been used for diagnosis of ADRD, 

clinical trial enrichment and monitoring AD patient response to therapy.19 A drawback of the 

current amyloid radiotracers is they suffer from nonspecific binding. For example, the most widely 

used tracer, [11C]PiB, suffers from high nonspecific binding in the white matter which can lead to 

trouble differentiating normal patients and those with mild cognitive impairment (MCI).56 

Although [18F]NAV4694 has been developed to help differentiate MCI and AD, it suffers what all 

Aß tracers do, being unable to image the more toxic, soluble Aß oligomers that are thought to be 

responsible for disease progression, and is thus limited to mid-late stage imaging.57–59 

[18F]Florbetaben and [18F]florbetapir (AV-45) have an advantage over [11C]PiB in that they are 

labeled with fluorine-18 (an isotope with a longer half-life and therefore, longer PET scans can be 

performed),.60 [18F]FDDNP forms metabolites extensively that are BBB permeable, and it may 

also bind to tau NFTs which is not ideal when plaques and NFTs colocalize.61 To address the latter 

issue, there was need for a selective tau radiotracer and several have been developed (Figure 1.4) 

that can image NFTs, revealing staging as predicted by Braak’s IHC staining.62 However, some of 
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these tracers (AV-1451, THK5351) have known off-target binding to MAO-B, a biomarker of 

inflammation, making it difficult to know how much of the signal is related solely to NFTs,63,64 

while others (PBB3) form brain penetrating metabolites that complicate image quantification. 

Development of 2nd generation tau radiotracers (e.g. MK-6240, PI-2620) is focused upon 

eliminating this off-target binding.65 

 

Fig. 1. 3: PET Tracers developed for Aß protein to image plaques with representative images to illustrate regional distribution. 

SUVR standardized uptake value ratio. Adapted from ref. 47,50,52,53,55 with permission from Elsevier, OBM Geriatrics, 

Journal of Nuclear Medicine, and Wolters Kluwer Health, Inc. 
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Fig. 1. 4: PET Tracers developed for Tau protein to image NFTs with representative images to illustrate regional distribution. 

DVR distribution volume ratio, SUVR standardized uptake value ratio. Adapted from ref. 62 with permission from Molecular 

Psychology 

1.3.2. Parkinson’s Disease 

 The major protein aggregates found in Parkinson’s Disease (PD), termed Lewy bodies, are 

primarily composed of the peptide, α-synuclein (α-syn).66 Braak et al. has also performed IHC 

staging of PD brains, similar to AD, where the aggregates begin in a distinct region and spread to 

other regions affecting specific neurons.67 How α-syn spreads is still under investigation. First, α-

syn is found in the olfactory bulb and lower raphe nuclei (Stage I/II), begins to spread into the 

structures of the basal ganglia, being the substantia, nigra, amygdala, and striatum (Stage III), then 

finally to the temporal cortex (Stage IV/V). Like the amyloid hypothesis of AD, it is believed that 

α-syn aggregates can also cause neuronal cell loss, primarily effecting the dopaminergic neurons.68 
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The physiological role of α -syn is vast as it plays many roles in modulating synapse proteins and 

the stabilizing the structure of the synapse altogether.66 Improper functioning of α-syn would than 

lead to dysregulation of neurotransmitter release. As dopaminergic neurons are primarily found to 

regulate motor control, disease causing α-syn aggregates help to explain the exacerbation of motor 

symptoms found in PD patients.69  

 Unlike AD, radiotracers for PD have not been validated for its protein aggregate, α-syn, 

and presynaptic proteins of the dopaminergic system have been targeted instead. Some presynaptic 

proteins specific to dopaminergic neurons that have been targeted include the dopamine transporter 

(DAT),70 targeted by [123I]ß-CIT,71 and aromatic l-amino acid decarboxylase (AADC),72 

responsible for dopamine metabolism, which is targeted by [18F]FDOPA.73 Due to the arduous 

task of synthesizing [18F]FDOPA, its widespread use in research has been limited, and the poor 

spatial resolution of Single Photon Emission Computed Tomography (SPECT) agents like [123I]ß-

CIT confound making meaningful interpretations of early-stage imaging for PD. More general 

presynaptic proteins have been the target of PET tracers like VMAT2,74 serotonin transporters,75,76 

glutaminergic mGluR5,24 and Adenosine type 2a.77 Imaging of these proteins makes it possible to 

visualize function of these synapses. Decreased expression of these proteins can be interpreted as 

decreased synaptic connections, and thus, decreased synaptic density. In conclusion, PET imaging 

of PD remains a challenge as an early stage biomarker specific to the disease remains to be easily 

targeted. 

1.3.3. Neuroinflammation 

 Although it has been suggested that neuroinflammation during neurodegeneration is a 

result of protein aggregation and dying neuronal cells (where immune cells clean up the contents 

expelled by dying cells),78 the neuroinflammation hypothesis opposes this view stating that chronic 
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neuroinflammation induces oxidative stress that causes protein aggregation and neuronal cell 

death.79 Whether it occurs before or after protein aggregation, several PET tracers have been 

developed that aim to target specific proteins associated with inflammation as it is clear that they 

are biomarkers of neurodegeneration 

Neuroinflammation is mediated by brain specific immune cells including microglia, 

dendritic cells, macrophages, and myeloid cells.80 Resting immune cells in the brain during a 

normal state can become activated by a pathogen, leading to increased expression of specific 

proteins.81 These protein biomarkers of neuroinflammation include translocator protein 18 kDa 

(TSPO),82 cyclooxygenase (COX),83 monoamine oxidase (MAO),84 GSK3ß,85 and even newer 

targets like triggering receptor expressed on myeloid cells 2 (TREM2),86 receptor for advanced 

glycation end-products (RAGE),87 colony stimulating factor 1 receptor (CSF1R),88 and purinergic 

receptors (P2X and P2Y).89 The target, TSPO, is the most widely targeted protein of 

neuroinflammation that has resulted in the development of several clinical PET tracers because of 

evidence showing that TSPO expression in glial cells is increased during inflammation.90–92 

Unfortunately, TSPO expression is not restricted to microglial cells and 10% of the population 

contains a mutant TSPO caused by a single nucleotide polymorphism (SNP) that prevents binding 

of most PET tracers.93 The variants COX-1/2 remain a challenge to image as COX-1 has high basal 

expression and PET tracers for COX-2 are not sensitive enough to detect the small changes 

associated with neuroinflammation.94 MAO PET tracers reveal promising data, showing that 

MAO-B is overexpressed during MCI and AD.95 PET imaging of newer targets like P2X,96 P2Y,97 

and RAGE98 have been successful, and tests to understand their role in early neurodegeneration 

are still under way. Development of PET tracers for imaging of CSF1R will be discussed in 

Chapter 4. Though imaging neuroinflammation may prove to be valuable in early detection of 
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neurodegeneration, it is not specific to it. Neuroinflammation can be caused by several factors (e.g. 

head trauma) and the search for ND biomarkers to be imaged by PET continues. Of the emerging 

biomarkers, biological transition metals such as iron (Fe), copper (Cu), and zinc (Zn) are suspected 

to play an early role in NDs.99 

1.4. Metal Ions as a Target for PET 

When a small molecule PET tracer is injected, it will distribute into every tissue 

compartment that is accessible by passive diffusion (if it is not a substrate for a transporter) where 

it can then bind its target. Depending on the scanner used, a full body image100 can be reconstructed 

to provide insight into where and how much of the tracer is binding.101,102 Physiological transition 

metals pose a unique target in that they are ubiquitously distributed in organisms and utilized in 

various ways, performing a wide range of functions such as oxygen transport, electron transfer for 

oxidation and reduction reactions, enzyme catalysis of enzymatic substrates, and are even 

structural components.103 Given that positron-emitting chelators can only bind a small percentage 

of these metals (~1% of total Fe, X% for Cu, and X% for Zn) when injected at tracer amounts and 

obtaining kinetic data in a short time frame (e.g. 1-2 hours after injection), we anticipate using 

PET to understand the nature of the accessible/chelateable labile metal pool. However, the 

presence of protein-bound metals helps to understand the mechanisms of diseases and predict 

where increases/decreases in the metal labile pools might take place within the body. Thus, a full 

understanding of the entire biochemical control of transition metals in the body will help to 

understand where metal chelating PET tracers will bind in a normal organism and how it will 

change its distribution in various disease states. PET imaging of physiological transition metals 

could provide a unique way to interrogate the mechanism of metal-related diseases that will help 
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us probe where oxidative stress is occurring, comparable to how [18F]FDG (the gold-standard of 

PET imaging) can provide information on areas of hyper- and hypo-metabolism in diseased states. 

1.4.1. Iron as a Target for PET 

1.4.1.1. Iron Homeostasis 

1.4.1.1.1. Proteins Involved in Processing Iron 

 Since PET tracers are injected intravenously, we will begin our discussion of the various 

iron components of the blood where the first interactions with the PET tracer will take place. First 

and foremost, iron exists in two oxidation states at physiological conditions – ferrous (Fe2+) and 

ferric (Fe3+) iron. The lower oxidation state of Fe2+ makes it more soluble than Fe3+ in aqueous 

conditions where it can reach a maximum concentration of 10-9 -10-7 M (Fe3+ can only reach 

concentrations from 10-19 - 10-17 M).104 However, the presence of protein metal transporters, 

storage proteins, amino acids, nucleic acids, organic chelates (citrate, acetate, glycochelates, 

glutathione, nitrilotriacetate) and organic salts (PO4
3-) allow biological systems to contain 

increased concentrations of iron far beyond these limits. In the blood, iron is transported in the 

plasma by proteins like transferrin and ferritin as Fe3+,105 but is found mostly in the red blood cells 

contained in hemoglobin as Fe2+, responsible for oxygen transport.106 These globin proteins utilize 

porphyrin prosthetic groups (Figure 1.5) to bind iron within their oxygen binding sites. The 

tetradentate coordinating character of porphyrin surrounds the equatorial binding sites of iron 

(Figure 1.5), allowing only one oxygen to bind at one axial site of Fe2+. Due to the affinity of 

porphyrin rings with iron and its high denticity, a bidentate chelator with a small bite angle would 

not bind to this form of iron as it would not be able to distort the porphyrin ring to allow 

dissociation of one of the pyrrole groups required for chelation. A bidentate chelator that can bind 
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both axial sites at the iron center would still need to displace the axial amino acid ligand associated 

with the globin protein.  

 

 

 

 

 

Fig. 1. 5: Equatorial binding of iron by the nitrogen containing porphyrin ring 

Transferrin protein binds Fe3+ with four amino acid residues shown in Figure 1.6 where it 

remains in a closed confirmation with carbonate, inaccessible to the outer solution until it is in an 

acidified environment such as an endosome.107 Transferrin has two iron binding sites. Diferric 

transferrin only represents 25-30% (20 – 30 µM)108–110 of the total plasma transferrin, as it is not 

completely saturated with iron at normal conditions.  

Fig. 1. 6: Transferrin iron binding site residues and schematic depicting the sampling of open and closed confirmations. Adapted 

from ref. 107 with permission from Elsevier 

Ferritin (Figure 1.7) in the plasma is mostly composed of L-chain ferritin, responsible for 

Fe3+ storage. Ferritin bound iron is stored in the ferritin core as a crystalline mineral form 
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([FeO(OH)]8[FeO(H2PO4)]), comparable to ferrihydrite.111 The structure of this mineralized iron 

has yet to be determined, but is known to be accessible by small compounds despite the small 

width of the channels (1.5 nm) created by the tertiary structure of ferritin.112 Even though iron 

chelators could potentially enter the ferritin core where up to 4500 iron atoms can be stored, a high 

amount of organic reducing agents (e.g. ascorbic acid) would be required to make the iron 

accessible for chelation.113 Ferric iron is considered as a nanocrystal because it is so dense, which 

makes it detectable by magnetic resonance (MR) and is the primary source of iron MR images 

(MRIs) utilizing T2* and R2* scans. Finally, iron that is not protein-bound (also known as 

nontransferrin bound iron (NTBI), “free” iron, chelatable iron, or labile iron) in the plasma is 

thought to be mostly bound by albumin and low molecular weight ligands such as citrate in 

oligomeric complexes.109,114,115 The concentration of this component in normal conditions is low 

enough that it is not detectable by current methods (bleomycin and other fluorescence-based 

assays).114 Chelatable iron only reaches detectable concentrations in the plasma when iron 

homeostasis becomes disrupted during disease and transferrin is 100% saturated with iron.114 

To allow uptake of extracellular iron, cells express both transporters and receptors on their 

membranes such as transferrin receptor (TfR) for uptake of diferric transferrin and divalent metal 

transporter 1 (DMT1) for uptake of NTBI.116 Depending on the organ compartment, other iron 

transporting proteins (i.e. lactoferrin) would have their own receptors like lactoferrin receptor in 

secretory glands (milk, tears, saliva) and melanotransferrin receptor in microglial cells of the 

brain.107 Although TfR and the other related receptors do not bind iron directly, their expression 

levels are directly related to the homeostasis of the intracellular iron concentration. High 

expression of TfR leads to higher concentrations of intracellular iron, where as a decrease in TfR 

expression leads to less iron being trafficked into the cell. After transferrin binds TfR, an endosome 
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is formed where it is then acidified to release Fe3+ into the endosome to be reduced to Fe2+. DMT1, 

present on the endosomal membrane, transports Fe2+ into the cytosol to be available for use. Just 

like the plasma, cytosolic iron can be found to be protein-bound or freely associated with cytosolic 

biological chelators (e.g. citrate and glutathione).117 When Fe2+ thus enters the cytosol, it will 

become a part of the labile iron pool (LIP), composed of hydrated forms of Fe2+/Fe3+ being 

complexed with water and various physiological buffer salts such as phosphate (PO4
3-), acetate 

(CH3COO-), and carbonate (CO3
2-).118 Although the complete nature of LIP is still not understood, 

it has been suggested that single amino acids, nucleic acids, and other biological chelators 

mentioned previously are found here to help solubilize the iron.104 The LIP provides a source of 

iron that can either be stored into ferritin, incorporated into non-heme iron enzymes, or shuttled to 

the mitochondria for use in generation of heme or iron-sulfur clusters (ISCs), a cofactor used in 

proteins involved in electron transfer. 

Ferritin, as discussed above, functions as intracellular Fe3+ storage. Ferritin is composed of 

24 subunits, referred to as Heavy (H) and Light (L) chain ferritin, that can have varying ratios of 

H:L chains depending on the tissue ferritin is being expressed in.112,119 The H chain subunit has 

inherent ferroxidase activity located at the four amino acid residue site, Glu-27, Glu-62, His-65,  

and Gln-141, where iron oxidation of Fe2+ found in the LIP occurs. The resulting Fe3+ is funneled 

through the three-fold channel (Figure 1.7) where a negative electric potential gradient created by 

a series of carboxylate amino acids directs Fe3+ towards the ferritin core to be used at a nucleation 

site where the mineralization of iron will take place.112  
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Fig. 1. 7: Structure of Ferritin and the breakdown of its individual components. Adapted from ref. 111 with permission from 

University of Washington 

Cells express metal chaperones that help transport metals within the cell and load them into 

metalloproteins.103 For iron to move out of the LIP and be utilized by the cell, Poly(rC)-binding 

proteins act as iron ion chaperones, delivering them to enzymes and the mitochondrial iron 

importer, mitoferrin.120 The driving force for the movement of free iron out of the LIP to its 

protein-bound destinations is an affinity gradient, where stronger affinities for iron increases from 

chelators, to chaperones, to apoenzymes and apoproteins.121 Thus, if an iron chelating PET tracer 

diffused into the cell, the LIP would be its primary target. For a chelator to strip iron from 

metallated protein, it would need picomolar affinity for iron or large concentrations and a lot of 

time for nanomolar affinity chelators, two factors that cannot be reached during a PET study. 

Within the mitochondria contains cellular machinery responsible for the biosynthesis of 

heme and ISCs. This includes ferrochelatase,122 a metal insertase that inserts iron into 

protoporhyrin IX to form heme, and frataxin,123 an iron chaperone used in the production of ISCs. 

It should be noted that ISCs can be chaperoned themselves through the cytosol by two proteins, 

monothiol glutaredoxins (Grxs)124 and BolA-like proteins.125 ISCs can exist as either Fe2S2 rhomb 
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(tetrahedral, Figure 1.8 left) or F4S4 cubane (distorted octahedral, Figure 1.8 right) and bound into 

the protein by terminal cystines.126 Fe4S4 Heme and ISCs form the basis of most protein-bound 

iron which are inert to outside chelators.  

 

Fig. 1. 8: Tetrahedral ISC (left) and distorted octahedral ISC (right) conformations. Adapted from ref. 119 with permission from 

Elsevier 

ISCs are contained within Iron Regulatory Proteins (IRP, previously known as Iron 

Response Element (IRE)-binding proteins) which function by maintaining mRNA translation of 

iron storage and uptake proteins (Figure 1.9) .104 This function is mediated by the binding of apo-

IRPs (without its ISC) to the IRE located in the noncoding region (UTRs) of these mRNAs. IREs 

can be found in the 5’-UTR, associated with initiation of translation, or the 3’-UTR, associated 

with mRNA stability and degradation. When iron is abundant in the cell, ISC production is 

increased at which point it can become incorporated into IRP-1 to form the holo-IRP-1 (with its 

ISC), resulting in a conformational change and subsequent dissociation from the mRNA. To 

visualize the role of IRE/IRP regulation of iron, the mRNA of H- and L-chain ferritin contain IREs 

in the 5’-UTR region, and when intracellular iron concentration is high, ferritin expression will 

increase to store the incoming iron. Likewise, the mRNA of TfR contains an IRE in its 3’-UTR, 

and thus, when iron concentration is high, the mRNA of TfR will be degraded, causing less iron 

to be incorporated into the cell. IRP-1 is ubiquitously expressed, while IRP-2 is found mainly in 

the brain and intestine. 
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Fig. 1. 9: IRE motif on mRNA at 3‘ end prevents mRNA degradation by binding to IRP (top right) and IRE motif on mRNA at 

5’ end prevents translation by binding to IRP (top left). Excess iron leads to dissociation of IRP from IRE motif (bottom). 

Adapted from ref. 127 with permission from Creative Commons Attribution 

Nonheme enzymes (and those not utilizing ISCs) found in humans use amino acid residues to 

coordinate iron formed in the LIP. Proteomic analysis of these enzymes reveals that there are 

recurring structural motifs that have been defined by the course of evolution. For iron, these 

include tetrahedral Fe(Cys)4 and Fe(His)3 units, as well as the facial motif that is 2-His-1-

carboxylate triad used in oxygenases.126 The latter motif is accessible to specific substrates that 

become oxidized by iron and dioxygen. The active site of enzymes is very strict on accepting a 

variety of substrates, so iron chelator access to these sites would be tightly controlled. If there are 

any nonheme enzymes that are promiscuous and allow metal chelators to bind iron within their 

active sites, it would be negligible and unrepresentative of an iron chelating PET tracer image 

being that all of these enzymes together represent 0.002% of the total iron in the body.108,110 

1.4.1.1.2. Locations and Concentrations of Iron 

 The average amount of iron found within the adult human male/female is approximately 

3-5 g.108,110,128 It is widely distributed throughout the body because of the many roles iron 



 

22 
 

participates in. The concentration of iron in tissue compartments will differ based on the tissue’s 

roles and varying cell types within these compartments. To note, measuring iron remains a difficult 

task with no method being the standard for its quantification. Total iron can be measured by various 

ex vivo and in vitro methods, but will not distinguish the natural distribution of iron in its various 

oxidation states and its coordination environment whether it be protein-bound or labile in differing 

cellular compartments (mitochondria, cytoplasm, nucleus, etc.). The intracellular LIP and NTBI 

of the plasma is the most difficult to quantitate because it requires methodology that does not 

perturb the cellular environment (sample destruction) which is normally used to prepare tissue 

samples for the ex vivo methods. Traditionally, histochemical methods were used to determine 

relative differences in iron, beginning with Perls’ Prussian Blue stain for Fe3+ in 1867,129 followed 

by modifications for improved staining or detection of Fe2+ (Turnbull’s method).130 Development 

in spectroscopic and spectrometric technologies have since been able to allow the simultaneous 

determination of both Fe2+ and Fe3+ present in samples and their direct quantification with 

detection limits below 1 ppt (ICP-MS and FAAS).103 When spatial resolution is taken into account 

in order to determine where in the cell these ions are found, the detection limit is less efficient in 

the ppb range when used in tandem with techniques such as laser ablation (LA).103 To assess the 

LIP in vivo, fluorescent probes (small molecules and proteins) have been used for iron 

quantification which give beautiful molecular images of living cells with information of the 

cellular distribution of chelatable iron.131,132 Finally, MR has been used to measure iron in multiple 

organs of living organisms by taking advantage of its inherent paramagnetic property, but its 

quantification does not correlate to the chelatable iron.133 However, MR metal sensors can be used 

to interrogate the chelatable iron, but it is limited by their poor sensitivity and the high 

concentrations of probe required. Thus, the use of iron chelating PET probes, which have markedly 
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higher sensitivity, could then be yet another tool to provide information on metal homeostasis of 

a living organism at the molecular level, which is currently not an area of active research (until 

now). For a more detailed discussion of the various methods used for studying metals and their 

concentrations in biological systems, please refer to the reviews that have already covered this 

topic.103,128,134  

Beginning in the blood we find the oxygen carrying RBCs that make up ~69% of the iron 

content contained in hemoglobin and myoglobin.108,110 About 0.1% (~3 mg) of the total iron 

content is transported in the blood (and interstitial fluid) by transferrin (pFe = 23.6),105,107 reaching 

concentrations from 30-50 µM.135 The other protein-Fe3+ serum transporter, ferritin, contains 30% 

of the total iron content when considering intracellular storage as well,108,112 but only reaches 23-

700 nM in the blood.136 As stated earlier, NTBI (citrate monomers and oligomeric iron complexes 

and albumin iron) is undetectable during normal conditions, but from the detection limits of the 

methods used for its quantification (fluorescence quenching,137–139 and nitrilotriacetic acid (NTA) 

capture with measurement by isotope dilution mass spectrometry (IDMS)140), we can infer that 

<0.1 µM is present at any given time. Here we have the concentration of iron within the blood in 

all its various forms, which is then transported through endothelial cells to the different organs of 

the body where it can be utilized further for detoxification in the liver, oxidative metabolism in the 

brain and heart, as well as regeneration of RBCs in the spleen and bone marrow. 

When an iron chelating PET tracer is injected it first flows to the heart to be pumped to the 

rest of the body. According to the first pass effect, it will be metabolized and interact with iron 

deposits in the liver. The liver, being the site of xenobiotic metabolism, will contain high amounts 

of heme iron stored in Cytochrome P450’s of hepatocytes, where oxidation and secondary 

metabolism of drugs takes place. During the first two hours of a PET scan, it is assumed that a 
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steady-state equilibrium is reached, and therefore any metabolism of the tracer is negligible, given 

the metabolic half-life of the tracer is suitable for this assumption.141,142 Also, interactions of iron 

chelators with heme bound iron will not take place as discussed previously. The total nonheme 

iron content of the liver has been reported to be 5-20 µmol/g dry weight by chemical assays of 

biopsy samples143 and 8-16 µmol/g dry weight reported by T2* weighted MRI scans.144 Bone 

marrow performs erythropoiesis (production of RBCs) in the adult human body which requires a 

lot of heme iron obtained from the blood recycling function of the spleen to produce hemoglobin 

and myoglobin. Diffusion of metal chelating PET probes into the bone marrow is unlikely to occur 

and the iron content in this region is usually only graded by histochemical staining (Perls’ Blue). 

White blood cell (WBC) formation and RBC storage mostly takes place in the spleen where iron 

content (mostly nonchelatable heme iron for these cell types) seems to be the greatest at <200 

µmol/g dry weight as measured by MRI.145 The next organ with the most iron content following 

the spleen and liver, is the heart where oxidative metabolism is occurring through the use of ISCs 

and heme containing cytochrome c complexes in the electron transport chain that drives energy 

production for the pumping of the cardiac walls. The iron content of the beating heart reaches 4-8 

µmol/g dry weight as measured by T2* weighted MRI scans.146 Finally, the brain, although 

containing less overall iron than the organs just discussed, contains specific regions where the 

concentration of nonheme iron is far more dense than the liver and heart.147 The brain regions with 

the greatest iron content include the globus pallidus (GP), substantia nigra (SN), interpeduncular 

nucleus (IPN), thalamus (TH), dentate gyrus (DG), and red nucleus (RN), reaching levels from 

150-210 µg/g protein (Figure 1.10).148 These brain regions are associated with body movement 

and are the most affected in neurological movement disorders such as Parkinson’s Disease. Brain 

regions associated with memory and affected greatly in dementia related diseases (e.g. 
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Alzheimer’s Disease) include the cerebral cortex (CC), hippocampus (HIPP), and frontal cortex 

(FC) which contain iron in concentrations a little less than 50 µg/g protein (Figure 1.10).148 With 

the total iron content of each organ laid out, a picture of where iron chelating PET tracers will 

accumulate has been developed.  

 

Fig. 1. 10: Iron concentration in µg/g protein in various brain regions compared to liver. Globus Pallidus (GP); Substantia Nigra 

(SN); Interpeduncular Nucleus (IPN); Thalamus (TH); Dentate Gyrus (DG); Red Nucleus (RN); Cerebral Cortex (CC), 

Hippocampus (HIPP), Cerebellum (CER), Frontal Cortex (FC). Adapted with permission from ref. 147 with permission from 

Elsevier 

Moving from the blood, to the interstitial fluid of tissue compartments, and finally uptake 

into cells, iron will reach the crossroads of its metabolic cycle in the cytoplasm where it can be 

distributed to ferritin for storage, incorporated into nonheme enzymes by iron chaperones located 

in the cytoplasm, or loaded into the mitochondria for production of heme and ISCs proteins. Of 

the 3-5 g of iron in the body, 400 mg of it is used intracellularly. The iron concentration per cell 

and its distribution will vary depending on its demands given the different cell types found in each 

organ. Of the intracellular iron, more than 95% is protein-bound.117 The use of radioactive iron 

(55Fe) delivered to cardiomyocytes coupled with native gel electrophoresis allowed the 

determination of the nature of iron distribution within these cells. The distribution of iron changes 

depending on the source of radioactive iron (55Fe-transferrin or 55Fe-citrate). The ratio between 

iron found in the LIP and iron incorporated into various metalloproteins would change (indicated 

in the pie charts), highlighting that NTBI uptake is a preferred pathway for the source of iron in 

the LIP. Ferritin-stored iron represents 63-65% of iron found in each cell with the remaining iron 
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being labile in the cytoplasm or active in metalloproteins.149 The concentration of the LIP found 

in hepatocytes was determined to be 5.4 µM by using the fluorescent probe CP94.150 In resting 

erythroid and myeloid cells (precursor cells to RBCs found in the bone marrow), the LIP 

concentration was estimated in the range of 0.2-1.5 µM by using the fluorescent probe calcein.151 

In neurons, intracellular iron concentrations have been reported to range from 0.5 to 1.0 mM,152 

which is mostly stored in ferritin (33%-90%, Figure 1.11).108,110 The concentration of the LIP in 

neuronal cells using fluorescent probes has not been reported, but the fluorescent probe, RPE, has 

been used to visualize the LIP in neuronal SH-S5Y5 cells with a LOD down to 0.1 µM.153 

 

Fig. 1. 11: Intracellular iron distribution when using either radioactive (55Fe) label iron as a source (left) or protein-bound iron as 

a source (right). Adapted with permission from ref. 149 with permission from Elsevier 

Next, a discussion on the perturbations of the mechanistic control over the intracellular 

concentration of chelatable iron will help to better understand how diseases will affect the tracer 

uptake within these compartments 

1.4.1.2. Iron Dyshomeostasis 

 The many proteins involved in iron transport, storage, and usage not only help to 

circumvent the limitations of iron solubility, but provide a means for its tight regulation due to its 

potent redox activity that results in the formation of reactive oxygen species (ROS). Aqueous iron 
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(Fe2+/Fe3+) of the LIP can participate in Fenton type oxidation154 of hydrogen peroxide (H2O2) 

produced in the cell: 

Fe2+ + H2O2 −−→ Fe3+ + ·OH + OH− 

Fe3+ + H2O2 −−→ Fe2+ + ·OOH + H+ 

The free radicals (·OH, ·OOH) formed from these reactions can go on to react with biomolecules 

such as nucleic acids found in DNA/RNA and amino acids found in proteins. Radicals formed on 

these biomolecules can lead to point mutations in DNA during replication155 and misfolding of 

proteins leading to aggregate formation.156 The LIP also leads to oxidation of other biomolecules 

such as neurotransmitters (i.e. oxidation of dopamine to 6-hydroxydopamine (6-OHDA) and the 

dopamine quinone (6-OHDA-Q)).157 The concentration of the LIP is maintained during 

homeostasis where production of ROS is limited and the radicals can be mitigated by cellular 

antioxidants (ascorbic acid, vitamin E, etc.). However, if any proteins responsible for iron 

regulation became dysfunctional, iron dyshomeostasis can occur where a small increase in the 

concentration of the LIP can lead to overproduction of ROS that cannot be suppressed by 

biological antioxidants, leading to oxidative stress within the cell. This is the basis of iron related 

diseases and its mechanism has been used to theorize its potential role in neurodegenerative 

diseases. We will look at the evidence that has accumulated to establish the iron hypothesis or 

neurodegeneration, specifically at AD, PD, and amyotrophic lateral sclerosis (ALS), where it is 

thought that earlier diagnosis (with the help of PET scanning) of these incurable diseases can lead 

to favorable outcomes in future clinical trials.  

1.4.1.2.1. Iron’s Role in Alzheimer’s Disease 

 Alzheimer’s Disease (AD), being the most common dementia-related disease, is 

characterized by a progressive loss of neurons and buildup of protein plaques containing amyloid-
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ß (Aß) in the cerebral cortex.39 The cerebral cortex is responsible for memory and learning. The 

brain regions associated with the heaviest burden of neurodegeneration and Aß plaques is found 

in the entorhinal cortex and hippocampus of the temporal lobe as well as the prefrontal cortex of 

the frontal lobe. As stated earlier, the normal brain will maintain iron concentrations less than 50 

µg/g dry weight tissue in these regions.148 The first reports of elevated iron in these regions of 

Alzheimer’s disease post-mortem tissue came to us in 1992 by Connor et al.158 using histochemical 

staining and spectrophotometric analysis for the determination of nonheme iron. For 

spectrophotometric analysis, the method first described by Foy et al.153 was used which required 

boiling tissue homogenate in trichloroacetic acid and treating with reducing agents (sodium 

ascorbate). This results in any ferric iron extracted being converted to Fe2+ and released from the 

ferritin protein. The histochemical stain for iron employed was Perl’s method, which stains only 

for reactive Fe3+. Thus, the iron measured was representative of the total iron in these samples 

rather than specifically measuring the toxic redox active LIP. Another aspect of these studies that 

should be noted is that the brain samples used were fixed in formalin, which has since been shown 

to allow leakage of trace metals,159 and therefore an underestimation of the total iron would have 

been measured. It was concluded by immunohistochemistry of ferritin and transferrin as well as 

histochemical staining of Fe3+, that iron levels are increased substantially around Aß plaques.158 

However, the total level of iron when compared to age-matched, normal tissue is relatively 

unchanged. Later, Mössbauer Spectroscopy, which has the ability to differentiate the valence states 

of iron (Fe2+ and Fe3+) in a tissue sample, was used in 2011 to assess iron hippocampal levels of 

freshly prepared AD and normal post-mortem tissue not stored in formalin.160 This technique 

places the normal hippocampal iron concentration at 45 µg/g wet tissue, similar to the levels 

described by other methods.147,148 A significant increase in iron of the AD tissue was measured to 
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be 66 µg/g wet tissue (a 1.5 fold increase). This study also demonstrated that H- and L-chain 

ferritin was substantially increased, being 3-fold higher in AD than compared to control tissue. 

Finally, MRI can measure large concentrations of paramagnetic iron (ferritin being the source) 

which has been pivotal in correlating iron increases in AD.133 It was shown in 2013 that the 

hippocampus has increased iron deposition of AD patients.161 However, meta-analysis of iron MRI 

data have shown that increases of iron deposition in AD brains is not significantly different from 

age-matched control patients, indicating brain iron increase is a phenomenon of the aging 

process.162 Thus, the need to measure the more toxic ROS producing iron found in the LIP of AD 

patients is outlined by current methods either not being applicable to a living organism or not being 

sensitive enough to measure the less concentrated LIP. 

 The mechanism for the accumulation of iron in AD specific brain regions is not well 

understood. Attempts to explain the dysregulation of iron control in these cell types has pointed to 

the involvement of the iron transporter, TfR, the amyloid precursor protein (APP), and its post-

translationally cleaved product, Aß. As mentioned earlier, a large concentration of TfR was found 

by IHC to be localized around Aß plaques.158 An increase in iron uptake mediated by TfR could 

help explain why iron is elevated in AD, but it is not currently understood why overexpression 

would occur in specific brain regions. Later studies in 2004 indicated that trace metals in buffers 

and culture media were the culprit for in vitro Aß aggregation,163 perhaps explaining that around 

1mM of iron could be found in amyloid plaques. APP, a transmembrane protein, has been shown 

to be able to bind metals164 and its mRNA contains an IRE in the 5’-UTR.165 The upregulated 

translation of APP and accumulation of its cleaved product Aß is perhaps the product of iron 

accumulation, where these proteins are acting to help in iron storage when ferritin becomes 

saturated. Unfortunately, iron binding with APP still maintains redox active properties,166 leading 
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to toxic accumulation of both protein aggregates and ROS. Perhaps, iron accumulation prior to 

APP’s upregulated translation is not necessary as it has been shown that the dysregulation in the 

binding of IRPs to IRE was found to occur in AD brains.167 This would result in aberrant APP and 

TfR translation, leading to accumulation of iron and metal-protein aggregates. The formation of 

toxic metal-protein aggregates, if indeed causative of neurotoxicity, has been imaged by our group, 

using the Cu2+-Aß binding radiotracer [18F]FL2-b, discussed in Chapter 3, where we see a 

significant increase in binding on Alzheimer’s diseased tissue over control.168 

1.4.1.2.2. Iron’s Role in Parkinson’s Disease 

 Parkinson’s Disease (PD), the second most common neurodegenerative disease, is 

characterized by a loss of dopaminergic neurons within the substantia nigra pars compacta (SNc) 

and striatum as well as buildup of protein plaques known as Lewy Bodies composed of α-synuclein 

(α-syn) starting from the brain stem and olfactory bulb, then spreading to the SNc, amygdala, 

hypothalamus, prefrontal cortex, and hippocampus.169 Dopaminergic neurons release the 

neurotransmitter dopamine and is responsible for motor control, which is why shaking, rigidity, 

and slowness of movement are the clinical manifestations of the disease. Severe progression of the 

disease can be accompanied by dementia as α-syn accumulates in the brain regions associated with 

memory and learning in the later stages of the disease.170 

 Post-mortem iron analysis of PD samples was first performed in 1968 using X-ray 

fluorescent spectroscopy of formalin fixed tissue.171 This method (and the limitations associated 

with formalin fixed tissue previously discussed in section 1.4.1.2.1) measured relative qualitative 

differences in total iron content of PD and control tissue. It was determined that an increase in iron 

was measurable in PD tissue relative to normal brain tissue. The LOD for this method is 10 µg/g 

dried tissue. Subsequent findings in the late 1980’s by Youdim used spectrophotometric methods 
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(using ferrozine® to measure Fe2+) to confirm increases in total iron content in the SN PD post-

mortem tissue homogenate (~85 µg/g wet tissue) compared to control (~48 µg/g wet tissue).172,173 

Although an Fe2+ chelator was used, tissues were homogenized with hydrochloric acid (HCl) and 

pepsin, which would destroy the ferritin shell and leach Fe3+ that would eventually become reduced 

to Fe2+. Thus, the Fe2+ concentration mentioned in these studies is not indicative of the 

concentration of the LIP, which is greatly overestimated in these studies. Later in 1995, total iron 

content was measured by a colorimetric assay in which total iron was found to be elevated in the 

GP (~7 mg/g protein) and FC (~3 mg/g protein) of PD post-mortem samples over elderly 

controls.174 Due to the limitations of these methods, precise characterization of iron content was 

needed and development of spectroscopic methods suitable to biological samples were used in 

later experiments. Mössbauer spectroscopy is such a method and was used in 1996 by Galazka-

Friedman et al.175 where the SN iron content was measured in control and PD tissue samples. No 

change in total iron content was observed in both sample types (~160 µg/g wet tissue). These 

values, although inconsistent with previous findings, were determined by a more reliable method 

and thus the values of total iron are more similar to those reported by other methods. As seen in 

experiments performed by X-ray absorption fine structure (EXAFS) in 1999, structures of the basal 

ganglia in PD samples were used revealing a significant increase in total iron compared to control 

in both the lateral GP (295 µg/g vs. 207 µg/g wet tissue) and SN (281 µg/g vs. 140 µg/g wet tissue), 

with a mild increase of iron in the FC (51 µg/g vs. 42 µg/g wet weight).176 Later, Galazka-Friedman 

et al.177 in 2010, showed that an increase in the LIP of PD samples could be measured by AA, 

reaching a concentration of 90 ng/g in the SN. Meta-analysis of both postmortem and in vivo MRI 

measurement was published in 2016 confirming that brain iron levels were increased in both the 

SN and RN of PD patients.178 
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 The evidence for the mechanism of iron accumulation in PD is not conclusive, just as in 

AD. It was first suggested that PD could be a glutathione metabolism disorder. Experiments in 

1986 by Perry and Yong demonstrated that the total glutathione content in the SN of PD was 

significantly decreased.179 As discussed earlier, glutathione is a biological chelator of iron in the 

LIP. If less glutathione is present, iron could be coordinated to a lesser extent resulting in redox 

active iron accumulating in the LIP and subsequently uncontrolled ROS production. Dopamine, 

being the neurotransmitter produced in the neurons of the SN, contains a catechol moiety that can 

chelate Fe3+. Dopamine and Fe3+ form a redox active species that can result in the oxidation of 

dopamine to form neuromelanin polymers.157 The resulting neuromelanin can serve as an 

alternative source for Fe3+ storage.180 Given that there is decreased concentration of L-chain ferritin 

and increased H-chain ferritin in the SN of PD patients,181 the decreased ability to store iron in this 

brain region coupled with the increased ability to convert Fe2+ to Fe3+ through the inherent 

ferroxidase activity of H-ferritin and decreased chelators in the LIP, the formation of neuromelanin 

may serve to protect the neuron from oxidative stress.182 An influx of iron cannot be explained by 

overexpression of TfR as it was shown by autoradiography that the receptor density and 

distribution of TfR remains unchanged in PD.183 IHC of lactotransferrin receptors revealed heavy 

staining for the receptor in regions associated with α-synuclein build up,176 but since the expression 

of lactotransferrin receptor is limited to macrophages, this most likely reveals that macrophages 

are accumulating around dying neurons and taking up excess iron expelled from them. Finally, in 

2008 it was shown that DMT1 accumulates in the SN of PD and was needed for the progression 

of the disease in PD animal models.184 The increased DMT1 expression on the cellular surface of 

dopaminergic neurons would implement the increased uptake of NTBI as the mechanistic pathway 

for the increase in concentration of the LIP. Thus, dysfunction in either iron storage or increased 
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NTBI transport into the cell are viable mechanisms of increased oxidative stress in dopaminergic 

neurons. Oxidative stress would then result in α-syn misfolding and aggregation. In fact, it has 

been shown that iron is highly concentrated in Lewy bodies (α-syn aggregates) and that α-syn is 

able to bind free iron.185 The resulting Fe-α-syn complex is also redox active, which would lead to 

further oxidative damage to the cell and inducing neuronal death. 

1.4.1.2.3. Iron’s Role in Amyotrophic Lateral Sclerosis 

 Amyotrophic Lateral Sclerosis (ALS) is a neuromuscular degenerative disease that effects 

the lower motor neurons in the spinal cord and upper motor neurons in the motor cortex of the 

brain.186 It is characterized by the presence of intraneuronal inclusions termed Bunina bodies found 

in the surviving lower motor neurons, composed of cystatin C and transferrin.187,188 Skein-like 

protein aggregates are also found in the neurons of the motor cortex and spinal cord, which has 

recently been identified as being composed of phosphorylated-Tar DNA binding protein-43 

(pTDP-43).189 The mechanism of ALS disease progression is not well understood as only 2% of 

cases are genetically linked, with the remaining being sporadic.190 

 Elevated iron concentrations in post-mortem ALS tissue was first reported in 1993 by using 

neutron activation analysis on the grey matter of the frontal and occipital regions of the brain.191 

Increases in iron were also confirmed in fresh ALS lumbar spinal cord tissue by using the same 

technique a year later.192 By 1995, laser microprobe mass spectroscopy confirmed increases of 

iron in the spinal cord by 1.5-2 times greater in the nucleus and cytoplasm of ALS neurons over 

control.193 ICP-MS was used in 2003 on formalin-fixed brain tissue to observe a significant 

increase of iron in ALS frontal lobe (303 µg/g dry weight), temporal lobe (357 µg/g dry weight), 

and cerebellum (342 µg/g dry weight).194 The most significant brain region to be affected in ALS 
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is the motor cortex of the frontal lobe which normally has iron concentrations at 251 µg/g dry 

weight tissue. 

 These post-mortem studies showing elevated iron levels is accompanied by clinical 

findings of increases in iron as well. T2 relaxation MRI studies were used first in 1995195 and later 

in 2012196 and 2013197 to assess ALS patients that show low intensity areas in regions with brain 

atrophy. The later MRI studies showed the iron increase could be associated with microglia 

accumulation in the motor cortex and that the hypointensities in this region is solely a biomarker 

for ALS. Increased serum ferritin levels were found in ALS patients in 2008.198 A study was then 

performed showing that this increase in serum ferritin has a deleterious impact on the survival of 

ALS patients, as higher iron storage correlated to the severity of the disease.199  

 The mechanism of iron buildup in ALS is still unclear and remains an uninvestigated area. 

Animal models with ALS-type mutations have showed increases in expression of TfR, indicating 

an increase in iron uptake of neurons.200 DMT1 has also been found to have increased expression 

in these animal models.201 Superoxide dismutase (SOD) is an enzyme that has been shown to 

release iron from ferritin, which may result in increased ROS production.202 Indeed, SOD1 

mutations are the most common in genetic related ALS. Whether oxidative stress or iron 

accumulation occurs first in the disease progression, increases in iron levels is still an early 

biomarker of ALS and can predict neurodegeneration. 

1.4.2. Copper as a Target for PET 

1.4.2.1. Copper Homeostasis 

1.4.2.1.1. Proteins Involved in Processing Copper 

 In biological systems, copper is found mostly in two oxidation states, being cupric (Cu2+, 

3d9) and cuprous (Cu+, 3d10) ions. Just like iron, it can exist in either a protein-bound pool or free 
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labile pool in both the intracellular and extracellular environment. Cu2+, being the most abundant 

form in physiological conditions, is mostly protein-bound, while the reduced form, Cu+, is found 

free in solution and existing briefly in the electron transfer cycles in cuproenzymes. In the blood, 

protein-bound copper is transported by ceruloplasmin, as well as albumin and transcuprein.203 To 

a lesser extent, but still a real fraction exists other proteins that make up the extracellular protein-

bound copper, including: lysyl oxidase, amine oxidase, SOD, metallothionein, blood clotting 

factors V and VIII, and ferroxidase II.204 

 Unlike iron, prosthetic groups for binding copper do not exist, and instead proteins bind 

copper directly through their amino acid side chains and backbone amide groups. The copper 

centers of proteins can be classified into five types: type I-III, CuA, and CuZ (Figure 1.12).205 

These copper centers are typically embedded in pockets between the loops of ß-barrel folds and 

are completely shielded from the solvent to prevent unnecessary redox reactions with solvent and 

organic molecules. From Figure 1.12, it is seen that the main amino acid residues for copper 

binding are histidine, forming a trigonal plane at the equatorial sites. For type 1 centers, however, 

the copper binding ligands differ in that it has the Cys(His)2 motif. These equatorial amino acids 

are accompanied by an axial ligand, being methionine or oxygen (either from water, hydroxide 

anion, oxygen, or an amino acid) to form a tetracoordinated copper center that can accommodate 

a variety of geometries: tetrahedral, trigonal, trigonal pyramidal, trigonal bipyramidal, square 

pyramidal, and octahedral. Type III and CuA centers are dinuclear (contain two copper atoms) 

clusters bridged by one oxygen (in type III) or two sulfurs (in type CuA). The significant difference 

between these two dinuclear copper centers is the ability to have a fixed valence state (Cu(I)/Cu(II) 

in Type III) where the shared valence electron is localized to one copper atom or a mixed valence 

state (Cu(1.5)—Cu(1.5) where the shared electron is delocalized between both coppers. The CuZ 
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center contains a four-copper cluster and has only been found in Nitrous-oxide reductase of 

prokaryotes. Several cuproproteins may have multiple copper centers with multiple types being 

present in the same protein. Interestingly, Cu2+ ion is coordinated tightly by these sites, but when 

it is reduced during electron transfer reactions, the geometry remains unchanged. No displacement 

of ligands is needed during redox cycles and is instead accompanied by an elongation of the ligand 

bonds during the formation of Cu+. The mechanism of electron transfer in cupredoxins (copper 

proteins that perform electron transfer) is thought to occur mainly through an outer-sphere 

mechanism where the transfer of an electron from the oxidation center to the reduction center 

occurs without the formation of a covalent bond.206 Inner-sphere electron transfer mechanisms, 

although rare, is mediated by an intermediate ligand between the oxidation and reduction centers. 

 

Fig. 1. 12: Common motifs used in proteins for copper binding centers. Adapted from ref. 205 with permission from Elsevier. 

Although it is the largest source of plasma copper (95%), ceruloplasmin’s main function is 

ferroxidase activity (the oxidation of Fe2+ to Fe3+), and not just transporting copper.207 Due to 

copper only becoming incorporated into ceruloplasmin intracellularly, albumin and transcuprein 

are thought to be the main transporters for exchangeable copper in the plasma, preventing an 

accumulation of free copper in the plasma that is redox active. Ceruloplasmin can bind six copper 
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ions deep within its tertiary structure in several types of centers: one type 1, two type 3, and one 

type 2.208 These centers, being responsible for iron oxidation, can react with other biological 

reducing agents such as ascorbic acid. Due to its ferroxidase activity, ceruloplasmin can be seen 

as an inhibitor of DNA damage by reducing the production of ROS (mediated by Fe2+). The most 

abundant protein in the plasma, albumin, can transport various metal ions. A Cu2+ binding site has 

been identified in the N-terminus where four nitrogens from the N-terminal amino nitrogen, two 

backbone nitrogens and one histidine nitrogen, coordinate copper in a distorted square planar 

arrangement with an affinity of 10-17 M.209 Multiple copper atoms can bind albumin beyond this 

site more loosely, and it is thought that free histidine present in the plasma can coordinate to these 

coppers to form an albumin-Cu-His complex with a dissociation constant of 10-22 M.210 The other 

most common large protein associated with copper (10-15%) is transcuprein,204 a macroglobulin 

(also known as alpha-2-macroglobumin, α2M). Transcuprein has even higher affinity for Cu2+ than 

albumin (transcuprein is less concentrated than albumin in the plasma and could still outcompete 

binding for Cu2+ in plasma samples),211 and is thus thought to be the main transporter of 

exchangeable copper absorbed into the plasma. The copper coordination site in transcuprein has 

yet to be determined. Other large, copper-containing proteins include ferroxidase II, amino 

oxidase, and extracellular SOD. Ferroxidase II accounts for 5% plasma ferroxidase activity (the 

rest being performed by ceruloplasmin) and has been shown that the copper associated with this 

protein cannot be removed by chelation with diethyldithiocarbamate.212 Only a large concentration 

of a high affinity copper chelator (0.1 M EDTA) at pH 4-5 was able to partly remove the copper 

bound to Ferroxidase II. This is essentially the case for all the protein-bound copper in the plasma 

talked about thus far. However, Ferroxidase II only accounts for 0.07% of plasma copper and all 

other protein-bound copper (extracellular SOD, lysyl oxidase, amine oxidase, blood clotting 
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factors V and VIII, and histidine-rich glycoprotein) represents an even smaller fraction. The last 

fraction of plasma copper is free or associated with low-molecular weight ligands that is accessible 

by chelation by displacement of one of the ligands. These low-molecular weight ligands include 

amino acids such as histidine and cysteine as well as histamine and glyclhistidyllysine (GHL) 

which can form mono or homo/hetero-bisligand copper complexes (e.g. Histamine2-Cu2+ and 

cystinate-histidinate Cu(II) complex).203 The GHL and histamine Cu(II) complexes bind tightly to 

copper with formation constants of 1038 and 1021 respectively. The stability constants of amino 

acids with Cu2+, however, are relatively weaker with histamine having the most stable formation 

of 17.5 for bisligand Cu(II) complexes (CuL2).
213 These amino acid copper complexes would be 

competitive with exogenous chelators for Cu2+, and thus represent a fraction of free copper that 

could potentially be imaged by Cu2+ chelating PET radiotracers.  

For copper to be transported from the blood to various tissue compartments and into cells 

requires Copper Transporter 1 (CTR1, Figure 1.13).214 Movement of copper into cells is an 

energy-independent process as the abundance of cations (K+, Na+, Ca2+) in the extracellular 

environment provides an electric gradient that allows diffusion of Cu2+/Cu+ across the plasma 

membrane mediated by CTR1. Ceruloplasmin is thought to be the main source of copper to 

peripheral tissue (i.e. heart and brain) and first requires the reduction of Cu2+ to Cu+.215 However, 

other copper plasma components can deliver copper to cells as well, such as the case for 

hepatocytes where dietary copper is first taken up and transported by albumin, transcuprein, GHL, 

and amino acids to the liver where it can then be incorporated into ceruloplasmin in the Trans 

Golgi Network (Figure 1.13) .204 Once in the cell, copper can exist in a free labile pool (such as 

the case for iron) where it exists with small molecule chelators (e.g. glutathione).216 This source of 
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intracellular copper would be in equilibrium with any exogenously provided chelators, and thus 

would be responsible for any signal detected by copper chelating PET tracers. 

Fig. 1. 13: Intracelular copper homeostasis. Copper is transported into the cell as Cu+ by CTR1 where it becomes oxidized in the 

cytoplasm in the labile copper pool (LCP). It can be shuttled to various cellular organelles by copper chaperones (COX17, 

ATOX1, and CCS) to be incorporated into various metalloproteins. Copper is excreted by the cell in vesicles formed from the 

Trans Golgi Network (TGN). Adapted from ref. 216 with permission from Springer Nature 

Like iron, the affinities of various protein drive the movement of intracellular copper from 

the labile copper pool (LCP) to chaperones, to cuproenzymes and organelle copper transporters, 

and finally copper containing proteins.121 Three copper chaperones have been identified and 

deliver copper to different targets. From the LCP, copper can become incorporated into copper 

chaperone for superoxide dismutase (CCS),217 which, as its namesake suggests, shuttles copper to 

SOD1 found in the plasma. The copper chaperone, Atox1,218 shuttles copper to Menkes ATPase 

(ATP7A), the copper transported involved in delivering copper to the Trans Golgi Network. 

Finally, Cytochrome c oxidase 17 (Cox17)219 delivers copper into the mitochondria to be 

incorporated into cytochrome c oxidase (Figure 1.13). The copper binding motif associated with 

all these chaperones and transporters is the MXCXXC found in the amine terminus that binds 

Cu+.216 The TGN allows incorporation of Cu2+ into newly synthesized and folded proteins from 

the endoplasmic reticulum, where they can be shuttled to various parts of the cell in vesicles. 

ATP7B is found on the membrane of these vesicles that can then efflux any excess copper out of 

the cell. 
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The CNS provides an even more complicated story for copper homeostasis as free copper 

has been shown to participate in neuronal signaling220–222 and brain specific proteins can mediate 

copper intake/efflux.223 Unlike all other tissue compartments, the brain is protected by the strict 

regulation of the BBB. Ctr1 is not expressed on BBB endothelium, and it has been suggested that 

ATP7A is responsible for transport of Cu+ into the CSF.224 In the CSF, copper is transported by 

all the plasma components known to transport copper with the exception of ceruloplasmin which 

accounts for <1% CSF copper. In addition to the other CSF copper transporting proteins, Prion 

protein and APP are also known to have copper binding motifs and can participate in copper 

intake/efflux.223 Pools of free copper contained in synaptic vesicles within axon terminals have 

been shown to be released at micromolar levels into the synaptic cleft after neuronal 

depolarization, which can then have proconvulsant activity on GABAergic neurons.221,222 The 

presences of prion protein and APP at the cellular membrane suggests that copper reuptake can be 

mediated by these proteins and preventing toxic-redox activity of Cu2+ in the neuronal extracellular 

space. Thus, dysregulation of these copper-binding proteins can have serious implications in 

neurodegenerative diseases. 

1.4.2.1.2. Locations and Concentrations Copper 

There is around 90-120 mg of copper in the adult human body distributed throughout all 

organs in various concentrations (Figure 1.14).204,225,226 The same methods that have been used to 

quantitate iron have also been used for the quantification of total copper ex vivo and in vitro. The 

limits of these methods have already been discussed in the section related to iron quantification. 

The main difference for copper detection ex vivo is the histochemical staining employed which 

exists a myriad of indicators including hemotoxylin,227 rubeanic acid (dithiooxamide),228 

rhodanine and diphenylcarbazide,229 dethylthioocarbamate,229 dithizone,230 orcein,231,232 
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bathocuproine disulfonate,233 and the nonspecific Timm’s staining.234 Fluorescent probes have also 

been used to detect chelatable copper in vivo.128 Copper, unlike iron, is not detectable by 

endogenous MRI methods, and only one copper-specific MRI contrast agent utilizing a PIDA 

moiety for Cu2+ chelation has been reported.235 

The largest amount of copper is found in the musculoskeletal system, comprising three 

quarters of the entire copper body store as it is needed due to the high energy demands of 

movement and cell production.236 The main function of copper in this area of the body is to oxidize 

the superoxide anion formed during cellular energy production and preventing toxic radical 

formation. The liver and brain contain similar amounts of copper, being around 10% each (Figure 

1.14). The rest of the copper content resides in the serum (5%), where it is suspected that only 

2.5% of the plasma copper is chelatable (being < 0.5 µM), which would be the smallest amount 

contributing to the signal of copper chelating PET probes. The CSF closely mimics the plasma in 

terms of chelatable copper (ceruloplasmin being essentially absent in the CSF) in that the total 

copper content of CSF reaches 0.5-2.5 µM.237,238  

 

Fig. 1. 14: Biodistribution of copper. Adapted from ref. 204 with permission from PubMed Central. 

 The brain distribution of copper varies in each region and is highly abundant in the gray 

matter. The locus coeruleus is a region of the brain stem with the most abundant copper at 1.3 

mM.239,240 The next brain region with high levels of copper is the substantia nigra at 11.4 µg/g wet 

tissue weight (0.4 mM).224,239 ICP-MS has been used to determine copper levels in the putamen 
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(4.5 µg/g wet tissue), body of caudate (5.1 µg/g wet tissue), cerebellum (4.8 µg/g wet tissue) and 

the anterior cingulate cortex (4.0 µg/g wet tissue).224 Atomic absorption spectroscopy has been 

used to measure copper in the nerve terminals and synaptic clefts of hippocampal neurons and 

found that copper can reach almost 1 mM intracellularly and be released into the synaptic cleft 

upon depolarization to reach up to 30 µM in the extracellular space.241 Copper levels up to 200 

µM in the synaptic cleft have also been measured.242 The use of these spectroscopic and 

spectrometric methods, again, do not differentiate between the different copper pools, and thus 

this provides a measurement of total copper in the regions just discussed. 

 Within the cell, it was first thought that only one copper ion exists, this result being 

extrapolated from biochemical methods on yeast cells.243 It was later determined that yeast cells 

actually contain large pools of labile free copper that can exchange from the cytoplasm to the 

mitochondria, but it is not well understood how.244 In neurons, large vesicles of free copper exist 

at the terminal, but it is not known what this exact concentration is. Fluorescent probes for copper 

have not been used to detect free, chelatable copper in neuronal cells, representing another avenue 

of metal biology work that remains to be completed.  

1.4.2.2. Copper Dyshomeostasis 

 Like iron, copper is also redox active and can interchange between the cuprous and cupric 

oxidation states.245 Under normal conditions, copper is tightly regulated by being mostly bound to 

protein away from the protein’s surface to prevent exposure to the solution where Fenton-like 

chemistry using Cu+ can occur to produce ROS: 

Cu+ + H2O2 −−→ Cu2+ + ·OH + OH− 

Hydroxyl radicals formed from copper chemistry can go on to react with other macromolecules as 

described previously. One toxic mechanism of ROS’ is lipid peroxidation, which has dire 
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consequences on low density lipoprotein receptor-related protein 1 (LRP1) function, a receptor 

which plays a role in Aß clearance from the brain.225  

The redox active role of copper is utilized by several cuproenzymes, which functions as a 

reductant for iron oxidation, a key step in iron metabolism as well as superoxide processing to 

form H2O2. If the cuproenzymes responsible for these functions were to become dysregulated, it 

would subsequently lead to accumulation of toxic Fe2+ and/or H2O2, resulting in increased ROS 

production mediated by iron Fenton chemistry.226 The toxic role of copper has been well 

established for multiple neurodegenerative diseases (Wilson’s Disease, Menkes Disease) and is 

also hypothesized to contribute to AD, PD, and ALS.225  

1.4.2.2.1. Copper’s Role in Alzheimer’s Disease 

 The extent of clinical research of copper in AD has not been studied to the same magnitude 

as iron. For example, published histochemical studies of metal in AD tissue has been limited to 

iron and zinc. Endogenous MRI methods are limited to the detection of two metals, iron and 

calcium, and has not been used to study copper. In vitro methods looking at the total concentrations 

of copper have been studied in normal human brain tissue with the same methods used for iron, 

but this has not been extended to the study of copper in AD tissue. Clinical evidence for the toxic 

role of copper in AD is revealed through atomic absorption spectrophotometry, where the total 

copper content was measured in the CSF and plasma/serum of AD patients.246,247 A meta analyses 

of studies looking at copper levels in these fluids showed no difference between copper levels in 

the CSF of AD and elderly healthy controls, and instead, showed a larger ratio of copper in the 

plasma of AD patients.248 Free copper was not directly measured in these samples. Instead, the 

ceruloplasmin copper of the plasma and CSF could be measured using immunohistochemistry, and 

the extent of non-ceruloplasmin copper (“free” copper) could be calculated by subtraction of 
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ceruloplasmin copper from the total copper content. This demonstrated that free copper was highly 

elevated in AD plasma and, also had up to a 25% increase in the CSF. As the contents of this “free” 

copper is mostly made up of albumin and transcuprein/α2M, the exact concentration of chelatable 

copper accessible to a copper chelating PET probe is not known. Nonetheless, this evidence 

demonstrates that even a small increase in free copper due to the dysregulation of copper 

metabolism is enough to elicit AD.  

 The biochemical mechanisms that result in increased free copper of AD patients has not 

been the focus of studies thus far. However, genetic profiling in AD patients of certain transporters 

regulating copper metabolism, like ATP7B, are underway.250–252 Although the mechanism of free 

copper accumulation in AD is unknown, the direct consequence of its accumulation has been 

studied and plays a toxic role in AD. Copper exerts its toxic role through the AD related proteins, 

APP253–256 and its posttranslational cleaved product, Aß.257–259 Copper has been detected in large 

concentrations within Aß plaques.260 It has been shown that Aß can directly bind copper and exert 

toxic redox activity by forming H2O2 upon reduction of Cu2+, and then subsequent oxidation of 

Cu+ with the H2O2 just produced to form hydroxyl radicals.258 

Cu2+-Aß + O2 + 2H2O + e- −−→ Cu+-Aß + 2H2O2 

Cu+-Aß + H2O2 −−→ Cu2+-Aß + ·OH + OH− 

The presence of copper can cause aggregation of Aß in vitro, and treatment with a copper chelator 

can resolubilize and disassemble the formed protein aggregates.261 From this information, it has 

been theorized that the formation of Aß aggregates in the synaptic cleft during AD could then be 

the result of unregulated free copper being released in the synapse after cholinergic neuronal 

depolarization, where Aß might initially act to sequester redox active copper, but then is 

aggregated upon the presence of synaptic Zn2+ (Figure 1.15). APP contains a copper binding 
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domain (CBD) near the amine terminus.262 The CBD of APP is exposed to the solvent (like the Aß 

binding motif) and can also participate in redox reactions. Binding of copper to APP induces 

dimerization and subsequent cleavage of APP into non-Aß fragments.253 This soluble APP can act 

as a copper chaperone in the extracellular fluid. The connection between copper and APP 

dyshomeostasis is still unclear.  

 

Fig. 1. 15: Copper ions bind to o soluble Aß and released from the cell (1) where the copper-Aß complex can participate in a 

redox reaction with water and oxygen to produce ROS (2) leading to crossing copper-Aß complexes (3). Further aggregation is 

induced by synaptic zinc (4). Adapted from ref. 249 with permission from American Chemical Society. 

1.4.2.2.2. Copper’s Role in Parkinson’s Disease 

 Although the amount of evidence for copper toxicity in PD is less than that for AD, the 

findings are very significant and establish that copper has a toxic role to play in PD. Human post-

mortem analysis in 1989 using techniques such as AAS indicate that total copper content is largely 

decreased in the substantia nigra and other structures of the basal ganglia from at least 25 µg/g dry 

weight to 17 µg/g dry weight., the region of the brain most severely affected in PD.173 Overall 

however, the total copper content is relatively unchanged in the early stages of PD. This reduction 

in intracellular total copper can lead to reduced SOD1 activity, and thus prevent superoxide 
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accumulation during the energy demands of neuronal activation.263 Along with reduced SOD1 

activity, reduced ferroxidase activity as a result of less copper would also lead to an accumulation 

of redox active iron, promoting even further oxidative stress. On the other hand, free copper was 

largely increased in the contents of the CSF where a level of 3.2 µg/l is indicative of idiopathic 

PD. As indicated above, an increase in free copper would be detrimental to neuronal survival, as 

this would result in an increase of ROS production and oxidative stress. Indeed, in 2008, it was 

reported that free Cu2+ could induce degeneration of dopaminergic neurons (the main neuronal 

type in the substantia nigra). The copper-dependent production of ROS can be mediated by several 

molecules, including the catechol-containing neurotransmitters (e.g. dopamine). Oxidized 

dopamine upon Cu2+ catalysis can generate DNA damage and promote dopaminergic neuronal 

loss.264,265  

 Just as in AD, copper has been found to be largely associated with the protein aggregates 

of PD and even induces their formation. A-syn, being the major component of Lewy bodies and 

found in the presynaptic terminal of neurons, has been determined to be capable of binding copper 

ions, forming a redox active pair that can go on to produce hydroxyl radicals.266 

 To account for the decrease in copper in the affected regions of PD, immunohistochemistry 

has been done to analyze copper proteins of post-mortem PD tissue. It was revealed that the copper 

transporters, CTR1 and ATP7A were decreased in these regions.240 This could indicate that copper 

would have trouble being trafficked into the cell and being incorporated into cuproenzymes. Being 

stuck in the extracellular environment of dopaminergic synapses, large concentrations of free 

copper would then bind dopamine and α-syn in this space, become redox active, and thus cause 

cellular damage to the cell membrane and eventually, DNA damage of the surrounding neurons.267 
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1.4.2.2.3. Copper’s Role in Amyotrophic Lateral Sclerosis 

 The onset of ALS can be sporadic (98% of cases) or associated with genetics (2% of cases) 

and is termed familial ALS (fALS).190 The most common fALS genetic mutation is acquired in 

SOD1 which can result in either toxic gain-of-function or loss-of-function. SOD1, being a copper 

and zinc containing enzyme, was thus the first connection of ALS to copper dyshomeostasis. 

Investigations into SOD1 related fALS has been performed to also help understand mechanisms 

of sporadic ALS. Thus, much of the research related to copper and sporadic ALS has focused on 

the functioning of SOD1. 

 Clinical measurements of copper content in ALS patients has been contradicting. In 2003, 

ICP-MS was used to measure various trace metals in formalin-fixed ALS brain tissue of multiple 

brain regions.194 This method, measuring total copper concentrations, revealed no discernable 

difference in copper concentrations of the gray matter between control and ALS patients. This is 

a remarkable difference than AD and PD, in that total concentration of copper can help differentiate 

other neurodegenerative diseases, highlighting different mechanisms of neurodegeneration that are 

more susceptible in different brain regions. Although no change in total copper was detected by 

ICP-MS, serum copper was measured in 2006 from different ALS patients and found that they had 

undetectable levels of serum copper and low serum ceruloplasmin.268 However, a recent article as 

of 2018, examining copper and lipid content of the plasma of ALS patients highlights that 

heterogeneity exists in the blood copper concentrations with some patients having higher serum 

copper, or no change at all.269 This may be likely due to different food eating habits, differences 

in lab test methods, and the multifactorial molecular profiles of sporadic ALS. This mirrors fALS 

in that SOD1 can either have a gain or loss in function, and just as shown here, sporadic ALS can 

either have high or low copper levels in the plasma. One of the most creative studies to date looking 
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at CSF copper content used ICP-MS to examine isotopic differences between Cu-63 and Cu-65, 

two stable isotopes of copper.270 Surprisingly, ALS patients had a significantly higher amount of 

Cu-65 within the CSF. These results may be explained by the preference of protein aggregates 

having better affinity for the heavier isotopic metal. As SOD1 aggregates are known to be metal 

depleted, this may result in high metalation of soluble SOD1 in the CSF over the intracellular 

SOD1 aggregates.  

 The mechanism of SOD1’s toxic role in ALS can either be explained by a pro-oxidant gain 

of function or as a loss-of-function in its ability to reduce superoxide anions and sequester 

radicals.271 In the gain-of-function mutations, SOD1 becomes misfolded and copper is no longer 

able to bind copper in its proper binding site, and instead binds Cu2+ in a solvent exposed site 

where it can react with water molecules to produce hydroxyl radicals. Loss-of-functions mutations 

in SOD1 are similar in that the protein becomes misfolded and cannot bind copper appropriately, 

but instead just becomes inactive. As a result, copper that can no longer end up incorporated into 

SOD1 will remain free when the chaperones become oversaturated. This also would result in 

oxidative stress due to increased free copper in solution and a build-up of superoxide ions that are 

not being reduced. In cases where SOD1 mutations is not the cause of ALS phenotypes, other 

proteins involved in copper homeostasis have been studied in preclinical models. In fact, an 

accumulation of inactive cuproenzymes could be restored by overexpression of CTR1.272 This 

suggests that improper transport of copper into the cell is likely a cause of intracellular copper 

deficiency in ALS mouse models. Overexpression of CCS has also been shown to result in a 

decrease of SOD1 metallation.273 This is probably due to copper being exchanged between 

multiple CCS in the cytosol, making it harder to find SOD1. Thus, in cases where there is no 
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decrease of copper, the copper content is most likely bound to chaperones and lower molecular 

weight ligands, unable to reach their cellular endpoints.  

 One of the strongest lines of evidence of coppers involvement in ALS is the fact that copper 

chelators can alleviate symptoms in ALS animal models. This would suggest that the toxic role of 

copper is most likely mediated through redox activity, as is the case in other neurodegenerative 

diseases, whether it is free or protein bound. A recent study in 2017 demonstrated that 

overexpression metallothionein could protect against SOD1 mutant ALS mice.274 Thus, when 

copper no longer becomes bound to SOD1 and becomes free and redox active, metallothionein can 

act as a buffer by binding and inactivating redox active copper.  

1.4.3. Zinc as a Target for PET 

1.4.3.1. Zinc Homeostasis 

1.4.3.1.1. Proteins Involved in Processing Zinc 

 Unlike iron and copper, zinc (Zn2+) is not redox active and maintains its divalent state in 

physiological conditions due the stability of its electron configuration having a full d-shell: 

[Ar]3s23p63d10. Although it has been termed a “boring” element275 because of this, it is a cofactor 

in all six classes of enzymes: oxidoreductases, transferases, hydrolases, lyases, isomerases, and 

ligases. Since it is not redox active, zinc’s main roles in biology serves as either a Lewis acid in 

catalysis of substrates or a stabilizer for the structure of proteins. However, in the brain it is the 

second most common metal, with iron being the first, where it can function on neurotransmission 

as it is stored as free metal in presynaptic vesicles.276 Due to its divalent character, structural motifs 

for binding Zn2+ are similar to those binding Cu2+. Thus, the proteins found in maintaining copper 

homeostasis also overlap with Zn2+ homeostasis.126 
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Fig. 1. 16: Common zinc binding centers of metalloproteins. Adapted from ref. 119 with permission from Elsevier 

 Within proteins, Zn2+ can either be tetra- or penta-coordinated. Zn2+ prefers a tetrahedral 

geometry being tetra-coordinated by at least one acidic ligand and the others being neutral, but can 

also adopt an octahedral geometry when it is to become penta-coordinated, usually by solvent 

molecules such as water and hydroxide ions (Figure 1.16). The most common ligands utilized by 

proteins for binding Zn2+ are cysteine and histidine. The Zn2+ binding sites can either be comprised 

of all cysteine ligands (Zn2Cd(Cys)9), such as the site in metallothionein (MT), or all histidine 

(Zn(His)3(H2O)), such as the case for carbonic anhydrase, or an equal mixture of both 

(Zn(His)x(Cys)2), which is found in the zinc finger structural motif of transcription factors. Of 

course, exceptions to these most common binding sites are also seen, especially in the case of 

multi-zinc binding domains. 

 In the blood, zinc takes advantage of copper and iron blood transporting proteins such as 

transferrin and α2M, but estimates ranging from 30-98% of plasma zinc is found to be bound to 

the most abundant protein in plasma, being albumin.277–279 The remaining plasma zinc is bound to 

α2M. There is a small portion that is bound to low-molecular weight ligands which could be made 

up of glutathione, or amino acid complexes. It has been shown that Zn2+ can directly bind to DNA, 

with guanine having the highest affinity.280 Thus, any nucleic acids found in the plasma could also 

be a part of this low-molecular weight Zn2+ pool.281 
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 The binding affinity of albumin to Zn2+ is moderate, being 10-7 M.279 Even though this zinc 

is protein bound, it is regarded as exchangeable because of this moderate affinity. Up to 92% of 

albumin bound zinc can be probed by fluorescent probes at 25 µM.282 Structural data for the zinc 

binding site in albumin is not available, but it has been probed by using Zn K-edge x-ray absorption 

fine structure (EXAFS) spectroscopy.279 The side chains thought to be responsible for coordination 

of Zn2+ in albumin are His67, Asn99, His247, and Asp249 (Figure 1.17). A backbone carbonyl group 

and a water molecule form the fifth and sixth ligand with an overall distorted octahedral geometry.  

 

Fig. 1. 17: Model for Zn2+ coordination center in albumin. Adapted from ref. 279 with permission from American Society of 

Biochemistry and Molecular Biology 

The understanding of the mechanism for uptake of Zn2+ into cells from the blood is not 

concrete. Since free Zn2+ is cytotoxic, it is not clear if the ion dissociates from albumin first in 

order to be transported into the cell or if a direct interaction between a Zn2+ carrier and transporter 

takes place. One thing is for certain, a large gradient exists where extracellular zinc can reach 

millimolar concentrations while being at picomolar concentrations in the cell.283 However, there 

is currently no evidence for a Zn2+ pump in mammalian cells. Several transporters have been 

suggested. The most accepted pathway for Zn2+ to be shuttled into the cytoplasm of cells is through 

the Zrt-/Irt-like protein (ZIP) zinc transporter.284,285 It is thought that Zn2+ uptake through ZIP 

occurs via a symporter mechanism with HCO3
- as the counter ion. The SLC30 genes, which encode 

for zinc transporters (ZnTs) are expressed on membranes of either the cellular surface or vesicles 

and organelles within the cell.278,283 ZnT-1 is ubiquitously expressed on plasma membranes and 
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could play a role in Zn2+ transport into the cell. It has been suggested, however, that ZnT-1 affects 

Zn2+ influx by regulating L-type calcium channels (LTCC), which can directly import Zn2+ into 

the cell. Of the ten ZnTs, ZnT-3 is expressed exclusively in the brain which is responsible for 

insertion of Zn2+ into synaptic vesicles to be excreted into the synaptic cleft. Other ZnTs expressed 

in the brain and have been found to have altered expression in AD are ZnT-4,-5, and -6.  

Once inside the cell, MT will bind to Zn2+ (Kd ~ 0.1 pM) in order to buffer the cytoplasm 

and shuttle Zn2+ to its cellular destinations.281,286 This is the only chaperone for Zn2+ that has been 

discovered. The machinery for Zn2+ homeostasis is thus, not as complex, or not as well understood 

as the machinery for copper and iron homeostasis. This is odd given that Zn2+ is a cofactor for ten 

percent of human proteins. Therefore, its primary cellular destination will be to the Golgi apparatus 

and ER where protein folding will take place and Zn2+ can stabilize the tertiary structures during 

this folding process. The importance of Zn2+ as a structural element is indicated by the fact that 

proteins bind Zn2+ with single nanomolar to sub picomolar affinity, making it difficult for any Zn2+ 

chelator to leach this metal ion from its protein ligands. 

1.4.3.1.2. Locations and Concentrations Zinc 

 The adult human body contains on average about 2-3 g of Zn2+.278 The measurement of 

Zn2+ in human tissue is not as arduous as measuring iron and copper, for only one oxidation state 

exists for zinc (being Zn2+) at physiological conditions. Therefore, tissue preparation for ex vivo 

or in vitro methods do not have to worry about changing the nature of Zn2+ as the measurement 

will represent the total amount of Zn2+ in the sample. However, Zn2+ can be a common contaminant 

from multiple sources including air, water for sample preparation, and other reagents that are 

known to contain traces amount of Zn2+. These contaminations can easily be remediated by the 

use of proper blanking samples that will account for any Zn2+ contamination. Just as atomic 
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absorption was used to measure iron and copper, so too has it been used to measure zinc. In 

addition to AA, particle-induced x-ray emission (PIXE) and neutron absorption analysis (NAA) 

has also been used to measure Zn2+
, but is not easy to implement in every lab as it requires the use 

of an ion beam for either neutron or proton irradiation for NAA or PIXE respectively. For 

visualizing zinc distribution in tissue, histochemical methods have been utilized. Unlike iron and 

copper, there exists a Zn2+ specific histochemical stain that visualizes only free, chelatable Zn2+ as 

the stain utilizes the chelator diphenylthiocarbazone (dithizone) for a colorimetric reaction 

resulting in a shift from a green to red color upon reaction with Zn2+. This stain was first applied 

to various animal tissues by Mager et al.in 1953,287 and subsequently applied to human brain tissue 

in 1955 by Maske.288  

 

Fig. 1. 18: Structure of dithizone 

For in vivo methods, fluorescent Zn2+ chelating probes and Zn2+ chelating MRI contrast 

agents have been used successfully.128 In fact, the development of metal chelating probes has been 

largely focused on Zn2+ because of its inability to undergo redox activity upon chelation and thus 

providing a stable probe interaction. The key to these in vivo methods is that they interact with free 

and exchangeable Zn2+ ions which make them an asset for understanding the dyshomeostasis of 

this metal during disease. Although this metal is utilized ubiquitously in varying ways throughout 

the entire body, these probes and the work of others have demonstrated that chelatable Zn2+ is 

primarily found in the CNS for use in neurons, possibly either for stabilization of key 

neurotransmitter stores or synaptic transmission.276,289 
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 Zn2+ is essentially insoluble in neutral water, but because physiological fluids have 

buffering salts and metal chelating organic compounds and proteins, free Zn2+ concentrations can 

become very high, and even into millimolar concentrations when taking into account protein bound 

Zn2+. In the blood, there exists two pools of Zn2+, being the protein bound Zn2+ and 

exchangeable/labile Zn2+ that is mostly found bound to albumin. Albumin-Zn2+ should not be 

considered protein bound Zn2+ because of its moderate affinity and its ability to be probed by 

fluorescent chelators. Thus, albumin-Zn2+ is considered exchangeable as it can easily exchange 

Zn2+ to other carriers or chelators. Although about 35 mg of the total 2-3 g of Zn2+ is found in the 

blood (0.1% of total body Zn2+) 85% of that is found in the various blood cells (erythrocytes, 

leukocytes, platelets, etc.) being permanently bound to protein (Figure 1.19).278 The remaining 

Zn2+ in the plasma is either protein-bound, micro-ligand-bound, or free ionic Zn2+. In the serum 

about 80% is loosely bound to albumin and 20% is tightly bound to α2M. The concentration of 

Zn2+ bound to low molecular weight ligands (cysteine, histidine, and GSH) is estimated to be about 

10-20 µg/L (0.15-0.3 µM for a maximum total of 100 µg Zn2+). The amount of free ionic Zn2+ is 

even far less, being around 0.2-1.0 nM (Figure 1.20).  

 

Fig. 1. 19: Biodistribution of zinc. Adapted from ref. 278 with permission from The American Physiological Society  

 The blood can transport all Zn2+ pools and chelators to different tissue compartments. The 

musculoskeletal system comprises the most Zn2+ being 30% in the bone and 60% in the muscle. 



 

55 
 

Most of the Zn2+ found in these tissue compartments is mostly permanently protein bound. The 

remaining 10% is found in the skin and liver where 5% is stored in the skin and the other 5% being 

stored and being implemented in its final proteinaceous form in the liver to be distributed to the 

rest of the body. 

 Passing from the blood through the BBB to the brain, the concentration of Zn2+ in the CSF 

mirrors that of the plasma, being 10-20 µg/L. The brain represents a unique organ for Zn2+ in that 

some neurons, designated Zn2+ containing neurons (as the neurons responsible for a wide range of 

neurotransmitters such as glutamate and acetylcholine can contain vesicular Zn2+) contain large 

pools of Zn2+ in presynaptic vesicles that can be released into the synapse. So, even though the 

brain contains 10 µg Zn2+/g wet brain tissue weight, specific brain regions can contain dense 

regions of Zn2+ due to neurons having these Zn2+ synaptic vesicles which accounts for 5-15% of 

the total Zn2+ in the brain. The gray matter, where most of the nerve endings (synaptic clefts) 

reside, contain 0.15-0.2 mM Zn2+ altogether. This is a lot more than the gray matter only having 

only 33-35 ppm (~ 0.5 µM) in total. Using the ex vivo methods previously described, brain regions 

have been measured for their total Zn2+ content, with the hippocampus containing the most at 300 

µg/g wet tissue. The cerebellum has been measured and ranges from 45-70 µg/L. The brain regions 

containing the most sync have been determined by histochemistry, thus visualizing that most of 

the Zn2+ can be attributed to the synaptic vesicular Zn2+ and is found in the hippocampus and 

cerebrocortex.  
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Fig. 1. 20: Intracellular zinc distribution and its various concentrations in different organelles. Adapted from ref. 278 with 

permssion from The American Physiological Society 

 Inside the cell, three pools of Zn2+ are found, being either protein bound, labile, or the 

vesicular Zn2+. The vesicular Zn2+ pool is found only in neurons and possibly pancreatic insulin 

secreting cells where Zn2+ is stored in the hundreds of micromolar range. The nature of this Zn2+ 

is undetermined whether it is bound to exchangeable ligands or remains as free ions. Within the 

cytosol of most cells, Zn2+ is in the picomolar range and can be either free or protein bound. 

Mitochondria can have 0.14-300 pM Zn2+ at any given time and the TGN and ER can contain 0.9 

pM – 5 nM where Zn2+ can become permanently bound to protein or stored in synaptic vesicles 

(Figure 1.20).  

1.4.3.2. Zinc Dyshomeostasis 

 Zinc’s toxic role is not quite the same as iron and copper for it cannot produce ROS directly 

by any redox reaction. However, Zn2+ can indirectly cause the production of ROS and induce 

oxidative stress within neurons by interacting with proteins in the mitochondria responsible for 

antioxidant defense.290 One of the hallmarks of Zn2+ in neurodegeneration studies is its ability to 

induce aggregation of peptides associated with NDs such as Aß291 and TDP43.292 Due to zinc’s 

roles in cellular biology as either a structural or functional component of proteins, its 
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dyshomeostasis can severely affect cellular processes. Since it is a structural component in 

transcription factors, anything causing Zn2+ to be unable to bind to zinc finger motifs would then 

cause dysregulation in DNA synthesis, and possibly a reduction in the expression of critical 

proteins necessary for the cell life cycle.293 Being a functional component of metalloenzymes, zinc 

depletion would result in reduced enzymatic function that is critical for CNS function, resulting in 

mental lethargy and neurodegeneration.294 Finally, free Zn2+ has been found to be neurotoxic at 

increased levels by inhibiting proteins of the ETC and tricarboxylic acid cycle (TCA).295 The 

mechanism by which Zn2+ becomes dysregulated in cells is straightforward, being that a varying 

expression of zinc transporters and MT would cause either a decrease or increase in cytosolic labile 

Zn2+. Both increases and decreases of Zn2+ have been found in neurodegenerative studies which 

can both lead to neuronal cell death. The differential dysregulation of Zn2+ for various ND diseases 

(AD, PD, and ALS) will be discussed here. 

1.4.3.2.1. Zinc’s Role in Alzheimer’s Disease 

 The role which Zn2+ plays in AD is as straightforward as the mechanisms regulating its 

homeostasis. One interesting note, however, is that total levels of Zn2+ have been found to be 

decreased in NDs, including AD.294 How a decrease in total Zn2+ might propagate 

neurodegeneration is uncertain. As has been discussed previously, Zn2+ has been shown to induce 

the aggregation of Aß. With a decreased concentration of Zn2+ in certain brain regions, this could 

result in increased solubilization of Aß oligomers, which are thought to be more toxic than Aß 

plaques (Figure 1.21).58  

 Studies that look to the expression of ZnTs contradicts the data that showed a decreased 

Zn2+ concentration. ZnT-1, responsible for transporting Zn2+ out of the cell has been found to have 

increased expression in human AD brains.296 This would indicate that increased Zn2+ 
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concentrations would be present in the neuronal extracellular space, and thus exacerbate Aß plaque 

formation. Moreover, ZnT-6, responsible for transporting cytosolic Zn2+ into the TGN is also 

increased.296,297 Increased Zn2+ in the TGN in AD brains would indicate that Zn2+ could possibly 

be binding the metal-binding domain of APP in this cellular organelle, which would lead to Aß as 

the cleavage product during APP processing. There have been studies contradicting ZnT-1 

expression, indicating that there is actually a decreased amount of ZnT-1 in the hippocampus.298 

This would help to explain why there is increased cytosolic Zn2+ in this region.299 ZnT-3, 

responsible for loading cytosolic Zn2+ into synaptic vesicles has been shown to be significantly 

reduced in the brains of AD patients.300 Altered expression levels of ZnT-3 could be the result of 

inadequate release of synaptic Zn2+ into the synaptic cleft. The structural machinery or signaling 

cascade responsible for shuttling the vesicular Zn2+ towards the cellular membrane could be 

corrupted and lead to increased cytoplasmic Zn2+. With synaptic Zn2+ remaining in the cell due to 

this, this would lead to a decrease in ZnT-3 expression where loading of Zn2+ is no longer needed. 

Finally, another Zn2+ transporter, ZIP1, is associated with AD in that there is evidence that it is 

significantly increased during disease progression.301 ZIP1 is responsible for delivering Zn2+ from 

the extracellular milieu into the cytoplasm.302  

 To counter increased cytosolic Zn2+, MT expression is increased to buffer toxic amounts 

of Zn2+, which can bind up to nine Zn2+ atoms.286,303 Of the four types of MT, MT-3 is exclusively 

expressed in the brain. In AD brains, it has been found that MT-3 expression is reduced.304 Loss 

of its protective effects would lead to an exacerbation of pathogenic processes already discussed 

in the AD brain. The increased cytosolic Zn2+ would induce neuron toxicity by inhibiting energy 

production and promoting ROS production.  
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Fig. 1. 21: Zinc dyshomeostasis leads to Aß deposition and neuronal cell death. Adapted from ref. 295 with permssion from 

Springer Nature 

1.4.3.2.2. Zinc’s Role in Parkinson’s Disease 

 Studies examining Zn2+ in PD remain few and far between as it is considered mostly an 

iron related disease. Thus, post-mortem, clinical, and pre-clinical evaluations have focused on 

measuring iron and using various iron detection methods. As we have seen, Zn2+, can play a role 

in neurodegeneration. However, the mechanisms regarding Zn2+ homeostasis have not been probed 

in PD patients or models and represents a nonactive area of research. 

 Nonetheless, studies utilizing ICP to measure iron levels in PD brains in 1989305 and 

1992306 by Dexter et al. also examined copper and zinc levels with interesting findings that they 

differ in PD brains when compared to healthy aged-matched controls. With Zn2+ levels being a 

little less than 1µmol/g dry weight in the substantia nigra, they observed a 54% increase in Zn2+ 

concentration in this brain region, being around 1500 nmol/g dry weight. One surprising finding 

is that CSF Zn2+ concentrations are lower in PD patients in several studies. One study in 2011 

reported an increase in CSF Zn2+,307 however metanalysis of most clinical CSF measurements of 

Zn2+ indicates that there is an overall decrease in Zn2+.308 
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 The mechanisms regarding these fluctuations in Zn2+ have not been proposed. Seeing as 

there is a net increase in SN Zn2+ found in the cytoplasm and a decrease in extracellular Zn2+, this 

would indicate that, like in AD, the expression of ZnT-1 is under expressed in the SN, resulting in 

an accumulation of Zn2+ within neurons located in this region, making it unavailable for cycling 

in the CSF. Unfortunately, experiments looking at zinc transporters have not been performed on 

PD brains or even PD animal models. As we have seen, an increase in cytosolic Zn2+ would lead 

to increased intracellular oxidative stress. Biomarkers of oxidative stress such as hydrogen 

peroxide and lipid peroxidation are widely found in PD, suggesting that neuronal cell death in this 

region is largely metal-mediated. 

1.4.3.2.3. Zinc’s Role in Amyotrophic Lateral Sclerosis 

 ALS has many pathological processes that occur during disease, which are oxidative stress, 

glutamate excitotoxicity, neuroinflammation, neurofilament dysregulation, mitochondrial 

damage, protein aggregation, and apoptosis.309 Zinc plays a role in all these pathological processes 

and an increase in free cytosolic Zn2+ would only exacerbate these problems. The study of 

formalin-fixed ALS tissue in 2003194 (discussed in both the iron and copper sections) also measure 

Zn2+ concentrations in the grey and white matter using ICPMS. Just like the Zn2+ measured in PD 

brains, ALS brains have a 50% increase of Zn2+ in the gray and white matter when compared to 

control being 104 µg/g dry weight and 68 µg/g dry weight, respectively. The nature of this 

increased Zn2+ is most likely in the form of cytosolic free Zn2+ due to the alterations of Zn2+ protein 

function and expression. 

 SOD1, being the most common mutagenic protein associated with ALS, is a Zn2+/Cu2+ 

containing enzyme. Most SOD1 mutations in ALS patients are within the Zn2+ binding site, 

causing an inability to bind the metal ion.310 When Zn2+ is no longer bound to SOD1, its primary 
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role of sequestering ROS reverses and actually causes the formation of them. Thus, SOD1 

mutations in either fALS or sporadic ALS contribute to oxidative stress two fold, by increase ROS 

production and increasing free Zn2+ as it is no longer bound to SOD1, which can go on to induce 

oxidative stress by inhibiting mitochondrial proteins involved in the ETC. The inability to protect 

the cell from increasing cytosolic Zn2+ is further exacerbated by decreased expression of MT and 

ZnT-3 and ZnT-6 found in the spinal cord of human ALS patients.311,312 Even SOD1 mutant ALS 

mouse models have this decreased expression.313 As MT is thought to buffer the cell from free 

Zn2+, the loss of this protective role would only increase oxidative damage to the cell during ALS.  

 Finally, it has been shown that Zn2+ induces the aggregation of TDP43 (Figure 1.22),292 

the primary protein aggregate thought to cause toxicity and leading to cell death in ALS.314 It is 

then not surprising that the PET tracer designed to bind Cu2+/Zn2+-protein aggregates has a two-

fold binding potential in ALS motor cortex post-mortem tissue when compared to age-matched 

control.315 This could be further evidence that increased free Zn2+ and Zn2+-protein aggregates 

occur in the motor cortex of ALS patients (see chapter 3). 

 

Fig. 1. 22: Amyloid-like aggregates of TDP-43 protein induced by zinc. Adapted from ref. 292 with permission from Springer 

Nature 

1.5. What Makes a Good CNS PET Tracer? 

 Several essential factors will help predict if a small molecule will become a successful PET 

radiotracer for CNS PET imaging. The exception to these rules includes macromolecular structures 
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such as natural products, peptides, and antibodies. First, the pharmacokinetic (PK) properties of a 

molecule will determine if it is BBB permeable, second its pharmacological attributes are revealed 

through binding affinity and specificity studies, third chemical structure will determine if it is 

suitable for late-stage radioisotope labeling, and finally, toxicity studies will ensure that the 

molecule can be safely administered in a clinical setting immediately after its production. The most 

important factor here is being BBB permeable and should be validated as quickly as possible by 

preliminary animal studies before any optimization of the compound’s synthesis, formulation, or 

determination of other pharmacological attributes (ADMET, Kd, etc.) are undertaken. 

 Often, during small molecule PET tracer development, leads are chosen from drug 

discovery programs where a compound has known affinity for its target and is often optimized 

according to Lipinski’s rule of 5 to exhibit good pharmacological effects.316 Although this makes 

it a good drug candidate, one distinguishing feature of a CNS PET tracer is that it should readily 

wash out from the brain in a short time frame so that kinetic data can be measured during a patient’s 

PET scan in one to two hours.30,31 Therefore, a molecule with a short biological half-life is desired. 

This makes a case that chemical matter in drug discovery programs that are often neglected 

because of short half-life (as the main goal is to exhibit a therapeutic effect over a long time frame 

before another dose is administered again) would make excellent candidates for radiotracer 

discovery.317 For a small molecule to be BBB permeable, Lipinski’s rule of 5 is generally followed, 

but can also be modified to be a “rule of 3”,318 as chemical matter that has successfully crossed the 

BBB have these attributes: 

• MWt < 300 Da 

• clogD7.4 > 1 and < 3 

• HBDs < 3 
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• TPSA < 80Ǻ2 

A small molecule with these physiochemical properties is likely to cross the BBB, but several 

other factors may complicate the story. Radiotracers are injected intravenously where serum 

protein known as albumin, tends to bind small molecules nonspecifically.31 If a PET tracer binds 

albumin excessively, it will be hard for the molecule to dissociate from the blood and diffuse into 

the brain quickly during the course of a PET scan. The BBB also has efflux proteins such as p-

glycoprotein (Pgp) which are responsible for removing xenobiotics from the brain.319 Sometimes, 

it is found during PET tracer development that a molecule can be a substrate for Pgp and seem to 

have little no brain uptake. Substrates for Pgp is promoted by high lipophilicty, the occurrence of 

a formal positive charge at physiological pH (pH 7.4) and containing multiple aromatic groups.320 

Another chemical moiety that often prevents small molecules from passing the BBB is a carboxylic 

acid.321 Esters can be metabolized to esters and thus prevent BBB permeability. This brings us to 

another factor that complicates BBB permeability, being that a small molecule can be extensively 

metabolized in the blood and liver before enough radiotracer enters the brain.30 A polar metabolite 

that is not BBB permeable is desirable and much care should be taken to understand which enzyme 

metabolizes the radiotracer so that an inhibitor may be administered beforehand if one is available. 

Once all these factors are overcome, the peak standard uptake value (SUV) of a radiotracer in the 

total brain should typically be at least 2 or greater to be a successful candidate. 

 Once inside the brain, metabolic enzymes can also be present that may lead to trapped 

metabolites, and further complicate the analysis of the acquired image.322 The radiotracer should 

have high potency (single digit nM to sub-nM) and high selectivity for its target. Low non-specific 

binding of a PET tracer will allow a good signal to noise ratio when interpreting the reconstructed 

image. Protein targets sometimes have more than one binding site. Ideally, it should be determined 
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that the PET tracer occupies only one site to simplify the kinetic analysis where only type of 

complex is formed between the radiotracer and target (R* + P → R*P). 

 During radiosynthesis of the PET tracer, 11C-methylation and nucleophilic [18F]fluoride are 

often used.323 Heteroatoms (e.g. O, N or S) are chemical moieties often labeled by carbon-11. A 

molecule that contains more than one heteroatom should take care to ensure methylation of the 

desired atom is achieved which can be promoted using protecting groups. Alkyl fluorides are used 

in PET tracers but can sometimes be eliminated during metabolism to promote the occurrence of 

bone binding [18F]F-.324,325 Thus, scaffolds with aromatic fluorides are emerging prevalently in the 

PET tracer chemical space. It is difficult to achieve fluorination of electron rich aromatic groups 

however,326 and the success of late-stage fluorination of this chemical moiety is discussed in 

Chapter 5 in the synthesis of [18F]FDOPA.327,328 Finally, dosimetry studies are performed 

(normally in rodents) after a cGMP compliant synthesis method has been developed to ensure that 

the radiotracer is safe for injection to patients. 

1.6. Metal Chelators as PET Tracers 

 Metal chelators can be classified based on how many donor atoms interact with the metal 

center. The term dentate, meaning toothlike, refers to the donor atoms being like teeth that bite 

down on the metal. Bidentate, tridentate, tetradentate, and hexadentate chelators are commonly 

encountered in the clinical space. The higher the denticity, the more affinity a chelator will have 

for a metal.329 Transition metals normally form tetrahedral or octahedral geometries, which 

requires four or six points, respectively (in other words four or six donating atoms from ligands).330 

Thus, a hexadentate ligand is able to form a 1:1 complex with a metal. The affinity constant is 

concentration dependent, and thus far less hexadentate chelators are required to fully complex a 

metal than a tridentate or bidentate ligand which would require the formation of a 2:1 or 3:1 
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complex for full coordination of the metal. Unfortunately, hexadentate chelators are large and 

contain at least 6 donor atoms, being higher than the hydrogen bond donors required for a good 

CNS small molecule. Thus, hexadentate ligands will have very low success in crossing the BBB 

barrier. 

1.6.1. Iron Chelators as PET Tracers 

 With biological iron (Fe2+/Fe3+) having a role in neurodegeneration, being able to detect 

the dyshomeostasis of this ion in patients via PET imaging would be beneficial to the healthcare 

community. Chelators for Fe2+ also have affinity for other biological divalent metals such as Cu2+ 

and Zn2+, and thus, having a PET tracer that targets solely Fe2+ might be impossible.329 Though, 

there are chelators that have high affinity for Fe2+ and fluorescent sensors for Fe2+ have been 

developed,331,332 these small molecules have their limitations and their ability to chelate Zn2+ would 

make it difficult to discern information from a PET image of a living organism. The discussion of 

iron chelators will, thus, be restricted to Fe3+ specific chelators. 

1.6.1.1. Iron Chelating Chemical Scaffolds 

 Fe3+ is the only essential trivalent metal found in biological systems (Al3+ and Ga3+ occur 

in trace amounts that is negligible) and will be a great metal source for specific binding of iron 

chelating PET tracers. Due to this high charge density (3+), the most stable bonds with ligands are 

achieved though weakly polarizable atoms, such as oxygen. The scaffolds containing high Fe3+ 

binding affinity and specificity include catechols, hydroxamates, hydroxypyridinones, and 

hydroxycarboxylates (the most basic example being citric acid).329 It should be noted that 

aminocarboxylates have high affinity for Fe3+ but are not specific as they chelate divalent metals 

due to the polarizable nitrogen atoms that they contain. 
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Fig. 1. 23: Scaffolds of common iron chelators 

 Pros and cons are associated with each of these scaffolds. Catechols, although having high 

affinity for Fe3+ are pH sensitive due to their high affinity for protons. At physiological pH, they 

contain a net charge due to deprotonation of the -OH groups and are therefore, unlikely to permeate 

membranes by simple diffusion.333 Hydroxamates and hydroxypyridinones can form neutral 

complexes with Fe3+ which will help with being able to permeate membranes by non-facilitated 

diffusion.333 Unfortunately for hydroxamates, a bidentate ligand containing this scaffold is unable 

to solubilize Fe3+ at physiological pH due to its low affinity, and thus only hexadentate 

hydroxamates would be suitable. The cons of hexadentate chelators for CNS PET imaging were 

discussed up above. Hydroxycarboxylates are tridentate chelators having the ability to form 

polymer complexes with iron.334,335 This strong affinity for iron may contribute to readily stripping 

iron from macromolecular structures and thus might not represent only free chelatable iron in a 

biological system. Thus, hydroxypyridinones stand out amongst the scaffolds as being the most 

suitable for PET tracer development because of its high affinity, selectivity, and ability to cross 

membranes by passive diffusion. 

1.6.1.2. Clinical Iron Chelators 

 As most PET tracer development begins with using molecules that have already been 

optimized for human use, it would be best to look at iron chelators that have already gained FDA 

approval. The three most commonly used FDA approved iron chelators in the clinic are 

deferoxamine, deferasirox, and deferiprone.336 
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Fig. 1. 24: FDA approved iron chelators 

 The high denticity of desferrioxamine-B and its high molecular weight make it poorly 

orally available.337 This inability to permeate membranes in the GI indicate just how challenging 

it would be to cross the BBB. It is known that desferrioxamine-B does not cross the BBB and is 

also not effective at removing iron during iron overload. Deferasirox, although not a typical 

catechol, contains phenolic groups with similar pKa’s and would contain a net negative charge due 

to the benzylic acid moiety. These are a known scaffold that do not cross the BBB and would thus 

not make a good CNS PET tracer candidate. Deferiprone, on the other hand, containing the 

hydroxypyridinone scaffold, is a good candidate, and has been shown to get into the brain of 

rodents when administered orally.338 The development of [11C]deferiprone as a possible PET tracer 

is described in Chapter 2.  

1.6.1.3. Investigational Iron Chelators 

 Due to potential challenges selecting FDA-approved iron chelators as PET tracer 

candidates, some work has gone in to optimizing iron chelating scaffolds to be biologically active 

having long biological/metabolic half-lives, good oral availability, and adequate lipophilicity to 
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diffuse across physiological membranes. One of the concerns with optimizing these scaffolds to 

be an adequate drug is that it might make it less advantageous as a PET tracer. For example, to 

improve a drug candidate for treating iron toxicity, it needs to be able to remove iron from Tf in 

the blood. Chelators with high denticity such as tetra- and hexadentate chelators were developed 

to as they can quickly form a 1:1 complex unlike bidentate ligands. Thus, iron chelating scaffolds 

were linked together to make hexadentate ligands and can be mixed and matched.339 Selected 

examples include: 

 

 

 Fig. 1. 25: Examples of iron chelators in literature 

 Unfortunately, the drawback of these iron chelators is their large molecular weight, making 

it a risk to use in CNS PET tracer development. Although these molecules have not been tested for 

BBB permeability, assumptions can be made that those containing catechols will contain a net 

negative charge at physiological pH and not diffuse to the brain. It would be interesting, however, 

to test the hexadentate hydroxypyridinones containing chelators. To further optimize the 
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hydroxypyridinone chelators, modifications have been made to the alkyl substituents.340 A possible 

target for lipophilic hydroxypyridinones is the metalloenzyme 5-lipoxygenase.341 Modifications of 

deferiprone at the R1 alkyl chain shows that increased lipophilicty incases affinity for this target, 

and thus increased percent inhibition. This inhibition can be further decreased by increasing the 

length of the alkyl chain at the R2 position where it is thought that steric hindrance blocks binding 

to the active site. A chelator of this class would have high Fe3+ affinity, selectivity, and be able to 

permeate physiologicial membranes. An interesting class of fluorescent sensors for Fe3+ have been 

developed and shown to cross cellular membranes, but their use for crossing the BBB has yet to 

be challenged. A review on these molecular imaging chelator probes has been reviewed by Chang 

et al.128 

 

 

Table 1. 1: Physicochemical Properties and 5-Lipoxygenase Inhibitory Activity of 2-Substituted 3-Hydroxypyridin-4-ones 

 

R1 R2 MW D 7.4 logP ClogP (R2) R2 length (Å)
molecular 

width (Å)
% inhibition

biological 

activity

H H 125 0.25 ± 0.04 −0.60 0.2 1.1 4.32 59.4 0.16

CH3 H 139 0.17 ± 0.01 −0.77 0.88 2.15 5.55 39.4 −0.19

CH2CH3 H 153 0.62 ± 0.01 −0.21 1.53 3.48 6.79 48.5 −0.03

CH2CH2CH3 CH3 181 2.50 ± 0.10 0.4 2.05 4.7 9.25 30 −0.37

CH2CH2CH2CH3 CH3 195 8.05 ± 1.70 0.9 2.58 5.97 10.5 29.6 −0.38

CH2OCH3 CH3 183 0.39 ± 0.07 −0.41 −0.42 4.44 8.95 14.8 −0.76

CH2NHCOCH3 CH3 210 0.15 ± 0.01 −0.82 −1.31 5.83 10.36 18.5 −0.64

CH2NHCOCH2CH3 CH3 224 0.19 ± 0.02 −0.72 −0.78 7.12 11.67 13.5 −0.81

CH2NHCOCH(CH3)2 CH3 238 0.45 ± 0.01 −0.35 −0.47 7.1 11.68 21 −0.58

CH2NHCO(CH2)2NHCOCH3 CH3 281 0.02 ± 0.004 −1.70 −1.67 10.88 15.43 3.8 −1.40

CH2NHCO(CH2)2CONHCH2CH2CH3 CH3 309 0.20 ± 0.005 −0.70 −0.61 13.5 18.08 2.1 −1.67
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1.6.2. Copper/Zinc Chelators as PET Tracers 

 Since copper is found mostly in the divalent state within biological systems, chelators that 

target the divalent metals Cu2+ and Zn2+ will be discussed togther. It should be noted that most 

divalent metal chelators have a strong affinity for Cu2+ in vitro, but in physiological conditions 

where both metals are present in the biological matrix, it is difficult to say that the binding of these 

chelators is limited to one specific metal, and should be considered that a signaled derived form a 

PET tracer with these chelating scaffolds originate from both Cu2+ and Zn2+. For example, the 

chelating scaffold N,N,N’,N’-tetrakis(2-pyridil-methyl)ethylendiamine (TPEN) has a strong 

binding affinity for Cu2+, but is used as an exclusive Zn2+ chelator in fluorescent probes.342 The 

hard and soft acids and bases principle (HSAB) helps explain why donor atoms on a ligand can 

provide selecitivity or prefence for specifc metal ions. As stated before, atoms that are considered 

hard bases, like anionic oxygen, prefer the hard trivalent metal Fe3+.329 Conversely, soft basic 

atoms, like sulfur, prefer soft metals such as Cu+ over divalent metals like Ca2+. Neutral oxygen 

and nitrogen donor atoms prefer borderline hard/soft metal ions like Zn2+ and Cu2+. 

1.6.2.1. Divalent Metal Chelating Chemical Scaffolds 

 There is a wide variety of chemical scaffolds with divalent metal binding affinity including 

acyclic and macrocyclic amino chelators, hydroxyquinolines, dithiocarbamates, diamine chelators, 

pyrithiones, and thiosemicarbazones. Aminocarboxylate chelators such as EDTA also have the 

ability to chelate divalent metals, but binds a wide variety of metals with nonspecificity.343 Other 

divalent metal chelators are known such as the inorganic thiomolybdate chelators344 (which is 

unamicable for PET isotope labeling) and cuprizone chelators345 that can inhibit copper-dependent 

mitochondrial enzymes.  



 

71 
 

 

Fig. 1. 26: Scaffolds of common divalent metal chelators 

 Chelators containing acyclic amino chelating scaffolds have high affinity for Cu2+ but have 

been observed to compete for copper bound to albumin within the serum with high efficiency.346 

Using this scaffold in a PET tracer, then, would result in an overestimation of accumulating free 

copper in diseases as albumin copper is not toxic without uncontrolled redox activity. An 

interesting acyclic amino chelating scaffold with high affinity for Cu2+ is TPEN. However, the 

formation of this complex depends on the stoichiometry, the condition of the complex formation, 

and the presence of competing ligands.347,348 With these factors, TPEN is actually very selective 

for Zn2+ in biological systems and is thus, used as specific Zn2+ chelators.349 Macrocyclic amino 

chelators, such as 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetracetic acid (DOTA) bind Cu2+ with 

even higher affinity and its size prevents itself from forming complexes with protein bound copper. 

These structures are permeable to cellular membranes. The carboxylic acid moieties, however, 

might make it challenging to cross the BBB. Linking this chelating scaffold with a peptide that 

targets an importer to cross the BBB (i.e. linking DOTA to Tf to target TfR) would ensure higher 

brain uptake.350  
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 Hydroxyquinolines have increased lipophilicity over the other scaffolds due to the fused 

aromatic rings. The more simple hydroxyquinolines do not cross the BBB readily,351 but with 

increased lipophilicity by addition of substituents to the aromatic groups helps to overcome this 

limitation as some hydroxyquinolines have been observed to cross the BBB which will be 

discussed in the clinical copper/zinc chelators section. Specificity for metal ions with this scaffold 

can be changed by converting the hydroxy substituent to a primary amine, resulting in an 

aminoquinoline that preferentially binds Zn2+.352,353 Diamines, being another aromatic bidentate 

chelator, includes two nitrogen donor atoms that is also capable of diffusing through the cell 

membrane. The geometry preferred upon bis-complexation of diamines with Cu2+ results in a 

reduction of the metal ion to a tightly bound Cu+ complex.342 Although this would not be suitable 

for Cu2+-selective fluorescence imaging, this would be adequate to measure the total free copper 

in a patient during the acquisition of a PET image. These aromatic groups provide an opportunity 

for fluorine-18 labeling, which would result in increased lipophilicity and thus enhanced BBB 

permeability.  

 The remaining sulfur containing chelators provide a site for carbon-11 methylation at the 

secondary or tertiary nitrogen atoms. The dithiocarbamate chelator, N,N-diethyl-dithiocarbamate 

(DDC) has been confirmed to be able to strip metal from metalloenzymes such as copper from 

Cu,Zn-SOD.354–356 Derivatization of this scaffold for PET tracer development would thus provide 

overestimation of free copper ions in biological systems as well. Furthermore, thiosemicarbazones 

are known to be toxic to hepatocytes.357,358 This scaffold also binds Cu2+ tightly and would lead to 

slow washout of a PET tracer containing this scaffold as the copper complex formed is not as facile 

when compared to the hydroxyquinolines and diamine chelating scaffolds. 
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1.6.2.2. Clinical Copper/Zinc Chelators 

 Divalent metal chelators have been used clinically since it was discovered that copper 

overload was linked to Wilson’s Disease (WD) in 1948.359,360 The first copper chelator to be used, 

British anti-Lewisite (BAL),361 contained a dithiol moiety for donor atoms. Given the vast side 

effects associated with its use (thiol groups lead to toxicity362 and is one of the limitations described 

for the similar chelating scaffolds discussed previously), various other copper chelators gained 

popularity for WD treatment such as D-penicillamine363 and trientine.364 Given the structures of 

these available treatments, its not readily apparent where PET isotope labeling can be done without 

modification. This would lead to different pharmacological properties and would need to undergo 

a long process of validation before human use of a PET analoge could be used in humans. 

 

Fig. 1. 27: FDA approved coper chelators 

 An antifungal agent was first used in 1964, known as clioquinol,365 belonging to the class 

of hydroxyquinolines. It has since been retired from FDA approval, but is still used in clinical trials 

where it is suspected that copper plays a role in disease. For example, it has been shown to breakup 

copper-Aß aggregates in animal models by redistributing copper from the extracellular space to 

intracellular compartments to regain homeostasis.366 It’s derivative, PBT2, has also been used in 

clinical trials for AD.367 PET radiolabeling of PBT2 has been achieved by Vasdev et al.368 and will 

be discussed in Chapter 3. Radiolabeling hydroquinoline scaffolds revealed that increased 

lipophilicity is needed to cross the BBB. 
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Fig. 1. 28: Cu/Zn chelators used in clinical trials for AD 

1.6.2.3. Investigational Copper/Zinc Chelators 

 Although it has been used clinically, development of elesclomol369 for FDA approval is 

still being undertaken by Glaxo-Smith-Kline (GSK) in the treatment of cancer. Elesclomol has 

very high affinity for copper. It is membrane permeable and contains N-methyl groups suitable for 

caron-11 methylation. Although selectively methylation of nitrogen over sulfur is a synthetic 

challenge, protecting groups may help to work around this limitation. One might foresee a problem 

with trapping of this compound into compartments containing copper, as a second chelator is used 

to help sequester copper from this compound during treatment. 

 

Fig. 1. 29: Structure of Elesclomol 

 In an attempt to produce divalent metal chelators specific for binding metal-Aß complex 

aggregates, work was undertaken by Lim et al.370,371 that combined the Aß binding stilbene 

scaffold with the N,N-diamine chelating scaffold to produce the compound L2-b and its 

derivatives. The compound showed high selectivity for Cu2+ over Zn2+-Aß complexes. It is 

membrane permeable and was demonstrated to break up Aß aggregates. With an opportunity to 

label L2-b via carbon-11 and fluorine-18 radiochemistry, work by our group demonstrated that 
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L2-b can cross the BBB with high brain uptake and was further evaluated in autoradiography 

studies. The details of these experiments are discussed in Chapter 3. 

 

Fig. 1. 30: Structure of L2-b 

 In addition to these compounds, several Zn2+ and Cu+/Cu2+ specific fluorescent probes have 

been developed and reviewed elsewhere.128 

1.7. Measuring Metal Dyshomeostasis with MRI  

 Iron can be measured by endogenous MRI signal relaxation and has been applied to the 

clinic to estimate iron levels in a variety of patients including young adults, elderly, stroke patients, 

and ND patients, whilst copper and zinc measurement by MRI requires the use of a contrast agent 

and has been limited to preclinical testing. To begin, iron imaging with MRI has proven an asset 

to connect iron dyshomeostasis to brain aging and development of neurocognitive symptoms.372 

Paramagnetic iron is detected by MRI through the relaxation of neighboring water molecules. A 

large concentration of iron is needed to induce resonance of this, and thus, all forms of iron can 

contribute to this signal.373,374 The majority of an iron MRI signal is thought to be induced by 

ferritin iron which accounts for > 90% of total iron in the brain. Several methods have been used 

to estimate iron levels.375 Due to its paramagnetic nature, iron can have a relatively long transverse 

relaxation rate (R2) and a short relaxation time constant, T2 (=1/R2).376 Due to the reliance of 

water to produce a signal, a region with low water content can diminish the validity of an R2 scan 

to be a suitable index of iron content.375 To overcome this issue, R2’ (=1/T2’) MRI scans have 

been used which has greater sensitivity, allowing the measurement of iron content by looking at 

the variation in phase of the signal.377 This index is more associated with the presence of iron and 
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allows differentiation from diamagnetic calcium, a source of signal in just an R2 scan. By summing 

the relaxation due to spin-spin interaction (R2) and local susceptibility (R2’), an R2* (=1/T2*) 

image can be constructed.162,378 Artificial intensity values can be measured, however, in this 

method and is sensitive to background field inhomogeneity that is unrelated to iron concentrations. 

Inherent problems with measuring phase shift and relating this to iron concentration is that 

detectable shifts is limited by -180 and 180°.379 Large concentrations of iron that cause a phase 

shift greater than 180° will “wrap” to the opposite scale extreme and bias against the detection of 

iron, suggesting the presence of diamagnetic minerals. Myelin can also contribute to the 

susceptibility of the measurement and confound the results.372 Field-dependent R2 increase (FDRI) 

methodology was developed where two images are taken at different field strengths and are 

believed to be unaffected by myelin.380,381  

 

Fig. 1. 31: Example MR images for healthy young, middle-aged, and older adults; a similar mid-brain slice was chosen for each 

person to showcase the basal ganglia structures that have large concentrations of iron (an arrow points to the globus pallidus, a 

region with the greatest iron content in the brain across all ages). On T2*-weighted images, iron appears hypointense (dark 

intensity values). The high-pass filtered phase and quantitative susceptibility mapping (QSM) images were inverted so that iron 

also corresponds to hypointensity. Adapted from ref. 372 with permission from Springer Nature. 

 It is clear, so far, that MRI then is unable to quantify absolute concentration of iron, but 

only approximate differences in the relative iron content.372 This becomes further problematic 

when comparing between studies that use the same method of estimation, where regional iron 

content varies between the studies. There has yet to be a standardized method established for 

estimating brain iron with MRI and none of them can readily distinguish between heme and non-
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heme iron. Thus, a method with suitable sensitivity where the signal is directly dependent on the 

free iron concentration and quantify iron at the nanomolar range in vivo is heavily desired. PET 

offers a suitable alternative then to validate metal dyshomeostasis in CNS diseases. 

1.8. Summary 

 PET is a powerful tool for the clinical setting by aiding in the diagnosis of various diseases. 

It has shown tremendous success in the diagnosis of cancers and monitoring various therapy 

agents. PET agents developed for diagnostic purposes in this space have even been used for 

treatment themselves by incorporating alpha emitting radioisotopes attached to tumor targeting 

proteins and antibodies. Unfortunately, this success has not extended to the space of NDs. Though 

PET has aided in identifying ND that have overlapping clinical symptoms, the biomarkers 

available for ND remain limited to mid-late stage imaging. Protein aggregation and 

neuroinflammation are the primary targets of PET for ND imaging. It is hypothesized that these 

biomarkers are a result of metal dyshomeostasis based on evidence of changes in its concentration 

that has been measured by various methods. MRI has provided a noninvasive way to image the 

accumulation of iron in patients but has a wide range of limitations. One of these limitations 

includes that MRI measures all iron and does not differentiate toxic labile iron which is present at 

very low concentrations. Due to the increased sensitivity of PET, metal chelating PET tracers hold 

promise in differentiating these diseases at earlier stages than is currently possible. The transition 

metals Fe, Cu, and Zn are present in the brain at concentrations that are detectable by PET. The 

increase or decrease in concentrations of these metals during disease progression can then be 

validated by metal chelating PET tracers in vivo, a current field of active research demonstrated 

by this dissertation. Metal chelators with the most potential for CNS PET imaging are small 

molecule bidentate chelators that form neutral complexes at physiological pH. Metals are either 
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protein bound or found in labile pools. Protein bound metals are mostly inaccessible to small 

molecule bidentate chelators, and thus the only target for a PET tracer with this scaffold would be 

the labile metal pools. Metal chelators specific for Fe3+ and Cu2+/Zn2+ would be able to 

differentiate NDs as these metals accumulate in different brain regions during disease progression.  
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CHAPTER 2 

Development of Iron Chelating PET Radiotracers in Assessing Neurodegenerative Diseases 

2.1. Introduction 

 Iron is hypothesized to play a role in the early stages of neurodegenerative diseases (NDs) 

by inducing oxidative stress via the formation of reactive oxygen species (ROS) through Fenton 

chemistry.1 The exact mechanisms of iron toxicity in inducing diseases such as Alzheimer’s 

Disease (AD), Parkinson’s Disease (PD), and Amyotrophic Lateral Sclerosis (ALS) has been 

reviewed in Chapter 1. Though high levels of iron can be detected in distinct brain regions by 

magnetic resonance (MR) imaging, this signal represents the total iron content.2 Only a small 

percentage of total iron in cells is considered to be toxic, which is the free, non-protein bound 

labile iron pool (LIP).3,4 The concentration of iron in the LIP varies in different cell types and has 

been determined to be in the range of 0.1 – 5.4 µM in healthy cells.5–8 Atomic absorption 

spectroscopy has been used to measure the LIP in PD tissue and found to have a concentration of 

90 ng/g tissue (1.6 µM) in the substantia nigra (SN).9 Only total iron concentrations have been 

reported in brain regions effected by AD10–13 and ALS,14–16 but show a significant increase 

compared to normal control tissue. The LIP is accessible by iron chelators whereas all remaining 

iron is protein bound and not available for chelation.17 

 MRI has been crucial to correlating AD progression to increases in iron levels, and has 

even been used to show that iron concentrations can predict the neurodegeneration of the 

putamen.18 Since a large concentration of iron is needed to produce a significant change in the MR 
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signal, where most of the signal is thought to occur from ferritin-stored iron, a more sensitive 

technique for non-invasive imaging of iron is highly sought. These large changes in concentration 

of iron occur at later stages of disease. It is hypothesized that diagnosis of NDs before clinical 

symptoms start to manifest will help in preventing or stopping the progression of 

neurodegeneration by enabling therapeutic intervention at this earlier time point.19  

 A study using an iron chelating fluorescent probe indicated that neuronal cells contain less 

than 0.1 µM of iron in the LIP as this was the limit of detection of the probe and barely any signal 

was visible.7 When a ND diseased model cell type was used, iron could be visualized by the probe. 

Being that targets for Positron Emission Tomography (PET) tracers typically need a concentration 

above 1 nM to produce a signal suitable for analysis,20 a PET probe selective for iron in the LIP 

would be sensitive enough to detect these small changes, filling a void of iron imaging currently 

not possible with MRI.  

 

Fig. 2.1: Structure of Deferiprone (DFP) 

 An iron-specific chelating PET probe would need good blood-brain barrier (BBB) 

permeability (mediated by low molecular weight (≤300 g/mol) and a cLogP between 1 – 3), have 

high metabolic stability (t1/2 > 3.1h), and form a 1:1 complex with iron at low concentrations.21 

Deferiprone (DFP, Figure 2.1) was selected for this purpose because it is already approved for 

human use by the Food and Drug Administration (FDA) in the treatment of iron toxicity.22 DFP is 

also currently in phase II clinical trials for delaying dementia in AD, Mild Cognitive Impairment 

(MCI), and PD.23,24 We reasoned that translation of a radiolabeled version of DFP would be 
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straightforward because toxicity studies, which are typically expensive, have already been 

completed for this compound and can be administered up to a maximum dose of 99 mg/kg/day.25 

Other FDA-approved iron chelators include deferoxamine-B and deferasirox, both of which have 

limited to no BBB permeability,26 while DFP has been shown to be BBB permeable in rodents and 

to reduce iron levels in the human brain.23,27 This suggests that a DFP-based PET radiotracer 

should have good BBB permeability. Since the other iron chelators deferoxamine-B and 

deferasirox are known not to cross the cellular membrane and chelate iron in the cells, DFP was 

chosen as the lead candidate around which to explore development of a potential PET tracer for 

quantification of CNS iron levels. In this chapter we describe our efforts to develop [11C]DFP. 

2.2. Results and Discussion 

2.2.1. First synthesis of [11C]DFP with a nonprotected precursor 

 Initial attempts to synthesize carbon-11 labeled deferiprone ([11C]DFP, 3) were performed 

with N-desmethyl precursor 2 by reacting with [11C]CH3OTf in dimethylformamide (DMF) at 

room temperature (Scheme 2.1). Two possible methylation sites are available on commercially 

available precursor 2. The pKa for nitrogen of 4-pyridinones is lower than other secondary amines 

(pKa ~ 38) at a pKa of 15,28 while the alcohol moiety has a pKa similar to phenols (~10).28 We 

hypothesized that the nitrogen, being more nucleophilic than alcohols (higher basicity) would 

preferentially be radiolabeled, and that the limiting reagent being [11C]CH3OTf would allow for 

only methylation of one site and not both. Also, we hypothesized that [11C]DFP ([11C]3) could be 

separated during purification from the alternate O-methyl product [11C]4 if any formed. In a highly 

polar solvent such as DMF this proved to be the case, and the N-methyl product ([11C]DFP) was 

observed during quality control testing, confirmed by co-injection with unlabeled reference 

standards of 3 and 4. However, the yield of [11C]DFP was quite low (0.5% from 1 Ci [11C]CH3I), 
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with formation of an unknown product incorporating most of the radioactivity (Figure 2.5). 

Initially, this unknown side product was thought to be [11C]DFP since after collection of a pure 

sample, it had the same retention time as the DFP standard 6 on an analytical HPLC column 

(Figure 2.2a). However, QC analysis with a different HPLC system gave more narrow peaks and 

revealed the radioactive compound to be an impurity and not [11C]DFP (Figure 2.2b). 

 

Scheme 2. 1: Synthesis of [11C]DFP and 2-methoxy-4-pyridone 4 

a) 

 

b) 

 

UV trace of deferiprone standard 

Radiochemical impurity trace 

UV trace of deferiprone 

standard 
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Fig. 2. 2: QC co-injection of unknown rad impurity with DFP standard on two HPLC systems 

To increase the yield of [11C]DFP, various reaction conditions were tested. The temperature of the 

reactor was decreased to 0°C to trap as much [11C]CH3OTf in the reactor as possible and then 

heating to 60°C for 3 minutes to overcome any thermodynamic barrier to the formation of 

[11C]DFP. Unfortunately, this resulted in a lower radiochemical yield of [11C]DFP (0.1% from 1 

Ci [11C]CH3I), while concomitantly increasing yields of the unknown side product. Bicarbonate 

(HCO3
-), with a pKa of 6 was added to deprotonate the ammonium ion formed after methylation 

(pKa ~ 4, Scheme 2.2), to increase the reaction rate to form 3. Bicarbonate is not basic enough to 

deprotonate the alcohol, and thus hypothesized that it would reduce the preference to form 4. This 

proved to be the case, and formation of the unknown side product was decreased, while the overall 

RCY of [11C]DFP increased (1% from 1 Ci [11C]CH3I). The chromatogram of the semi-prep HPLC 

purification (Figure 2.6) revealed the product to be streaking, suggesting that [11C]DFP could be 

prone to radiolytic decomposition.29  

 

Scheme 2. 2: Mechanism of N-methylation to form [11C]DFP in the presence of base 

Radiochemical impurity trace 
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 The methylating agent was switched to [11C]CH3I for kinetic control since it is less reactive than 

[11C]CH3OTf and would favor formation of [11C]DFP due to the nitrogen being the more 

nucleophilic of the two potential methylation positions. Instead, this resulted in decreased yield 

(Table 2.1, entry 1). Precursor 2 is sparingly soluble in DMF. To test if passing the methylating 

source through a more concentrated solution of this inside an HPLC loop (termed Loop chemistry), 

volatile, flushable solvents such as ethanol or butanone were used (Table 2.1, entry 3 and 5). It 

was hypothesized that by decreasing the polarity of the solvent, the production of the unknown 

side product could be mitigated if it were not stabilized by a polar solvent. However, decreasing 

the polarity of the solvent revealed to be favorable for forming 4 over [11C]DFP, as shown in Table 

2.1, entry 5 (dielectric constants are given for the solvents used in Table 2.2). It is known that less 

polar solvents stabilize the transition state in preference for O-alkylation over N-alkylation.30 

 

Table 2. 1: Solvent screen and reactions in HPLC loop to increase yield of [11C]DFP 

 

Table 2. 2: Dielectric constants given for various solvents tested 

Method Solvent Base Temp HPLC Buffer RCY Comments

MeI (Reactor) DMF HCO3 rt 5% EtOH 10mM NaH2PO4 pH 2.73 1.60% Reduced Impurity 

MeOTf (Reactor) DMF HCO3 rt " " + 1mM Ascorbic Acid 4.40%
Broadening of product peak with 

coelution of rad impurtiy

PiB (Loop)
10µl DMSO/ 

100µL EtOH
- rt " " 0%

Precursor does not dissolve in 

straight ethanol

MeOTf (Reactor)
10µl DMSO/ 

100µL EtOH
HCO3 rt " " 0%

PiB (Loop)
10µl DMSO/ 

100µL Butanone
- rt " " 0%

O-methyl observed at same 

retention time of product on 

semiprep

FMZ (Reactor)
10µl DMSO/ 

200µL Acetone
HCO3 0-60°C " " 0% Larger impurity peak

Solvent ε

DMSO 46.7

DMF 36.7

EtOH 24.5

Acetone 20.7

Butanone 18.5
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2.2.2. Solving the Issue of Radiolysis 

 Radiolysis is the decomposition of a molecule by ionizing radiation, thought to be mediated 

by the formation of single electron species when the chemical bonds in water become cleaved by 

high energy radiation to form hydroxyl radicals, hydrogen radicals, and hydrated electrons.31,32 

These radicals can go on to react with the radiolabeled compound to form a radiolytic byproduct 

or the radiation from the unstable isotope attached to the molecule could lead directly to the 

breaking of bonds within the structure. When this occurs, the radiolytic product(s) can be 

confirmed by formation of a new peak(s) in the radio-HPLC chromatogram over time. In the case 

of [11C]DFP, however, no radiolytic product was observed, but instead a gradual decrease of the 

area under the curve of the [11C]DFP signal was noticed. The decrease in area under the curve was 

observed to be faster than the normal decay of a carbon-11 (Table 2.3). 

 

Table 2. 3: AUC of [11C]DFP gamma peak on an analytical HPLC column compared to the theoretical decay of carbon-11 

revealing radiolysis of the product to form a volatile byproduct 

 Several methods have been used to inhibit radiolysis of other PET radiotracers.31 Switching 

from an acetonitrile (MeCN) semi-preparative HPLC buffer to an ethanolic buffer can decrease 

the rate of radiolysis due to the antioxidant properties of ethanol.33 Inclusion of other antioxidants 

such as ascorbic acid (aka vitamin C) during purification and formulation of a radiotracer has also 

been shown to mitigate radiolysis. Further, sodium nitrate (NaNO3) has also been used to 

completely inhibit the radiolysis of [11C]iomazenil.32 The theory behind the use of these agents is 
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their ability to act as radical scavengers. Ethanol, ascorbate, and nitrate all have very fast reaction 

rates with radicals, usually faster than the desired radiotracer. Therefore, these additives prevent 

the radiolytic decomposition of PET radiotracers by quenching radicals present in the formulated 

dose before they can react with the radiotracer. The mechanism of radiolytic decomposition is 

often radiotracer specific, and so use of an additive can have different outcomes. Ascorbate has a 

higher reaction rate with hydroxyl radicals than nitrate (kOH*. = 7.2 x 109 vs. 3.1 x 109) while nitrate 

has a higher reaction rate with hydrated electrons than ascorbate (ke*aq = 1.0 x 109 vs. 3.5 x 108).34,35  

 Since an ethanol buffer was already being used in our purification system (2% ethanol, 

10mM NaHPO4) an additive with a larger radical reaction rate constant needed to be used. When 

ascorbic acid was used as an additive in the semi-preparative HPLC buffer, streaking of [
11C]DFP 

became even more dramatic (Table 2.1, entry 2) suggesting radiolysis was still occurring. NaNO3 

was added to the dose vial before collection of [11C]DFP from HPLC. A sample of the formulated 

product was taken for stability testing which revealed results similar to those described in Table 

2.3, indicating that radiolysis had not been inhibited. Both ascorbic acid and sodium nitrate could 

not fully inhibit radiolysis. However, use of highly concentrated ascorbic acid in the final dose did 

slow down the rate of decomposition as indicated by HPLC.  

2.2.3. Synthesis of [11C]DFP with a benzyl protected precursor 

 Although the addition of base to the reaction proved helpful to increase the RCY of 

[11C]DFP, not enough product was being isolated for preclinical studies. In order to perform a 

nonhuman primate scan, at least 5 mCi of product is needed. However, only 500 µCi – 1 mCi was 

being collected that was suitable for injection. Therefore, a protected precursor was desired to 

eliminate the competing O-methylation reaction. Protecting the hydroxyl group of 3-hydroxy-2-

methylpyridin-4(1H)-one (1) proved difficult to achieve due to the insolubility of 2 in numerous 
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organic solvents. Trimethylsilyl (TMS), tert-butyldimethylsilyl, carbonate, and benzyl protecting 

groups were attempted to protect the alcohol, with only the benzyl protection being successful for 

isolation of product (Scheme 2.3a). A database search of benzyl-protected compound 5 illustrated 

that it was commercially available and thus did not have to be prepared manually before 

radiosynthesis. Although deprotection of benzyl groups often requires hydrogen and a palladium 

catalyst36 (which is not easily adapted for use in an automated radiosynthesis module), in this case 

we were gratified to observe complete removal of the benzyl group upon treatment with 6N 

hydrochloric acid (HCl) at 120°C for 3 minutes (Scheme 2.3b). 

 

Scheme 2. 3: Synthesis of a benzyl protected precursor and subsequent deprotection 

  

Carbon-11 labeling of benzyl-protected precursor 5 (Scheme 2.4) proved high yielding when the 

reaction mixture was sampled for HPLC analysis (17.7% RCY non-decay corrected (NDC), 33.8 

mCi from 200 mCi of [11C]CH3I). Although the unlabeled reference standard could be deprotected 

with 6N HCl (Scheme 2.3), this high concentration of acid was a concern for routine use in an 

automated synthesis module. Several HCl concentrations (2N, 4N, 6N, and conc.) at various 

temperatures were tested manually with the crude reaction mixture containing 7. However, this 
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screen revealed that the lowest concentration that could fully remove the benzyl protecting group 

in a short amount of time (3 min.) suitable for use in an automated synthesis of [11C]DFP was 

found to be 6N and so we moved forward with these conditions. 

 

Scheme 2. 4: Radiosynthesis of [11C]DFP from a benzyl protected precursor  

Since [11C]DFP is prone to radiolysis, steps were taken to prevent radiolytic decomposition at 

every part of the synthesis. The protected intermediate 7 was found to be stable, and thus ascorbic 

acid was added to the 6N HCl used for deprotection to prevent radiolysis once [11C]DFP was 

formed. Heating of this solution led to a black/yellow mixture as a result of oxidation of the 

ascorbic acid. Since ascorbate and nitrate failed to completely inhibit radiolysis, it was assumed 

that the mechanism of decomposition was mediated directly through the radiolabeled compound 

and thus, an alternative method was used. By adding deferiprone standard to the deprotection 

solution, a higher yield of [11C]DFP was achieved (due to carrier added synthesis) and found to be 

stable when the product was collected directly off the semi-preparative column and formulated 

with 500 mg ascorbic acid. It is thought that the cold standard added during the deprotection 

prevents radiolysis by acting as a radical scavenger, most likely with a faster reaction rate then that 

previously described with ascorbic acid. The added benefit of using the cold standard is that it does 

not decompose or oxidize at the high temperature needed for deprotection. 

2.2.4. Semi-preparative HPLC Development 

 During the course of these studies, a range of semi-preparative HPLC conditions was 

continuously adapted until baseline separation of product from precursor was achieved and 



 

109 
 

[11C]DFP could be appropriately purified. Though the precursors used and cold standard of 

deferiprone had ≥3 minute difference in retention time in most systems, translating it to an 

automated synthesis module where the whole reaction mixture was injected onto the column was 

challenging and often times co-elution of precursor and product occurred, leading to a decrease in 

effective molar activity (MA). Though the deprotected precursor does not contain the N -methyl 

group, it still contains the iron chelating scaffold. This could interfere with the signal to noise ratio 

(SNR) by blocking specific sites of binding for [11C]DFP. In order to provide high quality PET 

images sought by the imaging community, this contaminant precursors minimizes the effective 

administered mass and therefore a misrepresentative image of how a [11C]DFP image is meant to 

look. First a Polar-Reverse Phase (RP) semi-preparative column (250 x 10 mm) with a 5µ particle 

size was used with a 15% MeCN 10 mM sodium acetate (NaOAc) buffer (pH 8). It was thought 

that streaking of the standards on this system was caused by a high pH where the standards were 

partially deprotonated leading to formation of a charged species (Figure 2.3). 

 

Fig. 2. 3: Tautomerization equilibrium of DFP 

 Reducing the pH to 3.75 by switching the buffering salt from acetate to monobasic sodium 

phosphate (NaHPO4) and adjusting with phosphoric acid, the standard peaks immediately became 

sharper. Though this proved helpful for better identification on the analytical Hydro-RP column 

(150 x 4.6 mm, 4 µ particle size), precursor 2 still coeluted with [11C]DFP from the semi-

preparative column. Switching to a HILIC or NH2 stationary phase switch the order of elution and 

resulted in the product eluting before the precursor. Although this led to efficient separation of the 

product from the precursor, 98% MeCN was utilized as the mobile phase, and was challenging to 
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reformulate into an injectable formulation using an automated synthesis module. When using the 

benzyl-protected precursor 5 to synthesize [11C]DFP, deprotected precursor 2 could also form 

during deprotection since not all of 5 gets methylated. To get efficient separation of [11C]DFP from 

2 and 5, we resorted to using an analytical Hydro-RP HPLC column (250 x 4.6 mm) with a large 

10 µ particle size. When using this column, efficient separation of the precursor from the standard 

was achieved with a 2% EtOH buffer (Figure 2.7 and 2.8). It was noticed that after adding 

deferiprone standard to the deprotection solution, a higher yield of [11C]DFP was achieved. 

Though it is suspected this is helping by mitigating radiolysis, it could also be possible that the 

higher concentration of a chelating moiety is preventing loss of product by blocking metal binding 

sites in the stainless steel HPLC system (stainless steel loop, stainless steel column head, etc.). 

This prompted a change in the buffering salt from monobasic phosphate to citrate, an organic acid 

found in biological systems that is also a tridentate metal chelator. After switching to a 10mM 

sodium citrate buffer and keeping the pH at 3.75, the yield of [11C]DFP markedly increased to 50% 

RCY NDC, confirming that a stainless steel HPLC system can cause loss in production of metal 

chelating scaffolds where exposed metal binding sites can potentially leach product.  

 With an efficient and reproducible synthesis finally achieved for [11C]DFP, producing 46 

mCi (4.6% Yield from 1 Ci [11C]CH3I with a molar activity (MA) of 170 Ci/mmol, preclinical 

studies could now be performed. The synthesis of [11C]DFP as it currently stands is shown in 

Scheme 2.5. The product could be efficiently separated from all UV and radioactive impurities 

(98% radiochemical purity) using the Synergi Hydro-RP HPLC column with a 4.6 mm diameter 

and 10 µ particle size with a 2% ethanol 10 mM citrate buffer containing at least 1 mM of ascorbic 

acid at pH 3.75 (tR = 13 min) 
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Scheme 2. 5: Radiosynthesis of [11C]DFP using cold standard 

2.2.5. Preclinical Imaging Analysis 

 Though there is published data of DFP being able to pass the BBB of rodents at therapeutic 

doses,27 we still needed to confirm that our PET tracer was BBB penetrable since there are 

instances of compounds entering the brain at therapeutic doses but not at PET microdoses 

(typically only pM amounts). This failure can sometimes be attributed to the compound being an 

efflux transporter (i.e. p-glycoprotein, p-gp) substrate where not enough compound is added to 

completely saturate the transporter so that some of the compound can stay in the brain. 

During initial evaluation of [11C]DFP in rat, a female Sprague-Dawley rat (430 g) was 

injected with 3 (0.228 mCi) i.v. via tail vein injection. The rat was scanned for 60 min post-

injection of the radiotracer (see experimental section for detailed scanning procedure) and revealed 

that the PET tracer had little brain uptake with a standard uptake value (SUV) of 0.3 with a fast 

washout returning to baseline after 30 minutes post-injection (Figure 2.4). 
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Fig. 2. 4: 1-hour PET image of Sprague-Dawley rat and the time activity curve (TAC) of [11C]DFP in the brain 

 

Fig. 2. 5: 1-hour PET image of Sprague-Dawley rat and the time activity curve (TAC) of [11C]DFP in the heart 

 Measurement of iron in the heart is key to the clinical management of patients at risk of 

siderotic cardiomyopathy. Normally, this is achieved by MRI, but physicians have an interest in 

using PET to visualize the heart for iron overload. [11C]DFP showed good initial uptake into the 

rodent heart within the first minute with a peak SUV of 2.5 (Figure 2.5) with fast washout. This 

higher uptake is expected, being that the heart is mostly composed of blood and muscle cells, 

which have the most amount of iron after the liver. The live is clearly visible in this image, and 

shows the highest uptake, where iron is stored and used extensively in cytochrome P450’s for 

oxidative reactions. 

 The levels of iron in the brain have measured in aging rats where it was found that the 

highest level of iron occurs during the neonatal stage of the rat’s life span and subsequently 

decreases after growth and remains at low concentrations through most of the adult life.37 This 

could explain the low uptake of [11C]DFP, being that its target, iron, is prevented from reaching 

high concentrations in the rats brain due its inherent toxicity if not regulated properly. It could also 

be due to the fact stated earlier that DFP could be a substrate for P-gp and not enough compound 

is present during the PET scan to saturate the efflux transporter for effective brain uptake. Further 
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studies would need to be done to confirm this such as blocking p-gp with Cyclosporin A before 

imaging. 

Since inter-species differences are sometimes apparent between rodents and non-human 

primates due to the higher metabolic rate in rodents and differing BBB efflux systems, imaging in 

rhesus macaque brain was also performed (Figure 2.6). Imaging studies were performed in a 

young, mature female rhesus monkey and radiotracer [11C]DFP (3.93 mCi) was injected i.v. via a 

venous catheter inserted into one hind limb of the monkey and scanned for 60 min. Fortunately, 

unlike the rodent, [11C]DFP exhibited high brain uptake in NHP reaching a peak SUV of 7.7. The 

total brain uptake could be attributed to a majority of the signal arising from the cortex, cerebellum, 

and the subcortical structures like the thalamus and striatum, with peak SUV’s reach 1-3 in these 

regions. This correlates well with known iron concentrations in the various brain structures of 

humans where the most iron is found in the basal ganglia structures in the midbrain. Further, MRI 

has been used to assess iron levels in NHPs and also found that iron concentrations were high in 

the globus pallidus, thalamus, cortex, and cerebellum. Seeing that the image achieved with our 

tracer correlates well with the data from other groups, this suggests that [11C]DFP is binding iron 

and the image is representative of the LIP.  
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Fig. 2. 6: 1-hour PET image of Rhesus Macaque NHP and the time activity curve (TAC) of [11C]DFP in the total brain, cortex 

(CTX), Cerebellum (CER), Thalamus (THA), and Striatum (STR). 

 [11C]DFP also shows slow washout from the brain in NHP. When a PET tracer is observed 

to have a slow washout, it is thought that it is being trapped in the brain either by forming a trapped 

metabolite or becoming covalently bonded to its target. This is unlike the kinetics observed in the 

rat and could possibly be due to the difference in iron concentrations. It is possible for deferiprone 

to form highly stable 2:1 or 3:1 complexes with one iron atom. However, it is known that transient 

1:1 complexes are favored when low concentrations of chelator are used and since the 

concentration of [11C]DFP is injected in the nM range, this is probably the type of complex that is 

being formed and not irreversibly binding the iron atom. One possible reason for what seems like 
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[11C]DFP is slowly washing out is its low molar activity. Normally, tracers with a MA > 500 

Ci/mmol highlights the target specifically, saturating those sites without interference from the cold 

mass. However, since we use cold standard in our synthesis, the molar activity is decreased and 

we could be seeing nonspecific binding of [11C]DFP. This can be tested by performing a self-

blocking study, where DFP is given to the animal before injection of [11C]DFP at 1000x the 

concentration of the radiochemical dose. 

  

Fig. 2. 7: 1-hour PET image of Rhesus Macaque NHP and the time activity curve (TAC) of [11C]DFP in heart 

 The remarkably high uptake of [11C]DFP in the heart is observed to be mostly in the 

chambers of the heart where most of the blood is pooled (Figure 2.7). Unlike the kinetics in the 

rodent, it takes a little longer to reach the maximum SUV of 68 at 2 minutes and has slower 

washout before returning to a baseline SUV of 7 at 30 minutes.  

2.3. Conclusions 

 The synthesis of [11C]DFP proved to be more difficult and less straightforward than 

initially thought. Though the more nucleophilic position (being the nitrogen) was thought to be 

favored for methylation in the presence of the limiting reagent [11C]CH3OTf, the oxygen position 

proved to be favored in certain conditions. Also, unknown radiolabeled impurities were seen, and 

being that there were only two sites for potentially carbon-11 labeling, this was a tremendous 

surprise and became difficult to try to determine the identity of these side products. A benzyl-
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protected precursor proved favorable to synthesize the desired product given its commercial 

availability. Even the purification during semi preparative HPLC proved challenging because the 

amount of precursor left over would streak into the desired product for collection. Choosing an 

HPLC column with a small diameter and large particle size allowed for more efficient separation. 

Preclinical imaging studies proved [11C]DFP can pass the BBB of both rodents and NHPs. Even 

though the uptake of [11C]DFP was low in rodent, possibly due to low brain iron concentrations in 

adult rodents, the uptake in the NHP brain was extremely high with a peak SUV of ~8. This uptake 

would allow for quantification of the LIP available in the brain and be able to detect small changes 

in its homeostasis. However, the molar activity of [11C]DFP still needs to be improved and 

determination of the specific binding should be assessed. However, this work has laid the 

groundwork for synthesizing the first BBB permeable iron chelating PET Tracer, and that it is 

worth optimizing this PET tracer for human use and testing the metal hypothesis of ND.  

2.4. Materials and Methods 

2.4.1. Organic Synthesis 

General Considerations  

All the chemicals were commercially available and used without purification. Automated 

flash chromatography was performed with Biotage Isolera Prime system. High-performance liquid 

chromatography was performed using a Shimadzu LC-2010A HT system. 1H-NMR spectra were 

acquired using a Varian 500 apparatus (500 MHz) in CDCl3 or CD3OD. δ are reported in ppm 

relative to tetramethylsilane (δ = 0), J are given in Hz. Mass spectra were measured on an Agilent 

Technologies (Santa Clara CA, USA) Q-TOF HPLC-MS or Micromass (Manchester, UK) VG 70-

250-S Magnetic sector mass spectrometer employing the electrospray ionization (ESI) method. 

Compounds Synthesized 



 

117 
 

Preparation of 3-(benzyloxy)-2-methylpyridin-4(1H)-one (5): 

 

 3-hydroxy-2-methylpyridin-4(1H)-one (10 mg, 0.08 mmol) was dissolved with 500 µL 

MeOH in a 5 mL round bottom flask attached to a water condenser. 1 M of sodium hydroxide 

(NaOH, 80 µL, 1 equiv.) was added to this solution. Benzyl bromide (104 µL, 10 equiv.) was 

added to this reaction mixture and left to stir for 2 days under reflux. The reaction mixture was 

extracted 3x with ethyl acetate and water, rinsed with brine, and dried over sodium sulfate. The 

crude product was dried over silica and loaded onto a silica column for purification by flash 

chromatography to provide 4 in 45% yield. A dibenzyl protected product was also observed and 

was separated during purification. 1H NMR (499 MHz, Chloroform-d) δ 7.76 – 6.78 (m, 5H), 5.97 

(s, 1H), 5.49 (s, 1H), 5.07 (s, 2H), 2.38 (s, 3H). [M + H], Expected 216.1019, Found 216.1029 
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Preparation of 3-(benzyloxy)-1,2-dimethylpyridin-4(1H)-one (6): 

measured m/z of [M+H]+ 

Predicted value is 216.1029 
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 3-hydroxy-1,2-dimethylpyridin-4(1H)-one (6, deferiprone, 140 mg, 1 mmol) was dissolved 

with 140 µL MeOH in a 5 mL round bottom flask attached to a condenser. 1 M of sodium 

hydroxide (NaOH, 100 µL) was added to this solution. Benzyl bromide (130 µL) was added to this 

reaction mixture and left to stir for 2 days under reflux. The reaction mixture was extracted 3x 

with ethyl acetate and water, rinsed with brine, and dried over sodium sulfate. The crude product 

was dried over silica and loaded onto a silica column for purification by flash chromatography to 

provide 4 in 45% yield. 1H NMR (499 MHz, Chloroform-d) δ 7.43 – 7.37 (m, 2H), 7.35 – 7.25 (m, 

3H), 7.17 (d, J = 7.5 Hz, 1H), 6.37 (d, J = 7.5 Hz, 1H), 5.19 (s, 2H), 3.50 (s, 3H), 2.08 (s, 3H).  
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2.4.2. Radiochemistry  

General Considerations  

All the chemicals were purchased from commercially available suppliers and used without 

purification: Sterile Water for Injection, USP were purchased from Hospira, USP was obtained 

from Akorn Inc. (Lake Forest IL, USA) HPLC was performed using a Shimadzu (Kyoto, Japan). 

LC-2010A HT system equipped with a Bioscan B-FC-1000 radiation detector, and HPLC columns 

were acquired from Phenomenex (Torrance CA, USA). Other synthesis components were obtained 

as follows: sterile filters were acquired from MilliporeSigma (Burlington MA, USA). GE FXCpro 

automated synthesis module was used for all radiosynthesis experiments (Figure 2.8). 

2.4.2.1. Preparation of [11C]MeI and [11C]MeOTf 

 

Fig. 2. 8: Schematic of automated radiosynthesis module GE Tracerlab FXCpro  

1 

2 

3 

4 

5 

6 
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[11C]CO2 was produced with a General Electric Healthcare (GE, Uppsala, Sweden) PETTrace 

cyclotron via the 14N(p,α)11C reaction. High purity N2 (g) containing 0.5% O2 was irradiated at 40 

µA for 30 min to generate [11C]CO2 (~ 3 Ci, 111 GBq), which was delivered to a GE TRACERLab 

FXC-Pro synthesis module (Fig. 2.8, 1) through a Teflon delivery line by nitrogen pressure directly 

to a column packed with 0.3 g of molecular sieve and 0.2 g of Shimalite–Nickle where it was 

trapped at room temperature. The column was then sealed under hydrogen gas and heated to 350°C 

for 20 s to reduce the [11C]CO2 to [11C]CH4 (Fig. 2.8, 2). The [11C]CH4 was passed through a 

column of phosphorous pentoxide desiccant and trapped on a column of carbosphere cooled to 

−75°C (with liquid nitrogen) (Fig. 2.8, 3). Gaseous [11C]CH4 was released by heating the 

carbosphere column to 80°C. Once released, the methane entered a circulation loop, which 

includes a gas pump, a column of iodine at 100°C, the TRACERLab standard iodine reactor tube 

at 720°C, two adjacent columns of Ascarite II, and a column of Porapak Q at room temperature 

(Fig. 2.8, 4). The gaseous mixture was circulated for 5 min, whereas [11C]MeI accumulated on the 

Porapak column. [11C]MeI (~0.9 Ci, 33.3 GBq) was then released from the Porapak column and 

either delivered directly to the awaiting reactor (or loop), or passed through a silver triflate column 

(Fig. 2.8, 5) , by heating the Porapak column to 190°C. The contents of the silver triflate‐Graphpac 

column were prepared as follows: silver trifluoromethanesulfonate (5 g) was dissolved in 

anhydrous acetonitrile (100 mL), and the resulting solution was transferred into a round‐bottomed 

flask containing graphite (10 g). The mixture was stirred, and then the solvent was evaporated to 

complete dryness in vacuo. The resulting [11C]CH3OTf was delivered to the reactor (Fig. 2.8, 6) 

or loop (Fig. 2.8, 7). 
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2.4.2.2. Reactor Radiosynthesis of [11C]DFP according to Scheme 2.1 

 [11C]MeOTf was sparged into the reactor at 15 mL/min through a solution of precursor 2 

(1 mg) in DMF/Ethanol/Acetone (100 µL) at room temperature for 3 min or at 0°C and heated to 

60°C for 3 min. Following radiolabeling, the reaction mixture was diluted with HPLC mobile 

phase (1 mL) and purified by semipreparative HPLC (column: Phenomenex Synergi, Polar-RP 5µ, 

10 × 250 mm (or Synergi Hydro-RP 4µ 10 x 250 mm) ; mobile phase: 15% acetonitrile (or 5% 

Ethanol), 10 mM NaOAc (or Na2HPO4), pH = 8 (or 3.75); flow rate: 4 mL/min; see Figure 2.9 

and 2.10 for a representative semipreparative HPLC trace). The peak corresponding to [11C]DFP 

was collected (tR: 4.74 min. (or 7 min.)) in a round bottom collection flask and transferred to the 

product vial. After collection in a dose vial, modifications to the dose could be made by alteration 

of pH or reformulation from MeCN to a saline solution by trapping and eluting off a C18 waters 

cartridge. 

Representative semi-preparative HPLC Chromatogram when using HPLC system 2.1 

Column: SYNERGI Polar-RP 5 µ 250 x 10 mm | Buffer: 15% MeCN 10 mM NaOAc pH 8 
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Fig. 2. 9: Semi-prep HPLC chromatogram after [11C]DFP according to Scheme 2.1 

Representative semi-rep HPLC Chromatogram when using HPLC system 2 

Column: SYNERGI Hydro-RP 4 µ 250 x 10 mm | Buffer: 5% EtOH 10 mM NaHPO4 pH 2.75 

Precursor 

Radioactive 

Impurity 
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Fig. 2. 10: Semi-prep HPLC chromatogram after [11C]DFP according to Scheme 2.1 

2.4.2.3. Loop Radiosynthesis of [11C]DFP tested in Table 2.1 

 The Tracerlab synthesis module was configured as illustrated in Figure 2.11 and loaded as 

follows: 2 mL steel HPLC loop: 3-hydroxy-2-methylpyridin-4(1H)-one (1.0 mg) in ethanol or 

butanone/DMSO (100 μL); Vial 4: Semi Preparative HPLC Buffer for Injection, USP (7 mL); Vial 

5: Ethanol (0.5 mL); Vial 6: 0.9% NaCl for Injection, USP (9. (System 2) 5 mL. The precursor 

solution was loaded onto the HPLC loop (2 mL, steel) and conditioned with nitrogen gas for 20 s 

at 10 mL/min. The [11C]methyl triflate was passed through the HPLC loop at 15 mL/min for 5 min. 

The reaction mixture was then purified using semipreparative HPLC system 2: 4 mL/min. The 

product peak was never observed, so no collection occurred. 
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Fig. 2. 11: Schematic of FXCPro synthesis module reconfigured for Loop Chemistry. [11C]CH3OTf bypasses reactor to be passed 

through HPLC loop that contains precursor  

2.4.2.4. Reactor Radiosynthesis of [11C]DFP according to Scheme 2.5 

 [11C]MeOTf was sparged into the reactor at 15 mL/min through a solution of precursor 5 

(1 mg) in DMF (100 µL) at room temperature for 3 min for 3 min. Following radiolabeling, 500 

µL of 6N HCl containing 250 µg DFP from Vial 1 was added to the reaction mixture and heated 

at 120°C for 3 min. After cooling to 60°C, the reaction mixture was quenched with 300 µL of 12N 

NaOH from Vial 2 and the resulting mixture was purified by semipreparative HPLC (column: 

Phenomenex Synergi, Hydro-RP 10µ, 4.6 × 250 mm ; mobile phase: 2% EtOH 10 mM NaOAc 

(or 10 mM Sodium Citrate), 1mM Ascorbic Acid pH = 3.75; flow rate: 0.5 mL/min for 3 min. → 

0.7 mL/min for 1 min. → 0.9 mL/min for 1 min. → 1.0 mL/min until product eluted ; see Figure 

2.12 and 2.13 for a representative semipreparative HPLC trace). The peak corresponding to 
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[11C]DFP (tR: 13.5 – 16 min.) was collected directly into the product vial containing 100 µL sterile 

water and 100 µL of a 500 mg/mL Ascorbic Acid solution (50 µg).  

Representative semi-rep HPLC Chromatogram when using HPLC system 3 

Column: SYNERGI Hydro-RP 10 µ 4.6 x 250 mm | Buffer: 2% EtOH 10 mM NaOAc 1mM 

Ascorbic Acid pH 3.75 

 

Fig. 2. 12: Semi-prep HPLC chromatogram after [11C]DFP according to Scheme 2.4 using HPLC system 3 

Representative semi-rep HPLC Chromatogram when using HPLC system 4 
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Fig. 2. 13: Semi-prep HPLC chromatogram after [11C]DFP according to Scheme 2.4 using HPLC system 4. 

2.4.3. Quality Control of [11C]DFP 

 Doses were visually examined and required to be clear, colorless, and free of particulate 

matter. The pH of the doses was determined by applying a small amount of the dose to pH-indicator 

strips and determined by visual comparison to the scale provided. pH needs to be between 4.5 and 

7.5, and the pH of each [11C]DFP dose synthesized in this study was either 5.0 after radiosynthesis 

according to Scheme 2.1 or pH 7.0 after using radiosynthesis according to Scheme 2.5. 

 Analytical HPLC | Analytical HPLC was performed using a Shimadzu LC-2010A HT 

system equipped with a Bioscan B-FC-1000 radiation detector (column: Phenomenex SYNERGI 

Hydro-R, 4µ, 4.6 × 150 mm; mobile phase: 2% ethanol, 10 mM sodium citrate pH: 3.75; flow rate: 

2.0 mL/min). Analysis confirmed radiochemical purity 97% (tR of [11C]DFP ~3 min; see Figure 
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2.14 for a typical analytical HPLC trace) and coinjection with unlabeled reference standard 7 

confirmed radiochemical identity. 

 

 

Fig. 2. 14: Analytical HPLC chromatography of [11C]DFP according to Scheme 2.4 with semi-prep HPLC system 4 used for 

purification  

 Analysis confirmed O-methylation was achieved from reaction conditions in Table 2.1 

entry 5 with no N-methylation occurring by coinjection with DFP standard 6 and comparison with 

unlabeled reference standard confirmed radiochemical identity (see Figure 2.15 for a coinjection 

HPLC trace). 

[11C]DFP 

DFP standard coinject 
Ascorbic  

Acid 

Ascorbic  

Acid 

DFP standard cold mass in dose 
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Fig. 2. 15: Analytical HPLC chromatogram confirming the identity of O-methyl product 4 

2.4.4. Preclinical PET Imaging  

General Considerations  

 Rodent and primate imaging studies were performed at the University of Michigan (UM) 

using a Concorde (CTI-Concorde, Knoxville TN, USA) MicroPET P4 scanner. The University of 

Michigan is accredited by the Council on Accreditation of the Association for Assessment and 

Accreditation of Laboratory Animal Care (AAALAC International, Frederick MD, USA) and 

imaging studies were conducted in accordance with the standards set by the Institutional Animal 

DFP standard 
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Care and Use Committee (IACUC) at the University of Michigan (PRO00008103: Biodistribution 

and Pharmacokinetics of Radiolabeled Compounds; Approval date: 1/16/2018). 

Animal Husbandry and Housing  

 Husbandry and housing for rodents and primates is provided by the University Laboratory 

for Animal Medicine (ULAM) at UM, and animal facilities are in compliance with the regulations 

defined by the US Department of Agriculture (USDA).  

 Monkeys: The University of Michigan PET Center has maintained 2 rhesus macaques for 

~15 years and the monkeys are individually housed in adjacent steel cages (83.3 cm high × 152.4 

cm wide × 78.8 cm deep) equipped with foraging boxes. They are currently housed in adjacent 

cages as repeated attempts to socially house them in the same cage have been unsuccessful due to 

aggressive incompatibility. Cages are metal and do contain gridded floors for radiation safety 

reasons (radioactive waste is contained to the gridded floor and is easier to clean). Temperature 

and humidity are carefully controlled, and the monkeys are kept on a 12 h light/12 h dark schedule. 

Monkeys are fed Lab Fiber Plus Monkey Diet (PMI Nutrition Intl. LLC, Shoreview MN, USA) 

that is supplemented with fresh fruit and vegetables daily. Water and enrichment toys 

(manipulanda and food-based treats) are available continuously in the home cage.  

 Rodents: Rats are housed in Allentown #3 micro ventilated cages (27 cm wide × 49 cm 

deep × 27 cm high, floor area 923 Sq cm) with animal housing densities set by ULAM and the 

Guide for the Care and Use of Laboratory Animals. Housing is located on ventilated racks with 

continuous water and air supply exchange. All animals are provided with LabDiet 5LOD as well 

as enrichment materials and are on a light schedule of 12 h light/12 h dark. 



 

131 
 

2.4.3.3. Rodent Imaging Protocol 

 Rodent imaging studies were done using a female Sprague–Dawley rat (weight = 237 g, n 

= 1). The rat was anesthetized (isoflurane), intubated, and positioned in the PET scanner. 

Following a transmission scan, the animal was injected (via intravenous (i.v.) tail vein injection) 

with [11C]DFP (2 mCi) as a bolus over 1 min, and the brain and heart imaged separately for 60 

min (5 × 1 min frames-2 × 2.5 min frames-2 × 5 min frames-4 × 10 min frames). 

2.4.3.4. Primate Imaging Protocol  

 Primate imaging studies were done using a mature female rhesus monkey (weight = 9.4 

kg, n = 1).The animal was anesthetized in the home cage with ketamine and transported to the PET 

imaging suite. The monkey was intubated for mechanical ventilation, and anesthesia was 

continued with isoflurane. Anesthesia was maintained throughout the duration of the PET scan. A 

venous catheter was inserted into one hind limb and the monkey was placed on the PET gantry 

with its head secured to prevent motion artifacts. Following a transmission scan, the animal was 

injected i.v. with [11C]DFP (3.9 mCi) as a bolus over 1 min, and the brain imaged for 60 min (5 × 

2 min frames-4 × 5 min frames-3 × 10 min frames). 

PET Image Analysis  

 Emission data were corrected for attenuation and scatter, and reconstructed using the 3D 

maximum a priori (3D MAP) method. By using a summed image, regions of interest (ROI) were 

drawn on multiple planes, and the volumetric ROIs were then applied to the full dynamic data set 

to generate time-radioactivity curves. 
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CHAPTER 3 

Development of Copper/Zinc Chelating Scaffolds as PET Radiotracers in Assessing 

Neurodegenerative Diseases 

 

3.1. Introduction 

 The role of copper (Cu2+/Cu+) and zinc (Zn2+) in neurodegenerative diseases (NDs) has 

been extensively reviewed in Chapter 1. Briefly copper, being a redox active metal, can bind to 

small peptides implicated in NDs such as amyloid-ß (Aß), α-synuclein (α-syn) and Tar DNA 

Binding Protiein-43 (TDP-43), and react with H2O2 to form hydroxyl radicals. This results in 

oxidative stress and eventually neuronal cell death.1 Zinc exhibits toxic effects by inducing the 

aggregation of these small peptides like Aß2 and TDP-43.3 We hypothesized that imaging the 

presence of the resulting metal-protein complexes or accumulation of the divalent metals 

(Cu2+/Zn2+) in certain brain regions would allow detection of neurodegeneration at an earlier time 

point than is currently possible using, for example, amyloid positron emission tomography (PET). 

For an overview of current clinical PET radiotracers for imaging neurodegeneration, please refer 

to Chapter 1. This is an ambitious hypothesis, yet the development of such radiotracers would 

allow biological studies on preclinical animal models, human diseased tissue, and early-stage ND 

patients to better understand the roles which metal dysregulation plays in neurodegeneration and 

at what time points. 

 The first attempt to radiolabel a metal chelating scaffold was reported by Bush et al.4 in 

2006. The divalent metal chelator clioquinol (CQ), which was used in Phase II clinical trials for 

Alzheimer’s Disease (AD),5 was radioiodinated with iodine-125 to create the single-photon 
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emission computed tomography (SPECT) agent [125I]CQ (Figure 3.1). Hydroxyquinoline 

scaffolds were the primary focus in creating metal-chelating radiotracers for the next ten years as 

even PET isotopologs of CABS13 and PBT-2 (another divalent metal chelator used in clinical 

trials of AD) were developed by Vasdev et al.6–8 The SPECT agent [125I]CQ and the PET agent 

[18F]CABS13 showed moderate brain uptake. When [18F]CABS13 was tested in a non-human 

primate (NHP) however, it had no brain uptake (Figure 3.1). This animal species difference in 

brain uptake of [18F]CABS13 is thought to be due to a primate-specific efflux transporter. 

[11C]PBT-2 showed high brain uptake into a NHP. One compound that was found in a high-

throughput screen (HTS) that saved yeast ND cell models burdened with α-syn and TDP-43 

toxicity was HQ415, a small molecule containing a hydroxyquinoline moiety. A methoxy-group 

proved advantageous to be radiolabeled with carbon-11. [11C]HQ415 revealed high brain uptake 

in NHP PET scans performed by our lab (Figure 3.1),9 concurrent with Vasdev’s development of 

[11C]PBT-2. Thus, two divalent metal chelating PET radiotracers with high brain uptake were 

revealed in 2018.8,9 As carbon-11 has a short half-life (~20 min.) compared to fluorine-18 (~110 

min.), a fluorine-18 analog of the hydroxyquinoline PET radiotracers is highly sought after in order 

to perform preclinical evaluation such as autoradiography. Attempts to synthesize fluorine-18 

labelled HQ415 (Figure 3.2) are discussed in this chapter.  
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Fig. 3. 1: Structures and brain uptake images using hydroxyquinoline scaffold PET tracers in NHP with [125I]CQ4 and 

[18F]CABS136-8 showing little to no brain uptake and [11C]PBT28 as well as [11C]HQ4159 having high SUV  

 Finally, a novel metal-chelating scaffold based on creating a stilbene derivative (a common 

scaffold known to bind Aß) was reported by Mi Hee Lim et al.10,11 It was shown that the N,N-

bidentate chelating moiety could bind Zn2+ and Cu2+ with higher affinity for the latter metal. The 

compound, known as L2-b, was shown to disrupt Aß aggregation and also confirmed to interact 

with Cu2+-Aß complexes. The dimethyl aniline on the compound afforded an opportunity for 

carbon-11 labeling. Fluorine-18 labelling of the aniline moiety also allowed our group to show 

that the compound gets into the brain (Figure 3.3), as well as have high specific binding in AD 

cortex tissue when compared to age-matched controls.12 Autoradiographic assessment of other ND 

tissue such as dementia with Lewy bodies (DLBD) and Parkinson’s Disease (PD) were performed 

with [11C]L2-b (Figure 3.2), showing high binding potential (BP) as well. We hypothesized that 

L2-b was not specific to just metal-Aß complexes but could potentially bind metal-protein 

aggregates that can form ß-pleated sheets. One peptide aggregate that has yet to be quantified using 

molecular imaging techniques is TDP-43, the protein aggregate that is implicated in Amyotrophic 

Lateral Sclerosis (ALS). It has been shown that Zn2+ can bind the N-terminus of TDP-43 in vitro 

and cause its aggregation into amyloid-like aggregates.3 Herein we describe efforts to synthesize 
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of [18F]FHQ415 and the assessment of [18F]FL2-b in ALS tissue. We wanted to determine if this 

approach could differentiate ALS brain tissue from control region matched tissue through 

autoradiography studies. A radiotracer with a higher BP in ALS tissue would greatly benefit the 

medical field, helping physicians to monitor this debilitating disease by being able to visualize the 

accumulation of toxic biomarkers present only during disease. 

 

Fig. 3. 2: Alternative metal chelating PET Tracer [11C]L2-b and the desired fluorine-18 derivatives of L2-b and HQ415. 

To assess if [18F]FL2-b could be used as a radioligand for ALS, autoradiography was 

performed on post-mortem ALS tissue slices (20 µm thick). Post-mortem tissue can be used for 

the quantitative determination of binding parameters (Kd, Bmax) for novel radioligands through 

saturated binding studies. The use of intact tissue slices was chosen, as opposed to traditional tissue 

homogenate because of the ability to visualize anatomical regions as well as the regional 

distribution patterns of radiotracer binding, which can then be compared to immunohistochemical 

staining of the protein of interest (i.e.TDP-43 aggregates) on the same tissue. Also, in tissue 

homogenates, not all binding sites are equally accessible to the radioligand which could lead to an 

underestimation of the target density (Bmax). 
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Fig. 3. 3: NHP brain uptake of [18F]FL2-b 

3.2. Results and Discussion 

3.2.1. [18F]FHQ415 

Synthesis of [18F]FHQ415, Precursor, and Standard 

 Based on our synthesis of the [11C]HQ415 precursor and standard,9 we envisioned 

performing the same Betti reaction to synthesize a fluorine-18 labeling precursor with either the 

pyridine or hydroxyquinoline containing a labile moiety for fluorine-18 labeling at the 2 position 

of the quinoline or 6-position of the 2-amino pyridine, which has the least electron density for 

nucleophilic fluoride to attach (Scheme 3.1). 

 

Scheme 3. 1: First step in potential synthesis of [18F]FHQ415 precursor 

Looking into commercially available hydroxyquinolines and 2-amino-pyridines, chlorine 

substituents were readily available. As the synthesis of an 18F-hydroxyquinoline had already been 

reported with the synthesis of CABS13,6,7 we decided to investigate the analogous labeling 
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strategy for HQ415. The reported synthesis takes advantage of a benzyloxymethyl acetal (BOM) 

protecting group on the 8-hydroxy functionality. Anticipating that a BOM group would cause 

steric collision and reduce the yield for protected-HQ415, a methoxymethyl (MOM) was used to 

mitigate this risk (Scheme 3.2). The fluoro MOM-protected HQ415 (6) was synthesized in a 

microwave reactor with anhydrous tetrabutylammonium fluoride (TBAF) in modest yields. 

Product identity was confirmed by NMR and mass spectrometry. Deprotection of the MOM group 

with HCl provided 7 in 25 % yield as measured by HPLC. 

 

Scheme 3. 2: First attempt to synthesize [18F]FHQ415 precursor and standard 

Isolation and storage of standard 7 revealed that it was unstable. Thus, during the initial 

attempt to radiolabel precursor 5 (Scheme 3.3) with fluorine-18, standard was prepared 

immediately before the radiosynthesis and extracted from the reaction mixture without 

purification. Crude product 7 was then coinjected with the radiochemical reaction mixture to 

determine if 9 had been synthesized. Initial radiofluorination with tetraethylammonium (TEA) 

fluoride at 140°C of 5 gave 2% radiochemical yield (RCY) of MOM-protected [18F]FHQ415 

([18F]6) and was confirmed by co-injection with 6 on an analytical High-Performance Liquid 

Chromatography (HPLC) column. Surprisingly, the unprotected aniline did not hinder the 

fluorination reaction. Once this product was confirmed, different conditions for deprotection of 
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[18F]6 were investigated to afford [18F]FHQ415 (Table 3.1). Premature deprotection of the MOM 

group took place during the radiofluorination step indicated by a gamma peak with a retention time 

(r.t.) matching the FHQ415 (7) standard. Analytical HPLC analysis of the deprotection reactions 

B, C, and D revealed a gamma peak matching the r.t. of 7, confirming the production of [18F]7 

with yields reported in Table 3.1. As HCl is a milder acid than trifluoracetic acid (TFA), we 

omitted running HPLC analysis of the conditions after confirming HCl worked at low 

concentrations and room temperature (rt).  

 

 

Scheme 3. 3: Radiosynthesis of [18F]FHQ415. *See Table 3.1 for deprotection yields. 

 

Table 3. 1: Deprotection reactions of MOM-[18F]FHQ415 (8) to form 9 

Knowing that the precursor was suitable for radiolabeling, the synthesis of standard needed 

to be optimized. To increase the yield of the fluorination step for production of 6, several 

fluorination conditions were tested. Use of anhydrous TBAF using thermal heat instead of a 

microwave at 140° was attempted. Use of dipinacol TBAF ((Pin)2TBAF), cesium fluoride (CsF), 

or tetramethylammonium fluoride (TMAF) as a fluorinating reagent at rt or 100°C did not provide 

the desired product (Scheme 3.4). Noticing that the free hydrogen bond of the aniline could be 

Deprotection Conditions RCC Confirmed Product 9 by HPLC

conc. HCl at 100°C >99% no

conc. HCl at rt >99% yes

4 M HCl in dioxane at 100°C >99% yes

4M HCl in dioxate at rt 89.35% yes

TFA at 100°C 65.30% NA

TFA at rt 74.90% NA
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inhibiting the fluorination by formation of an H-F bond, it was protected with a tert-

butyloxycarbonyl (BOC) group and tested again with TMAF at 80°C (Scheme 3.5). These 

conditions afforded conversion of the chloro-HQ415 (10) to the fluoro-HQ415 (11), However, 

complete conversion was not observed by NMR, and 10 and 11 could not be separated from each 

other by flash chromatography. 

 

Scheme 3. 4: Various fluorinating reagents tested i) (Pin)2TBAF, ii) TMAF, and iii) CsF. All reagents were tested using DMF as 

solvent at either rt, 80°C, or 100°C. 

 

 

Scheme 3. 5: Successful fluorination of fully protected [18F]FHQ415 precursor 

To prevent having to run two separate protecting reactions on scale up of the chloro-HQ415 

precursor 10, diBoc-protected chloro-HQ415 (12) was synthesized in 66% yield using Boc2O and 

catalytic 4-(dimethylamino)pyridine (DMAP). Fluorination of 12 using TMAF afforded diboc-

protected fluoro-HQ415 (13) standard in 43% yield (Scheme 3.6). 
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Scheme 3. 6: Synthesis of [18F]FHQ415 precursor 12 and protected fluoro-HQ415 standard 13 

 

Future work will optimize yield of [18F]HQ415 9 to produce amounts suitable for use in 

preclinical evaluation (in vitro autoradiography and in vivo PET imaging). 

3.2.2. [18F]FL2-b 

Synthesis of [18F]FL2-b and Autoradiograhy of ALS tissue 

 [18F]FL2-b was synthesized in 3.2% radiochemical yield (RCY: 58 mCi from 1.8 Ci 18F-) 

according to our recently reported procedure.13 By comparing specific binding of [18F]FL2-b in 

diseased brains with that of age-matched controls (Table 3.2), we investigated whether [18F]FL2-

b binds to the TDP-43 aggregates over-expressed in ALS tissue that are not present in healthy 

brains. The Kd of [18F]FL2-b in motor cortex tissue was calculated to be 9.8 ± 1.4 nM, almost 

identical to that found in the autoradiography studies performed on frontal cortex tissue (Kd = 9.4 

nM) reported previously.12 The Bmax calculated in both ALS and age-matched control tissue was 

found to be 12.9 ± 0.2 nM and 7.7 ± 1.3 nM respectively (see section 3.3 Material and Methods). 

Thus, the specific binding of [18F]FL2-b can be attributed to a target that has twice the density in 

ALS tissue when compared to control. However, the target responsible for the specific binding in 

ALS still needed to be elucidated. Since L2-b was designed to bind metal-protein aggregates (e.g. 

Cu2+-Aß)and have no affinity when the metal was absent, it was suspected that [18F]FL2-b could 

be binding metal-TDP-43 aggregates, as it has been shown that Zn2+ can induce amyloid like 

aggregation of TDP-43, the protein responsible for aggregates found in ALS.3  
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Table 3. 2: Tissue identifiers 

 

Fig. 3. 4: [18F]FL2-b autoradiography in ALS motor cortex tissue sections 

Specific Binding Analysis of [18F]FL2-b: How does it bind? 

 To test if the binding of [18F]FL2-b was attributable to metal chelation, autoradiography 

was performed in the presence of 50 µM EDTA (1000x the [18F]FL2-b concentration), a general 

metal chelator used to block any metal binding sites. The total binding of [18F]FL2-b was 

significantly reduced in the presence of EDTA, comparable to that of nonspecific binding in ALS 

tissue (Figure 3.5b) or even more so in the age matched control tissue (Figure 3.5a), strongly 

suggesting that the specific binding of [18F]FL2-b is indeed mediated through metal-chelation. 

Tissue Identifier Pathological Diagnosis Brain Region Age at Death Sex

1670 ALS CTX 57 F

729 CON CTX 59 M

1739 ALS CTX 51 M

1539 CON CTX 53 F

1705 ALS CTX 77 F

1432 CON CTX 83 F
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Fig. 3. 5: Total binding of [18F]FL2-b and total binding after blocking with cold standard FL2-b and EDTA in a) Control (CON) 

and b) ALS motor cortex tissue 

To further investigate the possibility of [18F]FL2-b binding to TDP-43 aggregates, 

overlaying of immunohistochemical data (obtained with TDP-43 antibodies) over autoradiography 

images was done to identify if specific binding of the radiotracer could be correlated to the regional 

distribution of TDP-43 aggregates associated with ALS (Figure 3.6). Immunohistochemistry 

using anti-pTDP-43 antibody was performed to visualize the different types of aggregates present 

in ALS. Although intranuclear inclusions (red, Figure 3.6) form as a result of normal aging, 

cytosolic inclusions and dystrophic neurites (green, Figure 3.6) are forms of toxic TDP-43 

aggregates that precede motor neuron degeneration.14 The distribution of toxic TDP-43 aggregates 

was concentrated in the gray matter, falling off in concentration or almost nonexistent when 

examining the white matter, as has also been previously reported from other post-mortem 

immunohistochemical analysis of pTDP-43 in ALS.15 Autoradiographic saturated binding studies 

showed that [18F]FL2-b has specific binding in the gray matter where the toxic TDP-43 aggregates 

are most abundant. Binding of [18F]FL2-b in the white matter was found to be linear with 

concentration and non-displaceable, meaning only nonspecific binding was occurring in this 
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region. Since metal-TDP-43 aggregates have only been formed in vitro and not isolated from tissue 

samples, the cause of [18F]FL2-b’s specific binding cannot be definitively concluded at this time. 

However, with the affinity of [18F]FL2-b for TDP-43 aggregates, higher Bmax in ALS tissue and 

colocalization with cytosolic TDP43 inclusions and dystrophic neurites in the gray matter 

identified by immunohistochemistry, are encouraging signs that quantifying TDP-43 with 

[18F]FL2-b offers a potential imaging biomarker for ALS.  

 
Fig. 3. 6: IHC overlay on autoradiographic motor cortex slide showing specific binding of [18F]FL2-b is colocalized to the toxic 

TDP43 aggregate type “dystrophic neurite” 

3.3. Conclusion 

 As of yet, no PET tracers specific for ALS biomarkers has been developed. We showed 

that [18F]FL2-b, colocalizes in areas with TDP-43 aggregates. Given that the compound was 

designed to target copper/zinc-protein complexes and that TDP-43 can bind Zn2+, we believe we 

have a tracer that is potentially binding TDP-43 aggregates. Further, autoradiography has shown 

that the tracer has a higher binding potential in ALS tissue when compared to healthy control. A 

fluorine-18 analog of HQ415 is still of interest as it has been shown to also save cells burdened 

with TDP-43 toxicity. An alternate synthesis will need to be constructed that yields high 

fluorination of the quinoline scaffold. 
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3.4. Materials and Methods 

For Organic Synthesis: All solvents and reagents were commercially available and used 

without further purification unless otherwise stated. N,N-dimethyl-p-phenylenediamine was 

purchased from Sigma Aldrich. 6-Fluoropyridinecarboxaldehyde and 6- 

chloropyridinecarboxaldehyde were purchased from Oakwood Chemical. NMR spectra were 

recorded with a Varian 400 MHz instrument at room temperature with tetramethylsilane (TMS) as 

an internal standard. 1H, 13C, and 19F spectra were recorded at 400 MHz, 100 MHz, and 376 

MHz, respectively. Mass spectra were performed on an Agilent 6230 TOF HPLC-MS, Agilent Q-

TOF HPLC-MS or a VG (Micromass) 70-250-S Magnetic sector mass employing the electrospray 

ionization (ESI) method. High performance liquid chromatography (HPLC) was performed using 

a Shimadzu LC-2010A HT system equipped with a Bioscan B-FC-1000 radiation detector. All 

procedures including anhydrous solvents were performed using Schlenk techniques with 

rigorously dried glassware. 

3.4.1. Synthesis of HQ415 Precursors and Standards 

Preparation of 2-chloro-7-((3-ethoxy-4-methoxyphenyl)((4-methylpyridin-2-

yl)amino)methyl)quinolin-8-ol (4): 

 

Dissolved 800 mg of 4-methylpyridin-2-amine (3) in 25 mL of ethanol (EtOH). 

Immediately added 1.01 g 3-ethoxy-4-methoxybenzaldehyde (2) to this solution. The mixture was 

stirred for 20 minutes before adding 813 mg of 2-chloroquinolin-8-ol (1). This mixture was left to 
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stir at room temperature for 2 weeks before extraction with ethyl acetate (EtAc) 3x in water, then 

dried over sodium sulfate (Na2SO4). The crude product was purified using flash chromatography 

with a dichloromethane (DCM) and EtAc gradient to yield 4 in 28% yield. 1H NMR (400 MHz, 

Chloroform-d) δ 8.04 (d, J = 8.6 Hz, 1H), 7.95 (d, J = 5.2 Hz, 1H), 7.55 (d, J = 8.5 Hz, 1H), 7.36 

(d, J = 8.6 Hz, 1H), 7.29 (d, J = 8.6 Hz, 1H), 6.99 (d, J = 2.0 Hz, 1H), 6.94 – 6.87 (m, 1H), 6.79 

(d, J = 8.4 Hz, 1H), 6.47 – 6.37 (m, 1H), 6.33 (d, J = 6.4 Hz, 1H), 6.25 – 6.17 (m, 1H), 4.06 – 3.96 

(m, 2H), 3.83 (s, 3H), 2.15 (s, 3H), 2.04 (s, 2H), 1.40 (t, J = 7.0 Hz, 3H). [M + H]+: Expected 

450.1579, Found 450.1579 
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Preparation of N-((2-chloro-8-(methoxymethoxy)quinolin-7-yl)(3-ethoxy-4-

methoxyphenyl)methyl)-4-methylpyridin-2-amine (5): 

 

Dissolved 300 mg (0.667 mmol) 4 and 184 mg potassium carbonate (K2CO3, 1.33 mmol, 2 

eq.) in 5 mL of DCM in a flame dried round bottom flask. Placed flask in an ice bath to chill to 

0°C before slowly adding 232 µL N,N-diisopropylethylamine (DIPEA or commonly Hünigs base, 

1.33 mmol, 2 eq.) while stirring. After 10 minutes, 200 µL methyl chloromethyl ether (MOMCl, 

2.67 mmol, 4 eq.) was slowly added dropwise. The reaction was left to stir overnight and warm to 

room temperature. The reaction was quenched with water, filtered through celite, extracted with 

DCM 3x, rinsed with brine, and dried over Na2SO4. Purification of the crude product with flash 

chromatography using a DCM/EtAc gradient yielded 5 in 18% yield. 1H NMR (400 MHz, 

Measured m/z of [M+H]+ 

Predicted value is 450.1579 



 

150 
 

Chloroform-d) δ 8.05 (d, J = 8.6 Hz, 1H), 7.92 (d, J = 5.2 Hz, 1H), 7.62 (d, J = 8.5 Hz, 1H), 7.53 

(d, J = 8.5 Hz, 1H), 6.96 (d, J = 2.0 Hz, 1H), 6.86 (dd, J = 8.2, 1.9 Hz, 1H), 6.77 (d, J = 8.3 Hz, 

1H), 6.64 – 6.58 (m, 0H), 6.48 – 6.39 (m, 2H), 6.27 (s, 1H), 5.61 (d, J = 5.9 Hz, 1H), 5.49 (d, J = 

6.0 Hz, 1H), 5.41 (d, J = 6.1 Hz, 1H), 4.12 (q, J = 7.2 Hz, 1H), 4.00 (qd, J = 7.0, 4.6 Hz, 2H), 3.82 

(s, 3H), 3.60 (s, 3H), 3.59 – 3.52 (m, 0H), 2.18 (d, J = 8.4 Hz, 0H), 2.15 (s, 3H), 2.09 (d, J = 6.9 

Hz, 0H), 1.39 (t, J = 7.0 Hz, 3H), 1.26 (t, J = 7.1 Hz, 1H), 0.85 (s, 0H). [M + H]+: Expected 

494.1841, Found 494.1841 
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Preparation of N-((3-ethoxy-4-methoxyphenyl)(2-fluoro-8-(methoxymethoxy)quinolin-7-

yl)methyl)-4-methylpyridin-2-amine (6): 

 

 Partitioned 45 mg (0.1 mmol) 5 into a microwave reaction vessel. Aliquoted 16 equivalents 

1M TBAF in THF in a 50 mL round bottom flask. Removed tetrahydrofuran (THF) by rotovap. 

Resuspended TBAF in 10 mL dimethyl sulfoxide (DMSO) and transferred to reaction vessel 

containing 5. Bring total volume to 20 mL with DMSO. Placed in microwave for 1.5 hours at 

140°C. The reaction was extracted with EtAc 3x, rinsed with brine, and dried over Na2SO4. 

Purification using flash chromatography with a DCM/EtAc gradient gave 6 30% yield. 1H NMR 

(400 MHz, Chloroform-d) δ 8.23 (s, 1H), 8.12 (d, J = 5.1 Hz, 1H), 7.97 – 7.87 (m, 2H), 7.54 – 

7.36 (m, 4H), 6.97 (d, J = 2.0 Hz, 1H), 6.94 – 6.83 (m, 4H), 6.77 (t, J = 6.8 Hz, 2H), 6.42 (q, J = 

Measured m/z of [M+H]+ 

Predicted value is 494.1841 
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5.6, 4.8 Hz, 2H), 6.28 (s, 1H), 5.72 – 5.62 (m, 1H), 5.62 – 5.50 (m, 2H), 5.46 (dd, J = 5.7, 4.3 Hz, 

1H), 3.99 (qt, J = 6.6, 3.3 Hz, 2H), 3.93 (s, 2H), 3.81 (s, 3H), 3.57 (s, 2H), 2.39 (s, 3H), 2.14 (s, 

3H), 0.96 (t, J = 7.3 Hz, 6H). 19F NMR (376 MHz, Chloroform-d) δ -78.37. [M + H]+: Expected 

478.2137, Found 478.2137 
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Preparation of 7-((3-ethoxy-4-methoxyphenyl)((4-methylpyridin-2-yl)amino)methyl)-2-

fluoroquinolin-8-ol (7): 

Measured m/z of [M+H]+ 

Predicted value is 478.2137 
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 Dissolved 10 mg (0.021 mmol) in 1 mL THF in a round bottom flask. Added 10 drops of 

4M HCl in dioxane and stirred at 50°C for 3 hours. Quenched with a couple drops of a saturated 

sodium bicarbonate solution (NaHCO3), extracted with EtAc 3x, and purified by flash 

chromatography using a Hexane (Hex)/EtAc gradient to give 7 in 54% yield. 1H NMR (400 MHz, 

Chloroform-d) δ 8.69 (s, 0H), 8.24 (s, 0H), 8.15 (d, J = 5.1 Hz, 0H), 7.55 – 7.46 (m, 1H), 7.01 – 

6.87 (m, 2H), 6.81 (s, 0H), 5.02 (s, 0H), 4.20 (q, J = 7.0 Hz, 1H), 4.06 (s, 1H), 3.95 (s, 1H), 3.92 

– 3.73 (m, 5H), 3.74 – 3.55 (m, 5H), 3.02 (t, J = 8.6 Hz, 1H), 2.43 (d, J = 19.4 Hz, 1H), 2.27 (s, 

2H), 2.18 (d, J = 7.3 Hz, 0H), 1.50 (d, J = 14.0 Hz, 1H), 1.43 (s, 9H), 1.25 (s, 4H), 1.11 (s, 0H), 

0.98 (t, J = 7.5 Hz, 1H), 0.95 – 0.83 (m, 1H), 0.87 (s, 4H), 0.07 (s, 9H). 19F NMR (376 MHz, 

Chloroform-d) δ -78.37. [M + H]+: Expected 434.1874, Found 434.1874 
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Preparation of tert-butyl ((2-chloro-8-(methoxymethoxy)quinolin-7-yl)(3-ethoxy-4-

methoxyphenyl)methyl)(4-methylpyridin-2-yl)carbamate (8): 

Measured m/z of [M+H]+ 

Predicted value is 434.1874 
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 Dissolved 90 mg (0.182 mmol) of starting material 5 was dissolved in 1.5 mL of THF and 

transferred to a 4 mL scintillation vial. The solution was charged with 84 mg (0.364 mmol) of di-

tert-butyl decarbonate and placed in a heating mantle at 40°C for 24 hours. For workup, the THF 

was removed by evaporation before redissolving in DCM and extracting 3x with water. After 

rinsing with brine and drying over Na2SO4, the crude reaction mixture was purified with flash 

chromatography using a Hex/EtAc step gradient from 10% EtAc to 24% EtAc. Purification gave 

a 34% yield (20 mg) of 8. 1H NMR (499 MHz, Chloroform-d) δ 8.16 (d, J = 5.1 Hz, 1H), 7.97 (d, 

J = 8.6 Hz, 1H), 7.63 (d, J = 8.6 Hz, 1H), 7.36 – 7.25 (m, 3H), 7.17 (d, J = 2.1 Hz, 1H), 6.98 – 

6.92 (m, 2H), 6.79 – 6.71 (m, 2H), 5.54 (d, J = 6.0 Hz, 1H), 5.47 (d, J = 6.0 Hz, 1H), 4.07 – 3.94 

(m, 2H), 3.83 (s, 3H), 3.62 (s, 3H), 2.11 (s, 3H), 1.39 (t, J = 7.0 Hz, 3H), 1.29 (s, 9H), 1.25 (d, J = 

6.7 Hz, 1H), 0.84 (s, 0H). [M + H]+: Expected 594.2365, Found 594.2377 
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Preparation of tert-butyl ((3-ethoxy-4-methoxyphenyl)(2-fluoro-8-(methoxymethoxy)quinolin-7-

yl)methyl)(4-methylpyridin-2-yl)carbamate (11): 

Measured m/z of [M+H]+ 

Predicted value is 594.2365 
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 Dissolved 20 mg (0.033 mmol) 10 in 2 mL of dimethylformamide (DMF) and transferred 

to a 4 mL scintillation vial. The solution was charged with 9.4 mg (0.1 mmol) 

tetramethylammonium fluoride and stirred at room temperature for 24 hours. The reaction mixture 

was extracted with 25 mL of EtAc 3x from water, rinsed with brine, and dried over Na2SO4. The 

crude reaction mixture was purified by flash chromatography in 25% EtAc/Hex to give a 21% 

yield (4 mg) of 11. 1H NMR (499 MHz, Chloroform-d) δ 8.16 (d, J = 5.1 Hz, 1H), 7.97 (d, J = 8.6 

Hz, 1H), 7.63 (d, J = 8.6 Hz, 1H), 7.36 – 7.25 (m, 3H), 7.17 (d, J = 2.1 Hz, 1H), 6.98 – 6.92 (m, 

2H), 6.79 – 6.71 (m, 2H), 5.54 (d, J = 6.0 Hz, 1H), 5.47 (d, J = 6.0 Hz, 1H), 4.07 – 3.94 (m, 2H), 

3.83 (s, 3H), 3.62 (s, 3H), 2.11 (s, 3H), 1.39 (t, J = 7.0 Hz, 3H), 1.29 (s, 9H), 1.25 (d, J = 6.7 Hz, 

1H), 0.84 (s, 0H). 19F NMR (376 MHz, Chloroform-d) δ -61.01 – -61.12 (m). [M + H]+: Expected 

578.2661, Found 578.2661 
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Preparation of tert-butyl ((8-((tert-butoxycarbonyl)oxy)-2-chloroquinolin-7-yl)(3-ethoxy-4-

methoxyphenyl)methyl)(4-methylpyridin-2-yl)carbamate (12): 

Measured m/z of [M+H]+ 

Predicted value is 578.2661 
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 Dissolved 100 mg (0.222 mmol) of 5 and 203.8 mg (1.11 mmol, 5 eq.) of Boc2O in 0.5 mL 

THF within a 4 mL scintillation vial. This solution was then charged with 1.36 mg (5-mol-%) 4-

dimethylaminopyridine (DMAP) . After stirring for 20 minutes the reaction mixture became 

coagulated at which point another 0.5 mL of THF was added for a total volume of 1 mL. The 

reaction was stirred for 24 hours at room temperature. For workup, the THF was removed by 

evaporation before redissolving in DCM and extracting 3x with water. After rinsing with brine and 

drying over Na2SO4, the crude reaction mixture was purified with flash chromatography using a 

Hex/EtAc step gradient from 10% EtAc to 24% EtAc. Purification gave a 66% yield (96 mg) of 

12. 1H NMR (499 MHz, Chloroform-d) δ 8.18 (d, J = 5.0 Hz, 1H), 8.02 (d, J = 8.6 Hz, 1H), 7.88 

(d, J = 8.7 Hz, 1H), 7.55 (d, J = 8.7 Hz, 1H), 7.33 (d, J = 8.5 Hz, 1H), 7.11 (s, 1H), 7.01 – 6.93 

(m, 2H), 6.87 (dd, J = 8.6, 2.1 Hz, 1H), 6.79 – 6.69 (m, 2H), 4.12 (q, J = 7.1 Hz, 0H), 4.02 – 3.89 

(m, 2H), 3.81 (s, 3H), 2.17 (s, 3H), 2.04 (s, 1H), 1.45 (s, 8H), 1.37 (t, J = 7.0 Hz, 3H), 1.30 (s, 9H), 

1.29 – 1.22 (m, 1H), 0.84 (s, 0H). [M + H]+: Expected 650.2628, Found 650.2625 
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Preparation of tert-butyl ((8-((tert-butoxycarbonyl)oxy)-2-fluoroquinolin-7-yl)(3-ethoxy-4-

methoxyphenyl)methyl)(4-methylpyridin-2-yl)carbamate (13): 

Measured m/z of [M+H]+ 

Predicted value is 650.2628 
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Dissolved 12 mg (0.019 mmol) 12 in 1 mL of dimethylformamide (DMF) and transferred 

to a 4 mL scintillation vial. The solution was charged with 5.16 mg (0.056 mmol, 3 eq.) 

tetramethylammonium fluoride and stirred at room temperature for 24 hours. The reaction mixture 

was extracted with 25 mL of EtAc 3x from water, rinsed with brine, and dried over Na2SO4. The 

crude reaction mixture was purified by flash chromatography in 25% EtAc/Hex to give a 43% 

yield (5 mg) of 13. 1H NMR (400 MHz, Chloroform-d) δ 8.18 (d, J = 5.0 Hz, 1H), 8.02 (d, J = 8.6 

Hz, 1H), 7.88 (d, J = 8.7 Hz, 1H), 7.59 – 7.51 (m, 1H), 7.33 (d, J = 8.6 Hz, 1H), 7.11 (s, 1H), 7.00 

– 6.92 (m, 2H), 6.86 (dd, J = 8.3, 2.1 Hz, 1H), 6.77 (dt, J = 4.7, 0.9 Hz, 1H), 6.72 (d, J = 8.4 Hz, 

1H), 4.02 – 3.88 (m, 2H), 3.80 (s, 3H), 2.16 (s, 3H), 2.04 (s, 1H), 1.45 (s, 7H), 1.37 (t, J = 7.0 Hz, 

3H), 1.30 (s, 7H). 19F NMR (376 MHz, Chloroform-d) δ -60.55 (dd, J = 7.7, 2.8 Hz). [M + H]+: 

Expected 634.2923, Found 634.2923 
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Preparation of FL2-b (14) standard and [18F]FL2-b precursor (15): 

 

6-Fluoropicolinaldehyde (184 mg, 1.47 mmol) was added to N1,N1-dimethylbenzene-1,4-diamine 

(200 mg, 1.47 mmol) in anhydrous MeOH (5 mL). To the solution was added sodium sulfate 

(Na2SO4). After 24h of stirring under argon, the solution was filtered and concentrated under 

vacuum. The crude product was weighed and then dissolved in anhydrous methanol (4 mL) and 

cooled to 0° C in a round-bottom flask. Sodium borohydride (NaBH4, 30.3 mg, 0.801 mmol) was 

slowly added, and the mixture was stirred at 0° C under argon for 2 h. After this time had elapsed, 

the reaction was quenched with water (10 mL). The product was extracted with diethyl ether, dried 

over sodium sulfate, and the solvent was removed in vacuo. The crude product was purified via 

silica gel chromatography (SiO2, 3:1 = hexanes: ethyl acetate). This process provided FL2-b 

standard (14) as a yellow oil (85.4 mg, 22%). 1H NMR (400 MHz, Chloroform-d) δ 7.58 (t, J = 

Measured m/z of [M+H]+ 

Predicted value is 634.2923 
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7.7 Hz, 1H), 7.29 (d, J = 7.6 Hz, 1H), 7.20 (d, J = 7.9 Hz, 1H), 6.72 (d, J = 8.9 Hz, 2H), 6.61 (d, J 

= 8.9 Hz, 2H), 4.40 (s, 2H), 2.82 (s, 7H). 

1H NMR (400 MHz) of (14): 

 

 

To a round bottom flask was added 6-chloropicolinaldehyde (425 mg, 2.94 mmol) and N1,N1- 

dimethylbenzene-1,4-diamine (400 mg, 2.94 mmol) dissolved in methanol (10 mL). Sodium 

sulfate was added, and the mixture was stirred for 24 h at room temperature. The mixture was 

filtered, and the filtrate was concentrated under vacuum. The crude product was weighed and then 

dissolved in anhydrous methanol (4 mL) and cooled to 0° C in a round-bottom flask. Sodium 



 

167 
 

borohydride ((NaBH4, 10.2 mg, 0.27 mmol) was slowly added, and the mixture was stirred at 0° 

C under argon for 2 h. After this time had elapsed, the reaction was quenched with water (10 mL). 

The product was extracted with diethyl ether, dried over sodium sulfate, and the solvent was 

removed in vacuo. The crude product was purified via silica gel chromatography (SiO2, 3:1 = 

hexanes: ethyl acetate). This process provided [18F]FL2-b precursor (2) as a yellow solid (19 mg, 

5% yield). 1H NMR (499 MHz, Chloroform-d) δ 7.72 (q, J = 7.9 Hz, 1H), 7.25 (dd, 1H), 6.79 (dd, 

J = 8.1, 2.8 Hz, 1H), 6.72 (d, 2H), 6.62 (d, 2H), 4.37 (s, 2H), 2.82 (s, 6H). 

1H NMR (500Hz) of 15: 
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For Radiochemistry: Reagents and solvents were commercially available and used without 

further purification, unless otherwise noted: sodium chloride, 0.9% USP and sterile water for 

Injection, USP were purchased from Hospira; Dehydrated Alcohol for Injection, USP was obtained 

from Akorn Inc.; Ascorbic Acid for Injection, USP was acquired from Bioniche Pharma; 

Ammonium Bicarbonate was obtained from Fisher Scientific. Shimalite-Nickel was purchased 

from Shimadzu; iodine was obtained from EMD; phosphorus pentoxide was acquired from Fluka; 

molecular sieves were purchased from Alltech; and HPLC columns were acquired from 

Phenomenex. Other synthesis components were obtained as follows: sterile filters were acquired 

from Millipore; C18-light Sep-Paks and Porapak Q were purchased from Waters Corporation; 10 

cc sterile vials were obtained from HollisterStier. Sep-Paks were flushed with 10 mL of ethanol 

followed by 10 mL of sterile water prior to use. 

General Procedures for Fluoride Preparation to be used in Radiochemical Synthesis: 

Potassium [18F]fluoride was prepared using a TRACERLab FXFN automated radiochemistry 

synthesis module (General Electric, GE). [18F]Fluoride was produced via the 18O(p,n)18F nuclear 

reaction using a 16 MeV GE PETTrace cyclotron (40 µA beam for 30 min generated 1500 mCi of 

[18F]fluoride). The [18F]fluoride was delivered to the synthesis module (in a 1.5 mL bolus of 

[18O]water) and trapped on a QMA-light Sep-Pak preconditioned with ethanol, water, and a 4M 

bicarbonate solution to remove [18O]water. [18F]Fluoride was eluted into the reaction vessel using 

aqueous tetraethylammonium (TEA) bicarbonate (3.5 mg in 0.5 mL of water). Acetonitrile 

(MeCN, 1 mL) was added to the reaction vessel, and the resulting solution was dried azeotropically 

to give dry TEA-[18F]fluoride. Evaporation was achieved by heating the reaction vessel to 100 °C 

and drawing full vacuum for 4 min. After this time, the reaction vessel was subjected to an argon 

stream and simultaneous vacuum draw for an additional 4 min. 
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Radiochemical Synthesis of MOM-protected [18F]FHQ415 (8): 

 

A solution of O-MOM protected chloro-HQ415 precursor (5, 5 mg) dissolved in anhydrous 

DMF (1 mL) was added to the reactor, and the mixture was stirred at 140°C for 20 min. The reactor 

was cooled to 60°C, and 2 mL of semi-preparative HPLC buffer was added to the crude reaction 

mixture. The reaction mixture was transferred to the product vial. The reactor was rinsed with 3 

mL’s of DMF and transferred to the product vial containing the reaction mixture. A sample of this 

solution was taken for HPLC and rad-TLC analysis to reveal that the protected fluorine-18 

analogue had been made in 18% RCY as determined by HPLC. 

Deprotection screen of 8 to produce [18F]FHQ415 (9): 

 

 In 4 mL scintillation vials was added 0.5 mLs of the reaction mixture containing 8. Another 

0.5 mL of either concentrated (conc.) HCl (Table 3.1, entry A and B), 4 M HCl (Table 3.1, entry 

C and D), or trifluoroacetic acid (TFA, Table 3.1, entry E and F). The vials were shaken to mix 

and either added to a heating mantle set at 100°C or left to sit at room temperature for 10 minutes. 

After this time, samples were taken for HPLC and rad-TLC analysis. 
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Chromatograms from HPLC and rad-TLC for [18F]FHQ415 analysis : 

 A Phenomenex Luna C18 5µ 150x4.6 mm HPLC column was used to analyze both the 

reaction mixture to produce 8 and the deprotection screen in an attempt to produce 9. A 40% EtOH 

10mM ammonium acetate (NH4OAc) buffer at pH 4.5 afforded efficient separation of the 

protected and deprotected chloro-precursors (4 and 5) and fluorine standards (6 and 7) with r.t.’s 

at 11.08 (4), 14.68 (5), 11.96 (6) and 7.84 (7).  

 

Fig. 3. 7: QC chromatogram for identity check of 9 confirmed by co-injection with standard 7 

3.4.2. Radiochemical Synthesis of [18F]FL2-b (16):  
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Scheme 3. 7: Synthesis of [18F]FL2-b 

A solution of vacuum dried 2-chloropyridine precursor (1.0 mg) dissolved in anhydrous 

DMF (1 mL) was added to the reactor, and the mixture was stirred at 140°C for 20 min. The reactor 

was cooled to 60°C, and 2 mL of semi-preparative HPLC buffer was added to the crude reaction 

mixture. The resulting solution was purified using HPLC (column: Phenomenex Gemini C18, 

250x10 mm, mobile phase: 10 mM NH4HCO3 in 40% MeCN supplemented with 1 mM L-ascorbic 

acid, pH ~9.7 adjusted with 3mL/L sat. NH4OH, flow rate: 2.5 mL/min) The product peak (~27 

min retention time) was collected and diluted into a round-bottom flask containing 50 mL water 

supplemented with 50 µL ascorbic acid solution (500mg/mL Ascorbic Acid in water). The solution 

was then passed through a C-18 extraction cartridge to remove organic solvent. The disk was 

washed with 5 mL sterile water supplemented with 10µL ascorbic acid solution (500mg/mL in 

water). The product was eluted with 0.5 mL of ethanol into the product vial followed by 4.5 mL 

of sterile water supplemented with 10 µL ascorbic acid solution (500mg/mL in water). The final 

formulation was passed through a 0.2 µM needle filter into a sterile dose vial [3.2% non-decay 

corrected radiochemical yield, mean yield at end of synthesis = 58 mCi, >99% radiochemical 

purity, specific activity = 3100 Ci/mmol, clear and colorless, n = 4]. 

Quality control of [18F]FL2-b  
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Radiochemical purity of [18F]FL2-b was assessed using Shimadzu LC-2010A HT system equipped 

with the UV and Rad detectors (column: Phenomenex Gemini C18, 250x4.6 mm; mobile phase: 

10 mM NH4HCO3 in 30% MeCN, pH 10 adjusted with 3mL/L sat. NH4OH solution; flow rate: 

2.0 mL/min; wavelength: 254 nm; room temperature; product peak: ~18 min) 

 

Fig. 3. 8: Semipreparative HPLC chromatogram of [18F]FL2-b reaction 

3.4.3. [18F]FL2-b In Vitro studies:  

Frozen blocks (1x1 inch) of motor cortex from the postmortem brain of ALS patient and 

age-matched control were used for the autoradiography binding studies. Frozen blocks were sliced 

into 20 µm sections using a Hacker Instruments cryostat set to -15ºC. Tissue was thaw-mounted 

on the 1x3 inch polylysine-subbed glass slides. Sections used for autoradiography experiments 

were incubated for 5 min with phosphate buffer saline (PBS) buffer pH 7.4. To determine total 

binding, brain sections were transferred to a solution of various [18F]FL2-b concentrations (Figure 
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3.7, 3.8, and 3.9) in PBS (pH 7.4) and incubated for 30 min. Similarly, the non- specific binding 

and displacement experiments were conducted by incubating adjacent tissue sections in the same 

concentration of [18F]FL2-b, but supplementing them with 1 µM of “cold” FL2-b in PBS (pH 7.4) 

for 30 min at room temperature. Subsequently, all tissue sections were washed with PBS (pH 7.4) 

for 2 min (x2) and rinsed with water for 5 sec to remove unbound radioactivity. Finally, all slides 

were dried under continuous airflow for 5 min before being exposed to a high-resolution phosphor 

imaging plate for 15 min. The exposed plate was then scanned using Typhoon 7000 

phosphoimager. Image analysis was performed using software ImageQuant (Molecular 

Dynamics). 

Binding Study: To quantify the amount of bound radiotracer to the brain sections, calibration 

curves were made for each autoradiography experiment. The various [18F]FL2-b concentration 

solutions were prepared by first calculating the concentration of [18F]FL2-b in the final dose 

(radioactivity concentration(Ci/mL) divided by molar activity(mmol/Ci)), creating 100 nM and 10 

nM [18F]FL2-b stock solutions, then subsequently diluting with milliQ water to the desired 

concentrations (1, 2, 5, 20, 30, 40, 50, 60, 70 nM) in cytomailers. By pipetting a series of 2 µL 

drops of the known [18F]FL2-b concentrations onto a TLC plate and exposing them simultaneously 

with the brain sections to the phosphor imaging plate, a standard curve could be generated by 

drawing regions around the pipetted spots using ImageQuant software and plotting the intensities 

against their corresponding concentrations. The standard curve (fmol of substance vs total counts) 

could then be used to calculate fmol of radiotracer bound in the area of interest on the brain tissue. 

The phosphoimager presents the signal for the region of interest as counts per pixel. Therefore, we 

used a known pixel size (25 µm) to calculate counts per square millimeter. The final calculation 

involved conversion of counts per square millimeter to femtomoles per square millimeter in the 
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regions of interest. Data analysis including determination of Kd and Bmax values was performed 

with GraphPad Prism (Version 8.0) using nonlinear regression. 

 

 

Fig. 3. 9: Autoradiographic phosphor imaging plate and saturated binding curves of [18F]FL2-b on motor cortex tissue (Patient 

ID: 1739 and 1539) 
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Fig. 3. 10: Autoradiographic phosphor imaging plate and saturated binding curves of [18F]FL2-b on motor cortex tissue (Patient 

ID: 1670 and 0729) 
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Fig. 3. 11: Autoradiographic phosphor imaging plate and saturated binding curves of [18F]FL2-b on motor cortex tissue (Patient 

ID: 1705 and 1432) 
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Immunohistochemistry: 

TDP-43 aggregate burden was established in ALS brain tissue using Anti-pTDP-43 antibody 

(Figure 3.10). Anti-pTDP-43 Antibody: Immunohistochemistry was performed according to 

Vectastain Elite ABC Kit instructions. Briefly, 20 µm tissue sections used for autoradiography 

were fixed with Davidson’s Fixative overnight and used directly for immunohistochemistry. Fixed 

sections were washed in 70% ethanol for 30 min followed by incubation with 1% sodium dodecyl 

sulfate (SDS) for 15 min at rt. Next, tissue sections were briefly washed with PBS pH 7.4 and then 

endogenous peroxidase activity was quenched with 0.3% H2O2 in 70% methanol for 15 min at 

room temperature. These sections were washed with PBS-T solution for 1 min (x3) and blocked 

with PBS-TBA for 30 min at room temperature. Then, the tissue slides were incubated for 24 hours 

at 4°C with primary antibody (Millipore anti-pTDP-43) diluted 1:1000 in PBS-TBA. After 24 

hours, these sections were washed with PBS-T for 5 min (x3) followed by the biotinylated 

secondary antibody application for 30 min at room temperature (diluted in PBS-T per Vectastain 

instructions). Once secondary antibody incubation was complete, all sections were washed in PBS-

T for 5 min (x3). The ABC solution (diluted in PBS-T per Vectastain instructions) was applied for 

30 min at room temperature. Then, a 5 min rinse (x3) was performed before transferring sections 

to the DAB solution (tablet by Sigma) for 10 min at room temperature. Finally, the tissue sections 

were rinsed in water pH 4.0 and counterstained with Giemsa before cover slipping them with 

Permount. Histological slides were visualized under a light microscope so that markers could be 

placed at nuclei containing TDP-43 aggregation. 
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Fig. 3. 12: TDP-43 aggregate IHC showing cytoplasmic inclusions (brown circles) and dystrophic neurites (brown rods) 

 

  



 

179 
 

 

3.5. REFERENCES 

1 R. Giampietro, F. Spinelli, M. Contino and N. A. Colabufo, Mol. Pharm., 2018, 15, 808–

820. 

 

2 X. Huang, C. S. Atwood, R. D. Moir, M. A. Hartshorn, R. E. Tanzi and A. I. Bush, J. Biol. 

Inorg. Chem., 2004, 9, 954–960. 

 

3 C. Garnier, F. Devred, D. Byrne, R. Puppo, A. Y. Roman, S. Malesinski, A. V. Golovin, R. 

Lebrun, N. N. Ninkina and P. O. Tsvetkov, Sci. Rep., 2017, 7, 1–10. 

 

4 C. Opazo, S. Luza, V. L. Villemagne, I. Volitakis, C. Rowe, K. J. Barnham, D. Strozyk, C. 

L. Masters, R. A. Cherny and A. I. Bush, Aging Cell, 2006, 5, 69–79. 

 

5 C. W. Ritchie, A. I. Bush, A. Mackinnon, S. Macfarlane, M. Mastwyk, L. MacGregor, L. 

Kiers, R. Cherny, Q.-X. Li, A. Tammer, D. Carrington, C. Mavros, I. Volitakis, M. Xilinas, 

D. Ames, S. Davis, K. Beyreuther, R. E. Tanzi and C. L. Masters, Arch. Neurol., 2003, 60, 

1685–1691. 

 

6 N. Vasdev, P. Cao, E. M. van Oosten, A. A. Wilson, S. Houle, G. Hao, X. Sun, N. Slavine, 

M. Alhasan, P. P. Antich, F. J. Bonte and P. Kulkarni, Med. Chem. Comm., 2012, 3, 1228–

1230. 

 

7 S. H. Liang, J. P. Holland, N. A. Stephenson, A. Kassenbrock, B. H. Rotstein, C. P. 

Daignault, R. Lewis, L. Collier, J. M. Hooker and N. Vasdev, ACS Chem. Neurosci., 2015, 

6, 535–541. 

 

8 H. S. Krishnan, V. Bernard-Gauthier, M. S. Placzek, K. Dahl, V. Narayanaswami, E. Livni, 

Z. Chen, J. Yang, T. L. Collier, C. Ran, J. M. Hooker, S. H. Liang and N. Vasdev, Mol. 

Pharm., 2018, 15, 695–702. 

 

9 S. Tanzey, S. Thompson, X. Shao, A. Brooks and P. Scott, J. Nucl. Med., 2018, 59, 1019–

1019. 

 

10 J. S. Choi, J. J. Braymer, R. P. R. Nanga, A. Ramamoorthy and M. H. Lim, Proc. Natl. 

Acad. Sci. U. S. A., 2010, 107, 21990–21995. 

 

11 M. W. Beck, S. B. Oh, R. A. Kerr, H. J. Lee, S. H. Kim, S. Kim, M. Jang, B. T. Ruotolo, J. 

Y. Lee and M. H. Lim, Chem. Sci., 2015, 6, 1879–1886. 

 



 

180 
 

12 B. P. Cary, A. F. Brooks, M. V Fawaz, X. Shao, T. J. Desmond, G. M. Carpenter, P. 

Sherman, C. A. Quesada, R. L. Albin and P. J. H. Scott, ACS Med. Chem. Lett., 2015, 6, 

112–116. 

 

13 A. Brooks, S. Tanzey, X. Shao and P. Scott, J. Nucl. Med., 2018, 59, 613–613. 

 

14 M. S. Forman, J. Q. Trojanowski and V. M. Y. Lee, Curr. Opin. Neurobiol., 2007, 17, 548–

555. 

 

15 M. Fatima, R. Tan, G. M. Halliday and J. J. Kril, Acta Neuropathol. Commun., 2015, 3, 47. 

 

  



 

181 
 

 

CHAPTER 4 

Synthesis and Initial In Vivo Evaluation of [11C]AZ683—A Novel PET Radiotracer for 

Colony Stimulating Factor 1 Receptor (CSF1R)1 

 

4.1. Introduction 

 Development of novel Positron Emission Tomography (PET) tracers is driven by the need 

to understand the mechanisms underlying human diseases. To understand neurodegenerative 

diseases (NDs), knowledge of potential biomarkers must be elucidated. Once a novel radiotracer 

has been synthesized, it can be used to determine if a biomarker of interest is altered in a human 

and at what time point during the disease. Since NDs are still poorly understood, PET imaging can 

be used to assess what biomarkers play a true role in the causation and progression of these 

debilitating diseases. 

 Efforts to synthesize novel radiotracers described in this work thus far have been driven by 

the metal hypothesis of neurodegeneration. Chapter 2 saw the development of an iron chelator 

PET tracer to probe iron accumulation in NDs and Chapter 3 focused on developing a PET probe 

for the accumulation of metal-protein aggregates induced by copper or zinc. Though it is suspected 

that transition metals play one of the earliest roles in neurodegeneration, it does not tell the whole 

story. After uncontrolled, toxic reactivity of the transition metals iron and copper, reactive oxygen-

species are formed. This oxidative stress promotes inflammatory signaling, recruiting immune 

cells such as microglia leading to neuroinflammation (Figure 4.1). Neuroinflammation being a 

hallmark of most NDs, has been shown to play an early role as well.  
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Fig. 4. 1: Progression of Neurodegenerative Diseases (NDs) is indicated by a decrease in synaptic density and accompanied by 

the accumulation of certain biomarkers (metal accumulation, oxidative stress, inflammation, and protein aggregation) at various 

stages of the disease. Initially NDs have a silent phase where no clinical symptoms are apparent until a sufficient loss in the 

number of synapses has occurred. 

 Neuroinflammation propagates an oxidatively stressed environment by producing more 

ROS to clean up factors that caused it initially. A vicious circle ensues, leading to DNA damage, 

protein aggregation, and finally apoptosis of neurons. The death of neuronal cells leads to a 

decrease in the number of synapses formed by these cell types. After a certain point neuron cell 

death, clinical symptoms start to manifest in the patient as a decrease in neurotransmitters are being 

produced and not functioning to initiate signals from the brain. Eventually, so many cells have 

died that structural abnormalities can be seen in the brain by imaging techniques like magnetic 

resonance imaging (MRI), termed neuronal loss, and ultimately leading to death. 

 Just as the development of metal chelating PET tracers were developed to investigate 

metals in NDs, so to can other small molecule PET tracers be developed for biomarkers of 

neuroinflammation. One biomarker of interest specific to neuroinflammation is colony stimulating 

factor-1 receptor (CSF1R, M-CSF, or cFMS).CSF1R is a class III receptor tyrosine kinase2 that 

regulates immune response by controlling the survival and activity of macrophages and 

macrophage-like cells.3 Abnormal expression of CSF1R, or over activity of its endogenous ligands 
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(CSF1 and IL-34), plays a role in many disorders that have an immune/inflammatory component.4 

Specifically, chronic inflammation caused by increased activity of macrophages is present in many 

autoimmune disorders such as rheumatoid arthritis (RA), inflammatory bowel disease, and 

autoimmune nephritis, among others.5,6 The overactivity of the macrophages in these processes is 

thought to be due to increased CSF1R activation. The contribution of CSF1R to symptomatic 

Alzheimer’s Disease (AD) is also well known, due in part to its proliferative effects on microglia, 

which are associated with neuroinflammation, a hallmark clinical symptom of AD.7,8 A 

mechanism for CSF1R involvement in inter-neuronal transmission of pathogenic tau protein by 

microglia was also recently elucidated.9 Involvement of CSF1R in certain types of cancers, such 

as gliomas, also correlates with poor disease prognosis, as proliferation of CSF1R-controlled 

tumor-associated macrophages (TAMs) correlates with tumor angiogenesis and metastasis.5,10–12 

Thus, CSF1R PET imaging would be useful for more than just ND analysis. 

CSF1R inhibitors (both small molecules and biologics) have been proposed as a means of 

controlling inflammation in this multitude of diseases and disorders via macrophage 

depletion/regulation.13 Many CSF1R inhibitors can be found in both academic and patent 

literature,5,6,14 and several have proceeded to clinical trials for the treatment of RA15 and various 

types of cancer.12 However, not all macrophage populations are CSF1R-sensitive, necessitating 

that CSF1R involvement must be positively identified prior to the start of treatment, which can be 

achieved by a CSF1R specific PET imaging agent.CSF1R upregulation is only present at the site 

of inflammation. Although blood biomarkers can be used to directly measure CSF1R involvement 

in certain diseases, such as lymphoma,12 methods of determining CSF1R involvement and 

quantifying CSF1R levels at locations not directly connected to the central circulatory system is 

difficult, particularly in the CNS, and employs either indirect means (i.e., measurement of CSF1 
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levels as a proxy for CSF1R)15 or invasive procedures (i.e., immunohistochemistry using a biopsy 

sample or surgically excised tissue).16,17 In fact, despite the implication of irregular CSF1R levels 

in numerous diseases,5 quantitative information on expression levels in disease is generally lacking 

from the literature. In part this is currently no non-invasive method that can positively identify and 

quantify CSF1R involvement in disease. This unmet need can be readily achieved with PET 

imaging, wherein a CSF1R-selective radiolabeled ligand (radiopharmaceutical) would be used to 

detect changes in activity, expression levels, and localization of CSF1R in a minimally invasive 

manner. Furthermore, a brain-penetrant CSF1R-selective PET imaging agent could be used to 

selectively image microglia, as they are the only cells in the brain that express CSF1R under 

normal conditions.18 Microglial cells tend to surround sites with amyloid beta (Aß) plaques in 

order to remove them from the extracellular environment.19 Current imaging of 

macrophages/microglia is achieved by using PET tracers that target the translocator protein 18 

kDa (TSPO). However, TSPO is not an ideal imaging target since it is expressed in various tissue 

types (in addition to immune cells). Moreover, a single nucleotide polymorphism (SNP) in the 

TSPO gene has been identified that leads to considerable variability in its expression levels 

between patients and, consequently, variability in PET data between patients.20 These SNPs are 

known to cause low to no binding affinity with the clinically available PET tracers for this target 

and thus reduced signaling is observed. Therefore, an imaging agent selective for microglia is of 

considerable interest for using PET by quantifying CSF1R. Radiopharmaceuticals used in PET 

imaging are often structural analogs of existing pharmaceutical agents that have been labeled with 

a positron-emitting radionuclide such as carbon-11 (11C) or fluorine-18 (18F). As such, the 

radiopharmaceutical can be expected to possess the same pharmacokinetic properties as its 

nonradioactive counterpart and behave accordingly in vivo. Fortunately, lead identification for 
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CSF1R PET radiopharmaceutical development is relatively straightforward because recent interest 

in developing CSF1R inhibitors has led to hundreds of active compounds, several of which have 

also been translated into clinical trials (see Figure 4.2 for several leads).5,6,14 PET imaging agents 

for CSF1R have been reported previously,21,22 but none have seen widespread use to date. One is 

a mixed inhibitor of both CSF1R and tropomyosin receptor kinases B and C (Trk B/C),21 while 

the second ([11C]JHU11744) has shown promise in preliminary evaluation in rodent models of AD 

and neuroinflammation.22 PET imaging of CSF1R therefore remains underdeveloped and an 

attempt to address this issue through development of [11C]AZ683 is reported herein,.  

AZ683 (Figure 4.2) was selected because it has >250-fold selectivity for CSF1R over 95 

other kinases, low plasma protein binding, a good pharmacokinetic (PK) profile, and both fluorine 

and N-methyl moieties which are potential sites for radiolabeling with 18F or 11C, respectively.23–

25 Moreover, AZ683 has low nanomolar affinity for CSF1R (Ki = 8 nM; IC50 = 6 nM), making it 

ideal for PET studies which typically utilize nanomoles-picomoles of radiotracer, and the cLogP 

of the neutral (uncharged) compound is 3.1 which suggests that it should cross the BBB. Since N-

methylation of the desmethyl precursor with [11C]MeI (or [11C]MeOTf) was envisioned to be 

simpler than 18F-labeling of this scaffold, the synthesis and carbon-11 radiolabeling of [11C]AZ683 

was undertaken for initial evaluation and is described herein. We also report preliminary 

evaluation of the radiotracer as a CSF1R imaging agent in rodent and non-human primate PET 

imaging studies. 
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Fig. 4. 2: Potential lead compounds for CSF1R radiopharmaceuticals. Adapted from ref. 2 with permission from MDPI
 

4.2. Results and Discussion  

4.2.1. Synthesis of Carbon-11 Reference Standard and Precursor  

The AZ683 reference standard 6a and N-desmethyl precursor 7 were synthesized via 

modified literature procedures in five and six steps, respectively (Scheme 4.1).24 Both syntheses 

diverged from a common intermediate 4. This common intermediate was synthesized via 

condensation of 4-bromo-3-ethoxyaniline (1) with diethylethoxymethylenemalonate to yield 2. 

This was followed by cyclization/chlorination with POCl3 and tetrabutylammonium chloride to 

form chloroquinoline 3. A subsequent SNAr reaction with 2,4-difluoroaniline yielded intermediate 

4. Buchwald–Hartwig cross-coupling was then used to couple either N-Boc piperazine or N-

methylpiperazine with 4, yielding intermediates 5a and 5b for the reference standard and 

precursor, respectively. Amidation of the ethyl ester of 5 was performed using formamide/NaOEt 
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to generate reference standard 6a and N-Boc protected precursor 6b. Final deprotection of the Boc 

group of 6b with trimethylsilyl chloride in methanol furnished precursor 7. Precursor 7 and 

reference standard 6a were readily separable on analytical and semipreparative Phenomenex Luna 

C18 columns using a 30% ethanolic eluent buffered with sodium phosphate at a pH of 6.6 (see 

Materials and Methods for details, Section 4.5). 

 

Scheme 4. 1: Synthesis of precursor 6a and reference standard 7 for [11C]AZ683. 

4.2.2. Radiosynthesis of [11C]AZ683  

Radiolabeling of [11C]AZ683 was accomplished by treating precursor 7 with [11C]MeOTf 

(Scheme 4.2). The labeling reaction was automated using a TRACERLab FXC-pro synthesis module 

and our standard carbon-11 procedures.26 Following radiolabeling, [11C]AZ683 was purified 

within the synthesis module via semipreparative HPLC and formulated for injection (0.9% saline 

solution containing 10% ethanol) using a Waters C18 1cc vac cartridge to trap/release the product. 

This resulted in an overall non-decay corrected activity yield of 1125 ± 229 MBq (3.0% based 
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upon 37 GBq of [11C]MeOTf), radiochemical purity >99%, and molar activity of 153 ± 38 

GBq/µmol (n = 4), confirming doses were suitable for preclinical evaluation. 

 

Scheme 4. 2: Radiosynthesis of [11C]AZ683 in 3.2% activity yield 

4.2.3. Approaches towards a Precursor for [18F]AZ683 

Concurrent with our efforts to prepare [11C]AZ683, a fluorine-18 analogue of AZ683 was 

desired by our group due to its longer half-life and as an option to showcase recently developed 

copper-mediated radiofluorination chemistry used in our lab27,28 on a drug molecule (Scheme 

4.3).To this end we began by attempting to synthesize the requisite BPin precursor for 

radiolabeling, and first postulated that a Bpin-flouro aniline could be used in step 3 of Scheme 4.1 

to yield the desired precursor, preventing major deviation from the already established synthesis 

route of the carbon-11 precursor and AZ683 reference standard (Scheme 4.4).  

 

Scheme 4. 3: Potential radiosynthesis of [18F]AZ683 using CMRF conditions 

To this end, to synthesize the requisite precursor, we initially coupled the BPin aniline with 

2 to generate intermediate 9 in 53% yield (Scheme 4.4). However, synthesis of the requisite 18F 
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precursor 8 has proven more complicated than initially anticipated because an analogous 

Buchwald-Hartwig coupling reaction failed to generate intermediate 10. As confirmed by mass 

spectrometry, the boronic acid ester provided a site for palladium complexation that could result 

in inter-Suzuki coupling (Figure 4.4). Efforts to develop a synthesis of [18F]AZ683 continue, but 

once the challenges with the proposed synthetic pathway were discovered, we chose to pursue 

preclinical evaluation of [11C]AZ683. 

 

Scheme 4. 4: Attempted Synthesis of an [18F]AZ683 bpin precursor.10  

4.2.4. Preclinical PET Imaging 

Initial evaluation of the imaging properties of [11C]AZ683 was undertaken in female 

Sprague–Dawley rat (Figure 4.2, top). [11C]AZ683 was administered intravenously through the 

tail vein and rodent brain imaging was conducted for 60 min. Surprisingly, [11C]AZ683 showed 

little brain uptake. However, high uptake and retention in what looks like the pituitary and thyroid 

glands (Figure 4.2, left) was observed. Although both glands are known for expression of CSF1R 

protein (thyroid) and CSF1R RNA (thyroid and pituitary),29 the very high uptake is more likely 
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indicative of non-specific binding associated with the lipophilic nature of the compound (Table 

4.1). This could be tested by self-blocking studies, which has yet to be done.  

It is known that inter-species differences exist between rodents and non-human primates 

due to the higher metabolic rate in rodents and differing BBB efflux systems. Therefore, imaging 

in rhesus macaque brain was also performed. The primate imaging results largely mirrored the rat 

data, with fairly poor brain influx during the early frames, followed by almost complete washout 

and little brain retention in a normal brain (Figure 4.2, right). The signal observed in the central 

region of the brain could possibly be ventricular uptake. As before, the pituitary gland could be 

observed in frame which showed a much greater degree of uptake than brain. Overall, brain uptake 

in monkey was higher than in rat along with some focal uptake in the monkey cerebellum 

(standardized uptake value (SUV) ~0.3–0.4 at late time points). Given that the cerebellum is an 

area of known CSF1R expression in humans,29 and CSF1R function is thought to be conserved 

between vertebrates,30 this signal could correspond to CSF1R, presumably associated with 

microglia found in the monkey cerebellum.31 However, this will need to be confirmed in future in 

vitro experiments with primate brain sections. Target receptor density of CSF1R could ostensibly 

be low in a non-diseased control animal and would explain poor brain retention, but again normal 

CSF1R levels are challenging to quantify in vivo as they are transient and expected to fluctuate 

with the turnover of macrophages and microglia. However, low receptor density would not limit 

first pass brain influx and efflux which was also quite low. Overall, these PET imaging data suggest 

imaging CSF1R associated with neuroinflammation using [11C]AZ683 may be challenging. That 

being said, the uptake observed in monkey could be sufficient to observe accumulation in a brain 

inflammation model. There is literature precedent for TSPO radiotracers with low brain uptake 

being used to successfully image inflammation in rat models.32,33 Moreover, the present studies do 
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not rule out labeling the scaffold with a longer-lived PET radionuclide (e.g., 18F or 124I) and using 

a prolonged infusion protocol so that sufficient radiotracer accumulates at sites of inflammation. 

[11C]AZ683 could also possibly be used for imaging of peripheral CSF1R to evaluate its role in 

inflammation outside of the brain. 

 Given that [11C]AZ683 possesses properties mostly consistent with BBB permeability 

(Table 4.1),24,34,35 the lack of brain uptake was unexpected and the reasons for it are unclear. It is 

possible that [11C]AZ683 is a substrate for an efflux transporter on the BBB being that compounds 

containing a lot of nitrogens tend to be substrates for p-glycoprotein (P-gp).P-gp expression is 

higher in rodents than monkeys and humans.36 This could explain the 2–3-fold higher uptake of 

the radiotracer observed in monkey brain. Given the differences in type and expression levels of 

efflux transporters between species, monkeys are better for predicting the role of P-gp in limiting 

brain penetration of drugs in humans.36 However, as we take a conservative view towards primate 

safety, methods to determine whether efflux activity is responsible for the low brain uptake of 

[11C]AZ683 (e.g., cyclosporin A blockade of the P-gp transporter)37 have not been pursued at this 

time. Alternatively, in this case, cLogP estimates (Table 4.1) may not be a good indicator of BBB 

permeability. [11C]AZ683 has multiple groups containing nitrogen and oxygen atoms which are 

ionizable, corresponding to multiple pKa values (Figure 4.3).35 We do not expect the primary 

amide to limit BBB permeability since we conduct brain imaging with other primary amide-

containing radiopharmaceuticals such as [11C]LY2795050.38 Understanding the relationship 

between cLogP of charged species as a function of pH is complicated,34 but it is likely that AZ683 

is charged at physiological pH and this could be the reason for poor brain uptake. The oxygen and 

nitrogen atoms in question also participate in hydrogen bonding, and cLogP—the total number of 

oxygen and nitrogen atoms in a drug molecule (N + O) offers information about logBBB. If 
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cLogP—(N + O) > 0, logBBB is likely to be positive and the drug has a good probability of 

entering the CNS.34 In the case of AZ863, cLogP—(N + O) = −4, suggesting the number of oxygen 

and nitrogen atoms may be too high for good CNS penetration. All these issues should be 

considered in the design of next generation CSF1R radiopharmaceuticals going forward. 

 

Table 4. 1: Properties of [11C]AZ683 compared to a typical CNS drug. Adapted from ref. 2 with permission from MDPI 

Property Preferred value for successful CNS drugs
23 [

11
C]AZ683

21, 24 
Activity Low nM K

i
 = 8 nM; IC

50
 = 6 nM 

cLogP <5 3.0 
tPSA 60-70 Å

2 83 Å
2 

molecular weight ≤450 g/mol 441 g/mol 
H-bond donors ≤3 2 
H-bond acceptors ≤7 6 
Metabolic stability T

1/2
 > 3.1 h 2.1 h 

Solubility >60 µg/mL 128 µg/mL 
pKa 7.5-10.5 6.5-7.5 
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Fig. 4. 3: Summed rodent (left) and primate (right) PET images of [11C]AZ683 (0–60 min after injection of the radiotracer) and 

associated time–radioactivity curves (SUV = standardized uptake value). Adapted from ref. 2 with permission from MDPI 

 

 

Fig. 4. 4: Multiple pKa values for AZ683.35 Adapted from ref. 2 with permission from MDPI 

4.3. Conclusions  

 In conclusion, we have developed a radiosynthesis of [11C]AZ683 for PET imaging of 

CSF1R and neuroinflammation that provides doses suitable for preclinical use. However, 
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preliminary preclinical PET imaging in rodents and nonhuman primates revealed low brain uptake 

of [11C]AZ683. Overall, these PET imaging data suggest imaging CSF1R associated with 

neuroinflammation using [11C]AZ683 could be challenging and emphasize that high affinity, good 

selectivity, and appropriate drug-like properties do not guarantee that a compound will make a 

good radiopharmaceutical for in vivo brain PET. Nevertheless, uptake in monkey could be 

sufficient to observe accumulation in a brain inflammation model. These studies also do not rule 

out labeling the scaffold with a longer-lived PET radionuclide (e.g., 18F or 124I) and using a 

prolonged infusion protocol to ensure that sufficient radiotracer accumulates at sites of 

inflammation for imaging and quantitation of CSF1R. [11C]AZ683 could potentially also be used 

for imaging of peripheral CSF1R to evaluate its role in inflammation outside the brain. Future 

evaluation in animal models of inflammation appears warranted. 

4.4. Materials and Methods 

General Considerations  

All the chemicals were purchased from commercially available suppliers and used without 

purification. Automated flash chromatography was performed with Biotage Isolera Prime system. 

High-performance liquid chromatography (HPLC) was performed using a Shimadzu LC-2010A 

HT system. 1HNMR spectra were acquired using a Varian 400 apparatus (400 MHz) in CDCl3 or 

CD3OD. δ are reported in ppm relative to tetramethylsilane (δ = 0), J are given in Hz. Mass spectra 

were measured on an Agilent Technologies (Santa Clara CA, USA) Q-TOF HPLC-MS or 

Micromass (Manchester, UK) VG 70-250-S Magnetic sector mass spectrometer employing the 

electrospray ionization (ESI) method. 

4.5.1. Compounds Synthesized  

Preparation of Diethyl 2-(((4-bromo-3-ethoxyphenyl)amino)methylene)malonate (2).  
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To a solution mixture of 4-bromo-3-ethoxyaniline hydrochloride (1) (0.66 g, 3 mmol) and 

K2CO3 (1.68 g, 12.2 mmol) in MeCN (30 mL) was added diethyl-ethoxymethylene malonate (620 

µL, 3 mmol). The reaction was heated to reflux and allowed to stir for 36 h, at which time it was 

cooled, and vacuum filtrated through celite to remove potassium carbonate. The filtrate was 

purified by flash chromatography using a hexane-EtOAc gradient to yield 2 (0.84 g, 71%). 1H-

NMR (400 MHz, CDCl3) δ 11.00 (d, J = 13.5 Hz, 1H), 8.45 (d, J = 13.5 Hz, 1H), 7.49 (d, J = 8.5 

Hz, 1H), 6.63 (d, J = 8.5 Hz, 1H), 6.59 (d, J = 2.4 Hz, 1H), 4.33–4.22 (m, 4H), 4.09 (q, J = 7.0 Hz, 

2H), 1.49 (t, J = 7.0 Hz, 3H), 1.38–1.31 (m, 6H). [M + H]+: Expected 386.0598, Found 386.0604. 

 

measured m/z of [M+H]+ 

Predicted value is 386.0598 
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Preparation of Ethyl 6-bromo-4-chloro-7-ethoxyquinoline-3-carboxylate (3).  

 

Compound 2 (0.84 g, 2.2 mmol) was dissolved in dry Toluene (2.5 mL). Tert-Butyl 

ammonium chloride (TBACl: 1.94 g, 7 mmol) was added, followed by POCl3 (2 mL, 22 mmol) 

while stirring at room temperature for 5 min. The reaction mixture was then heated to reflux and 

stirred for 68 h. After this time, the reaction was cooled, diluted with DCM (30 mL), and quenched 

with water (30 mL). The aq. layer was extracted with further DCM (30 mL) and the combined 

organic fractions were washed with brine (60 mL), dried (Na2SO4) and concentrated. The crude 

material was purified by flash chromatography using a hexane/EtOAc gradient to yield 3 (0.15 g, 

17%). 1H-NMR (400 MHz, CDCl3) δ 9.16 (s, 1H), 8.61 (s, 1H), 7.42 (s, 1H), 4.48 (q, J = 7.2 Hz, 



 

197 
 

2H), 4.28 (dd, J = 14.1, 7.0 Hz, 2H), 1.58 (t, J = 7.0 Hz, 3H), 1.45 (t, J = 7.2 Hz, 3H). [M + H]+: 

Expected 357.9840, Found 359.9820. Cl-37 accounts for difference in expected value. 

 

 

Preparation of Ethyl 6-bromo-4-((2,4-difluorophenyl)amino)-7-ethoxyquinoline-3-carboxylate 

(4).  

measured m/z of [M+H]+ 

Predicted value is 357.9840 
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Compound 3 (0.15 g, 0.41 mmol) was dissolved in ethanol (10 mL). 20 mol % acetic acid 

(4.7 µL, 0.082 mmol) was added followed by 2,4-difluoroaniline (46 µL, 0.45 mmol, 1.1 eq.). The 

reaction was heated to reflux and stirred for 24 h. After this time, the reaction was cooled and Et3N 

(100 µL) was added to neutralize acetic acid. The crude reaction mixture was purified by flash 

chromatography to yield title compound 4 (0.11 g, 66%). 1H-NMR (400 MHz, CDCl3) δ 10.30 (s, 

1H), 9.19 (s, 1H), 7.73 (s, 1H), 7.03 (s, 1H), 6.97–6.94 (m, 1H), 6.94–6.92 (m, 1H), 6.84 (t, J = 

8.3 Hz, 1H), 4.43 (q, J = 7.1 Hz, 2H), 4.23 (q, J = 7.0 Hz, 2H), 1.53 (t, J = 7.0 Hz, 3H), 1.45 (t, J 

= 7.1 Hz, 3H). [M + H]+: Expected 451.0463, Found 451.0463. 

 

measured m/z of [M+H]+ 

Predicted value is 451.0463 
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Preparation of Ethyl 4-((2,4-difluorophenyl)amino)-7-ethoxy-6-(4-methylpiperazin-1-

yl)quinoline-3-carboxylate (5a). 

 

 Compound 4 (113 mg, 0.251 mmol) was dissolved in dry toluene (10 mL). To this 

solution, 1-methylpiperizine (33.4 µL, 0.301 mmol, 1.2 eq.) was added. This solution was 

aspirated with a syringe and added to a mixture of 2.5 mol % Pd2(dba)3 (5.75 mg, 0.007 mmol), 

2.5 mol % BINAP (3.9 mg, 0.007 mmol) and 1.6 eq. of Cs2CO3 (0.13 g, 0.402 mmol) under Ar. 

The reaction was heated to 100°C and stirred for 60 h. After this time, the reaction was cooled and 

quenched with satd. KHCO3 (20 mL). The organic layer was washed with water (50 mL) and the 
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water was extracted twice with EtOAc. The organic layers were combined, washed with brine (60 

mL), concentrated and dried (Na2SO4). The residue was purified by flash chromatography using 

an EtOAc/MeOH gradient to yield compound 5a (64 mg, 54%). 1H-NMR (400 MHz, CDCl3) δ 

10.14 (s, 1H), 9.11 (s, 1H), 7.32 (s, 1H), 7.26 (s, 1H), 7.00–6.90 (m, 1H), 6.89 (s, 1H), 6.75 (t, J = 

8.4 Hz, 1H), 4.42 (q, J = 7.1 Hz, 2H), 4.21 (q, J = 6.9 Hz, 2H), 2.83 (m, 4H), 2.55 (m, 4H), 2.30 

(s, 3H), 1.51 (t, J = 6.9 Hz, 3H), 1.48–1.44 (m, 3H). [M + H]+: Expected 471.2202, Found 

471.2202. 

 

Measured m/z of [M+H]+ 

Predicted value is 471.2202 
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Preparation of Ethyl 6-(4-(tert-butoxycarbonyl)piperazin-1-yl)-4-((2,4-difluorophenyl)amino)-7-

ethoxyquinoline -3-carboxylate (5b).  

 

The same procedure described for the synthesis of 5a was also used to prepare 5b (61 mg, 

44.5%). 1H-NMR (400 MHz, CDCl3) δ 10.08 (s, 1H), 9.12 (s, 1H), 7.30 (s, 1H), 6.96–6.88 (m, 

2H), 6.86 (s, 1H), 6.75 (t, J = 8.2 Hz, 1H), 4.43 (q, J = 7.1 Hz, 3H), 4.21 (q, J = 7.0 Hz, 2H), 3.53–
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3.45 (m, 4H), 2.75–2.67 (m, 4H), 1.52 (t, J = 7.0 Hz, 3H), 1.47 (s, 9H), 1.44 (d, J = 7.1 Hz, 3H). 

[M + H]+: Expected 557.2571, Found 557.2571. 

 

 

Preparation of 4-((2.,4-Difluorophenyl)amino)-7-ethoxy-6-(4-methylpiperazin-1-yl)quinoline-3-

carboxamide (AZ683 Reference Standard 6a).  

Measured m/z of [M+H]+ 

Predicted value is 557.2571 
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Compound 5a (53 mg, 0.113 mmol) was dissolved in THF (0.1 mL) and formamide (22.4 

µL, 0.563 mmol, 5 eq.) was added. To this solution, a 21% wt solution of NaOEt in EtOH (231 

µL, 0.563 mmol, 5 eq.) was added. The reaction was heated to reflux and stirred for 16 h, after 

which time it was cooled and quenched with NH4Cl (53 mg, 1 mmol). The reaction mixture was 

concentrated onto silica and purified by flash chromatography using an EtOAc/MeOH gradient to 

yield compound 6a (16 mg, 32%). 1H-NMR (400 MHz, CD3OD) δ 8.78 (s, 1H), 7.27 (s, 1H), 7.16–

7.06 (m, 3H), 6.95 (t, J = 8.6 Hz, 1H), 4.25 (q, J = 6.9 Hz, 3H), 3.10 (m, 4H), 2.73 (m, 4H), 1.96 

(s, 3H), 1.51 (t, J = 6.9 Hz, 3H). [M + H]+: Expected 442.2049, Found 442.2048.  

 

Measured m/z of [M+H]+ 

Predicted value is 442.2049 



 

204 
 

 

Preparation of tert-Butyl 4-(3-carbamoyl-4-((2,4-difluorophenyl)amino)-7-ethoxyquinolin-6-yl) 

piperazine-1-carboxylate (6b).  

 

The same procedure described for the synthesis of 6a was used to prepare 6b (18 mg, 30%). 

1H-NMR (400 MHz, CDCl3) δ 10.44 (s, 1H), 8.76 (s, 1H), 7.27 (s, 1H), 6.94–6.88 (m, 2H), 6.87 

(s, 1H), 6.74 (t, J = 8.3 Hz, 1H), 6.21 (br. s, 1H), 4.20 (q, J = 6.9 Hz, 2H), 3.48–3.47 (m, 4H), 2.73–

2.71 (m, 4H), 1.51 (t, J = 6.9 Hz, 3H), 1.47 (s, 9H). [M + H]+: Expected 528.2417, Found 

528.2419. 
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Preparation of 4-((2,4-Difluorophenyl)amino)-7-ethoxy-6-(piperazin-1-yl)quinoline-3-

carboxamide (7).  

Measured m/z of [M+H]+ 

Predicted value is 528.2417 
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Compound 6b (18 mg, 0.034 mmol) was dissolved in dry MeOH (5 mL) and cooled to 

78°C for 5 min. Trimethylsilyl chloride (TMS-Cl, 43.3 µL, 0.341 mmol, 10 eq.) was added and 

the reaction was allowed to warm up to room temperature and was stirred until deprotection was 

complete as determined by TLC (~25 h). The reaction was quenched with water and concentrated 

to remove solvent and excess TMS-Cl. The concentrate was re-dissolved in MeOH and re-

concentrated two more times to ensure complete removal of TMS-Cl. The product was further 

dried in a vacuum desiccator to yield compound 7 (15 mg, 100%). 1H-NMR (400 MHz, CD3OD) 

δ 8.80 (s, 1H), 7.56–7.50 (m, 1H), 7.38 (s, 1H), 7.34 (s, 1H), 7.26–7.18 (m, 1H), 7.14 (t, J = 8.4 

Hz, 1H), 4.33 (q, J = 7.0 Hz, 2H), 3.39–3.33 (m, 4H). 3.22–3.20 (m, 4H), 1.55 (t, J = 7.0 Hz, 3H). 

[M + H]+: Expected 428.1893, Found 428.1892. 

 

Measured m/z of [M+H]+ 

Predicted value is 428.1893 

20 



 

207 
 

 

Preparation of Ethyl 6-bromo-7-ethoxy-4-((2-fluoro-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-

2-yl)phenyl)amino)quinoline-3-carboxylate (9)  

 

Compound 9 was prepared exactly as compound 3 was prepared, with the exception of 

using 4-amino-3fluorobenzenboronic acid pinacol ester in place of 2,4,-difluoroaniline. 

Compound 2 (0.122g, 0.342mmol) was dissolved in a scintillation vial with ethanol (3 mL) and 

transferred to 100 mL round bottom flask. The vial was rinsed with ethanol and added to flask 

for a total volume of 10 mL. 20 mol-% acetic acid (3.9 μL, 0.068 mmol) was added to flask via 
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pipette. Finally, 4-amino-3fluorobenzenboronic acid pinacol ester (89mg, 0.375mmol) was 

added to the solution and immediately placed in oil bath at 80°C to be stirred while under reflux 

and argon flow. The reaction was stirred for twenty-four hours until stopped and cooled. 

Tetraethylammonium (TEA: 100 μL) was added to neutralize acetic acid. The reaction mixture 

was put directly onto silica and purified with flash chromatography to yield (0.101 g, 53%) 

compound 9. 1H NMR (400 MHz, CDCl3) δ 10.18 (s, 1H), 9.22 (s, 1H), 7.91 (s, 1H), 7.57 (d, J = 

10.8 Hz, 1H), 7.40 (d, J = 8.0 Hz, 1H), 7.35 (s, 1H), 6.85 (t, J = 7.9 Hz, 1H), 4.43 (q, J = 7.1 Hz, 

2H), 4.25 (q, J = 7.0 Hz, 2H), 1.54 (t, J = 7.0 Hz, 3H), 1.44 (t, J = 7.1 Hz, 3H), 1.34 (s, 17H). [M 

+ H], Expected 559.141, Found 559.1412 

 

measured m/z of [M+H]+ 

Predicted value is 559.141 
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4.5.2. Radiochemistry  

General Considerations  

All the chemicals (except for reference standard 6a and precursor 7 noted above) were 

purchased from commercially available suppliers and used without purification: sodium chloride, 

0.9% USP and Sterile Water for Injection, USP were purchased from Hospira; Dehydrated Alcohol 

for Injection, USP was obtained from Akorn Inc. (Lake Forest IL, USA) HPLC was performed 

using a Shimadzu (Kyoto, Japan) LC-2010A HT system equipped with a Bioscan B-FC-1000 

radiation detector, and HPLC columns were acquired from Phenomenex (Torrance CA, USA). 

Other synthesis components were obtained as follows: sterile filters were acquired from 

MilliporeSigma (Burlington MA, USA); C18 Vac 1cc Sep-Paks were purchased from Waters 
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Corporation (Milford MA, USA); Sep-Paks were flushed with 5 mL of ethanol followed by 10 mL 

of sterile water prior to use. 

Radiosynthesis of [11C]AZ683  

[11C]CO2 was produced with a General Electric Healthcare (GE, Uppsala, Sweden) 

PETTrace cyclotron via the 14N(p,α)11C reaction. High purity N2 (g) containing 0.5% O2 was 

irradiated at 40 µA for 30 min to generate [11C]CO2 (~111 GBq), which was delivered to a GE 

TRACERLab FXC-Pro synthesis module and converted to [11C]MeOTf (~37 GBq) as previously 

described.26 [11C]MeOTf was bubbled at 15 mL/min through a solution of precursor 7 (1 mg) in 

DMF (100 µL) at room temperature for 3 min. Following radiolabeling, the reaction mixture was 

diluted with HPLC mobile phase and purified by semipreparative HPLC (column: Phenomenex 

Luna C18, 10µ, 10 × 250 mm; mobile phase: 27% ethanol, 10 mM Na2HPO4, pH = 5.75; flow 

rate: 5 mL/min; see Figure 4.5 for a representative semipreparative HPLC trace). The peak 

corresponding to [11C]AZ683 (tR ~12–14 min) was collected, diluted in water (50 mL), and the 

resulting solution was passed through a Waters C18 1cc vac cartridge to trap the product. 

[11C]AZ683 was eluted from the cartridge with ethanol (1 mL) and diluted with 0.9% saline 

solution (9 mL) to provide the formulated product in 10% EtOH. The dose was passed through a 

0.22 µm sterile filter into a sterile dose vial. The overall non-decay corrected activity yield of 

[11C]AZ683 was 1125 ± 229 MBq (3.0% based upon 37 GBq of [11C]MeOTf) and quality control 

testing (see below) confirmed radiochemical purity >99%, and molar activity of 153 ± 38 

GBq/µmol (n = 4), confirming doses were suitable for preclinical evaluation. 
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Fig. 4. 5: Typical semi-preparative HPLC trace for [11C]AZ683. Adapted from ref. 2 with permission from MDPI. 

Quality Control Testing of [11C]AZ683  

 Visual inspection Doses were visually examined and required to be clear, colorless, and 

free of particulate matter. The pH of the doses was determined by applying a small amount of the 

dose to pH-indicator strips and determined by visual comparison to the scale provided. pH needs 

to be between 4.5 and 7.5, and the pH of each [11C]AZ683 dose synthesized in this study was 5.0. 

 Analytical HPLC Analytical HPLC was performed using a Shimadzu LC-2010A HT 

system equipped with a Bioscan B-FC-1000 radiation detector (column: Phenomenex Luna C18, 

5µ, 4.6 × 150 mm; mobile phase: 27% ethanol, 10 mM Na2HPO4, pH: 5.75; flow rate: 0.75 

mL/min). Analysis confirmed radiochemical purity >99% (tR of [11C]AZ683 ~6 min; see Figure 
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4.5 for a typical analytical HPLC trace) and coinjection with unlabeled reference standard 6a 

confirmed radiochemical identity (see Figure 4.6 for a coinjection HPLC trace). 

 

Fig. 4. 6:Analytical HPLC trace for formulated [11C]AZ683 dose. Adapted from ref. 2 with permission from MDPI 

 

Fig. 4. 7: Analytical HPLC trace for formulated [11C]AZ683 dose co-injected with AZ683 reference standard 6a. Adapted from 

ref. 2 with permission from MDPI 
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4.5.3. Preclinical PET Imaging  

General Considerations  

 Rodent and primate imaging studies were performed at the University of Michigan (UM) 

using a Concorde (CTI-Concorde, Knoxville TN, USA) MicroPET P4 scanner. The University of 

Michigan is accredited by the Council on Accreditation of the Association for Assessment and 

Accreditation of Laboratory Animal Care (AAALAC International, Frederick MD, USA) and 

imaging studies were conducted in accordance with the standards set by the Institutional Animal 

Care and Use Committee (IACUC) at the University of Michigan (PRO00008103: Biodistribution 

and Pharmacokinetics of Radiolabeled Compounds; Approval date: 1/16/2018). 

Animal Husbandry and Housing  

 Husbandry and housing for rodents and primates is provided by the University Laboratory 

for Animal Medicine (ULAM) at UM, and animal facilities are in compliance with the regulations 

defined by the US Department of Agriculture (USDA).  

 Monkeys: The University of Michigan PET Center has maintained 2 rhesus macaques for 

~15 years and the monkeys are individually housed in adjacent steel cages (83.3 cm high × 152.4 

cm wide × 78.8 cm deep) equipped with foraging boxes. They are currently housed in adjacent 

cages as repeated attempts to socially house them in the same cage have been unsuccessful due to 

aggressive incompatibility. Cages are metal and do contain gridded floors for radiation safety 

reasons (radioactive waste is contained to the gridded floor and is easier to clean). Temperature 

and humidity are carefully controlled, and the monkeys are kept on a 12 h light/12 h dark schedule. 

Monkeys are fed Lab Fiber Plus Monkey Diet (PMI Nutrition Intl. LLC, Shoreview MN, USA) 

that is supplemented with fresh fruit and vegetables daily. Water and enrichment toys 

(manipulanda and food-based treats) are available continuously in the home cage.  
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 Rodents: Rats are housed in Allentown #3 micro ventilated cages (27 cm wide × 49 cm 

deep × 27 cm high, floor area 923 Sq cm) with animal housing densities set by ULAM and the 

Guide for the Care and Use of Laboratory Animals. Housing is located on ventilated racks with 

continuous water and air supply exchange. All animals are provided with LabDiet 5LOD as well 

as enrichment materials and are on a light schedule of 12 h light/12 h dark. 

Rodent Imaging Protocol 

 Rodent imaging studies were done using a female Sprague–Dawley rat (weight = 237 g, n 

= 1). The rat was anesthetized (isoflurane), intubated, and positioned in the PET scanner. 

Following a transmission scan, the animal was injected (via intravenous (i.v.) tail vein injection) 

with [11C]AZ683 (14.8 MBq) as a bolus over 1 min, and the brain imaged for 60 min (5 × 1 min 

frames-2 × 2.5 min frames-2 × 5 min frames-4 × 10 min frames). 

Primate Imaging Protocol  

 Primate imaging studies were done using a mature female rhesus monkey (weight = 9.4 

kg, n = 1).The animal was anesthetized in the home cage with ketamine and transported to the PET 

imaging suite. The monkey was intubated for mechanical ventilation, and anesthesia was 

continued with isoflurane. Anesthesia was maintained throughout the duration of the PET scan. A 

venous catheter was inserted into one hind limb and the monkey was placed on the PET gantry 

with its head secured to prevent motion artifacts. Following a transmission scan, the animal was 

injected i.v. with [11C]AZ683 (145.0 MBq) as a bolus over 1 min, and the brain imaged for 60 min 

(5 × 2 min frames-4 × 5 min frames-3 × 10 min frames). 

PET Image Analysis  

 Emission data were corrected for attenuation and scatter, and reconstructed using the 3D 
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maximum a priori (3D MAP) method. By using a summed image, regions of interest (ROI) were 

drawn on multiple planes, and the volumetric ROIs were then applied to the full dynamic data set 

to generate time-radioactivity curves. 
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CHAPTER 5 

Synthesis of High-molar-activity [18F]6-fluoro-L- DOPA Suitable for Human Use via 

Cu-mediated Fluorodeborylation of a BPin Precursor 

 

5.1. Introduction 

Creation of novel Positron Emission Tomography (PET) tracers with the hope of achieving 

a clinical tracer has been the focus of this work so far. PET tracers that have already achieved 

clinical approval are not always routinely synthesized in PET production facilities. This is 

normally due to low demand of the tracers by clinicians. Sometimes the reported syntheses of these 

tracers are tedious to perform on a daily basis within a current good manufacturing process (cGMP) 

facility where extensive regulation of synthesis schemes ensures normality between productions. 

During the development of novel PET tracers, the limitations enforced by agencies such as the 

Food and Drug Administration (FDA) and United States Pharmacopeia (USP), are kept in mind. 

This prevents the use of certain chemicals and high-performance liquid chromatography (HPLC) 

buffers. Examples of this line of thinking have been explored in the previous chapters. Ethanol 

buffers are often preferred for purification over other solvents such as methanol or acetonitrile 

because it has low toxic potential according to the USP being a class 3 solvent (acetonitrile and 

methanol being a class 2 solvent and having very limited injectability). To overcome elution 

buffers that utilize class-2 solvents, reformulation is performed to achieve an injectable dose in 

either 0.9% saline, sterile water, or a 10% ethanol solution. This has been demonstrated in the 

synthesis of [11C]AZ683 and [18F]FL2-b for pre-clinical studies in chapters 3 and 4. Finally, 

Fluorine-18 (18F) labeling of molecules is not always easily achieved. Typically, [18F]fluoride is 
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used in a salt form (i.e. potassium fluoride, KF) with the help of a phase transfer catalyst. Much 

effort has been taken to optimize conditions to achieve high yielding synthesis of fluorine-18 PET 

tracers. In the primary organic literature, multiple transition metal catalysts have been used to 

achieve this result such as palladium. However, copper has been used extensively in PET 

radiochemistry methodology because of its high injectability and low toxicity. The process of 

validating a new reaction process is demonstrated here in the synthesis of 6-[18F]Fluoro-L-DOPA 

([18F]FDOPA). This requires three successful validation runs with multiple quality control (QC) 

tests to ensure the final dose meets production regulations dictated by the FDA and USP.  

5.1.1. [18F]FDOPA Overview 

[18F]FDOPA is a diagnostic radiopharmaceutical that has been used for PET imaging for a 

number of years after it was first synthesized.1 The first use of [18F]FDOPA2,3 for imaging of the 

human brain4 was for imaging of the large amino acid transport and dopaminergic neurons in the 

early 1980s. Reflecting this, [18F]FDOPA PET finds application in Parkinson’s disease,5 neuro-

oncology,6,7 and focal hyperinsulinism of infancy.8 

Even though [18F]FDOPA is extensively used for a wide range of indications, the 

radiopharmaceutical remains underutilized because of challenges associated with synthesizing the 

radiotracer for clinical use.3 These issues arise from difficulties in radio-fluorinating a highly 

electron-rich aromatic ring and the need to protect (and deprotect) both catechol and amino acid 

functionalities. Historically, [18F]FDOPA was synthesized via electrophilic aromatic substitution 

(SEAr) using electrophilic fluorinating agents (e.g., [18F]F2 or [18F]acetyl hypofluorite) and an 

appropriate precursor such as an organostannane (Figure 5.2.a).9,10 New variants of such methods 

continue to be reported,11 but SEAr reactions are challenging because of the need for specialized 

equipment, modest site- and chemoselectivities, and low-molar-activity products.3 
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Electrophilic radiofluorination reactions have inherent limitations including fluorine-19 

being present in the carrier gas or electrophilic fluorination reagents (i.e. diethlaminosulfur 

trifluoride, DAST) leading to low molecular activity (MA) of the tracer being produced. Therefore, 

a synthesis of [18F]FDOPA that uses nucleophilic [18F]fluoride has long been in demand. In 

contrast to electrophilic reagents such as [18F]F2, [
18F]fluoride is readily available in multi-Curie 

amounts and high molar activity from small, on-site medical cyclotrons and is used daily in 

radiochemistry production facilities all over the world. As such, substantial research has been 

aimed at developing a synthesis of [18F]FDOPA using nucleophilic [18F]fluoride. However, the 

electronic mismatch between the nucleophilic [18F]fluoride and the electron rich catechol ring has 

mitigated efforts to develop an operationally simple nucleophilic synthesis of high molar activity 

[18F]FDOPA. The typical approach involves nucleophilic radiofluorination of a benzaldehyde 

precursor with an appropriate leaving group (e.g. –Cl, –NO2, –N+Me3).
3 Depending on the choice 

of precursor, the synthesis then either involves coupling of the amino acid side chain12–15 or a 

Dakin Oxidation that consists of an oxidation of the 18F-labeled aldehyde intermediate (usually 

with meta-chloroperoxybenzoic acid (mCPBA)) and hydrolysis of the resulting ester to yield the 

required catechol.16–18 In either case, final deprotection with concentrated HI or HBr generates 

[18F]FDOPA (Figure 5.2.b). This strategy has been used to synthesize [18F]FDOPA in good yields 

and molar activity, and commercial cassette solutions using this synthesis scheme are 

available.14,19,20 However, operational complexity, stemming from the need to conduct multiple 

steps after labeling with fluorine-18 and the use of corrosive acids for deprotection has limited 

such methods to certain synthesis modules or manual radiochemistry setups. The complexity of 

this process results in multiple potential fail points (both chemical and mechanical) during 

automated radiosynthesis, and results in complicated quality control analysis where multiple side 



 

222 
 

products need to be tested for to ensure chemical and radiochemical purity. As such, there remains 

a need for a simple one-pot, two-step (fluorination + deprotection) synthesis of [18F]FDOPA using 

nucleophilic [18F]fluoride that is high yielding, uses milder reagents, and can be easily automated 

using standard, commercial radiochemistry synthesis modules. While such a method has eluded 

radiochemists to date, fluorine-18 radiochemistry has undergone a tremendous amount of growth 

in recent years. 

5.1.2. Copper-mediated radiofluorination technique overview  

Within the past few years, development of new fluorine-18 radiochemistry (for recent 

reviews, see refs: 21–24) methods enabling radiofluorination of hypervalent iodine reagents,25–28 

organoborons,29,30 organostannanes,31 Pd-complexes,32 and Ni-complexes,33 and phenols34 with 

nucleophilic [18F]fluoride have led to facile radiolabeling of electron-rich arenes. Of these new 

approaches, Cu-mediated fluorination has emerged as a powerful labeling technique that has been 

widely adopted by the PET radiochemistry community. Originally introduced by the Sanford lab 

in 2013 for fluorination of iodonium salts and organoborons,35,36 the first report adapting the 

method for radiofluorination by Ichiishi et al. discussed a method for the Cu-mediated 18F-

fluorination of (mesityl)(aryl)iodonium salts.28 Subsequently, the Gouverneur lab reported a 

method for the Cu-mediated 18F-fluorination of pinacol boronate (BPin) esters.29 Since 

[18F]FDOPA was not the main focus of that paper, extensive development work was not done and 

the method gives doses of [18F]FDOPA contaminated with a chemical impurity that disqualify it 

from clinical use. Moreover, the requirement to introduce air into the radiofluorination reaction is 

difficult to automate given that radiochemistry synthesis modules are typically kept under an inert 

atmosphere and closed to the environment. The use of 57% HI in the deprotection step is also 

problematic as it is highly corrosive to the valves and lines employed in automated synthesis 
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modules. The Scott and Sanford labs reported 18F-fluorination of organoborons,30 

organostannanes,31 and aromatic C–H bonds.37 These methods enable direct introduction of 

nucleophilic [18F]fluoride into electron-rich arenes and are ideally suited to the synthesis of 

[18F]FDOPA. A number of these approaches have been used to synthesize [18F]FDOPA in 

preliminary proof-of-concept studies (Figure 5.2.c)28,31,33,38–42 and a recently developed method 

that is compliant with cGMP is the subject of our published protocol (Figure 5.2.d).43 This method 

has been validated for production of human doses and can be used as a starting point for creating 

regulatory filings (e.g., a Chemistry, Manufacturing and Controls (CMC) section for an 

Investigational New Drug (IND) application or an Abbreviated New Drug Application (ANDA)). 

A comparison of these new methods for preparing [18F]FDOPA with the historical approaches is 

provided in Figure 5.2, along with a summary of the advantages and limitations of each strategy. 

To address the outstanding need in the PET radiochemistry community for ready access to 

[18F]FDOPA, a new one-pot, two-step synthesis of the radiotracer from a BPin precursor, and 

validate it for pro- duction of clinical doses (Figure 5.1) is described. Precursor 1 was selected 

because it is commercially available (ABX Advanced Biochemicals).The MOM and Boc 

protecting groups ensure that mild global deprotection conditions with HCl can be utilized. In 

addition, our radiofluorination methodology does not require the introduction of air, simplifying 

automation. Lastly, we have also developed a new approach for purification and reformulation of 

[18F]FDOPA that utilizes hydrophilic interaction liquid chromatography (HILIC). HILIC is an 

alternative technique to reverse phase HPLC for separating particularly polar compounds (for an 

overview of the method, see: 44). HILIC employs traditional polar stationary phases or polar end 

capping of the bead (e.g. silica, amino or cyano), but mobile phases used are similar to reversed-

phase HPLC and, in this case, it provided [18F]FDOPA in high chemical, and radiochemical yield; 
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with enantiomeric purity of the radiochemistry production method confirmed by chiral 

chromatography during quality control (QC) testing. 

 

Fig. 5. 1: Radiosynthesis of [18F]FDOPA and the TRACERLab automated synthesis module. Left, diagram of precursor 1, 

reaction, and product ([18F]FDOPA). Right, TRACERLab automated synthesis module. Synthesis(module schematics (Fig. 5.8) 

are provided in the Materials and Methods section 5.4. Adapted from ref. 58 with permission from The Royal Society of 

Chemistry. 
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Fig. 5. 2: Radiosyntheses of [18F]FDOPA and motivation for this work. a, Traditional electronic synthesis of [18F] FDOPA. b, 

Multistep nucleophilic synthesis of [18F]FDOPA. c, Prior one-pot Cu-mediated nucleophilic synthesis of [18F]FDOPA. d, One-pot 

Cu-mediated nucleophilic synthesis of [18F]FDOPA shown in this protocol. Adapted from ref. 43 with permission from The 

Royal Society of Chemistry. 
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5.2. Results 

5.2.1. Optimization of the Copper Mediated Fluoro-Deborylation Radiosynthesis for 

[18F]FDOPA 

Synthesis of [18F]FDOPA, was achieved by the use of recently reported copper-mediated 

radiofluorination conditions of organoboron precursors,30 which was expected to simplify 

automation as, unlike the methods described above, it does not require air. Radiofluorination of 

BPin 1 using a TRACERLab FXFN synthesis module under different conditions Table 5.1. 

[18F]Fluoride from the cyclotron was trapped on a bicarbonate-pre-conditioned quaternary 

ammonium (QMA) cartridge, eluted into the reactor with an aqueous solution of 10 mg/mL KOTf/ 

0.1 mg/mL K2CO3 (0.5 mL) and azeotropically dried with MeCN (1 mL). For initial proof-of-

concept, manual radiofluorination was conducted using our standard labelling protocol (1 (4 

µmol), Cu(OTf)2 (20 µmol) and pyridine (500 µmol) in 1 mL DMF for 20 min at 110 °C). This 

provided protected [18F]FDOPA in 49 ± 7% radiochemical yield (RCY) (Table 5.1, entry 1). This 

process was readily translated to an automated process on the synthesis module to provide 2 in 38 

± 4% RCY (Table 5.1, entry 2). 

 
 

 

a Conditions: 1BPin (4 µmol), Cu(OTf)2 (20 µmol), and pyridine (500 µmol) in DMF at 4 mM concentration of the BPin 

precursor in DMF, [18F]XF, 110 °C, 20 min. b Manual syntheses. c Automated syntheses 

 

Table 5. 1: Optimization of the Labelling of 1. Adapted from ref. 43 with permission from Royal Society of Chemistry 

 

 

Entrya [18F]XF RCY¶ 

1b [18F]KF 49 ± 7% 

2c [18F]KF 38 ± 4% 

3c [18F]TBAF 55 ± 13% 

 



 

227 
 

The next step was to focus on optimizing the radiofluorination reaction. Prior work has 

shown that both the [18F]fluoride processing technique and the order/temperature of reagent 

addition were both key to reaction outcome in related systems.45,46. Previous work showed that the 

dissolution of [18F]fluoride before heating the fluorination reaction proved critical to avoid 

competing reactions (e.g. protodeborylation and/or hydroxydeborylation) that competitively 

consume 1.45,46 To address this issue, an alternate eluent in order to facilitate rapid dissolution of 

[18F]fluoride was developed. Given the greater solubility of tetrabutylammonium (TBA+) and Cs+ 

cations relative to K+ in DMF, without loss of anion exchange properties, an aqueous eluent 

consisting of 15 mg/mL tetrabutylammonium triflate (TBAOTf) and 0.2 mg/mL Cs2CO3 (0.5 mL), 

as a replacement for KOTf and K2CO3, respectively was used. This eluent gave good recovery of 

[18F]fluoride from the QMA and improved the RCY of 2 to 55 ± 13% (Table 5.1, entry 3).  

With an optimized fluorination in hand, the deprotection step was optimized next. As 

previously mentioned, deprotection steps to generate [18F]FDOPA have commonly utilized 

concentrated HI or HBr to remove methoxy protecting groups.2 These chemical reagents are highly 

corrosive and greatly reduce the lifetime of lines and valves in the synthesis module. This would 

be detrimental for to routine production of the radiopharmaceutical because of maintenance costs 

and time to keep replacing these parts on the synthesis module. Therefore, a milder acid for 

deprotection was used and reasoned that HCl, albeit at maximum concentration, should be both 

compatible with our synthesis module and adequate to deprotect the methoxymethyl ether (MOM) 

and tert-butyl ester groups of 2 (Table 5.2). Initial attempts to treat 2 in the fluorination reaction 

mixture with 12N HCl resulted in significant decomposition and minimal (<1%) [18F]FDOPA 

(Table 5.2, entry 1). It was hypothesized that the decomposition could be due to the presence of 

Cu(II) salts,47,48 which could promote numerous potential side reactions. As such, the addition of 
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ascorbic acid during the deprotection, as this is known to reduce the Cu(II) to Cu(I) was examined. 

Gratifyingly, this resulted in a dramatic enhancement in the yield of the deprotection step, 

providing [18F]FDOPA in 84 ± 8% RCY (Table 5.2, entry 2). Intermediate 2 could also be purified 

by SPE prior to deprotection using a modified synthesis module. This resulted in an even cleaner 

deprotection that proceeded in >99% RCY (Table 5.2, entry 3). 

 
Entrya Deprotection  RCYb 

1 12 M HCl Decomp. 

2 12 M HCl + 0.25 M Ascorbic Acid 84 ± 8% 

3c 12 M HCl + 0.25 M Ascorbic Acid >99% 
 

aConditions: HCl ± ascorbic acid, 110 °C, 10 min. bRCY represents transformation of 2 → 3. c2 purified by SPE prior to 

deprotection. 

 

Table 5. 2: Optimization of the Deprotection of [18F]2. Adapted from ref. 43 with permission from Royal Society of Chemistry. 

  After deprotection, purification of [18F]FDOPA from reactants and potential by-products 

(e.g. OH-DOPA and H-DOPA) can be achieved by semi-preparative chromatography, followed 

by subsequent reformulation in a suitable, injectable solvent. Prior reports utilized reverse-phase 

HPLC with C18 columns, but these were found to be unsatisfactory due to the close retention times 

of [18F]FDOPA and both OH-DOPA (a neurotoxic agent) and H-DOPA by-products which result 

from competing hydroxy- and protodeborylation, respectively. Therefore, HILIC purification was 

used and evaluated with several different stationary phase column types. The best results were 

achieved using a Phenomenex Luna NH2 5µ column and an eluent with a high organic content: 

75% MeCN including 10 mM KOAc buffered with acetic acid to pH: 5.0–5.5 (near the theoretical 

isoelectric point of FDOPA). This system enables adequate separation of FDOPA, OH-DOPA and 

H-DOPA using both semi-preparative and analytical columns. PET radiotracers purified using 

MeCN-based HILIC eluents require reformulation into an injectable matrix such as ethanolic 
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saline. Reverse phase SPE is typically used for reformulation of small molecule radio- 

pharmaceuticals using, for example, C18 or Oasis HLB cartridges, but this is not possible with 

[18F]FDOPA due to its hydrophilicity. Thus, a HILIC Strata NH2 cartridge for reformulation was 

utilized. We found trapping/release efficiency for [18F]FDOPA of 70% and 75% for the 100 mg 

and 200 mg cartridges, respectively, and selected the 200 mg cartridges for routine use. 

  Finally, we automated the one-pot, two-step synthesis of [18F]FDOPA using a 

TRACERLab FXFN synthesis module and validated the synthesis for cGMP production of doses 

for clinical use. To simplify routine automation, we changed the copper source from Cu(OTf)2 to 

the less hygroscopic Cu (pyridine)4(OTf)2. This coper source has been used for the 

radiofluorination of BPin esters by Gouverneur but, as stated above, that method requires the 

introduction of air into the radiofluorination reaction which is difficult to automate.29,38 To negate 

this issue, we adapted Cu(Py)4(OTf)2 for use in our chemistry, which is compatible with the inert 

atmosphere of the TRACERLab synthesis module,30 by maintaining the same relative ratio of 

substrate: copper: pyridine (1BPin (4 µmol), Cu (20 µmol), and pyridine (420 µmol)). 

Radiofluorination and de- protection then proceeded as described above. The reaction mixture was 

diluted with MeCN (3 mL) and purified by semi- preparative HILIC. The peak corresponding to 

[18F]FDOPA (tR ∼22–23 min) was collected in 100 mL MeCN and this solution was passed 

through the HILIC Strata NH2 cartridge to trap the radiotracer. Following trapping and rinsing 

with USP grade ethanol (2–3 mL) to remove residual MeCN, [18F]FDOPA was eluted from the 

cartridge with 0.9% saline, USP (10 mL) to produce doses formulated for injection. The final drug 

product was dispensed into a septum-sealed, sterile, pyrogen- free glass vial through a 0.22 µm 

sterile filter (Millex GV) to afford formulated doses of [18F]FDOPA (104 ± 16 mCi, n = 3). The 

total synthesis time was approximately 110 min from end- of-bombardment, and the activity yield 
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(AY) was 6 ± 1%, based upon 1.8 Ci of [18F]fluoride. Radiochemical purity (RCP) was >99% and 

molar activity was 3799 ± 2087 Ci/mmol. Doses were submitted for full QC testing to validate the 

method, and all doses met or exceeded release criteria for clinical application at the University of 

Michigan, including purity, sterility, residual TBA levels, and residual solvent analysis. Notably, 

enantiomeric purity was found to be >99% using chiral HPLC, confirming that the stereochemistry 

of the precursor was retained throughout the entire manufacturing process. Doses produced using 

copper-mediated reactions also need to be free of residual copper if they are to be applied in the 

clinic, since the permitted daily exposure limit for copper is ≤ 340 µg/day for parenteral 

administration.49 Samples from each of the qualification runs were submitted for inductively 

coupled plasma mass spectrometry (ICP-MS) analysis and were found to contain residual Cu 

below the limit of quantification (0.11 ± 0.02 ppm), well under the established limit for copper. 

 

 

a Relative retention time (RRT) = [HPLC retention time of [18F]FDOPA / HPLC retention time of FDOPA reference 

standard]; b EU = endotoxin units. 

QC Test Specifications Result (n = 3) 

Radioactivity Conc. ≥10mCi/batch 104 ± 16 mCi 

FDOPA Conc. ≤5µg/mL 0.69 ± 0.47 µg/mL 

Molar activity ≥ 500 Ci/mmol 3799 ± 2087 Ci/mmol 

Radiochemical Purity >90% 99.7 ± 0.3 

Radiochemical Identity RRTa = 0.9-1.1 1.02 ± 0.002 

Enantiomeric Purity ≥ 95% L-FDOPA 100 ± 0% 

Visual Inspection Clear, colorless, no ppt Pass 

pH 4.5-7.5 5.5 ± 0 

Radionuclidic Identity T1/2 = 105-115 min 112 ± 2 min 

Residual TBA+ ≤260 µg/mL by Dragendorff 

reagent 

< 260 µg/mL 

Residual DMF ≤880 ppm 106 ± 56 ppm  

Residual MeCN ≤410 ppm 179 ± 78 ppm 

Residual Cu ≤34 ppm 0.11 ± 0.02 ppm 

Filter membrane integrity ≥50 psi 56 ± 1 psi 

Bacterial endotoxins ≤ 2.00 EUb/mL <2.00 EUb/mL 

Sterility No microbial growth Pass 
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Table 5. 3: Validated cGMP Synthesis of [18F]FDOPA 3. Adapted from ref. 43 with permission from Royal Society of Chemistry 

5.2.2. Development of a Fast TLC Spot Test for the Analysis of Residual TBA Levels 

Many of the developments in synthesis, QC testing and regulatory oversight pertaining to 

fluorine-18 radiochemistry have been steered by the need to manufacture [18F]FDG for widespread 

clinical use. For example, synthesis of [18F]FDG (and many historical radiotracers) involves use 

of kryptofix-2.2.2 (K2.2.2) as a phase transfer catalyst to enhance the reactivity of nucleophilic 

[18F]KF, and over ten years ago the Michigan Cyclotron and Radiochemistry Facility reported a 

method for analyzing residual K2.2.2 levels in formulated radiotracer doses.50 However, increases 

in utilization of PET are, in part, being driven by demand for new radiotracers. The last 10 years 

has seen FDA approval of several new 18F-labeled radiotracers for PET imaging of amyloid 

plagues (Amyvid, Vizamyl, Neuraceq), tau (Tauvid), prostate cancer (auxumin), and breast cancer 

(Cerianna),51 as well as an increase in the use of labeled drug assets to support pharmaceutical R 

and D.52 This expansion in the utilization of PET has created a need to radiolabel more diverse and 

complex molecules which, in turn, has spurred development of new methods for incorporating 

fluorine-18 into bioactive molecules.22 In particular, transition metal-mediated reactions using 

high molar activity [18F]fluoride have changed the way radiochemists form C–18F bonds53 and, as 

described above, copper-mediated radiofluorination (CMRF) has proven one of the most versatile 

of approaches to date (for a review of radiotracers synthesized by CMRF, see ref. 54). Key to the 

development and optimization of new radiofluorination reactions in our laboratory has been 

venturing beyond the traditional [18F]KF•K2.2.2 paradigm to explore new elution strategies45 and 

alternate sources of [18F]fluoride such as [18F]AgF, [18F]HF and [18F]tetrabutylammonium fluoride 

([18F]TBAF).55–58 
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The tetrabutylammonium (TBA, 4) cation is a reliable [18F]fluoride counterion for the 

efficient elution and solubilization of [18F]fluoride in aprotic solvents and is applicable to a range 

of fluorination conditions (i.e. in the presence or absence of a metal catalyst).59–61 As described 

above (Table 2.1), our new synthesis of [18F]F-l-DOPA ([18F]FDOPA, 2), requires TBA elution 

to generate [18F]TBAF in order to give optimal RCYs.62 In order to elute [18F]fluoride completely 

from a SPE cartridge, however, a quantity of TBA exceeding the dose limit (2.6 mg/V (per patient 

dose)), set by the European Pharmacopeia (Ph. Eur.), is typically used. TBA is also used in the 

preparation of carbon-11 PET imaging agents. TBA phenolate or carboxylate salts of the 

desmethyl precursors (such as [11C]carfentanil ([11C]CFN, 5)), furnish a very reactive site for 

carbon-11 methylation (when using, for example [11C]CH3I or [11C]CH3OTf).63–65  

 

Fig. 5. 3: Structures of TBA and radiopharmaceuticals that use TBA during synthesis. 

The Ph. Eur. Suggests performing HPLC when analyzing residual TBA. However, the 

considerable amount of time and the expense of equipment required, especially as this requires 

multiple HPLC systems since this test and the test for radiochemical identity needs to be completed 

within 30 minutes from the end of synthesis, makes this a less than ideal approach. For the 

widespread implementation of TBA in the preparation of fluorine-18 and carbon-11 

radiopharmaceuticals a simple straightforward QC test is required. A spot test analogous to the one 

currently in use for detection of K2.2.2 is ideal for speed, consistency and ease of use for staff 

scientists and technicians.50 A fast TLC spot test utilizing iodine vapor has been developed for 
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analyzing the presence of TBA in radiopharmaceutical doses, but unfortunately it does not 

quantitatively assess TBA concentration for release.66 The iodine test stains TBA well below the 

dose limit with a detection limit of 0.04 mg/mL, making it difficult to assess a clear pass or fail 

result. In addition, routine use of iodine vapors by the staff requires a containment hood for safe 

use.  

More recently, Halvorsen and Kvernenes adapted the classical iodoplatinate reagent used 

in K2.2.2 analysis for detecting TBA.67 Although this method is useful for testing standard volumes 

of 10 mL doses, corresponding to a concentration of TBA at 0.26 mg/mL, the method’s limit of 

detection (LoD) cannot be altered, and therefore it is challenging to use for other desired injection 

volumes (V), which have different TBA concentrations. Since we were in need of a TLC method 

to determine residual TBA levels in doses of [18F]FDOPA,57,58 independent of these other efforts 

we have developed a fast and quantitative spot test that employs the classical Dragendorff stain.68,69 

This new method has high specificity for TBA (compared to the radiotracer and other formulation 

components), and is applicable to a wide range of radiotracer doses. The TLC spot test requires 

very limited equipment and can be completed quickly within the constraints of PET radiotracer 

quality control which usually needs to be completed ≤20 min. At TBA levels ≥2.6 mg/V the spot 

test results in an easily detectable spot, while at concentrations ≤2.6 mg/V it does not, allowing for 

easy go/no-go decisions on dose release to be made during quality control testing. 

Therefore, a fast and quantitative spot test that is applicable to a wide range of 

radiopharmaceutical doses where the stain used has high specificity for TBA compared to the 

imaging agent and other formulation components was developed. In addition, our goal was to 

develop a spot test where an amount of TBA above Ph. Eur.’s dose limit gave an easily detected 

spot while a dose below that limit did not. A fast spot test that requires a very limited amount of 
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equipment and can be completed quickly within the constraints of PET radiopharmaceutical 

manufacturing for the detection of TBA will be a benefit for the PET imaging community by 

allowing for widespread utilization of TBA in PET radiochemistry.  

In our recently developed synthesis of [18F]FDOPA using CMRF, 7.5 mg of TBAOTf is 

used to generate [18F]TBAF,57,58 while the commercially cassettes available for production of 

[18F]FDOPA utilize 24 mg TBAHCO3.
70 In the event of a purification problem, it is possible that 

levels of TBA in the final product prepared using either method exceed the established 

concentration limit defined by Ph Eur (2.6 mg/V, where V = 10 mL57,58 or 28 mL,70 respectively). 

It should be noted that for the different formulation volumes the limit, and thus the sensitivity of 

the test, will vary (e.g. limit in 28 and 10 mL doses are of 0.09 and 0.26 mg/mL, respectively, 

assuming the entire dose is administered to a single patient). 

 Initial studies of known TLC stains for quaternaryalkyl ammonium cations like TBA were 

performed. Three of the most promising, iodoplatinate that is used for K2.2.2, Dragendorff stain 

(potassium bismuth iodide), and iodine vapor were tested for their ability to visualize TBA at 

different concentrations between 0.001 and 10 mg/mL (Table 5.4 and Figure 5.4). Standards were 

prepared by serial dilution of TBAOTf in water, and the LoD was determined for each TLC stain 

was determined. 

Visualization of TBA using pre-developed iodoplatinate plates proved challenging in our 

hands and results were difficult to interpret (Figure 5.4.a). The staining pattern of TBA was 

difficult to distinguish from a control spot (water) with the same colored concentric circles 

surrounding the spot of interest. Iodine staining showed a robust spot at the 10 mg/mL TBA 

concentration, but quickly lost intensity with further dilution (Figure 5.4.c). Although iodine and 

iodoplatinate staining of TBA indicated positive staining at ≥0.25 mg/mL TBA, they did not 
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provide a positive stain at 0.1 mg/mL, meaning they are not suitable tests for larger more dilute 

formulations that are common in multidose preparation of fluorine-18 radiotracers.70 Iodine 

staining has been published as a viable method for TBA assessment, but requires the addition of 

10 μL of MeOH/NH4OH (90:10 v/v) to the TBA spot in order to enhance the signal and reduce 

the LoD.66 The goal was to establish a quick TLC method that did not require more than just 

spotting the solution of interest and applying a stain in order to reduce complexity and minimize 

potential for test error, and thus focus was shifted to investigating the Dragendorff stain for analysis 

of TBA. 

 

Table 5. 4: Various TLC Stains for the detection of TBA (ND = not detectable). Adapted from ref. 83 with permission from 

Royal Society of Chemistry 

 

TBA (mg/ml) 
  

Iodine Iodoplatinate 
  

 Manually prepared 

Dragendorff 

10   Rust orange spot Solid redwood spot   Solid orange spot 

1  faint orange spot Solid redwood spot with gray halo  Faint orange spot 

0.5  faint orange halo Solid redwood spot with gray halo  Orange halo 

0.26 (standard 10 mL dose limit)      

0.25   faint orange halo  Solid redwood spot with gray halo   Orange halo 

0.1 (26 mL dose limit)   ND  ND   Faint orange halo  
0.9 (28 mL dose limit)      

0.01   ND  ND   Faint orange halo  
0.001   ND ND   ND 
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Fig. 5. 4: TLC Staining of TBA standards using a) pre-developed iodoplatinate plates, b) manual Dragendorff stain, and c) iodine 

chamber. Adapted from ref. 83 with permission from Royal Society of Chemistry 

 

Dragendorff reagent, which is commercially available as a spray solution or as an even 

more concentrated dipping solution (see Materials and Methods, Section 5.4), and has known 

specificity for alkaloids and quaternaryalkyl ammonium bases.71 The specificity of Dragendorff 

reagent for TBA proceeds through a single displacement reaction, with TBA thought to exchange 

with potassium in the active ingredient (KBiI4) to generate an easily visualized orange precipitate 

(Equation 5.1).72 

 

Eq. 5. 1: Reaction of Dragendorff reagent with TBA to form orange precipitate 

Use of either commercially available Dragendorff spray or dipping solution resulted in a 

pale orange background on which to interpret a positive stain, with an LoD of 0.14 mg/mL TBA 

(Figure 5.5). It was concluded that the orange background would make it difficult to quantify the 
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presence of residual TBA accurately and rapidly in radiotracer doses, particularly at low 

concentrations. The preparation of a custom Dragendorff stock solution was undertaken in order 

to tune its sensitivity and eliminate the background color for higher spot contrast. After 

optimization, our prepared Dragendorff reagent (see Materials and Methods section 5.4 for 

preparation of Dragendorff’s staining solution), provided positive orange spots with a white 

background and an LoD of 0.01 mg/mL (Figure 5.4.b). The TLC stain provided a clear 

background for confident identification of a positive spot at (or above) the allowable limit for 

injection (LoI). A semiquantitative TLC method for TBA using prepared Dragendorff solution was 

further developed. Although the active ingredient (BiI4
-) remains the same in both the commercial 

products and our custom solution, the use of acetic acid and ethyl acetate as solvents in the 

commercial products (versus nitric acid and water used to prepare our version) may contribute to 

the orange background seen with the commercial stains (Figure 5.5). The exact contents of 

commercially available Dragendorff reagent are proprietary, limiting further speculation. 

 
 

Fig. 5. 5: Representative commercial Dragendorff stain of TBA standards. Adapted from ref. 83 with permission from Royal 

Society of Chemistry 

 In order to develop a quick pass or fail spot test for TBA in different radiotracer 

formulations, it was hypothesized that the LoD of Dragendorff stain could be varied by dilution to 

match the appropriate LoI for TBA in a given formulation volume. A test where any TBA 

concentration above the LoI would give a positive response and any concentration below would 

not yield a spot by staining was the goal of our development. As proof of concept, it was hoped 

that a stain could be developed for analyzing residual TBA levels in the two formulations of 

[18F]FDOPA utilized in our laboratory (10 mL of saline57,58 and 28 mL of PBS70). Standards were 
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prepared spanning the TBA LoD (≤ 0.26 mg/mL) for a 10 mL dose formulated in normal saline 

(Table 5.5 and Figure 5.6.a, A-K) as well as standards spanning the LoD (≤0.1 mg/mL) for a 28 

mL dose formulated in PBS (Table 5.5 and Fig. 5.6.b, L-V), and explored development of custom 

Dragendorff stains for both. 

 

Table 5. 5: TBA concentration identifiers A-V. Adapted from ref. 83 with permission from Royal Society of Chemistry 

 
 

Fig. 5. 6: Dragendorff stain of a) saline prepared TBA standards and b) PBS prepared TBA standards. Adapted from ref. 83 with 

permission from Royal Society of Chemistry 

Diluting our custom Dragendorff solution with water (1:15 when staining TBA standards 

representative of [18F]FDOPA formulated in 10 mL saline, and 1:9 when staining standards 

representative of FDOPA dissolved in 28 mL of PBS) proved optimal and solid orange spots were 

observed down to the LoI for both formulations (0.23 mg/mL (Figure 5.6.a) and 0.08 mg/mL 

(Figure 5.6.b), respectively). Gratifyingly, no matrix interference was observed from saline or 

PBS. This demonstrated the robustness of the prepared Dragendorff reagent spot test and also the 

ability to customize it for a given radiotracer formulation. 

With a pass or fail TLC spot test for TBA in hand, analysis of residual TBA levels in 

[18F]FDOPA batches prepared for clinical use using either a GE TRACERlab FXFN 
57,58 or a GE 

FASTlab270 and formulated in 10 mL saline (n = 3, Figure 5.7) or 28 mL of PBS (n = 4), 

respectively (Table 5.6) were performed. To test for the possibility of false negative results, an 

aliquot of the final dose was also spiked with an internal TBA standard corresponding to the LoI. 

Identifier A B C D E F G H I J K

TBA (mg/mL) 0.3 0.29 0.28 0.27 0.26 0.25 0.24 0.23 0.22 0.21 0.2

Identifier L M N O P Q R S T U V

TBA (mg/mL) 0.15 0.14 0.13 0.12 0.11 0.1 0.09 0.08 0.07 0.06 0.05

a) b) 
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By spotting the final dose, the final dose with an internal standard, a TBA standard equal to that 

of the LoI and a negative control (water) on the same plate, it was possible to determine with 

confidence that doses of [18F]FDOPA prepared via either method did not contain TBA above the 

LoI, and were thus suitable for human use. 

 

Table 5. 6: QC Analysis of [18F]FDOPA for TBA. Adapted with permission from Royal Society of Chemistry. a using 14 d old 

Dragendorff 

 
 

Fig. 5. 7: Dragendorff testing of [18F]FDOPA doses. Adapted from ref. 83 with permission from Royal Society of Chemistry 

Finally, the longevity of the stain was tested by performing residual TBA analysis every 

other day for two weeks. The stain was kept in a fume hood at room temperature during this time. 

The same results were obtained over the two week duration (Table 2.6), indicating that our custom 

Dragendorff stain is shelf stable and can be used for routine radiotracer QC testing. 

5.3. Discussion and Conclusions 

  Radiofluorination of organoborons, reported independently by Tredwell et al.29 and 

Mossine et al.,30 has proven one of the most versatile approaches for the late-stage fluorination of 

bioactive molecules to date. We have further optimized the approach for use with automated 

radiochemistry synthesis modules,45,46 and additional variants of the original methods have 

subsequently been reported by Zischler et al.42 and Zlatopolskiy et al.73 The methodology has been 

[18F]FDOPA Formulation LoI 

(mg/mL) 

Dose Standard Dose spiked with Std Water n 

10 mL Saline ≤0.26 
    

3 

28 mL PBS ≤0.09 
    

4 

10 mL Saline ≤0.26 
    

1a 

 



 

240 
 

rapidly adopted by the PET radiochemistry community, and a number of independent groups have 

used the technique to synthesize new PET radiopharmaceuticals for preclinical and clinical use.74–

81 Given the historical challenges associated with synthesizing [18F]FDOPA from nucleophilic 

[18F]fluoride, we were motivated to overcome these issues through development of a one-pot, two-

step synthesis of high-molar-activity [18F]FDOPA by copper-mediated fluorination of a BPin 

precursor. Here, a method that primarily uses off-the-shelf reagents and a commonly available 

synthesis module was validated for production of [18F]FDOPA for clinical use by preparing 

process-verification batches.43 The one-pot production method provides [18F]FDOPA in 

reasonable radiochemical yield (3.85 ± 0.59 GBq, 104 ± 16 mCi, 6 ± 1% based upon ~66.6 GBq 

(1,800 mCi) of starting [18F]fluoride), excellent radiochemical (>99%, Figure 5.10) and 

enantiomeric (>99%, Figure 5.11) purity, and high molar activity (141 ± 77 TBq/mmol, 3,799 ± 

2,087 Ci/mmol), n = 3. All other QC testing confirmed that each dose met or exceeded QC criteria 

established for human use of PET radiopharmaceuticals (Table 5.3). The one-pot method with 

HLB purification between fluorination and deprotection also provides [18F]FDOPA in moderate 

radiochemical yield (2.26 ± 0.48 GBq, 61 ± 13 mCi, 5 ± 1% based upon 45.6 ± 11.0 GBq (1,232 

± 298 mCi) of starting [18F]fluoride), excellent radiochemical purity (>98%) and high molar 

activity (71 ± 17 TBq/mmol, 1,909 ± 459 Ci/mmol), n = 23. The method has been validated to 

work well at two separate sites, an academic facility with a cyclotron on site (University of 

Michigan (UM)) and an industry lab purchasing [18F]fluoride from an outside vendor (AbbVie). 

We were gratified that the yield of [18F]FDOPA was comparable at the two sites (UM: 6 ± 1%; 

AbbVie: 5 ± 1%). Given the operational simplicity of the method, which uses a standard 

radiochemistry synthesis module, and the demonstrated robustness of this protocol, we anticipate 

that the reliability of synthesizing [18F]FDOPA with this method will be high. As such, we expect 



 

241 
 

that this method (or a modification thereof) will be useful to research facilities that own a 

TRACERLab FXFN or similar system and that want access to a straightforward procedure for 

producing [18F]FDOPA. 

 Also, a quick reliable TLC spot test for determining residual TBA levels in radiotracer 

formulations has been developed using the Dragendorff reagent. The test is straightforward, 

does not require expensive equipment to implement, can easily be tuned for different radiotracer 

formulations, and is analogous to existing QC TLC spot tests for K2.2.2 allowing easy 

implementation at PET Centers using [18F]TBAF to produce clinical radiotracers. This spot test is 

also expected to facilitate use of [18F]TBAF at more facilities in the future as it allows easy QC 

testing without causing workflow issues or mandating costly equipment acquisitions. Our facility 

has implemented this TLC spot test for analysis of residual TBA+ in radiotracers prepared for 

clinical use with [18F]TBAF. 

 Radiofluorination can be accomplished using Cu(Py)4(OTf)2 (Step 13A) or Cu(OTf)2 (Step 

13B). To simplify automation, we prefer to use the less hygroscopic Cu(Py)4(OTf)2. Two 

variations that have also been used for removal of the methoxymethyl acetal (MOM) and tert-

butyloxycarbonyl (Boc) groups from protected [18F]FDOPA perform similarly and can be selected 

on the basis of available equipment and site radiochemistry preferences. The first is a standard 

one-pot synthesis that uses a standard TRACERLab FXFN synthesis module setup; the deprotection 

cocktail (HCl/ascorbic acid) is added to the crude reaction mixture following fluorination (Step 

16A). Following deprotection, the entire reaction mixture is then injected onto the column for 

purification of [18F]FDOPA by semi-preparative HPLC. The second variation is a pseudo-one-pot 

synthesis involving pre-purification of the protected-[18F]FDOPA intermediate before 

deprotection (Step 16B). Briefly, the radiofluorination reaction mixture is diluted in an aqueous 
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solution containing ascorbic acid and/or ethylenediaminetetraacetic acid (EDTA) to reduce and 

coordinate copper, respectively, and is then passed through a reversed-phase C18 plus or Oasis 

hydrophilic–lipophilic–balanced (HLB) SPE cartridge to trap the lipophilic protected [18F]FDOPA 

intermediate. Protected [18F]FDOPA is then eluted from the SPE cartridge with ethanol back into 

the reactor, resulting in a partially purified solution of protected [18F]FDOPA. Deprotection then 

proceeds as for Step 16A. This pre-purification requires a modified TRACERLab FXFN synthesis 

module (see Method 1 for time list), and has two benefits: (i) it removes most of the copper, 

potentially reducing the extent of oxidative [18F]FDOPA degradation during deprotection and (ii) 

it removes N-N-dimethylformamide (DMF), which simplifies semi-preparative HPLC. The net 

result is a more consistent radiochemical yield (RCY) run to run. It is also possible to synthesize 

[18F]FDOPA using a manual procedure. This method uses lower amounts of starting [18F]fluoride 

than automated clinical-scale production and can be used in facilities without access to automated 

synthesis modules. It is also appropriate when only a small amount of [18F]FDOPA is required for 

a chemistry or animal imaging experiment. Last, we showcase Cu-mediated radiofluorination for 

the synthesis of [18F]FDOPA in this protocol. However, the method is readily adaptable to the 

synthesis of other PET radiotracers after appropriate development of radiolabelling and 

deprotection conditions.  

5.4. Materials and Methods 

General Considerations 

Unless otherwise stated, reagents and solvents were commercially available and used 

without further purification: O-MOM-N-Boc-protected Bpin precursor (Part No. 1312) and 

authentic reference standards of 6-F-l-DOPA (Part No. 1310), 6-F-d,l-DOPA (Part No. 1311), and 

6-OH-d,l-DOPA (Part No. 1332) were purchased from ABX. 6-H-l-DOPA (Part No. D9628), 
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anhydrous pyridine (Part No. 270970), Tetrakispyridine copper(II) trifluoromethanesulfonate (Part 

No. 34527), ascorbic acid (Part No. 255564), hydrochloric acid (Part No. h1758), 

Tetrabutylammonium trifluoromethanesulfonate (Part No. 86888), and cesium carbonate (Part No. 

41902) were purchased from Sigma Aldrich. Anhydrous N,N-dimethylformamide was purchased 

from Acros (Part No. 448381000). HPLC-grade Acetonitrile (Part No. A998-4), potassium acetate 

Part No. P171-500), acetic acid (Part No. A38S-500), and sodium bicarbonate (Part No. S233-500) 

were purchased from Fisher Scientific. Ethanol (200 proof, USP) was purchased from Decon 

Laboratories, Inc. Sodium chloride 0.9%, USP and sterile water for injection, USP were sourced 

from Hospira. Other synthesis components were obtained as follows: Sterile vials were obtained 

from Hollister-Stier, Millex filters were from Millipore (Part No. SLFG025LS and SLGV013SL 

or GV and FG, respectively), and QMA-light cartridges were purchased from Waters. Luna NH2 

micron 10x250 mm and 4.6x150 mm HPLC columns (Part No. 00g-4378-n0 and 00f-4378-e0), 

Luna NH2 guard cartridge discs (Part No. 00G-4454-N0PRP-214513), and Strata® 200 mg SPE 

cartridges Part No. 8B-5009-FBJ) were purchased from Phenomenex. Astec® CHIROBIOTIC® 

T Chiral HPLC column (Part No. 12024AST) was purchased from Sigma Aldrich. QMA cartridges 

were conditioned with ethanol, 0.5M NaHCO3, and sterile water (10 mL of each, in that order) 

prior to use. Strata cartridges were conditioned with ethanol, sterile water, and acetonitrile (10 mL 

of each, in that order) prior to use 

Safety and hazards 

All hazardous laboratory chemicals were used under the supervision of University of Michigan 

(UM) Environmental Health and Safety. Radioactivity was used by trained personnel under the 

approval of the UM Radiation Policy Committee (Protocol 12-029) and supervision of the UM 

Radiation Safety Service and according to ALARA (as low as reasonably achievable) principles. 
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All reactions involving radioactivity were conducted in a lead-shielded fume hood or hot-cell, and 

followed appropriate institutional, state and/or federal radiation safety guidelines.  

Preparation of TBA Standards  

A 1mg/mL TBA solution was created by dissolving 16.15 mg of TBAOTf in 10 mL of either 

water, saline, or PBS. A series of 1 mL standard concentrations were made by serial diluting the 1 

mg/mL solution in its appropriate buffer to create a range from 0.3 mg/mL – 0.05 mg/mL. 

TLC Procedure 

2 μL spots of TBA standards or formulated dose were applied to silica plates or pre-developed 

plates containing iodoplatinate solution via an auto-pipette. In the case of Dragendorff or iodine 

staining, the spots were then dried with a cool air stream for 30 seconds. For Dragendorff staining, 

the TLC plates were dipped into the Dragendorff solution to fully immerse the spots for 10-20 

seconds to allow for the formation of orange precipitate. Once removed, plates were photographed 

immediately and visually analyzed. Air drying after the Dragendorff staining can enhance the 

intensity of the spots, however using warm air resulted in a whiting out of the plate. 

5.4.1. Synthesis and Purification of [18F]FDOPA  

Reagent Setup 

• TBAOTf/Cs2CO3 eluent solution (Step 11): Weigh out 150 mg TBAOTf and 2 mg 

Cs2CO3 in a 20 mL scintillation vial. Add 10 mL water and a stirrer bar and cover (but do 

not seal) the scintillation vial. Heat while stirring until solution is near-boiling and all 

solids have dissolved. Remove stirrer bar, cap vial and allow to cool to room temperature. 

A small amount of crystalline material may form on cooling around lip of container, but 

this will re-dissolve in the solution over time. Store this eluent at room temperature for up 

to 3 months. 
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• FDOPA BPin precursor (1) stock solution (4 µmol/200 µL): Using a syringe, transfer 

1.5 mL of anhydrous DMF into the sealed vial containing 20 mg dry BPin precursor (1). 

Vortex for at least 1 min to dissolve all precursor. Precursor stock solution can be stored 

for up to 3 months in the -20 °C freezer, vial placed in a sealed jar containing Drierite®. 

• FDOPA reactant solution (Step 13A): Weigh out 13.5 ± 0.5 mg of Cu(py)4(OTf)2 into 

a 4 mL glass vial. Add 0.8 mL of anhydrous DMF then cap vial and fully dissolve the 

solid by vortexing for 30 sec. Add 33.2 µL anhydrous pyridine followed by 0.2 mL of 

precursor stock solution. Agitate briefly, then use immediately after preparation. Do not 

heat this solution at any stage of preparation. 

• Alternative FDOPA reactant solution (Step 13B): Weigh out 7.5 ± 0.5 mg of Cu(OTf)2 

into a 4 mL glass vial. Add 1.0 mL of anhydrous DMF then cap vial and fully dissolve 

the solid by vortexing for 30 sec. Add 80 µL anhydrous pyridine followed by 0.2 mL of 

precursor stock solution. Agitate briefly, then use immediately after preparation. Do not 

heat this solution at any stage of preparation. 

• 0.25M ascorbic acid solution: Weigh out 440 mg ascorbic acid in a 20 mL scintillation 

vial and dissolve in 10 mL water. Cap vial and store in refrigerator for up to 1 month. 

• 0.10M ascorbic acid solution: Weigh out 176 mg ascorbic acid in a 20 mL scintillation 

vial and dissolve in 10 mL water. Cap vial and store in refrigerator for up to 1 month. 

• 0.10M ascorbic acid/0.01M EDTA solution (Step 14B, i): Weigh out 176 mg ascorbic 

acid and 42 mg EDTA in a 20 mL scintillation vial and dissolve in 10 mL HPLC grade 

water. Cap vial and store in refrigerator for up to 1 month. 

• Deprotecting solution (Step 14A): Mix 0.2 mL 0.25M ascorbic acid solution with 0.6 

mL 36.5 – 38.0% HCl. Use immediately after preparation.  
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• Alternative Deprotecting solution (Step 14B, iii): Mix 0.25 mL of 0.10M ascorbic acid 

solution with 0.25 mL of 36.5 – 38.0% HCl. Use immediately after preparation. 

• Semi-preparative HPLC eluent #1 (90% MeCN) (Steps 3, 4 and 16): Dissolve 

approximately 1 g KOAc in 100 mL water, add 1 mL AcOH followed by 900 mL MeCN. 

Ensure the pH of this solution lies between 7.0 and 8.0 using a pH sensor. Adjust 

accordingly with KOAc/AcOH if outside of range. Sonicate before using. Store for up to 

1 week. 

• Semi-preparative HPLC eluent #2 (75% MeCN) (Steps 3 and 16): Dissolve 

approximately 1 g KOAc in 250 mL water, add 10 mL AcOH followed by 750 mL MeCN. 

Ensure that pH of this solution lies between 5.0 and 5.5 using a pH sensor. Adjust 

accordingly with KOH/AcOH if outside of range. Sonicate before using. Store for up to 

1 week. 

• Analytical HPLC eluent (70% MeCN) (Step 25): Dissolve approximately 1 g KOAc 

in 300 mL water, add 1 mL AcOH followed by 700 mL MeCN. Ensure the pH of this 

solution lies between 5.0 and 5.5 using a pH sensor. Adjust accordingly with 

KOAc/AcOH if outside of range. Sonicate before using. Store for up to 1 week. 

• Chiral Analytical HPLC eluent (30% EtOH) (Step 27): Dissolve approximately 1 g 

KOAc in 700 mL water, add 1 mL AcOH followed by 300 mL EtOH. Ensure the pH of 

this solution lies between 5.0 and 5.5 using a pH sensor. Adjust accordingly with 

KOAc/AcOH if outside of range. Sonicate before using. Store for up to 1 week. 

• 0.5 M NaHCO3 solution: Dissolve 8.4 g NaHCO3 in 200 mL water. Can be stored sealed 

at room temperature for up to 1 month. 
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• Preparation of Dragendorff solution: Stock Dragendorff solution was prepared 

according to a literature procedure82: 

Solution A: 

(a) 8.0 g bismuth(III) nitrate was dissolved in 25 mL 25% Nitric Acid (bismuth solution) 

(b) 20 g potassium iodide was used to make a slurry in 1 mL 6 N HCl and 5 mL water 

(slurry) 

(c) The bismuth solution was added to the slurry slowly while stirring 

(d) The resulting solution was diluted with 100 mL water and any solid present was 

removed by filtration  

Dragendorff stock solution: 

(a) In a solution containing 20 mL water and 5 mL 6 N HCl was added 2 mL of Solution 

A followed by 6 mL 6N NaOH. Due to the presence of bismuth hydroxide not fully 

dissolving by shaking, several drops of 6 N HCl were added for a yellow-orange 

translucent solution. 

Dragendorff dilution: Dragendorff stock solution was diluted 1:15 or 1:9 in H2O and a 

cloudy solution was formed. 6N HCl was then added dropwise to the diluted stain solution 

until a transparent yellow solution was formed. 

Equipment Setup 

• Waters Light QMA cartridge: Flush sequentially with 10 mL absolute ethanol, 10 mL 

0.5M sodium bicarbonate solution, and 10 mL water (Milli-Q or ACS Reagent for 

ultratrace). Attach it to the synthesis module. 

• Waters HLB Short Plus cartridge (for alternate method with HLB purification between 

fluorination and deprotection, Step 8B): Flush sequentially with 10 mL absolute ethanol, 
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10 mL HPLC grade water. Attach to the synthesis module in the “intermediate cartridge” 

position. 

• Strata® NH2 200mg SPE cartridge: Flush sequentially with 10 mL absolute ethanol, 10 

mL water, and 10 mL acetonitrile. Attach it to the reformulation module of the synthesis 

module. 

• Preparation of semi-preparative (Luna NH2 5µ 10 x 250 mm) HPLC column: Assemble 

guard column as per manufacturer instructions and attach to semi-preparative HPLC 

column. Flush column for 15 – 3 min at 5 mL/min with 90% MeCN (Semi-preparative 

HPLC eluent #1) prior to installation in the synthesis module. Replace guard column 

cartridges as needed (every 1-3 months depending on frequency of use). We also 

recommend flushing the column with water containing 0.1% trifluoroacetic acid for 15 

min at 5mL/min once every 5 runs. 
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Fig. 5. 8: GE TRACERLab FXFN configuration 

Hot Cell and TRACERLab FXFN Preparation 

Preparation for the synthesis of [18F]FDOPA should begin at least 15-30 min before start of 

cyclotron production of [18F]fluoride.  

1| Turn on the TRACERLab FXFN module and computer. Start the Tracerlab FXFN software 

program and fill the module’s dewar with liquid nitrogen. Verify the machine has been cleaned, 

disinfected and dried using approved methods (clean if necessary) and that all components are in 

working order. 

2| Remove and clean the synthesis module reactor with 1) 0.5M NaHCO3 solution, 2) water, 3) 

ethanol and 4) acetone, then rinse with acetone and thoroughly dry. After drying, equip the reactor 

with a stirrer bar and reinstall on the TRACERLab.  

Cleaning of TRACERLab FXFN synthesis module: Follow manufacturer 

instructions/facility standard operating procedures in cleaning, disinfecting, and drying the 

synthesis module. We recommend using 70% ethanol as disinfectant. Both the glass and 

glassy carbon reactors can be used in the synthesis of [18F]FDOPA.  

3| Install HPLC eluents on the TRACERLab system (Reservoir 1: 90% MeCN; Reservoir 2: 75% 

MeCN). 

4| Attach a guard column to the semi-preparative HPLC column and install on the TRACERLab 

module. Flush the column with 90% acetonitrile (Reservoir 1) for 15-30 min at 5 mL/min. 

5| Start the FDOPA production method in the synthesis module software  

6| Attach the QMA, optional HLB, and Strata® NH2 cartridges to the synthesis module. See 

Equipment Setup for preconditioning protocols.  

7| Fill vials accordingly if using a TRACERLab FXFN synthesis module, the vials should be filled 

as follows: vial 1: TBAOTf/Cs2CO3 eluent solution (0.5 mL, Step 11); vial 2: acetonitrile (1 mL, 
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Step 12); vial 3: FDOPA reactant solution (0.5 mL, Step 13A) or alternative FDOPA reactant 

solution (1.25 mL, Step 13B); vial 4: deprotecting solution (0.8 mL, Step 16A) or alternative 

deprotecting solution (0.5 mL, Step 16B(iii)); vial 5: ascorbic acid/EDTA solution (10 mL, Step 

16B(i), only if using the alternative method with HLB purification between fluorination and 

deprotection); vial 6: acetonitrile (3 mL for one-pot procedure; 2 mL for alternative method with 

HLB purification); vial 7: 10 mL of USP saline; vial 8: 3 mL of dehydrated ethanol, USP; 

intermediate vial: absolute ethanol (2 mL, Step 16B(ii), only if using the alternative method with 

HLB purification); dilution flask: acetonitrile (100 mL). Fill dilution flask with 100 mL 

acetonitrile. If using the alternate procedure involving purification with an HLB cartridge between 

fluorination and deprotection, also add 2 mL of absolute ethanol to the intermediate vial. 

8| Aseptically assemble the final dose vial by inserting an inlet needle and 13 mm Millex GV filter 

and a vent needle with FG filter according to local procedures. Attach the TRACERLab product 

delivery line to the final dose vial via the 13 mm GV filter. 

Final dose vials should be assembled using aseptic technique in a Class 5 laminar airflow hood (or 

equivalent) and in compliance with local drug manufacturing and/or pharmacy regulations. 

Preparation of [18F]fluoride 

9| Produce fluorine-18 in the cyclotron via the 18O(p,n)18F nuclear reaction (55 µA for 30 min or 

as needed) and transfer it to the target vial of the TRACERLab FXFN synthesis module.  

Synthesis of [18F]FDOPA 

10| Slowly transfer the solution of [18F]fluoride in [18O]H2O through the QMA cartridge, trapping 

the [18F]fluoride and recovering the [18O]H2O for proper disposal or recycling.  

11| Elute [18F]fluoride from the QMA cartridge into the TRACERLab reactor with 0.5 mL Eluent 

Solution (see Reagent Setup). 



 

251 
 

12| Add 1 mL of MeCN to the reactor and then heat to 100 °C while applying vacuum and/or argon 

flow to azeotropically dry the [18F]fluoride.  

13| After drying is complete, cool the reactor to 50 °C and add either Cu(Py)4(OTf)2 or Cu(OTf)2.  

 Reagent Setup Name Volume (ml) 

A) Cu(Py)4(OTf)2 FDOPA reactant solution 0.5  

B) Cu(OTf)2 Alternative FDOPA Reactant 

Solution 

1.25 

 

14| Stir at 50 °C for 5 min.  

15| Increase the reactor temperature to 110 °C and continue heating for 20 min (Note: 20 mins is 

the optimal reaction time for this chemistry).46 

16| Do the deprotection reaction either without pre-purification (one-pot method, option A) or with 

pre-purification of the protected-[18F]FDOPA intermediate prior to deprotection (alternate one-pot 

method with HLB purification, option B). 

(A) One-pot Method 

i. Cool the reactor to 50 °C, add the Deprotecting Solution to the reactor (see Reagent 

Preparation) and heat at 100 °C for 10 min. 

(B) Alternate One-pot Method with HLB purification between Fluorination and 

Deprotection 

i. Cool the reactor to 50 °C and add ascorbic acid/EDTA solution (see Reagent 

Preparation) into the reactor. Stir for 30 s, and then load the reaction mixture onto the 

HLB cartridge, trapping protected [18F]FDOPA on the cartridge. 
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ii. Elute protected [18F]FDOPA from the HLB cartridge back into the reactor using 

ethanol (2 mL) from the intermediate vial. 

iii. Add the Alternative Deprotecting Solution to the reactor (see Reagent preparation), and 

heat at 100 °C for 10 min. 

17| Cool reactor to 50 °C and add 2 mL acetonitrile.  

Purification and Reformulation of [18F]FDOPA 

18| Load reactor contents onto a 5 mL HPLC loop, then inject onto the HPLC column. Purify by 

semi-preparative HPLC. Flow rate should be set to 5 mL/min, reservoir 1 (90% MeCN). Elute 

column for 10 minutes at 5 mL/min. Switch eluent to reservoir 2 (75% acetonitrile) and continue 

to elute column at 5 mL/min.  
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Fig. 5. 9: Semi-preparative HPLC traces for [18F]FDOPA prepared using two different methods. a,[18F]FDOPA prepared using 

the one-pot method. b,[18F]FDOPA prepared using the alternative one-pot method with HLB purification between fluorination 

and deprotection. a.u., absorbance units. Adapted from ref. 43 with permission from Royal Society of Chemistry. 

 

19| Collect the HPLC product fraction corresponding to [18F]FDOPA into a dilution flask 

containing MeCN (100 mL). Collect the peak corresponding to [18F]FDOPA at the appropriate 

retention time (~22 – 23 min, see Figure 5.9). Collect for approximately 2 min from the time liquid 

begins dripping into collection vial (fraction should elute in ≤ 1.5 min). 
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20| Briefly stir the dilution flask contents, then transfer the solution through the Strata® NH2 SPE 

cartridge, trapping [18F]FDOPA. Dry with argon flow for at least 2 min. Drying step is important 

to remove residual MeCN.  

21| Wash the Strata® NH2 cartridge with 3 mL absolute ethanol, then dry with argon flow for at 

least 3 min. Washing and drying steps are important to ensure there is no residual MeCN in final 

dose.  

22| Elute Strata® NH2 SPE cartridge with 10 mL 0.9% saline into a product collection vial.  

23| Transfer the formulated [18F]FDOPA through the 13 mm GV sterile filter into the sterile 

product vial. Aseptically remove 0.5 mL of the batch and place it in a 2cc sterile dose vial for 

quality control (QC) testing. 

2.4.6. Manual synthesis of [18F]FDOPA using low levels of [18F]fluoride 

1. Slowly transfer a solution of [18F]fluoride (e.g., 100 mCi) in [18O]H2O through a QMA 

cartridge, trapping the [18F]fluoride 

2. Elute [18F]fluoride from the QMA cartridge into a synthesis module reactor or manual 

radiochemistry setup with 0.5 mL TBAOTf/Cs2CO3 eluent solution (Reagent setup) and 

azeotropically dry it. Resolubilize in DMF (4 mL); depending on time and elution 

efficiency, strength will be ~10-20 mCi/mL 

3. Add 0.4 M of the [18F]fluoride stock solution to a glass vial containing BPin precursor 1 

(4 µmol), Cu(OTf)2 (20 µmol), and pyridine (500 µmol) in DMF (1 mL). Heat at 110°C 

for 20 min. 

4. Cool the reaction to 50°C and dilute it with 0.10M ascorbic acid/0.01 M EDTA solution 

(Reagent setup). Stir for 30 s, and then load the reaction mixture onto an HLB cartridge, 
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trapping protected [18F]FDOPA on the cartridge. Elute protected [18F]FDOPA from the 

HLB cartridge back into a clean vial using absolute ethanol (2 mL) 

5. Add alternative deprotecting solution (Reagent setup) and heat at 110°C for 20 min. 

6. Allow mixture to cool to 50°C before purifying and reformulating [18F]FDOPA 

according to Steps 18-23 of the main Procedure. 

7. Complete QC testing as required for chemistry or animal studies according to the 

methods described in Steps 24-36 of the main Procedure. 

8. Typical radiochemical yields of [18F]FDOPA are 35-55% over two steps using this 

manual method. 

5.4.2. Quality Control of [18F]FDOPA 

Pre-release QC Testing  

24| Conduct a visual inspection of the QC sample to ensure the dose is clear, colourless and free 

of particulate matter.  

25| Analyze the pH of the [18F]FDOPA dose by applying a small amount of the dose to a pH-

indicator strip and compare it to the scale provided. Dose pH is required to be between 4.5 and 7.5. 

26| Determine residual TBA+ levels in [18F]FDOPA doses using Dragendorff stain and confirm 

that they are less than the Ph. Eur. requirement of <0.26 mg/mL TBA+ (no USP limits currently 

exist for TBA+).83 

27| Analyze [18F]FDOPA by analytical HPLC (Figure 5.10 to determine identity, radiochemical 

and chemical purity (column: Luna NH2 5µ 4.6 x 150 mm column; mobile phase: 70% MeCN 10 

mM KOAc, pH 5.2; flow rate: 1.5 mL/min). Radiochemical purity should be >90% and there 

should be <50 µg/mL of OH-DOPA and H-DOPA by-products which result from competing 

hydroxy- and proto-deborylation, respectively (see ref Error! Bookmark not defined. for more details). I
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dentity is confirmed by comparing the retention time of the radiolabelled product with that of the 

corresponding unlabelled FDOPA reference standard. 

 
 

Fig. 5. 10: Analytical HPLC traces of [18F]FDOPA using a Luna NH2 analytical column. Top, RAD; bottom, 282-nm UV. 

Reproduced from ref. 43 with permission from The Royal Society of Chemistry 

28| Use analytical HPLC data to calculate molar activity. Molar activity needs to be ≥18.5 

TBq/mmol (>500 Ci/mmol). 

27| Analyze [18F]FDOPA by chiral HPLC to determine enantiomeric purity detector (column: 

Astec Chirobiotic T 5 µ250 x 4.6 mm analytical column; mobile phase: 30% ethanol 10mM KOAc 

pH 5.13, flow rate: 1.5mL/min). Enantiomeric purity is determined by comparison to 6-F-D,L-

DOPA and/or 6-F-L-DOPA reference standards (Figure5.11. Enantiomeric purity of [18F]FDOPA 

needs to be >95% of the L enantiomer. 
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Fig. 5. 11: Chiral HPLC trace of production of [18F]FDOPA, 6-F-D,L-DOPA reference standard, and 6F-L-DOPA reference 

standard using a Chirobiotic T analytical column. Top, 6F-L-DOPA reference standard (282 nm, magenta); middle, 6F-D,L-

DOPA reference standard (282 nm, teal); and bottom, [18F]FDOPA (RAD, black). Adapted from ref. 43 with permission from 

The Royal Society of Chemistry. 

28| Analyze levels of residual solvents in [18F]FDOPA doses using a Shimadzu GC-2010 with an 

AOC-20 autoinjector, split/splitless inlet, a flame ionization detector (or equivalent), and a Restek 

column (Stabilwax 30 m 0.25 mm, 0.25 m G16 stationary phase). Limits of residual solvents are 

based upon the International Conference on Harmonisation of Technical Requirements for 

Registration of Pharmaceuticals for Human Use guidelines (MeCN: ≤410 ppm; DMF: ≤880 

ppm).84  

29| Confirm radionuclide identity by determining the half-life of the [18F]FDOPA dose and 

compare it to the known half-life of fluorine-18 (109.77 min). Measure radioactivity at 2 time 

points using a Capintec dose calibrator (or equivalent) and determine half-life (T1/2 = -ln2(Time 

Difference / (ln(ending activity/starting activity)))). Calculated half-life must be 105–115 min. 
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30| Determine integrity of the 13 mm GV sterile filter using the bubble point test. The filter from 

the dose (with needle still attached) is connected to a nitrogen supply via a regulator. The needle 

is then submerged in water and the nitrogen pressure is gradually increased. If the pressure can be 

raised above the filter acceptance pressure (50 psi for 0.9% saline) without seeing a stream of 

bubbles, the filter is considered intact.  

31| Determine endotoxin content in [18F]FDOPA doses according to the US Pharmacopeia using 

a Charles River Laboratories EndoSafe® Portable Testing System (or equivalent). Doses must 

contain ≤175 Endotoxin Units (EU), or ≤17.5 EU/mL. 

Sterility Testing 

32| Sterility testing is a post-release test for short-lived radiopharmaceuticals. Within 24 h of end-

of-synthesis, inoculate culture tubes of fluid thioglycolate media (FTM) and tryptic soy broth 

(TSB) with samples of [18F]FDOPA and incubate (along with positive and negative controls) for 

14 days. FTM is used to test for anaerobes, aerobes and microaerophiles while TSB is used to test 

for non-fastidious and fastidious microorganisms.  

33| Visually inspect the culture tubes on the 3rd, 7th and 14th days of the test period and compare 

these to the positive and negative standards. Positive standards need to show growth (turbidity) in 

the tubes, and [18F]FDOPA doses/negative controls need to show no culture growth after 14 days 

to be indicative of sterility. 
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Table 5. 7: Troubleshooting Table. Adapted from ref 58 with permission from Nature 

  

Step Problem Possible Reason Solution

11 [18F]Fluoride does not elute off QMA 

cartridge

Connections to QMA cartridge are 

either leaking, wrong cartridge 

used, or not properly conditioned

Check connections, replace as needed

15 Low incorporation of 18F- to 

precursor

Equipment malfunction, 

decomposition of reactants

Ensure syntheis module is clean and functional, 

check and replace reactants as needed

16A(i), 

16B (iii)

Low radiochemical purity Ascorbic acid has gone bad Ehck and replace expired ascorbic acid if needed

18 Reaction mixture is slow to load onto 

HPLC loop or does not load at all

HPLC loop is blocked or screw 

cap to vial is not properly tightened

Clean out HPLC loop or tighten intermediate vial

More radioactive impurities in HPLC 

trace than usual

Not enough acid in deprotection 

solution

Increase the amount of conc. HCl in deprotecting 

solution in 0.1 mL increments, or use frech conc. 

HCl

20,21,30 Too much MeCN in [18F]FDOPA 

product

MeCN was not adequately 

removed during washing of 

reformulaion cartridge

Optimize rinsig and drying in Steps 20 and 21, 

possibly by rinsing with more water
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CHAPTER 6 

Overall Conclusions and Future Outlook 

 Neurodegenerative imaging by Positron Emission Tomography (PET) has and will 

continue to be a considerable challenge while the biological basis for it remains unclear. Although 

biomarkers that indicate early progression of the disease have been validated, and PET provides a 

useful tool to assist in the validation of key biological targets, these efforts remain complicated 

because the cause of neurodegenerative diseases (NDs) has yet to be fully elucidated. For example, 

PET has been used to determine the depletion of Aß plaques after treatment of Alzheimer’s Disease 

(AD) with anti-Aß antibodies (ab’s).1 Though the amyloid hypothesis of AD remains to be 

proven,2 PET imaging allowed pharmaceutical companies to show that ab treatment was working 

by clearing out plaques from the brain.3 After long term treatment with these antibodies however, 

improvements in cognition compared to control were not observed, and this left many questions. 

Fortunately, with using PET as a pharmacological biomarker confirmed that Aß was cleared from 

diseased brains, providing motivation for pharmaceutical companies to continue, and after 

reanalysis of a phase 3 clinical trial for aducanumab, improvement in cognition scores of a large 

number of patients was reported leading to review by the Food and Drug Administration (FDA).4 

PET will no doubt play an integral role in such trials as the quest to cure AD continues.  

 Following this, PET imaging of biological targets for Parkinson’s Disease (PD) also 

provide a tool to monitor disease treatments by determining the functioning of the dopaminergic 

neurons with tracers such as [18F]FDOPA.5 Unfortunately, routine production of this tracer has 



 

267 
 

been a challenge for many radiosynthetic chemists, thus, limiting research with the radiotracer. To 

address this ongoing challenge in the radiochemistry community, we developed an efficient, 

validated synthesis of [18F]FDOPA that is compliant with current good manufacturing processes 

(cGMP).6,7 In chapter 5, it was shown that high yields could be obtained using 

tetrabutylammonium fluoride ([18F]TBAF) with a tetrakispyridine(copper) triflate catalyst to 

fluorinate a commercial boronic ester precursor. Due to guidelines recommended by the European 

Pharmacopeia, a quality control test for TBA needed to be developed for our synthesis.8 We 

successfully implemented a TLC test in our lab, and future work will concentrate on method 

validation to enable widespread implementation and acceptance by federal agencies. Validation 

tests require the test to be reproducible for the quantities measured and the reagents used for the 

test to be approved under cGMP guidelines. 

 Even though protein aggregates and neurological function remain a diagnostic and 

therapeutic target for AD, a preventative approach to AD and related dementias is highly sought. 

Alternative targets that occur earlier on in the disease progression before clinical symptoms start 

to manifest in patients are hypothesized to exist, and expected to be druggable targets to prevent 

neurodegeneration as well as useful biomarkers. PET can be used to image and validate biomarkers 

thought to play an early role in NDs by developing tracers for these targets and imaging at risk 

patients such as elderly patients and those diagnosed with mild cognitive impairment (MCI).  

Neuroinflammation is a hallmark of many ND processes, and is believed to play an early 

role in progression. Our effort to synthesize a radiotracer targeting a protein that is overexpressed 

in microglial cells (colony stimulating factor 1 receptor, CSF1R) during neuroinflammation is 

described in Chapter 4.9 We chose the compound AZ683 to radiolabel because of its favorable 

pharmacokinetic (PK) properties such as high selectivity over other tyrosine kinase receptors, its 
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physiochemical properties that predicted good blood brain barrier (BBB) permeability, and its 

structure was suitable for either carbon-11 and fluorine-18 labeling. After our successful attempt 

at synthesizing [11C]AZ683, however, low brain uptake was observed in both rodent and 

nonhuman primate studies. We hypothesize that this could either be due to the high number of 

nitrogen atoms contained in the compound, possibly making it a p-glycoprotein (p-gp) efflux 

substrate or there is not a lot of baseline expression of the target, CSF1R, in healthy animals that 

is adequate for initial binding and uptake of the tracer. This could be investigated by imaging 

neuroinflammation animal models to see if the standard uptake value (SUV) is increased for 

[11C]AZ683. Given that a new PET tracer has been developed by Horti et al.10 for CSF1R that has 

a higher SUV of 3 compared to our compound peaking at 1 for the whole brain, the BBB 

permeability of our tracer is likely due to its structure. The SUV of this new tracer was dramatically 

increased to 8 when imaging LPS-injected baboons, a known method for induction of 

neuroinflammation modeling. Thus, our tracer though has low initial uptake in normal NHP may 

be beneficial when comparing to inflammation models and detecting minor changes in CSF1R 

expression. If our tracer is not adequate for neuroinflammation imaging, it can still be used to 

detect inflammation in the periphery associated with infections or tumor growth. 

 Another early biomarker of neurodegeneration that is being considered is the role of 

physiological transition metals and their dyshomeostasis, specifically iron, copper, and zinc. 

Evidence for their role comes from ex vivo and in vivo data showing increased metal concentrations 

near protein aggregate deposits. It is hypothesized that the regulation preventing too many free 

metal ions malfunctions and these metals can then induce oxidative stress through redox reactions 

with multiple molecules and induce aggregation by binding small peptides and causing misfolding. 

However, validation of this theory requires evidence indicating an increase in the free toxic redox 
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active metals such as iron and copper at earlier time points before clinical symptoms start to 

manifest. The power of PET allows noninvasive imaging of patients of a test population. However, 

to get to that point metal chelating PET tracers need to be preclinically validated. Our attempt at 

this has yielded three new tracers, [18F]FL2-b,11 [11C]deferiprone ([11C]DFP),12 and [11C]HQ415.13 

The first thing to note about these tracers, that will be the most important factor in developing a 

PET tracer for the purpose of validating transition metals in the early stages of NDs, is that they 

have high brain uptake. The specific binding has only been tested for [18F]FL2-b, which has high 

specific binding in the gray matter and low nonspecific binding in the white matter. Even more 

interesting is the evidence indicating that [18F]FL2-b colocalizes with TDP-43 aggregates, making 

it one of the first tracers that can potentially be used for ALS imaging being that it has higher 

specific binding in ALS post-mortem motor cortex than age-matched control. Specific binding is 

used to assess how well a tracer will give a signal when bound to a target versus the background 

which will affect interpreting images. This has only been measured for [18F]FL2-b using 

autoradiography because it is labelled with a longer-lived isotope. It is much more difficult to get 

reproducible data with the shorter-lived isotope, carbon-11, when performing self-blocking studies 

on autoradiography tissue. However, since deferiprone is already FDA approved and has a high 

dose limit, self-blocking studies with animal imaging can be done to assess the specific binding. 

Given that the molar activity (MA) of [11C]DFP is low, a self-blocking study is warranted to assess 

if in fact we are seeing mostly nonspecific binding. This also creates a need to synthesize fluorine-

18 labeled iron chelators to perform further studies such as autoradiography and perform longer 

scans. One defining factor of working with metal chelating PET radiotracers has been their 

stability. Both [18F]FL2-b and [11C]DFP are prone to radiolysis. This may be because it is their 

nature to participate in single electron chemistry given that they are metal chelators and are known 
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to participate in redox reactions with them. [11C]HQ415 has not had this problem and may indicate 

that larger metal chelating molecules are perhaps more stable. However, attempts to synthesize 

cold fluorinated-HQ415 proved difficult to isolate pure product after deprotection, suggesting the 

compound easily decomposes. For [11C]DFP to reach the clinic, dosimetry studies need to be done 

and showing that the tracer has a higher binding potential in post-mortem diseased brain tissue 

than normal tissue. To enhance the molar activity, either a minimum amount of cold standard 

should be optimized in the deprotection conditions or an alternate method should be attempted. 

Nonetheless, this work shows that it is possible to develop metal chelating PET radiotracers that 

have good brain uptake for the assessment of NDs. Further work is needed to optimize these tracers 

for the clinic. 
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