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Abstract 
 

Pancreatic ductal adenocarcinoma (PDA) is one of the most lethal human 

malignancies. Currently, PDA has a dismal 5-year survival rate of 10% and is projected 

to become the second leading cause of cancer related deaths by 2030. PDA is 

overwhelming resistant to chemotherapy, radiotherapy, and immunotherapy appraoches. 

The only cure is surgical resection that only 20% of patients are eligible to receive. 

Unfortunately, 80% of patients who undergo surgery ultimately relapse with metastatic 

disease. It is critical to understand the biology underlying PDA for progress to be made. 

PDA tumors are characterized by a robust fibroinflammatory stroma that constitutes the 

bulk of the tumor volume. This rich tumor microenvironment (TME) is comprised of 

vasculature, nerves, extracellular matrix (ECM) components, fibroblasts and immune 

cells. The immune infiltration in PDA is immunosuppressive in nature. While immune 

checkpoint blockade has proven beneficial in other cancers, that benefit has not extended 

to PDA, due to this robust immune suppression. This dissertation will focus on 

mechanisms for immune suppression in both mouse and human PDA.  

First, I discuss T cell mediated mechanisms for immune suppression in human 

PDA. We used a multimodal approach of multiplex immunohistochemistry, mass 

cytometry, and single cell RNA sequencing to map the immune landscape in human PDA. 

With this approach we provided further evidence that the T cell infiltration and further the 

expression of immune checkpoints in PDA is heterogenous. We discovered the previously 

underappreciated immune checkpoint TIGIT is elevated in human PDA tumors and 
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correlated with exhausted T cells compared to effector T cells. This work highlighted the 

importance of evaluating TIGIT as a potential therapeutic target and presented the 

importance of precision medicine when considering immune therapy.  

Secondly, this dissertation focuses on myeloid-mediated mechanisms of immune 

suppression. This dissertation has two chapters on using mouse and human models to 

elucidate the role of myeloid cells in PDA immune suppression. I first discuss the role of 

Apolipoprotein E (ApoE) in mediating immune suppression via NF-kB signaling. Using 

our human single cell RNA sequencing dataset, we show ApoE is expressed highly in 

macrophages and serum levels stratify survival. Mechanistically, loss of ApoE results in 

smaller tumors and increased T cell infiltration. We determined our T cell phenotype was 

mediated by CXCL1 secretion via NF-kB signaling. We next evaluated myeloid cells 

systemically in PDA. We performed single cell RNA sequencing on biomaterial scaffolds, 

that serve as a synthetic metastatic niche, mouse and human primary tumors, human 

liver metastases and human peripheral blood to obtain a comprehensive evaluation of the 

systemic immune system changes in response to a primary PDA tumor. In this work, we 

discovered a population of monocytes/macrophages that highly expressed complement 

genes (C1QA, C1QB) that is elevated in PDA.  

Taken together, this dissertation uses both mouse and human systems to map the 

immune landscape in PDA. We have identified novel proteins of interest in mediating 

immune suppression. Further work is necessary to evaluate functional implications as 

well as translational potential.  
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Chapter 1 Introduction1,2 
 

Pancreatic cancer overview 

Pancreatic ductal adenocarcinoma (PDA) is one of the most lethal human 

malignancies with a five-year survival rate of only 10% (Siegel et al., 2020).  PDA is 

projected to become the second-leading cause of cancer related deaths by 2030 (Rahib 

et al., 2014). This poor prognosis is due in part to the majority of patients presenting with 

metastatic disease and overwhelming resistance to chemotherapy and radiotherapy 

approaches. The only potential cure for PDA is surgical resection, for which only 20% of 

patients are eligible, and ultimately 80% of these patients will relapse with metastatic 

disease (Kleeff et al., 2016). Current frontline therapies are the chemotherapy regimens 

FOLFIRINOX or gemcitabine/nab-paclitaxel, which modestly extend survival (Conroy et 

al., 2011; Conroy et al., 2018; Von Hoff et al., 2013). The main genetic drivers of PDA are 

mutations in KRAS (Almoguera et al., 1988; Hata et al., 2018), along with loss of tumor 

suppressors (TP53, SMAD4, INK4A) (Hezel et al., 2006; Maitra and Hruban, 2008). Both 

acinar cells and ductal cells within the healthy pancreas can give rise to PDA, however 

acinar cells appear to have a higher propensity for transformation (Kopp et al., 2012). 

 
 

1 Sections of Chapter 1 have been submitted for a review article at Cellular and Molecular Gastroenterology and 
Hepatology. Article is entitled, “Myeloid cell mediated immune suppression in pancreatic cancer” (2021).  
 
2 Author list: Samantha B. Kemp, Marina Pasca di Magliano*, Howard C. Crawford* 

*Corresponding authors 
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Acinar cells go through a plastic transdifferentiation process called acinar to ductal 

metaplasia (ADM), which gives rise to pancreatic intraepithelial lesions (PanINs), and 

ultimately cancer formation (Storz, 2017). These stages of progression of human PDA 

have been recapitulated in genetically engineered mouse models that target oncogenic 

Kras expression to the pancreas, combined with inactivation of tumor suppressors 

(Aguirre et al., 2003; Hingorani et al., 2003; Hingorani et al., 2005). 

PDA is characterized by a dense fibroinflammatory stroma. This robust stroma 

consists of fibroblasts, vasculature, nerves, extra-cellular matrix (ECM) components, and 

infiltrating immune cells (Chu et al., 2007). The immune cells within the tumor 

microenvironment (TME) are immunosuppressive in nature (Clark et al., 2007). Within the 

TME, there is a large infiltration of myeloid cells that prevent T cell responses (Clark et 

al., 2007). PDA patients with greater T cell infiltration (Balachandran et al., 2017) and 

fewer myeloid cells (Sanford et al., 2013) have more favorable survival outcomes. As 

such, there is an inverse correlation between myeloid cells and T cells in PDA (Clark et 

al., 2007; Steele et al., 2020).  

Immune therapy has revolutionized cancer treatment, however, that benefit has so 

far not extended to PDA (Brahmer et al., 2012; Royal et al., 2010). Immune checkpoint 

therapy acts through re-activating T cell effector functions through blockade of the 

immune checkpoints programmed cell death 1 (PD-1) or cytotoxic T lymphocyte antigen 

4 (CTLA-4) that results in reduced tumor burden in other solid tumors (Waldman et al., 

2020). However, immune therapy is not effective in PDA, in part due to this robust immune 

suppression. It is imperative we understand the biology underlying pancreatic cancer 

immune suppression.  
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PDA tumor microenvironment 

 The PDA TME contains a robust infiltration of fibroblasts and various immune cell 

populations. There is a complex cellular crosstalk that acts to both restrain and promote 

carcinogenesis depending on the context. The primary cell types within the TME that are 

explored in this thesis include fibroblasts, T cells, and myeloid cells.   

 

Fibroblasts 

 Fibroblasts are a mesenchymal cell type that have distinct functions in both normal 

physiology and carcinogenesis. In normal physiology fibroblasts are quiescent until 

activated to perform wound healing and tissue repair through the deposition of 

extracellular matrix components (Kalluri, 2016). When fibroblasts become activated they 

express high levels of alpha-smooth muscle actin (a-SMA) and are considered 

myofibroblasts (Hinz et al., 2001). Fibroblasts associated with the tumor are termed 

cancer-associated fibroblasts (CAFs). While a-SMA is highly expressed by fibroblasts it 

does not mark all fibroblasts. CAFs are heterogenous and have both tumor promoting 

and tumor restricting functions (Garcia et al., 2020).  

The main subsets of CAFs in the PDA TME include inflammatory CAFs (iCAFs), 

myofibroblastic CAFs (myCAFs), and antigen presenting CAFs (apCAFs) (Elyada et al., 

2019; Ohlund et al., 2017). myCAFs often reside in close proximity to tumor cells and are 

defined by high expression of a-SMA (Ohlund et al., 2017). In contrast, iCAFs are found 

further from tumor cells and secrete inflammatory mediators, such as interlekin-6 (IL-6) 

to promote carcinogenesis (Ohlund et al., 2017). myCAFs and iCAFs utilize different 

signaling pathways (Biffi et al., 2019). Formation of myCAFs is primarily through 
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transforming growth factor beta (TGF-b) signaling, while iCAF formation utilizes the 

Janus-kinase/signal transducer and activator of transcription (JAK/STAT) pathway. 

Inhibition of JAK in a mouse model of PDA resulted in a shift from iCAF to myCAF 

phenotype, highlighting the plasticity of CAFs and provided evidence for selective 

targeting of CAF subsets (Biffi et al., 2019). While CAFs have been shown to promote 

carcinogenesis in some studies, there is also existing literature providing evidence that 

CAFs restrain tumor growth (Lee et al., 2014; Mathew et al., 2014; Ozdemir et al., 2014; 

Rhim et al., 2014). Taken together these data suggest CAFs play a complex, and context 

dependent role in the PDA TME.  

CAFs also have immunosuppressive abilities (Feig et al., 2013; Garcia et al., 2020; 

Kraman et al., 2010). Fibroblast activated protein (FAP) is broadly expressed on 

fibroblasts and FAP+ CAFs mediate immune suppression through secretion of the 

chemokine CXCL12 (Feig et al., 2013). Targeting the CXCL12-CXCR4 axis resulted in 

increased T cell infiltration, allowing the tumor to be sensitized to immune therapy 

approaches (Feig et al., 2013). Further, inhibition of CXCR4 in PDA patients increased 

tumoral T cell infiltration (Biasci et al., 2020). 

 

T cells 

 T cells possess anti-tumor abilities, however there is a paucity of T cells in PDA. 

Patients who do have a high infiltration of T cells though, have more favorable survival 

outcomes (Carstens et al., 2017). T cells are part of the adaptive immune response and 

have multiple subsets including CD8+ and CD4+ T cells. CD4+ T cells can be further 

divided into Th1, Th2, and Th17 subsets (Zhou et al., 2020). Another subset of CD4+ T 
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cells are regulatory T cells (Tregs) that are defined by expression of CD25 and forkhead 

box P3 (FOXP3). CD4+ T cells are critical for the formation of PDA tumorigenesis by 

suppressing CD8+ T cells (Zhang et al., 2014). Further, Tregs are abundant in PDA and 

are known to have immunosuppressive abilities (Clark et al., 2007). However, ablation of 

Tregs in a mouse model of PDA did not relieve immune suppression as hypothesized 

(Zhang et al., 2020). Rather, Treg depletion accelerated carcinogenesis through a 

compensatory infiltration of immunosuppressive myeloid cells, highlighting the complex 

cellular crosstalk in the PDA TME (Zhang et al., 2020). 

CD8+ T cells can be further divided into naïve, memory, effector and exhausted T 

cells (van der Leun et al., 2020). Effector CD8+ T cells have cytotoxic functions that 

produce perforin, granzymes, and interferon gamma (IFN-g) to control infection and 

further, have anti-tumor abilities (Sarkar et al., 2008). However, PDA tumors have a high 

infiltration of exhausted CD8+ T cells rather than effector CD8+ T cells (Steele et al., 2020). 

Exhausted CD8+ T cells represents a state of dysfunction (van der Leun et al., 2020). In 

both viral infection as was as cancer, exhausted CD8+ T cells upregulate the immune 

checkpoints, programmed cell death protein 1 (PD-1), lymphocyte-activating 3 (LAG3), T 

cell immunoglobulin and mucin domain-containing protein 3 (TIM-3), and T cell 

immunoreceptor with Ig and ITIM domains (TIGIT) (Steele et al., 2020; Wherry et al., 

2007). Reactivation of effector T cell function can be attained through immune checkpoint 

blockade, however this has not shown success in PDA as it is an immunologically “cold” 

tumor (Saka et al., 2020). Further work is required to understand T cell biology in PDA 

that contributes to immune suppression.  
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Myeloid cells 

PDA with a high density of myeloid cells is correlated with worse overall survival 

(Ino et al., 2013; Tsujikawa et al., 2017). In normal physiology, myeloid cells develop from 

hematopoietic stem cells (HSCs) in the bone marrow in a process called myelopoiesis 

(Messmer et al., 2015).  Myeloid cells refer to all CD45+ CD11b+ cells, but further 

differentiate into distinct cell subsets: macrophages, granulocytes, mast cells, and 

dendritic cells (DCs). Macrophages within the tumor are referred to as tumor-associated 

macrophages (TAMs) and have distinct features compared to normal macrophages that 

will be discussed in detail below. Granulocytes can be further divided into eosinophils, 

basophils and neutrophils. Within the TME, neutrophils and monocytes are often in an 

immature state referred to as a myeloid-derived suppressor cell (MDSC).  

Within the TME, macrophages are the most abundant immune cell population (Noy 

and Pollard, 2014). Macrophages are an innate immune cell type and originate from either 

infiltrating monocytes or embryonic progenitors (Wynn et al., 2013). Macrophages 

perform multiple physiological functions, including phagocytosis to eliminate debris, 

antigen-presentation, and cytokine secretion to recruit other immune cells to the site of 

injury. Macrophages are defined by expression of CD11b+ CD68+ EMR1+ in humans and 

CD11b+ CD68+ F4/80+ in mice. Macrophages are plastic cells that exist on a spectrum of 

differentiation states. Past definitions have classified macrophages into two main 

subtypes on each extreme of the spectrum. M1 or classically activated macrophages 

perform anti-tumor functions and can be induced through IFN-g and toll-like receptor 

(TLR) stimuli (Qian and Pollard, 2010). M1 macrophages are characterized by high 

expression of interleukin 12 (IL-12), tumor necrosis factor (TNF), and inducible nitric oxide 
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synthase (iNOS). M2 or alternatively activated macrophages perform pro-tumor functions 

(Mantovani et al., 2002) and can be induced through the cytokines IL-4 and IL-13 

(Gordon, 2003). M2 macrophages lose their antigen presentation abilities and act to 

instead suppress the immune response, through a variety of mechanisms, as will be 

discussed.  

There is a negative correlation between macrophage infiltration and patient 

survival in PDA (Ino et al., 2013; Kurahara et al., 2011), providing further evidence for the 

pro-tumor function of macrophages in cancer. The M1/M2 classification is an 

oversimplification that is helpful for broad description but does not accurately describe the 

in vivo heterogeneity of TAMs. TAMs within the tumor are derived from either infiltrating 

monocytes or embryonically derived, tissue-resident macrophages (Zhu et al., 2017). 

Further, the heterogeneity of TAM origin has functional implications, where monocyte 

derived TAMs have increased antigen-presentation abilities, while embryonically derived 

TAMs shape the fibrotic response (Zhu et al., 2017). Within the TME, TAMs conform to 

neither the M1 nor the M2 phenotype, but rather have traits of both polarization states 

(Qian and Pollard, 2010).  

A large body of work in PDA has been performed on targeting TAMs specifically. 

Due to the plasticity of macrophages, TAM targeted therapy aims to reprogram them to 

their anti-tumor functions. The colony-stimulating factor 1/colony-stimulating factor 1 

receptor (CSF1/CSF1R) axis recruits and polarizes immunosuppressive TAMs. CSF1R 

is the major lineage regulator for all macrophage subsets (Qian and Pollard, 2010). PDA 

tumors are infiltrated by CSF1R+ macrophages (Candido et al., 2018; Zhu et al., 2014). 

Inhibition of CSF1R resulted in reduced tumor burden and an increase in T cell infiltration, 
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providing evidence that targeting TAMs relieves immune suppression in the TME 

(Candido et al., 2018; Mitchem et al., 2013). Further, CSF1R inhibition sensitizes PDA to 

either PD-1 or CTLA-4 antagonists (Zhu et al., 2014), suggesting that while single agent 

immunotherapy is not sufficient to reduce tumor burden, immune checkpoint blockade in 

combination with TAM modulating therapies can effectively reverse immune suppression.  

The CCL2/CCR2 chemokine axis is critical for the genesis of TAMs. CCL2 

produced by tumor cells recruits CCR2+ monocytes from the bone marrow to the 

circulation that then differentiate into TAMs after entering the tumor tissue (Shi and 

Pamer, 2011). PDA patients with high levels of circulating monocytes have worse overall 

survival rates (Sanford et al., 2013). Tumor cells secrete the chemokine CCL2, which 

recruits CCR2+ monocytes. Monocytes in circulation do not possess the same 

immunosuppressive abilities as TAMs, suggesting the cellular crosstalk in the TME is 

critical for this function (Sanford et al., 2013). CCR2 blockade in mice resulted in retention 

of CCR2+ monocytes in the bone marrow, impairing tumor growth (Sanford et al., 2013). 

CCR2 blockade with gemcitabine further impaired tumor growth (Sanford et al., 2013). 

Similarly, in a PDA clinical trial, patients with borderline resectable and locally advanced 

disease were treated with a combination of FOLFIRINOX and CCR2 antagonist 

(Nywening et al., 2016). After treatment, patients had reduced circulating CCR2+ 

monocytes and subsequently fewer TAMs in the tumor, as well as increased CD8+ T cells 

(Nywening et al., 2016). 

Taken together, these studies highlight the tumor promoting role of TAMs in the 

PDA TME. Macrophage targeted therapy is promising as it synergizes with frontline 
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chemotherapy and immunotherapy regimens to reactivate effector T cell responses and 

reduce tumor burden.  

MDSCs are immature myeloid cells with immunosuppressive functions. MDSCs 

can be further classified into two main subsets, polymorphonuclear-MDSCs/granulocytic-

MDSCs (PMN-MDSCs/G-MDSCs) and mononuclear-MDSCs (M-MDSCs). These 

subsets are phenotypically distinct. PMN-MDSCs have more resemblance to 

granulocytes/neutrophils, while M-MDSCs closely resemble monocytes. In mice, MDSCs 

are broadly defined by CD11b+ Gr-1+, with Ly-6C and Ly-6G used to delineate MDSC 

subsets (Bronte et al., 2016). To accurately define MDSCs in mice the recommended 

definitions are: CD11b+ Ly6Clo Ly6G+ for PMN-MDSCs and CD11b+ Ly6Chi Ly6G- for M-

MDSCs (Bronte et al., 2016). Given their phenotypic differences, human PMN-MDSCs, 

which closely mirror granulocytes/neutrophils are defined by CD11b+ CD14- CD15+ or 

CD11b+ CD14- CD66b+, while human M-MDSCs, which are more similar to monocytes 

are defined by CD11b+ CD14+ HLA-DR-/lo CD15-  (Bronte et al., 2016). While PMN-

MDSCs and M-MDSCs are the major MDSC subsets, there are MDSCs that share 

markers of both subsets and represents a progenitor state. This third MDSC subset is 

called early stage-MDSCs (e-MDSCs) and has yet to be functionally evaluated in PDA 

(Bronte et al., 2016). While MDSCs are unique from their mature myeloid counterparts, 

neutrophils and monocytes, controversy remains on separating PMN-MDSCs from 

neutrophils. Currently, there are no markers to distinguish the immature PMN-MDSCs 

from mature neutrophils, and the only possible method of separation is via density 

centrifugation (Marvel and Gabrilovich, 2015). M-MDSCs differ from monocytes as they 

express low HLA-DR, and differ from TAMs as they do not express F4/80 (Veglia et al., 
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2018). Distinction between neutrophils and PMN-MDSCs remains challenging and 

distinctive markers are needed. Importantly, MDSCs need to be further defined through 

functionality.  

MDSCs perform their immune suppressive functions through multiple 

mechanisms. The main method is through the depletion of the essential amino-acid, L- 

arginine, from the TME (Bronte and Zanovello, 2005; Gabrilovich and Nagaraj, 2009). 

MDSCs produce high levels of the enzyme Arginase 1 (ARG1), that metabolizes L-

arginine, resulting in T cell inhibition (Rodriguez and Ochoa, 2008).  When considering 

MDSC function, it is important to also take into account that MDSCs exist in two main 

subsets. PMN-MDSCs comprise the largest percentage of MDSCs found in the blood and 

the tumor, compared to M-MDSCs (Youn et al., 2008). Despite M-MDSCs making up a 

smaller portion of the tumor, they often have an increased immunosuppressive function 

than PMN-MDSCs (Trovato et al., 2019). PMN-MDSCs and M-MDSCs have different 

immunosuppressive functions. While both MDSC subsets express high amounts of 

ARG1, PMN-MDSCs produced high amounts of reactive oxygen species (ROS) and low 

nitric oxide (NO), while M-MDSCs produced high NO and low ROS (Youn et al., 2008). 

The immunosuppressive function of M-MDSCs is in part due to tumor cell-derived 

prostaglandin E2 (PGE2) activating p50, a NF-kB subunit that results in increased iNOS 

production (Porta et al., 2020). 

Due to the immunosuppressive nature of MDSCs, there has been a significant 

amount of work targeting these cells within the PDA TME. Early work targeted MDSCs 

through administration of zoledronic acid (Melani et al., 2007) which acts to reduce 

MDSCs. Administration of zoledronic acid in a PDA mouse model resulted in delayed 
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tumor growth, enhanced survival and increased CD8+ T cell infiltration (Porembka et al., 

2012). CXCR2 is a receptor found on neutrophils/MDSCs and regulates the recruitment 

of MDSCs to the TME (Highfill et al., 2014). Inhibition of CXCR2 in a genetically 

engineered mouse model of pancreatic cancer resulted in extended survival, an increase 

in T cell infiltration, and synergy with immunotherapy (Steele et al., 2016). MDSCs are 

also recruited to the tumor through tumor-cell derived GM-CSF secretion. Neutralization 

of GM-CSF resulted in a reduction in MDSC recruitment and subsequently reduced tumor 

growth in PDA tumors (Bayne et al., 2012; Pylayeva-Gupta et al., 2012). Depletion of just 

the PMN-MDSC subset resulted in tumor cell death and increased CD8+ T cell infiltration, 

suggesting ablation of just one MDSC subset was sufficient enough to reverse immune 

suppression (Stromnes et al., 2014). Though they have not been yet targeted in PDA, it 

will be interesting to examine the effects of depleting M-MDSCs given their enhanced 

immunosuppressive nature. 

 

Myeloid-epithelial crosstalk promotes immune suppression 

Myeloid cells do not act alone in this tumor promoting phenotype. The TME in PDA 

has a complex cellular crosstalk that promotes carcinogenesis. In this section I will 

explore mechanisms of cellular crosstalk specifically between myeloid cells and epithelial 

cells that activate signaling pathways that enhance immune suppression. 

Myeloid cells play a critical role in promoting pancreatic carcinogenesis (Liou et 

al., 2015; Liou et al., 2013; Zhang et al., 2017b; Zhang et al., 2017c). Myeloid cell ablation, 

using CD11b promoter driven expression of the diphtheria toxin receptor (DTR) followed 

by DT treatment (Duffield et al., 2005) in a PDA mouse model driven by the inducible 
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expression of Kras (iKras) (Collins et al., 2012a) causes regression of early PanIN 

lesions, preceded by reduced ERK activity in the neoplasia (Zhang et al., 2017c). While 

KRAS is the main genetic driver of PDA, it is not sufficient to induce carcinogenesis 

without additional activation of epidermal growth factor receptor (EGFR) to amplify 

mitogen-activated protein kinase (MAPK) signaling in the epithelium (Ardito et al., 2012; 

Collins et al., 2014). Of note, myeloid cells in the neoplastic pancreas express high levels 

of the EGFR ligands, heparin-binding EGF-like growth factor (HB-EGF) and epiregulin 

(EREG), suggesting that they promote the initial stages of pancreatic carcinogenesis by 

stimulating epithelial EGFR. Conversely, oncogenic Kras expression in the epithelium 

also alters macrophage polarization (Zhang et al., 2017c). Extinguishing Kras expression 

in the iKras model resulted in decreased expression of Arginase 1 (Arg1) and the EGFR 

ligand, HB-EGF (Hbegf) in the myeloid compartment, with subsequent loss of EGFR 

(Egfr) expression in the epithelial compartment. These data suggest that 

KRAS/EGFR/MAPK signaling regulates myeloid cell infiltration and polarization prior to 

PanIN formation, which in turn promotes epithelial transformation and progression of the 

neoplasia.  

In addition to its early role in PDA formation, EGFR also regulates immune 

suppression in frank carcinoma (Li et al., 2020a; Zhang et al., 2017b). Myeloid cells 

ablation from pre-existing tumors resulted in reduced tumor burden, providing evidence 

that myeloid cells drive carcinogenesis in both early and late stages of disease (Zhang et 

al., 2017b). Myeloid cells secrete HB-EGF, an EGFR ligand, that activates EGFR/MAPK 

signaling in tumor cells leading to increased PD-L1 expression (Zhang et al., 2017b). 

Further, ablation of EGFR in PDA tumors sensitized tumors to chemo- and 
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immunotherapy (Li et al., 2020a). Treatment with the EGFR inhibitor, Erlotinib, reduced 

tumoral myeloid cells, increased CD8+ T cells, and enhanced response to immunotherapy 

(Li et al., 2020a). These studies suggest a role for EGFR/MAPK in promoting 

carcinogenesis and myeloid-mediated immune suppression.  

Nuclear factor-kB (NF-kB) is a transcription factor with known diverse function in 

regulation of the immune system (Zhang et al., 2017a). Dysregulated NF-kB signaling 

can lead to inflammatory conditions such as cancer (Gilmore, 2006). Along with KRAS, 

NF-kB is constitutively active in PDA patients (Ling et al., 2012; Maier et al., 2013). NF-

kB is activated through release of inhibitory kB (IkB) proteins, usually sequestered in the 

cytoplasm, that activate IkB kinase (IKK), resulting in active gene transcription of 

downstream target genes. The IKK complex is made up of two kinases, IKKa and IKKb, 

and an additional subunit, NEMO/IKKg (Israel, 2010). Inactivation of IKKb in PDA tumors 

reduced infiltration of macrophages and MDSCs, and blocked carcinogenesis, extending 

survival (Ling et al., 2012). This initial study provided evidence that NF-kB is not only 

critical for PDA formation, but also mediated myeloid cell infiltration in the tumor.  

In addition to KRAS and MAPK, NF-kB activation is critical in the early formation 

of PDA. Macrophages are additionally critical in the early stages of carcinogenesis. To 

further understand potential mechanisms behind macrophages and tumor initiation, one 

study co-cultured primary mouse acinar cells with macrophages and observed increased 

ADM formation (Liou et al., 2013). Further analysis of the macrophage conditioned media 

revealed that tumor necrosis factor (TNF) promotes ADM formation via NF-kB signaling, 

suggesting a role for NF-kB in the earliest stages of carcinogenesis (Liou et al., 2013).  
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NF-kB signaling additionally activates GM-CSF secretion (Schreck and Baeuerle, 

1990). GM-CSF is a cytokine that functions to recruit MDSCs as described earlier (Bayne 

et al., 2012; Pylayeva-Gupta et al., 2012). Human PDA tumor cells treated with 

chemotherapy (Gemcitabine or 5-FU) had increased levels of GM-CSF (Takeuchi et al., 

2015). Further, human tumor cells treated with gemcitabine have increased NF-kB 

activity. Monocytes cultured with chemotherapy treated tumor cells promotes 

differentiation into immunosuppressive MDSCs (Takeuchi et al., 2015). Taken together, 

these data suggest one possible mechanism for chemoresistance in PDA is active NF-

kB signaling in tumor cells, which promotes an immunosuppressive myeloid phenotype, 

exacerbating disease.  

NF-kB activates the expression of the chemokines CXCL1, CXCL2, and CXCL5, 

which in turn recruits CXCR2+ MDSCs, resulting in T cell suppression (Burke et al., 2014; 

Chao et al., 2016; Ijichi et al., 2011). PDA patients have a heterogenous infiltration of T 

cells (Carstens et al., 2017). Recent work identified CXCL1 as one mediator for T cell 

heterogeneity in the PDA TME (Li et al., 2018a). Overexpression of tumor cell-derived 

Cxcl1 increases myeloid infiltration, specifically the G-MDSCs, and fewer infiltrating CD8+ 

T cells, providing further evidence on the immunosuppressive role of CXCL1 in the TME 

(Li et al., 2018a). Furthermore, ablation of Cxcl1 in tumor cells resulted in fewer G-MDSCs 

and a subsequent increase in CD8+ T cells, allowing the tumors to be sensitized to 

immunotherapy (Li et al., 2018a).  

There is complex cellular crosstalk between tumor cells and myeloid cells that 

suppresses T cell infiltration and function in the TME. Multiple pathways are implicated in 

this immune suppressive phenotype. Work thus far targeting this tumor-myeloid 
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interaction is compelling as it sensitizes tumors to immunotherapy approaches, 

highlighting the translational implications for PDA patients. 

 

Myeloid cells establish the pre-metastatic niche and promote metastatic disease 

The majority of PDA patients present with metastatic disease and for those 

patients, limited therapeutic options are available. The liver is the most common site for 

metastatic dissemination in PDA. Pancreatic tumor cells disseminate early in 

carcinogenesis, prior to progression to carcinoma (Rhim et al., 2012). Despite the severity 

of metastatic disease, the process of metastasis is inefficient (Malanchi et al., 2011). A 

key barrier to tumor cell dissemination and survival in distal organs is the requirement of 

support from stromal cells (Nielsen et al., 2016). Inflammation is critical for progression 

of the primary tumor (Coussens and Werb, 2002), but is also critical for tumor cell 

dissemination (Rhim et al., 2012). Myeloid cells colonize these distal sites prior to the 

arrival of the tumor cells in principle to create a hospitable environment for tumor cell 

growth (Hiratsuka et al., 2002; Hiratsuka et al., 2006; Kaplan et al., 2005; Lee et al., 

2019a), in a concept termed the pre-metastatic niche.  

Currently, few studies have been performed evaluating the pre-metastatic niche in 

PDA. One study showed macrophages that are recruited to the liver secrete granulin, 

which in turn activates myofibroblasts creating a permissive environment for tumor cell 

survival (Nielsen et al., 2016). Exosomes from tumor cells were identified as another 

mediator that promotes formation of the liver pre-metastatic niche in PDA (Costa-Silva et 

al., 2015). Tumor derived exosomes are taken up by Kupffer cells, resident liver 

macrophages, resulting in increased fibrotic deposition in the liver and increased 
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macrophage accumulation (Costa-Silva et al., 2015). This stromal accumulation prepares 

the liver for ultimate tumor cell survival. Macrophage migration inhibitory factor (MIF) was 

determined to be the primary exosome cargo driving the pre-metastatic niche formation. 

As such, MIF ablation prevented formation of the pre-metastatic niche and subsequently 

reduced liver metastasis (Costa-Silva et al., 2015). Interleukin-6 / Signal transducer and 

activator of transcription 3/ serum amyloid A (IL-6/STAT3/SAA) signaling is another 

critical mechanism for the formation of the liver pre-metastatic niche (Lee et al., 2019a). 

Rather than tumor-cell mediated formation of the pre-metastatic niche, this study 

identifies hepatocytes as an additional driver of the pre-metastatic niche (Lee et al., 

2019a). Genetic ablation of individual components of IL-6/STAT3/SAA signaling resulted 

in fewer macrophages and PMN-MDSCs (Ly-6G+), preventing metastatic dissemination. 

The concept of the pre-metastatic niche is an important question that is relatively 

unexplored in PDA. Each of these studies provide a framework to explain the role myeloid 

cells play in pre-metastatic formation. Identifying methods to interfere with myeloid 

function has the potential to mitigate metastasis of this highly aggressive cancer. 

In addition to their role in tumorigenesis and pre-metastatic niche preparation, 

myeloid cells have been implicated in migration and invasion of metastatic disease in 

many cancer types (Condeelis and Pollard, 2006; Pollard, 2004; Qian and Pollard, 2010). 

CCR2 (Sanford et al., 2013) and CXCR2 (Steele et al., 2016) inhibition have been shown 

to reduce metastatic dissemination in PDA through ablation of monocytes/macrophages 

and MDSCs, respectively. MDSC depletion in mouse PDA tumors converted the tumor 

from the highly invasive basal subtype to the less aggressive classical subtype and 

extended survival (Bailey et al., 2016; Steele et al., 2016). Further, pharmacological 
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depletion of macrophages with liposomal clodronate impaired angiogenesis and reduced 

metastasis formation in mice with PDA (Griesmann et al., 2017).  Myeloid cells are thus 

critical for both the formation of the pre-metastatic niche and metastatic dissemination. 

 

Macrophages drive resistance to chemotherapy  

Given that immune therapy has so far not been beneficial in PDA, frontline therapy 

remains chemotherapy regimens, though they have marginal efficacy (Burris et al., 1997; 

Conroy et al., 2011; Goldstein et al., 2015; Von Hoff et al., 2013). Current standard-of-

care chemotherapy regimens for PDA patients include gemcitabine/nab-paclitaxel and 

FOLFIRINOX. However, PDA tumors are highly chemoresistant. A broad approach of 

depleting all myeloid cells using CD11b-DTR mouse treated with DT resulted in tumors 

being sensitized to gemcitabine (Halbrook et al., 2019), suggesting myeloid cells can be 

targeted to revert chemoresistance.  Further, dual inhibition of TAMs (CCR2+) and 

MDSCs (CXCR2+) resulted in increased efficacy of FOLFIRINOX (Nywening et al., 

2018).  

Macrophages within the PDA TME have alternative activation and express less 

antigen presenting MHC II (Schreiber et al., 2011), suggesting that macrophages could 

be reprogrammed to perform their role as antigen presenting cells.  Activation of CD40 

with an agonist in combination with gemcitabine activated TAMs and resulted in reduced 

tumor burden in a cohort of patients (Beatty et al., 2011). Paralleling the human trials, 

mouse models of PDA are also resistant to single agent immune checkpoint blockade, 

however combined chemo- and immunotherapy approaches have shown success. 

Combination therapy of gemcitabine/nab-paclitaxel and aCD40 agonist, sensitized PDA 
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tumors to aPD-1 and aCTLA-4 immunotherapy (Winograd et al., 2015). This combined 

chemo- and immunotherapy approach, GAFCP (gemcitabine, nab-paclitaxel/abraxane, 

aCD40 agonist, aPD-1, aCTLA-4) is currently under clinical trial for patients with PDA 

((NCT03214250, NCT02588443). Further, the effectiveness of the GAFCP chemo- and 

immunotherapy can be predicted based on the amount of CD8+ T cell infiltration, with 

tumors rich in CD8+ T cells correlating with increased therapeutic response (Li et al., 

2018a). 

 

Myeloid cell compensatory responses 

I have highlighted a myriad of reports targeting monocytes/macrophages and 

MDSCs in PDA, however It has become clear that these approaches, while beneficial 

often result in a compensatory response of the other myeloid cell subsets. Two studies in 

PDA report a compensatory increase in monocyte and macrophage subsets when 

MDSCs are depleted (Nywening et al., 2018; Stromnes et al., 2014). To prevent 

compensatory myeloid infiltration, another approach is to target all myeloid cells via 

integrin CD11b on their surface. While antagonists for CD11b exist (Jaeschke et al., 1993; 

Rogers et al., 1998), they have not been well tolerated in patients due to toxicity (Dove, 

2000). Rather, an alternative approach to activate CD11b rather than antagonize has 

shown promise in preventing inflammation (Maiguel et al., 2011). The small molecule 

CD11b agonist reduced inflammation in a mouse model of PDA (Panni et al., 2019). 

CD11b agonism reduced myeloid infiltration, increased T cell infiltration and sensitized 

tumors to both chemotherapy and immunotherapy (Panni et al., 2019). While the total 

number of myeloid cells was reduced with CD11b agonism, macrophages that remained 
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were reprogrammed, reducing the expression of a number of immunosuppressive genes 

(Arginase 1, IL-10, TGF-b) and increasing antigen-presentation abilities, leading to 

activation of classical-DCs (cDCs) and subsequent T cell infiltration (Panni et al., 2019). 

CD11b agonism is one potential avenue to avoid myeloid cell compensation when 

targeting a select myeloid cell subset.  

Further, myeloid cells compensate for depletion of regulatory T cells (Tregs), 

another immunosuppressive cell type in the PDA TME (Zhang et al., 2020). In this study, 

depletion of Tregs did not reverse immune suppression as hypothesized, but rather 

accelerated tumor progression, in part due to a compensatory infiltration of 

immunosuppressive myeloid cells (Arginase 1, Chitinase3-like-3/YM1). This sustained 

immunosuppression was reduced through inhibition of the myeloid receptor CCR1, 

providing further indication that myeloid cells promote tumor progression and have 

complex and compensatory roles in the PDA TME. 

 

Myeloid single cell transcriptomics 

Recent single cell RNA sequencing efforts in PDA have revealed significant 

heterogeneity within myeloid cell subsets that confirm the M1/M2 designation is an 

oversimplification. Analysis of human PDA tumor samples compared to adjacent normal 

pancreas tissue identified populations of neutrophils, classical monocytes/macrophages, 

resident macrophages, and alternatively activated macrophages (Elyada et al., 2019). 

MARCO, APOE, and SPP1, C1QA emerged as novel macrophage markers that warrant 

further evaluation in PDA (Elyada et al., 2019). Another study identified similar myeloid 

populations in human PDA compared to adjacent normal pancreas tissue with similar 
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gene expression profiles (Steele et al., 2020). Further, myeloid cells are shown to have 

heterogenous expression of immune checkpoint receptors (LGALS9, CD274, PVR, 

CSF1R, SRPA, HLA-DQA1) (Steele et al., 2020). Putative immune checkpoint 

interactions were upregulated in PDA compared to adjacent normal samples, and these 

interactions were heterogenous across patients. Given the overwhelming lack of 

response to immunotherapy approaches, these data suggest the heterogeneity of 

immune checkpoints across patients is a contributing factor and we should consider the 

possibility of precision medicine in immune-modulatory appraoches.  

Two studies used single cell transcriptomics analysis to evaluate the immune 

response during PDA progression (Hosein et al., 2019; Schlesinger et al., 2020). 

Consistent with previous reports, macrophages were identified as one of the major 

immune cells infiltrating early lesions. Through unbiased clustering, 3 macrophage 

populations were identified in early lesions, while only 2 macrophage populations were 

identified in late/tumor samples (Hosein et al., 2019). The macrophage population only 

found in early lesion samples had expression of Fn1, Lyz1, and Ear1, suggesting this 

population is involved in wound repair (Hosein et al., 2019). There was not an equivalent 

macrophage population to this one seen in the late-stage tumor samples, suggesting 

macrophage populations change over the course of disease progression. In a separate 

study, macrophages from late lesions compared to early lesion samples had an increase 

in the chemokines, Cxcl1, Cxcl2, and Ccl8, which have known roles in recruitment of 

MDSCs (Cxcl1, Cxcl2) and macrophages (Ccl8), suggesting sustained infiltration of 

myeloid cells as carcinogenesis progresses (Schlesinger et al., 2020). Further, these 

macrophages upregulated markers of alternative activation (Mrc1), further supporting the 
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concept that macrophage polarization changes in later stages of PDA. Importantly these 

combined efforts have revealed novel myeloid cells markers with potential functional 

importance in PDA.  

 

Summary and dissertation overview 

Frustratingly, PDA remains refractory to current therapies. One of the challenges 

in treating PDA patients is the robust immunosuppressive TME that characterizes the 

disease. There is an inverse correlation between myeloid cells and T cells in the PDA 

TME, with a large myeloid infiltration and a paucity of T cells correlating with worse 

survival outcomes. Shifting this balance and reprogramming the immune cells to perform 

anti-tumor functions has been of prime interest to the PDA field. In this dissertation I 

present new hypotheses and findings behind mechanisms of immune suppression.  

In Chapter 2 I present a comprehensive immune mapping in human PDA. There 

has been a surge of single cell RNA sequencing publications in the last several years. In 

PDA, these single cell analyses focused primarily on fibroblasts and epithelial cells. Our 

work was the first in PDA to focus on the immune cells in both tumors and peripheral 

blood in patients compared to healthy controls (Steele et al., 2020). This work highlighted 

the heterogeneity of the immune infiltration in PDA, an important point to consider for 

precision medicine approaches. Further, these data provide rationale for why current 

immune therapy appraoches are not successful. Here we show that PDA patients have 

an increased number of exhausted CD8+ T cells compared to effector T cells. And that 

the immune checkpoints, PD-1 and CTLA-4 are uniformly expressed across exhausted 

and effector CD8+ T cells, while TIGIT is the sole immune checkpoint that defines 

exhausted CD8+ T cells. Using a putative ligand receptor mapping approach, we identified 
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the TIGIT-PVR axis is upregulated in PDA patients, highlighting its role in disease and its 

targetable potential. For translational relevance we assessed TIGIT+ and PD-1+ CD8+ T 

cells in patient matched blood and tumor and discovered TIGIT and not PD-1 had a 

positive correlation between the blood and tissue. These data revealed complex 

heterogeneity in PDA patients and that TIGIT is an understudied immune checkpoint with 

translational potential in PDA. The human PDA dataset from Chapter 2 was used to 

generate the hypotheses discussed in Chapters 3 and 4. 

In Chapter 3 I present Apolipoprotein E (ApoE) as a novel mediator of immune 

suppression in PDA. ApoE has been extensively evaluated in cardiovascular and 

Alzheimer’s disease (Mahley, 2016). There have also been contradictory reports on the 

role of ApoE in carcinogenesis in acute myeloid leukemia (AML) and melanoma (Deng et 

al., 2018; Tavazoie et al., 2018). Using the human PDA dataset in Chapter 2 we identified 

ApoE as being upregulated in the stroma of PDA patients. ApoE is expressed specifically 

in macrophages and iCAFs in the TME. Based on the literature of macrophages and 

iCAFs in PDA we hypothesized that ApoE promoted immune suppression. Patients with 

high plasma levels of ApoE had worse survival outcomes, providing further evidence in 

its role in accelerating carcinogenesis. In this work, we used a syngeneic, orthotopic 

mouse model of PDA and showed ApoE regulates immune suppression. Mice deficient 

in ApoE had smaller tumors, fewer M-MDSCs, and an increase in tumoral CD8+ T cells. 

The T cell infiltration was driven by NF-kB mediated Cxcl1 and Cxcl5 secretion from tumor 

cells. The mechanism of CXCL1 mediating T cell infiltration has been established (Li et 

al., 2018a), and our work provides evidence that ApoE is critical in this mechanism. These 

data highlight a novel role for ApoE in promoting immune suppression in PDA.  
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In Chapter 4 I present a novel gene signature that is systemically elevated in both 

mouse and human PDA. One of the challenges for PDA patients is that most present with 

metastatic disease, for which there is no cure. The immune response has been well 

studied at the primary tumor in PDA, but how the immune system is altered systemically 

has not been well described. In this work we used biomaterial scaffolds, which serve as 

a synthetic metastatic niche, blood, livers, and primary tumors from multiple mouse 

models, as well as blood, liver metastases, and primary tumor samples from human PDA 

patients to get a comprehensive evaluation of the systemic changes to the immune 

response in PDA. We identified two distinct macrophages populations, one defined by 

Chil3 (Chil-TAMs) and the other defined by complement component genes (Cq-Tams) 

that exist systemically. Further, the complement components, C1QA and C1QB, as well 

as TREM2 were upregulated systemically in PDA compared to normal controls. These 

data suggest a novel role for the complement system in PDA that has yet to be fully 

elucidated. Our single cell RNA sequencing analysis in this work further identified the 

complexity of macrophages in PDA and uncovered novel markers for future evaluation. 

In Chapter 5 I discuss how the hypotheses and findings from Chapters 2, 3, and 4 

contribute to the PDA field and suggest future directions for each project.  
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Chapter 2 Multi-modal Mapping of the Tumor and Peripheral Blood Immune 
Landscape in Human Pancreatic Cancer3,4 

 

Abstract  

Pancreatic ductal adenocarcinoma (PDA) is characterized by an immune-

suppressive tumor microenvironment that renders it largely refractory to immunotherapy. 

We implemented a multimodal analysis approach to elucidate the immune landscape in 

PDA. Using a combination of CyTOF, single-cell RNA sequencing, and multiplex 

immunohistochemistry on patient tumors, matched blood, and non-malignant samples, 

we uncovered a complex network of immune-suppressive cellular interactions. These 

experiments revealed heterogeneous expression of immune checkpoint receptors in 

individual patient’s T cells and increased markers of CD8+ T cell dysfunction in advanced 

disease stage. Tumor-infiltrating CD8+ T cells had an increased proportion of cells 

expressing an exhausted expression profile that included upregulation of the immune 

checkpoint TIGIT, a finding that we validated at the protein level.  Our findings point to a 
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profound alteration of the immune landscape of tumors, and to patient-specific immune 

changes that should be taken into account as combination immunotherapy becomes 

available for pancreatic cancer.  

Introduction 

Pancreatic ductal adenocarcinoma (PDA), one of the deadliest human 

malignancies, is distinguished by an extensive and complex tumor microenvironment 

(TME) containing abundant infiltrating immune cells.  Immunotherapy clinical trials 

using checkpoint inhibitors PD-1 and CTLA4 as single agents have been unsuccessful 

(Brahmer et al., 2012; Royal et al., 2010), but recent clinical trials using combination of 

immune regulatory agents have shown positive initial results (NCT02588443), 

indicating the need to target multiple components of the stroma and better understand 

the immune landscape of human PDA. The prevalence of CD8+ T cells varies across 

patients (Stromnes et al., 2017). Deconvolution of bulk RNA sequencing data from The 

Cancer Genome Atlas (TCGA) stratified tumors based on their cytolytic index, including 

a high cytolytic index group (Balli et al., 2017). These data indicate that the CD8+ T cell 

landscape in pancreatic tumors might be more complex than previously believed, and 

the mechanisms of immune suppression may vary across patients. While pancreatic 

cancer is most often diagnosed when locally invasive or metastatic, most existing 

datasets are limited to surgical samples representing earlier stages of the disease.  

The presence and distribution of cytotoxic T cells in PDA has important prognostic 

correlations; CD8+ T cells in proximity to PDA cells correlate with increased overall 

survival (Carstens et al., 2017). Further, analysis of rare long-term PDA survivors 

revealed persistence of T cell clones specific to tumor antigens (Balachandran et al., 
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2017). Conversely, infiltration of myeloid cells, specifically tumor associated 

macrophages, negatively correlates with prognosis (Tsujikawa et al., 2017), consistent 

with an immune-suppressive role of these cells (Vonderheide, 2018). CD4+ T cells are 

abundant within tumors, with a prevalence of regulatory T cells (Clark et al., 2007); their 

nature in human PDA is currently poorly understood. Similarly, our understanding of other 

immune cell types within tumors is limited.  

Here, we used multiple, complementary approaches [mass cytometry (CyTOF), 

single-cell RNA sequencing (scRNA seq), and multiplex fluorescent 

immunohistochemistry (mfIHC)] to investigate the immune landscape of pancreatic 

tumors from a collection of samples that included both surgical and fine needle biopsy 

samples, as well as matched patient blood. Our work adds an in-depth immune 

characterization to complement recent single cell characterization on pancreatic tumor 

cells (Chan-Seng-Yue et al., 2020; Moncada et al., 2020) and cancer associated 

fibroblasts (Biffi et al., 2019; Dominguez et al., 2020; Elyada et al., 2019). We observed 

that immune landscapes in each individual patient were heterogeneous, although some 

common features emerged. Cytotoxic T cells in patients displayed an exhausted gene 

expression signature, which was progressively more pronounced in advanced disease. 

The specific combinations of immune checkpoint genes expressed in each patient’s CD8+ 

T cells was unique. Tumor infiltrating CD8+ T cell had a higher proportion of cells 

expressing genes previously associated with T cell exhaustion, and these cells had 

enriched expression of the immune checkpoint  T-cell immunoglobulin and ITIM domains 

(TIGIT) (Manieri et al., 2017).  Predicted interaction analysis (Cohen et al., 2018; Zhang 

et al., 2019a) revealed multiple potential cellular interactions upregulated in tumors 
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compared with non-malignant tissue. Overall, our study provides a wealth of hypothesis-

generating data to benefit the PDA community at large.   

 

Results 

CyTOF and multiplex immunohistochemistry mapping reveal heterogeneous 

immune infiltration in human pancreatic cancer 

To map the immune infiltration in pancreatic cancer, we performed CyTOF on 10 

pancreatic tumor samples and 8 samples from non-malignant pancreas specimens 

[Whipple pancreaticoduodenectomy (n=2), distal pancreatectomy (n=4), partial 

pancreatectomy (n=1) or endoscopic fine needle biopsy (n=3)]. Clinical pathology review 

provided the diagnosis for samples (Fig. 2.1A); histology of surgical specimens is shown 

in Fig. 2.1B. Our validated antibody panel contained 30 immune markers (Bendall et al., 

2011). We used the Astrolabe Cytometry platform for batch correction to account for 

differences in the timing of sample acquisition, and selected live singlets for downstream 

analysis (Amir et al., 2019; Nowicka et al., 2017).  

Principal component analysis (PCA) showed a minor shift between adjacent or 

normal pancreas and tumor samples (Fig. 2.2A), indicating differences in immune cell 

composition. To visualize the distribution of cell populations within individual samples, we 

utilized unbiased hierarchical clustering algorithms (Nowicka et al., 2017), along with 

supervised annotation (Fig. 2.2B,C and Fig. 2.1C,D). While adjacent/normal samples 

contained mostly non-immune cells, tumor samples had an abundance of immune cells 

(Fig. 2.2C). Multiple immune populations were elevated in tumor samples: myeloid cells, 

B cells, NK cells, CD4+ T cells, regulatory T cells and CD8+ T cells (Fig. 2.2D and Fig. 
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2.1E). We observed an inverse correlation between the percentage of myeloid cells and 

CD8+ T cells (Fig. 2.2E), consistent with previous observation in mouse models and in 

agreement with the notion that myeloid cells are a key immunosuppressive component in 

pancreatic cancer (Clark et al., 2007; Panni et al., 2019; Stromnes et al., 2014; Stromnes 

et al., 2017; Zhang et al., 2017b).  

To measure immune composition in undisturbed tissue and define the spatial 

relationships between immune cells in the microenvironment, we performed seven-color 

multiplex fluorescent immunohistochemistry (mfIHC) on a formalin fixed paraffin 

embedded tissue tumor microarray (TMA) comprised of 71 PDA and 34 chronic 

pancreatitis samples, as previously described (Lazarus et al., 2018) (Fig. 2.1F). 

Representative images from individual samples are shown in Fig. 2.2F, Fig. 2.1G-H. 

Chronic pancreatitis samples contained a higher epithelial cell component than the PDA 

samples. Conversely, immune cell infiltration was more abundant in PDA tissue (Fig. 

2.2G). In agreement with our CyTOF analysis, mfIHC demonstrated an increase in Tregs 

(FOXP3+) and macrophages (CD163+). However, unlike in the CyTOF data, CD8+ T cells 

did not change (Fig. 2.2G), likely reflecting differences in the control tissues (chronic 

pancreatitis versus adjacent/normal pancreas). Individual patient tumors were variable in 

terms of CD8+ T cell infiltration. As in the CyTOF data,  we observed a negative correlation 

between CD8+ T cells and myeloid cells in PDA samples (Fig. 2.2H and 2.2E) (Clark et 

al., 2007; Tsujikawa et al., 2017), supporting a key immunosuppressive role of this cell 

population (Beatty et al., 2015; DeNardo and Ruffell, 2019; Elyada et al., 2019; Nywening 

et al., 2018; Panni et al., 2019; Sanford et al., 2013; Zhang et al., 2017b; Zhu et al., 2017; 
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Zhu et al., 2014). Overall, our data show a complex microenvironment and considerable 

variability across individual patients.   

 

Single cell RNA sequencing reveals a complex immune landscape with 

heterogeneous expression of immune checkpoints and ligands in the pancreatic 

cancer microenvironment 

We performed single cell RNA sequencing (scRNA seq) on 16 PDA samples, 

including surgical (n=6) and fine needle biopsy specimens (n=10) (Fig. 2.3A). All the 

patients were treatment-naïve at the time of sample acquisition. We also included three 

non-malignant pancreas samples (1196, 1258, 19732) from patients undergoing surgery 

for duodenal adenoma, ampullary carcinoma, or adjacent to PDA, respectively, where an 

uninvolved portion of pancreas was included in the resection (as determined by 

pathologic evaluation). To capture a window into the systemic immune response in PDA 

patients, we also collected peripheral blood mononuclear cells (PBMCs) from these 

patients and healthy subjects (Fig. 2.3A, right panel).  

 In total, we sequenced 8541 cells from adjacent/normal samples and 46,244 from 

PDA, while from the blood samples we sequenced 14,240 cells from 4 healthy subjects, 

and 55,873 cells from 16 PDA patients. To define and visualize cell subpopulations, we 

batch corrected our tumor and blood sequencing samples (Fig. 2.3B) and then used 

unbiased clustering and a dimensionality reduction through Uniform Manifold 

Approximation and Projection (UMAP) (Fig. 2.4A and Fig. 2.5A). We identified each 

subpopulation based on published lineage markers (Fig. 2B and Fig. 2.5B). We observed 

variability in the total immune cell composition of individual tumors, and in the relative 
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abundance of individual immune cell components similar to CYTOF and mfIHC data (Fig. 

2.3C and 2.3D).  

 We identified abundant pro-inflammatory cells in the PDA microenvironment 

including CD8+ T cells and natural killer cells (NK) (Fig. 2.4A). To gather insight into the 

possible mechanisms preventing anti-tumor immune responses, we profiled average 

expression of immune checkpoint receptors and ligands by cell type, both in tumors and 

PBMCs of PDA patients (Fig. 2.4C and Fig. 2.5C). We observed expression of multiple 

immune checkpoint receptors in T and NK cell subsets, while myeloid populations were 

enriched for their corresponding ligands (Fig. 2.4C). CD8+ T cells had elevated ICOS, 

TIGIT, PDCD1 and LAG3, among others, but relatively low expression of CTLA4. CTLA4, 

as well as all other checkpoints except for LAG3, was high in CD4+ T cells. NK cells also 

had elevated CD47, TIGIT, TNFRSF18 and LAG3, and modest expression of PDCD1. 

The expression of checkpoint ligands was heterogeneous, with epithelial cells mainly 

expressing PVR and LGALS9 (encoding for PVR and GALECTIN 9, ligands for TIGIT and 

HAVCR2(TIM3) respectively). Myeloid and dendritic cells expressed several genes 

encoding checkpoint ligands, including SIRPA, LGALS9, PVR, and ICOSLG (Fig. 2.4C). 

Similarly, in PBMC samples, CD4+ T cells, CD8+ T cells and NK cells had elevated 

expression of multiple immune checkpoint receptors (TIGIT was elevated in all three 

cellular compartments), and granulocytes, monocytes and B cells, plasma cells and 

dendritic cells expressed the ligands (Fig. 2.5C). We also detected expression of immune 

checkpoint ligands in other non-immune cell types, which included fibroblasts, endocrine, 

and endothelial cells (Fig. 2.4C). Our single cell data revealed a complex, patient-specific 



 31 

landscape of immune checkpoint ligand and receptor expression across multiple immune 

and non-immune cell types. 

 

Tumor-infiltrating CD8+ T cells have a distinct gene expression profile, with 

progressive dysfunction in advanced disease 

Cytotoxic T cells are a fundamental component of anti-tumor immune responses 

and the target of immunotherapy (for review see (Rosenberg, 2014)). To gather deeper 

insight into the functional status of tumor-infiltrating CD8+ T cells, we investigated their 

transcriptional profile. To investigate patient-specific variability, we mapped the average 

expression of immune checkpoint receptors in CD8+ T cells in each individual patient’s 

tumor and blood samples (Fig. 2.4D and Fig. 2.5D). Infiltrating CD8+ T cells expressed 

markedly distinct immune checkpoint profiles in individual patient samples, both in tumors 

and blood (Fig. 2D and Fig. 2.5D). In tumor samples, LAG3 was elevated in patients 

1141, 1294, 1261 and 1229. Patient 1229 (locally advanced) also had high expression of 

ICOS, CTLA4, TIGIT and CD47. Conversely, patient 1261 (also locally advanced), had 

elevated CD27, LAG3, PDCD1, HAVCR2, TNFRSF18, CSF1, TIGIT, CD40LG, CD47 and 

CD28, but not CTLA4. The immune checkpoint landscape did not cluster by disease 

stage, and while some metastatic patients had high expression of multiple immune 

checkpoints (3210) others expressed only a limited subset (1253). Analysis of circulating 

CD8+ T cells revealed a similarly complex landscape, but no clear overall correlation in 

the expression of individual checkpoints between patient tumor and blood T cells at a 

gene expression level (Fig. 2.5D).  
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We then investigated tumor-infiltrating CD8+ T cells compared to CD8+ T cells in 

normal/adjacent tissue.  By functional annotation, we observed pathways relating to cell 

cytotoxicity, chemokine signaling, T cell receptor signaling, and antigen processing were 

significantly enriched in PDA samples, compared to adjacent/normal tissue CD8+ T cells, 

an indication that immune responses had been elicited in the tumors (Fig. 2.4E). We 

performed unbiased clustering of the CD8+ T cell gene expression signatures in patients. 

Circulating CD8+ T cells gene expression patterns did not clearly segregate by disease 

stage (Fig. 2.5E).  We then performed an unbiased differential expression analysis on the 

tissue-infiltrating CD8+ T cells in tumors versus adjacent/normal tissue. This analysis 

revealed distinct expression patterns in healthy versus tumor infiltrating total CD8+ T cells 

(Fig 2.4F). We noted that the CD8+ T cells in adjacent/normal samples clustered together, 

while tumor-infiltrating CD8+ T cell signatures spanned a spectrum in individual samples. 

Some tumor signatures partially resembled non-malignant tissue and others were greatly 

diverging. Interestingly, upon clinical annotation, we discovered that the divergence from 

the normal signature was more pronounced in samples from advanced disease stage. 

When we considered which genes were differentially expressed across the groups, we 

observed an increase in T cell activation and trafficking markers (GZMB, GZMA, KLF2) 

(Balli et al., 2017; Carlson et al., 2006; Stromnes et al., 2017) in tumor CD8+ T cells, 

compared to adjacent/normal tissues. Further, T cell exhaustion markers such as EOMES 

and GZMK were low in healthy CD8+ T cells, and elevated in the majority of tumor CD8+ 

T cell samples (Li et al., 2018b; Wherry et al., 2007). The only immune checkpoint 

receptor identified as differentially overexpressed in tumor-infiltrating CD8+ T cells, 

compared to CD8+ T cells in adjacent/normal tissue, was TIGIT, a gene encoding a 
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receptor belonging to the Ig superfamily (Manieri et al., 2017).  Overall, comparison of the 

transcriptional profile of tumor and adjacent/normal infiltrating CD8+ T cells revealed 

unique profiles of expression of immune checkpoint genes in individual patients.  

However, some common features emerged, such as expression of activation markers, as 

well as an exhausted gene expression signature which progressively increased with 

advanced disease stage.  

 

Tumor infiltrating CD8+ T cells include an expanded exhausted population 

characterized by TIGIT expression 

Distinct populations of tumor infiltrating CD8+ T cells have been described (Jansen 

et al., 2019). Given the progressive dysfunction of tumor-infiltrating CD8+ T cells, we 

hypothesized that the transcriptional profile shift might be caused by changes in CD8+ 

populations. By unbiased clustering, we   distinguished 6 populations of CD8A-expressing 

T cells in both adjacent/normal and PDA samples (Fig. 2.6A). To identify sub-populations, 

we plotted the top expressed genes per cluster (Fig. 2.6B), and compared them with 

published signatures of CD8+ T cells subtypes (Wherry et al., 2007). We identified two 

populations of effector CD8+ T cells (Teff), expressing PRF1 and GZMB; a population of 

likely memory (mem)/ precursor effector (pec) CD8+ T cells (Tmem/pec) expressing CCR6 

(Kondo et al., 2007); and two populations of exhausted CD8+ T cells (Tex) expressing 

EOMES, GZMK, and TIGIT (Fig. 2.6C, Fig. 2.7A and average expression heatmap in 

Fig. 2.7C). Interestingly, comparison of tumor infiltrating versus adjacent/normal CD8+ T 

cells revealed a relative increase in exhausted T cells and memory T cells, with converse 

reduction of effector T cell levels (Fig. 2.6D and Fig. 2.7B). We then examined expression 
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of immune checkpoints and immune activation markers across CD8+ T cell subsets, and 

observed uniform expression of PDCD1, HAVCR2 and LAG3 (Fig. 2.6C), while TIGIT 

was enriched in exhausted and memory CD8+ T cells. We found that 13.3% of effector 

CD8+ T cells, compared to 44.2% of exhausted CD8+ T cells expressed TIGIT. To 

compare gene expression changes within distinct clusters of CD8+ T cells, we performed 

two separate differential expression analyses. We first compared PDA effector CD8+ T 

cells to adjacent/normal effector CD8+ T cells, and we found that GZMA and GZMB were 

higher in tumor infiltrating effector CD8+ T cells, suggesting T cell activation (Fig. 2.6E). 

RORA expression, a marker associated with effector T cells, was also upregulated 

(Wherry et al., 2007) (Fig. 2.6E), consistent with an ongoing immune response. We then 

compared PDA exhausted CD8+ T cells to adjacent/normal exhausted CD8+ T cells and 

tumor infiltrating exhausted CD8+ T cells had higher expression of EOMES and KLF2, 

markers of exhaustion (Wherry et al., 2007) (Fig. 2.6F).   

Our data suggest that exhausted CD8+ T cells are abundant in pancreatic tumors, 

and that their exhausted phenotype is more profound than the equivalent population in 

adjacent/normal tissue. Further, TIGIT was the sole immune checkpoint receptor that 

specifically defined exhausted CD8+ T cells.  

 

A complex landscape of NK and CD4+ T cells cell subsets in pancreatic cancer 

Similar to effector CD8+ T cells, NK cells display cytotoxic activity and express 

immune checkpoint receptor (Fig. 2.4C), however these cells are not well defined in 

human PDA (Ducimetiere et al., 2019). Unsupervised sub-clustering of NK cells revealed 

three populations (Fig. 2.8A and 2.8B). Along with the three NK cell subsets, we found 
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two additional populations that we labeled cluster 1 and 2, which expressed NKG7, CD3E, 

and CD8A. While these cells did not cluster with the CD8 T cells based on their 

transcriptional profile, they could potentially be highly cytolytic CD8 T cells expressing 

some NK markers (Arlettaz et al., 2004; McMahon et al., 2002). A “NK” cell population 

expressing CD8A was identified in a recent PDA scRNA-seq paper (Elyada et al., 2019). 

Highly variable gene expression analysis highlighted differences among subpopulations 

(Fig. 2.8B). In NK subsets we detected expression of markers of antigen presentation 

(HLA-DRA), cytolytic activity (PRF1, GZMB), and chemokines/chemokine receptors 

(CCL3, IL7R), in agreement with a recently published characterization of human NK cells 

by single cell RNA sequencing (Smith et al., 2020). NK cluster 1 was enriched for immune 

checkpoint HAVCR2, while NK cluster 3 expressed high levels of immune checkpoint 

TNFRSF4 (Fig. 2.8B and 2.8C). We then performed differential gene expression analysis 

and unbiased clustering of individual patient samples to compare tumor infiltrating NK 

cells with NK cells in non-tumor tissue. The signatures of tumor-infiltrating and non-tumor 

NK cells were not as divergent as was the case for CD8+ T cells, and, with one exception 

(1324), resectable tumor samples clustered closely with the non-tumor samples (Fig. 

2.8D). However, advanced disease samples had a different expression signature than 

healthy counterparts, with increased expression of activation markers such as GZMA and 

elevated expression of two immune checkpoint genes, TIGIT and HAVCR2. The role of 

NK cells in PDA is not well understood; our findings set the stage for future functional 

studies on the role of NK cells in this disease.  

We then investigated CD4+ T cells, a complex population that includes regulatory 

T cells, and plays a fundamental role in regulating pancreatic carcinogenesis (Chan-
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Seng-Yue et al., 2020; Hoffman et al., 2020; Jang et al., 2017; Li et al., 2020b; Oakes et 

al., 2020; Perusina Lanfranca et al., 2020; Zhang et al., 2020; Zhang et al., 2014). Unlike 

the CD8+ T and NK cells, we could not perform differential expression on CD4+ T cells as 

we did not capture enough cells from adjacent/normal tissue samples; instead we focused 

on studying the tumor-infiltrating component. We identified 13 transcriptionally distinct 

populations of CD4+ T cells, although many of the different clusters tended to merge 

together (Fig. 2.8E). A highly enriched gene analysis of CD4+ subsets revealed 

expression of naïve T cell markers CCR7 and SELL (Sckisel et al., 2017) in cluster 0 and 

expression of regulatory T cell marker FOXP3 in cluster 3 (Fig. 2.8F). As expected, based 

on previous studies, CTLA4 was highly expressed within Tregs (Bengsch et al., 2017) 

(Fig. 2.8G). Specific immune checkpoint genes were highly expressed in individual 

clusters, such as TNFRSF18 and PDCD1. TIGIT appeared as a top expressed gene in 

Tregs (Fig. 2.8F), although it was also expressed in other clusters more sparsely (Fig. 

2.8G). The other clusters did not correspond to known subsets of CD4+ T cells, and were 

relatively similar to one another, a possible reflection of low transcriptional activity of non-

Treg CD4+ T cells. Taken together, these analyses suggest multiple immune checkpoint 

receptors are expressed in CD4+ and NK cell subsets. In particular, the immune 

checkpoint TIGIT was differentially overexpressed on tumor-infiltrating PDA CD8+ T cells, 

regulatory T cells and NK cells.   

 

Myeloid and dendritic cells are an important source of immune checkpoint ligands 

in human PDA 
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We next analyzed myeloid cells, which are an important source of immune 

checkpoint ligands in PDA.  By unbiased clustering, we identified 6 transcriptionally 

distinct populations of myeloid cells. (Fig. 2.9A). We observed an abundant granulocyte 

population expressing CXCR1 and CXCR2, FCGR3B and S100A8 (Fig. 2.9B). 

Consistent with previous studies (Biffi et al., 2019; Elyada et al., 2019; Sanford et al., 

2013), we detected resident macrophages and alternatively activated macrophages 

(MARCO+), and classical monocytes (Fig. 2.9A and 2.9B). We also observed an 

additional myeloid population, denoted as alternatively activated macrophages 2, that 

resembled alternatively activated macrophages and was uniquely defined by abundant 

expression of CHIT1 and multiple immune checkpoint ligands (Fig. 2.9A, 2.9B and Fig. 

2.10A). We next mapped immune checkpoint ligand expression within specific myeloid 

compartments and observed heterogeneous expression of immune checkpoints in 

specific clusters (Fig. 2.9C). Differential expression analysis between adjacent/normal 

and tumor-infiltrating myeloid sub-clusters revealed multiple upregulated checkpoint 

ligands. LGALS9, the ligand for HAVCR2 (encoding for TIM3), was significantly increased 

within alternatively activated macrophages, while SIRPA, the ligand for CD47, was higher 

in PDA granulocytes compared to granulocytes in adjacent/normal tissue (Fig. 2.9D).  

PVR, the ligand for TIGIT was enriched in total macrophages (Fig. 2.9D). Average 

expression heatmaps of macrophages (Fig. 2.10B) and granulocytes (Fig. 2.10C) 

demonstrated that the expression of immune checkpoint ligands was highly variable in 

individual patients.  

 Dendritic cells (DCs) cells are professional antigen presenting myeloid cells, and 

support anti-tumor activity by stimulating T cells; their relative rarity in PDA is one of the 
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potential causes for ineffective immune responses in this disease (Hegde et al., 2020). 

Clustering analysis revealed multiple populations of tumor-infiltrating DCs (Fig. 2.9E). We 

found two populations of plasmacytoid DCs (IRF8, GZMB) and two populations of 

Langerhans-like DCs (CD207, CD1A) as previously described (Elyada et al., 2019)( Fig. 

2.9F and 2.11A). Langerhans-like DC2 had robust expression of IL22RA2, also known as 

IL22BP, and the IL-22-IL22BP axis is known to be a crucial mediator of tumorigenesis in 

the colon (Huber et al., 2012) and pancreas (Perusina Lanfranca et al., 2020). We also 

detected a population of conventional DC1s (CLEC9A, IRF8) (Biffi et al., 2019; Collin and 

Bigley, 2018; Elyada et al., 2019), and two additional populations of potential conventional 

DC2s that expressed immune checkpoint ligand SIRPA (Fig. 2.9F and 2.11A). We also 

detected two unique populations of activated DCs (LAMP3, CCL22) (Elyada et al., 2019) 

(Fig. 2.9F and 2.11A). We then plotted the average expression of known immune 

checkpoint ligands in the different DC subsets. We discovered that activated DC1 had 

elevated expression of nearly all the immune checkpoint ligands, including PVR (Fig. 

2.11B),  suggesting that in pancreatic tumors some subsets of DCs may be 

immunosuppressive (Veglia and Gabrilovich, 2017).  

 

Mapping predicted interactions and tissue heterogeneity in pancreatic cancer 

samples by single cell sequencing 

To explore potential cross-talk between T/NK and myeloid populations, we applied 

a predicted interaction algorithm (Cohen et al., 2018) based on known ligand-receptor 

(LR) pairs interacting with high affinity (Ramilowski et al., 2015). We curated the list to 

specifically add immune checkpoints and limit the receptor-ligand pairs to cytokines, 
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chemokines and specific signaling pathways. We first plotted all the receptor-ligand 

interactions that were statistically higher in tumor versus non-malignant samples, based 

on the level of ligand expression, and observed a complex landscape of potential 

interactions involving multiple cell types (Fig. 2.10D). We then visualized upregulated 

ligands in macrophages (Fig. 2.11C), granulocytes (Fig. 2.11D), dendritic cells (Fig. 

2.11E), endothelial cells (Fig. 2.11F) and epithelial cells (Fig. 2.11G) and mapped the 

predicted binding partners in CD4, CD8, and NK cells. Among interactions upregulated in 

cancer compared to adjacent/normal, we detected known putative immune suppressive 

interactions, such as those mediated by the chemokine receptors CXCR2 in granulocytes 

and CCR2 in macrophages (DeNardo and Ruffell, 2019; Sanford et al., 2013). Predicted 

interactions mediated by IL1A and IL1B with their receptor encoding genes IL1R1 and 

IL1R2 were also upregulated, consistent with their known roles in pancreatic cancer (Das 

et al., 2020; Elyada et al., 2019; Ohlund et al., 2017). Multiple putative interactions linked 

T and NK cells to myeloid immune checkpoint ligands, which is consistent with a key role 

for myeloid cells in establishing immune suppression in pancreatic cancer (for review see 

(Vonderheide, 2018)). Predicted immune checkpoint-mediated interactions such as 

ICOS/ICOSLG and SIRPA/CD47 were among those upregulated in pancreatic cancer 

compared to healthy/adjacent tissue. TIGIT/PVR interactions were elevated between 

macrophages and CD4+ T cells, CD8+ T cells and NK cells (Fig. 2.11C).  Interestingly, 

the putative TIGIT/PVR interaction was also elevated between tumor endothelial and 

epithelial cells, T cell and NK cell subsets (Fig. 2.11F, 2.11G). We then endeavored to 

investigate the expression of other genes involved in the TIGIT pathway. We investigated 

the expression of TIGIT’s costimulatory counter receptor, DNAM1 (CD226), which 
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competes for PVR and PVRL2 and promotes T cell activation (Fourcade et al., 2018). We 

found that while TIGIT was significantly increased on PDA CD8+ T cells (P= 4.8E-32), 

CD226 expression was not altered in CD8+ T cells between adjacent/normal and PDA 

cells (Fig. 2.11H). CD96 and PVRIG act similarly to TIGIT, inhibiting T cell activation.  

Expression analysis showed that mRNA levels of these receptors were not altered 

between adjacent/normal and PDA CD8+ T cells (Fig. 2.11H). PVRL2 encodes a second 

ligand for TIGIT, although it binds with a lower affinity compared to PVR (Yu et al., 2009). 

We detected expression of PVRL2 in epithelial, myeloid, and endothelial cells (Fig. 2.11I). 

TIGIT, CD96, PVRIG, and CD226 were mainly expressed by T and NK cells in PDA tissue 

(Fig. 2.11I). We then investigated the Adenosine pathway, because of its immune 

suppressive role (Maj et al., 2017). We profiled this pathway in tumor samples and found 

expression of the adenosine receptor ADORA1 in epithelial and mast cells, ADORA2B in 

epithelial, mast cells, and dendritic cells, ADORA3 in dendritic, mast, and myeloid cells 

(Fig. 2.10E).  

The expression of multiple immune checkpoints has been previously described in 

pancreatic cancer (Balli et al., 2017). Since a deconvolution approach was used, the 

specific immune cell types expressing receptors and ligands could not be assessed. In 

contrast, our analysis provides a comprehensive view of the multiple, redundant potential 

immune suppressive interactions within the pancreatic cancer microenvironment.  

 

TIGIT protein expression is increased on T and NK cells in pancreatic cancer, and 

its expression in the tumors correlates with matched blood 
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To determine whether mRNA expression of immune checkpoints was reflected by 

protein levels, we performed mass cytometry on tumor and normal/adjacent uninvolved 

tissue samples (Fig. 2.12A). TIGIT expression was elevated in tumor-infiltrating CD8+ T 

cells in the majority of samples, albeit not all, while PD1 and LAG3 were not significantly 

altered (Fig. 2.12A). Interestingly, we detected an increase in expression in PD-1 ligand, 

PD-L1, in CD68+ macrophages from PDA patients (Fig. 2.13B). CTLA4 expression was 

significantly increased in CD4+ T cells in most PDA samples versus adjacent/normal 

tissues (Fig. 2.12B). TIGIT+ CD4+; CD25+ T cells were more frequent in PDA samples, 

compared to controls (Fig. 2.12B). Similarly, TIGIT+ NK cells (CD56+) were more frequent 

in PDA, although this finding is limited by the small number of samples analyzed (Fig. 

2.12C). In one patient, where matched tumor and uninvolved adjacent tissue were 

analyzed, we observed a higher frequency of TIGIT expression on both CD8+ and CD4+ 

T cells in the tumor (Fig. 2.12D). We then performed immunostaining for both TIGIT and 

PVR on patient tissue in situ (Fig. 2.12E) and observed TIGIT in CD8+ T cells, and PVR 

(red) in epithelial and stromal cells (Fig. 2.12E and single channels shown in Fig. 2.13A).  

Lastly, as we observed that TIGIT was commonly upregulated in tumors, we 

investigated whether protein expression of TIGIT in blood correlated with the individual 

patient’s tumor, an attractive possibility given the relatively easy accessibility of blood 

samples. We performed CyTOF on the peripheral white blood cell (PBMC) component in 

36 pancreatic cancer patients, 18 healthy volunteers, and 8 patients with chronic 

pancreatitis (Fig. 2.14A). Cellular subtyping and frequency of circulating immune cells 

present are shown in Fig. 2.14B-E. Principal component analysis failed to show any major 

distinction between our three patient populations (Fig. 2.14G). Blood from both PDA and 
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chronic pancreatitis patients had fewer circulating CD8+ T cells, but higher expression of 

TIGIT CD8+ T cells (Fig. 2.12F, 2.12G and Fig. 2.14F).  PD1 and CTLA4 protein 

expression was elevated in PDA circulating CD8+ and CD4+ T cells, respectively, 

compared to healthy subjects (Fig. 2.12G).  We then analyzed the subset of patients for 

whom we had matched mass cytometry of tumor and PBMCs and found a positive 

correlation of TIGIT expression, but not PD1 expression, in CD8+ T cells (Fig. 2.12H and 

2.12I). Thus, different immune checkpoint molecules are prevalent in individual patients, 

and further validation of potential targets, including TIGIT, is warranted.   

 

Discussion 

Recent reports examining gene expression in pancreatic tumors by scRNAseq or 

high content in situ hybridization have largely focused on the complexity of the fibroblast 

populations, (Dominguez et al., 2020; Elyada et al., 2019; Ligorio et al., 2019) however 

the heterogeneity of the immune reaction in PDA at a single cell level remained unclear. 

We have used a multi-modal approach combining CyTOF (Amir et al., 2019; Bendall et 

al., 2011), multiplex immunohistochemistry, and scRNA seq to map the immune 

infiltration, as well as the systemic immune response through patient blood, in human 

PDA (Stuart and Satija, 2019).  

Multiparameter mapping of the TME demonstrated a highly heterogeneous 

immune infiltration in individual patients, consistent with previous reports (Stromnes et 

al., 2017), suggesting that immune-modulatory therapies should potentially be targeted 

to specific individuals based on their checkpoint expression profile within tumors. Both 

CyTOF and mfIHC also revealed an inverse correlation between infiltration of myeloid 
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and CD8+ T cells. scRNA seq analysis suggests that CD8+ T cells express markers of 

exhaustion at levels that increase in advanced stages of disease, consistent with a recent 

study of peripheral T cells in pancreatic cancer patients showing diminished fitness (Xu 

et al., 2019). Importantly, we included fine needle biopsy samples for both single cell 

sequencing and CyTOF, which allowed us to study the immune infiltration in patients with 

unresectable advanced stages of disease. These tumors included CD8+ T cells with a 

more pronounced exhaustion signature compared with early-stage patients, a possible 

indication of progressive immune dysfunction.  

We found differential expression of TIGIT, both at the gene and at the protein level, 

in patient CD8+ T cells. We chose to focus on TIGIT in particular as one example of an 

immune checkpoint ligand/receptor pair given our ability to evaluate this relatively 

understudied checkpoint across multiple modalities. TIGIT expression was enriched 

specifically within EOMEShigh CD8+ T cells, or exhausted T cells, similar to recent findings 

in human prostate, bladder, and kidney cancer (Jansen et al., 2019).  TIGIT was also 

elevated in NK cells within the tumor, where its role is less understood, although there is 

at least some evidence TIGIT inhibition in NK cells might be beneficial (Zhang et al., 

2018). Elevated TIGIT expression is a feature of Tregs, and again its role in this cell 

population is not well understood. However, it has been proposed that inhibition of TIGIT 

on Tregs may suppress the secretion of the immunosuppressive cytokine IL-10 (Manieri 

et al., 2017). The expression of TIGIT, and other immune checkpoint receptors in multiple 

cellular compartments, as well as the observation that expression of immune checkpoints 

is highly heterogeneous across patients, will have to be further investigated as new 

combination immunotherapy approaches are devised for preclinical testing. Further, it is 
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interesting to note that multiple cellular compartments express a variety of immune 

checkpoint ligands in a similar heterogeneous manner. At the protein level, we validated 

that PVR, the ligand for TIGIT, was expressed in tumor, endocrine, and endothelial cells 

(while low in non-malignant acinar cells). PVR and other immune checkpoint ligands were 

also upregulated in myeloid subsets, supporting the notion of myeloid cells as key 

mediators of immune suppression in PDA. Intriguingly, TIGIT protein expression in the 

blood correlated with TIGIT expression in the tumors of individual patients, although a 

similar correlation was not observed for other immune checkpoints such as PD-1. Of note, 

while functional studies on the role of TIGIT in different patients and different cellular 

compartments within each tumor are still needed, TIGIT blocking agents are available 

and are currently being evaluated in clinical trials (Solomon and Garrido-Laguna, 2018).  

In summary, our study provides a multimodal characterization of the immune 

landscape in PDA, highlights the complexity of this disease in human patients, and 

provides a resource for future functional studies.  
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Methods  

Study Approval and Patient Consent 

Patient Selection/Sample procurement: Medical chart review was used to screen for 

potential study patients with pancreatic disease at the University of Michigan. Fine needle 

biopsies: Patients over the age of 18 referred for diagnostic endoscopic ultrasound of a 

pancreas mass lesion suspected of PDA were consented according to IRB 

HUM00041280 or HUM00025339. Up to 2 extra passes using at 22 Gauge SharkCoreTM 

needle were taken for research after biopsy obtained for clinical use. Surgical specimens: 

Surgical specimens of either tumor tissue or adjacent normal pancreas were obtained 

from patients referred for Whipple procedure or distal pancreatectomy according to IRB 
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HUM00025339. Blood collection: Up to 40 cc of whole blood were collected pre-

procedurally or intra-operatively for all patients consented. For patients not undergoing 

interventional procedures (i.e. chemotherapy visit), only whole blood was collected.  

 

Multiplex fluorescent immunohistochemistry (mfIHC) imaging, cell segmentation, 

and basic phenotyping 

Images were taken using the MantraTM Quantitative Pathology Work Station (Akoya 

Biosciences). One image was taken of each patient core. All cube filters were used for 

each image capture (DAPI, CY3, CY5, CY7, Texas Red, Qdot) and the saturation 

protection feature was utilized. After all images were acquired, images were analyzed 

using inForm® Cell AnalysisTM software versions 2.3.0 and 2.4.2 (Akoya Biosciences). 

Using this software, chronic pancreatitis specimens and PDA specimens were batch 

analyzed by their separate diagnoses. Cell segmentation was completed using DAPI as 

a basis of cell location and size and all cells segmented into the following subsets 

(nucleus, cytoplasm, and membrane). Using the automated training software, basic 

phenotypes (T cells, tumor epithelial cells, other cells, CD163+ cells) were created. 

Software output consisting of mean fluorescent intensity (mfi) of each antibody-

fluorophore pair, basic phenotypes, and x and y coordinates were acquired for further 

processing. A total of 34 chronic pancreatitis patients and 71 PDA patients were included 

in this study.  

 

Cytometry Time-of-Flight (CyTOF) Immune Phenotyping and Data Analysis 
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For CyTOF, we collected 8 samples from non-malignant pancreas specimens, including 

non-involved pancreas tissue adjacent to a duodenal adenoma (1196, (patient ID)), 

ampullary carcinoma (1258), insulinoma (19-700), and non-involved pancreas tissue 

adjacent to PDA (1172, 19-262, 19-561, 19-732, 1252), all obtained surgically (Fig. 2.3A). 

PDA samples were collected from either surgical (n=7) or fine needle biopsy (FNB) (n=3) 

procedures, and clinical annotation is shown in Fig. 2.3A. Human patient tissues from 

FNB or surgery were immediately placed into DMEM media supplemented with Y27632 

(Rho-Kinase inhibitor) for transport to the laboratory. Tissues were mechanically minced 

and enzymatically digested with collagenase P (1mg/mL DMEM) at 37 degrees Celsius 

with gentle shaking and subsequently filtered through a 40μm mesh to obtain single cells. 

Whole blood was collected pre-operatively into two 10mL EDTA tubes. EDTA tubes were 

inverted 10 times before centrifugation at room temperature (RT), 1700 x g for 20 minutes. 

Serum was removed and using a P1000 tip, the white layer of PBMCs at the interface 

between serum and RBCs was removed and placed into 15mL falcon tube. PBMCs were 

washed in 3X volume PBS centrifuged at RT, 300 x g for 15 minutes. Following 

centrifugation, the supernatant was removed, and 10ml ACK lysis buffer was added to 

lyse RBCs for 10 minutes at RT.  Following this, PBMCs were centrifuged at 300 x g for 

5 minutes.  PBMC and tissue samples were washed twice with MaxPar® PBS (Fluidigm) 

prior to Cell-IDTM Cisplatin (Live/Dead staining).  Cell-IDTM Cisplatin reagent (1.67µM) was 

incubated with tissue and PBMCs single cell suspensions for 5 minutes at RT. To quench 

this reaction, 4mL of Cell Staining Buffer (Fluidigm) was added to each sample and 

samples were centrifuged at 300 g for 5 minutes. The supernatant was removed, and 

cells were washed with 2 mL of MaxPar® Cell Staining Buffer. Cell fixation was achieved 
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by removing the supernatant, and re-suspending the cell pellet in residual volume, prior 

to the addition of freshly prepared cell fixation buffer (1.6% Methanol-free Formaldehyde; 

Thermo Fisher 28906 in MaxPar® PBS) for 10 minutes at RT. After fixation, samples 

were washed twice with 2mL of MaxPar® Cell Staining Buffer and centrifuged at 300 g 

for 5 minutes. Samples were re-suspended in 1mL MaxPar® Cell Staining Buffer and 

stored at 4 degrees Celsius for up to one week prior to staining.  Up to 3 million cells per 

sample were stained with cell surface antibody cocktail (All antibodies were purchased 

from Fluidigm and used at the following dilutions: (CD3 (1:200); CD19 (1:300); CD15 

(1:400); CD163 (1:100); CD64 (1:100); CD16 (1:400); LAMP1 (1:100); CD66b (1:200); 

CCR2 (1:200); TIGIT (1:100); PD-1 (1:100); PD-L1 (1:100); CD8a (1:200); CD33 (1:200); 

CD45RO (1:200); CD34 (1:100); CD45RA (1:100); CD206 (1:100); CD25 (1:100); CTLA-

4 (1:100); CD68 (1:100); PD-L2 (1:100); HLA-DR (1:400); CD14 (1:100); CD4 (1:100); 

CD11b (1:200); CD45 (1:200); LAG3 (1:100); CD23 (1:100); CD56 (1:100)), in 100µl 

volume of MaxPar® Cell Staining Buffer for 30 minutes at room temperature. After being 

washed once in 1mL MaxPar® Cell Staining Buffer cells were re-suspended in 2mL cell 

intercalation solution (125 nM Cell-ID Intercalator-Ir in MaxPar® Fix and Perm Buffer) and 

shipped to either the Flow Cytometry core at the University of Rochester Medical Center 

or the Indiana University Simon Cancer Center Flow Cytometry where CyTOF2 Mass 

Cytometer cell acquisition was performed.  

 

CyTOF Data Preprocessing 

Normalized FCS files were analyzed using the Premium CytoBank Software V7.3.0 

(cytobank.org). Data were checked for quality of staining and normalized by the use of 
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internal bead standards. Live singlet cells were identified using the combination of Ir191 

DNA Intercalator, Event Length, and Pt195 Cisplatin staining intensity channels. Filtered 

live single cells were exported as new FCS files for downstream analysis. 

 

CyTOF Analysis 

Unbiased identification of cellular subpopulations was performed in parallel using multiple 

approaches – visualization through FlowSOM-viSNE in R, where an initial FlowSOM 

clustered cells into 100 initial nodes, followed by the ConsensusClusterPlus package 

which, along with manual annotation helped to further consolidate the clusters based on 

cell surface marker expression (Nowicka et al., 2017), or Astrolabe Cytometry Platform 

(Astrolabe Diagnostics, Inc.), where single-cell data was clustered using the FlowSOM R 

package (Van Gassen et al., 2015) and labeled using the Ek’Balam algorithm (Amir et al., 

2019). The hierarchical clustering for all heatmaps uses the Pearson’s correlation as a 

distance metric. Differential abundance analysis was performed using the edgeR V3.11 

R package (McCarthy et al., 2012; Robinson et al., 2010). We used a combination of 

manual gating validation and unbiased approaches to analyze our datasets and included 

samples with >3000 live singlets in clustering algorithms. 

 

Treatment of Batch Effects 

In order to avoid batch effects within the data analysis, the Astrolabe Cytometry Platform 

did not compare numerical intensities between samples (Amir et al., 2019). Each sample 

was analyzed separately, and then comparisons were done using either cell frequencies 

(such as comparing T Cell counts) or qualitative values (“CD3 high” versus “CD3 low”). 
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The underlying assumption was that a given subset was the same regardless of if 

underlying marker intensity has shifted; in other words, a T Cell was defined as a T Cell 

whether the CD3+ peak was centered around a transformed intensity of 4, or a 

transformed intensity of 6. This mirrors the approach utilized in manual gating analysis. 

 

t-SNE Visualization 

For the t-SNE maps in Fig. 2.14B/C, each sample was uniformly downsampled into at 

most 10,000 cells. Samples were then concatenated, and the complete data set was 

uniformly downsampled into at most 500,000 cells. t-SNE algorithm was run using the Rt-

SNE package: https://github.com/jkrijthe/Rt-SN. 

 

Single-cell RNA sequencing 

Tissues were mechanically minced and enzymatically digested with collagenase P 

(1mg/mL DMEM) and subsequently filtered through a 40μm mesh to obtain single cells. 

Dead cells were removed using MACS® Dead Cell Removal Kit (Miltenyi Biotec Inc.). 

Single-cell cDNA libraries were prepared and sequenced at the University of Michigan 

Sequencing Core using the 10x Genomics Platform. Samples were run using paired end 

50 cycle reads on HiSeq 4000 or the NovaSeq 6000 (Illumina) to a depth of 100,000 

reads. The raw data were processed and aligned by the University of Michigan DNA 

Sequencing Core. Cellranger count version 3.0.0 with default settings was used, with an 

initial expected cell count of 10,000. In all cases the hg19 reference supplied with the 

cellranger software was used for alignment. R Studio V3.5.1 and R package Seurat 

version 3.0 was used for single cell RNA-seq data analysis. Data were initially filtered to 
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only include all cells with at least 200 genes and all genes in greater than 3 cells. Data 

were initially normalized using the NormalizeData function with a scale factor of 10,000 

and the LogNormalize normalization method. Variable genes were identified using the 

FindVariableFeatures function. Data were assigned a cell cycle score using the 

CellCycleScoring function and a cell cycle difference was calculated by subtracting the S 

phase score from the G2M score. Data were scaled and centered using linear regression 

on the counts and the cell cycle score difference. PCA was run with the RunPCA function 

using the previously defined variable genes. Violin plots were then used to filter data 

according to user-defined criteria. All tissue samples were batch corrected through the R 

package Harmony V1.0 (https://github.com/immunogenomics/harmony). Harmony is a 

flexible multi-dataset integration algorithm for scRNA-seq by correcting the low-

dimensional embedding of cells from principal component analysis (PCA). It first uses soft 

clustering to find potential clusters, and then uses a soft k-means clustering algorithm to 

find clusters that favors the cells from multiple datasets and penalizes for any specified 

unwanted technical or biological factors. It then learns a simple linear adjustment function 

by computing cluster-specific linear correction factors, such as individual cell-types and 

cell state, from the cluster-specific centroids from each dataset. Each cell is weighted and 

corrected by its cell-specific linear factor. It then iterates the clustering and correction until 

the cell cluster assignments are stable. We used Harmony V1.0 to integrate our scRNA-

seq patient data, correcting for individual scRNA-seq Run IDs (as each individual patient 

was each their own Run ID). Cell clusters were identified via the FindNeighbors and 

FindClusters function using a resolution of 1.2-2 for all samples and Uniform Manifold 

Approximation and Projection (UMAP) clustering algorithms were performed. 
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FindAllMarkers table was created and clusters were defined by user-defined criteria. 

Code is publicly available on GitHub.com (https://github.com/PascaDiMagliano-

Lab/MultimodalMappingPDA-scRNASeq).  

 

Interactome 

Ligand and receptor pairs were defined based off of a curated literature supported list in 

Ramilowski et al (Ramilowski et al., 2015). The average of expression of ligands and 

receptors (LR) in all the population for each group were calculated. LR pairs in each group 

(adjacent/normal and PDA) were determined to be expressed by setting the median 

average expression for all groups as a threshold. LR’s above the threshold were 

considered as expressed in the group. LR pairs were then filtered out if the ligand and 

receptor in the LR pairs were not expressed in both groups. Differences of the LR’s 

between groups were determined using Wilcoxon ranked test, and p-values were 

adjusted for multiple comparisons with the Bonferroni correction method. LR’s were 

considered significantly different if the p < 1.0x10-4. LR pairs were then sorted by the 

adjusted ligand expression p-value. The interactomes were visualized using the Circos 

software V0.69-9 and the heatmap values within the circos plots displays the average 

expression of each ligand/receptor within the PDA tissues (Krzywinski et al., 2009).  

 

Immunofluorescent staining 

Patient tissue slides were rehydrated in xylene, 100% ethanol, 95% ethanol, then running 

deionized water sequentially.  Antigen retrieval was performed with sodium citrate, pH 

6.0.  Tissue was blocked in 10% donkey serum overnight at 4°C. Primary antibodies 
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(PVR/CD155 (1:100, Cell Signaling Technology), VE-Cadherin/CD144 (1:250, R&D), 

FOXP3 (1:100, Cell Signaling), Vimentin (1:100, Cell Signaling), CD163 (1:100, Novus 

Biologicals), or Pan Cytokeratin-488 (1:250, Thermo Fisher Scientific) were diluted in 5% 

donkey serum in PBST (DS/PBST) and incubated overnight at 4°C. For tissue co-stained 

for TIGIT-FOXP3 and PVR-Vimentin: the tyramide signal amplification kit with Alexa Fluor 

488 (Thermo Fisher Scientific) was used following the manufacturer’s recommendation 

to enhance signaling for PVR and FOXP3. Samples underwent a second citrate antigen 

retrieval and were then multiplexed with TIGIT and Vimentin following the aforementioned 

standard IFC protocol. A 1% BSA block was used throughout the TSA protocol and 

subsequent multiplex staining.  Tissue was mounted with DAPI ProLong™ Gold Antifade 

Mountant (Thermo Fisher Scientific) and subsequently imaged by confocal microscopy 

on a Leica SP5.  

 

Statistical Analysis and Reproducibility 

Significance was evaluated by the following statistical analyses: two-tailed, parametric, 

unpaired Student’s t-test, Student’s t-test with Welch’s correction, Wilcoxon rank-sum 

test, or a Mann–Whitney U-test in GraphPad Prism (version 7) or JMP Pro software 

(version 14). The data were presented as means ± standard error (SEM) or means ± 

standard deviation (STDV). A p value of p<0.05 was considered statistically significant. 

Pearson correlation coefficients were used to measure R and R2. Intergroup comparisons 

(differential expression) of scRNA seq was performed using Wilcoxon ranked test and p-

values were adjusted for multiple comparisons with the Bonferroni correction method. For 

the interactome analysis, differences of the ligand and receptors between groups were 
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determined using Wilcoxon ranked test, and p-values were adjusted for multiple 

comparisons with the Bonferroni correction method. Ligand/Receptor pairs were 

considered significantly different if the p < 1.0x10-4. Ligand/Receptor pairs were then 

sorted by the adjusted ligand expression p-value. No statistical method was used to 

predetermine sample sizes, experiments were not randomized and mass cytometric 

analysis of samples was not blinded. No data were excluded from the analyses. Each 

patient is considered an independent biological sample in the analyses. For comparison 

of differential abundance analysis of mass cytometry data, the edegR package (version 

3.11) was used. 

 

Data Availability 

All raw data are publicly available without restrictions. All mass cytometry data used for 

this publication have been deposited in the FlowRepository.  All fcs files of tissue (tumor 

and adjacent normal) have been uploaded to FlowRepository Experiment FR-FCM-Z2S4 

and PBMC files have been uploaded to FlowRepository Experiment FR-FCM-Z2S3. 

Single cell RNA sequencing data with clinical metadata are available at NIH dbGAP 

database under the accession phs002071.v1.p1. Deidentified single cell RNA sequencing 

data are available at NIH GEO database under the accession GSE155698. Source data 

are available for this study. All other data supporting the findings of this study are available 

from the corresponding author on reasonable request. 

 

Code Availability 
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Code is publicly available on GitHub.com (https://github.com/PascaDiMagliano-

Lab/MultimodalMappingPDA-scRNASeq).  
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Figures 

Figure 2.1 
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Figure 2.1 CyTOF and multiplex fluorescent immunohistochemistry (mfIHC) mapping can be readily performed 
on patient tumor samples.  
(A) Patient breakdown and tumor characteristics of CyTOF performed on 8 adj/norm pancreas and 10 PDA tumor 
samples (surgical (7) vs. fine needle biopsy (FNB) (3)). (B) Representative H&E stains of samples DS20191258 
(Adj/Norm), DS20191299 (PDA tumor from surgical resection), and DS20191324 (PDA tumor from fine needle biopsy). 
(C) The ConsensusClusterPlus and FlowSOM R packages were used to define the initial 22 clusters identified in the 
tissue CyTOF samples. (D) Final heatmap demonstrating marker expression used to define cell populations. (E) Manual 
gating of CD3-CD8A-CD45+CD56+ NK cells in adjacent/normal and PDA tissue samples, n=5 adjacent/normal tissue 
samples and n=4 PDA tissue samples. Two-sided Student’s t-test was performed to compare between groups and 
asterisk indicates a p value of less than 0.05 was considered significant. For manual gating of NK cells n=5 for adj/norm 
and n=4 for PDA patient samples. (F) mfIHC composite image of PDA (left). Phenotype map with the following basic 
phenotypes at their x and y coordinates: T cell (green), epithelial cells (pink), APCs (orange), other cells (grey) (right). 
71 individual PDA and 34 individual chronic pancreatitis subjects were examined in this analysis. (G) Relative cellular 
composition by quantitation of mfIHC of representative surgical PDA tissue of additional patients DS20181166 (PDA 
tumor from distal pancreatectomy), DS20181141 (PDA tumor from distal pancreatectomy) (H) Corresponding mfIHC 
images of DS20181166, and DS20181141. 
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Figure 2.2 
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Figure 2.2 CyTOF and multiplex fluorescent immunohistochemistry (mfIHC) mapping reveals heterogeneous 
immune infiltration in human pancreatic cancer.  
(A) PCA analysis comparing intensity of marker staining of n=8 normal or adjacent pancreata tissue samples (blue) 
compared to n=9 PDA tumor samples (red). (B) Merged adj/norm panc (left) and PDA (right) t-SNE analysis of defined 
cell clusters from CyTOF analysis on tissue samples. The size of the dot represents the number of cells in the cluster. 
Each color represents a cell population: CD4 T cells (red), CD8 T cells (pink), B cells (blue), Myeloid (light orange), 
Macrophages (orange), CD45- cells (light purple), Unknown (purple). (C) Bar plot representation from FlowSOM 
CyTOF analysis of n=8 adj/norm tissue samples and n=9 PDA tumor samples. Analysis was only performed on 
samples with greater than 3,000 live singlets. (D) Manual quantitation of total immune cells (CD45+), myeloid cells 
(CD11b+), CD4+ T cells, CD8+ T cells, potential Tregs (CD4+ CD25+), and B cells. Manual gating included n=8 
adj/norm patients and n=10 PDA patients per group. Asterisk denotes a p-value less than 0.05 determined by two-
sided Student’s t-test.  (E) Correlation plot of total CD11b+ myeloid cells compared to total CD8+ T cells. (F) mfIHC 
composite images of formalin-fixed, paraffin-embedded tissue specimens from four different patients with chronic 
pancreatitis (top row) and four patients with PDA (bottom row). Antibodies and colors are as follows: CD163 (orange), 
PD-L1 (magenta), Pancytokeratin (PanCK; white), CD3 (green), CD8 (yellow), FOXP3 (red), and DAPI (blue). (G) 
Comparison of cellular infiltration between n=34 chronic pancreatitis patients and n=71 PDA patients (P-values: Other 
0.0001, CD163+ cells 0.020, CD8+ T cells 0.3483, Treg <0.0001, Epithelial <0.0001). (H) Correlation between 
percentage of CD8+ T cells and CD163+ cells in chronic pancreatitis and PDA. 
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Figure 2.3 
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Figure 2.3 Single cell RNA sequencing reveals heterogenous immune infiltration in PDA tissue.  
(A) Single cell RNA sequencing tissue sample breakdown (n = 3 Adj/Norm tissue, n=10 PDA tissue from fine needle 
biopsy, and n=6 PDA tissue from surgical resection), patient clinical data, and tumor characteristics (grade and stage) 
(Left panel).  Breakdown of sequenced PBMC samples with corresponding patient clinical data (Right panel). (B) UMAP 
of the merged tissue colored by Patient ID prior to batch correction (Left panel) and post batch correction (Right panel). 
(C) UMAP of 3 individual adjacent/normal samples and (D) 16 PDA tissues. We distinguished two epithelial populations: 
tumor cells and acinar cells. In the non-epithelial compartment, we identified fibroblasts, pericytes, CD8+ T cells, CD4+ 
T cells, Tregs, NK cells, B cells, plasma cells, mast cells, macrophages, granulocytes, dendritic cells, endothelial cells, 
and a small endocrine population. 
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Figure 2.4 
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Figure 2.4 Single cell RNA sequencing reveals heterogenous expression of immune checkpoints in PDA 
tissue.  
(A) UMAP on 3 adjacent/normal pancreas (left) and 16 PDA patient (right) tissues. Populations identified as follows: 
acinar (pink), epithelial (red), fibroblasts (dark and light teal), CD8+ T cells (dark green), CD4+ T cells, (neon green), 
Tregs (light green), NK cells (purple), B cells (light blue), plasma cells (dark blue), mast cells (yellow), macrophages 
(dark orange), granulocytes (light orange), dendritic cells (brown), endothelial cells (dark pink), and endocrine (dark 
red). (B) Dot plot of key markers used to define the identified cell populations. Color of dot represents average 
expression, while the size of the dot represents percent expression. Dot plot represents merged n=3 adj/norm patients 
and n=16 PDA patients gene expression of lineage markers. (C) Average expression of immune checkpoint ligands 
and receptors in the identified cell populations in n=16 tumor tissue samples. (D) Average expression of immune 
checkpoint receptors on CD8+ T cells in n=16 PDA patients and n=3 adj/norm patients merged tissues. (E) Pathway 
annotations from gene set enrichment analysis (GSEA) using the R package clusterprofiler in n=16 PDA samples 
compared to n=3 adj/norm samples. The color of the bar represents the p-value adjusted for multiple comparisons 
using the Benjamini Hochberg method. Enrichment score is plotted on the x-axis. (F) Unbiased differential expression 
between CD8+ T cells from adj/norm pancreas (black) and PDA (grey). Significantly up- and down-regulated genes 
are plotted as average expression per patient. This analysis was performed on all CD8+ T cells found in the 
adjacent/normal and PDA tissue. Disease stage is plotted on the left: resectable (green), locally advanced (light 
green), borderline resectable (blue), metastatic (pink), N/A (light blue). 
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Figure 2.5  
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Figure 2.5 Single Cell RNA Sequencing of PDA PBMCs reveals heterogeneous cellular composition and 
expression of immune checkpoints.  
(A) Merged UMAP plots of PBMCs from 4 healthy donors and 16 PDA patients (total of 70,113 cells). CD8 T cells 
(green), CD4 T cells (light green), NK cells (purple), pDCs (blue), Granulocyte (light orange), Monocyte (orange), B 
cells (yellow), Plasma cells (light yellow). (B) Dot plot analysis of key markers to define the 8 identified cell populations. 
Color of dot represents average expression, while the size of the dot represents percent expression. Dot plot 
represents merged healthy (n=4) and PDA (n=16) patient gene expression of PBMC lineage markers.  (C) Average 
expression of immune checkpoint ligands and receptors in the identified cell populations in merged blood samples. 
(D) Average expression of immune checkpoint receptors on CD8+ T cells in merged PBMCs. (E) Average expression 
of differentially expressed genes in CD8+ T cells comparing healthy (black) to PDA (grey) PBMCs. Disease stage is 
plotted on the left. 
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Figure 2.6

 

 Figure 2.6 Single cell RNA sequencing reveals exhausted CD8+ T cell phenotype in PDA patients is defined by 
the immune checkpoint TIGIT.  
(A) UMAP analysis of CD8+ T cells from n=3 adjacent/normal pancreas samples (left) and n=16 PDA tumors (right). 
The 6 identified subsets of CD8+ T cells were collapsed into potential memory (blue), effector (pink) and exhausted 
(green). (B) Single cell resolution heatmap analysis of top 10 genes for each identified CD8+ T cell subset. (C) Violin 
plots of normalized expression for selected markers mapped across the CD8+ T cell subsets. (D) Quantitation of 
potential exhausted (p=9.11E-6), effector (p=2.209E-5) and memory (p=0.0031) T cells in adjacent/normal pancreas 
and PDA patients, plotted as % total CD8+ T cells. Plots represent n=3 adj/norm and n=16 PDA patients. Two-sided 
Student’s t-test was performed to compare between groups and a p value of 0.05 or less was considered statistically 
significant. Panel of genes differentially expressed in (E) effector and (F) exhausted CD8+ T cells in PDA (red) 
compared to adjacent/normal pancreas (blue). Plots represent n=3 adj/norm and n=16 PDA patients. Violin plots are 
shown as normalized expression. All violin plots in (E) and (F) have an adjusted p-value of p<0.01 and are considered 
statistically significant. 
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Figure 2.7

 
Figure 2.7 Single cell RNA sequencing reveals 3 CD8+ T cell populations: effector, exhausted, and memory CD8+ T 
cells. 
 (A) Feature plots of immune checkpoints (PDCD1, LAG3, TIGIT, HAVCR2), activation markers (IFNG, GZMB), and 
exhaustion markers (GZMK, EOMES) in CD8+ T cells. (B) Number of effector (pink), exhausted (green), and memory (blue) 
CD8+ T cells captured in each individual tissue sample by scRNA seq. (C) Average scaled expression heatmap of highly 
enriched genes by potential effector, exhausted, and memory cell populations.  (n = 3 Adj/Norm tissue and n= 16 PDA tissue 
for panels A-C). 
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Figure 2.8
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Figure 2.8 Single cell RNA sequencing of pancreatic tissues reveals TIGIT is differentially expressed in NK cells 
from PDA patients and is a defining marker of Tregs.  
(A) Merged UMAP of 5 identified subsets of NK cells from adjacent/normal pancreas (left) and PDA (right). Plots 
represent n=3 adj/norm and n=16 PDA patients. (B) Single cell resolution heatmap of each NK cell subset identified. 
Immune checkpoints (HAVCR2, TNFRSF4) are bolded. (C) Violin plots of normalized average expression within NK cell 
subsets demonstrating specific lineage markers for NK cells (such as NCAM1/FCGR3A) and immune checkpoint 
receptors. (D) Unbiased differential average expression of merged NK cells from adjacent/normal pancreas (black) and 
PDA (grey). Disease stage is plotted on the left. (E) Merged UMAP of all CD4+ T cells with 13 identified cell subsets. 
Naïve CD4+ T cells are denoted as Th0 (CCR7+) and Tregs as Tregs (FOXP3+). All other subsets are denoted as CD4 
T cells. (F) Single cell resolution heatmap of each CD4+ T cell subset. Boxes on the left designate naïve CD4+ T cells 
(Th0) and the CD4+ T cell subsets that are defined by immune checkpoint expression (TIGIT, TNFRSF18, PDCD1). (G) 
Feature plots of CTLA4 and TIGIT in regulatory CD4+ T cells (outlined). In all panels, plots represent n=3 adj/norm and 
n=16 PDA patients. 
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Figure 2.9

 

 



 72 

Figure 2.9 Single cell RNA sequencing reveals distinct myeloid and dendritic cell subsets.  
(A) Merged UMAP of 6 identified myeloid cell subsets in adjacent/normal pancreas (left) and PDA (right). (B) Single 
cell resolution heatmap of each myeloid cell subset identified. Boxes on the left designate the top expressing genes for 
each myeloid subset. (C) Selected feature plots of the immune checkpoints, LGALS9, CD274, PVR, CSF1R, SIRPA, 
HLA-DQA1 in myeloid cells. (D) Selected feature plots of markers that define alternatively activated macrophages, 
granulocytes, and total macrophage subsets (left) and violin plots of immune checkpoint ligands that are upregulated 
in PDA patients (right). (E) UMAP analysis of dendritic cells in merged normal/adjacent pancreas and PDA. (F) Top ten 
highly enriched gene signature analysis of dendritic cell subclusters identifying potential DC subsets, including 
plasmocytoid DCs (pDCs), Langerhans-like DCs (Lang_DCs), conventional DCs (cDCs), and activated DCs (Act_DCs). 
In all panels, plots represent n=3 adj/norm and n=16 PDA patients. 
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Figure 2.10
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Figure 2.10 Single cell RNA sequencing of myeloid subsets in human pancreatic cancer.  
(A) Violin Plots illustrating comparison of immune checkpoint ligands in myeloid clusters in PDA vs. adjacent 
normal/pancreas samples. (B) Average expression heatmap of checkpoint ligands in merged macrophages (all cells 
expressing CD68 within the myeloid population) and (C) merged granulocytes (all cells expressing FCGR3B within the 
myeloid population). Left panels denote disease state (adjacent/normal vs. PDA tissue) and stage.  (D) Map of all 
putative ligand receptor differential interactions that are upregulated in 16 PDA compared to 3 adjacent/normal 
pancreas. The line color denotes cellular source of the ligand, and putative interactions were visualized in Cytoscapeâ 
V3.7.1. (E) Dot plot analysis showing expression of adenosine receptors in PDA tumor cell types. Red indicates high 
expression, blue low expression, and the size of the dot is relative to the percent that marker is expressed. Dot plot 
represent n=16 PDA patient gene expression of adenosine receptors. 
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Figure 2.11
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Figure 2.11 Predicted ligand receptor mapping in PDA patients demonstrate myeloid and non-immune cell types 
as sources of immune checkpoint ligands. 
(A) Violin plots, where each dot represent a single cell, of select dendritic cell lineage markers across all 9 identified 
subsets. (B) Immune checkpoint ligand expression heatmap within dendritic subclusters. (C) Circos plot map of all 
putative ligand receptor interactions that are upregulated in PDA macrophages, (D) granulocytes, (E) dendritic cells, (F) 
endothelial cells (G) epithelial cells compared to adjacent/normal pancreas visualized by circos plot using the Circos 
software V0.69-9 (circos.ca). The heatmap within the circos plots is the scaled average expression of each gene within 
PDA tissue cell populations. The interactions plotted are those in which the expression level of either the ligand, the 
receptor, or both are increased in expression in PDA samples compared to adjacent/normal tissue. (H) Violin plots for 
the normalized expression of TIGIT, CD96, and CD226 in CD8+ T cells in PDA (red) compared to adjacent/normal 
pancreas (blue). Between adj/norm and PDA groups, the asterisk indicates P<0.0001, and exact P=4.8E-32. For Figure 
6 panels A through H, n=3 adj/norm samples were examined and n=16 PDA patients were analyzed. (I) Dot plot analysis 
of TIGIT family members within PDAC tissue. Color of dot represents average expression, while the size of the dot 
represents percent expression. Dot plot represent n=16 PDA patients gene expression. 
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Figure 2.12
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Figure 2.12 CyTOF and immunofluorescence protein validation of immune checkpoint expression in human 
pancreatic tissues and PBMCs.  
Manual gating of CyTOF for immune checkpoints, including (A) TIGIT (n=8 adj/norm pancreas samples, n=10 PDA 
tumors), PD-1 (n=8 adj/norm pancreas samples, n=10 PDA tumors), and LAG3 (n=5 adj/norm pancreas samples, n=5 
PDA tumors) in CD8+ T cells, (B) CTLA4 in CD4+ T cells (n=8 adj/norm pancreas samples, n=10 PDA tumors) and 
TIGIT in CD25+ CD4+ potential Tregs (n=8 adj/norm, n=10 PDA), and (C) CD56+ NK cells in n=5 adjacent/normal 
pancreas samples and n=4 PDA tumor tissues. In Figure 7A-C two-sided Student’s t-tests were performed and a p 
value of <0.05 was considered statistically significant. (D) Representative individual CyTOF biaxial density plots from 
normal adjacent and PDA tissue of a matched patient (19-262) of TIGIT expression in both CD8 T cells (as a percentage 
of total CD3+ cells) and CD25+ potential Tregs (as a percentage of CD4+ cells). (E) PDA patient tissues, where  3 
individual patient tumors were examined independently per staining analysis, were stained with antibodies against 
TIGIT with either CD8A (CD8+ T cells) or FOXP3 (Tregs), and PVR with Pan-cytokeratin (epithelial cells), VE-cadherin 
(endothelial cells), CD163 (myeloid), or Vimentin (fibroblasts). (F) Quantitation of the percentage of CD8+ T cells (of 
total live cells) from CyTOF of healthy, PDA, and chronic pancreatitis patient PBMCs. Quantitation of PBMC CyTOF 
data represent n=16 healthy, n=36 PDA, and n=10 chronic pancreatitis patients. In the healthy versus chronic 
pancreatitis comparison, the n.s. P value = 0.0702. (G) TIGIT and PD-1 transformed protein expression within CD8+ T 
cells of healthy, PDA, and chronic pancreatitis patient PBMCs, and for the comparison between healthy and the chronic 
pancreatitis patients the n.s. P=0.1224. CTLA4 expression in CD4+ T cells of healthy (n=16), PDA (n=36), and chronic 
pancreatitis (n=10) patient PBMCs, and for the comparison between healthy and the chronic pancreatitis patients the 
n.s. P=0.1216. In Figure 7F-G two-sided Student’s t-tests were performed and a p value of <0.05 was considered 
statistically significant. (H) Representative biaxial plots of TIGIT expression in CD8+ T cells in the tumor tissue and 
matched blood of three PDA patients (1229, 1246, 3210). (I) Correlation of CyTOF data from PDA patient tissue versus 
matched PBMC CD8+ T cells expressing TIGIT and PD-1 (of total CD3+ cells). 
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Figure 2.13

 

 
Figure 2.13 Immunofluorescence of immune checkpoints in pancreatic tumors.  
(A) Individual channels of immunofluorescent staining of patient tissues with antibodies specific for TIGIT/CD8A, 
TIGIT/FOXP3, PVR/Pan-cytokeratin, PVR/CD163, PVR/Vimentin, and PVR/VE-cadherin. Three individual patient 
tumors were examined independently per staining analysis. (B) Manual gating of PD-L1+ CD68+ macrophages in normal 
adjacent (n=8) and PDA (n=10) tissue. Two-sided Student’s t-test was performed, and asterisk indicates a p value of 
<0.05 was considered statistically significant. Representative individual CyTOF biaxial density plots from normal 
adjacent and PDA tissue of a matched patient (19-262) of PD-L1 expression in CD68+ macrophages (as a percentage 
of total CD11b+ cells). 
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Figure 2.14
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Figure 2.14 CyTOF analysis of PBMCs from healthy, chronic pancreatitis, and PDA patients.  
(A) Patient breakdown and characteristics of CyTOF performed on patient blood samples (n = 16 healthy patients, n = 
10 chronic pancreatitis patients, and n=36 PDA patients).  (B) t-SNE analysis of CyTOF of all merged PBMC samples 
with granulocytes (CD66b+). (C) t-SNE analysis of CyTOF of all merged PBMC samples without granulocytes. Key 
marker t-SNE feature plots of CD3 (total T cells), CD4 (Helper CD4+ T cells), CD8 (Cytotoxic T cells), CD19 (B cells), 
CD11b (Myeloid cells), CCR2, PDL-1, and CD68 (Macrophage marker). (D) Bar plots of relative cell type abundance 
(B cell, CD4+/CD8+ T cell, CD4+ T cell, CD4-/CD8- T cell, Dendritic cell, CD14+/CD16+ Monocyte, CD14+/CD16- 
Monocyte, and CD14- CD16+ Monocyte) from CyTOF of PBMCs of healthy, chronic pancreatitis, and PDA patients. (E) 
Quantification of unbiased analysis (Astrolabe pipeline) of PBMC immune populations in n=16 healthy patients, n=36 
PDA patients, and n=10 chronic pancreatitis patients. Two-sided Student’s t-tests were performed to compare between 
groups and a p value of <0.05 was considered significant. (F) Relative CyTOF marker expression in CD8+ T Cells from 
PDA tumor tissue. (G) PCA analysis of PBMCs at different disease states. Healthy (neon blue), PDA (red), and Chronic 
Pancreatitis (green). 
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Chapter 3 Apolipoprotein E Promotes Immune Suppression Through NF-kB 
Mediated CXCL1 Production in Pancreatic Cancer5,6 

 

Abstract  

Pancreatic ductal adenocarcinoma (PDA) is a lethal malignancy with few effective 

therapeutic options. PDA is characterized by an extensive fibroinflammatory stroma that 

includes abundant infiltrating immune cells. Tumor-associated macrophages (TAMs) are 

prevalent within the stroma and a key driver of immunosuppression. TAMs in human and 

murine pancreatic cancer are characterized by elevated expression of Apolipoprotein E 

(ApoE). ApoE is an apolipoprotein that mediates cholesterol metabolism and has known 

roles in cardiovascular disease and Alzheimer’s disease. However, its role in pancreatic 

cancer has not been studied. We found that ApoE is also elevated in peripheral blood 

monocytes in PDA patients, and plasma protein levels stratify patient survival. To 

elucidate ApoE’s functional role within the pancreatic cancer microenvironment, we 

orthotopically implanted mouse pancreatic cancer cells into syngeneic wild type or in 

ApoE-/- mice and observed reduced tumor growth in ApoE-/- mice. We then characterized 

tumors by histology and Mass Cytometry (CyTOF) and observed an increase in CD8+ T 

 
 

5 Data from Chapter 3 have been submitted for publication at Cancer Research in a manuscript entitled, “Apolipoprotein 
E promotes immune suppression through NF-kB mediated CXCL1 production in pancreatic cancer” (2021). 
 
6 Author list: Samantha B. Kemp, Eileen S. Carpenter, Zeribe C. Nwosu, Nina G. Steele, Katelyn L. Donahue, Amanda 
Pacheco, Ashley Velez-Delgado, Rosa E. Menjivar, Fatima Lima, Stephanie The, Carlos Espinoza, Daniel Long, 
Yaqing Zhang, Costas A. Lyssiotis, Arvind Rao, Marina Pasca di Magliano*, Howard C. Crawford* 

*Corresponding authors 
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cells in tumors from ApoE-/- mice. Mechanistically, we found that ApoE induces the 

expression of Cxcl1 and Cxcl5 – known immunosuppressive factors – in pancreatic 

cancer cells, through LDL receptor and NF-kB signaling. Taken together, our study 

reveals a novel immunosuppressive role of ApoE in the PDA microenvironment. 

 

Introduction 

Pancreatic ductal adenocarcinoma (PDA) is a lethal malignancy with a 5-year 

survival rate of only 10% (Siegel et al., 2020). PDA is characterized by a dense, 

fibroinflammatory stroma that includes abundant cancer-associated fibroblasts (CAFs) 

and infiltrating immune cells (Zhang et al., 2019c). These cell populations engage in a 

complex cellular crosstalk that results in a highly immunosuppressive tumor 

microenvironment (TME) (Clark et al., 2007). Re-activation of the immune response 

through checkpoint blockade has provided benefit for patients with other malignancies, 

but not for PDA patients, likely due to its insufficiency to overcome this robust immune 

suppression (Brahmer et al., 2012; Royal et al., 2010). A large body of work has 

determined that infiltrating myeloid cells are a key driver for the establishment of a 

suppressive immune TME (Mitchem et al., 2013; Stromnes et al., 2014; Zhang et al., 

2017b; Zhu et al., 2017; Zhu et al., 2014). The myeloid compartment of the TME includes 

immature myeloid cells – or myeloid-derived suppressor cells (MDSCs) – and tumor-

associated macrophages (TAMs) that block cytotoxic T cell-mediated immune responses 

(Clark et al., 2007).  

Apolipoprotein E (ApoE/APOE) is secreted at high levels by hepatocytes (Bouma 

et al., 1988) and macrophages (Werb et al., 1986) throughout the body to mediate lipid 
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metabolism (Mahley, 1988). ApoE has been extensively studied in inflammatory 

conditions such as Alzheimer’s disease and atherosclerosis (Mahley, 2016). Recently, a 

role for ApoE in carcinogenesis has emerged (Ren et al., 2019), but its role in pancreatic 

cancer is currently undefined. We thus investigated the functional role of ApoE in the PDA 

tumor microenvironment.   

In this study, we show that APOE is expressed predominately by tumor-associated 

macrophages and fibroblasts in both mouse and human pancreatic cancer. Mice deficient 

in ApoE have reduced tumor burden, less fibrosis and an alteration in innate and adaptive 

immune infiltration. While we observed no change in macrophage infiltration or 

polarization status, mice deficient in ApoE had fewer monocytic-MDSCs and regulatory T 

cells (Tregs), suggesting loss of immunosuppressive cell populations. Conversely, mice 

deficient in ApoE had increased tumor infiltrating CD8+ T cells. Bulk RNA sequencing of 

pancreatic tumor cells treated with recombinant ApoE showed upregulation of the 

chemokines Cxcl1 and Cxcl5. Tumor-cell derived Cxcl1 has been shown to negatively 

regulate T cell infiltration in pancreatic cancer (Li et al., 2018a). Gene set enrichment 

analysis revealed that addition of ApoE upregulated NF-kB signaling in tumor cells. 

Further, inhibition of NF-kB signaling resulted in reduced induction of Cxcl1 and Cxcl5. 

We propose that ApoE regulates T cell infiltration by upregulating tumor-cell derived 

chemokines mediated by activation of NF-kB signaling.  

 

Results 

Systemic APOE levels are elevated in PDA and correlate to patient survival 
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APOE has been extensively studied in cardiovascular disease and Alzheimer’s 

disease, but its role in cancer is not fully elucidated. To determine which cell types express 

APOE in specific cellular compartments in human pancreatic cancer, we interrogated a 

human single cell RNA sequencing dataset (Steele et al., 2020), comprised of 16 PDA 

patient tumor tissue and 3 adjacent normal pancreas samples (Fig. 3.1A). In human 

tumors, APOE was highly expressed in myeloid cells and fibroblasts, as previously 

reported (Elyada et al., 2019) (Fig. 3.1B and Fig. 3.2A). Within the myeloid population, 

APOE was enriched in macrophage and alternatively activated macrophage populations, 

compared to the other myeloid populations, which had sparse expression of APOE (Fig. 

3.1C and 3.1D). Additionally, APOE was significantly elevated specifically in 

macrophages from human PDA compared to adjacent normal samples (Fig. 3.1E). Within 

the fibroblast population we identified a population of myofibroblastic-CAFs (myCAFs) 

and inflammatory-CAFs (iCAFs) that have been well described (Ohlund et al., 2017) (Fig. 

3.1F and Fig. 3.2B). APOE was enriched in human iCAFs compared to myCAFs (Fig. 

3.1G). However, unlike the macrophages, fibroblast expressed APOE did not differ 

between normal and cancer samples (Fig. 3.1H). 

We next wanted to assess APOE expression in other sequencing datasets. Using 

published laser capture microdissection (LCM) data from matched epithelial and stromal 

samples from human pancreatic cancer (Maurer et al., 2019), we confirmed APOE was 

upregulated specifically in the stroma compared to the epithelium (Fig. 3.2C). We then 

utilized The Cancer Genome Atlas (TCGA) pancreatic cancer dataset comprised of 150 

patients and stratified patients into APOE low and APOE high and observed a correlation 

between APOE expression and expression of MARCO and TREM2, markers of 
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alternatively activated macrophages (Fig. 3.2D) (Turnbull et al., 2006; van der Laan et 

al., 1999). To confirm the APOE high tumor signature is associated with macrophages 

we overlaid the top 250 genes of APOE high PDA tumors from two datasets (TCGA and 

International Cancer Genome Consortium (ICGC)) with that of APOE+ macrophages from 

single-cell RNA sequencing of 16 human PDA tumors (Steele et al., 2020) (Fig. 3.2E). 

We found 26 genes that overlapped across all the datasets, strengthening the correlation 

between APOE expression and expression of other known macrophage markers (C1QA, 

C1QB, MSR1, TREM2, HAVCR2, CD74) (Fig. 3.2E).  

We assessed the systemic alterations of APOE expression using a dataset of 16 

human peripheral blood mononuclear cell (PBMC) samples and 4 healthy donors (Steele 

et al., 2020). Interestingly, of four distinct monocyte populations identified, one subset 

(monocyte population/cluster 1) was highly enriched for APOE expression (Fig. 3.2F and 

3.2G). Finally, APOE expression was increased in the peripheral monocytes of PDA 

patients, compared to healthy individuals, suggesting that elevated monocyte APOE 

expression represents a systemic response to the tumor (Fig. 3.1I). We then analyzed 

plasma samples from 15 healthy donors, 17 chronic pancreatitis patients, and 155 PDA 

patients and did not see a statistically significant increase in APOE concentration at the 

protein level in PDA plasma compared to healthy donors or chronic pancreatitis plasma 

(Fig. 3.1J). However, we observed outliers with very high APOE concentration among 

the pancreatic cancer plasma samples. We thus stratified patients based on APOE 

plasma levels and performed survival analysis. We found high plasma levels of APOE 

correlated with shorter survival (Fig. 3.1K). These data show that ApoE gene expression 
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is elevated in the monocytes and macrophages of PDA patients, and protein levels 

correlate with poor survival, suggesting that it may play a functional role in the disease. 

 

APOE is highly expressed by tumor-associated macrophages 

To determine if APOE plays a functional role in PDA, we turned to an established 

murine model of the disease, where 7940b cells, derived from the KrasLSL-G12D/+; Trp53LSL-

R172H/+; Pdx1-Cre (KPC) mouse model of pancreatic cancer (Hingorani et al., 2005), were 

implanted directly into the pancreas of syngeneic mice. We then evaluated ApoE 

expression by immunostaining, and found it elevated in mouse tumors compared to the 

healthy pancreas controls, similar to our findings in human samples (Fig. 3.3A and 3.3B). 

To determine the source of ApoE within the TME we performed single cell RNA 

sequencing on orthotopic KPC tumors (Fig. 3.3C and Fig. 3.4A) and, consistent with the 

human data, we detected highest expression of ApoE in macrophages, followed by 

fibroblasts (Fig. 3.3D). We next performed co-immunofluorescence staining for ApoE, 

macrophages (F4/80) and fibroblasts (alpha-smooth muscle actin (aSMA)) and confirmed 

ApoE expression most often overlapped with F4/80+ macrophages (Fig. 3.3E). Further, 

APOE+ macrophages were elevated in the orthotopic KPC tumor compared to the normal 

pancreas (Fig. 3.4B). 

Macrophages are plastic cells that exist on a spectrum of polarization from an 

inflammatory state (referred to as M1) to an immunosuppressive state (referred to as M2) 

(Orecchioni et al., 2019). TAMs are distinct from both M1 and M2 macrophages, although 

they share markers with both (Chen et al., 2019). To determine which macrophage 

population produces ApoE, we performed an in vitro macrophage polarization assay. We 
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treated bone-marrow derived macrophage cultures with either M-CSF, LPS, IL-4 or 

pancreatic tumor cell conditioned media (CM) to polarize to M0, M1, M2, and TAM 

respectively (Fig. 3.3F) and assessed ApoE expression in the various conditions. 

Strikingly, ApoE was specifically upregulated in TAMs compared to other macrophage 

populations (Fig. 3.3G). In addition, ApoE protein was robustly secreted by TAMs and 

was absent in the culture media derived from ApoE -/- TAMs, as a negative control (Fig. 

3.3H). Finally, we utilized the well-established iKras* mouse model of pancreatic 

neoplasia (Collins et al., 2012a), where oncogenic Kras expression is inducible and 

reversible. We induced oncogenic Kras* expression, followed by induction of acute 

pancreatitis, and harvested after 3 weeks of continuous oncogenic Kras expression, or 

from mice where oncogenic Kras was expressed for three weeks and then inactivated for 

three or seven days (Fig. 3.4C). We then stained the pancreata for ApoE. We observed 

elevated expression of ApoE in iKras* pancreata after 3 weeks of oncogenic Kras 

expression, when iKras* mice present with low-grade neoplasia, compared to control 

pancreata (Fig. 3.4D and Fig. 3.4E). Further, ApoE expression decreased upon 

inactivation of oncogenic Kras expression.  (Fig. 3.4D and Fig. 3.4E). Thus, ApoE is 

specifically upregulated in TAMs and the upregulation occurs early during carcinogenesis 

and depends upon epithelial expression of oncogenic Kras. 

 

APOE ablation reduces tumor burden and reprograms the tumor microenvironment 

To evaluate the function of ApoE, we utilized germline ApoE knock-out mice (ApoE 

-/-) for orthotopic implantation of syngeneic 7940b KPC cells, compared to wild-type (WT) 

C57BL/6J controls (Fig. 3.5A). Mice deficient in ApoE had moderately, but significantly 
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smaller tumors at endpoint compared to their WT controls. (Fig. 3.5B). No major 

differences were noted by histopathology analysis (Fig. 3.5C). Immunohistochemical 

analysis revealed complete loss of ApoE within the tumor compared to WT mice, as 

expected (Fig. 3.5D and 3.5E). We then measured levels of proliferation by Ki-67 staining 

and saw no statistical difference (Fig. 3.6A and Fig. 3.6B). However, levels of apoptosis 

by cleaved caspase 3 (CC3) staining were significantly increased in tumors implanted in 

ApoE -/- mice compared to controls (Fig. 3.5D and 3.5E). We next assessed aSMA+ 

expression and observed loss of aSMA+ fibroblasts along with reduced collagen 

deposition visualized by Trichrome stain (Fig. 3.5D and 3.5E). Given the association of 

ApoE with macrophages we next evaluated total infiltration of macrophages by F4/80 

staining and found no difference in total numbers (Fig. 3.6A and Fig. 3.6B). However, we 

noted an increased infiltration of CD3+ T cells in ApoE -/- mice (Fig. 3.6A and Fig. 3.6B), 

suggesting changes in the immune microenvironment.  

To expand the immune characterization, we performed mass cytometry (CyTOF) 

on tumors from WT and ApoE -/- mice (Fig. 3.7A). Unbiased clustering visualized through 

t-distributed stochastic neighbor embedding (t-SNE) revealed populations of 

macrophages, MDSCs, CD8 T cells, CD4 T cells and B cells along with a small population 

of non-immune cells (Fig. 3.7B and Fig. 3.8A). Manual gating of the identified populations 

revealed no significant difference in total immune cells (CD45+), B cells (CD45+ CD19+), 

total myeloid cells (CD45+ CD11b+), macrophages (CD11b+ F4/80+), or changes in 

macrophage sub-populations (F4/80+ CD206+; F4/80+ PD-L1+) (Fig. 3.7C). Macrophage 

polarization, determined by expression of Programmed death-ligand 1 (PD-L1/Cd274), 

Arginase 1 (Arg1), Cd206 (Mrc1) and inducible nitric oxide synthase (Nos2), did not differ 
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between tumors of WT and ApoE -/- mice (Fig. 3.8B). Further, we isolated bone marrow 

derived monocytes and polarized to TAMs in both WT and ApoE -/- mice and saw an 

increase in Arg1, and a decrease in Cd274 and Tnf-a, suggesting loss of ApoE has minor 

effects on macrophage polarization in vitro (Fig. 3.8C).  

Another prominent population identified in the tumor were putative MDSCs 

(immature myeloid cells). Murine MDSCs have multiple subsets defined by expression of 

Ly-6C+ and Ly-6G+ (Bronte et al., 2016). Granulocytic-MDSCs (Ly-6C+ Ly-6G+) did not 

differ (Fig. 3.7C). However, the monocytic-MDSC subset (Ly-6C+ Ly-6G-) was decreased 

in ApoE -/- mice compared to controls, suggesting a potential diminishment of immune 

suppression (Fig. 3.7C). To explore this possibility further, we evaluated T cell 

populations by manual gating and found an increase in total T cells (CD45+ CD3+), CD4 

T cells (CD3+ CD4+) and CD8 T cells (CD3+ CD8+) (Fig. 3.7C). Interestingly, there was 

also a decrease in potential regulatory T cells (CD4+ CD25+) (Fig. 3.7C). We performed 

co-immunofluorescence staining and confirmed the increase in CD8+ T cells in ApoE -/- 

mice (Fig. 3.7D). Taken together, the loss of monocytic-MDSCs and regulatory T cells 

along with the increase in cytotoxic T cell infiltration in ApoE -/- mice provides evidence for 

a functional role of ApoE in contributing to immune suppression within the TME through 

regulation of T cell infiltration.  

 

APOE regulates Cxcl1 expression in tumor cells and fibroblasts 

To gain mechanistic insight on the role of ApoE, we then explored its effect on 

pancreatic cancer cells. For this purpose, we added recombinant murine ApoE (rApoE) 

to 7940b KPC tumor cells and performed bulk RNA sequencing (RNA-seq) compared to 
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vehicle treated controls (Fig. 3.9A). Gene set enrichment analysis revealed upregulation 

of inflammatory associated transcriptional programs in tumor cells treated with rApoE 

(Fig. 3.10A). Differential expression analysis revealed tumor cells treated with ApoE had 

increased expression of the chemokine Ccl2, a chemoattractant for 

monocytes/macrophages and monocytic-MDSCs (Deshmane et al., 2009), and the 

chemokines Cxcl1 and Cxcl5, which binds the Cxcr2 receptor expressed on granulocytic-

MDSCs (granulocytes) (Kumar et al., 2016) (Fig. 3.9A). We next confirmed our bulk RNA-

seq analysis by qPCR and detected a significant increase in Cxcl1 and Cxcl5 in tumor 

cells treated with recombinant ApoE (Fig. 3.9B). PDA patients with high CXCL1 plasma 

levels had reduced overall survival (Fig. 3.9C). We next utilized the ICGC pancreatic 

cancer dataset and stratified patients by low and high expression of CXCL1 and CXCL5 

(Fig. 3.10B). Patients with high expression of CXCL1 but not CXCL5 had significantly 

reduced survival (Fig. 3.10B). Cxcl1 has been shown to inhibit T cell infiltration in 

pancreatic cancer (Li et al., 2018a), potentially by increasing the recruitment of immune 

suppressive myeloid cells expressing Cxcr2.  

Cxcl1 and its family members Cxcl2 and Cxcl5 are expressed in multiple cell 

populations in the TME (Fig. 3.9D). In accordance with previous reports, Cxcl1 and Cxcl5 

are expressed highly in both epithelial cell and fibroblasts, while Cxcl2 is highest in 

granulocytes (Steele et al., 2016) (Fig. 3.9D).  Cxcl1 was elevated in the KPC tumor 

epithelium compared to the normal pancreas (Fig. 3.10C). Accordingly, we detected an 

increase in Cxcl1 in both wild-type pancreatic fibroblasts (BLK6318) and cancer-

associated fibroblasts (FB1) treated with ApoE (Fig. 3.9E). Interestingly, fibroblasts 

treated with ApoE had increased expression of the inflammatory cytokine interleukin-6 
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(Il6) (Fig. 3.10D), while aSMA (Acta2) did not differ (Fig. 3.10E). We next wanted to 

determine if our finding was consistent in vivo. We detected significantly reduced Cxcl1 

and a trend towards lower Cxcl5 expression in tumors implanted in ApoE -/- mice (Fig. 

3.9F). Additionally, immunohistochemical analysis, revealed less Cxcl1 in tumors from 

ApoE deficient mice (Fig. 3.10F). By co-immunofluorescence staining, we determined 

that Cxcl1 is reduced in both tumor cells and fibroblasts in tumors grown in ApoE -/- 

compared to tumors grown in WT mice (Fig. 3.9G).  

Given that Cxcl1 is a granulocyte chemoattractant, we separated human PDA 

serum into APOE low and APOE high and used CyTOF to assess granulocyte (CD11b+ 

CD66b+ CD16+) levels in the matched blood samples. We observed an increase in blood 

granulocytes in patients with high serum APOE (Fig. 3.9H).  

ApoE is a secreted protein, and macrophages are one of the main sources (Fig. 

3.3H). We thus assessed in vitro whether macrophage derived ApoE regulated Cxcl1 

expression in cancer cells. Bone marrow derived monocytes were isolated from WT mice 

and ApoE -/- mice and polarized to TAMs. We then cultured tumor cells with macrophage 

conditioned-media from WT and ApoE -/- mice for 48 hours to ascertain the role of secreted 

factors in the macrophage media on tumor cell production of Cxcl1. Cxcl1 levels were 

measured by qRT-PCR in tumor cells alone and tumor cells cultured with WT or ApoE -/- 

macrophage conditioned media (Fig. 3.9I). Culture with WT macrophage conditioned 

media, induced higher Cxcl1 expression in tumor cells, suggesting a secreted factor from 

macrophages regulates Cxcl1 production from tumor cells (Fig. 3.9I). In contrast, tumor 

cells cultured with ApoE -/- macrophage failed to induce increased Cxcl1 expression, and 
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adding rApoE to the media rescues Cxcl1 induction, demonstrating that secreted ApoE 

is required for macrophage induction of tumor cell Cxcl1 expression (Fig. 3.9I). 

 

APOE regulates tumor cell Cxcl1 production via NF-kB signaling  

Given our finding that ApoE mediates expression of Cxcl1 and Cxcl5, we next 

assessed which receptor was regulating this phenotype. ApoE has multiple known 

receptors, including low-density lipoprotein receptor (LDLR), low-density lipoprotein 

receptor-related protein 1 (LRP1), and low-density lipoprotein receptor-related protein 8 

(LRP8) (Lane-Donovan and Herz, 2017). We used single cell RNA sequencing and 

detected Ldlr, Lrp1, and Lrp8 expression on epithelial cells from orthotopic KPC tumors 

(Fig. 3.11A). In vitro, Ldlr was the highest expressed ApoE receptor in the 7940b KPC 

tumor cells (Fig. 3.11B).  Further, single cell RNA sequencing of human PDA also 

revealed that LDLR is highly expressed on tumor cells relative to other cell types (Fig. 

3.11C). Given these data, we then used small interfering RNA (siRNA) to knock-down 

LDLR in 7940b KPC tumor cells (Fig. 3.12A). Tumor cells with partial knock-down of 

LDLR had reduced induction of Cxcl1 and Cxcl5 expression when cells were treated with 

recombinant ApoE compared to the scrambled siRNA control (Fig. 3.12B). These data 

suggest ApoE mediates Cxcl1 and Cxcl5 expression via signaling through LDLR.  

We next wanted to examine the intracellular signaling pathways that mediated 

ApoE-driven Cxcl1 and Cxcl5 expression. Gene set enrichment analysis of TCGA 

pancreatic cancer dataset revealed a positive correlation of APOE expression with NF-

kB signaling components (Fig. 3.11D). Similar to the human enrichment analysis, we 

performed gene set enrichment analysis on KPC tumor cells treated with recombinant 
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ApoE and saw upregulation of complement, Kras signaling, inflammatory response 

pathways, as well as components of NF-kB signaling (Fig. 3.11E). Further, many NF-

kB/cytokine signature genes were upregulated within pancreatic cancer cells treated with 

recombinant ApoE (Fig. 3.12C). We performed co-immunofluorescence staining for the 

NF-kB mediator p65 and the tumor cell marker, CK19, in 7940b KPC cells treated with 

recombinant ApoE compared to vehicle (Fig. 3.12D). We detected an increase in percent 

nuclear p65 with the addition of ApoE, suggesting tumor cells activate NF-kB signaling in 

response to ApoE treatment (Fig. 3.12D). Cxcl1 is activated by NF-kB signaling and ApoE 

has been shown to regulate NF-kB in acute myeloid leukemia (Deng et al., 2018). To 

assess the role of ApoE and NF-kB in PDA we next used a NF-kB inhibitor, BAY 11-7082 

(Lee et al., 2012), which targets IKK to determine the effect of NF-kB inhibition on Cxcl1 

expression. As previously described, we saw an increase in Cxcl1 and Cxcl5 in tumor 

cells treated with recombinant ApoE (Fig. 3.12E). Treatment of the 7940b KPC cells with 

BAY 11-7082 significantly reversed the Cxcl1 and Cxcl5 induced by recombinant ApoE 

(Fig. 3.12E). Thus, ApoE may regulate tumor cell derived Cxcl1 and Cxcl5 expression, at 

least in part, through binding to LDLR and through NF-kB signaling activation.  

 

Discussion 

Here, we found that the apolipoprotein APOE is expressed in mouse and human 

pancreatic cancer. Further, we show that ApoE is secreted, and acts on tumor cells – at 

least in part through the LDL receptor – to induce secretion of Cxcl1 and Cxcl5. These 

cytokines are chemoattractants for MDSCs and consequently suppress cytotoxic T cell 

infiltration (Li et al., 2018a; Steele et al., 2016) (Fig. 3.12F). Absence of ApoE secretion 



 95 

was associated with reduced expression of Cxcl1 in tumor cells and an increase in tumor-

infiltrating T cells (Fig. 3.12G).  Our work provides evidence that APOE mediates immune 

suppression by modulating T cell infiltration in the setting of pancreatic cancer. 

Myeloid cells are a key driver of immune suppression in PDA and these myeloid-

mediated mechanisms remain incompletely understood. Recent single cell sequencing 

efforts identified ApoE as part of a group of genes highly expressed by macrophages and, 

additionally, expressed by iCAFs in PDA (Elyada et al., 2019; Steele et al., 2020). Our 

data are consistent with previous reports on ApoE expression in both macrophages and 

fibroblasts and support the growing recognition that fibroblasts have an 

immunosuppressive role (Biffi et al., 2019; Elyada et al., 2019; Feig et al., 2013; Ohlund 

et al., 2017).  

ApoE, among other apolipoproteins, inhibits T cell activation in vitro (Macy et al., 

1983). While understudied in PDA, APOE-mediated regulation of the immune system has 

been evaluated in other cancers. Consistent with our data, APOE mediates T cell 

suppression in AML (Deng et al., 2018; Gui et al., 2019). In contrast, activation of ApoE 

in melanoma promotes cytotoxic T cell responses (Pencheva et al., 2012; Tavazoie et al., 

2018), suggesting the function of APOE in cancer may be context dependent. The 

differences in ApoE function seen between PDA and melanoma could be due to the 

baseline immune reactivity in melanoma versus pancreatic cancer (Blando et al., 2019).  

Our study highlights a previously undescribed mechanism of ApoE in mediating 

tumor cell crosstalk with the immune system in PDA. Our data suggest that ApoE signals 

directly to tumor cells to enhance expression of Cxcl1 and Cxcl5. Cxcl1 and Cxcl5 act as 

a chemoattractant for MDSCs. MDSCs in turn prevent T cell infiltration in PDA (Li et al., 
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2018a). We further show that ApoE induction of Cxcl1 and Cxcl5 expression is at least 

partially dependent on its binding to the LDL receptor on tumor cells. ApoE signaling also 

leads to activation of NF-kB in tumor cells. Interestingly, inactivation of cholesterol 

signaling in a mouse model of pancreatic cancer results in delayed carcinogenesis and 

prolonged survival. When tumors do develop, they have basal-like features, possibly 

indicating that classical tumors are uniquely dependent on cholesterol (Gabitova-Cornell 

et al., 2020). An interesting consideration is that one of the physiological consequences 

of ablating ApoE is higher plasma cholesterol, suggesting that some of the in vivo 

phenotypes observed may have to do with suppressed tumor promotion. 

While mice have only one variant of APOE, humans have three different variants 

APOE2, APOE3, and APOE4, with different functions (Mahley and Rall, 2000). In 

Alzheimer’s disease APOE4 is a risk factor for disease (Strittmatter et al., 1993), while 

APOE2 plays a protective role (Corder et al., 1994). APOE genotype has not been 

extensively studied in cancer, but in one melanoma study, APOE4 plays a favorable role 

in disease, while APOE2, has a worse outcome (Ostendorf et al., 2020). However, 

APOE4 has the highest affinity for the LDL receptor suggesting it would further promote 

immune suppression in PDA (Yamamoto et al., 2008). Future studies will examine the 

role of APOE variants in human PDA. 

Finally, we observed that higher serum APOE levels correlate to worse overall 

survival in pancreatic cancer patients. These findings suggest that APOE levels could be 

a useful prognostic marker for PDA patients. In summary, ApoE is highly expressed by 

macrophages and fibroblasts within the pancreatic cancer microenvironment; ApoE is 
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secreted and binds the LDL receptor on cancer cells, in turn inducing the expression of 

cytokines that mediate immune suppression in pancreatic cancer. 

 

Materials and Methods 

Study approvals 

All animal experiments and procedures were performed at the University of Michigan 

under Protocol Number PRO00007983 and were in compliance with guidelines from the 

Institutional Animal Care & Use Committee (IACUC). All human research was performed 

according to ethical standards and guidelines approved by the University of Michigan 

Institutional Review Board (IRB). All patients provided written consent before procedures 

were performed. Peripheral blood was collected from patients over the age of 18 who 

received diagnostic endoscopic ultrasound for pancreatic mass under IRB 

HUM00041280 or surgical resection under IRB HUM00025339. Blood was also collected 

from known PDA patients at clinic visits or infusion visits for chemotherapy under 

HUM00025339. For all consented patients, up to 40 ml of whole blood was collected.  

 

APOE expression analysis and human PDA stratification 

RNA sequencing dataset of laser microdissection (LCM, 65 PDAC tumor epithelium vs 

65 stroma samples) was downloaded from NCBI GEO (Accession number GSE93326) 

and used to determine the expression of APOE in tumors relative to stroma. For the 

stratification of patients tumors by APOE level, we used The Cancer Genome Atlas 

(TCGA) pancreatic adenocarcinoma RNA sequencing data (150 samples) downloaded 

from cBioPortal (https://www.cbioportal.org/) as well as microarray data from the 
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International Cancer Genome Consortium – Australia cohort (ICGC-AU,  269 samples) 

downloaded from https://dcc.icgc.org/projects/. Tumor samples in both datasets were 

split into two groups (APOE high and low). Genes differentially expressed between the 

two groups were determined using limma package in R software (v 3.5.2) with an adjusted 

P<0.05 as cut off for statistical significance. 

 

Human and mouse single cell RNA sequencing 

Single cell RNA sequencing analysis utilized the following datasets. Processed data for 

the human pancreatic cancer single cell RNA sequencing dataset are available at NIH 

Gene Expression Omnibus (GEO) database under the accession GSE155698 and raw 

data are available at the NIH dbGaP database under the accession phs002071.v1.p1 

(Steele et al., 2020). Raw and processed data for the orthotopic KPC mouse single cell 

RNA sequencing dataset are available at GEO under the accession GSE158356. 

Downstream analysis was performed using Seurat V3.2.2 in R Studio V1.3.1093.  

 

Human plasma isolation 

Human PBMCs were isolated from whole blood as previously described (Steele et al., 

2020). Briefly, whole blood was inverted 10 times and then underwent centrifugation at 

1700 x g for 20 minutes at room temperature (RT). The plasma layer was then removed 

and stored in -80 °C. 

 

Enzyme-linked immunosorbent assay (ELISA) 
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For detection of APOE in human plasma, Human Apolipoprotein E Human Elisa Kit 

(abcam, ab108813) was used. For detection of APOE in mouse macrophage media, 

Mouse Apolipoprotein E SimpleStep Elisa Kit (abcam, ab215086) was used. For detection 

of human CXCL1, Human CXCL1/GRO alpha Quantikine ELISA Kit (R&D systems, 

DGR00B) was used. ELISAs were performed according to manufacturing instructions. 

Mouse bone marrow cells were plated in 1:1 tumor cell conditioned media: DMEM with 

10% FBS for seven days before media was removed. For APOE detection, human 

plasma was diluted 1:1000 and mouse macrophage media was diluted 1:100. Samples 

were plated in duplicate. Absorbance was read at 450 nm with wavelength correction at 

570 nm. Final concentration was multiplied by the dilution factor. Survival analyses were 

performed on human APOE and CXCL1 plasma data. PDA patients were stratified by 

APOE or CXCL1 levels and survival analysis was performed using Log-rank (Mantel-Cox) 

test.  

 

Animal experiments 

Mice 

Wild type C57/BL6J mice (Jackson Laboratory, 000664) and ApoE-/- mice (Jackson 

Laboratory, 002052) were used for animal experiments. All mice were housed in specific 

pathogen-free facilities at the University of Michigan Rogel Cancer Center.  

 

Orthotopic transplantation models 

For orthotopic transplantation into the pancreas, 5 x 104 7940b KPC cells were prepared 

in a 1:1 ratio of growth-factor reduced matrigel and DMEM supplemented with 10% FBS. 
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Mice were anesthetized using isoflurane and the surgical area was prepared using 

aseptic technique. A tumor cell suspension of 50 μl was injected directly into the pancreas 

using an insulin syringe, as previously described (Aiello et al., 2016).  

 

Doxycycline treatment 

iKras* mice (Collins et al., 2012a) were administered doxycycline chow (BioServ, F3949) 

to induce expression of KrasG12D for 72 hours. Pancreatitis was then induced by two days 

of 8 intraperitoneal injections of caerulein (Sigma, 75 μg/kg) with continuous 

administration of doxycycline as previously described (Collins et al., 2012a). Doxycycline 

chow was administered for 3 weeks for Kras ON timepoint and then replaced with regular 

chow for Kras OFF timepoints. Littermate control mice lacking the full set of alleles also 

received caerulein and doxycycline at the indicated timepoints.  

Histopathological analysis and quantification 

Tissues were fixed overnight in 10% neutral buffered formalin, then transferred to 70% 

ethanol for paraffin embedding. Hematoxylin & Eosin was performed in accordance with 

manufacturing guidelines. Gomori Trichrome was performed in accordance with 

manufacturing guidelines (ThermoFisher, #87021). Immunohistochemical staining was 

performed using the Ventana Discovery Ultra XT autostainer and counterstained with 

hematoxylin. For immunofluorescent staining, tissues were de-paraffinized with xylene, 

followed by antigen retrieval. Slides were blocked with 1% bovine serum albumin (BSA) 

in PBS for 1 hour at RT. Primary antibody was diluted in blocking buffer and incubated 

overnight at 4 °C, followed by secondary antibody incubation (Alexa Fluor secondaries, 
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1:300) for 45 minutes at RT. Nuclei were counterstained with Prolong Diamond Antifade 

Mountant with DAPI (Invitrogen). For in vitro staining, tumor cells were grown on sterile, 

glass cover slips. Images were taken on the Olympus BX53F microscope with the 

Olympus DP80 digital camera and CellSens Standard software using the 20x and 40x 

objectives. Confocal images were imaged on LeicaSP5 or SP8 confocal microscope 

Leica Software at 63x objective. Image J, Fiji V2.0.0-rc-69/1.52p was used to quantify 

positive immunohistochemical stain. Quantification was done on at least three 20x 

magnification fields across three or more biological replicates.  

 

Bone-marrow macrophage polarization 

Bone marrow cells were isolated from mouse femurs and tibias and macrophage 

polarization was performed as previously described (Halbrook et al., 2019). Briefly, bone-

marrow cells were isolated from C57BL/6J mice and cultured in macrophage 

differentiation media supplemented with 30% L929 conditioned media for 5 days. On day 

6, macrophages were polarized for 24 hours using 10ng/mL murine macrophage colony-

stimulating factor (M-CSF) (Peprotech, 315-02), 10ng/mL LPS (Enzo, ALX-581-011-

L001), 10ng/mL murine interleukin-4 (IL-4) (Peprotech, 214-14), or 75% PDA conditioned 

media, for M0, M1, M2 and TAM polarization, respectively. For TAM only studies, bone-

marrow cells were isolated and cultured in 50% PDA conditioned media for seven days, 

with additional media added on day 3. 

 

Quantitative RT-PCR (qRT-PCR) 
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Tumor tissues were flash frozen in liquid nitrogen, then prepared for RNA extraction 

through incubation in RNAlater-ICE (ThermoFisher, AM7030) overnight at -20 °C. Tissues 

and cell lines were mechanically disrupted in Buffer RLT (Qiagen, 79216). RNA was 

extracted according to RNeasy Plus Mini Kit manufacturing instructions (Qiagen, 74134). 

cDNA was synthesized using the High-Capacity cDNA Reverse Transcription Kit 

(ThermoFisher, 4368814). For qRT-PCR, samples were prepared with either Fast SYBR 

Green PCR Master Mix (Applied Biosystems, 4385612) or TaqMan Universal Mastermix 

(Applied Biosystems, 4364340). Amplifications were performed in triplicate. Cyclophilin 

A/Ppia was used for normalization.  

 

Mass Cytometry (CyTOF) 

Mouse tumors were mechanically and enzymatically (1mg/ml Collagenase P: DMEM) 

digested for 30 minutes at 37 °C with constant shaking. Samples were then washed with 

DMEM and 10% FBS and filtered through 100 μM mesh, followed by 40 μM mesh, to 

obtain a single cell suspension. Human PBMCs were isolated as previously described 

(Steele et al., 2020). Whole blood was inverted 10 times and then underwent 

centrifugation at 1700 x g for 20 minutes at RT. The top PBMC layer was then removed, 

washed with PBS, and underwent ammonium-chloride-potassium (ACK) lysis. PBMCs 

underwent a final wash and centrifugation. Mouse and human samples were prepared for 

CyTOF cell surface staining in accordance to manufacturing guidelines (Fluidigm, PN 

400276 A4). Samples were first washed with Maxpar PBS (Fluidigm, 201058). Up to 1 

million cells from the single cell suspension were then stained with Cell-ID Cisplatin 

(Fluidigm, #201064) 5 minutes at RT, to label dead cells. Cells were then washed with 
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Maxpar PBS and were stained with a panel of 16 surface mouse antibodies and 6 surface 

human antibodies for 30 minutes at room temperature. Samples were washed with 

Maxpar PBS twice then left pelleted in 1 mL Cell-ID Intercalator-IR (Fluidigm, 201192A). 

Samples were then shipped to the University of Rochester, Flow Cytometry Core, and 

acquired on the CyTOF 2. Files were normalized to internal bead controls. Downstream 

analysis was performed using the Premium CytoBank Software (cytobank.org). Live 

singlets were gated using the DNA Intercalator Ir191, event length, and Cisplatin Pt195. 

tSNE visualization was performed in CytoBank on representative samples.  

 

Cell culture 

KPC (C57/BL6) cell line: 7940b (A gift from Dr. Gregory Beatty, University of 

Pennsylvania). Fibroblast cell lines: BLK6318 was generated from a normal mouse 

(C57/BL6) pancreas. FB1 cancer-associated fibroblast line was generated from an iKras* 

p53* mouse (FVB/NJ) (Collins et al., 2012b) through fluorescence-activated cell sorting 

(FACS) on PDGFRa+ EpCAM- cells. All cell lines underwent routine Mycoplasma testing 

using MycoAltert (Lonza, LT07-318). DMEM with 10% FBS and 1% 

penicillin/streptomycin (ThermoFisher, 15140163) was used for all cell lines. Murine 

recombinant ApoE (abcam, ab226314) was used at a concentration of 0.3μg/mL for all 

experiments. 50,000 -100,000 cells were plated into a 6-well dish and were allowed to 

adhere for 24 hours. Recombinant ApoE was spiked into the culture media for 1 to 48 

hours, depending on experimental conditions. For NF-kB inhibition, cells were pre-treated 

with either 5 or 10uM BAY 11-7082 (abcam, ab141228) for 2 hours, before the addition 

of recombinant ApoE.  
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RNA sequencing analysis of APOE-treated cells 

Cells were lysed in Buffer RLT (Qiagen, 79216). RNA was then extracted according to 

RNeasy Plus Mini Kit manufacturing instructions (Qiagen, 74134). RNA quality was 

determined using both NanoDrop results and RNA Integrity Number (RIN). All samples 

had a RIN >9 and underwent reverse transcription for cDNA synthesis. The University of 

Michigan Advanced Genomics Core prepared libraries and then underwent paired-end 

sequencing on the NovaSeq6000 (Illumina). Sample reads were aligned with HISAT2 

v2.2.0 using prebuilt index of Mus musculus UCSC reference genome mm10 obtained 

from http://daehwankimlab.github.io/hisat2/download/. Gene assembly and quantification 

was done with Stringtie 2.1.1, counts of duplicated genes were averaged and differential 

gene expression was determined using DESeq2 package (v 1.22.2) in R software after 

filtering out genes with low counts (i.e. total raw counts <20 across samples). Pathway 

enrichment and gene ontology analyses were performed with GSEA v4.0.3 (pre-ranked) 

using differentially expressed genes, and with DAVID v6.8 

(https://david.ncifcrf.gov/summary.jsp). Bulk RNA sequencing data from this study are 

available at GEO under the accession GSE160592. 

 

siRNA transfection  

siRNA transfection was performed according to manufacturer instructions (Lipofectamine 

RNAiMAX Reagent Protocol, 2013). 7940b KPC cells were seeded at 60% confluency in 

a 6-well plate. The next day, two separate LDLR siRNA (Thermo, #s69153 and #s69154) 

or scrambled negative control (Thermo, 4390843) were diluted in Opti-MEM reduced 
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serum medium (Gibco, 31985062). Lipofectamine RNAiMAX transfection reagent 

(Thermo, 13778075) was diluted in Opti-MEM medium. Diluted siRNA was then mixed 

with diluted lipofectamine RNAiMAX at 1:1 ratio and incubated for 5 minutes at RT. siRNA 

and lipofectamine complexes were then added to adherent cells at a final concentration 

of 25 pmol. Cells were incubated for 48 hours at 37 °C.  

 

Western blot analysis 

Cells were lysed in RIPA buffer (Sigma) with protease (Sigma) and phosphatase (Roche) 

inhibitors. Protein samples were separated through electrophoresis on a 4-20% precast 

polyacrylamide gel (BioRad, 4561094) then transferred to PVDF membrane (BioRad, 

1620177). Membranes were blocked with 5% milk for one hour at RT. Membranes were 

incubated with primary antibodies overnight at 4 °C, followed by secondary antibody 

incubation for 2 hours at RT. All incubations were performed under constant rocking. For 

protein detection, membranes were incubated in Western Lightning Plus-ECL (Perkin 

Elmer, 509049323) for 1 minute and then imaged using BioRad Chemidoc. Image J was 

used for quantitation of normalized protein expression. 

 

Statistics 

GraphPad Prism version 8.4.3 was used for statistical analyses and graphical 

representation. Data are presented as means ± standard deviation (SD). Two-tailed 

Student’s t-test and One-way ANOVA with Turkey’s test for multiple correction were 

performed for comparison between groups. A p<0.05 was considered statistically 

significant. Kaplan-Meier overall survival analysis was performed with log-rank test.  
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Data availability 

Processed data for the human pancreatic cancer single cell RNA sequencing dataset are 

available at NIH Gene Expression Omnibus (GEO) database under the accession 

GSE155698 and raw data are available at the NIH dbGaP database under the accession 

phs002071.v1.p1 (Steele et al., 2020). Raw and processed data for the orthotopic KPC 

mouse single cell RNA sequencing dataset are available at GEO under the accession 

GSE158356. Bulk RNA sequencing data from this study are available at GEO under the 

accession GSE160592.  
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Figures 

Figure 3.1
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Figure 3.1 Systemic APOE levels are elevated in PDA and correlate to patient survival.  
(A) UMAP analysis of the 13 identified cell populations in human adjacent/normal pancreas (n=3) and PDA tumors 
(n=16). (B) Dot plot of APOE in all identified cell populations in human single cell dataset. Color represents average 
expression. Size of the dot represents percent expressed. (C) UMAP visualization of 6 identified myeloid cell sub-
populations in the human PDA tissue. (D) Feature plot of APOE expression in all identified myeloid cell populations 
in human PDA. Low expression is in grey, while high expression is in blue. Black outline denotes APOE positive 
macrophages. (E) Violin plot of normalized gene expression of APOE in PDA and adjacent normal pancreas 
macrophages in human PDA. Statistics were determined using non-parametric Wilcoxon rank sum test. (F) UMAP 
visualization of human PDA fibroblast sub-populations. (G) Violin plot of normalized gene expression of APOE in 
human myCAF and iCAF populations. (H) Violin plot of normalized gene expression of APOE in PDA and adjacent 
normal pancreas iCAFs in human PDA. Statistics were determined using non-parametric Wilcoxon rank sum test. (I) 
Violin plot of normalized expression of APOE in human monocytes. Statistics were determined using non-parametric 
Wilcoxon rank sum test. (J) Human APOE concentration (μg/mL) in plasma from healthy donors (n=15), chronic 
pancreatitis patients (n=17) and PDA patients (n=155). Statistics were determined using one-way ANOVA with 
Turkey’s test for multiple comparisons. n.s. = not significant. (K) Survival analysis of PDA patients stratified by plasma 
APOE levels. APOE Low (n=32) and APOE High (n=32). Statistics were determined using Log-rank (Mantel-Cox) 
test. 
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Figure 3.2 

 

 

Figure 3.2 APOE is highly expressed in the stroma of human PDA tumors. 
 (A) Feature plot of APOE in human PDA tumor cell populations. Low expression is in grey, while high expression for 
APOE is in blue. (B) Average expression heatmap of myCAF (TAGLN, ACTA2, POSTN) and iCAF (C3, DPT, APOE) 
lineage markers. Low expression (blue) and high expression (red) of selected genes. (C) Relative APOE expression 
in epithelium (n=65) and stroma (n=65) compartments in human PDA samples from Laser Capture Microdissection 
PDA dataset. (D) Heatmaps of the top correlated genes in APOE low (n=75) and APOE high (n=75) patients from 
TCGA pancreatic cancer data. Arrowheads denote APOE, TREM2, and MARCO. (E) Venn diagram showing genes 
overlapping between the human scRNA seq APOE+ macrophages and genes high in APOE high tumors from TCGA 
and ICGC datasets. The 26 overlapped genes that correlate with APOE positive cells are plotted on the right. (F) UMAP 
visualization of 4 identified monocyte populations in human PDA. (G) Feature plot of APOE in human PDA monocyte 
populations. Low expression is in grey, while high expression for APOE is in blue. 
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Figure 3.3

 
Figure 3.3 APOE is highly expressed by tumor-associated macrophages.  
(A) Immunohistochemical analysis of APOE in normal mouse pancreas and orthotopic KPC tumor. Scale bars, 100 μm. (B) 
Quantitation of positive APOE staining as percent of area in a 20x field of view. Five fields of view are averaged per mouse. 
Control (n=3) and orthotopic tumor (n=6). Statistical significance was determined using two-tailed t test. (C) UMAP 
visualization of 9 identified populations in orthotopic KPC tumors (n=2). (D) Violin plot of normalized expression of Apoe in 
identified cell populations in orthotopic KPC tumors (n=2). (E) Co-immunofluorescence of orthotopic KPC tumor with single 
channels of APOE (green), F4/80 (red), aSMA (white) and merge to show APOE and F4/80 co-localization. Two examples 
of APOE and F4/80 co-localization are denoted by white arrows. Scale bars, 25 μm. (F) Experimental design for bone 
marrow derived macrophage polarization assay. (G) qRT-PCR analysis of Apoe mRNA levels relative to Cyclophilin A 
housekeeping in 4 macrophage conditions (M0, M1, M2, TAM). Statistical significance was determined using one-way 
ANOVA with Turkey’s test for multiple correction. (H) ApoE concentration (μg/mL) in wild type TAM conditioned media (n=5) 
and ApoE-/- TAM conditioned media (n=1). 
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Figure 3.4

 
Figure 3.4 APOE expression is lost when oncogenic Kras is extinguished.  
(A) Dot plot of lineage markers used to define identified cell populations in orthotopic KPC tumors (n=2). Color of the 
dot represents average expression. Size of the dot represents percent expressed. (B) Co-immunofluorescence staining 
on normal mouse pancreas (N Panc) and orthotopic KPC tumor for APOE (green), F4/80 (red) and DAPI (blue). White 
arrows denote APOE and F4/80 colocalization. Scale bars, 100 μm. (C) iKras* experimental design. (D) 
Immunohistochemical staining for APOE in mouse normal pancreas, pancreatic tissue after 3 weeks of oncogenic Kras 
expression, and removal of oncogenic Kras for 3 days and 1 week.  Scale bars, 50 μm. (E) Quantitation of positive 
APOE staining as percent area in a 40x field. 5 images per mouse were averaged. Control (n=2), 3W ON (n=3), 3d 
OFF (n=3), and 1W OFF (n=3). W=week. d=day. Statistical significance was determined using one-way ANOVA with 
Turkey’s test for multiple correction. 
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Figure 3.5

 

Figure 3.5 Loss of APOE results in reduced tumor burden and fibrosis.  
(A) Experimental scheme for orthotopic transplantation of 7940b, KPC tumor cells. (B) Final tumor weight (g) in WT 
(n=10) and ApoE-/- (n=13) mice, Statistics were determined using two-tailed t test, with a p<0.05 considered statistically 
significant. (C) Representative images of Hematoxylin & Eosin (H&E) stain in WT and ApoE-/- mice. Scale bars, 100 
μm. (D) Representative immunohistochemical staining for APOE, cleaved caspase 3 (CC3), aSMA, and Gomori 
Trichome in WT and ApoE-/- mice. Scale bars, 100 μm. (E) Quantitation of immunohistochemical stains as percent 
area per 20x field in WT (n= 5-8) and ApoE-/- mice (n=5-8). Statistics were determined by two-tailed t tests. 
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Figure 3.6

 

Figure 3.6 Histological changes in APOE deficient mice.  
(A) Representative immunohistochemical staining for Ki-67, F4/80 and CD3 in WT and ApoE-/- mice. Scale bars, 100 
μm. (B) Quantitation of positive immunohistochemical stain as percent area per 20x field in WT (n= 5) and ApoE-/- mice 
(n=5). 
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Figure 3.7

 
Figure 3.7 Mice deficient in APOE have fewer monocytic-MDSCs and increased CD8+ T cell infiltration.  
(A) Experimental scheme for orthotopic transplantation of 7940b, KPC tumor cells. (B) tSNE visualization of the 6 cell 
populations identified using CyTOF in WT and ApoE-/- tumors. Populations identified include macrophages (blue), 
MDSCs (orange), CD8 T cells (green), CD4 T cells (red), B cells (purple) and non-immune (brown). (C) Manual gating 
quantitation of cell populations in WT (n=5-6) and ApoE-/- (n=7) tumors. Populations include total immune (CD45+), B 
cells (CD45+ CD19+), total myeloid (CD45+ CD11b+), macrophages (CD11b+ F4/80+), TAMs (F4/80+ CD206+; F4/80+ PD-
L1+), granulocytic-MDSCs (Ly-6C+ Ly6G+), monocytic-MDSCs (Ly-6C+ Ly-6G-), total T cells (CD45+ CD3+), CD4 T cells 
(CD3+ CD4+), regulatory T cells (CD4+ CD25+), and CD8 T cells (CD3+ CD8+). (D) Representative immunofluorescence 
staining of CD8 (green) and DAPI (blue) in WT and ApoE-/- tumors. Scale bars, 100 μm. Quantitation of percent CD8 
positive area in a 20x field in WT (n= 4) and ApoE-/- mice (n=5) (right panel). Statistics were determined by two-tailed t 
test. 
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Figure 3.8

 

Figure 3.8 Loss of APOE alters macrophage polarization.  
(A) Heatmap of lineage markers used to define cell populations. Low expression is in black, while high marker 
expression is in white. (B) qRT-PCR analysis of ApoE, Cd274, Arg1, Mrc1, and Nos2 mRNA levels relative to 
Cyclophilin A housekeeping in WT (n=4) and ApoE-/- (n=3) tumors. Statistical significance was determined using two-
tailed t tests. (C) qRT-PCR analysis of ApoE, Mrc1, Nos2, Cd274, and Tnfa mRNA levels relative to Cyclophilin A 
housekeeping in WT TAMs (n=4-6) and ApoE-/- TAMs (n=4-6) tumors. Statistical significance was determined using 
two-tailed t tests. ND = not detected. 
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Figure 3.9

 



 119 

Figure 3.9 APOE regulates Cxcl1 expression in tumor cells and fibroblasts. 
(A) Heatmap of differentially expressed genes in in vitro 7940b KPC cells treated with vehicle (n=3) compared to 7940b 
KPC cells treated with 0.3 μg/mL murine recombinant APOE (n=3) for 48 hours. High expression is in red, while low 
expression is in blue. (B) qRT-PCR analysis of Cxcl1 and Cxcl5 mRNA levels relative to Cyclophilin A housekeeping 
in 7940b KPC cells treated with vehicle (n=3) or 0.3 μg/mL recombinant ApoE (n=3) for 48 hours. Statistics were 
determined using two-tailed t tests. (C) Survival analysis of PDA patients stratified by plasma CXCL1 levels. CXCL1 
Low (n=38) and CXCL1 High (n=38). Statistics were determined using Log-rank (Mantel-Cox) test. (D) Dot plot for 
Cxcl1, Cxcl2, and Cxcl5 in orthotopic KPC tumors (n=2). Color denotes average expression. Size of dot represents 
percent expression. (E) qRT-PCR analysis for Cxcl1 mRNA levels relative to Cyclophilin A housekeeping in wild type 
fibroblasts (BLK6318) and cancer-associated fibroblasts (FB1), treated with vehicle (n=2-3) or 0.3 μg/mL recombinant 
ApoE (n=2-3) for 48 hours. Statistics were determined by two-tailed t tests. (F) qRT-PCR analysis of Cxcl1 and Cxcl5 
mRNA levels relative to Cyclophilin A housekeeping in WT (n=6) and ApoE-/- (n=5) tumors. Statistical significance was 
determined using two-tailed t test. n.s. = not significant. (G) Co-immunofluorescence staining of CXCL1 (green), CK19 
(red), aSMA (white), and DAPI (blue) in WT and ApoE-/- orthotopic KPC tumors. (H) Quantitation of human neutrophils 
(CD11b+ CD66b+ CD16+) in the blood of PDA patients with low (n=65) versus high (n=65) plasma APOE levels. 
Statistics were determined by two-tailed t tests. (I) qRT-PCR analysis of Cxcl1 mRNA levels relative to Cyclophilin A 
housekeeping in 7940b tumor cells alone control (n=6), 7940b cells cultured with WT macrophage conditioned media 
(n=6), 7940b cells cultured with ApoE-/- macrophage conditioned media (n=6), and 7940b cells cultured with ApoE-/- 

macrophage conditioned media with 0.3 μg/mL recombinant ApoE (n=3). Statistical significance was determined by 
two-tailed t tests between groups. 
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Figure 3.10

 

 Figure 3.10 Cxcl1 is highly expressed in mouse PDA tumors.  
(A) Biological processes upregulated in 7940b KPC cells treated with recombinant APOE. Derived from DAVID functional 
annotation platform using the top 500 genes induced by recombinant APOE. (B) Survival analysis of PDA patients from the 
ICGC dataset stratified by CXCL1 (left) or CXCL5 (right) expression levels. CXCL1 low (n=154) and high (n=155). CXCL5 
low (n=154) and high (n=155). Statistics were determined by Log-rank (Mantel-Cox) test. (C) Representative co-
immunofluorescence staining of CXCL1 (green), CK19 (red), and DAPI (blue) in mouse normal pancreas compared to 
mouse KPC tumor. Scale bars, 100 μm.  (D) qRT-PCR analysis for Il6 and (E) Acta2 mRNA levels relative to Ppia 
housekeeping in wild type fibroblasts (BLK6318) and cancer-associated fibroblasts (FB1), treated with vehicle (n=2-3) or 
0.3 μg/mL recombinant ApoE (n=2-3) for 48 hours. Statistics were determined by two-tailed t tests. (F) Representative 
immunohistochemical staining for CXCL1 in WT and ApoE-/- mice. Scale bars, 100 μm. Quantitation of positive CXCL1 
staining as percent area per 20x field in WT (n= 5) and ApoE-/- mice (n=5). Statistics determined by two-tailed t tests. 
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Figure 3.11

 
Figure 3.11 APOE upregulates NF-kB signaling.  
(A) Dot plot of Ldlr, Lrp1, and Lrp8 in orthotopic KPC tumors. Color represents average expression, while size of the dot 
represents percent expressed. (B) qRT-PCR analysis for Ldlr, Lrp1, and Lrp8 mRNA levels relative to Cyclophilin A in 7940b 
KPC tumor cells in vitro.  (C) Violin plot of normalized LDLR expression in human PDA. (D) Gene set enrichment analysis of 
NF-kB pathway enrichment in PDA TCGA APOE high tumors. (E) Gene set enrichment analysis of complement, NF-kB 
pathway, Kras signaling, and inflammatory response pathway enrichment in 7940b KPC cells treated with 0.3μg/mL 
recombinant ApoE (n=3) compared to vehicle (n=3) for 48 hours. 
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Figure 3.12
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Figure 3.12 APOE regulates tumor cell Cxcl1 production via NF-kB signaling.  
(A) Representative western blot analysis of 7940b KPC tumor cells that were either untreated, treated with scrambled 
siRNA negative control, or treated with LDLR siRNA for 24 hours. a-tubulin was used for loading control. Normalized 
protein expression is denoted under each lane. (B) qRT-PCR analysis of Ldlr, Cxcl1 and Cxcl5 mRNA levels relative 
to Cyclophilin A housekeeping in 7940b KPC cells that underwent LDLR knockdown for 48 hours and were treated 
with 0.3 μg/mL recombinant ApoE (n=3) for 1 hour. Statistics were determined using one-way ANOVA with Turkey’s 
test for multiple correction. (C) Heatmap of NF-kB/cytokine signatures in 7940b KPC cells treated with 0.3μg/mL 
recombinant ApoE (n=3) compared to vehicle (n=3) for 48 hours. High expression is in red and low expression is in 
blue. (D) Representative co-immunofluorescence staining of p65 (green), CK19 (red) and DAPI (blue) in 7940b tumor 
cells in vitro treated with vehicle or 0.3μg/mL recombinant ApoE for 48 hours. Scale bars, 25 μm. Quantitation of 
percent nuclear p65 in a 40x field in 7940b cells (n=4) and 7940b cells treated with 0.3μg/mL recombinant ApoE (n=4) 
for 48 hours. Statistics were determined through two-tailed t tests. (E) qRT-PCR analysis of Cxcl1, and Cxcl5 mRNA 
levels relative to Cyclophilin A housekeeping in 7940b cells (n=3), 7940b cells treated with 0.3μg/mL recombinant 
ApoE for 2 hours (n=3), 7940b cells pre-treated with 5 μM BAY 11-7082 for 1 hour and then treated with 0.3μg/mL 
recombinant ApoE for 2 hours (n=3), and 7940b cells pre-treated with 10 μM BAY 11-7082 for 1 hour and then treated 
with 0.3μg/mL recombinant ApoE for 2 hours (n=3). Statistical significance was determined using one-way ANOVA 
with Turkey’s test for multiple comparisons. (F) Working model. PDA tumors with active ApoE secretion regulate 
CXCL1 production from tumor cells and fibroblasts, which in turn recruits MDSCs, resulting in suppression of CD8+ T 
cell infiltration. (G) PDA tumors with loss of ApoE secretion results in less CXCL1 production from tumor cells and 
fibroblasts, which in turn recruits fewer MDSCs, allowing for an increase in CD8+ T cell infiltration. 
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Chapter 4 Pancreatic Cancer is Marked by Complement-high Tumor Associated 
Macrophages in Primary and Metastatic Tumors and Blood Monocytes7,8 

 

Abstract 

Pancreatic ductal adenocarcinoma (PDA) is accompanied by reprogramming of 

the local microenvironment, but changes at distal sites are poorly understood. Utilizing 

biomaterial scaffolds implanted into immunocompetent tumor-bearing and control mice, 

we identified a unique tumor-specific gene expression signature that includes high 

expression of C1qa, C1qb (complement components), as well as Trem2, and 

Chil3. Single cell RNA sequencing mapped these genes to two distinct macrophage 

populations in the scaffolds, one marked by elevated C1qa, C1qb, and Trem2, the other 

with high Chil3. In mice, corresponding populations of tumor associated macrophages 

(TAMs) were present at the primary tumor and were elevated in the tumor compared to 

the normal pancreas. We then analyzed single cell RNA sequencing from 

patient samples, and determined that elevated expression of C1QA, C1QB, 

and TREM2 is elevated in human macrophages both at the primary tumor site and in liver 

 
 

7 Data from Chapter 4 have been submitted for publication at Life Science Alliance in a manuscript entitled, “Pancreatic 
cancer is marked by complement-high tumor-associated macrophages in primary and metastatic tumors and blood 
monocytes” (2021). 
 
8 Author list: Samantha B. Kemp, Nina G. Steele, Eileen S. Carpenter, Katelyn L. Donahue, Grace G. Bushnell, Aaron 
H. Morris, Stephanie The, Sophia M. Orbach, Veerin R. Sirihorachai, Zeribe C. Nwosu, Carlos Espinoza, Fatima Lima, 
Kristee Brown, Alexander A. Girgis, Valerie Gunchick, Yaqing Zhang, Costas A. Lyssiotis, Timothy L. Frankel, Filip 
Bednar, Arvind Rao, Vaibhav Sahai, Lonnie D. Shea, Howard C. Crawford*, Marina Pasca di Magliano* 
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metastases. Single cell sequencing analysis of patient blood revealed a 

substantial enrichment of a monocyte population expressing the same gene signature, 

compared to healthy controls. Taken together, our study reveals a tumor-associated 

macrophage and monocyte population that is indicative of systemic immune changes in 

PDA patients. 

Introduction 

Pancreatic ductal adenocarcinoma (PDA) is a lethal malignancy with a dismal 5-

year survival rate of only 10% (Siegel et al., 2020). PDA is characterized by an abundant, 

fibroinflammatory stroma. From the onset of carcinogenesis, the immune response to 

pancreatic cancer results in an immunosuppressive tumor microenvironment (TME) 

(Clark et al., 2007). Myeloid cells are abundant and heterogenous within the PDA TME 

and a key driver of an immune suppressive microenvironment (Mitchem et al., 2013; 

Stromnes et al., 2014; Zhang et al., 2017b; Zhu et al., 2017; Zhu et al., 2014). The primary 

tumor and metastatic sites are both characterized by tumor cell evasion of the immune 

response (Gonzalez et al., 2018; Hanahan and Weinberg, 2011). However, systemic 

alteration of the immune system by the primary tumor remains poorly understood. While 

the stochastic nature of metastasis greatly limits our ability to study the systemic 

responses to the primary tumor, recent advances in biomaterials engineering provide a 

novel opportunity to evaluate systemic response to PDA through the use of 

polycaprolactone scaffolds. 

Biomaterial scaffolds have been used as a synthetic pre-metastatic niche in a 

breast cancer model (Aguado et al., 2017; Azarin et al., 2015; Bushnell et al., 2019; Rao 

et al., 2016). Additionally, scaffolds elicit a robust and dynamic immune infiltration in both 
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control and tumor settings, likely in response to scaffolds acting as a foreign body (Azarin 

et al., 2015; Rao et al., 2016). Scaffolds have been utilized more recently as a tool to 

allow for repeat sampling to obtain gene signatures that are predictive of disease and 

recurrence in mouse models of breast cancer and multiple sclerosis, an application of 

high clinical relevance (Morris et al., 2020a; Morris et al., 2020b; Oakes et al., 2020). 

Scaffolds, unlike the blood, allow for analysis of tissue-based immune response at distal 

sites.  

In this study, we used engineered polymer scaffolds implanted into immune 

competent mice with orthotopic pancreatic tumors to generate an immune gene signature 

associated with pancreatic cancer. We found fundamental differences in the gene 

expression of cellular infiltrates derived from scaffolds in tumor-bearing versus non-tumor 

mice, with a tumor-specific signature including Chil3, Trem2, C1qa and C1qb. Single cell 

RNA sequencing identified changes primarily in macrophage gene expression and 

revealed two distinct populations of macrophages that were unique to tumor-bearing 

animals. While one macrophage population expressed Chil3, the other expressed Trem2 

and complement components C1qa and C1qb (complement-high macrophage). The 

complement-high macrophage population were present in primary tumors from mice and 

PDA patients, metastatic liver lesions, and expression of C1QA, C1QB, and TREM2 was 

elevated in the blood of human PDA patients. Thus, we defined two-distinct systemically 

altered macrophage populations associated with PDA in mice and an enrichment of a 

complement-high macrophage/monocyte population in PDA patients.  
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Results 

Biomaterial scaffolds harbor an immune-dense microenvironment in response to 

an orthotopic model of PDA 

To understand the systemic immune changes in PDA, we first assessed the 

immune infiltration in the liver and peripheral blood of tumor-bearing animals compared 

to controls. Using an orthotopic model of pancreatic cancer, we implanted 7940b cells, 

derived from the LSL-KrasG12D/+; LSL-Trp53R172H/+; Pdx1-Cre (KPC) model of pancreatic 

cancer (Hingorani et al., 2005) on the C57BL/6J (BL/6) background, into the pancreas 

and performed mass cytometry (CyTOF) analysis. We found that livers and peripheral 

blood mononuclear cells (PBMCs) from tumor-bearing mice had an increase in total 

myeloid cells and myeloid cell subsets preceding the outgrowth of metastases, similar to 

previous reports (Lee et al., 2019b; Li et al., 2018a; Rhim et al., 2012; Sanford et al., 

2013) (Fig. 4.1A and 4.1B). 

The immune cell changes in the blood and liver of tumor-bearing mice provided 

evidence of a systemic immune response to the tumor. We next used biologically inert 

polycaprolactone scaffolds to further study how tumors alter the systemic immune 

response in pancreatic cancer. We implanted scaffolds subcutaneously into BL/6 mice. 

One-week later 7940b (BL/6) cells were orthotopically transplanted into the pancreas, 

followed by removal of the scaffolds after 3 weeks (Fig. 4.2A and Fig. 4.1C). Control mice 

had subcutaneous scaffold implantation, followed by mock orthotopic surgery. After 

removal, scaffolds were examined by immunofluorescence staining to determine which 

cell populations colonized the scaffold. Tumor cells (CK19+) were identified in the scaffold 

of tumor bearing animals while epithelial cells were rare/absent in healthy controls (Fig. 
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4.2B). We observed a stromal response in the tumor-bearing scaffold, characterized by 

accumulation of fibroblasts (aSMA) (Fig. 4.2B). In order to determine whether the immune 

response in the scaffold was distinct in tumor-bearing versus healthy mice, we performed 

CyTOF using a panel of immune markers. Visualization of the scaffold infiltrate by t-

distributed stochastic neighbor embedding (t-SNE) in control and tumor-bearing animals 

revealed an abundant stromal response in both, with the majority of the infiltrate 

comprised of various myeloid subsets, including macrophage subsets and myeloid-

derived suppressor cells (MDSCs) (Fig. 4.2C). Macrophage subsets were unbiasedly 

defined by expression of either the inflammatory marker, Ly-6C, the immune checkpoint, 

PD-L1, or the alternatively activated marker, CD206.   While there was no difference in 

total myeloid (CD45+ CD11b+), MDSC (CD11b+ Ly-6G+ Ly-6C+), or total macrophage 

(CD11b+ F4/80+) infiltration we observed an upward trend in specific macrophage 

populations (CD11b+ F4/80+ CD206+ ; CD11b+ F4/80+ PD-L1+) in scaffolds from tumor-

bearing animals, compared to controls, similar to the findings in the liver (Fig. 4.1A and 

4.1D, Fig. 4.2D). In addition, tumor-bearing scaffolds had more endothelial cells (CD45- 

PECAM1+) and fibroblasts (CD45- PDGFRa+) than control scaffolds (Fig. 4.2E). Finally, 

we analyzed the adaptive immune populations, and observed that tumor-bearing 

scaffolds had fewer total T cells (CD45+ CD3+), and fewer CD8+ T cells compared with 

control (Fig. 4.1D, Fig. 4.2E). Thus, cell composition data suggested that the 

microenvironment at a distal site was altered in tumor-bearing mice.   

 

Identification of a pancreatic cancer-specific gene signature 
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To understand the nature of the systemic changes in tumor bearing mice, we 

isolated RNA from scaffolds implanted in control and tumor-bearing mice and used a RT-

qPCR array (OpenArrayÒ, OA) to assess a panel of 632 mouse inflammatory genes and 

16 reference genes. Two computational approaches were used to assign numerical 

scores to the mice and distinguish healthy (black) from diseased (red) (Fig. 4.3A) (Morris 

et al., 2020a). Unsupervised hierarchical clustering analysis revealed that tumor-bearing 

scaffolds (red) clustered separately from control scaffolds (black) at the gene expression 

level (Fig. 4.4A and 4.4B). We further observed that while the inflammatory signature of 

control scaffolds appeared rather uniform, there was distinct heterogeneity amongst the 

tumor-bearing scaffolds (Fig. 4.4A). We then analyzed the data to define a unique 21 

gene signature indicative of disease (Fig. 4.3B). Tumor-bearing scaffolds had lower 

expression of interferon gamma (Ifng) and Killer Cell Lectin Like Receptor G1 (Klrg1), 

markers of T cell activation/effector T cells, and, conversely, upregulation of Coagulation 

Factor II Thrombin Receptor (F2r), a marker of exhausted T cells (Wherry et al., 2007) 

(Fig. 4.3B). In addition, tumor-bearing scaffolds had upregulation of chitinase3-like-3 

(Chi3l3/Chil3/Ym1), a gene elevated in tumor-associated macrophages (TAMs) 

(Georgoudaki et al., 2016) (Fig. 4.3B). Bulk RNA analysis provided an indication that the 

immune composition and functional status might be altered systemically in mice bearing 

pancreatic cancer.  

We next performed single cell RNA sequencing on cells isolated from the scaffolds 

extracted from control and tumor-bearing mice to understand gene expression changes 

at a cellular level. Using published lineage markers, we defined the captured cells (Elyada 

et al., 2019) (Fig. 4.4C). We performed downstream analysis on all captured stromal cells, 
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including cancer-associated fibroblast (CAF) subsets (myofibroblastic-CAFs (myCAF) 

and inflammatory-CAFs (iCAF)) (Ohlund et al., 2017), perivascular cells, natural killer 

(NK) cells, T cell subsets (CD4, CD8, double-negative (DN) T cells, and Regulatory T 

cells (Treg)), plasma cells, mast cells, dendritic cells (DCs) and myeloid cell subsets 

(granulocytes and macrophages) (Fig. 4.3C). Analysis of the scaffold gene profile further 

revealed cell type specific gene signatures (Fig. 4.3D). Given the changes in myeloid 

cells and macrophages in the liver and blood of tumor-bearing mice (Fig. 4.1A and 4.1B) 

we subsequently focused on the scaffold-associated macrophages (SAMs). We detected 

expression of Chil3 and Interleukin 6 Receptor (Il6ra) (Fig. 4.3D), which have both been 

identified as playing a role in polarization of alternatively activated macrophages (Liou et 

al., 2017; Mauer et al., 2014; Roszer, 2015). We further detected an increase in Chil3 in 

tumor-bearing livers compared to controls, providing further evidence that the scaffolds 

can in part mimic the natural metastatic site (Fig. 4.4D and 4.4E).  

 

Identification of two distinct macrophage subsets in scaffold infiltrate  

We next compared the gene expression profile of scaffold-associated 

macrophages in tumor-bearing versus control. The differentially expressed genes (DEGs) 

corroborated the scaffold signature with lower expression of Interferon Regulatory Factor 

7 (Irf7) and Signal Transducer and Activator of Transcription 1 (Stat1), as well as 

increased expression of Chil3 (Fig. 4.5A-C, and 4.3B). In addition, tumor-bearing SAMs 

displayed a high expression of Complement C1q A chain and B chain (C1qa and C1qb) 

and Triggering Receptor Expressed on Myeloid Cells 2 (Trem2), and a low expression of 

the antigen-presentation markers, Cd74 as well as the Major Histocompatibility 
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Complexes, (H2-D1, H2-Aa, and H2-Eb1) compared to control SAMs (Fig. 4.5A and 

4.5B). Thus, SAMs from tumor-bearing mice at a distal site have distinct gene expression 

compared to controls. While C1qa, C1qb and Trem2 are known drivers of alternatively 

activated macrophage polarization in a LPS-induced inflammation model (Benoit et al., 

2012; Turnbull et al., 2006), little is known about their involvement in pancreatic cancer.  

We next performed Uniform Manifold Approximation and Projection (UMAP) 

analysis on the scaffold-associated macrophages and identified two transcriptionally 

distinct macrophage populations in the control and tumor-bearing scaffold infiltrate (Fig. 

4.5D and Fig. 4.6A). Unbiased analysis of the top genes defining each cluster identified 

C1qa, C1qb, and Trem2 as markers of the scaffold-associated macrophages 1 (SAMs 1) 

population, whereas Chil3, Placenta Associated 8 (Plac8), and Ly6c2 emerged as 

markers of scaffold-associated macrophages 2 (SAMs 2) (Fig. 4.6B and 4.6C, Fig. 4.5E 

and 4.5F). SAMs 1 also had high expression of Cd74 and Major Histocompatibility 

complexes (H2-Eb1, H2-Aa) (Fig. 4.6D). Taken together, scaffold-associated 

macrophages separated into two main populations and have a different gene expression 

pattern in tumor-bearing mice compared to SAMs from healthy mice. 

 

Macrophages in mouse pancreatic cancer tumors overexpress TREM2 and 

complement genes. 

Having identified Chil3, Trem2 and the complement genes, C1qa and C1qb as 

markers of scaffold-associated macrophages in tumor-bearing mice, we next investigated 

whether these macrophage subsets also exist in primary tumors. To this end, we 

performed single cell RNA sequencing on two primary mouse orthotopic PDA tumors. We 
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identified populations of epithelial cells, acinar cells, fibroblasts, and six immune cell 

populations, including macrophages (Fig. 4.7A, Fig. 4.8A). Compared to the other 

immune cells, the macrophages in the primary tumor (i.e. TAMs) exclusively exhibited 

high expression of the SAMs signature genes (Chil3, Trem2, C1qa, and C1qb), while 

Plac8 and Ly6c2 were broadly expressed across cell types (Fig. 4.7B). Unbiased 

clustering identified 2 distinct populations of macrophages in the primary tumor (Fig. 

4.7C, Fig. 4.8B). Similar to the SAMs, the TAMs in the primary tumor separated into two 

populations; one with high expression of Chil3, Plac8, and Ly6c2 (Chil-TAMs), and the 

other with high expression of C1qa, C1qb, and Trem2 (Cq-TAMs) (Fig. 4.7D). Chil-TAMs  

had higher expression of the inflammatory macrophage markers, nitric oxide synthase 2 

(Nos2) and tumor necrosis factor (Tnf) (Murray and Wynn, 2011), while Cq-TAMs had 

higher expression of the alternatively activated macrophage markers, Mrc1 and Cd163 

(Roszer, 2015) (Fig. 4.8C).  

We next compared TAMs from orthotopic KPC tumors (Tumor) to a normal mouse 

pancreas (N Panc) sample (Fig. 4.7E). We identified a population of Chil-TAMs, and Cq-

TAMs, and an additional population of macrophages (TAM) (Fig. 4.7E and Fig. 4.8D). 

Similar to the findings in the scaffold, we identified an increase in the expression of Chil-

TAM and Cq-TAM markers in orthotopic tumors compared to the normal pancreas (Fig. 

4.7F). Further, we performed co-immunofluorescence and detected an elevation of Cq-

TAMs (C1q+ F4/80+) in a KPC tumor as well as a KPC liver metastasis sample, compared 

to the normal pancreas (Fig. 4.7G). 

Thus, these two distinct macrophage populations (Chil-TAMs and Cq-TAMs) are 

prevalent both at the primary tumor and systemically in response to pancreatic cancer in 
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mice. We next performed differential expression on macrophages from scaffolds 

compared to macrophages from orthotopic mouse tumors (Fig. 4.8E).  Among the top 

differentially expressed genes was higher expression of Arg1, Il1a, and Rgs1 in 

macrophages from scaffolds compared to the primary tumor, suggesting a possible role 

for these genes in systemic disease (Fig. 4.8F). We have shown that these macrophages 

are in part similar, but they also importantly retain distinct features. 

 

Cq-TAMs and Chil-TAMs are elevated in the iKras* p53* model of pancreatic cancer. 

We next sought to identify Chil-TAMs and Cq-TAMs in the iKras* and iKras* p53* 

genetically engineered mouse models that recapitulate the progression of human 

pancreatic cancer (Collins et al., 2012a; Collins et al., 2012b). We first subcutaneously 

implanted scaffolds into control and iKras* p53* mice and performed single cell RNA 

sequencing on the scaffold infiltrate (Fig. 4.9A and Fig. 4.10A). We observed an increase 

in C1qa, C1qb, and Chil3, but not Trem2, in the iKras* p53* scaffolds compared to control 

(Fig. 4.9B). Similar to the orthotopic scaffolds, we observed two distinct macrophage 

populations (Fig. 4.9C). SAMs 1 was defined by expression of C1qa, C1qb, and Trem2, 

while SAMs 2 was defined by expression of Chil3, Plac8, and Ly6c2 (Fig. 4.9C and 4.9D).  

We next used single cell RNA sequencing to assess Chil-TAMs and Cq-TAMs in 

iKras* and iKras* p53* pancreas samples compared to the normal pancreas (Fig. 4.10B 

and 4.10C). The macrophages unbiasedly clustered into three distinct macrophage 

populations (Fig. 4.9E). We again identified a population of Chil-TAMs and Cq-TAMs 

(Fig. 4.9E and 4.9F). We further, identified a third population of macrophages that are 

defined by high expression of Ccr2, and the antigen-presentation markers, Cd74 and H2-
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Eb1 (Fig. 4.10D). The iKras* sample represents an early lesion timepoint, while the iKras* 

p53* represents a late lesion timepoint, allowing us to evaluate Chil-TAMs and Cq-TAMs 

during progression of PDA. We observed increased expression in Chil-TAM and Cq-TAM 

makers, along with a loss of CCR2-TAM markers in the iKras* p53* pancreas compared 

to iKras* and control samples (Fig. 4.9G and Fig. 4.10E). These data suggest that later 

stages of disease have an elevation in Chil-TAMs and Cq-TAMs.  

 

Macrophages in human pancreatic cancer tumors overexpress TREM2 and 

complement genes. 

We next assessed the macrophage gene signature in human pancreatic cancer. 

Since there is no human ortholog for Chil3/Ym1 (Kzhyshkowska et al., 2007) or Ly6c2 

(Lee et al., 2013),  we focused on TREM2 and the complement components, C1QA and 

C1QB. To assess the expression of TREM2, C1QA, and C1QB we queried a single cell 

RNA sequencing dataset including human normal / adjacent normal pancreas (n=3) and 

human PDA tumors (n=16) (Steele et al., 2020) (Fig. 4.11A). Consistent with our 

observation in mice, we saw the highest expression of TREM2, C1QA, and C1QB in 

human macrophages, while PLAC8 was broadly expressed (Fig. 4.11B). Further, these 

macrophages separated into two transcriptionally distinct subsets, that were consistent 

across patients (Fig. 4.11C; Fig. 4.12A and 4.12B). One population was enriched for 

expression of C1QA, C1QB, and TREM2 (CQ-TAMs), while the other population had high 

expression of VCAN, FABP5, and RETN (TAMs) (Fig. 4.11D and Fig. 4.12A). Paralleling 

the mouse data, C1QA, C1QB, and TREM2 were upregulated in macrophages from 

human pancreatic cancer tumors compared to macrophages from non-malignant 
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pancreas (Fig. 4.11E). CQ-TAMs were enriched at the primary tumor, suggesting that 

C1QA, C1QB, and TREM2 identify a tumor-specific macrophage population in patient 

primary tumors.  

 

Macrophages in human liver metastases express high levels of TREM2 and 

complement genes. 

To further address the role of CQ-TAMs in the systemic immune response, we next 

assessed the expression of the macrophage signature genes in liver metastasis samples 

from PDA patients (n=5). These samples were obtained through ultrasound guided 

percutaneous biopsy of a liver lesion in 5 individual PDA patients and processed for single 

cell RNA sequencing. Single cell RNA sequencing followed by UMAP visualization 

revealed a profound stromal response, including a substantial population of macrophages 

within the metastatic liver lesions (Fig. 4.13A, Fig. 4.14A). Similar to our scaffold and 

primary tumor data, the macrophages in the liver metastases had high expression of 

C1QA, C1QB and TREM2 consistent with this macrophage population being part of a 

systemic response to a primary tumor (Fig. 4.13B). In addition, subsetting of the liver 

metastasis associated-macrophages confirmed the existence of two transcriptionally 

distinct macrophage populations (i.e. CQ-TAMs and TAMs), similar to the findings in the 

scaffolds in mice and primary tumors in mice and humans (Fig. 4.13C). The signature 

genes C1QA, C1QB, and TREM2 had highest expression in CQ-TAMs compared to 

TAMs (Fig. 4.13D, Fig. 4.14B). CQ-TAMs are present at both the primary tumor and 

systemic locations in humans. Similar to our analysis in mice, we next performed 

differential expression analysis on macrophages from human liver metastases compared 
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to macrophages from human primary tumors (Fig. 4.13E and 4.13F). IL1A was enriched 

in both scaffolds and liver metastases compared to the primary tumor (Fig. 4.13F and 

Fig. 4.8F). IL1A has been associated with increasing metastatic spread in vitro in PDA 

(Melisi et al., 2009). Taken together, these data highlight the importance of both the 

similarities and differences in CQ-TAMs systemically in PDA. 

 

Complement-high myeloid cells are elevated in the blood of pancreatic cancer 

patients 

The notion that systemic changes in the immune/myeloid gene expression 

signature might reflect the presence of a primary tumor is potentially important to add to 

diagnostic/prognostic toolbox. We next assessed the macrophage gene expression 

signature in human blood. We utilized a published dataset of single cell RNA sequencing 

on PBMCs from healthy donors (n=4) and PDA patients (n=16) (Steele et al., 2020) and 

queried it for the expression of our signature genes: C1QA, C1QB, and TREM2 (Fig. 

4.15A). We observed highest expression of C1QA, C1QB, and TREM2 in circulating 

monocytes in human PBMCs (Fig. 4.16A). We identified four populations of circulating 

monocytes based on expression of CD14 and CD16 (FCGR3A/B) as previously defined 

(Wong et al., 2011) (Fig. 4.16B, Fig. 4.15B). Similar to the scaffold, liver and primary 

tumor, C1QA, C1QB, and TREM2 marked only one subpopulation of monocytes (CQ-

Monocytes) in human PBMCs (Fig. 4.16C and Fig. 4.15B-D). To assess whether these 

genes are upregulated in the blood of PDA patients we further compared PBMCs between 

healthy donors and PDA patients and saw higher normalized expression of C1QA and 



 137 

C1QB, in patients, suggesting that the upregulation of these markers also applies to 

circulating monocytes (Fig. 4.16D and Fig. 4.15E).  

In summary, we have identified a complement-high population of macrophages, 

CQ-TAMs, that exists both at the primary tumor and systemically in mouse and human 

pancreatic cancer. CQ-TAMs are enriched at the primary tumor and in circulation in 

human PDA patients, presenting a novel population of monocytes/macrophages that 

could potentially serve as indicators of disease state.  

 

Discussion 

In this study, we utilized bioengineered scaffolds as a tool to discover a novel gene 

signature that is associated with tumor-bearing mice, including elevated expression of 

C1qa, C1qb, and Trem2. By single cell RNA sequencing we mapped this signature to a 

population of infiltrating macrophages and determined that a corresponding TAM 

population is present at the primary tumor in mice.  We then analyzed single cell RNA 

sequencing data from patient tumors (Steele et al., 2020) and novel single cell RNA 

sequencing data from liver metastases and identified macrophages expressing high 

levels of C1QA, C1QB, and TREM2 in both primary tumor and metastases. Finally, we 

determined that a C1QA, C1QB, and TREM2-high monocyte population is enriched in 

pancreatic cancer patients compared with healthy individuals, suggesting that the 

elevation of these cells may serve as novel predictors of disease in PDA patients. 

Biomaterial scaffolds model the pre-metastatic niche (Azarin et al., 2015; Bushnell 

et al., 2019; Rao et al., 2016) and allow for repeated sampling, and, thus, longitudinal 

analyses. Further, scaffolds model distal tissue and are distinct from blood, as recently 
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determined (Morris et al., 2020a; Oakes et al., 2020). Relevant to our study, myeloid cells 

entering scaffolds differentiate into macrophages, distinct from peripheral blood 

monocytes.  

PDA is characterized by a dense, fibroinflammatory stroma, that contains a large 

infiltration of immunosuppressive myeloid cells. Myeloid cells are a heterogenous 

population consisting of myeloid-derived suppressor cells and tumor-associated 

macrophages that contribute to tumor progression and metastasis (Qian and Pollard, 

2010). Although tumor-associated macrophages have been well-described as 

contributors to PDA tumor progression, no prior study has examined their role 

systemically in response to a primary tumor. Here, we have leveraged single cell RNA 

sequencing analysis to identify two distinct systemically induced macrophage populations 

that are specific to mouse and human pancreatic cancer. In mice one macrophage 

population upregulated Chil3 (Chil-TAMs) in response to disease, whereas the other 

population upregulated C1qa, C1qb, and Trem2 (Cq-TAMs) in mouse and PDA patients. 

The role for these genes is unknown in pancreatic cancer.  

C1QA and C1QB are components of the complement cascade. The complement 

cascade is a crucial mediator of innate immunity and can be recruited by components of 

the adaptive immune system to combat microbial infection, but recently its role in cancer 

and the tumor microenvironment has been explored (Afshar-Kharghan, 2017; Bonavita 

et al., 2015). Upregulation of C1QB has been reported in PBMCs of melanoma patients 

(Luo et al., 2011). While C1QA and C1QB have not been extensively studied, a recent 

report examined the role of the complement cascade in PDA. Zhang et al. reported that 

TAMs help tumor cells avoid complement mediated cell death, providing mechanistic 
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insight into TAM and complement component cross-talk in pancreatic cancer (Zhang et 

al., 2019b). Our data provides evidence for upregulation of the complement components 

C1QA and C1QB in PDA tumor-associated macrophages systemically. Further work is 

needed to determine if the upregulation of complement components is a side effect of the 

systemic inflammation caused by PDA or if it is functionally contributing to carcinogenesis 

(Bettac et al., 2017).   

To our knowledge, TREM2 has not been evaluated in pancreatic cancer, but has 

been shown to play an immunosuppressive role in other tumor types (Katzenelenbogen 

et al., 2020; Molgora et al., 2020). Its family member, Triggering Receptor Expressed on 

Myeloid Cells 1 (TREM1) however, has been implicated to reduce tumor burden in PDA 

(Shen and Sigalov, 2017). While understudied in PDA, TREM2 has been extensively 

evaluated in Alzheimer’s disease, a neurodegenerative disease, that, like cancer, is 

marked by a chronic inflammatory response (Kinney et al., 2018). TREM2 is a risk factor 

for Alzheimer’s disease and is believed to modulate the behavior of microglia to 

exacerbate the inflammatory response.  

A similar single cell sequencing approach to ours previously identified two distinct 

macrophage subsets in normal renal tissue across multiple species (Zimmerman et al., 

2019). The authors reported a population of inflammatory macrophages defined by high 

expression of Ly6c, Plac8, and Chil3 and a resident macrophage subset defined by high 

expression of Cd81, C1qa, C1qb, and C1qc. Given the similarity of their finding to ours, 

these macrophage populations are likely relevant in other model systems. The gene 

signature presented here identified markers that define macrophage/monocyte subsets 

in mouse and human pancreatic cancer. The identification of a tumor associated 
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signature in blood monocytes will potentially be exploited for diagnostic and prognostic 

applications in pancreatic cancer patients.  

 

Materials and Methods 

 

Study approvals 

All animal procedures and studies were performed at the University of Michigan (Protocol 

Number PRO00007983) in compliance with the Institutional Animal Care & Use 

Committee (IACUC) guidelines. For human research, this study included a dataset the 

included patients over the age of 18 who received diagnostic endoscopic ultrasound for 

a suspected pancreas mass who were consented under the Institutional Review Board 

(IRB) HUM00041280 (Two additional passes using a 22 Gauge SharkCoreÔ needle was 

performed for research once biopsy for clinical use was obtained). For surgically resected 

tissue, patients who underwent either Whipple of distal pancreatectomy were consented 

under IRB HUM00025339. For peripheral blood mononuclear cell collection, up to 40 ml 

of whole blood was collected pre- and intra-operatively for all consented patients. All 

patients provided written consent and procedures and studies performed were done in 

accordance with ethical standards. For liver metastasis samples, patients over the age of 

18 referred for percutaneous liver biopsy of a mass suspected to be metastatic PDA were 

consented according to HUM00025339. Up to 2 extra biopsies were taken for research.  

 

Scaffold fabrication 
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Implantable, biomaterial scaffolds were formed by mixing polycaprolactone microspheres 

with NaCl particles (250–425 μm) at a 1:30 (w/w) ratio as previously described (Rao et 

al., 2016). This mixture was then pressed into a 5 mm(diameter) by 2 mm (height) disc, 

heated at 60 °C for 5 minutes on each side, and submerged in water to remove salt 

particles, leaving a porous structure. The scaffolds were then sterilized in 70% ethanol 

and stored in -80 °C until surgical implantation.  

 

Animal experiments 

Mice 

C57/BL6J mice (Jackson Laboratory stock number #000664), KPC (Hingorani et al., 

2005), iKras* (Collins et al., 2012a), and iKras* p53* (Collins et al., 2012b) mice were 

used for mouse experiments. All mice were housed in the Rogel Cancer Center vivarium 

at the University of Michigan. Experimental mice were monitored daily.  

 

Doxycycline treatment 

iKras* and iKras* p53*mice were administered doxycycline chow (BioServ, F3949) to 

induce expression of KrasG12D for 72 hours, followed by two days of 8 intraperitoneal 

injections of caerulein (Sigma, 75 μg/kg) to induce pancreatitis, as previously described 

(Collins et al., 2012a). Control mice lacked the full set of alleles and were administered 

doxycycline chow and caerulein along with experimental animals. For early lesion 

samples, iKras* mice had doxycycline administered for 3 weeks. For tumor samples, 

iKras* p53* mice were administered doxycycline for 14 weeks. Scaffolds were 
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subcutaneously implanted into iKras* p53* mice that had been administered doxycycline 

for 15 weeks and harvested 3 weeks later.  

 

Scaffold implantation 

Mice were anesthetized using isoflurane and the surgical area was prepared using 

aseptic technique. Before implantation, scaffolds were warmed at room temperature (RT) 

for 30 seconds and then implanted subcutaneously in C57/BL6J or iKras* p53* mice. The 

incision site was closed using absorbable sutures (Ethicon #J303H). For all experiments, 

up to 4 scaffolds were implanted per mouse to allow enough cells for downstream 

analysis. For orthotopic tumor studies, 7940b (BL/6) cells derived from the LSL-

KrasG12D/+; LSL-Trp53R172H/+; Pdx1-Cre (KPC) model of pancreatic cancer (A gift from Dr. 

Gregory Beatty, University of Pennsylvania) were orthotopically transplanted into the 

pancreas one week after scaffold implantation.  

 

Orthotopic transplantation model 

Orthotopic transplantation into the pancreas was performed as previously described 

(Aiello et al., 2016). Briefly, 5 x 104 7940b KPC (BL/6) cells were prepared in a 1:1 ratio 

of growth-factor reduced Matrigel and media (Dulbecco's Modified Eagle Medium 

(DMEM) supplemented with 10% FBS). Mice were anesthetized using isoflurane and the 

surgical area was prepared using aseptic technique. A tumor cell suspension of 50 μl was 

injected directly into the pancreas using an insulin syringe. Control, non-tumor bearing 

mice in scaffold experiments received injection of 50 μl of 50% Matrigel in media.  
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Histopathological analysis 

Scaffolds were removed from -80 °C and stored on dry ice until embedding. For frozen 

sections, scaffolds were embedded in optimal cutting temperature (O.C.T) and allowed 

to solidify over dry ice, then stored at -80 °C until sectioning.  Frozen sections were cut at 

10 microns. For immunofluorescent staining on O.C.T embedded scaffolds, slides were 

brought to RT and then submerged in 4% paraformaldehyde (PFA) for 12 minutes at RT, 

then washed with three changes of PBS. Scaffolds were then blocked with 1% bovine 

serum albumin (BSA) in PBS for 1 hour at RT, followed by primary antibody incubation 

overnight at 4 °C and secondary antibody incubation for 45 minutes at RT. Cell nuclei 

were counterstained with Prolong Diamond Antifade Mountant with DAPI (Invitrogen). 

Tissues were fixed overnight in 10% buffered formalin, then transferred to 70% ethanol 

for paraffin embedding. Immunohistochemical staining was performed on tissue sections 

using the Ventana Discovery Ultra XT autostainer and counterstained with hematoxylin.  

Scaffolds and tissues were imaged on the Olympus BX53F microscope with the Olympus 

DP80 digital camera and CellSens Standard software using the 20x and 40x objectives. 

Quantitation of positive immunohistochemical stain was performed using Image J, Fiji 

V2.0.0-rc-69/1.52p on at least three 20x magnification fields per sample. For co-

immunofluorescence, Alexa Fluor™ 488 Tyramide SuperBoost™ Kit (Invitrogen) with 

SignalStain® EDTA Unmasking Solution (Cell Signaling) were used for C1q staining 

according to manufacturer’s protocols, then Alexa Fluor (Invitrogen) secondary antibodies 

were used for F4/80 and E-cad. Cell nuclei were counterstained with Prolong Diamond 

Antifade Mountant with DAPI (Invitrogen). Images were taken using Olympus BX53F 

microscope, Olympus DP80 digital camera, and CellSens Standard software. 
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Mass Cytometry (CyTOF) 

To obtain a single cell suspension, scaffolds were first enzymatically digested with 1mg/ml 

Collagenase P in DMEM for 10 minutes at 37 °C under constant agitation. Scaffolds were 

then mechanically digested and allowed further enzymatic digestion for an additional 10 

minutes. Cells are then filtered through 40 μM mesh. Preparation of the mouse tissue for 

CyTOF was performed as previously described (Zhang et al., 2020). Mouse livers were 

mechanically and enzymatically digested for 10 minutes at 37 °C under agitation and 

filtered through 40 μM mesh to obtain single cells. For mouse PBMCs, up to 1 mL of 

whole blood was obtained via cardiac puncture into EDTA-coated syringes and 

transferred to 1.5 mL tubes. Tubes were inverted 10 times and centrifuged at RT at 1700 

x g for 20 minutes. Serum was then removed and the PBMC layer was transferred to a 

new tube. PBMCs were washed, underwent ammonium-chloride-potassium (ACK) lysis 

for 10 minutes at RT, and were then centrifuged at 300 x g for 5 minutes. For both 

scaffolds, PBMCs and tissues, up to 1 x 107 cells from the single cell suspension were 

stained with the live/dead marker, Cell-ID Cisplatin (Fluidigm, #201064) for 5 minutes at 

room temperature. Maxpar cell surface staining protocol was followed (PN 400276 A4). 

Cells were stained with a panel of surface antibodies for 30 minutes at RT, then stored in 

Cell-ID Intercalator-IR (Fluidigm, 201192A) until being shipped and acquired on the 

CyTOF2 Mass Cytometer at the University of Rochester Medical Center. Downstream 

analysis on normalized FCS files was performed using the Premium CytoBank Software 

V7.3.0 (cytobank.org).  
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Inflammatory gene array and signature 

Scaffolds were removed from the subcutaneous space and flash frozen in liquid nitrogen, 

then stored at -80 °C. Scaffolds were submerged in TRI Reagent (#R2050-1-50) and 

mechanically homogenized. RNA was extracted using Direct-zol RNA miniprep (#R2051) 

with on column DNase I treatment. RNA quality was determined using both nanodrop 

results for concentration and purity, and RNA integrity number (RIN). Samples with a RIN 

greater than 7 underwent reverse transcription for cDNA synthesis. The University of 

Michigan Advanced Genomics Core measured gene expression using the Mouse 

Inflammation Taqman OpenArrayÒ (#4475373), a high-throughput qRT-PCR of 648 

inflammatory genes.  

 

Selection of genes for scaffold gene signature 

After OpenArrayÒ analysis, Cq values were analyzed in MATLAB to create a gene 

signature in a manner similarly to that used previously (Morris et al., 2020a; Oakes et al., 

2020). First, any genes that were not detected in more than two mice in either group were 

removed from further analysis, and 549 of the 648 genes on the OA chip were used for 

this study.  For some downstream analysis (that requires complete matrices such as 

SVD), samples missing data for a particular gene were filled with the median of the entire 

dataset. Three reference genes were selected: Hmbs, Ubc, and Ywhaz and ΔCq values 

were calculated for each gene from the average of the reference genes for that sample. 

Fold change (FC) and p-values were calculated for diseased vs control samples for each 

gene. To create the scaffold gene signature, genes with a FC > 1.5 and p<0.1 were 
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selected. This included: Ifng, Stat1, Ccr2, Irf7, Klrg7, Cx3cr1, Ccl4, Il12b, Cxcl10, Ccl11, 

Cxcl14, Csf3, Tnfsf11, Nfatc4, F2r, Nox4, Cxcr4, Il6ra, Il18bp, Chi3l3, and Ccrl1/Ackr4. 

 

Gene signature scores and analysis 

Unsupervised hierarchical clustering was performed using the clustergram tool in 

MATLAB to plot dendrograms. This process allows clustering analysis of genes that 

cluster together as well as samples and can indicate if diseased scaffolds appear different 

from healthy.  Next, computational approaches were applied to create two metrics 

determined from the scaffolds to indicate whether a mouse was diseased or healthy. We 

first created a score with an unsupervised technique, singular value decomposition (SVD) 

using the svds function in MATLAB. Then we trained a bootstrap aggregated decision 

tree ensemble (Bagged Tree) with 100 learning cycles using MATLAB’s fitcensemble 

function with the Bag method to classify samples as healthy or diseased. The bagged 

tree ensemble was fed the log2 transformed ΔCq values centered on the healthy controls 

as well as disease classification. This created our second score, a supervised machine 

learning metric that indicated the probability of disease.  

 

Single-cell RNA sequencing 

Scaffolds and human and mouse tissues were mechanically and enzymatically digested 

with collagenase P (1mg/mL) and filtered through a 40 μM mesh to obtain single cells. 

Dead cells were removed using MACSÒ Dead Cell Removal Kit (Miltenyi Biotec Inc.). 

The single cell cDNA libraries were prepared using the 10x Genomics platform at the 

University of Michigan, Advanced Genomics Core. All single cell RNA sequencing 
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samples were run using paired end 50 cycle reads on either the HiSeq 4000 or the 

NovaSeq 6000 (Illumina) to a depth of 100,000 reads. Raw data were aligned to either 

mm10 or hg19 for mouse and human, respectively. Data were then filtered using 

Cellranger count V3.0.0 with default settings at the University of Michigan, Advanced 

Genomics Core. Downstream analysis was performed using R Studio V3.5.1 and R 

package Seurat V3.0. Batch correction across samples was performed using the R 

package Harmony V1.0 (https://github.com/immunogenomics/harmony). Raw human 

data from the Steele et al. study (Steele et al., 2020) are available at the NIH dbGaP 

database under the accession phs002071.v1.p1 and processed data are available at NIH 

GEO database under the accession GSE155698. Raw and processed data from this 

study are available at the NCBI’s Gene Expression Omnibus database under the 

accession GSE158356. Raw and processed data for the iKras* (3 week ON) samples are 

available under the accession GSE140628 (Zhang et al., 2020). 

 

Statistics 

GraphPad Prism V7 software was used for graphical representation and statistical 

analysis. Two-tailed Student’s t-tests were performed. A p<0.05 was considered 

statistically significant. Data are presented as means ± standard error (SEM). Differential 

expression analysis in single cell RNA sequencing data was performed using Wilcoxon 

rank sum test, with adjusted p-values for multiple comparisons.  
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Figures 

 
Figure 4.1

 Figure 4.1 Immune characterization in liver, blood, and biomaterial scaffolds in tumor-bearing mice.  
(A) Manual gating of CyTOF results for total immune cells (CD45+), myeloid cells (CD45+ CD11b+), MDSCs (Ly-6C+ 
Ly-6G+), total macrophages (CD11b+ F4/80+), and macrophage subset (F4/80+ CD206+) in control liver (n=4) compared 
to tumor-bearing liver (n=5) from an orthotopic mouse model of pancreatic cancer. Results are plotted as percent of 
total live singlets, except for CD206+ macrophages, which are plotted as percent of total myeloid cells. Statistical 
significance was determined using two-tailed t tests. Data presented as means ± standard error (SEM) and p<0.05 
was considered statistically significant. (B) Manual gating of CyTOF results for statistically significant changes in 
immune cell populations in PBMCS from control (n=5) and tumor-bearing (n=5) orthotopic mice. Results are plotted as 
percent of total live singlets, except for MDSCs, which are plotted as percent of total myeloid cells. Statistical 
significance was determined using two-tailed t tests. Data presented as means ± standard error (SEM) and p<0.05 
was considered statistically significant. (C) Representation of scaffold size. (D) Manual gating of CyTOF results for total 
myeloid cells (CD45+ CD11b+), MDSCs (Ly-6G+ Ly-6C+), total macrophages (CD11b+ F4/80+), NK cells (CD45+ 
NK1.1+), total T cells (CD45+ CD3+), and CD4 T cells (CD3+ CD4+) in control scaffolds (n=10) compared to tumor-
bearing scaffolds (n=9-10). Results are plotted as percent of total live singlets. Statistical significance was determined 
using two-tailed t tests. Data presented as means ± standard error (SEM) and p<0.05 was considered statistically 
significant. 
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Figure 4.2

 

 

Figure 4.2 Biomaterial scaffolds harbor an immune-dense microenvironment in response to an orthotopic model of 
PDA.  
(A) Experimental scheme. Scaffolds were subcutaneously implanted as described in the methods. 7940b (BL/6) cells derived 
from the LSL-KrasG12D/+; LSL-Trp53R172H/+; Pdx1-Cre (KPC) were orthotopically implanted into the pancreas. Scaffolds were 
harvested 3 weeks post tumor cell inoculation. (B) Co-immunofluorescence of scaffolds from animals who underwent mock-
surgery (left) compared to tumor-bearing mice (right). Tumor cells are marked by CK19 (green), macrophages by F4/80 (red), 
fibroblasts by aSMA (pink), and nuclei by DAPI (blue). Scale bars, 50 μm. (C) Representative t-SNE plots for the scaffold 
infiltrate from control and tumor-bearing scaffolds. Identified populations include, MDSCs (blue), Ly-6C+ macrophages (orange), 
PD-L1+ macrophages (green), CD206+ macrophages (red), CD8+ T cells (purple), CD4+ T cells (brown), NK cells (pink), 
endothelial cells (grey), and fibroblasts (light green). (D) Manual gating of CyTOF results for macrophage subsets (F4/80+ 
CD206+; F4/80+ PD-L1+) in control scaffold (n=8) compared to tumor-bearing scaffold (n=7-8). Results are plotted as percent 
of total myeloid cells (%CD11b+). Statistical significance was determined using two-tailed t tests. Data presented as means ± 
standard error (SEM) and p<0.05 was considered statistically significant. (E) Manual gating of CyTOF results for endothelial 
cells (CD45- PECAM1+), fibroblasts (CD45- PDGFRa+) and CD8+ T cells (CD3+ CD8+) in control scaffold (n=10) compared to 
tumor-bearing scaffold (n=10). Results are plotted as percent of total live singlets. Statistical significance was determined using 
two-tailed t tests. Data presented as means ± standard error (SEM) and p<0.05 was considered statistically significant. 
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Figure 4.3

 
Figure 4.3 Identification of a pancreatic cancer-specific gene signature.  
(A) Plot of Bagged Tree /SVD prediction produced from inflammatory gene OpenArray. Plot highlights the divergence 
of tumor-bearing (TB) scaffolds (red) from healthy control (HC) scaffolds (black). n=6 for control and n=6 for tumor-
bearing scaffolds. Each dot represents a single mouse. Black line indicates 99.5% confidence intervals. Filled ovals 
denote the mean for control (black) and tumor-bearing (red) scaffolds for pooled control or tumor-bearing scaffolds. 
(B) Hierarchical clustering and heatmap of 21 inflammatory genes of interest in control (n=6) scaffolds compared to 
tumor-bearing scaffolds (n=6). (C) UMAP visualization of control scaffold (n=1) and tumor-bearing (n=1) scaffolds from 
an orthotopic mouse model of pancreatic cancer. (D) Dot plot shows average expression of scaffold signature in 
merged control and tumor-bearing scaffold infiltrate. Size of dot represents percent expressed. Color of dot represents 
average expression. 
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Figure 4.4

 

 

Figure 4.4 Heterogenous immune signature in tumor-bearing mice. 
 (A) Hierarchical clustering and heatmap analysis of all gene expression values from the OpenArray analysis. Black 
boxes indicate control scaffolds (n=6) and red boxes indicate tumor-bearing scaffolds (n=6). (B) Volcano plot analysis 
from all OpenArray gene expression data. Black lines indicate fold change of ± 2. Red line indicates p=0.05 determined 
by two-tailed t tests. (C) Dot plot of select lineage markers used to define captured cell populations. Color of the dot 
represents average expression. Size of the dot represents percent expressed. (D) Representative immunohistochemical 
analysis of Chil3/Chi3l3/Ym1 in control liver and tumor-bearing liver from mice with orthotopically transplanted PDA 
tumors. Scale bars, 100 μm. (E) Quantitation of %Chil3 positive cells in a 20x field in control (n= 3) and tumor-bearing 
livers (n=3). 



 154 

Figure 4.5

 
Figure 4.5 Identification of two distinct macrophage subsets in scaffold infiltrate. 
 (A) Average expression heatmap for select differentially expressed genes (DEGs) between macrophages from control 
and tumor-bearing scaffolds. Low expression in blue and high expression in red. All genes plotted are statistically 
significant, determined using non-parametric Wilcoxon rank sum test with a p-value cut off of p<0.05. (B) Violin plot of 
normalized gene expression of select upregulated and (C) downregulated genes in macrophages from control (black) and 
tumor-bearing (blue) scaffolds. Statistically significant genes were determined using non-parametric Wilcoxon rank sum 
test with a p-value cut off of p<0.05. (D) UMAP visualization of SAMs 1 (navy) and SAMs 2 (pink) subsets in control and 
tumor-bearing scaffolds. (E) Violin plots of normalized expression of C1qa, C1qb, and Trem2 in SAMs 1 and (F) Chil3, 
Plac8, and Ly6c2 in SAMs 2. 
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Figure 4.6

 
Figure 4.6 Single cell RNA sequencing analysis on scaffold associated macrophages.  
(A) UMAP visualization of SAMs 1 (navy) and SAMs 2 (pink) macrophage subsets in merged control and tumor-bearing 
scaffolds. (B) Heatmap visualization at single cell resolution of the top 20 genes that unbiasedly define each scaffold 
macrophage subset. Low expression is in purple, while high expression is in yellow. (C) Violin plots of normalized expression 
for select macrophage markers in scaffold-associated macrophage subsets. (D) Heatmap visualization of average expression 
of macrophage differentially expressed genes between control and tumor-bearing scaffolds in SAMs 1 and SAMs 2 subsets. 
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Figure 4.7
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Figure 4.7 Macrophages in mouse pancreatic cancer tumors overexpress TREM2 and complement genes.  
(A) UMAP visualization of mouse orthotopic pancreatic cancer tumors (n=2). (B) Dot Plot of scaffold-associated 
macrophage signature, Chil3, Plac8, Ly6c2, C1qa, C1qb, and Trem2 in identified cell populations in the orthotopic KPC 
tumors. Color represents average expression, while size of dot represents percent expressed. (C) UMAP visualization 
of Chil-TAMs (pink) and Cq-TAMs (navy) subsets in mouse orthotopic pancreatic cancer tumors. (D) Violin plots of 
C1qa, C1qb, Trem2, Chil3, Plac8, and Ly6c2 across Chil-TAMs and Cq-TAMs. (E) UMAP visualization of Chil-TAM 
(pink), Cq-TAM (navy), and TAM (green) macrophage subsets in normal pancreas (n=1) and orthotopic tumors (n=2). 
(F) Violin plot of normalized gene expression of Chil3, Plac8, Ly6c2, C1qa, C1qb, and Trem2 in macrophages from 
normal pancreas (grey) and orthotopic tumors (navy). Statistically significant genes were determined using non-
parametric Wilcoxon rank sum test with a p-value cut off of p<0.05. (G) Co-immunofluorescence of normal mouse 
pancreas (N Panc), KPC tumor, and KPC liver metastasis samples of C1q (green), F4/80 (red), E-Cadherin (pink) and 
DAPI (blue). Red arrow denotes C1q- F4/80+ macrophage in the normal pancreas. Yellow arrows denote C1q+ F4/80+ 
macrophages in KPC tumor and KPC liver metastasis. Inlets show higher magnification of select macrophages in boxed 
region. Scale bars, 50 μm. 
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Figure 4.8

 

 

Figure 4.8 Single cell RNA sequencing analysis on mouse PDA macrophages.  
(A) Dot plot of select lineage markers used to define captured cell populations in mouse orthotopic KPC tumors (n=2). 
Color of the dot represents average expression. Size of the dot represents percent expressed. (B) Heatmap 
visualization at single cell resolution of the top 10 genes that define Chil-TAMs and Cq-TAMs. Low expression is in 
purple, while high expression is in yellow. (C) Dot plot of Nos2, Tnf, Chil3, Ly6c2, Plac8, C1qa, C1qb, Trem2, Mrc1, 
and Cd163 in Cq-TAMs and Chil-TAMs from orthotopic KPC tumors. Color of the dot represents average expression. 
Size of the dot represents percent expressed.  (D) Violin plots for Ccr2, Cd74, H2-Eb1, Chil3, Plac8, Ly6c2, C1qa, 
C1qb, and Trem2 in Chil-TAM (pink), Cq-TAM (navy), and TAM (green) subsets. (E) Average expression heatmap 
for select differentially expressed genes between macrophages from orthotopic scaffolds and mouse orthotopic 
primary tumors. Low expression in blue and high expression in red. All genes plotted are statistically significant, 
determined using non-parametric Wilcoxon rank sum test with a p-value cut off of p<0.05. (F) Violin plots of normalized 
expression for Arg1, Il1a, Rgs1, Cxcl3, Mif, and Ifitm1 in macrophages from orthotopic scaffolds and mouse orthotopic 
primary tumors. 
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Figure 4.9
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Figure 4.9 Cq-TAMs and Chil-TAMs are elevated in the iKras* p53* model of pancreatic cancer.  
(A) UMAP visualization of scaffolds from control (n=1) and iKras* p53* mice (n=1). (B) Average expression heatmap 
of Trem2, C1qb, Chil3, and C1qa in control and iKras* p53* scaffolds. High expression is in red, while low expression 
is in blue. (C) UMAP visualization of SAMs 1 (navy) and SAMs 2 (pink) macrophage subsets in control and iKras* 
p53* scaffolds. (D) Violin plots of C1qa, C1qb, Trem2, Chil3, Plac8, and Ly6c2 across SAMs 1 and SAMs 2. (E) 
UMAP visualization of CCR2-TAM (green), Chil-TAM (pink), and Cq-TAM (navy) macrophage subsets in control, 
iKras* and iKras* p53* pancreas samples. (F) Violin plots of Chil3, Plac8, Ly6c2 C1qa, C1qb, and Trem2 across 
CCR2-TAM, Chil-TAM, and Cq-TAM macrophage subsets. (G) Dot plot of C1qa, C1qb, Trem2, Chil3, Plac8, Ly6c2, 
Ccr2, Cd74, and H2-Eb1 in control, iKras* and iKras* p53* macrophages. Color represents average expression. Size 
of the dot represents percent expressed. 
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Figure 4.10

 
Figure 4.10 Immune infiltration in iKras* and iKras* p53* mice. 
 (A) Dot plot for lineage markers used to define identified cell populations in scaffolds from iKras* p53* mice. Color of the dot 
represents average expression. Size of the dot represents percent expressed.  (B) UMAP visualization of from control/normal 
pancreas (n=2), iKras* (n=1), and iKras* p53* pancreas samples (n=2). (C) Dot plot for lineage markers used to define identified 
cell populations in control/normal pancreas, iKras*, and iKras* p53* pancreas samples. Color of the dot represents average 
expression. Size of the dot represents percent expressed.  (D) Violin plots for Ccr2, Cd74, H2-Eb1 in CCR2-TAM, Chil-TAM, and 
Cq-TAM subsets in mouse pancreas samples. (E) Violin plots for C1qa, C1qb, Trem2, Chil3, Plac8, Ly6c2, Ccr2, Cd74, and H2-
Eb1 in control/normal pancreas, iKras*, and iKras* p53* pancreas samples. 
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Figure 4.11

 

 Figure 4.11 Macrophages in human pancreatic cancer tumors overexpress TREM2 and complement genes. 
 (A) UMAP visualization of Adj/Norm (n=3) and PDA tumors (n=16). (B) Dot plot of TREM2, C1QB, C1QA, and PLAC8 
in human PDA tumor cell populations. Color of the dot represents average expression, while the size of the dot 
represents average expression. (C) UMAP visualization of human TAMs (pink) and CQ-TAMs (navy) from adjacent 
normal pancreas (n=3) and human PDA tumors (n=16). (D) Violin plots of C1QA, C1QB, and TREM2 in human TAMs 
and CQ-TAMs. (E) Violin plots of C1QA, C1QB, and TREM2 in human macrophages from human PDA tumors 
compared to adjacent normal pancreas. Statistics were determined using non-parametric Wilcoxon rank sum test with 
a p-value of p<0.0001. 
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Figure 4.12

 

 
Figure 4.12 TAM populations are heterogenous in human PDA tumors.  
(A) Heatmap visualization at single cell resolution of the top 20 genes that define human CQ-TAMs and TAMs. Low expression 
is in purple and high expression is in yellow. (B) UMAP visualization of human TAMs (pink) and CQ-TAMs (navy) from in 
individual human PDA tumors (n=16). The four-digit number represents the de-identified patient ID. 
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Figure 4.13

 
Figure 4.13 Macrophages in human liver metastases express high levels of TREM2 and complement genes and 
are distinct from primary tumor macrophages. 
(A) UMAP visualization of human liver metastasis samples (n=5) from PDA patients. (B) Violin plots of normalized 
expression of C1QA, C1QB, and TREM2 in identified cell populations in the liver metastasis lesions from human PDA 
patients (n=5). (C) UMAP visualization of CQ-TAMs (navy) and TAMs (pink) identified in human liver metastasis samples. 
(D) Violin plots of normalized expression for C1QA, C1QB, and TREM2 in CQ-TAMs and TAMs from liver metastasis 
samples. (E) Average expression heatmap for select differentially expressed genes between macrophages from human 
liver metastases and human primary tumors. Low expression in blue and high expression in red. All genes plotted are 
statistically significant, determined using non-parametric Wilcoxon rank sum test with a p-value cut off of p<0.05. (F) 
Violin plots of normalized expression for IL1A, IL1B, PLAC8, RGS1, MRC1, and TREM2 in macrophages from human 
liver metastasis and primary tumor samples. 
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Figure 4.14

 Figure 4.14 Single cell RNA sequencing of human liver metastases.  
(A) Dot plot of lineage markers used to define populations in human liver metastases from PDA patients (n=5). Color of the 
dot represents average expression, while the size of the dot represents average expression. (B) Feature plots of C1QA, 
C1QB, and TREM2 in human liver metastases. Blue is high expression, while grey is low expression. 



 166 

Figure 4.15

 
Figure 4.15 Complement genes mark one population of circulating monocytes in PDA patients.  
(A) UMAP visualization of PDA PBMCs (n=16) and healthy PBMCs (n=4). (B) Dot plot analysis for lineage markers used to 
define human monocyte subsets in the blood. Color of the dot represents average expression, while the size of the dot 
represents average expression. (C) Heatmap visualization at single cell resolution of the top 10 genes that define human 
monocyte subsets. Low expression is in purple, while high expression is in yellow. (D) Feature plot of C1QA, C1QB, and TREM2 
in human monocyte subsets in the blood of healthy donors and PDA patients. Blue is high expression and grey is low 
expression. (E) Violin plots of C1QA, C1QB, and TREM2 in human circulating monocytes from PDA patients compared to 
healthy donors. Statistics were determined using non-parametric Wilcoxon rank sum test. 
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Figure 4.16

 
Figure 4.16 Complement-high myeloid cells are elevated in the blood of pancreatic cancer patients.  
(A) Dot plot of C1QA, C1QB, and TREM2 in identified populations in human PBMCs. Color of the dot represents 
average expression, while the size of the dot represents average expression. (B) UMAP visualization of CQ-
monocytes (navy), Monocyte 1 (pink), Monocyte 2 (green), and Monocyte 3 (purple) in human PBMCs in PDA (n=16) 
and healthy (n=4). (C) Feature plot of C1QA, C1QB, and TREM2 in human monocyte subsets in the blood. Blue is 
high expression and grey is low expression. (D) Dot plot of C1QA, C1QB, and TREM2 in PBMCs from healthy donors 
and PDA patients. High expression is in blue, low expression is in grey. Size of the dot represents percent expressed. 
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Chapter 5 Discussion and Future Directions 
 

The most common type of pancreatic cancer, pancreatic ductal adenocarcinoma 

(PDA) is a lethal malignancy that warrants a deeper biological understanding. PDA has 

an infiltration of myeloid cells and sparse infiltration of T cells. This inverse correlation 

between myeloid cells and T cells contributes to the robust immune suppression that 

characterizes the disease. Immune therapy has not been beneficial in PDA so far, and 

thus further evaluation for mechanisms mediating immune suppression is critical. In this 

dissertation I have discussed our work evaluating both T cell and myeloid cell mediated 

immune suppression mechanisms in mouse and human PDA. In this section I summarize 

the major findings in each chapter and present future directions and questions for each 

project.  

     

Multi-modal Mapping of the Tumor and Peripheral Blood Immune Landscape in 

Human Pancreatic Cancer 

In Chapter 2 of this thesis I discuss our comprehensive mapping of the immune 

landscape in PDA. The transcriptional analysis at a single cell resolution allowed us to 

evaluate immune cell and immune checkpoint heterogeneity. Immune checkpoint 

blockade has not been beneficial in PDA thus far. The work presented in Chapter 2 

identified TIGIT as an understudied immune checkpoint that should be considered in PDA 

treatment. In our data, TIGIT+ CD8+ T cells were elevated in PDA compared to normal 

pancreas samples, and further, there was a positive correlation of TIGIT+ CD8+ T cells in 



 169 

matched blood and tumors from patients. The multi-modal approach used here allowed 

us to perform a large characterization study of the human immune response in PDA. 

Further, these data and the dataset as a whole resulted in multiple hypotheses and many 

open questions.  

To fully elucidate the role of TIGIT in PDA immune suppression more mechanistic 

studies are needed. A limitation to human research is the amount of research specimen 

that is available and also consideration of the variable nature of available samples. With 

that limitation in place, the published data in Chapter 2, was largely descriptive in nature. 

Future directions to study TIGIT mechanistically would provide evidence for targeting 

TIGIT in PDA patients.   

One open question is how TIGIT promotes immune suppression mechanistically. 

To further study TIGIT in PDA immune suppression, TIGIT+ CD8+  and TIGIT- CD8+ T cells 

can be isolated from patient tumors and blood using fluorescence-activated cell sorting 

(FACS). The sorted T cells could then be plated in culture with matched patient-derived 

organoids and T cell activation can be determined through enzyme-linked immunospot 

(ELISpot) assay for IFN-g levels. Given the immunosuppressive ability of TIGIT+ CD8+ T 

cells, compared to TIGIT- CD8+ T cells, it is expected there will be lower levels of IFN-

g compared to TIGIT- CD8+ T cells when cultured with organoids. To provide further 

evidence of the immunosuppressive abilities of TIGIT, a blocking antibody could be added 

to the co-cultures, followed by ELISpot for IFN-g levels. Blockade of TIGIT on exhausted 

CD8+ T cells is expected to revert the T cells to their effector function, resulting in an 

increase in IFN-g levels. 
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The data in Chapter 2 are solely from human samples, and while this is biologically 

relevant and highly translational, human data has its limitations. For this reason, moving 

into a mouse model willl provide an avenue to further mechanistically evaluate the role of 

TIGIT on PDA immune suppression. We first performed syngeneic orthotopic 

transplantation of mouse PDA cells into C57/BL6J mice and treated the mice with either 

IgG control (BioXCell #BE0083) or anti-TIGIT (BioXCell #BE0274). After 3 weeks we 

weighed the tumors and detected no difference in final tumor weight (Fig. 5.1A). Given 

its immunosuppressive role this was not our expected hypothesis, however this finding 

could be because TIGIT is not only expressed in CD8+ T cells, but also NK cells and 

Tregs, so it is possible there is compartment specific functions (Kurtulus et al., 2015). 

Further understanding the role of TIGIT in Tregs is an important question that still remains. 

Parallelling the human data, immune checkpoint expression on CD8+ T cells in mouse 

tumors is also heterogenous (Fig. 5.1B). The heterogeneity of TIGIT expression in mouse 

PDA could be another factor for why blocking TIGIT did not result in decreased tumor 

burden.  

In summary, Chapter 2 presents a multimodal approach to understanding the 

immune landscape in PDA. With this pipeline we highlighted the heterogeneity of PDA 

patients and identified TIGIT as a potential therapeutic target. Future experiments are 

needed to elucidate the immunosuppressive mechanism and compartment specific role 

of TIGIT in the PDA TME. Mouse modeling and in vitro techniques could provide 

additional evidence on TIGIT as a therapeutic target. Importantly, we showed that TIGIT+ 

CD8+ T cells are highly expressed in metastatic and locally advanced patients, compared 
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to patients with resectable disease, suggesting TIGIT could be useful in treating patients 

with advanced stage of disease.  

 

Apolipoprotein E promotes immune suppression through NF-kB mediated CXCL1 

production in pancreatic cancer 

In Chapter 3 of this thesis I discuss ApoE as a novel mediator of immune 

suppression in PDA. Prior to this work, ApoE had yet to be evaluated in PDA, and we 

provided the first functional study on ApoE in the PDA TME. Loss of ApoE from the TME 

resulted in reduced fibrosis, fewer M-MDSCs, and an increase in CD8+ T cells. Previous 

studies in the field have identified the CXCL1-CXCR2 axis is essential for the recruitment 

of MDSCs and subsequent blockade of tumoral T cell infiltration in PDA (Li et al., 2018a; 

Steele et al., 2016). This work in Chapter 3 builds upon that mechanism, identifying ApoE 

as critical for the secretion of CXCL1 via LDLR and NF-kB signaling. In this chapter I 

discuss the mechanism behind ApoE in PDA immune suppression, however this work 

opens up many questions that are of interest for further studies. 

First, the mouse data presented in Chapter 3 were performed using a full body 

knock-out of ApoE. We have shown that ApoE is expressed predominately by 

macrophages and iCAFs in the TME. Our approach is limited by being able to determine 

which cellular source is driving the T cell phenotype. Future studies could use a 

conditional knock-out ApoE allele (Jax #028530) to evaluate the role of ApoE from 

myeloid cells and fibroblasts separately. To evaluate the role of ApoE in myeloid cells and 

fibroblasts separately, Apoe-floxed mice can be crossed with a myeloid specific Cre 

(LysMcre, Jax #004781) or a fibroblast specific Cre (PDGFRa-Cre, Jax #013148). Using 
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this conditional knock-out approach will allow the evaluation of the cellular source of ApoE 

that drives the immunosuppressive phenotype discussed in Chapter 3.  

Chapter 3 discusses changes to macrophage polarization with loss of ApoE, 

however we did not evalaute changes in fibroblasts deficient in ApoE. Due to the 

heterogeneity of fibroblasts, it is more technically challenging to assess the loss of ApoE 

in fibroblasts as ApoE is only present in iCAFs. In vitro, myCAFs grow in 2-D, while iCAFs 

form in 3-D, and this is believed to be a plastic process. Fibroblasts can be sorted from 

WT and APOE-/- mice and plated in 3-D matrigel domes. Once cultures are established, 

bulk sequencing can be performed to evaluate changes to fibroblasts without ApoE. In 

Chapter 3 I showed when ApoE is added to fibroblasts, fibroblasts secrete higher levels 

of IL-6, suggesting ApoE is making the fibroblasts more immunosuppressive. It would be 

expected that fibroblasts deficient in ApoE would have less immunosuppressive markers 

such as IL-6 and leukemia inhibitory factor (LIF) (Biffi et al., 2019).  

In addition to ApoE being expressed by fibroblasts, ELISA analysis on iCAF 

conditioned-media would confirm that like macrophages, ApoE is secreted by fibroblasts. 

The mechanistic work detailed in Chapter 3 looked at ApoE signaling to tumor cells 

specificallly through LDLR and NF-kB. We did not evaluate the signaling pathway that 

ApoE activates to induce Cxcl1 expression in fibroblasts. While LDLR is also expressed 

in fibroblasts, the most predominately expressed ApoE receptor in fibroblasts is LRP1. It 

is possible that ApoE binds to either LDLR or LRP1 on fibroblasts to increase Cxcl1 

production. ApoE is present in fibroblasts and given that one of the findings in Chapter 3 

was a loss of fibrosis in ApoE deficient animals it is important to consider the  

functional implications on fibroblasts due to loss of ApoE.  
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 Given that ApoE seems to promote immune suppression, we hypothesized that 

loss of ApoE would sensitize tumors to immunotherapy approaches. However when 

ApoE-/-  mice were treated with aPD-1 we saw no difference in tumor size (Fig. 5.2A). 

Data from Chapter 2 revealed the heterogeneity of immune checkpoints in humans, so 

we hypothesized that single agent immunotherapy was potentially not sufficient. 

Combination immunotherapy approaches treating with a-CD40, a-CTLA-4, and a-PD-1 

(FCP) have shown success in mouse models of PDA (Li et al., 2018a; Winograd et al., 

2015). We thus treated ApoE-/- mice with the combination immunotherapy (FCP) 

treatment (Fig. 5.2B). FCP treatment, while effective at reducing tumor burden, we were 

unable to compare WT and APOE-/- conditions as FCP eliminated almost the entirety of 

the tumor in both conditions (Fig. 5.2B). PDA tumors that have a low T cell infiltration do 

not respond to FCP treatment (Li et al., 2018a). Future studies could orthotopically 

transplant a T cell low cell line into ApoE-/- mice and determine if loss of ApoE sensitizes 

the tumors to combination immune therapy (FCP).  

Further, given the immunosuppressive role of MDSCs, we treated WT and ApoE-

/- mice with a-Ly-6G, to deplete the PMN-MDSCs, in combination with a-PD-1 (Fig. 5.3C). 

Neither a-Ly-6G, or combination a-Ly-6G and a-PD-1 resulted in smaller tumors (Fig. 

5.3C). As discussed in Chapter 1, MDSCs have two main subsets, M-MDSC and PMN-

MDSCs. It has been established M-MDSCs have increased immunosuppressive 

functions compared to PMN-MDSCs. Given that ApoE-/- mice have fewer M-MDSCs, and 

unchanged PMN-MDSCs infiltration it can be hypothesized that ApoE specifically affects 

M-MDSCs in the TME. Blockade of Ly-6G specifically targeted the PMN-MDSCs, which 

was not sufficient to reduce tumor size. Future studies could instead use a small molecule 
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inhibitor (AstraZeneca, AZD5069) that antagonizes CXCR2 on all MDSC subsets, 

allowing for inhibtion of M-MDSCs and PMN-MDSCs (Steele et al., 2016). 

Another remaining question is if ApoE binding to LDLR activates NF-kB. Data from 

Chapter 3 show that partial knock-down of LDLR reduces Cxcl1 secretion and that 

inhibition of NF-kB signaling through an IKK inhibitor also reduces Cxcl1 levels in tumor 

cells. However, we did not directly link LDLR and NF-kB signaling together. Existing 

literature has also not linked LDLR and NF-kB signaling. We used siRNA to knock-down 

LDLR in tumor cells and then treated the cells with recombinant ApoE (Fig. 5.3A). We 

stained the tumor cells for the NF-kB mediator, p65 and measured nuclear translocation 

as a read-out for active NF-kB signaling. Tumor cells treated with ApoE have increased 

nuclear p65, providing evidence that ApoE promotes NF-kB signaling (Fig. 5.3A and 

5.3B). When we treated tumor cells with partial loss of LDLR we saw a decrease in 

nuclear p65, suggesting that ApoE binding to LDLR activates NF-kB signaling in tumor 

cells (Fig. 5.3A and 5.3B). 

 

Pancreatic cancer is marked by complement-high tumor associated macrophages 

in primary and metastatic tumors and blood monocytes 

In Chapter 4 of this thesis I discuss the identification of a myeloid gene signature 

(C1QA, C1QB, and TREM2) that marks a distinct population of monocytes in the blood 

and macrophages in the tissue. The immune response at the primary tumor has been 

well studied, however the changes to the immune system systemically in PDA have been 

understudied. As the majority of patients either present with metastatic disease or 

ultimately relapse with metastasis post surgery, it is critical we understand the systemic 
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immune changes in PDA. While metastasis has dire outcomes, it is a stochastic and 

ultimately inefficient process, which make studying metastatic dissemination difficult. 

Some approaches to studying metastatic disease use techniques including injection of 

tumor cells into the tail vein or portal vein to ensure metastatic dissemination to the liver. 

This method though misses the critical steps of the metastatic cascade where tumor cells 

must first break apart from the primary tumor and intravasate into the blood stream. 

Methods to study metastasis that by pass these intial steps do not fully recapitulate the 

biological process.  

In Chapter 4 we utilized implantable biomaterial scaffolds, a novel device that 

recapitulates the metastatic site, to evaluate the immune changes when the metastatic 

cascade is intact. With this approach we identifed an immune signature that is unique to 

tumor-bearing animals compared to controls. Using single cell RNA sequencing on the 

scaffold infiltrate we focused specifically on the macrophages within the infiltrate, which 

we called scaffold-associated macrophages (SAMs). Further analysis revealed two 

distinct SAM populations, one defined by Chil3, Ly6c2, and Plac8 (Chil-TAM), and the 

other defined by C1qa, C1qb, and Trem2 (Cq-TAM). Using mouse models we determined 

these macrophages populations, Chil-TAMs and Cq-TAMs are also present in early and 

late stages of PDA, and they upregulate Chil3, C1qa, C1qb, and Trem2 expression with 

disease progression. We further showed, these distinct macrophage populations in 

human primary tumors and human liver metastases, providing translational relevance for 

these populations in human disease. Further, in the peripheral blood C1QA, C1QB, and 

TREM2 marked one population of circulating monocytes. C1QA, C1QB, and TREM2 
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expression was upregulated in the blood of patients, suggesting these markers could be 

used for potential diagnostic and prognostic applications.  

The data in Chapter 4 described a unique macrophage signature. One remaining 

question is the functional implication of C1QA, C1QB, and TREM2 in PDA. TREM2 has 

been associated with promoting immune suppression in other cancers, but not PDA 

(Katzenelenbogen et al., 2020; Molgora et al., 2020). We isolated bone marrow-derived 

macrophages and polarized to either M0 with M-CSF or TAM with tumor cell conditioned-

media and measured expression of C1qa, C1qb, and Trem2 (Fig. 5.4A). With our limited 

samples, we detected an upward trend in C1qa  and C1qb, and a significant increase in 

Trem2 in TAMs compared to M0 macrophages (Fig. 5.4A). These data provide further 

evidence that the macrophage signature we identified in Chapter 4 is elevated in 

response to PDA.  

We identifed the elevation of the signature genes, C1QA, C1QB, and TREM2 in 

our human PDA samples, and hypothesized it could be used for diagnostics and 

prognostic applications. We isolated serum samples from healthy volunteers, chronic 

pancreatitis patients, and PDA patients and measured the levels of C1Q. We did not 

detect a difference in C1Q serum levels in patients compared to healthy volunteers or 

chronic pancreatitis patients or a difference based on disease stage (Fig. 5.5A and Fig. 

5.5B). However we did identify that PDA patients who had non-progressive disease had 

higher serum levels of C1Q compared to patients with complete response or progressive 

disease (Fig. 5.5C). Survival analysis did not reveal any significant difference when 

patients were stratified by C1Q levels, however patients with high levels of C1Q had a 

trend for better overall survival (Fig. 5.5D). Patients with high serum C1Q also had fewer 
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CD4+ T cells and CD16+ monocytes in their blood (Fig. 5.5E). These data suggest high 

serum C1Q levels could correlate with more favorable outcomes, however more 

experiments are needed. Future studies could utilize C1qa knock-out mice (JAX 

#031675) with syngeneic transplantation of PDA tumor cells to evaluate C1qa on tumor 

growth and immune infiltration. C1qa can further be crossed into spontaneous mouse 

models of PDA to evaluate its role on disease progression and metastatic dissemination. 

The data in Chapter 4 suggest further evaluation of the complement system in PDA.  

 

Summary 

PDA is an almost universally lethal disease, and it is critical for us to understand 

the biology behind immune suppression in PDA. The data presented in this thesis provide 

further evidence of the complex cellular crosstalk in PDA that promotes immune 

suppression. The use of multimodal approaches using both mouse and human systems 

provided a unique opportunity to generate hypotheses and then evaluate them. This work 

has identified novel proteins of interest in mediating immune suppression, such as TIGIT, 

APOE, C1QA/B, and TREM2. Chapter 3 describes the mechanisms behind APOE in 

mediating immune suppression, but the other genes identified throughout this thesis need 

to be mechanistically evaluated for their functional relevance in PDA. Taken together, this 

thesis identifies novel mediators of immune suppression in both mouse and human PDA.  
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Figures 

Figure 5.1 

 

Figure 5.1 Depletion of TIGIT did not alter tumor growth in an orthotopic mouse model of PDA.  
(A) 10,000 7940b KPC cells were implanted into the pancreas of C57/BL6J mice and treated with 200ug of either IgG 
(n=6) or a-TIGIT (7) every 3 days. Final tumor weight was plotted in mg between the two conditions. There was no 
statistically significant difference in tumor weight determined by Student’s t test. (B) Average expression heatmap of 
immune checkpoints in CD8+ T cells from iKras* p53* tumors (n=2, ON1, ON2), KPC tumor (n=1), and control pancreas 
(n=1). High expression is in red. Low expression is in blue. 
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Figure 5.2 

 

Figure 5.2 Immunotherapy approaches in APOE deficient mice. 
(A) Final orthotopic tumor weight (mg) from C57/BL6J and APOE-/- mice treated with IgG or a-PD-1. (B) Final orthotopic 
tumor weight (g) from C57/BL6J and APOE-/- mice treated with IgG or FCP (a-CD40, a-CTLA-4, a-PD-1). One-way 
ANOVA was used to determine statistical significance. (C) Subcutaneous tumor volume (mm3) from C57/BL6J and 
APOE-/- (KO) mice treated with IgG, a-PD-1, a-Ly-6G, or combination a-PD-1 and a-Ly-6G.  
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Figure 5.3 

 

 

Figure 5.3 LDLR knockdown results in reduced p65 nuclear translocation. 
(A) Co-immunofluorescence for p65 (green), CK19 (red) and DAPI (blue) on 7940b tumor cells treated with vehicle 
(left), scramble siRNA (scr, middle), or LDLR siRNA (right). Recombinant ApoE (0.3ug/mL) was spiked into the media 
of scramble and LDLR siRNA for one hour. (B) Quantitation of %nuclear p65 in a 20x field across conditions.  
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Figure 5.4

 

Figure 5.4 Bone marrow-derived TAMs upregulate complement components and Trem2 compared to M0 
macrophages.  
(A) qRT-PCR analysis of C1qa, C1qb, and Trem2 on M0 macrophages compared to TAMs.  Data were normalized to 
Cyclophilin A. Statistics were determined using Student’s t test.
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Figure 5.5 

  
Figure 5.5 C1Q levels in human PDA serum.  
(A) C1Q concentration (ug/mL) in serum from healthy (n=15), chronic pancreatitis (n=17) and PDA (n=140) patients. 
(B) C1Q concentration (ug/mL) in serum from PDA patients stratified by disease stage (resectable (n=38), borderline 
resectable (n=11), locally advanced (n=31), metastatic (n=60)). (C) C1Q concentration (ug/mL) in serum from PDA 
patients stratified by RECIST criteria (complete response (n=26), nonprogressive disease (n=60), progressive disease 
(n=40). (D) Survival analysis on PDA patients stratified by C1Q serum levels. (E) Relative frequency of CD4 T cells and 
CD14- CD16+ monocytes in the peripheral blood of PDA patients stratified by C1Q levels.  
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