
Disorder Engineering of Ferroic Properties

by

Peter B. Meisenheimer

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Materials Science and Engineering)

in the University of Michigan
2021

Doctoral Committee:

Assistant Professor John T. Heron, Chair
Assistant Professor Robert Hovden
Associate Professor Emmanouil Kioupakis
Professor Lu Li



Peter Meisenheimer

meisep@umich.edu

ORCID iD: 0000-0002-8903-3065

© Peter Meisenheimer, 2021



The work presented here would not have been possible without the contributions

from many coauthors who are referenced throughout, including, in particular,

computational results from L. Williams and STEM imaging from Sung S.H.

I also want to pay special mention to the people who have supported me though my

time at Michigan, including (but not limited to): E. Sprague, S. Novakov, D. Del

Gaudio, L. Andre, D. Vallejo, D. Greeley, B. Iezzi, K. Chou, T. Chambers, A. Bregman,

B. Derby, and L. Dawahre.

I acknowledge financial support from NSF CAREER grant DMR-1847847 and the

Rackham predoctoral fellowship

ii



Table of Contents

Acknowledgements ii

List of Tables v

List of Figures vi

List of Appendices viii

Abstract ix

Chapter 1: Multiferroics- a Path to Sustainable Electronics 1

1.1 Multiferroicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Strain-Coupled Magnetoelectric Heterostructures . . . . . . . . . . . . . 5

1.3 Introduction to High-Entropy Crystals . . . . . . . . . . . . . . . . . . . . 8

Chapter 2: Disorder-Engineered Enhancement of Magnetostriction 11

2.1 Material Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Magnetoelectricity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 Analytical Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Chapter 3: Novel Phases Enabled by Disorder 25

3.1 Unique Features and Prospects for HEOs . . . . . . . . . . . . . . . . . 27

3.2 Disorder-Driven Properties . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2.1 Dielectricity and Charge-Lattice Coupling . . . . . . . . . . . . . 29

3.2.2 Magnetism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.3 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

Chapter 4: Disorder-Driven Enhancement of Interface Exchange 43

4.1 Experimental Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

iii



4.2 Sample Deposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.3 Magnetic Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

Chapter 5: Stereochemical Control of Magnetic Frustration 55

5.1 Experimental Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.2 Tuning of Structural Disorder . . . . . . . . . . . . . . . . . . . . . . . . 60

5.3 X-ray Absorption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.4 Magnetic Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

Chapter 6: Conclusions and Future Directions for FeGa and ESOs 73

6.1 Summary of Results in Disordered Systems . . . . . . . . . . . . . . . . 73

6.2 Scaling of FeGa Composite Materials . . . . . . . . . . . . . . . . . . . 75

6.3 Functional Glassy Behavior in ESOs . . . . . . . . . . . . . . . . . . . . 82

Appendices 87

References 130

iv



List of Tables

4.1 Concentration in Co-series films . . . . . . . . . . . . . . . . . . . . . . 46

4.2 Measured lattice constants of Co-variant samples . . . . . . . . . . . . . 48

5.1 Composition of Cu-variant samples . . . . . . . . . . . . . . . . . . . . . 59

6.1 Energy dissipation of beyond-Si techologies . . . . . . . . . . . . . . . . 76

v



List of Figures

1.1 Disorder engineering of ferroic properties . . . . . . . . . . . . . . . . . 2

1.2 Low-temperature film growth with PLD . . . . . . . . . . . . . . . . . . . 4

1.3 Strain mediated ME switching . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1 Epitaxial stabilization of A2 FeGa on (001) PMN-PT . . . . . . . . . . . 13

2.2 Diffraction data from FeGa . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 Magnetoelectric switching of FeGa . . . . . . . . . . . . . . . . . . . . . 16

2.4 Complete magnetoelectric switching data . . . . . . . . . . . . . . . . . 17

2.5 Calculation of anisotropies . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.6 Local shear strains arising from 109° polarization switching in PMN-PT . 19

2.7 Domain fraction of ferroelectric switching . . . . . . . . . . . . . . . . . . 21

2.8 Density functional theory simulation of shear modulus . . . . . . . . . . 22

2.9 Enhanced magnetostriction coefficient through epitaxial stabilization . . 23

3.1 Growth of the HEO field . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2 Degrees of freedom in HEOs . . . . . . . . . . . . . . . . . . . . . . . . 28

3.3 Frustrated ferroelectricity . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.4 Lattice frustration in HEOs . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.5 Antiferromagnetism of rock salt (MgCoNiCuZnO)O . . . . . . . . . . . . 37

3.6 Magnetic nanoregions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.1 X-ray diffraction of Co-series films . . . . . . . . . . . . . . . . . . . . . 45

4.2 XPS of Co-series films . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.3 RSM of Co-series films . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.4 Structural characterization of exchange bias stacks . . . . . . . . . . . . 49

4.5 Magnetic hysteresis of Co-variant exchange bias samples . . . . . . . . 50

4.6 MVT curves of Co-variant exchange bias samples . . . . . . . . . . . . 51

vi



4.7 Magnetic parameters of Co-variant samples . . . . . . . . . . . . . . . . 53

5.1 Structural characterization of Cu-variant samples . . . . . . . . . . . . . 57

5.2 Diffraction analysis of Cu-variant samples . . . . . . . . . . . . . . . . . 57

5.3 STEM analysis of Cu-variant samples . . . . . . . . . . . . . . . . . . . 59

5.4 XPS composition of Cu-variant films . . . . . . . . . . . . . . . . . . . . 60

5.5 Simulated bond lengths of Cu- and Co-variant samples . . . . . . . . . . 62

5.6 XMLD analysis of Cu-variant samples . . . . . . . . . . . . . . . . . . . 64

5.7 XAS analysis of cations in Cu-variant samples . . . . . . . . . . . . . . . 65

5.8 Magnetic distortion in Cu-variant films . . . . . . . . . . . . . . . . . . . 67

5.9 100-oriented MvH loops of Cu- and Co-variant exchange bias stacks . . 69

5.10 110-oriented MvH loops of Cu- and Co-variant exchange bias stacks . . 70

5.11 Magnetic anisotropy of Cu-variant samples . . . . . . . . . . . . . . . . 71

5.12 MvT of Cu- and Co-variant exchange bias stacks . . . . . . . . . . . . . 72

6.1 Proposed FeGa MTJ device . . . . . . . . . . . . . . . . . . . . . . . . . 78

6.2 MFM and XMCD-PEEM of nanomagnets . . . . . . . . . . . . . . . . . . 79

6.3 Exfoliation of oxide thin films . . . . . . . . . . . . . . . . . . . . . . . . . 80

6.4 Dipole-glassy behavior in ESOs . . . . . . . . . . . . . . . . . . . . . . . 83

6.5 Moment decay in Cu-variant ESOs . . . . . . . . . . . . . . . . . . . . . 85

B.1 Calculation of magnetic anisotropy . . . . . . . . . . . . . . . . . . . . . 92

C.1 PFM micrographs read into python . . . . . . . . . . . . . . . . . . . . . 97

C.2 PFM switching map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

D.1 Example XAS and XMCD . . . . . . . . . . . . . . . . . . . . . . . . . . 107

D.2 Magnetic hysteresis from XMCD . . . . . . . . . . . . . . . . . . . . . . 118

D.3 Spin-orbit coupling from XMCD . . . . . . . . . . . . . . . . . . . . . . . 121

vii



List of Appendices

Appendix A PLD and Fast Quenching of Metastable Species . . . . . . . . . 87

Appendix B Calculation of Magnetic Anisotropy . . . . . . . . . . . . . . . . 91

Appendix C Calculation of PFM Switching Maps . . . . . . . . . . . . . . . . 96

Appendix D Processing of XAS and XMCD Data . . . . . . . . . . . . . . . . 106

Appendix D.1 Reading XAS Data and Calculating Dichroism . . . . . . 106

Appendix D.2 MVH Loop from XMCD . . . . . . . . . . . . . . . . . . . 117

Appendix D.3 Calculation of Spin-Orbit Coupling from XMCD . . . . . . 121

viii



Abstract

Worldwide energy consumption is expected to increase 50% by the year 2050 [1], with

as much as 25% of that being lost to waste heat from electronic devices. Multifer-

roic materials have the potential to mitigate this heating and volatility in computational

devices [2] by allowing voltage control of a magnetic state, virtually eliminating waste

heat from "always-on" Si-based technologies. This places multiferroic devices among

the most competetive post-silicon technologies considering energy and delay [3, 4].

Multiferroic systems, however, are extremely rare, hindering the advancement of new

technologies based on these materials. This dearth of materials can be mitigated

through use of multiferroic composite systems, where, for instance, a piezoelectric

layer is coupled to a magnet through strain, but further challenges exist in maximiz-

ing the coupling between layers in the composite, an effort that has seen relatively

little work [5]. Additionally, existing engineering techniques utilize atomic-scale [6] or

crystal-scale [7] ordering to access magnetic coupling in materials, but chemical and

structural disorder is an oft explored technique that has been shown to lead to novel

and colossal functional properties [8, 9, 10].

This thesis explores the intentional use of disorder as a primary phenomenon to

both synthesize new ferroics and enhance material properties for superior function-

alities [11, 12, 13], an orthogonal vector to addressing the scarcity of state-of-the-art

materials. by using low-tempearture epitaxial growth to stabilize the disordered, ¸-

Fe-like, phase of Fe1–xGax out to high, metastable concentrations of Ga, both the

increased spin-lattice coupling of Fe and Ga and the lattice softening associated with

the phase transition can be leveraged without the formation of intermetallic phases

that detract from functionality. With this technique, epitaxial, kinetic freezing of disor-

der, I have demonstrated a means to boost magnetostrictive coupling by as much as

ix



10x relative to bulk [14], allowing us to show record magnetoelectric performance in a

device based on the material.

Additionally, I have shown that the phase space of ferroic materials can be ex-

tended using entropy as a driving force to stabilize materials with novel chemistries

[15]. By leveraging the large configurational entropy from the inclusion of many atomic

species, the formation of a random, solid solution crystal can be achieved, potentially

overriding other thermodynamic considerations. At elevated temperatures, a large

entropic contribution to the Gibbs’ free energy will stabilize the formation of a single

phase, even in excess of an unfavorable heat of mixing. This metastability can be

further controlled with modern thin film techniques, allowing further access to a large

class of materials that have been shown to possess unusual and colossal functional

properties [11, 16, 17]. For the first time, I have shown strong magnetism in these new

systems [11], as well as shown that it is strongly correlated to structure and chemistry

[12]. These new magnetic oxides provide a platform to investigate and tailor interplay

between charge, lattice and spin via disorder for functional properties by the design of

disorder.

The goal of the work presented here is to understand how engineered disorder

plays a role in the tunability of functional properties. I show that low-temperature

epitaxy can be used as a tool to access new, disordered, regions of the phase dia-

gram, significantly enhancing the functional properties when compared to the thermo-

dynamic phase [14]. Additionally, the engineering of disorder through chemistry and

processing conditions can be used to further tune magnetic phenomena, introducing

new order parameters to optimize the system [11, 12].
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Chapter 1:

Multiferroics- a Path to Sustainable

Electronics

1.1 Multiferroicity

Multiferroics are materials that possess more than one ferroic order, such as ferro-

electricty [18, 19], (anti)ferromagnetism [20, 21], ferroelasticity [20, 22, 23], and/or

ferrotoroidicity [24, 25, 26]. As most single phase multiferroic materials have order-

ing temperatures well below room temperature, severely limiting potential applications

[27], our definition of a multiferroic is extended to include composite materials con-

sisting of two individual ferroic materials, such as ferromagnet/ferroelectric bilayers

[28, 29, 30, 31]. While multiferroic materials were initially discovered in the 1950’s and

1960’s [32], a renaissance in multiferroics research, starting in the early 2000’s, has

been sparked by the exciting physics that drives correlations between two or more fer-

roic orders [33, 34, 35, 36] and advances in thin film deposition [18, 37, 2].

For purposes of this discussion, the coupling between ferroelectric and magnetic

orders (magnetoelectricity) in multiferroics is interesting because it enables magnetic

field control of electrical polarization (the direct magnetoelectric effect) [38, 39] and

the electric field control of magnetism (the converse magnetoelectric effect) [40, 41].

This is the modern thrust in multiferroics research because it can be used to enable
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extremely sensitive low-(bio)magnetic field- sensing [42, 43, 44] and ultra-low-energy

computational technologies [41, 45, 4, 46].
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Figure 1.1: Disorder engineering of ferroic properties. Infographic showing the motiva-
tion for the research presented here. a Multiferroics (MF) are materials that show two or more
intrinsic ferroic orders. Here, we discuss magnetoelectric multiferroics, which contain cou-
pled ferroelectric (FE) and (anti)ferromagnetic ((A)FM) orders. In single phase multiferroics,
b, the coexistence of FE and FM must occur through a complex physical mechanism, such
as the Dzyaloshinskii-Moriya interaction or where improper FE results from a specific mag-
netic structure [47]. Here, the single phase MF BiFeO3 (BFO) is shown, with FE and G-type
AFM orders. In composite multiferroics, c, the material is made of two independent FE and
FM phases, which are coupled through another parameter like magnetic exchange or strain.
Multiferroics are exciting for many reasons, but here we will focus on the idea of multiferroic
memory (d), where the resistive state can be switched with a voltage (e). In the magnetic tun-
nel junction (MTJ) shown here, the free magnetic layer can be coupled to a MF material, al-
lowing a voltage to change the direction of magnetization and resistance of the device. In the
search for new MF materials, I explore the use of low-temperature epitaxy (f) via pulsed laser
deposition to stabilize new disordered phases and explore their ferroic properties. In pulsed
laser deposition (PLD), because the substrate temperature is low, materials are kinetically
frozen upon deposition, allowing access to as-deposited metastable phases. In particular, I
have explored the synthesis of chemically disordered FeGa (g), for use in a composite multi-
ferroic, and of magnetic entropy-stabilized oxides (h), to understand the use of disorder as a
complex coupling mechanism.

While advances in the discovery of new room-temperature, single phase, magneto-

electric multiferroics are promising [7, 48, 49, 50, 51], the materials palette is still quite

limited [52]. The conditions for the establishment of a polarization and magnetization

2



in a material are often mutually exclusive [53], yet, several mechanisms allow for a

polarization to coexist with magnetic order [54]. For example, improper ferroelectric

materials, in which the polarization is not the primary order parameter, often exhibit

magnetic order [47]. One of the main challenges, however, is that the existence of

multiferroic phenomena at room temperature is extremely rare. Additionally, magne-

toelectric coupling is often too weak in these systems for device integration. Even in

single phase multiferroics operable at room temperature, such as BiFeO3, converse

magnetoelectric coefficients tend to be low [54, 55, 56] and must be enhanced to facil-

itate real applications. The development focus for the field primarily lies in composite

systems coupled through strain and interlayer magnetic exchange [2], because this is

where the largest converse magnetoelectric coefficients and most reasonable switch-

ing times reported to date have been observed [57, 3]. These points illustrate the

primary materials challenges in the field: 1) the optimization of materials for integra-

tion into composite systems, and 2) the discovery of new ferroic materials based on

interesting order parameters.

Regarding the first point, the performance of composite multiferroic devices based

on strain has been limited by the properties of magnetic layer. Ferroelectrics/piezo-

electrics is a field that has been undergoing optimization for more than a century,

but it has recently been noted that a significant need in multiferroics is the engineer-

ing of magnetostrictive magnets [5]. Regarding the second point, multiferroicity and

magnetoelectricity in single phase materials is often based on complex phenomena.

Because these materials are almost always magnetic oxides, they are very sensitive to

small changes in lattice and electronic structure. To solve these materials challenges,

I aim to use disorder and thin film epitaxy to explore new phases of magnetic materials

and their structure property relations. Epitaxial stabilization is well known to give a

significant degree of control over the structure and properties of oxides [58, 59, 60].

By depositing thin-film materials at low temperatures, new, metastable, phases can be

accessed with potentially significantly enhanced properties with regards to bulk, and

even other thin film depositions.

In thin film deposition techniques like PLD, the kinetics of material formation are

3



strongly influenced by the temperature of the substrate [61, 62, 63, 64]. When the

substrate temperature is low, adatoms have significantly less kinetic energy and diffu-

sion is slow, which can be seen by looking at the atomic jump frequency,

� = �0exp(–Ea/kBT), (1.1)

which decreases exponentially with decreasing temperature (Figure 1.2b). This means

that films are effectively frozen into their as-deposited configuration which, in the case

of PLD, is something that is ideally atomically disperse. Using this technique and forc-

ing a certain crystal system with epitaxial templating, high quality, disordered crystals

can be reliably grown in an effort to study how disorder plays a role in controlling

functional phenomena. Here, I discuss my work exploring low-temperature epitaxy

to synthesize new material phases: novel magnetostrictors for use in strain-coupled

composite multiferroics, and entropy stabilized magnets to investigate structure prop-

erty relations in a new class of materials.

200 400 600 800
T (°C)

10 14

10 12

10 10

10 8

10 6

/
0

typical growth range

low-temperature growth

𝜈

substrate

plasma
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ba

Figure 1.2: Low-temperature film growth with PLD. a Schematic of condensation on a
substrate surface during PLD. b Estimation of the atomic hopping frequency, �, showing the
difference in atomic mobility between more typical PLD substrate temperatures (600◦-800◦C)
and low temperature deposition (200◦-300◦C) can be 5 or more orders of magnitude. �/�0 is
calculated using an activation energy of Ea = 1.1 eV, a typical value for adatoms during PVD
[64].
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1.2 Strain-Coupled Magnetoelectric Heterostructures

Composite multiferroic structures are most commonly constructed by taking advantage

of magnetization modulation through the application of strain by the piezoelectric layer

and magnetostriction of a ferromagnet. In these strain-coupled materials, a magne-

tostrictive ferromagnetic layer is strained by a piezoelectric/ferroelectric crystal [65, 66]

to produce changes in magnetic anisotropy [66, 67, 68, 69] and control the associated

energy landscape through magnetostriction, as represented in Figure 1.3a.

The magnetostriction coefficient, usually denoted as –ijkl, describes how a material

transduces magnetization into strain according to the relation

›ij = –ijklmkml = –C–1
ijmnBmnklmkml, (1.2)

where Cijmn is the stiffness tensor, Bmnkl is the magnetoelastic energy, and mk, ml

are the direction cosines of the magnetization [70, 71]. Physically, this originates from

changes in the band structure of the material due to the mechanical distortion. Effec-

tively, as a crystal is strained and the atoms move, the band structure will change which

can deplete/add to the spin-dependent density of states of a ferromagnet [72, 73, 74].

Macroscopically, this is observed as the change in magnetocrystalline anisotropy per

change in strain,

Bmnkl =
@Kmn
@›kl

, (1.3)

where Kij is the magnetic anisotropy and ›kl is the strain [75]. As this is an effect of the

magnetic anisotropy energy, it is proportional to the spin-orbit coupling of the material

[74] and ferromagnets with large spin-orbit coupling, like rare earth containing mate-

rials, tend to also exhibit large magnetostriction coefficients. Additionally, materials

that are mechanically isotropic (i.e. the ratio of components of Cijmn approach 1 or

the shear modulus goes to 0) show larger magnetostriction values since – is propor-

tional to C–1B. Experiments with strain-mediated composite magnetoelectrics usually

employ conductive magnets with large magnetostrictive coefficients (–) such as rare-

earth containing Terfenol-D [76] (– ≈ 1200 ppm), Galfenol (Fe1–xGax) [77, 51] (– ≈

250 ppm), FeRh [78] (ferromagnet-antiferromagnet transition), CoFeB [76, 79] (– ≈ 50

5



ppm), and Ni [80] (– ≈ -34 ppm).

As a demonstration of these physics, magnetostrictive magnet have been used

to template domains from a ferroelectric substrate, being coupled through local strain

states. By depositing magnetostrictive CoFe on a BaTiO3 substrate, the in-plane strain

state of a1-a2 domains in the BaTiO3 create localized easy axes in the magnetostric-

tive magnet, effectively mapping the polarization of the substrate directly into a mag-

netic domain (Figure 1.3b) [66]. This effect has been duplicated with other magnetic

films, such as LSMO and CoFe2O4 [81]. Functionally, this has been used to control

domain walls in the magnetostrictor since, as ferroelectric domains are moved in the

pre-switching regime, magnetic domain walls will track their location. [82, 67].

Projecting existing studies of strain-coupled multiferroics to the devices scale, re-

searchers have been able to achieve energy dissipations per area per switch on the

order of 1 - 100 —J cm–1 [3], making these devices competitive in the realm of post-

Si technologies[83, 84]. While much of the early work in strain-coupled multifer-

roics was done using bonded piezoelectric transducers [85, 86], scale devices ne-

cessitate thin film magnets deposited on high-strain piezoelectric crystals, typically

relaxor-type PbTiO3 (PTO) derivatives such as Pb(Zr, Ti)O3 (PZT) [80, 21, 38] and

Pb(MgNb)O3 – PbTiO3 (PMN-PT) [79, 87, 88]. Strain mediation has widely been used

to manipulate the energy landscape in composite materials [89], changing coercive

fields and the depth of the potential well along the easy axis (Figure 1.3c), however full

switching of the anisotropy axis is much rarer [77, 90].

By leveraging epitaxy between the two ferroic layers to maximize strain transfer,

researchers have been able to realize 90° switching of magnetization in a quasi-

macroscale structure (epitaxial FeGa thin film heterostructure bonded to a bulk piezo-

electric transducer) [77], demonstrated in Figure 1.3d,e. Additional experimental re-

ports have demonstrated that enough magnetoelastic energy can be generated to

drive 90° reorientation of anisotropy [66, 77, 88], but 180° switching, which is desired

for maximum readout, may not be achievable unless sequential voltages are applied or

material symmetries are broken by external stimuli like magnetic fields or spin torques

6



a

b

c

d

ε progression

ε

εε~0

e

Figure 1.3: Strain mediated ME switching. a Schematic of strain-mediated switching in a
composite multiferroic heterostructure. Application of an electric field (E) induces a ferroelas-
tic strain (›) through the converse piezoelectric effect, which modifies the strength of the mag-
netic anisotropy and/or magnetic moment in the magnetostrictor, shown by the large arrow. b
Birefringent (top) and magneto-optical Kerr effect (MOKE, bottom) images showing domain
mapping from ferroelectric to ferromagnetic domains based on the in-plane strain state. c
Magnetic hysteresis loops, showing the change in magnetic anisotropy of a Fe81Ga19/PMN-
PT heterostructure under electric field. d Magneto-Optical Kerr Effect (MOKE) images show-
ing reversible, strain dependent magnetization orientation of an Fe0.8Ga0.2/PMN – PT mul-
tiferroic heterostructure. The greyscale contrast in the images shows the domain structure
and the red arrows show the magnetization direction. e Transverse AMR of the device in d,
showing hysteretic switching of the resistance, corresponding to the magnetization direction,
as a function of strain and applied electric field. Part a from ref [91], part b from ref. [66], part
c from ref [92], parts d,e from ref [77].

[93, 94, 95, 96]. Additionally, much of the existing work on magnetization/anisotropy

switching has been achieved in bulk composites, partially due to the difficulty of work-

ing with thin films of the best magnetostrictors (e.g Terfenol-D). Researchers have

been optimizing ferroelectrics for many decades, but optimization of magnetostrictive

layers has only very recently become a point of interest [97]. This issue, a dearth of

magnetostrictive ferromagnets, is understood and has been explicitly noted by experts

in the field as being a primary concern [5].

The issues with rare-earth based magnetostrictors stem from sustainability and

significant challenges in processing. Thus, if a sustainable materials with a compa-

rable magnetostrictive coefficient can be realized, it will have a significant impact on

the field and future of the technology. Electron correlations and quantum phenomena
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emergent from Berry curvature in novel electronic structures enable new paradigms

in this area. For example, the transition metal alloy FeGa has recently demonstrated

efficient transverse thermoelectric energy conversion due to a large Berry curvature

stemming from the significant spin-orbit coupling or nodal line structure [98, 99]. Mag-

netostrictive materials historically rely on rare earth components to enhance spin orbit

coupling, yet we observe that the rare-earth free FeGa may boast one of the highest

magnetostrictive coefficients recorded. this is done through disorder engineering of

the material, using the combination of entropy and thin film techniques to stabilize a

novel, disordered phase of the alloy with new exciting properties.

1.3 Introduction to High-Entropy Crystals

Historically, thermodynamics driven by the enthalpy of formation have been the guiding

principle for discovery and design of new oxide crystals. Within this paradigm, highly

controlled thin film epitaxy is used as an engineering control to extend the material

space beyond that of the bulk phase diagram. In the past few years, entropy instead of

enthalpy is starting to be explored as an orthogonal approach to the discovery of new

materials and properties. In the nascent field of high-entropy oxides, multicomponent

oxides where the configurational entropy is larger than or comparable to the enthalpy

of mixing, an enormous potential space of new compositions is being targeted for ap-

plications across the entire ceramics field. As new chemistries are being synthesized,

research is expanding to studies understanding how these new local and global de-

grees of disorder and frustration interplay with functional phenomena. In this section, I

present a brief history of the field with a particular focus on functional phenomena. For

all the reasons normal oxide crystals are targeted for applications, e.g. broken crystal

symmetries, interesting correlated phenomena, and magnetism, exploration into high-

entropy oxides has begun and a number of these phenomena have begun to be seen.

Excitingly, the disorder in these oxides allows for new interplay between spin, orbital,

charge, and lattice degrees of freedom to design the physical behavior.

High-entropy materials, popularized by the discovery of high-entropy metal alloys

8



20 years ago [100, 101, 102, 103], typically include 5 or more atomic species and are

kinetically frozen into a metastable solid solution [104, 105] that is generally thought of

as disperse on an atomic scale [100, 106, 107]. Properties of high entropy materials

can be characterized by either rule-of-mixtures or cocktail effect behavior, depend-

ing significantly on the particular composition and property. Distinct from high-entropy

crystals, where the only criteria is that configurational entropy is "large", in entropy-

stabilized materials, the configurational entropy contribution to the Gibbs’ free energy

is actually large enough to drive the formation of a single phase solid solution [101, 15],

potentially even in excess of a positive enthalpy of formation [108]. Beyond metal al-

loys, high-entropy and entropy-stabilized oxides (HEOs and ESOs) have attracted sig-

nificant interest largely due to the prospect for increased hardness, toughness, and

thermal resistance [105, 109]. Oxides are, however, a playground for the exploration

of correlated-electron phenomena, such as ferroic properties, superconductivity, and

metal-insulator transitions.

High-entropy materials are often defined by their large entropy of mixing, ∆S, in

Gibbs’ free energy of formation,

∆G = ∆H – T∆S (1.4)

which stems from a large number (i) of constituent species. Here, the entropy ∆Sconf

can be expressed as:

kB

NX
i

xiln(xi), (1.5)

where N is the number of species and xi their compositions. If this ∆i term is large, at

high temperatures is can drive ∆G to be negative, which signifies thermodynamic sta-

bility. Potentially the most exciting prospect of these materials, is that this entropic term

can actually override a positive enthalpy of mixing, allowing access of novel phases.

The implication here, is that entropy-engineering can be use to force normally immis-

cible species into novel oxide phases. This ability to realize new phases and stereo-

chemistry opens a new space for the synthesis and design of oxide materials. Because

these materials become metastable when cooled, however, non-equilibrium synthesis

processes, such as PVD, may be required. When deposition temperatures are low,
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adatoms are kinetically frozen at the substrate, preventing diffusion and allowing easy

access to metastable phases [110, 111, 112, 108].

Due to the enhanced solubility inherent in ESOs, researchers have new tools to

study competing internal charge, spin, structural, and orbital order/disorders that can

develop new functional frustrations (e.g. the phenomena that occurs in relaxor ferro-

electrics). Using these new degrees of freedom, materials can be engineered with new

properties arising from different disordered length scales. Existing techniques for the

study and synthesis of thin-film correlated oxides, such as multiferroics [37, 2], take

advantage of a number of thin film paradigms such as layer-by-layer growth [7] and

interfacial control [113, 114, 55, 58] making tunability and precise control of structure

and stereochemistry critically important. This means fabrication of these materials is

generally limited by solubility, as chemistries can only be controlled a limited amount

within the enthalpies of mixing. This may be the significant opportunity for ESOs, as

not only does the structure appear to be robust and controllable, showing crystallinity

within growth windows spanning hundreds of degrees and pressures [108, 115], but

entropy engineering vastly increases the potential phase space where materials can

be discovered. This significant tunability of structure and chemistry coupled with re-

cent observations of functionality in HEO/ESOs [12, 116, 117], opens opportunities for

studying the interplay between charge, spin, lattice, and orbital degrees of freedom in

highly disordered crystalline materials.
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Chapter 2:

Disorder-Engineered Enhancement of

Magnetostriction

Magnetoelectric multiferroic systems [3, 77, 118, 31, 30] have emerged as

promising materials for low-energy, beyond-CMOS memories [45, 4] and extremely

sensitive magnetic field sensors [119, 43]. This has motivated research on both

single-phase [41, 120, 7] and composite [77, 31, 76, 121, 69] multiferroic materials

which exhibit magnetic modulation driven exclusively by electric field. While single-

phase multiferroics may show strong antiferromagnetic-ferroelectric coupling, they are

rare at ambient conditions [7]. Alternatively, strain-mediated composite multiferroic

heterostructures offer increased magnetoelectric coefficients and device utility [3, 30]

through the combination of a wide array of magnetostrictive ferromagnets (Ni, FeGa,

Terfenol-D, etc.) and piezoelectric substrates (PZT, PMN-PT, etc.) or commercially-

available piezoelectric transducers. While existing composites show impressive

electrically-driven magnetic reorientation capabilities, device performance has been

limited by the magnetostrictive properties of the magnetic layer. It has recently been

noted that a significant need in the field is the engineering of magnetostrictive magnets

[5], as existing materials systems have small coefficients, such as Ni and CoFeB, or

are expensive and difficult to process, as is the case of rare-earth-based magnetic

alloys (Terfenol-D). Here, we present a means to boost the magnetostriction of FeGa

alloys by as much as 20x through disorder engineering and utilize this to demonstrate

bipolar, 90° switching of magnetization via electric field in a device with exceptional

11



performance. Our results demonstrate that by engineering epitaxial materials into

an extended phase space, high performance magnetostrictors and magnetoelectric

multiferroics can be achieved.

In bulk, FeGa undergoes a phase transition at 18% Ga from a disordered A2 phase,

at low concentrations of Ga, to an ordered BCC phase (D03) [122, 74]. Until this point,

the magnetostriction of FeGa increases with increasing Ga incorporation, but sharply

drops after 18% due to the formation of the parasitic intermetallic phase [123]. Pre-

vious reports have shown that the formation of this D03 phase can be suppressed

by quenching, extending the range of the A2 phase and increasing the peak magne-

tostriction coefficient [73]. We hypothesize that a similar effect can be achieved in thin

films, as a distinct advantage of epitaxial growth is the potential to access metastable

phases, allowing us to promote the chemically disordered BCC (A2) phase in our film

at high (20-30%) gallium concentrations. Furthermore, we aim to leverage the second

phase change of FeGa at 30% Ga and the accompanying lattice softening to further

increase the magnetostriction.

2.1 Material Structure

Our samples consist of epitaxial (001)-oriented, 15 nm A2 (¸-Fe) phase, magnetostric-

tive Fe1–xGax (x = 0.23, 0.245, 0.30) single crystal films on (001)-oriented PMN-PT

substrates deposited by molecular beam epitaxy (Figure 1a). High-angle annular dark-

field scanning transmission electron (HAADF-STEM) micrographs (Figure 2.1b) reveal

the deposition of single crystalline, phase-pure FeGa films on PMN-PT with a clean

and coherent interface. We observe the epitaxial orientation relationship [100]s PMN-

PT//[110] Fe1–xGax with a 45° in-plane rotation between FeGa and PMN-PT from a

cube-on-cube orientation relationship. This relationship is shown schematically in Fig-

ure 2.1c. Select area electron diffraction (SEAD) images show only peaks with even

Bragg indices (Figure 2.1d), indicating the films are in a disordered body centered cu-

bic (BCC) crystal structure (¸-Fe phase) due to the absence of ordered superlattice

peaks. The relative Ga:Fe concentration was measured to be 21.5 ± 3%Ga using

quantitative electron energy loss spectroscopy (EELS) based on Hartree-Slater in-
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elastic cross sections described below. Notably, the studied concentrations are well

beyond the formation threshold of the ordered FeGa intermetallic phase at 18%Ga,

yet our films remain in the A2 phase, showing that epitaxy allows us to extend the

stability of the region.
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Figure 2.1: Epitaxial stabilization of A2 FeGa on (001) PMN-PT. a Electron energy loss
spectroscopy (EELS) of the PMN-PT substrate and FeGa film as a function of film thickness,
showing abrupt concentration edges and a nominal thickness of 15 nm for the FeGa film. Ti
signal comes from the capping layer to prevent oxidation. b High-angle annular dark-field
scanning transmission electron (HAADF-STEM) micrographs along the PMN-PT [100] / FeGa
[110] zone axis, showing the single crystalline, epitaxial relationship along the [100]s (sub-
strate) direction. c Diagram showing the epitaxial relationship of PMN-PT (blue) and FeGa
(red) normal to the interface ([001] direction), marking the crystallographic directions of the
film and the substrate. d Interfacial select area electron diffraction (SAED) confirming that the
FeGa thin film is in the disordered A2 phase due to the absence of superlattice peaks which
would appear in the ordered D03 phase. Bragg peaks of the FeGa (red) only appear when
the sum of reciprocal lattice indices are even (missing peaks shown as yellow dashed cir-
cles), indicating a solid solution BCC crystal structure. Parts a,b, and d are collected from a
representative 30% Ga sample. Adapted from ref. [14].

The FeGa thin films presented were grown by molecular-beam epitaxy in collab-

oration with R. Steinhardt, the process of which is described in the methods section

of ref. [14]. HAADF-STEM, EELS, and EDS data were collected in collaboration with

S.H. Sung, which is also described in ref. [14].
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Figure 2.2: Diffraction data from FeGa. a In-situ reflection high energy electron diffraction
(RHEED) data on the [110]s azimuth of the PMN-PT substrate and the [100] of the FeGa film.
RHEED data shows no signal corresponding to the 100 peak of the FeGa, indicating that the
films are in the disordered, A2-like phase. b Select area electron diffraction (SAED) pattern
of FeGa thin films, which confirms FeGa thin film is in the A2 phase rather than intermetal-
lic B2 or D03 across different Ga concentrations. FeGa Bragg peaks FeGa (yellow dashed
line) is extinct when sum of reciprocal lattice indices are odd, which occurs only in the A2
phase. The out-of-plane lattice constants of the FeGa film calculated from diffraction images
are shown in the table with error bars. Adapted from ref. [14]
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2.2 Magnetoelectricity

To study how the magnetostriction of the FeGa films is influenced by the phase and

Ga concentration, we utilize magnetotransport measurements to extract the values

from multiferroic performance. The films are lithographically patterned into 10 —m × 50

—m devices, as shown in Figure 2.3a, oriented along the substrate [100] or FeGa [110]

direction, the experimentally determined magnetic easy axis of the FeGa (Sup. Figure

4). Electric fields were applied across the entire substrate thickness using the device

as the ground and a back contact for the hot lead. Anisotropic magnetoresistance

(AMR) measurements were carried out as a function of angle and magnetic field

to determine the direction of the magnetization and magnetic anisotropy. Under

an electric field of +/-4 kV cm–1, low magnetic field (50 Oe) AMR scans show a

90° phase shift of the sinusoidal resistance (Figure 2.3b) revealing a 90° separation

of magnetization directions for the two applied electric fields. When saturated at +(-)4

kV cm–1, the magnetization lies approximately +(-)45° from the current direction,

meaning the magnetization is pulled along the substrate [110] ([11̄0]) direction. This is

the hard axis of the as-grown FeGa layers, indicating that the magnetization direction

is dominated by an external voltage-controlled anisotropy. Figure 2.3c shows the

direction of the magnetization, relative to the x-direction, versus electric field. From

this measurement we infer that the non-volatile ferroelastic strain from the substrate is

oriented along the [110] and [11̄0] directions, depending on the applied voltage, and

is strong enough to overcome the intrinsic anisotropy barrier of the FeGa.

The magnetization direction versus electric field loop can first be used to quan-

tify an effective converse magnetoelectric coefficient, |¸eff|, of our epitaxial composite

multiferroic. We define |¸eff| from the expression for the magnetoelectric coefficient,

¸ = —0
dM
dE

, (2.1)

demonstrative of a magnetization emerging from an applied electric field, to also in-

clude the vector rotation of magnetization in the frame-of-reference of the device,

M = M • I = MScos(ffi), (2.2)
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Figure 2.3: Magnetoelectric switching of FeGa. a Schematic of the FeGa/PMN-PT device.
Voltage is applied across the substrate, using the device as a top ground, and resistance is
measured along the bar as a function of magnetic field strength and direction (ffi). b Color
map of low-field (50 Oe) AMR curves fit to cos(2„), showing the normalized resistance as a
function of magnetic field direction („) and applied electric field. The overlain points corre-
spond to the calculated phase shift from the data, which is the direction of magnetization, ffi.
The two saturated polarization states of the ferroelectric show a 90° phase shift in the curve,
demonstrating a 90° switching of magnetization. c Hysteresis of the anisotropy axis, with re-
spect to the direction of the device (x), as a function of electric field, and effective converse
magnetoelectric coefficient (|¸eff|), reaching a maximum value of 2.0 • 10–5 s m–1 during
switching. Parts b and c show the representative 30% Ga sample with the largest magneto-
electric coefficient. Adapted from ref. [14].

where I is the direction of current. Additionally, we only report the absolute value of

this quantity as the high field AMR measurements preclude the handedness of mag-

netization rotation and the sign of the magnetoelectric coefficient. This definition then

allows for

|¸eff| = —0MS
@cosffi
@E

, (2.3)

where —0, MS, and E are the vacuum magnetic permeability, the saturation magneti-

zation, and the applied electric field, respectively. Applying this to our magnetoelectric

hysteresis loops, we see that the converse magnetoelectric coefficient can reach the

giant value of 2.0 • 10–5 s m–1 in our highest Ga concentration samples (Figure 2.3d).

2.3 Analytical Model

The magnetostriction of thin films historically has only been extracted indirectly from

their magnetoelastic coupling coefficients [124]. This is done by analyzing strain-

induced change in magnetic anisotropy (or easy-axis reorientation) using analytical
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Figure 2.4: Complete magnetoelectric switching data. Example data taken at an electrical
bias of up to +/-400 V across the sample, used to reconstruct the hysteresis in magnetization
direction and converse magnetoelectric coefficient. AMR curves taken as a function of field
angle are fit to cos(2„) where the phase shift corresponds to the direction of magnetization, ffi.
The two saturated polarization states of the ferroelectric show a 90° phase shift in the curve,
demonstrating a 90° switching of magnetization. This measurement is done by poling the
magnetization along the easy axis and using low-field directional AMR to probe the rotation
of the uniaxial, strain-induced anisotropy. Thus, the apparent handedness is a result of the
direction used in easy-axis poling and not indicative of the device itself, but is a direct probe
of the anisotropy direction. Adapted from ref. [14].

models[125, 126]. Our approach is in the same vein as these well-established meth-

ods [124, 125, 126], except that the strain is applied dynamically via the piezoelectric

layer, which is a more complete analysis than the deposition of films on different

static substrates to obtain different residual epitaxial strains. We extract –100 from

the magnetization versus electric field loop in Figure 2.4 with an analytical model

to estimate the magnetoelastic energy required to switch between the easy- and

hard-axes of the magnet.

Associated with an in-plane coherent magnetization switching in the crystallo-

graphic reference frame of a (001) FeGa film, the change in the total magnetic free

energy density ∆Ftot can be approximated [128] as

∆Ftot = K1m2
1m2

2 +
1
2
—0M2

s(N11m2
1 + N22m2

2) + B1(m2
1›11 + m2

2›22) + B2m1m2›12, (2.4)

where K1 = -5255, -7434, -6717 J m–3 for the 21.5%, 24.5%, and 30% Ga sam-

ples, respectively, is the magnetocrystalline anisotropy constant (extracted from the
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21.5% Ga 24.5% Ga 30% Ga

Figure 2.5: Calculation of anisotropies. Magnetic hysteresis loops of FeGa samples and
schematic of the integral, Aijk =

RMS
Mr

HdM, used to determine the magnetic anisotropy energy
[127] through A110 –A100 = K1/4. The values for anisotropy energy were used in the analytical
solution as the required energy produced by strain at the switching voltage. Adapted from ref.
[14].

experimentally measured magnetic hysteresis loops, Figure 2.5); —0 is the vacuum

permeability, and Ms is the saturation magnetization. For our FeGa film (10 µm x 50

µm x 15 nm in dimension) whose in-plane dimension is much larger than its thickness,

the demagnetization energy difference between the short and long axes is calculated

from AMR of the virgin sample to be 0.21 kJ m–3, approximately 20x smaller than

K1, thus we assume the demagnetization tensor components N11 u N22 u 0,

meaning the second term in Eq. 2.4 can be omitted. B1 = –1.5–100(c11 – c12)

and B2 = –3–111c44 are magnetoelastic coupling coefficients (where –100 and –111

are magnetostrictive coefficients; c11, c12, and c44 are elastic stiffness coefficients),

mi = Mi
MS

(i = 1, 2) are direction cosines of the magnetization vector, and ›11, ›22, ›12

are the average normal and shear strains in the (001) FeGa. Using the PMN-PT

substrate as the reference system and assuming a complete strain transfer across the

coherent PMN-PT/FeGa interface (which is assumed in accordance with Figure 2.1b)

without loss, one has ›11 = ›[11̄0] and ›22 = ›[110].

Writing ∆Ftot as a function of the direction of the magnetization, ˛ (where m1 =

cos˛, m2 = sin˛) and minimizing ∆Ftot(˛) with respect to ˛, we derive an analytical
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Figure 2.6: Local shear strains arising from 109° polarization switching in PMN-PT. a
Polarizations within the (110)s (substrate) plane, blue, and the (11̄0)s plane, green, are asso-
ciated with shear distortion in the (001)pc plane, b, indicated by the blue and green dashed
frame. The corresponding shear strain arising from a 109◦ polarization switching can be
calculated based on the coordinates of points ri (i=1,2,3,4), where the translation from r1 to
r2 results in a 0.192% shear strain per unit cell. This is then scaled by the fraction of ferro-
electric domains that undergo a 109◦ switch (”109◦) to calculate the total strain seen by the
device. c PFM switching map that allows us to experimentally determine ”109◦ . This map is
made by overlaying PFM micrographs before switching (+4 kV cm-1) and after switching (-4
kV cm-1) and calculating the 3D switching angle per pixel. The directions of the ferroelec-
tric vectors were determined by combining in-plane and out-of-plane piezoresponse patterns
before and after rotating the sample by 90◦ to allow for the determination of in-plane direc-
tionality. The full data set is shown in Fig. 2.7. d Histogram of the switching events from 14
composite images, with standard deviations shown as error bars. The analysis indicates that
23% ±4% of the domains undergo 109◦switching. Adapted from ref. [14].

formula on the orientation of the in-plane magnetization vector at equilibrium, with

azimuthal direction denoted ˛eq, as a function of in-plane strains ›ij (i,j = 1,2).

ffieq = ˛eq – 45◦ =
1
2

cos–1

 
–B1(›[110] – ›[11̄0])

K1

!
– 45◦ (2.5)

Due to the 45° lattice misalignment between the (100) planes of the FeGa film

and PMN-PT substrate, ˛ = ffi + 45◦ (see definition of ffi in Figure 2.1c). Through

experimental results, we observe that the bound values for ffi of +/- 45° are achieved

at electric fields at or below E = +/ – 4 kV cm–1 (Figure 2.3c and 2.4), we can

conclude that here the heterostructure achieves a strain of state ›[110] – ›[11̄0] = K1/B1,

where the magnetoelastic energy B1 can overcome the natural anisotropy K1

and force the magnetization along the hard axis/direction of strain. We can then

use the definition of –100 above with Equation 2.5 to extract magnetostriction, using

the strain ›[110]–›[11̄0] at E = +/–4 kV cm–1 and the mechanical pre-factor 1
2 (c11 – c12).
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Mechanistically, it has been observed that a hysteretic shear strain is created in

(001)-oriented PMN-PT crystals when the local polarization, P, switches by 109° (Fig-

ure 2.6a) from down (E = –4 kV cm–1) to up (E = 4 kV cm–1) [129, 130, 87]. This

distortion can be more clearly visualized by a top-down projection of the unit cell,

which corresponds to the plane of device (Figure 2.6b). Using the lattice parameters

and distortion angle of rhombohedral PMN-PT [131], we analytically calculate this

shear strain to be 0.192%, which corresponds to biaxial normal strains in the (001)

plane of FeGa along the [110] and [11̄0] substrate directions, (›switch = 0.192%). This

calculation is further detailed in Ref. [14]. We note, however, that that this ›switch only

describes the local deformation from the 109° switching of one single ferroelectric

domain of the underlying PMN-PT [132]. The average strain seen by the FeGa device

is this strain multiplied by the fraction of domains that undergo 109° switching, ”109,

thus ›ave = ›[110] – ›[11̄0] = ”109›switch (Figure 2.6c). We experimentally measure

this fraction ”109 by comparing composite piezoelectric force microscopy (PFM)

micrographs at fields both before and after the magnetoelectric switching event. An

example of this switching map is shown in Figure 2.6d. From histograms of the

counted switching fraction (Figure 2.6e), we see that ”109 u 20% in all three cases,

consistent with published values in (001) PMN-PT substrate [129, 130, 87] determined

through in situ Reciprocal Space Mapping.

In bulk FeGa, the pre-factor 1
2 (c11 – c12) can range from 28 GPa to 7 GPa due

to the variation of the Ga composition [123, 134] (from 17% to 27.2%). 1
2 (c11 – c12)

values from our own DFT simulations of disordered FeGa agree with these published

values to within the error bar of the simulation, justifying their use here for our

analytical solution (Figure 2.8). With these values of 1
2 (c11 – c12), we calculate a –100

ranging between 300 ppm (21.5% Ga) and 4000 ppm (30% Ga, shown in Figure 2.9),

significantly higher than reported bulk values [123] where –100 u 150 ppm. This result

demonstrates our ability to stabilize the disordered A2 phase in our system far beyond

the bulk threshold [73]. Furthermore, we plot our extracted values against the –100

values for bulk FeGa, noting that our peak value of magnetostriction coincides with

the lattice softening at approximately 30% Ga. This implies that we are not only able
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Figure 2.7: Domain fraction of ferroelectric switching. PFM switching maps that allows
for experimental determination of ”109◦ . This map is made by overlaying PFM micrographs
before switching (+4 kV cm–1) and after switching -4 kV cm–1) and calculating the 3D switch-
ing angle per pixel. The directions of the ferroelectric vectors were determined by combining
in-plane and out-of-plane piezoresponse patterns before and after rotating the sample by 90°
to allow for the determination of in-plane directionality. Adapted from ref. [14].

to prevent the formation of the parasitic intermetallic phase [72], but by engineering

disorder in the ally we leverage the inherent phase space to reach record values.

Comparing these numbers to existing magnetostrictive materials in Figure 2.9b, we

see that our peak values are 2x higher than top-performing, rare-earth-based magne-

tostrictive alloys. We note that this enormous enhancement of the magnetostriction

is largely a function of the mechanical coefficients, as the magnetoelastic energy, B1,

remains largely invariant.
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sition. The blue error bars correspond to the error of the calculation, the black error bars are
one standard error of the linear fit, and the shaded area is the sum of the errors fixed about
the trendline. b Comparison of the calculated shear modulus values to bulk data extracted
from ref [123]. The error bars correspond to the sum of the same quantities in part a, propa-
gated through to 1

2 (c11 – c12). Our device is operated at room temperature, so the addition of
temperature to the DFT results is simulated using a linear regression of compositionally de-
pendent c11, c12 data from ref. [133]. Because 1) the trend of the bulk values are replicated
extremely well, 2) the bulk data is within the error bars of the DFT calculation, and 3) exper-
imental values should be more precise than DFT results, the use of the experimental bulk
mechanical values is justified for the calculation even though the bulk material is in a different
phase. Adapted from ref. [14].

The primary sources of error in the calculation of –100 are 1) the magnetocrys-

talline anisotropy, 2) the values for strain, and 3) the stiffness tensor components c11

and c12. For the anisotropy constant K1, a 5% relative error is appropriate from tool

calibration/misalignment. Regarding the switching fraction, we can empirically deter-

mine the uncertainty by comparison to bulk values. In refs. [129, 130], the authors

report 20% 109◦ switching and ref. [87] reports 26% switching. Including our val-

ues, the standard deviation ff” = 2.6%, which is used to calculate the error bars in –.

We use the bulk values of c11 and c12 because we believe that they present a more

accurate estimate of the real stiffness coefficients than can be obtained from DFT cal-

culations. While the DFT reproduces the trend and approximate order of magnitude

well, the values themselves may not be accurate, motivating us to pull more precise

values from literature. As no uncertainty values are reported in ref. [123], where we

obtain the c11, c12 values, we use the standard error of the linear trendline in Figure
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Figure 2.9: Enhanced magnetostriction coefficient through epitaxial stabilization. a
Plot of mechanical coefficient 1

2 (c11 – c12) extracted from literature (red) and simulated here
with DFT (blue). Both data sets follow approximately the same trend and show no deviation
from the linear trend following the 19% phase limit. Literature values are from ref. [133]. b
Plot of magnetoelastic coefficients (B1) taken from previous thin film (red) and bulk (grey)
works compared to our measured values. We note that in previous works, there is a sharp
decline in B1 following the phase change at 19% Ga (dotted line), which we do not observe.
Bulk values (grey) are from refs. [123, 122] and film (red) values are from ref. [135]. c The ex-
tracted magnetostriction values as a function of Ga concentration with our values (red, open
circles) compared to the measured bulk coefficients (blue) from ref. [123]. The values from
this work are plotted as 3

2–100 to facilitate comparison with the bulk, polycrystalline values.
Above 19% Ga, we do not observe a decrease in the magnetostriction associated with the
formation of the ordered D03 phase as we extend the regime of the disordered A2 phase via
epitaxial stabilization. As the concentration approaches the second phase change at 30%
Ga, the shear modulus c11 – c12 approaches 0, leading to extremely large values of the
magnetostriction. d Comparison of the magnetostriction coefficients from this work to other
magnetostrictive materials. The largest magnetostrictive tensor component –ijk of each re-
spective material is plotted here for ease of comparison. Comparative data in d is from refs.
[136, 137, 138, 139, 140, 97, 141, 142, 143]. Adapted from ref. [14].
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In this section, we have discussed how inducing disorder in a ferroic material

can significantly enhance functional properties. By using epitaxy to stabilize the

disordered phase of FeGa, we increase the magnetostriction to record values. It is not
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completely understood in this case why disorder allows us to achieve these values,

but several theoretical works posit that it is due to better orbital mixing between Fe

and Ga in the solid solution phase, tending towards mechanical isotropy, a larger

spin-orbit coupling, and potentially unique electronic features in the band landscape

[72, 74, 99]. Using disorder as a parameter to tune ferroic properties is normal in

materials science, perhaps most obviously in relaxor ferroelectrics, where properties

are achieved through frustration of the ferroelectric order parameter [144, 145].

The use of disorder to illicit completely new chemical and functional phenomena,

however, is a rathesr novel idea, with the field of entropy stabilized/high entropy

materials appearing only around a decade ago. Entropy stabilized/high entropy

materials are highly disordered many-component crystals, where the phase may

be only allowed through the entropy term of the free energy of formation. This

idea, that entropy can be tuned to engineer new phases and properties of mate-

rials, particularly ferroic oxides, is an exciting idea that motivates the next few sections.
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Chapter 3:

Novel Phases Enabled by Disorder

High-entropy materials are often defined by their large entropy of mixing (∆S in

∆G = ∆H – T∆S) stemming from a large number (i) of constituent species where the

entropy ∆Sconf goes as kB
PN

1 xiln(xi), N being the number of species and xi their

compositions. Potentially the most exciting prospect of these materials, is that this en-

tropic term can actually override a positive enthalpy of mixing, allowing access of novel

phases. Pioneering work by Rost et al. [15] demonstrated that this is the case in the

multicomponent entropy-stabilized rocksalt oxide (MgCoNiCuZn)O, which emerges as

a solid solution from a phase separated rocksalt-spinel mixture at high temperatures.

Experimentally, the evidence for entropic stabilization can come from 3 main observa-

tions. 1. The transition temperature of the phase change follows the resulting change

in entropy as the relative compositions of the constituent elements are varied. 2. The

phase change is reversible and endothermic. 3. The entropy-stabilized phase is chem-

ically homogeneous.

This is an exciting development, because the implication is that entropy-engineering

can be use to force normally immiscible species into novel oxide phases. In the study

by Rost et al. it was observed that typically immiscible concentrations of cationic

species, namely Cu and Zn in the case of the rock salt, can be dissolved into the

crystal in atypical coordination. Neither Cu2+ nor Zn2+ is happy in an octahedral en-

vironment, i.e. rock salt, in the observed concentrations. Figure 3.2a illustrates this

observation for the case of (MgCoNiCuZn)O, where the solubility of Cu2+ and Zn2+
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is enhanced in the ESO rocksalt crystal, in contrast to the tetrahedral coordination of

their equilibrium binary phases. This ability to realize new phases and stereochem-

istry, along with the control of disorder, has opened new space for the synthesis and

design of oxide materials.

Prior to the seminal work in 2015 that nucleated the high-entropy oxide field [15],

there were only a few reports exploring high-entropy transition metal nitrides as an

extension of the metals community [146, 147, 148]. This is now no longer the case, as

the synthesis of new oxide compositions in pursuit of novel structural, chemical, and

electronic functionalities is proving to be an exciting and rapidly growing field. This is

shown in figure 3.1a, which plots the number of publications on the topic, circa early

2021, which were found using title keywords “high-entropy” or “entropy-stabilized” and

“oxides” or “ceramics” in Web of Science. The number of publications has increased

exponentially since inception, which is a clear indicator of its potential impact.
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Figure 3.1: Growth of the HEO field. a Publications per year using title keywords “high-
entropy” or “entropy-stabilized” and “ceramics” or “oxides” retrieved from Web of Science.
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new high entropy oxide compositions over time and broken down by synthesis method. Data
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163], compositions with 3 components or less are not counted. Figure adapted from ref [164]
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3.1 Unique Features and Prospects for HEOs

The first (MgCoNiCuZn)O entropy-stabilized oxide studied by Rost et al. was syn-

thesized by traditional solid-state methods (mill, press, sinter), with thermodynamic

stabilization of the equimolar phase occurring at approximately 900 ◦C [15]. Bulk tech-

niques have since been used to synthesize a number of new HEO compositions and

currently remains the most pervasive method for the discovery of novel phases (Figure

3.1b). This technique may, however, be limited in the long run by thermodynamic con-

siderations as certain compositions may require static sintering temperatures above

what is accessible at furnace conditions. Further, these materials must be rapidly

quenched from high temperature to maintain the phase at room temperature. For this

reason, non-equilibrium synthesis processes, such as nanoparticle synthesis or PVD,

may be highly preferable for the discovery of new phases. Indeed, these are also pop-

ular methods for phase stabilization and have yielded a number of compositions not

achievable in bulk due to the kinetic fixing of the synthesis [110, 111, 112, 108]. As the

number of new material compositions has increased dramatically, the number of thin

film reports have grown at a much slower rate (Figure 3.1b). While films are the least

represented in the literature currently, we do not see this as the case moving forward.

In the same initial work by Rost et al., it was demonstrated that single crystal

thin films of (MgCoNiCuZn)O could be deposited on (001)-oriented MgO substrates

by pulsed laser deposition (PLD) [15], which was later further corroborated by other

groups [11, 13]. Despite the large estimated strains (up to 4.5% in some cases [11])

and anticipated lattice disorder, (MgCoNiCuZn)O and compositional variant films on

MgO substrates are incredibly high quality [108, 11, 165, 12] with commensurate epi-

taxy and rocking curves as narrow as that of the underlying substrate [15, 11]. In this

vein, a significant advantage of HEOs remains their structural tunability observed with

composition and kinetics [11, 166, 167, 168] and, at least for ESOs, the ability to be

grown on a variety of substrates [110, 168], including amorphous materials. A laser

ablation deposition study by Kotsonis and colleagues observed that the kinetic energy

of species (1s-10s of eV, T eff u 104 – 105 K) dictated whether the film was in the ESO

phase or the phase-segregated rocksalt-spinel mixture [110]. Their findings suggest
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that the extreme kinetic energy and quenching associated with PVD will further open

the composition space for ESOs relative to near-equilibrium bulk techniques. The use

of thin film growth techniques broadens the stabilization space, where films can be

deposited on a wide variety of substrates and the need for a large effective quench

favors the low temperature deposition for BEOL (back-end of line) compatibility.
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Figure 3.2: Degrees of freedom in HEOs. a Illustration of the enhanced solubility of cations
into ESOs. The solubility of Cu and Zn, both cations with different preferred coordination
(tetrahedral) and crystal structure (tenorite and wurtzite, respectively), are shown by the sol-
ubility bars for the binary rocksalt and ESO solvent systems. The solubility is significantly
enhanced in the ESO. Even more so, the phase diagram of (MgCoNiCuZn)O has not been
investigated, so the solubility limit may be even higher than yet reported [15]. The solubilities
given are taken from bulk phase diagrams [169, 170, 171, 172, 173] at 1000◦ C, the approx-
imate stabilization temperature of (MgCoNiCuZn)O with 33% Cu or Zn. b Illustration of the
disorder in HEOs, where new properties can be engineered and tuned using the interplay be-
tween local charge, spin, structural, and orbital degrees of freedom. Figure adapted from ref
[164].

Due to the enhanced solubility inherent in ESOs, researchers have new tools to

study competing internal charge, spin, structural, and orbital order/disorders that can

develop new functional frustrations (e.g. the phenomena that occurs in relaxor ferro-

electrics). Using these new degrees of freedom, materials can be engineered with

new properties arising from different disordered length scales. For instance, the struc-

tural distortions caused by Jahn-Teller active Cu2+ can drive oxidation state changes in

other cations, which in turn effects the spin-dependent properties [12]. The significant

tunability of structure and chemistry coupled with recent observations of functionality
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in HEO/ESOs [12, 116, 117], opens opportunities for studying the interplay between

charge, spin, lattice, and orbital degrees of freedom in highly disordered crystalline

materials. For the remainder of this chapter, I will focus on summarizing the research

in the field related to these ideas with a primary focus on dielectric and magnetic be-

havior.

3.2 Disorder-Driven Properties

3.2.1 Dielectricity and Charge-Lattice Coupling

Dielectric and ferroelectric oxides have long been a group of technologically relevant

materials that have a unique relationship with chemical disorder. In many cases, it is

desirable for these materials to exist in a very precipitous phase space to maximize

the ferroelectric and piezoelectric response. This is often done through chemical sub-

stitution in lead-based perovskites such as PZT (Pb(ZrTi)O3), PZN (Pb(ZrNb)O3), and

PMN-PT (Pb(MnNb)O3-PbTiO3) to promote competition between ferroelectric phases

and/or crystalline phases [174, 175, 176, 145]. This is desirable because lattice soft-

ening at the phase boundary increases the polarizability and charge-lattice coupling of

the crystal, and local chemistry can modify the phase stability of the oxide [177, 178].

Recently, modern techniques such as diffuse neutron scattering, a technique able to

probe local, inelastic scattering events, has been used to show the even more impor-

tant role of disorder in relaxor ferroelectrics due to the formation of polar nanoregions

(PNR) [179]. PNR form due to frustration from competing ferroelectric orders in the

material (Figure 3.3) that significantly increase the piezoelectric response of the crystal

due to coupling with lattice phonons [174, 180] and polarization of the nearby ferroelec-

tric matrix [181]. These two effects, phase instability and frustrated ferroic orders, are

clear possibilities in high entropy oxides where the material can conceivably be made

from constituent species with differing preferred crystal structures and ferroic orders,

while being coerced into a metastable phase by entropy. Illustrated in Figure 3.3d, the

inclusion of Jahn-Teller active Cu2+ cations works to create local structural distortions

because of the frustrated stereochemistry. This results in a crystal that is disordered

on an atomic scale, potentially allowing contributions to a dielectric response. This
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effect has been explored further in regards to the magnetism of the oxides [12], which

will be discussed further below.

an
gl

e 
(d

eg
)

a b

(0,k,0) (0,k,0)

(0
,0

,l)

c

[100]

[010]

d

e

Figure 3.3: Frustrated ferroelectricity. a and b Phase field simulation of polar nanoregions
(PNR) arising in PMN-PT due to frustration from antiferroelectric and ferroelectric orders. The
PNR show up as polar particles that are separate from the ferroelectric matrix, which couple
to it to increase local polarizability. c Diffuse neutron scattering data showing the local antifer-
roelectric response in PMN-PT, demonstrating experimentally that relaxor behavior is a result
of competition between ferroelectric and antiferroelectric orders. d DFT calculated structure
showing the random structural disorder and lattice frustration of (MgCoNiCuZn)O, where the
distortions of the oxygen atoms from the ideal planes (red lines) are highlighted by the red
arrows. e Illustration showing an intuitive guide to how the Jahn-Teller distortion of Cu2+ cre-
ates structural defects in the crystal. Parts a,b from ref [181]. Part c from ref [174]. Part d
from ref [12]. Figure adapted from ref [164].

The extreme tunability of the structural lattice in rocksalt ESOs has been demon-

strated [12, 182, 183] with the systematic inclusion of Jahn-Teller active species into

rocksalt (MgCoNiCuZn)O, where the inclusion of Cu2+ cations works to frustrate the

stereochemistry. This effect generates disorder on local and global scales, observable

through density functional theory simulations [12, 182] (Figure 3.4a,b), analysis of bulk

diffraction intensities [183] (Figure 3.4c), and local scattering effects [12]. Particularly

in bulk ceramics, the Jahn-Teller effect imparts a rhombohedral or tetragonal distortion

to the lattice, which is seen as a decrease in intensity of the highest symmetry (200

planes) diffraction peaks, which will be most strongly affected as local symmetry is low-
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ered. Beyond investigations of the parent rocksalt, structural tunability has also been

observed in perovskite HEO Ba(ZrSnTiHfNb)O3, which is subject to random structural

distortions due to competing cation sizes [168] and possible preferred local coordi-

nations. The component phases are a selection of competing displacive ferroelec-

tric (BaTiO3) and well known paraelectric (BaZrO3, BaHfO3) oxides, which may drive

frustrated behavior. Raman signatures of thin film Ba(ZrSnTiHfNb)O3 show identify-

ing features of random atomic distortions [168] which, in BaTiO3 based ferroelectrics,

can be correlated to relaxor-like characteristics [184]. A manifestation of charge-lattice

coupling in these materials is the exceedingly low thermal transport that approaches

the amorphous limit in phase pure, crystalline samples [110, 185, 186, 115]. The

entropy will favor dense phases, which could be linked to short stiff bonds, but uses

charge, bond, and mass disorder to quench the thermal conductivity. In HEOs, local

chemical and structural disorder, e.g. the frustrated stereochemistry of Cu2+ sites,

work to scatter phonons and result in short mean-free paths [186] that drop the ther-

mal conductivity to values close to 2 W m–1 K–1 at room temperature in high-quality,

crystalline specimens. Through a combination of experimental extended X-Ray fine

structure (EXAFS) measurements and charge distributions found from density func-

tional theory (DFT) calculations [187], the authors report that the anomalously low

thermal conductivity is dominated by Rayleigh scattering from cation sites of differing

bond and charge states. From EXAFS, a distortion of the O octahedra about the Co

cation sites was observed, which agrees with the observation of charge disorder seen

on the Co cation in other works [12, 115] and is complemented by a similar observa-

tion of distortion about the Cu site in thin films [165]. All of these works agree that the

structural disorder seen in these materials is concentrated on the oxygen sublattice,

with the cations remaining in their approximate equilibrium positions. Recent reports

of ultra-low thermal conductivity have been observed in other entropy-stabilized crys-

tal structures [188, 189] beyond the 5-component rock salt oxides and even other high

entropy systems [185, 190], which indicates that it may be an intrinsic and emergent

property caused by the additional degrees of freedom (charge and structural disorder)

in high-entropy materials.

ESOs have indicated that they their structure may be extremely sensitive to small
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changes in chemistry [11] and deposition conditions [115], with the lattice constant of

deposited films shifting by as much as several % strain. This was seen with our films

in ref. [11] with small changes in the concentration of Co cations, and has recently

been observed by Kotsonis et al. with constant composition, but differing deposition

temperatures (T = 300◦ – 600◦ C). In samples deposited at low temperatures, the films

display tetragonally-distorted lattice constants with c > a, and sample deposited at high

temperatures the opposite is true, c < a. It was determined that the the Co oxidation

state is the primary driver of this large structural transition, agreeing with other results

[11, 12], where low temperature films contain primarily Co3+ and high temperature

films are almost pure Co2+. This effect clearly demonstrates the large charge-lattice

coupling inherent to ESOs, and belies the large degree of stereochemical control with

relatively small processing changes.

Recently, Brahlek et al. have reported control of concerted orthorhombic structural

distortions in La(CrMnFeCoNi)O3 due to competing phases from the constituent B-

site cations [191]. Of the bulk oxides, LaCrO3, LaMnO3, and LaFeO3 are orthorhom-

bic, while LaCoO3 and LaNiO3 are rhombohedral due to differences in octahedral

tilt angles. This concerted distortion has also been seen in high entropy nickelate

(LaPrNdSmEu)NiO3, in which the material goes through a low temperature metal-

insulator-transition [167] due to a concerted octahedral rotation, much like the parent

rare earth nickelates with the exception of LaNiO3. This transition is structural in na-

ture and agrees with the rule-of-mixtures estimation from the high entropy A-site, im-

portantly showing that existing site-specific correlated phenomena can be preserved

in the presence of entropy engineering. The transition, however, is broadened in tem-

perature compared to the parent material, potentially indicating the presence of local

variances of the concerted distortion and associated metal-insulator-transition. These

works demonstrate that entropy, beyond the creation of new phases, can be a valuable

knob to tune structural correlations.

Relatively early in the history of entropy-stabilized oxides, Berardan et al. reported

on the observation of a large dielectric constant (order of 104) in both (MgCoNiCuZn)O

and select compositional variations containing Li and Ga [16]. In these studies, how-
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ever, the largest dielectric constant lies at frequencies of 1 kHz or less with temperature

dependent loss tangents on the order of 1-10 at room temperature. This work was fol-

lowed up by the same group reporting on the superionic conduction of Li in these same

compositions [17], which they attribute to large space created in the lattice by uncorre-

lated atomic displacements. Since the observation of superionic transport, other works

have explored the use of ESOs for battery materials [192, 193, 194, 195] and catalysts

[196, 197], motivated by the material’s disordered surface structure and anomalous

thermodynamics. More recent studies on the dielectric behavior in perovskite oxides

have shown dielectric constants on the order of 40-80 up to approximately 106 Hz with

much lower loss tangents [163], in the neighborhood of 0.1.
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Figure 3.4: Lattice frustration in HEOs. a Histogram of the M-O-M bond angle ¸ from
DFT calculations, showing the change in structural frustration as a function of Cu cation
concentration (XCu), a Jahn-Teller active cation that will force rhombohedral distortions in
the rock salt lattice. b Plot of the M-O-M bond angle variance, demonstrating the tunabil-
ity of the structure via stereochemistry of the cation site. c X-ray diffraction pattern of bulk
(MgCoNiCuxZn)O high entropy oxides while varying the relative composition of Cu. As XCu
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to the Jahn-Teller distortion effecting the highest symmetry reflection. Parts a,b from ref [12].
Part c from ref [183]. Figure adapted from ref [164].

Other recent bulk studies on ESOs have explored the possibility that this electronic

behavior is partially mediated by oxygen or cation vacancy formation, and the role of

such defects in the high entropy system [198, 199, 200]. Grzesik and colleagues have

concluded that the (MgCoNiCuZn)O ESO lattice can harbor a large number of oxygen

defects (up to 7% at equilibrium) which are localized to the cation species which have
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the largest strain fields and unfavorable local thermodynamics [198, 199]. These high

number of defects could work in concert with local structural disorder to create sites

for electronic and ionic transport, helping to explain the material’s conductive-leaning

transport properties. This is in agreement with previous work from the high entropy al-

loy community, which, working with amorphous oxide materials naturally containing a

significant number of defects, has observed a very low electrical resistivity [201, 202].

Further work on (CeLaPrSmY)O2 high entropy fluorite has demonstrated that the band

gap and crystalline structure of the material can be tuned via the oxygen stoichiometry

due to hybridization of the O and rare earth atoms [203].

3.2.2 Magnetism

In oxides, the magnetic exchange between two transition metal cations involves the

nonmagnetic oxygen anion as an intermediate. The atomic magnetic moments are

realized by the partially filled 3i shell and Hund’s exchange. However, the interatomic

exchange is mediated through the fully occupied 2p shells of the doubly charged O2–

anions. The interatomic exchange occurs by the hopping or virtual hopping of electrons

between the filled 2p shell of the oxygen and the partially occupied 3d shell of the tran-

sition metal, these are the so-called double exchange and superexchange interactions,

respectively. Double exchange can be found in mixed-valence manganites and leads

to ferromagnetic order and conduction [204]. However, superexchange leads to anti-

ferromagnetic or ferrimagnetic insulators which is most prevalent in magnetic oxides.

Thus, the superexchange interaction will primarily be our focus. The strength and sign

of which is dependent on the degree of 3d orbital filling of the metal cations and the

bond angle between the 2p and 3d shells as described by Goodenough-Kanamori-

Anderson rules [204, 205, 206]. Perhaps most critically for our discussion, as the

superexchange interaction is short-range, the emergence of magnetic order is criti-

cally dependent on the density of magnetic cations, which must exceed a percolation

threshold, and bonding, which can be frustrated by the lattice topology and disorder

[12, 207, 113, 208]. Naturally, the magnetic dilution can be changed with composition

but the local and global structure of high-entropy oxides can also be tuned through de-

position conditions and composition, thus providing pathways to investigate and tune
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the magnets and roles of disorder in high-entropy systems. Frustrated magnetism

has attracted recent study due to the computational applications and rich physics of

spin glasses [209, 210], spin ices [9, 211], and spin liquids [212, 213]. These phases

generally arise due to strong localization of electrons and competing magnetic interac-

tions, such as in a trigonal lattice or between ferromagnetic-antiferromagnetic nearest

neighbor exchange [214]. Being a disorder driven physical property, this presents an

opportunity for HEOs, as these have already been shown to present concerted phe-

nomena [191], as well as show strongly localized physics [215] and frustrated magnetic

interactions [12, 116, 216]. Below we review recent work that investigates the mag-

netic ordering and frustration in magnetically dilute entropy-stabilized oxides and its

tunability with magnetic dilution and disorder.

The rocksalt (MgCoNiCuZn)O entropy-stabilized oxide consists of three magnetic

binary constituents (monoclinically-distorted rocksalt CoO, rhombohedrally-distorted

rocksalt NiO, and tenorite/rocksalt CuO). The magnetic order in binary rocksalt oxides

with more than half-filled 3d-shells is typically antiferromagnetic due to the strong an-

tiferromagnetic superexchange interaction along the 180° metal-oxygen-metal bonds

[204]. This order, however, depends critically on the density of magnetic cations ex-

ceeding a percolation threshold and frustration of the antiferromagnetic bonding by

lattice topology. In fact, rocksalt CoO, NiO, and CuO are all antiferromagnetic with a

strong antiferromagnetic interaction along the 180° metal-oxygen-metal bonds, while

tenorite CuO is monoclinic with long range antiferromagnetic order. As only three of

the five cations are magnetic and the disorder of the oxygen sublattice due to cation

radii differences and the Jahn-Teller distortion from the Cu2+ cation [12, 182, 183] (Fig-

ure 3.4a,b), the anticipated ground state magnetic order becomes unclear.

Further work from two independent research teams on bulk polycrystalline speci-

mens of (MgCoNiCuZn)O using neutron, X-ray synchrotron, and magnetometry mea-

surements corroborated the prior work and shed new light on the details of the order-

ing [116, 117]. Neutron diffraction revealed ferromagnetic 111 planes that are antifer-

romagnetically coupled between neighboring planes and magnetic moments oriented

along 〈112̄〉 directions. Interestingly, this is the same magnetic order (G-type) observed
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in NiO. The ordering was found to emerge below 120 K demonstrating the emergence

of long-range G-type antiferromagnetic order with the cation moments oriented along

the 〈112̄〉. A sluggish change in the order parameter and the lack of a sharp peak in

the heat capacity measurements through the magnetic transition temperature identi-

fied by both neutron diffraction [116] (Figure3.5 and muon spin resonance experiments

[216] also indicates a glassy/disorder element to the magnetic transition.

Meisenheimer et al., reported on the magnetic ordering, anisotropy, and ordering

temperature in (MgCoNiCuZn)O [11] and compositional variants using thin films. This

was done using thin film “exchange bias” heterostructures which consist of a thin soft

ferromagnetic layer, such as permalloy (Py), on top of a 70 nm thick (MgCoNiCuZn)O

single crystal film. In exchange bias, the hard spins at the surface of the antiferro-

magnet will interact with the relatively soft spins in the ferromagnetic layer, allowing

magnetic information to be read from the AFM using magnetometry. This technique

is not only extremely sensitive to disorder, being driven by the uncompensated spins

at the surface which are allowed to interact, but is one of the few methods for char-

acterizing insulating thin film antiferromagnets. In these thin film exchange coupling

measurements, the magnetic order and ordering temperature can be inferred by the

modification of the soft ferromagnet’s anisotropy at the onset of magnetic ordering in

the oxide layer [12, 217, 218]. This coupling manifests as a broadening (coercivity en-

hancement) and horizontal shift (exchange bias) of the soft magnet’s hysteresis loop

as well as a divergence of the field cool and zero field cool moment versus temperature

curves at the ordering temperature.

Temperature dependent magnetometry measurements of the heterostructure per-

formed along differing crystallographic direction reveal long range antiferromagnetic

order in the entropy-stabilized oxide below 165 K [11]. The antiferromagnetic na-

ture of the oxide is made from the observation of anisotropic magnetic exchange bias

between the [100] and [110] directions and the exchange coupling disappearing at

the ordering temperature. It was also observed that the exchange bias observed at

low temperature reached approximately 10x the exchange bias observed in a CoO/Py

control sample. Exchange bias is mediated by pinned uncompensated spins in the
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Figure 3.5: Antiferromagnetism of rock salt (MgCoNiCuZnO)O. a Neutron diffraction
spectrum of a bulk sample showing the development of the (½ ½ ½) magnetic diffraction
peak across the Néel temperature. b Normalized area of the peak in a, showing the same
long glass-like transition to the antiferromagnetic state. c Exchange biased hysteresis loop
from thin film permalloy/(MgCoNiCuZn)O at 10 K along [100] showing that it is antiferromag-
netic with a large uncompensated moment. d Moment versus temperature curve of the same
sample, showing the long, glassy transition to the antiferromagnetic state. a,b from ref [116]
c,d from ref [12]. Figure adapted from ref [164].

antiferromagnetic layer at or near the interface. Thus the inclusions of non-magnetic

cations and structural disorder may be responsible for this extreme behavior [12].

The magnetic properties have been characterized in other oxide crystal structures

including spinels [219, 162, 220] and perovskites [221, 215]. In spinels, the Néel

temperature and magnetic saturation tends to follow continuum trends, where as the

magnetic lattice is diluted, the ferrimagnetic transition temperature and the saturation

magnetization both decrease. Ferrite-based spinels of the type (MgCoNiCuZn)Fe2O4

tend to be magnetically soft, with coercive fields on the order of ≈ 100 Oe, whereas,

more interestingly, chromite-based spinels are much harder, with coercive fields on the

order of as much as 1 T, and display magnetic inconsistencies that belie their glassy

nature. For example, (MgCoFeNiCu)Cr2O4 spinels show a large field dependent Néel
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temperature and magnetization, which changes from 70-120 K under different train-

ing fields [220] (cooled in 1000 Oe and 100 Oe respectively). Musicó and colleagues

attribute this observation to the existence of ferromagnetic regions before the critical

temperature which, when saturated, increase the net magnetization and compete with

overall ferrimagnetic order.

A similar result is reported for La(CrMnFeCoNi)O3-type perovskites, where an in-

trinsic exchange bias-like effect is attributed to the formation of small local ferromag-

netic regions contributing to the magnetization. The authors confirm this using Moss-

bauer spectroscopy, showing that the Fe moments in the HEO are in a mix of fer-

romagnetic and antiferromagnetic states (Figure 3.6) caused by competing superex-

change and double exchange reactions between neighboring cations [215]. This is an

exciting result because it is directly analogous to the formation of ferroelectric PNR

discussed above, providing evidence that these magnetically analogous phenomena

may be possible in an HEO and indicating the presence of competing ferroic orders. It

was also found that, as the A site cation size changes and the structure deviates away

from the ideal cubic perovskite, the frustration of the magnetic lattice (read through

the Néel temperature) increases in a quasilinear manner. It is argued that this is due

to increasing frustration of the octahedral cage, paralleling the complementary result

found in the seminal ESO rock salt in reference [12]. When these same materials

were deposited as single crystalline films with varying strain states [168], it was found

that saturation magnetization scales with the in-plane strain, seemingly supporting this

conclusion. These observations provide evidence of frustrated and disordered mag-

netism in HEOs, with direct analogues to existing relaxor materials. This indicates that

engineering of the magnetic phase in HEOs should be achievable with both new and

existing synthesis techniques. In the short term, the natural extension of these mate-

rials to frustrated magnetic systems such as spin glasses and liquids is promising.

Frustrated magnetism in spin glasses has been targeted due to its similarity to bio-

logical computing, with the study of spin glasses spurring advancement in the fields of

neuromorphic computing and machine learning [209, 222, 223, 224]. This is because a

magnetically frustrated system, caused by competing ferromagnetic and antiferromag-
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Figure 3.6: Magnetic nanoregions. Fe Mossbauer spectroscopy showing the magnetic
structure of La(CrMnFeCoNi)O3 below the Néel temperature, in which ferromagnetic nan-
oclusters are embedded in the AFM/PM matrix through the broad transition. From ref. [215].
Figure adapted from ref [164]

netic interactions within the material, has a large number of possible frozen metastable

states, with coherence times that can be on the order of hours to days [210, 225]. As

the materials is cooled below its transition temperature, the spins will freeze into a

disordered configuration that is not only a function of the input (magnetic field, cooling

rate, etc.) but will still respond slowly to an external stimulus. Due to a nonlinear phase

response (i.e. a different frozen spin configuration due to differences in magnetic field,
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cooling temperature, time, etc.), these systems have long been used to understand

processes of neural network computing [226, 227] and dynamics in other metastable-

phase analogs [210, 228, 229, 230].

From a materials perspective, these materials can be characterized by a frequency

dependent response to AC magnetic field (much like relaxor ferroelectrics), long, field

dependent transition periods, and slow, nonlinear time evolution [114, 231, 8, 232].

This glassy response to magnetic field has been observed in bulk antiferromagnetic

ESOs [116] (in Li containing rocksalt oxides), where a small frequency dependence

was seen in in the transition temperature between 100 Hz and 10 kHz. This should

be a natural extrapolation of the current knowledge about magnetism in these ma-

terials, as local superexchange interactions will compete between ferromagnetic and

antiferromagnetic depending on the neighboring species [11, 215]. Theoretical work

[233] on (MgCoNiCuZn)O observes that the dilute magnetism in these materials be-

haves much like their antiferromagnetic rock salt counterparts CoO and NiO, which

go through multiple magnetic phase transitions as the cation lattice is diluted with dia-

magnetic species [234, 235]. As both of these materials demonstrate frustrated AFM

and true spin glass regions, it is reasonable to conclude that this same phenomena

is reproducible in the HEO. Indeed this idea of using exchange bias from a spin glass

to explore and tune the magnetic disorder in the system was explored recently [11],

showing that the magnetic exchange in these materials can be controlled over a very

large range, opening a pathway for further understanding of these phenomena.

HEOs is a nascent field and guidance can be drawn from the high-entropy alloy

(HEA) community that has existed for close to 20 years. Much of the work in HEAs is

concerned with mechanical behavior [236, 237, 101, 105, 109], however, there exists a

body of work on magnetism [238, 239, 240], phase stability [241, 242], and defect for-

mation/transport [243, 244] that is directly relatable to discussions on correlated mate-

rials. For instance, it has been observed in HEA CoCrMnFeNi that a FCC-HCP phase

change can be driven using high magnetic field [242], showing a distinct spin-lattice

coupling that may be valuable to the study of disordered magnetic materials. HEOs

have been composed of constituents with different structures and magnetic interac-
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tions, however the potential structural and magnetic diversity within existing transition

metal HEAs is much greater than the HEOs studied currently. Expanding the number

of competing magnetic and structural parent phases should increase frustration and

potentially create nearly degenerate ground states for the formation of spin glasses,

ices, and liquids or controllable phase transitions.

3.3 Concluding Remarks

HEOs are an emerging field of materials that show significant promise, not only for

mechanical applications [186, 188], but for correlated electron behavior, a field where

oxides display a wide range of fantastic properties [2, 212, 174, 175]. A significant

draw of high-entropy effects is the enhanced solubilities of typically immiscible cations,

which allows for stabilization of species in typically unfavorable environments due to

competing stereochemistry [12, 182, 183], charge [186, 187], or magnetic ordering

[116, 117, 233]. This effect can even be further extended by carefully controlling the

kinetics with modern materials techniques such as nanoparticle synthesis or PVD,

further extending the potential phase space of these many-component materials and

offering an unparalleled tunability of charge, spin, orbital, and lattice degrees of free-

dom. Combined with the fact that oxides already offer an exciting playground for the

study of new physical phenomena and technologically important properties, the ad-

vancement of the field is a direct opportunity for engineering and studying HEOs as an

avenue for correlated electron systems. In addition to their unprecedented structural

tunability [11, 245, 167, 168] HEOs display the ability to be grown on a variety of sub-

strates [110, 221], including amorphous materials, resulting in a substrate versatility

for potential applications. This combined with their relatively low deposition tempera-

tures may make these materials extremely valuable for the electronics industry.

There are still a number of questions to be answered about HEOs, namely the role

of disorder in functional phenomena [12, 186], the role of defects [198, 199], and the

stability of new phases and compositions [246, 247]. Though the field is still develop-

ing, inspiration can come from existing work on functionality in the high-entropy alloy
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community on magnetism [238, 239, 240], defect formation/transport [243, 244], and

phase stability [241, 242]. HEOs have the exciting potential to become an extremely

functionally relevant class of materials by incorporating new methods to enhance sol-

ubility and disorder with existing materials synthesis knowledge and techniques.
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Chapter 4:

Disorder-Driven Enhancement of

Interface Exchange

Entropy-stabilized materials are stabilized by the configurational entropy of the

constituents, rather than the enthalpy of formation of the compound. A unique

benefit to entropy-stabilized materials is the increased solubility of elements, which

opens a broad compositional space with subsequent local chemical and structural

disorder resulting from different atomic sizes and preferred coordinations of the

constituents. Known entropy-stabilized oxides contain magnetically interesting con-

stituents, however, the magnetic properties of the multi-component oxide are not

obvious. Significant frustrations in the chemical, structural, and magnetic lattices of

the oxide, arising from composition, preferred coordination, and magnetic dilution

respectively, may lead to novel or enhanced functional phenomena. In this chap-

ter, we examine the role of disorder and composition on the exchange anisotropy

of permalloy/(Mg0.25(1–x)CoxNi0.25(1–x)Cu0.25(1–x)Zn0.25(1–x))O heterostructures.

Anisotropic magnetic exchange and the presence of a critical blocking temperature

indicates that the entropy-stabilized oxides considered here are antiferromagnetic in

spite of the significant dilution from nonmagnetic elements. Changing the composition

of the oxide tunes the disorder, exchange field and magnetic anisotropy. I show that

this tunability can be exploited to enhance the strength of the exchange field by a factor

of 10x at low temperatures, when compared to a canonical exchange bias system

such as permalloy/CoO. Significant deviations from the rule of mixtures are observed
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in the structural and magnetic parameters, indicating that the crystal is dominated by

configurational entropy. These results reveal that the unique characteristics of entropy

stabilized materials can be utilized and tailored to engineer magnetic functional

phenomena in oxide thin films.

4.1 Experimental Motivation

In an entropy-stabilized material, the configurational entropic contribution (∆iconf)

to the Gibbs’ free energy, given by ∆G = ∆H – T∆Sconf, drives the formation of a

single phase solid solution [102, 104], exemplified in Figure 4.1. These materials have

attracted significant interest due to the apparent deviations from Gibbs phase rule and

desirable properties such as increased hardness, toughness, and corrosion resistance

[102, 248, 100, 249, 109]. In particular, high entropy materials have been targeted

for use in extreme temperature applications, as entropy domination prevents phase

segregation and inhibits defect formation at high temperatures [105, 250, 185, 251].

While this concept was initially discovered in oxides, recent work [15] has extended

the space of high-entropy materials to include disordered binary oxides, where

solid solution behavior is observed across the cation sites. As the magnetic and

electronic properties of oxides are strongly correlated to their chemistry and electronic

structure [252, 253, 59], the increased solubility of species and disorder inherent to

entropy stabilization could lead to exotic and colossal functional properties. Here, we

propose to take advantage of the inherent chemical and structural disorder in entropy

stabilized oxides to enhance the exchange bias in ferromagnetic/antiferromagnetic

heterostructures.

Due to the chemical disorder, entropy-stabilized oxides provide a system for

investigating the contribution of configurational entropy to magnetic structure and

interface exchange. The exchange bias effect is thought to be driven by frustrated

or uncompensated spins near the ferromagnet (FM)/antiferromagnet (AFM) interface

[254, 255], thus the local chemical disorder inherent to high entropy materials

may result in a large increase of the interface exchange coupling through frus-
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trated superexchange and uncompensated spin creation via the incorporation of

non-magnetic species [256, 114, 257, 258]. In the parent composition, rocksalt

(Mg0.2Co0.2Ni0.2Cu0.2Zn0.2)O, three of the five binary oxide constituents are antifer-

romagnetic, with Néel temperatures of 289 K, 523 K, and 230 K for CoO (rocksalt),

NiO (rocksalt), and CuO (tenorite) respectively. Additionally, two of the species, Cu

and Zn, prefer tetrahedral coordination which may lead to a large degree of structural

disorder in the material [165, 183, 182]. Considering these observations, here I

present a study of FM/(Mg0.25(1–x)CoxNi0.25(1–x)Cu0.25(1–x)Zn0.25(1–x))O exchange

bias thin film heterostructures that reveals the studied films are antiferromagnetic

with properties which are strongly dependent on Co concentration, and by extension

the degree of disorder. Due to compositionally-driven changes to the magnetic

structure, the exchange field can be increased by a factor of 10x at low temperatures

[254, 259, 260], when compared to a more conventional permalloy/CoO heterostruc-

ture.

XCo = 0.33
XCo = 0.27
XCo = 0.20

111 002

022

002

θ - 2θ (°) θ - 2θ (°)

Figure 4.1: X-ray diffraction of Co-series films. „ – 2„ X-ray diffraction of the targets of
varying composition in the range of the 111, 002, and 022 diffraction peaks. These curves
were obtained on a diffractometer that has Cu K¸1 and Cu K¸2 radiation. Lattice parameters
were determined from the Cu K¸1 peaks using Cohen’s method. Comparing the measured
lattice parameters from the targets to those of the films, we retrieve our out-of-plane strain
values of -2.2%, -3.6%, and -4.5%.
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Figure 4.2: XPS of Co-series films. X-ray Photoelectron Spectroscopy (XPS) of bare
entropy-stabilized oxide films showing a the full spectrum and b a high-resolution scan about
the Co 2p peak. The included table shows the quantification of the mole fractions from the
XPS spectra above. The differences in concentration from the expected amounts are within
the error of the scan resolution. The Co concentrations are highlighted for visibility. The
shapes and positions of the XPS peaks are invariant for all the compositions in this study,
indicating that there are no changes in the oxidation state as the composition is varied.

Table 4.1: Concentration in Co-series films. Calculated from Fig. 4.2

Element XCo = 0.20 XCo = 0.27 XCo = 0.33
Co 0.199 ± 0.026 0.273 ± 0.013 0.329 ± 0.027
Ni 0.196 ± 0.025 0.180 ± 0.008 0.170 ± 0.014
Cu 0.204 ± 0.032 0.180 ± 0.022 0.164 ± 0.033
Zn 0.201 ± 0.029 0.180 ± 0.013 0.162 ± 0.018

4.2 Sample Deposition

Thin films of (Mg0.25(1–x)CoxNi0.25(1–x)Cu0.25(1–x)Zn0.25(1–x))O (x = 0.2, 0.27, 0.33),

hereafter denoted X = 0.20, X = 0.27, and X = 0.33, were grown by pulsed laser

deposition on single crystal MgO (001) substrates and the nominal composition was

confirmed using X-ray photoelectron spectroscopy (XPS) (Figure 4.2). A varying

composition of Co was chosen to evaluate the effect of entropy and magnetism in

these samples because CoO is a well-studied AFM that has a Néel temperature of

289 K, conveniently near room temperature and accessible for our measurements.

Above 0.33 mole fraction Co in the samples, the growth conditions begin to drift and

the films are no longer of comparable quality and thus not studied here (X = 1 = CoO

being the exception). A schematic of the structure is shown in Figure 4.4a. This
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Figure 4.3: RSM of Co-series films. Reciprocal space maps of the film heterostructures
about the 022 diffraction peak. The noncollinearity of the peaks with respect to the [202] re-
ciprocal space vector (illustrated by the dashed lines) shows that the in-plane lattice constant
of the film is pinned by the substrate. Using the 2„ – ! values taken at Qx=0, the in-plane lat-
tice constant of the film was determined using Cohen’s method. In all three cases, there is an
approximately 0.01% difference between the substrate and film, agreeing with the observa-
tion that the peaks lie at the same Qx position.

geometry was chosen to minimize thickness effects in the AFM and to maximize

exchange coupling [217].

X-ray Diffraction 2„ – ! scans, Figure 4.4b, show that our films are single phase,

single crystalline, and epitaxial to the (001)-oriented MgO substrate. The Laue

oscillations about the film peaks in Figure 4.4b show that the film surfaces are smooth.

The period of the Laue oscillations about the 002 diffraction peak (Figure 4.4b) and

X-ray reflectometry (not shown) agree with our expected thickness of 75-80 nm.

As we increase the mole fraction of Co in our oxide films, an approximately linear

decrease in the out-of-plane lattice constant is observed, shown in Figure 4.4c, while

the in-plane lattice constant remains approximately constant due to epitaxial clamping

from the substrate (Figure 4.3). Curiously, this is the opposite trend from what would

be predicted using Vegard’s law, using a weighted average of the ionic radii of the

constituent species. For this calculation, all cations were assumed to be in a 2+
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Table 4.2: Measured lattice constants of Co-variant samples. Calculated from Fig. 4.3

c0 (out-of-plane, Å) a0 (in-plane, Å) Difference (in-plane, %)
XCo=0.20
substrate 4.205 ± 0.0021 4.205 ± 0.0021

film 4.141 ± 0.0021 4.205 ± 0.0021 0.011
XCo=0.27
substrate 4.208 ± 0.0022 4.208 ± 0.0022

film 4.091 ± 0.0022 4.207 ± 0.0022 0.0090
XCo=0.33
substrate 4.207 ± 0.0022 4.207 ± 0.0022

film 4.056 ± 0.0022 4.208 ± 0.0022 0.0091

oxidation state based on XPS spectra (Figure 4.2) and either all octahedrally (red) or

with Cu2+ and Zn2+ tetrahedrally (purple) coordinated [261]. Interestingly, the bulk

lattice parameter (blue points) is in fair agreement with Vegard’s law with all cations

octahedrally coordinated. It has been observed in entropy-stabilized oxides that the

lattice is locally distorted due to the presence of species that tend to Jahn-Teller

distort, specifically Cu2+, which prefers a tetrahedral coordination to break orbital

degeneracy [183]. Tetrahedrally coordinated Cu2+ and Zn2+ are much smaller (0.71

Å and 0.74 Å respectively [261]) than octahedral Cu2+ and Zn2+ (0.87 Å and 0.88 Å

respectively), potentially leading to a much smaller expected lattice constant. This

does not, however, explain the negative trend with increasing Co incorporation seen in

the lattice constant. This trend is also opposite to what would be expected from strain

effects: as Co is the largest of the constituent cations, increasing the concentration

of Co should create a larger compressive strain in-plane due to clamping and the

film would be expected to expand out-of-plane in accordance Hooke’s law [262]. The

contraction observed in the films is very large, corresponding to a strain of -2.2%,

-3.6%, and -4.5% with respect to the bulk for X = 0.20, X = 0.27, and X = 0.33

respectively (Figure 4.3). If the observed trend in the lattice constant cannot be

explained by potential changes in chemistry or epitaxial strain, we assert that it may

be due to the structural distortions caused by the preferred coordination of the Cu

atoms locally expanding the lattice. If this were the case, as a similar effect has been

observed in some Perovskite systems [263, 113], reduction in the concentration of

Cu could be expected to shrink the lattice constant faster than the increase due to
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higher concentration of larger (0.885 Å) Co2+ atoms. As the strain values observed

from XRD are large, we expect physical distortion from the ideal rock salt structure is

large and thus there is a significant corresponding influence on the distortion driven

interface exchange coupling [264, 265].

MgO substrate

(MgCoXNiCuZn)O

Py

Pt

80 nm

3 nm

5 nm

[001]

[110]

[100]

a

XCo = 0.33
XCo = 0.27
XCo = 0.20

2θ - ω (°) XCo

b c

*

002

Figure 4.4: Structural characterization of exchange bias stacks. a Diagram
showing the exchange bias heterostructure grown by pulsed laser deposition.
(Mg0.25(1–x)CoxNi0.25(1–x)Cu0.25(1–x)Zn0.25(1–x))O is denoted as (MgCoxNiCuZn)O in the
schematic. b 2„ – ! X-ray diffraction (XRD) data showing the substrate peak at 42.9°, marked
with *, and film 002 peaks at 43.6°, 44.19°, and 44.59° for x = 0.20, 0.27, and 0.33, respec-
tively. The films are single crystal and epitaxial with out-of-plane lattice constants that are
dependent on Co concentration. The Laue oscillations about the film peaks show that the in-
terfaces are flat and agree with our expected thicknesses of approximately 80 nm. The peak
at 46° in the x = 0.20 sample belongs to Pt 002 and results from a slightly thicker capping
layer on the structure (7 nm, as opposed to 4 nm). c Lattice constant derived from part b and
from the bulk (target) materials (Figure 4.1) plotted as a function of increasing Co concentra-
tion. Lattice constants were determined using Cohen’s method with calculated uncertainty
smaller than the marker. The films display an opposite trend than would be expected from
Vegard’s law using the ionic radii values of either octahedrally (red) or tetrahedrally (purple)
coordinated Cu2+ and Zn2+, where the lattice constant should linearly approach that of CoO
(dashed line). Interestingly, bulk values are in fair agreement with Vegard’s law with all cations
octahedrally coordinated. The deviation may be due to thermodynamic defects as a result of
high temperature quenching.

4.3 Magnetic Analysis

A bias field and coercive field enhancement are the hallmarks of exchange bias

behavior in FM/AFM bilayers. To explore the possibility of exchange bias in

FM/entropy-stabilized oxide bilayers, field-dependent magnetometry measurements
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were made on the Pt/Py/(Mg0.25(1–x)CoxNi0.25(1–x)Cu0.25(1–x)Zn0.25(1–x))O samples

presented in Figure 4.4. Upon cooling the samples from 350 K to 10 K in a 2 T

magnetic field, a significant exchange bias (0.5-1 kOe) and coercive field (1.5-2.5

kOe) are observed along [100] and [110] crystallographic directions at 10 K (Figure

4.5). Consistent with exchange bias bilayers, the bias field changes sign with reversed

cooling field polarity and the coercivity is enhanced with respect to that from a

Pt/Py/MgO control sample at 10 K (0.14 kOe). Magnetic anisotropy is present in all

cases with the [110] axis being the easier axis. This becomes more pronounced as

the concentration of Co is increased. The ratio of the relaxation energies between the

[110] and [100] crystallographic directions, A110/A100 , changes from 0.26, to 0.23, to

0.12 for X = 0.20, 0.27, and 0.33 respectively, revealing that [110] becomes the more

favorable axis as Co concentration increases. For the X = 0.27 and X = 0.33 samples,

the loops along the [110] axis become sharp indicating a [110] easy axis. The

observed anisotropy indicates the presence of long range magnetic order within the

entropy-stabilized oxide and, with exchange bias, is suggestive of antiferromagnetism.
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Figure 4.5: Magnetic hysteresis of Co-variant exchange bias samples. Plots of mag-
netic hysteresis at 10 K showing the exchange bias of the entropy-stabilized oxide exchange
bias heterostructures containing varying compositions of Co. An increase in the concentra-
tion of Co changes the magnitude of the bias field and the anisotropy. The [110] easy axis
anisotropy increases with molar fraction of Co.

In exchange bias FM/AFM systems, the coercivity enhancement and exchange

bias must vanish at the blocking or Néel temperature. Figures 4.7a and b show

temperature dependent exchange bias and coercive fields, along with those obtained

from Pt/Py/CoO/MgO and Pt/Py/MgO reference samples, extracted from isothermal

hysteresis loops taken every 25 K. Above approximately 200 K, the bias field and
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enhanced coercive field (with respect to a Pt/Py/MgO control sample) vanish for

the entropy-stabilized oxide bilayer samples. For a more accurate determination of

the blocking temperature (TB) as a function of Co concentration, field cooled (FC)

and zero field cooled (ZFC) moment versus temperature curves (Figure 4.6) were

measured. TB was determined by the intersection of the FC and ZFC curves and

reveals the onset temperature of the interaction between the two magnetic layers.

A linear increase in TB is observed (Figure 4.7b) with increasing Co incorporation.

The vanishing of the exchange bias field and coercive field enhancement above

the blocking temperature, combined with the observation that films with no Py layer

show no measurable magnetic moment, indicates that these entropy-stabilized oxides

are antiferromagnetic. The results of Figures 4.5 and 4.7 also show that as the

concentration of Co is increased, the entropy-stabilized crystal can be engineered

to take on properties of the constituents, such as increased anisotropy and blocking

temperature [257, 258, 266], while still utilizing the increased disorder inherent to the

system.
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Figure 4.6: MVT curves of Co-variant exchange bias samples. Field cooled (FC) and zero
field cooled (ZFC) moment versus temperature curves for the exchange bias samples. The
curves are offset vertically for clarity. We can directly extract the blocking temperature (TB)
of the samples from the temperature where the FC and ZFC curves differentiate beyond the
noise floor, noted by the black arrows. The curves are very wide, spanning approximately 50
K, indicative of a sluggish phase change.

In all our studied entropy-stabilized oxides, the exchange bias is significantly
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greater than what is observed in the Pt/Py/CoO/MgO heterostructure (Figures 4.7a

and 4.7b). Our measured values for the Pt/Py/CoO/MgO sample agree with published

results [254, 266], in which it was concluded that the spins on the (001) interface of

CoO are well compensated and thus result in a small exchange bias (approximately

0.1 kOe), even at low temperatures. Since it is known that there is significant

local structural and chemical disorder in entropy-stabilized oxides [165], it would be

expected that the magnetic lattice becomes frustrated on a local scale. This could

result in a significant increase in the exchange strength, as it has been observed that

exchange bias is strongly influenced by the density of disordered magnetic moments

at the FM/AFM interface [254, 255, 267, 208, 232]. We also suspect that this is

the cause of the anomalous shape in the hysteresis curves shown in Figure 4.5.

According to the domain state model for exchange bias, a strong interfacial coupling

between the FM and AFM can result in a large number of uncompensated moments

at the interface which show hysteretic behavior in a shape similar to that of our

experiments [268]. Additionally, in accordance with the domain state model, chemical

dilution is predicted, and experimentally seen, to increase exchange bias due to the

reduced energy cost for domain formation on impurity sites in the antiferromagnet

[269, 256].

The blocking temperature of the system is expected to be dominated by the

number (relative total fraction) of magnetic ions in the AFM and the strength of the

superexchange interaction between them. This trend is expected and agrees, in terms

of direction, with an estimation using the rule of mixtures from the Néel temperatures

of the constituent oxides, which assumes that the Cu2+ sites will tend to distort and

impart properties similar to those of the tenorite phase (iN = 230 K) instead of a

possible rocksalt phase, which may have a higher Néel temperature based on the

trend shown by MnO (TN = 122 K), FeO (TN = 198 K), CoO (TN = 289 K), and NiO

(TN = 523 K) rocksalts [270, 271]. The measured TB, however, is lower than would

be predicted and could be due to the local distortions inherent to the material which

break local symmetry and could frustrate superexchange interactions. A potentially

higher TN from Cu2+ in an octahedral coordination would only increase the observed

disparity. Additionally, a peak in both the coercive field and the bias field for X = 0.27
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Figure 4.7: Magnetic parameters of Co-variant samples. Plot of a coercive field and b
exchange bias field, measured along the [100] crystallographic axis, versus temperature for
entropy-stabilized oxide exchange bias heterostructures containing varying compositions of
Co, plotted with a Pt/Py/CoO/MgO heterostructure (labeled CoO in the figure) and Pt/Py/MgO
control sample. c The blocking temperatures (TB) extracted from Figure 4.6 (Measured),
along with our prediction using the rule of mixtures (Expected), obtained by taking a weighted
average of the individual Néel temperatures of the constituent binary oxides. The blocking
temperature deviates significantly from the rule of mixtures, but approaches the expected
value as the concentration is increased. The dashed line is provided as a guide to the eye. d
Plot showing the change in coercive (HC) and bias (HB) fields as a function of Co concentra-
tion along both the [100] and [110] crystallographic directions at 10 K. The dashed line at 75
Oe corresponds to the bias field in the Pt/Py/CoO/MgO control sample. Error bars are smaller
than the points for all plots.

is observed in Figure 4.7d. This could be due to a balance between the disorder

inherent to the entropy stabilized system, which would increase the exchange bias,

and a larger percent of magnetic ions, which would also be expected to increase

the exchange bias [269, 272, 256]. As the mole fraction of Co is increased, the

percentage of magnetic ions is greater, but the entropy of the structure decreases and

thus an optimal Co concentration for maximizing the exchange coupling is expected.

In summary, we show that by utilizing the inherent chemical and structural disor-

der of entropy stabilized oxides, we can engineer a 10-fold increase in the exchange

coupling with a ferromagnetic Py layer. Additionally, this phenomenon is strongly de-

pendent on the concentration of Co in the sample, showing a relationship between

chemical disorder and the density of uncompensated spins at the FM/AFM interface.
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Our results indicate that there are competing factors, degree of local disorder and

concentration of magnetic ions, resulting in conditions that give rise to a maximum ex-

change coupling. As the concentration of Co in the samples is increased, we see an

increase in the magnetic anisotropy along the [110] direction showing that, even with

this large degree of disorder, entropy stabilized oxides can be intelligently engineered

to take advantage of properties possessed by the constituent oxides while utilizing the

inherent advantages of entropy stabilization.
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Chapter 5:

Stereochemical Control of Magnetic

Frustration

Entropy-stabilized oxides possess a large configurational entropy that allows for the

unique ability to include typically immiscible concentrations of species in new config-

urations. Particularly in oxides, where the physical behavior is strongly correlated to

stereochemistry and electronic structure, entropic stabilization creates a unique plat-

form to tailor the interplay of extreme structural and chemical disorder to realize un-

precedented functionalities. Here, we control stereochemically-driven structural dis-

order in single crystalline, rocksalt, (MgCoNiCuZn)O-type entropy-stabilized oxides

through the incorporation of Cu2+ cations. We harness the disorder to tune the degree

of glassiness in the magnetic structure. Structural distortions driven by the Jahn-Teller

effect lead to a difference in valence on the Co cation sites, which extends to dilution

and disorder of the magnetic lattice. A spin glass model reveals that the fractional spin

ordering of the magnetic lattice can be tuned by 65%. These findings demonstrate

entropy-stabilization as a new tool for control of functional phenomena.

5.1 Experimental Motivation

Highly disordered, chemically homogeneous, single phase metallic and ceramic solid

solutions have attracted significant interest in recent years due to the observation of

enhanced physical properties and new emergent phases [102, 236, 109, 248, 101]. In
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high-entropy and entropy-stabilized materials, crystals with typically 5 or more species,

the large configurational entropy is thought to be a critical factor in the stabilization

of the phase [100, 273, 237, 106]. ESOs enable an unprecedented new degree of

chemical control in materials, as the technique can be used to incorporate typically im-

miscible concentrations of cationic species in an atypical coordination. As the proper-

ties of oxides are strongly correlated to their stereochemistry and electronic structure

[274, 208, 37, 211], ESOs thus present the opportunity to tune charge [186], lattice

[165, 182, 13], and spin [11, 116] disorders to new extremes in a single-phase, single-

crystalline material.

In a conventional binary rock salt oxide, such as MgO, NiO, or CoO, the cation

species sit on octahedrally-coordinated sites. The (MgCoNiCuZn)O-type rock salt

ESOs studied here, however, are expected to deviate from this ideal configuration

due to the presence of disordering species. Specifically, Cu2+ cations will tend to un-

dergo a tetragonal distortion from an octahedral configuration in order to break the

eg orbital degeneracy present in a d9 system (i.e. the Jahn-Teller (JT) effect). In

(MgCoNiCuZn)O, however, the Cu2+ cations are forced into the rock salt structure, in

competition with the JT effect, leading to a frustration of the atomic positions around

the site. This competition is expected to significantly impact the functional properties

and disorder [11]. Here we find that the crystalline lattice of (MgCoNiCuZn)O ESO thin

films is structurally distorted by this stereochemical frustration and drives a change in

the fraction of 3+/2+ Co cation oxidation states. We find that this structurally driven

change in oxidation state corresponds to the disorder in magnetic structure. Our re-

sults reveal that the unique characteristics of ESO single crystal thin films can be tuned

to large degrees to control of structural and chemical disorder and engineer magnetic

functional phenomena.

To this end, copper variant (Mg0.25(1–x)Co0.25(1–x)Ni0.25(1–x)CuxZn0.25(1–x))O (x =

0.11, 0.17, 0.20, 0.24, 0.27) and cobalt variant (Mg0.25(1–x)CoxNi0.25(1–x)Cu0.25(1–x)

Zn0.25(1–x))O (x = 0.20, 0.27, 0.33) ESO thin films were investigated to probe the in-

terplay of chemical and structural disorder on magnetic order. These compositions

were chosen systematically because Cu2+ cations will tend to distort the octahedral
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Figure 5.1: Structural characterization of Cu-variant samples. a Atomic resolution cross-
section HAADF-STEM micrograph of 90 nm thick ESO film on MgO substrate. b 2„ – ! XRD
spectra of Cu and Co variant ESO thin films. Only the 002 and 004 peaks from the ESO
film are present, showing phase purity and epitaxy. * indicates MgO 002 and 004 substrate
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Figure 5.2: Diffraction analysis of Cu-variant samples. a Reciprocal space map of
equimolar, x = 0.20 ESO, showing that the film is clamped to the substrate in the Qx direction
(in-plane). b Out-of-plane lattice constants of the Cu variant and Co variant ESO films deter-
mined using Cohen’s method. c Normalized peak intensities of the ESO 002 and 004 peaks,
showing a decrease in the peak intensity with increasing Cu. d Full-width at half-max (∆„) of
the 002 peaks in Fig. 5.1b, deconvolved with peak position, showing a significant increase in
the peak width with increasing Cu concentration and a small decrease with Co composition.

57



site, creating a mechanism of structural disorder. This effect has been observed both

in bulk [183], from diffraction analysis, and previously in thin film form [165] using ex-

tended X-ray absorption fine structure. Because these active sites are spread across

the crystal in large concentrations (1/5 of cation sites in an equimolar, 5-component

ESO), we hypothesize that this will create a concerted effect and drive structural frus-

trations across the whole system [183, 275]. In contrast, Co2+ prefers octahedral

coordination, minimizing structural disorder, and changes the average magnetic mo-

ment significantly (1.6 to 1.9 —B cation–1) [11]. Bulk (Mg0.2Co0.2Ni0.2Cu0.2Zn0.2)O

was previously shown, through neutron and AC susceptibility, to be antiferromagnetic

(AFM) with a degree of glassiness manifested in the sluggish paramagnetic (PM)/AFM

transition and temperature dependence of the peak in susceptibility [116]. This ma-

terial was also shown in the previous chapter to be AFM as a thin film, possessing

a large ferromagnetic (FM)/AFM exchange coupling [11] when capped with permalloy

(Py) in a heterostructure. As exchange bias is especially sensitive to magnetic frustra-

tion [276, 268] and provides an ideal method for studying magnetic disorder in these

systems, since the magnetic disorder of the oxide can be read out through effects on

the exchange interaction. Through this novel technique, we show that the Cu2+ con-

centration can be directly correlated to lattice, charge, and spin disorder in ESO thin

films, while the structure retains a high degree of crystallinity and phase purity.

Previous work has shown that the dominant exchange in ESO thin films

is antiferromagnetic [11, 116, 117], thus we deposited FM/ESO bilayers in

order to probe the exchange effects and evolution of magnetic order with

chemical and structural disorder in the ESO films. 80 nm thick single crys-

talline epitaxial films of(Mg0.25(1–x)Co0.25(1–x)Ni0.25(1–x)CuxZn0.25(1–x))O (xCu

= 0.11, 0.17, 0.20, 0.24, 0.27) (hereafter referred to as Cu variant) and

(Mg0.25(1–x)CoxNi0.25(1–x)Cu0.25(1–x)Zn0.25(1–x))O (xCo = 0.20, 0.27, 0.33) (Co

variant) were deposited on (001)-oriented MgO single crystal substrates. All ESO

films show excellent crystalline quality and phase purity by high-angle annular

dark-field scanning transmission electron microscopy (HAADF-STEM) and X-ray

diffraction (Figs. 5.1 and 5.3). The targeted composition was confirmed by X-ray

photoelectron spectroscopy (Fig. 5.4) to within the measurement resolution and the
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Figure 5.3: STEM analysis of Cu-variant samples. a Atomic resolution cross-section
HAADF-STEM micrograph of 90-nm-thick ESO film on MgO substrate. b, c Color compos-
ite FFT of HAADF-STEM image shows epitaxial relationship between layers. d-g Non-linear
regression analysis of 002 and 200 peaks showing the tetragonal distortion along the 002
(out-of-plane) direction in both xCu = 0.11 and 0.27. h EELS spectrum averaged over ESO
film region confirming the presence of Mg, Co, Ni, Cu, Zn, and O peaks.

Table 5.1: Composition of Cu-variant samples. Calculated from Fig. 5.4

Element xCu = 0.11 (%) xCu = 0.16 (%) xCu = 0.20 (%) xCu = 0.24 (%) xCu = 0.27 (%)
Co 27.9 ± 3.2 26.9 ± 0.9 24.9 ± 0.7 24.1 ± 0.6 21.2 ± 1.0
Ni 28.8 ± 2.1 27.2 ± 0.4 24.4 ± 0.9 23.7 ± 1.3 21.6 ± 1.3
Cu 15.2 ± 1.3 19.1 ± 1.5 25.6 ± 1.7 25.6 ± 3.4 34.8 ± 0.8
Zn 28.1 ± 0.6 26.8 ± 1.0 25.2 ± 0.6 22.6 ± 0.6 22.4 ± 0.8

film surface roughness was determined to be approximately 100 pm RMS or less

by atomic force microscopy. The ESO films were capped with 3 nm of Py as a FM

layer, and approximately 20 nm of Pt to prevent oxidation of the Py [11]. We measure

a saturation magnetization of approximately 800 emu cm–3 for our permalloy films,

agreeing with the bulk value.
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Figure 5.4: XPS composition of Cu-variant films. XPS shows that compositions are nom-
inal to within 1% based on fits to the data. This does not, however, take into account the cal-
ibration error of the instrument which is approximately 3%. XPS spectra were obtained us-
ing a Kratos Axis Ultra XPS with monochromated Al source and using a charge neutralizer.
Spectra were taken from 1200 to 10 eV and high-resolution scans were taken about the Co,
Ni, Cu, and Zn 2p peaks. These high-resolution scans were used for quantification.

5.2 Tuning of Structural Disorder

In the typical Jahn-Teller distortion of Cu2+, the axial bond will elongate and the

basal bonds will contract in order to break the octahedral symmetry and remove the

degeneracy of the unpaired electron in the eg orbital [275]. This, naturally, gives rise

to a bimodal distribution of bond lengths and a tetragonal distortion of the cation site.

From our XRD spectra, we observe this structural distortion as a function of Cu com-

position. The peak intensities of the 002 and 004 film diffraction peaks, normalized to

the substrate peak intensity and then scaled, show a linear decrease with increasing

concentration of Cu (Fig. 5.2d), consistent with an increasing tetragonal or monoclinic

distortion of the lattice that breaks symmetry about the 002 peak [183]. Additionally,

the peak width increases with the concentration of Cu (Fig. 5.2d), implying a large

degree of correlated disorder in the system [277]. In contrast, the relative intensity

and peak widths of the 002 peaks for the Co variant films remain invariant (Fig.

5.2c,d). Here, the broadening of peaks is consistent with atom displacements that

are larger near an impurity atom in a randomly dilute solid solution (Huang scattering

[278]). Uncorrelated displacements (known as Debye-Waller scattering [279, 280])

and uncorrelated chemical disorder (known as Laue monotonic scattering [281]) do

not broaden Bragg peaks in the same fashion, therefore we are able to directly tie and
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tune the degree of global structural disorder in the material to the concentration of the

Jahn-Teller species.

Atomic-resolution HAADF STEM of the ESO film (Fig. 5.1a and Fig. 5.3) confirms

single crystal growth and one-to-one atomic epitaxy at an atomically sharp interface

with the substrate. We observe that crystal symmetry is broken through a contraction,

relative to the substrate, of the lattice along the growth direction (tetragonal distortion)

as seen by an expansion of the 00n lattice peaks in Fourier space. This change in

lattice constant is correlated to Cu concentration, as the out-of-plane lattice constant

increases measurably when comparing the 27% Cu sample to the 11% Cu sample.

The Fourier transform was measured over a 20 nm2 field of view, and in this sense, is

a local representation of the film structure. STEM was done in collaboration of Sung

S.H., J. Gim, and R. Hovden, referenced in [12].

From density functional theory (DFT) calculations of our Cu variant ESOs, we can

observe this structural distortion on an atomic scale. DFT calculations were performed

based on the projector augmented wave (PAW) method [282, 283] using the Vienna

Ab initio Simulation Package (VASP) [284, 285, 286, 287]. Utilized pseudopotentials

included 9, 2, 12, 10, 11, and 6 valence electrons for Co, Mg, Zn, Ni, Cu, and O

respectively. A 900 eV plane-wave cutoff and Monkhorst-Pack k-point grids with a

density of at least 20 k-points Å–1 were used to obtain energy convergence of under

1 meV/atom. Ion relaxations with fixed lattice constants were performed using the

functional of Perdew-Burke-Ernzerhof [288]. Forces on atoms were relaxed to within

1 meV Å–1. Random alloys were modeled using Special Quasi-random Structures

(SQSs) generated with the Alloy Theoretic Automated Toolkit [289] taking into account

pair correlations up to 6 Å. Supercells contained 24, 60, and 36 atoms for the 33%

Cu and 33% Co, equimolar, and 11% Cu and 11% Co compositions, respectively.

Structural data was assembled from SQSs that were relaxed using multiple magnetic

configurations, including antiferromagnetic along (111) planes, ferromagnetic, and

multiple random magnetic configurations. As sampling of roughly random alloy

configurations produces structural probability distributions with clear trends based on

composition, and the individual supercell distributions were qualitatively similar, we
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Figure 5.5: Simulated bond lengths of Cu- and Co-variant samples. a 94-atom super-
cell of Cu-rich ESO relaxed using DFT. Ideal planes of atoms are overlaid in red, highlight-
ing the structural distortions (emphasized by arrows) most clearly on the oxygen anion sites
(shown in grey). The Cu cations are shown in orange. b Histograms of bond lengths on the
Cu-cation sites for xCu,Co = 0.11, 0.20, 0.33 ESOs, demonstrating the characteristic double
peak of a Jahn-Teller distorted cation. c Axial bond length of the Cu site in Cu variant (Cu)
and Co variant (Co) ESO. As the concentration of Cu is increased in the material, we ob-
serve an increase in the length of the z (extended)-axis on the Cu cation site, implying that
the degree of distortion is sensitive to the local environment about the Cu site and the total
concentration of Cu. d Histogram of cation-anion-cation bond angles, ¸, for Cu variant and
Co variant ESOs calculated from DFT. e Variance (ff2) of the Gaussian fits to the data in d.
As the concentration of Cu cations is increased, the variance of the calculated bond angle
changes significantly in a linear fashion while the Co variant samples remain approximately
constant.

believe that the observed trends are real and expect them to be present in the physical

system. DFT simulation was done in collaboration with L. Williams and E. Kioupakis,

referenced in [12].

The relaxed atomic coordinates (Fig. 5.5a) show a large spatial deviation from

the perfect rock salt structure. The histogram of the bond lengths in our simulated
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ESO supercells exhibits the characteristic bimodal distribution of the Jahn-Teller

effect (Fig. 5.5b). Interestingly, we also observe a shift in the peak length of the

extended axial bond with increasing concentration of Cu (Fig. 5.5b, c). In the case

of varying Co concentration, the peak-length shift is negligible. This shows that Cu

is responsible for the structural distortion. Additionally, our analysis demonstrates

that the disorder-driving sites are working in a concerted manner, agreeing with our

observation in Fig. 5.2 of a concerted symmetry breaking.

Further, our first-principles calculations of the structures for the Cu and Co variant

ESOs also show a significant variation in bond angle (up to nearly 20°) that is

correlated to increasing Cu incorporation (Fig. 5.5d, e). As the concentration of Cu

in the supercell is increased, the variance of the bond angle distribution increases

sharply, by 10x over the relatively small compositional space. This linear trend also

agrees with the compositional disorder observed in our XRD measurement from

the FWHM of the film diffraction peaks [277] (Fig. 5.2d). The bond length and

bond angle disorder can influence cation charge state (through strain) and magnetic

interaction, as superexchange is particularly susceptible to changes in orbital overlap

[290, 291, 292, 293] and coordination. Thus, we probe the evolution of the cation

charge and AFM character by X-ray absorption and X-ray linear dichroism.

5.3 X-ray Absorption

It has been previously observed that charge disorder can be fundamentally tied into

structural effects in ESOs [186, 183, 17]. From X-ray absorption spectroscopy (XAS)

measurements, we observe a significant fraction of low spin Co3+ in the oxide for

all compositions (Fig. 5.6a). As the concentration of Cu is increased, we observe

an approximately linear change in the ratio of high spin Co2+ to low spin Co3+ (Fig.

5.6b). At higher concentrations of Cu, there is a smaller fraction of Co2+. As the only

process variable changing in our experiment is the concentration of Cu sites, and thus

the structural homogeneity that is proportional to Cu inclusion, we posit that that the

observed change in charge state is influenced by the Cu2+ JT effect. We find that the
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Figure 5.6: XMLD analysis of Cu-variant samples. a Evolution of Co XAS lineshapes from
X-ray luminescence in the Cu-series samples showing a gradual change in ratio of high spin
Co2+ (blue) to low spin Co3+ (grey) proportional to the Cu content of the sample. Measured
spectra are shown in red, with fits in black. Spectra were fit to a linear combination of the
Co2+ (high spin), Co3+ (low spin), and Co3+ (high spin) peaks taken from ref. [41]. The Co3+

fraction was eliminated as a result of the fitting and is therefore not shown. b Plot of Co2+

fraction from the coefficients of the linear combination in a alongside measured X-ray linear
dichroism (XLD) from samples in a. As the Cu concentration of the samples is increased, the
fraction of the 2+ oxidation state decreases proportionally. Additionally, the dichroic signal on
the Co cation sites decreases with the same trend. XLD was measured at room temperature
and 80 K, above and below the Néel temperature respectively to observe structural and mag-
netic components.

charge state of the other cations remains invariant to within experimental resolution

(Fig. 5.7).

XAS and X-ray linear dichroism (XLD) spectra were measured at the Advanced

Light Source at Lawrence Berkeley National Laboratory on beamline 4.0.2. XA and

XLD data were recorded at both room temperature and 80 K, above and below the

Néel temperatures of the samples. Full spectra at 80 K are shown in Fig. 5.7. Spectra

were normalized over 8 scans per element, and data reported here shows the X-ray

absorption that was calculated using luminescence yield collected from samples. This

detection mode uses a photodiode to collect visible luminescence from the substrate

(i.e., scintillator) to measure the intensity of X-rays transmitted through the film. X-ray
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Figure 5.7: XAS analysis of cations in Cu-variant samples. X-ray absorption spec-
troscopy and X-ray linear dichroism (XLD) of ESO samples at 80 K. From the data, we see
that there is a significant evolution of both the peak shape and the dichroic signal of the Co
L-edge data. This corresponds to a decrease in the ratio of Co2+ to Co3+ in the sample and
a decreased magnetic signal, both with the increase of Cu composition. Curves have been
offset vertically for clarity.

absorption data were fit to a linear combination of reference spectra for Co2+, Co3+

(low spin), and Co3+ (high spin) from ref. [294] using a basin-hopping optimization

technique as implemented in Scipy for Python3. The Co3+ fraction was eliminated as

a result of the fitting and is therefore not shown. Coefficients from this fit are reported

as cation fractions.

All spectra were measured with linearly polarized X-rays; both horizontal and verti-

cal polarizations were used. At every photon energy, absorption intensity is scaled to

the flux of incoming X-rays. Spectra are normalized so that their polarization-averaged

intensity ranges from “0” to “1”, as shown in Fig. 5.6a and upper panels of Fig. 5.7.

The XLD spectra in the lower panels of Fig. 5.7 are the difference of these normalized

spectra that were measured with horizontal and vertical polarizations; i.e., XLD

intensity = horizontal intensity – vertical intensity. The XLD values in Fig. 5.6b are the

maximum values extracted from the corresponding Co XLD spectra in Fig. 5.7.
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The modification of charge across parameter space can also be tied directly,

through X-ray linear dichroism (XLD), to the strength of the magnetic interaction in the

ESO. Best data fits suggest that Co3+ is in the low spin state, which is nonmagnetic,

and thus Cu additions, which promote a growing Co3+ fraction, decrease in the

strength of the AFM character of the system (Fig. 5.6b) as the fraction of Co2+

decreases. Collectively, structural frustration from changing bond angles, magnetic

dilution due to conversion of Co2+ to Co3+, and glassy AFM in bulk samples [116],

motivates an exploration of FM/AFM exchange bias, as this is known to be particularly

susceptible to frustration of the magnetic lattice [11, 256].

5.4 Magnetic Analysis

FM/AFM exchange bias is known to be dependent on magnetic frustration of the AFM

layer[217]. The spin glass model for exchange bias [295, 296] argues that frustrated

magnetic moments at the FM/AFM interface couple to the FM magnetization, creating

the characteristic bias field. The pinned surface moments are hard and slow to move,

resulting in the exchange bias itself, and the degree of disorder, directly proportional

to the thickness of the glassy layer, is dependent on the intrinsic order and anisotropy

of the magnetic lattice in the AFM [296]. This model can be expressed as an energy

balance using the system of equations:

H—0MtF
–Jf

sin(„ – ˛) +
1 – f

f
sin(2(˛ – ‚)) + sin(˛ – ¸) = 0 (5.1)

KAFtAF
f J

sin(2¸) – sin(˛ – ¸) = 0 (5.2)

Where H is the applied magnetic field, M and tF are the magnetization and

thickness of the FM layer, J is the interfacial exchange energy, f is the fractional

spin ordering, „ is the angle between the applied field and the anisotropy axis of the

FM, ˛ is the angle between the FM magnetization and the FM easy axis, ‚ is the

angle between the applied field and the preferred orientation of the glassy layer, ¸

is the angle between the surface magnetization of the AFM and the anisotropy axis

of the AFM, and KAF and tAF are the anisotropy energy and thickness of the AFM
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layer. Use of the Radu model here is motivated by: 1) a sluggish AFM/PM transition

has been observed in bulk [116, 117], consistent with the phase having a glassy

component. 2) Magnetic dilution is known to increase a glassy component in AFM

systems (for instance CuMn alloys). 3) Such a strong correlation of structure, charge,

and measured magnetic data agrees with our expectations.

10 K

b c

 

high f, ordered low f, disordered

a

Xi

Figure 5.8: Magnetic distortion in Cu-variant films. a Schematic illustrating the spin lattice
of the antiferromagnetic layer when it is highly ordered (high f, left) and highly disordered (low
f, right). For simplicity the FM layer is depicted here in its saturated state. As the magnetic
lattice of the AFM is frustrated, changes can be read out through the FM layer. b Normal-
ized magnetic moment versus field for the equimolar composition at 10 K. Experimental data
is shown with the open circles and the fit from the model is shown as a solid line. Fit corre-
sponds to an R2 parameter of 0.987. The sample was biased by cooling from 300 K in a 1 T
magnetic field. c Spin ordering parameter f as a function of Cu and Co concentrations. As the
concentration of Cu (red, blue) is increased, the magnetic lattice is increasingly disordered
and as we increase the concentration of Co (grey, black), the degree of frustration decreases.
Data is extracted from magnetic hysteresis loops taken at 10 K. Dashed lines are provided as
guides to the eye.
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To study magnetic disorder, we probe the parameter f, the fractional spin ordering

at the interface, where f = 1 is the maximum ordering and f = 0 is the maximum disor-

der. This is shown schematically in Fig. 5.8a. For reference, the well-studied Co/CoO

exchange bias system has shown a spin ordering of f = 0.8 [295]. Numerically solving

the system of equations for the unknowns J, f, ‚, and ¸ (assuming „,˛ = 0) and fitting

to experimental magnetometry data taken at 10 K, we obtain a quantitative measure

of the magnetic disorder in our ESO exchange biased heterostructures. Fitting was

accomplished by globally minimizing the goodness-of-fit (R2) from approxiamtely 105

points in parameter space using least-squares analysis calculated in the region from

large positive field until switching, and large negative field until switching. Approxi-

mately 105 solutions were calculated across the entire parameter space in a course,

evenly spaced, grid to minimize R2. This is then done again using a finer grid of

points about the previously calculated minimum. List of parameters and visualization

of the fits is available in Figs. 5.9 and 5.10. Anisotropy energies of the samples

were calculated using the fits from above along the [100] and [110] crystallographic

directions. An example of a fit hysteresis loop is shown in Fig. 5.8b. In all cases here,

¸ is small (≈0°) and R2 >0.94. As the concentration of Cu is increased in the oxides,

we observe an approximately linear decrease in the spin ordering parameter, f (Fig.

5.8c). Our results indicate that the concentration of Cu is directly proportional to the

degree of spin frustration in the magnetic lattice. This linear proportionality agrees

with our results from XLD (Fig. 4.7b), which shows a linear decrease in the AFM

character of the cation sites as Cu concentration is increased. Our observed value of

f is small, even compared with the canonical spin glass, CuMn, studied in reference

[232] (f = 0.65).

We posit that the significant magnetic disorder in the system is driven by the

magnetic dilution and the superexchange interactions where tightly bound electrons

in the oxide system are more easily frustrated by structural deformation than those of

a delocalized, metallic antiferromagnet [297, 298]. Further, our experimental results

correlate with the observed change in the bond angle distribution from theoretical

calculations, providing evidence for this assertion, that the variance in cation-oxygen-

metal bond angle is a primary driver of magnetic frustration in our ESO systems.
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XCu = 0.11 XCu = 0.16 XCu = 0.20 XCu = 0.24
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Figure 5.9: 100-oriented MvH loops of Cu- and Co-variant exchange bias stacks. Loops
were taken at 10 K after cooling from 300 K in a 1 T magnetic field and after degaussing. R2

values were calculated using the bottom leg of the hysteresis loop, from negative saturation
field to the switching event at H+

C.

This is also mediated by a difference in valence on the Co cation sites, driven by

Jahn-Teller structural distortions, which results in dilution and disorder of the magnetic

lattice. Additionally, inclusion of Co should result in the inverse effect as Co has a

negligible influence on the structural disorder while increasing the number of AFM

sites. Indeed, as the concentration of Co is increased in the Co variant samples, we

observe an approximately linear increase in f, corresponding to a decrease in the

spin disorder. This is complemented by XAS data showing that the Co2+/Co3+ ratio

becomes approximately invariant with Co incorporation, indicating that it primarily the

change in average cation moment, rather than oxidation state, which is driving the

observed trend.

This frustration can also be seen in the ‚ parameter extracted from the model,

corresponding to the difference between the preferred orientation of the glassy layer
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XCu = 0.11 XCu = 0.16 XCu = 0.20 XCu = 0.24

XCu = 0.27 XCo = 0.27 XCo = 0.33
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Figure 5.10: 110-oriented MvH loops of Cu- and Co-variant exchange bias stacks.
Loops were taken at 10 K after cooling from 300 K in a 1 T magnetic field and after degauss-
ing. R2 values were calculated using the bottom leg of the hysteresis loop, from negative sat-
uration field to the switching event at H+

C.

and the measurement direction, similar to an enforced easy axis in the spin glass.

As the concentration of Cu is increased in the oxide, the difference in ‚ along the

[100] and [110] crystallographic axes approaches 0 (Fig. 5.11a). This indicates that

the driving force for a preferred axis is weaker and the magnetic lattice becomes

more isotropic with increasing Cu. Indeed, the anisotropy energies also show this,

as the ratio A100/A110, the energies along the [100] and [110] directions respectively

(calculated from Ai =
RMs

0 H(M)dM), approaches 1 with increasing Cu incorporation,

showing that the ESO becomes more magnetically isotropic (Fig. 5.11b). Our data

agree with our theoretically calculated bond angles in the ESO, as the bond angle

is increasingly disordered in a linear fashion by the inclusion of Cu2+ (Figure 5.5e),

and XAS data showing that the system becomes more magnetically dilute as Cu

concentration increases.
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Figure 5.11: Magnetic anisotropy of Cu-variant samples. a Angle, ‚, between the applied
field and the preferred axis of the spin glass as a function of composition. As the concen-
tration of Cu is increased, the difference between ‚ along the [100] and [110] directions ap-
proaches 0, showing that the magnetic lattice is tending toward isotropy with increasing Cu.
b, Ratio between anisotropy energies for the [100] and [110] directions. As Cu concentration
is increased, the ratio approaches 1 and the system tends towards isotropy. In contrast, as
Co concentration is increased, the anisotropy becomes stronger and [110] becomes the pre-
ferred easy axis. Dashed lines in each plot are guides to the eye. c, Plot of the difference be-
tween TN and TB reveals the sluggishness of the transition, as a function of Cu concentration,
indicating increasing glassiness in the ESO as Cu incorporation is increased.

Conversely, the ratio A100/A110 increases with increasing Co inclusion, showing

that spin frustration decreases and [110] becomes the easy axis. This agrees with

previous results reported in ref. [11], as it was observed that the [110] axis becomes

more favorable with increasing Co concentration. This is also in agreement with

the magnetic structure observed in bulk experiments [116, 117] of the equimolar

composition where an average G-type order with the Néel vector along the [111]

emerges below the Néel temperature of approximately 135 K.

Moment versus temperature curves, Fig. 5.12, show a large separation between

TN and TB, revealing sluggish paramagnetic/AFM transitions as observed in glassy

systems [8] and in bulk (MgCoNiCuZn)O [116, 117]. The separation between these

temperatures increases with increasing Cu concentration, illustrating that the system

gets more frustrated with concentration (Fig. 5.11c) and providing further evidence of
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Figure 5.12: MvT of Cu- and Co-variant exchange bias stacks. The measured Néel
temperatures (TN) are marked with a closed circle and the blocking temperatures (TB) are
marked with an open circle. The high-Cu sample shows a nonlinear behavior at low tempera-
tures that has been observed in glassy systems.

structurally driven glassiness. This observation is supported by the slow onset of the

AFM state observed in bulk, as well as the broadening of the magnetic susceptibility

peak from ref. [117] with the inclusion of increasingly frustrated cations.

In conclusion, we have demonstrated that using entropy-stabilized oxides, a large

tunability of magnetic disorder can be achieved through correlations in lattice, charge,

and spin disorder. By tuning the degree of stereochemical frustration in the material,

we can tune the structural disorder to drive oxidation state changes in magnetically

active cations and create a disorder in the magnetic lattice.
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Chapter 6:

Conclusions and Future Directions for

FeGa and ESOs

6.1 Summary of Results in Disordered Systems

The purpose of the work presented here has been to showcase how intentionally en-

gineering disorder and frustration into materials can be used to tune functional proper-

ties in similar fashion to established thin film techniques like local chemical substitution

[299] and epitaxial clamping [300, 301]. The results discussed within have demon-

strated the ability to synthesize a novel, disordered phase of a magnetostrictive alloy,

where this new phase boasts significantly enhanced magnetostriction, and the ability

to control magnetic frustration in a relatively unexplored oxide chemistry.

In Chapter 2, I discuss my results on the synthesis of a disordered phase of FeGa,

which demonstrates significantly enhanced magnetostriction when compared to the

thermodynamic ground state. Part of the value in FeGa alloys comes from their rela-

tive sustainability and earth abundance, when compared to rare earth magnetostrictors

like terfenol-D [14, 3]. A significant challenge in the use of FeGa for composite mag-

netoelectric applications, however, is that the magnetostrictive coefficient is limited by

the phase diagram: – increases with increasing Ga concentration up to approximately

19 at%, at which point the thermodynamically stable phase becomes an ordered in-
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termetallic with lower magnetostriction. By depositing FeGa with low temperature epi-

taxy, I am able to kinetically freeze the disordered phase up to 30% Ga and prevent

the magnetostriction from dropping. I measure the magnetostriction of the FeGa layer

by observing the composite magnetoelectric behavior of the heterostructure and fitting

that behavior to extract the relevant coupling coefficients. I find that, by stabilizing this

disordered phase of FeGa, I can increase the magnetostriction by as much as 10x rel-

ative to bulk and reach magnetostriction coefficients competitive with, or better than,

some of the best rare-earth-alloy magnetostrictors.

In Chapters 4 and 5, I discuss my results in tuning the magnetic frustration of

HEOs with unexplored chemistries and properties. HEOs are a new class of materials

that are often stabilized using the configurational entropy of a large number of cation

species. In these systems, chemical, structural, electronic, and magnetic disorder

are expected to be prevalent, but the youth of the field means that these structure-

property relations oftentimes have yet to be explored. In my work, I investigate the

ability to control functional disorder, in particular magnetic disorder, through the use

of stereochemical frustrators. Because HEOs are stabilized with a significant contri-

bution from entropy, typically immiscible species can be dissolved into the crystal to

create new extremes of disorder and frustration. I observe that changes in the con-

centration of Cu in the system, a cation that will go through a Jahn-Teller distortion,

progressively increases this structural disorder in the crystal. This, in turn, manifests

as changes in the charge and magnetic lattices following the same trend, illustrating

how intimately tied these phenomena are in the system a large degree of control with

relatively small changes in chemistry. In contrast, changing the relative concentration

of Co in the HEO, a cation that will happily sit on an octahedral site and is robustly

magnetic, produces almost the opposite trend, where increasing concentration serves

to decrease structural and magnetic disorder to an equivalent degree. This concept

of entropy-stabilization provides a new tool to control the chemistry of materials and

influence their associated functional phenomena.

In the remainder of this chapter, I will discuss the outlook for these material sys-

tems, as well as my own opinion on the next steps for advancement of the associcated
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technologies, both with FeGa heterostructures and HEO magnets.

6.2 Scaling of FeGa Composite Materials

Through epitaxial stabilization of the disordered phase in FeGa, I have been able to

show that a high-performance magnetostrictor, and thus a high-performance magne-

toelectric, can be reliably synthesized [14]. Slow, low-temperature deposition of FeGa

freezes the material into the disoredered A2, ¸-Fe-like phase. Preventing the forma-

tion of competing intermetallic phases allows the magnetostriction of the material to

reach new heights, potentially becoming one of the best magnetostrictors in the field.

The natural next step for the system, motivated by the potential to fabricate extremely-

energy-efficient computing memory, is to scale the composite to characterize the mag-

netoelectric behavior at a more reasonable length scale. In Chapter 2, we discussed a

device on the order of —m in size- for this composite material to be useful in computing

applications, we have to start thinking about devices on a nm scale.

Extending the magnetoelectric behavior of the FeGa system discussed in Chap-

ter 2 to a simulated device, we can use our —m-scale metrics to estimate an energy

dissipation as these materials and devices are extended to more applicable, nm di-

mensions. Here, most of the energy dissipated per switch is during ferroelectric reori-

entation. This can be shown by simulating the energy dissipation during reorientation

of the magnet using micromagnetics, for which details are given in ref. [14]. Simula-

tions show that magnetic reorientation of a 45 x 45 nm2 device, the smallest stable

size where anisotropy is greater than thermal energy [4] (42 kBT), is less that 1 aJ

per 90° magnetic switching. The energy dissipation per switch from the ferroelectric

can be extracted from the integrating half the ferroelectric hysteresis loop to result in

approximately 2.9 mJ cm–2 per up-to-down switching event. This is using a ferroelec-

tric substrate, but to reach more reasonable dimensions we can use a coercive field

[302] of 30 kV cm–1 and aproximate the ferroelectric energy loss using PrVC to esti-

mate a switching energy of 5.9 —J cm–2 for a 100 nm thick PMN-PT film. This value

would give this system the best scaling of a normalized energy dissipation per switch
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Table 6.1: Energy dissipation of beyond-Si techologies.

Technology System Energy Dissipation (—J cm–2)
Spin torque Co/Pt 4.4e4
Spin torque TmIG/Pt 230

Single phase multiferroic Co/BFO 280
Composite (FeGa) multiferroic FeGa/PMN-PT 6

for a composite multiferroic [3], as shown below. Using this energy per area with our

simulated device size, our ideal bit would have a switching energy of approximately 80

aJ, making these heterostructures competitive with other materials for beyond-CMOS

technologies. To potentially reach these metrics, however, these devices must actu-

ally be realized, and that involves scaling both the magnetic layer and the ferroelectric

layer.

In scaling the lateral dimensions of the magnet, electron beam lithography can be

used to reach lengths on the 100s of nm. At this scale, however, measurement of

devices is no longer trivial for a number of reasons including 1) simply contacting the

devices, and 2) changes to longitudinal magnetoresistance may fall below the detec-

tion limit. In the measurements done in Chapter 2, devices are large and contact pads

are on the order of 100 —m. this is because, with our testing apparatus, the sample

must be wire bonded before it is measured and those bonds are on the order of 50-

100 —m. This large of a contact would not be necessary with a probe station setup,

but even then a 100 nm device is too small to land probes on. In this case, the FeGa

nanopillar must be encapsulated in another large, nonmagnetic, Hall device that can

be contacted more easily. This scheme has been used before in the spin torque com-

munity [303], where 200 nm diameter perpendicular magnetic nanopillars have been

covered by a thin film of Pt to facilitate current collection. In this device, the Pt layer is

functional and creates the spin-orbit torque to switch the nanodot, but in the case of

the FeGa devices proposed here, it is a thin, conductive layer. In this device, enough

current would be shared by the FeGa to give a measurable magnetoresistance. With a

5 nm Pt layer on top of a 15 nm FeGa film and a bar width of 5 —m, using the values for

resistivity of FeGa extracted from the measurements in Chapter 2 (FeGa u 133e–6 Ω

cm) and Pt from [304] (Pt u 20e–6 Ω cm), approximately 10% of the current is shared
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by the FeGa through the cross section at the thickest point of a 200 nm cylinder.

In Chapter 2, the first order contribution to magnetoresistance is measured longi-

tudinally, and thus the signal is a small deviation about a large offset resistance. In

the case of the measured devices, this low-field AMR signal is approximately 0.05% of

the measured offset (0.5 Ω deviation about a 1100 Ω signal). In the device suggested

above, using 50 —A of current, this 0.05% signal would correspond to a voltage change

on the order of 1 nV, which is potentially too small to measure about a 40 mV offset

voltage. This necessitates measurement of the transverse signal, which has a simi-

lar dependence on the magnetoresistance. Longitudinal magnetoresistance is defined

as:

xx = xx,0 + ∆xxcos(2„) (6.1)

where xx,0 is the longitudinal resistance and ∆xxcos(2„) is the change in resistance

which comes from I •M, „ being the angle between the two. Transverse magnetoresis-

tance can be defined as:

xy = ∆xysin(2„) (6.2)

which, being similar to a Hall effect, has no offset voltage other than device parasitics.

These parasitic effects can be mitigated by changing the device terminals, as in a

Van Der Pauw experiment, making this a more sensitive measurement for the detec-

tion of a small magnetization. In the device mentioned above [303] used by Bhowmik

et al., the magnetization of the perpendicularly magnetized nanopillar is measured in

the same geometry via the anomalous Hall effect, with a measured signal of approxi-

mately 1 Ω at 106 A cm–2, corresponding to a 20 —V signal given their device geometry.

Transverse magnetoresistance measured in FeGa has been observed to show similar

signals to our own longitudinal measurements (xy = 0.04 —Ω cm) [77], which is small

(on the order of nV) but may be detectable in a Hall configuration where the signal is

measured about a 0. This may be a characterization challenge for miniaturizing these

material systems, but the devices can be made smaller and smaller as the electronic

measurements become more precise.

Electronic readout of this system should become more straightforward with a more
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Figure 6.1: Proposed FeGa MTJ device. This system could be used to test lateral scaling
of FeGa down to nm dimensions, where the direction of the free layer is controlled by strain
anisotropy. Here, FeGa is grown on a thin Pt electrode which serves as a back contact, but
still allows for epitaxial growth and strain transfer. The top magnetic layer can be pinned by
either exchange bias, as in normal MTJs, or possibly by shape or crystalline anisotropy. Im-
portantly, this layer must have an anisotropy component that cannot be overcome by magne-
tostriction or stray fields from the FeGa. In a real device, this nanopillar would be milled and
then surrounded by an oxide layer that same thickness as the MTJ stack, to prevent shorting
between the top and bottom contacts.

complex heteroepitaxial structure. While the transverse MR signal may be on the order

of 0.05% of the input signal, on-off ratios of 100’s of % at room temperature can be

reached with construction of a MTJ [305, 306]. For this structure to work, a backing

electrode must be developed to go between the PMN-PT and FeGa layers, to allow for

vertical current flow through the heterostructure. This backing layer must be epitaxial

to both the PMN-PT and the FeGa to keep the same phase stabilization properties

explored in Chapter 2, and must be kept thin so strain from the FE can be efficiently

transferred. In our preliminary explorations, Pt and Ir buffer layers have shown promise

for this. The isolation layer could be MgO, since the Fe/MgO interface grows remark-

ably well and the Fe/MgO/Fe MTJ system is known to behave well [305]. The top

magnet must then be a material with low magnetostriction, since, as MTJ structures

have thicknesses on the order of 10 nm, there will be an appreciable transfer of strain

even to the top magnetic layer. A proposed structure is shown in Figure 6.1.

In the absence of electronic transport, magnetization of structures on this length

scale can be observed in other ways, particularly magnetic force microscopy (MFM),

but possibly optical techniques such as MOKE and XMCD photoemission-electron-
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Chemical Contrast XMCD-PEEM Domains MFM
a b

Figure 6.2: MFM and XMCD-PEEM of nanomagnets. a XMCD-PEEM and MFM images
of LSMO nanopillars, showing clear domain patterns in magnets at a 500 nm scale. From
ref. [307]. b MFM images of 300 nm FeGa nanodots on PMN-PT, suggesting switching of the
magnetization behavior under different strain states. From ref. [51].

microscopy (XMCD-PEEM). MFM is used fairly widely to look at magnetic domain

structures on the order of 100s of nm. In small magnetic nanopillars, and FeGa in

particular, it has been shown that domains can be resolved in structures down to 300-

500 nm [51, 307] (Figure 6.2). While switching can potentially be evaluated in the

FeGa/PMN-PT system using this method, an issue eventually arises in the fact that

MFM is slow, limiting measurements to the same quasi-static regime as the experi-

ments in Chapter 2. To investigate the dynamics of switching and domain motion, opti-

cal techniques such as MOKE or XMCD-PEEM potentially have a niche [77, 41, 307],

but the resolution of visible light, as in MOKE, may limit lateral resolution of the mea-

surement, and thus of domains. Additionally, the large electric fields used in FE switch-

ing and birefringence may interfere with optical experiments if a PMN-PT substrate is

used, which motivates scaling of the ferroelectric.

Scaling the thickness of the ferroelectric to minimize the energy dissipated and

lower the required electric fields, is not as straightforward as the lithography process in-

volved with the magnet. Reducing the thickness of a ferroelectric thin film is well known

to give diminishing returns via Kay-Dunn scaling, e.g the coercive voltage increases

nonlinearly with reduced dimension [308, 309]. Additionally, when ferroelectrics be-
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come thin, they can start to become leaky, or lose ferroelectric polarization altogether

[310, 311]. Looking further toward device engineering, a significant hurdle lies in the

fact that a FE thin film will be epitaxially clamped to the substrate, severely limiting the

possible in-plane actuation [312], which is needed for the FeGa device outlined here.

Some studies have shown that patterning of the FE can reduce the clamping to the

substrate, showing that the behavior of the material becomes more bulk-like as the

aspect ratio becomes more isotropic [312, 313, 314]. It is still more desirable, how-

ever, to minimize substrate clamping in an arbitrary material without being restricted to

specific geometries.

a

b c

Figure 6.3: Exfoliation of oxide thin films. a Illustration of the process for exfoliating a per-
ovskite film grown on SAO and a STO substrate. The film can be grown as normal via PLD,
and then removed form the substrate and transferred to Si for easy characterization. From
ref. [315]. Piezoelectric, b, and ferroelectric, c, loops from an exfoliated 4 unit cell BFO film,
showing that the ferroelectricity is preserved is extremely small length scales, even after pro-
cessing. From ref. [316].

More recent work has been exploring exfoliation of the FE, using a sacrificial layer

in the heterostructure which can be chemically dissolved [317, 316, 318]. These works
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have explored the use of LSMO and Sr3Al2O6 (SAO) as sacrificial layers, which may

be dissolved in a chemical etchant and water respectively, and have been developed in

particular for the growth of functional perovskite oxides [315]. In the case of SAO, the

unit cell is tetragonal and thus the 001 face boasts a square symmetry that matches

well with materials like STO. Additionally, substitution of Ca for Sr does not alter the

water-solubility, so the lattice constant of the sacrificial layer can be tuned to match

perfectly with whatever is grown on top [315]. In practice, the heterostructure can be

grown normally by PLD or MBE with the inclusion of 20-40 nm SAO. The stack can

then be submerged in water for several hours while the SAO dissolves, and then trans-

ferred with a PDMS or PMMA stamp to a more functional substrate, such as a TEM

grid or conductive Si. Post-exfoliation characterization of FE and magnetic films grown

by this method shows comparable properties before and after (Figure 6.3b and c), in-

dicating that the quality of the film is only minimally effected by the process. Further,

ferroelectricity appears enhanced in ultra-thin exfoliated films, where substantial po-

larization is observed in BFO of only a few unit cells thick (Figure 6.3) [316]. This is

attributed to a rhombohedral-to-tetrahedral-like phase transition as the film approaches

the 2d limit and increased contributions of the surface polarization components. What

this means, is that designing heterostructures in this way may have even further ad-

vantages beyond the removal of substrate clamping, allowing the normal size limits of

ferroelectricity ot be circumvented.

These studies have shown that lithography of the transferred layer is possible [317],

showing a process where, not only is the lateral substrate clamping minimized, elec-

trodes can be tailored to an enormous degree, allowing for control of the surface and

contact band offset to minimize leakage at small length scales. This is an exciting

prospect for the field of multiferroics, and this proposed device in particular, showing

that functional oxides can be deposited as normal and seamlessly integrated into Si-

based processes. In the FeGa devices shown here, this technique could be used to

scale the PMN-PT layer and maximize transverse strain generation. The heterostruc-

ture would be deposited as normal, with 20-40 nm of SAO below the PMN-PT layer.

This would then be exfoliated and transferred to a conductive Si substrate, where

lithography could occur as normal. Combining this with the above proposal of scal-
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ing the magnet laterally, this would be potentially the optimal device for testing this

mechanism at scale.

6.3 Functional Glassy Behavior in ESOs

As discussed in chapter 3, entropy-stabilization and high-entropy materials offer a po-

tentially powerful system for the study of structure-property relations when it comes to

disorder’s influence on functional phenomena. One of the most important points for

disorder driven functional phenomena is frustration of the order parameter, such as

the competition of ferroelectricity/antiferroelectricity, resulting in relaxor behavior, and

ferromagnetism/antiferromagnetism which drives magnetic glassiness. Recent studies

in HEOs have demonstrated this ferroic frustration in magnetic systems [11, 12, 116,

117, 216], as well as to a limited extent structurally in perovskite oxides [167, 168].

Due to the large number of competing cation neighbors, these materials seem to be a

model system for the demonstration of frustrated ferroic phenomena like strain, dipole,

and spin glassiness.

Relaxor ferroelectrics, though being a long-studied and important class of materi-

als, are still relatively poorly understood on an atomic scale. Though there is significant

discussion about the mechanism of relaxor behavior, there seems to be consensus on

the idea that this is caused by polar nano-regions (PNR) brought on by ferroelectric

frustration [319]. Though the term "relaxor" is often used synonymously with relaxor

ferroelectrics, non-ferroelectric ergodic relaxors (often used interchangeably with the

term dipole glass) are a subset of phases which nominally show no macroscopic po-

larization, but a large frequency dispersion in the dielectric response. Analogous to a

collection of magnetic nanoparticles, this effect is attributed to a collection of weakly

interacting magnetic dipoles in a paraelectric matrix- similar to the PNR explanation

for relaxor ferroelectricity [320, 321]. These materials are interesting for many of the

same reasons as relaxor ferroelectrics and pyroelectrics, mainly the large, highly tun-

able frequency dispersion. As indications of super-spin glass behavior have already

been observed and proposed in the magnetic lattice of ESOs [215, 116] (Figure 3.6)
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and simulations of atomic scale features indicate an even stronger lattice distortion [12]

(Figure 5.5), non-ergodic relaxor behavior may be present in these systems. Specif-

ically, the distortion seen in DFT calculations, and the idea of high-entropy materials

in general, implies a large number of structural ground states, which is one of the ex-

pected conditions for dipole glass behavior [322].

a

d

b c

Figure 6.4: Dipole-glassy behavior in ESOs. a Composite image of dark field (ADF) and
phase contrast (iDPC) STEM, showing the orientation of individual octahedral cages in re-
laxor PMN-PT. From ref. [323]. b Diagram showing the Jahn-Teller distortion in Cu containing
ESOs and (b) how that frustration can apply across the whole lattice to potentially serve as
relaxor dipoles. From refs. [12, 164] d Dependence of structure and the absorption edge on
deposition temperature, indicating that even small changes in structure can result in large
deviations of the dielectric behavior. From ref. [115].

Though ergodic relaxors may be difficult to characterize, due to the lack of macro-

scopic polarization, a recent study has been able to show pyroelectric currents and

hysteretic permittivity from the nominally ergodic phase of PMN [319]. Additionally, ad-

vances in STEM analysis have allowed for the mapping of atomic scale polarizations in
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relaxor ferroelectrics [323], which may be applicable to these materials. As discussed

in Chapter 3, thus far, rigorous dielectric characterization of ESO has been lacking,

potentially due to the difficulty in pulling single crystals, which precludes many of the

normal dielectric/ferroelectric characterization methods. Deposition of the (MgCoN-

iCuZn)O ESO onto a reliable electrode, and then robust electronic characterization,

would be a huge step forward for the development of the field and the understand-

ing of structure-property relations in ESOs. Using normal magnetic characterization

techniques [11, 12], it has been shown that the functional properties of even nomi-

nally boring crystal structures (e.g. rock salt) can be highly complex, and I expect that

the electrical response will be no exception. Additionally, with optical probes of the

dielectric function, it has been shown that the absorption edge is highly structurally de-

pendent [115], which should only be more pronounced at the lower frequencies which

can be associated with acoustic phonons and molecular polarization.

This paradigm can be further extended to glassy networks of other ferroic proper-

ties including strain glasses [324, 325] (analogous to ferroelastics), and multiglasses

with multiple coupled glassy ferroic orders [326, 327, 328]. If dipole glass behavior

can be demonstrated in these materials, it will be the first report in a non-perovskite

system. Additionally, because it has been shown that magnetism is very sensitive to

structure in (MgCoNiCuZn)O [12] and it can be extrapolated that a dipolar behavior

relate to the lattice frustration will be dependent on the same phenomena, it is likely

that these two phenomena are coupled and electrical poling can potentially be used to

manipulate the spin glass.

A magnetic glassy response has been observed in bulk antiferromagnetic ESOs

[116], likely stemming from the competition of superexchange interaction s between

neighboring species [11, 215]. In my own unpublished experiments on ESO thin films,

I have noted glass-like behavior in the DC regime, where the moment decays as a func-

tion of time (Figure 6.5). Fitting this behavior to a decaying exponential, y = ae–bx, the

decay amplitude and the time constant can be extracted. Looking at this phenomena

as a function of the Cu concentration, and thus magnetic frustration, (as in Chapter 5),

some trends becomes clear. The preexponential, a, increases as a function of compo-
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Figure 6.5: Moment decay in Cu-variant ESOs. a Temporal behavior of the magnetic mo-
ment in ESO exchange bias structures, varying over Cu composition. The absolute moment
here corresponds to the moment of the entire structure, thus it can be assumed, that at t = inf
the moment will decay to that of the Py layer. The curves are offset for clarity but, when this
offset is removed, they decay to approximately the same value at t = 500 min. In the case of
the curve at xCu = 0.27, the range of the instrument changed at t = 300, explaining the step
and data after that point is not included in the fit. When this data is fit (black line) to a decay-
ing exponential y = ae–bx, the preexponential, b, and time constant, c, show clear trends in
composition. These show slight differences with different crystallographic axes, likely depen-
dent on the magnetic anisotropy, which points along [112] in the ESO.

sition, and the time constant, b, does the opposite, decreasing with increasing compo-

sition. An increase in a implies that there is a larger contribution from stereochemically

frustrated spins as concentration increases, which agrees with the findings in ref [12].

The other point to note here is that, with the artificial offset removed, the curves equi-

librate the approximately the same value and the initial moment scales proportionally

to the Cu concentration. This further agrees with my previous findings, as it might be

expected that the higher degree of frustration in Cu-rich samples leads to an addi-

tional frustrated-AFM contribution to the moment of the heterostructure. A decrease

in the time constant with composition indicates that the moment decays more slowly

at higher Cu concentrations, which is a more complex behavior, but to 0-th order may

imply that interaction between moments is more frustrated, and thus slower, at higher

levels of structural disorder. While these results are certainly not comprehensive, they

do indicate that the magnetic behavior of the system is complex on timescales of hours

to days, which is one of the indicators of a spin glass [329, 225, 210].
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To investigate potential coupling of these glassy phenomena, magnetic characteri-

zation under constant electric field may be a valuable experiment. If the rock salt ESO

is a dipole glass, constant electric field should help to align the dipoles within the mate-

rial. Because exchange bias is so sensitive to the magnetic frustration associated with

these displacements, the coupling may appear as a change in the exchange anisotropy

or a change in f, the magnetic frustration of the AFM [12]. This measurement would,

however, like dielectric characterization, require robust growth of the material on an

electrode to allow a through-thickness electric field. It has been suggested that (Mg-

CoNiCuZn)O can be grown on a Si substrate [108], but, in practice, this has not been

explored. A Fe interlayer may also be a good route, due to the ease of growth of MgO

on Fe [330, 305]. If these synthesis techniques are developed, it will open the door for

a wealth of research into the use of ESOs for electrical, and potentially multifunctional,

materials.
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Appendix A:

PLD and Fast Quenching of

Metastable Species

The ability to deposit materials at a low growth temperature is what allows for stabiliza-

tion of the deeply metastable phases studied here. Particularly with PLD, but also true

to a lesser extent with sputtering and MBE, the kinetic energy of the plasma is very

large, on the order of 1-10 eV [37, 331], corresponding to an effective temperature

on the order of 105 K. This combined with a low substrate temperature, e.g. 300 ◦C,

creates a large effective quench that aids in the stabilization of the high temperature

phase, in the case of ESOs [110]. Additionally, the low substrate temperature makes

diffusion slow, preventing the dissolution of the metastable phase. Effectively, at a low

deposition temperature, materials will be in whatever phase the are immediately de-

posited into. This makes epitaxial templating extremely important in these systems, as

slow diffusion makes the crystal structure of the substrate very impactful for templat-

ing the correct structure, and the resultant strain field will further help to stabilize the

phase.

The purpose of this appendix is to provide guidelines for ESO and FeGa deposition

by PLD. It does not take the place of an SOP, but supplements it with information that

I think is important for growth of these specific materials.

87



A.1 PLD of rock salt ESOs

Rock salt ESOs like (MgCoNiCuZn)O grow best on MgO (001) substrates. This is

because, for the reasons mentioned above, epitaxial templating provides a seemingly

large fraction of the stabilization energy. The growth of (MgCoNiCuZn)O on MgO is,

in particular, extremely robust and high quality, single crystal films are achievable in a

wide range of temperatures (around 200-700 ◦C), pressures (demonstrably vacuum-

300 mTorr O2), and fluences (very low to around 4 J/cm–2). My standard conditions

for this material and for attempting any new rock salt ESO composition are 300 ◦C, 50

mTorr O2, 3 J –2 (300 mJ, 10.5 cm lens distance on our system).

Starting with the target, I have found that the processing condition of home made

ESO targets has a significant effect on the final sample. Targets ground by hand

should be ground, sintered, and then ground again to get something homogeneous

and dense. I hand grind targets for at least 2 hours, but I use a lot of force, so others

may need to go for different amounts of time to achieve the same consistency. In my

experience, the particles should be fine enough that the dust holds the pattern of a

finger/glove print. If the samples are not ground enough, deposited films wont

have nice Laue oscillations. For cold pressing, I like to use a little bit of acetone in

the die to facilitate grain motion. I usually press at 1.5 Tons for around 30-45 minutes.

Too much pressure will crack the greenbody and the sample needs to have enough

time to densify. Targets should also be polished with a polishing plate (the big glass

disk) under the SiC paper, or on a benchtop. The surface of the fumehood is rubber

and is flexible enough to create a significant convexity in the target surface.

Substrates mounted to the platen with silver paste should be baked at around

60 ◦C for 10-15 minutes. The temperature is less important for 5x5 mm2 samples,

but for anything larger, a higher temperature will evaporate the solvent out of the silver

paste too quickly and result in large bubbles, ruining thermal contact. Before deposi-

tion, MgO also needs to be baked in the chamber at 950 ◦C for 30 minutes. MgO

substrates tend to be very poor, with a high degree of surface contamination and bad

surface structure [332, 333]. The easiest way to compensate for this is annealing in
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vacuum, where contaminants will fall off and grains will flow/decompose to result in a

cleaner, single crystallographic domain surface for growth. Skipping this step can ruin

the growth, so I always bake it into my routines. My process flow is then: load the

sample, bake at 950 ◦C for 30 minutes in vacuum, bring down to growth temperature,

deposit, cool in O2. I usually cool in 200 sccm (approximately 1 Torr) of O2, mainly so

it will cool faster and the surface will be closer to nominal stoichiometry. This is, how-

ever, very different than the growth pressure and I have seen indications of different

oxygen chemistry between the surface and the bulk, so this may be something that

needs investigation.

A.2 PLD of FeGa alloys

The most important thing when depositing FeGa by any method is that it will not grow

unless there is a seed layer. I usually use a 1-2 UC layer of elemental Fe to seed

the FeGa because, for whatever reason, it will not grow on bare MgO or PMN-PT. Our

collaborators have been able seed it with other TMs, for instance Ir, but in general it

needs an Fe layer to template off of. I would hypothesize that this has something to do

with the magic Fe-O interface formation and that Ga has a hard time bonding to the O

in a rock salt configuration, but we have not investigated this. It is important to make

sure the Fe layer is thin so there is no appreciable magnetic signal from it.

While everything above about substrate care remains true for MgO; PMN-PT, BTO,

PZT, etc. can not be baked in the same fashion because titanates shed oxygen at high

temperatures and become conducting, ruining the ferroelectricity. These crystals are

also very fragile, so care must be taken when heating over large temperature spaces.

This shedding of oxygen and surface conductivity also happens when titanates are ion

milled, something very relevant for this project. In this case, the dangling bonds can

be trimmed by a quick HF etch, which makes the oxide insulating again.

Something to keep in mind with PLD, in general, is that materials can only be

grown for a certain number of shots before the surface of the target starts to roughen
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and form periodic structures [334, 335, 336]. This occurs because of interactions be-

tween the incident light and the boundary conditions of the surface, which is much

more pronounced in metal targets because they reflect so much of the incident light

compared to oxide targets. This effect is even more pronounced in FeGa, presum-

ably because heating and functionalization of the target leads to alloy segregation and

phase changes. This is not something that can be circumnavigated easily on our sys-

tem and, in general, FeGa targets can only be deposited from for about 10,000

shots before they have to be repolished. The saving grace here is, since metals

have much more plastic crystal structures than oxides, these 10k shots can be grown

at much higher fluence than is used with oxides. I often remove the aperture from the

excimer beam when I grow metals, which does effect the laser spot but that is less

important with a metal, and I can reach growth rates in FeGa that approach 75 nm per

10k shots. Do note, though, that this trick may only be possible since these are solid

solutions and growth of an intermetallic may need finer control over the beam spot.
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Appendix B:

Calculation of Magnetic Anisotropy

In a lot of the analysis shown here, particularly in Chapter 2, fitting of the magnetic

hysteresis loop and calculation of the K1 anisotropy energy is important. The K1 coef-

ficient can be determined from an integral of the hysteresis loop [127],

Ahkl =
Z MS

Mr
H(M)dM (B.1)

where [hkl] is the crystallographic axis, and

K1 = 4 (A110 – A100) . (B.2)

Graphically, this integral corresponds to the area above the hysteresis loop from Mr

to Ms, e.g. a perfectly square hysteresis loop will have an Aijk = 0 and a perfectly

hard axis will maximize the term. Given VSM data, this integral can be easily com-

puted numerically with numpy.trapz(). If the absolute moment of the film is large, this

integral is trivial and the confidence is high. If the moment is small, however, as in

the case of a <10 nm film, noise is significant and error should be computed more

rigorously. The most straightforward way to fit this data is to use an approximate of the

Langevin function, Atanh
` x

B
´

+ C, which works well enough to smooth ferromagnetic

data in the pre-switching regime. Because this is a fairly simple fit, I generally just use

numpy.curvefit(), as is shown in Figure B.1. The error here can then be somewhat

rigorously analyzed by looking at the standard error of the fit and propagating it to the

calculation of K1. A simple functional to calculate Aijk, K1, and the associated errors is

included below.
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Figure B.1: Calculation of magnetic anisotropy. Plot showing the fit and analysis for a
magnetic hysteresis loop of a 10 nm FeGa film. Because the film is thin, and MS is approx-
imately 200 —emu, the data is noisy and needs to be fit to tanh(x) + C. This fit is shown in
black.

from scipy import interpolate

from pylab import *

import scipy.integrate as sp

from scipy.optimize import curve_fit

def vsmread(filename):

with open(filename , 'r') as readfile:

datalines = readfile.readlines ()[13:]

H = []

M = []

for line in datalines[:-4]:

temp=line.strip('\n').strip('\t').replace(' ','').split('\t')

H.append(float(temp[0]))

M.append(float(temp[1]))

H = np.array(H)

M = np.array(M)

return(H,M)
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######

V=2e-7 # Volume of the magnet in cc

def proc(filename):

H1, M1 = vsmread(filename+'.txt')

m, b = polyfit(H1[0:20], M1[0:20], 1)

Mfit = m*H1

Ma = M1-Mfit

Ma = Ma/V

Ma = Ma-(max(Ma)+min(Ma))/2 #centering

return(H1 , Ma , filename)

def anisotropy(f1, f2, e):

#####

H1, Ma , F = proc(f1) # f1 , f2 are the file names

H2, Mb , F = proc(f2)

# Mb = Mb/max(Mb)*max(Ma)

Mb = Mb/Mb[0]*Ma[0]

#####

H1a = H1[0:e]

M1a = Ma[0:e]

H2a = H2[0:e]

M2a = Mb[0:e]

#####

def func(x,a,b,c): #fit to pseudo Langevin function

y = a*np.tanh(x/(200+b))+c #(200+b) is an easy way to fudge an

initial guess with curve_fit

return y

def stderr(y, fit):

temp = np.sum((fit-y)** 2)

return (temp/(len(y)-2)) **0.5
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popt1 , pcov1 = curve_fit(func , H1a , M1a)

M1afit = func(H1a ,*popt1)

M1err = stderr(M1a ,M1afit) # standard error of the fit

popt2 , pcov2 = curve_fit(func , H2a , M2a)

M2afit = func(H2a ,*popt2)

M2err = stderr(M2a ,M2afit)

#####

# A100 = sp.trapz(H1a[::-1], x=M1a[::-1])

# A110 = sp.trapz(H2a[::-1], x=M2a[::-1])

A100 = sp.trapz(H1a[::-1], x=M1afit[::-1])

A100err = abs(H1a[0]-H1a[-1])*M1err # propagate error to the

integral with sigf^2=(df/dx)^2sigx^

2

A110 = sp.trapz(H2a[::-1], x=M2afit[::-1])

A110err = abs(H2a[0]-H2a[-1])*M2err

#####

V=1e-6 # not actually volume , but conversion from J/cc to J/m^3

A1V = A100*V

A11V = A110*V #J/cc

A1Verr = A100err*V

A11Verr = A110err*V

con = 6.24e18 # eV/J

####

## generate the figure

figuresize=[3,2.2]

left = .25

right = 0.95
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bottom = .17

top = 0.90

f = plt.figure(figsize=(figuresize[0],figuresize[1]), dpi=200 ,

facecolor='w', edgecolor='k')

f.subplots_adjust(left=left ,right=right ,bottom=bottom ,top=top)

plt.rc('axes', linewidth=1)

ax = plt.subplot(111)

ll=1 # linewidth

ax.axhline(0,color='k',lw=0.75,linestyle='--', alpha=0.8)

plt.plot(M1a , H1a , tr, lw=ll, label = '[100]')

plt.plot(M1afit ,H1a ,'k',lw=0.5) ### plot of the fit

plt.plot(M2a , H2a , tr,dashes=das , lw=ll, label = '[110]')

plt.plot(M2afit ,H2a ,'k',lw=0.5) ### plot of the fit

plt.xlabel('M (emu/cc)')

plt.ylabel('H (Oe)')

leg = plt.legend(loc=2, fontsize=6)

plt.savefig(f1+'.pdf', format='pdf')

# plt.xlim([950 ,1275])

### print values

print('A100',A1V , 'A110', A11V)

print('A100/A110', A1V/A11V)

print('A100 error ', A1Verr , 'A110 error ', A11Verr)

print('')

K1 = (A1V-A11V)/4*1e6 # J/m^3

K1err = (A1Verr **2 + A11Verr **2) **0.5 /4*1e6

print('K1', K1, 'K1err ', K1err)

return(A1V , A11V , A1Verr , A11Verr , K1 , K1err)
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Appendix C:

Calculation of PFM Switching Maps

The PFM switching maps shown in Figure 2.4 were calculated by recording PFM sig-

nals from both the IP and OOP directions, rotating the sample by 90◦, then doing PFM

in the same way. Doing this, the 3D direction of the polarization can be determined.

Here, the OOP signal will correspond to the OOP polarization, the first IP direction will

correspond to the +x and -x directions, and the second IP polarization will be the +y

and -y directions (these particular directions are arbitrary and will vary depending on

how the sample is rotated). The scan direction here matters, because 1) the flexure

of the cantilever will be more sensitive in the direction perpendicular to the scan, so

if you scan from left to right, the up down flexure of the cantilever will be more sensi-

tive. 2) scanning in different configurations will rectangularly distort the image slightly,

so for images to be lain on top of one another, the scan direction needs to be the same.

The ND-MDT AFM has good internal lockin and so is more than fine for character-

ization purposes, but I take issue with the fact that I can not easily change the time

constant of the internal lockin, so I always use external lockins for important data col-

lection. (show diagram of connection for external lockins)

After the data is collected, I process it in Gwyddion and export it as a txt file. This

outputs a 2D array, which is really easy to conceptualize and work with in python/Mat-

lab. PFM data should be a bimodal (or trimodal, if there is an area whit no signal)

distribution of color values, so using the color picker in Gwyddion, I can choose the

value in between the peaks to separate the data into + and - values (this is commented
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in the code below). Plotting these binary-valued PFM matrices in python gives the im-

ages shown in Figure C.1, and allows us to construct the composite 3D matrix, where

the 3rd dimension corresponds to the z, y, and x components of the polarization vector.

Figure C.1: PFM micrographs read into python. PFM micrographs showing OOP and IP
components of polarization exported from Gwyddion and read in python. The last micrograph
shows the composite image of the first three, which correspond to the z, y, and x components
of the polarization respectively. The bar in the center of the image is the device.

Figure C.2: PFM switching map. PFM composite micrographs showing the 3D polarization
vectors both before and after switching. The angle between these two data sets at every pixel
can then be calculated and shown as the third map of switching angle per area.

The way I have written this code, the images need to be aligned manually, but given

the distortion caused by rotating the sample and by the different scan profiles, this is

the best way to do it with out current setup. Scanning over a device is the best way to

do this, as the topographical features can be aligned. Once the composite has been

constructed, the second image after switching needs to be processed in the same way

and the two need to be aligned again. At this point, the angle at every pixel between

the two polarization vectors can be calculated and a third map of switching angle can
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be constructed. The code used in the calculations done in Chapter 2 is included here.

# %matplotlib notebook

## code to analyze PFM switching maps from txt files output by

Gwyddion

## author: Peter Meisenheimer

## last updated: 1/14/21

######

### functionals

import numpy as np

import os

import csv

import matplotlib.pyplot as plt

from pylab import *

from matplotlib.ticker import AutoMinorLocator

from scipy import signal

import matplotlib.colors as mcol

import matplotlib.cm as cm

######

def txtread(filename ,threshold ,val):

data = []

with open(filename+'.txt', 'r') as readfile:

datalines = readfile.readlines ()

for line in datalines:

temp=line.strip('\n').split('\t')

temp = np.array(temp ,dtype=float)

data.append(temp)

data = np.array(data)

for i in range(len(data)):
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for j in range(len(data)):

if data[i][j] > threshold:

data [i][j] = val

else:

data[i][j] = -1*val

for i in range(len(data)-1):

for j in range(len(data)-1):

if data[i][j] != data[i+1][j] and data[i][j] != data[i-1][j

] and data[i][j] != data[i][j+1]

and data[i][j] != data[i][j-1]:

data[i][j] = data[i+1][j]

return np.flipud(np.array(data))

#######

### figure design

def figfig ():

figuresize=[4,4]

left = .2

right = 0.9

bottom = .2

top = 0.90

f = plt.figure(figsize=(figuresize[0],figuresize[1]), dpi=300 ,

facecolor='w', edgecolor='k')

f.subplots_adjust(left=left ,right=right ,bottom=bottom ,top=top)

ax = plt.subplot(111)

ll=1 # linewidth

ts=10 # title size

al = 1

mm = 3

plt.rc('axes', linewidth=1)

plt.tick_params(axis='both', which='major', top=True , right=True ,

labelsize=ts, length=2.5, width=1,

pad = 5, direction='in')

plt.tick_params(axis='both', which='minor', top=True , right=True ,

labelsize=ts, length=1.5, width=0.5
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, pad = 5, direction='in')

ax.set_xlabel(r'$x$ ($\mu$m)', fontsize=ts, labelpad=2)

ax.set_ylabel('$y$ ($\mu$m)',fontsize=ts , labelpad=2)

return(f)

########

def unit_vector(vector):

for i in range(len(vector)):

if vector[i]==4 or vector[i]==2: #convert back to real

coordinates from the easy sum

vector[i]=1

elif vector[i]==-4 or vector[i]==-2:

vector[i]=-1

return vector / np.linalg.norm(vector)

def angle(v1 , v2):

v1_u = unit_vector(v1)

v2_u = unit_vector(v2)

return np.arccos(np.clip(np.dot(v1_u , v2_u), -1.0, 1.0))

# % matplotlib notebook

########

### S2 +400V

res = 256

l = 20

#x = np.linspace(0,res ,res) #pixels

#y = np.linspace(0,res ,res)

### create x,y corredinates for mapping

x = np.linspace(0,l,res)# microns

y = np.linspace(0,l,res)

[xx,yy] = np.meshgrid(x,y)
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## import files

filename = 'S2/S2_+400_right_OOP '

cv2 = 8.92 # center value

d2 = txtread(filename , cv2 , 4)

# d2 = txtread(filename , cv2 , 1)

filename = 'S2/S2_+400_right_IP '

cv3 = 10.777

d3 = txtread(filename , cv3 , 2)

# d3 = txtread(filename , cv3 , 1)

filename = 'S2/S2_+400_down_IP '

cv4 = 1.119

d4 = txtread(filename , cv4 , 1)

#######

# do manual alignment

snipl1 = 1 #trim from the left of the image

snipb1 = 5 #trim from the bottom of the image

f1 = figfig ()

plt.title('90 deg OOP')

plt.pcolor(xx[:-snipb1 ,:-snipl1],yy[:-snipb1 ,:-snipl1],d2[snipb1:,

snipl1:])

plt.savefig('OOP.png', format='png') # save as png's because having

eveythinga s vector graphics is

too much for inkscape to handle

f2 = figfig ()

plt.title('90deg IP')

plt.pcolor(xx[:-snipb1 ,:-snipl1],yy[:-snipb1 ,:-snipl1],d3[snipb1:,

snipl1:])

plt.savefig('90IP.png', format='png')

f3 = figfig ()

plt.title('0deg IP')

plt.pcolor(xx[:-snipb1 ,:-snipl1],yy[:-snipb1 ,:-snipl1],d4[:-snipb1:
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,:-snipl1])

plt.savefig('0IP.png', format='png')

####

## create composite map

s2P400 = np.array( [ d2[:-snipb1 ,snipl1:], d3[:-snipb1 ,snipl1:], d4

[snipb1:,:-snipl1] ] )

# f4 = figfig ()

# plt.title('P400 orientation ')

# plt.pcolor(xx[:-snipb ,:-snipl],yy[:-snipb ,:-snipl], np.sum(P400 ,

axis=0), rasterized=True)

# plt.savefig('S2before.pdf ', format='pdf ')

#####

#####

### S2 -400

x = np.linspace(0,l,res)# microns

y = np.linspace(0,l,res)

[xx,yy] = np.meshgrid(x,y)

## read second set of files

filename = 'S2/S2_ -400_right_OOP '

cv2 = 8.83# center value

d2 = txtread(filename , cv2 , 4)

d2 = txtread(filename , cv2 , 1)

filename = 'S2/S2_ -400_right_IP '

cv3 = 10.244

d3 = txtread(filename , cv3 , 1)

filename = 'S2/S2_ -400_down_IP '

cv4 = 8.195

d4 = txtread(filename , cv4 , 2)

d4 = txtread(filename , cv4 , 1)
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######

snipl2 = 1

snipb2 = 3

######

s2N400 = np.array( [ d2[snipb2:,:-snipl2], d3[snipb2:,:-snipl2], d4

[:-snipb2 ,snipl2:] ] )

# f4 = figfig ()

# plt.title('N400 orientation ')

# plt.pcolor(xx[:-snipb ,:-snipl],yy[:-snipb ,:-snipl], np.sum(N400 ,

axis=0), rasterized=True)

# plt.savefig('S2after.pdf ', format='pdf ')

#######

#######

#######

# manual alignment of the two composites

sld = 1

sbd = 1

procP400 = s2P400[: ,(sbd-1):-sbd ,(sld-1):-sld] #im doing this by

hand based on the correction shifts

#cut from the right side

cut=42

procP400=procP400[:,:,:-cut]

print(shape(procP400))

# print(procP400[:,0,0])

f4 = figfig ()

plt.title('P400 orientation ')

plt.pcolor(xx[(sbd-1):-(snipb1+sbd),(sld-1):-(snipl1+sld+cut)],yy[(

sbd-1):-(snipb1+sbd) ,(sld-1):-(

snipl1+sld+cut)], np.sum(procP400 ,

axis=0))

plt.savefig('1P.png', format='png')

######
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sld = 22

sbd = 2

procN400 = s2N400[: ,(sbd-1):-sbd ,(sld-1):-sld] #im doing this by

hand based on the correction shifts

print(shape(procN400))

f5 = figfig ()

plt.title('N400 orientation ')

plt.pcolor(xx[(sbd-1):-(snipb2+sbd),(sld-1):-(snipl2+sld)],yy[(sbd-

1):-(snipb2+sbd) ,(sld-1):-(snipl2+

sld)], np.sum(procN400 ,axis=0))

plt.savefig('1N.png', format='png')

## set counts for histogram

count0 = 0

count70 = 0

count109 = 0

count180 = 0

## coordinates of the device

bound1=95

bound2=155

ilen = shape(procP400)[1]

jlen = shape(procP400)[2]

A = np.zeros([ilen ,jlen])

for i in range(ilen):

for j in range(jlen):

temp = int(round(angle(procP400[:,i,j], procN400[:,i,j])))

A[i,j] = temp

if bound1<i<bound2:

temp=4

elif temp ==0:

count0 = count0+1

elif temp ==1:

count70 = count70+1

elif temp==2:

count109=count109+1

elif temp==3:

count180=count180+1
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total = count0+count70+count109+count180

print('count0 ',count0/total)

print('count70 ',count70/total)

print('count109 ',count109/total)

print('count180 ',count180/total)

## create variables for propagating counts

c0_1 = count0/total

c71_1 = count70/total

c109_1 = count109/total

c180_1 = count180/total

figfig ()

p = plt.pcolor(xx[:ilen ,:jlen],yy[:ilen ,:jlen], A, rasterized=True ,

cmap='plasma ',alpha=1) # inplane

left+bottom

# plt.axhline(xx[0,bound1 ])

# plt.axhline(xx[0,bound2 ])

plt.fill_between([np.amin(xx[:ilen ,:jlen]),np.amax(xx[:ilen ,:jlen])

],xx[0,bound1],xx[0,bound2],color='

k')

# cb = plt.colorbar(p)

# cb.set_ticks ([0,1,2,3])

# cb.set_ticklabels ([r'0$\degree$ ',r'71$\degree$ ',r'109$\degree$ ',r

'180$\degree$ '])

# cb.set_label('Switching Event ',rotation=270 ,labelpad=5)

file = '1switch '

plt.savefig(file + '.png', format='png')

plt.savefig(file + '.pdf', format='pdf')
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Appendix D:

Processing of XAS and XMCD Data

Working with our collaborators Padraic Shafer and Alpha T. N’Diaye at the ALS at LBL,

I have developed some python code to better handle the large amount of data from

time at the synchrotron. Padraic and Alpha have Origin macros set up for dealing with

data from their beamlines, but Origin is not particularly usable in real time, for large

amounts of data (since very little of it is automated), or on a laptop (since you may not

have origin because you plot everything in python, right?). This appendix is dedicated

to the processing of XAS and XMLD/XMCD data, as well the extraction of l • s from

XMCD data.

D.1 Reading XAS Data and Calculating Dichroism

The processing of XAS data is fairly straightforward- from a single dataset at the beam-

line, there will be something like 10 scans for each polarization (linear for XMLD, cir-

cular for XMCD). The data are taken progressively, so each successive scan needs to

be binned in the opposite manner (e.g. the tool will measure with polarizations +P, -P,

-P, +P, +P, etc.). The background used is just a linear fit, which is not really right but

is good enough. We then take the mean of each bin, so we end up with, for instance,

a mean s polarization and a mean p polarization. The difference in these is then the

linear or circular dichroism.

Subroutine:
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Figure D.1: Example XAS and XMCD. Example XAS and XMCD data about the Fe peak of
a FeGa sample

#!/bin/python3

#

# file: xmld_data.py

# desc: Takes dat files from ALS XMLD and turns it into a

dictionary

# author: Peter Meisenheimer 190604

#

def ReadFile(filename):

datafile = open(filename+'.txt', 'rb')
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while True:

row = datafile.readline ()

if row.decode('utf -8').replace("\r\n", "") == "Description

Length: 0":

row = datafile.readline ()

break

# Obtain labels

labels = datafile.readline ().decode('utf -8')

labels = labels.replace("\n","").split("\t")

indices = [i for i in range(0, len(labels))]

data = {label: [] for label in labels}

while True:

row = datafile.readline ()

if not row:

break

else:

values = row.decode('utf -8').replace("\r\n", "").split("\t")

for l, i in zip(labels , indices):

try:

data[l].append(float(values[i]))

except ValueError:

data[l].append(values[i])

return data

Preamble:

import numpy as np

import os

import csv

import matplotlib.pyplot as plt

from pylab import *

from matplotlib.ticker import AutoMinorLocator
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import matplotlib.colors as mcol

import matplotlib.cm as cm

import scipy.interpolate as inter

import xmld_data as xld

Averaging:

def cat(data):

tim = data['Time (s)']

sI0ES = []

sEY = []

sC11 = []

pI0ES = []

pEY = []

pC11 = []

for i in range(len(tim)):

if tim[i] == tim[0]:

sI0ES.append(data['I0 ES'][i])

sEY.append(data['EY'][i])

sC11.append(data['Energy Readback '][i])

else:

pI0ES.append(data['I0 ES'][i])

pEY.append(data['EY'][i])

pC11.append(data['Energy Readback '][i])

spol = np.transpose( np.array([sC11 ,sI0ES ,sEY]) )

ppol = np.transpose( np.array([pC11 ,pI0ES ,pEY]) )

return(spol ,ppol)

#######
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def lyfirstnorm(data):

xx = np.array(range(len(data)))

lya = 65

lyb = 110

mean = (data[lyb]+data[lya])/2

mean = []

for i in range(lya ,lyb):

mean.append(data[i])

mean = np.mean(mean)

datanew = data*(1/mean )

return(datanew)

#######

def pull(tag , shift , note):

n = 1

if note ==1:

filename = 'trajscan_data/'+tag+'_0001'

N = np.arange(n)+1

elif note==2:

filename = 'trajscan_data/'+tag+'_0009'

N = np.arange(n)+9

elif note==3:

filename = 'trajscan_data/'+tag+'_0017'

N = np.arange(n)+17

data = xld.ReadFile(filename)

a = data['Energy Readback '][0]+1

b = data['Energy Readback '][-1]-1

ll = int( (b-a)*1e3 )

sC11 = np.zeros(( int( len(data['Time (s)'])/2) ,n))

sEY = np.zeros(( int( len(data['Time (s)'])/2) ,n))
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pC11 = np.zeros(( int( len(data['Time (s)'])/2) ,n))

pEY = np.zeros(( int( len(data['Time (s)'])/2) ,n))

### arange all data into matrices

for i in range(n):

if N[i] <= 9:

filename = 'trajscan_data/'+tag+'_000{}'.format(N[i])

else:

filename = 'trajscan_data/'+tag+'_00{}'.format(N[i])

# print(filename)

data = xld.ReadFile(filename)

XX = np.linspace(a,b,ll)

spol ,ppol = cat(data)

sC11[:,i] = spol[:,0]

sEY[:,i] = lyfirstnorm(spol[:,2]/spol[:,1])

pC11[:,i] = ppol[:,0]

pEY[:,i] = lyfirstnorm(ppol[:,2]/ppol[:,1])

## take out the settling data , replace 1 with 3

# sLY[:,0] = sLY[:,2]

# pLY[:,0] = pLY[:,2]

C11out = sC11[:,-1]

# spacer = 1

# C11out = XX[spacer:-spacer]

### shift is in 10meV increments

### calculate differences

smean = np.mean(sEY ,axis=1)

pmean = np.mean(pEY ,axis=1)

# x = C11out

# y = smean

# m, b = polyfit( (x[0],x[-1]), (y[0],y[-1]), 1)
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# smean = y-(m*x+b)

# y = pmean

# m, b = polyfit( (x[0],x[-1]), (y[0],y[-1]), 1)

# pmean = y-(m*x+b)

avgmean = (smean+pmean)/2

smean = (smean-min(avgmean))/(max(avgmean-min(avgmean)) )

pmean = (pmean-min(avgmean))/(max(avgmean-min(avgmean)) )

EYdiff = (smean - pmean)

### background subtract

# m = (LYdiff[0]-LYdiff[-1])/( C11out[0]-C11out[-1])

# LYdiff = LYdiff -( C11out*m)

# LYdiff = LYdiff -LYdiff[0]

x = C11out

y = EYdiff

m, b = polyfit( (x[0],x[-1]), (y[0],y[-1]), 1)

EYdiff = y-(m*x+b)

# smean = smean +(m*x+b)/2

# pmean = pmean -(m*x+b)/2

return(C11out , smean , pmean , EYdiff)

Plotting:

### figures

# %matplotlib inline

def compfig(tag , C11 , pmean , smean , EYdiff):

figuresize=[4,2.5]

left = .2

right = 0.95

bottom = .17
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top = 0.90

f = plt.figure(figsize=(figuresize[0],figuresize[1]), dpi=100 ,

facecolor='w', edgecolor='k')

f.subplots_adjust(left=left ,right=right ,bottom=bottom ,top=top)

plt.rc('axes', linewidth=1)

ax = plt.subplot(111)

ll=1 # linewidth

ts=10 # title size

ax.plot(C11 ,smean , color='tab:blue',label=r'$0\degree$ ', lw=ll)

ax.plot(C11 ,pmean , color='tab:red',label=r'$90\degree$ ', lw=ll)

ax.set_xlabel(''r'Photon Energy (eV)', fontsize=ts , labelpad=2)

ax.set_ylabel('XMLD (a.u.)',fontsize=ts , labelpad=2)

ax.set_ylim([-0.05,1.1])

#ax.set_xticks(np.arange(20 ,71 ,10))

ax.set_xlim([min(C11)+10,max(C11)-10])

minor_locator = AutoMinorLocator(5)

ax.xaxis.set_minor_locator(minor_locator)

ax.yaxis.set_minor_locator(minor_locator)

ax.yaxis.set_ticks_position('both')

ax.xaxis.set_ticks_position('both')

plt.tick_params(axis='both', which='major', labelsize=ts, length=

2.5, width=1, pad = 5, direction='

in')

plt.tick_params(axis='both', which='minor', labelsize=ts, length=

1.5, width=.5, pad = 5, direction='

in')

leg = plt.legend(loc=1, fontsize=ts-2)

leg.get_frame ().set_linewidth(0.0)

# plt.show()

#os.chdir(os.path.expanduser ('~/ Desktop ') )

plt.savefig('figures/'+tag+'comp.pdf', format='pdf')
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######

def diffig(tag , C11 , pmean , smean , EYdiff):

figuresize=[4,2.5]

left = .2

right = 0.95

bottom = .17

top = 0.90

f = plt.figure(figsize=(figuresize[0],figuresize[1]), dpi=100 ,

facecolor='w', edgecolor='k')

f.subplots_adjust(left=left ,right=right ,bottom=bottom ,top=top)

plt.rc('axes', linewidth=1)

ax = plt.subplot(111)

ll=1 # linewidth

ts=10 # title size

ax.axhline(0,color='k',linestyle='--', alpha=0.8, lw=0.5)

ax.plot(C11 ,EYdiff*100 , color='tab:blue', lw=ll)

# ax.plot(C11 ,pmean , color='tab:red ', lw=ll)

ax.set_xlabel(''r'Photon Energy (eV)', fontsize=ts , labelpad=2)

ax.set_ylabel('Dichroism (%)',fontsize=ts , labelpad=2)

# ax.set_ylim([-0.05 ,1.1])

#ax.set_xticks(np.arange(20 ,71 ,10))

ax.set_xlim([min(C11)+10,max(C11)-10])

minor_locator = AutoMinorLocator(5)

ax.xaxis.set_minor_locator(minor_locator)

ax.yaxis.set_minor_locator(minor_locator)

ax.yaxis.set_ticks_position('both')

ax.xaxis.set_ticks_position('both')

plt.tick_params(axis='both', which='major', labelsize=ts, length=
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2.5, width=1, pad = 5, direction='

in')

plt.tick_params(axis='both', which='minor', labelsize=ts, length=

1.5, width=.5, pad = 5, direction='

in')

# plt.show()

#os.chdir(os.path.expanduser ('~/ Desktop ') )

plt.savefig('figures/'+tag+'dif.pdf', format='pdf')

#######

def postfig(lis ,lab ,note):

######

Per = range(len(lis))

cm1 = mcol.LinearSegmentedColormap.from_list("MyCmapName",["tab:

red","tab:blue"])

cnorm = mcol.Normalize(vmin=min(Per),vmax=max(Per))

cpick = cm.ScalarMappable(norm=cnorm ,cmap=cm1)

cpick.set_array([])

#######

figuresize=[2.5,5]

left = .2

right = 0.95

bottom = .17

top = 0.90

# f = plt.figure(figsize =( figuresize[0],figuresize[1]), dpi=150 ,

facecolor='w', edgecolor='k')

# f.subplots_adjust(left=left ,right=right ,bottom=bottom ,top=top)

plt.rc('axes', linewidth=1)

# ax = plt.subplot(111)

f, (ax1 , ax2) = plt.subplots(2,1, sharex=True ,figsize=(figuresize
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[0],figuresize[1]), dpi=130 ,

facecolor='w', edgecolor='k')

f.subplots_adjust(left=left ,right=right ,bottom=bottom ,top=top)

ll=1 # linewidth

ts=10 # title size

val = []

for i in range(len(Per)):

shift=0

tag = 'Trajscan{}'.format(lis[i])

C11 , smean ,pmean , EYdiff = pull(tag ,shift ,note[i])

val.append(max(abs(EYdiff)))

ax1.plot(C11 ,(pmean+smean)/2+0.2*i*0, color = cpick.to_rgba(Per[i

]), lw=ll, label = lab[i])

ax2.plot(C11 ,EYdiff+0.02*i*0, color = cpick.to_rgba(Per[i]), lw=

ll)

ax1.set_ylabel('XA',fontsize=ts , labelpad=2)

ax2.set_xlabel(''r'Photon Energy (eV)', fontsize=ts , labelpad=2)

ax2.set_ylabel('XMCD',fontsize=ts , labelpad=2)

# ax.set_ylim([-0.05 ,1.1])

#ax.set_xticks(np.arange(20 ,71 ,10))

ax2.set_xlim([min(C11)+10 ,max(C11)-10])

minor_locator = AutoMinorLocator(5)

ax2.xaxis.set_minor_locator(minor_locator)

ax2.yaxis.set_minor_locator(minor_locator)

ax2.yaxis.set_ticks_position('both')

ax2.xaxis.set_ticks_position('both')

plt.tick_params(axis='both', which='major', labelsize=ts, length=

2.5, width=1, pad = 5, direction='

in')

plt.tick_params(axis='both', which='minor', labelsize=ts, length=

1.5, width=.5, pad = 5, direction='

in')

leg = ax1.legend(loc=1, fontsize=ts-2)
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leg.get_frame ().set_linewidth(0.0)

plt.savefig('figures/'+tag+'post.pdf', format='pdf')

print(val)

######

def singledata(lis ,lab ,note):

shift=0

i=0

tag = 'Trajscan{}'.format(lis[i])

C11 , smean ,pmean , LYdiff = pull(tag ,shift ,note[i])

# val.append(max(abs(LYdiff)))

return(C11 ,( pmean+smean)/2)

How to call:

## TrajScan28565_0001

lis = [28565]

lab = ['27% Ga virgin ']

note = [1]

shift=0

print('first try')

postfig(lis ,lab ,note)

D.2 MVH Loop from XMCD

Circular dichroism can be used to reconstruct a hysteresis loop by measuring the peak

value and then evolving the field. Using the same preamble as above, this can be done:

def cat(data):

tim = data['Time (s)']

I0ES = []
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Figure D.2: Magnetic hysteresis from XMCD. Example hysteresis taken from XMCD data
about the Fe peak of a FeGa sample

EY=[]

B=[]

for i in range(len(tim)):

I0ES.append(data['I0 ES'][i])

EY.append(data['EY'][i])

B.append(data['Magnet Field'][2*i])

dat = np.transpose( np.array([B,I0ES ,EY]) )

return(dat)

#####

def pull(tag ,npoints):

n = 1

filename = 'trajscan_data/'+tag

data = cat(xld.ReadFile(filename))

ratio = data[:,2]/data[:,1]

#brute force the number of loops

nscans = 12

nloops = 2*nscans

# npoints = 282 # subject to change
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fields = data[0:npoints ,0]

print(len(fields))

vals=[]

for i in range(nloops):

vals.append(ratio[i*npoints:(i+1)*npoints])

vals = np.array(vals)

print(shape(vals))

L2=[]

L3=[]

for i in range(int(nscans/2)):

L2.append(vals[4*i,:])

L3.append(vals[4*i+1,:])

L3.append(vals[4*i+2,:])

L2.append(vals[4*i+3,:])

L2=np.array(L2)

L3=np.array(L3)

asymm = (L3-L2)/(L2+L3)

print(shape(asymm))

meanasymm = np.mean(asymm ,axis=0)

return(fields , vals , meanasymm)

#####

#### figure parameters

def figfig ():

figuresize=[4,2.5]

left = .2

right = 0.95

bottom = .17

top = 0.90

f = plt.figure(figsize=(figuresize[0],figuresize[1]), dpi=200 ,

facecolor='w', edgecolor='k')

f.subplots_adjust(left=left ,right=right ,bottom=bottom ,top=top)
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plt.rc('axes', linewidth=1)

ax = plt.subplot(111)

ll=1 # linewidth

ts=10 # title size

# ax.axhline(0,color='k',linestyle='--', alpha=0.8, lw=0.5)

ax.set_xlabel(''r'B (mT)', fontsize=ts, labelpad=2)

ax.set_ylabel('asymmetry (a.u.)',fontsize=ts , labelpad=2)

ax.yaxis.set_ticks_position('both')

ax.xaxis.set_ticks_position('both')

plt.tick_params(axis='both', which='major', labelsize=ts, length=

2.5, width=1, pad = 5, direction='

in')

plt.tick_params(axis='both', which='minor', labelsize=ts, length=

1.5, width=.5, pad = 5, direction='

in')

####

figfig ()

### 0V MVH

tag = ['TrajScan28566 ']

lab = ['0V']

######

Per = range(len(tag))

cm1 = mcol.LinearSegmentedColormap.from_list("MyCmapName",["tab:red

","tab:blue"])

cnorm = mcol.Normalize(vmin=min(Per),vmax=max(Per))

cpick = cm.ScalarMappable(norm=cnorm ,cmap=cm1)

cpick.set_array([])
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#######

for i in range(len(tag)):

fields ,vals ,asymm = pull(tag[i],282)

plt.plot(fields*1000 ,asymm ,color = cpick.to_rgba(Per[i]) ,label =

lab[i])

D.3 Calculation of Spin-Orbit Coupling from XMCD

From XMCD data, both the spin and orbital components of the magnetization can be

evaluated from the integrals of the two signals. This process is detailed especially well

in [337] and so I will not go too far into detail here, but will provide a brief overview, as

well as my own calculations.
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Figure D.3: Spin-orbit coupling from XMCD. Example XMCD about the Fe peak of a FeGa
sample, used to calculate mL/mS via the sum rule. Both polarization components are shown
along with dichroic signal and the subtracted background.

After calculating the mean of the XAS data as normal, subtract a two-step error-

function-like background. These steps are at the absorption edge of the signal. The
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integral of this background-subtracted function goes to the denominator in the final

analysis, R. Now working with the dichroism data, P is the integral at only the L3 edge

and Q is the full integral. From here, the DOS needs to be known to calculate the

actual values of mL and mS, but mL/mS can be expressed as a unitless ratio. The

component of the orbital moment is:

mL =
–4Q ∗ Nh

6R
(D.1)

the component of the spin moment is:

mS =
–(6P – 4Q)Nh

2R
(D.2)

and the ratio between the two:

mL/mS =
2Q

9P – 6Q
(D.3)

where Nh is the number of holes in the d-band of the element. The total moment

should then be mL + mS

def cat(data):

tim = data['Time (s)']

sI0ES = []

sEY = []

sC11 = []

pI0ES = []

pEY = []

pC11 = []

for i in range(len(tim)):

if tim[i] == tim[0]:

sI0ES.append(data['I0 ES'][i])

sEY.append(data['EY'][i])

sC11.append(data['Energy Readback '][i])
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else:

pI0ES.append(data['I0 ES'][i])

pEY.append(data['EY'][i])

pC11.append(data['Energy Readback '][i])

spol = np.transpose( np.array([sC11 ,sI0ES ,sEY]) )

ppol = np.transpose( np.array([pC11 ,pI0ES ,pEY]) )

return(spol ,ppol)

#####

def lyfirstnorm(x,data):

xx = np.array(range(len(data)))

lya = 20

lyb = 120

lyc = 440

### linearize

background = np.zeros(len(data))

mp = int(len(x)/2)

m, b = polyfit( (xx[lya:lyb]), (data[lya:lyb]), 1)

background[:mp]= m*xx[:mp]

m2, b2 = polyfit( (xx[lyc:]), (data[lyc:]), 1)

background[mp:] = m2*xx[mp:] - m2*xx[mp] + background[mp-1]

# figure ()

# plt.plot(background)

# for i in range(len(background)):

# if i>mp:

# background[i] = background[i]+

# a,b,c = polyfit( (x[lyc :]), (data[lyc :]), 2)

# data = data -(a*x**2+b*x)
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datanew=data - background

return(datanew)

######

def pull(tag , shift , note):

n=1

filename = 'trajscan_data/'+tag+'_0001'

N = np.arange(n)+1

data = xld.ReadFile(filename)

a = data['Energy Readback '][0]+1

b = data['Energy Readback '][-1]-1

ll = int( (b-a)*1e3 )

sC11 = np.zeros(( int( len(data['Time (s)'])/2) ,n))

sEY = np.zeros(( int( len(data['Time (s)'])/2) ,n))

pC11 = np.zeros(( int( len(data['Time (s)'])/2) ,n))

pEY = np.zeros(( int( len(data['Time (s)'])/2) ,n))

### arange all data into matrices

for i in range(n):

if N[i] <= 9:

filename = 'trajscan_data/'+tag+'_000{}'.format(N[i])

else:

filename = 'trajscan_data/'+tag+'_00{}'.format(N[i])

# print(filename)

data = xld.ReadFile(filename)

XX = np.linspace(a,b,ll)

spol ,ppol = cat(data)
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sC11[:,i] = spol[:,0]

temp = lyfirstnorm(spol[:,0],spol[:,2]/spol[:,1])

temp = temp-temp[0]

sEY[:,i] = temp

pC11[:,i] = ppol[:,0]

temp2 = lyfirstnorm(ppol[:,0],ppol[:,2]/ppol[:,1])

temp2 = temp2-temp2[0]

pEY[:,i] = temp2

## take out the settling data , replace 1 with 3

# sLY[:,0] = sLY[:,2]

# pLY[:,0] = pLY[:,2]

C11out = sC11[:,-1]

# spacer = 1

# C11out = XX[spacer:-spacer]

### shift is in 10meV increments

### calculate differences

smean = np.mean(sEY ,axis=1)

# smean = smean/smean[-1]

pmean = np.mean(pEY ,axis=1)

## normalize curves

pmean = pmean/pmean[-1]*smean[-1]

# pmean = pmean/pmean[-1]

avgmean = (smean+pmean)/2

smean = (smean-min(avgmean))/(max(avgmean-min(avgmean)) )

pmean = (pmean-min(avgmean))/(max(avgmean-min(avgmean)) )

EYdiff = (smean - pmean)

### background subtract

# m = (LYdiff[0]-LYdiff[-1])/( C11out[0]-C11out[-1])

# LYdiff = LYdiff -( C11out*m)

# LYdiff = LYdiff -LYdiff[0]

x = C11out
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y = EYdiff

m, b = polyfit( (x[0],x[-1]), (y[0],y[-1]), 1)

EYdiff = y-(m*x+b)

# smean = smean +(m*x+b)/2

# pmean = pmean -(m*x+b)/2

return(C11out , smean , pmean , EYdiff)

####

from scipy.special import erf

def integrals(x,a,b):

### XAS integral

## indeces of the edge peaks

p1 = 172

p2 = 302

end = 366

end = -1

background = np.zeros(len(x))

XAS = (a+b)/2

XMCD = a-b

start = 0

offset = XAS[start]

background = (background + offset +

( (XAS[end]-offset)/2*(erf(x-x[np.argmax(XMCD)])+1)/2 ) +

( (XAS[end]-offset)/2*(erf(x-x[np.argmax(XAS)])+1)/2 ) )

XASnorm = XAS-background

R = np.trapz(XASnorm[start:end],x[start:end])

### XMCD integral

# m, b = polyfit( (x[0],x[-1]), (XMCD[0],XMCD[-1]), 1)

# XMCD = XMCD -(m*x+b)
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Q = np.trapz(XMCD ,x)

### L3 integral

## index of the start of the second peak

val = np.min(XAS[np.argmax(XAS):np.argmax(XMCD)])

l3stop = XAS.tolist ().index(val)

# print(l3stop)

xL3 = x[start:l3stop]

L3 = XMCD[start:l3stop]

P = np.trapz(L3,xL3)

ML = -(4*Q)/(6*R)

MS = -(6*P-4*Q)/(2*R)

MLMS = (2*Q)/(9*P-6*Q)

return(P,Q,R,ML ,MS,MLMS , background)

####

def figfig ():

figuresize=[3,4]

left = .2

right = 0.95

bottom = .17

top = 0.90

# f = plt.figure(figsize =( figuresize[0],figuresize[1]), dpi=150 ,

facecolor='w', edgecolor='k')

# f.subplots_adjust(left=left ,right=right ,bottom=bottom ,top=top)

plt.rc('axes', linewidth=1)

# ax = plt.subplot(111)

f, ax = plt.subplots(1,1 ,figsize=(figuresize[0],figuresize[1]),

dpi=150 , facecolor='w', edgecolor='

k')
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f.subplots_adjust(left=left ,right=right ,bottom=bottom ,top=top)

ll=1 # linewidth

ts=10 # title size

ax.set_xlabel(''r'Photon Energy (eV)', fontsize=ts , labelpad=2)

ax.set_ylabel('XMCD',fontsize=ts , labelpad=2)

minor_locator = AutoMinorLocator(5)

ax.xaxis.set_minor_locator(minor_locator)

ax.yaxis.set_minor_locator(minor_locator)

ax.yaxis.set_ticks_position('both')

ax.xaxis.set_ticks_position('both')

plt.tick_params(axis='both', which='major', labelsize=ts, length=

2.5, width=1, pad = 5, direction='

in')

plt.tick_params(axis='both', which='minor', labelsize=ts, length=

1.5, width=.5, pad = 5, direction='

in')

figfig ()

lis = [28565 ,28569 ,28578 ,28585 ,28588 ,28590 ,28594 ,28597]

lab = [0,100 ,200 ,300 ,400 ,300 ,100 ,0]

lis = [28565]

lab = [0]

# lis = [28593 ,28594]

# lab = [200 ,100]

note = np.ones(len(lis))

shift=0

ML=[]

MS=[]

MLMS=[]

for i in range(len(lis)):

tag = 'Trajscan{}'.format(lis[i])

C11 , smean ,pmean , EYdiff = pull(tag ,shift ,note[i])
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plt.plot(C11 ,smean)

plt.plot(C11 , pmean)

plt.plot(C11 , smean-pmean)

P,Q,R,tempML ,tempMS ,tempMLMS ,b = integrals(C11 , smean ,pmean)

print(P,Q,R)

print(tempML ,tempMS ,tempMLMS)

plt.plot(C11 ,b)

ML.append(tempML)

MS.append(tempMS)

MLMS.append(tempMLMS)

figfig ()

plt.plot(lab ,ML,c='b',marker='o',ms=10)

plt.plot(lab ,MS,c='r',marker='o',ms=10)

plt.plot(lab ,MLMS ,c='m',marker='o',ms=10)

print ()

##################################

print('ML',mean(ML) )

print('MS',mean(MS) )

print('MLMS',mean(MLMS) )
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