
Game-Theoretic and Set-Based Methods for
Safe Autonomous Vehicles on Shared Roads

by

Nan Li

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Aerospace Engineering)

in The University of Michigan
2021

Doctoral Committee:

Associate Professor Anouck R. Girard, Co-Chair
Professor Ilya V. Kolmanovsky, Co-Chair
Dr. Dimitar P. Filev, Ford Motor Company
Professor Jing Sun

Nan Li

nanli@umich.edu

ORCID iD: 0000-0001-7928-8796

© Nan Li 2021

Dedication

This dissertation is dedicated to my grandma, Guofen Song, and
my parents, Huanyin Li and Mingli Zhang. This journey would not
have been possible without your unconditional love and support.

ii

Acknowledgments

Firstly, I would like to thank my advisors, Prof. Anouck Girard and
Prof. Ilya Kolmanovsky, for their guidance and support. They have been
excellent advisors, mentors, and role models for me. I am privileged to
have had the opportunity to learn from them and work with them. Sec-
ondly, I would like to thank my committee members, Dr. Dimitar Filev
and Prof. Jing Sun, for their continued support and encouragement, and
for their insightful comments and suggestions, which have helped me im-
prove my research results and dissertation writing. Also, I would like to
thank Prof. Gábor Orosz. His instruction and mentorship during my mas-
ter’s studies inspired my interest in and dedication to the field of dynamic
systems and control. Finally, I would like to acknowledge my colleagues
for their collaboration that has helped me accomplish my research goals.

iii

TABLE OF CONTENTS

Dedication . ii

Acknowledgments . iii

List of Figures . vi

List of Tables . ix

List of Appendices . x

Abstract . xi

Introduction . 1

Chapter

1 Game-Theoretic Modeling of Driver Interactions in Multi-Vehicle Traffic Sce-
narios . 4

1.1 Introduction to game-theoretic modeling of driver interactions 4
1.1.1 Background and overview . 4
1.1.2 Definition of a driver model . 7
1.1.3 Level-k reasoning theory . 8
1.1.4 Leader-follower game . 8

1.2 Level-k based modeling of driver interactions on highways 9
1.2.1 Vehicle kinematics . 9
1.2.2 Action space . 10
1.2.3 Observation space . 11
1.2.4 Reward function . 12
1.2.5 Constraints . 13
1.2.6 Level-k decision making . 14
1.2.7 Obtaining level-k policies using reinforcement learning 16
1.2.8 Simulation results of level-k driver models 19

1.3 Leader-follower based modeling of driver interactions at intersections . . 26
1.3.1 Parameterized intersection . 26
1.3.2 Vehicle kinematics . 28
1.3.3 Reward function . 30
1.3.4 Leader-follower decision making 33
1.3.5 Additional modeling considerations 37

iv

1.3.6 Simulation results of leader-follower driver models 39
1.4 Application to verification and validation of autonomous vehicle control

systems . 48
1.4.1 Highway simulator and virtual V&V results of two AV policies . 49
1.4.2 Integration with the TORCS simulator and calibration 55
1.4.3 Intersection simulator and proof of concept of an adaptive level-k

AV policy . 58
1.5 Summary and discussion . 63

2 Interaction-Aware Autonomous Vehicle Control 64

2.1 Background and introduction . 64
2.2 Interaction-aware autonomous vehicle control problem 66
2.3 Interaction-aware AV control as a partially observable decision problem . 68
2.4 An MPC-based solution approach to C-POMDP problems (POMDP-MPC) 70

2.4.1 An approach to general C-POMDP problems 70
2.4.2 Theoretical properties and recursive feasibility 78
2.4.3 Adaptation of POMDP-MPC to AV control problem 82

2.5 Simulation examples of interaction-aware AV control 83
2.5.1 Level-k models for the other vehicle 83
2.5.2 Simulation examples and results 85

2.6 Summary and discussion . 89

3 Enhancing Autonomous Vehicle Safety via the Action Governor 93

3.1 Background and introduction . 93
3.2 System model and control objective . 95
3.3 Action Governor . 96

3.3.1 Safe set and unrecoverable sets 97
3.3.2 Offline and online computations 100

3.4 Simulation examples . 103
3.4.1 Adaptive cruise control . 103
3.4.2 Omni-directional robot obstacle avoidance 105

3.5 Summary and discussion . 107

4 Conclusions and future work . 108

4.1 Conclusions . 108
4.2 Future work . 109

Bibliography . 110

Appendices . 124

v

LIST OF FIGURES

1.1 The procedure of training level-k driving policies using RL. 19
1.2 Level-0 simulation results: Plots (a)-(c) show snapshots of the simulation at

40[s], 42[s] and 44[s], respectively. 21
1.3 Evolution of the average reward during level-1 and level-2 training. 22
1.4 Simulation of a level-1 ego vehicle in a level-0 traffic environment: Plots (a)-

(f) show snapshots of the simulation at 178[s], 179[s], 180[s], 181[s], 184[s],
188[s], respectively. 23

1.5 Simulation of a level-2 ego vehicle in a level-1 traffic environment: Plots (a)-
(d) show snapshots of the simulation at 60[s], 66[s], 79[s] and 80[s], respectively. 24

1.6 Validation of level-1 and level-2 driver models with traffic data. The red ve-
hicle uses a level-k policy, and the blue-shaded rectangle represents a real
vehicle in traffic data. 25

1.7 Safety violation rates of (a) a level-k ego vehicle in a level-(k − 1) traffic en-
vironment, and (b) level-0, 1 and 2 ego vehicles in a same traffic environment,
which is composed of a mixture of 10% level-0, 60% level-1 and 30% level-2
vehicles. 26

1.8 A four-way intersection modeled by (1.22) and (1.23). The orange dashed
lines are the road centerlines3, the black dashed lines are the lane markings
that separate the lanes of traffic moving in the same directions, the black solid
lines are the road boundaries, and the shaded polygons are off-road regions. . . 27

1.9 Vehicle kinematics modeled by (1.24)-(1.27). The blue rectangle represents
the vehicle’s c-zone where the end with double lines is the vehicle’s front end.
The blue dotted curve represents the pre-planned path P . The states x(t),
y(t) and θ(t) can be computed using the traveled distance along the path ρ(t)
and the path geometry (1.24). The green triangles represent the intersection
entrance points (x(ρen), y(ρen)) and the red triangles the intersection exit points
(x(ρex), y(ρex)). 30

1.10 The c-zone (dark blue rectangle) and s-zone (light blue rectangle) of a vehicle. 32
1.11 Leader-follower role assignment. In all of the figures, the red car is the leader

and the yellow car is the follower. 35
1.12 Reproducing a real-world traffic scenario with 3 interacting vehicles by the

proposed model. 41
1.13 Reproducing a real-world traffic scenario with 4 interacting vehicles by the

proposed model. 42
1.14 Completely symmetric case 1. Figures (a-f) show snapshots of the simulation

at a series of time steps. 43

vi

1.15 Completely symmetric case 2. Figures (a-d) show snapshots of the simulation
at a series of time steps. 44

1.16 Randomized traffic scenarios. Figures (a-b) show snapshots of a simulation
in a three-way intersection scenario, figures (c-d) show those in a four-way
intersection scenario, and figures (e-f) show those in a five-way intersection
scenario. 45

1.17 Statistical evaluation of the vehicle interaction model. Light color: SR, medium
color: DR, dark color: CR. 46

1.18 Two failure cases. (a) A deadlock scenario. (b) A collision scenario. 46
1.19 Average completion time (ACT). The black vertical bars represent the standard

deviations. 48
1.20 Safety violation rates of the Stackelberg game-based policy and the decision

tree-based policy. 50
1.21 Scenarios leading to safety violations. 51
1.22 Trend of safety violation rate. 52
1.23 (a) Average driving speeds and (b) computational costs of the Stackelberg

game-based policy and the decision tree-based policy. 53
1.24 Objective function surfaces corresponding to different choices of the weights

p1 and p2. (a) p1 = 1, p2 = 0, (b) p1 = 0, p2 = 1, (c) p1 = 0.7, p2 = 0.3, and
(d) p1 = 0.6, p2 = 0.4. 54

1.25 Schematics of the lateral motion control. 57
1.26 Controlled lane change response of a TORCS vehicle. 58
1.27 Snapshots of a TORCS simulation with our level-k driver models integrated. . 59
1.28 Average (dark-colored bars) and worst-case (light-colored bars) computation

times per vehicle per step. 60
1.29 Simulation of an adaptive level-k vehicle (blue car) versus two leader-follower

drivers (red and green cars). Figures (a-d) show snapshots of the simulation at
a series of time steps. 61

1.30 Model identification history corresponding to the simulation of Fig. 1.29. . . . 62
1.31 Simulation of two adaptive level-k vehicles (red and green cars) versus one

leader-follower driver (blue car). Figures (a-d) show snapshots of the simula-
tion at a series of time steps. 62

1.32 Model identification history corresponding to the simulation of Fig. 1.31. . . . 63

2.1 Simulation results of an intersection crossing scenario. (a-1) and (a-2) show
two steps of a simulation where the autonomous ego vehicle (blue) interacts
with a level-1 vehicle (red). (b-1) and (b-2) show two steps of a simulation
where the autonomous ego vehicle (blue) interacts with a level-2 vehicle (red). 87

2.2 Simulation results of a highway overtaking scenario. (a-1) to (a-4) show four
steps of a simulation where the autonomous ego vehicle (blue) overtakes a
level-1 vehicle (red). (b-1) to (b-4) show four steps of a simulation where the
autonomous ego vehicle (blue) overtakes a level-2 vehicle (red). 91

vii

2.3 Simulation results of a forced merging scenario. (a-1) to (a-4) show four steps
of a simulation where the autonomous ego vehicle (blue) merges in front of a
level-1 vehicle (red). (b-1) to (b-4) show four steps of a simulation where the
autonomous ego vehicle (blue) merges behind a level-2 vehicle (red). 92

3.1 An exclusion zone example, where the union of the red polytopic regions is
the exclusion zone X0. 96

3.2 Adaptive cruise control. 105
3.3 Omni-directional robot obstacle avoidance. 107

C.1 Decision tree diagram. The black arrows indicate the relative velocities of the
yellow cars with respect to the red car. 132

C.2 Regions for policy activation criteria. 133

viii

LIST OF TABLES

1.1 Parameter values for highway simulations. 20
1.2 Parameter values for intersection simulations. 40
1.3 Vehicle control-related effectors of TORCS. 55

2.1 Computation times of POMDP-MPC. 90

ix

LIST OF APPENDICES

A Proof of RL Algorithm Convergence . 124

B Functions of Path Model . 129

C Autonomous Vehicle Control Approaches for Highway Driving 131

D Adaptive Level-k Policy for Intersection Driving 134

E Lemma 3.1 . 136

x

ABSTRACT

Autonomous vehicle (AV) technology promises safer, cleaner, and more efficient trans-

portation, as well as improved mobility for the young, elderly, and disabled. One of the

biggest challenges of AV technology is the development and high-confidence verification

and validation (V&V) of decision and control systems for AVs to safely and effectively

operate on roads shared with other road users (including human-driven vehicles). This

dissertation investigates game-theoretic and set-based methods to address this challenge.

Firstly, this dissertation presents two game-theoretic approaches to modeling the inter-

actions among drivers/vehicles on shared roads. The first approach is based on the “level-k

reasoning” human behavioral model and focuses on the representation of heterogeneous

driving styles of real-world drivers. The second approach is based on a novel leader-

follower game formulation inspired by the “right-of-way” traffic rules and focuses on the

modeling of driver intents and their resulting behaviors under such traffic rules and eti-

quette. Both approaches lead to interpretable and scalable driver/vehicle interaction mod-

els. This dissertation then introduces an application of these models to fast and economical

virtual V&V of AV control systems.

Secondly, this dissertation presents a high-level control framework for AVs to safely

and effectively interact with other road users. The framework is based on a constrained

partially observable Markov decision process (POMDP) formulation of the AV control

problem, which is then solved using a tailored model predictive control algorithm called

POMDP-MPC. The major advantages of this control framework include its abilities to

handle interaction uncertainties and provide an explicit probabilistic safety guarantee under

such uncertainties.

xi

Finally, this dissertation introduces the Action Governor (AG), which is a novel add-

on scheme to a nominal control loop for formally enforcing pointwise-in-time state and

control constraints. The AG operates based on set-theoretic techniques and online opti-

mization. Theoretical properties and computational approaches of the AG for discrete-time

linear systems subject to non-convex exclusion-zone avoidance constraints are established.

The use of the AG for enhancing AV safety is illustrated through relevant simulation case

studies.

xii

INTRODUCTION

Autonomous vehicle technology promises safer, cleaner, and more efficient transporta-

tion, as well as improved mobility for the young, elderly, and disabled [1]. Thanks to ex-

tensive efforts that have been made in both academia and industry over the last few decades

to pursue this goal, advances in perception [2], planning and decision-making [3], control

[4], and computing systems [5] have made fully autonomous driving a viable option for fu-

ture transportation [6, 7]. Despite these advances, numerous challenges remain regarding

guaranteed safety and performance of autonomous vehicles in a complex, uncertain, and

increasingly data-rich and hyper-connected world [8, 9, 10, 11].

It is projected that in the near to medium term, autonomous vehicles will operate on

shared roads with other users (including human-driven vehicles) [12, 13]. This imposes

a requirement for highly reliable decision and control systems for autonomous vehicles

that can appropriately account for/respond to the interactions among road users to achieve

safe and effective autonomous vehicle operation. Meanwhile, the development and high-

confidence validation of such systems have been recognized by the automotive industry

to be among the biggest technological challenges that are currently delaying the advent

of fully autonomous driving [14, 15, 16]. The difficulties lie in the accurate modeling

and prediction of road user interactions, which are largely due to the complex nature of

human behavior, and also in the proper decision-making and control in the presence of

these complex interactions.

This dissertation aims to address the challenges in modeling and safe control for au-

tonomous vehicles on shared roads.

1

The main contributions and outline of this dissertation are as follows:

1. Chapter 1 introduces two novel approaches based on game theory to modeling the

interactions among drivers/vehicles in traffic. The first approach is inspired by a hu-

man behavioral model called level-k reasoning, and the second approach is inspired

by the right-of-way traffic rules. Compared to data-driven approaches to modeling

driver behaviors, these game-theoretic approaches lead to models that have better in-

terpretability and (re)usability. Compared to several other game-theoretic approaches

previously proposed in the literature, these two new approaches have higher-fidelity

in terms of explicitly modeling the dynamic behaviors of vehicles, and have better

scalability in terms of being able to model medium-scale traffic scenarios involving

tens of interacting vehicles at a reasonable computational cost. The models obtained

by these approaches can have multiple applications. The latter part of this chapter

introduces their application to simulation-based testing of autonomous vehicle con-

trol systems. This application aims to address the above-mentioned challenge of

high-confidence validation of such systems.

2. Chapter 2 deals with high-level control1 of autonomous vehicles in the presence of

road user interactions. A novel interaction-aware control approach is proposed that

handles interaction uncertainties and vehicle safety under such uncertainties through

a constrained partially observable Markov decision process (C-POMDP) framework.

A new computational algorithm based on model predictive control using online opti-

mization is developed to solve the formulated C-POMDP problem and leads to theo-

retically elegant and computationally feasible autonomous vehicle control solutions.

3. Chapter 3 focuses on the safety of more general controlled dynamic systems (includ-

ing autonomous vehicles). In this chapter, a novel add-on scheme to nominal con-

trol loops, called the action governor (AG), is proposed as a safety supervisor that

1Also called behavior planning.

2

monitors and minimally modifies (when necessary) the nominal control signal to en-

force pointwise-in-time state and control constraints. The theoretical foundation and

computational approach of the AG for discrete-time linear systems with non-convex

exclusion-zone avoidance constraints are established, and two autonomous vehicle

related examples are considered. Ongoing research reveals the potential of the AG to

be used as a general safety supervision framework for enhancing autonomous vehicle

safety.

In addition to the above-mentioned methodological developments and advancements

for safe autonomous vehicles on shared roads, I have made many other research con-

tributions during my PhD, mainly in the areas of 1) control of systems with constraints,

2) stochastic modeling and control, and 3) learning-enabled control of unknown systems.

I have advanced the theory and methods of the reference governor (RG) for nonlinear sys-

tems [17, 18, 19, 20, 21, 22], developed new methods for stochastic/chance-constrained

systems [23, 24, 25, 26, 27] and a priori unknown/black-box systems [28, 29], and inves-

tigated their applications in the aerospace and automotive domains [30, 31, 32, 33, 34, 35,

36, 37]. The details of these developments can be found in my journal and conference

publications.

3

CHAPTER 1

Game-Theoretic Modeling of Driver Interactions
in Multi-Vehicle Traffic Scenarios

1.1 Introduction to game-theoretic modeling of driver in-
teractions

1.1.1 Background and overview

In traffic scenarios that involve multiple vehicles, the behavior of a vehicle will influence
and be influenced by the behaviors of the other vehicles in its vicinity. For instance, at
an intersection, two vehicles may end up occupying the same space at the same time, i.e.,
having a collision, if they both maintain their current speed. In this case, at least one of
the two vehicles needs to adjust its speed or change its lane to avoid the collision. And
only after at least one of them makes such an adjustment, the other vehicle can safely pass
through the intersection. Such mutual influences of vehicle behaviors, including drivers’
adjustments of vehicle speeds or lanes to account for such mutual influences, are referred to
as vehicle/driver interactions. In this chapter, the terms vehicle interactions and driver in-

teractions are used interchangeably, depending on whether the emphasis is on the vehicles
themselves or on the drivers who control the vehicles.

For a human driver or an autonomous driving system to drive safely in these multi-
vehicle traffic scenarios, it is necessary to understand and hence be able to predict and
account for the driver interactions. This motivates the developments of models that can
realistically represent driver interactions.

One way to obtain such driver interaction models is to estimate/learn a model from
traffic data. This approach has been pursued in [38, 39, 40, 41, 42, 43]. Limitations of these
data-driven models include: 1) A model for a traffic scenario of interest can be learned
only when sufficient data for this scenario are available. However, it has been reported

4

that multi-vehicle interaction scenarios in released traffic datasets are insufficient [44]. 2)
A learned model for a specific scenario cannot be easily transferred to modeling other
scenarios [45], which largely limits the (re)usability of these learned models.

Another strategy is to develop “first principles” models. Here, “first principles” means
that the model is defined by a (or, a set of) mathematical formula(s) that has certain psycho-
physical interpretations. For modeling (human) driver interactions, such psycho-physical
interpretations often relate to human cognitive and behavioral processes. Compared to
data-driven models, a “first principles” model relies only lightly on traffic data (for param-
eter calibration and validation) and typically can effectively model a range of scenarios,
thus overcoming the two limitations of data-driven models mentioned above. The game-
theoretic driver models presented in this chapter belong to this category.

Game theory is the study of mathematical models for strategic interaction among ra-
tional decision makers [46]. It has applications in many fields of social science, as well
as in logic, systems science and computer science. Game theory has also been exploited
by several researchers for modeling vehicle/driver interactions in traffic [47, 48, 49, 50,
51, 52, 53, 54, 55]. However, a dynamic game, which means a game involving multiple
moves of the players in a time-extended scenario, can be difficult to solve, especially when
the game involves more than two players [56]. As a result, many of these previous works
choose to model driver interactions in a specific traffic scenario as a one-shot game, i.e., not
explicitly accounting for vehicles’ dynamic behaviors in the game formulation, to simplify
computations. For instance, [47] models driver interactions at an intersection as a one-shot
normal-form game, where each driver chooses between “stop” and “go” according to the
payoff matrix; for highway scenarios, [48, 49] and [50] model lane changes as instanta-
neous events, i.e., the duration and vehicle dynamics of lane changes are neglected. The
approaches of [51, 52, 53, 54] and [55] explicitly account for the dynamic behaviors of ve-
hicles in their game formulations. The cost is that these approaches do not scale well – they
can only model the interaction among two to at most three vehicles due to computational
complexity [51, 52, 55] and/or theoretical limitations [53, 54].

In this chapter, we introduce two novel game-theoretic approaches to modeling driver
interactions. The first approach is based on a unique combination of level-k reasoning
theory [57, 58, 59] and reinforcement learning [60]. The second approach is based on a
novel game formulation with multiple concurrent leader-follower pairs, called a leader-
follower game, which is partly inspired by Stackelberg game theory [61, 62] and right-of-
way traffic rules [63]. These two approaches share the following features:

1. Both approaches produce interactive driver models. A formal definition of a driver

model is given below. Here, “interactive” means that the driver model takes into con-

5

sideration the interaction among vehicles explicitly in its decision-making process.

2. Both approaches formulate the multi-vehicle traffic scenario to be modeled as a dy-
namic game, i.e., explicitly account for vehicles’ dynamic behaviors as outcomes of
drivers’ sequential decision-making using a kinematics model in their game formu-
lations.

3. Both approaches scale reasonably well. They can model medium-scale traffic sce-
narios involving tens of interacting vehicles at a reasonable computational cost on a
desktop.

The bullet points 2 and 3 address the drawbacks of previous game-theoretic approaches
to driver interaction modeling mentioned above.

The interactive driver models produced by these approaches can have multiple applica-
tions. In Section 1.4, we introduce their application to forming/enhancing traffic simulators
for virtual verification and validation (V&V) of autonomous vehicle control systems. This
application aims to address the urgent challenge that hundreds of millions of miles need
to be driven to demonstrate autonomous vehicle reliability [64] and can support the re-
duction of autonomous vehicle time-to-market. These driver models can also be used in
an autonomous driving algorithm for predicting surrounding vehicles’ future trajectories
in response to the autonomous ego vehicle’s actions. Such an application is discussed in
detail in Chapter 2.

These two approaches also have distinct features and to some extent complement each
other. In particular, the level-k reasoning based approach focuses more on the modeling
of heterogeneous driving styles of real-world drivers (such as aggressive driving versus
conservative driving). Meanwhile, the leader-follower game based approach focuses more
on the modeling of driver intents and their resulting behaviors under common traffic rules
and etiquette (such as to proceed or to yield). We choose to use the level-k reasoning based
approach to model driver interactions on highways, where a driver’s behavior is deeply
influenced by her driving style. For instance, when the vehicle in front drives at a slower
speed, an aggressive driver may tend to change lanes to overtake while a conservative
driver may tend to slow down to follow. Meanwhile, we choose to use the leader-follower
game based approach to model driver interactions at intersections, where traffic rules and
etiquette (such as common right-of-way rules) are observed to take a dominant role in
determining drivers’ behaviors.

The developments of this chapter and related materials have been published in the jour-
nal articles [65, 66, 67], book chapter [68], and conference papers [69, 70, 71, 72, 73, 74,
75, 76, 77].

6

1.1.2 Definition of a driver model

For a traffic scenario σ ∈ Σ, a driver model is a 3-tuple of state transition model T σ,
observation model Oσ, and driving policy πσ, i.e.,

〈T σ, Oσ, πσ〉 , (1.1)

where T σ represents a model in this driver’s mind that characterizes the traffic state evolu-
tion with respect to her own action, Oσ describes the way this driver perceives the traffic
state, and πσ delineates how she drives. Specifically, the transition model T σ is a stochastic
map on Sσ×Aσ×Sσ, where Sσ is a state space andAσ is an action space, and T σ defines
the probability of transition from a current traffic state s ∈ Sσ to a next state s+ ∈ Sσ when
the driver applies an action a ∈ Aσ, i.e.,

P(s+|s, a) = T σ(s, a, s+) s.t.
∑

s+∈Sσ
P(s+|s, a) =

∑
s+∈Sσ

T σ(s, a, s+) = 1. (1.2)

The observation modelOσ is a stochastic map from the state space Sσ to an observation
space Ωσ and defines the probability of each observation o ∈ Ωσ being received by the
driver given the current traffic state s ∈ Sσ, i.e.,

P(o|s) = Oσ(s, o) s.t.
∑
o∈Ωσ

P(o|s) =
∑
o∈Ωσ

Oσ(s, o) = 1. (1.3)

The driving policy πσ is a stochastic map from the observation space Ωσ to the action
space Aσ, which defines the probability of each action a ∈ Aσ being taken by the driver
when the driver observes o ∈ Ωσ, i.e.,

P(a|o) = πσ(o, a) s.t.
∑
a∈Aσ

P(a|o) =
∑
a∈Aσ

πσ(o, a) = 1. (1.4)

When a stochastic map is actually deterministic, we employ simplified notations. For
instance, when T σ(s, a, s+) ∈ {0, 1}, we also write T σ : (s, a) 7→ s+, where s+ ∈ Sσ is
the state with P(s+|s, a) = T σ(s, a, s+) = 1. The notations Oσ : s 7→ o and πσ : o 7→ a are
used in a similar way.

The maps T σ, Oσ, πσ and the spaces Sσ, Aσ, Ωσ are all parameterized by the scenario
identifier σ, which takes values in a pre-constructed scenario set Σ. The identifier σ ∈ Σ

facilitates the incorporation of driver models defined for different traffic scenarios within a
unified framework. In this chapter, we focus on two traffic scenarios: highway (σ = h) and
intersection (σ = i).

7

1.1.3 Level-k reasoning theory

Level-k reasoning, or level-k thinking, is a behavioral model that describes human thought
processes in interactive scenarios. The level-k model is based on the presumption that
humans’ behavior can be classified into different levels of reasoning. A level-0 model
typically corresponds to non-strategic behavior and follows a simple decision rule. Then, a
level-k model, for any k ≥ 1, behaves as if she best-responds to the belief that all the other
participants in the scenario are level-(k − 1).

The theory of level-k reasoning was first proposed in the seminal works by Stahl and
Wilson (1994,1995) [57, 58] and Nagel (1995) [59], and then followed up, validated, and
extended by many researchers, for instance, in [78, 79, 80, 81]. It has been observed in
many behavioral experiments that level-k reasoning leads to improved accuracy in pre-
dicting human interactive behavior compared to conventional analytic models (including
backwards induction and iterated elimination of dominated strategies), which can deviate
considerably from actual experimental outcomes.

In this chapter, we exploit level-k reasoning theory to model (human) driver interactive
behaviors on highways. We use different reasoning levels, k, to represent the different
driving styles of real-world drivers (such as aggressive driving versus conservative driving),
that deeply influence a driver’s behavior in a certain traffic situation.

1.1.4 Leader-follower game

In many interactive scenarios, participants do not have symmetric roles. Instead, some
parties have some sort of advantage over the other. For instance, at an intersection, if a
collision occurs between a vehicle that has the right of way and a vehicle that should yield
but fails to do so, the driver of the second vehicle is more likely to be determined as at fault.

Motivated by this observation as well as by common traffic rules and etiquette (such
as the right-of-way rules), we propose a novel game formulation where the interaction
between each pair of interacting vehicles is characterized by a leader-follower relationship.
In particular, the leader corresponds to a vehicle that has the right of way and the follower
corresponds to a vehicle that is supposed to yield under the right-of-way rules. This leader-
follower game formulation is also partly inspired by Stackelberg game theory [61, 62],
while relaxes several assumptions of a standard Stackelberg equilibrium which generally
do not hold for driver/vehicle interactions in traffic.

In this chapter, we focuses on the application of this leader-follower game formulation
to modeling driver interactions at intersections, where the right-of-way rules are observed
to take a dominant role in determining drivers’ behaviors [63]. Note, however, that this

8

game formulation may be applied to some other traffic scenarios as well, such as highway
forced merging scenarios.

1.2 Level-k based modeling of driver interactions on high-
ways

1.2.1 Vehicle kinematics

We use the following discrete-time EOMs to represent the longitudinal and lateral kinemat-
ics of a vehicle for driving on a multi-lane highway,

x(t+ 1) = x(t) + vx(t)∆t,

vx(t+ 1) = vx(t) + ax(t)∆t, (1.5)

y(t+ 1) = y(t) + vy(t)∆t,

where x(t) (y(t)) denotes the vehicle’s longitudinal (lateral) position at the discrete time
instant t ∈ N0, vx(t) (vy(t)) denotes its longitudinal (lateral) velocity at t, ax(t) denotes
its longitudinal acceleration at t, and ∆t > 0 is the sampling period. In (1.5), s(t) =

(x(t), vx(t), y(t)) defines the state of the vehicle at t, and the longitudinal acceleration
ax(t) and lateral velocity vy(t) are two inputs, the values of which are determined by the
driver’s maneuver decision made at t. We call the pair a(t) = (ax(t), vy(t)) the action of
the vehicle at t.

Our objective is to model the interactive behaviors of drivers/vehicles in multi-vehicle
highway scenarios. To create an environment where the drivers are persistently interacting
with each other over a prolonged simulation episode, we assume the vehicles are driving
on a cyclic road with a length of xmax (otherwise the distances between vehicles may be-
come very large over a long-period simulation and the interactions between these vehicles
will become weak or vanish). Also, we want to restrict the longitudinal velocity vx of
each vehicle to be within a range [vx,min, vx,max] to represent typical vehicle speeds dur-
ing highway driving, and restrict the lateral position y of each vehicle to be within the
range [0, (nlane − 1)wlane], where y = 0 corresponds to the center of the rightmost lane,
nlane ∈ N0 denotes the number of lanes, wlane > 0 denotes the lane width, and hence
y = (nlane − 1)wlane corresponds to the center of the leftmost lane. To account for these

9

considerations, we modify the kinematics model (1.5) to

x(t+ 1) =
(
x(t) + vx(t)∆t

)
mod xmax,

vx(t+ 1) = sat[vx,min,vx,max]

(
vx(t) + ax(t)∆t

)
, (1.6)

y(t+ 1) = sat[0,(nlane−1)wlane]

(
y(t) + vy(t)∆t

)
,

where mod denotes the modulo operator, and sat[α,β](·) represents the saturation function
to the range [α, β].

For modeling a traffic scenario with nv vehicles, we associate a variable with a subscript
i to indicate that this variable corresponds to vehicle i, with i ∈ V = {1, 2, . . . , nv}. For
instance, si(t) (ai(t)) denotes the state (action) of vehicle i at t. Then, the collection of
all vehicles’ states, s(t) = (s1(t), s2(t), . . . , snv(t)), defines the state of the traffic scenario
at t, and the EOMs (1.6) of all vehicles determine the evolution of s(t) as a result of all
vehicles’ actions (a1(t), a2(t), . . . , anv(t)), which can be expressed as follows,

s(t+ 1) = T̄ h(s(t), a1(t), a2(t), . . . , anv(t)
)
, (1.7)

where T̄ h is a deterministic map defined by (1.6).

1.2.2 Action space

Drivers are modeled to have the following 7 basic actions for highway driving:

1. “Maintain” current lane and speed, corresponding to (ax, vy) = (0, 0);

2. “Accelerate” at a rate of a1
x, corresponding to (ax, vy) = (a1

x, 0);

3. “Decelerate” at a rate of −a1
x, corresponding to (ax, vy) = (−a1

x, 0);

4. “Hard accelerate” at a rate of a2
x, corresponding to (ax, vy) = (a2

x, 0);

5. “Hard decelerate” at a rate of −a2
x, corresponding to (ax, vy) = (−a2

x, 0);

6. “Change lanes to the left,” corresponding to (ax, vy) = (0, wlane
tlane

);

7. “Change lanes to the right,” corresponding to (ax, vy) = (0,−wlane
tlane

);

where a1
x, a

2
x > 0 are acceleration values, and tlane > 0 represents the time needed for a

vehicle to complete a lane change. The following action space for a = (ax, vy) is defined

10

based on these 7 actions:

Ah =
{

(0, 0), (a1
x, 0), (−a1

x, 0), (a2
x, 0), (−a2

x, 0), (0,
wlane

tlane
), (0,−wlane

tlane
)
}
. (1.8)

Using such a discrete action space to represent drivers’ typical behaviors during high-
way driving is motivated by the “action point” driver models [82].

1.2.3 Observation space

We assume a driver can observe the following quantities related to her own vehicle (called
the “ego vehicle”) and the vehicles in the immediate vicinity of her own, and uses them
for decision making. In particular, to account for the limited resolution of human vision
and/or measurement uncertainty, these quantities are assumed to be measured in discrete,
qualitative values as follows:

1. The longitudinal distance from the ego vehicle to the vehicle in the immediate front
of and in the same lane with the ego vehicle, dfc, quantified as “close” if dfc ≤ dc,
“medium” if dc < dfc ≤ df, and “far” if df < dfc ≤ dv (the vehicle is assumed to be
out of visual range and unobservable if dfc > dv);

2. The longitudinal distance to the vehicle in the immediate front and in the lane to the
left of that of the ego vehicle, dfl, quantified as “close”, “medium” or “far;”

3. The longitudinal distance to the vehicle in the immediate front and in the lane to the
right of that of the ego vehicle, dfr, quantified as “close”, “medium” or “far;”

4. The longitudinal distance to the vehicle in the immediate rear and in the lane to the
left of that of the ego vehicle, drl, quantified as “close”, “medium” or “far;”

5. The longitudinal distance to the vehicle in the immediate rear and in the lane to the
right of that of the ego vehicle, drr, quantified as “close”, “medium” or “far;”

6. The longitudinal motion of the vehicle in the immediate front of and in the same lane
with the ego vehicle relative to the ego vehicle, vfc, quantified as “approaching” if
dfc is decreasing, “stable” if dfc is not changing (within a variation tolerance), and
“moving away” if dfc is increasing;

7. The relative longitudinal motion of the vehicle in the immediate front and in the lane
to the left of that of the ego vehicle, vfl, quantified as “approaching”, “stable” or
“moving away;”

11

8. The relative longitudinal motion of the vehicle in the immediate front and in the lane
to the right of that of the ego vehicle, vfr, quantified as “approaching”, “stable” or
“moving away;”

9. The relative longitudinal motion of the vehicle in the immediate rear and in the lane
to the left of that of the ego vehicle, vrl, quantified as “approaching”, “stable” or
“moving away;”

10. The relative longitudinal motion of the vehicle in the immediate rear and in the lane
to the right of that of the ego vehicle, vrr, quantified as “approaching”, “stable” or
“moving away;”

11. The lane of the ego vehicle, lego ∈ {1, . . . , nlane}.

A case where there is no vehicle in a particular position will be considered by the ego
vehicle to be the same as the case where there is a vehicle in that position that is “far” and
“moving away.”

An observation o is a tuple of measurements of these quantities (in discrete values).
Since each quantity can take 3 different values except for the last one, which can take
nlane different values, the set of values of o, i.e., the observation space Ωh, has 310 × nlane

elements. It is also clear from the above observation rules that for any particular vehicle
i ∈ V , the observed oi by its driver is uniquely determined given the current traffic state
s = (s1, s2, . . . , snv). This defines the observation map Oh : Sh → Ωh of the driver model.

Such a discrete representation of driver observations is motivated by the “logic-based”
driver models [82]. Larger observation spaces with finer meshes can be treated in a similar
way. Further discussions on the employment of a discrete observation space can be found
in [83, 84].

1.2.4 Reward function

A driver typically has the following considerations during highway driving: 1) maximizing
safety, e.g., not having a car crash, 2) minimizing the travel time to her destination, 3)
keeping a reasonable headway from preceding vehicles to increase both safety and comfort,
and 4) minimizing her driving effort. These considerations are expressed by the following
reward function to maximize,

Rh = w1ĉ+ w2v̂ + w3ĥ+ w4ê, (1.9)

where w1,2,3,4 > 0 are weights, and the terms ĉ, v̂, ĥ and ê are explained below:

12

ĉ (collision avoidance): We define a “collision zone” (c-zone) for each vehicle, which is
a rectangular area over-bounding the geometric contour of the vehicle with a safety margin.
An overlap of two vehicles’ c-zones indicates a danger of collision. Therefore, the term ĉ

takes a value of −1 if the ego vehicle’s c-zone overlaps with the c-zone of any of the other
vehicles, and a value of 0 otherwise.

v̂ (velocity): The term v̂ takes values according to

v̂ =
vx − vx,nominal

a1
x

, vx,nominal =
vx,min + vx,max

2
, (1.10)

where vx denotes the ego vehicle’s longitudinal velocity. Here, the reason for the division
by a1

x is to make this term to be of the same order of magnitude as the other terms, to
facilitate the design of weights.

ĥ (headway): The term ĥ takes values according to

ĥ =


−1 if dfc = “close,”
0 if dfc = “medium,”
1 if dfc = “far.”

(1.11)

ê (effort): The term ê takes a value of 0 if the driver’s action is “maintain,” a value of
ehard if the driver’s action is either “hard accelerate” or “hard decelerate,” and a value of
enominal otherwise, where ehard < enominal < 0. This term discourages the driver from making
unnecessary maneuvers. In particular, a higher penalty ehard discourages the driver from
unnecessarily applying “hard accelerate” and “hard decelerate.” But in the case where a
collision cannot be avoided by the other actions, the driver may apply “hard accelerate” or
“hard decelerate” to enforce safety.

The weights w1,2,3,4 may be tuned depending on the aggressiveness of the driver, but
the following relation should be kept,

w1 � w2, w3, w4, (1.12)

which expresses the fact that safety is typically considered to be most important by a driver.

1.2.5 Constraints

In certain situations, a lane change will be highly likely to cause safety issues such as col-
lisions. Such lane changes are undesirable from a safety perspective, and are also irrational
from a human-driver modeling perspective. To eliminate such improper lane changes, we
impose the following hard constraints, which make certain actions unavailable in certain

13

situations:

1. If there is a vehicle that is in the lane to the left of that of the ego vehicle and is either
in a side-by-side position with the ego vehicle or is “close” and “approaching,” then
the ego vehicle cannot “change lanes to the left;”

2. If there is a vehicle that is in the lane to the right of that of the ego vehicle and is
either in a side-by-side position with the ego vehicle or is “close” and “approaching,”
then the ego vehicle cannot “change lanes to the right.”

Here, two vehicles are viewed as side-by-side if the projections of their c-zones onto the
longitudinal direction overlap with each other. From a practical perspective, eliminating
these improper lane changes through the above hard constraints can be more effective than
through penalties in the reward function. This treatment can also reduce the time needed
for the RL algorithm introduced in Section 1.2.7 to converge when solving for a driving
policy.

In addition, to avoid vehicles driving between lanes, once a lane change gets started, it
must continue to completion. This means once an action of “change lanes to the left” or
“change lanes to the right” has been chosen to apply, the same action must be consecutively
applied for tl

∆t
steps until the vehicle gets to the center of the target lane.

1.2.6 Level-k decision making

As has been introduced in Section 1.1.3, a level-k decision maker assumes all agents in a
decision-making scenario but herself are level-(k−1) decision makers, and makes her own
decisions in a way that is optimal under this assumption. Recall that a model representing
the dynamics of the traffic scenario has been defined in (1.7) by the deterministic function
T̄ h : Sh × (Ah)nv . For any vehicle in the traffic scenario, an observation function Oh :

Sh → Ωh has also been defined by the observation rules in Section 1.2.3. We now assume a
level-(k−1) driving policy, πh,k−1, has been available, which is a stochastic map from Ωh to
Ah in the form of (1.4). In this case, to a level-k driver/vehicle, the traffic scenario evolves
in a stochastic manner as in (1.2). In particular, the transition map, T h,k−1, is uniquely
determined by the functions T̄ h, Oh, and the stochastic decision rules

ai ∼ πh,k−1(oi, ·), (1.13)

where i ∈ V designates every vehicle in the traffic scenario except for the level-k ego
vehicle. Then, we assume a level-k driver makes decisions according to a policy, πh,k, that

14

maximizes the average reward per unit of time over a long run associated with an initial
state s0, defined as

R̄h,k
s0

(π) = lim
tmax→∞

E
{∑tmax−1

t=0 Rh
t

∣∣ s0, T
h,k−1, π

}
tmax

, (1.14)

for all initial states s0 ∈ Sh. In (1.14), Rh
t represents the reward (1.9) obtained at time t,

and E
{
·
∣∣ s0, T

h,k−1, π
}

represents the expected value of {·} when the initial state is s0,
the state transitions follow the stochastic map T h,k−1 corresponding to the scenario where
all other vehicles make decisions according to the level-(k − 1) decision rule (1.13), and
the ego driver makes decisions according to a particular policy π at every time instant. We
assume the transition model T h,k−1 is unichain [85], and in this case the average reward
(1.14) becomes state-independent, i.e.,

R̄h,k(π) := R̄h,k
s0

(π) = R̄h,k
s′0

(π), ∀ s0, s
′
0 ∈ Sh. (1.15)

In brief, a level-k driving policy, πh,k, can be characterized by the following property,

πh,k ∈ arg max
π

R̄h,k(π), (1.16)

where k = 1, 2, . . . can be any positive integer.
It can be seen that to construct higher-level policies, one needs to start from defining

a level-0 policy, πh,0, and can then solve for level-k policies, πh,k, for k = 1, 2, . . . in a
sequential manner according to (1.13)-(1.16). In this study, we consider a deterministic
level-0 policy πh,0 : Ωh → Ah defined as follows, which represents a conservative driving
style:

πh,0(o) =



“decelerate,” if dfc = “medium” and vfc = “approaching”

or dfc = “close” and vfc = “stable,”

“hard decelerate,” if dfc = “close” and vfc = “approaching,”

“maintain,” otherwise.

(1.17)

In the next subsection, we will introduce a computational approach based on RL to
generating level-k driving policies.

15

1.2.7 Obtaining level-k policies using reinforcement learning

Recall that to obtain a level-k driving policy, we first assign a level-(k − 1) policy, πh,k−1,
to all vehicles in the traffic scenario except for the ego vehicle. After this, to the ego
driver/vehicle, the traffic scenario evolves according to a stochastic transition model T h,k−1

in the form of (1.4). In particular, the transition model T h,k−1 has the Markov property, but
the ego driver has to make decisions based on only partial information about the traffic state
s contained in her observation o. In other words, the ego driver needs to solve a Partially
Observable Markov Decision Process (POMDP) problem.

We employ a Reinforcement Learning (RL) algorithm for POMDP problems developed
in [86] to train an optimal policy for such an ego driver, which, by definition, is a level-k
driving policy πh,k. Two major advantages of this RL algorithm are: 1) It is a model-free
algorithm. This means we can develop a simulation code based on the EOMs (1.6), the ob-
servation rules in Section 1.2.3, and the decision rules (1.13) to generate state transitions,
and rely on this simulation code to train the policy, instead of having to know T h,k−1 ex-
plicitly. Note that although we know the transition model T h,k−1 is uniquely determined by
these EOMs, observation and decision rules, we have not computed an explicit expression
of T h,k−1. 2) For a finite-space POMDP problem like the one treated by us, this algorithm
guarantees convergence to a policy that is at least locally optimal in terms of maximizing
the average reward (1.15). For the sake of completeness, we include the proof of such a
convergence guarantee in Appendix A.

This RL algorithm exploits two steps to gradually improve the policy until convergence,
including 1) “policy evaluation,” where observation-action pairs (o, a) are assigned values
based on the cumulative rewards they gain, and 2) “policy improvement,” where probabil-
ities of applying actions that have higher reward values are increased. These two steps are
further explained below:

Step 1. Estimate the value functions for observations, V (o|πt), and for observation-
action pairs, Q(o, a|πt), corresponding to the current policy πt using the following equa-
tions:

βo
t (o) =

(
1− χo

t (o)

Ko
t (o)

)
γt β

o
t−1(o) +

χo
t (o)

Ko
t (o)

,

V (o|πt) =

(
1− χo

t (o)

Ko
t (o)

)
V (o|πt−1) + βo

t (o)
[
Rh
t − R̄h,k(πt)

]
,

βa
t (o, a) =

(
1− χa

t(o, a)

Ka
t (o, a)

)
γt β

a
t−1(o, a) +

χa
t(o, a)

Ka
t (o, a)

,

Q(o, a|πt) =

(
1− χa

t(o, a)

Ka
t (o, a)

)
Q(o, a|πt−1) + βa

t (o, a)
[
Rh
t − R̄h,k(πt)

]
. (1.18)

16

In (1.18), the subscript t refers to the time step, and the superscript “o” or “a” of a function
indicates whether this function is associated with observations or observation-action pairs.
The function χ is an indicator function, taking a value of 1 if the observation o or the
observation-action pair (o, a) is visited at the current step t, and a value of 0 otherwise.
Taking χo

t as an example, χo
t (o) = 1 for o = ot, and χo

t (o) = 0 for all o 6= ot. The
function K counts the number of times each particular observation o or observation-action
pair (o, a) has been visited. Taking Ko

t as an example, Ko
t (o) = Ko

t−1(o) + 1 for o = ot,
and Ko

t (o) = Ko
t−1(o) for all o 6= ot. The parameter γt is a time-dependent discount factor,

taking values in (0, 1) and converging to 1 as t goes to infinity. Moreover, Rh
t represents

the reward (1.9) obtained at the current step t, and R̄h,k(πt) represents the average reward
defined in (1.14) and (1.15) evaluated at the current policy πt. In particular, although the
true value of R̄h,k(πt) could be estimated by a Monte Carlo simulation of the current policy
πt, doing so would take a considerable amount of computational cost and make the overall
algorithm inefficient. Therefore, in our implementation of (1.18), R̄h,k(πt) is replaced with
the following incrementally updated estimate, making use of the fact that the policy is only
slowly varying in time,

R̃h,k(πt) =
t

t+ 1
R̃h,k(πt−1) +

1

t+ 1
Rh
t =

∑t
τ=0R

h
τ

t+ 1
. (1.19)

Step 2. Update the driving policy πt according to the following equation:

πt+1(o, a) = (1− εt)πt(o, a) + εtπ̂t(o, a), ∀ (o, a) ∈ Ωh ×Ah, (1.20)

where εt ∈ (0, 1) is a learning rate, typically chosen as a time-independent parameter, and
π̂t is a greedy policy maximizing

Jt(π, o) :=
∑
a∈Ah

π(o, a)
(
Q(o, a|πt)− V (o|πt)

)
, (1.21)

for all o ∈ Ωh. In particular, for any o such that ât(o) := arg maxa∈Ah Q(o, a|πt) is unique,
π̂t satisfies π̂t

(
o, ât(o)

)
= 1.

By going through Steps 1 and 2 at every time step t, the driving policy πt is gradually
improved until convergence. The converged policy is, by definition, a level-k driving policy
πh,k. In our implementation, the convergence criterion is based on convergence of the
estimated average reward (1.19), i.e., the absolute changes of (1.19) over the most recent
certain number of steps being sufficiently small (smaller than a pre-specified threshold).

Specifically, our implementation of the above RL algorithm is presented as the follow-

17

ing Algorithms 1-2. The overall procedure to train level-k driving policies using RL is
illustrated by Fig. 1.1.

Algorithm 1: Training Level-k Policies Using RL
Input : A level-(k − 1) driving policy, πh,k−1

Output: A level-k driving policy, πh,k

1 Initialize a new policy π as π(o, a) = 1
|Ah| for all (o, a) ∈ Ωh ×Ah

2 Initialize the value function estimates as V (o) = 0 for all o ∈ Ωh and Q(o, a) = 0
for all (o, a) ∈ Ωh ×Ah

3 for episode = 1 : maximum number of training episodes do
4 Randomly select a number of vehicles in traffic nv ∈ {1, . . . , nv,max}
5 Randomly initialize the states of all vehicles s = (s1, s2, . . . , snv)
6 Assign the policy π that is being trained to the ego vehicle
7 Assign the level-(k − 1) policy πh,k−1 to all other vehicles
8 Evaluate and improve π according to Algorithm 2
9 end

10 Assign each observation o that has been visited less than a threshold number of
times a corresponding level-0 action according to (1.17), i.e., π(o) = πh,0(o)

11 Set πh,k = π.

Algorithm 2: Single Episode Simulation
1 for t = 1 : tmax do
2 foreach vehicle i ∈ V do
3 Obtain its observation oi according to the observation rules in Section 1.2.3
4 Given oi, determine an action ai according to its assigned policy and (1.4)
5 Given ai, update its state si according to (1.6)
6 end
7 if training a policy π then
8 Evaluate the reward (1.9) obtained by the ego vehicle at the current step
9 Update the value function estimates V and Q according to (1.18) and (1.19)

10 Update the policy π according to (1.20) and (1.21)
11 end
12 if the ego vehicle is in a safety-violation state, i.e., ĉ = −1 then
13 End the simulation.
14 end
15 end

When initializing the states of all vehicles s = (s1, s2, . . . , snv) in Step 5 of Algorithm 1,
we place all vehicles in the centers of lanes and impose a minimum initial separation dis-
tance xmin between vehicles that are in the same lane to avoid immediate safety violations.
Under given road length xmax, number of lanes nlane and this minimum initial separation

18

distance xmin, the maximum number of vehicles nv,max is chosen such that when nv,max

vehicles are placed on the road, the road is near full capacity. We train the policy π using
traffic environments with varying numbers of vehicles nv to increase the opportunity for
a large portion of the observation space to be visited sufficiently many times by the ego
vehicle (so the ego vehicle can learn from these visits), and also to enable the policy π to
handle various traffic densities. Meanwhile, for the observations that are still not visited
enough after the maximum number of training episodes, the level-0 actions are assigned
to them so that the vehicle can have a reasonable behavior when encountering these rare
cases.

Figure 1.1: The procedure of training level-k driving policies using RL.

1.2.8 Simulation results of level-k driver models

The parameter values used to generate the simulation results in this section are summarized
in Table 1.1.

1.2.8.1 Simulation of level-0 driver model

In Fig. 1.2, the red vehicle in the middle is a level-0 ego vehicle, and the yellow vehicles
form the traffic environment. The red arrow attached to the red vehicle indicates its travel
direction, and the arrow size indicates how fast the vehicle is traveling. The panel on the left
represents a speedometer, and the steering wheel on the right indicates the lateral motion
of the ego vehicle. The green box and the red box in the middle represent the gas pedal and

19

Table 1.1: Parameter values for highway simulations.
Variable(s) Value(s) Unit Remarks

∆t 1 s sampling period

xmax 1 km road length

nlane 3 number of lanes

wlane 3.6 m lane width

[vx,min, vx,max] [62, 98] km/h speed range

a1
x 2.5 m/s2 acceleration rate

a2
x 5 m/s2 hard acceleration rate

tlane 2 s lane change duration

dc 21 m “close” distance upper bound

df 42 m “far” distance lower bound

dv 63 m maximum visibility distance

w1,2,3,4 10000, 5, 1, 1 reward function weights

(lc, wc) (6, 2) m c-zone size

enominal, ehard −1,−5 action efforts

xmin 30 m minimum initial separation

nv,max 30 maximum number of vehicles

tmax 200 single episode length

the brake pedal, respectively, and turning blue indicates that the pedal is pressed. To better
inspect the behavior of the ego vehicle, we attach the x-coordinate axis to the ego vehicle
and the motions of the other vehicles can be tracked by their relative positions with respect
to the red ego vehicle.

In Fig. 1.2(a), a yellow vehicle in front of the red vehicle is “far” and “approaching”
(because the red vehicle is faster). At this moment, neither the gas pedal nor the brake
pedal is pressed. In Fig. 1.2(b), this yellow vehicle enters the “medium” distance range,
and according to the level-0 policy (1.17), the red vehicle starts to decelerate. In Fig. 1.2(c),
the red vehicle gets to a lower speed, and the yellow vehicle is now “stable.”

1.2.8.2 Training and simulation of level-k driver models

Fig. 1.3 shows the time history of the estimated average reward (1.19) throughout the train-
ing process of level-1 policy and that of level-2 policy. It can be seen that in both cases
the estimated average reward R̃h,k(πt) gradually increases and converges, which implies

20

-60 -40 -20 0 20 40 60

x

-10

0

10

20

30

y

v
x
 = 24.7222 m/s

-60 -40 -20 0 20 40 60

x

-10

0

10

20

30

y
v

x
 = 22.2222 m/s

-60 -40 -20 0 20 40 60

x

-10

0

10

20

30

y

v
x
 = 22.2222 m/s

(a) 40[s]

(b) 42[s]

(c) 44[s]

Figure 1.2: Level-0 simulation results: Plots (a)-(c) show snapshots of the simulation at
40[s], 42[s] and 44[s], respectively.

the gradual improvement and convergence of the policy πt. We train policies up to level-2
because, on the one hand, it is shown in experimental studies [37] that level-3 and higher
decision makers are rarely encountered in human interactions, and on the other hand, level-
0, 1 and 2 policies can already model a sufficiently rich set of driving styles for our targeted
use cases.

Fig. 1.4 shows a simulated trajectory of a level-1 ego vehicle in a level-0 traffic envi-
ronment (i.e., all other vehicles are level-0). In Fig. 1.4(a), a yellow vehicle in front of
the red ego vehicle is rapidly “approaching.” To avoid a rear-end collision, the red vehicle
slows down a bit and begins to steer in Fig. 1.4(b). In Fig. 1.4(c), the red vehicle starts to
move into the lane on its left. This lane change takes 2[s] to complete, after which there is
another yellow vehicle in the new lane approaching the red vehicle from its front, shown in
Fig. 1.4(d). In response, the red vehicle decelerates to an even lower speed to keep a stable

21

0 1 2 3 4 5

Training episodes ×10
4

-200

-150

-100

-50

0

A
v
e
ra

g
e
 r

e
w

a
rd

Level1

Level2

Figure 1.3: Evolution of the average reward during level-1 and level-2 training.

distance from that yellow vehicle, which is shown in Fig. 1.4(e) and (f). It can be seen that
the above maneuver sequence of this level-1 ego vehicle represents a realistic response to
the traffic situation.

Similarly, Fig. 1.5 shows a simulated trajectory of a level-2 ego vehicle in a level-1
traffic environment. In Fig. 1.5(a), the yellow vehicle in the middle lane is “approaching”
the red ego vehicle, while the yellow vehicle in the left lane is “moving away.” In this
case, the red vehicle decides to move into the left lane. However, a few seconds later, the
yellow vehicle in the middle lane also makes a lane change to the left, shown in Fig. 1.5(b),
which is attributed to the traffic in its front (not shown in this figure). In response, the
red vehicle slows down to let that yellow vehicle cut in. In Fig. 1.5(c), there is no vehicle
immediately in front of the red ego vehicle. Under such circumstances, a level-1 ego vehicle
would accelerate. However, after taking into account the fact that the longitudinal distance
between the ego vehicle and the yellow vehicle in the middle lane is very small at this
moment, this level-2 ego vehicle decides to maintain its current speed. Indeed, in this
scenario, if the red vehicle decides to accelerate but at the same time the yellow vehicle in
the middle lane starts a sudden lane change to the left (which is possible since the yellow
vehicle is level-1), a collision between these two vehicles would become inevitable. To
avoid such a potential safety violation, the level-2 ego vehicle maintains its current speed.
In Fig. 1.5(d), another yellow vehicle in front is moving into the red vehicle’s lane, which
forces the red vehicle to decelerate.

As a validation of our level-k driver models, we also compare the behavior of our
models against the behavior of real human drivers in traffic data. The data we use is from

22

-60 -40 -20 0 20 40 60

x

-10

0

10

20

30

y

v
x
 = 27.2222 m/s

-60 -40 -20 0 20 40 60

x

-10

0

10

20

30

y

v
x
 = 24.7222 m/s

-60 -40 -20 0 20 40 60

x

-10

0

10

20

30

y

v
x
 = 24.7222 m/s

-60 -40 -20 0 20 40 60

x

-10

0

10

20

30

y

v
x
 = 24.7222 m/s

-60 -40 -20 0 20 40 60

x

-10

0

10

20

30

y

v
x
 = 22.2222 m/s

-60 -40 -20 0 20 40 60

x

-10

0

10

20

30

y

v
x
 = 17.2222 m/s

(a) 178[s] (b) 179[s]

(c) 180[s] (d) 181[s]

(e) 184[s] (f) 188[s]

Figure 1.4: Simulation of a level-1 ego vehicle in a level-0 traffic environment: Plots (a)-(f)
show snapshots of the simulation at 178[s], 179[s], 180[s], 181[s], 184[s], 188[s], respec-
tively.

the Next Generation Simulation (NGSIM) program [87]. For a given trajectory of traffic
data, we replace one vehicle in the data with a level-k vehicle. This level-k vehicle will
make decisions and take actions in response to the other vehicles in the data. We then
compare the future trajectory of this level-k vehicle against the future trajectory of the
original vehicle in the data. In the scenario of Fig. 1.6(a), the level-1 red vehicle and
the original vehicle in the data (indicated by the blue-shaded rectangle) both make a lane
change from the right lane to the left lane, because the preceding vehicle in the right lane is
rapidly “approaching.” In the scenario of Fig. 1.6(b), the level-2 red vehicle and the original
vehicle in the data both make a lane change from the middle lane to the right lane, because
the preceding vehicle in the middle lane is “approaching” while the preceding vehicle in

23

-60 -40 -20 0 20 40 60

x

-10

0

10

20

30

y

v
x
 = 22.2222 m/s

-60 -40 -20 0 20 40 60

x

-10

0

10

20

30

y

v
x
 = 17.2222 m/s

-60 -40 -20 0 20 40 60

x

-10

0

10

20

30

y

v
x
 = 19.7222 m/s

-60 -40 -20 0 20 40 60

x

-10

0

10

20

30

y

v
x
 = 17.2222 m/s

(a) 60[s] (b) 66[s]

(c) 79[s] (d) 80[s]

Figure 1.5: Simulation of a level-2 ego vehicle in a level-1 traffic environment: Plots (a)-(d)
show snapshots of the simulation at 60[s], 66[s], 79[s] and 80[s], respectively.

the right lane is “moving away.”
We also statistically assess our level-k driver models by looking at their safety violation

rates. Here, the “safety violation rate” is counted as the percentage of 10000 simulation
episodes which end within tmax = 200 seconds due to the occurrence of a safety-violation
state of the ego vehicle (see Steps 12-14 of Algorithm 2). Fig. 1.7(a) shows the safety
violation rates of a level-1 ego vehicle operating in a level-0 traffic environment and of
a level-2 ego vehicle operating in a level-1 traffic environment with varying numbers of
vehicles nv. It can be seen that the level-2 ego vehicle experiences higher safety violation
rates than the level-1 ego vehicle in this experiment. One important reason contributing to
this is that the level-1 traffic environment (where the level-2 ego vehicle is tested) represents
a much more complex and challenging environment than the level-0 traffic environment
(where the level-1 ego vehicle is tested), since the former is composed of level-1 vehicles
which can accelerate and change lanes while the latter is composed of level-0 vehicles
which drive in a fairly conservative manner (see the level-0 policy (1.17)).

Fig. 1.7(b) shows the safety violation rates of level-0, 1, and 2 vehicles when they
operate in a same traffic environment. The traffic environment is modeled by mixing 10%

level-0, 60% level-1, and 30% level-2 vehicles. It can be seen that level-0 has the lowest
safety violation rates in this experiment. This is attributed to the fact that the level-0 policy

24

(a) Level-1 vs Real (b) Level-2 vs Real

Figure 1.6: Validation of level-1 and level-2 driver models with traffic data. The red vehicle
uses a level-k policy, and the blue-shaded rectangle represents a real vehicle in traffic data.

(1.17) represents a fairly conservative driving style, e.g., never accelerating or changing
lanes. Comparing the rates of level-1 and level-2, we can see that a level-2 vehicle has a
better safety performance than a level-1 vehicle in this mixed traffic. This is because the
level-2 policy is trained in a level-1 traffic environment, which is more complex and also
more aggressive than the level-0 traffic environment where the level-1 policy is trained, and

25

0 10 20 30

Number of cars

0

1%

2%

3%

4%

5%

R
a

te

Level1 vs Level0

Level2 vs Level1

0 10 20 30

Number of cars

0

2%

4%

6%

8%

10%

R
a

te

Level0 vs Mix

Level1 vs Mix

Level2 vs Mix

(a) (b)

Figure 1.7: Safety violation rates of (a) a level-k ego vehicle in a level-(k − 1) traffic
environment, and (b) level-0, 1 and 2 ego vehicles in a same traffic environment, which is
composed of a mixture of 10% level-0, 60% level-1 and 30% level-2 vehicles.

as a result, a level-2 vehicle can maintain its safety better than a level-1 vehicle when both
operating in an unfamiliar traffic environment.

1.3 Leader-follower based modeling of driver interactions
at intersections

1.3.1 Parameterized intersection

Intersections in real-world road networks are observed to have varied layouts (e.g., number
of intersecting road arms) and geometries (e.g., angles between road arms and lane width).
To enable the modeling of driver/vehicle interactions at various intersections, we first in-
troduce a parameterized intersection model. In particular, we model an intersection using
the following set of parameters,

(
nr, {mi

f}nr
i=1, {mi

b}nr
i=1, {φi}

nr
i=1, wlane

)
, (1.22)

where nr ∈ {3, 4, 5} denotes the number of road arms, mi
f ∈ {0, 1, 2, . . . } and mi

b ∈
{0, 1, 2, . . . } denote, respectively, the numbers of forward and backward lanes1 of the ith
arm, i ∈ {1, . . . , nr}, φi is the counter-clockwise angle of the ith arm with respect to the x-

1A forward lane (a backward lane) is a lane for traffic entering the intersection (moving away from the
intersection).

26

axis, and wlane is the lane width. We consider three-, four- and five-way intersections (nr ∈
{3, 4, 5}) because they are most common in real-world road networks. Note that mi

f = 0 or
mi

b = 0 (but not simultaneously equal to 0) represents one-way roads, which are allowed in
our model. We assume that the road centerlines2 of all the road arms intersect at the same
point, which is referred to as the intersection center with coordinates (x, y) = (0, 0).

x-axis

y-axis

φ1 φ2

φ3
φ4

(x(0), y(0))

(x(ρen), y(ρen))

(x(ρex), y(ρex))

wlane

�

@
@
@I

A
AAU

Figure 1.8: A four-way intersection modeled by (1.22) and (1.23). The orange dashed lines
are the road centerlines3, the black dashed lines are the lane markings that separate the
lanes of traffic moving in the same directions, the black solid lines are the road boundaries,
and the shaded polygons are off-road regions.

Given a set of parameters (1.22), the lane markings and road boundaries of the ith arm
are modeled according to

x sin(φi)− y cos(φi) +
jwlane

2
= 0, (1.23)

with j ∈ {−2mi
b, . . . , 2m

i
f}. When j = 2mi

f (resp. j = −2mi
b), (1.23) corresponds to the

right-hand-side road boundary when looking in the forward direction (resp. in the backward
direction); when j ∈ 2{mi

f−1, . . . , 1} (resp. j ∈ 2{−mi
b+1, . . . ,−1}), (1.23) corresponds

to a lane marking that separates two lanes of traffic moving in the forward direction (resp. in
the backward direction); when j = 0, (1.23) corresponds to the road centerline; and when

2The road centerlines are the lane markings that separate the lanes of traffic moving in the opposite
directions, not necessarily the centerlines in the geometric sense, e.g., for a road arm with different numbers
of forward and backward lanes.

27

j ∈ 2{mi
f, . . . , 1}−1 (resp. j ∈ 2{−mi

b, . . . ,−1}+1), (1.23) corresponds to the geometric
center of a forward lane (resp. backward lane). We also assign an entrance point (xen, yen)

to each forward lane and an exit point (xex, yex) to each backward lane, both located in the
center of the corresponding lanes and indicating the entrance/exit of the intersection, which
will be used when assigning the leader/follower roles to vehicles (see Section 1.3.4.1).

Fig. 1.8 shows an example of four-way intersection modeled with (1.22) and (1.23). We
note that the above model corresponds to the right-hand traffic [88]. To model intersections
in the context of left-hand traffic requires straightforward modifications.

1.3.2 Vehicle kinematics

As before, we represent a vehicle using a rectangle, referred to as the “collision zone” (c-
zone), which bounds the vehicle’s geometric contour projected onto the ground. The c-zone
of a vehicle is characterized by a 5-tuple, (x, y, θ, lc, wc), where (x, y) are the coordinates
of its geometric center, θ is the vehicle’s heading angle (the counter-clockwise angle of the
vehicle’s heading direction with respect to the x-axis), and lc (wc) is the length (width) of
the rectangle.

We assume that a vehicle plans a path P before entering the intersection and follows
this pre-planned path to pass through the intersection [89]. When vehicles have conflicts,
they adjust their speeds along the paths to resolve the conflicts. In particular, a path P is
a smooth curve starting from an initial point (xini, yini), which is located in the center of
the vehicle’s origin lane3, passing through the entrance point (xen, yen) of the origin lane
and the exit point (xex, yex) of the vehicle’s target lane4, and ending at a terminal point
(xterm, yterm), which is located in the center of the target lane.

For any point (x, y) on the curve P , we use ρ to denote the arc length of the curve
segment from (xini, yini) to (x, y). This way, (x(0), y(0)) = (xini, yini), i.e., the initial point
is the location of the vehicle when its traveled distance along the path is zero. Also, we
denote the ρ values for the entrance point (xen, yen) by ρen and for the exit point (xex, yex)

by ρex, i.e., (xen, yen) = (x(ρen), y(ρen)) and (xex, yex) = (x(ρex), y(ρex)). This means the
vehicle is right entering (resp. exiting) the intersection when its traveled distance along the
path P is ρen (resp. ρex). Then, we define ∆ρen = ρen − ρ and ∆ρex = ρex − ρ so that
∆ρen < 0 (resp. ∆ρex < 0) means the vehicle has entered (resp. exited) the intersection.

3The lane in which the vehicle is driving before entering the intersection.
4The lane to which the vehicle is going after exiting the intersection.

28

To facilitate following exposition, we write the path P as

P : R→ R2, ρ 7→

[
x(ρ)

y(ρ)

]
. (1.24)

Analytical expressions for the curve (1.24) and for ∆ρen and ∆ρex as functions of the inter-
section parameters (1.22) are given in Appendix B. We note that although there are other
path models in the literature [3], the above model is simple and suitable for our purpose.

Under the assumption that a vehicle can follow its pre-planned path perfectly, the dy-
namic behavior of a vehicle is modeled by the following discrete-time EOMs:

ρ(t+ 1) = ρ(t) + v(t) ∆t,

v(t+ 1) = v(t) + a(t) ∆t, (1.25)

where t denotes the discrete time, v(t) ∈ [vmin, vmax] and a(t) denote the vehicle’s speed
and acceleration at t, and ∆t is the sampling period.

Using (1.24), the vehicle’s location (x, y) and heading angle θ can be written as func-
tions of ρ. In particular,

θ(ρ) = lim
h→0+

arctan2
(
y(ρ+ h)− y(ρ), x(ρ+ h)− x(ρ)

)
= arctan2

(dy
dρ
,

dx
dρ

)
. (1.26)

We now collect all relevant variables and define the state of a vehicle as the following
8-tuple,

s(t) =
(
P, ρ(t), v(t), x(ρ(t)), y(ρ(t)), θ(ρ(t)),∆ρen(t),∆ρex(t)

)
. (1.27)

To adjust speeds along the path, we assume a vehicle has a finite number of acceleration
levels to choose at each time step, i.e.,

a(t) ∈ Ai =
{
a1, a2, . . . , a|A

i|}, ∀ t. (1.28)

Fig. 1.9 illustrates vehicle kinematics at a typical two-lane four-way intersection mod-
eled using (1.24)-(1.27). As before, we associate a variable with a subscript i to indicate
that this variable corresponds to vehicle i. For modeling an intersection scenario with nv

vehicles, the collection of all vehicles’ states, s(t) = (s1(t), s2(t), . . . , snv(t)), defines the
traffic state, the evolution of which follows

s(t+ 1) = T̄ i(s(t), a1(t), a2(t), . . . , anv(t)
)
, (1.29)

29

where T̄ i is a deterministic map defined by a concatenation of all individual vehicles’ kine-
matics models (1.24)-(1.27). Moreover, we assume a driver can observe the state of her own
vehicle and the states of all other vehicles at the intersection, i.e., oi(t) = (si(t), s−i(t)).
This defines the observation map Oi : S i → Ωi of the driver model, which in this case is
essentially an identity map. This assumption will be relaxed in Section 1.3.5.2.

x-axis

y-axis

x-axis

y-axis
v(t)

θ(t)

(x(t), y(t))

P (ρ)

Figure 1.9: Vehicle kinematics modeled by (1.24)-(1.27). The blue rectangle represents the
vehicle’s c-zone where the end with double lines is the vehicle’s front end. The blue dotted
curve represents the pre-planned path P . The states x(t), y(t) and θ(t) can be computed
using the traveled distance along the path ρ(t) and the path geometry (1.24). The green
triangles represent the intersection entrance points (x(ρen), y(ρen)) and the red triangles the
intersection exit points (x(ρex), y(ρex)).

1.3.3 Reward function

At an intersection, a driver typically has the following goals: 1) maximizing safety, e.g.,
not having a collision with another vehicle, 2) keeping a reasonable distance from other
vehicles to increase safety and comfort, and 3) passing through the intersection and getting
to her target lane under traffic rules and in a timely manner (i.e., liveness).

We assume common traffic rules (e.g., a left turn can only be made when the vehicle
is entering the intersection from the leftmost forward lane) and speed limits have been
accounted for in the pre-planned path P and speed bounds [vmin, vmax]. Then, the other

30

goals are expressed by the following reward function to maximize,

Ri = w1ĉ+ w2ŝ+ w3v̂, (1.30)

where w1,2,3 > 0 are weights, and the terms ĉ, ŝ and v̂ are explained below. Here, we
consider the case where the ego vehicle i is interacting with one other vehicle j, with
i, j ∈ V = {1, 2, . . . , nv}. The model will be extended to the case with multiple interacting
vehicles, nv > 2, in Section 1.3.4.3.

ĉ (collision avoidance): The term ĉ takes values according to the following equation:

ĉ = −(1 + sc + ŵ|vivj|) I(sc > 0), (1.31)

where sc ≥ 0 is the area of overlap between vehicle i and j’s c-zones, vi and vj are the
speeds of vehicle i and j, ŵ > 0 is a weighting parameter, and I(·) is an indicator function
taking 1 if (·) holds true and 0 otherwise.

The term ĉ is designed as above so that when there is no collision, sc = 0, we have
ĉ = 0; when there is a collision, sc > 0, the penalty depends on the overlapping area
of c-zones and the vehicle speeds. In particular, larger penalties are imposed for larger
overlapping areas and for larger absolute values of speeds as they both imply more severe
collisions. The parameter ŵ > 0 adjusts the relative contribution to severity of overlapping
area versus speeds. And the addition of 1 ensures a minimum penalty for collisions.

ŝ (separation): The term ŝ takes values according to the following equation:

ŝ = −(1 + ss + ŵ|vivj|) I(ss > 0). (1.32)

The expression (1.32) for ŝ resembles the expression (1.31) for ĉ, but replaces sc with
ss ≥ 0, which is the area of overlap between vehicle i and j’s “separation zones” (s-zones).
The s-zone of a vehicle is a larger rectangle, which shares the same longitudinal line of
symmetry with the vehicle’s c-zone and over-bounds the c-zone with a safety margin (see
Fig. 1.10). It is characterized by the 6-tuple (x, y, θ, ls,f, ls,r, ws), where ls,f, ls,r ≥ lc

2
and

ws ≥ wc.
v̂ (velocity): We use the ego vehicle i’s speed along its path to characterize its liveness,

since a higher speed corresponds to a shorter time to reach its target lane. In particular, we
let

v̂ = vi. (1.33)

It is clear from the above expressions (1.30)-(1.33) that the reward received by the ego
vehicle i at time t depends on the state of vehicle i at t, si(t), and the state of the interacting

31

other vehicle j at t, sj(t), i.e., Ri(t) = Ri(si(t), sj(t)).

x-axis

y-axis

v(t)

θ(t)

(x(t), y(t))

lcwc

ls,f

ls,r

ws

Figure 1.10: The c-zone (dark blue rectangle) and s-zone (light blue rectangle) of a vehicle.

We model the sequential decision-making process of a driver at an intersection as a
receding-horizon control strategy. In particular, we assume a driver plans a sequence of
actions γ(t) = {a(τ |t)}N−1

τ=0 ∈ Γ = (Ai)N to maximize a cumulative reward,

R̄i(t) =
N∑
τ=1

λτ−1Ri(τ |t), (1.34)

where a variable with τ |t represents a predicted value of the variable at time t + τ with
the prediction made at the current time t, N is the prediction horizon, and λ ∈ [0, 1] is
a discount factor. Once an action sequence γ(t) has been determined, the driver applies
the first element over one sampling period, i.e., a(t) = a(0|t), to update her vehicle state
s(t)→ s(t+ 1). Then, the driver repeats this procedure at the next time instant t+ 1.

Recall that the reward received by a driver depends not only on the state of her own
vehicle but also on the state of the interacting other vehicle (in the case of two-vehicle
interactions). Hence, in order to maximize the cumulative reward (1.34), a driver needs to
predict the interaction behavior of the other vehicle. In what follows, we introduce a model
based on a leader-follower game formulation for simultaneous behavior prediction of the
other vehicle and decision making for the ego driver.

To facilitate following exposition, we write the cumulative reward (1.34) as

R̄i(t) = R̄i(s(t), γi(t), γj(t)), (1.35)

where s(t) = (si(t), sj(t)) denotes the current traffic state (including the states of the two
vehicles i, j in the case of two-vehicle interactions), γi(t) = {ai(τ |t)}N−1

τ=0 is the predicted
action sequence of the ego vehicle i, and γj(t) = {aj(τ |t)}N−1

τ=0 is the predicted action
sequence of the interacting other vehicle j. This can be done because the states of the two

32

vehicles over the prediction horizon are fully determined by their current states and their
action sequences according to the kinematics model (1.24)-(1.27).

1.3.4 Leader-follower decision making

1.3.4.1 Assignment of leader-follower roles

Human drivers resolve their conflicts at intersections by following the “right-of-way” rules
[63]. The right-of-way rules help drivers decide who should proceed first to pass through an
intersection. Motivated by the right-of-way rules, we assign a leader-follower relationship
to each pair of vehicles (i, j) at an intersection based on the following logic (illustrated in
Fig. 1.11):

(1) If vehicles i, j have both entered the intersection, the vehicle that is closer to exit of the
intersection is the leader.

(2) If at most one of vehicles i, j has entered the intersection, the vehicle that is closer to
entrance of the intersection is the leader.

(3) If no leader has been assigned to (i, j) according to (1)-(2), then the vehicle on the
right is the leader when the two vehicles are coming from adjacent road arms.

(4) If no leader has been assigned to (i, j) according to (1)-(3), then the vehicle going
straight is the leader when the other vehicle is making a turn.

When comparing the distance of a vehicle to entrance (exit) of the intersection, we
consider the signed arc length from the vehicle’s current location (x, y) to the entrance
point (xen, yen) of its origin lane (the exit point (xex, yex) of its target lane) along its path P .
If the vehicle has entered (exited) the intersection, then the signed arc length to the entrance
point (the exit point) is the negative of the arc length. For programming purpose, we restate
the above leader-follower role assignment logic as Algorithm 3.

In Algorithm 3, we use i ≺ j to denote that vehicle i is the leader in the vehicle pair
(i, j), and use i � j to denote that i is not the leader (i.e., either j is the leader or no leader
role is determined between i and j according to (1)-(4)). The δ ≥ 0 is a threshold for
differentiating the distances, accounting for the fact that human drivers can only estimate
the distances with limited accuracy. In particular, we assume a driver cannot recognize
which distance is smaller when |∆ρen

i (t)−∆ρen
j (t)| ≤ δ (resp. |∆ρex

i (t)−∆ρex
j (t)| ≤ δ). In

line 4, “going straight” and “making a turn” need to be differentiated, which is determined
according to the angle between the vehicle’s origin and target road arms. In particular,

33

Algorithm 3: Leader-Follower Role Assignment
Input : An ordered pair of vehicles (i, j) and their states (si(t), sj(t))
Output: Whether i is the leader of j

1 if (∆ρen
i (t) ≤ 0 and ∆ρen

j (t) ≤ 0) and ∆ρex
i (t) < ∆ρex

j (t)− δ then i ≺ j;
2 else if (∆ρen

i (t) > 0 or ∆ρen
j (t) > 0) and ∆ρen

i (t) < ∆ρen
j (t)− δ then i ≺ j;

3 else if i and j are coming from adjacent ways and i’s way is on the right of j’s way
then i ≺ j;

4 else if i is going straight and j is making a turn then i ≺ j;
5 else i � j.

when the clockwise angle from its origin road arm to its target road arm is in the interval
(0, 3π/4], the vehicle is “making a left turn”; when the angle is in the interval (3π/4, 5π/4),
the vehicle is “going straight”; it is “making a right turn” otherwise.

According to Algorithm 3, at most one of the outcomes i ≺ j and j ≺ i can take
place. It may occur that i � j and j � i. In such a case, both vehicles view themselves
as followers and make conservative decisions. Also, ≺ and � do not have the transitive
property, i.e., i ≺ j and j ≺ k (i � j and j � k) do not imply i ≺ k (i � k). For instance,
when four vehicles i, j, k and l coming from different road arms arrive at the entrances of
a four-way intersection at the same time, we will have i ≺ j, j ≺ k, k ≺ l and l ≺ i.
Indeed, this case and similar cases where a cyclic pattern of leader-follower roles occurs
are challenging cases for drivers – they may cause deadlocks (i.e., no one proceeds to enter
the intersection or everyone gets stuck in the middle of the intersection).

1.3.4.2 Decision model for two-vehicle interactions

We assume a driver makes decisions according to

γ∗i (t) ∈ arg max
γi∈Γ

Qleader(s(t), γi), (1.36)

if her vehicle, i, is interacting with one other vehicle, j, and her vehicle i is the leader in
the vehicle pair (i, j), where

Qleader(s(t), γi) = min
γj∈Γ∗j (s(t))

R̄i
i(s(t), γi, γj),

Γ∗j(s(t)) =
{
γ′j ∈ Γ : min

γi∈Γ
R̄i
j(s(t), γ

′
j, γi) ≥ min

γi∈Γ
R̄i
j(s(t), γj, γi),∀γj ∈ Γ

}
. (1.37)

In (1.37), R̄i
i(s(t), γi, γj) represents the cumulative reward (1.35) received by vehicle i,

and R̄i
j(s(t), γj, γi) represents the cumulative reward (1.35) received by vehicle j (i.e., now

34

(1) (2)

(3) (4)

Figure 1.11: Leader-follower role assignment. In all of the figures, the red car is the leader
and the yellow car is the follower.

vehicle j takes the role of “ego vehicle” and (1.35) reads R̄i(t) = R̄i(s(t), γj(t), γi(t))).
We assume she makes decisions according to

γ∗i (t) ∈ arg max
γi∈Γ

Qfollower(s(t), γi), (1.38)

if her vehicle i is a follower in the vehicle pair (i, j), where

Qfollower(s(t), γi) = min
γj∈Γ

R̄i
i(s(t), γi, γj). (1.39)

The above leader-follower based decision model can be explained as follows: Firstly,
as introduced in Section 1.3.4.1, we use a leader-follower relationship to model the right-
of-way traffic rules, where a pairwise leader corresponds to a vehicle that has the right of
way and a pairwise follower should yield to the leader. Since a leader has the right of
way and a follower should yield, we assume a follower must take into account all possible
actions of the leader when making her own decision and the way to account for all possible
leader actions is modeled as the maximin strategy (1.38)-(1.39), i.e., maximizing the worst-
case reward. In contrast, we assume a leader is able to predict the maximin decision of
the follower and will take an optimal response, which leads to the leader decision rule
(1.36)-(1.37).

35

We also note that this leader-follower based decision model is partly inspired by Stack-
elberg game theory [62]. We do not adopt a standard Stackelberg equilibrium-based deci-
sion model because a Stackelberg model relies on several stronger assumptions, including
that 1) the follower must be able to observe and respond to the leader’s decision imme-
diately after it is made and 2) the leader must know 1) [61], which generally do not hold
for vehicle interactions in traffic (e.g., due to vehicle dynamic behavior and human driver
reaction delay [90]).

We now make the following technical assumptions:

1) For any (s, γj) ∈ (S i)2 × Γ, there exists unique γ′i ∈ Γ such that

R̄i(s, γ′i, γj) ≥ R̄i(s, γi, γj) for all γi ∈ Γ.

2) For any s ∈ (S i)2, there exists unique γ′i ∈ Γ such that

min
γj∈Γ

R̄i(s, γ′i, γj) ≥ min
γj∈Γ

R̄i(s, γi, γj) for all γi ∈ Γ. (1.40)

The expressions in (1.40) assume that at any traffic state s = (si, sj) ∈ (S i)2, for either a
leader or a follower, there is one decision choice γ′i ∈ Γ that is strictly better than the others
with respect to the decision rules (1.36)-(1.37) or (1.38)-(1.39). This assumption typically
holds true. Under the assumptions (1.40), our leader-follower based decision model is
simplified to

γ∗i (t) =

arg maxγi∈Γ Qleader(s(t), γi), if i ≺ j,

arg maxγi∈Γ Qfollower(s(t), γi), if i � j,
(1.41)

where

Qleader(s(t), γi) = R̄i
i

(
s(t), γi, γ

∗
j (s(t))

)
, γ∗j (s(t)) = arg max

γj∈Γ
min
γi∈Γ

R̄i
j(s(t), γj, γi),

Qfollower(s(t), γi) = min
γj∈Γ

R̄i
i(s(t), γi, γj). (1.42)

1.3.4.3 Decision model for multi-vehicle interactions

We now extend the decision model (1.41)-(1.42) for two-vehicle interactions to n-vehicle
interactions with n ≥ 2. Our extension relies on pairwise leader-follower relationships
defined for all vehicle pairs at an intersection. In particular, we assume a driver of vehicle

36

i, for i ∈ V = {1, 2, . . . , nv}, makes decisions according to:

γ∗i (t) ∈ arg max
γi∈Γ

Q̄i(s(t), γi),

Q̄i(s(t), γi) = min
j∈V, j 6=i

Qi,j(si,j(t), γi),

Qi,j(si,j(t), γi) =

Qleader(si,j(t), γi) if i ≺ j,

Qfollower(si,j(t), γi) if i � j,
(1.43)

where the traffic state s(t) = (s1(t), . . . , snv(t)) contains now the states of all vehicles at
the intersection, si,j(t) = (si(t), sj(t)) represents the state of the vehicle pair (i, j), and
Qleader(si,j(t), γi) and Qfollower(si,j(t), γi) are defined in (1.42).

The decision model (1.43) can be interpreted as follows: A driver of vehicle i predicts
the reward of a decision γi due to her interactions with vehicle j using Qleader(si,j(t), γi)

if vehicle i is a leader in the vehicle pair (i, j), and using Qfollower(si,j(t), γi) if i is a fol-
lower in the pair (i, j). Then, to account for her interactions with all other vehicles at
the intersection, the driver maximizes the minimum of predicted rewards for all pairwise
interactions. We will show through simulation examples in Section 1.3.6 that this deci-
sion model can produce realistic interaction behaviors of vehicles at intersections, and it
leads to satisfactory safety and liveness properties (i.e., not being overly aggressive, repre-
sented by reasonable collision rates, and not being overly conservative, represented by rea-
sonable deadlock rates). One important advantage of this decision model for multi-agent
interactions compared to many other multi-player game-theoretic models (e.g., based on
multi-player Nash equilibrium or Stackelberg equilibrium with multiple hierarchies) is its
computational efficiency, which will also be shown in Section 1.3.6.

1.3.5 Additional modeling considerations

We incorporate the following additional considerations in our model to increase its fidelity
in terms of modeling human driver behavior.

1.3.5.1 Courteous driving

A driver should not intentionally choose an action that would cause a collision when the
other vehicles maintain their speeds. We account for this by modifying the decision model
(1.43) to

γ∗i (t) ∈ arg max
γi∈Γi(s(t))

Q̄i(s(t), γi), (1.44)

37

where Γi(s(t)) = Ai
i(s(t)) × (Ai)N−1, in which Ai

i(s(t)) ⊂ Ai represents the set of cour-
teous actions at the traffic state s(t) = (s1(t), . . . , snv(t)), defined as

Ai
i(s(t)) =

{
a ∈ Ai : for every j ∈ V , j 6= i, if ai(t) = a and aj(t) = 0, then

the two vehicles i, j will not collide at time t+ 1
}
∪min

{
a ∈ Ai}. (1.45)

In the definition (1.45) of Ai
i(s(t)), min

{
a ∈ Ai

}
represents a fail-safe action: when there

are no actions that can avoid a collision, the driver applies maximum braking.
We note that the above modification acts essentially as imposing some hard constraints

to the decision problem (1.43) to increase safety. Although collisions have been penalized
through the term ĉ in the reward function (1.30), improved safety performance can typically
be achieved through hard constraints than solely through penalties [91].

1.3.5.2 Local interaction

A driver can consider her interactions with only the other vehicles that are in a certain vicin-
ity of her own vehicle (e.g., due to a limited perception range and information processing
ability). To account for this, we further modify the decision model (1.43) according to

Q̄i(s(t), γi) = min
j∈Vi(t), j 6=i

Qi,j(si,j(t), γi) (1.46)

where Vi(t) ⊂ V = {1, . . . , nv} represents the set of other vehicles whose interactions with
the ego vehicle i are considered by the driver, defined as

Vi(t) =
{
j ∈ V : j 6= i and

√
(xj(t)− xi(t))2 + (yj(t)− yi(t))2 ≤ ωi

}
, (1.47)

where ωi > 0 represents an interaction radius of vehicle i.

1.3.5.3 Breaking deadlocks via exploratory actions

In cases where multiple vehicles arrive at an intersection almost simultaneously, a deadlock
may occur when they negotiate the right of way – no one proceeds to enter the intersec-
tion or everyone gets stuck in the middle of the intersection. The following Algorithm 4
represents a strategy for our driver model to break deadlocks via exploratory actions.

Algorithm 4 is motivated by the observation that when multiple human drivers en-
counter a deadlock when negotiating the right of way at an intersection, some driver(s) will
make a slight movement to seek the possibility of going first, and such exploratory actions
can usually lead to an agreement among the drivers on their orders of passing through the

38

Algorithm 4: Breaking Deadlocks via Exploratory Actions
Input : The states of all vehicles s(t) = (s1(t), . . . , snv(t)) and the acceleration

decisions produced by (1.43) of all vehicles (a1(t), · · · , anv(t))
Output: Modified acceleration decisions of all vehicles (a1(t), · · · , anv(t))

1 Vconflict = ∅;
2 for i ∈ V do
3 if i is the first vehicle coming from its origin lane that has not exited the

intersection (∆ρex
i (t) > 0) then add i to Vconflict;

4 end
5 if vi(t) = 0 and ai(t) = 0, ∀i ∈ Vconflict then
6 for i ∈ Vconflict do
7 if

{
a ∈ Ai

i(s(t)) : a > 0
}
6= ∅ then

8 reset ai(t) based on

ai(t) =

{
min

{
a ∈ Ai

i(s(t)) : a > 0
}
, with probability pi,

0, with probability 1− pi.
9 end

10 end
11 end

intersection. In Algorithm 4, lines 2-4 aim to identify the vehicles that are in conflict. In
particular, a vehicle i that has exited the intersection will not be viewed as a vehicle in
conflict. Similarly, if there is another vehicle j that is entering/has entered the intersection
from the same lane as vehicle i, drives in front of i5, and has not exited the intersection,
then a vehicle i will not be viewed as a vehicle in conflict. Line 5 aims to recognize the
occurrence of a deadlock – a deadlock occurs when all vehicles that are in conflict have
stopped and none of them decide to move according to (1.43). Then, lines 6-10 assign the
vehicles in conflict positive probabilities of making slight movements to seek the possibil-
ity of going first. The effectiveness of Algorithm 4 in breaking deadlocks will be illustrated
through simulation examples in Section 1.3.6.

1.3.6 Simulation results of leader-follower driver models

The parameter values used to generate the simulation results in this section are summarized
in Table 1.2. These values are manually tuned to produce reasonable vehicle behavior in a
few simulation trials and then used for all of the simulation examples in this section. Alter-
natively, they may be calibrated using data-driven approaches as in [92] or optimized using
simulation-based approaches as in [71]. In particular, when a vehicle i is a leader (resp. a

5There should be no confusion about the meaning of “in front of” here since vehicles i and j are enter-
ing/have entered the intersection from the same lane.

39

follower) in a vehicle pair (i, j), i assumes the parameters (ls,f, ls,r, ws) characterizing the
sizes of the s-zones of these two vehicles i, j take the values (lls,f, l

l
s,r, w

l
s) (resp. (lfs,f, l

f
s,r, w

f
s))

when i evaluates its reward term ŝ. We let lls,f ≤ lfs,f, l
l
s,r ≤ lfs,r and wl

s ≤ wf
s. This way, a

pairwise leader tends to take even more aggressive actions than a pairwise follower (since
the leader pursues a smaller separation distance than the follower), and this further reduces
the occurrence of deadlocks.

Table 1.2: Parameter values for intersection simulations.
Variable(s) Value(s) Unit Remarks

∆t 1 s sampling period

[vmin, vmax] [0, 5] m/s speed range

Ai {−4,−2, 0, 2} m/s2 {hard brake, decelerate, maintain, accelerate}

δ 0.5 m threshold for differentiating distances

N 2 prediction horizon

λ 0.6 discount factor

w1,2,3, ŵ {100, 5, 1}, 1
4 reward function weights

(lc, wc) (6, 2.4) m c-zone size

(lls,f, l
l
s,r, w

l
s) (5, 4, 2.8) m s-zone size for leader

(lfs,f, l
f
s,r, w

f
s) (14, 4, 2.8) m s-zone size for follower

ωi, ∀i ∈ V 30 m interaction radius

pi, ∀i ∈ V 0.25 probability of taking exploratory action to break deadlock

1.3.6.1 Reproducing real-world traffic scenarios

We first show that our leader-follower based driver model is able to reproduce human-
driven vehicle trajectories of real-world traffic scenarios. The scenarios are extracted from
the video dataset used in [93], which is collected at a two-lane four-way intersection in
Canmore, Alberta.

We initialize states of the vehicles in our simulation according to the positions and
velocities of the vehicles in the video, then simulate the evolution of the scenario using
our leader-follower based model and compare it with the actual evolution of the video.
Fig. 1.12 shows a few snapshots of our simulation versus video data for a scenario involving
3 interacting vehicles, and Fig. 1.13 shows those for a scenario involving 4 interacting
vehicles. It can be seen that our model reproduces both scenarios with satisfactory accuracy.
For instance, in both cases our model correctly predicts the order in which the interacting

40

vehicles pass through the intersection, and the time-dependent vehicle positions predicted
by our model closely match the video data.

-10 -5 0 5 10

-10

-5

0

5

10

v = 2 m/s

v = 2 m/s

v = 2 m/s

-10 -5 0 5 10

-10

-5

0

5

10
v = 4 m/s

v = 0 m/s

v = 0 m/s

-10 -5 0 5 10

-10

-5

0

5

10
v = 5 m/s

v = 2 m/s

v = 2 m/s

-10 -5 0 5 10

-10

-5

0

5

10
∆

v = 4 m/s

v = 2 m/s

(a) (b)

(c) (d)

Figure 1.12: Reproducing a real-world traffic scenario with 3 interacting vehicles by the
proposed model.

1.3.6.2 Completely symmetric scenarios

Among intersection scenarios, the ones where multiple vehicles arrive at an intersection
at the same time are particularly challenging for drivers, because these cases easily cause
deadlocks. In this section, we show simulation results of two “completely symmetric”
cases.

Both cases involve a geometrically symmetric four-lane (two for each direction) four-
way intersection. In the first case, 8 vehicles are approaching the intersection from each
of the eight forward lanes with the same initial distance ∆ρen(0) to their corresponding
entrance points and the same initial speed v(0). Their goals are all going straight to cross
the intersection. In the second case, 4 vehicles are approaching the intersection from each
of the four leftmost forward lanes of the road arms with the same ∆ρen(0) and v(0). Their
goals all correspond to making a left turn. In both cases, all of the vehicles use the model
(1.43) to make initial decisions, and use Algorithm 4 to adjust decisions when encountering
a deadlock. The simulation results of these two cases are shown in Figs. 1.14 and 1.15.

In Fig. 1.14(a), the eight vehicles arrive at the intersection at the same time. In Fig. 1.14(b),
they all stop at the intersection entrances to yield to the vehicle on their right, and hence a
deadlock occurs. In Fig. 1.14(c), the blue vehicle makes a slight movement to seek the pos-

41

-10 -5 0 5 10

-10

-5

0

5

10
v = 5 m/s

v = 0 m/s

v = 5 m/s

v = 5 m/s

-10 -5 0 5 10

-10

-5

0

5

10
∆

v = 5 m/s

v = 5 m/s

∆

-10 -5 0 5 10

-10

-5

0

5

10
∆

v = 5 m/s

v = 5 m/s

∆

(a)

(b)

(c)

Figure 1.13: Reproducing a real-world traffic scenario with 4 interacting vehicles by the
proposed model.

sibility of going first, which is based on Algorithm 4. Due to this movement, the symmetry
is broken – the blue vehicle becomes the overall leader among all vehicles, and hence enters
and crosses the intersection first, shown in Fig. 1.14(d). The other vehicles then enter and
cross the intersection in a clockwise order, shown in Figs. 1.14(e) and (f). In Fig. 1.15(a),
after the four vehicles arrive and stop at the intersection entrances, the left purple vehicle
makes a slight movement and seeks to go first. As a result, the purple vehicle enters the
intersection and gets to its target lane first, shown in Fig. 1.15(b). Similar to the previous
case, the other vehicles then pass through the intersection in a clockwise order, shown in
Figs. 1.15(c) and (d).

The above results show that our leader-follower game based driver model can produce
realistic vehicle interaction behaviors, and has reasonably good capability to resolve vehicle
conflicts in challenging intersection scenarios. Note that our model does not rely on a
centralized controller/manager to guide the vehicles to resolve their conflicts – the vehicles
make their decisions individually and independently. This is consistent with the way human
drives in real-world traffic.

42

-40 -20 0 20 40
-40

-20

0

20

40
v = 3 m/s

v = 3 m/s

v = 3 m/s

v = 3 m/s

v = 3 m/s

v = 3 m/s

v = 3 m/s

v = 3 m/s

-40 -20 0 20 40
-40

-20

0

20

40
v = 0 m/s

v = 0 m/s

v = 0 m/s

v = 0 m/s

v = 0 m/s

v = 0 m/s

v = 0 m/s

v = 0 m/s

-40 -20 0 20 40
-40

-20

0

20

40
v = 2 m/s

v = 0 m/s

v = 0 m/s

v = 0 m/s

v = 0 m/s

v = 0 m/s

v = 0 m/s

v = 0 m/s

-40 -20 0 20 40
-40

-20

0

20

40
v = 5 m/s

v = 0 m/s

v = 0 m/s

v = 0 m/s

v = 0 m/s

v = 0 m/s

v = 2 m/s

v = 4 m/s

-40 -20 0 20 40
-40

-20

0

20

40
v = 5 m/s

v = 0 m/s

v = 0 m/s

v = 0 m/s

v = 2 m/s

v = 4 m/s

v = 5 m/s

v = 5 m/s

-40 -20 0 20 40
-40

-20

0

20

40
∆

v = 2 m/s

v = 5 m/s

v = 5 m/s

v = 5 m/s

v = 5 m/s

∆

∆

(a) (b) (c)

(d) (e) (f)

Figure 1.14: Completely symmetric case 1. Figures (a-f) show snapshots of the simulation
at a series of time steps.

1.3.6.3 Randomized traffic scenarios and statistical evaluation

We run a batch test with randomized parameters to statistically evaluate our leader-follower
game based driver model. We let the number of road arms nr take values in nr ∈ {3, 4, 5}
and let the number of vehicles nv take values in nv ∈ {2, 4, 6, 8, 10}. For each pair
of (nr, nv), we randomly sample the numbers of forward and backward lanes {mi

f}nr
i=1,

{mi
b}nr
i=1 according to the following categorical distributions,

mi
f ∼ Cat ({1, 2, 3}, {0.15, 0.7, 0.15}) , ξ ∈ {f, b}, (1.48)

and sample the road arm angles {φi}nr
i=1 according to the following truncated normal dis-

tributions,

φi ∼ Normal
(

2πi

nr
,
π

24
,

[
2πi

nr
− π

8
,
2πi

nr
+
π

8

])
, (1.49)

to create the intersection. Then, we initialize the states of the vehicles as follows: Firstly,
we randomly pick a road arm and a forward lane of this road arm as the origin lane of a
vehicle, and randomly pick an “admissible” road arm and an “admissible” backward lane
of this road arm as its target lane. Here, “admissible” means that the picked road arm and
backward lane satisfy common traffic rules (e.g., a left turn can only be made when the

43

-20 -10 0 10 20
-20

-10

0

10

20
v = 0 m/s

v = 0 m/s

v = 0 m/s

v = 4 m/s

-20 -10 0 10 20
-20

-10

0

10

20
v = 0 m/s

v = 0 m/s

v = 4 m/s

v = 5 m/s

-20 -10 0 10 20
-20

-10

0

10

20
v = 0 m/s

v = 4 m/s

v = 5 m/s

∆

-20 -10 0 10 20
-20

-10

0

10

20
v = 2 m/s

v = 5 m/s

∆

∆

(a) (b)

(c) (d)

Figure 1.15: Completely symmetric case 2. Figures (a-d) show snapshots of the simulation
at a series of time steps.

vehicle is entering the intersection from the leftmost forward lane). Then, we initialize the
location and speed of this vehicle according to

∆ρen(0) ∼ Uniform ([10, 28]) [m], v(0) ∼ Uniform ([2, 4]) [m/s]. (1.50)

Furthermore, we enforce a minimum initial separation distance ρsep between any two ve-
hicles that are put in the same origin lane – when we initialize a vehicle i, if it is put in
the same origin lane with a vehicle j that has been initialized and ∆ρen

i (0) is sampled in
the range of [∆ρen

j (0) − ρsep,∆ρen
j (0) + ρsep], then its origin lane and ∆ρen

i (0) are both re-
sampled according to the above-mentioned procedure until this initial separation require-
ment is satisfied.

For each pair of (nr, nv), We run 100 of such randomized simulation trials. A few
examples of these simulation trials are illustrated in Fig. 1.16.

We define three metrics to evaluate our driver model in terms of safety and liveness:
They are the success rate (SR), the collision rate (CR), and the deadlock rate (DR). The
SR is defined as the proportion of simulation trials where all of the vehicles safely (i.e.,
without colliding with any other vehicles) reach their terminal points (xterm, yterm) within
60 [s] of simulation time. The CR is defined as the proportion of simulation trials where at

44

-40 -20 0 20 40
-40

-20

0

20

40
v = 0 m/s

v = 2 m/s

∆

v = 5 m/s

v = 5 m/s

v = 2 m/s

v = 0 m/s

v = 4 m/s

v = 5 m/s

v = 5 m/s

-40 -20 0 20 40
-40

-20

0

20

40
v = 2 m/s

v = 2 m/s

∆

v = 5 m/s

∆

v = 5 m/s

v = 4 m/s

v = 5 m/s

∆

v = 5 m/s

-40 -20 0 20 40
-40

-20

0

20

40
v = 5 m/s

∆

v = 5 m/s

v = 0 m/s

∆

v = 5 m/s

∆

v = 5 m/s

∆

v = 5 m/s

-40 -20 0 20 40
-40

-20

0

20

40
v = 5 m/s

∆

∆

v = 2 m/s

∆

v = 5 m/s

∆

∆

∆

v = 5 m/s

-40 -20 0 20 40
-40

-20

0

20

40
v = 0 m/s

v = 0 m/s

v = 0 m/s

v = 0 m/s

v = 0 m/s

∆

v = 0 m/s

v = 0 m/s

v = 0 m/s

v = 0 m/s

-40 -20 0 20 40
-40

-20

0

20

40
v = 0 m/s

v = 0 m/s

v = 0 m/s

v = 0 m/s

v = 0 m/s

∆

v = 4 m/s

v = 0 m/s

v = 0 m/s

v = 0 m/s

(a) (c) (e)

(b) (d) (f)

Figure 1.16: Randomized traffic scenarios. Figures (a-b) show snapshots of a simulation
in a three-way intersection scenario, figures (c-d) show those in a four-way intersection
scenario, and figures (e-f) show those in a five-way intersection scenario.

least one vehicle collision occurs (once a vehicle collision occurs at a simulation step, the
simulation stops at that step). The DR is defined as the proportion of simulation trials where
no vehicle collision occurs but there is at least one vehicle that does not reach its terminal
point (xterm, yterm) within 60 [s] of simulation time. We note that based on their definitions,
SR + CR + DR = 1. A model representing human driver should have reasonably high SR,
and reasonably low CR and DR. The evaluation results of our model are shown in Fig. 1.17.

It can be seen that as the numbers of road arms and vehicles increase, which correspond
to more complex traffic scenarios, the CRs and DRs also increase. In three-way and four-
way intersection scenarios with 2 or 4 vehicles, no collisions or deadlocks are observed.
When up to 10 vehicles are interacting at three-way or four-way intersections, the SRs are
higher than 0.9. It can also be seen that five-way intersections have higher CRs and DRs
than three-way and four-way intersections. For instance, the SR for five-way intersection
drops to 0.84 for the case of 10 interacting vehicles. This is because five-way intersections
allow more vehicles to arrive at or be inside the intersection at the same time than three-way
and four-way intersections, which can cause higher chances of vehicle conflicts. Indeed,
as human drivers, we also typically find five-way intersections to be more challenging than
three-way and four-way intersections.

45

of arms

R
at

e

3 4 5

Figure 1.17: Statistical evaluation of the vehicle interaction model. Light color: SR,
medium color: DR, dark color: CR.

After investigating the simulation trials with collisions, we find that most collisions are
caused by simultaneous exploratory actions of two or more vehicles in deadlock scenarios.
Note that in Algorithm 4, a vehicle is not permitted to accelerate if its acceleration would
cause a collision when the other vehicles in conflict remain stopped. However, if two or
more vehicles accelerate at the same time, it is possible that their simultaneous accelera-
tions cause a collision though each single acceleration would not. Two of the failure cases
are shown in Fig. 1.18.

(a) (b)

Figure 1.18: Two failure cases. (a) A deadlock scenario. (b) A collision scenario.

We observe higher CRs and DRs in our simulations than what are observed in real-
world traffic, especially for the cases with larger numbers of interacting vehicles. For this,
we note that modeling human driver behavior, especially for multi-vehicle interaction sce-

46

narios, is a difficult and open problem, and our results are comparable with (even outper-
form) several other models for multi-vehicle interactions at intersections in the literature.
For instance, for four-way intersection with 4 interacting vehicles, the approach of [94]
leads to a series of CRs ranging from 0% to 1.1% and a series of DRs ranging from 0%

to 14.3% depending on the simulation settings; while our model has 0% CR and 0% DR
for randomized scenarios. For four-way intersection with 2 to 6 interacting vehicles, the
approach of [47] leads to collision-free simulations, but at the cost of a rapid increase in DR
as the number of interacting vehicles increases – when the number of interacting vehicles
increases to 6, almost 50% simulation trials following the approach of [47] end up with
deadlocks. In contrast, for four-way intersection with 6 interacting vehicles, our model has
only 1% CR and 2% DR.

We also remark that our CR and DR results are for a more complex intersection model
than the four-way intersections considered in [47] and [94]. For instance, unlike our inter-
section model where the number of lanes for each road arm and the angles between road
arms can vary, [47] and [94] run their simulation experiments on a simple two-lane (one
for each direction) four-way intersection model with orthogonal road arms. On the one
hand, the scenarios produced by our intersection model are more complex and hence more
challenging for drivers/vehicles to navigate. On the other hand, simulation results for these
more complex scenarios can provide more insights into driver/vehicle interactive behav-
iors. Indeed, the CRs and DRs of our model can be adjusted through tuning the weights for
different terms of the reward function (1.30). For instance, it is possible to reduce the num-
ber of collisions, which represent more severe failures, by increasing the weights w1, w2

for collision avoidance and separation, at the cost of a larger number of deadlocks, which
are less severe. However, this is not always desirable. For instance, one of our intended use
cases of the developed driver models is for constructing simulated traffic environments for
virtual verification and validation of autonomous vehicle control systems. A traffic model
with a low CR and a high DR may tend to be overly conservative and less likely to generate
challenging test cases for autonomous vehicles.

For the vehicles that safely reach their terminal points within 60 [s] of simulation time,
we count their average completion time (CT), which is defined as the duration (in [s] of
simulation time) from the simulation initialization to the time instant when the vehicle
reaches its terminal point. The average CT can reflect how conservative the driver model
is. The average CTs for different numbers of road arms and vehicles are shown in Fig. 1.19.

Firstly, it can be seen that as the number of vehicles increases, the vehicles need more
time to pass through an intersection, which is reasonable. We then use the traffic quality
rating system called the “level-of-service” (LOS) for unsignalized intersections defined

47

based on the average control delay [95] to validate that the time needed by our driver model
to navigate a vehicle through an intersection in the presence of other vehicle interactions
roughly matches that needed by an average human driver. In particular, in the case of
2-4 vehicles, the average CTs exhibited by our model can be mapped to LOS Level-B
(10-15 [s] average control delay), which represents traffic with a high degree of freedom
and a small amount of interactions [96]. In the case of 6-10 vehicles, the average CTs
exhibited by our model can be mapped to LOS Level-C (15-25 [s] average control delay),
which represents traffic with restricted freedom due to significant interactions. We can also
observe from Fig. 1.19 that among three-, four- and five-way intersections, vehicles spend
the least amount of time passing through a four-way intersection. This implies that the
right-of-way traffic rules work best for four-way intersections.

of arms

A
C

T
[s

]

3 4 5

Figure 1.19: Average completion time (ACT). The black vertical bars represent the standard
deviations.

1.4 Application to verification and validation of autonomous
vehicle control systems

Over the past decade, extensive efforts have been pursued in both academia and industry
to develop advanced autonomous driving systems, with the goal to provide safer, cleaner,
and more efficient transportation as well as improved mobility for the young, elderly, and
disabled. One of the most significant challenges that must be addressed before these sys-
tems can be deployed in mass production is their verification and validation (V&V). It is
estimated that “autonomous vehicles would have to be driven hundreds of millions of miles

48

and sometimes hundreds of billions of miles to demonstrate their reliability in terms of fa-
talities and injuries” [64]. It would be extremely time- and resource-consuming if these
testing miles are all established in the real, physical world. On the one hand, a practical so-
lution is to accomplish some portion of them in a virtual world using simulation tools, i.e.,
via virtual V&V in a simulator. On the other hand, the reliability of virtual V&V depends
fundamentally on the fidelity of the simulator, i.e., how representative the simulator is of
what a vehicle will encounter in the real world.

In real-world traffic scenarios that involve multiple vehicles, the vehicles share the road
and interact with each other. In this case, a simulator should be able to represent the inter-
active behaviors of drivers/vehicles with reasonable fidelity. In many conventional simu-
lators, only the ego vehicle is a decision maker (i.e., controlled by an autonomous driving
algorithm under test) and the behaviors of other vehicles are prescribed either as functions
of time or as simple functions of the traffic state (e.g., described as if-then-else rules). In
contrast, our game-theoretic driver models developed in previous sections create the op-
portunity to model all vehicles in a simulated traffic environment as interactive decision
makers, where their behaviors are determined by the combination of a reward function,
which explicitly models a driver’s driving objectives, and an interactive decision-making
process (i.e., the level-k or leader-follower based reasoning process). Therefore, we can use
our driver models to build up a simulator (or, enhance an existing simulator) with advanced
representation of driver/vehicle interactive behaviors, as a platform for autonomous driving
system virtual V&V.

1.4.1 Highway simulator and virtual V&V results of two AV policies

In this section, we use our level-k driver models developed in Section 1.2 to form a highway
simulator. This simulator provides traffic environments for virtual V&V of autonomous ve-
hicle (AV) control algorithms. As case studies, we use this simulator to test and compare
two AV policies, including a Stackelberg game-based policy and a decision tree-based pol-
icy.

When setting up a traffic environment, we use the number of simulated vehicles, nv,
to control the traffic density. Recall that the length of our cyclic road is xmax. In this
case, the traffic density can be estimated as nv

xmax
. Then, to account for the heterogeneity in

driving styles of real-world drivers, when assigning control policies to the vehicles, we let
each vehicle have a 10% chance to be assigned a level-0 policy, 60% chance to be assigned
a level-1 policy, and 30% chance to be assigned a level-2 policy. This way, the traffic
environment is roughly made up of a mixture of 10% level-0, 60% level-1, and 30% level-2

49

vehicles. These percentages of level-k vehicles are set based on the estimated percentages
of level-k reasoners in a human behavior experiment conducted in [79]. The graphical user
interface (GUI) of the simulator is the same as those in Figs. 1.2-1.5, where the red vehicle
in the middle is now the test vehicle (the vehicle controlled by the autonomous driving
algorithm under test).

We now use this simulator with mixed level-k vehicles to test and compare a Stackel-
berg game-based policy and a decision tree-based policy. These policies were originally
proposed in [48, 49] and in [97], respectively. Necessary modifications are made to make
them compatible with our simulator. Detailed descriptions of the modified versions of these
policies are given in Appendix C.

Firstly, we assess their safety and robustness properties based on their safety viola-
tion rates in our simulator, which are defined in the same way as those numbers shown in
Fig. 1.7, i.e., as the percentage of 10000 simulation episodes which end within tmax = 200

seconds due to the occurrence of a safety-violation state of the test vehicle. Fig. 1.20 shows
their safety violation rates versus varied traffic densities. It can be seen that both policies
exhibit significant safety violation rates. Comparing Fig. 1.20 with Fig. 1.7(b), we can
further see that both policies lead to more safety violations than our level-k driver models
when they operate in the same mixed traffic environment.

0 10 20 30

Number of cars

0

10%

20%

30%

40%

R
a

te

Stackelberg

Decision Tree

Figure 1.20: Safety violation rates of the Stackelberg game-based policy and the decision
tree-based policy.

Reflecting on potential reasons for their high safety violation rates, we realize that our
simulated traffic environments with heterogeneous and interactive drivers are more com-
plex and hence more challenging than the traffic models for which the Stackelberg game-

50

based policy and the decision tree-based policy were originally proposed. Indeed, when we
test these policies with a traffic model consisting of only level-0 vehicles, which represents
a simpler environment as level-0 vehicles do not make lane changes [see (1.17)], no safety
violations are observed. This is also in agreement with the results in [48, 49, 97]. However,
when these policies operate in our mixed traffic environments where some other vehicles
(i.e., level-1 and 2 vehicles) also make lane changes, safety violations occur.

Fig. 1.21 illustrates two scenarios that can explain many safety violations encountered
in our simulations. The red rectangle represents the test vehicle, and the yellow rectangles
represent the other vehicles in the traffic environment. The black arrows indicate the lon-
gitudinal velocities of the vehicles, and green arrows indicate their lateral motions. The
left-hand sides represent the scenarios at the time instant t, and the right-hand sides rep-
resent the scenarios at the next time instant t + 1. In Fig. 1.21(a), the test vehicle starts a
lane change to the left in order to overtake the slower vehicle in its front. Meanwhile, the
front vehicle also starts a lane change to the left due to some other vehicle(s) in its front
(not shown in this figure). As a result, both vehicles are moving into the left lane while
their longitudinal distance keeps decreasing, which eventually leads to a rear-end collision.
In Fig. 1.21(b), the test vehicle starts a lane change to the middle lane in order to overtake
a slower vehicle in front of it. Meanwhile, another vehicle, which originally drives in the
leftmost lane and is in an almost side-by-side position with the test vehicle, also starts a
lane change to the middle lane. As a result, both vehicles are moving into the middle lane,
which eventually leads to a side collision.

(a) (b)

Figure 1.21: Scenarios leading to safety violations.

We note that one reason for the above two scenarios to eventually lead to safety vio-
lations is that we have assumed a lane change must continue to completion once it gets

51

started. The augmentation of a fail-safe mechanism to the AV policies to let the vehicle
be able to abort improper lane changes may avoid many of these safety violations. As a
matter of fact, the above two scenarios are also challenging scenarios for human drivers.
Challenging scenarios automatically generated by our simulator, such as these two, can
help us discover faults in an AV control algorithm and hence significantly accelerate the
overall V&V procedure.

From Fig. 1.20 we can also observe that the safety violation rates first increase, peak,
and then decrease as traffic density continually increases. We now explain this trend with
the help of Fig. 1.22: In sparse traffic, vehicles rarely have conflicts, and hence safety
violations rarely occur [1©]. As traffic density increases, the chances for vehicles to have
conflicts increase, and hence the safety violation rate also increases [2©] until reaching
its peak [3©]. When traffic becomes very dense, e.g., in a traffic jam, vehicles drive at
low speeds and lane change events become rare. As a result, the rate of safety violations
becomes low again [4©]. This trend of safety violation rates produced by our simulator
matches the statistical analysis results of [98] regarding the relationship between car crash
rates and traffic densities in real-world traffic data.

Rate

Traffic density1©

2©

3©

4©

Figure 1.22: Trend of safety violation rate.

In addition to using the safety violation rate as the metric to assess the safety and ro-
bustness of the Stackelberg game-based policy and the decision tree-based policy, we also
use the test vehicle’s average driving speed to assess and compare their liveness. The test
vehicle’s average driving speeds versus varied traffic densities are shown in Fig. 1.23(a).
It can be seen that the decision tree-based policy leads to higher average speeds than the
Stackelberg game-based policy in all traffic densities.

Fig. 1.23(b) compares the computational costs of the two AV policies. The numbers
in Fig. 1.23(b) indicate the average CPU times for running a tmax = 200 sec-long simula-

52

0 10 20 30

Number of cars

20

22

24

26

28

A
v
e

ra
g

e
 s

p
e

e
d

 [
m

/s
]

Stackelberg

Decision Tree

0 10 20 30

Number of cars

0

0.1

0.2

0.3

0.4

0.5

T
im

e
 [

s
]

Stackelberg

Decision Tree

(a) (b)

Figure 1.23: (a) Average driving speeds and (b) computational costs of the Stackelberg
game-based policy and the decision tree-based policy.

tion episode. We can see that the computational cost of the decision tree-based policy is
higher than that of the Stackelberg game-based policy. Combining the results in Figs. 1.20,
1.23(a), and 1.23(b), we can conclude that our implementation of the decision tree-based
policy has better safety and liveness properties, while is also more computationally de-
manding, than our implementation of the Stackelberg game-based policy.

Our simulator is written in Java and run on a desktop with an Intel Core i7-4790 3.60
GHz processor and 16.0 GB RAM using the Eclipse Neon platform. The CPU times shown
in Fig. 1.23(b) are calculated using the Java System.nanoT ime() function. We can see
that our simulator runs very fast – simulating up to 30 vehicles for 200 seconds of simulated
time takes only tens to hundreds of milliseconds of real time. Note that all vehicles in
our simulator, including the test vehicle and the other vehicles in the environment, are
interactive decision makers.

Our simulator can also be used for optimizing the parameters of an autonomous driv-
ing algorithm. We now illustrate this by taking the above decision tree-based AV policy
as an example and optimizing two of its parameters, including wl1

wl2
, which represents the

weighting between the two decision tree layers, and xB, which represents a threshold for
triggering the policy.

The optimization of an autonomous driving algorithm is necessarily a multi-objective
optimization problem, because an AV must operate not only safely not also effectively,
i.e., ensuring both safety and liveness. We continue to use the safety violation rate in our
simulator, c̄, as the metric to measure the safety of an autonomous driving algorithm – a

53

smaller c̄ value represents a higher level of safety, and use the average driving speed, v̄x, to
measure the liveness – a larger v̄x value represents a higher level of liveness. To account
for both objectives, we consider the following linear scalarization of them,

Robj = p1(−c̄) + p2
v̄x − vx,min

vx,max − vx,min

, (1.51)

where p1, p2 ≥ 0 are weights for the two objectives. This linear scalarization is designed in
such a way that its terms are all dimensionless.

Fig. 1.24 shows the surfaces of (1.51) corresponding to different choices of the weights
p1 and p2. These surfaces can be used to pick the best pair of (wl1

wl2
, xB) for a user-specified

weighting between safety and liveness. For instance, for maximum safety (p1 = 1, p2 = 0),
one can read from Fig. 1.24(a) that the best pair is (wl1

wl2
, xB) = (2.5, 23).

-0.4

23

-0.35

22

-0.3

21

-0.25

1
1.520

2
2.519 3

0.5

23

0.6

22

0.7

21

0.8

1
1.520

2
2.519 3

-0.05

23

-0.04

-0.03

22

-0.02

21
1

-0.01

1.520 2
2.519 3

0.04

23

0.06

22

0.08

21

0.1

1
1.520

2
2.519 3

(a) (b)

(c) (d)

wl1
wl2

xB
wl1
wl2

xB

wl1
wl2

xB
wl1
wl2

xB

Robj Robj

Robj Robj

Figure 1.24: Objective function surfaces corresponding to different choices of the weights
p1 and p2. (a) p1 = 1, p2 = 0, (b) p1 = 0, p2 = 1, (c) p1 = 0.7, p2 = 0.3, and (d)
p1 = 0.6, p2 = 0.4.

54

1.4.2 Integration with the TORCS simulator and calibration

Our game-theoretic driver models can also be integrated with existing simulators to en-
hance their representations of driver/vehicle interactive behaviors while taking advantage
of their higher-fidelity representations of vehicle dynamics, road and weather conditions,
etc., as well as their better graphics. In this section, we describe the integration of our driver
models with The Open Racing Car Simulator (TORCS).

TORCS is an open-source car racing simulator designed to enable pre-programmed AI
drivers to race against one another and/or a “human driver” (a vehicle controlled by a hu-
man user using a keyboard or a steering wheel) [99]. TORCS has a high-fidelity vehicle
model, covering 1) rigid-body dynamics related to the mass and rotational inertia of the ve-
hicle, 2) chassis dynamics, including the dynamics of suspensions, links and differentials,
3) tire dynamics for various ground types, and 4) aerodynamics, including slip-streaming
and ground effects. We use TORCS as an example to demonstrate the integration of our
driver models with existing simulators. Note that our driver models can also be integrated
with other simulators, such as CARLA and LGSVL, and the integration procedure will be
similar.

For every vehicle in a TORCS simulation, we can read from TORCS application pro-
gramming interface (API) the following signals: its longitudinal distance from the start
line, its lateral position with respect to the center of the track, and the driving speeds of it
and all other vehicles in its vicinity. These signals are used to calculate the quantities in
Section 1.2.3, which then become the input to our driver model. The effectors of TORCS
that are related to the control of a vehicle are listed in Table 1.3.

Table 1.3: Vehicle control-related effectors of TORCS.

Effectors Description

Accelerator 0 = none, 1 = full throttle
Brake 0 = none, 1 = full brake
Steering −1 = full right, 1 = full left

The output from our driver model is one of the actions in Section 1.2.2. This action
defines a desired state of the vehicle, including a desired speed and a desired lane. We
design controls for the effectors in Table 1.3 to generate smooth maneuvers for tracking
the desired state. In particular, we use a proportional-integral-derivative (PID) controller to
control the vehicle’s longitudinal speed and use a proportional-derivative (PD) controller
to control the vehicle’s lateral motion for lane keeping and lane change. The designed
controllers are introduced below.

55

We note that TORCS uses an update frequency of 50 Hz. This is much higher than our
driver model’s default decision-making frequency, which is 1

∆t
= 1 Hz. Thus, to simplify

expressions, we assume TORCS simulations are run in continuous time. In the following
two subsections, we use k ∈ N0 to denote the discrete/sample time instants where our
driver model produces new action commands and use t ∈ R to denote continuous time
instants.

1.4.2.1 Longitudinal speed control

At each sample time instant k, the action command generated from our driver model defines
a desired/reference longitudinal speed, vref

x [k+1], through the equation vref
x [k+1] = vx[k]+

ax[k]∆t. We use vx(t), t ∈ [k∆t, (k+ 1)∆t), to denote the actual longitudinal speed of the
vehicle and define the normalized error between the reference speed and the actual speed
as

ev(t) =
vref
x [k + 1]− vx(t)
vref
x [k + 1]

. (1.52)

We normalize the error so that ev(t) is a dimensionless quantity. Then, the longitudinal
control signal is calculated as

uv(t) = sat[−1,1]

(
kvp e

v(t) + kvi

∫ t

k∆t

ev(τ) dτ + kvd
dev

dt
(t)

)
. (1.53)

If uv(t) ∈ [0, 1], we set the effector “accelerator” to the value of uv(t) and set “brake” to
0; if uv(t) ∈ [−1, 0), we set “brake” to the value of −uv(t) and set “accelerator” to 0. The
PID gains, kvp , kvi and kvd , are calibrated to achieve satisfactory speed tracking performance.

1.4.2.2 Lateral motion control

At each sample time instant k, the action command generated from our driver model defines
a target lane, ltarget ∈ {“right”, “middle”, “left”}. The lateral motion controller has two
tasks, including 1) lane keeping, if the target lane is the same as the current lane, and 2)
lane change, if the target lane is different from the current lane.

We consider an angular error, eφ(t), which is defined as the angle between the half-
line extending from the vehicle’s current position (x(t), y(t)) to a virtual reference point
(xref(t), yref(t)) and the direction of the vehicle’s current velocity (vx(t), vy(t)) (see Fig. 1.25),
i.e.,

eφ(t) = arctan
yref(t)− y(t)

xref(t)− x(t)
− arctan

vy(t)

vx(t)
, (1.54)

56

where the virtual reference point (xref(t), yref(t)) is determined according to

xref(t) =

x(t) + lcar + 0.01T vx(t), if lane keeping,

x(t) + 1.2 lcar + 0.1T vx(t), if lane change,

yref(t) = y(k∆t) +
t− k∆t

T
(ytar[k + 1]− y(k∆t)) , (1.55)

for t ∈ [k∆t, k∆t + T), where lcar denotes the length of the vehicle, T is a time constant
approximately equal to the duration of a lane change, and ytar[k + 1] represents the target
lateral position, which is set as the center of the target lane.

x

y

ytar[k + 1]

(x(k∆t), y(k∆t))

(x(t), y(t))

(xref(t), yref(t))

eφ(t)
v(t)

ytar[k + 1]− y(k∆t)

Figure 1.25: Schematics of the lateral motion control.

Note that t = k∆t is the continuous time instant that corresponds to the sample time
instant k, i.e., it represents the time instant when the action decision is made. For instance,
in the case of lane change, t = k∆t represents the starting time of lane change. The above
yref(t) is designed in such a way that yref(k∆t) = y(k∆t) and yref(k∆t+ T) = yref[k + 1],
i.e., the reference point converges from the vehicle’s current lateral position at the starting
time of lane change to the target lateral position after a duration of T . This can promote
smooth lane change maneuvers.

Then, the lateral control signal is calculated as

uy(t) = sat[−1,1]

(
kyp e

φ(t) + kyd
deφ

dt
(t)

)
. (1.56)

We set the effector “steering” to the value of uy(t). The PD gains, kyp and kyd , are calibrated
to achieve satisfactory lane keeping and lane change performance.

Fig. 1.26 shows the controlled response of a TORCS vehicle during a lane change. The

57

blue solid curve represents the vehicle’s (x(t), y(t))-trajectory during the lane change. The
two red dashed lines represent the center of the right lane and the center of the middle lane,
respectively. We can see that the vehicle moves from the right lane into the middle lane
stably and smoothly. This validates the effectiveness of our designed longitudinal speed
and lateral motion controllers.

1110 1130 1150 1170

2

4

6

x[m]

y[m]

Figure 1.26: Controlled lane change response of a TORCS vehicle.

Fig. 1.27 shows a TORCS simulation after our integration, where the yellow vehicle
in the middle is the test vehicle and all blue vehicles are controlled by our level-k driver
models + the tracking controllers introduced above.

1.4.3 Intersection simulator and proof of concept of an adaptive level-
k AV policy

In this section, we use our intersection model introduced in Section 1.3.1 and our leader-
follower game based driver model introduced in Section 1.3.4 to form an intersection sim-
ulator and use it for proof of concept of an AV policy based on level-k driver models and
an adaptive strategy to online model identification result, called an adaptive level-k policy.
The GUI of the simulator is the same as those in Figs. 1.12-1.16, where any vehicle(s) in
the simulation can now be either a test vehicle (a vehicle controlled by an autonomous driv-
ing algorithm under test) or an environmental vehicle (a vehicle controlled by our leader-
follower game based driver model).

Firstly, Fig. 1.28 illustrates the computational cost of this intersection simulator. The
numbers shown in Fig. 1.28 indicate the average and the worst-case computation times per
vehicle per step (in [s] of real time), which are the average and the worst-case CPU times
observed in our simulations for one environmental vehicle to confirm its action decision

58

(a) (b)

(c) (d)

Figure 1.27: Snapshots of a TORCS simulation with our level-k driver models integrated.

for one step (including the time to solve for the initial acceleration decision according to
(1.43) with a tree search-based method and the time to compute the modified acceleration
decision according to Algorithm 4 when a deadlock occurs). Our simulation codes are
written in MATLAB and run on a desktop with an Intel Core i7-4790 3.60 GHz processor
and 16.0 GB RAM using the MATLAB R2019a platform. The CPU times in Fig. 1.28 are
calculated using the MATLAB tic-toc command. A key observation is that the computation
time increases only linearly as the number of vehicles increases, which is attributed to the
pairwise decoupling of vehicle interactions via the pairwise leader-follower relationships
in our model. The computational complexity of many conventional game-theoretic mod-
els, including Nash equilibrium-based models and standard Stackelberg equilibrium-based
models, increases exponentially as the number of interacting agents increases, which makes
them infeasible for modeling traffic scenarios involving multiple interacting vehicles. In
contrast, the linear time complexity of our model ensures its feasibility for modeling com-
plex intersection scenarios (for instance, Fig. 1.16 illustrates three simulated scenarios with
10 interacting vehicles).

The adaptive level-k policy was originally proposed in [48, 49], which could only han-

59

of arms

C
PU

tim
e

[s
]

3 4 5

Figure 1.28: Average (dark-colored bars) and worst-case (light-colored bars) computation
times per vehicle per step.

dle the interaction between the ego vehicle and one other vehicle. A generalized version
that can handle the interactions between the ego vehicle and multiple other vehicles is pre-
sented in Appendix D and is tested with our simulator here.

We consider an intersection scenario involving three vehicles as shown in Fig. 1.29(a),
where the blue and red vehicles are making left turns, and the green vehicle is going
straight. At first, we let the blue vehicle be controlled by the adaptive level-k policy and let
the red and green vehicles be controlled by our leader-follower game based driver model.
Fig. 1.29 shows snapshots of the simulation at a series of time steps, and Fig. 1.30 shows
the model identification history. The blue/red/green curves in Fig. 1.30 represent the esti-
mated degrees of similarity between the observed behavioral pattern of the blue/red/green
vehicle and the behavioral patterns of level-k driver models, with k = 0, 1, 2, which are
interpreted as the confidences that the blue/red/green vehicle’s driver/driving policy can be
modeled as a level-k driver and hence its future behavior can be correctly predicted using
a level-k model.

From Fig. 1.29 we can see that the blue vehicle controlled by the adaptive level-k policy
successfully resolves its conflicts with the red and green vehicles and safely passes through
the intersection. In particular, it yields to the green vehicle and proceeds before the red
vehicle. As a matter of fact, in the scenario of Fig. 1.29(a), the green vehicle should have
the right of way. According to our leader-follower role assignment logic in Algorithm 3
and the decision rule (1.43), the green vehicle will proceeds ahead. In this case, the blue

60

-20 -10 0 10 20
-20

-10

0

10

20
v = 4 m/s

v = 4 m/s

v = 4 m/s

-20 -10 0 10 20
-20

-10

0

10

20
v = 1 m/s

v = 0 m/s

v = 5 m/s

-20 -10 0 10 20
-20

-10

0

10

20
v = 4 m/s

v = 0 m/s

v = 5 m/s

-20 -10 0 10 20
-20

-10

0

10

20
∆

v = 5 m/s

∆

(a) (b)

(c) (d)

Figure 1.29: Simulation of an adaptive level-k vehicle (blue car) versus two leader-follower
drivers (red and green cars). Figures (a-d) show snapshots of the simulation at a series of
time steps.

vehicle identifies the green vehicle as 50% chance of being a level-0 vehicle and 50%
chance of being a level-2 vehicle (shown in Fig. 1.30). Because both level-0 and level-2
vehicles represent aggressive vehicles, the blue vehicle decides to yield to the green vehicle.
Meanwhile, it identifies the red vehicle as most probably being a level-1, conservative
vehicle (see Fig. 1.30). Therefore, it decides to proceed before the red vehicle.

We then consider the same scenario but let the red and green vehicles be controlled
by the adaptive level-k policy and let the blue vehicle be controlled by our leader-follower
game based driver model. Fig. 1.31 shows snapshots of the simulation and Fig. 1.32 shows
the model identification history. In this case, the green vehicle passes through the intersec-
tion first again, the red vehicle follows it and passes through the intersection second, and
the blue vehicle yields to both of them. Comparing the results of Fig. 1.29 and Fig. 1.31 we
can see that although the different combinations of policies (adaptive level-k versus leader-
follower) lead to different passing orders, the adaptive level-k policy successfully resolves
the conflicts between vehicles and navigates the test vehicle(s) to safely pass through the
intersection in both cases. This proves the feasibility of concept of this adaptive level-k
policy and also motivates us to extend and formalize this concept into an interaction-aware
AV control framework in Chapter 2.

61

0 4 8 12 15
0

0.25

0.5

0.75

1

0 4 8 12 15
0

0.25

0.5

0.75

1

0 4 8 12 15
0

0.25

0.5

0.75

1

Level-0

Level-1

Level-2

Time [s]

Figure 1.30: Model identification history corresponding to the simulation of Fig. 1.29.

-20 -10 0 10 20
-20

-10

0

10

20
v = 4 m/s

v = 4 m/s

v = 4 m/s

-20 -10 0 10 20
-20

-10

0

10

20
v = 0 m/s

v = 3 m/s

v = 5 m/s

-20 -10 0 10 20
-20

-10

0

10

20
v = 0 m/s

v = 2 m/s

v = 5 m/s

-20 -10 0 10 20
-20

-10

0

10

20
v = 4 m/s

v = 5 m/s

∆

(a) (b)

(c) (d)

Figure 1.31: Simulation of two adaptive level-k vehicles (red and green cars) versus one
leader-follower driver (blue car). Figures (a-d) show snapshots of the simulation at a series
of time steps.

62

0 4 8 12 16 20
0

0.25

0.5

0.75

1

0 4 8 12 16 20
0

0.25

0.5

0.75

1

0 4 8 12 16 20
0

0.25

0.5

0.75

1

Level-0

Level-1

Level-2

Time [s]

Figure 1.32: Model identification history corresponding to the simulation of Fig. 1.31.

1.5 Summary and discussion

In this chapter, we introduced two novel game-theoretic approaches to modeling driver
interactions in traffic. Both approaches lead to interpretable driver interactive behavior
models, and they both scale well in terms of being able to model medium-scale traffic
scenarios involving tens of interacting vehicles at a reasonable computational cost.

In particular, the first level-k reasoning based approach focuses on the modeling of
heterogeneous driving styles of real-world drivers and we have used it to model the driver
interactions on highways where a driver’s behavior is deeply influenced by her driving
style; and the second leader-follower game based approach focuses on the modeling of
driver intents and their resulting behaviors under common right-of-way traffic rules and we
have used it to model the driver interactions at intersections where traffic rules and etiquette
are observed to take a dominant role in determining drivers’ behaviors. In this respect, these
two approaches complement each other and can be mixed in a traffic model (similarly to
what was done in Section 1.4.3).

The models produced by these approaches can have multiple applications. In Sec-
tion 1.4, we introduced their application to simulation-based testing and V&V of AV con-
trol systems. This application addresses the urgent challenge of high-confidence validation
of AV control systems and can support the reduction of AV time-to-market.

63

CHAPTER 2

Interaction-Aware Autonomous Vehicle Control

2.1 Background and introduction

In the near to medium term, autonomous vehicles (AVs) will operate on shared roads with
human-driven vehicles [13]. One of the biggest challenges yet to be solved is behavior
planning and control1 for AVs in the presence of complex and uncertain interactions with
other road users (such as human-driven vehicles) [3].

Conventional robust control approaches, including reachability-based techniques, can
provide safe while conservative solutions through set-based modeling of all possible tra-
jectories of other road users and enforcing the ego vehicle’s behavior to respect them all
[100, 101, 102, 103]. However, the conservativeness of these approaches may lead to sub-
optimal AV behavior or even to standstill, especially in dense traffic and/or scenarios where
cooperation among road users is needed (such as at a busy highway on-ramp or at a busy in-
tersection) [104]. This motivates the developments of approaches for AVs to predicting the
actions/reactions of surrounding road users and hence enabling less conservative control
solutions, which is referred to as interaction-aware control.

One way to develop interaction-aware control policies is through reinforcement learn-
ing (RL), where the learning agent is put in an environment that has a reasonable repre-
sentation of road user interactions and is trained by an RL algorithm. The obtained control
policy is interaction-aware because it is an optimal policy for this interactive environment.
Approaches along this line have been proposed in [105, 106, 107, 108, 109]. Drawbacks of
these RL-based approaches include the lack of interpretability and, as a consequence, the
lack of safety guarantee of the obtained AV control policies.

Another way is through explicitly incorporating a model (or a set of models) of road
user interactions in the control algorithm, which typically leads to more interpretable con-
trol solutions [51, 52, 53, 54, 110, 111]. To handle uncertainties in road user interactions

1Collectively referred to as control in this chapter.

64

due to, e.g., varied driver styles (such as varied degrees of cooperativeness) and/or driv-
ing intents (such as to proceed versus to yield), the partially observable Markov decision
process (POMDP) framework is a popular choice, where the uncertainties are modeled
as latent variables and estimated based on observed trajectories [112, 113, 114, 115]. In
these previous POMDP-based approaches, AV safety is promoted through penalty terms
in the reward/cost function for vehicle collisions. This strategy also does not provide a
formal safety guarantee (in terms of a percentage chance of safety/collision). Further-
more, POMDPs are in general difficult to solve exactly [116]. It can take several minutes
to hours to solve a medium-sized POMDP problem2 using conventional POMDP solvers
based on point-based dynamic programming [117, 118]. In order to simplify computations
and hence enable real-time decision making, [113] proposes a multi-policy strategy, where
at every time step the AV evaluates and selects the best policy to execute from a finite set of
pre-constructed policies that encode common closed-loop driving behaviors (such as lane
keeping and lane change). The cost of such a multi-policy strategy for POMDPs is the loss
of optimality.

In this chapter, we introduce a novel interaction-aware AV control approach. This ap-
proach has the following features:

1. This approach explicitly models the interaction between the ego vehicle and the traf-
fic environment (which represents the unity of all other road users) and leads to in-
terpretable AV control solutions.

2. This approach handles interaction uncertainties due to varied driver styles and intents
by formulating the AV control problem into a POMDP problem with the uncertainties
treated as latent states and estimated based on Bayesian inference.

3. This approach uses state constraints to represent critical safety requirements (such as
collision avoidance) and leads to an explicit probabilistic safety guarantee (a guaran-
teed percentage chance of safety).

4. The formulated POMDP problem with state constraints (C-POMDP) is solved with
an algorithm based on model predictive control using online optimization, called
POMDP-MPC, which leads to both theoretically elegant and computationally feasi-
ble AV control solutions.

The developments of this chapter and related materials have been published in the jour-
nal article [119] and conference papers [120, 121, 122].

2Referring to problems involving a few hundreds of states.

65

2.2 Interaction-aware autonomous vehicle control prob-
lem

For a traffic scenario σ ∈ Σ, we represent the sequential decision-making problem for the
ego vehicle as the following 6-tuple,

〈
Λσ,Sσ, Āσ, T̄ σ, Rσ,Sσsafe

〉
, (2.1)

where Λσ = {1, 2} represents the two decision-makers: 1 corresponds to the ego vehicle
and 2 corresponds to the traffic environment; Sσ represents the space for traffic state s;
Āσ = Aσ1 ×Āσ2 withAσ1 representing the action space of the ego vehicle and Āσ2 represent-
ing the action space of the environment; T̄ σ is a stochastic map on Sσ × Āσ × Sσ repre-
senting the transition of the traffic state s→ s+ as a result of an action pair (a1, ā2) ∈ Āσ;
Rσ = Rσ(s, a1, ā2, s

+) is a reward function representing the decision objective(s) of the
ego vehicle; and Sσsafe ⊂ Sσ represents a set of safe states for the ego vehicle.

In (2.1), we model the traffic environment as a decision-maker 2. When there is a single
other vehicle in the environment, then 2 represents this other vehicle, Āσ2 = Aσ2 represents
its action space, and ā2 = a2 represents its action. When there are multiple other vehicles
2, 3, . . . , nv in the environment, then 2 represents the set of all of these other vehicles,
Āσ2 = Aσ2 × · · · × Aσnv

represents the the Cartesian product of their action spaces Aσi , i =

2, . . . , nv, and ā2 = (a2, . . . , anv) represents the collection of their actions. We treat the set
of all other vehicles as a single entity/decision-maker because this can significantly simplify
the following exposition, while note that the approach can treat any number of vehicles nv.
Also, to further simplify expressions, we drop the superscript σ from all variables for the
rest of this chapter, e.g., (2.1) reduces to

〈
Λ,S, Ā, T̄ , R,Ssafe

〉
, (2.2)

with Ā = A1 × Ā2.
We consider a control strategy for the ego vehicle that is based on the idea of receding-

horizon optimal control or model predictive control (MPC) as follows: At each time step t,
the ego vehicle solves the following problem,

a∗1,t =
{
a∗1,0|t, . . . , a

∗
1,N−1|t

}
∈ arg max

a1,τ |t∈A1

E

{
N−1∑
τ=0

λτR
(
sτ |t, a1,τ |t, ā2,τ |t, sτ+1|t

)}
,

subject to P
{
sτ+1|t ∈ Ssafe, ∀τ = 0, . . . , N − 1

}
≥ 1− ε, (2.3)

66

where a variable with a subscript τ |t indicates a predicted value of this variable at time t+τ
with the prediction made at the current time t, λ ∈ [0, 1] is a discount factor, and ε ∈ [0, 1]

is a risk parameter defining the required confidence level of satisfaction of the constraints
sτ+1|t ∈ Ssafe over the planning horizon τ = 0, . . . , N − 1. Note that in (2.3) we maximize
the expectation of the cumulative reward

∑N−1
τ=0 λ

τR
(
sτ |t, a1,τ |t, ā2,τ |t, sτ+1|t

)
and enforce

the constraints sτ+1|t ∈ Ssafe over the planning horizon probabilistically because the state

transition, s
(a1,ā2)−−−−→ s+, is assumed to be stochastic (in the most general case). After the

optimal action sequence a∗1,t = {a∗1,0|t, . . . , a∗1,N−1|t} has been determined, the ego vehicle
applies the first element for one time step to update its state, i.e., a1,t = a∗1,0|t. Then, at the
next time step t+ 1, the ego vehicle repeats the above process.

It is clear that the problem (2.3) cannot be solved yet, because the variables ā2,0|t, . . . ,
ā2,N−1|t are neither controlled nor known. If we assume that a model of the environment,
π̄2, is available, which is a stochastic map from S to Ā2 and defines the probability of each
action ā2 ∈ Ā2 to be taken by the environment at each traffic state s ∈ S according to

P(ā2|s) = π̄2(s, ā2), (2.4)

then (2.3) can be solved, where the unknowns ā2,0|t, . . . , ā2,N−1|t are now treated as stochas-
tic disturbances following the state-dependent distribution,

ā2,τ |t ∼ π̄2(sτ |t, ·). (2.5)

We note that the decision process (2.3) is interaction aware due to the following two
reasons: Firstly, we have modeled the distribution of environment action ā2 over the plan-
ning horizon to be state-dependent according to (2.5). This means when the ego vehicle
predicts its reward and safety for different action sequences over the planning horizon,
the environment (which represents the other vehicles) will respond differently and corre-
spondingly to the ego vehicle’s action sequence. Therefore, the ego vehicle is aware of its
interaction with the environment. Secondly, we will exploit game-theoretic driver models,
such as the ones developed in Chapter 1, to construct the model π̄2 of the environment. In
this case, π̄2 is a game-theoretic model, which accounts for the interaction between the ego
vehicle and the environment.

For a traffic scenario with nv vehicles (including the ego vehicle 1 and multiple other
vehicles 2, . . . , nv), such a model of the environment, π̄2, can be constructed based on
individual driver models. For instance, suppose we have determined a driver model in the

67

form of (1.1) for each of the other vehicles, then π̄2 can be constructed as

π̄2(s, ā2) = P(ā2|s) = P(a2, a3, . . . , anv|s)

=

nv∏
i=2

P(ai|s) =

nv∏
i=2

∑
oi∈Ω

P(ai, oi|s) =

nv∏
i=2

∑
oi∈Ω

P(oi|s)P(ai|oi)

=

nv∏
i=2

∑
oi∈Ω

Oi(s, oi)πi(oi, ai), (2.6)

where we have assumed that given the traffic state s, each driver makes decisions individ-
ually and independently.

However, in real traffic, different human drivers may have different driving styles and/or
intents. It is reasonable to construct a set of driver models, instead of a single one, to
account for these different driving styles and intents. For instance, in Chapter 1 we use
level-k driver models with different k = 0, 1, . . . to represent different driving styles. This
will lead to a set of models of the environment, Π2 = {π̄1

2, π̄
2
2, . . . , π̄

nπ
2 }, according to

(2.6). Each model π̄i2 leads to a different way for prediction of the environment actions
ā2,0|t, . . . , ā2,N−1|t following (2.5) and hence leads to a possibly different optimal action
sequence a∗1,t for the ego vehicle through (2.3). In the following section, we introduce a
method to incorporate the predictions of different environment models into the decision-
making process (2.3).

2.3 Interaction-aware AV control as a partially observable
decision problem

We assume that there is a model π̂2 within the model set Π2 = {π̄1
2, π̄

2
2, . . . , π̄

nπ
2 } that

describes the actual way in which the environment takes actions ā2 given a traffic state
s. We treat π̂2 as a latent state of the traffic system and consider the control problem for
the ego vehicle as a decision-making problem under partial observability. Specifically, we
define an augmented state of the traffic system as

s̄ = (s, π̄2) ∈ S × Π2, (2.7)

where only the physical state s is observable and the latent state π̄2 is unobservable.
We construct the transition model of the augmented state, T , based on the transition

map of the physical state, T̄ : S × (A1 × Ā2) × S → [0, 1], and each of the environment

68

models, π̄2 ∈ Π2, as follows,

T (s̄, a1, s̄
+) = P(s̄+|s̄, a1) = P

(
(s+, π̄+

2)|(s, π̄2), a1

)
= P

(
s+|s, π̄2, a1

)
Iπ̄2(π̄+

2) =
∑
ā2∈Ā2

P
(
s+, ā2|s, π̄2, a1

)
Iπ̄2(π̄+

2)

=
∑
ā2∈Ā2

P
(
s+|s, π̄2, a1, ā2

)
P (ā2|s, π̄2, a1) Iπ̄2(π̄+

2)

=
∑
ā2∈Ā2

P
(
s+|s, (a1, ā2)

)
P (ā2|s, π̄2) Iπ̄2(π̄+

2)

=
∑
ā2∈Ā2

T̄
(
s, (a1, ā2), s+

)
π̄2 (s, ā2) Iπ̄2(π̄+

2), (2.8)

where Iπ̄2(π̄+
2) is an indicator function, taking 1 if π̄+

2 = π̄2 and taking 0 if π̄+
2 6= π̄2. In

deriving (2.8), we have made the following three assumptions: 1) The other vehicles do not
change their driving styles/intents during their interaction with the ego vehicle. This implies
π̄+

2 = π̄2 and leads to the second line from the first line. 2) The transition probabilities of
s → s+ are determined by which actions (a1, ā2) are taken by the ego vehicle and the
environment and does not depend on any other variables. 3) The probability of each action
ā2 to be taken by the environment at a given traffic state s is determined by the environment
model π̄2 and does not depend on any other variables. The combination of 2) and 3) leads
to the fourth line from the third line. The above model can be extended to handle the case
where which model in Π2 most accurately describes the actual behavioral pattern of the
environment may change over time. Such a model change may be due to, e.g., a driver’s
change of intents. This extension can be achieved by considering probabilistic transitions of
the model dependent on the physical state, i.e., P(π̄+

2 |π̄2, s), and adjusting (2.8) accordingly.
Also, we define the following observation model O : (S × Π2)× S → [0, 1],

O(s̄, s′) = P (s′|s̄) = P (s′|(s, π̄2)) = Is(s′), (2.9)

where Is(s′) is an indicator function, taking 1 if s′ = s and taking 0 if s′ 6= s. This observa-
tion model corresponds to the assumption that the physical state s can be fully and perfectly
measured by the ego vehicle. The case where the ego vehicle can only partially observe the
physical state s due to, e.g., limited perception range, line of sight obstruction, and/or sen-
sor noise, can be handled by making corresponding adjustments to the observation model
(2.9).

We now resemble the sequential decision-making problem for the ego vehicle as the

69

following 6-tuple, 〈
S̄,A1, T,Ω, O,R, S̄safe

〉
, (2.10)

where S̄ = S × Π2 is the space for the augmented state of the traffic system s̄ = (s, π̄2);
A1 is the action space; Ω = S is the observation space, which is equal to the space for the
physical traffic state s; T is the state transition map defined in (2.8); O is the observation
map defined in (2.9); R is the reward function defined as in (2.2); and S̄safe = Ssafe × Π2 is
the safe set for the augmented state s̄. This problem is referred to as a partially observable
Markov decision process problem with state constraints (C-POMDP). In the next section,
we first present a solution approach to general C-POMDP problems and then introduce the
adaptation of this general approach to our specific autonomous vehicle control problem
(2.10).

2.4 An MPC-based solution approach to C-POMDP prob-
lems (POMDP-MPC)

2.4.1 An approach to general C-POMDP problems

In this section, we consider C-POMDP problems represented as the following 6-tuple,

〈S,A, T,Ω, O,R,Ssafe〉 . (2.11)

Throughout this section, we use st ∈ S to denote the state at the time step t ∈ N0, at ∈ A
to denote the action taken at t, and ot ∈ Ω to denote the observation received at t. The maps
T : S ×A×S → [0, 1] and O : S ×Ω→ [0, 1] define the state transition probabilities and
observation probabilities according to

P(st+1|st, at) = T (st, at, st+1),

P(ot|st) = O(st, ot), (2.12)

for all t ∈ N0. In particular, we assume that the probabilities of st+1 conditioned on a
given pair of (st, at) are independent of any other variables and that the probabilities of ot
conditioned on a given st are independent of any other variables. They are referred to as
the Markov property.

At each time step t ∈ N0, we collect the information of all received observations oτ for
τ = 0, 1, . . . , t and all previously applied actions aτ for τ = 0, . . . , t− 1 into the following

70

data vector,
ξt = {o0, . . . , ot, a0, . . . , at−1} . (2.13)

The basic idea of our approach to (2.11) is based on repeatedly solving the following
problem at every time step t:

a∗t =
{
a∗0|t, . . . , a

∗
N−1|t

}
∈ arg max

aτ |t∈A
E

{
N−1∑
τ=0

λτR
(
sτ |t, aτ |t, sτ+1|t

) ∣∣∣∣ξt
}
, (2.14a)

subject to P

{
N−1∧
τ=0

(
sτ+1|t ∈ Ssafe

) ∣∣∣∣ξt
}
≥ 1− ε, (2.14b)

where ∧ designates the “and” operator, and the risk parameter ε ∈ [0, 1] determines the
required confidence level of constraint satisfaction over the planning horizon. Note that we
allow ε to take 0, which represents a robust constraint satisfaction requirement for safety-
critical cases. Note also that the expectation in (2.14) and the probability in (2.14a) are
conditioned on the current data vector ξt to represent the “best” (i.e., posterior) estimates
of reward and constraint satisfaction after taking into account all available information.

There are two difficulties associated with the above problem (2.14): Firstly, one needs
to answer how to evaluate the objective function (2.14a) and the probabilistic constraint
(2.14b) for any solution candidate at =

{
a0|t, . . . , aN−1|t

}
. Secondly, one needs to answer

how to evolve a solution candidate at according to objective function and constraint evalu-
ations to approach a feasible and optimal solution. Due to the discrete nature of the action
space A, (2.14) is a discrete optimization problem. Any exact solution approaches to dis-
crete optimization problems involve one-by-one evaluation and comparison of all solution
candidates, which has combinatorial worst-case complexity and hence does not scale well.
Therefore, in what follows we introduce an approximate solution approach to (2.14) that
relies on a continuous relaxation technique.

To begin with, we define the belief state at the time step t, bt, as the posterior probability
distribution of the state st conditioned on all available data, i.e.,

bt(s) = P(st = s|ξt). (2.15)

As time evolves from t to t+1, the belief state bt can be updated according to the following

71

recursive Bayesian estimation formula,

bt+1(s′) = P(st+1 = s′|ξt+1) = P(st+1 = s′|ξt, ot+1, at)

=
P(ot+1|st+1 = s′, ξt, at)P(st+1 = s′|ξt, at)

P(ot+1|ξt, at)

=
P(ot+1|st+1 = s′, ξt, at)

∑
s∈S (P(st+1 = s′|st = s, ξt, at)P(st = s|ξt, at))∑

s′′∈S (P(ot+1|st+1 = s′′, ξt, at)P(st+1 = s′′|ξt, at))

=
P(ot+1|st+1 = s′)

∑
s∈S (P(st+1 = s′|st = s, at)P(st = s|ξt))∑

s′′∈S
(
P(ot+1|st+1 = s′′)

∑
s∈S (P(st+1 = s′′|st = s, at)P(st = s|ξt))

)
=

O(s′, ot+1)
∑

s∈S (T (s, at, s
′)bt(s))∑

s′′∈S
(
O(s′′, ot+1)

∑
s∈S (T (s, at, s′′)bt(s))

) . (2.16)

The recursive update (2.16) starts with b0(s) = P(s0 = s|ξ0), which is computed based on
a prior distribution of the initial state s0, b−0 (s) = P(s0 = s), according to

b0(s′) = P(s0 = s′|o0) =
P(o0|s0 = s′)P(s0 = s′)∑
s∈S P(o0|s0 = s)P(s0 = s)

=
O(s′, o0)b−0 (s′)∑
s∈S O(s, o0)b−0 (s)

. (2.17)

Meanwhile, instead of considering deterministic actions at, we consider probabilistic
action policies, γt : A → [0, 1], such that at each time step t,

P(at = a) = γt(a). (2.18)

We assume that given an action policy γt, the probabilities of at are independent of any
other variables. This is a reasonable assumption, since at is a decision variable, i.e., one
can define the way in which at takes different values. Note also that after numbering
the elements of A as a1, a2, . . . , a|A|, the map γt can be expressed as an |A|-dimensional
probability vector,

γt =
[
γt
(
a1
)
· · · γt

(
a|A|
)]>

. (2.19)

Then, we transfer the original problem (2.14) into the following problem:

Γ∗t =
{
γ∗0|t, . . . , γ

∗
N−1|t

}
∈ arg max

γτ |t∈∆(A)

E

{
N−1∑
τ=0

λτR
(
sτ |t, aτ |t, sτ+1|t

) ∣∣∣∣ξt
}
, (2.20a)

subject to P

{
N−1∧
τ=0

(
sτ+1|t ∈ Ssafe

) ∣∣∣∣ξt
}
≥ 1− ε, (2.20b)

where ∆(A) =
{
γ ∈ [0, 1]|A| | γ>1|A| = 1

}
is the (|A| − 1)-dimensional probability sim-

plex [123].

72

We note that (2.20) can be viewed as a continuously relaxed version of the original
discrete optimization problem (2.14). Specifically, (2.14) is almost surely equivalent to
(2.20) with the additional requirement that the action policies γτ |t must be deterministic

policies, which correspond to zero-one probability vectors (2.19)3. Meanwhile, (2.20) is
“continuously relaxed” because γτ |t can take any probability vectors in (2.20). We now
discuss the approach to solving (2.20).

Firstly, given a predicted sequence of action policies {γ0|t, . . . , γN−1|t}, one can predict
the distributions of state over the planning horizon, bτ |t(s) = P(sτ |t = s|ξt) for τ =

1, . . . , N , using the following recursive formula,

bτ+1|t(s
′) = P(sτ+1|t = s′|ξt)

=
∑
s∈S

∑
a∈A

(
P(sτ+1|t = s′|sτ |t = s, aτ |t = a, ξt)P(aτ |t = a|sτ |t = s, ξt)P(sτ |t = s|ξt)

)
=
∑
s∈S

∑
a∈A

(
P(sτ+1|t = s′|sτ |t = s, aτ |t = a)P(aτ |t = a)P(sτ |t = s|ξt)

)
=
∑
s∈S

∑
a∈A

(
T (s, a, s′)γτ |t(a)bτ |t(s)

)
, (2.21)

with the initial condition b0|t = bt.
If we express the state distributions bτ |t as |S|-dimensional probability vectors,

bτ |t =
[
bτ |t
(
s1
)
· · · bτ |t

(
s|S|
)]>

, (2.22)

then (2.21) can be written in the following vector-matrix form,

bτ+1|t =
(
I|S| ⊗ (γτ |t)

>) diag
(
T
(
s1
)
, . . . ,T

(
s|S|
)) (

1|S| ⊗ bτ |t
)
, (2.23)

where I|S| denotes the |S|-by-|S| identity matrix, 1|S| denotes the |S|-dimensional vector
of all ones, ⊗ designates the Kronecker product operator, and

T
(
si
)

=


T (s1, a1, si) · · · T (s|S|, a1, si)

...
T (s1, a|A|, si) · · · T (s|S|, a|A|, si)

 . (2.24)

Then, for a given sequence of action policies {γ0|t, . . . , γN−1|t}, the objective function

3With precisely one element being 1 and all other elements being 0.

73

(2.20a) can be evaluated according to

E

{
N−1∑
τ=0

λτR
(
sτ |t, aτ |t, sτ+1|t

) ∣∣∣∣ξt
}

=
N−1∑
τ=0

λτE
{
R
(
sτ |t, aτ |t, sτ+1|t

) ∣∣ξt}
=

N−1∑
τ=0

λτ

[∑
s,s′∈S, a∈A

(
R (s, a, s′)P

{
sτ |t = s, aτ |t = a, sτ+1|t = s′

∣∣ξt})] , (2.25)

where

P
{
sτ |t = s, aτ |t = a, sτ+1|t = s′

∣∣ξt}
= P

{
sτ+1|t = s′

∣∣sτ |t = s, aτ |t = a, ξt
}
P
{
aτ |t = a

∣∣sτ |t = s, ξt
}
P
{
sτ |t = s

∣∣ξt}
= P

{
sτ+1|t = s′

∣∣sτ |t = s, aτ |t = a
}
P
{
aτ |t = a

}
P
{
sτ |t = s

∣∣ξt}
= T (s, a, s′)γτ |t(a)bτ |t(s). (2.26)

in which bτ |t, for τ = 0, . . . , N − 1, are recursively computed using (2.21).
The above expressions (2.25) and (2.26) immediately imply the following result:
Proposition 2.1: The objective function (2.20a) has the following two properties: (i) It

is a smooth (i.e., infinitely differentiable) function of the decision variables
{
γ0|t, . . . , γN−1|t

}
.

(ii) It depends on the data vector ξt only through the belief state bt.
Proof: The proof follows from (2.21), (2.25), and (2.26). �
The above property (ii) is called separable in some POMDP literature [124].
We now discuss the way to explicitly evaluate the constraint (2.20b) for any given se-

quence of action policies. For this, we consider the events Vτ |t for τ = 1, . . . , N , which are
defined as

Vτ |t =
τ∨

σ=1

(
sσ|t ∈ Scsafe

)
, (2.27)

where ∨ designates the “or” operator, and Scsafe denotes the complement of the safe set Ssafe,
i.e., Scsafe = S \ Ssafe. Similarly, we use V c

τ |t to denote the complement of Vτ |t, i.e.,

V c
τ |t =

τ∧
σ=1

(
sσ|t ∈ Ssafe

)
. (2.28)

Note that the constraint (2.20b) can be equivalently expressed as

P
(
VN |t

∣∣ξt) ≤ ε. (2.29)

Then, for a given sequence of action policies {γ0|t, . . . , γN−1|t}, one can evaluate (2.29)

74

using the following theorem:
Theorem 2.1: The probabilities P

(
Vτ |t
∣∣ξt), for τ = 1, . . . , N , can be recursively com-

puted as follows:

P
(
Vτ |t
∣∣ξt) = P

(
Vτ−1|t

∣∣ξt)+
∑
s′∈Scsafe

P
(
(sτ |t = s′) ∧ V c

τ−1|t
∣∣ξt) ,

P
(
(sτ |t = s′) ∧ V c

τ−1|t
∣∣ξt) =

∑
s∈S

(∑
a∈A

T (s, a, s′)γτ−1|t(a)

)
P
(
(sτ−1|t = s) ∧ V c

τ−1|t
∣∣ξt) ,

P
(
(sτ−1|t = s) ∧ V c

τ−1|t
∣∣ξt) = P

(
(sτ−1|t = s) ∧ V c

τ−2|t
∣∣ξt) ISsafe(s), (2.30)

with the initial conditions P(V0|t|ξt) = 0 and P((s0|t = s) ∧ V c
0|t|ξt) = P(s0|t = s|ξt) =

bt(s).
Proof: Firstly, we have

P
(
Vτ |t
∣∣ξt) = P

(
Vτ |t
∣∣Vτ−1|t, ξt

)︸ ︷︷ ︸
=1

P
(
Vτ−1|t

∣∣ξt)+ P
(
Vτ |t ∧ V c

τ−1|t
∣∣ξt)

= P
(
Vτ−1|t

∣∣ξt)+
∑
s′∈S

P
(
(sτ |t = s′) ∧ Vτ |t ∧ V c

τ−1|t
∣∣ξt) , (2.31)

where

P
(
(sτ |t = s′) ∧ Vτ |t ∧ V c

τ−1|t
∣∣ξt) =

0 if s′ ∈ Ssafe,

P
(
(sτ |t = s′) ∧ V c

τ−1|t

∣∣ξt) if s′ ∈ Scsafe.
(2.32)

Therefore, we obtain

P
(
Vτ |t
∣∣ξt) = P

(
Vτ−1|t

∣∣ξt)+
∑
s′∈Scsafe

P
(
(sτ |t = s′) ∧ V c

τ−1|t
∣∣ξt) . (2.33)

We also have

P
(
(sτ |t = s′) ∧ V c

τ−1|t
∣∣ξt) =

∑
s∈S

P
(
(sτ |t = s′) ∧ (sτ−1|t = s) ∧ V c

τ−1|t
∣∣ξt)

=
∑
s∈S

P
(
sτ |t = s′

∣∣sτ−1|t = s, V c
τ−1|t, ξt

)
P
(
(sτ−1|t = s) ∧ V c

τ−1|t
∣∣ξt) , (2.34)

75

where

P
(
sτ |t = s′

∣∣sτ−1|t = s, V c
τ−1|t, ξt

)
=
∑
a∈A

P
(
sτ |t = s′

∣∣sτ−1|t = s, aτ−1|t = a, V c
τ−1|t, ξt

)
P
(
aτ−1|t = a

∣∣sτ−1|t = s, V c
τ−1|t, ξt

)
=
∑
a∈A

P
(
sτ |t = s′

∣∣sτ−1|t = s, aτ−1|t = a
)
P
(
aτ−1|t = a

)
=
∑
a∈A

T (s, a, s′)γτ−1|t(a). (2.35)

Finally, we have

P
(
(sτ−1|t = s) ∧ V c

τ−1|t
∣∣ξt)

= P
(
(sτ−1|t = s) ∧ V c

τ−1|t ∧ Vτ−2|t
∣∣ξt)︸ ︷︷ ︸

=0

+P
(
(sτ−1|t = s) ∧ V c

τ−1|t ∧ V c
τ−2|t

∣∣ξt)

=

P
(
(sτ−1|t = s) ∧ V c

τ−2|t

∣∣ξt) if s ∈ Ssafe,

0 if s ∈ Scsafe,
(2.36)

which can be expressed as

P
(
(sτ−1|t = s) ∧ V c

τ−1|t
∣∣ξt) = P

(
(sτ−1|t = s) ∧ V c

τ−2|t
∣∣ξt) ISsafe(s). (2.37)

This completes the proof. �
The following Algorithm 5 represents an implementation of the recursive process (2.30)

for evaluating the constraint function P(VN |t|ξt).

Algorithm 5: Probabilistic Safety Constraint Evaluation
1 Initialize pv = 0 and bv

0|t = bt

2 for τ = 0 : N − 1 do
3 bv

τ+1|t =
(
I|S| ⊗ (γτ |t)

>) diag
(
T
(
s1
)
, . . . ,T

(
s|S|
)) (

1|S| ⊗ bv
τ |t
)

4 Update pv ← pv +
∑

s∈Scsafe
bv
τ+1|t(s)

5 Update bv
τ+1|t(s)← 0 for all s ∈ Scsafe

6 end
7 Output P(VN |t|ξt) = pv.

Theorem 2.1 also leads to the following result:
Proposition 2.2: The constraint function (2.29) has the following two properties: (i) It

is a multi-affine (hence, smooth) function of the decision variables
{
γ0|t, . . . , γN−1|t

}
, i.e.,

76

affine in γτ |t for each τ = 0, . . . , N − 1. (ii) It depends on the data vector ξt only through
the belief state bt, i.e., P(VN |t|ξt) = P(VN |t|bt).

Proof: We prove (i) by induction. Firstly, P(V0|t|ξt) = 0 and P((s0|t = s) ∧ V c
0|t|ξt) =

bt(s), for all s ∈ S, are independent of, and hence trivially affine, in γσ|t, for each σ =

0, . . . , N − 1. This forms the basis of induction.
We now assume that P(Vτ−1|t|ξt) and P((sτ−1|t = s) ∧ V c

τ−1|t|ξt), for all s ∈ S, are
affine in γσ|t, for each σ = 0, . . . , N − 1. We are going to show that in this case, P(Vτ |t|ξt)
and P((sτ |t = s) ∧ V c

τ |t|ξt), for all s ∈ S, are also affine in γσ|t, for each σ = 0, . . . , N − 1.
Indeed, we only need to show this for γσ|t with σ = 0, . . . , τ − 1, because P(Vτ |t|ξt) and
P((sτ |t = s) ∧ V c

τ |t|ξt) are independent of γσ|t for σ = τ, . . . , N − 1 due to causality.
Let s′ ∈ S be arbitrary. Note that for all s ∈ S ,

∑
a∈A T (s, a, s′)γτ−1|t(a) is linear

in γτ−1|t and P((sτ−1|t = s) ∧ V c
τ−1|t|ξt) is independent of γτ−1|t due to causality. Then,

for σ = τ − 1, P((sτ |t = s′) ∧ V c
τ−1|t|ξt) =

∑
s∈S(

∑
a∈A T (s, a, s′)γτ−1|t(a))P((sτ−1|t =

s) ∧ V c
τ−1|t|ξt) is linear, hence affine, in γσ|t = γτ−1|t. For σ = 0, . . . , τ − 2, we have that∑

a∈A T (s, a, s′)γτ−1|t(a) is independent of γσ|t and, by our induction hypothesis above,
P((sτ−1|t = s) ∧ V c

τ−1|t|ξt) is affine in γσ|t. Then, according to the same expression as
above, P((sτ |t = s′) ∧ V c

τ−1|t|ξt) is affine in γσ|t also for σ = 0, . . . , τ − 2.
For each σ = 0, . . . , τ − 1, by our induction hypothesis above, P(Vτ−1|t|ξt) is affine

in γσ|t. Then, as a linear combination of affine functions, P(Vτ |t|ξt) = P(Vτ−1|t|ξt) +∑
s′∈Scsafe

P((sτ |t = s′) ∧ V c
τ−1|t|ξt) is affine in γσ|t.

Finally, for each s ∈ Ssafe, we have that P((sτ |t = s)∧V c
τ |t|ξt) = P((sτ |t = s)∧V c

τ−1|t|ξt)
is affine in γσ|t, for σ = 0, . . . , τ − 1, as shown above. For each s ∈ Scsafe, we have
P((sτ |t = s) ∧ V c

τ |t|ξt) = 0, which is trivially affine in γσ|t. This completes the induction
step and hence proves (i).

Then, (ii) follows directly from the recursive process (2.30) for computing P(VN |t|ξt).
�

Some other properties and the recursive feasibility of the problem (2.20) are discussed
in the following subsection.

77

2.4.2 Theoretical properties and recursive feasibility

To facilitate subsequent exposition, we rewrite the problem (2.20) into the following form,

max ft(Γt) , E

{
N−1∑
τ=0

λτR
(
sτ |t, aτ |t, sτ+1|t

) ∣∣∣∣bt
}
, (2.38a)

subject to gt(Γt) ,

P(VN |t|bt)
vec(Γt)

−vec(Γt)

 ≤
 ε

1|A|N

0|A|N

 ,
ht(Γt) , Γ>t 1|A| = 1N , (2.38b)

with respect to Γt , [γ0|t, · · · , γN−1|t] ∈ R|A|×N , where vec(·) designates the “vector-
ization” operator, 1(·) denotes the (·)-dimensional vector of all ones, and 0(·) denotes the
(·)-dimensional vector of all zeros. Note that in (2.38), the conditional expectation in the
objective function and the conditional probability in the safety constraint are no longer
expressed as conditioned on the data vector ξt as in (2.20), but are now expressed as condi-
tioned on the belief state bt. Recall that by Propositions 2.1(ii) and 2.2(ii) we have shown
these two expressions to be equivalent.

Firstly, we have the following result:
Proposition 2.3: The problem (2.38) is a well-defined nonlinear programming problem

with smooth objective and constraint functions.
Here, “well-definedness” means that the problem either has no feasible solution or has

an optimal solution.
Proof: We have shown in Proposition 2.2 that P(VN |t|bt) is a continuous function of Γt.

Hence, the preimage of [0, ε] under P(VN |t|bt) is a closed set. Then, it is easy to see that
the admissible set defined by the constraints in (2.38b), denoted as Λt, is both closed and
bounded, i.e., compact. Meanwhile, we have shown in Proposition 2.1 that the objective
function ft in (2.38a) is also a continuous function of Γt. In this case, according to the
Weierstrass extreme value theorem, ft attains its supremum on Λt as long as Λt 6= ∅. This
proves the well-definedness of the problem (2.38). The smoothness of its objective and
constraint functions follow from Propositions 2.1, 2.2 and the fact that the vectorization
operator vec(·) is a linear transformation. �

Proposition 2.3 also says that one can use standard nonlinear programming solvers (e.g.,
MATLAB fmincon, IPOPT, etc) to solve the problem (2.38).

We now discuss the relationship between the original discrete optimization problem
(2.14) and the continuously relaxed problem (2.38):

78

Proposition 2.4: (i) The relaxed problem (2.38) has feasible solutions precisely when
the original problem (2.14) has feasible solutions. (ii) One can transfer a feasible solution
to one of (2.14) and (2.38) to a feasible solution to the other in polynomial time.

Proof: Suppose (2.14) has a feasible solution āt = {ā0|t, . . . , āN−1|t}. Then, let us
define Γ̂t = [γ̂0|t, · · · , γ̂N−1|t] such that for every τ = 0, . . . , N−1, γ̂τ |t satisfies γ̂τ |t(āτ |t) =

1 and all other entries being 0. It is easy to see that Γ̂t is a feasible solution to (2.38).
Now suppose (2.38) has a feasible solution Γ̄t = [γ̄0|t, · · · , γ̄N−1|t]. We are going to

show that in this case, we can always construct another feasible solution to (2.38), Γ̂t =

[γ̂0|t, · · · , γ̂N−1|t], based on Γ̄t and a polynomial-time algorithm, such that γ̂τ |t is a zero-one
probability vector for every τ = 0, . . . , N − 1. We call such a solution a zero-one solution.

Given Γ̄t, we denote its associated P(VN |t|bt) value as P̄(VN |t|bt) and define the function
P̃σ(VN |t|bt) for some σ ∈ {0, . . . , N − 1}, which is a function of γσ|t induced from the
constraint function P(VN |t|bt) after fixing {γ0|t, . . . , γσ−1|t, γσ+1|t, . . . , γN−1|t} = {γ̄0|t, . . . ,

γ̄σ−1|t, γ̄σ+1|t, . . . , γ̄N−1|t}. Since Γ̄t is a feasible solution to (2.38), we must have

ε ≥ P̄
(
VN |t

∣∣bt) ≥ min
γσ|t∈∆(A)

P̃σ
(
VN |t

∣∣bt) . (2.39)

According to Proposition 2.2(i), P̃σ(VN |t|bt) is an affine function of γσ|t. In this case, the
problem

min
γσ|t∈∆(A)

P̃σ
(
VN |t

∣∣bt) (2.40)

is a linear programming problem and always has a (global) minimizer, γ̂σ|t, that is located
at a vertex of the probability simplex ∆(A), i.e., γ̂σ|t is a zero-one probability vector [125].
According to (2.39), Γ̂t,σ , [γ̄0|t, · · · , γ̄σ−1|t, γ̂σ|t, γ̄σ+1|t, · · · , γ̄N−1|t] is a feasible solution
to (2.38).

Then, we can treat Γ̂t,σ as the Γ̄t above, select a different σ ∈ {0, . . . , N − 1}, and
repeats the above process. For instance, we can first let σ = 0 and obtain the feasible
solution Γ̂t,0 = [γ̂0|t, γ̄1|t, · · · , γ̄N−1|t] with γ̂0|t being a zero-one probability vector. We
then let σ ← σ + 1, repeats the above process, and obtain the feasible solution Γ̂t,0:1 ,

[γ̂0|t, γ̂1|t, γ̄2|t, · · · , γ̄N−1|t], where γ̂0|t and γ̂1|t are both zero-one probability vectors now.
We can continue this process sequentially for all σ = 0, . . . , N − 1, after which we will
obtain a zero-one feasible solution Γ̂t = Γ̂t,0:N−1 = [γ̂0|t, · · · , γ̂N−1|t].

This zero-one feasible solution to (2.38) corresponds to an action sequence ât = {â0|t,

. . . , âN−1|t} with probability 1, and it is easy to see that ât is a feasible solution to the
original problem (2.14). This completes the proof of (i).

Note that linear programming problems can be solved in polynomial time using, e.g.,

79

Karmarkar’s algorithm [126]. Since the procedure described above represents a way to
construct a feasible solution ât to (2.14) from an arbitrary feasible solution Γ̄t to (2.38)
through solving the linear programming problem (2.40) at most N times (each time for a
different σ), (ii) is proved. �

The optimization problem (2.38) is repeatedly solved at every time step t to determine
the immediate action at. Recursive feasibility is a desired property and is discussed in what
follows.

To the problem (2.38), feasibility at time step t means that for the current belief state bt,
which acts as an “initial condition,” there exists Γt such that the constraints in (2.38b) can
be satisfied. The major difficulty in establishing recursive feasibility lies in that the “initial
condition” at the next time step, bt+1, is stochastic. Recursive feasibility requires that for
all “possible” realizations of bt+1, (2.38) is feasible at t+ 1.

Establishing recursive feasibility guarantee in an MPC setting usually involves the in-
troduction of extra constraints to the MPC optimization problem. Motivated by the ap-
proaches of [127, 128], we augment the problem (2.38) with the following first-step con-
straint: (

bt, γ0|t
)
∈ Λrec(ε), (2.41)

where

Λrec(ε) ={[
b0

γ0|0

] ∣∣∣∣∣ ∃{γ1|0, . . . , γN−1|0} such that P(VN |0|b0) ≤ ε, and ∀(a0, o1) ∈ A× Ω

with P(a0, o1|b0, γ0|0) > 0, it holds that b1(b0, a0, o1) ∈ projb (Λrec(ε))

}
.

(2.42)

In (2.42), P(VN |0|b0) is computed according to Theorem 2.1,

P(a0, o1|b0, γ0|0) = P(o1|a0, b0, γ0|0)P(a0|b0, γ0|0) =
∑

s0,s1∈S

P(o1, s1, s0|a0, b0, γ0|0)P(a0|γ0|0)

=
∑

s0,s1∈S

P(o1|s1)P(s1|s0, a0)P(s0|b0)P(a0|γ0|0) =
∑

s0,s1∈S

O(s1, o1)T (s0, a0, s1)b0(s0)γ0|0(a0),

(2.43)

the map b1(b0, a0, o1) : ∆(S) × A × Ω → ∆(S) is determined by the recursive Bayesian
estimation formula (2.16), and projb(·) represents the projection operator onto the space of
the first |S| coordinates.

The following Algorithm 6 can be used to compute an outer approximation of the set
Λrec(ε). The convergence property of Algorithm 6 and the recursive feasibility property of

80

(2.38) with the first-step constraint (2.41) are discussed in Theorem 2.2.

Algorithm 6: First-Step Constraint Set Computation
1 Initialize Λ0(ε) as

Λ0(ε) =
{

(b0, γ0|0)
∣∣∃{γ1|0, . . . , γN−1|0} such that P(VN |0|b0) ≤ ε

}
(2.44)

2 for t = 1 : tmax do
3 Compute

Λ̄t(ε) =

{
(b0, γ0|0)

∣∣∣∣∀(a0, o1) ∈ A× Ω with P(a0, o1|b0, γ0|0) > 0,
it holds that b1(b0, a0, o1) ∈ projb (Λt−1(ε))

}
(2.45)

4 Let Λt(ε) = Λ0(ε) ∩ Λ̄t(ε)

5 end
6 Output Λ̃rec(ε) = Λt(ε).

Theorem 2.2: (i) The sequence of sets, Λt(ε), produced by Algorithm 6 converges from
above to Λrec(ε) as t goes to infinity. (ii) If b0 ∈ projb (Λrec(ε)), then (2.38) [augmented
with the first-step constraint (2.41)] is recursively feasible for all t ∈ N0 almost surely.

Proof: To prove (i), we start from showing that Λt(ε) is a nonincreasing sequence of
sets, i.e., Λt+1(ε) ⊆ Λt(ε) for all t ∈ N0. We show this by induction.

Firstly, according to line 4, it holds that Λ1(ε) = Λ0(ε) ∩ Λ̄1(ε) ⊆ Λ0(ε). This forms
the basis of induction. We now assume Λt(ε) ⊆ Λt−1(ε) and are going to show that this
hypothesis implies Λt+1(ε) ⊆ Λt(ε).

Since Λt(ε) ⊆ Λt−1(ε), it holds that projb (Λt(ε)) ⊆ projb (Λt−1(ε)). Then, according
to line 3, we have Λ̄t+1(ε) ⊆ Λ̄t(ε). Now using line 4 again, we obtain that Λt+1(ε) =

Λ0(ε) ∩ Λ̄t+1(ε) ⊆ Λ0(ε) ∩ Λ̄t(ε) = Λt(ε). This completes the induction step and hence
proves that the sequence of sets Λt(ε) is nonincreasing, which immediately implies the
convergence of Λt(ε) as t goes to infinity. We denote the limit as Λ∞(ε).

According to line 4, the limit Λ∞(ε) must satisfy Λ∞(ε) = Λ0(ε) ∩ Λ̄∞(ε), where

Λ̄∞(ε) =

{
(b0, γ0|0)

∣∣∣∣ ∀(a0, o1) ∈ A× Ω with P(a0, o1|b0, γ0|0) > 0,

it holds that b1(b0, a0, o1) ∈ projb (Λ∞(ε))

}
. (2.46)

Then, it is easy to see that Λ∞(ε) satisfies the definition of Λrec(ε) in (2.42). This means
the nonincreasing sequence of sets Λt(ε) converges indeed to Λrec(ε), i.e., (i) is proved.

For (ii), suppose bt ∈ projb (Λrec(ε)). Then, there must exist a sequence of action poli-
cies, {γ0|t, . . . , γN−1|t}, that satisfies the following two properties: 1) (bt, γ0|t) ∈ Λrec(ε),
i.e., the augmented constraint (2.41) is satisfied, and 2) the probabilistic safety constraint

81

P(VN |t|bt) ≤ ε is satisfied, which is according to the definition of Λrec(ε) in (2.42). This
means the problem (2.38) [augmented with (2.41)] is feasible at t. Meanwhile, the aug-
mented constraint (bt, γ0|t) ∈ Λrec(ε) also ensures that for any realization of the pair
(at, ot+1) with positive probability, the resulting bt+1 necessarily satisfies bt+1 ∈ projb (Λrec(ε)),
which is also due to the definition of Λrec(ε) in (2.42). This means the problem must be
again feasible at t+ 1. Then, (ii) can be proved by induction. �

2.4.3 Adaptation of POMDP-MPC to AV control problem

The reward function R in an autonomous vehicle control setting can often be written as a
sum of two parts,

R(st+1, at) = Rs(st+1) +Ra(at), (2.47)

where the first part Rs is purely state-dependent and represents safety and liveness consid-
erations, and the second part Ra is purely action-dependent and represents driving effort
considerations. In this case, the objective function evaluation procedure (2.25)-(2.26) can
be simplified and admits the following vector-matrix expression,

E

{
N−1∑
τ=0

λτR
(
sτ+1|t, aτ |t

) ∣∣∣∣bt
}

=
N−1∑
τ=0

λτ E
{
Rs(sτ+1|t)

∣∣bt}+
N−1∑
τ=0

λτ E
{
Ra(aτ |t)

∣∣bt}
=

N−1∑
τ=0

λτ
(
R>s bτ+1|t

)
+

N−1∑
τ=0

λτ
(
R>a γτ |t

)
= R>s

(
N−1∑
τ=0

λτbτ+1|t

)
+ R>a

(
N−1∑
τ=0

λτγτ |t

)
,

(2.48)

where bτ+1|t is the vector representation of predicted state distribution, (2.22), which can be
computed using (2.23), γτ |t is the vector representation of predicted action policy, (2.19),
and Rs and Ra are vector representations of the functions Rs and Ra,

Rs =
[
Rs
(
s1
)
· · · Rs

(
s|S|
)]>

,

Ra =
[
Ra
(
a1
)
· · · Ra

(
a|A|
)]>

. (2.49)

The vectors Rs and Ra can be pre-computed offline and stored for online use to reduce
online computations.

82

2.5 Simulation examples of interaction-aware AV control

In this section, we use three examples, representing an intersection crossing scenario, a
highway overtaking scenario, and a highway forced merging scenario, respectively, to il-
lustrate our interaction-aware autonomous vehicle control approach. In these examples, the
autonomous ego vehicle interacts with one other vehicle. Note that in all earlier parts of
this chapter our approach has been presented in a way that in theory can handle an arbitrary
number of interacting vehicles. However, the computational complexity increases as the
vehicle number increases. In Section 2.6, we will discuss the computational complexity of
our approach and potential ways to reduce it in more detail.

2.5.1 Level-k models for the other vehicle

Recall that one important ingredient in our interaction-aware control approach is a set of
models of the environment, Π2 = {π̄1

2, . . . , π̄
nπ
2 }, each of which defines a way the environ-

ment reacts to the traffic state s ∈ S according to

P(ā2|s) = π̄2(s, ā2). (2.50)

In the case of two-vehicle interactions (autonomous ego vehicle versus one other vehicle),
the other vehicle is treated as the environment and a model of the environment is essentially
a model of the driver/driving behavior of this other vehicle.

In the examples of this section, we model the driver of the other vehicle as a level-k
driver, but with an a priori unknown k ∈ {1, . . . , kmax}. In this case, we can include all of
level-1 to level-kmax driver models into our model set Π2, i.e.,

Π2 = {π1
2, . . . , π

kmax
2 }, (2.51)

where π(·)
2 represents a level-(·) model.

Recall that a level-k agent assumes all other agents to be level-(k − 1) and makes
optimal decision under this assumption. Following this principle, we construct a level-k
driver model for the other vehicle, πk2 , according to

πk2(s, a2) =
exp

(
Qk

2(s, a2)
)∑

a′2∈A2
exp

(
Qk

2(s, a′2)
) , (2.52)

83

in which the Q-function of state-action pairs, Qk
2, is defined as

Qk
2(s, a2) =

max
a2,t∈A2, t=1,...,N−1

E

{
N−1∑
t=0

λtR2 (st, a1,t, a2,t, st+1)

∣∣∣∣ s0 = s, a2,0 = a2, a1,t ∼ πk−1
1 (st, ·)

}
,

(2.53)

where R2 is the other vehicle’s reward function, which is assumed by the ego vehicle to
model the other vehicle’s decision objective(s), and πk−1

1 is a level-(k− 1) driver model for
the ego vehicle, which for k ≥ 2 is defined similarly as πk2 , i.e.,

πk−1
1 (s, a1) =

exp
(
Qk−1

1 (s, a1)
)∑

a′1∈A1
exp

(
Qk−1

1 (s, a′1)
) , (2.54)

in which

Qk−1
1 (s, a1) =

max
a1,t∈A1, t=1,...,N−1

E

{
N−1∑
t=0

λtR1 (st, a1,t, a2,t, st+1)

∣∣∣∣ s0 = s, a1,0 = a1, a2,t ∼ πk−2
2 (st, ·)

}
,

(2.55)

where R1 is the ego vehicle’s reward function.
We note that instead of using strict level-k decision rules, which take optimal actions

with probability 1, we define our level-k driver models in (2.52) and (2.54) according to
the softmax decision rule [60]. This is done to capture the suboptimality and variability in
human driver behavior [129, 130], which can be caused by human’s imperfect perception or
limited computing ability. Furthermore, this makes π1

2, . . . , π
kmax
2 to be stochastic, instead

of deterministic, models, which increases robustness of the Bayesian estimation process
(2.16) against noise. We also note that when constructing level-k driver models, we choose
not to use a probabilistic constraint like (2.3) to represent vehicle safety, but account for
safety considerations (such as collision avoidance) in the reward functionsR1 and R2. This
is done to simplify computations. Although a safety property achieved through the design
of reward function is typically not as strict as that achieved through constraints, this is
sufficient for our modeling purpose – the models π1

2, . . . , π
kmax
2 are used only for prediction

and not directly for control.
The set of equations, (2.52)-(2.55), defines a way to construct level-k driver models for

the other vehicle, πk2 , sequentially for k = 1, . . . , kmax based on a level-0 model for the ego

84

vehicle, π0
1 , and a level-0 model for the other vehicle, π0

2 . In the examples of this section,
we assume a level-0 driver treats other vehicles as stationary obstacles over her planning
horizon. This defines a way to predict other vehicles’ actions and the evolution of traffic
state s in response to this driver’s own actions, and hence enables this driver to optimize
her actions according to an optimization problem similar to (2.53). We note that such a
level-0 model represents an extremely aggressive driver, who assumes other vehicles will
always yield to her. On the basis of this level-0 model, a level-1 driver defined according
to (2.52)-(2.55) will behave conservatively, and in turn, a level-2 driver will behave ag-
gressively. We expect that all level-(2k + 1) models, k = 0, 1, . . . , represent conservative
driving behaviors and all level-2k models represent aggressive driving behaviors. Consid-
ering the behavioral similarity between level-(2k + 1) models, we only include the level-1
driver model for the other vehicle, π1

2 , in our model set Π2. And similarly, considering
the behavioral similarity between level-2k models, we only include π2

2 in Π2. Therefore,
Π2 = {π1

2, π
2
2}. We choose to include level-2 instead of level-0 because the level-2 model

defined through (2.52)-(2.55) is more sophisticated and is expected to be able to represent
real-world human driver behavior better than the baseline level-0 model.

2.5.2 Simulation examples and results

In all the examples of this section, we use the following discrete-time EOMs to represent
the longitudinal kinematics of a vehicle,[

ρi,j(t+ 1)

vi,j(t+ 1)

]
=

[
1 ∆t

0 1

][
ρi,j(t)

vi,j(t)

]
+

[
∆t2

2

∆t

]
ai,j(t), (2.56)

where ρ represents the vehicle’s position, v represents its velocity, a represents its accel-
eration, t ∈ N0 denotes the discrete time instant, ∆t = 1[s] is the sampling period, the
first subscript i ∈ {1, 2} is used to indicate whether a variable is associated with the ego
vehicle 1 or the other vehicle 2, and the second subscript j = x if the vehicle is driving
along the x-direction and j = y if it is driving along the y-direction. Moreover, we model a
lane change as an instantaneous event, i.e., a lane change is completed over one time step.
An action is a pair of acceleration level and lane change command, with the former taking
values in the finite acceleration set A = {−2, 0, 2}[m/s2].

2.5.2.1 Intersection crossing

The first example represents an intersection crossing scenario (shown in Fig. 2.1), where the
autonomous ego vehicle (blue car) encounters another vehicle (red car) at an unsignalized

85

four-way intersection. Their goals are both going straight to cross the intersection. In this
case, we consider the following reward functions to represent their goals,

R1 = ρ1,x,

R2 = ρ2,y. (2.57)

Also, to avoid vehicle collisions, we consider a safe set defined as follows:

Ssafe =
{

(ρ1, ρ2)
∣∣ ‖ρ1 − ρ2‖2 ≥ 1.2 lcar

}
, (2.58)

where ρi = (ρi,x, ρi,y) represents vehicle i’s position in the x-y plane, ‖ · ‖2 denotes the
Euclidean norm, and lcar = 5[m] is the car length.

We consider a planning horizon ofN = 3, which corresponds to 3∆t = 3[s] look-ahead
time. Over the planning horizon, we enforce the following probabilistic constraint,

P
{

(ρ1,τ |t, ρ2,τ |t) ∈ Ssafe, ∀τ = 1, . . . , N
∣∣ ξt} ≥ 0.99. (2.59)

Note that we impose (2.59) as a constraint only in the autonomous vehicle control problem
(2.3). When we construct our level-1 and level-2 driver models through (2.52)-(2.55), we
do not impose this constraint, but add a penalty term to the reward functions (2.57) that
penalizes the event (ρ1,t, ρ2,t) /∈ Ssafe, to simplify computations. At the beginning of a
simulation, we initialize our beliefs in the level-1 and level-2 models both as 0.5, which
represents no prior knowledge of the other vehicle.

Figs. 2.1(a-1) and (a-2) show two steps of a simulation where the autonomous ego
vehicle encounters a level-1 vehicle. Recall that our level-1 model represents a conserva-
tive driver. In this case, the autonomous ego vehicle passes through the intersection first.
Figs. 2.1(b-1) and (b-2) show two steps of a simulation of the autonomous ego vehicle ver-
sus a level-2 vehicle. Our level-2 model represents an aggressive driver. In this case, the
autonomous ego vehicle yields to this level-2 vehicle and passes through the intersection
after it. In both cases, the autonomous ego vehicle successfully resolves its conflict with
the other vehicle and safely passes through the intersection. This demonstrates the effective
combination in our approach of Bayesian-based identification of the other vehicle’s actual
model and real-time adaptation of the ego vehicle’s plan to the model identification result.

86

-15 -10 -5 0 5 10 15

[m]

-15

-10

-5

0

5

10

15

[m
]

v
1
 = 2 m/s

v
2
 = 0 m/s

-15 -10 -5 0 5 10 15

[m]

-15

-10

-5

0

5

10

15

[m
]

v
1
 = 0 m/s

v
2
 = 4 m/s

-15 -10 -5 0 5 10 15

[m]

-15

-10

-5

0

5

10

15

[m
]

v
1
 = 4 m/s

v
2
 = 0 m/s

-15 -10 -5 0 5 10 15

[m]

-15

-10

-5

0

5

10

15

[m
]

v
1
 = 4 m/s

v
2
 = 4 m/s

(a-1) (b-1)

(a-2) (b-2)

Figure 2.1: Simulation results of an intersection crossing scenario. (a-1) and (a-2) show
two steps of a simulation where the autonomous ego vehicle (blue) interacts with a level-1
vehicle (red). (b-1) and (b-2) show two steps of a simulation where the autonomous ego
vehicle (blue) interacts with a level-2 vehicle (red).

2.5.2.2 Highway overtaking

The second example represents a highway scenario (shown in Fig. 2.2), where the goal of
the autonomous ego vehicle (blue car) is to overtake a slower vehicle in its front (red car).
To represent this goal, we consider the following reward function for the ego vehicle,

R1 = 8ρ1,x − ρ1,y, (2.60)

where the first term is used to encourage the ego vehicle to overtake the slower vehicle in
its front, and the second term is used to penalize driving in the left passing lane so that the
ego vehicle is encouraged to come back to the right traveling lane once it has passed the
slower vehicle.

We assume the other vehicle (red car) does not change lanes and its goal is to drive at
its maximum speed (which is assumed to be smaller than the maximum speed of the ego
vehicle). Because a higher speed will lead to a larger longitudinal position, we use the

87

following reward function to represent its goal,

R2 = ρ2,x. (2.61)

As before, we consider a planning horizon of N = 3 and enforce the probabilistic con-
straint (2.59) over the planning horizon, where the safe set Ssafe is now defined as follows:

Ssafe =
{

(ρ1, ρ2)
∣∣ (|ρ1,x − ρ2,x| ≥ 1.6 lcar

)
∨
(
|ρ1,y − ρ2,y| ≥ wlane

)}
, (2.62)

in which wlane = 3.6[m] is the lane width. This safe set definition represents the require-
ment that one vehicle can pass the other only when they are in different lanes and when
they are in the same lane, they must keep a minimum longitudinal distance of 1.6 lcar. When
constructing level-k driver models, we do not impose constraints but penalize any violation
of the set safe Ssafe through an extra penalty term added to the reward functions (2.60) and
(2.61).

Figs. 2.2(a-1)-(a-4) show four steps of a simulation where the autonomous ego vehicle
overtakes a level-1 (conservative) vehicle, and Figs. 2.2(b-1)-(b-4) show those where the
autonomous ego vehicle overtakes a level-2 (aggressive) vehicle. When the front vehicle is
level-1, the ego vehicle manages to overtake it quickly, because, as can be seen in Fig. 2.2(a-
2), the level-1 vehicle maintains a low speed, which facilitates the ego vehicle’s cut-in.
When the front vehicle is level-2, the ego vehicle needs to drive in the left passing lane for
a longer period of time and accelerate to a higher speed to pass the level-2 vehicle before it
can come back to the right traveling lane.

2.5.2.3 Forced merging

The last example represents a forced merging scenario (shown in Fig. 2.3), where the au-
tonomous ego vehicle (blue car) must merge into the left lane before the end of the right
lane. We assume there is a vehicle driving in the left lane that is in an almost side-by-side
position with the ego vehicle (red car). In this case, the ego vehicle must decide whether
to merge in front of it or to merge behind it. We consider the following reward function to
represent the goal of the ego vehicle,

R1 = ρ1,x + 10ρ1,y, (2.63)

where the first term is used to encourage the autonomous ego vehicle to maintain a reason-
able speed (i.e., discouraging it from slowing down too much and stopping), and the second

88

term is used to encourage it to merge into the left lane. We consider the following safe set,

Ssafe =

{
(ρ1, ρ2)

∣∣∣∣ [(|ρ1,x − ρ2,x| ≥ 1.6 lcar
)
∨
(
|ρ1,y − ρ2,y| ≥ wlane

)]∧
[(

(ρ1,x ≤ 20) ∧ (ρ1,y =
wlane

2
)
)
∨
(
20 < ρ1,x ≤ 100

)
∨
(
(ρ1,x > 100) ∧ (ρ1,y =

3wlane

2
)
)]}

(2.64)

where the conditions in the first line represents vehicle-to-vehicle collision avoidance re-
quirement, and the conditions in the second line represents the requirement that the ego
vehicle must complete the merge within the road section marked by the grey-dashed lane
marking in Fig. 2.3. The other parameters are the same as in the previous example.

Figs. 2.3(a-1)-(a-4) correspond to a simulation where the vehicle driving in the left lane
(red car) is a level-1 (conservative) vehicle. In this simulation, the autonomous ego vehicle
accelerates and merges in front of this level-1 vehicle. Figs. 2.3(b-1)-(b-4) correspond to a
simulation where the vehicle driving in the left lane is a level-2 (aggressive) vehicle. In this
case, the ego vehicle slows down and merges behind this level-2 vehicle, because it predicts
that this level-2 vehicle will not yield to let it cut in. Note that in both simulations the ego
vehicle has no prior knowledge of the other vehicle but manages to develop a correct belief
of the other vehicle’s driver model sufficiently quickly based on its observed trajectory over
the first few steps.

2.6 Summary and discussion

In this chapter, we introduced a novel interaction-aware control approach for AVs operating
on shared roads with other users (such as human-driven vehicles). This approach handles
interaction uncertainties due to varied driving styles and intents of other road users and
AV safety under such uncertainties through a C-POMDP formulation. A computational
algorithm based on MPC using online optimization, referred to as POMDP-MPC, has been
developed and used to solve the formulated C-POMDP problem, and leads to AV control
solutions with an explicit probabilistic safety guarantee.

Table 2.1 shows the sizes of the formulated C-POMDP problems of the three exam-
ples in Section 2.5.2 and the computation times corresponding to using different nonlinear
programming solvers. The computation time numbers in Table 2.1 indicate the average
computation times (in [s] of real time) for the ego vehicle to solve for an action decision at
a time step. The computations are performed on a desktop with an Intel Xeon E3-1246 v3
processor and 16.0 GB RAM.

89

Table 2.1: Computation times of POMDP-MPC.

Example State space size fmincon IPOPT NLopt(SLSQP)

Intersection 7938 1.0352[s] 0.1849[s] 0.0631[s]
Overtaking 2448 1.6945[s] 0.7015[s] 0.2866[s] (8/230 failed)
Merging 15876 1.8729[s] 0.3439[s] 0.7501[s] (23/250 failed)

First note that these problems involving a few thousands of states are considered as
medium to large-sized problems in the POMDP literature, and it can take several minutes
to hours to solve such problems using conventional POMDP solvers based on point-based
dynamic programming [117, 118]. In contrast, our POMDP-MPC algorithm reduces the
computation times to a level that is comparable to the time budget for real-time compu-
tation (the decision frequency is ∼ 1 Hz). We note that further reduction in these com-
putation times is possible by, for instance, exploiting proper warm-starting approaches,
inexact and real-time iteration solution strategies, and symbolic computation techniques
[131, 132, 133], the investigation of which is left as a topic for future research.

However, our POMDP-MPC algorithm still suffers from the “curse of dimensionality”
[134]. For instance, we have observed an average computation time of ∼ 163[s] for an
example with 26325 states to be solved with MATLAB fmincon in [119]. This poses a
computational challenge for our approach to treat traffic scenarios involving interactions
between the ego vehicle and multiple other vehicles. A possible solution is to decouple
the interaction between the ego vehicle and the environment (which represents the unity of
all other vehicles) into pairwise interactions between the ego vehicle and each of the other
vehicles, to prevent the state space size from increasing exponentially as the number of
interacting vehicles increases. Another strategy is to use our approach to treat even higher-
level planning problems where vehicle physical states are encoded into a small number
of Markov states and actions represent higher-level driving behaviors (such as following
the front vehicle or overtaking the front vehicle, etc). Moreover, one can choose to solve
the formulated C-POMDP problem for a set of state values offline, store the state-action
pairs into a dataset, and exploit machine learning techniques to extract an explicit policy
from this dataset (e.g., represented by a neural network) used for online control, as has
been proposed in [67, 73, 135]. All of these strategies can reduce the online computational
burden. Extension of the approach from finite-space setting to continuous-space setting,
thus avoiding the computational difficulty associated with discreteness/discretization, is
also a topic of ongoing research.

90

-15 -10 -5 0 5 10 15 20 25

[m]

-10

-5

0

5

10

[m
]

v
1
 = 24 m/s

v
2
 = 24 m/s

-15 -10 -5 0 5 10 15 20 25

[m]

-10

-5

0

5

10

[m
]

v
1
 = 24 m/s

v
2
 = 24 m/s

-15 -10 -5 0 5 10 15 20 25

[m]

-10

-5

0

5

10

[m
]

v
1
 = 26 m/s

v
2
 = 24 m/s

-15 -10 -5 0 5 10 15 20 25

[m]

-10

-5

0

5

10

[m
]

v
1
 = 28 m/s

v
2
 = 28 m/s

-15 -10 -5 0 5 10 15 20 25

[m]

-10

-5

0

5

10

[m
]

v
1
 = 28 m/s

v
2
 = 26 m/s

-15 -10 -5 0 5 10 15 20 25

[m]

-10

-5

0

5

10

[m
]

v
1
 = 30 m/s

v
2
 = 26 m/s

-15 -10 -5 0 5 10 15 20 25

[m]

-10

-5

0

5

10

[m
]

v
1
 = 30 m/s

v
2
 = 24 m/s

-15 -10 -5 0 5 10 15 20 25

[m]

-10

-5

0

5

10

[m
]

v
1
 = 30 m/s

v
2
 = 24 m/s

(a-1) (b-1)

(a-2) (b-2)

(a-3) (b-3)

(a-4) (b-4)

Figure 2.2: Simulation results of a highway overtaking scenario. (a-1) to (a-4) show four
steps of a simulation where the autonomous ego vehicle (blue) overtakes a level-1 vehicle
(red). (b-1) to (b-4) show four steps of a simulation where the autonomous ego vehicle
(blue) overtakes a level-2 vehicle (red).

91

-55 -35 -15 5 25 45 65

[m]

-10

-5

0

5

10

[m
]

v
1
 = 24 m/s

v
2
 = 24 m/s

-55 -35 -15 5 25 45 65

[m]

-10

-5

0

5

10

[m
]

v
1
 = 30 m/s

v
2
 = 24 m/s

-55 -35 -15 5 25 45 65

[m]

-10

-5

0

5

10

[m
]

v
1
 = 24 m/s

v
2
 = 18 m/s

-55 -35 -15 5 25 45 65

[m]

-10

-5

0

5

10

[m
]

v
1
 = 24 m/s

v
2
 = 24 m/s

-55 -35 -15 5 25 45 65

[m]

-10

-5

0

5

10

[m
]

v
1
 = 24 m/s

v
2
 = 24 m/s

-55 -35 -15 5 25 45 65

[m]

-10

-5

0

5

10

[m
]

v
1
 = 30 m/s

v
2
 = 30 m/s

-55 -35 -15 5 25 45 65

[m]

-10

-5

0

5

10

[m
]

v
1
 = 18 m/s

v
2
 = 30 m/s

-55 -35 -15 5 25 45 65

[m]

-10

-5

0

5

10

[m
]

v
1
 = 18 m/s

v
2
 = 30 m/s

(a-1)

(a-2)

(a-3)

(a-4)

(b-1)

(b-2)

(b-3)

(b-4)

Figure 2.3: Simulation results of a forced merging scenario. (a-1) to (a-4) show four steps
of a simulation where the autonomous ego vehicle (blue) merges in front of a level-1 vehicle
(red). (b-1) to (b-4) show four steps of a simulation where the autonomous ego vehicle
(blue) merges behind a level-2 vehicle (red).

92

CHAPTER 3

Enhancing Autonomous Vehicle Safety via the
Action Governor

3.1 Background and introduction

Many hard specifications for controlled dynamic systems can be imposed in the form of
pointwise-in-time state and control constraints. For instance, such constraints can repre-
sent variable bounds to ensure safe and efficient system operation, actuator limits, as well
as collision/obstacle avoidance requirements. To address such constraints, one route is to
take them into account when (re-)designing the controller, e.g., via correct-by-construction
synthesis using controlled invariant sets [136] or control Lyapunov/barrier functions [137,
138], or via the model predictive control framework [139, 140]. Another route is to
augment a nominal controller with constraint-handling capability via add-on, supervisory
schemes [141, 142, 143]. This second route may be preferable in many practical circum-
stances. For instance, a well-designed, legacy controller may already exist while new spec-
ifications are imposed to the system. In this case, the second route can preserve many
performance characteristics of the legacy controller, such as stability, frequency-domain re-
sponses, etc., and thus significantly reduce the tuning complexity compared to re-designing
the controller as in the first route [141].

The Reference Governor (RG) has been shown to be an effective scheme, along the
second route, to manage pointwise-in-time state and control constraints [141]. The RG
monitors and modifies the reference signal, which is typically an input to the nominal
controller and defines the control objective, to enforce these constraints. Alternatively,
supervision and modification may also be done to the output of the nominal controller,
such as in the approaches of [142, 143].

In this chapter, we propose a novel add-on, supervisory scheme, referred to as Action

Governor (AG), for discrete-time linear systems to enforce pointwise-in-time constraints.

93

Following the ideas of [142, 143], the AG enforces constraints by monitoring, and min-
imally modifying when necessary, the nominal control signal to a constraint-admissible
one.

In particular, we focus on exclusion-zone avoidance requirements, where the exclusion
zone is assumed to be expressed as a finite union of convex, polytopic sets in the state
space. Note that in this case the feasible region is in general non-convex. This differenti-
ates our problem setting from the ones treated in [142, 143]. The particular consideration
for such exclusion zones is motivated by those obstacle avoidance scenarios frequently en-
countered in mobile robot path planning problems [144, 145, 146] as well as vehicle and
pedestrian avoidance scenarios in autonomous vehicle control problems [102]. Note, how-
ever, that such exclusion zones can indeed represent many state constraint types, such as
box constraints (see Fig. 3.1 for an example).

The AG operation is based on set-theoretic techniques and online optimization. Al-
though there has been a rich literature on set-theoretic methods in control covering the-
oretical properties, computational aspects, and application scenarios, most previous work
treated the case where the feasible region is assumed to be compact and convex [147, 148,
149, 150]. In contrast, the feasible region in our problem setting is in general neither
bounded nor convex.

Although the RG and our proposed AG are both prediction-based supervisory schemes
and non-convex constraints have also been considered within the RG framework [151, 152,
153], our AG scheme has the following distinguishing features: 1) The AG modifies the
output of the nominal controller, whereas the RG modifies the reference input to the con-
troller. 2) Unlike the RG, the AG does not restrict the signal modification over the pre-
diction horizon to a constant. A direct consequence is that the AG yields a larger feasible
set, leaving greater flexibility to control, and thereby, can potentially achieve better control
performance (as illustrated by an example in Section 3.4). 3) The RG typically assumes the
closed-loop system (plant + controller) to be linear + time-invariant (LTI), whereas the AG
assumes only the plant to be LTI, i.e., permitting the controller to be nonlinear and evolving
with time. This allows controller variability, as well as online learning of the control policy,
without needing to redesign/retune the AG.

On the other hand, graph search-based, sampling-based, and potential field-based ap-
proaches have been extensively used in path planning for mobile robots with obstacle avoid-
ance requirements [144, 154]. The first two typically use simplified kinematic models for
motion prediction and leave the control of system dynamics to a lower level. Although
potential field-based approaches can deal with dynamic models, they do not easily lend
themselves to theoretical guarantees. In contrast, our AG approach handles dynamic mod-

94

els in the form of discrete-time linear systems and provides theoretical safety guarantees
under suitable assumptions.

In summary, the contributions of this chapter include: 1) establishing the theoretical
foundation of the AG scheme, 2) discussing its computational realization, including its
offline computational tasks and two online optimization algorithms of different complexity,
and 3) illustrating its operation and effectiveness using an automotive and a mobile robot
related examples.

The developments of this chapter have been published in the journal article [155].

3.2 System model and control objective

We consider systems that can be represented as the following discrete-time linear model:

x(k + 1) = f (x(k), u(k)) = Ax(k) +Bu(k), (3.1)

where x(k) ∈ Rn represents the system state at the discrete time instant k ∈ N0, and
u(k) ∈ Rm represents the control input. We assume that a nominal control policy φ has
been defined for the system (3.1),

uφ(k) = φ (x(k), r(k), k) , (3.2)

where r(k) ∈ Rp represents a reference signal determining the control objective. The
control policy φ may be nonlinear and time-varying, which may be due to specific control
objectives such as state/control constraints, finite-time convergence requirements, etc., or
due to online evolution/learning of the control policy [156, 157, 158].

Furthermore, we assume that the system is subject to an exclusion-zone avoidance re-
quirement of the form

x(k) /∈ X0, ∀k ∈ N0. (3.3)

In particular, we assume X0 can be written as a finite union of convex, open, and polytopic
sets, i.e.,

X0 =
N⋃
i=1

{x ∈ Rn : Gix < gi} , (3.4)

whereGi ∈ Rqi×n and gi ∈ Rqi . Note that such anX0 can indeed represent many exclusion
zone types (see Fig. 3.1 for an example).

The exclusion-zone avoidance requirement (3.3) may not have been incorporated when
defining the nominal control policy (3.2). Our objective is to develop a control algorithm

95

X0,1

X0,2

X0,3 X0,4

X0,5

X0,6

Figure 3.1: An exclusion zone example, where the union of the red polytopic regions is the
exclusion zone X0.

to enforce (3.3).

3.3 Action Governor

The solution that we propose is a supervisory scheme, referred to as Action Governor (AG),
which monitors and minimally modifies, if necessary, the nominal control signal uφ(k) to
enforce the exclusion-zone avoidance requirement (3.3).

In particular, the AG operates based on the following constrained optimization problem:

u(k) = arg min
u∈U

‖u− uφ(k)‖2
S, (3.5a)

subject to Ax(k) +Bu ∈ Xsafe, (3.5b)

where the set U ⊂ Rm represents the range of control authority, the function ‖ · ‖S =√
(·)>S(·) with S ∈ Rm×m being positive-definite penalizes the difference between the

modified control signal u(k) and the nominal control signal uφ(k), and Xsafe ⊂ Rn is
a safe set which will be introduced later. In particular, we assume U to be a convex,
closed, and polytopic set as follows, which is a common assumption in the control literature
[139, 140, 141],

U = {u ∈ Rm : Hu ≤ h} , (3.6)

96

where H ∈ Rs×m and h ∈ Rs.

3.3.1 Safe set and unrecoverable sets

To enforce both present and future safety, the safe setXsafe is characterized by the following
requirements: For any x(k) ∈ Xsafe, there exists u(k) ∈ U such that

1. The next state satisfies the exclusion-zone avoidance requirement (3.3), i.e., x(k +

1) = Ax(k) +Bu(k) /∈ X0.

2. Future exclusion-zone avoidance is possible, i.e., given x(k + 1) = Ax(k) +Bu(k),
there exists a control sequence {u(k + 1), u(k + 2), . . . } ⊂ U such that {x(k +

2), x(k + 3), . . . } ∩X0 = ∅.

The explicit determination of Xsafe relies on the following sequence of sets, referred to
as unrecoverable sets, defined sequentially as

Xk = X0 ∪ {x ∈ Rn : for each u ∈ U ,Ax+Bu ∈ Xj for some j = 0, . . . , k − 1}

= X0 ∪

{
x ∈ Rn : Ax+Bu ∈

k−1⋃
j=0

Xj, ∀u ∈ U

}
(3.7)

= X0 ∪

{
x ∈ Rn : Ax ∈

(
k−1⋃
j=0

Xj

)
∼ BU

}
, k = 1, 2, . . .

where ∼ denotes the P(ontryagin)-difference operation between sets [147].
The sets Xk satisfy the following properties, which also explain why they are called

“unrecoverable sets”:
Proposition 3.1: If x(0) ∈ Xk, then for any sequence {u(0), . . . , u(k−1)} ∈ U×· · ·×U

there exists 0 ≤ j ≤ k such that x(j) ∈ X0.
Proof: The proof is by induction. For k = 1, x(0) ∈ X1 implies either x(0) ∈ X0

or x(1) = Ax(0) + Bu(0) ∈ X0 for any u(0) ∈ U . Suppose the statement has been
proven for Xj , 1 ≤ j ≤ k. For k + 1, if x(0) ∈ Xk+1, then either x(0) ∈ X0 or for
each u(0) ∈ U , x(1) = Ax(0) + Bu(0) ∈ Xj for some 0 ≤ j ≤ k, which is by the
definition of Xk+1. For the latter, since x(1) ∈ Xj , by our induction hypothesis, for any
{u(1), . . . , u(j)} ∈ U × · · · × U , there exists 0 ≤ i ≤ j such that x(i + 1) ∈ X0.
Thus, we have shown that for any {u(0), u(1), . . . , u(k)} ∈ U × U × · · · × U , there exists
0 ≤ j′ = i+ 1 ≤ j + 1 ≤ k + 1 such that x(j′) ∈ X0. This proves the statement for k + 1.
�

97

Proposition 3.2: Let x(0) be given. If for any sequence {u(0), . . . , u(k − 1)} ∈ U ×
· · · × U there exists 0 ≤ j ≤ k such that x(j) ∈ X0, then x(0) ∈ Xk.

Proof: The proof is by induction. For k = 1, x(0) ∈ X0 or x(1) = Ax(0)+Bu(0) ∈ X0

for any u(0) ∈ U implies x(0) ∈ X1, which is by the definition of X1. Suppose the
statement has been proven for k. For k + 1, if x(0) ∈ X0, then x(0) ∈ Xk+1, which
follows from the fact that X0 ⊂ Xk+1. Otherwise, fix an arbitrary u(0) ∈ U and let
x(1) = Ax(0)+Bu(0). The proposition statement assumes that for any {u(1), . . . , u(k)} ∈
U×· · ·×U , there exists 0 ≤ j ≤ k such that x(j+1) ∈ X0, which implies x(1) ∈ Xk by our
induction hypothesis. Thus, we have shown that for each u(0) ∈ U , Ax(0) +Bu(0) ∈ Xk,
which implies x(0) ∈ Xk+1 by the definition of Xk+1. This proves the statement for k + 1.
�

The combination of Propositions 3.1 and 3.2 says that there exists no solution for the
control sequence {u(0), . . . , u(k− 1)} ∈ U × · · · ×U to avoid the state trajectory entering
the exclusion zone X0 over the steps 0, . . . , k if and only if x(0) ∈ Xk. Or equivalently,
there exists a control sequence {u(0), . . . , u(k − 1)} ∈ U × · · · × U to avoid X0 over
the steps 0, . . . , k if and only if x(0) ∈ Rn \Xk. Furthermore, the following convergence
property of Xk holds:

Proposition 3.3: For each k = 0, 1, . . . , Xk ⊂ Xk+1, i.e., Xk is an increasing sequence
of sets. In turn, X∞ = limk→∞Xk exists (in the set-theoretic sense [159]) and satisfies
Xk ⊂ X∞ for all k.

Proof: The proof follows from

Xk = X0 ∪

{
x ∈ Rn : Ax ∈

(
k−1⋃
j=0

Xj

)
∼ BU

}
(3.8)

⊂ X0 ∪

{
x ∈ Rn : Ax ∈

(
k⋃
j=0

Xj

)
∼ BU

}
= Xk+1. �

Using the unrecoverable sets Xk, we define the safe set as Xsafe = Rn \ X∞ =

limk→∞(Rn \Xk). On the basis of Propositions 3.1 and 3.2, Xsafe has the following prop-
erties:

Proposition 3.4: For any x ∈ Xsafe, it holds that (i) x /∈ X0, and (ii) there exists u ∈ U
such that Ax+Bu ∈ Xsafe.

Proof: The former x ∈ Xsafe =⇒ x /∈ X0 follows from

Xsafe = Rn \X∞ = Rn \

(
∞⋃
k=0

Xk

)
⊂ Rn \X0. (3.9)

98

For the latter, let x be given and assume that for any u ∈ U , Ax + Bu ∈ Rn \Xsafe =⋃∞
k=0 Xk, i.e.,Ax ∈

(⋃∞
k=0Xk

)
∼ BU =

⋃∞
k=0

(
Xk ∼ BU

)
, where the last equality holds

according to Lemma 3.1 in Appendix E. This means there must exist k′ such that Ax ∈
Xk′ ∼ BU =

(⋃k′

k=0Xk

)
∼ BU . Then, according to (3.7), x ∈ Xk′+1 ⊂

⋃∞
k=0Xk =

Rn \Xsafe. Thus, if x ∈ Xsafe, then there must exist u ∈ U such that Ax+Bu /∈ Rn \Xsafe.
�

Proposition 3.4 ensures that if the AG operates based on (3.5) to modify the control
input u(k), then 1) a feasible solution exists to (3.5) for all k, and 2) the exclusion-zone
avoidance requirement (3.3) is satisfied for all k.

Note that the exact determination of Xsafe relies on the set Xk iteratively computed
according to (3.7) with k → ∞. In practice, Xsafe can be approximated by X̃safe,k′ =

Rn \ Xk′ with k′ being sufficiently large. Moreover, the following result says that, under
a few additional assumptions, such a finitely determinable approximation of Xsafe suffices
for implementation.

Proposition 3.5: Assume 0 ∈ U and define R =
⊕∞

k=0 A
kBU , where ⊕ denotes the

Minkowski sum operation of sets [147]. Suppose 1) there exists k′ such that

R ∩ (X∞ \Xk′) = ∅, (3.10)

2) x(0) ∈ R ∩ X̃safe,k′ , and 3) the AG operates based on

u(k) = arg min
u∈U

‖u− uφ(k)‖2
S, (3.11a)

subject to Ax(k) +Bu ∈ X̃safe,k′ . (3.11b)

Then, (i) x(k) /∈ X0, and (ii) there exists u ∈ U such that Ax(k) + Bu ∈ X̃safe,k′ , for all
k = 0, 1, . . .

Proof: Firstly, (i) follows from x(k) ∈ Rn \Xk′ ⊂ Rn \X0. Now assume x(k − 1) ∈
R ∩ X̃safe,k′ = R ∩ (Rn \Xk′). Note that (3.10) implies

R ∩ (X∞ \Xk′) = R ∩ (Rn \Xk′) ∩X∞ = ∅

=⇒ R ∩ (Rn \Xk′) ⊂ Rn \X∞ = Xsafe. (3.12)

Thus, we have x(k − 1) ∈ Xsafe, which by Proposition 3.4 ensures the existence of u ∈ U
such that Ax(k − 1) + Bu ∈ Xsafe = Rn \X∞ ⊂ Rn \Xk′ = X̃safe,k′ . This proves (ii) for
k − 1. Also, by the invariance of R [147], x(k − 1) ∈ R implies Ax(k − 1) + Bu ∈ R
for any u ∈ U . Therefore, if the AG operates based on (3.11) at k − 1, we must have

99

x(k) = Ax(k − 1) +Bu(k − 1) ∈ R ∩ X̃safe,k′ . Then, the proof of (ii) for all k = 0, 1, . . .

can be completed by induction. �
We remark that our definition of the safe set Xsafe is similar to the viability kernel con-

sidered in [145]. In [145], the computation and utilization of the viability kernel are based
on finite state and control spaces (or based on finite discretization of the original spaces).
In contrast, we deal with continuous state and control spaces, and the computational algo-
rithms introduced in what follows do not rely on discretization of the spaces. Furthermore,
our theoretical results, Propositions 3.1-3.6, are not in [145].

3.3.2 Offline and online computations

Given X0 as a convex, polytopic set (3.4), the sets Xk for k = 1, 2, . . . are iteratively
computed offline based on the following proposition:

Proposition 3.6: Assume A is invertible (see Remark 3.1) and U is a polytopic set.
Then, for each k = 1, 2, . . . , we have (i) Xk can be represented as the union of a finite
number of polytopic sets, i.e., Xk =

⋃rk
j=1Xk,j where Xk,j is a polytopic set for each

j = 1, . . . , rk; and (ii) Xk can be numerically computed using Algorithm 7.
Proof: Assume thatXk−1 can be represented as the union of a finite number of polytopic

sets. Using the fact that Xj ⊂ Xj+1 for all j = 0, 1, . . . , k − 2, we can rewrite (3.7) as

Xk = X0 ∪ {x ∈ Rn : Ax ∈ Xk−1 ∼ BU} . (3.13)

Note that BU , as the image of a polytopic set U under the linear transformation B, is also a
polytopic set. Then,Xk−1 ∼ BU is the P-difference between a finite union of polytopic sets
and a polytopic set. Thus, according to Theorem 4.4 of [140], the lines 1-5 of Algorithm 7
compute G = Xk−1 ∼ BU , which is also a finite union of polytopic sets. Then, since
A is invertible, the preimage of G under A, A−1G, is still a finite union of polytopic sets.
Furthermore, we have

A−1G = {x ∈ Rn : Ax ∈ Xk−1 ∼ BU} . (3.14)

Finally, since X0 is a finite union of polytopic sets, we obtain that Xk = X0 ∪ A−1G is a
finite union of polytopic sets. Then, (i) and (ii) are simultaneously proved for k. The proof
can be extended to all k = 1, 2, . . . by induction. �

Remark 3.1: We remark that the assumption of A being invertible typically holds true
for a practical system, e.g., when the model (3.1) is discretized from continuous-time dy-
namics. We also remark that the set operations involved in Algorithm 7, including P-

100

difference between polytopic sets in line 2, and convex hull, set difference, Minkowski
sum and union of finite unions of polytopic sets in lines 1, 3-6 can be efficiently computed
using corresponding functions of the Multi-Parametric Toolbox 3 (MPT3) [160].

Algorithm 7: Offline Computation for Xk

Input : A,B,X0, Xk−1, U
Output: Xk

1 H ← convhull(Xk−1)
2 D ← H ∼ (BU)
3 E ← H \Xk−1

4 F ← E ⊕ (−BU)
5 G ← D \ F
6 Xk ← X0 ∪ A−1G

From now on, we assume the AG operates based on X̃safe,k′ = Rn \ Xk′ for some k′.
According to Proposition 3.6, Xk′ is a finite union of polytopic sets, i.e., can be written as

Xk′ =

rk′⋃
j=1

sj⋂
i=1

{x ∈ Rn : Gi,jx < gi,j} , (3.15)

where Gi,j ∈ R1×n, gi,j ∈ R, and in turn,

X̃safe,k′ = Rn \Xk′ =

rk′⋂
j=1

sj⋃
i=1

{x ∈ Rn : Gi,jx ≥ gi,j} . (3.16)

Then, the constraint Ax(k) + Bu ∈ X̃safe,k′ is equivalent to the following set of con-
straints:

Gi,j (Ax(k) +Bu) ≥ gi,j −M(1− δi,j), (3.17a)

δi,j ∈ {0, 1}, ∀i = 1, . . . , sj, ∀j = 1, . . . , rk′ , (3.17b)
sj∑
i=1

δi,j = 1, ∀j = 1, . . . , rk′ , (3.17c)

where M > 0 is a sufficiently large positive number.
Thus, the AG online problem (3.11) can be solved as a Mixed-Integer Quadratic Pro-

gramming (MIQP) problem with (u, δi,j) as the decision variables.
Furthermore, under the following practical assumption, a computationally lighter ap-

proach, presented as Algorithm 8, can be used to approximately solve (3.11).

101

Assumption 3.1: A safe-mode control policy ψ has been defined for the system (3.1),

uψ(k) = ψ (x(k), k) , (3.18)

possibly being conservative, such that for any x(k) ∈ X̃safe,k′ we have

Ax(k) +Buψ(k) ∈ X̃safe,k′ . (3.19)

Assumption 3.1 is reasonable for many practical systems. For instance, for an adaptive
cruise control (ACC) system where x(k) ∈ X0 represents a rear-end collision to the pre-
ceding vehicle, the safe-mode policy ψ may correspond to an automatic emergency braking
(AEB) system.

Algorithm 8 aims to find a feasible point u(k) along the line segment connecting uφ(k)

and uψ(k) that is as close to uφ(k) as possible through a bisection method. It is similar
to the Algorithm 1 in [161]. Two important properties of Algorithm 8 are: 1) algorithm
convergence is guaranteed, i.e., λ and λ are converging to the same value ∈ [0, 1]; and
2) algorithm output u(k) is always feasible, in terms of satisfying that Ax(k) + Bu(k) ∈
X̃safe,k′ . For more details regarding these two properties, the reader is referred to [161, 162].
We also remark that the set containment condition in line 4 can be efficiently checked using
the PolyUnion.contains() function of MPT3 [160].

Algorithm 8: Online Computation for u(k)

Input : A,B, X̃safe,k′ , x(k), uφ(k), uψ(k)
Output: u(k)

1 λ← 0, λ← 1, λ← 1

2 while λ− λ > δ do
3 u← λuφ(k) + (1− λ)uψ(k)

4 if Ax(k) +Bu ∈ X̃safe,k′ then
5 λ← λ
6 else
7 λ← λ
8 end
9 λ← (λ+ λ)/2

10 end
11 u(k)← λuφ(k) + (1− λ)uψ(k)

102

3.4 Simulation examples

3.4.1 Adaptive cruise control

The first example we consider represents an ACC system for automated highway driving.
The relative motion between the leading vehicle and the following ego vehicle is written in
discrete-time as [

∆s(k + 1)

∆v(k + 1)

]
=

[
1 ∆t

0 1

][
∆s(k)

∆v(k)

]
−

[
1
2
∆t2

∆t

]
u(k), (3.20)

where ∆t = 0.25[s] is the sampling period, ∆s and ∆v denote, respectively, the longi-
tudinal distance and relative speed between the leading and the ego vehicles, and u is the
control input representing the ego vehicle’s acceleration. The following feedback policy is
defined as the nominal control,

uφ(k) = K

[
∆s(k)−∆sr(k)

∆v(k)

]
, (3.21)

where ∆sr is the reference signal and represents the desired car-following distance, and
the feedback gain K is computed as the linear quadratic regulator (LQR) gain with Q =

diag(10, 1) and R = 20.
To avoid rear-end collision and promote passenger comfort, the following constraints

are imposed,
∆s(k) ≥ 2[m], −2[m/s2] ≤ u(k) ≤ 2[m/s2], ∀k. (3.22)

Clearly, the nominal policy (3.21) does not account for the constraints (3.22). We now
consider both the applications of AG and RG to enforcing (3.22) and compare them.

On the one hand, the constraints (3.22) can be handled by AG with considering the
following definition for the exclusion set X0,

X0 =


[

∆s

∆v

]
∈ R2 :


1 0

−1 0

0 1

0 −1


[

∆s

∆v

]
<


2

M

M

M


 , (3.23)

where M > 0 is a sufficiently large positive number, and the control authority set U =

[−2, 2]. The reason for including the 2nd-4th inequalities as “virtual constraints” is to
make X0 a polytopic set so that enable the numerical computations of Algorithm 7. In

103

this example, the online determination of the control input u is through solving the MIQP
(3.11) and (3.17).

On the other hand, the RG considers the closed-loop system after the nominal control
(3.21) is applied, i.e.,[

∆s(k + 1)

∆v(k + 1)

]
=

([
1 ∆t

0 1

]
−

[
1
2
∆t2

∆t

]
K

)[
∆s(k)

∆v(k)

]
+

[
1
2
∆t2

∆t

]
K(1) ∆sr(k), (3.24)

where K(1) denotes the first entry of K. The RG monitors and modifies, if necessary, the
reference signal ∆sr(k) to a constraint-admissible one ∆sv(k) to enforce constraints. For
this, it utilizes a set typically calledO∞ [141]. In particular, to handle the constraints (3.22)
and also enable the numerical computation of O∞, we consider the following constraints
on the state-reference pair,

−1 0

K(1) K(2)

−K(1) −K(2)

1 0

0 1

0 −1


[

∆s(k)

∆v(k)

]
+



0

−K(1)

K(1)

0

0

0


∆sv(k) ≤



−2

2

2

M

M

M


. (3.25)

We consider the following initial condition and constant reference signal,

(∆s(0),∆v(0)) = (18[m],−4[m/s]) , ∆sr(k) ≡ 2.5[m]. (3.26)

The simulation results are presented in Fig. 3.2. The state trajectory using AG (green
dash-dotted) versus that using RG (blue solid) is shown in Fig. 3.2(a). It can be seen that the
green curve converges to the desired steady state (2.5, 0) while being kept outside the set
X∞ (red shaded) for all time. In particular, it sometimes rides on the boundary of X∞ but
never enters into X∞. This guarantees the satisfaction of the state constraint ∆s(k) ≥ 2,
whose boundary is marked by the black dashed vertical line. The blue curve also satisfies
the constraint ∆s(k) ≥ 2 by being kept inside the setO∞ (magenta shaded) for all time and
converges to the desired steady state. However, it is clear that the region where the state is
allowed to reach using AG (R2 \ X∞) is strictly larger than that using RG (O∞), and this
results in faster response and convergence with AG than RG, which can be seen from the
control input trajectories plotted in Fig. 3.2(b). Also, both the control input trajectory using
AG and that using RG satisfy the control constraints −2 ≤ u(k) ≤ 2. To achieve this, as
well as to enforce the state constraint, AG sometimes modifies the nominal control uφ, the

104

0 15 30 45 60

-2

-1

0

1

2

3

4

(a) (b)

X∞ O∞

∆s

∆v

k

u

Figure 3.2: Adaptive cruise control.

profile of which is shown by the magenta dotted curve.

3.4.2 Omni-directional robot obstacle avoidance

The dynamics of an omni-directional robot are modeled in continuous-time as

s̈1 = u1, (3.27a)

s̈2 = u2, (3.27b)

where (s1, s2) represent the global positions of the robot in the x- and y-directions, and
(u1, u2) represent the accelerations and are the control inputs.

After being first written in first-order differential equations and then discretized with a
sampling period ∆t = 1 and assuming zero-order hold on the inputs, (3.27) is converted to
a discrete-time model in the form of (3.1) with (s1, s2, ṡ1, ṡ2) as the vector state and (u1, u2)

as the vector control input. To track a desired position (s1,r, s2,r), a nominal control policy
is defined as: for i = 1, 2,

ui,φ(k) = satRi(k)

K(i, :)


s1(k)− s1,r(k)

s2(k)− s2,r(k)

ṡ1(k)

ṡ2(k)


 , (3.28)

where K is the LQR gain with Q = diag(1, 1, 1, 1) and R = diag(1, 1), K(i, :) denotes its

105

ith row, and satRi(k)(·) is the saturation function to the range

Ri(k) =

[
max

(
− 2,− 1

∆t
(4 + ṡi(k))

)
,min

(
2,

1

∆t
(4− ṡi(k))

]
. (3.29)

We remark that the control policy defined by (3.28) and (3.29) is a modified LQR control
law equipped with the capability of enforcing the velocity and acceleration constraints

− 4 ≤ ṡi(k) ≤ 4, −2 ≤ ui(k) ≤ 2, ∀k. (3.30)

We consider a scenario similar to the one studied in [146]. It is assumed that a diamond-
shaped obstacle blocks the straight-line path from the robot’s initial position

(
s1(0), s2(0)

)
=

(−10, 0) to the target position (s1,r, s2,r) = (10, 0), as shown in Fig. 3.3(a). To avoid col-
lision with such an obstacle, we use an AG to supervise the control signal. In particular,
the polytopic exclusion set X0 is determined by the diamond-shaped obstacle and the ve-
locity ranges ṡi ∈ [−4, 4], and the box-shaped control authority set U is determined by the
acceleration ranges ui ∈ [−2, 2].

In this example, the online determination of the control inputs (u1, u2) is through Algo-
rithm 2, which relies on a safe-mode control policy ψ. We construct ψ based on a simple
repulsive-force field surrounding the obstacle [144], which is illustrated by the black arrows
in Fig. 3.3(a). Specifically, the control (u1,ψ, u2,ψ) is determined first as a vector along the
direction of the arrow at the robot’s current position with magnitude proportional to the
arrow length (which is constant everywhere in the considered repulsive-force field), then
saturated to the ranges ui ∈ [−2, 2]. We remark that one important difference of our ap-
proach from other obstacle avoidance approaches based on repulsive-force/potential fields
is that the trade-off between position tracking and collision avoidance is optimized online
through Algorithm 8 in our approach rather than pre-designed offline, which is typical in
those approaches [144].

The simulation result is shown in Fig. 3.3. It can be seen from Fig. 3.3(a) that the
robot safely travels from the start position (marked by the red square) to the target position
(marked by the green triangle) without colliding with the obstacle. Figs. 3.3(b) and (c)
show the control input histories. In particular, the green dotted curves correspond to the
nominal policy φ, the red dashed curves to the safe-mode policy ψ, and the blue solid
curves are the optimized convex combinations of φ and ψ obtained by Algorithm 8.

106

0 5 10 15 20
-2

-1

0

1

2

0 5 10 15 20
-2

-1

0

1

2

(b) (c)

(a)

Figure 3.3: Omni-directional robot obstacle avoidance.

3.5 Summary and discussion

In this chapter, we introduced the Action Governor (AG), which is a novel add-on scheme to
nominal control loops that monitors and minimally modifies (when necessary) the nominal
control signal to enforce pointwise-in-time state and control constraints. We established
the theoretical foundation and computational approach of the AG for discrete-time linear
systems subject to non-convex exclusion-zone avoidance constraints, and used automotive
and mobile robot related examples to illustrate its operation and effectiveness.

Ongoing research focuses on extending the AG scheme to linear systems with additive
disturbances and/or parametric uncertainties, and to nonlinear systems. Also, using the
AG to achieve safe reinforcement learning is of interest and is being investigated [163].
The goal is to develop the AG into a general safety supervision framework for enhancing
autonomous vehicle safety.

107

CHAPTER 4

Conclusions and future work

4.1 Conclusions

In order to ensure safe and effective operation on shared roads, autonomous vehicles need
to be equipped with highly reliable decision and control systems that can appropriately
account for/respond to road user interactions. This dissertation addresses urgent challenges
in the development and high-confidence validation of such systems from the following
three angles:

Firstly, we developed new approaches based on game theory for modeling the inter-
actions among drivers/vehicles in traffic. The models produced by these approaches have
been used to build up highway and intersection traffic simulators with improved represen-
tation of driver/vehicle interactions, which can be used for fast and economical simulation-
based testing and validation of autonomous vehicle control systems.

Secondly, we proposed a new autonomous vehicle (high-level) control approach that
enables an autonomous ego vehicle to appropriately respond to its interaction with the
traffic environment. The major advantages of this approach include its abilities to handle
interaction uncertainties and to provide an explicit probabilistic safety guarantee under such
uncertainties.

Thirdly, we introduced the Action Governor (AG) as an add-on scheme to nominal
control loops for enforcing pointwise-in-time state and control constraints. In this disserta-
tion, we established the theoretical foundation and computational approach of the AG for
discrete-time linear systems with non-convex exclusion-zone avoidance constraints. The
goal of ongoing research is to extend the AG into a general safety supervision framework
for enhancing autonomous vehicle safety.

108

4.2 Future work

Virtual testing using a simulator can effectively discover “faults” of an autonomous driving
algorithm1 through fast generation and simulation of a rich set of randomized scenarios.
One of the next steps is the development of methodology and toolchain that can quanti-
tatively and/or formally certify certain levels of safety and robustness of an autonomous
driving algorithm based on measures of coverage and performance of its virtual testing
results and provide guideline and/or data for automatic test-case generation for future on-
road testing. This will be a major step towards an effective integration of virtual testing and
on-road testing into a unified verification and validation (V&V) framework for autonomous
vehicles that can provide highly accelerated and reliable V&V procedures and results.

To overcome the scalability issue of the proposed interaction-aware autonomous vehi-
cle control approach is one of the focuses of ongoing research. On the one hand, proper
abstraction and decoupling of vehicle interactive behaviors can lead to decision problems
of smaller sizes and hence enable handling of more interacting vehicles. On the other hand,
developing more efficient C-POMDP solvers based on extension and integration of recent
advances in real-time optimization, parallel and distributed computation, and/or machine
learning techniques, and developing the continuous-space counterpart of the approach are
promising directions to achieve improved scalability and are of general interest.

Extensions of the Action Governor (AG) to handle set-bounded/stochastic disturbances
and parametric uncertainties and to handle a broader class of systems, such as piecewise-
affine nonlinear systems, are being pursued. Also, using the AG to achieve safe reinforce-
ment learning is an interesting and relevant topic. For instance, it will enable autonomous
vehicles to safely evolve their control policies online to account for effects of vehicle com-
ponent aging as well as passengers’ individual preferences. This will be more thoroughly
investigated in future research.

1For instance, conditions under which the algorithm can lead to unsafe driving behaviors

109

BIBLIOGRAPHY

[1] Anderson, J. M., Nidhi, K., Stanley, K. D., Sorensen, P., Samaras, C., and Oluwatola,
O. A., Autonomous vehicle technology: A guide for policymakers, Rand Corporation,
2014.

[2] Van Brummelen, J., O’Brien, M., Gruyer, D., and Najjaran, H., “Autonomous ve-
hicle perception: The technology of today and tomorrow,” Transportation Research
Part C: Emerging Technologies, Vol. 89, 2018, pp. 384–406.

[3] Schwarting, W., Alonso-Mora, J., and Rus, D., “Planning and decision-making for
autonomous vehicles,” Annual Review of Control, Robotics, and Autonomous Sys-
tems, Vol. 1, 2018, pp. 187–210.

[4] Guanetti, J., Kim, Y., and Borrelli, F., “Control of connected and automated vehicles:
State of the art and future challenges,” Annual Reviews in Control, Vol. 45, 2018,
pp. 18–40.

[5] Liu, L., Lu, S., Zhong, R., Wu, B., Yao, Y., Zhang, Q., and Shi, W., “Computing
systems for autonomous driving: State-of-the-art and challenges,” IEEE Internet of
Things Journal, 2020, pp. 1–1.

[6] Buehler, M., Iagnemma, K., and Singh, S., The 2005 DARPA grand challenge: The
great robot race, Vol. 36, Springer, 2007.

[7] Buehler, M., Iagnemma, K., and Singh, S., The DARPA urban challenge: Au-
tonomous vehicles in city traffic, Vol. 56, Springer, 2009.

[8] Koopman, P. and Wagner, M., “Autonomous vehicle safety: An interdisciplinary
challenge,” IEEE Intelligent Transportation Systems Magazine, Vol. 9, No. 1, 2017,
pp. 90–96.

[9] Hussain, R. and Zeadally, S., “Autonomous cars: Research results, issues, and fu-
ture challenges,” IEEE Communications Surveys & Tutorials, Vol. 21, No. 2, 2018,
pp. 1275–1313.

[10] Parkinson, S., Ward, P., Wilson, K., and Miller, J., “Cyber threats facing autonomous
and connected vehicles: Future challenges,” IEEE Transactions on Intelligent Trans-
portation Systems, Vol. 18, No. 11, 2017, pp. 2898–2915.

110

[11] Ersal, T., Kolmanovsky, I., Masoud, N., Ozay, N., Scruggs, J., Vasudevan, R., and
Orosz, G., “Connected and automated road vehicles: State of the art and future
challenges,” Vehicle System Dynamics, Vol. 58, No. 5, 2020, pp. 672–704.

[12] SAE International, Taxonomy and definitions for terms related to driving automation
systems for on-road motor vehicles, June 2018, https://doi.org/10.4271/
J3016_201806.

[13] Litman, T., “Autonomous vehicle implementation predictions: Implications for
transport planning,” Tech. rep., 2020.

[14] Plumer, B., 5 big challenges that self-driving cars still have to overcome,
Vox Media, April 2016, https://www.vox.com/2016/4/21/11447838/
self-driving-cars-challenges-obstacles.

[15] Sovani, S., Top 3 challenges to produce level 5 autonomous vehicles,
Ansys Blog, December 2018, https://www.ansys.com/blog/
challenges-level-5-autonomous-vehicles.

[16] Hao, K., The three challenges keeping cars from being fully
autonomous, MIT Technology Review, April 2019, https:
//www.technologyreview.com/2019/04/23/103181/
the-three-challenges-keeping-cars-from-being-fully-autonomous/.

[17] Li, N. I., Kolmanovsky, I., and Girard, A., “A reference governor for nonlinear sys-
tems based on quadratic programming,” Dynamic Systems and Control Conference,
Vol. 50695, American Society of Mechanical Engineers, 2016, p. V001T02A005.

[18] Li, N., Kolmanovsky, I. V., and Girard, A., “A reference governor for nonlinear
systems with disturbance inputs based on logarithmic norms and quadratic program-
ming,” IEEE Transactions on Automatic Control, Vol. 65, No. 7, 2019, pp. 3207–
3214.

[19] Kalabić, U. V., Li, N. I., Vermillion, C., and Kolmanovsky, I. V., “Reference gover-
nors for chance-constrained systems,” Automatica, Vol. 109, 2019, pp. 108500.

[20] Liu, K., Li, N., Rizzo, D., Garone, E., Kolmanovsky, I., and Girard, A., “Model-free
learning to avoid constraint violations: An explicit reference governor approach,”
2019 American Control Conference (ACC), IEEE, 2019, pp. 934–940.

[21] Liu, K., Li, N., Kolmanovsky, I., Rizzo, D., and Girard, A., “Model-free learning
for safety-critical control systems: A reference governor approach,” 2020 American
Control Conference (ACC), IEEE, 2020, pp. 943–949.

[22] Li, N., Girard, A., and Kolmanovsky, I., “Chance-constrained controller state and
reference governor,” arXiv preprint arXiv:2010.01710, 2020.

111

https://doi.org/10.4271/J3016_201806
https://doi.org/10.4271/J3016_201806
https://www.vox.com/2016/4/21/11447838/self-driving-cars-challenges-obstacles
https://www.vox.com/2016/4/21/11447838/self-driving-cars-challenges-obstacles
https://www.ansys.com/blog/challenges-level-5-autonomous-vehicles
https://www.ansys.com/blog/challenges-level-5-autonomous-vehicles
https://www.technologyreview.com/2019/04/23/103181/the-three-challenges-keeping-cars-from-being-fully-autonomous/
https://www.technologyreview.com/2019/04/23/103181/the-three-challenges-keeping-cars-from-being-fully-autonomous/
https://www.technologyreview.com/2019/04/23/103181/the-three-challenges-keeping-cars-from-being-fully-autonomous/

[23] Li, N., Kolmanovsky, I., and Girard, A., “Detection-averse optimal and receding-
horizon control for Markov decision processes,” Automatica, Vol. 122, 2020,
pp. 109278.

[24] Li, N., Kolmanovsky, I., Girard, A., and Filev, D., “Fuzzy encoded Markov chains:
Overview, observer theory, and applications,” IEEE Transactions on Systems, Man,
and Cybernetics: Systems, 2020.

[25] Li, N., Li, Z., Dong, L., Girard, A., Kolmanovsky, I., and Lu, R., “Triggered mea-
surements in Markov processes for entropy-constrained state estimation with ap-
plication to precision agriculture,” 2020 59th IEEE Conference on Decision and
Control (CDC), IEEE, 2020, pp. 3611–3616.

[26] Li, N., Kolmanovsky, I. V., and Girard, A., “An analytical safe approximation to
joint chance-constrained programming with additive Gaussian noises,” IEEE Trans-
actions on Automatic Control, 2021.

[27] Li, X., Li, N., Kolmanovsky, I., and Epureanu, B. I., “Stochastic model predictive
control for remanufacturing system management,” Journal of Manufacturing Sys-
tems, Vol. 59, 2021, pp. 355–366.

[28] Hudson, J., Gupta, R., Li, N., and Kolmanovsky, I., “Iterative model and trajectory
refinement for orbital trajectory optimization,” Optimal Control Applications and
Methods, Vol. 38, No. 6, 2017, pp. 1132–1147.

[29] Li, N., Kolmanovsky, I., and Girard, A., “LQ control of unknown discrete-time linear
systems – A novel approach and a comparison study,” Optimal Control Applications
and Methods, Vol. 40, No. 2, 2019, pp. 265–291.

[30] Berning, A. W., Li, N. I., Girard, A., Leve, F. A., Petersen, C. D., and Kolmanovsky,
I., “Spacecraft relative motion planning using chained chance-constrained admissi-
ble sets,” 2020 American Control Conference (ACC), IEEE, 2020, pp. 4938–4944.

[31] Li, N., Kolmanovsky, I., and Girard, A., “Model-free optimal control based automo-
tive control system falsification,” 2017 American Control Conference (ACC), IEEE,
2017, pp. 636–641.

[32] Li, N., Girard, A., and Kolmanovsky, I., “Optimal control based falsification of un-
known systems with time delays: A gasoline engine A/F ratio control case study,”
IFAC-PapersOnLine, Vol. 51, No. 31, 2018, pp. 252–257.

[33] Maldonado, B. P., Li, N., Kolmanovsky, I., and Stefanopoulou, A. G., “Learning
reference governor for cycle-to-cycle combustion control with misfire avoidance in
spark-ignition engines at high exhaust gas recirculation-diluted conditions,” Inter-
national Journal of Engine Research, Vol. 21, No. 10, 2020, pp. 1819–1834.

[34] Tian, R., Li, N., Girard, A., and Kolmanovsky, I., “Controller mode and reference
governor for constraint and failure management in vehicle platoon systems,” 2020

112

IEEE Conference on Control Technology and Applications (CCTA), IEEE, 2020, pp.
660–665.

[35] Tang, S., Li, N., Kolmanovsky, I., and Girard, A., “Trajectory optimization for fal-
sification: A case study of vehicle rollover test generation based on black-box mod-
els,” 21st IFAC World Congress, IFAC, 2020.

[36] Liu, K., Li, N., Kolmanovsky, I., Rizzo, D., and Girard, A., “Tanker truck rollover
avoidance using learning reference governor,” Tech. rep., SAE Technical Paper,
2021.

[37] Liu, K., Li, N., Kolmanovsky, I., Rizzo, D., and Girard, A., “Safe learning reference
governor for constrained systems with application to fuel truck rollover avoidance,”
arXiv preprint arXiv:2101.09298, 2021.

[38] Deo, N. and Trivedi, M. M., “Convolutional social pooling for vehicle trajectory
prediction,” Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition Workshops, 2018, pp. 1468–1476.

[39] Sun, L., Zhan, W., and Tomizuka, M., “Probabilistic prediction of interactive driving
behavior via hierarchical inverse reinforcement learning,” 2018 21st International
Conference on Intelligent Transportation Systems (ITSC), IEEE, 2018, pp. 2111–
2117.

[40] Li, J., Ma, H., Zhan, W., and Tomizuka, M., “Generic probabilistic interactive sit-
uation recognition and prediction: From virtual to real,” 2018 21st International
Conference on Intelligent Transportation Systems (ITSC), IEEE, 2018, pp. 3218–
3224.

[41] Hu, Y., Zhan, W., Sun, L., and Tomizuka, M., “Multi-modal probabilistic prediction
of interactive behavior via an interpretable model,” 2019 IEEE Intelligent Vehicles
Symposium (IV), IEEE, 2019, pp. 557–563.

[42] Gupta, A., Johnson, J., Fei-Fei, L., Savarese, S., and Alahi, A., “Social GAN: So-
cially acceptable trajectories with generative adversarial networks,” Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 2255–
2264.

[43] Dai, S., Li, L., and Li, Z., “Modeling vehicle interactions via modified LSTM models
for trajectory prediction,” IEEE Access, Vol. 7, 2019, pp. 38287–38296.

[44] Wang, W., Liu, C., and Zhao, D., “How much data are enough? A statistical ap-
proach with case study on longitudinal driving behavior,” IEEE Transactions on
Intelligent Vehicles, Vol. 2, No. 2, 2017, pp. 85–98.

[45] Zhuang, F., Qi, Z., Duan, K., Xi, D., Zhu, Y., Zhu, H., Xiong, H., and He, Q.,
“A comprehensive survey on transfer learning,” Proceedings of the IEEE, Vol. 109,
No. 1, 2020, pp. 43–76.

113

[46] Myerson, R. B., Game theory, Harvard university press, 2013.

[47] Mandiau, R., Champion, A., Auberlet, J.-M., Espié, S., and Kolski, C., “Behaviour
based on decision matrices for a coordination between agents in a urban traffic sim-
ulation,” Applied Intelligence, Vol. 28, No. 2, 2008, pp. 121–138.

[48] Yoo, J. H. and Langari, R., “Stackelberg game based model of highway driving,”
Dynamic Systems and Control Conference, Vol. 45295, American Society of Me-
chanical Engineers, 2012, pp. 499–508.

[49] Yoo, J. H. and Langari, R., “A Stackelberg game theoretic driver model for merg-
ing,” Dynamic Systems and Control Conference, Vol. 56130, American Society of
Mechanical Engineers, 2013, p. V002T30A003.

[50] Talebpour, A., Mahmassani, H. S., and Hamdar, S. H., “Modeling lane-changing
behavior in a connected environment: A game theory approach,” Transportation
Research Procedia, Vol. 7, 2015, pp. 420–440.

[51] Bahram, M., Lawitzky, A., Friedrichs, J., Aeberhard, M., and Wollherr, D., “A game-
theoretic approach to replanning-aware interactive scene prediction and planning,”
IEEE Transactions on Vehicular Technology, Vol. 65, No. 6, 2015, pp. 3981–3992.

[52] Yu, H., Tseng, H. E., and Langari, R., “A human-like game theory-based controller
for automatic lane changing,” Transportation Research Part C: Emerging Technolo-
gies, Vol. 88, 2018, pp. 140–158.

[53] Sadigh, D., Sastry, S., Seshia, S. A., and Dragan, A. D., “Planning for autonomous
cars that leverage effects on human actions,” Robotics: Science and Systems, Vol. 2,
2016.

[54] Fisac, J. F., Bronstein, E., Stefansson, E., Sadigh, D., Sastry, S. S., and Dragan,
A. D., “Hierarchical game-theoretic planning for autonomous vehicles,” 2019 Inter-
national Conference on Robotics and Automation (ICRA), IEEE, 2019, pp. 9590–
9596.

[55] Dreves, A. and Gerdts, M., “A generalized Nash equilibrium approach for optimal
control problems of autonomous cars,” Optimal Control Applications and Methods,
Vol. 39, No. 1, 2018, pp. 326–342.

[56] Başar, T. and Zaccour, G., Handbook of dynamic game theory, Springer, 2018.

[57] Stahl II, D. O. and Wilson, P. W., “Experimental evidence on players’ models of
other players,” Journal of Economic Behavior & Organization, Vol. 25, No. 3, 1994,
pp. 309–327.

[58] Stahl, D. O. and Wilson, P. W., “On players’ models of other players: Theory
and experimental evidence,” Games and Economic Behavior, Vol. 10, No. 1, 1995,
pp. 218–254.

114

[59] Nagel, R., “Unraveling in guessing games: An experimental study,” The American
Economic Review, Vol. 85, No. 5, 1995, pp. 1313–1326.

[60] Sutton, R. S. and Barto, A. G., Reinforcement learning: An introduction, MIT press,
2018.

[61] Von Stackelberg, H., Market structure and equilibrium, Springer Science & Business
Media, 2010.

[62] Basar, T. and Olsder, G. J., Dynamic noncooperative game theory, Vol. 23, SIAM,
1999.

[63] National Highway Traffic Safety Administration, “Right-of-way Rules,” 2018,
https://one.nhtsa.gov/DOT/NHTSA/NTI/Article/RightOfWay/
RightOfWayRules.pdf.

[64] Kalra, N. and Paddock, S. M., “Driving to safety: How many miles of driving would
it take to demonstrate autonomous vehicle reliability?” Transportation Research
Part A: Policy and Practice, Vol. 94, 2016, pp. 182–193.

[65] Li, N., Oyler, D. W., Zhang, M., Yildiz, Y., Kolmanovsky, I., and Girard, A. R.,
“Game theoretic modeling of driver and vehicle interactions for verification and val-
idation of autonomous vehicle control systems,” IEEE Transactions on Control Sys-
tems Technology, Vol. 26, No. 5, 2017, pp. 1782–1797.

[66] Li, N., Yao, Y., Kolmanovsky, I., Atkins, E., and Girard, A. R., “Game-theoretic
modeling of multi-vehicle interactions at uncontrolled intersections,” IEEE Trans-
actions on Intelligent Transportation Systems, 2020.

[67] Tian, R., Li, N., Kolmanovsky, I., Yildiz, Y., and Girard, A. R., “Game-theoretic
modeling of traffic in unsignalized intersection network for autonomous vehicle con-
trol verification and validation,” IEEE Transactions on Intelligent Transportation
Systems, 2020.

[68] Li, N., Zhang, M., Yildiz, Y., Kolmanovsky, I., and Girard, A., “Game theory-based
traffic modeling for calibration of automated driving algorithms,” Control Strate-
gies for Advanced Driver Assistance Systems and Autonomous Driving Functions,
Springer, 2019, pp. 89–106.

[69] Oyler, D. W., Yildiz, Y., Girard, A. R., Li, N. I., and Kolmanovsky, I. V., “A game
theoretical model of traffic with multiple interacting drivers for use in autonomous
vehicle development,” 2016 American Control Conference (ACC), IEEE, 2016, pp.
1705–1710.

[70] Li, N., Oyler, D., Zhang, M., Yildiz, Y., Girard, A., and Kolmanovsky, I., “Hier-
archical reasoning game theory based approach for evaluation and testing of au-
tonomous vehicle control systems,” 2016 IEEE 55th Conference on Decision and
Control (CDC), IEEE, 2016, pp. 727–733.

115

https://one.nhtsa.gov/DOT/NHTSA/NTI/Article/RightOfWay/RightOfWayRules.pdf
https://one.nhtsa.gov/DOT/NHTSA/NTI/Article/RightOfWay/RightOfWayRules.pdf

[71] Zhang, M., Li, N., Girard, A., and Kolmanovsky, I., “A finite state machine based
automated driving controller and its stochastic optimization,” Dynamic Systems and
Control Conference, Vol. 58288, American Society of Mechanical Engineers, 2017,
p. V002T07A002.

[72] Li, N., Kolmanovsky, I., Girard, A., and Yildiz, Y., “Game theoretic modeling of
vehicle interactions at unsignalized intersections and application to autonomous ve-
hicle control,” 2018 Annual American Control Conference (ACC), IEEE, 2018, pp.
3215–3220.

[73] Tian, R., Li, S., Li, N., Kolmanovsky, I., Girard, A., and Yildiz, Y., “Adaptive game-
theoretic decision making for autonomous vehicle control at roundabouts,” 2018
IEEE Conference on Decision and Control (CDC), IEEE, 2018, pp. 321–326.

[74] Su, G., Li, N., Yildiz, Y., Girard, A., and Kolmanovsky, I., “A traffic simulation
model with interactive drivers and high-fidelity car dynamics,” IFAC-PapersOnLine,
Vol. 51, No. 34, 2019, pp. 384–389.

[75] Albaba, M., Yildiz, Y., Li, N., Kolmanovsky, I., and Girard, A., “Stochastic driver
modeling and validation with traffic data,” 2019 American Control Conference
(ACC), IEEE, 2019, pp. 4198–4203.

[76] Li, H., Li, N., Kolmanovsky, I., and Girard, A., “Energy-efficient autonomous ve-
hicle control using reinforcement learning and interactive traffic simulations,” 2020
American Control Conference (ACC), IEEE, 2020, pp. 3029–3034.

[77] Tian, R., Li, N., Kolmanovsky, I., and Girard, A., “Beating humans in a penny-
matching game by leveraging cognitive hierarchy theory and Bayesian learning,”
2020 American Control Conference (ACC), IEEE, 2020, pp. 4652–4657.

[78] Costa-Gomes, M. A. and Crawford, V. P., “Cognition and behavior in two-person
guessing games: An experimental study,” American Economic Review, Vol. 96,
No. 5, 2006, pp. 1737–1768.

[79] Costa-Gomes, M. A., Crawford, V. P., and Iriberri, N., “Comparing models of strate-
gic thinking in Van Huyck, Battalio, and Beil’s coordination games,” Journal of the
European Economic Association, Vol. 7, No. 2-3, 2009, pp. 365–376.

[80] Arad, A. and Rubinstein, A., “The 11-20 money request game: A level-k reasoning
study,” American Economic Review, Vol. 102, No. 7, 2012, pp. 3561–73.

[81] Shapiro, D., Shi, X., and Zillante, A., “Level-k reasoning in a generalized beauty
contest,” Games and Economic Behavior, Vol. 86, 2014, pp. 308–329.

[82] Brackstone, M. and McDonald, M., “Car-following: A historical review,” Trans-
portation Research Part F: Traffic Psychology and Behaviour, Vol. 2, No. 4, 1999,
pp. 181–196.

116

[83] Kikuchi, S. and Chakroborty, P., “Car-following model based on fuzzy inference
system,” Transportation Research Record, 1992, pp. 82–82.

[84] McDonald, M., Wu, J., and Brackstone, M., “Development of a fuzzy logic based
microscopic motorway simulation model,” Proceedings of Conference on Intelligent
Transportation Systems, 1997, pp. 82–87.

[85] Kallenberg, L., “Classification problems in MDPs,” Markov processes and con-
trolled Markov chains, Springer, 2002, pp. 151–165.

[86] Jaakkola, T., Singh, S. P., and Jordan, M. I., “Reinforcement learning algorithm for
partially observable Markov decision problems,” Advances in Neural Information
Processing Systems, 1995, pp. 345–352.

[87] Federal Highway Administration, “NGSIM – Next generation simulation,” Tech.
rep., United States Federal Government, Washington, DC, USA. https://ops.
fhwa.dot.gov/trafficanalysistools/ngsim.htm.

[88] Kincaid, P., “The rule of the road: an international guide to history and practice,”
1986.

[89] Chen, L. and Englund, C., “Cooperative intersection management: A survey,” IEEE
Transactions on Intelligent Transportation Systems, Vol. 17, No. 2, 2016, pp. 570–
586.

[90] Ma, X. and Andréasson, I., “Estimation of driver reaction time from car-following
data: Application in evaluation of General Motor-type model,” Transportation Re-
search Record, Vol. 1965, No. 1, 2006, pp. 130–141.

[91] Rawlings, J., Mayne, D., and Diehl, M., Model predictive control: Theory, compu-
tation, and design, Nob Hill Publishing, 2017.

[92] Kuderer, M., Gulati, S., and Burgard, W., “Learning driving styles for autonomous
vehicles from demonstration,” 2015 IEEE International Conference on Robotics and
Automation (ICRA), IEEE, 2015, pp. 2641–2646.

[93] Ren, X., Wang, D., Laskey, M., and Goldberg, K., “Learning traffic behaviors by
extracting vehicle trajectories from online video streams,” 2018 IEEE 14th Interna-
tional Conference on Automation Science and Engineering (CASE), IEEE, 2018, pp.
1276–1283.

[94] Pruekprasert, S., Zhang, X., Dubut, J., Huang, C., and Kishida, M., “Decision mak-
ing for autonomous vehicles at unsignalized intersection in presence of malicious
vehicles,” 2019 IEEE Intelligent Transportation Systems Conference (ITSC), IEEE,
2019, pp. 2299–2304.

[95] Quiroga, C. A. and Bullock, D., “Measuring control delay at signalized intersec-
tions,” Journal of Transportation Engineering, Vol. 125, No. 4, 1999, pp. 271–280.

117

https://ops.fhwa.dot.gov/trafficanalysistools/ngsim.htm
https://ops.fhwa.dot.gov/trafficanalysistools/ngsim.htm

[96] Transportation Research Board, HCM 2010: Highway capacity manual, Transporta-
tion Research Board, Washington, D.C., 5th ed., 2000.

[97] Claussmann, L., Carvalho, A., and Schildbach, G., “A path planner for autonomous
driving on highways using a human mimicry approach with binary decision dia-
grams,” 2015 European Control Conference (ECC), IEEE, 2015, pp. 2976–2982.

[98] Lord, D., Manar, A., and Vizioli, A., “Modeling crash-flow-density and crash-flow-
V/C ratio relationships for rural and urban freeway segments,” Accident Analysis &
Prevention, Vol. 37, No. 1, 2005, pp. 185–199.

[99] Wymann, B., Dimitrakakisy, C., Sumnery, A., and Guionneauz, C., “TORCS: The
open racing car simulator,” 2015.

[100] Althoff, M. and Dolan, J. M., “Online verification of automated road vehicles us-
ing reachability analysis,” IEEE Transactions on Robotics, Vol. 30, No. 4, 2014,
pp. 903–918.

[101] Althoff, M. and Magdici, S., “Set-based prediction of traffic participants on arbi-
trary road networks,” IEEE Transactions on Intelligent Vehicles, Vol. 1, No. 2, 2016,
pp. 187–202.

[102] Chen, Y., Peng, H., and Grizzle, J. W., “Fast trajectory planning and robust trajectory
tracking for pedestrian avoidance,” IEEE Access, Vol. 5, 2017, pp. 9304–9317.

[103] Ahn, H., Berntorp, K., Inani, P., Ram, A. J., and Di Cairano, S., “Reachability-
based decision-making for autonomous driving: Theory and experiments,” IEEE
Transactions on Control Systems Technology, 2020, pp. 1–15.

[104] Trautman, P. and Krause, A., “Unfreezing the robot: Navigation in dense, inter-
acting crowds,” 2010 IEEE/RSJ International Conference on Intelligent Robots and
Systems, IEEE, 2010, pp. 797–803.

[105] Nishi, T., Doshi, P., and Prokhorov, D., “Merging in congested freeway traffic using
multipolicy decision making and passive actor-critic learning,” IEEE Transactions
on Intelligent Vehicles, Vol. 4, No. 2, 2019, pp. 287–297.

[106] Hoel, C.-J., Driggs-Campbell, K., Wolff, K., Laine, L., and Kochenderfer, M. J.,
“Combining planning and deep reinforcement learning in tactical decision making
for autonomous driving,” IEEE Transactions on Intelligent Vehicles, Vol. 5, No. 2,
2019, pp. 294–305.

[107] You, C., Lu, J., Filev, D., and Tsiotras, P., “Advanced planning for autonomous
vehicles using reinforcement learning and deep inverse reinforcement learning,”
Robotics and Autonomous Systems, Vol. 114, 2019, pp. 1–18.

[108] Nageshrao, S., Tseng, H. E., and Filev, D., “Autonomous highway driving using deep
reinforcement learning,” 2019 IEEE International Conference on Systems, Man and
Cybernetics (SMC), IEEE, 2019, pp. 2326–2331.

118

[109] Hu, Y., Nakhaei, A., Tomizuka, M., and Fujimura, K., “Interaction-aware decision
making with adaptive strategies under merging scenarios,” 2019 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS), 2019, pp. 151–158.

[110] Evestedt, N., Ward, E., Folkesson, J., and Axehill, D., “Interaction aware trajectory
planning for merge scenarios in congested traffic situations,” 2016 IEEE 19th Inter-
national Conference on Intelligent Transportation Systems (ITSC), IEEE, 2016, pp.
465–472.

[111] Bae, S., Saxena, D., Nakhaei, A., Choi, C., Fujimura, K., and Moura, S.,
“Cooperation-aware lane change maneuver in dense traffic based on model pre-
dictive control with recurrent neural network,” 2020 American Control Conference
(ACC), IEEE, 2020, pp. 1209–1216.

[112] Bandyopadhyay, T., Won, K. S., Frazzoli, E., Hsu, D., Lee, W. S., and Rus, D.,
“Intention-aware motion planning,” Algorithmic foundations of robotics X, Springer,
2013, pp. 475–491.

[113] Cunningham, A. G., Galceran, E., Eustice, R. M., and Olson, E., “MPDM: Multipol-
icy decision-making in dynamic, uncertain environments for autonomous driving,”
2015 IEEE International Conference on Robotics and Automation (ICRA), 2015, pp.
1670–1677.

[114] Hubmann, C., Schulz, J., Becker, M., Althoff, D., and Stiller, C., “Automated driv-
ing in uncertain environments: Planning with interaction and uncertain maneuver
prediction,” IEEE Transactions on Intelligent Vehicles, Vol. 3, No. 1, 2018, pp. 5–
17.

[115] Lefkopoulos, V., Menner, M., Domahidi, A., and Zeilinger, M. N., “Interaction-
aware motion prediction for autonomous driving: A multiple model Kalman filtering
scheme,” IEEE Robotics and Automation Letters, Vol. 6, No. 1, 2021, pp. 80–87.

[116] Hauskrecht, M., “Value-function approximations for partially observable Markov
decision processes,” Journal of Artificial Intelligence Research, Vol. 13, 2000,
pp. 33–94.

[117] Pineau, J., Gordon, G., Thrun, S., et al., “Point-based value iteration: An anytime
algorithm for POMDPs,” IJCAI, Vol. 3, Citeseer, 2003, pp. 1025–1032.

[118] Kurniawati, H., Hsu, D., and Lee, W. S., “SARSOP: Efficient point-based POMDP
planning by approximating optimally reachable belief spaces.” Robotics: Science
and systems, Vol. 2008, Citeseer, 2008.

[119] Li, N., Girard, A., and Kolmanovsky, I., “Stochastic predictive control for partially
observable Markov decision processes with time-joint chance constraints and appli-
cation to autonomous vehicle control,” Journal of Dynamic Systems, Measurement,
and Control, Vol. 141, No. 7, 2019.

119

[120] Li, N., Kolmanovsky, I., and Girard, A., “Tractable stochastic predictive control for
partially observable Markov decision processes with time-joint chance constraints,”
2018 IEEE Conference on Decision and Control (CDC), IEEE, 2018, pp. 3276–
3282.

[121] Li, S., Li, N., Girard, A., and Kolmanovsky, I., “Decision making in dynamic and in-
teractive environments based on cognitive hierarchy theory, Bayesian inference, and
predictive control,” 2019 IEEE 58th Conference on Decision and Control (CDC),
IEEE, 2019, pp. 2181–2187.

[122] Liu, K., Li, N., Kolmanovsky, I., and Girard, A., “A vehicle routing problem with
dynamic demands and restricted failures solved using stochastic predictive control,”
2019 American Control Conference (ACC), IEEE, 2019, pp. 1885–1890.

[123] Boyd, S. and Vandenberghe, L., Convex optimization, Cambridge university press,
2004.

[124] Kumar, P. R. and Varaiya, P., Stochastic systems: Estimation, identification, and
adaptive control, SIAM, 2015.

[125] Lee, J., A first course in combinatorial optimization, No. 36, Cambridge University
Press, 2004.

[126] Adler, I., Resende, M. G., Veiga, G., and Karmarkar, N., “An implementation of Kar-
markar’s algorithm for linear programming,” Mathematical Programming, Vol. 44,
No. 1, 1989, pp. 297–335.

[127] Lorenzen, M., Allgöwer, F., Dabbene, F., and Tempo, R., “An improved constraint-
tightening approach for stochastic MPC,” 2015 American Control Conference
(ACC), IEEE, 2015, pp. 944–949.

[128] Lorenzen, M., Allgöwer, F., Dabbene, F., and Tempo, R., “Scenario-based stochastic
MPC with guaranteed recursive feasibility,” 2015 54th Conference on Decision and
Control (CDC), IEEE, 2015, pp. 4958–4963.

[129] Beck, J. M., Ma, W. J., Pitkow, X., Latham, P. E., and Pouget, A., “Not noisy, just
wrong: the role of suboptimal inference in behavioral variability,” Neuron, Vol. 74,
No. 1, 2012, pp. 30–39.

[130] Acerbi, L., Vijayakumar, S., and Wolpert, D. M., “On the origins of suboptimality in
human probabilistic inference,” PLOS Computational Biology, Vol. 10, No. 6, 2014,
pp. e1003661.

[131] Wang, Y. and Boyd, S., “Fast model predictive control using online optimization,”
IEEE Transactions on Control Systems Technology, Vol. 18, No. 2, 2009, pp. 267–
278.

120

[132] Dontchev, A. L., Huang, M., Kolmanovsky, I. V., and Nicotra, M. M., “Inexact
Newton-Kantorovich methods for constrained nonlinear model predictive control,”
IEEE Transactions on Automatic Control, Vol. 64, No. 9, 2018, pp. 3602–3615.

[133] Walker, K., Samadi, B., Huang, M., Gerhard, J., Butts, K., and Kolmanovsky, I.,
“Design environment for nonlinear model predictive control,” SAE Technical Paper,
2016, pp. 2016–01–0627.

[134] Ernest, B. R., Dynamic programming, Courier Dover Publications, 2003.

[135] Li, N., Chen, H., Kolmanovsky, I., and Girard, A., “An explicit decision tree ap-
proach for automated driving,” Dynamic Systems and Control Conference, Vol.
58271, American Society of Mechanical Engineers, 2017, p. V001T45A003.

[136] Nilsson, P., Hussien, O., Balkan, A., Chen, Y., Ames, A. D., Grizzle, J. W., Ozay, N.,
Peng, H., and Tabuada, P., “Correct-by-construction adaptive cruise control: Two
approaches,” IEEE Transactions on Control Systems Technology, Vol. 24, No. 4,
2015, pp. 1294–1307.

[137] Tee, K. P., Ge, S. S., and Tay, E. H., “Barrier Lyapunov functions for the control of
output-constrained nonlinear systems,” Automatica, Vol. 45, No. 4, 2009, pp. 918–
927.

[138] Ames, A. D., Xu, X., Grizzle, J. W., and Tabuada, P., “Control barrier function based
quadratic programs for safety critical systems,” IEEE Transactions on Automatic
Control, Vol. 62, No. 8, 2016, pp. 3861–3876.

[139] Camacho, E. F. and Alba, C. B., Model predictive control, Springer Science & Busi-
ness Media, 2013.

[140] Borrelli, F., Bemporad, A., and Morari, M., Predictive control for linear and hybrid
systems, Cambridge University Press, 2017.

[141] Garone, E., Di Cairano, S., and Kolmanovsky, I., “Reference and command gover-
nors for systems with constraints: A survey on theory and applications,” Automatica,
Vol. 75, 2017, pp. 306–328.

[142] Chen, Y., Hereid, A., Peng, H., and Grizzle, J., “Enhancing the performance of a
safe controller via supervised learning for truck lateral control,” Journal of Dynamic
Systems, Measurement, and Control, Vol. 141, No. 10, 2019.

[143] Li, Z., Kalabić, U., and Chu, T., “Safe reinforcement learning: Learning with su-
pervision using a constraint-admissible set,” American Control Conference, IEEE,
2018, pp. 6390–6395.

[144] Latombe, J.-C., Robot motion planning, Vol. 124, Springer Science & Business Me-
dia, 2012.

121

[145] Bouguerra, M. A., Fraichard, T., and Fezari, M., “Viability-based guaranteed safe
robot navigation,” Journal of Intelligent & Robotic Systems, Vol. 95, No. 2, 2019,
pp. 459–471.

[146] Hermand, E., Nguyen, T. W., Hosseinzadeh, M., and Garone, E., “Constrained con-
trol of UAVs in geofencing applications,” 26th Mediterranean Conference on Con-
trol and Automation, IEEE, 2018, pp. 217–222.

[147] Kolmanovsky, I. and Gilbert, E. G., “Theory and computation of disturbance invari-
ant sets for discrete-time linear systems,” Mathematical Problems in Engineering,
Vol. 4, No. 4, 1998, pp. 317–367.

[148] Blanchini, F., “Set invariance in control,” Automatica, Vol. 35, No. 11, 1999,
pp. 1747–1767.

[149] Raković, S., Kerrigan, E. C., Mayne, D. Q., and Kouramas, K. I., “Optimized ro-
bust control invariance for linear discrete-time systems: Theoretical foundations,”
Automatica, Vol. 43, No. 5, 2007, pp. 831–841.

[150] Rakovic, S. V. and Baric, M., “Parameterized robust control invariant sets for linear
systems: Theoretical advances and computational remarks,” IEEE Transactions on
Automatic Control, Vol. 55, No. 7, 2010, pp. 1599–1614.

[151] Tedesco, F., Raimondo, D. M., and Casavola, A., “Collision avoidance command
governor for multi-vehicle unmanned systems,” International Journal of Robust and
Nonlinear Control, Vol. 24, No. 16, 2014, pp. 2309–2330.

[152] Lucia, W., Franzè, G., and Sznaier, M., “A hybrid command governor scheme for ro-
tary wings unmanned aerial vehicles,” IEEE Transactions on Control Systems Tech-
nology, Vol. 28, No. 2, 2020, pp. 361–375.

[153] Romagnoli, R., Couto, L. D., Goldar, A., Kinnaert, M., and Garone, E., “A feedback
charge strategy for Li-ion battery cells based on reference governor,” Journal of
Process Control, Vol. 83, 2019, pp. 164–176.

[154] Elbanhawi, M. and Simic, M., “Sampling-based robot motion planning: A review,”
IEEE Access, Vol. 2, 2014, pp. 56–77.

[155] Li, N., Han, K., Girard, A., Tseng, H. E., Filev, D., and Kolmanovsky, I., “Action
governor for discrete-time linear systems with non-convex constraints,” IEEE Con-
trol Systems Letters, Vol. 5, No. 1, 2020, pp. 121–126.

[156] Bristow, D. A., Tharayil, M., and Alleyne, A. G., “A survey of iterative learning
control,” IEEE Control Systems Magazine, Vol. 26, No. 3, 2006, pp. 96–114.

[157] Di Cairano, S., Bernardini, D., Bemporad, A., and Kolmanovsky, I. V., “Stochastic
MPC with learning for driver-predictive vehicle control and its application to HEV
energy management,” IEEE Transactions on Control Systems Technology, Vol. 22,
No. 3, 2013, pp. 1018–1031.

122

[158] Rosolia, U. and Borrelli, F., “Learning model predictive control for iterative tasks. a
data-driven control framework,” IEEE Transactions on Automatic Control, Vol. 63,
No. 7, 2017, pp. 1883–1896.

[159] Folland, G. B., Real analysis: Modern techniques and their applications, Vol. 40,
John Wiley & Sons, 1999.

[160] Herceg, M., Kvasnica, M., Jones, C. N., and Morari, M., “Multi-Parametric Tool-
box 3.0,” European Control Conference, IEEE, 2013, pp. 502–510, http://
control.ee.ethz.ch/˜mpt.

[161] Cotorruelo, A., Limon, D., and Garone, E., “Output admissible sets and reference
governors: Saturations are not constraints!” IEEE Transactions on Automatic Con-
trol, Vol. 65, No. 3, 2020, pp. 1192–1196.

[162] Bemporad, A., “Reference governor for constrained nonlinear systems,” IEEE
Transactions on Automatic Control, Vol. 43, No. 3, 1998, pp. 415–419.

[163] Li, Y., Li, N., Tseng, H. E., Girard, A., Filev, D., and Kolmanovsky, I., “Safe rein-
forcement learning using robust action governor,” arXiv preprint arXiv:2102.10643,
2021.

123

http://control.ee.ethz.ch/~mpt
http://control.ee.ethz.ch/~mpt

APPENDIX A

Proof of RL Algorithm Convergence

Consider a finite-space unichain [85] Markov decision process (MDP) and the following
average reward per unit of time over a long run associated with a policy π,

R̄π = lim
tmax→∞

E
{∑tmax−1

t=0 Rπ(st)
}

tmax

. (A.1)

Define the value functions for states s, observations o, state-action pairs (s, a), and
observation-action pairs (o, a) corresponding to policy π as follows,

V π(s) = lim
tmax→∞

tmax−1∑
t=0

E
{
Rπ(st)− R̄π

∣∣s0 = s
}
,

V π(o) = E
{
V π(s)

∣∣o} =
∑
s

Pπ(s|o)V π(s),

Qπ(s, a) = R(s, a)− R̄π +
∑
s′

P(s′|s, a)V π(s′),

Qπ(o, a) = E
{
Qπ(s, a)

∣∣o} =
∑
s

Pπ(s|o)Qπ(s, a), (A.2)

where P(s′|s, a) is the MDP state transition kernel, and Pπ(s|o) is the probability distribu-
tion of state s given observation o in steady state. Note that because the MDP is assumed
to be unichain, Pπ(s|o) exists, is unique, and depends on the policy π.

According to the above definitions, the following equality can be shown [86],∑
a

π(o, a)Qπ(s, a) = V π(s), (A.3)

which also implies∑
a

π(o, a)Qπ(o, a) =
∑
a

π(o, a)

(∑
s

Pπ(s|o)Qπ(s, a)

)
=
∑
s

Pπ(s|o)
(∑

a

π(o, a)Qπ(s, a)

)
=
∑
s

Pπ(s|o)V π(s) = V π(o),

124

∑
a

π(o, a)

(∑
s

Pπ(s|o) (Qπ(s, a)− V π(s))

)
= 0. (A.4)

Define
J(π̂, π, o) =

∑
a

π̂(o, a) (Qπ(o, a)− V π(o)) . (A.5)

Consider a policy π̂ such that J(π̂, π, o) ≥ 0 for all o and J(π̂, π, o) > 0 for some o.
For instance, π̂ can be a greedy policy with probability 1 to choose a∗(o) and probability 0
to choose other actions, where a∗(o) ∈ arg maxa (Qπ(o, a)− V π(o)).

We update the policy from π to πε according to

πε = (1− ε)π + επ̂, (A.6)

where ε > 0 is a (sufficiently small) update step size.
We will show that such an update leads to R̄πε > R̄π.

Because the MDP is assumed to be finite-space, maxs,aR(s, a) exists. It is easy to see
from (A.1) that R̄π, over all policies π, is upper bounded by maxs,aR(s, a). Therefore, if
we update the policy as above iteratively and ensure R̄πt+1 > R̄πt for all t = 0, 1, . . . , the
average reward must converge as t→∞.

Note also that a policy π̂ such that J(π̂, π, o) > 0 may not exist. On the one hand, a
greedy policy guarantees J(π̂, π, o) ≥ 0. On the other hand, if J(π̂, π, o) ≤ 0 for all π̂ and
o, then π is already a locally optimal policy.

We now show
R̄πε − R̄π = ε

∑
o

Pπ(o)J(π̂, π, o) +O(ε2), (A.7)

where Pπ(o) is the probability distribution of observation o in steady state. If (A.7) holds
true, then our policy update procedure (A.5)-(A.6) with sufficiently small ε > 0 guarantees
R̄πε > R̄π, and therefore, average reward convergence as discussed above.

Firstly, consider

J ′(πε, π, o) =
∑
a

πε(o, a)

(∑
s

Pπε(s|o) (Qπ(s, a)− V π(s))

)
. (A.8)

According to (A.4), we have

J ′(πε, πε, o) =
∑
a

πε(o, a)

(∑
s

Pπε(s|o)
(
Qπε(s, a)− V πε(s)

))
= 0. (A.9)

125

Then, expand J ′(πε, π, o) as

J ′(πε, π, o) = J ′(πε, π, o)− J ′(πε, πε, o)

=
∑
a

πε(o, a)

(∑
s

Pπε(s|o)
(
Qπ(s, a)− V π(s)−Qπε(s, a) + V πε(s)

))
=
∑
a

πε(o, a)

(∑
s

Pπε(s|o)
(
Qπ(s, a)−Qπε(s, a)

))
−
∑
a

πε(o, a)

(∑
s

Pπε(s|o)
(
V π(s)− V πε(s)

))
(A.10)

=
∑
a

πε(o, a)

(∑
s

Pπε(s|o)
(
Qπ(s, a)−Qπε(s, a)

))
−
∑
s

Pπε(s|o)
(
V π(s)− V πε(s)

)
.

Using the definition of Qπ(s, a) in (A.2), we further get

J ′(πε, π, o)

=
∑
a

πε(o, a)

(∑
s

Pπε(s|o)
(
R̄πε − R̄π +

∑
s′

P(s′|s, a)
(
V π(s′)− V πε(s′)

)))
−
∑
s

Pπε(s|o)
(
V π(s)− V πε(s)

)
=
(
R̄πε − R̄π

)
+
∑
a

πε(o, a)

(∑
s

Pπε(s|o)
(∑

s′

P(s′|s, a)
(
V π(s′)− V πε(s′)

)))
−
∑
s

Pπε(s|o)
(
V π(s)− V πε(s)

)
. (A.11)

Weight J ′(πε, π, o) by Pπε(o) and sum up over all o,∑
o

Pπε(o)J ′(πε, π, o)

=
(
R̄πε − R̄π

)
+
∑
o,a,s,s′

Pπε(o)πε(o, a)Pπε(s|o)P(s′|s, a)
(
V π(s′)− V πε(s′)

)
−
∑
o,s

Pπε(o)Pπε(s|o)
(
V π(s)− V πε(s)

)
=
(
R̄πε − R̄π

)
+
∑
o,a,s,s′

P(s′, s, a, o)
(
V π(s′)− V πε(s′)

)
−
∑
o,s

Pπε(s, o)
(
V π(s)− V πε(s)

)
=
(
R̄πε − R̄π

)
+
∑
s′

P(s′)
(
V π(s′)− V πε(s′)

)
−
∑
s

Pπε(s)
(
V π(s)− V πε(s)

)
= R̄πε − R̄π, (A.12)

126

where we have used

Pπε(o)πε(o, a)Pπε(s|o)P(s′|s, a) = Pπε(o)
(
Pπε(a|o)Pπε(s|o)

)
P(s′|s, a)

= Pπε(o)Pπε(s, a|o)P(s′|s, a, o) = P(s′, s, a, o) (A.13)

to derive the third line from the second line.
As a summary, we have shown that

R̄πε − R̄π =
∑
o

Pπε(o)J ′(πε, π, o). (A.14)

According to (A.6), we have

max
o,a
|πε(o, a)− π(o, a)| = ε max

o,a
|π̂(o, a)− π(o, a)| ≤ ε. (A.15)

It can be shown that under (A.15), there exists a constant C > 0 such that [86]

max
s,o

∣∣Pπε(s|o)− Pπ(s|o)
∣∣ ≤ Cε,

max
o

∣∣Pπε(o)− Pπ(o)
∣∣ ≤ Cε. (A.16)

We now express J ′(πε, π, o) as

J ′(πε, π, o) =
∑
a

πε(o, a)

(∑
s

Pπε(s|o) (Qπ(s, a)− V π(s))

)
=
∑
a,s

πε(o, a)Pπε(s|o) (Qπ(s, a)− V π(s))

=
∑
a,s

(π(o, a) + ∆π(o, a)) (Pπ(s|o) + ∆Pπ(s|o)) (Qπ(s, a)− V π(s))

=
∑
a,s

(
π(o, a)Pπ(s|o) (Qπ(s, a)− V π(s)) + ∆π(o, a)Pπ(s|o) (Qπ(s, a)− V π(s))

+ π(o, a)∆Pπ(s|o) (Qπ(s, a)− V π(s)) + ∆π(o, a)∆Pπ(s|o) (Qπ(s, a)− V π(s))

)
=
∑
a

π(o, a)

(∑
s

Pπ(s|o) (Qπ(s, a)− V π(s))

)
+
∑
a

∆π(o, a)

(∑
s

Pπ(s|o) (Qπ(s, a)− V π(s))

)
+
∑
s

∆Pπ(s|o)
(∑

a

π(o, a) (Qπ(s, a)− V π(s))

)
+
∑
a,s

∆π(o, a)∆Pπ(s|o) (Qπ(s, a)− V π(s)) , (A.17)

127

where ∆π(o, a) = πε(o, a)− π(o, a) and ∆Pπ(s|o) = Pπε(s|o)− Pπ(s|o).
According to (A.4), the first term of (A.17) is 0. According to (A.3), the third term of

(A.17) is also 0. According to (A.15) and (A.16), the last term of (A.17) is O(ε2). As a
summary, we have shown that

J ′(πε, π, o) =
∑
a

∆π(o, a)

(∑
s

Pπ(s|o) (Qπ(s, a)− V π(s))

)
+O(ε2). (A.18)

Then, using (A.2), (A.4), (A.5), and (A.6), we obtain

J ′(πε, π, o) =
∑
a

(πε(o, a)− π(o, a))

(∑
s

Pπ(s|o) (Qπ(s, a)− V π(s))

)
+O(ε2)

= ε
∑
a

(π̂(o, a)− π(o, a))

(∑
s

Pπ(s|o) (Qπ(s, a)− V π(s))

)
+O(ε2)

= ε
∑
a

π̂(o, a)

(∑
s

Pπ(s|o) (Qπ(s, a)− V π(s))

)
+O(ε2)

= ε
∑
a

π̂(o, a) (Qπ(o, a)− V π(o)) +O(ε2)

= εJ(π̂, π, o) +O(ε2). (A.19)

Combining (A.14) and (A.19) leads to

R̄πε − R̄π =
∑
o

Pπε(o)J ′(πε, π, o) =
∑
o

Pπε(o)
(
εJ(π̂, π, o) +O(ε2)

)
= ε

∑
o

Pπε(o)J(π̂, π, o) +O(ε2). (A.20)

Then, using (A.16), we obtain

R̄πε − R̄π = ε
∑
o

(Pπ(o) + Pπε(o)− Pπ(o))J(π̂, π, o) +O(ε2)

= ε
∑
o

Pπ(o)J(π̂, π, o) + ε
∑
o

(Pπε(o)− Pπ(o))J(π̂, π, o) +O(ε2)

= ε
∑
o

Pπ(o)J(π̂, π, o) +O(ε2), (A.21)

i.e., we have shown (A.7). This completes the convergence proof of the applied reinforce-
ment learning algorithm. �

128

APPENDIX B

Functions of Path Model

Firstly, we determine the entrance points (xen, yen) of forward lanes according to the follow-
ing procedure: We first locate the nr intersection corners1. The line segment connecting a
pair of adjacent corners is the “entrance line” of the corresponding road arm. The entrance
point (xen, yen) of each forward lane is determined as the intersection point of its center and
the entrance line of the road arm it belongs to.

We now describe our path model. A path P is a smooth curve composed of three seg-
ments: The first segment is a line segment connecting the vehicle’s initial point (xini, yini)
and the entrance point (xen, yen) of the vehicle’s origin lane. The third segment is also a line
segment with the vehicle’s terminal point (xterm, yterm) as one of its end points and extend-
ing in the direction of the vehicle’s target lane. The second segment is an arc that connects
the first segment and the third segment, tangential to the first segment at (xen, yen) and also
tangential to the third segment, where the point of tangency is determined as the exit point
(xex, yex)2. The three segments of P can be described by the following equations:

a1x+ b1y + c1 = 0 for 0 ≤ ρ < ρen,

(x− xc)
2 + (y − yc)

2 = r2 for ρen ≤ ρ < ρex,

a2x+ b2y + c2 = 0 for ρ ≥ ρex, (B.1)

where (a1, b1, c1) and (a2, b2, c2) are parameters for the line segments, which correspond to
the coefficients

(
sin(φi),− cos(φi), jwlane

2

)
of (1.23) with i and j determined by the vehicle’s

origin lane and target lane, and (xc, yc, r) are the coordinates of the center and the radius of

1An “intersection corner” is the intersection point of two adjacent road boundaries.
2So (xex, yex) is the other end point of the third segment.

129

the arc segment, which are determined by the following set of functions:

xc =
a1b2x

ex − a2b1x
en + a1a2y

en − a1a2y
ex

a1b2 − a2b1

yc =
b1b2x

ex − b1b2x
en + a1b2y

en − a2b1y
ex

a1b2 − a2b1

r =

√
a2

1 + b2
1

(
a2y

en − b2x
en + b2x

ex − a2y
ex
)

a1b2 − a2b1

xex = −−b
2
2xc + a2b2yc + a2c2

a2
2 + b2

2

yex = −−a
2
2yc + a2b2xc + b2c2

a2
2 + b2

2

, (B.2)

where (xen, yen) are determined by the intersection layout as introduced above. Then, ρex is
determined as follows:

ρex = ρen + r∆φ, ∆φ = arccos

(
u>v

‖u‖‖v‖

)
,

u =
[
xen − xc, y

en − yc
]>
, v =

[
xex − xc, y

ex − yc
]>
. (B.3)

130

APPENDIX C

Autonomous Vehicle Control Approaches for
Highway Driving

Stackelberg game-based policy
The Stackelberg game-based policy considers a game involving three players – the ego
vehicle and two other vehicles immediately following it. The three players are assigned
roles as the “leader,” “first follower,” and “second follower,” and they choose actions to
apply from the action space in Section 1.2.2 sequentially: the leader chooses its action
first, followed by the first follower, and finally the second follower. Each player evaluates
actions according to a utility function that consists of two parts. The first part, referred to
as the positive utility, is defined as follows:

Upos =

{
min(d4, dv), if there is a vehicle in front,
dv, otherwise,

(C.1)

where d4 is the longitudinal distance to the vehicle in front, and dv is the maximum visi-
bility distance. The second part, referred to as the negative utility, is defined as follows:

Uneg = d∇ − v∇T − dmin, (C.2)

where d∇ and v∇ are the distance to and the relative velocity of the vehicle in the imme-
diate rear, T is a prediction time window, and dmin is the minimum distance required to
allow a lane change and is set to be equal to the length of the vehicle’s c-zone. This way,
overtaking vehicles are taken into account and lane changes that cut off overtaking vehicles
are discouraged.

The actions chosen by the leader, first follower, and second follower are denoted as a`,
af1, and af2, respectively. The leader chooses its action to maximize the worst-case utility
it may receive due to the uncertain actions of the two followers, i.e.,

a∗` ∈ arg max
a`

min
af1,af2

[Upos + Uneg] . (C.3)

The two followers maximize their own utilities with the known choice of a∗` .
In particular, the autonomous ego vehicle is treated as the leader of the game, and the

two vehicles immediately behind it (they can be in any lanes) are the followers.

131

Decision tree-based policy
The decision tree-based policy builds a tree of admissible action sequences (each sequence
is referred to as an “action profile”) and evaluates each action profile according to a metric
function.

In our implementation, the decision tree has two layers. Each layer contains the seven
actions in Section 1.2.2 as nodes. Therefore, 72 = 49 action profiles are evaluated and
compared. The evaluation metric is as follows:

Rtotal = wl1Rl1 + wl2Rl2, (C.4)

where Rl1, Rl2 are the reward (1.9) received after the layer-1 action is applied and after the
layer-2 action is applied, respectively, and wl1, wl2 ≥ 0 are weights for the two layers.

After evaluating all action profiles, the ego vehicle applies the layer-1 action of the
profile that has the highest total reward for one time step, updates its state, and then repeats
this procedure at the next time step. In particular, when evaluating the action profiles,
the ego vehicle assumes all other vehicles apply the action “maintain” over its planning
horizon.

To left
Accel.

...
To right

To left
Accel.

...
To right

1st layer

2nd layer

0→ x

Figure C.1: Decision tree diagram. The black arrows indicate the relative velocities of the
yellow cars with respect to the red car.

Policy activation criteria
Both the Stackelberg game-based policy and the decision tree-based policy are activated
only when necessary and/or beneficial. When they are not activated, the autonomous vehi-
cle drives according to simpler rules to reduce computational footprints. Their activation
criteria are as follows:

132

1. Policy is activated if there are vehicles in region A and no vehicles in region B,

2. “Accelerate” until maximum speed/speed limit if there are no vehicles in region A,

3. “Safe mode,” if there are vehicles in region B.

The above criteria are designed based on the following ideas: When there are no other
vehicles within a certain neighborhood (region A) of the ego vehicle, the ego vehicle can
accelerate and drive at its maximum speed/the speed limit safely. When there are some
other vehicle(s) being very close to the ego vehicle (within region B), the ego vehicle should
drive conservatively to increase safety, i.e., switch to a “safe mode.” In our implementation,
region A is designed to cover the center lines of adjacent lanes and region B is designed
to cover the boundary lines of the current lane. This way, when some other vehicle in the
vicinity is changing lanes into the ego vehicle’s lane, the ego vehicle becomes aware of this
vehicle before this vehicle enters its lane. Furthermore, we use the level-0 policy, (1.17),
as the “safe mode” policy.

Car

left middle right

A

B

xA = 42[m]

xB = 21[m]

Figure C.2: Regions for policy activation criteria.

133

APPENDIX D

Adaptive Level-k Policy for Intersection Driving

We first define a level-k decision of vehicle i, for k ≥ 1, as follows:

γki (t) = {aki (τ |t)}N−1
τ=0 ∈ arg max

γi∈Γ
R̄i
i

(
s(t), γi, γ

k−1
−i
)
, (D.1)

where γk−1
−i = (γk−1

j)j 6=i represents the collection of level-(k − 1) decisions of all other
vehicles interacting with vehicle i. The above formula defines a way to compute level-k
decisions of all vehicles sequentially for k = 1, 2, . . . , given a level-0 decision rule as the
starting point.

Then, we consider the following decision process for the autonomous ego vehicle (ve-
hicle i):

γKi (t) ∈ arg max
γi∈Γ

∑
σj∈{0,...,kmax},j 6=i

[(∏
j 6=i

P(kj = σj|t)

)
R̄i
i

(
s(t), γi, (γ

σj
j)j 6=i

)]
, (D.2)

where P(kj = σj|t) represents the ego vehicle’s current belief in that vehicle j can be
modeled as level-σj . The beliefs P(kj = σj|t) are updated after each time step t according
to the following algorithm:

For each j 6= i, if there exist k, k′ ∈ {0, . . . , kmax} such that akj (0|t) 6= ak
′
j (0|t), then

P̃(kj = σj|t+ 1) =

{
P(kj = σj|t) + ∆P, for each σj ∈ arg mink

∣∣akj (0|t)− aactual
j (t)

∣∣ ,
P(kj = σj|t), for all other σj ∈ {0, . . . , kmax},

P(kj = σj|t+ 1) =
P̃(kj = σj|t+ 1)∑kmax

k=0 P̃(kj = k|t+ 1)
, for all σj = 0, . . . , kmax; (D.3)

otherwise, P(kj = σj|t + 1) = P(kj = σj|t) for all σj = 0, . . . , kmax. In (D.3), aactual
j (t)

represents the observed acceleration of vehicle j (observed by the ego vehicle), and ∆P > 0
is an update step size.

The above model estimation algorithm is to increase the ego vehicle’s belief in the
level-σj model whose prediction most accurately matches the actual behavior of vehicle j.
The update is triggered only when some level-k model predicts a different akj (0|t) value
than others. This is because if all models predict the same akj (0|t) value, the ego vehicle
will have no useful information to improve its beliefs.

134

The decision process (D.2) maximizes the weighted sum of rewards corresponding to
all possible level combinations of the interacting vehicles, where the weights are the ego
vehicle’s current belief in each level combination, i.e., (D.2) maximizes the reward expec-
tation.

135

APPENDIX E

Lemma 3.1

Lemma 3.1: Given an increasing sequence of setsXk and an arbitraryU , we have (
⋃∞
k=0Xk) ∼

U =
⋃∞
k=0 (Xk ∼ U).

Proof: Note first that Yr = (
⋃r
k=0Xk) ∼ U and Zr =

⋃r
k=0 (Xk ∼ U) are both increas-

ing sequences of sets, and thus, their limits exist as r →∞ (in the set-theoretic sense). For
each r, we have

Yr =
r⋃
j=0

Yj =
r⋃
j=0

((
j⋃

k=0

Xk

)
∼ U

)
=

r⋃
j=0

(Xj ∼ U) = Zr, (E.1)

where we have used the monotone increase ofXk to derive the third equality of (E.1). Since
Yr = Zr for every r, it must hold that limr→∞ Yr = limr→∞ Zr, i.e., (

⋃∞
k=0Xk) ∼ U =⋃∞

k=0 (Xk ∼ U). �

136

	Dedication
	Acknowledgments
	Table of Contents
	List of Figures
	List of Tables
	List of Appendices
	Abstract
	Introduction
	Game-Theoretic Modeling of Driver Interactions in Multi-Vehicle Traffic Scenarios
	Introduction to game-theoretic modeling of driver interactions
	Level-k based modeling of driver interactions on highways
	Leader-follower based modeling of driver interactions at intersections
	Application to verification and validation of autonomous vehicle control systems
	Summary and discussion

	Interaction-Aware Autonomous Vehicle Control
	Background and introduction
	Interaction-aware autonomous vehicle control problem
	Interaction-aware AV control as a partially observable decision problem
	An MPC-based solution approach to C-POMDP problems (POMDP-MPC)
	Simulation examples of interaction-aware AV control
	Summary and discussion

	Enhancing Autonomous Vehicle Safety via the Action Governor
	Background and introduction
	System model and control objective
	Action Governor
	Simulation examples
	Summary and discussion

	Conclusions and future work
	Conclusions
	Future work

	Bibliography
	Appendices
	Proof of RL Algorithm Convergence
	Functions of Path Model
	Autonomous Vehicle Control Approaches for Highway Driving
	Adaptive Level-k Policy for Intersection Driving
	unhbox voidb@x protect penalty @M {}3.1.0endcsname
elax 0{Lemma 3.1}

