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Abstract 

 

Vaccination is one of the most successful public health interventions in modern medicine. 

However, it is still challenging to develop effective vaccines against many infectious diseases 

such as tuberculosis, HIV, and malaria. There are challenges in integrating the high volume, 

variety, and variability of vaccine-related data and rationally designing effective and safe 

vaccines efficiently. In my thesis study, I systematically and comprehensively analyzed manually 

annotated protective vaccine antigens in the Protegen database and identified these protective 

antigens' enriched patterns. I then created Vaxign-ML, a novel machine learning-based reverse 

vaccinology method based on the curated Protegen data for rational vaccine design. Vaxign-ML 

was used to successfully predict vaccine antigens for tuberculosis and Coronavirus Disease 2019 

(COVID-19). I also developed a new structural vaccinology design program that optimizes 

COVID-19 spike glycoprotein as a vaccine candidate for enhanced vaccine protection via T cell 

epitope engineering. The vaccine antigens selected and optimized by Reverse and Structural 

Vaccinology in this dissertation are subjected to future experimental verification. Furthermore, I 

created a community-based Ontology of Host-Pathogen Interactions (OHPI), which served as a 

platform to semantically represent the interactions between host and virulence factors that are 

also protective antigens. I developed the Vaccine Investigation Ontology (VIO) for standardized 

metadata representation for high throughput vaccine OMICS data analysis. Overall, my thesis 

research aims to uncover protective antigen patterns, create methods/tools to effectively develop 

vaccines against infectious diseases of public health significance, and strengthen our 

understanding of vaccine protection mechanisms. These works can be further expanded and 



 xv 

integrated with other technologies such as epitope prediction, molecular epidemiology, and high-

throughput sequencing to build the foundation of precision vaccinology.
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Chapter 1 Introduction 

 

Civilization has been associated with epidemics and pandemics throughout entire human 

history. The first recorded pandemic can be traced back to the plague of Athens in 430 B.C., 

which killed about two-thirds of the population in the cities and eventually led to the downfall of 

the Athenian empire (Cartwright and Biddiss 2000). The bubonic plague caused three recorded 

worldwide pandemics: the first Plague of Justinian in 540-590 A.D. killed millions; the second 

“black death” took at least 20 million Europeans’ life in the years 1347-1352; and its third and 

final appearance in a pandemic from 1894 to 1950 claimed 15 million lives (Byrne 2008; 

Cartwright and Biddiss 2000; Echenberg 2002). As we progressively advance our understanding 

of diseases (e.g., plague, measles, cholera, and leprosy), more and better interventions are being 

created to cure and prevent these contagious and yet lethal diseases. One of the most successful 

medical interventions ever introduced in modern medicine is the vaccine.  

The earliest written record of the vaccine usage in China can be traced back to the 

fifteenth century, where variolation was used to prevent the fatal childhood disease smallpox 

(variola virus) (L. Zhang 1709). One of the variolation methods described was to apply fresh 

pustule or squama from the sick child to the nostril of the healthy child to cause a more benign 

smallpox infection and prevent them from getting the disease again. The variolation was then 

started to be widely adopted in Europe from 1710 (Cartwright and Biddiss 2000). However, such 

an inoculation method was not always successful with a 2-3% mortality rate and could cause the 

spreading of the disease. In 1796, Edward Jenner introduced cowpox inoculation to prevent 

smallpox infection. The term cowpox inoculation is referred to as vaccination (variolae vaccinae 
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means smallpox of the cow) and was the first vaccine developed against infectious disease. Since 

then, the vaccine is one of the most significant medical inventions for public health and has been 

the crucial component to effectively and efficiently control an epidemic or pandemic. The 1957 

flu pandemic, caused by a new influenza A (H2N2) virus, claimed an estimated 1.1 million lives 

in 39 countries worldwide before a vaccine was developed to effectively contain the pandemic 

(Viboud et al. 2015). Vaccines also led to the global smallpox eradication (Belongia and 

Naleway 2003) and elimination of Polio in most countries (Bahl et al. 2018) and saved 122 

million children’s lives since 1990 by reducing childhood death caused by infectious diseases. It 

is estimated that for every dollar spent on childhood immunization, the society receives 44 

dollars of economic benefits (Gates and Gates 2017).   

1.1 Challenges in Vaccine-preventable Diseases and Outbreaks 

However, it is still difficult to develop vaccines against many infectious diseases of 

global public health importance, such as tuberculosis. Tuberculosis (TB) epidemic has an 

estimated 10 million cases and claimed over 1.4 million lives in 2019 (World Health 

Organization 2020a). The End TB Strategy initiated by the World Health Organization aims to 

halt the global TB epidemic by 2035 and reduce TB incidence by 90% between 2015 and 2035 

(Uplekar et al. 2015). The live-attenuated Mycobacterium bovis vaccine designated Bacillus 

Calmette-Guerin (BCG) vaccine is the only TB vaccine currently licensed. However, it provided 

minimal protection against adult pulmonary TB and the reactivation of latent TB infection 

(LTBI) (Fine 1995). Approximately a quarter of the world's population is estimated to be latently 

infected (Houben and Dodd 2016). Therefore, a safe and effective TB vaccine to prevent primary 

infection of Mycobacterium tuberculosis (MTB) and the reactivation of LTBI  is a key to address 

the challenge facing global TB elimination (Izzo 2017). 
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Besides the already existed infectious diseases, human also continuously faces the threat 

of emerging diseases. In 2003, the SARS disease caused by the SARS-associated coronavirus 

(SARS-CoV) infected over 8,000 people worldwide and was contained in the summer of 2003 

(Lu et al. 2020). The MERS disease infected more than 2,000 people, caused by the MERS-

associated coronavirus (MERS-CoV), and was first reported in Saudi Arabia and spread to 

several other countries since 2012 (Chan et al. 2015). The emerging Coronavirus Disease 2019 

(COVID-19) pandemic poses a massive crisis to global public health, and WHO declared the 

COVID-19 as a pandemic on March 11, 2020. The causative agent of COVID-19 is SARS-CoV-

2, which shares a high sequence identity with SARS-CoV (Lai et al. 2020). As of November 19, 

2020, this on-going COVID-19 pandemic caused over 55 million infection cases and over one 

million deaths globally. With the advance of transportation and globalization, we face a huge 

challenge of a potential epidemic and even pandemic in the future. Advance methods are in 

earnestly demand to develop vaccines quickly and effectively, as a response to the ever-

increasing threat of existing and emerging infectious diseases. 

1.2 Immunity and Vaccines 

Immunity is the ability to distinguish “self” and “non-self” material to eliminate the 

“non-self” material (Delves et al. 2016). This “non-self” material is often referred to as antigens, 

which are the parts of molecules (e.g., proteins) from the disease-causing microorganisms (also 

known as pathogens). Human has developed a sophisticated system of interacting with cells to 

identify antigens and remove the “non-self” substances and pathogens. Immunity can be 

classified into innate immunity and adaptive immunity. Innate immunity is non-specific 

immunity that is antigen-independent and mostly mounts an immediate but short-living immune 

response against the “non-self” objects. On the other hand, adaptive immunity, which is the 
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major mechanism of vaccines, is antigen-specific immune responses and often involves the 

production of antibodies by the B-lymphocytes (also known as humoral immunity) and specific 

immune cells, including T-lymphocytes (also known as cell-mediated immunity). Adaptive 

immunity also produces memory immune cells (B and/or T cells) so that a re-exposure to the 

same pathogen will trigger a more robust and rapid immune response or secondary immunity. 

This type of immunity can last for months, years, or often a lifetime. The vaccine takes 

advantage of the adaptive immunity by mounting a primary immunity and stimulates the 

production and formation of such memory immune cells without causing the disease.  

The classic definition of vaccines is the preparation of live-attenuated or 

killed/inactivated microorganisms (e.g., bacteria and viruses) administered to produce or 

artificially increase immunity to a particular disease (S A Plotkin, Orenstein, and Offit 2012). 

After Edward Jenner created the first vaccine, Louis Pasteur generalized vaccines to preventable 

diseases other than smallpox (Stanley A. Plotkin 2005). He discovered that the chicken cholera 

bacteria lost its disease-causing properties (virulence) after a few generations in culture. The 

weakened form of the pathogen is called live-attenuated vaccines, which can teach the host 

immune system to fight the infection without suffering severe symptoms. In the meantime, 

Daniel Salmon and Theobald Smith created the first killed/inactivated vaccine for cholera. The 

inactivated vaccine can be prepared by killing the pathogens using physical (e.g., heat) or 

chemical (e.g., formalin) treatments. But the “inactivated” pathogens can still protect against 

infections (Stanley A. Plotkin 2005). The preparation of live-attenuated and inactivated vaccines 

corresponds to the conventional vaccine development strategy, a very time-consuming process. 

With the advance of technologies, the modern vaccine classification includes vaccines 

containing proteins, polysaccharides, or nucleic acids (DNA/RNA) of the pathogens (disease-
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causing microorganisms) that are delivered as single entities, as part of complex (e.g., nano and 

virus-like) particles, or as living attenuated phages or vectors to induce specific immune 

responses that inactivate, destroy, or suppress the pathogen (S A Plotkin, Orenstein, and Offit 

2012). The subunit vaccines are made from purified proteins or polysaccharides of 

microorganisms. Recombinant vaccines and nucleic acid vaccines are produced using 

DNA/RNA derived (directly or indirectly) from an organism that codes for a protective protein, 

which can be in the format of a purified expressed protein (recombinant subunit vaccine) or 

carried by a vector (recombinant vector vaccine). These types of vaccines only make up a portion 

of the pathogens and are usually safer than live-attenuated and inactivated vaccines. However, 

the immune-inducing ability, or immunogenicity, of subunit and recombinant vaccines are often 

weaker and require adjuvants to boost the immune responses. An essential step in developing 

subunit and recombinant vaccines is selecting the vaccine antigen candidate, usually the 

protein(s) or the nucleic acid expressing the protein(s). In this thesis, the prediction and selection 

of vaccine antigen candidates (Chapters 3 and 4) and the optimization of these candidates' 

immunogenicity (Chapter 5) were explored and investigated. 

1.3 Reverse Vaccinology 

The conventional method of this selection is performed via in vitro screening in the 

laboratory. However, this method is resource-consuming, and that not all the pathogens can be 

cultured, and not all the proteins can be purified for testing. Since the early 1990s, the advance of 

high-throughput sequencing technology has fostered an innovative genome-based vaccine design 

approach, termed Reverse Vaccinology (RV) (Rappuoli 2000). The first RV study identified 

vaccine candidates against the meningitis B disease from the whole genome sequences of the 

disease-causing bacteria (Pizza et al. 2000). Within a relatively short period, this study has led to 
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the licensing of the meningitis B vaccine, Bexsero®, in the United States since 2015 (Folaranmi 

et al. 2015). The first RV study’s great success has led to many RV prediction programs (Dalsass 

et al. 2019).  

The existing open-source RV prediction programs could be characterized based on the 

algorithmic approaches or input feature types (Figure 1-1). The algorithmic approaches include 

rule-based filtering (or decision tree-like) and machine learning (ML) classification methods. 

The first publicly available rule-based filtering RV program is NERVE (Vivona, Bernante, and 

Filippini 2006), available as a standalone software program. In 2010, Vaxign was developed as 

the first web-based filtering RV program with additional analyses (e.g., adhesin probability and 

similarity to host) (He, Xiang, and Mobley 2010). Vaxign has been applied to predict vaccine 

candidates for more than ten pathogenic bacteria such as Helicobacter pylori (Navarro-Quiroz et 

al. 2018), Acinetobacter baumannii (Singh et al. 2016), Mycobacterium spp. (Hossain et al. 

2017). From 2013 to 2017, two additional filtering-based RV programs, Jenner-predict server 

(Jaiswal et al. 2013) and VacSol (Rizwan et al. 2017) were also created and included more 

bioinformatics analyses, including conserved domains and biological pathways. However, all 

these currently available rule-based filtering RV programs use only biological features as the 

data input, and the prediction performance of all RV programs are not satisfactory.  

With the advance of machine learning (ML) and the accumulation of vaccine data over 

the past decades, there is a need to develop the next-generation ML-based RV tool. Machine 

learning, as defined by a pioneer in artificial intelligence Arthur Samuel, is the “field of study 

that gives computers the ability to learn without being explicitly programmed” (Samuel 2000; 

Kohavi and Provost 1998). The ability to make predictions or classifications is achieved by the 

ML algorithms building a model based on the input data (also known as training data). ML 
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classification has also been applied in many biomedical studies, including protein structure 

prediction (W. Zheng et al. 2019; Alquraishi 2019), drug discovery (Tran et al. 2014; 

Vamathevan et al. 2019), as well as vaccine candidate prediction in RV (Dalsass et al. 2019). 

VaxiJen was the first ML classification RV program published in 2007 (Doytchinova and 

Flower, 2007). Bowman et al. and Heinson et al. improved the work of VaxiJen by extending the 

training data of VaxiJen and revising the ML algorithm (Bowman et al. 2011; Heinson et al. 

2017). A key difference between VaxiJen and the Bowman-Heinson method was that VaxiJen 

used physicochemical features of the input proteins while the later program used biological 

features. 

Significant effort has been made to enhance ML-based RV prediction performance, but 

there is still much room for improvement. All existing methods use either biological properties 

or physicochemical properties of the proteins in the training data. In Chapter 2, the relation 

between the protectiveness of BPAgs and biological properties was investigated, and significant 

correlations were reported for properties such as subcellular localization, adhesin probability, 

and peptide signaling (E. Ong, Wong, and He 2017). On the other hand, physicochemical 

properties were reported to have significantly associated with BPAg protection (Mayers et al. 

2003). ML models trained with physicochemical properties data showed high BPAg prediction 

accuracy (Dalsass et al. 2019). Therefore, a combination of biological and physicochemical 

properties is likely to enhance the prediction performance of BPAg prediction further. Second, 

there is a lack of high-quality benchmarking datasets, and the performance of various ML-based 

RV software programs has not been systematically evaluated. The training data from VaxiJen 

and the Bowman-Heinson method only included PAgs with supporting experimental evidence. 

The negative samples were randomly selected from non-homologous proteins to the PAgs. Such 
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random under-sampling may not reflect the real distribution of PAgs in the pathogen proteomes. 

Also, proteins with low sequence similarity to the known PAgs can potentially still induce 

protective immune responses. Besides, VaxiJen and Bowman-Heinson model was not evaluated 

using an external independent dataset. In Chapter 3, the ML-based Vaxign program, Vaxign-ML, 

was developed and systematically evaluated with existing RV tools (including rule-based and 

ML-based methods) via a high-quality benchmarking dataset. Vaxign-ML was trained on the 

BPAgs with their biological and physicochemical features annotated. The BPAgs and the non-

protective proteins were first carefully checked for homology to ensure training data quality. 

Three evaluation steps, including nested five-fold cross-validation, leave-one-pathogen-out 

validation, and independent benchmarking, were implemented. Vaxign-ML demonstrated 

superior predictive performance to all existing RV methods. In Chapter 4, Vaxign-ML was also 

applied to predict vaccine candidates for COVID-19 vaccine development. 
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Figure 1-1 Reverse Vaccinology (RV) tools development timeline. 

All the existing open-source RV tools are listed. Each can be categorized based on i) type of RV 

software and ii) RV software interface. The oval frame represents the filtering-based, and square 

frame represents the machine learning (ML) based RV tools. The background color indicates 

whether the methods utilizing biological features (grey) and/or blue physicochemical properties 

(blue) of the input proteins. In 2020, Vaxign-ML was created as an ML-based RV tool that 

incorporates both the input proteins' biological and physicochemical properties and provides 

terminal and web interfaces. 
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1.4 Structural Vaccinology 

Structural vaccinology (SV) also emerges as a revolutionary vaccine design method to 

engineer vaccine candidates based on 3D structure. The first proof-of-concept study enhanced 

the immunogenicity of the fusion (F) glycoprotein of respiratory syncytial virus (RSV) by fixing 

the conformation-dependent neutralization-sensitive epitopes (B. S. Graham, Modjarrad, and 

McLellan 2015). RSV is a leading cause of infant mortality and adult morbidity, but there is 

currently no licensed RSV vaccine. The F glycoprotein contributes to the membrane fusion of 

RSV and the host cell and is a primary target for vaccine development. For decades, researchers 

have been using the post-fusion F glycoprotein as a vaccine candidate, but it does not provide 

protection in challenge studies. An investigation into the conformational rearrangement of this 

protein between its metastable pre-fusion and stable post-fusion identified a change of its epitope 

content in these two conformations (Figure 1-2) (McLellan et al. 2013). Epitopes are the specific 

units of an antigen recognized by the immune system. The less stable form of the pre-fusion F 

glycoprotein has more and better epitopes. Therefore, a vaccine candidate that fixed the F 

glycoprotein in its pre-fusion conformation induced a more potent neutralizing antibody 

response. The discovery of this structure-based approach has revolutionized vaccine 

development.  
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Figure 1-2 Surface representation of respiratory syncytial virus (RSV) fusion (F) 

glycoprotein. 

The RSV F glycoprotein exists in pre-fusion and post-fusion conformations. The alteration 

between two conformations occurs as part of the membrane fusion of the virus entry to the host 

cell. Both conformations consist of a different set of epitopes, but the most neutralization-

inducing epitopes are only present in pre-fusion form, which is relatively less stable than the 

post-fusion F glycoprotein. This figure is reprinted from (B. S. Graham, Modjarrad, and 

McLellan 2015) published in Current Opinion in Immunology with permission from Elsevier.  
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 In light of the RSV vaccine development's success, structural vaccinology has been 

applied to design vaccines for other pathogens, particularly SARS-CoV-2. The COVID-19 

pandemic has sparked an unprecedented race to develop a safe and effective vaccine to contain 

the widespread outbreak. Similar to the RSV, the spike (S) glycoprotein of the SARS-CoV-2 

plays a crucial role in mediating virus entry, and many computational studies utilizing reverse 

vaccinology and immuno-informatics reported the S protein to be a promising vaccine antigen 

(E. Ong, Wong, Huffman, and He 2020; Grifoni, Sidney, et al. 2020; Enayatkhani et al. 2020). 

Clinical studies also identified anti-S protein neutralizing antibodies in patients recovered from 

COVID-19 (F. Wu et al. 2020; L. Ni et al. 2020; Cao et al. 2020). Therefore, S protein has been 

the primary target of many vaccines currently in clinical trials. Since the cryo-EM structure of 

the S protein (Wrapp, Wang, et al. 2020) and the neutralizing antibodies that bind to the S 

protein (Barnes et al. 2020; Wrapp, De Vlieger, et al. 2020) were determined, structural 

vaccinology approaches have been applied to optimize the S protein structure as a vaccine 

candidate. For example, Henderson et al. controlled the S protein’s receptor-binding domain 

(RBD) domain between the “up” and “down” configurations to induce immunogenicity 

(Henderson et al. 2020). On the other hand, structural modifications were also performed on the 

native S protein to stabilize the S protein in its pre-fusion form (Bos et al. 2020), a strategy 

similar to the RSV vaccine development.  

However, these modifications have focused on the humoral immunity to induce 

neutralizing antibodies targeting the SARS-CoV-2 S protein. Studies have also shown the 

importance of the cluster of differentiation 4 (CD4) T cell response in controlling SARS-CoV-2 

infection and possible pre-existing immunity in healthy individuals without exposure to SARS-

CoV-2 (Grifoni, Weiskopf, et al. 2020; Bert et al. 2020; Braun et al. 2020). T cell response can 
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be primarily categorized into CD4 and CD8 T cell responses. CD4 is a glycoprotein located at 

the surface of immune cells, including T cells. It serves as a co-receptor for the T-cell receptor 

(TCR) to interact with the epitopes presented by the major histocompatibility complex (MHC) 

class II molecule. CD4 T cells (often referred to as T-helper cells) play a major role in releasing 

signals to aid both humoral and cell-mediated responses and the induction of long-term memory. 

CD8 is also a glycoprotein predominantly found on cytotoxic T cells' surface and plays a major 

role in the cell-mediated response. CD8 T cell interacts with cells presenting epitope bound to 

MHC class I molecule and induces the programmed cell death of the presenting cells (Delves et 

al. 2016). A successful COVID-19 vaccination is likely linked to a robust and long-term humoral 

response to the SARS-CoV-2 S protein with the help of CD4 T cells. 

 Contrary to the enhancement of immunogenicity for vaccine candidates, there is another 

branch of structural vaccinology that aims to reduce the immunogenic property of therapeutic 

proteins and avoid auto-immune response. This auto-immune response is an adverse event of the 

therapeutic proteins that cause the immune system to target “self” contrary to the “non-self” 

material. The process of reducing the immunogenicity of therapeutic proteins is referred to as 

“deimmunization”. There are many reported methods for deimmunizing therapeutic proteins. For 

example, EpiSweep was developed to reduce the epitope content of Staphylococcus simulans 

lysostaphin, which is an effective staphylococcal bacteriocin to treat drug-resistant 

Staphylococcus aureus infection (Blazanovic et al. 2015). Baker et al. used the Rosetta suite to 

deimmunize the fluorescent reporter protein super-folder GFP and Pseudomonas exotoxin A by 

reducing the number of MHC-II restricted CD4 T cell epitopes while preserving the proteins’ 

function (King et al. 2014). The deimmunization of a protein involved reducing MHC-II 

restricted CD4 T cell epitopes to reduce the proteins’ immunogenicity.  
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If we flip how the deimmunization process works, the induction of MHC-II restricted 

CD4 T cell epitopes can be applied to vaccine design to enhance the immunogenicity of the 

vaccine candidate. The addition of a single epitope to induce stronger immune responses has also 

been applied to develop H7N9 vaccines. The H7N9 hemagglutinin (HA) vaccines elicited non-

neutralizing antibody responses in clinical trials (Mulligan et al. 2014; Guo et al. 2014). Rudenko 

et al. reported fewer CD4 T cell epitopes found in H7N9 HA than the seasonal H1 and H3 HA 

proteins (Rudenko et al. 2016). Based on this finding, Wada et al. improved the H7N9 vaccine 

by introducing a known H3 immunogenic epitope to the H7 HA protein without perturbing its 

conformation, which resulted in an over 4-fold increase in the HA-binding antibody response 

(Wada et al. 2017). Therefore, in Chapter 5, I developed a structural vaccinology approach to 

rationally design the SARS-CoV-2 S protein by generating thousands of stable S protein variants 

without perturbing the protein's surface conformation to maintain the same B cell epitope profile. 

In the meantime, mutations were introduced to the residues buried inside the S protein so that 

more MHC-II restricted CD4 T cell epitopes would be added into the newly designed S protein 

to potentially induce a stronger immune response. 

1.5 Vaccine-informatics and Ontology 

With the exponential growth of data accumulated in vaccine informatics, there is a 

challenge to translate the high volume, variety, and variability of vaccine-related data in the era 

of “big-data”. The Vaccine Investigation and Online Information Network (VIOLIN) (He et al. 

2014) is the most comprehensive database collected and curated vaccine-related information. 

However, such a vaccine-focused database often consists of data targeting different aspects of 

vaccine mechanisms such as virulence factors and protective antigens. Virulence factors (VFs) 

are molecules that allow microbial pathogens to overcome host defense mechanisms and cause 
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disease in a host. A total of 5,304 VFs supported by experimental evidence (e.g., loss or 

reduction of pathogenicity in the host after the VF gene mutation) are curated and stored in the 

Victors database (Sayers et al. 2019). On the other hand, some of these VFs are also used as 

PAgs for vaccine development due to their important roles in pathogenicity and protective 

antigenicity. Protegen contains a set of 590 protective antigens (PAgs) over 100 infectious 

diseases caused by pathogens (bacteria, viruses, and parasites) and non-infectious diseases, 

including cancers and allergies (B. Yang et al. 2011). These PAgs are manually collected and 

curated from the literature with supporting experimental evidence (e.g., protection assay against 

a challenge or immune response assay correlates with protection). There is rich data for vaccine 

research, but it requires an organization of these vaccine-related data in a computationally 

tractable manner to predict vaccine candidates and provide insights into the mechanistic drivers 

of vaccine protection.  

Ontology has emerged to be a feasible approach to integrate and synthesize knowledge 

from data. Ontology is a computer- and human-interpretable representation of the entities and the 

relations among objects. Ontology can facilitate the integration of vaccine-related data from 

distinct domains (e.g., host vs. pathogen, gene vs. protein) and capture the connections among 

these data within the VIOLIN database to represent knowledge. A set of ontology development 

and visualization tools is needed to develop ontologies efficiently (E. Ong et al. 2017; He, Xiang, 

et al. 2018; Z. Xiang et al. 2010). In Chapter 6, these tools were implemented to create two 

ontologies, Ontology of Host-Pathogen Interactions (OHPI) and Vaccine Investigation Ontology 

(VIO). These ontologies were then applied to standardize and analyze the vaccine-related data 

from the VIOLIN database. The relations among the VIOLIN data were also defined and 

modeled in these ontologies to facilitate data integration and analysis. 



 16 

1.6 Dissertation Outline 

Overall, my thesis research aims to uncover protective antigen patterns, create 

methods/tools to effectively develop vaccines against infectious diseases of public health 

significance, and strengthen our understanding of vaccine protection mechanisms (summarized 

in Figure 1-3). In Chapter 2, a systematic analysis was conducted to identify a significant 

correlation between the protectiveness of vaccine candidates and these proteins' biological 

properties. In Chapter 3, a novel machine learning-based reverse vaccinology tool, Vaxign-ML, 

was developed to select vaccine candidates, and in chapter 4, Vaxign-ML is applied to predict 

COVID-19 vaccine candidates. In Chapter 5, a novel structural vaccinology tool is created to 

optimize the structure of the COVID-19 vaccine candidate, spike glycoprotein, for better vaccine 

protection. In Chapter 6, two ontologies, Vaccine Investigation Ontology (VIO) and Ontology of 

Host-Pathogen Interactions (OHPI) were created to facilitate vaccine data integration to advance 

our understanding of vaccine protection mechanism. 
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Figure 1-3 Dissertation Overview. 

A systematic analysis of protective antigens (Chapter 2) led to the development of a novel 

machine learning-based reverse vaccinology (RV) tool Vaxign-ML (Chapter 3). It was applied to 

predict COVID-19 vaccine candidates (Chapter 4). The predicted candidates from the RV could 

be subject to structural design to optimize for immunogenicity (Chapter 5). On the other hand, 

two ontologies, Ontology of Host-Pathogen Interactions (OHPI) and Vaccine Investigation 

Ontology (VIO), were created to study the host-pathogen and host-vaccine interactions (Chapter 

6). All the presented works in this dissertation are based on computational predictions and 

require experimental verification, as highlighted by orange boxes in the figure. 
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Chapter 2 Identification of New Features from Known Bacterial Protective Vaccine 

Antigens Enhances Rational Vaccine Design 

 

2.1 Abstract 

With many protective vaccine antigens reported in the literature and verified experimentally, 

how to use the knowledge mined from these antigens to support rational vaccine design and 

study the underlying design mechanism remains unclear. To address the problem, systematic 

bioinformatics analysis was performed on 291 Gram-positive and Gram-negative bacterial 

protective antigens with experimental evidence manually curated in the Protegen database. The 

bioinformatics analyses evaluated the subcellular localization, adhesin probability, peptide 

signaling, transmembrane α-helix and β-barrel, conserved domain, Clusters of Orthologous 

Groups, and Gene Ontology functional annotations. Here we showed the critical role of adhesins 

and subcellular localization, peptide signaling, in predicting secreted extracellular or surface-

exposed protective antigens, with mechanistic explanations supported by functional analysis. We 

also found a significant negative correlation of transmembrane α-helix to antigen protectiveness 

in Gram-positive and -negative pathogens. In contrast, a positive correlation of transmembrane 

β-barrel was observed in Gram-negative pathogens. The commonly less focused cytoplasmic and 

cytoplasmic membrane proteins could be potentially predicted with other selection criteria such 

as adhesin probability and functional analysis. This study's significant findings can support 

rational vaccine design and enhance our understanding of vaccine design mechanisms.  

2.2  Introduction 
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Vaccination is considered the most effective medical intervention ever introduced in modern 

medicine (Rappuoli et al. 2014). It has prevented 103 million cases of infectious diseases in the 

United States since 1924 (van Panhuis et al. 2013). However, it is still challenging to develop safe 

and effective vaccines against many infectious diseases, including tuberculosis, HIV, and malaria 

(WHO 2014). The emerging reverse vaccinology (RV) addresses the challenge through rational 

vaccine design by predicting vaccine antigen based on bioinformatics analysis of pathogen 

genomes (Rappuoli 2000; Adu-Bobie et al. 2003). The first application of RV in Group B 

meningococcus (MenB) vaccine development predicted 350 surface-exposed proteins from MenB, 

and the following experiments verified 25 of them capable of inducing bactericidal antibodies 

(Pizza et al. 2000). This finding led to the approval of the first MenB vaccine, Bexsero, for use in 

Europe (Vernikos and Medini 2014) and the United States (Folaranmi et al. 2015). The success of 

Bexsero is a milestone for rational vaccine design, and RV has also been applied in vaccine 

prediction against other challenging pathogens such as Mycobacterium tuberculosis (Baldwin et 

al. 2016). 

Many selection criteria have been applied to vaccine antigen prediction, but a deep 

understanding of their usage rationale is still missing. The initial RV study of MenB vaccine 

prediction used the subcellular localization (SCL) as a primary selection criterion (Pizza et al. 

2000). Humoral immunity is vital to the host protection against MenB, and the protective antigens 

(PAgs) inducing antibody response are primarily located in the extracellular or outer membrane. 

However, vaccine antigens' preference in specific SCL varies across different pathogens, and SCL 

might not be equivalently critical for those pathogens against which cell-mediated immunity plays 

a significant role. Another frequently used criterion is the number of transmembrane α-helices 

(TMH) due to the difficulty in isolating proteins with more than one TMH (He et al. 2010). 
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However, it is unclear whether the number of TMH and transmembrane β-barrel (TMB) of a 

protein correlates with vaccine protection. Adhesins are also crucial to pathogen invasion into host 

cells (Ribet and Cossart 2015), but adhesin probability (AP) usage has not been widely 

appreciated. Other criteria include signal peptides, conserved domains, and biological function 

analysis (He et al. 2010) have been used in different RV tools (e.g., NERVE (Vivona, Bernante, 

and Filippini 2006), Vaxign (He, Xiang, and Mobley 2010), and Jenner-predict server (Jaiswal et 

al. 2013)). Machine learning techniques are also applied to vaccine design studies (Bowman et al. 

2011; Goodswen, Kennedy, and Ellis 2013). However, the significance and association of the 

above criteria with the protectiveness of bacterial PAgs are still lacking. The identification of such 

association is essential to improve vaccine antigen prediction and design studies.    

This study aims to systematically analyze known bacterial PAgs reported in the literature 

and identify underlying design mechanisms for better rational vaccine prediction. Our study uses 

PAgs collected from Protegen with antigen information and experimental protection evidence 

manually annotated from peer-reviewed articles (B. Yang et al. 2011). The significance and 

association of these Protegen PAgs are analyzed using bioinformatics tools for SLC (Yu et al. 

2010), AP (Sachdeva et al. 2005), signal peptide (Petersen et al. 2011), TMH (Krogh et al. 

2001). and TMB (Bigelow et al. 2004), conserved domains (Punta et al. 2012), Clusters of 

Orthologous Groups (COG) (Tatusov et al. 2000), and Gene Ontology (GO)  (Blake et al. 2015). 

This report provides a systematic analysis of protein properties and biological functions 

associated with known bacterial PAgs to support future rational vaccine prediction and design. 

2.3 Methods 

2.5.1 Protective Antigens and Background Pan-proteome Non-Protective Protein Sequences  
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PAgs in G+ and G- bacteria with supporting experimental evidence were downloaded from the 

Protegen database. The most common experimental evidence is the protection results against 

virulent bacterial challenges in laboratory animal models. Reported assay results that correlate to 

protection or immune responses are also considered. Using the G+ and G- pathogen information 

provided along with the PAgs from Protegen, all protein-coding sequences of these pathogens 

were downloaded from the UniProt database (The UniProt Consortium 2008). The taxonomy IDs 

reported in Protegen were queried against UniProt for possible pan-proteome sequences. The 

detail of taxonomy ID mapping between the reported G+ and G-pathogens from Protegen and 

their corresponding pan-proteome in Uniprot is available in Table 2-1. By merging all the pan-

proteome protein sequences from UniProt, we obtained the background proteome for two groups 

used in this study: G+ and G- pathogen background proteomes. There is no curated dataset of 

non-protective G+ and G- proteins available in the literature. The non-protective protein datasets 

were generated by applying similar strategies reported in previous vaccine design studies 

(Doytchinova and Flower 2007; Bowman et al. 2011; El-Manzalawy, Dobbs, and Honavar 

2012). Specifically, the G+ and G- pan-proteomes downloaded from UniProt were first aligned 

to Protegen PAg sequences using BLAST (Camacho et al. 2009). Then sequences that shared 

similar homology with the Protegen PAgs (E-value less than or equal to 10 and have a shared 

percent identity of 10%) were removed from the datasets. All the remaining sequences within the 

datasets were considered as non-protective proteins throughout the entire study. The non-

protective proteins generated in this study only provide an estimated survey of the true non-

protective datasets, and some non-protective proteins included in this study could have never 

been tested for the protective capacity. 

2.5.2 Protein Properties Computations 
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In this paper, 5 types of protein properties were computed: (i) SCL, (ii) AP, (iii) signal peptide, 

(iv) TMH and (v) TMB.  

For SCL computation, all sequences were computed for tentative SCL locations by 

running through the PSORTb v3.0 program (Yu et al. 2010). Briefly, PSORTb uses a Bayesian 

network to integrate different SCL location prediction modules such as SVM, SCL-BLAST, and 

motif-based modules. The program predicts and assigns a score for each possible SLC locations 

of the input sequence, and the location with the highest score is returned. In this study, the 

default setting was used besides specifying the G+ or G- of input sequences. 

The AP of all sequences was computed using the SPAAN program with a default setting 

(Sachdeva et al. 2005). SPAAN calculates the probability of being adhesin for an input sequence 

using a neural network with five features, including amino acid frequencies, multiplet 

frequencies, dipeptide frequencies, charge composition, and hydrophobic composition. Sachdeva 

et al. reported 89% sensitivity and 100% specificity when the cutoff value AP ≥ 0.51 was used 

(Sachdeva et al. 2005), and therefore the same threshold was applied in this study.  

Prediction of signal protein secretion of all sequences was calculated by SignalP 4.1 

standalone version (Petersen et al. 2011), which is built solely on a neural network to 

discriminate signal peptides from transmembrane regions. The discrimination score (D-score) 

computed by SignalP provides value for protein secretion. The SignalP D-score threshold value 

of 0.45 for G+ and 0.51 for G- provides the best sensitivity in signal peptides detection. In this 

study, the suggested cutoff values were used, and the default configuration was applied besides 

specifying the G+ or G- of input sequences. 

The TMH was computed using TMHMM 2.0 (Krogh et al. 2001) with default settings, 

and the number of TMH of the input G+ and G- pathogen sequences were reported. In brief, the 
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tool uses a hidden Markov model to predict the transmembrane state of the input sequences, and 

Krogh et al. reported 97-98% prediction sensitivity (Krogh et al. 2001). 

The TMB was computed using the PROFtmb tool, which is also a hidden Markov model-

based prediction program (Bigelow et al. 2004). Only TMB of G- pathogen sequences were 

computed because classical G+ bacteria do not contain β-barrel membrane proteins (Wimley 

2003). Based on the performance evaluation of the PROFtmb on discriminating transmembrane 

versus non-transmembrane β-barrel using the whole protein dataset by Bigelow et al. (Bigelow et 

al. 2004), a cut-off of ≥ 0.6 accuracy was chosen in order to achieve a balance with coverage. 

2.5.3 Protein Sequence Properties Computations 

The PAg sequences, non-protective protein, and background proteome sequences were 

functionally annotated with (i) Pfam conserved domains, (ii) COG functional classifications, and 

(iii) GO BP, MF, and CC terms.  

The PfamScan tool was used to annotate the conserved domains in all PAg, non-

protective proteins, and background proteomes. The sequences were aligned using the 

downloaded Pfam-A domain hidden Markov models (Punta et al. 2012). 

The sequences of all PAgs were scanned for COG clusters using HMMER with the 

hidden Markov models downloaded from the EggNog 4.5 database (Huerta-Cepas et al. 2016). 

Each input sequence was initially assigned with one ENOG identifier, then mapped to the 

corresponding COG cluster. For background proteomes and non-protective proteins, the COG 

cluster identifiers were retrieved directly from the UniProt database. 

The PAg sequences were submitted to the Argot2 web server for GO annotation 

prediction (Falda et al. 2012). The GO information of non-protective proteins and background 

proteomes was directly downloaded from the UniProt database. 
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2.5.4 Statistical Analysis 

Unless specified, the statistical significance of the association between reported PAgs and 

computed protein properties, including SCL, AP, signal peptide, TMH, and TMB were 

calculated using one-way Fisher’s exact test since we were only interested in the over-

representation of properties in PAgs only. For the ad-hoc analysis of specific property (e.g., SCL 

prediction), the significance of individual sub-property (e.g., individual SCL locations such as 

extracellular, cell wall, cytoplasmic membrane, and cytoplasm in G+ bacteria) were further 

examined by performing one vs. other Fisher’s exact test. The resulting p-value was adjusted by 

applying Bonferroni correction. 

The over-representation of conserved domains, COG clusters, and GO BP, MF, CC terms 

among Protegen PAgs were tested using Fisher’s exact test and adjusted using Benjamini–

Hochberg–Yekutieli procedure. In addition, the significant (adjusted p-value  0.05) GO terms 

(BP, MF, CC) were visualized in a hierarchical format using GOfox (E. Ong and He 2015). 

GOfox laid out GO terms using the internal hierarchical GO structure simplification algorithm 

since GO enrichment analysis tends to generate an extensive list of enriched GO terms (E. Ong 

and He 2015).   

2.4  Results 

Three sets of data were collected and generated for the bioinformatics analysis. Our study 

specifically analyzed frequently used PAg prediction features, including SCL, AP, signal 

peptide, TMH and TMB, conserved domain, and biological function analysis. 

2.3.1 Collection of Protective Vaccine Antigens, Background, and Non-protective proteins  

After removal of identical sequences, the curated Protegen dataset contained 81 and 210 non-

redundant vaccine PAgs from 14 Gram-positive (G+) and 34 Gram-negative (G-) bacteria, 
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respectively (Table 2-1). The corresponding pan-proteomes of these G+ and G- pathogens were 

downloaded from the UniProt database (The UniProt Consortium 2008) as the background 

proteomes, which included 39,397 G+ and 73,371 G- peptide sequences. A set of non-protective 

proteins were selected from background proteome as described in the Method section and other 

RV studies (Doytchinova and Flower 2007; Bowman et al. 2011; El-Manzalawy, Dobbs, and 

Honavar 2012; Goodswen, Kennedy, and Ellis 2013), and contained 4,954 G+ and 5,478 G- 

pathogen peptide sequences.  

2.3.2 Subcellular Localization (SCL) Analysis 

Our analysis found that 44.4% and 19.8% of PAgs in G+ bacteria are located in extracellular 

space and cell wall, respectively (Figure 2-1 A). In comparison, only 1.7% and 1.2% of the G+ 

non-protective proteins were extracellular and cell wall proteins, respectively (Figure 2-1 B). Our 

statistical analysis showed a significant over-representation of PAgs in these two SCLs (p-value 

< 0.01). In G- bacteria, 15.7%, 30.0%, and 8.1% of PAgs were extracellular, outer membrane, 

and periplasmic proteins, respectively (Figure 2-1 D). Compared to the corresponding SCL 

proportions in G- non-protective proteins (0.4%, 0.4%, and 0.9%) (Figure 2-1 E), these three 

locations were significantly over-represented in PAgs (p-value < 0.01). In non-protective 

proteins, most proteins (78.3% in G+ and 67.7% in G-) were localized in the cytoplasmic or 

cytoplasmic membrane (Figure 2-1 B&E), but these two SCL locations also accounted for 26.8% 

G+ and 31.1% G- of the reported PAgs (Figure 2-1 A&D). 
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Figure 2-1 Subcellular localization profiles.  

The bacterial PAgs (A&D) showed significant enrichment (p-value < 0.01) at different cellular locations: extracellular for both Gram+ 

(G+) and Gram- (G-) bacteria; cell wall for G+; outer membrane and periplasm for G-, when compared to the non-protective proteins 

(B&E). The background proteome subcellular localization distribution (C&F) was similar to the non-protective proteins.  

* indicates significant (p-value < 0.01) over-representation of PAgs’ subcellular localization prediction compared to non-protective 

proteins. 
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Table 2-1 A list of Gram-positive and Gram-negative bacteria used to analyze significant 

features associated with protective antigens. 

  

Pathogen 

Taxonomy 

ID 

Pathogen Name 
Uniprot Pan-

proteome ID 

Protein 

Counts 

Protective 

Antigen 

Counts 

Gram-

Positive 

Bacterium 

1773 Mycobacterium tuberculosis UP000001584 3,993 27 

1392 Bacillus anthracis UP000000594 5,493 15 

1313 Streptococcus pneumoniae UP000000586 2,030 13 

1491 Clostridium botulinum  UP000001986 3,590 7 

1336 Streptococcus equi UP000001368 1,851 6 

1280 Staphylococcus aureus UP000008816 2,889 6 

1314 Streptococcus pyogenes UP000000750 1,690 5 

1311 Streptococcus agalactiae UP000001415 3,240 4 

1485 Clostridium tetani UP000001412 2,415 2 

1639 Listeria monocytogenes UP000000817 2,844 2 

1717 Corynebacterium diphtheriae UP000002198 2,265 1 

1781 Mycobacterium marinum UP000001190 5,418 1 

1648 Erysipelothrix rhusiopathiae UP000007944 1,679 1 

1765 Mycobacterium bovis UP000001584 3,993 1 

Gram-

Negative 

Bacterium 

234 Brucella spp. UP000002719 3,023 28 

632 Yersinia pestis UP000000815 3,909 26 

487 Neisseria meningitidis UP000000425 2,001 21 

83334 Escherichia coli UP000000625 4,306 19 

727 Haemophilus influenzae UP000000579 1,707 14 

520 Bordetella pertussis UP000047656 3,783 14 

83555 Chlamydophila abortus UP000000431 895 10 

83560 Chlamydia muridarum UP000000431 895 10 

197 Campylobacter jejuni UP000000799 1,623 10 

210 Helicobacter pylori UP000000429 1,553 9 

263 Francisella tularensis UP000001174 1,528 9 

590 Salmonella spp. UP000000625 4,306 7 

715 Actinobacillus pleuropneumoniae UP000001432 2,004 7 

83558 Chlamydophila pneumoniae UP000000431 895 6 

620 Shigella UP000002716 3,897 6 

287 Pseudomonas aeruginosa UP000002438 5,563 4 

28450 Burkholderia pseudomallei UP000000605 5,717 4 

139 Borrelia burgdorferi UP000001807 1,290 4 

636 Edwardsiella tarda UP000001485 3,686 4 

83554 Chlamydophila psittaci UP000014824 1,714 3 

747 Pasteurella multocida UP000000809 2,015 3 
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780 Rickettsia spp UP000002480 834 3 

666 Vibrio cholerae UP000036184 4,527 3 

160 Treponema pallidum UP000000811 1,028 3 

777 Coxiella burnetii UP000002671 1,815 2 

645 Aeromonas salmonicida UP000000756 4,121 2 

171 Leptospira spp. UP000001408 3,676 2 

633 Yersinia pseudotuberculosis UP000000815 3,909 1 

2096 Mycoplasma gallisepticum UP000001418 761 1 

393305 Yersinia enterocolitica UP000000815 3,909 1 

55601 Vibrio anguillarum (Listonella anguillarum) UP000006800 3,722 1 

2099 Mycoplasma hyopneumoniae UP000000548 671 1 

738 Haemophilus parasuis UP000006743 2,002 1 

813 Chlamydia trachomatis UP000000431 895 1 
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To confirm the SCL analysis results, we also analyzed signal peptides using SignalP 

(Petersen et al. 2011), which predicted the presence of signal sequences of most synthesized 

proteins designated to secretory pathways. The distribution histograms of the calculated score for 

PAgs, non-protective proteins, and background proteomes were plotted (Figure 2-2). The signal 

peptide scores of extracellular (both G+ and G-) or surface-exposed proteins (cell wall for G+ 

and outer membrane for G-) showed that a large fraction of PAgs was predicted to be secreted 

signal peptides. 

2.3.3 Adhesin Probability (AP) Analysis 

Adhesins are proteins critical for bacterial pathogens to invade host cells and cause infections 

(Ribet and Cossart 2015). Over half of the PAgs could be identified with AP (56.8% of G+ and 

52.8% of G-) using the suggested cutoff of no less than 0.51 (Sachdeva et al. 2005). The AP of 

proteins with different SCLs also had different patterns (Figure 2-3). Specifically, comparing 

PAgs (Figure 2-3 B&E) and non-protective proteins (Figure 2-3 C&F), PAgs with SCL locations 

other than cytoplasmic membrane and cytoplasm generally showed an increasing trend in AP. 

There were 87.5% G+ PAgs in the cell wall and 82.5% G- PAgs in the outer membrane that was 

also adhesins, compared to 37.5% G+ and 20% G- non-protective proteins in the cell wall and 

outer membrane, respectively (Figure 2-3). This high preference of surface-exposed proteins 

(cell wall for G+ and outer membrane for G-) with high AP was significant (p-value < 0.01, 

Figure 2-3) and illustrated the importance of SCL and AP as two significant criteria in vaccine 

design. Additionally, 90.0% and 54.3% of the PAgs in G+ and G- bacteria with unknown SCL 

were in fact predicted to be adhesins. Therefore, utilizing AP with SCL could potentially 

overcome the limitation of excluding “Unknown” SCL and avoid inaccuracy generated by 

individual SCL prediction tool. For PAgs located at the cytoplasmic membrane and cytoplasm, 
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the computed AP also showed different patterns between G+ and G- (Figure 2-3 B&E). G+ PAgs 

in cytoplasmic membrane were more likely adhesins (77.8%) while in G-, only 20.0 % were 

adhesins.  
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Figure 2-2 SignalP score distribution of protective antigens, non-protective proteins, and background proteome. 

Protective antigens (A&D) showed significantly more signaling peptide predictions in subcellular locations, including cell wall for 

Gram-positive, outer membrane and Periplasmic for Gram-negative), and extracellular and unknown locations for both Gram-positive 

and -negative bacteria in comparison to the non-protective proteins (B&E) and background proteome (C&F). 
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Figure 2-3 Profiles of adhesin probabilities of protective antigens and non-protective proteins with different subcellular 

localizations. 

The top three subfigures (A-C) show Gram+ (G+) pathogens and the bottom three show Gram- (G-) pathogens. Specifically, the first 

column (A & D) represents the overall percentages of adhesin probabilities. The second column (B & E) and third column (C & F) 
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show adhesin probability distributions of protective antigens (PAgs) and non-protective proteins, respectively. The red line in (B, C, 

E, F) indicates an adhesin probability cutoff of no less than 0.51. Overall, PAgs have significantly higher (p-value < 0.01) percentages 

in extracellular (G+ & G-), cell wall (G+), periplasm, and outer membrane (G-). Interestingly, the cytoplasmic membrane PAgs in G+ 

is also significant (p-value < 0.05) when coupled with adhesin probability, which might be associated with the induction of cell-

mediated immunity.  

* and ** indicates significant over-representation of PAgs’ adhesin probabilities at different subcellular localizations compared to 

non-protective proteins with p-values < 0.05 and p-value < 0.01, respectively. 
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2.3.4 Transmembrane α-helix (TMH) and β-barrel (TMB) 

We analyzed and compared the TMH profiles between PAgs and non-protective proteins. 

Specifically, none of the PAgs located at the cell wall (G+), outer membrane, or periplasm (G-) 

had more than one TMH (Figure 2-4). There were two G- PAgs with more than 10 TMH 

(lipoprotein signal peptidases in Brucella melitensis and L-lactate permease in Neisseria 

meningitides). The β-barrel analysis was only performed for G- pathogens because classical G+ 

bacteria do not contain β-barrel membrane proteins (Wimley 2003). Using the probability cutoff 

of 0.60, our study found that 12.9% of Gram-negative PAgs predicted to have TMB compared to 

less than 0.001% in non-protective proteins (Figure 2-4). 

2.3.5 Conserved Domain Analysis 

Conserved domains represent functional units in proteins, and some domains are more frequently 

associated with PAgs (He and Xiang 2012; Jaiswal et al. 2013). Our analysis identified eight 

conserved domains that were only frequently found among reported PAgs (Table 2-2). These 

domains included autotransporter beta-domain, outer membrane protein beta-barrel domain, 

fimbrial protein, TonB-dependent receptor plug domains, OmpH-like outer membrane protein, 

extended signal peptide of type V secretion system, ABC transporter, and Extended Signal 

Peptide of Type V secretion system. The top two frequently found Pfam-A conserved domains 

among reported PAgs were β-barrel domains, which support the positive selection of TMB in 

PAg prediction. In addition, proteins with over-represented conserved domains were more likely 

related to bacteria's pathogenesis, including pathogen colonization and invasion. They, therefore, 

could be used as a good indicator of PAg prediction. 
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Figure 2-4. Transmembrane α-helix and β-barrel profiles in protective antigens. 

Compared to non-protective proteins, there were much higher percentages of PAgs with zero or 

one transmembrane α-helix (A). For transmembrane β-barrel (B), only 2 (0.0004%) out of all 

non-protective proteins had a probability higher than the designated cutoff (indicated as a 

vertical line). 
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Table 2-2 Frequent conserved domains among reported protective antigens. 

Pfam domain description Protective antigen count 

Autotransporter beta-domain 11 

Outer membrane protein beta-barrel domain 10 

Fimbrial protein 10 

ATPase family associated with various cellular activities (AAA) 9 

TonB-dependent Receptor Plug Domain 8 

Outer membrane protein (OmpH-like) 5 

ABC transporter 5 

Extended Signal Peptide of Type V secretion system 5 
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2.3.6 Functional Analysis  

The functional annotations were analyzed using the COG and GO. COG includes 26 functional 

clusters (Tatusov et al. 2000). Our COG analysis of PAgs identified 16 COG functional 

categories that were significantly enriched (adjusted p-value < 0.05) in PAgs (Figure 2-5). Four 

COG clusters cell wall/membrane envelope biogenesis, cell motility, signal transduction 

mechanisms, and extracellular structures were notably enriched in PAgs. 

We also analyzed enriched GO terms from the three GO branches: biological process 

(BP), molecular function (MF), and cellular component (CC) (Blake et al. 2015).  Eighteen GO 

BP terms were found significantly enriched (adjusted p-value < 0.05) in bacterial PAgs, 

including ‘pathogenesis’ as the most significantly enriched term among PAgs in bacterial 

pathogens (Figure 2-6). BPs related to pathogen invasion (e.g., cell adhesion and proteolysis) and 

terms related to the transporter (e.g., transmembrane transport) were significantly over-

represented among PAgs. Twenty GO MF terms were significantly enriched (adjusted p-value < 

0.05), including those related to invasion (e.g., peptidase activity) and transportation (e.g., 

transferase activity and receptor activity). Fifteen GO CC terms were significantly enriched 

(adjusted p-value < 0.05). In agreement with the SCL prediction results, extracellular or surface-

exposed CC terms were significantly over-represented among reported PAgs. In addition, CC 

terms that were related to bacterial colonization and invasion within the host, such as bacterial-

type flagellum filament, pilus, host cell part, host cell plasma membrane, and host cell junction, 

were also enriched, suggesting PAgs’ role in the interactions between bacteria and the host cells. 
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Figure 2-5 Over-represented Clusters of Orthologous Groups clustering profiles among 

reported protective antigens. 

Over 40% of the reported protective antigens (PAgs) belong to the cluster cell 

wall/membrane/envelop biogenesis, which agrees with common knowledge of using surface-

exposed proteins as a key criterion in vaccine antigen prediction. Other Clusters of Orthologous 

Groups (COG) clusters related to pathogen motility, secretion, signal transduction, and 

transportation are also significantly enriched in PAgs in comparison to non-protective proteins. 

The significant over-representation of PAgs’ COG clusters compared to non-protective proteins 

is colored with grey (p-value < 0.05) and black (p-value < 0.01). 
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Figure 2-6 Over-represented gene ontology biological process, molecular function, and 

cellular component profiles among reported protective antigens. 

The number next to each Gene Ontology (GO) term indicates the number of protective antigens 

(PAgs) with the corresponding GO functional annotation. Similar to Clusters of Orthologous 

Groups clustering, GO terms related to pathogen motility, secretion, signal transduction, and 

transportation are also significantly enriched in PAgs compared to non-protective proteins. The 

GO cellular component terms also supported the high preference of extracellular, surface-

exposed (cell wall in Gram-positive and outer membrane in Gram-negative) and periplasmic 

(Gram-negative) PAgs. The significant over-representation of PAgs’ GO terms compared to non-

protective proteins is color-coded following the legend in the lower right corner. 
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2.5 Discussion 

Although extensive research has been conducted, modern vaccine research and development still 

faces challenges of rapid and accurate development of vaccines in response to major infectious 

diseases (e.g., tuberculosis (WHO 2014)), outbreaks (e.g., Ebola and Zika virus (Leligdowicz et 

al. 2016; Saiz et al. 2016)), and new drug-resistant pathogens (Kling et al. 2014). Our efforts to 

develop vaccines using traditional methods have not been successful in addressing these 

challenges. Effective vaccine development's future success relies on robust and rational vaccine 

design, including reverse and structural vaccinology (Rappuoli et al. 2014), and our more in-

depth understanding of vaccination mechanisms. Our comprehensive bioinformatics study 

analyzed important vaccine design criteria by systematically studying and comparing bacterial 

PAgs and non-protective proteins, including various protein properties and biological functions. 

This study's summarized characteristics are used explicitly for bacterial model PAg prediction 

and might not hold true for viral or parasitic pathogens. The results of this study confirmed and 

provided details on the usage of these prediction criteria, including SCL, AP, signal peptides, 

TMH and TMB, conserved domains, and biological function annotations, for RV prediction 

against bacterial pathogens. Most importantly, our results suggested new insights towards 

rational vaccine prediction and design. 

In accordance with secreted extracellular or surface-exposed antigens commonly known 

to be PAgs, our study observed the differences among the SCL profiles of G+ and G- bacterial 

PAgs (Figure 2-1). In terms of extracellular proteins, G+ bacterial PAgs had a much higher 

percentage (44%) being PAgs than G- bacterial PAgs (15.7%). We also found a strong 

correlation between the presence of secretory signal peptides and PAgs. Approximately half of 

the PAgs (over 45% in both G+ and G-) were predicted to be signal peptides (Figure 2-2). 
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Coupling the selection of SCL and signal peptides, particularly in G+ bacterial pathogens, pose a 

viable option for a more precise PAg prediction. On the other hand, 19.8% of cell wall proteins 

in G+ and 30.0% outer membrane proteins in G- bacteria were surface-exposed PAgs (Figure 2-1 

A&D). The G+ bacterial PAgs showed a higher preference in extracellular proteins, while both 

G+ and G- bacterial PAgs shared similar proportions as surface-exposed proteins.  

Moreover, 8.1% G- PAgs were in the periplasm, a subcellular location that vaccine 

researchers often ignore due to lack of direct interaction with the host immune cells. The 

percentage of periplasmic PAgs was significant (p-value < 0.05, Figure 2-1 C) and was also 

supported by the over-represented GO terms (Figure 2-6). G- bacterial periplasmic proteins can 

be possibly released extracellularly after being packed within outer membrane vesicles and 

induce strong immune responses (Collins 2011; Godlewska et al. 2016). These periplasmic 

proteins can potentially be a good source of PAg candidates when coupling with other selection 

criteria such as functional analysis.  

Our study results highlight AP's importance and its effect on improving RV prediction 

when combined with SCL. Adhesin is critical for bacterial invasion and can induce strong 

immune responses (Ribet and Cossart 2015). Adhesins can also function as enzymes and mediate 

a prominent part of bacterial pathogenesis (S. Patel, Mathivanan, and Goyal 2017). The majority 

of vaccine design studies do not incorporate AP in their selection pipeline (Doytchinova and 

Flower 2007; Bowman et al. 2011; Goodswen, Kennedy, and Ellis 2013; Pizza et al. 2000), and 

AP as a selection criterion is currently underused and poorly investigated in the vaccine 

development field. Our study managed to identify over 50% of the PAgs with AP as the only 

criterion. By addressing the importance of adhesin playing an essential role in vaccine 

development, we hope to promote the AP as a viable option in future vaccine design studies. 
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The functional analysis of adhesive PAgs in our study proposes a mechanistic 

explanation of their roles in pathogen colonization and invasion. Cell motility is one of the 

essential steps in host colonization and invasion. The bacterial movement requires structures 

such as flagellum and pillus for cell adhesion and colonization (Ramos, Rumbo, and Sirard 

2004). Cell motility related COG clusters and GO terms were significantly enriched (Figure 2-5 

and 2-6). Pilli is composed of fimbrial and other proteins(Ramos, Rumbo, and Sirard 2004), and 

the Pfam domain ‘fimbrial protein’ was highly conserved among the reported PAgs (Table 2-2). 

GO BP term proteolysis and GO MF terms peptidase activity (Figure 2-6) were also significant 

in the functional analysis. For instance, Yersinia pestis can produce the surface protease to 

mediate invasion into host endothelial cells (La et al. 2001). The pili, fimbri, and protease 

mentioned earlier can part of the various adhesins’ architectures (S. Patel, Mathivanan, and 

Goyal 2017). Given these critical roles of adhesins, more investigations of adhesins as potential 

PAgs and how they induce protective immunity are much deserved.  

Our study showed two distinct correlation patterns of the PAgs protectiveness to the 

TMH and TMB. The TMH is more abundant in cytoplasmic or inner membranes, and the TMB 

type is more likely located in bacterial outer membranes (Schulz 2002). Our study confirmed that 

TMH proteins with more than one TMH were not typically used for vaccine development (He et 

al. 2010) (Figure 2-4 A). Two exceptions with more than 10 TMHs were Brucella lipoprotein 

signal peptidase and Neisseria meningitides L-lactate permease. Brucella lipoprotein signal 

peptidase is a known virulence factor involved in lipopolysaccharides biosynthesis (Zygmunt et 

al. 2006). The N. meningitides L-lactate permease is a protein required by N. meningitides during 

bacteraemic infection, which can induce protective immunity in systemic meningococcal 

infection (Sun et al. 2005). Different from TMH, our study indicated that the presence of TMB 
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was associated with significantly higher portions (p-value < 0.01 from the chi-squared test) of G- 

PAgs (Figure 2-4 B). In particular, none of the G- outer membrane non-protective proteins was 

predicted to have TMB. Our results suggested the use of TMH as a negative and TMB as a 

positive selection criterion in future vaccine development. 

Although not usually considered as PAgs, large portions (26.8% G+ and 31.1% G-) of 

cytoplasmic and cytoplasmic membrane proteins were found to be PAgs (Figure 2-1 A, D). 

Compared to a much larger size of cytoplasmic and cytoplasmic membrane non-protective 

proteins, this fraction of PAgs was not significant. However, the ignorance of proteins located at 

these two SCLs might hinder effective PAg prediction productivity. Cytoplasmic and 

cytoplasmic membrane proteins might not induce humoral immune response due to their SCLs, 

but these proteins often can be potent inducers of cell-mediated immunity. For example, the 

cytoplasmic catalase-peroxidase protein in Mycobacterium tuberculosis contributes to 

intracellular survival within the host macrophage by protecting against reactive oxygen species 

(Ng et al. 2004) and can induce protective immunity (Z. Li et al. 1999). How to accurately 

predict cytoplasmic PAgs remains a big challenge, but it can be potentially addressed using 

multiple features such as AP, conserved domains, COG clusters, and GO terms. In particular, G+ 

PAgs showed significant over-representation in the cytoplasmic membrane (p-value < 0.05) 

when coupled with AP prediction. Conserved domains have been reported as a viable option in 

the PAgs prediction (Jaiswal et al. 2013). In our study, many conserved domains were frequently 

found among PAgs, which might link to essential bacterial biological functions (e.g., TonB-

dependent receptor plug domain). As a strategy in antibiotics resistance is the bacterial efflux 

pumps (Jessica M. A. Blair, Mark A. Webber, Alison J. Baylay 2015), TonB-dependent receptor 

is a G- bacterial protein responsible for the transportation of large ion complex and have been 
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identified as a potent vaccine PAgs (Z. Ni et al. 2017). The over-represented COG clusters and 

GO terms among the reported PAgs suggested a viable alternative to overcome the challenge of 

identifying cytoplasmic and cytoplasmic membrane PAgs and complement current vaccine 

prediction studies. 

This study's findings can be translated into a predictive framework with different 

approaches to improve existing methods and achieve better identification and validation of novel 

PAgs. Even though traditional rule-based prediction has been successful in multiple studies 

(Pizza et al. 2000; Baldwin et al. 2016) and also applied in many tools (He, Xiang, and Mobley 

2010; Jaiswal et al. 2013; Vivona, Bernante, and Filippini 2006), this type of “all-or-nothing” 

selection might fail to capture the inter-relation among different criteria (Goodswen, Kennedy, 

and Ellis 2013). For example, a potential cytoplasmic or cytoplasmic membrane PAg would be 

immediately discarded from a study that includes surface-exposing SCL as one of the criteria. As 

indicated in one of our findings, the cytoplasmic or cytoplasmic membrane PAg could be 

predicted by incorporating other criteria such as AP, conserved domains, and biological 

functions. A combinatory strategy has been proposed as a natural solution that assigns each 

criterion with weight and synthesizes multiple criteria in a composite way, such as weighted 

metrics (Lopera-Madrid et al. 2017). Candidate proteins with low scores in a set of rules could 

still achieve a reasonable score and are compensated by another set of selection criteria. Another 

advanced technique is to apply machine learning methods such as support vector machine, 

random forest, and neural network as described in previous studies (Bowman et al. 2011; 

Goodswen, Kennedy, and Ellis 2013; El-Manzalawy, Dobbs, and Honavar 2012; He and Xiang 

2012). Even though the machine learning-based prediction can overcome the “all-or-nothing” 

scenario, these methods have not captured all the significant features reported in this study. For 
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example, AP and conserved domains are not implemented in current ML-based prediction 

(Bowman et al. 2011; Goodswen, Kennedy, and Ellis 2013; El-Manzalawy, Dobbs, and Honavar 

2012) except the preliminary study by Xiang & He (He and Xiang 2012), and none of these 

studies incorporated TMB and biological functional analysis into their prediction pipeline. The 

additional features given from our findings showed promising improvement on current machine 

learning methods. 

Based on the discoveries reported in this study, we plan to explore the possibility of 

integrating these significant criteria, including MHC-epitope binding and structure on protein 

selection, to predict vaccine candidates and improve our Vaxign software program (He, Xiang, 

and Mobley 2010). Even though our analysis focused on the bacterial model, some criteria such 

as AP, signal peptide, transmembrane proteins, pathogenesis-related conserved domains, and 

biological functions can be extended to viral or parasitic PAgs prediction after further 

verification and analysis. A better understanding of the association between individual criterion 

and PAgs and the inter-relation among different criteria will provide new opportunities for more 

accurate and rational vaccine design, leading to better prevention and control of various 

infectious diseases. 
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Chapter 3 Vaxign-ML: Supervised Machine Learning Reverse Vaccinology Model for 

Improved Prediction of Bacterial Protective Antigens 

3.1 Abstract 

Reverse vaccinology (RV) is a milestone in rational vaccine design, and machine learning (ML) 

has been applied to enhance RV prediction accuracy. However, ML-based RV still faces 

challenges in prediction accuracy and program accessibility. This study presents Vaxign-ML, a 

supervised ML classification to predict bacterial protective antigens. To identify the best ML 

method with optimized conditions, five ML methods were tested with biological and 

physiochemical features extracted from well-defined training data. Nested five-fold cross-

validation and leave-one-pathogen-out validation were used to ensure unbiased performance 

assessment and the capability to predict vaccine candidates against a new emerging pathogen. 

The best performing model, Vaxign-ML, was compared to three publicly available RV programs 

with a high-quality benchmark dataset. Vaxign-ML showed superior performance in predicting 

bacterial protective antigens. Vaxign-ML is deployed in a publicly available web server.  

3.2 Introduction 

As the most successful medical intervention in modern medicine, vaccination is still facing the 

considerable difficulty of developing safe and effective vaccines against many infectious 

diseases such as tuberculosis, HIV, and malaria (WHO 2014). The advance of high-throughput 

sequencing technology has fostered an innovative genome-based vaccine design approach in the 

early 1990s, termed Reverse Vaccinology (RV) (Rappuoli 2000). The first RV study identified 

meningococcal protein vaccine candidates using the whole genome sequences of Group B 
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meningococcus. This study selected and verified 28 immunogenic proteins using a 

bioinformatics approach followed by experimental validation (Pizza et al. 2000). The Bexsero 

vaccine, formulated using 5 out of the 28 protein candidates, has been licensed in Europe and the 

United States (Vernikos and Medini 2014; Folaranmi et al. 2015).  

The great success of the first RV study has led to many RV prediction programs (Dalsass 

et al. 2019). The currently reported open-source RV programs could be characterized based on 

the algorithmic approaches or input feature types. The algorithmic approaches include rule-based 

filtering and machine learning (ML) classification methods. NERVE, the first publicly available 

rule-based filtering RV program, is a standalone software published in 2006 (Vivona, Bernante, 

and Filippini 2006). Four years later, the first web-based filtering RV program, Vaxign, was 

developed similar to NERVE but with additional analyses (He, Xiang, and Mobley 2010). 

Vaxign has been applied in vaccine design studies against more than ten pathogenic bacteria 

such as Helicobacter pylori (Navarro-Quiroz et al. 2018), Acinetobacter baumannii (Singh et al. 

2016), Mycobacterium spp. (Hossain et al. 2017). Following NERVE and Vaxign, two other 

filtering-based RV programs, Jenner-predict server (Jaiswal et al. 2013) and VacSol (Rizwan et 

al. 2017) were published (Jaiswal et al. 2013; Rizwan et al. 2017). All these currently available 

rule-based filtering RV programs use only biological features as the data input. 

ML classification has also been used for RV prediction. VaxiJen was the first ML 

classification RV program published in 2007 (Doytchinova and Flower, 2007). Bowman et al. 

and Heinson et al. extended the training data of VaxiJen and revised the ML algorithm (Bowman 

et al. 2011; Heinson et al. 2017). Their final training data, termed 200BPA, consisted of 200 

bacterial protective antigens (BPAgs) and 200 non-protective proteins. The non-protective 

proteins were selected if it had no homology (BLASTp E-value ≤ 10E-3) to the BPAgs. A major 
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difference between VaxiJen and Bowman-Heinson was that VaxiJen used physicochemical 

features of the input proteins while the later program used biological features. The second 

lineage of ML-based RV prediction program originated from the development of ANTIGENpro 

in 2010 (Magnan et al. 2010). ANTIGENpro collected protective antigens (PAgs) from the 

literature combined with the positive and negative samples tested via protein microarrays probed 

with sera from naive, exposed, and vaccinated individuals. Rahman et al. revised the algorithmic 

method of ANTIGENpro and developed Antigenic using the same training data (Rahman et al. 

2019). Both ANTIGENpro and Antigenic used physicochemical features as the data input. The 

authors of these two papers argued that proteins being able to elicit a significant antibody 

response could be considered “protective antigens”. However, data collected based on antibody 

responses did not guarantee to be protective. Such data lack the results from protection assays in 

at least laboratory animal models. More importantly, antibody production does not capture cell-

mediated immunity, which is often an essential protective immune mechanism. For example, 

Brucella vaccine RB51-induced protection is purely based on cell-mediated immunity, and its 

induced antibody response does not offer any observed protection (Jimenez de Bagues et al. 

1994).  

All of the ML RV programs mentioned earlier were not designed to predict eukaryotic 

vaccine candidates. Goodswen et al. developed the first and the only ML RV targeting 

eukaryotic pathogens to our best knowledge (Goodswen, Kennedy, and Ellis 2013). However, 

due to the lack of reported eukaryotic PAgs, proteins which are surface-exposed and have at least 

one T-cell epitopes were treated as positive in this study. These collected data might lack 

supporting experimental evidence. Furthermore, a protein with epitopes does not mean that this 

protein can elicit protective immune responses (Flower et al. 2010). An independent resource, 
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Protegen, had manually collected 590 protective antigens over 100 infectious diseases caused by 

pathogens (bacteria, viruses, and parasites) and non-infectious diseases, including cancers and 

allergies (B. Yang et al. 2011). Each of these collected protective antigens can elicit a protective 

immune response, which has been experimentally verified by at least one laboratory animal 

model. A preliminary ML RV study trained on the Protegen data reported high PAgs prediction 

accuracy (He and Xiang, 2012). Protegen has doubled the number of annotated pathogen PAgs 

since its initial release in 2011.  

Although a significant effort has been made to enhance the RV prediction with ML, there 

are still many obstacles in ML-based RV prediction. First, all currently available programs use 

either biological properties or physicochemical properties for input protein sequence annotations. 

Previous studies reported that the protectiveness of BPAgs was significantly correlated to 

biological properties (E. Ong, Wong, and He 2017) and physicochemical properties (Mayers et 

al. 2003). Studies using ML algorithms trained on data with physicochemical properties 

annotated also showed high BPAg prediction accuracy. Therefore, the relations of BPAgs to 

biological and physicochemical properties deserved a more in-depth analysis and should be 

combined with annotated proteins in the training data for better BPAg prediction. Secondly, the 

quality of the benchmarking datasets varied in current reported studies. As mentioned above, the 

testing data used to evaluate ANTIGENpro and Antigenic was primarily based on the antibody 

responses and might miss the cell-mediated immune responses. Therefore, the dataset of 

ANTIGENpro and Antigenic was excluded from this study. Finally, the 200BPA data from 

VaxiJen and Bowman-Heinson only included PAgs with supporting experimental evidence. The 

negative samples were randomly selected from non-homologous proteins to the PAgs. The 
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random under-sampling may not reflect the real distribution of PAgs in the proteome. Besides, 

VaxiJen and Bowman-Heinson model were not evaluated using external independent dataset. 

In the current Vaxign-ML study, epitope information was not incorporated into the 

pipeline. The prediction of epitopes has been an active area of vaccine design. The IEDB 

database and IEDB-AR resources (Fleri et al. 2017) provide comprehensive T cell and B cell 

epitope query, prediction, and analysis tools. However, the epitopes' prediction is dependent on 

the host information (e.g., MHC alleles and antibodies). The training dataset in Vaxign-ML 

consisted of experimentally verified protective antigens manually annotated from studies in over 

ten host species. Therefore, the prediction of BPAgs in Vaxign-ML did not take host species into 

account, and the T cell or B cell epitope predictions were not included. Current epitope-based 

BPAg prediction methods such as iVAX (L Moise et al. 2015) often depend on the epitopes' 

frequency or density located on the protein. However, such epitope measurement may not 

necessarily translate into protective immune responses. Despite the uncertainty of 

correspondence between epitope and protective immune response, we implemented an epitope-

based method using IEDB epitope prediction tools. The performance of Vaxign-ML and the 

other four BPAg prediction methods was to the epitope-based method in this study.  

This paper presented a systematic evaluation of a supervised ML classification RV 

program trained on the Protegen BPAgs with their biological and physicochemical features 

annotated. The BPAgs and the non-protective proteins were first carefully checked for homology 

to ensure training data quality. Three data resampling strategies were applied to the original data 

due to imbalance classes in the training data. Nested five-fold cross-validation and leave-one-

pathogen-out validation were used to evaluate five supervised ML algorithms with feature 

selection and hyperparameter optimization. The best performing model, termed Vaxign-ML, was 



 52 

benchmarked using a curated external independent dataset and demonstrated superior predictive 

performance. 

3.3 Methods 

The overall project workflow is described in Figure 3-1. In brief, positive samples and negative 

samples were downloaded and processed from Protegen and Uniprot (B. Yang et al. 2011; The 

UniProt Consortium 2008). The biological and physicochemical features for these protein 

sequences were annotated using publicly available bioinformatics software. Four data resampling 

strategies and Five supervised ML classification algorithms were trained and evaluated. The best 

model's performance, named Vaxign-ML, was compared to four BPAg prediction methods and 

one epitope-based method using a curated external independent dataset. 

3.5.1 Data Preparation 

BPAgs with supporting experimental evidence were downloaded from the Protegen database (B. 

Yang et al. 2011). As of 2019-07-31, Protegen included 584 BPAgs from 50 Gram+ and Gram- 

pathogenic bacteria. BPAgs with sequence similarity over 30% were considered homologous 

proteins, a commonly accepted threshold for homologous proteins (Pearson 2013), and removed 

from the study to avoid potential bias. The final positive samples in the original data consisted of 

397 BPAgs. A set of “gold-standard” non-protective proteins does not exist. Therefore, the 

training dataset's negative samples were selected based on its sequence dis-similarity to the 

BPAgs, as described in previous ML-based protective antigen prediction studies (Bowman et al., 

2011; Doytchinova and Flower, 2007; Heinson et al., 2017). The whole pathogen proteomes of 

the 50 pathogenic bacteria were downloaded from the Uniprot database (The UniProt 

Consortium 2008). Any pathogen proteins with sequence similarity less than 30% to the BPAgs 

were kept, and homologous proteins were also removed. 
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Figure 3-1 Overall Vaxign-ML workflow. 

This flowchart depicted the entire process to train and evaluate machine learning-based reverse 

vaccinology models. See main text for details. 
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Vaxign-ML used two categories of features for each of the protein sequences: biological 

features and physicochemical features. Biological features including the Gram(+/-) stain, 

subcellular localization (Yu et al. 2010), adhesin probability (Sachdeva et al. 2005), 

transmembrane helix (Krogh et al. 2001), signal peptide (Petersen et al. 2011), and 

immunogenicity (Fleri et al. 2017) were computed using publicly available bioinformatics 

software programs. On the other hand, the analyzed physicochemical features include the 

compositions, transitions, and distributions (Dubchak et al. 1995), quasi-sequence-order (Chou 

2000), Moreau-Broto auto-correlation (Lin and Pan, 2001; Feng and Zhang, 2000), and Geary 

auto-correlation (Sokal and Thomson, 2006) of various physicochemical properties such as 

charge, hydrophobicity, polarity, and solvent accessibility, etc. (S. A. K. Ong et al. 2007). A total 

of 509 biological and physicochemical features were annotated for each of the protein sequences 

in the original data. 

The original data were imbalanced and had a dimension of 4,367 samples (positive-to-

negative classes ratio = 1:10) and 509 features. In order to study the effect of class imbalance, 

three data resampling strategies were implemented. Firstly, the negative samples in the original 

data were randomly sampled without replacement (positive-to-negative classes ratio = 1:1). 

Secondly, the Synthetic Minority Over-sampling Technique (SMOTE) (Chawla et al. 2002) was 

applied to the original data to increase the number of positive samples (positive-to-negative 

classes ratio = 10:10). Finally, the balanced resampling strategy was applied by combining both 

under-sampling and over-sampling strategies. The negative samples in the original training data 

were randomly sampled without replacement to have five times the size of positive samples. 

Then, the positive samples were over-sampled using SMOTE (positive-to-negative ratio = 5:5).  

3.5.2 Supervised machine learning classification 
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Five supervised ML classification algorithms were used in this study, including logistic 

regression (LR), support vector machine (SVM), k-nearest neighbor (KNN), random forest (RF) 

(Pedregosa et al. 2012), and extreme gradient boosting (XGB) (T. Chen and Guestrin 2016). The 

best performing model was trained and named “Vaxign-ML”. The output of Vaxign-ML is the 

percentile rank score from the final ML classification model, termed “protegenicity”. 

A nested five-fold cross-validation (N5CV) was applied to evaluate all supervised ML 

classification models. The training data, including original data, under-sampled, over-sampled, 

and balanced, were randomly split into five parts while preserving the percentage of positive and 

negative samples. One important note is that the data resampling was only performed after the 

N5CV splitting to avoid duplicated positive samples in both training and testing data. Among the 

five parts, four parts were for training. Feature selection with mRMR (Ding and Peng 2003) and 

hyperparameter optimization were applied before training all classification models. The 

remaining part was used as the testing set for model evaluation.  

In order to determine whether the discriminative power of the prediction models 

depended on the immunogenic potential in the Protegen dataset rather than sequence dis-

similarity, the negative dataset was randomly split into two sets with sequence identity less than 

30%. The same N5CV was applied to confirm that the discriminative performance depended on 

the PAg potential in the Protegen database rather than sequence dis-similarity. 

To have a more unbiased estimation of the classification performance and to mimic the 

situation where vaccine candidates would be needed for a new emerging pathogen, a leave-one-

pathogen-out validation (LOPOV) was implemented. Ten tested pathogens included four Gram+ 

pathogens (Mycobacterium tuberculosis, Staphylococcus aureus, Streptococcus pneumoniae, and 

Streptococcus pyogenes) and six Gram- pathogens (Helicobacter pylori, Neisseria meningitidis, 
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Brucella abortus, Escherichia coli, Yersinia pestis, Haemophilus parasuis). The positive and 

negative samples from these ten pathogens were held out as testing sets. The remaining samples 

were used for training. Data sampling, feature selection, and hyperparameter optimization were 

applied before training all classification models similar to the N5CV. 

3.5.3 Benchmarking and evaluation with an independent dataset 

A curated external independent dataset was created to benchmark the best performing model 

(Vaxign-ML). Dalsass et al. collected a list of 100 bacterial protective antigens termed 100BPA 

(Dalsass et al. 2019). However, 100BPA only includes positive samples. Another dataset 

consisted of 200 positive and 200 negative samples (200BPA) was initially created for the 

development of the VaxiJen program (Doytchinova and Flower, 2007) and later extended by 

Bowman et al. and Heinson et al. (Bowman et al. 2011; Heinson et al. 2017). Both 100BPA and 

200BPA were combined and used for benchmarking. To ensure this external independent 

dataset's quality, all positive samples in 100BPA and 200BPA were checked against the BPAgs 

in Protegen. Any duplicated positive samples were then removed. Meanwhile, the negative 

samples in 200BPA were also evaluated to ensure no supporting experimental evidence from the 

literature as our initial effort to address the “true negative” dataset for ML-based BPAgs 

prediction. The final curated external independent dataset consisted of 131 positive and 118 

negative samples, named “iBPA”. 

Vaxign-ML was compared to four BPAg candidate prediction programs: Vaxign (He, 

Xiang, and Mobley 2010); VaxiJen (Doytchinova and Flower 2007); Heinson-Bowman (Heinson 

et al. 2017; Bowman et al. 2011); Antigenic (Rahman et al. 2019), and one epitope-based 

prediction method using IEDB-AR epitope prediction tools (Dhanda et al. 2019). For Vaxign 

prediction, we used two suggested criteria: surface-exposed proteins (subcellular localization in 
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the cell wall, outer membrane, or extracellular space) and adhesin probability > 0.51. The 

recommended cut-off (0.5) was used for BPA prediction by VaxiJen. For the Heinson-Bowman 

method, a nested cross-validated SVM prediction model was tested with the iBPA dataset 

annotated by the top ten significant biological properties (Heinson et al. 2017). Vaxign-ML had 

major differences compared to the Heinson-Bowman method, including the quality of training 

data, selection of ML algorithms, data resampling methods, and annotated features. For 

Antigenic, the default settings and cut-off values were used to call BPAgs from the iBPA dataset. 

An epitope-based prediction method was implemented by thresholding the percentile ranking of 

the epitope frequency in the iBPA dataset, compared to 10,000 randomly selected background 

proteins. The epitope frequency of a protein was calculated by summing the top 1% predicted 

MHC-I restricted epitopes and top 10% predicted MHC-II restricted epitopes across a set of 

reference set alleles (Greenbaum et al. 2011; Weiskopf et al. 2013) using the IEDB-AR epitope 

prediction tools (Dhanda et al. 2019). A percentile ranking threshold of 58% was used after 

optimizing the true positive rate and false positive rate. Proteins in the iBPA dataset with epitope 

frequency above 58% percentile rank compared to the random background were considered to 

have significant immunogenic potential.  

The receiver operating characteristics (ROC) curve, precision-recall (PR) curve, weighted 

F1-score (WF1), and Matthew’s correlation coefficient (MCC) were computed for both N5CV 

and LOPOV. An additional evaluation was performed for the LOPOV. For the benchmarking of 

the Vaxign-ML with iBPA, the precision, recall, weighted F1, and MCC metrics were calculated. 

Finally, the protegenicity scores of 20 proteins from five M. tuberculosis (MTB) vaccines 

undergoing clinical trials and the licensed DPT vaccine (Corynebacterium diphtheriae, 

Bordetella pertussis, and Clostridium tetani) were calculated. 
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3.4 Results 

3.3.1 Effect of data resampling strategies on the classification  

All ML classification algorithms performed worse when trained on under-sampled and over-

sampled data than original or balanced data (Table 3-1). When evaluating the performance of 

different data resampling strategies based on AUROC (Figure 3-2), almost all ML classification 

algorithms had high values (AUROC = [0.89, 0.96]) except KNN (AUROC = 0.76). Since the 

data resampling step was only performed on the training data during the Nested-5CV but not the 

testing data, the AUPRC, WF1, and MCC metrics were less prone to the imbalanced classes of 

the data than AUROC. All ML algorithms trained on under-sampled and over-sampled data 

consistently had lower AUPRC (Figure 3-3), WF1, and MCC. The balanced data did not 

significantly improve the performance of the ML algorithms used in this study. Furthermore, the 

MCC values of the SVM and RF trained on balanced data were dramatically reduced, which 

indicated high degrees of over-fitting in these two ML models. KNN algorithm was more 

sensitive to the sample class ratio changes because all four metrics of the models trained on 

under-sampled, over-sampled, and balanced data were lower than the original data. Although the 

LR and XGB trained on balanced data had slightly higher AUPRC, these two ML models had 

lower WF1 and MCC when trained on original data. Therefore, balancing the positive and 

negative samples did not significantly improve the BPAg prediction. 
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Figure 3-2 The average ROC curves of five machine learning algorithms in nested five-fold 

cross-validation with different data resampling strategies. 

The average ROC curves of five machine learning algorithms, logistic regression, support vector 

machine, k nearest neighbor, random forest, and extreme gradient boosting, were evaluated by 

the nested five-fold cross-validation with (A) original data; (B) under-sampled data; (C) over-

sampled data; and (D) balanced data. The k nearest neighbor algorithm was more prone to over-

fitting as the resampling the dataset (in particular, oversampled and balanced) drastically reduce 

the prediction performance. 
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Figure 3-3 The average precision-recall curves of five machine learning algorithms in 

nested five-fold cross-validation with different data resampling strategies. 

The average precision-recall curves of five machine learning algorithms, logistic regression, 

support vector machine, k nearest neighbor, random forest, and extreme gradient boosting, were 

evaluated by the nested five-fold cross-validation with (A) original data; (B) under-sampled data; 

(C) over-sampled data; and (D) balanced data. Comparing to other four algorithms, the k nearest 

neighbor algorithm had the lowest precision-recall performance. More importantly, the k nearest 

neighbor algorithm was more prone to over-fitting as the resampling the dataset (in particular, 

oversampled and balanced) drastically reduce the prediction performance. 
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Table 3-1 Nested five-fold cross-validation evaluation metrics of five machine learning 

algorithms trained using four data resampling methods. 

Original Data Under-sampled Over-sampled Balanced 

AUROC AUPRC WF1 MCC AUROC AUPRC WF1 MCC AUROC AUPRC WF1 MCC AUROC AUPRC WF1 MCC 

Logistic Regression (LR) 

0.95 0.77 0.93 

(±0.02) 

0.60 0.94 0.75 0.93 

(±0.02) 

0.60 0.95 0.78 0.93 

(±0.03) 

0.63 0.95 0.8 0.91 

(±0.03) 

0.58 

Support Vector Machine (SVM) 

0.95 0.84 0.96 

(±0.006) 

0.76 0.95 0.77 0.92 

(±0.02) 

0.58 0.95 0.8 0.94 

(±0.01) 

0.67 0.95 0.87 0.87 

(±0.002) 

0.03 

K-Nearest Neighbor (KNN) 

0.91 0.67 0.93 
(±0.01) 

0.59 0.89 0.6 0.83 
(±0.04) 

0.43 0.84 0.58 0.83 
(±0.01) 

0.41 0.76 0.6 0.87 
(±0.01) 

0.31 

Random Forest (RF) 

0.96 0.87 0.96 
(±0.005) 

0.76 0.94 0.75 0.93 
(±0.03) 

0.58 0.94 0.79 0.95 
(±0.01) 

0.69 0.94 0.91 0.87 
(±0.003) 

0.06 

Extreme Gradient Boosting (XGB) 

0.96 0.87 0.96 

(±0.02) 

0.79 0.95 0.84 0.95 

(±0.006) 

0.71 0.95 0.83 0.95 

(±0.002) 

0.72 0.96 0.93 0.95 

(±0.009) 

0.72 
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3.3.2 Extreme gradient boosting as the best performing model 

In N5CV, the XGB model consistently had the highest performance compared to the other four 

ML algorithms when trained on four different data resampling methods (Table 3-1). Three 

models, including XGB trained on original data (XGB-original) and balanced data (XGB-

balance), and random forest trained on original data had the highest area under ROC curve 

(AUROC). XGB-original had the highest WF1 and MCC while XGB-balance had the highest 

area under PRC (AUPRC). Both XGB-original and XGB-balance were evaluated with the 

LOPOV and had similar AUROCs for the ten pathogens held out in LOPOV and the average of 

these pathogens (Figure 3-4 A&B). However, the XGB-original had a higher average AUPRC 

(Figure 3-4 C&D), WF1, and MCC (Table 3-2). Therefore, the best performing XGB-original 

was selected as the final BPAg prediction model and termed Vaxign-ML for benchmarking. 

On a separate note, the N5CV results of five ML prediction models to discriminate two 

sets of randomly selected dis-similar non-BPAgs were approximately equivalent to random 

prediction (Figure 3-5). The discriminative power of the current BPAg prediction pipeline was 

indeed dependent on the immunogenic potential in the Protegen dataset rather than sequence dis-

similarity. 
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Figure 3-4 Leave-one-pathogen-out validation (LOPOV) of the two best performing 

models, XGB-original and XGB-balance. 

The top row and bottom row plotted the ROC and precision-recall (PR) curves, respectively. Ten 

pathogens were tested in the LOPOV (color dash lines), as shown in the legend. The average of 

the ROC and PR curves were also plotted (black line). The average Area Under ROC curve 

(AUROC) of both XGB-original (A) and XGB-balance (B) performed equally well.  However, 

XGB-original had a higher average Area Under PR curve (AUPRC) than the XGB-balance. 

Additionally, XGB-balance had lower performance when tested on the M. tuberculosis, S. 

aureus, while XGB-original had lower performance than the former. 
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Figure 3-5 The ROC curves of the five machine learning algorithms to discriminate two 

sets of non-antigen proteins with less than 30% sequence identity. 

The ROC curves of the discrimination predicted by five machine learning algorithms between 

two sets of non-antigen proteins with less than 30% sequence identity were evaluated by the 

nested five-fold cross-validation. The area under ROC and PRC were approximately 0.5, which 

is equivalent to random prediction. Therefore, the discriminative power of the presented Vaxign-

ML was indeed dependent on the immunogenic potential of the protective antigens collected in 

the Protegen database rather than sequence dis-similarity. 
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Table 3-2 Leave-one-pathogen-out evaluation metrics of five machine learning algorithms 

trained using four data re-sampling methods. 

Original Data Under-sampled Over-sampled Balanced 

AUROC AUPRC WF1 MCC AUROC AUPRC WF1 MCC AUROC AUPRC WF1 MCC AUROC AUPRC WF1 MCC 

Logistic Regression (LR) 

0.94 0.82 0.86 
(±0.07) 

0.58 0.95 0.83 0.80 
(±0.13) 

0.56 0.94 0.82 0.84 
(±0.07) 

0.59 0.95 0.83 0.77 
(±0.12) 

0.51 

Support Vector Machine (SVM) 

0.96 0.88 0.91 
(±0.04) 

0.70 0.95 0.87 0.88 
(±0.05) 

0.64 0.96 0.85 0.90 
(±0.03) 

0.67 0.97 0.88 0.91 
(±0.03) 

0.71 

K-Nearest Neighbor (KNN) 

0.91 0.77 0.90 
(±0.04) 

0.65 0.9 0.71 0.71 
(±0.09) 

0.43 0.84 0.67 0.74 
(±0.05) 

0.44 0.81 0.62 0.76 
(±0.07) 

0.45 

Random Forest (RF) 

0.95 0.89 0.93 
(±0.03) 

0.75 0.95 0.83 0.90 
(±0.04) 

0.67 0.96 0.84 0.91 
(±0.03) 

0.68 0.95 0.84 0.91 
(±0.03) 

0.69 

Extreme Gradient Boosting (XGB) 

0.96 0.89 0.94 
(±0.02) 

0.77 0.94 0.85 0.89 
(±0.04) 

0.67 0.96 0.87 0.93 
(±0.03) 

0.75 0.96 0.87 0.92 
(±0.03) 

0.73 
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3.3.3 Biological and physicochemical features in Vaxign-ML 

The mRMR feature selection and hyperparameter optimization steps in Vaxign-ML suggested an 

optimal set of 180 features. The biological features, including subcellular localization, adhesin 

probability, transmembrane helix, and immunogenicity score, are frequently used in filtering-

based vaccine prediction programs (e.g., NERVE and Vaxign). However, in Vaxign-ML, these 

features only accounted for 11.4% of the importance in the final XGB model (Figure 3-6).   

The pathogen’s Gram(+/-) stain was excluded from the Vaxign-ML due to its lack of 

contribution to the outcome. Although the physicochemical properties are often difficult to be 

interpreted during vaccine design, these features accounted for 88.6% of the importance. In 

particular, amino acid composition (13.1%), charge (12.3%), hydrophobicity (8.7%), free energy 

(7.6%), and polarity (7.5%) were the top five important categories of the physicochemical 

properties in the Vaxign-ML model (Figure 3-6). 

3.3.4 Benchmarking Vaxign-ML 

The final constructed model, Vaxign-ML, was benchmarked and compared to currently publicly 

available BPAg candidate prediction programs (Vaxign, VaxiJen, and Antigenic), Heinson-

Bowman, and epitope-based method. The performance of these programs was evaluated based 

on the iBPA dataset described in section 3.5.3. Vaxign-ML had the highest performance in three 

out of four metrics (recall = 0.81, WF1 = 0.76 and MCC = 0.51) among all methods (Table 3-3). 

The rule-based Vaxign program had a higher precision value (0.79) than the Vaxign-ML (0.75), 

likely due to the more restrictive rules in the Vaxign program. Vaxign-ML also out-performed 

the ML-based Heinson-Bowman method, suggesting that the enhancement of Vaxign-ML in 

terms of training data quality, annotated features, and ML algorithms the BPAg prediction.  

  



 67 

 

Figure 3-6 Categories of features and its weight in the Vaxign-ML model.  

Features in blue and black boxes are biological and physicochemical features, respectively. 
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Table 3-3 Benchmarking of Vaxign-ML compared to publicly available programs and 

epitope-based method. 

  Recall Precision WF1 MCC 

Vaxign-ML 0.81 0.75 0.76 0.51 

Heinson-Bowman 0.72 0.69 0.68 0.37 

VaxiJen 0.69 0.68 0.66 0.32 

Vaxign 0.32 0.79 0.56 0.27 

Antigenic 0.50 0.52 0.49 -0.02 

Epitope-based 0.63 0.65 0.62 0.24 

 

Abbreviation: WF1: weighted F1 score; MCC: Matthew’s correlation coefficient. 
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Finally, the epitope-based prediction method had lower performance than Vaxign-ML, Heinson-

Bowman, and VaxiJen across all four metrics in the context of BPAg prediction. 

3.3.5 Vaxign-ML predicting current clinical trial or licensed vaccines 

As a final validation, Vaxign-ML was used to calculate and rank the corresponding protegenicity 

scores of five clinical trial MTB vaccines and one licensed DPT vaccine (C. diphtheriae, B. 

pertussis, and C. tetani) (Table 3-4). The protegenicity score was the percentile rank score 

generated by Vaxign-ML trained on the entire original data. A total of 20 proteins were included 

in these six vaccines, and all of them had a predicted protegenicity score of over 90%. In other 

words, these 20 proteins were ranked in the top 10% of best BPAg candidates by the Vaxign-

ML. 

  



 70 

Table 3-4 Vaxign-ML prediction of five MTB vaccines currently in the clinical trial and 

one licensed DPT vaccine. 

Vaccine Protein Protegenicity Score (%) 

Mycobacterium tuberculosis 

H1, H4, H56 Ag85B 95.21 

H1, H56 ESAT-6 94.89 

H4 EsxH 90.91 

H56 Rv2660 91.23 

M72 
PPE18 92.05 

PepA 94.28 

ID93 

EsxW 90.95 

PPE42 91.89 

EsxV 91.53 

Rv1813 91.09 

Bordetella pertussis 

Pertussis vaccine 

Pertussis toxin subunit 1 94.07 

Pertussis toxin subunit 2 91.53 

Pertussis toxin subunit 3 90.91 

Pertussis toxin subunit 4 91.37 

Pertussis toxin subunit 5 91.62 

Filamentous hemagglutinin 98.9 

Pertactin autotransporter 95.35 

Fimbrial protein 95.99 

Corynebacterium diphtheriae 

Diphtheria vaccine Diphtheria toxin 97.73 

Clostridium tetani 

Tetanus vaccine Tetanus toxin 99.79 
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3.5 Discussion 

Overall, Vaxign-ML showed superior performance in BPAg prediction compared to all other 

BPAg prediction methods. Our study also demonstrated the significance of both biological and 

physicochemical properties in ML-based RV prediction. Finally, the results of Vaxign-ML 

highlighted the critical role of physicochemical properties and might have an implication in 

structural vaccinology. 

Our study showed that Vaxign-ML (extreme gradient boosting trained on original data 

with mRMR feature section and hyperparameter optimization) was the best performing 

supervised ML classification model with an unbiased N5CV and LOPOV validations. The 

LOPOV validation also assessed how well the model could predict BPAgs when encountering a 

new emerging pathogen. The benchmarking of Vaxign-ML using a curated external independent 

dataset suggested the superior performance of Vaxign-ML to its predecessor with the highest 

recall, weighted F1 score, and Matthew’s correlation coefficient. Notably, the iBPA dataset was 

derived and curated from the VaxiJen program. Vaxign-ML was trained on the Protegen dataset 

and did not encounter any samples in the iBPA, and yet Vaxign-ML had better predictive power 

than VaxiJen. Although the preceding rule-based Vaxign program missed many potential 

candidates (recall = 0.32, Table 3-3), the rule-based RV method had better potential in filtering 

out non-protective proteins, as demonstrated by the highest precision value among all four 

programs being studied. A combination of Vaxign-ML, followed by filtering similar to Vaxign, 

might be a future direction to enhance the predictive performance further. 

Vaxign-ML is the first RV method that incorporates both biological and physicochemical 

properties. Historically, the biological and physicochemical features had been treated as two 
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isolated silos in the field of BPAgs prediction. Several ML RV studies predicted BPAgs based on 

the physicochemical properties of the input proteins (Doytchinova and Flower, 2007; Rahman et 

al., 2019; Magnan et al., 2010). In this paper, all the physicochemical features were grouped into 

one category to better interpret individual properties (Figure 3-6). Mayers et al. reported that 

known protein vaccine antigens had distinct characteristics in amino acid composition, 

hydrophobicity, flexibility, and mutability (Mayers et al., 2003), which accounted for 13.1%, 

8.7%, 5.8%, and 5.4% of the Vaxign-ML feature importance respectively. Polarity (7.5%) and 

charge (12.3%) had an important implication in vaccine design. Studies showed that antibody-

antigen interfaces are likely polar (Hebditch and Warwicker, 2019). On the other hand, highly 

negatively charged vaccines often possess limited cell uptake ability, whereas highly positively 

charged vaccines exert significant cytotoxicity (Zhang et al., 2018). Positively charged 

nanoparticles induce a more robust and systemic antibody response in a recent nano-based 

vaccine delivery study (Fromen et al., 2015). Finally, free energy is an essential factor in the 

structural design of the chimeric subunit vaccine (Nazarian et al., 2012), as well as describing the 

binding between epitope and major histocompatibility complex (Patronov and Doytchinova, 

2013). 

The significance of biological property profiles in BPAgs (Ong et al., 2017) had been 

utilized by both rule-based RV programs (He et al., 2010; Jaiswal et al., 2013; Vivona et al., 

2006; Rizwan et al., 2017) and supervised ML BPAg classifications (Bowman et al., 2011; 

Heinson et al., 2017). Vaxign-ML took substantial consideration into the biological properties, 

including subcellular localization, adhesin probability, and immunogenicity. However, some 

biological features (e.g., Gram stain and transmembrane helix) might not be significantly 

associated with protectiveness and were considered for practical reasons (pathogen 
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characterization and efficacy in recombinant protein isolation) (He et al., 2010). The biological 

features of the protein sequences in the training data are predictions and are dependent on the 

performance of the corresponding bioinformatics tools. Although some of these bioinformatics 

tools already included physicochemical properties in the prediction pipelines, these properties 

were utilized to address specific scientific questions (e.g., subcellular location prediction, signal 

peptide). In Vaxign-ML, these biological features of attributed to 11.4% of the importance in 

BPAg prediction and could be the key factor leading to better prediction performance by Vaxign-

ML compared to VaxiJen and Antigenic. 

Currently, Vaxign-ML does not consider the epitopes and structure in the prediction 

model. The comparison of Vaxign-ML and the epitope-based method, which was benchmarked 

using the iBPA dataset (Table 3-3), showed that Vaxign-ML had better BPAg prediction than the 

epitope-based method. Epitope prediction does not necessarily correlate with the immune 

protection due to the host diversity, amino acid properties, epitope location, and the co-evolution 

between pathogen and host immune system (Halling-Brown et al. 2008; 2009). Undoubtedly, 

epitopes still play a role in antibody and cell-mediated immunity. The integration of BPAg 

prediction with epitope identification and antigen structural analysis will be investigated in the 

future. 
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Chapter 4 COVID-19 Coronavirus Vaccine Design Using Reverse Vaccinology and 

Machine Learning 

4.1 Abstract 

To ultimately combat the emerging COVID-19 pandemic, it is desired to develop an effective 

and safe vaccine against this highly contagious disease caused by the SARS-CoV-2 coronavirus. 

Our literature and a clinical trial survey showed that the whole virus, as well as the spike (S) 

protein, nucleocapsid (N) protein, and membrane (M) protein, have been tested for vaccine 

development against SARS and MERS. However, these vaccine candidates might lack the 

induction of complete protection and have safety concerns. We then applied the Vaxign and the 

newly developed machine learning-based Vaxign-ML reverse vaccinology tools to predict 

COVID-19 vaccine candidates. Our Vaxign analysis found that the N protein from the SARS-

CoV-2 N protein sequence is conserved with SARS-CoV and MERS-CoV but not from the other 

four human coronaviruses causing mild symptoms. By investigating the entire proteome of 

SARS-CoV-2, six proteins, including the S protein and five non-structural proteins (nsp3, 3CL-

pro, and nsp8-10), were predicted to be adhesins, which are crucial to the viral adhering and host 

invasion. The S, nsp3, and nsp8 proteins were also predicted by Vaxign-ML to induce high 

protective antigenicity. Besides the commonly used S protein, the nsp3 protein has not been 

tested in any coronavirus vaccine studies and was selected for further investigation. The nsp3 

was found to be more conserved among SARS-CoV-2, SARS-CoV, and MERS-CoV than 

among 15 coronaviruses infecting humans and other animals. The protein was also predicted to 

contain promiscuous MHC-I and MHC-II T-cell epitopes, and the predicted linear B-cell 
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epitopes were found to be localized on the surface of the protein. Our predicted potential vaccine 

targets have the potential for effective and safe COVID-19 vaccine development. We also 

propose that an “Sp/Nsp cocktail vaccine” containing a structural protein(s) (Sp) and a non-

structural protein(s) (Nsp) would stimulate effective complementary immune responses.    

4.2 Introduction 

The emerging Coronavirus Disease 2019 (COVID-19) pandemic poses a massive crisis to global 

public health. As of March 11, 2020, there were 118,326 confirmed cases and 4,292 deaths, 

according to the World Health Organization (WHO), and WHO declared the COVID-19 as a 

pandemic on the same day. On May 12, WHO reported 4,088,848 confirmed COVID-19 cases 

and 283,153 deaths globally, showing a dramatic increase in terms of case and death numbers. 

The causative agent of the COVID-19 disease is the severe acute respiratory syndrome 

coronavirus 2 (SARS-CoV-2). Coronaviruses can cause animal diseases such as avian infectious 

bronchitis caused by the infectious bronchitis virus (IBV) and pig transmissible gastroenteritis 

caused by a porcine coronavirus (Perlman and Netland, 2009). Bats are commonly regarded as 

the natural reservoir of coronaviruses, which can be transmitted to humans and other animals 

after genetic mutations. There are seven known human coronaviruses, including the novel 

SARS-CoV-2. Four of them (HCoV-HKU1, HCoV-OC43, HCoV-229E, and HCoV-NL63) have 

been circulating in the human population worldwide and cause mild symptoms (Cabeça, 

Granato, and Bellei 2013). Coronavirus became prominent after Severe acute respiratory 

syndrome (SARS) and Middle East Respiratory Syndrome (MERS) outbreaks. In 2003, the 

SARS disease caused by the SARS-associated coronavirus (SARS-CoV) infected over 8,000 

people worldwide and was contained in the summer of 2003 (Lu et al. 2020). SARS-CoV-2 and 

SARS-CoV share high sequence identity (Lai et al. 2020). The MERS disease infected more than 
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2,000 people, which is caused by the MERS-associated coronavirus (MERS-CoV) and was first 

reported in Saudi Arabia and spread to several other countries since 2012 (Chan et al. 2015).  

Great efforts have been made to develop and manufacture COVID-19 vaccines, and these 

efforts in pushing the vaccine clinical trials are phenomenal. Coronaviruses are positively-

stranded RNA viruses with their genome packed inside the nucleocapsid (N) protein and 

enveloped by the membrane (M) protein, envelope (E) protein, and the spike (S) protein (F. Li 

2016). While many coronavirus vaccine studies targeting different structural proteins were 

conducted, most of these efforts eventually ceased soon after the outbreak of SARS and MERS. 

With the recent COVID-19 pandemic outbreak, it is urgent to resume the coronavirus vaccine 

research. There were only three SARS-CoV and six MERS-CoV vaccine clinical trials, and 

extensive effort has been made to develop COVID-19 vaccines in response to the current 

pandemic. Well established vaccines targeting pathogens other than SARS-CoV-2 are also under 

investigation, such as measles (NCT04357028) and BCG (NCT04327206), which may induce 

strong immune responses and provide non-specific protective effects against SARS-CoV-2 

infection (Redelman-Sidi 2020). 

There are two primary design strategies for coronavirus vaccine development: the usage 

of the whole virus or genetically engineered vaccine antigens that can be delivered through 

different formats. The whole virus vaccines include inactivated (See et al. 2006) or live-

attenuated vaccines (R. L. Graham et al. 2012; Fett et al. 2013). The two live attenuated SARS 

vaccines mutated the exoribonuclease and envelop protein to reduce the virulence and/or 

replication capability of the SARS-CoV. Recent works also showed promising development of 

three types of SARS-CoV-2 vaccines, including inactivated whole virus vaccine (Gao et al. 

2020), RNA vaccine (McKay et al. 2020), and virus-like particles (VLP) vaccine (Zha et al. 
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2020). Overall, the whole virus vaccines can induce a strong immune response and protect 

against coronavirus infections. Genetically engineered vaccines that target specific coronavirus 

proteins are often used to improve vaccine safety and efficacy. The coronavirus antigens such as 

S protein, N protein, and M protein can be delivered as recombinant DNA vaccine and viral 

vector vaccine.  

As the most superficial and protrusive protein of the coronaviruses, S protein plays a 

crucial role in mediating virus entry. In the SARS and MERS vaccine development, the full-

length S protein and its S1 subunit (which contains receptor binding domain) have been 

frequently used as the vaccine antigens due to their ability to induce neutralizing antibodies that 

prevent host cell entry and infection. As the immediate response to the on-going pandemic, the 

first testing in humans of the mRNA-based vaccine targeting the S protein of SARS-CoV-2 

(ClinicalTrials.gov Identifier: NCT04283461) started on March 16, 2020.      

From experimentally identified immune responses induced by coronavirus vaccines, we 

found evidence of the protective roles of both antibody and cell-mediated immunity (Bisht et al. 

2004; J. Zhao et al. 2016). The protective role of the neutralizing antibody to coronavirus S 

protein has been demonstrated by the experimental result that a passive transfer of the serum 

from mice immunized with MVA/S to naïve mice reduced the replication of challenged SARS-

CoV in the respiratory tract (Bisht et al. 2004). Here the MVA/S is the highly attenuated 

modified vaccinia virus Ankara (MVA) containing the gene encoding full-length SARS-CoV S 

protein. The antibodies developed in the mice immunized with MVA/S could also bind to the S1 

domain of S and neutralize SARS-CoV in vitro. Passive transfer of anti-S neutralizing antibody 

also offered protection against SARS-CoV (Traggiai et al. 2004). However, antibody responses 

in patients previously infected with respiratory viruses, including SARS-CoV and MERS-CoV, 
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tend to be short-lived (Channappanavar, Zhao, and Perlman 2014). Instead, T cell responses are 

often long-lived by targeting conserved proteins and showed to have a significant correlation in 

protective immunity against influenza virus infection (Wilkinson et al. 2012). SARS-CoV-

specific memory T cells but not antibody-producing B cells could be detected in patients six 

years after SARS-CoV infection (Tang et al. 2011). A further study showed that respiratory tract 

memory CD4+ T cells specific for an epitope of the nucleocapsid (N) protein of SARS-CoV 

provided protection against virulent challenge with SARS-CoV and MERS-CoV (J. Zhao et al. 

2016). CD8+ T cells were also found to be crucial for the clearance of SARS-CoV and MERS-

CoV infections (J. Zhao, Zhao, and Perlman 2010; Coleman et al. 2017). Therefore, our vaccine 

prediction would target those viral antigens with the ability to induce protective neutralizing 

antibody and/or T cell responses.   

However, the current coronavirus vaccines, including S protein-based vaccines, might 

have issues in the lack of inducing complete protection and possible safety concerns (Roper and 

Rehm 2009; De Wit et al. 2016). Most existing SARS/MERS vaccines were reported to induce 

neutralizing antibodies and partial protection against the viral challenges in animal models. A 

recent study reported that adenovirus vaccine vector encoding full-length MERS-CoV S protein 

(ChAdOx1 MERS) showed protection upon MERS-CoV challenge in rhesus macaques (van 

Doremalen et al. 2020). Nonetheless, it is desired for a COVID-19 vaccine to induce complete 

protection or sterile immunity. Moreover, it has become increasingly clear that multiple immune 

responses, including those induced by humoral or cell-mediated immunity, are responsible for 

correlates of protection than antibody titers alone (Stanley A. Plotkin 2020). Both killed SARS-

CoV whole virus vaccine and adenovirus-based recombinant vector vaccines expressing S or N 

proteins induced neutralizing antibody responses but did not provide complete protection in the 
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animal model (See et al. 2008). A study has shown increased liver pathology in the vaccinated 

ferrets immunized with modified vaccinia Ankara-S recombinant vaccine (Weingartl et al. 

2004). The safety and efficacy of these vaccination strategies have not been fully tested in human 

clinical trials, but safety could be a major concern. Therefore, novel strategies are needed to 

enhance the efficacy and safety of COVID-19 vaccine development. 

In recent years, the development of vaccine design has been revolutionized by reverse 

vaccinology (RV), which aims to first identify promising vaccine candidates through 

bioinformatics analysis of the pathogen genome. RV has been successfully applied to vaccine 

discovery for pathogens such as Group B meningococcus and led to the license Bexsero vaccine 

(Folaranmi et al. 2015). Among current RV prediction tools (He et al. 2010; Dalsass et al. 2019), 

Vaxign is the first web-based RV program (He, Xiang, and Mobley 2010) and has been used to 

predict vaccine candidates against different bacterial and viral pathogens (Z. A. Xiang and He 

2013; Singh et al. 2016; Navarro-Quiroz et al. 2018). Recently we have also developed a 

machine learning approach called Vaxign-ML to enhance prediction accuracy (E. Ong, Wang, 

Wong, Seetharaman, et al. 2020).  

In this study, we first surveyed the existing coronavirus vaccine development status, and 

then applied the Vaxign and Vaxign-ML RV approaches to predict COVID-19 protein 

candidates for vaccine development. We identified six possible adhesins, including the structural 

S protein and five other non-structural proteins, and three of them (S, nsp3, and nsp8 proteins) 

were predicted to induce high protective immunity. The S protein was predicted to have the 

highest protective antigenicity score, and it has been extensively studied as the target of 

coronavirus vaccines by other researchers. The sequence conservation and immunogenicity of 

the multi-domain nsp3 protein, which was predicted to have the second-highest protective 
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antigenicity score yet, was further analyzed in this study. Based on the predicted structural S 

protein and non-structural proteins (including nsp3) using reverse vaccinology and machine 

learning, we proposed and discussed a cocktail vaccine strategy for rational COVID-19 vaccine 

development. 

4.3 Methods 

4.3.1 Vaxign and Vaxign-ML Reverse Vaccinology Prediction 

The SARS-CoV-2 sequence was obtained from NCBI. All the proteins of six known human 

coronavirus strains, including SARS-CoV, MERS-CoV, HCoV-229E, HCoV-OC43, HCoV-

NL63, and HCoV-HKU1 were extracted from Uniprot proteomes (The UniProt Consortium 

2008). The full proteomes of these seven coronaviruses were then analyzed using the Vaxign 

reverse vaccinology pipeline (He, Xiang, and Mobley 2010; E. Ong, Wang, Wong, Seetharaman, 

et al. 2020). The Vaxign program predicted serval biological features, including adhesin 

probability (Sachdeva et al. 2005), transmembrane helix (Krogh et al. 2001), orthologous 

proteins (L. Li, Stoeckert, and Roos 2003), protein functions (He, Xiang, and Mobley 2010), and 

Vaxign-ML protegenicity score (E. Ong, Wang, Wong, Seetharaman, et al. 2020).  

The Vaxign-ML protegenicity score was calculated following a similar methodology described 

in the Vaxign-ML. In brief, the positive samples in the training data included 397 bacterial and 

178 viral protective antigens (PAgs) recorded in the Protegen database (B. Yang et al. 2011) 

after removing homologous proteins with over 30% sequence identity. There were 4,979 

negative samples extracted from the corresponding pathogens’ Uniprot proteomes (The UniProt 

Consortium 2008) with sequence dis-similarity to the PAgs, as described in previous studies 

(Bowman et al. 2011; Doytchinova and Flower 2007; Heinson et al. 2017). Homologous proteins 

in the negative samples were also removed. The proteins in the resulting dataset were annotated 
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with biological and physicochemical features. The biological features included adhesin 

probability (Sachdeva et al. 2005), transmembrane helix (Krogh et al. 2001), and 

immunogenicity (Fleri et al. 2017). The physicochemical features included the compositions, 

transitions, and distributions (Dubchak et al. 1995), quasi-sequence-order (Chou 2000), Moreau-

Broto auto-correlation(Feng and Zhang, 2000; Lin andPan, 2001), and Geary auto-correlation 

(Sokal and Thomson 2006) of various physicochemical properties such as charge, 

hydrophobicity, polarity, and solvent accessibility (S. A. K. Ong et al. 2007). Five supervised 

ML classification algorithms, including logistic regression, support vector machine, k-nearest 

neighbor, random forest (Pedregosa et al. 2012), and extreme gradient boosting (XGB) (T. Chen 

and Guestrin 2016) were trained on the annotated proteins dataset. The performance of these 

models was evaluated using a nested five-fold cross-validation (N5CV) based on the area under 

receiver operating characteristic curve, precision, recall, weighted F1-score, and Matthew’s 

correlation coefficient. The best performing XGB model was selected to predict the protegenicity 

score of all SARS-CoV-2 isolate Wuhan-Hu-1 (GenBank ID: MN908947.3) proteins, 

downloaded from NCBI. The protegenicity score is the percentile rank score from the Vaxign-

ML classification model. A protein with higher protegenicity score is considered as stronger 

vaccine candidate with higher utility toward protection. In addition, using the protegenicity score 

of 0.9 as a threshold resulted in the highest prediction performance with weighted F1-score = 

0.94 in N5CV. 

4.3.2 Phylogenetic Analysis 

The protein nsp3 was selected for further investigation. The nsp3 proteins of 14 coronaviruses 

besides SARS-CoV-2 were downloaded from the Uniprot (Table 4-1). Multiple sequence 

alignment of these nsp3 proteins was performed using MUSCLE (Edgar 2004) and visualized via 
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SEAVIEW (Gouy, Guindon, and Gascuel 2010). The phylogenetic tree was constructed using 

PhyML (Lefort, Longueville, and Gascuel 2017), and the amino acid conservation was estimated 

by the Jensen-Shannon Divergence (JSD) (Capra and Singh, 2007). The JSD score was also used 

to generate a sequence conservation line using the nsp3 protein sequences from 4 or 13 

coronaviruses.  

4.3.3 Immunogenicity Analysis 

The immunogenicity of the nsp3 protein was evaluated by the prediction of T cell MHC-I and 

MHC-II, and linear B cell epitopes. For T cell MHC-I epitopes, the IEDB consensus method was 

used to predicting promiscuous epitopes binding to 4 out of 27 MHC-I reference alleles with 

consensus percentile ranking less than 1.0 score (Fleri et al. 2017). For T cell MHC-II epitopes, 

the IEDB consensus method was used to predicting promiscuous epitopes binding to more than 

half of the 27 MHC-II reference alleles with a consensus percentile ranking less than 10.0. The 

MHC-I and MHC-II reference alleles covered a wide range of human genetic variations 

representing the majority of the world population (Greenbaum et al. 2011; Weiskopf et al. 2013). 

The linear B cell epitopes were predicted using the BepiPred 2.0 with a cutoff of 0.55 score 

(Jespersen et al. 2017). Linear B cell epitopes with at least ten amino acids were mapped to the 

predicted 3D structure of SARS-CoV-2 nsp3 protein visualized via PyMol (Schrödinger 2015). 

The predicted count of T cell MHC-I and MHC-II epitopes and the predicted score of linear B 

cell epitopes were computed as the sliding averages with a window size of ten amino acids. The 

nsp3 protein 3D structure was predicted using C-I-Tasser (W. Zheng et al. 2019) available in the 

Zhang Lab webserver (https://zhanglab.ccmb.med.umich.edu/C-I-TASSER/2019-nCov/). 

  

https://zhanglab.ccmb.med.umich.edu/C-I-TASSER/2019-nCov/
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Table 4-1 The full proteome and nsp3 protein IDs of 15 coronaviruses used in this study. 

Proteome ID Protein ID Organism Organism Taxon ID 

UP000000354 P0C6X7 

Human SARS coronavirus (SARS-CoV) 

(Severe acute respiratory syndrome 

coronavirus) 694009 

UP000171868 T2B9U0 

Middle East respiratory syndrome-related 

coronavirus 1335626 

UP000006716 P0C6X1 Human coronavirus 229E (HCoV-229E) 11137 

UP000001985 P0C6X4 

Human coronavirus HKU1 (isolate N5) 

(HCoV-HKU1) (Strain: Isolate N5) 443241 

UP000007552 P0C6X6 Human coronavirus OC43 (HCoV-OC43) 31631 

UP000008573 P0C6X5 Human coronavirus NL63 (HCoV-NL63) 277944 

UP000000835 Q98VG9 

Feline coronavirus (strain FIPV WSU-

79/1146) (FCoV) (Strain: FIPV WSU-

79/1146) 33734 

UP000006717 P0C6Y1 

Avian infectious bronchitis virus (strain 

Beaudette) (IBV) (Strain: Beaudette) 11122 

UP000007192 P0C6X9 

Murine coronavirus (strain A59) (MHV-A59) 

(Murine hepatitis virus) (Strain: A59) 11142 

UP000001440 P0C6Y5 

Porcine transmissible gastroenteritis 

coronavirus (strain Purdue) (TGEV) (Strain: 

Purdue) 11151 

UP000007451 P0C6W4 

Bat coronavirus HKU5 (BtCoV) 

(BtCoV/HKU5/2004) 694008 

UP000006576 P0C6W5 

Bat coronavirus HKU9 (BtCoV) 

(BtCoV/HKU9) 694006 

UP000006574 P0C6W3 

Bat coronavirus HKU4 (BtCoV) 

(BtCoV/HKU4/2004) (Strain: B04f) 694007 

UP000113079 P0C6W0 

Bat coronavirus 512/2005 (BtCoV) 

(BtCoV/512/2005) 693999 

UP000007450 P0C6W2 

Bat coronavirus HKU3 (BtCoV) (SARS-like 

coronavirus HKU3) 442736 
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4.4 Results 

4.4.1 SARS-CoV-2 N protein sequence is conserved with the N protein from SARS-CoV and 

MERS-CoV 

We first used the Vaxign analysis framework (He, Xiang, and Mobley 2010; E. Ong, Wang, 

Wong, Seetharaman, et al. 2020) to compare the full proteomes of seven human coronavirus 

strains (SARS-CoV-2, SARS-CoV, MERS-CoV, HCoV-229E, HCoV-OC43, HCoV-NL63, and 

HCoV-HKU1). The proteins of SARS-CoV-2 were used as the seed for the pan-genomic 

comparative analysis. The Vaxign pan-genomic analysis reported only the N protein in SARS-

CoV-2 having high sequence similarity among the more severe form of coronavirus (SARS-CoV 

and MERS-CoV) while having low sequence similarity among the more typically mild HCoV-

229E, HCoV-OC43, HCoV-NL63, and HCoV-HKU1. The sequence conservation suggested the 

potential of N protein as a candidate for the cross-protective vaccine against SARS and MERS. 

The N protein was also evaluated and used for vaccine development. As a protein inside the viral 

envelope, the N protein packs the coronavirus RNA to form the helical nucleocapsid in virion 

assembly. This protein is more conserved than the S protein and was reported to induce a 

humoral and cellular immune response against coronavirus infections (P. Zhao et al. 2005). A 

conserved CD4+ T cell epitope in the SARS-CoV N was also found important for the induction 

of protection against the challenge of SARS-CoV or MERS-CoV (J. Zhao et al. 2016). However, 

a study also showed the linkage between N protein and severe pneumonia or other serious liver 

failures, suggesting N protein-induced pathogenesis and possible adverse effects caused by N 

protein-derived vaccines (Yasui et al. 2008).  
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4.4.2 Six adhesive proteins in SARS-CoV-2 identified as potential vaccine targets  

The Vaxign RV analysis predicted six SARS-CoV-2 proteins (S protein, nsp3, 3CL-PRO, and 

nsp8-10) as adhesive proteins (Table 4-1). Adhesin plays a critical role in the virus adhering to 

the host cell and facilitating the virus entry to the host cell (Ribet and Cossart 2015), which has a 

significant association with the vaccine-induced protection (E. Ong, Wong, and He 2017). In 

SARS-CoV-2, S protein was predicted to be adhesin, matching its primary role in virus entry. 

The structure of SARS-CoV-2 S protein was determined (Wrapp, Wang, et al. 2020) and 

reported to contribute to the host cell entry by interacting with the angiotensin-converting 

enzyme 2 (ACE2) (Letko, Marzi, and Munster 2020). Besides S protein, the other five predicted 

adhesive proteins were all non-structural proteins. In particular, nsp3 is the largest non-structural 

protein of SARS-CoV-2 comprises various functional domains (Lei, Kusov, and Hilgenfeld 

2018). 
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Table 4-2 Vaxign-ML Prediction and adhesin probability of all SARS-CoV-2 proteins. 

Protein 

Vaxign-ML 

Score 

Adhesin 

Probability 

orf1ab 

nsp1 Host translation inhibitor 79.312 0.297 

nsp2 Non-structural protein 2 89.647 0.319 

nsp3 Non-structural protein 3 95.283* 0.524# 

nsp4 Non-structural protein 4 89.647 0.289 

3CL-PRO Proteinase 3CL-PRO 89.647 0.653# 

nsp6 Non-structural protein 6 89.017 0.320 

nsp7 Non-structural protein 7 89.647 0.269 

nsp8 Non-structural protein 8 90.349* 0.764# 

nsp9 Non-structural protein 9 89.647 0.796# 

nsp10 Non-structural protein 10 89.647 0.769# 

RdRp RNA-directed RNA polymerase 89.647 0.229 

Hel Helicase 89.647 0.398 

ExoN Guanine-N7 methyltransferase 89.629 0.183 

NendoU Uridylate-specific endoribonuclease 89.647 0.254 

2'-O-MT 2'-O-methyltransferase 89.647 0.421 

S Surface glycoprotein 97.623* 0.635# 

ORF3a ORF3a 66.925 0.383 

E envelope protein 23.839 0.234 

M membrane glycoprotein 84.102 0.282 

ORF6 ORF6 33.165 0.095 

ORF7 ORF7a 11.199 0.451 

ORF8 ORF8 31.023 0.311 

N nucleocapsid phosphoprotein 89.647 0.373 

ORF10 ORF10 6.266 0.0 

* denotes Vaxign-ML predicted vaccine candidate. 

#  denotes predicted adhesin. 
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4.4.3 Three adhesin proteins were predicted to induce strong protective immunity  

The recently published Vaxign-ML pipeline was applied to compute the protegenicity (protective 

antigenicity) score and predict the induction of protective immunity by a vaccine candidate (E. 

Ong, Wang, Wong, Seetharaman, et al. 2020). Vaxign-ML predicts the protegenicity score using 

an optimized supervised machine learning model with manually annotated training data 

consisted of bacterial and viral protective antigens. These protective antigens were tested to be 

protective in at least one animal challenge model (B. Yang et al. 2011). The performance of the 

Vaxign-ML models was evaluated (Table 4-2 and Figure 4-1), and the best performing model 

had a weighted F1-score and Matthew’s correlation coefficient of 0.94 and 0.66, respectively, in 

nested cross-validation.  Using the optimized Vaxign-ML model, we predicted three proteins (S 

protein, nsp3, and nsp8) as vaccine candidates with significant protegenicity scores (Table 4-1). 

The S protein was predicted to have the highest protegenicity score, which is consistent with the 

experimental observations reported in the literature. The nsp3 protein is the second most 

promising vaccine candidate besides S protein. There was currently no study of nsp3 as a vaccine 

target. The structure and functions of this protein have various roles in coronavirus infection, 

including replication and pathogenesis (immune evasion and virus survival) (Lei, Kusov, and 

Hilgenfeld 2018). Therefore, we selected nsp3 for further investigation, as described below. 
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Table 4-3 Nested five-fold cross-validation evaluation metrics of five machine learning 

algorithms. 

Models Precision Recall Weighted F1 MCC 

Logistic Regression 0.541 0.366 
0.886 

(±0.02) 
0.370 

Support Vector Machine 0.902 0.483 
0.932 

(±0.01) 
0.633 

K Nearest Neighbor 0.489 0.552 
0.895 

(±0.006) 
0.458 

Random Forest 0.949 0.403 
0.923 

(±0.008) 
0.593 

Extreme Gradient Boosting 0.801 0.600 
0.939 

(±0.008) 
0.663 
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Figure 4-1 The average ROC and precision-recall curves of five machine learning 

algorithms in nested five-fold cross-validation. 

Vaxign-ML virus model (A) Receiver operating characteristic (ROC) curve and (B) precision-

recall curve of the nested five-fold cross-validation. The average ROC curves in nested five-fold 

cross-validation of five machine learning algorithms (logistic regression, support vector machine, 

k nearest neighbor, random forest, and extreme gradient boosting). While both logistic regression 

(LR) and k nearest neighbor (KNN) methods had relatively good AUROC curves, KNN and LR 

had low precision and recall, as indicated in Table 4-3. In particular, the behavior near the upper 

left corner by the fact that although recall in precision-recall curve can only decrease 

monotonically, the precision, as the ratio between true positvies and predicted positives (true 

positivies + false positives), does not necessarily decrease monotonically when increasing the 

threshold. and LR had an “n” shape curve near zero recall. 
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4.4.4 Nsp3 as a vaccine candidate 

The multiple sequence alignment and the resulting phylogeny of nsp3 protein showed that this 

protein in SARS-CoV-2 was more closely related to the human coronaviruses SARS-CoV and 

MERS-CoV, and bat coronaviruses BtCoV/HKU3, BtCoV/HKU4, and BtCoV/HKU9. We 

studied the genetic conservation of nsp3 protein (Figure 4-2 A) in seven human coronaviruses 

and eight coronaviruses infecting other animals (Table 4-1). The five human coronaviruses, 

SARS-CoV-2, SARS-CoV, MERS-CoV, HCoV-HKU1, and HCoV-OC43, belong to the beta-

coronavirus while HCoV-229E and HCoV-NL63 belong to the alpha-coronavirus. The HCoV-

HKU1 and HCoV-OC43, as the human coronavirus with mild symptoms clustered together with 

murine MHV-A59. The more severe form of human coronavirus SARS-CoV-2, SARS-CoV, and 

MERS-CoV grouped with three bat coronaviruses BtCoV/HKU3, BtCoV/HKU4, and 

BtCoV/HKU9.  

When evaluating the amino acid conservations relative to the functional domains in nsp3, 

all protein domains, except the hypervariable region (HVR), macro-domain 1 (MAC1), and beta-

coronavirus-specific marker βSM, showed higher conservation in SARS-CoV-2, SARS-CoV, 

and MERS-CoV (Figure 4-2 B). The amino acid conservation between the major human 

coronavirus (SARS-CoV-2, SARS-CoV, and MERS-CoV) was plotted and compared to all 15 

coronaviruses used to generate the phylogenetic of nsp3 protein along with the corresponding 

SARS-CoV domains (Figure 4-2 B). 
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Figure 4-2 The phylogeny and sequence conservation of coronavirus nsp3. 

 (A) Phylogeny of 15 strains based on the nsp3 protein sequence alignment and phylogeny 

analysis. (B) The conservation of nsp3 among different coronavirus strains. The red line 

represents the conservation among the four strains (SARS-CoV, SARS-CoV-2, MERS, and 

BtCoV-HKU3). The blue line was generated using all the 15 strains. The bottom part represents 

the nsp3 peptides and their sizes. The phylogenetically close four strains have more conserved 

nsp3 sequences than all the strains being considered. 
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The immunogenicity of nsp3 protein in terms of T cell MHC-I & MHC-II and linear B 

cell epitopes was also investigated. There were 28 (Table 4-4) and 42 (Table 4-5) promiscuous 

epitopes predicted to bind the reference MHC-I & MHC-II alleles, which covered the majority of 

the world population, respectively. In terms of linear B cell epitopes, there were 14 epitopes with 

BepiPred scores over 0.55 and had at least ten amino acids in length (Table 4-6). The 3D 

structure of SARS-CoV-2 protein was plotted and highlighted with the T cell MHC-I & MHC-II 

and linear B cell epitopes (Figure 4-3). The predicted B cell epitopes were more likely located on 

the surface of the nsp3 protein. Most of the predicted MHC-I & MHC-II epitopes were 

embedded inside the protein. The sliding averages of T cell MHC-I & MHC-II and linear B cell 

epitopes were plotted with respect to the tentative SARS-CoV-2 nsp3 protein domains using 

SARS-CoV nsp3 protein as a reference (Figure 4-4). The ubiquitin-like domain 1 and 2 (Ubl1 

and Ubl2) are only predicted to have MHC-I epitopes. The Domain Preceding Ubl2 and PL2-

PRO (DPUP) domain had only predicted MHC-II epitopes. The PL2-PRO contained both 

predicted MHC-I and MHC-II epitopes, but not B cell epitopes. In particular, the TM1, TM2, 

and AH1 were predicted helical regions with high T cell MHC-I and MHC-II epitopes(Rothbard 

and Taylor 1988). The TM1 and TM2 are transmembrane regions passing the endoplasmic 

reticulum (ER) membrane. The HVR, MAC2, MAC3, nucleic-acid binding domain (NAB), 

βSM, Nsp3 ectodomain; (3Ecto), Y1, and CoV-Y domain contained predicted B cell epitopes. 

Finally, the Vaxign RV framework also predicted two regions (position 251-260 and 329-337) in 

the MAC1 domain of the nsp3 having high sequence similarity to the human mono-ADP-

ribosyltransferase PARP14 (NP_060024.2). 

  



 94 

 

Figure 4-3 Predicted 3D structure of nsp3 protein with highlighted epitopes. 

Predicted 3D structure of nsp3 protein highlighted with (A) MHC-I T cell epitopes (red), (B) 

MHC-II (blue) T cell epitopes, (C) linear B cell epitopes (green), and the merged epitopes. The B 

cell epitopes are more exposed on the protein surface, while the T cell MHC-I and MHC-II 

epitopes are more located within the protein. 
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Figure 4-4 Immunogenic region of nsp3 between SARS-CoV-2 and the four conservation 

strains. 

(A) MHC-I (red) T cell epitope (B) MHC-II (blue) T cell epitope (C) linear B cell epitope 

(green).  
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Table 4-4 Predicted promiscuous T cell MHC-I epitopes of SARS-CoV-2 nsp3. 

Epitope Start End Allele 

STNVTIATY 1455 1465 HLA-A*26:01,HLA-B*15:01,HLA-A*30:02,HLA-A*01:01 

RMYIFFASF 1564 1574 HLA-A*23:01,HLA-A*24:02,HLA-A*32:01,HLA-B*08:01,HLA-B*15:01 

AEWFLAYIL 1507 1517 HLA-B*44:02,HLA-A*32:01,HLA-B*44:03,HLA-B*40:01 

MSNLGMPSY 1436 1446 HLA-A*30:02,HLA-B*35:01,HLA-A*01:01,HLA-B*58:01,HLA-B*15:01 

LVAEWFLAY 1505 1515 HLA-B*35:01,HLA-A*26:01,HLA-B*15:01,HLA-A*01:01 

ILFTRFFYV 1514 1524 HLA-A*02:01,HLA-A*02:06,HLA-A*02:03,HLA-B*08:01 

MMSAPPAQY 988 998 HLA-B*15:01,HLA-A*03:01,HLA-A*30:02,HLA-B*35:01 

VMYMGTLSY 950 960 HLA-A*11:01,HLA-A*03:01,HLA-A*30:02,HLA-A*01:01,HLA-A*32:01,HLA-B*15:01 

KENSYTTTI 1051 1061 HLA-A*32:01,HLA-B*44:03,HLA-B*44:02,HLA-B*40:01 

WSMATYYLF 82 92 
HLA-A*23:01,HLA-A*24:02,HLA-B*53:01,HLA-B*58:01,HLA-A*32:01,HLA-B*57:01,HLA-

B*15:01 

AIMQLFFSY 1527 1537 HLA-A*11:01,HLA-A*26:01,HLA-A*30:02,HLA-A*32:01,HLA-B*15:01,HLA-B*44:03 

FFASFYYVW 1568 1578 HLA-A*23:01,HLA-A*24:02,HLA-B*53:01,HLA-B*58:01 

LAAVNSVPW 1309 1319 HLA-B*35:01,HLA-B*57:01,HLA-B*58:01,HLA-B*53:01 

MPYFFTLLL 1351 1361 HLA-B*35:01,HLA-B*53:01,HLA-B*51:01,HLA-B*08:01,HLA-B*07:02 

LAAIMQLFF 1525 1535 HLA-B*51:01,HLA-B*35:01,HLA-B*53:01,HLA-B*58:01 

STCMMCYKR 1589 1599 HLA-A*11:01,HLA-A*33:01,HLA-A*31:01,HLA-A*68:01 

YIFFASFYY 1566 1576 
HLA-A*11:01,HLA-A*26:01,HLA-A*03:01,HLA-A*30:02,HLA-B*35:01,HLA-A*01:01,HLA-

B*15:01,HLA-A*68:01 

QMAPISAMV 1555 1565 HLA-A*68:02,HLA-A*02:01,HLA-A*02:06,HLA-A*02:03 

SAMVRMYIF 1560 1570 HLA-A*32:01,HLA-B*57:01,HLA-B*35:01,HLA-B*08:01 

RTNVYLAVF 352 362 HLA-B*57:01,HLA-B*15:01,HLA-A*32:01,HLA-B*58:01 

MSMTYGQQF 768 778 HLA-B*35:01,HLA-B*53:01,HLA-B*58:01,HLA-B*57:01,HLA-B*15:01 

RTIKVFTTV 748 758 HLA-A*68:02,HLA-A*02:06,HLA-A*32:01,HLA-B*58:01 

YMPYFFTLL 1350 1360 HLA-A*24:02,HLA-A*02:01,HLA-A*02:06,HLA-A*02:03 

LAYILFTRF 1511 1521 HLA-B*35:01,HLA-B*53:01,HLA-B*51:01,HLA-B*58:01,HLA-B*15:01 

QLFFSYFAV 1530 1540 HLA-A*68:02,HLA-A*02:01,HLA-A*02:06,HLA-A*02:03 

YVNTFSSTF 1776 1786 HLA-A*32:01,HLA-A*26:01,HLA-B*15:01,HLA-B*35:01 

HFISNSWLM 1539 1549 HLA-A*23:01,HLA-A*26:01,HLA-B*35:01,HLA-A*24:02 

HVVGPNVNK 298 308 HLA-A*11:01,HLA-A*03:01,HLA-A*30:01,HLA-A*68:01 
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Table 4-5 Predicted promiscuous T cell MHC-I epitopes of SARS-CoV-2 nsp3. 

Epitope Start End Allele 

ISNSWLMWLIINLVQ 1541 1557 

HLA-DPA1*03:01,HLA-DRB1*03:01,HLA-DQA1*01:02,HLA-DRB1*04:01,HLA-

DQB1*06:02,HLA-DRB1*08:02,HLA-DRB1*15:01,HLA-DQB1*05:01,HLA-

DPB1*04:01,HLA-DRB1*11:01,HLA-DPA1*01:03,HLA-DQA1*04:01,HLA-
DPB1*04:02,HLA-DRB1*12:01,HLA-DQB1*04:02,HLA-DRB1*04:05,HLA-

DPA1*02:01,HLA-DPB1*01:01,HLA-DPA1*01,HLA-DRB5*01:01,HLA-

DPB1*02:01,HLA-DRB1*01:01,HLA-DQA1*01:01 

LAYILFTRFFYVLGL 1511 1527 

HLA-DPA1*03:01,HLA-DRB1*03:01,HLA-DRB1*08:02,HLA-DRB1*15:01,HLA-

DQB1*05:01,HLA-DPB1*04:01,HLA-DRB1*11:01,HLA-DPA1*01:03,HLA-
DPB1*14:01,HLA-DPB1*04:02,HLA-DPB1*05:01,HLA-DRB1*12:01,HLA-

DRB1*07:01,HLA-DRB3*01:01,HLA-DRB1*04:05,HLA-DPA1*02:01,HLA-

DPB1*01:01,HLA-DPA1*01,HLA-DRB5*01:01,HLA-DPB1*02:01,HLA-
DRB4*01:01,HLA-DQA1*01:01 

AAIMQLFFSYFAVHF 1526 1542 

HLA-DPA1*03:01,HLA-DRB1*04:01,HLA-DRB1*08:02,HLA-DRB1*15:01,HLA-

DQB1*05:01,HLA-DPB1*04:01,HLA-DRB1*11:01,HLA-DPA1*01:03,HLA-

DPB1*14:01,HLA-DPB1*04:02,HLA-DRB1*12:01,HLA-DPB1*05:01,HLA-
DRB1*07:01,HLA-DRB3*01:01,HLA-DRB1*04:05,HLA-DPA1*02:01,HLA-

DPB1*01:01,HLA-DPA1*01,HLA-DRB5*01:01,HLA-DPB1*02:01,HLA-

DRB4*01:01,HLA-DQA1*01:01 

AMVRMYIFFASFYYV 1561 1577 

HLA-DPA1*03:01,HLA-DRB1*04:01,HLA-DRB1*08:02,HLA-DRB1*15:01,HLA-
DQB1*05:01,HLA-DPB1*04:01,HLA-DRB1*11:01,HLA-DPA1*01:03,HLA-

DPB1*14:01,HLA-DQA1*05:01,HLA-DPB1*04:02,HLA-DRB1*12:01,HLA-

DPB1*05:01,HLA-DRB1*09:01,HLA-DRB3*01:01,HLA-DRB1*04:05,HLA-
DPA1*02:01,HLA-DPB1*01:01,HLA-DPA1*01,HLA-DQB1*02:01,HLA-

DRB5*01:01,HLA-DPB1*02:01,HLA-DQA1*01:01 

YIFFASFYYVWKSYV 1566 1582 

HLA-DPB1*04:02,HLA-DRB1*12:01,HLA-DPB1*05:01,HLA-DPA1*03:01,HLA-

DRB1*15:01,HLA-DRB1*07:01,HLA-DQB1*05:01,HLA-DRB5*01:01,HLA-

DPB1*02:01,HLA-DPB1*04:01,HLA-DPB1*14:01,HLA-DRB3*01:01,HLA-
DRB1*11:01,HLA-DPA1*01:03,HLA-DRB1*08:02,HLA-DRB1*04:05,HLA-

DQA1*01:01,HLA-DPA1*02:01,HLA-DPB1*01:01,HLA-DPA1*01 

EETKFLTENLLLYID 426 442 

HLA-DQA1*05:01,HLA-DPB1*04:02,HLA-DRB1*13:02,HLA-DQB1*02:01,HLA-

DPB1*05:01,HLA-DPA1*03:01,HLA-DRB1*12:01,HLA-DRB1*03:01,HLA-

DQB1*03:02,HLA-DPB1*02:01,HLA-DPB1*04:01,HLA-DPB1*14:01,HLA-
DRB3*01:01,HLA-DRB1*11:01,HLA-DPA1*01:03,HLA-DRB1*04:01,HLA-

DQA1*03:01,HLA-DPA1*02:01,HLA-DPB1*01:01,HLA-DPA1*01 

MPYFFTLLLQLCTFT 1351 1367 

HLA-DPA1*03:01,HLA-DRB1*04:01,HLA-DRB1*08:02,HLA-DRB1*15:01,HLA-
DQB1*05:01,HLA-DPB1*04:01,HLA-DRB1*11:01,HLA-DPA1*01:03,HLA-

DPB1*14:01,HLA-DQA1*05:01,HLA-DPB1*04:02,HLA-DRB1*12:01,HLA-

DPB1*05:01,HLA-DRB1*04:05,HLA-DPA1*02:01,HLA-DPB1*01:01,HLA-
DPA1*01,HLA-DQB1*02:01,HLA-DRB5*01:01,HLA-DPB1*02:01,HLA-DQA1*01:01 

IIIWFLLLSVCLGSL 1411 1427 

HLA-DPA1*03:01,HLA-DRB1*03:01,HLA-DRB1*04:01,HLA-DRB1*08:02,HLA-

DRB1*15:01,HLA-DQB1*05:01,HLA-DPB1*04:01,HLA-DRB1*11:01,HLA-
DPB1*14:01,HLA-DQA1*05:01,HLA-DPB1*04:02,HLA-DRB1*12:01,HLA-

DRB1*04:05,HLA-DPA1*02:01,HLA-DPB1*01:01,HLA-DPA1*01,HLA-

DQB1*02:01,HLA-DRB5*01:01,HLA-DRB4*01:01,HLA-DRB1*01:01,HLA-
DQA1*01:01 

VAEWFLAYILFTRFF 1506 1522 

HLA-DQB1*03:02,HLA-DPA1*03:01,HLA-DRB1*04:01,HLA-DRB1*08:02,HLA-

DRB1*15:01,HLA-DQB1*05:01,HLA-DPB1*04:01,HLA-DRB1*11:01,HLA-
DPA1*01:03,HLA-DPB1*14:01,HLA-DQA1*04:01,HLA-DQA1*05:01,HLA-

DPB1*04:02,HLA-DPB1*05:01,HLA-DRB1*12:01,HLA-DRB1*07:01,HLA-

DQB1*04:02,HLA-DRB1*04:05,HLA-DQA1*03:01,HLA-DPA1*02:01,HLA-
DPB1*01:01,HLA-DPA1*01,HLA-DQB1*02:01,HLA-DRB5*01:01,HLA-

DPB1*02:01,HLA-DRB4*01:01,HLA-DQA1*01:01 

CKSAFYILPSIISNE 531 547 

HLA-DRB1*12:01,HLA-DRB1*15:01,HLA-DRB1*03:01,HLA-DRB1*07:01,HLA-

DQB1*05:01,HLA-DRB1*09:01,HLA-DRB5*01:01,HLA-DPB1*02:01,HLA-
DRB1*01:01,HLA-DRB1*11:01,HLA-DRB1*04:01,HLA-DRB1*04:05,HLA-

DQA1*01:01,HLA-DPA1*02:01,HLA-DPA1*01:03,HLA-DPB1*14:01,HLA-DRB1*08:02 
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QQESPFVMMSAPPAQ 981 997 

HLA-DRB3*02:02,HLA-DRB1*13:02,HLA-DRB1*03:01,HLA-DRB1*15:01,HLA-

DRB1*09:01,HLA-DRB5*01:01,HLA-DQB1*04:02,HLA-DRB3*01:01,HLA-
DQA1*01:02,HLA-DRB1*01:01,HLA-DRB1*04:01,HLA-DRB1*11:01,HLA-

DRB1*04:05,HLA-DQB1*06:02,HLA-DRB1*08:02,HLA-DQA1*04:01 

LFFSYFAVHFISNSW 1531 1547 

HLA-DPB1*04:02,HLA-DPB1*05:01,HLA-DPA1*03:01,HLA-DRB1*15:01,HLA-

DRB1*07:01,HLA-DQB1*05:01,HLA-DRB5*01:01,HLA-DPB1*04:01,HLA-
DPB1*02:01,HLA-DPB1*14:01,HLA-DRB3*01:01,HLA-DRB1*11:01,HLA-

DPA1*01:03,HLA-DRB1*04:01,HLA-DRB1*04:05,HLA-DQA1*01:01,HLA-

DPA1*02:01,HLA-DRB1*08:02,HLA-DPB1*01:01,HLA-DPA1*01 

FVMMSAPPAQYELKH 986 1002 

HLA-DRB3*02:02,HLA-DRB1*13:02,HLA-DRB1*12:01,HLA-DRB1*03:01,HLA-
DRB1*15:01,HLA-DRB1*09:01,HLA-DRB5*01:01,HLA-DQB1*04:02,HLA-

DRB3*01:01,HLA-DRB1*01:01,HLA-DRB1*04:01,HLA-DRB1*11:01,HLA-
DRB1*04:05,HLA-DRB1*08:02,HLA-DQA1*04:01 

LMWLIINLVQMAPIS 1546 1562 

HLA-DRB1*13:02,HLA-DQB1*03:02,HLA-DPA1*03:01,HLA-DRB1*03:01,HLA-
DQA1*01:02,HLA-DRB1*04:01,HLA-DQB1*06:02,HLA-DRB1*08:02,HLA-

DRB1*15:01,HLA-DQB1*05:01,HLA-DRB1*11:01,HLA-DPB1*14:01,HLA-

DQA1*05:01,HLA-DPB1*04:02,HLA-DRB1*12:01,HLA-DRB1*07:01,HLA-

DRB1*04:05,HLA-DQA1*03:01,HLA-DPA1*02:01,HLA-DPB1*01:01,HLA-

DQB1*02:01,HLA-DRB5*01:01,HLA-DRB4*01:01,HLA-DRB1*01:01,HLA-

DQA1*01:01 

LMCQPILLLDQALVS 1746 1762 

HLA-DQA1*05:01,HLA-DPB1*04:02,HLA-DRB1*13:02,HLA-DQB1*02:01,HLA-
DRB1*12:01,HLA-DPA1*03:01,HLA-DPA1*01,HLA-DRB1*03:01,HLA-

DRB1*15:01,HLA-DPB1*04:01,HLA-DRB3*01:01,HLA-DRB4*01:01,HLA-

DRB1*11:01,HLA-DRB1*04:01,HLA-DRB1*01:01,HLA-DRB1*04:05,HLA-
DPA1*02:01,HLA-DPB1*14:01,HLA-DRB1*08:02 

TAFGLVAEWFLAYIL 1501 1517 

HLA-DQB1*03:02,HLA-DPA1*03:01,HLA-DRB1*15:01,HLA-DQB1*05:01,HLA-

DPB1*04:01,HLA-DPA1*01:03,HLA-DPB1*14:01,HLA-DQA1*04:01,HLA-
DQA1*05:01,HLA-DPB1*04:02,HLA-DPB1*05:01,HLA-DRB1*07:01,HLA-

DQB1*04:02,HLA-DQA1*03:01,HLA-DPA1*02:01,HLA-DPB1*01:01,HLA-

DPA1*01,HLA-DQB1*02:01,HLA-DRB5*01:01,HLA-DPB1*02:01,HLA-DQA1*01:01 

FAVHFISNSWLMWLI 1536 1552 

HLA-DRB3*02:02,HLA-DPA1*03:01,HLA-DRB1*03:01,HLA-DQA1*01:02,HLA-

DRB1*04:01,HLA-DQB1*06:02,HLA-DRB1*08:02,HLA-DRB1*15:01,HLA-

DQB1*05:01,HLA-DPB1*04:01,HLA-DRB1*11:01,HLA-DPA1*01:03,HLA-

DPB1*14:01,HLA-DPB1*04:02,HLA-DRB1*07:01,HLA-DRB3*01:01,HLA-

DRB1*04:05,HLA-DPA1*02:01,HLA-DPB1*01:01,HLA-DPA1*01,HLA-
DRB5*01:01,HLA-DPB1*02:01,HLA-DQA1*01:01 

SFNYLKSPNFSKLIN 1396 1412 

HLA-DRB3*02:02,HLA-DPB1*05:01,HLA-DRB1*03:01,HLA-DRB1*07:01,HLA-

DRB1*15:01,HLA-DRB1*09:01,HLA-DRB5*01:01,HLA-DPB1*04:01,HLA-
DRB3*01:01,HLA-DRB1*11:01,HLA-DRB1*04:01,HLA-DRB1*08:02,HLA-

DRB1*04:05,HLA-DRB1*01:01,HLA-DPA1*02:01,HLA-DPB1*14:01,HLA-DPA1*01 

CYLATALLTLQQIEL 856 872 

HLA-DQB1*03:02,HLA-DPA1*03:01,HLA-DQA1*01:02,HLA-DRB1*04:01,HLA-

DQB1*06:02,HLA-DPB1*04:01,HLA-DRB1*11:01,HLA-DPA1*01:03,HLA-
DPB1*14:01,HLA-DQA1*04:01,HLA-DQA1*05:01,HLA-DPB1*04:02,HLA-

DPB1*05:01,HLA-DQB1*04:02,HLA-DQA1*03:01,HLA-DPA1*02:01,HLA-

DPB1*01:01,HLA-DPA1*01,HLA-DQB1*02:01,HLA-DPB1*02:01,HLA-DRB4*01:01 

VCTNYMPYFFTLLLQ 1346 1362 

HLA-DPB1*04:02,HLA-DPB1*05:01,HLA-DPA1*03:01,HLA-DRB1*15:01,HLA-
DQB1*05:01,HLA-DPB1*04:01,HLA-DPB1*02:01,HLA-DPB1*14:01,HLA-

DRB3*01:01,HLA-DPA1*01:03,HLA-DRB1*04:01,HLA-DRB1*04:05,HLA-

DQA1*01:01,HLA-DPA1*02:01,HLA-DPB1*01:01,HLA-DPA1*01 

DKLVSSFLEMKSEKQ 366 382 

HLA-DPB1*04:02,HLA-DPA1*03:01,HLA-DRB1*03:01,HLA-DRB1*15:01,HLA-

DQB1*05:01,HLA-DRB5*01:01,HLA-DPB1*04:01,HLA-DPB1*02:01,HLA-
DPB1*14:01,HLA-DRB1*11:01,HLA-DRB1*04:01,HLA-DPA1*01:03,HLA-

DRB1*04:05,HLA-DQA1*01:01,HLA-DPA1*02:01,HLA-DPB1*01:01,HLA-DPA1*01 

DKNLYDKLVSSFLEM 361 377 

HLA-DRB3*02:02,HLA-DPB1*04:02,HLA-DPB1*05:01,HLA-DPA1*03:01,HLA-
DRB1*15:01,HLA-DRB1*07:01,HLA-DRB1*09:01,HLA-DQB1*04:02,HLA-

DPB1*04:01,HLA-DPB1*02:01,HLA-DRB1*01:01,HLA-DPA1*01:03,HLA-

DRB1*08:02,HLA-DRB1*04:05,HLA-DPA1*02:01,HLA-DPB1*01:01,HLA-
DPB1*14:01,HLA-DPA1*01,HLA-DQA1*04:01 
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VYYSQLMCQPILLLD 1741 1757 

HLA-DPB1*04:02,HLA-DPA1*03:01,HLA-DRB1*03:01,HLA-DQB1*05:01,HLA-

DPB1*04:01,HLA-DPB1*02:01,HLA-DRB4*01:01,HLA-DRB1*11:01,HLA-
DPA1*01:03,HLA-DRB1*04:01,HLA-DRB1*04:05,HLA-DQA1*01:01,HLA-

DPA1*02:01,HLA-DPB1*01:01,HLA-DPB1*14:01,HLA-DPA1*01,HLA-DRB1*01:01 

GARFYFYTSKTTVAS 601 617 

HLA-DRB3*02:02,HLA-DPB1*04:02,HLA-DPB1*05:01,HLA-DPA1*03:01,HLA-
DPA1*01,HLA-DRB1*15:01,HLA-DRB1*07:01,HLA-DRB1*09:01,HLA-

DRB5*01:01,HLA-DPB1*02:01,HLA-DPB1*04:01,HLA-DPB1*14:01,HLA-

DRB1*11:01,HLA-DRB1*04:01,HLA-DPA1*01:03,HLA-DRB1*04:05,HLA-
DRB1*01:01,HLA-DPA1*02:01,HLA-DPB1*01:01,HLA-DRB1*08:02 

FTRFFYVLGLAAIMQ 1516 1532 

HLA-DPA1*03:01,HLA-DRB1*03:01,HLA-DRB1*04:01,HLA-DRB1*08:02,HLA-

DRB1*15:01,HLA-DQB1*05:01,HLA-DPB1*04:01,HLA-DRB1*11:01,HLA-

DPA1*01:03,HLA-DPB1*14:01,HLA-DQA1*04:01,HLA-DQA1*05:01,HLA-
DPB1*04:02,HLA-DRB1*12:01,HLA-DPB1*05:01,HLA-DRB1*07:01,HLA-

DRB1*09:01,HLA-DQB1*04:02,HLA-DQB1*03:01,HLA-DRB1*04:05,HLA-

DPA1*02:01,HLA-DPB1*01:01,HLA-DPA1*01,HLA-DQB1*02:01,HLA-
DRB5*01:01,HLA-DPB1*02:01,HLA-DRB1*01:01,HLA-DQA1*01:01 

EVITFDNLKTLLSLR 731 747 

HLA-DRB3*02:02,HLA-DPB1*04:02,HLA-DPB1*05:01,HLA-DPA1*03:01,HLA-
DRB1*03:01,HLA-DRB3*01:01,HLA-DRB1*11:01,HLA-DRB1*04:01,HLA-

DRB1*01:01,HLA-DRB1*04:05,HLA-DPA1*02:01,HLA-DPB1*01:01,HLA-

DPB1*14:01,HLA-DRB1*08:02 

FCLEASFNYLKSPNF 1391 1407 

HLA-DRB3*02:02,HLA-DPB1*05:01,HLA-DPA1*01,HLA-DRB1*03:01,HLA-

DRB1*07:01,HLA-DRB1*09:01,HLA-DRB5*01:01,HLA-DPB1*02:01,HLA-
DPB1*04:01,HLA-DRB1*11:01,HLA-DRB1*04:01,HLA-DPA1*01:03,HLA-

DRB1*04:05,HLA-DPA1*02:01,HLA-DPB1*01:01,HLA-DRB1*08:02 

MAPISAMVRMYIFFA 1556 1572 

HLA-DPB1*05:01,HLA-DRB1*15:01,HLA-DRB1*03:01,HLA-DRB1*04:05,HLA-

DRB1*09:01,HLA-DRB5*01:01,HLA-DPB1*02:01,HLA-DRB3*01:01,HLA-

DQA1*01:02,HLA-DRB4*01:01,HLA-DRB1*11:01,HLA-DPA1*01:03,HLA-
DRB1*04:01,HLA-DQB1*06:02,HLA-DPA1*02:01,HLA-DRB1*08:02 

CLGSLIYSTAALGVL 1421 1437 

HLA-DQA1*05:01,HLA-DRB3*02:02,HLA-DRB1*13:02,HLA-DQB1*02:01,HLA-

DRB1*12:01,HLA-DRB1*03:01,HLA-DRB1*07:01,HLA-DRB1*15:01,HLA-
DRB1*09:01,HLA-DRB5*01:01,HLA-DPB1*02:01,HLA-DQB1*03:01,HLA-

DPB1*14:01,HLA-DRB1*01:01,HLA-DRB1*04:01,HLA-DRB1*11:01,HLA-

DRB1*04:05,HLA-DPA1*01:03,HLA-DPA1*02:01,HLA-DPB1*01:01 

DNLKTLLSLREVRTI 736 752 

HLA-DPB1*04:02,HLA-DRB1*12:01,HLA-DPA1*03:01,HLA-DRB1*03:01,HLA-
DRB1*15:01,HLA-DRB4*01:01,HLA-DRB1*11:01,HLA-DRB1*04:01,HLA-

DRB1*01:01,HLA-DRB1*04:05,HLA-DPA1*02:01,HLA-DPB1*01:01,HLA-

DPB1*14:01,HLA-DRB1*08:02 

INLVQMAPISAMVRM 1551 1567 

HLA-DRB3*02:02,HLA-DQA1*05:01,HLA-DRB1*13:02,HLA-DRB1*12:01,HLA-
DRB1*03:01,HLA-DRB1*15:01,HLA-DRB1*07:01,HLA-DRB1*09:01,HLA-

DRB5*01:01,HLA-DQB1*04:02,HLA-DQB1*03:01,HLA-DRB4*01:01,HLA-

DQA1*01:02,HLA-DRB1*01:01,HLA-DRB1*11:01,HLA-DRB1*04:01,HLA-
DRB1*04:05,HLA-DQB1*06:02,HLA-DRB1*08:02,HLA-DQA1*04:01 

FKWDLTAFGLVAEWF 1496 1512 

HLA-DQA1*05:01,HLA-DQB1*02:01,HLA-DQB1*03:02,HLA-DPB1*05:01,HLA-

DRB1*03:01,HLA-DQB1*05:01,HLA-DRB1*09:01,HLA-DQB1*04:02,HLA-
DPB1*04:01,HLA-DRB3*01:01,HLA-DQA1*01:01,HLA-DRB1*04:01,HLA-

DRB1*04:05,HLA-DQA1*03:01,HLA-DPA1*02:01,HLA-DPB1*01:01,HLA-
DPA1*01,HLA-DQA1*04:01 

LTENLLLYIDINGNL 431 447 

HLA-DPB1*04:02,HLA-DRB1*13:02,HLA-DRB1*12:01,HLA-DQB1*03:02,HLA-

DPA1*03:01,HLA-DRB1*03:01,HLA-DRB1*15:01,HLA-DQB1*05:01,HLA-

DQA1*03:01,HLA-DRB3*01:01,HLA-DRB1*04:01,HLA-DRB1*04:05,HLA-
DQA1*01:01,HLA-DPA1*02:01,HLA-DPB1*01:01 

YVLGLAAIMQLFFSY 1521 1537 

HLA-DRB1*03:01,HLA-DQA1*01:02,HLA-DRB1*04:01,HLA-DQB1*06:02,HLA-

DRB1*08:02,HLA-DRB1*15:01,HLA-DPB1*04:01,HLA-DRB1*11:01,HLA-
DPA1*01:03,HLA-DPB1*14:01,HLA-DQA1*04:01,HLA-DQA1*05:01,HLA-

DPB1*05:01,HLA-DRB1*12:01,HLA-DRB1*09:01,HLA-DQB1*04:02,HLA-

DRB3*01:01,HLA-DQB1*03:01,HLA-DRB1*04:05,HLA-DPA1*02:01,HLA-
DPA1*01,HLA-DQB1*02:01,HLA-DRB5*01:01,HLA-DPB1*02:01,HLA-DRB4*01:01 



 100 

WADNNCYLATALLTL 851 867 

HLA-DQA1*05:01,HLA-DPB1*04:02,HLA-DQB1*02:01,HLA-DPB1*05:01,HLA-

DPA1*03:01,HLA-DRB1*07:01,HLA-DPB1*02:01,HLA-DPB1*04:01,HLA-
DQA1*01:02,HLA-DRB1*11:01,HLA-DPA1*01:03,HLA-DRB1*04:01,HLA-

DQB1*06:02,HLA-DPA1*02:01,HLA-DPB1*01:01,HLA-DPB1*14:01,HLA-DPA1*01 

NQHEVLLAPLLSAGI 321 337 

HLA-DPB1*04:02,HLA-DRB1*12:01,HLA-DPA1*03:01,HLA-DRB1*15:01,HLA-

DRB1*03:01,HLA-DRB1*09:01,HLA-DPB1*02:01,HLA-DPB1*14:01,HLA-
DRB1*11:01,HLA-DRB1*04:01,HLA-DRB1*01:01,HLA-DRB1*04:05,HLA-

DPA1*01:03,HLA-DPA1*02:01,HLA-DPB1*01:01,HLA-DRB1*08:02 

VLSTFISAARQGFVD 1811 1827 

HLA-DRB3*02:02,HLA-DQB1*03:02,HLA-DRB1*03:01,HLA-DRB1*07:01,HLA-
DRB1*09:01,HLA-DRB5*01:01,HLA-DQB1*04:02,HLA-DRB3*01:01,HLA-

DQA1*01:02,HLA-DRB1*11:01,HLA-DRB1*04:01,HLA-DQB1*06:02,HLA-
DQA1*03:01,HLA-DRB1*08:02,HLA-DQA1*04:01 

SFYYVWKSYVHVVDG 1571 1587 

HLA-DPB1*04:02,HLA-DPA1*03:01,HLA-DRB1*15:01,HLA-DRB1*03:01,HLA-

DRB1*07:01,HLA-DRB1*09:01,HLA-DRB5*01:01,HLA-DPB1*04:01,HLA-

DPB1*02:01,HLA-DRB3*01:01,HLA-DRB1*11:01,HLA-DPA1*01:03,HLA-
DRB1*08:02,HLA-DRB1*04:05,HLA-DPA1*02:01,HLA-DPB1*01:01,HLA-

DPB1*14:01,HLA-DPA1*01 

TKYLVQQESPFVMMS 976 992 

HLA-DRB3*02:02,HLA-DQA1*05:01,HLA-DRB1*13:02,HLA-DQB1*02:01,HLA-
DRB1*12:01,HLA-DRB1*03:01,HLA-DRB1*15:01,HLA-DRB1*04:05,HLA-

DRB1*09:01,HLA-DRB5*01:01,HLA-DRB3*01:01,HLA-DRB4*01:01,HLA-

DQA1*01:02,HLA-DRB1*11:01,HLA-DRB1*04:01,HLA-DRB1*01:01,HLA-
DQB1*06:02,HLA-DPA1*02:01,HLA-DPB1*01:01,HLA-DPB1*14:01 

EHFIETISLAGSYKD 681 697 

HLA-DPB1*04:02,HLA-DRB1*12:01,HLA-DPA1*03:01,HLA-DRB1*03:01,HLA-

DRB1*07:01,HLA-DRB1*04:05,HLA-DRB5*01:01,HLA-DPB1*02:01,HLA-
DQA1*01:02,HLA-DRB1*11:01,HLA-DRB1*04:01,HLA-DPA1*01:03,HLA-

DQB1*06:02,HLA-DPA1*02:01,HLA-DPB1*14:01,HLA-DRB1*08:02 

KSPNFSKLINIIIWF 1401 1417 

HLA-DPB1*04:02,HLA-DRB1*12:01,HLA-DPA1*03:01,HLA-DPB1*05:01,HLA-
DRB1*15:01,HLA-DRB1*07:01,HLA-DRB5*01:01,HLA-DRB3*01:01,HLA-

DRB4*01:01,HLA-DRB1*11:01,HLA-DRB1*04:01,HLA-DRB1*04:05,HLA-
DPA1*02:01,HLA-DPB1*01:01 

VRTNVYLAVFDKNLY 351 367 

HLA-DRB1*13:02,HLA-DPB1*05:01,HLA-DRB1*03:01,HLA-DRB1*07:01,HLA-
DQB1*05:01,HLA-DRB5*01:01,HLA-DPB1*02:01,HLA-DPB1*04:01,HLA-

DPB1*14:01,HLA-DRB1*11:01,HLA-DPA1*01:03,HLA-DQA1*01:01,HLA-

DPA1*02:01,HLA-DPB1*01:01,HLA-DPA1*01 
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Table 4-6 Predicted linear B cell epitopes in nsp3 protein using BepiPred 2.0. 

Epitope  Start End Length 

EDEEEGDCEEEEFEPSTQYEYGTEDDYQGKPLEFGATS  111 148 38 

EEEQEEDWLDDD  154 165 12 

VGQQDGSEDNQ  170 180 11 

IVEVQPQLEMELTPVVQTIEV  187 207 21 

EVKPFITESKPSVEQRKQDDK  392 412 21 

EEVTTTLEETK  419 429 11 

YIDINGNLHPDSAT  438 451 14 

YILPSIISNEK  536 546 11 

RKYKGIKIQEGVVD  586 599 14 

DLVPNQPYPNA  1095 1105 11 

NATNKATYKPNT  1178 1189 12 

DAQGMDNLACEDLKPVSEEVVENPTIQKDVLECNVK  1214 1249 36 

YREGYLNSTNVTIA  1448 1461 14 

GQKTYERHSLS  1691 1701 11 
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4.5 Discussion 

Our prediction of the potential SARS-CoV-2 antigens, which could induce protective immunity, 

provides a timely analysis for the vaccine development against COVID-19. Currently, most 

coronavirus vaccine studies use the whole inactivated or attenuated virus or target the structural 

proteins such as the spike (S) protein, nucleocapsid (N) protein, and membrane (M) protein. But 

the inactivated or attenuated whole virus vaccine might cause strong adverse events. On the other 

hand, vaccines targeting the structural proteins induce a robust immune response (P. Zhao et al. 

2005; Shi et al. 2006; Al-Amri et al. 2017). In some studies, these structural proteins, including 

the S and N proteins, were reported to associate with the pathogenesis of coronavirus (Yasui et 

al. 2008; Glansbeek et al. 2002) and might raise safety concerns (Weingartl et al. 2004). 

Recently, the epitopes of the SARS-CoV-2 were computationally predicted and evaluated by 

sequence homology analysis of SARS-CoV and MERS-CoV epitopes (Grifoni, Sidney, et al. 

2020). Following this study, the predicted T cell MHC-I and MHC-II epitopes of SARS-CoV-2 

were experimentally evaluated using the “megapools” approach, and both CD4+ and CD8+ 

responses were detected (Grifoni, Weiskopf, et al. 2020). The present work is complementary 

but not overlapping with the recent reports. Our study applied state-of-the-art Vaxign reserve 

vaccinology (RV) and Vaxign-ML machine learning strategies to the entire SARS-CoV-2 

proteomes, including both structural and non-structural proteins for vaccine candidate prediction. 

Our results indicate, for the first time, that many non-structural proteins could be used as 

potential vaccine candidates.  

The SARS-CoV-2 S protein was identified by our Vaxign and Vaxign-ML analysis as the 

most favorable vaccine candidate. First, the Vaxign RV framework predicted the S protein as a 

likely adhesin, which is consistent with the role of S protein for the invasion of host cells. 
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Second, our Vaxign-ML predicted that the S protein had a high protective antigenicity score. 

These results confirmed the role of S protein as the important target of COVID-19 vaccines. 

However, targeting only the S protein may induce high serum-neutralizing antibody titers but 

cannot induce complete protection (See et al. 2008). In addition, HCoV-NL63 also uses S protein 

and employs the angiotensin-converting enzyme 2 (ACE2) for cellular entry, despite markedly 

weak pathogenicity (Hofmann et al. 2005). This suggests that the S protein is not the only factor 

determining the infection level of a human coronavirus. Thus, alternative vaccine antigens may 

be considered as potential targets for COVID-19 vaccines.  

Among the five non-structural proteins being predicted as potential vaccine candidates, 

the nsp3 protein was predicted to have the second-highest protective antigenicity score, adhesin 

property, promiscuous MHC-I & MHC-II T cell epitopes, and B cell epitopes. The nsp3 is the 

largest non-structural protein that includes multiple functional domains related to viral 

pathogenesis(Lei, Kusov, and Hilgenfeld 2018). The multiple sequence alignment of nsp3 also 

showed higher sequence conservation in most of the functional domains in SARS-CoV-2, 

SARS-CoV, and MERS-CoV, than in all 15 coronavirus strains (Figure 4-2 B). Besides the nsp3 

protein, our study also predicted four additional non-structural proteins (3CL-pro, nsp8, nsp9, 

and nsp10) as possible vaccine candidates based on their adhesin probabilities, and the nsp8 

protein was also predicted to have a significant protective antigenicity score.  

However, these predicted non-structural proteins (nsp3, 3CL-pro, nsp8, nsp9, and nsp10) 

are not part of the viral structural particle, and all the current SARS/MERS/COVID-19 vaccine 

studies target the structural (S/M/N) proteins. Although structural proteins are commonly used as 

viral vaccine candidates, non-structural proteins correlate to vaccine protection. The non-

structural protein NS1 was found to induce protective immunity against infections by 
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flaviviruses (Salat et al. 2020). Since NS1 is not part of the virion, antibodies against NS1 have 

no neutralizing activity but some exhibit complement-fixing activity (Schlesinger, Brandriss, and 

Walsh 1985). However, passive transfer of anti-NS1 antibody or immunization with NS1 

conferred protection (Gibson, Schlesinger, and Barrett 1988). The anti-NS1 antibody could also 

reduce viral replication by complement-dependent cytotoxicity of infected cells, block NS1-

induced pathogenic effects, and attenuate NS1-induced disease development during the critical 

phase (H. R. Chen, Lai, and Yeh 2018). Finally, NS1 is not a structural protein and the anti-NS1 

antibody will not induce antibody-dependent enhancement (ADE), which is a virulence factor 

and a risk factor causing many adverse events (H. R. Chen, Lai, and Yeh 2018). In addition to 

the induction of antibody responses, non-structural proteins of viruses could induce virus-

specific T cells, especially cytotoxic T lymphocytes, that are important to control viral infection. 

The non-structural proteins of the hepatitis C virus were reported to induce HCV-specific 

vigorous and broad-spectrum T-cell responses (Ip et al. 2014). The non-structural HIV-1 gene 

products were also shown to be valuable targets for prophylactic or therapeutic vaccines (Cafaro 

et al. 2019). Therefore, it is reasonable to hypothesize that the SARS-CoV-2 non-structural 

proteins (e.g., nsp3) are possible vaccine targets, which might induce cell-mediated or humoral 

immunity necessary to prevent viral invasion and/or replication.  

The SARS-CoV-2 nsp3 protein was recently reported to account for the virus-specific T 

cell response. Grifoni et al. showed that the three major structural (S/M/N) proteins accounted 

for 59% of the total CD4+ T cell response in COVID-19 recovered patients, while other non-

structural proteins, including nsp3, also accounted for the response (Grifoni, Weiskopf, et al. 

2020). In addition, SARS-CoV-2-reactive CD4+ T cells could be detected in a large portion of 

unexposed individuals, suggesting cross-reactive T cell recognition between SARS-CoV-2 and 
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the other coronaviruses that only cause the common cold. In our study, the nsp3 protein showed 

sequence conservation among the 15 coronaviruses, and particularly, the protein shared higher 

similarity among the more severe form of coronavirus (SARS-CoV, MERS-CoV, and SARS-

CoV-2) (Figure 4-2). The preexisting immunity against the mild human coronaviruses might 

offer cross-protection to the SARS-CoV-2 infected individuals(Grifoni, Weiskopf, et al. 2020). 

In spite of that, none of the non-structural proteins have been evaluated as vaccine candidates, 

and the feasibility of these proteins as vaccine targets are subject to further experimental 

verification.  

Besides immunogenicity, safety is also an important factor of a successful COVID-19 

vaccine. One of the safety issues of COVID-19 vaccines might occur due to vaccine delivery 

(e.g., vectors, adjuvants, formulation doses, or route of administration), which cannot be 

evaluated by the machine learning approach presented in this study. In addition, the nsp3 and 

other viral adhesive proteins with sequence homology to the host cell adhesion molecules might 

also cause auto-reactivity with self-antigen or induce T regulatory, leading to low responsiveness 

of the host to the virus. By applying Vaxign and epitope predictions, our study found that the 

MAC1 domain of nsp3 protein shares sequence homology with the human mono-ADP-

ribosyltransferase PARP14, and there is no predicted T cell MHC-I, MHC-II, and linear B cell 

epitopes within the aligned region. 

In addition to vaccines expressing a single or a combination of structural proteins, here 

we propose an “Sp/Nsp cocktail vaccine” as an effective strategy for COVID-19 vaccine 

development. A typical cocktail vaccine includes more than one antigen to cover different 

aspects of protection (Sealy et al. 2009; Millet et al. 1993). The licensed Group B 

meningococcus Bexsero vaccine, which was developed via reverse vaccinology, contains three 
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protein antigens (Folaranmi et al. 2015). To develop an efficient and safe COVID-19 cocktail 

vaccine, an “Sp/Nsp cocktail vaccine”, which mixes a structural protein(s) (Sp, such as S 

protein) and a non-structural protein(s) (Nsp, such as nsp3) could induce more favorable 

protective immune responses than vaccines expressing a structural protein(s). Current COVID-

19 vaccines mostly target the S protein with various types of delivery systems (such as 

recombinant virus vectors), and none of the non-structural proteins has not been used. The 

benefit of a cocktail vaccine strategy could induce immunity that can protect the host against not 

only the S-ACE2 interaction and viral entry to the host cells but also protect against the 

accessary non-structural adhesin proteins (e.g., nsp3), which might also be vital to the viral entry 

and replication. The usage of more than one antigen allows us to reduce the volume of each 

antigen and thus to reduce the induction of adverse events. Nonetheless, the potential and safety 

of the proposed “Sp/Nsp cocktail vaccine” strategy need to be experimentally validated.  

For rational COVID-19 vaccine development, it is critical to understand the fundamental 

host-coronavirus interaction and protective immune mechanism (Roper and Rehm, 2009). Such 

understanding may not only provide us guidance in terms of antigen selection but also facilitate 

our design of vaccine formulations. For example, an important foundation of our prediction in 

this study is based on our understanding of the critical role of adhesin as a virulence factor as 

well as a protective antigen. The choice of DNA vaccine, recombinant vaccine vector, and 

another method of vaccine formulation is also deeply rooted in our understanding of pathogen-

specific immune response induction. Different experimental conditions may also affect results 

(He et al. 2014; E. Ong et al. 2019). Therefore, it is crucial to understand the underlying 

molecular and cellular mechanisms for rational vaccine development. 
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Chapter 5 Computational Design of SARS-CoV-2 Spike Glycoproteins to Increase 

Immunogenicity by T Cell Epitope Engineering 

5.1 Abstract 

The development of effective and safe vaccines is the ultimate way to efficiently stop the 

ongoing COVID-19 pandemic, which is caused by severe acute respiratory syndrome 

coronavirus 2 (SARS-CoV-2). Built on the fact that SARS-CoV-2 utilizes the association of its 

Spike (S) protein with the human Angiotensin-converting enzyme 2 (ACE2) receptor to invade 

host cells, we computationally redesigned the S protein sequence to improve its immunogenicity 

and antigenicity. Toward this purpose, we extended an evolutionary protein design algorithm, 

EvoDesign, to create thousands of stable S protein variants that perturb the core protein sequence 

but keep the surface conformation and B cell epitopes. The T cell epitope content and similarity 

scores of the perturbed sequences were calculated and evaluated. Out of 22,914 designs with 

favorable stability energy, 301 candidates contained at least two pre-existing immunity-related 

epitopes and had promising immunogenic potential. The benchmark tests showed that, although 

the epitope restraints were not included in the scoring function of EvoDesign, the top S protein 

design successfully recovered 31 out of the 32 major histocompatibility complex (MHC) -II T 

cell promiscuous epitopes in the native S protein, where two epitopes were present in all seven 

human coronaviruses. Moreover, the newly designed S protein introduced nine new MHC-II T 

cell promiscuous epitopes that do not exist in the wildtype SARS-CoV-2. These results 

demonstrated a new and effective avenue to enhance a target protein’s immunogenicity using 
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rational protein design, which could be applied for new vaccine design against COVID-19 and 

other human viruses. 

5.2 Introduction 

The current Coronavirus Disease 2019 (COVID-19) pandemic caused by severe acute respiratory 

syndrome coronavirus 2 (SARS-CoV-2) has resulted in over 77 million confirmed cases and 

over 1.7 million deaths globally as of December 24, 2020, according to the World Health 

Organization (World Health Organization 2020b). Tremendous efforts have been made to 

develop effective and safe vaccines against this viral infection. The Pfizer-BioNTech BNT162b2 

mRNA vaccine showed 95% effectiveness in preventing COVID-19 (Polack et al. 2020), and the 

Moderna mRNA-1273 induced strong immune responses among recipients between the age of 

18 and 55 during phase III clinical trials (Anderson et al. 2020). The FDA issued an Emergency 

Use Authorization for the mRNA-1273 and BNT162b2 mRNA vaccines in record time. On the 

other hand, the Inovio INO-4800 DNA vaccine not only showed protection from the viral 

infection in rhesus macaques but was also reported to induce long-lasting memory (A. Patel et al. 

2020). In addition to these two vaccines, there are over a hundred COVID-19 vaccines currently 

in clinical trials, including other types of vaccines such as the Oxford-AstraZeneca adenovirus-

vectored vaccine (ChAdOx1 nCoV-19) (Folegatti et al. 2020), CanSino’s adenovirus type-5 

(Ad5)-vectored COVID-19 vaccine (F. C. Zhu et al. 2020), and Sinovac’s absorbed COVID-19 

(inactivated) vaccine (ClinicalTrials.gov Identifier: NCT04456595). Among all the vaccines, a 

vast majority of them select the spike glycoprotein as their primary target. 

The SARS-CoV-2 Spike (S) protein is a promising vaccine target, and many clinical 

studies reported anti-S protein neutralizing antibodies in COVID-19 recovered patients (Grifoni, 

Weiskopf, et al. 2020). After the SARS outbreak in 2003 (Lu et al. 2020), clinical studies 
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reported neutralizing antibodies targeting the SARS-CoV S protein (Temperton et al. 2005; Chan 

et al. 2015), which was selected as the target of vaccine development (Shim et al. 2010; Z. Y. 

Yang et al. 2004). Since SARS-CoV-2 shares a high sequence identity with SARS-CoV (Zhou et 

al. 2020), and both viruses utilize the attachment of the S protein to the human angiotensin-

converting enzyme 2 (ACE2) receptor to invade host cells, neutralization of the SARS-CoV-2 S 

protein could induce protection in COVID-19 vaccine development (Tay et al. 2020). Many 

computational studies utilizing reverse vaccinology and immuno-informatics reported the S 

protein to be a promising vaccine antigen (E. Ong, Wong, Huffman, and He 2020; Grifoni, 

Sidney, et al. 2020; Enayatkhani et al. 2020), and clinical studies identified anti-S protein 

neutralizing antibodies in patients that have recovered from COVID-19 (F. Wu et al. 2020; L. Ni 

et al. 2020; Cao et al. 2020). The cryo-EM structures of the S protein (Wrapp, Wang, et al. 2020) 

and the neutralizing antibodies that bind to the S protein (Barnes et al. 2020; Wrapp, De Vlieger, 

et al. 2020) were determined. Besides neutralizing antibodies, studies have also shown the 

importance of the CD4 T cell response in the control of SARS-CoV-2 infection and possible pre-

existing immunity in healthy individuals without exposure to SARS-CoV-2 (Grifoni, Weiskopf, 

et al. 2020; Bert et al. 2020; Braun et al. 2020). Kalita et al. has proposed a multi-peptide 

subunit-based epitope vaccine that is comprised of B cell, helper T cell, and cytotoxic T cell 

epitopes (Kalita et al. 2020). Overall, successful vaccination is likely linked to a robust and long-

term humoral response to the SARS-CoV-2 S protein, which could be further enhanced by the 

rational structural design of the protein. 

Structural vaccinology has shown success in improving vaccine candidates’ 

immunogenicity through protein structural modification. The first proof-of-concept was achieved 

by fixing the conformation-dependent neutralization-sensitive epitopes on the fusion 



 111 

glycoprotein of the respiratory syncytial virus (McLellan et al. 2013). A similar strategy has been 

applied to SARS-CoV-2 to conformationally control the S protein’s receptor-binding domain 

(RBD) domain between the “up” and “down” configurations to induce immunogenicity 

(Henderson et al. 2020). Besides the structure-based rational design approaches, the directed 

evolution is classified as an irrational method and has also been widely used in diverse fields, 

such as enzyme engineering (Hall 1978), protein-RNA interaction (Morozova, Myers, and 

Shamoo 2006), and COVID-19 therapeutic strategies (Padhi et al. 2020). The directed evolution 

usually first applies random mutagenesis to generate a large pool of variants, followed by 

screening for candidates with the preferred properties using high-throughput strategies. The 

advantage of directed evolution is that it works well without structural information. However, 

once a high-quality protein structure can be obtained either from the experimental determination 

or computational prediction, the structure-based approach is more suitable as it can efficiently 

explore a much larger sequence/conformational space using computer programs, yielding a few 

potential candidates for further screening and validation, which is more time-, money-, and 

labor-saving compared to a typical directed evolution process.  

In this study, we extended structural vaccinology to a structure-based computational 

design of the SARS-CoV-2 S protein. Briefly, we used a protein design approach, EvoDesign 

(Pearce et al. 2019), to generate multiple stable S protein variants without perturbing the surface 

amino acids to maintain the same B cell epitope profile. Meanwhile, we introduced mutations to 

the residues buried inside the S protein so that more major histocompatibility complex (MHC)-II 

T cell epitopes would be added into the newly designed S protein to potentially induce a stronger 

immune response. Finally, we evaluated the computationally designed protein candidates and 

compared them to the native S protein. 
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5.3 Methods 

5.3.1 Computational redesign of SARS-CoV-2 S protein 

Figure 5-1 illustrates the workflow for redesigning the SARS-CoV-2 S protein to improve its 

immunogenic potential for vaccine design. The full-length structure model (1,273 amino acids 

for the S monomer) of SARS-CoV-2 S assembled by C-I-TASSER (C. Zhang et al. 2020) was 

used as the template for fixed-backbone protein sequence design using EvoDesign (Pearce et al. 

2019). Although the cryo-EM structure for SARS-CoV-2 S is available (PDB ID: 6VSB) 

(Wrapp, Wang, et al. 2020), it contains a large number of missing residues, and therefore, the 

full-length C-I-TASSER model was used for S protein design instead. The C-I-TASSER model 

used the cryo-EM density map to assemble the individual domain models and to refine the 

structure. The model showed a high similarity to the cryo-EM structure with a TM-score (Y. 

Zhang and Skolnick 2005) of 0.87 and root-mean-square deviation (RMSD) of 3.4 Å in the 

commonly aligned regions, indicating a good model quality. The residues in the S protein were 

categorized into three groups: core, surface, and intermediate (X. Huang, Pearce, and Zhang 

2020b), according to their solvent accessible surface area ratio (SASAr). Specifically, SASAr is 

defined as the ratio of the absolute SASA of a residue in the structure to the maximum area of 

the residue in the GXG state (Tian, Huang, and Zhu 2015), where X is the residue of interest and 

G is a glycine residue. The most extended GXG conformation measures the maximum exposure 

degree of the residue X in the solvated environment taking into account the local protein 

backbone. The SASAr ratios were calculated using the ASA web-server 

(http://cib.cf.ocha.ac.jp/bitool/ASA/), where the maximum area of each of the 20 canonical 

amino acid residues is provided. The core and surface residues were defined by us as those with 

SASAr <5% and >25%, respectively, while the other residues were regarded as intermediate. 

http://cib.cf.ocha.ac.jp/bitool/ASA/
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Since the surface residues may be involved in the interactions with other proteins (e.g., the 

formation of the S homotrimer, S-ACE2 complex, and S-antibody interaction) and may partially 

constitute the B cell epitopes, these residues were excluded from design, and more rigorously, 

their side-chain conformations were kept constant as well. 

 
Figure 5-1 The workflow for designing and screening immunogenicity-enhanced SARS-

CoV-2 S proteins. 

The procedure started by defining the full-length SARS-CoV-2 native S protein into surface, 

intermediate, and core residues. This information was then fed into EvoDesign to generate 
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structurally stable designs that introduce mutations to the core residues while keeping the surface 

conformation unchanged. The output design candidates from EvoDesign were then evaluated 

based on their immunogenic potential. The top ten candidates were also compared and evaluated 

in comparison to the native S protein.   
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Additionally, the residues that may form B cell epitopes reported by Grifoni et al. 

(Grifoni, Sidney, et al. 2020) were also fixed. The remaining core residues were subjected to 

design, allowing amino acid substitution, whereas the intermediate residues were repacked with 

conformation substitution. Specifically, 243, 275, and 755 residues were designed, repacked, and 

fixed, respectively. The 243 designable core residues were also compared to the global S protein 

mutations (global frequencies > 0.001) recorded in the GISAID database (as of December 7, 

2020) (Korber et al. 2020; Elbe and Buckland-Merrett 2017). These residues were also evaluated 

for their intrinsic disorder predisposition based on the reported disorder regions in the DisProt 

database (Hatos et al. 2020). The corresponding Jensen-Shannon Divergence (JSD) scores 

(higher scores indicate greater conservation) of these core residues residing within the disordered 

regions were reported (Capra and Singh 2007). During protein design, the evolution term in 

EvoDesign was turned off as this term would introduce evolutionary constraints on the sequence 

simulation search, which were not needed for this design (X. Huang, Pearce, and Zhang 2020a); 

therefore, only the physical energy function, EvoEF2 (X. Huang, Pearce, and Zhang 2020b), was 

used for design scoring to broaden sequence diversity and help to identify more candidates with 

increased immunogenicity. In previous studies, EvoEF2 has been appropriately utilized to model 

the binding interactions between the SARS-CoV-2 S-RBD and a large number of ACE2 

orthologs to identify the zoonotic origin of this novel coronavirus (X. Huang et al. 2020) and to 

design multiple anti-SARS-CoV-2 peptide therapeutics (X. Huang, Pearce, and Zhang 2020a). 

We performed 20 independent design simulations and collected all the simulated sequence 

decoys. A total of 5,963,235 sequences were obtained, and the best-scoring sequence had 

stability energy of -4100.97 EvoEF2 energy unit (EEU). A set of 22,914 non-redundant 

sequences that were within a 100 EEU window of the lowest energy and had >5% of the design 
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residues mutated were retained for further analysis (Fig. 1). We also utilized another popular 

protein design software, Rosetta (Leaver-Fay et al. 2011), to generate 1000 low-energy S 

variants using the “fixbb” protocol due to lower computational efficiency. The same surface-

intermediate-core criterion was applied to the Rosetta protein design process. The EvoDesign 

and Rosetta designs were then analyzed and compared to examine the advantages/limitations of 

EvoDesign designs. 

5.3.2 MHC-II T cell epitope prediction and epitope content score calculation 

The full-length S protein sequence was divided into 15-mers with ten amino-acid overlaps. For 

each 15-mer, the T cell MHC-II promiscuous epitopes were predicted using NetMHCIIpan v3.2 

(Jensen et al. 2018). In brief, the percentile ranks of an epitope binding to each of the seven 

MHC-II alleles (i.e., HLA-DRB1*03:01, HLA-DRB1*07:01, HLA-DRB1*15:01, HLA-

DRB3*01:01, HLA-DRB3*02:02, HLA-DRB4*01:01, and HLA-DRB5*01:01) were calculated, 

where the percentile rank was generated by comparing the 15-mer predicted binding affinity to 

the MHC-II molecule against that of a large set of similarly sized peptides randomly selected 

from the SWISS-PROT database (Dhanda et al. 2019). An epitope was considered a 

promiscuous epitope if the median percentile rank was ≤ 20% by binding the 15-mer to any of 

the seven MHC-II alleles (Fleri et al. 2017). The selection of these seven MHC-II alleles aimed 

to predict the dominant MHC-II T cell epitopes across different ethnicities and HLA 

polymorphisms (Paul et al. 2015). The MHC-II promiscuous epitopes of the native SARS-CoV-2 

S protein (QHD43416) predicted using this method were also validated and compared to the 

dominant T cell epitopes mapped by Grifoni et al. (Grifoni, Sidney, et al. 2020). In brief, Grifoni 

et al. mapped the experimentally verified SARS-CoV T cell epitopes reported in the Immune 

Epitope Database (IEDB) database, which includes experimentally verified T cell MHC-II 
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epitope data, to the SARS-CoV-2 S protein based on sequence homology and reported as the 

dominant T cell epitopes (Fleri et al. 2017). The epitope content score (ECS) for a full-length S 

protein was calculated as the average value of the median percentile ranks for all the 15-mers 

spanning the whole sequence. 

 

5.3.3 Human epitope similarity and human similarity score calculation 

The human proteome included 20,353 reviewed (Swiss-Prot) human proteins downloaded from 

Uniprot (as of July 1, 2020) (The UniProt Consortium 2008). A total of 261,908 human MHC-II 

T cell promiscuous epitopes were predicted, as described above. The human epitope similarity 

between a peptide of interest (e.g., a peptide of the S protein) and a human epitope was then 

calculated using a normalized peptide similarity metric proposed by Frankild et al. (Frankild et 

al. 2008). In brief, the un-normalized peptide similarity score, 𝐴(𝑥, 𝑦), was first determined by 

the BLOSUM35 matrix (Henikoff and Henikoff 1992) for all the positions between a target 

peptide (y) and a human epitope (x), which was subsequently normalized using the minimum 

and maximum similarity scores for the human epitope (Equation 1). The maximum and 

minimum similarity scores were determined from a range of similarity scores between a human 

epitope and all of its possible amino acid substitutions. Finally, the maximum normalized 

similarity score of a 15-mer peptide was calculated by comparing it to all the predicted human 

MHC-II T cell promiscuous epitopes. The human similarity score (HSS) of the full-length S 

protein was calculated by averaging the human epitope similarity of all the 15-mers. 

𝑆(𝑥, 𝑦) =
𝐴(𝑥,𝑦)−𝐴𝑚𝑖𝑛

𝑥

𝐴𝑚𝑎𝑥
𝑥 −𝐴𝑚𝑖𝑛

𝑥      (1) 

 

5.3.4 Pre-existing immunity evaluation of the designed proteins 
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The pre-existing immunity of the designed proteins was evaluated and compared to that of the 

native S protein of seven human coronaviruses (HCoVs) (i.e., SARS-CoV-2, SARS-CoV, 

MERS-CoV, HCoV-229E, HCoV-OC43, HCoV-NL63, and HCoV-HKU1). The sequences of 

the seven HCoV S proteins were downloaded from Uniprot (The UniProt Consortium 2008) 

(Table 5-1), and the MHC-II T cell epitopes were predicted as described above. The conserved 

epitopes were determined by the IEDB epitope clustering tool (Dhanda et al. 2019) and aligned 

using SEAVIEW (Gouy, Guindon, and Gascuel 2010). 

5.3.5 Foldability assessment of the designed proteins 

Since EvoDesign only produces a panel of mutated sequences, it is important to examine if the 

designed sequences can fold into the desired structure that the native S protein adopts. To 

examine their foldability, we used C-I-TASSER to model the structure of the designed 

sequences, where the structural similarity between the native and designed S proteins was 

assessed by TM-score (Y. Zhang and Skolnick 2004). Here, C-I-TASSER is a recently 

developed protein structure prediction program, which constructs full-length structure folds by 

assembling fragments threaded from the PDB, under the guidance of deep neural-network 

learning-based contact maps (Y. Li, Zhang, et al. 2019; Y. Li, Hu, et al. 2019). The ectodomain 

of the S homotrimers and the functional domains including the N-terminal domain (NTD), 

receptor-binding domain (RBD), fusion peptide (FP), heptapeptide repeat sequence 1 (HR1), and 

connector domain (CD) (Y. Huang et al. 2020; Henderson et al. 2020) were visualized via 

PyMOL (Schrödinger 2015). Sequence logo plots for the top ten and worst ten S protein designs 

were also generated (Crooks et al. 2004). The multiple sequence alignment of the top four 

EvoDesign S protein candidates with balanced ECS and HSS were aligned to the native S protein 

using SEAVIEW (Gouy, Guindon, and Gascuel 2010).  
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Table 5-1 Seven human coronavirus S proteins. 

Spike Protein ID Organism Organism Taxon ID 

P59594 
Human SARS coronavirus (SARS-CoV) (Severe acute 

respiratory syndrome coronavirus) 
694009 

R9UQ53 Middle East respiratory syndrome-related coronavirus 1335626 

P15423 Human coronavirus 229E (HCoV-229E) 11137 

Q0ZME7 
Human coronavirus HKU1 (isolate N5) (HCoV-HKU1) 

(Strain: Isolate N5) 
443241 

P36334 Human coronavirus OC43 (HCoV-OC43) 31631 

Q6Q1S2 Human coronavirus NL63 (HCoV-NL63) 277944 

P0DTC2 
Severe acute respiratory syndrome coronavirus 2 (2019-

nCoV) (SARS-CoV-2) 
2697049 
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5.3.6 Molecular dynamics (MD) simulation 

The extracellular domain (amino acids 1-1146) of the trimeric wildtype S and the top design (i.e., 

Design-10705, see Results) was subjected to MD simulation using GROMACS (Abraham et al. 

2015) with the CHARMM36 force field (Best et al. 2012). The initial full-length (amino acids 1-

1273) trimers were built by C-I-TASSER and residues 1147-1273 were deleted; glycosylation 

was not considered during structure modeling and the simulation. In each simulation case, a 

dodecahedron box was constructed with a distance of 10 Å from the solute, and TIP3P 

(Jorgensen et al. 1983) water molecules were filled into the box. The system was then 

neutralized by the addition of an appropriate number of Na+ or Cl- ions. After the system was 

assembled, energy minimization was carried out using steepest descent minimization with a 

maximum force of 10 kJ/mol. The system was then equilibrated at 300 K using 100 ps NVT 

simulations and 100 ps NPT simulations with position restraints (1000 kJ/mol) on the heavy 

atoms of the protein. After the two equilibration phases, the system was well-equilibrated at the 

desired temperature and pressure. Unconstrained production MD was then carried out at 300 K 

for 50 ns as suggested in similar MD simulation studies (Q. Li, Huang, and Zhu 2014; Xue, 

Huang, and Zhu 2019). The LINCS (Hess et al. 1997) algorithm was used to restrain the 

hydrogen bonds. Non-bonded interactions were truncated at 12 Å, and the Particle Mesh Ewald 

(Essmann et al. 1995) method was utilized for long-range electrostatic interactions. The velocity-

rescaling thermostat (Bussi, Donadio, and Parrinello 2007) and Parrinello-Rahman barostat 

(Parrinello and Rahman 1981) were used to couple the temperature and pressure, respectively. 

About 25000 snapshots were saved with a time interval of 2 fs and utilized for further analysis 

using the built-in GROMACS command-line tools. 
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5.4 Results 

The epitope content score (ECS) and human similarity score (HSS) of the S proteins from seven 

HCoV strains (severe HCoV: SARS-CoV-2, SARS-CoV, and MERS-CoV; mild HCoV: HCoV-

229, HCoV-HKU1, HCoV-NL63, and HCoV-OC43) were computed. The ECS for the severe 

HCoV S proteins (mean=49.3, standard deviation (SD)=24.7) was significantly different (p = 

0.0016, Mann-Whitney) from that of the mild ones (mean=45.8, SD=24.5). In terms of HSS, the 

severe HCoV S proteins (mean=0.640, SD=0.03) tended to be less self-like (p = 0.097, Mann-

Whitney) than the mild ones (mean=0.642, SD=0.03). Overall, it was shown that both ECS and 

HSS might be used as indicators of the immunogenic potential of the designed S proteins. 

On the other hand, previous studies suggested the potential role of pre-existing immunity 

in fighting COVID-19 (Grifoni, Weiskopf, et al. 2020; Bert et al. 2020; Braun et al. 2020). 

Therefore, the predicted MHC-II T cell promiscuous epitopes of the SARS-CoV-2 S protein 

were compared to those from the other six HCoVs. There were two SARS-CoV-2 predicted 

MHC-II T cell promiscuous epitopes, which were also present on all of the seven HCoV S 

proteins (Figure 5-2) and could be potentially linked to pre-existing immunity. Therefore, the 

designs were subsequently filtered based on the availability of these pre-existing immunity-

related epitopes (Figure 5-1). In particular, the SARS-CoV-2 promiscuous epitope S816-D830 

overlapped with the dominant B cell epitope F802-E819 reported by Grifoni et al. (Grifoni, 

Sidney, et al. 2020).
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Figure 5-2 The two pre-existing immunity-related SARS-CoV-2 MHC-II T cell 

promiscuous epitopes. 

The first SARS-CoV-2 promiscuous epitope is located within residues 816-830 (indexed by 

SARS-CoV-2). 
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EvoDesign generated a total of 22,914 low-energy S protein designs, in which 243 core 

residues were subjected to substitution (see Methods for details). As SARS-CoV-2 has been 

reported to have substantial mutations in its genome (Padhi and Tripathi 2020), it is important to 

compare the EvoDesign mutations to the natural mutations (global mutation frequency of 

>0.001) reported by GISAID (Table 5-2). There were two EvoDesign core residues (D80 and 

S98) that also had natural mutations, and these two core residues had different mutation rates in 

EvoDesign in comparison to the natural infection. Specifically, for the D80 core residue, the 

natural mutation frequency (D80Y) was 0.005, but the EvoDesign mutations, D80N, D80A, and 

D80S, had frequencies of 0.149, 0.106, and 0.003, respectively. For S98, the natural mutation 

(S98F) frequency was 0.007, but EvoDesign mutations S98T and S98A had frequencies of 0.837 

and 0.008, respectively. To further investigate whether the EvoDesign candidates’ mutations 

were related to the intrinsic disorder predisposition, the 243 core residues were aligned to the 

DisProt database (Hatos et al. 2020) and the aligned residues’ sequence conservations were 

evaluated. Twenty core residues were annotated as intrinsically disordered in DisProt, but these 

residues showed relatively high levels of conservation, with JSD scores ranging from 0.76 to 

0.85 (Table 5-3), in the top 10 designs. 
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Table 5-2 Global S protein mutations compared with the EvoDesign core residues’ 

substitution frequencies. 

Position 
Original 

Residue 

Reported 

Mutation 

Global 

Frequency 

EvoDesign Residue 

Def. 

EvoDesign Substitution & 

Frequency 

80 D Y 0.005 
Designable (core 

residue) 

unmutated: 0.741 

D80N: 0.149 

D80A: 0.106 

D80S: 0.003 

98 S F 0.007 
Designable (core 

residue) 

unmutated: 0.155 

S98T: 0.837 

S98A: 0.008 

5 L F 0.013 Fixed --- 

18 L F 0.095 Fixed --- 

21 R I 0.007 Fixed --- 

68 I - 0.019 Fixed --- 

69 H - 0.019 Fixed --- 

70 V I 0.019 Fixed --- 

144 Y - 0.005 Fixed --- 

176 L F 0.003 Fixed --- 

215 D H 0.003 Fixed --- 

222 A V 0.194 Fixed --- 

253 D G 0.003 Fixed --- 

262 A S 0.011 Fixed --- 

272 P L 0.007 Fixed --- 

439 N K 0.016 Fixed --- 

453 Y F 0.004 Fixed --- 

477 S N 0.063 Fixed --- 

501 N Y 0.005 Fixed --- 

570 A D 0.004 Fixed --- 

583 E D 0.007 Fixed --- 

614 D G 0.895 Fixed --- 

626 A S 0.004 Fixed --- 

655 H Y 0.004 Fixed --- 

681 P H 0.005 Fixed --- 

688 A V 0.004 Fixed --- 

716 T I 0.004 Fixed --- 

723 T I 0.004 Fixed --- 

936 D Y 0.005 Fixed --- 

982 S A 0.004 Fixed --- 

1073 K N 0.004 Fixed --- 

1118 D H 0.004 Fixed --- 

1163 D Y 0.007 Fixed --- 

1167 G V 0.006 Fixed --- 

1263 P L 0.003 Fixed --- 
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Table 5-3 The intrinsic disorder predisposition of the EvoDesign core residues and their 

corresponding conservation scores. 

DisProt disorder regions Top 10 EvoDesign conservation score 

67 0.84041 

72 0.81773 

75 0.79401 

76 0.76281 

77 0.76185 

79 0.81535 

80 0.80062 

142 0.81402 

143 0.84579 

145 0.84866 

250 0.76164 

259 0.83607 

260 0.81371 

261 0.81059 

673 0.8344 

851 0.80869 

1241 0.80855 

1242 0.75916 

1248 0.82732 

1253 0.80943 
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Among the 22,914 designs with relatively low (favorable) stability energy, 19,063 

candidates that contained the two pre-existing immunity-related epitopes were ranked based on 

ECS and HSS (Figure 5-3). Using the ECS and HSS of the native SARS-CoV-2 S as the cutoff, 

we obtained 301 candidates with better immunogenic potential (i.e., lower ECS and HSS) (Fig 

3B). Ten candidates with balanced ECS and HSS were selected and evaluated (Table 5-4). The 

EvoDesign energy and sequence identity of all designs were plotted, and the top 10 designs were 

highlighted (Figure 5-4). The S protein variants generated by EvoDesign had consistently better 

ECS in comparison to the Rosetta designs, although the latter had a better HSS score (Figure 5-

5). All 1000 Rosetta designs had higher ECS (thus worse immunogenic potential) than the native 

S, whereas EvoDesign was able to produce a few designs with both lower ECS and HSS, 

affirming EvoDesign’s ability to design vaccine candidates with better T cell promiscuous 

epitopes. 

 

 

  



 127 

 
Figure 5-3 The epitope content score (ECS) and human similarity score (HSS) for designed 

S proteins. 

(A) All 22,914 designs. Each design is shown as a blue dot, whereas the native SARS-CoV-2 S 

was plotted as a black diamond marker. The dashed-line box defines the 301 candidates with 

both lower ECS and HSS scores than the native. (B) The shaded area contains the top ten 

candidates (highlighted by red circles) with balanced ECS and HSS scores. 
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Figure 5-4 The EvoDesign energy and sequence identity for designed S proteins. 

The top ten EvoDesign S protein variants were highlighted in the EvoDesign energy vs. 

sequence identity. The best design Design-10705 with optimizaed immunogenicity had moderate 

sequence identity and energy stability. 
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Figure 5-5 The comparison of epitope content score (ECS) and human similarity score 

(HSS) for designed S proteins between EvoDesign and Rosetta. 

All the 1000 Rosetta designs had higher ECS (thus worse immunogenic potential) than the native 

S, whereas EvoDesign was able to produce a few designs with both lower ECS and HSS, and 

hence, better predicted immunogenicity for vaccine development. 
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Table 5-4 Summary of the features for the top 10 EvoDesign S protein candidates. 

Design 

ID 

PEC REC a ECS HSS EE (EEU) RMSD (Å) b TM-score b SI (%) 

10705 40 31 48.78 0.6394 -4051.21 3.45 0.931 94.9 

10763 40 31 48.80 0.6394 -4051.04 3.06 0.944 95.0 

12865 40 31 48.76 0.6396 -4044.99 3.14 0.939 95.0 

19356 41 30 48.44 0.6399 -4020.14 3.12 0.929 94.7 

20348 38 30 48.99 0.6390 -4014.74 3.33 0.929 95.4 

20467 38 30 48.97 0.6391 -4014.10 4.32 0.901 95.4 

20671 37 28 48.83 0.6395 -4013.03 3.36 0.940 94.7 

22676 36 28 48.37 0.6399 -4001.70 3.35 0.939 95.0 

22769 38 28 48.51 0.6398 -4001.11 3.27 0.937 95.0 

22869 38 28 48.55 0.6398 -4000.23 3.24 0.919 94.7 

Native 32 -- 49.61 0.6401 -- -- -- -- 

 

PEC: Promiscuous Epitope Count; REC: Recovered Epitope Count; ECS: Epitope Content Score; HSS: Human 

Similarity Score; EE: EvoDesign Energy (in EEU, EvoEF2 energy unit); RMSD: Root Mean Square Deviation; TM: 

TM-score; SI: Sequence identity. 

a: The number of predicted promiscuous epitopes in designs that overlap with those in the native S protein. 

b: The RMSD and TM-score compared to the C-I-TASSER model of the native S protein. 
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The multiple sequence alignment of the top four candidates showed that 88 of the 243 

core residues were mutated at least once (Figure 5-6). There were 32 core residues substituted to 

the same amino acids (R34T, V62I, I100M, R102Q, C136T, V143T, Y145S, E191V, T250A, 

Y279F, R328K, V341I, V350S, W353A, D420A, Y423M, C432V, S438V, V512I, T523N, 

T599L, S673T, N777T, S875A, T881I, L916Y, C1043A, F1052H, S1055A, C1241G, S1242G, 

C1248T) in all top four designs. Additionally, the ten top and ten worst designs were also plotted 

to infer functionally important mutations to enhance immunogenicity (Figure 5-7). Specifically, 

there were 12 core residues in both the top-scoring and worst-scoring designs that were 

substituted to the same amino acids in comparison to the native S protein (V62I, C136T, V143T, 

Y145S, E191V, R328K, V341I, D420A, C432V, T599L, S1055A, C1241G). In particular, two 

remained unmutated in the top-scoring designs but were mutated in the worst-scoring designs 

(Y265W and V267T), suggesting mutations of these two residues might result in reduced 

immunogenicity. 
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Figure 5-6 The multiple sequence alignment of the top four designed S proteins in 

comparison to the native SARS-CoV-2 S protein. 

The four EvoDesign S proteins (Design-10705, 10763, 12865, and 19356) were selected based 

on their high structural similarity to the native S protein and promising immunogenic potential 

(in terms of promiscuous epitope count, ECS, and HSS scores). The solid red boxes highlight the 

core residues that were subjected to mutations by EvoDesign. 
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Figure 5-7 The sequence logo plot of (A) top 10 versus (B) worst 10 S protein designs. 

There were 12 core residues in both the top-scoring and worst-scoring designs substituted to the 

same amino acids in comparison to the native S protein. In particular, two core residues 

remained unmutated in the top-scoring designs but mutated in the worst-scoring designs (Y265W 

and V267T), suggesting mutations on these two residues might result in reduced 

immunogenicity. 
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Design-10705 was overall the best candidate with high structural similarity to the native 

S protein and good immunogenic potential (in terms of promiscuous epitope count, ECS, and 

HSS scores) amongst the top ten candidates. The candidate Design-10705 had a 93.9% sequence 

identity to the native S protein with a TM-score of 0.931 and an RMSD of 3.45 Å to the C-I-

TASSER model of the native S protein. The homo-trimer 3D structure of Design-10705 was 

visualized and compared to the S protein C-I-TASSER and cryo-EM structural models (Figure 5-

8). In terms of immunogenicity, it had the second-highest number of promiscuous epitopes. 

Table 5-5 shows the complete MHC-II T cell epitope profile of Design-10705. There were 32 

predicted promiscuous epitopes in the native S protein (Table 5-6), and 31 of them were 

recovered in Design-10705. The two pre-existing immunity-related epitopes, V991-Q1005 and 

S816-D830, were both recovered in the new design. Besides these two epitopes, there were 19 

epitopes identical to the native S protein epitopes, while ten epitopes had at least one mutation in 

Design-10705. Compared with the native S protein, the only missing MHC-II epitope in design 

10705 was V911-N926, which was predicted to have reduced binding affinity to HLA-

DRB1*03:01 and HLA-DRB4*01:01. Critically, this design introduced nine new MHC-II T cell 

promiscuous epitopes, which could potentially induce a stronger immune response with minimal 

perturbation compared to the native S protein. 

  



 135 

 
Figure 5-8 The 3D structures of A) C-I-TASSER S protein trimer, B) cryo-EM trimer, C) 

Design-10705 trimer, and D) Design-10705 monomer. 

The ectodomain of Design-10705 was modeled using C-I-TASSER. Both the homo-trimer and 

monomer of Design-10705 are rendered. The NTD, RBD, HR1, FP, and CD domains are also 

highlighted in the Design-10705 monomer. The mutations introduced in Design-10705 are 

shown in red spheres.  
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Table 5-5 The predicted promiscuous MHC-II T cell epitopes of top EvoDesign S protein candidate. 

Epitope Epitope Comment Start End 
Median Percentile 

Rank 
Binding Alleles 

VQLDRLITGRLQSL
Q Pre-existing Immunity Related 

Epitopes 

991 
100
5 

17 DRB1*03:01;DRB1*15:01;DRB4*01:01;DRB5*01:01 

SFIEDLLFNKVTLAD 816 830 16 DRB1*03:01;DRB1*15:01;DRB3*01:01;DRB3*02:02;DRB4*01:01 

VYYPDKVFRSSVLH
S 

Original S Protein Identical 
Epitopes 

36 50 11 DRB1*03:01;DRB1*07:01;DRB1*15:01;DRB3*01:01;DRB3*02:02 

KVFRSSVLHSTQDL

F 
41 55 17 DRB1*07:01;DRB3*02:02;DRB4*01:01;DRB5*01:01 

SLLIVNNATNVVIKV 116 130 6.5 DRB1*03:01;DRB1*07:01;DRB1*15:01;DRB3*01:01;DRB3*02:02;DRB4*01:01 

EFRVYSSANNCTFE

Y 
156 170 18 DRB1*07:01;DRB1*15:01;DRB3*01:01;DRB3*02:02 

FKIYSKHTPINLVRD 201 215 14 DRB1*07:01;DRB1*15:01;DRB3*02:02;DRB5*01:01 

SVLYNSASFSTFKCY 366 380 18 DRB1*07:01;DRB1*15:01;DRB3*01:01;DRB3*02:02 

YLYRLFRKSNLKPF
E 

451 465 5.7 DRB1*07:01;DRB1*15:01;DRB3*01:01;DRB3*02:02;DRB4*01:01;DRB5*01:01 

SIIAYTMSLGAENSV 691 705 4.7 DRB1*07:01;DRB1*15:01;DRB3*02:02;DRB4*01:01;DRB5*01:01 

YGSFCTQLNRALTGI 756 770 19 DRB1*07:01;DRB1*15:01;DRB3*02:02;DRB5*01:01 

LLFNKVTLADAGFI

K 
821 835 17 DRB1*03:01;DRB1*07:01;DRB3*01:01;DRB3*02:02 

CAQKFNGLTVLPPL
L 

851 865 19 DRB1*07:01;DRB1*15:01;DRB3*02:02;DRB5*01:01 

GAALQIPFAMQMA

YR 
891 905 18 DRB1*07:01;DRB1*15:01;DRB4*01:01;DRB5*01:01 

IPFAMQMAYRFNGI

G 
896 910 3.7 

DRB1*03:01;DRB1*07:01;DRB1*15:01;DRB3*01:01;DRB3*02:02;DRB4*01:01;DR

B5*01:01 
QMAYRFNGIGVTQN

V 
901 915 19 DRB1*07:01;DRB1*15:01;DRB3*01:01;DRB3*02:02 

TLVKQLSSNFGAISS 961 975 14 DRB1*07:01;DRB1*15:01;DRB3*02:02;DRB4*01:01 

TYVTQQLIRAAEIRA 1006 
102

0 
20 DRB1*07:01;DRB3*02:02;DRB4*01:01;DRB5*01:01 

QLIRAAEIRASANLA 1011 
102
5 

12 DRB1*03:01;DRB1*07:01;DRB1*15:01;DRB3*02:02;DRB4*01:01;DRB5*01:01 

AEIRASANLAATKM

S 
1016 

103

0 
7.9 DRB1*03:01;DRB1*07:01;DRB1*15:01;DRB3*02:02;DRB4*01:01;DRB5*01:01 

REGVFVSNGTHWFV

T 
1091 

110

5 
9.4 DRB1*03:01;DRB1*07:01;DRB1*15:01;DRB3*01:01;DRB3*02:02;DRB5*01:01 

LPFFSNITWFHAIHV 
Original S protein Mutated 

Epitopes 

56 70 7.1 DRB1*07:01;DRB1*15:01;DRB3*01:01;DRB3*02:02;DRB5*01:01 

VFVYKNIDGYFKIYS 191 205 13 DRB1*03:01;DRB1*07:01;DRB1*15:01;DRB3*01:01;DRB3*02:02;DRB5*01:01 

IGINITRFMTIRASS 231 245 6.2 DRB1*03:01;DRB1*07:01;DRB1*15:01;DRB3*02:02;DRB4*01:01;DRB5*01:01 
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TRFMTIRASSRSYLA 236 250 1.2 
DRB1*03:01;DRB1*07:01;DRB1*15:01;DRB3*01:01;DRB3*02:02;DRB4*01:01;DR

B5*01:01 

YVGYLQPRTFLLKF

N 
266 280 12 DRB1*07:01;DRB1*15:01;DRB3*01:01;DRB3*02:02;DRB4*01:01;DRB5*01:01 

SNFRVQPTETIVKFP 316 330 14 DRB1*07:01;DRB3*01:01;DRB3*02:02;DRB4*01:01;DRB5*01:01 

IFNATRFASSYAANR 341 355 13 DRB1*07:01;DRB1*15:01;DRB3*02:02;DRB5*01:01 

RFASSYAANRKRIS
N 

346 360 17 DRB1*07:01;DRB1*15:01;DRB3*02:02;DRB5*01:01 

VILSFELLHAPANVC 511 525 14 DRB1*07:01;DRB1*15:01;DRB3*02:02;DRB4*01:01;DRB5*01:01 

KLIANQFNSAIGKLQ 921 935 17 DRB1*07:01;DRB1*15:01;DRB3*02:02;DRB4*01:01;DRB5*01:01 

NITWFHAIHVSGTN

G 

New Epitopes 

61 75 20 DRB1*07:01;DRB1*15:01;DRB3*02:02;DRB5*01:01 

FNDGVYFAATLKTN
M 

86 100 14 DRB1*07:01;DRB1*15:01;DRB3*02:02;DRB5*01:01 

GKQGNFKNLRVFV

YK 
181 195 13 DRB1*07:01;DRB1*15:01;DRB3*02:02;DRB4*01:01;DRB5*01:01 

LVDLPIGINITRFMT 226 240 20 DRB1*03:01;DRB3*01:01;DRB3*02:02;DRB4*01:01 

GVVIAWNVNNLDA

KV 
431 445 11 DRB1*03:01;DRB1*15:01;DRB3*01:01;DRB3*02:02;DRB4*01:01 

TDEMIAQYTAALLA

G 
866 880 19 DRB1*07:01;DRB1*15:01;DRB3*02:02;DRB4*01:01 

VVNQLAQALNTLV
KQ 

951 965 19 DRB1*07:01;DRB1*15:01;DRB3*02:02;DRB4*01:01 

GAISSVMNDILSRLD 971 985 20 DRB1*03:01;DRB3*01:01;DRB3*02:02;DRB4*01:01 

VFLHVNLVPAQEKN

F 
1061 

107

5 
16 DRB1*03:01;DRB1*07:01;DRB3*02:02;DRB4*01:01;DRB5*01:01 
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Table 5-6 The predicted MHC-II T cell promiscuous epitopes of the native SARS-CoV-2 S protein. 

Epitope Start End Median Percentile Rank MHC-II Alleles 

SLLIVNNATNVVIKV 116 130 6.5 DRB1*03:01;DRB1*07:01;DRB1*15:01;DRB3*01:01;DRB3*02:02;DRB4*01:01 

TRFQTLLALHRSYLT 236 250 2.9 DRB1*03:01;DRB1*07:01;DRB1*15:01;DRB3*02:02;DRB4*01:01;DRB5*01:01 

REGVFVSNGTHWFVT 1091 1105 9.4 DRB1*03:01;DRB1*07:01;DRB1*15:01;DRB3*01:01;DRB3*02:02;DRB5*01:01 

IGINITRFQTLLALH 231 245 17 DRB1*03:01;DRB1*07:01;DRB1*15:01;DRB3*02:02;DRB4*01:01;DRB5*01:01 

RFASVYAWNRKRISN 346 360 8.2 DRB1*03:01;DRB1*07:01;DRB1*15:01;DRB3*02:02;DRB4*01:01;DRB5*01:01 

QLIRAAEIRASANLA 1011 1025 12 DRB1*03:01;DRB1*07:01;DRB1*15:01;DRB3*02:02;DRB4*01:01;DRB5*01:01 

IPFAMQMAYRFNGIG 896 910 3.7 DRB1*03:01;DRB1*07:01;DRB1*15:01;DRB3*01:01;DRB3*02:02;DRB4*01:01;DRB5*01:01 

VFNATRFASVYAWNR 341 355 9.3 DRB1*07:01;DRB1*15:01;DRB3*02:02;DRB5*01:01 

AEIRASANLAATKMS 1016 1030 7.9 DRB1*03:01;DRB1*07:01;DRB1*15:01;DRB3*02:02;DRB4*01:01;DRB5*01:01 

QMAYRFNGIGVTQNV 901 915 19 DRB1*07:01;DRB1*15:01;DRB3*01:01;DRB3*02:02 

LPFFSNVTWFHAIHV 56 70 7.3 DRB1*07:01;DRB1*15:01;DRB3*01:01;DRB3*02:02;DRB5*01:01 

SVLYNSASFSTFKCY 366 380 18 DRB1*07:01;DRB1*15:01;DRB3*01:01;DRB3*02:02 

SIIAYTMSLGAENSV 691 705 4.7 DRB1*07:01;DRB1*15:01;DRB3*02:02;DRB4*01:01;DRB5*01:01 

KLIANQFNSAIGKIQ 921 935 18 DRB1*07:01;DRB1*15:01;DRB3*02:02;DRB4*01:01 

SFIEDLLFNKVTLAD 816 830 16 DRB1*03:01;DRB1*15:01;DRB3*01:01;DRB3*02:02;DRB4*01:01 

TLVKQLSSNFGAISS 961 975 14 DRB1*07:01;DRB1*15:01;DRB3*02:02;DRB4*01:01 

YLYRLFRKSNLKPFE 451 465 5.7 DRB1*07:01;DRB1*15:01;DRB3*01:01;DRB3*02:02;DRB4*01:01;DRB5*01:01 

SNFRVQPTESIVRFP 316 330 9.9 DRB1*03:01;DRB1*07:01;DRB3*01:01;DRB3*02:02;DRB4*01:01;DRB5*01:01 

VYYPDKVFRSSVLHS 36 50 11 DRB1*03:01;DRB1*07:01;DRB1*15:01;DRB3*01:01;DRB3*02:02 

EFVFKNIDGYFKIYS 191 205 13 DRB1*03:01;DRB1*07:01;DRB1*15:01;DRB3*01:01;DRB3*02:02;DRB5*01:01 

TYVTQQLIRAAEIRA 1006 1020 20 DRB1*07:01;DRB3*02:02;DRB4*01:01;DRB5*01:01 

FKIYSKHTPINLVRD 201 215 14 DRB1*07:01;DRB1*15:01;DRB3*02:02;DRB5*01:01 

EFRVYSSANNCTFEY 156 170 18 DRB1*07:01;DRB1*15:01;DRB3*01:01;DRB3*02:02 

YVGYLQPRTFLLKYN 266 280 13 DRB1*07:01;DRB1*15:01;DRB3*01:01;DRB4*01:01;DRB5*01:01 

VQIDRLITGRLQSLQ 991 1005 15 DRB1*03:01;DRB1*15:01;DRB4*01:01;DRB5*01:01 

GAALQIPFAMQMAYR 891 905 18 DRB1*07:01;DRB1*15:01;DRB4*01:01;DRB5*01:01 

YGSFCTQLNRALTGI 756 770 19 DRB1*07:01;DRB1*15:01;DRB3*02:02;DRB5*01:01 

KVFRSSVLHSTQDLF 41 55 17 DRB1*07:01;DRB3*02:02;DRB4*01:01;DRB5*01:01 

LLFNKVTLADAGFIK 821 835 17 DRB1*03:01;DRB1*07:01;DRB3*01:01;DRB3*02:02 

CAQKFNGLTVLPPLL 851 865 19 DRB1*07:01;DRB1*15:01;DRB3*02:02;DRB5*01:01 

VTQNVLYENQKLIAN 911 925 16 DRB1*03:01;DRB1*15:01;DRB3*01:01;DRB3*02:02 

VVLSFELLHAPATVC 511 525 19 DRB1*07:01;DRB1*15:01;DRB3*02:02;DRB4*01:01;DRB5*01:01 
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One concern is that the top design, Design-10705, might lose the desired structure and 

protein function due to reduced stability caused by redesigning the core regions. To examine this 

concern, 50-ns MD simulations were carried out to compare the stability and flexibility of 

Design-10705 and the native S. As shown in Figure 5-9 A, Design-10705 and the wildtype 

showed similar RMSD shifts for both the backbones and side-chains after convergence at about 

30 ns. The root-mean-square fluctuation (RMSF) measurement showed that the two proteins 

exhibited similar fluctuating profiles and thus comparable flexibility (Figure 5-9 B). Moreover, 

the radius of gyration and solvent-accessible surface area (SASA) as a function of simulation 

time were also analyzed for the two proteins. Design-10705 showed a slightly smaller radius of 

gyration (Figure 5-9 C) and a smaller SASA than the wildtype S (Figure 5-9 D), indicating that 

Design-10705 had a slightly more compact structure. Taken together, Design-10705 is expected 

to be sufficiently stable with the desired biological function (e.g., increased immunogenicity).  
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Figure 5-9 Analysis of molecular dynamics simulation results for the wildtype S and 

Design-10705. 

Design-10705 is denoted as D-10705 in the plot. (A) Root-mean-square deviation (RMSD) for 

the wildtype S and D-10705 backbone and side-chains. (B) Root-mean-square fluctuation 

(RMSF) for all the residues in the trimeric protein. The three chains are separated by black 

dashed lines (Chain A: amino acids 1-1146; Chain B: 1147-2292; Chain C: 2293-3438). (C) The 

radius of gyration. (D) Solvent-accessible surface area (SASA). 
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5.5 Discussion 

The subunit, DNA, and mRNA vaccines are typically considered to be safer but often induce 

weaker immune responses than the live-attenuated and inactivated vaccines. Although the 

addition of adjuvant or better vaccination strategies can compensate for the immunogenicity, the 

addition of new epitopes to the antigen provides an alternative way to induce stronger immune 

responses (Wada et al. 2017; Hewitt et al. 2019). During the protein design process, we applied 

design constraints so that the surface conformation, and in particular, B cell epitopes of the 

designed S protein variants were unchanged. For the designed S proteins with at least 5% of the 

core residues mutated, the immunogenicity potential of these candidates was evaluated and was 

structurally compared to the native S protein. The top candidate (Design-10705) recovered 31 

out of 32 MHC-II promiscuous epitopes, and the two pre-existing immunity-related epitopes 

(V991-Q1005 and S816-D830) were present in the design. In addition to the 31 recovered 

epitopes, Design-10705 also introduced nine new MHC-II promiscuous epitopes with the 

potential to induce stronger CD4 T cell response. MD analysis of Design-10705 and the native S 

protein showed that the two proteins shared similar stability and flexibility (Fig 6). Overall, the 

newly designed S protein should preserve the native S protein’s structure and function with 

enhanced immunogenicity. 

The concept of manipulating epitopes to decrease the immunogenicity has been applied 

to therapeutic proteins. King at el. disrupted the MHC-II T cell epitopes in GFP and 

Pseudomonas exotoxin A using the Rosetta protein design protocol (King et al. 2014; Fleishman 

et al. 2011). The EpiSweep program was also applied to structurally redesign bacteriolytic 

enzyme lysostaphin as an anti-staphylococcal agent with reduced immunogenicity to the host 

(Blazanovic et al. 2015; Choi et al. 2017). In this study, a similar strategy, but to improve 
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immunogenicity, was applied to redesign the SARS-CoV-2 S protein as an enhanced vaccine 

candidate; specifically, we aimed to increase immunogenicity by introducing more MHC-II T 

cell promiscuous epitopes to the protein without reducing the number of B cell epitopes. 

The addition of epitopes to induce stronger immune responses has been previously 

applied to develop H7N9 vaccines. The H7N9 hemagglutinin (HA) vaccine-elicited non-

neutralizing antibody responses in clinical trials (Mulligan et al. 2014; Guo et al. 2014). Rudenko 

et al. reported that there were fewer CD4 T cell epitopes found in H7N9 HA in comparison to the 

seasonal H1 and H3 HA proteins (Rudenko et al. 2016). Based on this finding, Wada et al. 

improved the H7N9 vaccine by introducing a known H3 immunogenic epitope to the H7 HA 

protein without perturbing its conformation, which resulted in an over 4-fold increase in the HA-

binding antibody response (Wada et al. 2017). However, the number of epitopes is not the only 

factor that influences protective immunity. Studies have reported that CD8 T cell epitopes might 

induce regulatory T cell responses (Calis, de Boer, and Keşmir 2012; Frankild et al. 2008), and 

pathogens adapted to include CD4 and CD8 epitopes with high similarity to human peptides as a 

means to suppress host immunity for its survival (Leonard Moise et al. 2013). Therefore, we 

examined the significance of ECS and HSS in the context of mild versus severe forms of HCoV 

infection and then utilized these two scores to evaluate the designed S protein candidates. 

The computational design of the SARS-CoV-2 S protein could be coupled with some 

other structural modifications for a more rational structure-based vaccine design. The present 

study aims to introduce new epitopes to the S protein while keeping the surface residues 

unchanged to minimize the structural change of the designed proteins, and according to the 

protein structure prediction results, the designed candidates were predicted to be structurally 

similar to the native S protein (Table 1 & Fig 5). The structural modifications performed on the 
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native S protein, such as stabilizing the protein in its prefusion form (Bos et al. 2020), or fixing 

the RBD in the “up” or “down” state, could still be applied to the final candidate in this study. 

The combination of these structural vaccinology techniques into the current pipeline could 

further enhance the immunogenicity of the S protein as a vaccine target. However, a major 

limitation of the present study is the wet-lab experimental validation of the designed proteins. 

First, the newly designed protein sequences need to be folded properly with a structure 

comparable to that of the native S protein. Second, the capability of the newly added epitopes for 

binding MHC-II molecules and subsequently inducing immune responses needs to be validated. 

Finally, these candidates should be tested for their protectiveness and safety in animal models. 

Overall, this study presents a strategy to improve the immunogenicity and antigenicity of 

a vaccine candidate by manipulating the MHC-II T cell epitopes through computational protein 

design. In the current settings, the immunogenicity evaluation was carried out after the standard 

protein design simulations with EvoDesign. In the future, the assessment of the immunogenic 

potential could be incorporated into the protein design process so that the sequence decoy 

generated at each step will be guided by balancing both the protein stability and immunogenicity. 

Moreover, with proper prior knowledge of known epitopes (e.g., both MHC-I and MHC-II from 

the pathogen proteome), it is also possible to create a chimeric protein, which integrates epitopes 

from antigens other than the target protein. 
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Chapter 6 Ontology-based Vaccine Data Integration and Analysis 

 

6.1 Abstract 

Infectious diseases, acquired through pathogenic microbial agents, remain among the most 

common and fatal threats to human health throughout the world. The host-pathogen interaction 

(HPI) and vaccine-host interaction are the keys to understand the mechanisms of infectious 

diseases and vaccine protection, which require in-depth knowledge synthesized data capturing 

various aspects of vaccination. The Ontology of Host-Pathogen Interaction (OHPI), a 

community-based biomedical ontology in the domain of HPIs, was developed to integrate and 

analyze the virulence factors and protective antigens data stored in the Victors and Protegen 

databases. The Vaccine Investigation Ontology (VIO) was developed and applied to 

systematically classify the different variables and relations among these variables. VIO was used 

to integrate and analyze the differential gene expression and biological pathways from two 

Yellow Fever vaccines. Overall, the OHPI supports the knowledge representation and analysis of 

the interactions between host cells (or genes) and pathogen proteins serving as virulence factors 

or protective antigens. VIO standardizes the metadata types in vaccine investigation studies and 

the semantic relations among these metadata types. The combination of OHPI, VIO, and 

bioinformatics tools based on these ontologies provides a robust framework for integrative 

knowledge generation, modeling, and storage of the heterogeneous vaccine-related data, leading 

to a fundamental understanding of the underlying mechanisms of vaccine immunity.  
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6.2 Introduction 

Infectious diseases, acquired through pathogenic microbial agents, remain among the most 

common and fatal threats to human health throughout the world. The World Health Organization 

estimated that infectious and parasitic diseases caused 9.31 million deaths in 2015, accounting 

for 16.5% of total global mortality (WHO 2016). There is still a critical need to develop more 

effective preventative and therapeutic measures against various infections. As one of the most 

significant inventions in modern medicine, vaccination has been used to efficiently protect 

humans against many infectious diseases and improve human health. Vaccines are also being 

developed against cancer (Schlom et al. 2010), allergy (Huggins and Looney 2004), and many 

other non-infectious diseases (Lynch and Mills 2012; Nicholas, Odumosu, and Langridge 2011). 

However, our efforts to develop vaccines to protect against diseases have not always been 

successful. The future success of effective vaccine development relies on a deep understanding 

of protective vaccine-induced immune mechanisms against different diseases. The protective 

mechanism can be better understood with a systematic analysis of high throughput data being 

generated in the vaccine domain. 

It has been a considerable challenge to systematically, logically represent, and integrate 

various vaccine-related databases and study the underlying host-pathogen interaction (HPI) 

mechanism. Infectious disease is the result of an interactive relationship between a pathogen and 

its host, and the study of HPIs is crucial in understanding microbial pathogenesis and host 

immune mechanisms. Extracted from peer-reviewed publications, several databases, including 

PHIDIAS (Z. Xiang, Tian, and He 2007), PHISTO (Durmuş Tekir et al. 2013), and PHI-base 

(Urban et al. 2015), have been developed to store host-pathogen interaction data. Virulence 

factors (VFs) are the key elements of HPIs, which allow microbial pathogens to overcome host 
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defense mechanisms and cause diseases in the host. As the central part of the PHIDIAS (Z. 

Xiang, Tian, and He 2007), Victors (http://www.phidias.us/victors) is a specific database 

comprised of genes experimentally observed to be necessary for virulence (Sayers et al. 2019). 

The Victors database includes over 5,000 VFs from different bacteria, viruses, parasites, and 

fungi, which are pathogenic to animals and humans. Host vaccine-induced immune factors 

(vaximmutor) are also annotated and curated in the VaximmutorDB database within the VIOLIN 

system (http://www.violinet.org/vaximmutordb, to be submitted). Many VFs have been proven 

to be useful protective antigens (PAgs). Protegen (http://www.violinet.org/protegen) is a 

database that stores over 1,000 PAgs (B. Yang et al. 2011; He and Xiang 2012). By comparing 

Victors VFs and Protegen PAgs, we were able to identify VFs that are also PAgs used in 

different vaccines. Bioinformatics analyses of both the Victors and Protegen reveal unique and 

overlapping biological properties between the VFs and PAgs (Sayers et al. 2019). Systematic 

identification and analysis of the VFs, PAgs, and vaximmutors would enhance our understanding 

of how HPIs are involved in the host protective immunity and develop new measures against 

infectious diseases. These databases have rich but sparse information of HPIs focusing on 

different aspects, and ontology can be used to integrate the available HPI data better and enhance 

the understanding of vaccine mechanisms.  

Another bottleneck in high-throughput vaccine-host interaction studies is that 

inconsistent experimental results were frequently generated even with similar experimental 

designs. A typical example is a gene-level host immune responses induced by the live attenuated 

Yellow Fever vaccine 17D (YF-17D) from various gene expression studies. The live attenuated 

YF-17D (Theiler and Smith 1937) and the sub-strains derived from the original 17D strain 

(Gardner and Ryman 2010) are widely used for vaccination against Yellow Fever infections. 

http://www.phidias.us/victors
http://www.violinet.org/vaximmutordb
http://www.violinet.org/protegen
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These vaccine strains can induce strong and effective protective immune responses in vaccinated 

humans (Pulendran 2009; Roukens and Visser 2008). As a result, YF-17D has become an 

excellent model to study general host responses induced by vaccinations, and many differentially 

expressed genes have been reported in YF-17D-vaccinated human subjects. However, these 

studies reported different results even though similar experimental designs were used. For 

example, three studies used human subjects who were all vaccinated with YF-17D or YF-VAX 

(made with a specific YF-17D strain) but generated overlapping but a quite different gene 

expression profiles (Gaucher et al. 2008; Querec et al. 2009; Scherer et al. 2007).   

To address the above-mentioned challenges, the ontology provides a feasible and robust 

way to integrate heterogeneous vaccine-related data and standardize experimental conditions. 

Ontology offers an ideal platform to properly and robustly solve the critical issue of different but 

overlapping results from studies on the same scientific question. Basically, ontology standardizes 

the representation of entities and relations among entities in a specific domain using human- and 

computer-interpretable format. Such standardization is important since experimental studies are 

often reported using inconsistent vocabulary and incomplete representation, often resulting in 

non-reproducible outcomes. The ontology usage can solve the issues in the standardized 

experimental and data representation from different studies. Given the nature of ontology, such 

standardization can also be understood by computers and so useful for data sharing. In addition 

to standardization, ontology also provides a hierarchical structure and logical relations among 

different entities, supporting advanced reasoning and data analysis. Several vaccine 

investigation-related ontologies exist. The Vaccine Ontology (VO) represents vaccine-related 

entities, such as vaccines, vaccine components, vaccinations, host responses to vaccines, and the 

relations among these entities (He et al. 2009; Özgür et al. 2011; Y. Lin and He 2012). The 
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Ontology of Biological and Clinical Statistics (OBCS) is a community-based ontology of 

statistics in the biological and clinical domains (J. Zheng et al. 2016). The community-based 

Ontology for Biomedical Investigations (OBI) targets to represent various biomedical 

investigation components shared by different biomedical communities (Brinkman et al. 2010).  

In this chapter, two ontologies were developed and applied to standardize, integrate, and 

analyze host-pathogen interaction knowledge and vaccine-host interaction investigation data 

(Figure 6-1). For the host-pathogen interaction study, the Ontology of Host-Pathogen Interaction 

(OHPI) was introduced to model related HPI information from the Victors VFs database (Sayers 

et al. 2019) and the Protegen PAgs database (B. Yang et al. 2011). For the vaccine-host study, 

the Vaccine Investigation Ontology (VIO) was first developed to classify different variables and 

the relations among these variables in the vaccine investigation studies. Then VIO was applied to 

standardize and analyze the host responses induced by the Yellow Fever vaccine YF-17D and its 

sub-strains in two studies (Gaucher et al. 2008; Querec et al. 2009). Overall, the VIO and OHPI 

were designed to support advanced knowledge representation, integration, sharing, and analysis 

among these vaccine databases. 
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Figure 6-1 Ontology-based framework to integrate vaccine-related data for vaccine-host and host-pathogen interaction 

studies.
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6.3 Methods 

6.3.1 OHPI ontology development 

The OHPI development followed the OBO Foundry ontology development principles (Smith et 

al. 2007) and the eXtensible Ontology Development (XOD) strategy (He, Xiang, et al. 2018). 

The OHPI development started with the XOD1 and XOD2 principles, which reused, imported, 

and aligned terms and relations from existing ontologies. There were two ontology tools used to 

import existing ontologies into OHPI. First, the ODK was used to generate import files for Basic 

Formal Ontology (BFO) (Arp, Smith, and Spear 2016), Ontology of Biomedical Investigations 

(OBI) (Bandrowski et al. 2016), Chemical Entities of Biological Interest (ChEBI) (Hastings et al. 

2013), Protein Ontology (PR) (Natale et al. 2014), Disease Ontology (DOID) (Kibbe et al. 2015), 

Uberon multi-species anatomy ontology (UBERON) (Mungall et al. 2012), Ontology of General 

Medical Science (OGMS) (“The Ontology for General Medical Science (OGMS)” n.d.), Gene 

Ontology (GO) (Blake et al. 2015), Information Artefact Ontology (IAO) (“The Information 

Artifact Ontology (IAO)” n.d.), and Relation Ontology (RO) (Smith et al. 2005). These 

ontologies were then imported using ODK for its capability to automatically check new versions 

of the importing ontologies whenever a new OHPI release was built.  

Besides using ODK to import the above-mentioned ontologies, we also used Ontofox that 

supports additional features such as the inclusion of all the children terms and the hierarchy 

extraction with computed intermediates (Z. Xiang et al. 2010). Specifically, the import files were 

generated by submitting a CURL request to the Ontofox web service for the following 

ontologies: Cell Ontology (CL) (Diehl et al. 2016), Cell Line Ontology (CLO) (Sarntivijai et al. 

2014), Interaction Network Ontology (INO) (Hur et al. 2015), Infectious Disease Ontology 

(IDO) (Cowell and Smith 2010), Brucellosis Ontology (IDOBRU) (Y. Lin, Xiang, and He 2011), 
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NCBI organismal classification (NCBITaxon) (Federhen 2012), Vaccine Ontology (VO) (He et 

al. 2009) and Ontology of Genes and Genomes (OGG) (He, Liu, and Zhao 2014). Currently, the 

update of the importing ontologies’ versions using Ontofox relies on the Ontofox internal 

Virtuoso database. In other words, the importing ontologies might not be up-to-date when a new 

OHPI release is built, depending on the update frequency of the Ontofox database. Therefore, the 

existing ontologies in OHPI were imported and aligned to the top-level ontology BFO by both 

ODK and Ontofox. Additionally, all imported ontologies were selected to reuse existing 

ontological entities that are relevant to the OHPI. For example, PR and OGG were imported for 

the virulence factor genes and proteins. NCBITaxon, DOID were imported to include pathogenic 

organisms and their associated diseases. 

In addition to reusing existing ontologies, OHPI also applied the XOD3 design pattern 

strategy to modify existing and add new ontology terms and relations automatically. The VFs 

and their related information, including NCBI Gene identifiers, PubMed references, host and 

pathogen NCBITaxonomy identifiers, and HPIs, were extracted and downloaded from the 

Victors database (Sayers et al. 2019). The PAgs and their corresponding experimentally verified 

vaccines were also extracted and downloaded from the Protegen database (B. Yang et al. 2011). 

All of these data were stored in tabular format and modeled in OHPI using Ontorat (Z. Xiang et 

al. 2015) with the design pattern defined in Figure 3. New terms that were not related to HPIs 

were assigned new identifiers using the prefix “OHPI_” followed by automatically incremented 

seven-digit numbers starting from one. The HPI terms were also assigned new identifiers using 

the prefix “OHPI_” and automatically incremented seven-digit numbers starting from 

“9000001”.  
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The Protégé OWL editor (http://protege.stanford.edu/) was used for the manual term 

editing and verification. OHPI was quality checked for consistency and integrity using the ODK 

SPARQL queries. The final OHPI was then built using the ODK. Different sub-versions were 

provided, including ohpi-base, ohpi-merge, and ohpi-full in three different formats OWL, OBO, 

and JSON. The ohpi-base only included terms, relations, and annotation defined by the OHPI 

and removed all the import ontologies. The ohpi-merge merged all the import ontologies into one 

single file. The ohpi-full merged and also used ELK reasoner (Bail et al. 2013) to infer 

relationships in OHPI.  

6.3.2 VIO ontology development 

As an extension of the Vaccine Ontology (VO) (He et al. 2009), the Vaccine Investigation 

Ontology (VIO) was developed by following the eXtensible Ontology Development (XOD) 

principles (He, Xiang, et al. 2018). Specifically, a list of vaccine investigation-related terms 

available in VO was initially identified. Ontofox (Z. Xiang et al. 2010) was then used to extract 

this list of terms and other relevant information (including logical axioms and annotations) from 

VO and imported into VIO. Additionally, many OBCS and OBI terms related to vaccine 

investigation were also imported into VIO using Ontofox. Since VO, OBCS, and OBI all follow 

the Open Biomedical Ontology (OBO) Foundry ontology development principles (Smith et al. 

2007) and use the same upper-level ontology, Basic Formal Ontology (BFO) (Arp, Smith, and 

Spear 2016), these terms coming from different ontologies were efficiently and seamlessly 

aligned to each other in VIO. The resulting VIO was manually edited and checked using the 

Protégé OWL editor.  

The microarray data sets reported in Gaucher et al. 2008 and Querec et al. 2009 are 

available through the GEO (Barrett et al. 2013) under series accession numbers GSE13699 and 

http://protege.stanford.edu/
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GSE13486, respectively. The raw data set from Scherer et al. 2007 was not available from GEO 

or the paper supplemental material files and was excluded from this study. GEO2R (Barrett et al. 

2013) was used to analyze the two microarray datasets as reported in Gaucher et al. 2008 and 

Querec et al. 2009. In brief, GEO2R applies log2 transformation if the expression values of the 

given GEO dataset are not in log space, and then performs differential expression analysis using 

Linear Models for Microarray Analysis (LIMMA) (Smyth 2004). The resulting p-values were 

adjusted for multiple comparisons using the false discovery rate (FDR). The GEO2R results for 

the two microarray datasets were exported and compared for overlapping using a Venn diagram. 

The same cut-off (adjusted p-value based on FDR < 0.05 and log fold change less than -1.3 fold 

or greater than 1.3 fold) for identifying significant results was applied. For the gene-level 

comparison, gene symbols were updated to official gene symbols using the DAVID Gene ID 

Conversion Tool (https://david.ncifcrf.gov/conversion.jsp) (D. W. Huang, Lempicki, and 

Sherman 2009). All genes analyzed in this study were mapped to their corresponding Entrez 

Gene IDs using the DAVID Gene ID Conversion. The Gene Ontology (GO) and pathway 

enrichment analyses of the original study were performed based on the original list of 

differentially expressed genes. The DAVID bioinformatics resources (D. W. Huang, Lempicki, 

and Sherman 2009) was used to analyze the similarities and differences of different GO terms 

enriched in the original analysis or the standardized re-analysis of the two microarray datasets.  

The performance of the standardized re-analysis was estimated by the identification of 

shared significant GO biological processes between the two microarray datasets. The hierarchical 

structure of significantly enriched GO terms and their related ancestor terms were also visualized 

and analyzed using GOfox (http://gofox.hegroup.org) (E. Ong and He 2015). By integrating and 

extending features from two popular ontology programs, Ontofox (Z. Xiang et al. 2010) and 

https://david.ncifcrf.gov/conversion.jsp
http://gofox.hegroup.org/
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Ontobee (E. Ong et al. 2017), the GOfox web program is able to generate full or simplified 

hierarchical GO subsets to classify and display enriched GO terms and their ancestor terms. By 

considering the multiple inheritances of GO, the GOfox includes a simplified hierarchical 

classification method that outputs a GO hierarchical structure among enriched GO terms and 

their minimal upper-level ancestor terms in a user-friendly interactive visualization scheme. In 

addition, we also used the Reactome pathway analysis tool (Fabregat et al. 2016) to analyze 

enriched pathways in the Reactome pathway knowledgebase. Both GO biological processes, and 

Reactome pathway enrichment analysis applied adjusted p-value based on FDR < 0.05 as the 

significance cut-offs.  

6.4 Results 

6.4.1 Modeling Host-Pathogen Interactions with OHPI 

OHPI was developed as a biomedical ontology to support the data representation, integration, 

and analysis of the VFs, HPIs, and PAgs stored in the Victors and Protegen databases. OHPI 

reuses a subset of virulence factor genes from the OGG ontology (He, Liu, and Zhao 2014), and 

all of them were assigned the role ‘virulence factor gene role’ (OHPI_0000089) and annotated 

with experimental evidence from at least one peer-reviewed article. Each VF gene was linked to 

a pathogen organism via the OHPI “gene as virulence factor in pathogen” (OHPI_0000003) 

object property (Figure 6-2). This object property represents a relation between a gene and an 

organism, where the gene is a virulence factor, and the organism is a pathogen, and the mutant of 

the gene for the pathogen is attenuated in the host. Each VF gene was also linked to at least one 

host organism, cell, or cell line cell via the OHPI ‘gene mutant attenuated in host’ 

(OHPI_0000007) object property or its descendants. These object properties represent relations 
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between a gene and a host organism, cell, or cell line cell where the microbial mutant lacking the 

gene is attenuated in the host compared to the wild-type microbe.   
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Figure 6-2 Ontology of Host-Pathogen Interaction design pattern. 

This example used human (host) and Brucella (pathogen) to illustrate the design pattern 

modeling the host-pathogen interaction available in the OHPI. Besides the virulence factor role 

and the host-pathogen interaction relations, OHPI also models the protective antigen role and its 

associating vaccine.  
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The HPIs extracted from the Victors database were also modeled and represented in 

OHPI (Figure 6-2). There are two variables in the ‘host pathogen interaction’ (OHPI_0000001) 

class: host and pathogen. In OHPI modeling, these two variables were treated independently to 

generate the top-level HPI branches. The host branch includes classes generated by varying the 

host organisms, such as ‘human host pathogen interaction’ (OHPI_0000100) and ‘mouse host 

pathogen interaction’ (OHPI_0000103). This branch of HPIs can be further expanded from 

organism level to the cell or cell line cell, such as ‘human cell host pathogen interaction’ 

(OHPI_0000101) and ‘human cell line cell host pathogen interaction’ (OHPI_0000102). On the 

other, the pathogen branch contains classes generated by varying the pathogen organisms into 

‘host bacterial pathogen interaction’ (OHPI_0000006), ‘host viral pathogen interaction’ 

(OHPI_0000010), ‘host parasitic pathogen interaction’ (OHPI_0000011), and ‘host fungal 

pathogen interaction’ (OHPI_0000012). Then the pathogen branch is further expanded into 

individual species such as ‘host  Brucella spp. pathogen interaction’ (OHPI_0000014), ‘host M. 

tuberculosis interaction’ (OHPI_0000020), and ‘host Influenza virus pathogen interaction’ 

(OHPI_0000069).  

With the top-level host pathogen interaction hierarchy defined as described above, all 

HPIs stored in the Victors database were automatically generated with design patterns with the 

appropriate hosts (organism, cell, or cell line cell) and pathogen organisms. For example, the 

interaction ‘Brucella spp. virB9 mutant interaction with human HeLa cell’ (OHPI_9000744) had 

two asserted axioms: 

 ‘has microbe mutated gene’ some ‘BRA0061’ 

 ‘has HPI host cell line cell’ some ‘HeLa cell’ 
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The gene ‘BRA0061’ (OGG_3001164498) is a VF gene in Brucella suis 1330, as defined in 

Victors and OGG, respectively. The ‘HeLa cell’ (CLO_0003684) is an immortalized human 

epithelial cell. Therefore, during the OHPI building process, all these Victors host pathogen 

interactions were inferred automatically by the reasoner as the child term of both ‘human cell 

line cell host pathogen interaction’ (OHPI_0000102) and ‘host  Brucella spp. pathogen 

interaction’ (OHPI_0000014). 

In addition to the VFs and their related information from the Victors database, we also 

extracted PAgs, which are annotated as VFs at the same time, from the Protegen database. Since 

the VFs in Victors are annotated as genes while the PAgs are annotated as proteins, such 

relations were model using the OHPI object property ‘gene encoding antigen’ (OHPI_0000090). 

For example, the VF gene ‘fimH’ (OGG_3000948847) from Escherichia coli str. K-12 substr. 

MG1655 had the following axiom:  

 ‘gene encoding antigen’ some ‘FimH’ 

The ‘FimH’ (VO_0010987) is the protective antigen protein and, at the same time, linked to a 

research vaccine ‘E. coli FimH with CFA and then IFA’ (VO_0001168) via an axiom: 

 ‘has part’ some ‘FimH’  

Through the modeling of both Victors and Protegen databases, OHPI represents 4,428 VFs and 

2,063 host pathogen interactions from 82 pathogens with experimental evidence tested on nine 

host organisms stored in the Victors database (Table 6-1). Among the VFs, 52 were also encoded 

protective antigen proteins tested in 17 research vaccines, and that the mutants of these VFs 

become less virulence inside a host organism or host cells. The source code of OHPI is available 

on the GitHub website: https://github.com/OHPI/ohpi.  

https://github.com/OHPI/ohpi
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Table 6-1 Ontology of Host-Pathogen Interaction and vaccine-related statistics. 

 Bacteria Virus Parasite fungi 

# Pathogens 47 23 7 5 

VFs 4,127 57 21 223 

HPIs 2,027 36 0 0 

PAgs 42 9 1 0 

# Vaccines 16 1 0 0 

Note: Only bacterial and viral HPIs were included in the current OHPI ontology. 
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6.4.2 Modeling Vaccine Investigation Data with VIO 

VIO focuses on the vaccine investigation, especially on defining and standardizing metadata 

types in various vaccine investigation studies. Most variables in the three Yellow Fever studies 

(Gaucher et al. 2008; Querec et al. 2009; Scherer et al. 2007) were modeled in the VIO design 

pattern and standardized in the data re-analysis process pipeline. These variables included data 

transformation method, human genome annotation version, significant gene identification 

method such as LIMMA, LIMMA version, and GO version used for GO enrichment analysis. To 

a certain extent, studies with different experimental settings can be considered as permutations to 

the host immune system and can be used to better understand the immune response mechanisms 

induced by the vaccine immunization. Therefore, controlling these experimental conditions is not 

necessary to understand the contributions of different variables to the final observed immune 

response outcomes. Instead, we can carefully dissect and identify the similarities and 

dissimilarity among these variables from different experimental studies. VIO was then applied to 

the re-analysis of two Yellow Fever vaccine studies with controlled conditions (Gaucher et al. 

2008; Querec et al. 2009).  

When integrating the two VF-Vax vaccine studies (Gaucher et al. 2008 and Querec et al. 

2009) with the conditions defined by VIO (Figure 6-3), there were 554 and 126 significantly 

differentiated genes in the Gaucher and Querec, respectively (Figure 6-4 A). When comparing 

these two significant gene lists, there were 465, 89, 37 genes found to be unique in Gaucher, 

shared by both studies, and unique in Querec, respectively. When summarizing the genes to GO 

biological processes, our re-analysis identified more consistency between the two studies. When 

comparing the reported GO terms in the two original studies (Gaucher et al. 2008; Querec et al. 

2009), only four enriched GO biological process terms were shared, and twenty terms were 
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found to be different. However, our re-analysis standardized by the VIO modeling had seven 

enriched GO biological process terms being shared by the two studies (Figure 6-4 B) and 

provided more consistent GO enrichment results.   
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Figure 6-3 Vaccine Investigation Ontology design pattern to model the YF-VAX 

vaccination studies. 

The boxed section includes different components that are related to data processing and analyses. 

The brown-colored boxes are examples of variables changeable in our data re-analysis. 
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Figure 6-4 Comparison of the significant (A) genes, (B) biological processes, and (C) 

Reactome pathways in the re-analysis of YF-Vax studies. 

Venn diagram illustrating the comparison of significant (adjusted p-value based on FDR < 0.05) 

(A) differentially expressed genes, (B) Gene Ontology biological process terms, (C) Reactome 

pathways between the re-analysis of the gene expression profile of VF-Vax vaccination from 

Gaucher et al. 2008 and Querec et al. 2009 studies.  
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It is possible that the non-overlapped GO terms have closer relations in terms of the GO 

hierarchical structure. For example, these non-overlapped GO terms might share the same 

parents, siblings, or children terms. To test this hypothesis, we applied the GOfox GO 

visualization tool (E. Ong and He 2015) to visualize the significant GO terms based on their 

hierarchical structure (Figure 6-5). The shared enriched GO terms (with green color circles) are 

focused on categories including responses to viruses, cytokine-mediated signaling pathways, and 

defense response. Interestingly, responses to three types (alpha, beta, and gamma) of interferon 

cytokines are identified in the story. The response to interferon-alpha is shared between both re-

analyses. However, responses to interferon-beta and interferon-gamma are significantly enriched 

in only Gaucher re-analysis (with red circles). The only GO term unique to Querec re-analysis is 

negative regulation of type I interferon production (with blue circle). How different interferon 

signaling pathways get involved in the protective immunity against Yellow Fever deserves 

further investigation. Several GO terms under cellular and RNA macromolecule metabolic 

processes were enriched only in Gaucher re-analysis, suggesting more general metabolic 

processes were detected in re-analysis of Gaucher than Querec. This study demonstrated that the 

hierarchical visualization of the enriched GO terms provides more useful information than plain 

lists of enriched GO terms.  

The home page and the source code of VIO are publicly available from the GitHub 

website: https://github.com/vaccineontology/VIO. VIO has been deposited to the Ontobee 

website: http://www.ontobee.org/ontology/VIO, and BioPortal: 

http://bioportal.bioontology.org/ontologies/VIO.  

https://github.com/vaccineontology/VIO
http://www.ontobee.org/ontology/VIO
http://bioportal.bioontology.org/ontologies/VIO
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Figure 6-5 Hierarichal display of significantly enriched GO biological process terms from 

the re-analysis of YF-Vax vaccine studies. 

Circles colored with green, red, and blue represent GO terms shared in both re-analyses, unique 

to Gaucher et al. 2008 and unique to Querec et al. 2009, respectively. 
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6.5 Discussion 

Overall, this chapter illustrated the development of the two ontologies, Vaccine Investigation 

Ontology (VIO) and Ontology of Host-Pathogen Interactions (OHPI), and demonstrated their 

applications on the standardization, integration, and analysis of host-pathogen and vaccine-host 

interaction studies. Both VIO and OHPI development followed the state-of-the-art eXtensible 

Ontology Development (XOD) principles, which support ontology reuse, alignment, design 

pattern usage, and community extensibility (He, Xiang, et al. 2018). The application of VIO to 

identify and standardize different variables in vaccine investigation studies provided a feasible 

way to integrate and compare published results from different vaccine host response studies. The 

creation of OHPI provides a valuable platform to integrate existing vaccine databases 

(specifically, virulence factor database Victors and protective antigen database Protegen) and one 

step forward to a more integrative host-pathogen interaction analysis. Since virulence factors 

(VFs) are utilized by the pathogens to infect host cells, an effective prevention method against 

the infectious pathogens is to evaluate VFs with the potential as protective antigens (PAgs). An 

ontology-based approach powered by the OHPI and VIO can improve our understanding of 

microbial pathogenesis and host immunity better to support effective vaccine research. 

The VIO ontology provides a way to standardize the representation of minimal 

information standards and metadata representation for vaccine investigations, including both 

experimental and analytic parts. Our VIO modeling identified variables involved in raw data 

processing, data transformation, and statistical analyses (Figure 6-3). The re-analysis of two 

Yellow Fever vaccine studies standardized by VIO modeling found that the gene lists differed a 

lot between the two studies, while the GO enrichment results were more consistent (Figure 6-4). 
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This suggests that although the specific significantly differentiated genes might differ given 

different conditions, they participate in similar or related biological processes. Furthermore, our 

GOfox analyses showed that even the GO terms might show differences, the hierarchical 

structure comparison between the two sets of results showed that the different GO terms could 

often be aligned under the same ancestor GO terms (Figure 6-5). The identification of these 

hierarchical structures makes it better to understand the underlying molecular mechanisms.     

Different from this study, where many data processing and analysis-related variables 

exist, a previous meta-analysis of Brucella vaccine protection study shows only one data-related 

variable (i.e., protection or not) (Todd et al. 2013). The Brucella meta-analysis study focuses on 

the effects of different experimental conditions toward the same vaccine protection efficiency. In 

that case, the data analysis is simple, but the roles of different experimental conditions can be 

determined. In total, the Brucella vaccine protection study identified approximately 20 

experimental variables whose variations may change the protection outcomes. One major 

difference between these two types of vaccine investigations is that the Brucella vaccine 

protection study includes a step of virulent pathogen challenge, while the Yellow Fever vaccine 

study does not have the challenge step.   

Not only in the vaccine domain, the challenge of standardizing and integrating 

homogenous data also exists in other biomedical domains and can be caused by experimental or 

analytical factors in the metadata. For example, the fields of cancer prognosis and prediction 

(Kourou et al. 2015),  stem cell differentiation and aging (Muller-Sieburg et al. 2012), lung 

disease (Erb-Downward et al. 2011) all face the challenge.  There are various sources of errors 

and inconsistencies associated with different high throughput technologies such as the 

microarray technology (Jaksik et al. 2015), flow cytometry (Cossarizza et al. 2017), and RNA-
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seq (Conesa et al. 2016). This study represents an effective ontology-based effort to solve the 

critical issue of different but overlapping results from studies on the same scientific question. In 

addition, the development of OHPI and VIO by following the state-of-the-art strategy and ensure 

that the ontology is open and logically well-formed to enable interoperability to ontologies in 

other biomedical domains. The interoperability can further solve the critical issue of data 

heterogeneity and inconsistency in interdisciplinary studies.  
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Chapter 7 Summary and Discussion 

 

In my dissertation work, I explored reverse vaccinology (RV) and structural vaccinology 

(SV) to select tentative vaccine candidates and support the optimization of such candidates. 

Vaxign-ML is a machine learning (ML)-based RV prediction tool that facilitates vaccine 

candidate selection with high accuracy. An SV strategy that utilizes the evolutionary-based 

protein design program, EvoDesign, is created to design vaccine candidate variants with 

enhanced immunogenicity. Besides, two ontologies, the Ontology of Host-Pathogen Interactions 

(OHPI) and Vaccine Investigation Ontology (VIO), were created to support the standardization, 

integration, and analysis of the heterogeneous vaccine data available in the Vaccine Investigation 

and Online Information Network (VIOLIN). The combination of vaccine development and 

ontology-based data analysis strategies provide a great avenue to not only augment our 

understanding of how pathogen and vaccines interact with the host immune system but also 

enhance our capability to quickly develop safe and effective vaccines. In the following sections, I 

summarized and discussed the dissertation work combining RV, SV, and ontology to support 

rational vaccine design, and how my work can be the foundation of future precision vaccinology 

studies. 

7.1 Summary 

As the starting point of my dissertation work, Chapter 2 describes a comprehensive 

bioinformatics study to analyze important vaccine design criteria by systematically studying and 

comparing bacterial protective antigens (PAgs) and non-protective proteins, including various 
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protein properties and biological functions (E. Ong, Wong, and He 2017). The results of this 

study confirmed and provided details on the usage of these biological properties, such as 

subcellular localization, transmembrane helix, and adhesin probability, to be applied in both 

filtering-based and ML-based RV prediction of PAgs. In particular, these findings supported the 

creation of a new ML-based Vaxign program, Vaxign-ML, described in Chapter 3. 

Vaxign-ML utilized biological and physicochemical properties computed from a high-

quality Protegen database and showed superior predictive performance compared to existing RV 

tools (E. Ong, Wang, Wong, Seetharaman, et al. 2020). Protegen is a public PAg database that 

has continuously curated over thousands of PAgs supported by experimental evidence 

(vaccination-challenge assay of animal models) over the past decade (B. Yang et al. 2011). In 

Chapter 4, Vaxign-ML was also applied to predict COVID-19 vaccine antigen candidates (E. 

Ong, Wong, Huffman, and He 2020), with the SARS-CoV-2 spike (S) glycoprotein being the top 

candidate followed by the non-structural protein 3 (nsp3). The S protein is the primary target of 

most COVID-19 vaccines, including the Pfizer (Polack et al. 2020) and Moderna (Anderson et 

al. 2020) mRNA vaccines with high reported efficacy in Phase 3 clinical trials. On the other 

hand, the nsp3 protein predicted by Vaxign-ML and contained the Papain-Like protease (PLpro) 

sub-domain (Shin et al. 2020). PLpro was reported to play a critical role in the SARS-CoV-2 

evasion mechanism against host antiviral immune responses, and inhibition of PLpro impaired 

the virus-induced cytopathogenic effect, maintained the antiviral interferon pathway and reduced 

viral replication in infected cells. 

However, the current Vaxign-ML only elaborates on the pathogen proteins’ properties 

and does not incorporate epitope information. Epitopes play a role in antibody and cell-mediated 

immunity, and the prediction of epitopes has been an active area of vaccine design. A 
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comprehensive set of T cell and B cell epitope query, prediction, and analysis tools is available 

(Fleri et al. 2017). There are also epitope-based PAg prediction methods such as iVAX (L Moise 

et al. 2015) that utilize the frequency or density of the epitopes located on the protein. These 

epitope prediction methods can be streamlined into the Vaxign-ML pipeline to offer host-specific 

vaccine candidate prediction with better performance. In related work, I applied the prediction of 

epitopes and population coverage to evaluate five Mycobacterium tuberculosis (MTB) vaccines 

(E. Ong, He, and Yang 2020). Using computational approaches, I (i) predicted the capacity of the 

epitopes to be presented by the HLA molecules, (ii) predicted the promiscuity of the predicted 

epitopes based on a reference set of alleles and supertype alleles, and (iii) estimated the 

population coverage for ten protein antigens (Mtb39a, Mtb32a, Ag85B, ESAT-6, TB10.4, 

Rv2660, Rv3619, Rv2608, Rv3620, and Rv1813) constituting five MTB subunit vaccines (M72, 

H1, H4, H56, and ID93) that are currently in clinical trials. Our prediction showed that the ID93 

vaccine was predicted to have the best potential for preventing both active and latent MTB 

infection (E. Ong, He, and Yang 2020). The study demonstrates the value of the computational 

approaches to pre-clinical evaluation of novel subunit vaccines. Future studies incorporating both 

pathogen and human variations in the context of epitope prediction can further extend the Vaxign 

and Vaxign-ML frameworks to augment our knowledge and improve vaccine antigen selection. 

In Chapter 5, the computational design of the vaccine antigen was applied to the SARS-

CoV-2 spike (S) protein to improve the immunogenicity and antigenicity of a vaccine candidate 

by manipulating the MHC-II T cell epitopes (E. Ong et al. 2021). The study aims to introduce 

new epitopes to the S protein while keeping the surface residues unchanged to minimize the 

structural change of the designed proteins. In the current settings, the immunogenicity evaluation 

was carried out after the standard protein design simulations with EvoDesign. In the future, the 
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assessment of the immunogenic potential could be incorporated into the protein design process 

so that the sequence decoy generated at each step will be guided by balancing both the protein 

stability and immunogenicity. Moreover, with proper prior knowledge of known epitopes (e.g., 

both MHC-I and MHC-II from the pathogen proteome), it is also possible to create a chimeric 

protein, which integrates epitopes from antigens other than the target protein. Nonetheless, this 

SV strategy could be coupled with other structural modifications for a more rational structure-

based vaccine design. The structural modifications performed on the native S protein, such as 

stabilizing the protein in its prefusion form (Bos et al. 2020) could still be integrated to design 

the S protein. The combination of these structural vaccinology technologies into the Vaxign 

framework could further enhance our capability to select candidates with better vaccine potential 

quickly. However, a major limitation of the current vaccine antigen design is the lack of 

experimental verification, which should be followed in future studies. 

In Chapter 6, I described the creation of two ontologies, OHPI and VIO, to standardize 

and integrate vaccine data available among different databases. The OHPI integrates data from 

three databases: Protegen for protective antigens, Victors for the virulence factors related to the 

pathogen, and VaximmutorDB for host immune factors induced by vaccination. By integrating 

these three databases, OHPI models the host pathogen interaction data and can be applied with 

machine learning to predict vaccine antigens in future vaccine design studies. On the other hand, 

the VIO is created to model the variables associated with vaccine investigation studies. The data 

and meta-data of these studies are stored in the VIOLIN and PHIDIAS systems, such as vaccine 

preparation, efficacy, and protocol. VIO is also used in a study to model meta-data of gene 

expressions from public repositories such as GEO and ImmPort, and can help us to understand 

the mechanism of protection in the future. In the future, OHPI and VIO with other ontologies can 
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provide a framework to support vaccine-related data integration and be utilized by machine 

learning to inform future vaccine design. 

7.2 Future Direction of the Vaxign framework  

The comprehensive Vaxign framework, which includes ML-based RV prediction, SV-based 

antigen optimization, epitope prediction, and population coverage assessment, as presented in 

this dissertation, may generate new knowledge about vaccine candidates that cannot easily be 

obtained from pre-clinical in-vitro and animal studies, or clinical trials conducted in a limited 

number of populations. A future workflow that streamlines (i) vaccine antigen candidate 

prediction by Vaxign-ML or potential extended work; (ii) candidate evaluation based on 

coverage of MHC-I and MHC-II supertype alleles, epitope promiscuity, and immunogenicity; 

(iii) antigen candidates optimized for immunogenicity by SV-guided design. With the 

accumulation of PAgs in the literature, it is also feasible to apply deep learning to improve the 

RV-based antigen selection process further. The population coverage of the vaccine candidates 

can also be assessed computationally based on known allele frequencies reported for the 

population of concern before entering the clinical trial. Finally, these computationally predicted 

candidates should be followed up and verified by in-vitro or in-vivo experiments. The 

computational approaches may also bridge the pre-clinical studies and clinical development of 

vaccine candidates, which is an important gap in current vaccine development. The integration of 

bioinformatics and computational approaches with traditional vaccine development tools 

presents the best opportunity for rapid development of effective and safe vaccines in the era of 

precision medicine. 

7.3 The Promise of Precision Vaccinology 
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Precision medicine is broadly defined as the delivering personalized treatments to individual 

patients, or “the right drug for the right patient at the right time” (Abrahams 2008). The same 

concept could be applied to vaccinology, from precision medicine to precision vaccinology. The 

practice of precision vaccinology depends on the high-throughput technologies to acquire 

detailed molecular phenotypes of humans and derive nuanced descriptions of disease, and 

support advanced vaccine discovery. A key component of precision vaccinology is the ability to 

obtain large amounts of molecular data through high-throughput sequencing technologies to 

investigate the underlying mechanisms, and it has been applied to study the repertoire of B cell 

receptors (BCRs) and T cell receptors (TCRs) (Chiffelle et al. 2020). The recombination of the 

genes encoding for BCRs and TCRs results in a massive pool of repertoire for these two 

receptors with an approximation of at least 1012 (Briney et al. 2019) and 1015 (Nikolich-Žugich, 

Slifka, and Messaoudi 2004) unique BCRs and TCRs, respectively, in humans. Due to the 

extreme diversity of the human immune repertoire, researchers could have only studied a tiny 

fraction of the complete antigen receptor repertoire before the era of next-generation sequencing 

(NGS) using non-sequencing experimental protocols such as hybridization-based methods 

(Bernardin et al. 2003; Baum and McCune 2006). The advent of NGS technology allowed 

researchers to study the immune repertoire at a much superior depth than the previous decades. 

For example, NGS has been the driving force of the identification and development of the 

broadly neutralizing antibodies against Human Immunodeficiency Virus (HIV) infection (X. Wu 

et al. 2011; J. Zhu, Wu, et al. 2013; J. Zhu, Ofek, et al. 2013). Single-cell sequencing method 

also reveals the diversity in clonal expansion of TCR repertoire in antiretroviral therapy treated 

HIV patients (Gantner et al. 2020).  
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Besides analyzing the host immune repertoire, NGS can also be applied to study 

pathogenicity and pathogen-host interactions of existing and emerging infectious diseases. The 

whole-genome sequencing (WGS) was applied to monitor multidrug-resistant tuberculosis in 

Austria, Romania and Germany in 2014 (Fiebig et al. 2017). In a collaboration project with the 

Michigan Department of Community Health (MDCH), a sequencing pipeline was built to 

process and analyze the MTB whole-genome sequence data 

(https://github.com/e4ong1031/MDHHS_TB_WGS). The genome sequence of the SARS-CoV-2 

has dramatically speeded up the development of diagnostic tools, drug discovery, and vaccine 

development to control the COVID-19 pandemic. On the other hand, the dual RNA-seq protocol 

(Westermann, Gorski, and Vogel 2012; Westermann et al. 2016) also facilitates the in-depth 

analysis of the mechanisms behind host-pathogen interactions. Typically, the pathogen and host 

cells are separated before the sequencing by, for example, physical separation of a centrifuge. 

However, in dual RNA-seq, the total isolated RNA of the pathogen infected cells is sequenced at 

the same time and separated later on during the mapping process. This technology enables 

researchers to monitor the changes of gene expression profiles in both the host and pathogen 

under different experimental conditions. Overall, the immune repertoire “big-data” not only 

improves our system-level understanding of immunology, infectious diseases, and vaccinations, 

but also build the foundation of precision vaccinology. 

The generation of this massive molecular data is definitely a valuable resource to decipher 

the mechanism of the immune system, but, at the same time, such heterogeneous data also 

requires an infrastructure to ensure the data to be Findable, Accessible, Interoperable, and 

Reusable (FAIR) (Stall et al. 2019). To achieve these objectives, ontology can serve as the ideal 

platform for data FAIRness, and it has been applied to precision medicine. The creation of the 
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Kidney Tissue Atlas Ontology (KTAO) (He, Steck, et al. 2018) and Ontology of Precision 

Medicine (OPMI) (He et al. 2019), along with the vaccine-informatics research in my 

dissertation work, are one of the pioneering work to integrate the clinical, histopathological, and 

molecular data (Figure 7-1) generated in the Kidney Precision Medicine Project (KPMP) 

consortium (E. Ong, Wang, Schaub, O’Toole, et al. 2020).  

 

Figure 7-1 The KPMP ontology framework for supporting data representation, integration 

and analysis. 

Clinical, pathology, and molecular data collected from Kidney Precision Medicine Project 

(KPMP) recruitment sites and tissue interrogation sites will be deposited in the KPMP Kidney 

Tissue Atlas. Different types of data (clinical, pathology, and molecular) feed into the KPMP 

ontology environment. Two KPMP ontologies, the Kidney Tissue Atlas Ontology (KTAO) and 

the Ontology of Precision Medicine Investigation (OPMI), provide a semantic framework for 

modeling relationships between the heterogeneous data in the atlas. LC-MS/MS, liquid 

chromatography-tandem mass spectrometry; MALDI-MS, matrix-assisted laser 

desorption/ionization-mass spectrometry; RNAseq, RNA sequencing. This figure is reprinted 
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from (E. Ong, Wang, Schaub, O’Toole, et al. 2020) published in Nature Reviews Nephrology 

under the license of Creative Commons Attribution License (CC BY). 

  

https://creativecommons.org/licenses/by/4.0/
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A preliminary ontology infrastructure has already been implemented for precision 

vaccinology. The integrative Vaccine Investigation and Online Information Network (VIOLIN) 

(He et al. 2014) has cumulated large amounts of vaccine-related data. The Vaccine Ontology 

(VO) is created to represent vaccine-related entities, such as vaccines, vaccine components, 

vaccinations, host responses to vaccines, and the relations among these entities available in the 

VIOLIN (He et al. 2009; Özgür et al. 2011; Y. Lin and He 2012). Protegen 

(http://www.violinet.org/protegen) is a VIOLIN sub-database that stores over 1,000 PAgs (B. 

Yang et al. 2011; He and Xiang 2012), and it is a key component in the development of vaccine 

prediction tools. Another useful resource is the Pathogen-Host Interaction Data Integration and 

Analysis System (PHIDIAS) (Z. Xiang, Tian, and He 2007). The Victors database is a sub-

database of PHIDIAS and includes over 5,000 VFs from different bacteria, viruses, parasites, 

and fungi, which are pathogenic to animals and humans (Sayers et al. 2019). The creation of 

Ontology of Host-Pathogen Interaction (OHPI) and Vaccine Investigation Ontology (VIO) 

described in Chapter 6 is the first attempt to utilize ontology to support advanced knowledge 

representation, integration, sharing, and analysis among these vaccine databases. Last but not 

least, ontologies have been applied with machine learning to predict protein-protein interactions 

and gene-disease associations (Smaili, Gao, and Hoehndorf 2018; 2019). Using the precision 

vaccinology knowledge formalized within the ontologies, which is curated by experienced 

domain experts, the information may be used as a priori in machine learning-based prediction. 

The combination of a comprehensive vaccine design framework, massive immune repertoire 

sequencing data, and an ontology-powered data integration infrastructure can serve as the 

foundation for precision vaccinology. 

   

http://www.violinet.org/protegen
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