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Abstract 

 

Titanium and its alloys exhibit many desirable properties, such as a high strength-to-weight 

ratio and excellent corrosion resistance, which result in their continued importance as structural 

materials particularly for aerospace and biomedical industries. However, titanium’s reactivity with 

oxygen presents significant challenges to mechanical performance, including embrittlement 

caused by oxygen in solid solution and fast oxidation during high temperature exposures. Oxygen 

is therefore typically considered a detrimental element for titanium alloys. Commercial alloys 

commonly require strict limits on oxygen impurities to prevent embrittlement and are used at 

relatively low service temperatures to prevent material loss by oxidation. These challenges present 

opportunities for titanium alloy development. Oxygen has been shown to modify phase formation 

and precipitation sequences in metastable β titanium alloys containing high amounts of β-

stabilizing elements, which resulted in novel mechanical behavior suggestive of potential new 

application spaces. Regarding oxidation, while the development of protective coatings has shown 

significant reductions in oxidation kinetics for Ti alloys, limited understanding still exists on how 

alloying elements might provide protection. Consequently, this thesis is organized in two parts. 

First, it argues that oxygen is not always detrimental by providing advancements in our 

understanding of the role of oxygen as an alloying element in β alloys. Second, when oxygen 

concentrations and oxidation need to be controlled, it details a possible approach to creating 

effective coatings using silicon.  

The role of oxygen was demonstrated in a model β Ti-Nb alloy and commercial Ti-15-333 

and Ti-15Mo alloys. Compositionally-graded microstructures were created using high temperature 

oxidation followed by ageing to understand oxygen’s influence on metastable ω and stable α phase 

precipitation kinetics and morphologies. Multi-scale microstructural characterization methods 

including scanning electron microscopy, transmission electron microscopy, wavelength dispersive 

spectroscopy, atom probe tomography, and micropillar compression were utilized to evaluate 

microstructural evolution and mechanical behavior as a function of oxygen content. Elevated 

oxygen levels induced morphology, number density, and size changes for the metastable ω phase 
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and accelerated α nucleation rate. Notably, oxygen partitioning to ω during ageing resulted in 

increased resistance of ω to precipitate shearing and suppression of catastrophic failure during 

micropillar compression. While both oxygen and ω are known embrittlement risk factors, the 

stabilization of ω with oxygen leads to promising microstructures and mechanical properties. 

Furthermore, oxygen-induced refinement of α precipitates provides an additional pathway to 

obtain fine α laths that enable precipitation strengthening of β Ti alloys and very high strengths 

required for structural components. Finally, mechanistic understanding of Si’s improvement of 

titanium oxidation resistance using Si-coated Ti specimens showed that Ti5Si3 silicide formation 

during oxidation exposures inhibited inward oxygen diffusion and formation of fast growing 

internal TiO2 scales. This understanding may inform not only the design of better protective 

coatings for alloys used at elevated temperatures but also the tailoring of alloy chemistries leading 

to similar oxidation mechanisms.  

In conclusion, the results detailed in this thesis address existing severe limitations 

associated with oxygen in titanium alloys. These findings directly impact commercial applications 

by providing design strategies to mitigate detrimental effects from interstitial oxygen, ω 

precipitation, and environmental degradation. This knowledge will contribute to future titanium 

alloy chemistry and processing development that utilizes beneficial impacts of elevated oxygen to 

enable new microstructures, properties, industrial material reuse, and commercial material 

specifications.  

  



 1 

Chapter 1: Introduction 

 

1.1 Motivation and background 

Titanium and its alloys offer a desirable combination of high specific strength and stiffness, 

corrosion resistance, and biocompatibility that result in its importance as a structural material for 

many industries [1]. Demands for reducing weight to improve fuel efficiency and corrosion 

compatibility to polymer composite structures have motivated titanium alloy development for the 

transportation industry, predominantly for aerospace applications [2]. Additionally, biomedical 

implant materials, which require structural integrity and fatigue resistance in addition to 

biocompatibility, frequently utilize titanium alloys for components such as hip and knee implant 

replacements [3]. However, within both application spaces, several challenges still exist with 

current industrially produced Ti alloy compositions. One such drawback is the sensitivity of Ti 

alloys to small composition changes and interstitial elements such as oxygen that heavily 

influences their final microstructures and properties after processing [2]. Another issue is the 

reactivity of Ti with oxygen at room and elevated temperatures that results in strict processing 

controls and lack of oxidation resistance in hot environments [4]. In general, high levels of oxygen 

in solid solution in Ti alloys are considered detrimental to mechanical properties because of 

embrittlement concerns [5]. These limitations increase the general development time for new 

titanium alloy candidates and restrict titanium alloys use at elevated temperatures. Addressing 

these issues would therefore allow for increased implementation of Ti alloys resulting in better 

light weighting capabilities particularly in the aerospace industry. 

β titanium alloys contain a large amount of β stabilizing elements like Nb, Mo, and V such 

that the β phase matrix is stabilized to room temperatures. These alloys may also form other 

precipitate phases during thermomechanical processing and are particularly sensitive to small 

changes in alloy chemistries and processing methods. This sensitivity leads to the wide variety of 

microstructures, deformation pathways, and mechanical properties that are observed for β Ti alloys 
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[6]. Many previous studies have focused on metastable phase stability and formation in these 

alloys, particularly for Ti-Nb based compositions that are highly biocompatible and have shown 

unique mechanical behavior in “gum-metal” like alloys [7]. More generally, the formation of 

metastable phases in β Ti alloys has been an active area of interest due to their role in controlling 

deformation behavior and influence on stable α precipitation. In particular, interstitial oxygen in 

solid solution significantly changes metastable phase stability and precipitation sequences in these 

alloys that directly influence deformation behavior. For example, the metastable ω phase, which 

forms rapidly during low temperature ageing leading to embrittlement [8], has shown phase 

stability changes with oxygen [9] that necessitate further fundamental study to understand ω’s 

evolution and mechanical contribution with oxygen. Detailed understanding of oxygen’s role as 

an alloying element in β Ti alloys may address known embrittlement challenges from ω phase 

formation, as well as allow for more tolerance for oxygen in chemistry standards and controls 

during titanium alloy processing. Evaluation of commercially produced β Ti alloys with elevated 

oxygen content is also needed to connect fundamental knowledge to industrially relevant products 

and applications. 

Additionally, oxidation mechanism studies for pure titanium and titanium alloys have 

focused on the rapid dissolution of oxygen during high temperature exposures and fast oxidation 

kinetics [4]. These oxidation mechanisms result in rapid environmental degradation of Ti alloys at 

elevated temperatures due to loss of load bearing structural material and surface-level 

embrittlement that is more susceptible to crack formation [10]. Silicon-containing coatings have 

been demonstrated to slow oxidation progression for Ti alloys [11,12]. However, detailed 

understanding of silicon’s contributions to improving oxidation resistance has not been 

investigated. This knowledge would allow for targeted development of advanced coatings and 

protection systems for Ti alloys exposed to high temperatures.  

Given the existing challenges for titanium alloy use related to oxygen, the main topic 

discussed in this thesis is how oxygen influences the microstructural evolution, degradation, and 

mechanical properties of titanium alloys. Specifically, the important questions that this thesis 

addresses are the following:  

1. How does interstitial oxygen in solid solution affect ω and α thermodynamic phase stability 

and precipitation in β Ti-Nb alloys? 
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2. What are the deformation mechanisms and mechanical properties of microstructures with 

oxygen-free and oxygen-stabilized ω in β Ti-Nb alloys? 

3. How does elevated oxygen content affect precipitation kinetics and mechanical behavior 

in aged commercial β Ti alloys? 

4. What is the mechanistic role of silicon in Si-containing coatings on improving oxidation 

resistance of pure Ti? 

To answer these questions, experimental work was performed using multi-scale 

microstructural characterization methods including scanning electron microscopy (SEM), 

transmission electron microscopy (TEM), wavelength dispersive spectroscopy (WDS), atom probe 

tomography (APT), and micropillar compression testing. In particular, the use of high temperature 

oxidation exposures prior to isothermal ageing studies allowed the creation of compositionally 

gradient specimens with respect to interstitial oxygen content that uniquely enabled a systematic 

investigation of oxygen effects. The results from this work contribute to fundamental 

understanding of oxygen’s effects on phase stability, precipitation, deformation, and oxidation in 

titanium alloys. These findings will contribute to future designs of titanium alloy compositions 

and heat treatment processes tailored to mitigate oxygen-induced microstructural changes, ω phase 

embrittlement, oxidation environmental degradation, and improved recyclability. 

1.2 Thesis structure 

This dissertation thesis is divided into eight main chapters. Following the introduction, 

Chapter 2 provides a review of the literature and discussions of gaps in current knowledge for β 

Ti alloy phase stability, precipitation, and deformation and for pure Ti oxidation mechanisms. 

Chapter 3 focuses on the role of interstitial oxygen on the precipitation kinetics and sequence of 

ω and α phases during ageing of a Ti-Nb alloy. Chapter 4 extends this work to understand the 

effect of oxygen-stabilized ω precipitates on improving work hardening behavior of ω-

strengthened Ti-Nb alloys. Chapter 5 and Chapter 6 investigate oxygen’s contributions on 

precipitation and deformation in two aged commercial β Ti alloys. Chapter 7 discusses the 

influence of Si-containing coatings on reducing internal oxidation rate of pure Ti through 

formation of titanium silicide phases. Finally, Chapter 8 summarizes the conclusions for this work 

and gives suggestions for future investigations. Appendices contain additional details on sample 

preparation, experimental data collection, and supplemental data for the main chapters.   
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Chapter 2: Literature Review of Precipitation, Deformation, Oxygen Effects, and 

Oxidation of Ti Alloys 

 

This chapter reviews the literature for precipitation and deformation of β Ti alloys. Specific 

information related to Ti-Nb and Ti-Mo alloy systems with a focus on oxygen effects are then 

discussed. Other related alloy systems such as Ti-V, which show similar precipitation behavior to 

the Ti-Nb and Ti-Mo systems, are not presented, but detailed information is available in Refs. [13–

17]. Finally, the oxidation mechanisms of pure Ti and the effect of Si-containing coatings on 

oxidation resistance are reviewed and discussed.  

2.1 β titanium alloys 

Metastable β titanium alloys that have been developed for aerospace and biomedical 

structural applications offer a desirable combination of properties including high specific strength 

and stiffness, biocompatibility, and corrosion resistance [2,6]. These alloys, which typically 

include significant amounts of β stabilizing elements such as Nb, Mo, and V, characteristically 

contain a metastable bcc β phase matrix at room temperature [6]. The stable and metastable phase 

diagrams for the representative Ti-Nb system show the phase stability regions for varying 

compositions and temperatures (Figure 2.1) [18]. The thermodynamically stable phases are the 

low temperature α (hexagonally close packed - hcp) and high temperature β (body centered cubic 

- bcc) phases (Figure 2.2). Additionally, the stability of the β phase in these alloys with respect to 

metastable decomposition has been widely investigated [6]. Via thermomechanical processing 

treatments, the β phase can transform into additional metastable phases that include martensites α’ 

(hcp) and α” (orthorhombic) [6], ω phase (hexagonal) [19], or recently reported nanoscale phases 

[20–23]. Highly β-stabilized alloys also show equilibrium immiscibility in the β phase, where 

spinodal decomposition can occur and result in β phase separation that may affect precipitate 

formation of α or other metastable phases [6]. The alloys in this thesis work will focus primarily 

on binary Ti-Nb (Chapter 3 and Chapter 4) and Ti-Mo (Chapter 6) based compositions. 

Additional work on a Ti-V containing Ti-15-333 alloy (Chapter 5) also shows similar phase 
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formation sequences, but phase stability and precipitation kinetics in this alloy are affected by the 

addition of minor alloying elements such as Al, which heavily stabilizes the α phase.    

 

Figure 2.1: The calculated stable (α-β) and metastable (ω-β) phase diagrams of Ti-Nb. Gray areas represent two-phase 

regions and the miscibility gap in the metastable ω-β phase diagram. Adapted from Ref. [18]. 

 

Figure 2.2: (a) The hcp (α) and bcc (β) structures of titanium. Adapted from Ref. [2]. 

2.1.1 Stable phases: α and β  

Many properties for titanium alloys depend on microstructural evolution and phase 

transformation pathways for the α and β phases [1]. The ability to manipulate the structure and 

distribution of these phases depends on alloy composition and thermomechanical processing. The 
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β transus temperature is denoted as the temperature at which α transforms to β phase in the 

equilibrium phase diagram for a given alloy composition. Alloying elements are typically 

classified as α or β stabilizing elements. α stabilizers include Al, O, and N, whereas β stabilizers 

include Nb, Mo, V, Cr, Fe, and H [2]. These elements will partition to their respective stabilizing 

phases during ageing and increase thermodynamic stability of α or β. A third set of neutral alloying 

elements, such as Sn and Zr, do not significantly change the stability of either phase. For β 

stabilizing elements, isomorphous alloying elements such as Mo, V, Ta, and Nb may show a 

miscibility gap in their binary phase diagram with Ti but do not have invariant reactions, congruent 

transformations, or critical points [6]. Other β stabilizing elements such as Cr, Fe, Cu, Ni, and Si 

form intermetallic compounds through eutectoid reactions with Ti and are termed as eutectoid 

alloying elements [6].  

The solid state phase transformation from β to α is governed by the Burgers orientation 

relationship (BOR) between these two phases: {110}β//(0001)α; <1-11>β//<11-20>α, which results 

in 12 possible crystallographic variants of α that can form from a single β parent grain [2]. α 

typically forms as a lath with broad, semi-coherent faces that contain structural ledges and 

dislocations [2]. In β-stabilizer rich alloys, α forms during isothermal heat treatment with a mostly 

uniform distribution of the 12 possible variants. α can also nucleate and grow at β grain boundaries 

with the BOR satisfied for one of the grains on either side of the boundary [2].  

2.1.2 Metastable phases: martensite, nanoscale phases, ω 

Several martensitic phases can form in β Ti alloys through a diffusionless transformation 

during rapid cooling from above a critical temperature called the martensite start temperature or 

during deformation above a critical stress level. Martensitic phases in β Ti alloys have an hcp (α’) 

or orthorhombic (α”) structure [18,24]. This crystallographic structure change for martensites 

occurs with greater β stabilizer solute content [25]. With high levels of β-stabilizing elements, the 

martensitic transformations are completely suppressed, forming only metastable β phase upon 

quenching [25]. The lattice correspondence between β and α” and the lath-like microstructure of 

α” formation are shown in Figure 2.3. The formation pathway for martensite from β (Figure 2.4a) 

involves several processes: 1) Bain distortion that transforms the cubic lattice to orthorhombic or 

hexagonal, 2) Lattice invariant shear by twinning or slip to obtain the invariant plane, 3) Shuffle 
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movement of atoms on alternating (110) β planes in a [1-10]β direction [2,26]. Martensitic phases 

may form during solution treatment and quenching from the β phase field or after the application 

of stress (stress-induced martensite) [24].  

 

Figure 2.3: (a) A schematic illustration exhibiting lattice correspondence between β and α” phases. (b) Light microscopy 

images of α”-martensite in Ti-33Nb (wt. %). Adapted from Refs. [18,24]. 

 

Figure 2.4: Schematic representations of the three different instabilities in the β phase in titanium alloys: (a) β to martensite; 

(b) β to nano-domains (O′ phase); (c) β to ω phase. Adapted from Ref. [26]. 

Recent studies have proposed several nanoscale phases that may form from the metastable 

β phase during solution treatment and quenching of β Ti alloys, particularly in alloy compositions 

where martensite formation is suppressed. For example, diffuse streaking and intensity maxima in 

the selected area diffraction patterns for β Ti alloys have been associated with nanodomains that 
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are formed through shuffle of {110}β planes without the Bain distortion [27]. Additionally, another 

nanoscale phase referred to as O’ due to its reported orthorhombic structure may form through a 

similar pathway of atomic shuffling along the {110}β planes shown in Figure 2.4b [20,26]. 

Examples of diffuse streaking in selected area diffraction patterns attributed to the O’ phase and 

the associated electron micrographs are shown in Figure 2.5. These nanoscale phases have been 

reported to coexist with the athermal ω phase that forms upon solution treatment and quenching. 

Other nanoscale features that have been reported in β Ti alloys include concentration modulations 

formed through spinodal decomposition during quenching [28]. These modulations result in 

chemically heterogeneous nanoscale regions that have different β phase stabilities and may lead to 

novel properties such as low modulus and tunable thermal expansion [21]. These nanoscale phases 

and instabilities are typically linked to the instability of the β phase obtained through chemical 

alloying coupled with solution treatment and quenching. The presence of these phases during 

thermomechanical processing may have a significant impact on deformation behavior and 

mechanical properties; therefore, investigation into stability and evolution of reported nanoscale 

phases has been of continuing scientific interest.  

 

Figure 2.5: (a-c) Diffraction patterns from [110]β and [100]β zone axis of β quenched Ti–26Nb and Ti–26Nb–2Zr showing 

decreased intensity for ω reflections, streaking, and intensity maxima. (d) Dark-field TEM image and (e) high magnification 

HAADF-STEM image showing nano-domains (O’ phase). Adapted from Ref. [26]. 
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The metastable ω phase transformation in β Ti alloys occurs through diffusionless or 

diffusional processes. The ω phase forms rapidly during solution treatment and quenching 

(athermal ω) or during low temperature isothermal ageing below about 500 °C (isothermal ω) as a 

coherent particle in the β matrix [19]. ω’s transformation pathway (Figure 2.4c) involves a 

displacive partial collapse of {111}β planes in the β structure [29,30]. The transformation continues 

with a complete collapse of these planes, followed by growth and coarsening of ω precipitates and 

diffusional rejection of β stabilizing elements from ω. The partial collapse of {111}β planes yields 

a trigonal structure, while a complete plane collapse will show a hexagonal structure [19]. The 

orientation relationship between β to ω is reported as: {111}β//(0001)ω; <1-10>β//<11-20>ω [19]. 

The athermal ω transformation is the diffusionless transformation that takes place upon quenching, 

and the morphology of the athermal ω phase is generally an ellipsoid with the major axis aligned 

with the <111>β directions. However, during isothermal ageing, two morphologies have been 

observed for isothermal ω precipitates. The changes in these morphologies have been attributed to 

the lattice misfit between the ω and β phases in different alloy systems [19,31]. Low misfit systems 

such as Ti-Nb and Ti-Mo exhibit ellipsoidal ω particles, while high misfit systems such as Ti-V 

tend to form cuboidal ω precipitates with the edges of cuboids aligned along <100>β (Figure 2.6). 

Deformation may also induce the β to ω transformation, and this transformation can be triggered 

by elastic strain or stress without plastic deformation [32]. Finally, ω is known to form directly 

from the low temperature α phase at high pressures through pressure induced transformations [19].  

 

Figure 2.6: Transmission electron microscopy images showing (a) ellipsoidal ω precipitates in Ti-35 wt. % Nb and (b) 

cuboidal ω precipitates in Ti-20 wt. % V. Adapted from Ref. [31]. 
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2.1.3 Phase transformation sequence and ageing behavior 

Heat treatment and thermomechanical processing are commonly utilized for β Ti alloys to 

control microstructure and mechanical properties. Solution treatment and ageing allows for 

controlled second-phase formation of both stable and metastable phases, and this precipitation 

behavior is linked to the instability of the β phase at temperatures below the β transus. For 

metastable β Ti alloys, a pseudo-binary phase diagram (Figure 2.7) illustrates the stability regions 

for both stable and metastable phases and can be used to tailor heat treatment strategies [6]. During 

solution treatment and quenching, the alloy is heated to a sufficiently high temperature (typically 

above the β transus) to dissolve any second-phase particles that are not thermodynamically stable 

at this temperature. This dissolution forms a homogeneous β phase microstructure in the alloy, 

which is then rapidly cooled (called “quenching”) to room temperature to retain the metastable β 

phase matrix with minimal second-phase formation. However, martensite phases, athermal ω, and 

other previously discussed nanoscale phases formed through diffusionless processes may form 

during quenching. Excessive lengths of time for solution treatment may also result in rapid β phase 

grain growth and coarsening.  

 

Figure 2.7: Schematic of a pseudo-binary isomorphous phase diagram showing martensite start temperature, metastable ω 

phase field, metastable β phase field, and equilibrium α phase field. Adapted from Ref. [6]. 

Ageing heat treatments are employed after solution treatment and quenching to induce 

precipitate formation that typically increases strength and hardness but reduces ductility of β Ti 

alloys [6]. Ageing is conducted at temperatures below the β transus and may consist of one or 
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several steps to target specific phase formation and microstructures. High and low temperature 

ageing treatments show different phase transformation sequences due to the stability of 

intermediate metastable phases [6]. High temperature ageing is conducted at approximately 450-

650 °C in the α + β phase field region and results in the direct precipitation of equilibrium α at β 

grain boundaries and in intragranular regions. The size, volume fraction, and number density of α 

precipitates depend on the alloy composition and time at the ageing temperature [33]. Generally, 

finer α precipitates are desired to obtain higher tensile strengths for structural applications [34]. 

Low temperature ageing at approximately 450 °C and below may allow the formation of 

intermediate metastable phases such as the isothermal ω phase or phase separated β’ before the 

equilibrium α phase. Depending on the solute levels for β-stabilizing elements, the phase 

decomposition sequence during low temperature ageing will be as follows [6]:  

Lower solute level: β → β +  ωiso →β +  ωiso + α →β + α 

Higher solute level: β →β + β’ →β +  β’ + α →β + α 

Generally, the alloy compositions in this thesis work follow the precipitation sequence for 

lower solute levels. During low temperature ageing, α precipitation kinetics for Ti-Nb alloy 

compositions in this thesis work are relatively slow, requiring long ageing times ranging from 10s-

100s of hours to destabilize intermediate metastable phases. However, compositions containing 

Mo and V are reported to show faster transformation kinetics for metastable precipitates during 

ageing [13,35]. Finally, recent studies have investigated the influence of isothermal ω as a 

heterogeneous nucleation agent for more refined α formation during isothermal ageing [36–39] 

and multi-step ageing [34]. Nucleation and growth mechanisms reported for resultant α formation 

have suggested influences from compositional and structural instabilities of isothermal ω 

precipitates [38–40].  

2.1.4 Deformation behavior 

β phase stability and the phase decomposition sequence during heat treatment and 

processing directly influence the ensuing deformation mechanisms during tensile or compressive 

loading. Deformation may occur in the bcc β matrix through conventional dislocation slip, 

deformation twinning, or stress-induced phase transformations. Generally, the solution treated and 

quenched state for these alloys with the absence of diffusional precipitation will show higher 
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ductility, lower modulus, and lower yield strengths. For a given alloy, β’s phase stability heavily 

influences and controls the resulting deformation behavior for solution treated and quenched alloys 

[6]. Dislocation slip generally dominates plastic deformation in stable β Ti alloys, while less stable 

β phase allows activation of {112}<111>β twinning, {332}<113>β twinning, and stress-induced 

α” martensite [6]. With the wide range of deformation mechanisms for solution treated and 

quenched alloys with metastable β phase, several studies have attempted to predict deformation 

behavior for dislocation slip, martensitic transformation, and deformation twinning using different 

parameters such as bond order and molecular electron d-orbital energy level (Bo-Md) [41,42]. An 

example of a Bo-Md plot that predicts deformation modes using alloy composition is shown in 

Figure 2.8a. Recent studies have also used parameters such as atomic radius difference and 

valence electron concentration, which are important for phase stability in high entropy 

alloys/multi-principle component alloys, to predict deformation behavior [42]. Transformation 

induced plasticity (TRIP) from stress-induced martensite formation and twinning induced 

plasticity (TWIP) from deformation twinning (Figure 2.8b-c) that result in high ductility and 

plasticity have been reported for solution treated and quenched alloys [43]. The martensitic 

transformation present in these alloy systems may also allow for shape memory or superelastic 

mechanical behavior depending on the specific martensite and austenite transformation 

temperatures [24,44]. Typical recoverable strains for the martensitic transformation up to ~5% for 

orthorhombic martensite have been reported for β Ti alloys [45].  
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Figure 2.8: (a) Bo - Md diagram with the β/β + ω phase boundary is shown together with the boundaries for Ms = RT and 

for Mf = RT. The value of the Young’s modulus (GPa) is given in parentheses for typical alloys. (b) Bright-field TEM image 

of a deformation feature in Ti-12 wt. % Mo identified as a cluster of a” variants. (c) Bright-field image of {332}<113> twin 

bands in Ti-12wt. % Mo. Adapted from Refs. [41,43]. 

After ageing heat treatments that result in precipitation of isothermal ω and/or α, 

deformation mechanisms typically only involve dislocation slip. In particular, the formation of 

isothermal ω is known to heavily embrittle β Ti alloys. Early literature shows that ω forms as small, 

coherent particles [46] that are sheared by moving dislocations leading to inhomogeneous slip and 

embrittlement (Figure 2.9) [8,13,47]. Microstructures with extensive ω formation and chemical 

partitioning of elements to ω and β typically result in reduced ductility and brittle mechanical 

properties [6,46]; thus, ω formation is historically problematic for structural applications [48]. 

However, ω phase formation in β titanium alloys has recently gathered renewed interest due to ω’s 

roles in influencing and controlling deformation behavior. For example, short ageing treatments 

have reported the ability to restrict ω growth and obtain strengthening from ω formation without a 

significant loss of ductility [49,50]. ω has also been shown to play an integral role in changing 

transformation induced plasticity and twinning induced plasticity deformation mechanisms to 

dislocation slip that results in the aforementioned ω-induced embrittlement. ω’s suppression of 

stress-induced martensite and twinning has been attributed to the difference in β and ω shear 

moduli that allows ω particles to act as local barriers to the martensitic transformation and twinning 
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[51], as well as the structural collapse of atomic planes and chemical partitioning with ω formation 

that hardens ω precipitates [52]. Finally, ω is known to act as a heterogeneous nucleation agent for 

stable α precipitation to obtain faster nucleation of extremely fine and dispersed α phase [37] 

(Figure 2.10), in which compositional variations and the structural interface of ω precipitates serve 

as preferential sites for α nucleation [36,38,39]. α precipitation is particularly important in 

commercially relevant β Ti alloys, since control over the balance of α and β phases enables 

tailoring of the resultant microstructures to promote strength, toughness, or fatigue properties [48]. 

Alloys that are strengthened with equilibrium α precipitates also deform generally through 

dislocation slip, but may show a good balance of strength and ductility with a fine dispersion of 

uniform α precipitates [6]. Tensile yield strength generally correlates with the inverse of α 

interparticle spacing, since α refinement forms a higher number of α-β interfaces that act as 

dislocation barriers resulting in increased strength [2,34,48]. Consequently, tailored heat treatment 

processes may result in various distributions, aspect ratios, and volume fractions of the α phase 

that optimize different property balances.  

 

Figure 2.9: Engineering load-elongation curves for Ti-11 at. % Mo. (a) As-quenched; (b) 3 h, 350 °C; (c) 10 h, 350 °C. (d) 

Bright-field electron micrograph of Ti-14 at. % Mo aged for 10 h, 400 °C and 2% deformed showing slip bands. Adapted 

from Ref. [8]. 
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Figure 2.10: Microstructure of Ti-5553 after being heated to 600 °C at the rate of (a) 100 °C/min and (b) 20 °C/min held for 

2 h at temperature and fast cooled to room temperature. Finer α precipitates are obtained in (b) which allows for ω 

formation prior to α. Adapted from Ref. [39]. 

2.2 Ti-Nb alloys 

Within β Ti alloys, Ti-Nb based compositions have attracted significant interest due to 

novel changes in phase stability that enabled unique reported deformation behavior and properties. 

β titanium alloy gum metal (variations of Ti-36Nb-2Ta-3Zr-0.3O, wt. %), first developed in 2003, 

reported the combination of high strength, a low elastic modulus, superelasticity, and super 

plasticity [7]. These ‘super properties’ were supposedly achieved when electronic states were 

satisfied through: 1) a compositional average valence electron number (e/a) of 4.24; 2) a bond 

order (Bo) of ~2.87; and 3) a d-electron orbital energy (Md) of ~2.45 eV. Additionally, the alloy 

required cold working and high levels of oxygen > 0.7 at. % [7]. Although gum metals were 

originally reported to deform through ‘giant fault’ formation and bulk shearing without formation 

of dislocations, several other deformation mechanisms have been demonstrated, including stress-

induced α̎ martensite phase transformation, dislocation plasticity [53], deformation twinning, ω-

phase transformation, strain-glass transition [54], and complexion-mediated martensitic phase 

transformation [55]. These deformation modes are all critically linked to β phase instability during 

processing and under mechanical loads. Further development of related alloy compositions also 

included Nb to stabilize the β phase due to its biocompatibility and to enable useful properties such 

as shape memory behavior, low stiffness, and/or high strength. These alloys exploit the 

metastability of the β phase after solution treatment and quenching to tailor properties [45,56]. 

Common minor alloying elements for gum-metal alloys include Zr and Sn, which are considered 

neutral elements for the Ti system and do not heavily partition to α or β phases [6,56].  
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2.2.1 Influence of oxygen on phase stability and deformation 

The high levels of oxygen reported for gum metal compositions have motivated a 

significant number of studies to investigate O effects on phase stability and deformation. Oxygen 

has been demonstrated to suppress the formation of martensitic α” upon solution treatment and 

induces a nanodomain arrangement with diffuse streaking in selected area diffraction patterns 

shown in Figure 2.11a-c [27]. The addition of oxygen inhibited the formation of long range 

martensite, and detailed investigations have suggested that these nanodomains are composed of 

lattice modulations due to relaxation of local strain fields around oxygen atoms [27]. Growth of 

preferential nanodomain variants has been reported with deformation and rolling [27]. Mechanical 

property investigations of gum metals have shown that increasing O concentration decreases 

Young’s modulus due to suppression of α̎ and ω phases [57]. Stress-induced martensite and 

deformation twinning during tensile deformation are suppressed with higher O levels [58]. 

Increasing oxygen content also leads to a suppression in shape memory behavior and increased 

superelasticity [59,60]. The suppression of the stress-induced martensitic transformation resulted 

in non-linear elastic behavior with high oxygen levels [59]. Cyclic stress-strain loading has 

demonstrated that the stress-strain curve shape depends highly on oxygen content, with higher 

levels of oxygen showing increased apparent yield strength and narrower stress hysteresis (Figure 

2.11d) [59]. Oxygen has also been shown to influence thermal expansion properties, with a 

negative linear expansion coefficient observed at 1.2 at. % O in as-rolled Ti-21Nb, and this thermal 

expansion behavior was reported to be determined by the amount of lattice distortion strain of the 

nanodomains [61]. Additionally, oxygen may enhance spinodal decomposition of the β phase in 

Ti-Nb alloys that affects the subsequent stress-induced martensitic transformation [62]. Finally, 

oxygen modified gum metal-like alloys have shown an increased fatigue limit during cyclic 

loading [63]. Thus, oxygen has important effects on phase stability in Ti-Nb alloys and can 

dramatically influence the resulting mechanical behavior.  

During ageing heat treatments, interstitial oxygen affects isothermal ω and equilibrium α 

precipitation kinetics of β Ti alloys. Oxygen, as a potent α-stabilizing element [2], is reported to 

accelerate the precipitation kinetics of α from ω during low temperature ageing [35,64] due to 

increases in α’s thermodynamic phase stability and nucleation driving force. Oxygen also 

partitions to the α phase during ageing, with the β matrix then containing minimal oxygen content 
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[65]. Oxygen in solid solution reduces ductility for both α and β [5] and can be easily accumulated 

during alloy thermomechanical processing and production; therefore, commercial heat treatment 

practices typically have stringent controls on oxygen content to prevent embrittlement and 

maintain toughness at relatively high strengths [48]. 

 

Figure 2.11: XRD profiles for (a) Ti–23Nb and (b) (Ti–23Nb)–1.0O alloys showing suppression of α” with oxygen. (c) Dark-

field images of nanodomain regions in the β phase. (d) Stress-strain curves obtained at room temperature for Ti-23Nb-2Zr-

0.7Ta-(0.3–1.8)O at.% alloys. Adapted from Refs. [27,59]. 

Conflicting results have been reported for oxygen effects on metastable ω phase stability 

in β Ti alloys. Oxygen has been known to suppress the formation of the ω phase during solution 

treatment and quenching [66,67]. First principles calculations suggested that added oxygen 

increases the energy barrier for phase transition from β to ω [68]. Oxygen has also been reported 

to reduce the amount of ω that is formed during ageing [35,64] and cold working [57]. However, 

more recent studies suggested that ω phase becomes more thermodynamically stable with 

additions of oxygen after various ageing treatments (Figure 2.12), with the ω phase being retained 
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instead of fully transforming to the α phase in alloys containing higher oxygen concentrations 

[9,69]. With the known issues of β Ti alloys stemming from embrittling ω formation and oxygen 

contamination, addressing these problems are a significant challenge for titanium alloy 

development and require careful process control during alloy production. However, oxygen’s 

influence on phase stability in these alloys and effect on deformation behavior offer opportunities 

to mitigate these issues and design improved alloy compositions. Detailed understanding of 

oxygen’s effect on the metastable and stable phase transformation sequence with respect to ω and 

α is required in order to elucidate effects on ensuing mechanical properties with elevated interstitial 

oxygen levels.  

 

Figure 2.12: Transmission electron microscope images for Ti-29Nb-13Ta-4.6Zr-0.1O. (a) Selected area pattern from [011]β 

zone axis. (b) Dark-field image taken from circle in (a) showing large α laths. TEM images of Ti-29Nb-13Ta-4.6Zr-0.4O. (c) 

[011]β selected area diffraction pattern revealing ω reflections. (d) Dark-field image taken from circle shown in (c) revealing 

both ω precipitates and fine-scale α laths. Adapted from Ref. [9]. 
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2.3 Ti-Mo alloys 

 Ti-Mo alloys are an important subset of β titanium alloys due to the frequent use of Mo in 

commercial alloy compositions. The Ti-Mo phase diagram (Figure 2.13) shows the α and β phase 

fields in addition to metastable equilibria and martensite start temperatures. Mo is a common 

addition to β Ti alloys due to its strong stabilization of the β phase resulting in cost-effective master 

alloys and low tendency for solidification segregation [48]. Of the reported β stabilizing elements, 

Mo has the lowest critical concentration to retain 100% of the β phase after quenching to room 

temperature [6]. A well-known parameter for characterizing β phase stability is the molybdenum 

equivalency (MoE), which is the combined measure of β stabilizing elements, α stabilizing 

elements, and neutral elements contained in a Ti alloy on the β phase stability [6]. The MoE value 

uses Mo as an arbitrarily chosen baseline to normalize other elements to an equivalent Mo value 

[6,48]. A MoE value of approximately 10 is required to stabilize the β phase during quenching 

from above the β transus temperature, and the MoE is a useful metric to rank the order of phase 

stability for model and commercial alloys [6]. Additionally, as β phase stability and the associated 

MoE values increase for β Ti alloys, their deformation mechanisms generally transition from 

stress-induced martensitic transformations and/or twinning for lower MoE values to dislocation 

slip for higher MoE values [6].  
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Figure 2.13: The Ti-Mo phase diagram. Metastable equilibria are indicated by dashed lines, the T0 curves by dotted lines. 

The martensite start temperatures are indicated by the dot-dashed line. Adapted from Ref. [70]. 

 Limited investigations on the influence of interstitial oxygen in Ti-Mo alloys have 

primarily focused on solution treated and quenched alloys. As-quenched microstructures of Ti-

7.5Mo wt. % with up to 0.5 wt. % O still showed martensite formation, but formation of the α 

phase was also reported for high oxygen compositions due to α-stabilization with oxygen [71]. In 

a more solute-rich Ti-15Mo wt. % alloy, athermal ω phase formation was suppressed with higher 

O content upon quenching, and the deformation mechanism transitioned from twinning to 

dislocation slip with oxygen [72]. With nanoscale phase formation, oxygen played an important 

role in Ti-Nb based compositions to induce these phases. However, the absence of oxygen in Ti-

Mo alloys may still allow nanoscale phase formation, as was reported for the O’ phase which 

formed in a Ti-Mo alloy where interstitial oxygen was intentionally removed [73]. Although these 

studies have explored the influence of oxygen in Ti-Mo based compositions, extensive 

investigations have not been conducted for oxygen in relation to other metastable phases.  

Furthermore, allowable levels of oxygen are still restricted in commercial alloys [48]. Therefore, 

focused studies of oxygen’s influence on phase transformations in Ti-Mo alloys would yield useful 

knowledge on the effects of oxygen relevant for important commercial alloy systems.  



 21 

2.4 Oxidation mechanisms for titanium at elevated temperatures 

Understanding and mitigating oxidation reactions have been a continuous area of focus for 

titanium alloy development. Titanium alloys are commonly used as structural materials due to their 

high specific strength and corrosion resistance, but the use of conventional Ti alloys at 

temperatures above 550 °C has been limited due to the formation of non-protective oxide layers 

[1]. In particular, the high solubility of oxygen in both the α and β phases, up to 33 and 10 at. % 

O, respectively, leads to embrittlement and preferential stabilization of the α phase coupled with 

fast diffusion and oxidation kinetics at elevated temperature exposures, resulting in severe alloy 

degradation in hot environments [74]. These challenges have motivated numerous studies on 

understanding oxidation mechanisms of titanium and its alloys as well as the development of 

protective coatings to improve oxidation resistance. Increasing the oxidation resistance and stable 

use temperature of titanium alloys would have substantial effects on industrial applications such 

as in aerospace and power generation industries, where increasing the maximum temperature of 

engines may significantly improve engine efficiency and reduce fuel consumption. Additionally, 

in aerospace industries where weight reduction is a major focus, improving titanium’s oxidation 

resistance may result in replacement of heavier Ni alloy structures with Ti alloys that would 

increase weight savings. The following sections discuss literature studies of oxidation mechanisms 

for pure Ti, a model system comprised of single-phase α at room temperature, and the influence 

of Si-containing coatings that have shown improved oxidation resistance for Ti alloys.  

2.4.1 Oxidation in pure Ti 

The oxidation behavior of pure titanium has been extensively studied over the last fifty 

years [75–79]. A stable oxide rutile (TiO2) phase has generally been observed to form [76], 

although a few reports have also found thin TiO and Ti2O3 metastable suboxide layers in low 

oxygen partial pressures (pO2 between 10-12 to 10-6 atm) [80,81]. Most reports agree with a layered 

oxide scale, albeit with different microstructures. Kofstad observed a two layer TiO2 scale with an 

inner porous region shown in Figure 2.14a [75]. Other studies have reported up to three layers, 

with an outer scale with many layers of equal thickness, an intermediate compact region, and an 

inner coarse grain oxide [78]. Finally, different microstructures have been observed with a compact 

outer oxide and inner set of oxide layers with short aligned cracks that were attributed to stresses 



 22 

in the oxide scale [79]. Many of these studies were performed using different experimental 

conditions (oxidation time, temperature, environment) with no clear mechanistic connection to the 

observed microstructures. These results suggest that the oxide morphology may be highly sensitive 

to experimental conditions, and the lack of consistency has likely hindered the development of a 

coherent mechanistic description of titanium oxidation.   

 

Figure 2.14: (a) Pt-marker study on Ti-specimen oxidized for 1 h at 1175 °C and 1 atm oxygen, showing the border between 

the transformed β-titanium and the oxygen-stabilized α-titanium next to the oxide scale. (b) Linear plot of oxidation of 

titanium at 800-1000 °C. Adapted from Ref. [75]. 

With prolonged exposure, the oxidation of uncoated titanium eventually becomes 

dominated by growth of the internal scale [75,79,81], and fast kinetics with an initial parabolic 

growth rate transitioning to a linear rate are observed for pure Ti oxidation at 700-1200 °C in 

atmospheric pressures (Figure 2.14b) [81]. The resulting internal TiO2 scale is typically porous, 

does not protect the metal from the gaseous environment, and is susceptible to spallation [4]. 

Furthermore, the high solubility of O in the α Ti phase leads to the formation of an oxygen-rich 

layer (ORL) beneath the oxide scale [10]. Such levels of interstitial oxygen in Ti have an 

embrittling effect, and the ORL has been shown to negatively affect both tensile elongation and 

fatigue life of components [82]. Therefore, the degradation of titanium during oxidation occurs 

through the loss of load-bearing metal during continued oxidation reaction and the sustained 

ingress and dissolution of oxygen into the subsurface metal [74].  

2.4.2 Effect of Si-containing coatings on oxidation resistance 

Different strategies, including alloying or the use of coatings, have been developed to 

remediate the ingress of oxygen, improve scale stability, and reduce oxide growth rate of titanium 
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[4]. In particular, the use of Si-containing coatings, deposited using different methods that include 

powder siliconizing [83–86], liquid phase siliconizing [12], laser surface alloying [87,88], or 

physical vapor deposition [11] have been associated with improvements in titanium oxidation 

resistance for elevated temperature exposures exceeding 100 hours. Accordingly, thinner oxide 

scales with finer grain structures, less porosity, and fewer cracks in the scale (Figure 2.15) were 

observed [11,89]. Such changes in the oxidation behavior were linked to the formation of silicide 

phases [12,83,84,89], such as Ti3Si, Ti5Si3, Ti5Si4, TiSi, and TiSi2, identified after thermal exposure 

and oxidation of various Si-coated Ti systems [12,83,85,87,90]. In these systems, SiO2 has been 

reported as an oxidation product in addition to TiO2 [12,83,89,90]. It was also suggested that Si 

may be in solid solution in rutile TiO2 after oxidation [11,88]. The structure and morphology of 

the evolved coating and oxide scales are highly dependent on coating chemistry and the method 

by which the coating is applied. The formation of scale porosity, cracks, or interdiffusion zones 

with brittle phases that show poor adhesion with the substrate significantly affect coating 

effectiveness [4]. However, irrespective of the coating application method, the significant 

improvement in titanium oxidation resistance from Si-containing coatings merits further study to 

comprehend the role of Si-rich coatings during oxidation.     

 

Figure 2.15: Optical images of cross-sectioned scales on pure titanium (a) and silicide-modified titanium (c). Oxidation was 

conducted in air at 900 °C for 108 h. (c) Oxidation kinetics expressed as the scale thickness versus oxidation time. Adapted 

from Ref. [11]. 

2.5 Summary 

This chapter reviewed the phase stability, precipitation, and deformation of β Ti alloys and 

discussed the influence of elevated interstitial oxygen on microstructure and mechanical behavior 

changes. Although the influence of oxygen on martensitic phase transformations has been widely 

investigated in Ti-Nb alloys, detailed understanding of oxygen and metastable ω phase formation 
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is still needed to understand changes in phase stability and microstructural evolution. There is also 

a lack of understanding on how to mitigate embrittlement and ductility losses stemming from ω 

precipitation in β Ti alloys. Furthermore, limited investigations exist for oxygen’s influence on 

phase transformations in commercially relevant Ti-Mo and Ti-V systems. Finally, the use of Si-

containing coatings on improving oxidation resistance of Ti at elevated temperatures was also 

summarized in this chapter. However, a mechanistic understanding on the beneficial effect of 

silicon is still unknown due to the complicated chemistries and complex microstructures of 

developed coatings. Therefore, this thesis provides a systematic study of oxygen’s effect on ω and 

α precipitation during isothermal ageing in β Ti alloys and the resulting changes to mechanical 

behavior. In addition, the phase transformation sequence and microstructural evolution of Si 

during Ti oxidation is identified. Overall, this work provides evidence of oxygen’s beneficial 

microstructural effects that counter conventional knowledge of oxygen as a detrimental alloying 

element for Ti alloys and discusses specific reaction mechanisms for Si-based coatings to improve 

oxidation resistance, which will influence future alloy and processing design to utilize these 

benefits.   
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Chapter 3: Oxygen Effects on ω and α Phase Transformations in a Metastable β 

Ti-Nb Alloy 

 

3.1 Introduction 

Phase stability in the metastable β titanium alloy system has been an active area of 

investigation to develop alloys intended for applications including aerospace and biomedical 

industries [2]. Oxygen has been shown to have a significant influence on titanium alloy phase 

stability and can dramatically influence the resulting mechanical behavior. Generally, oxygen has 

extensive solubility in α and β before forming oxide phases, and O is known as a strong α 

stabilizing element. Dissolved oxygen in the α and β phases causes hardening from interstitial solid 

solution strengthening and reduces ductility [5]. Specifically, conflicting results have been 

reported for oxygen effects on metastable ω phase stability in β Ti alloys. As discussed in Chapter 

2’s literature review, several studies note that oxygen suppresses or reduces the amount of ω phase 

formation during solution treatment and quenching [66,67], ageing [35,64], and cold working [57]. 

However, other studies have shown ω being retained with prolonged ageing in alloys with higher 

oxygen levels [9,69]. The presence and relative stability of the ω phase is of interest for metastable 

β Ti alloys due to its rising importance in influencing deformation behavior. This includes the role 

of ω phase as a potential heterogeneous nucleation site for α phase precipitation in aerospace β Ti 

alloys [34,36,38–40] and its influence in changing the deformation behavior from transformation 

induced plasticity (TRIP) and/or twinning induced plasticity (TWIP) mechanisms to dislocation 

channeling [51,91]. Deformation-induced ω phase has also been reported in β Ti alloys [32]. 

Finally, fine distributions of ω phase may enhance yield strength while preserving ductility 

[49,50]. Thus, clarifying the phase stability of ω with oxygen in metastable β Ti alloys will result 

in a more nuanced understanding of precipitation behavior and consequently better control of 

mechanical properties.  

In the present work, the precipitation behavior of a model metastable β-type Ti-20Nb (at. 

%) alloy was studied to elucidate the effects of oxygen on ω and α phase stability. A model binary 

alloy was selected in order to understand precipitation without the compounding effects of 
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additional elements in complex engineering alloys. We utilized the extensive solubility and 

dissolution of oxygen in titanium alloys during high temperature oxidation exposures to obtain 

specimens with a wide range of dissolved oxygen contents in the β phase matrix. These 

compositionally graded specimens allowed the investigation of a range of oxygen levels in solid 

solution up to 5 at. % O. Subsequent ageing heat treatments on pre-oxidized and unoxidized (with 

very little oxygen) specimens were conducted at temperatures in the ω + α and α phase field regions 

to understand the precipitation and phase transformation sequence. The influence of oxygen on ω 

and α precipitation is discussed based on thermodynamic phase stability, kinetic effects, and 

changes in nucleation driving force. 

3.2 Experimental methods 

An arc-melted button with a nominal composition of Ti-32.7 wt. % Nb (Ti-20 at. % Nb) 

was provided by ATI. The button was remelted three times to improve homogeneity. Interstitial 

oxygen levels were measured in the arc-melted button as 0.019 wt. % (0.1 at. %) by inert gas fusion 

using a LECO analyzer. Specimens were cut from the button using a slow speed diamond saw, 

encapsulated with pure Ti pieces in a quartz tube backfilled with Ar gas, and solution treated at 

1000 °C for 10 h, quenching by breaking in water. Interstitial oxygen levels after solution treatment 

were measured as 0.021 wt. % O (0.1 at. %) by inert gas fusion in a LECO analyzer. A subset of 

solution treated specimens were placed in an Al2O3 crucible and oxidized at 900 °C for 5 h in a 1 

standard cubic centimeter per minute (SCCM) O2/4 SCCM Ar environment (approximately pO2 = 

0.2 atm/20.3 kPa) using a Thermo Scientific Lindberg Blue M tube furnace. The oxidation 

exposure was such that specimens were inserted in the hot zone of the furnace after it was heated 

to 900 °C in a flowing Ar (40 SCCM) gas environment. After insertion and temperature 

equilibration back to 900 °C (approximately 15 minutes), the aforementioned oxidizing 

environment was introduced. Following the oxidation exposure, oxygen gas flow was stopped. 

Specimens were removed from the hot zone and cooled to room temperature in flowing Ar (40 

SCCM). These specimens were termed as “pre-oxidized”.    

As-solution treated specimens and pre-oxidized specimens were subsequently aged at 450 

°C for 2 hours and 1, 3, 6, 14, 22, and 31 days. This particular ageing temperature was chosen due 

to it being near the reported upper limit of ω phase stability and therefore would show the ω to α 

transformation after prolonged ageing [18]. Finally, a set of as-solution treated specimens and pre-
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oxidized specimens underwent a two step heat treatment: first aged at 450 °C for 3 d, then aged a 

second time at 600 °C for 1 h in order to promote ω phase dissolution and α precipitation. All 

ageing heat treatments were conducted with samples encapsulated in quartz tubes with pure Ti 

pieces that were backfilled with Ar gas and quenched by breaking the tubes in water.  

Specimens for characterization using scanning electron microscopy (SEM) imaging were 

mounted and ground using 320-1200 grit SiC papers followed by polishing with 0.03 μm colloidal 

silica suspension. Wavelength dispersive spectroscopy (WDS) analyses were conducted on 

polished cross sections of pre-oxidized Ti-20Nb in order to measure dissolved oxygen content in 

the matrix. WDS allows for more accurate quantification of light elements such as O compared to 

energy dispersive spectroscopy. These measurements were performed using a Cameca SX100 

electron microprobe and collected using an accelerating voltage of 15 kV, beam current of 20 nA, 

and a focused beam. Intensity correction was performed using the ZAF (Armstrong/Love Scott) 

method [92]. Standards for microprobe analysis background subtraction for the Kα or Lα x-ray 

lines for O, Nb, and Ti were collected using MgO (synthetic), LiNbO3 (synthetic), and Ti metal, 

respectively, with a 30 s peak and 30 s background counting time. Interference correction to 

deconvolute overlapping peaks of collected spectra was performed using pure Ti metal as the 

interference correction standard according to the method described in Ref. [93]. SEM imaging and 

focused ion beam (FIB) preparation of site-specific transmission electron microscopy (TEM) foils 

and needle-shaped atom probe tomography (APT) specimens were performed using a Thermo 

Fisher Scientific FEI Helios 650 Nanolab with a Ga+ ion FIB. TEM foils were further thinned 

using broad Ar ion milling in a Gatan PIPS II instrument. TEM images and selected area electron 

diffraction (SAED) patterns were obtained using a JEOL 3011 microscope operated at 300 kV. A 

region for 3D FIB tomography was prepared and imaged using a Thermo Fisher Scientific FEI 

Helios Nanolab 650. Bulk FIB milling of the tomography site was performed at 30 kV, 21 nA, and 

cleaning steps were performed at 30 kV, 2.5 nA. Individual slices for FIB tomography were milled 

using a 3 nm slice thickness at 30 kV, 80 pA. FIB tomography images were reconstructed using 

Avizo software 9.2.0. APT data collection was performed with a Cameca local electrode atom 

probe (LEAP) 5000 XR operated in laser mode. APT data was collected using a specimen 

temperature of 30 K, a detection rate of 0.005 atoms per pulse, laser pulse energy of 25 pJ, and 

pulse repetition rate of 200 kHz. Data reconstruction, background subtraction, peak deconvolution, 
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and compositional analysis were performed using the Integrated Visualization and Analysis 

Software (IVAS) package 3.8.2. 

3.3 Results 

3.3.1 Solution treated and pre-oxidized microstructures 

The initial microstructure in the solution treated condition showed large β grains (> 1 mm) 

with α” martensite that formed upon water quenching to room temperature. Martensite formation 

is consistent with prior literature showing that the martensite start temperature for 20 at. % Nb is 

about 200 °C [18]. No athermal ω phase was observed in the as-solution treated samples.  

In the pre-oxidized samples, the elevated temperature oxidation exposure resulted in the 

formation of a 60 μm thick layered oxide scale and long α phase laths in the subsurface metal 

region of the β matrix (Figure 3.1). The α lath region extended approximately 120 μm into the 

subsurface metal region of the cross section. α phase formation is attributed to the dissolution of 

oxygen in the subsurface region of the Ti matrix during oxidation, which thermodynamically 

stabilizes α at the oxidation temperature [2]. SEM backscatter (SEM-BSE) images of the 

subsurface metal region reveal a microstructural transition to faint laths at the interface between 

the α + β region and β phase matrix (Figure 3.2a). SAED patterns and bright-field TEM (BF-

TEM) micrographs taken from a TEM sample in the matrix near the (α lath + β) / β matrix interface 

reveal that the matrix is actually composed of α” martensite (Figure 3.2b) after the oxidation 

exposure. WDS measurements conducted on a cross section of a pre-oxidized specimen confirmed 

the ingress of dissolved oxygen in the alloy below the α lath + β region. Data points and error bars 

for WDS data in Figure 3.2c report average values and one standard deviation based on five line 

traces. Data points collected from line traces in the matrix (Figure 3.2c) show that oxygen levels 

exponentially decayed from approximately 5 at. % at the (α lath + β) / β matrix interface closer to 

the sample edges to approximately 1.5 at. % in the center of the cross section. We note that possible 

experimental sources of error may also originate from surface oxide contributions systematically 

raising the apparent oxygen concentration [94]. However, bulk atom probe tomography 

measurements from the center region also show an oxygen concentration of 1.2 at. %, which is 

within the error bars of the asymptote for WDS oxygen concentration measurements. Additionally, 

the WDS data suggest that greater than 5 at. % O (measured at the (α lath + β) / β matrix interface) 
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is needed in order to sufficiently stabilize α phase formation during oxidation at 900 °C for Ti-

20Nb. The measured Nb content in the matrix region using WDS was roughly 19 at. %, which 

agrees with the nominal button composition.  

 

Figure 3.1: Cross-sectional SEM-BSE image of Ti-20Nb (at. %) oxidized for 5 h at 900 °C in a 20% O2/Ar environment. 

Inset shows higher magnification image of location in red box showing oxide cross section and α lath formation in subsurface 

metal. 

3.3.2 Aged microstructures at 450 °C 

As-solution treated samples and pre-oxidized samples were subsequently aged at 450 °C 

for 2 hours and 1, 3, 6, 14, 22, and 31 days to observe ω and α phase transformations in the β 

matrix. The as-solution treated and aged samples (with minimal - 0.1 at. % O - and uniform oxygen 

concentration) are hereafter referred to as directly aged (DA) samples, and the pre-oxidized and 

aged samples (with the created oxygen gradient) are referred to as oxidized and aged (OXA). 

Investigation at different cross-sectional depths from the (α lath + β) / β matrix interface 

corresponded to microstructures with different oxygen contents, correlating with WDS data 

presented in Figure 3.2c, while directly aged specimens were investigated to compare 

microstructures with 0.1 at. % O. These oxygen levels created during oxidation are assumed to be 

fixed during ageing due to a slow oxygen diffusion coefficient in β Ti at the ageing temperature 

[95] and oxygen partitioning behavior to ω and α during annealing [9].  
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Figure 3.2: (a) SEM-BSE cross-sectional image showing microstructural transition at the (α lath + β) / β interface of oxidized 

Ti-20Nb (at. %). (b) BF-TEM and SAED pattern from location in red circle showing martensite formation of a TEM sample 

taken from region outlined by red box of oxidized Ti-20Nb. (c) WDS average line traces measuring oxygen content 

beginning from the (α lath + β) / β interface and traversing across the cross section of oxidized Ti-20Nb (direction of black 

arrow in Figure 3.2a). 

 

 SEM backscatter images (Figure 3.3a-b) of DA (0.1 at. % O) and OXA (4.8 at. % O) Ti-

20Nb specimens after 2 h of ageing at 450 °C reveal dense second phase precipitates at both 

oxygen levels. These precipitates are identified as ω phase by electron diffraction (Figure 3.3c-d), 

with the [110]β SAED pattern showing diffraction intensity maxima at 1/3 and 2/3 {112}β 

positions. With minimal oxygen present, ellipsoid shaped ω phase is observed, which is 

characteristic of the low misfit Ti-Nb system [96]. However, dark-field TEM (DF-TEM) images 

for higher oxygen levels (4.8 at. % O) show ω precipitates with a more elongated shape and higher 

number density compared to those at minimal oxygen levels (Figure 3.3c-d). The evolution of the 

microstructure up to 31 days of ageing is illustrated in Figure 3.4 for different oxygen contents: 

0.1, 1.5, 2.7, 3.4, and 4.1 at. % O. The elongated rod shape of ω precipitates initially observed at 

high oxygen contents is preserved at longer ageing times (Figure 3.4a-b, g). Additionally, the 

increased number density of ω precipitates with elevated oxygen content compared to minimal 

oxygen is also retained. After 6 days of ageing, ω precipitates continued to grow in size (Figure 

3.4g-j). Precipitation of α laths (about 500 nm in length) is also seen in the 4.1 at. % O condition 

(Figure 3.4f). The SAED pattern in this region confirms the presence of both ω and α phase at this 

oxygen level, with distinct reflections at the 1/2 {112}β positions corresponding to α.  
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Figure 3.3: SEM-BSE images for (a) DA Ti-20Nb with 0.1 at. % O and (b) OXA Ti-20Nb with 4.8 at. % O aged for 2 h at 

450 °C. SAED pattern from [110]β zone axis and DF-TEM images using reflection in red circle from (c) DA Ti-20Nb aged 

for 2 h at 450 °C with 0.1 at. % O, showing ellipsoidal ω precipitates, and (d) OXA Ti-20Nb aged for 2 h at 450 °C with 4.8 

at. % O, showing elongated rod shaped ω precipitates and a higher precipitate number density. 

 

Prolonged ageing of DA and OXA samples revealed differences in the α nucleation rate 

with varying oxygen content (Figure 3.4k-o). After 22 d of ageing, microstructures observed in 

backscatter SEM images show that regions with the highest oxygen contents (3.4, 4.1 at. % O) 

contain significant numbers of α precipitates (~500 nm length) with some ω particles. With 

minimal oxygen content (0.1 at. % O), a similar microstructure is also observed, but the α laths are 

larger (~1 µm length) and nucleated in larger packets of similar orientation. Interestingly, regions 

with intermediate levels of oxygen (2.7 at. % O) show primarily ellipsoidal ω phase and a small 

number of α precipitates. Investigation of OXA samples after 31 d of ageing (Figure 3.4p-s) shows 

that α phase does eventually nucleate in these high oxygen regions, but a significant amount of ω 

persists in the microstructure, in contrast with specimens containing 0.1 at. % O after 31 d of 

ageing (Figure 3.4t) showing a large number of α laths. Furthermore, the ω phase observed at 1.5 

at. % O has grown to ~400-500 nm in size, with some precipitates attaching together after 31 d of 

ageing (Figure 3.4s). This attachment resulted in the formation of highly irregular precipitate 

chains that were distributed throughout the microstructure.  
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Figure 3.4: SEM-BSE images from OXA and DA Ti-20Nb aged at 450 °C corresponding to different oxygen contents: 0.1, 

1.5, 2.7, 3.4, 4.1 at. % O. Microstructural images correspond to isothermal ageing after (a-e) 1 day, (f-j) 6 days, (k-o) 22 

days, and (p-t) 31 days. Insets of TEM SAED patterns were taken from the [110]β zone axis. 
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 Aged microstructures revealed that oxygen levels seemed to influence ω number density. 

In an attempt to quantify the ω area fraction (used as a measure of phase fraction), SEM-BSE 

images for Ti-20Nb aged for 1, 6, and 14 days at 450 °C with 0.1 or 3.4 at. % O were segmented 

using binary histogram-based image thresholding (Figure 3.5). The ω area fraction showed some 

variation depending on the specific field of view, but regardless of oxygen content ranged from 

approximately 44-48 %. Therefore, the phase fraction of ω with different oxygen contents was 

relatively constant across ageing times studied here. However, qualitative differences in the 

distribution of ω phase (relating to number density) with oxygen level are clearly observed, and 

microstructures for 3.4 at. % O are consistently more refined than those with minimal oxygen. The 

most significant difference for ω distributions is observed for Ti-20Nb specimens aged for 14 days 

at 450 °C (Figure 3.5c, 3.5f), with finer ω precipitates, and consequently increased number 

density, seen with the elevated oxygen content. 

The β + ω microstructure after 6 days of ageing examined by dark-field TEM imaging 

shows the change in ω precipitate shape with oxygen in greater detail (Figure 3.6). With very little 

oxygen present, the ellipsoid ω phase has a major axis along the <111>β direction [19] and a 

maximum size of ~150 nm. At 3.4 at. % O, the ω phase shows additional lengthening along <111>β 

to form an elongated rod shape. The maximum observed major axis is roughly 300 nm. Aspect 

ratio measurements from the TEM dark-field data confirm the additional shape anisotropy for ω 

with higher oxygen (3.4 at. % O: up to 4.2 to 1 aspect ratio) compared to minimal oxygen (0.1 at. 

% O: 1.5 to 1 aspect ratio). 3D FIB tomography collected after 6 days of ageing with 3.4 at. % O 

clearly demonstrates that the additional lengthening is constrained to one direction to form a rod 

(Figure 3.7).  



 34 

 

Figure 3.5: SEM-BSE images segmented using binary histogram-based image thresholding for the ω phase in aged Ti-20Nb 

at 450 °C in the following conditions: (a) 0.1 at. % O for 1 d, (b) 0.1 at. % O for 6 d, (c) 0.1 at. % O for 14 d, (d) 3.4 at. % 

O for 1 d, (e) 3.4 at. % O for 6 d, and (f) 3.4 at. % O for 14 d. 

 

Figure 3.6: SAED pattern from [110]β zone axis and DF-TEM image using reflection in red circle from (a) DA Ti-20Nb with 

0.1 at. % O aged for 6 days at 450 °C, showing ellipsoidal ω precipitates, and (b) OXA Ti-20Nb with 3.4 at. % O aged for 6 

days at 450 °C, showing elongated rod shaped ω precipitates. 
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In order to quantify the oxygen partitioning behavior with respect to β and ω during ageing, 

atom probe tomography was conducted on an OXA specimen after 6 d of ageing at 450 °C with 

3.4 at. % O (corresponding to microstructure in Figure 3.4g and Figure 3.7). The reconstructed 

APT dataset (Figure 3.8) shows Nb depleted and O enriched regions corresponding to ω phase 

and Nb enriched regions corresponding to the β matrix. A proximity histogram (or proxigram) that 

represents a concentration profile as a function of distance from the β/ω interface was generated 

using an iso-concentration surface of 63 at. % Ti (Figure 3.8b-c) and shows that the ω phase is 

rich in O and Ti, but not in Nb. Additionally, very little oxygen is measured in the β phase. Based 

on uniform values of the proxigram, the ω and β compositions are measured as follows: ω – Nb: 3 

at. %, O: 6 at. %, Ti: Balance, β – Nb: 28 at. %, O: 0.3 at. %, Ti: Balance. Thus, oxygen partitions 

to ω precipitates and Nb partitions to the β matrix during ageing, as previously reported by Niinomi 

et al. [9].  

 

Figure 3.7: (a) Front view and (b) side view of reconstructed dataset (970 by 820 by 130 nm) collected using FIB tomography 

from OXA Ti-20Nb with 3.4 at. % O aged for 6 days at 450 °C corresponding to microstructure in Figure 3.4g. Red dotted 

line outlines an example of a rod shaped ω precipitate. 
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Figure 3.8: (a) APT reconstruction of sample from OXA Ti-20Nb with 3.4 at. % O aged for 6 days at 450 °C. Proxigram 

showing concentration profile for (b) Ti, Nb, and (c) O as a function of distance from the β/ω interface using 63 at. % Ti 

iso-concentration surfaces. 

3.3.3 Two step ageing at 450 °C and 600 °C 

A two step ageing experiment was conducted to investigate the extent of ω phase stability 

with oxygen. A set of DA and OXA samples with 3 d of ageing at 450 °C were subsequently aged 

for 1 h at 600 °C to promote ω dissolution and faster α formation. The ω solvus for pure Ti is 

reported to be 485 °C [18], therefore ω is not expected to be stable at 600 °C. After two step ageing, 

SEM backscatter images show that the resulting microstructures also strongly depend on oxygen 

content (Figure 3.9). At low oxygen contents (0.1, 1.5 at. % O), martensite formation is observed 

with few α precipitates (Figure 3.9b). As the oxygen content increases (3.6 at. % O), α precipitates 

appear to have nucleated in patches, with ω-like particles at the center of the patches (Figure 3.9c). 

Finally, at the highest levels of oxygen (4.1-4.8 at % O), dense distributions of α laths and ω-like 

particles are observed throughout the microstructure (Figure 3.9d). TEM SAED patterns in the 

4.8 at. % O region (Figure 3.9e) show both ω and α reflections and confirm the co-existence of 

these phases [14,97].  
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Figure 3.9: SEM-BSE images from OXA Ti-20Nb aged using a two step heat treatment for 3 d at 450 °C and 1 h at 600 °C. 

(a) Low magnification image of cross section. (b) Microstructure from region in blue box of low magnification image with 

1.5 at. % O showing martensite and small α precipitates. (c) Microstructure from region in green box of low magnification 

image with 3.6 at. % O showing ω and α precipitate patches. (d) Microstructure and (e) SAED pattern with (f) key diagram 

from [110]β zone axis from region in red box of low magnification image with 4.8 at. % O showing ω and α precipitates. 

3.4 Discussion 

The results reveal that oxygen content significantly affects ω and α precipitation in a non-

linear manner in the β matrix of Ti-20Nb. Elevated oxygen content results in a rod-like precipitate 

shape and higher number density of the ω phase. With additional ageing, these shape and number 

density differences were preserved, and ω showed a slower growth rate with high oxygen. 

Prolonged ageing yielded α precipitation at all observed oxygen contents, but the rate and amount 

of α nucleation was heavily influenced by the level of oxygen. The slowest α nucleation rate was 

observed with intermediate levels of oxygen in solid solution (2.7 at. % O) compared to faster 

precipitation with minimal (0.1 at. %) and elevated (4.1 at. %) oxygen. Below we discuss the 

effects of oxygen on ω and α precipitation and phase stability.   
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3.4.1 Role of oxygen on martensite formation and ω nucleation 

Previous studies [27,58,98] have shown that oxygen in solid solution (0.5 at. % or greater) 

suppresses martensite formation during quenching in Ti-Nb alloys. However, the present results 

(Figure 3.2) with up to about 5 at. % O suggest that martensite suppression depends on both Nb 

and O content and may not be suppressed with oxygen if it is sufficiently stabilized at lower Nb 

contents. Oxidation of Ti-20Nb specimens resulted in a gradient of oxygen concentration in the 

matrix from the surface to center of specimens, and precipitation of large α laths in the subsurface 

metal just below the oxide layer is consistent with oxygen stabilizing the α phase. Martensite 

formation was confirmed in the β matrix below the α + β region upon quenching after oxidation 

(Figure 3.2b). Additionally, at higher Nb contents, martensite formation was suppressed in the 

matrix with high oxygen. This is shown in the β matrix between α laths in the two-phase α + β 

region of Figure 3.2a where the Nb and O contents were measured using WDS as roughly 23 at. 

% and 4.9 at. %, respectively. The suppression of martensite with oxygen in literature has been 

attributed to different factors, including an increase in the energy barrier of the transformation and 

formation of a semi-α” structure that acts as local barriers to long range martensite formation [99], 

a change in the relative stability of β and α” [100], and the presence of oxygen atoms in octahedral 

sites inhibiting contraction along the a-axis of α” martensite [101]. However, most previous studies 

were conducted with Nb content between 23-25 at. %, corresponding to a martensite start 

temperature (Tm) of roughly 100 °C [18]. Clearly, 1 at. % O is able to suppress martensite formation 

at these Nb compositions [27]. In Ti-20Nb used in this study with a Tm of about 200 °C [18], even 

approximately 5 at. % O, corresponding to the oxygen level measured at the (α lath + β) / β matrix 

interface where martensite formation was observed (Figure 3.2), was not enough to suppress 

martensite formation. Similarly, a Ti-11Nb-4O at. % alloy fabricated through powder metallurgy 

also showed minor α” formation after solution treatment [102]. Curiously, Ti alloys with the same 

20 at. % Nb content have been reported to suppress martensite formation with only 0.7 at. % O in 

solid solution [103]. 

Upon ageing, the ω precipitate number density increased with greater oxygen content 

(Figure 3.3a-b). A simple thermodynamic basis for this observation may be attributed to oxygen 

increasing the phase stability of ω. According to published metastable Ti-Nb phase diagrams [18], 

the alloy composition and ageing temperature used in this study are to the right of the T0
β/ω line 

that defines equality of the β and ω Gibbs free energies. Therefore, in the absence of oxygen, ω is 
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expected to form by nucleation and growth. If additions of oxygen increase the phase stability of 

ω (i.e. lowering its Gibbs free energy), it consequently also increases the driving force for ω 

nucleation, leading to a higher precipitate number density, as experimentally observed. Increases 

in ω phase stability with oxygen may also shift the ω Gibbs free energy curve such that the alloy 

concentration moves to the left of the T0
β/ω line. There, a displacive transformation from β to ω, in 

which {111}β atomic planes partially collapse to form ω-like embryos [29,30], becomes possible, 

resulting in an increased ω precipitation rate.  

3.4.2 Role of oxygen on ω precipitate morphology and growth rate 

Growth and coarsening of isothermal ω during ageing require significant diffusion, with 

Nb being rejected from the ω phase and diffusing in the β matrix to the equilibrium composition. 

During ageing, oxygen partitions to ω from the β matrix, as previously shown [9,69] and further 

confirmed by the present APT measurements (Figure 3.8). The influence of oxygen content on 

the growth rate and morphology of the ω precipitates (Figure 3.5, 3.6) may stem from changes in 

the nature of the interface, the structure of the ω phase, and/or from kinetic limitations associated 

with solute diffusion and the β to ω transformation. 

Increasing the alloy’s oxygen concentration led to the formation of rod shaped ω 

precipitates with increased aspect ratio compared to ellipsoidal shapes with minimal oxygen 

(Figure 3.4, 3.6). Rod shaped ω phase at small sizes has been reported in literature [38,104] and 

also observed in this study (Figure 3.3d). Larger rod-like ω in a β Ti alloy processed with rapid 

heating rates and short ageing times has been shown [105], but the well-developed size of rod 

shaped ω that persists with long ageing times greater than 6 days (Figure 3.6b) has not been 

reported previously. If one assumes local equilibrium, precipitate shape is classically governed by 

the balance between interfacial energy and elastic misfit strain contributions. Density functional 

theory (DFT) calculations on low energy configurations of the ω/β interface suggested that the 

ellipsoidal shape in oxygen-free Ti-Nb may be attributed to interfacial energy anisotropy [106] 

and traditionally, the ellipsoidal shape has been associated with low misfit Ti alloy systems [96]. 

The retention of an ellipsoid shape for Ti-Nb-O ω precipitates suggests that interfacial energy may 

still play some role in controlling precipitate shape. However, the increase in aspect ratio to form 

a rod shape suggests that misfit strains through lattice distortion with added oxygen may also be 

relevant. Moreover, beyond equilibrium growth, precipitate shape may be affected by kinetic 
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effects, in which the β to ω transformation favors a particular direction or orientation during 

growth. 

Conflicting or lack of literature results on equilibrium contributions complicates the current 

understanding of the role of O on ω growth rate. Without oxygen present, the nature of the ω/β 

interface reportedly evolves during ageing, and these structural changes may alter the influence of 

this interface on controlling ω growth. The nanoscale ω phase that forms upon quenching has been 

reported as coherent with a diffuse interface [29]. However, as ω grows during ageing, a sharp 

interface [29] has been observed with the existence of ledges [14,38], suggesting that growth could 

be interface-limited. During growth, the ω/β interfacial character may also change to semi-

coherent [38], and misfit dislocations have been reported when ω has reached ~200 nm in size 

[107]. In contrast, it is well known that diffusion and rejection of β-stabilizers occurs during 

isothermal ω growth [2], and early literature suggested diffusion-controlled ω nucleation and 

growth for Ti-Mo alloys [108]. With oxygen, additional contributions to ω growth rate may arise 

from kinetic effects. As discussed above, the transformation from β to ω may happen very quickly 

by plane collapse, as a consequence of the oxygen stabilization of ω with respect to the β phase. 

As highlighted in [68], oxygen may increase the energy barrier associated with this collapse, and 

consequently reduce the rate of the transformation. A similar increase in energy barrier with 

oxygen that is expected to reduce nucleation rate has been shown for the martensitic α to ω 

transformation that takes place at high pressures [109], and ω suppression with oxygen has been 

experimentally verified for this transformation [110]. Kinetic limitations relating to high activation 

energy barrier for the β to ω transformation during nucleation have also been recently reported in 

the Ti-V system [111]. In the present results, the β to ω transformation is not suppressed with 

oxygen, likely due to the relatively high ageing temperature that allows for substantial diffusion, 

but the increase in energy barrier may slow the transformation rate during ω growth, as observed 

experimentally (Figure 3.5). Since O prefers the octahedral sites on {111}β planes, the β to ω 

transformation involving collapsing O atoms, which accounts for three out of four transformation 

pathways, requires short displacements for O to relocate to its final site and are associated with a 

30-40 meV/atom energy barrier [68]. Such a high energy barrier would kinetically slow down the 

β to ω transformation and therefore the ω growth rate.  
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3.4.3 Role of oxygen on α nucleation in the presence of ω 

With interstitial oxygen in the β matrix, prolonged isothermal ageing revealed that α 

eventually precipitated at all oxygen levels in this study (0.1-4.1 at. % O), which is consistent with 

ω being a metastable phase in β Ti alloys [107]. Furthermore, oxygen increases the energy of ω 

relative to that of α [109]. Surprisingly, α nucleation in Ti-Nb was quite slow, and ω persisted for 

significantly longer ageing periods in specimens both with and without oxygen. Literature reports 

on the effects of oxygen are conflicting, with oxygen having been reported as either reducing [9] 

or accelerating [35,64] the rate of α precipitation from ω. Interestingly, the α precipitation rate in 

the presence of the ω phase was observed to be slowest for intermediate levels of oxygen (2.7 at. 

%). Oxygen is a potent α-stabilizer [2], which explains the early α nucleation at relatively high 

oxygen levels (3.4, 4.1. at. % O). Nonetheless, the formation of ω prior to α suggests that α 

nucleation from β is associated with a high energy barrier and may be facilitated by ω nucleation. 

α nucleates at later times in oxygen-free samples and α nucleation is most delayed at intermediate 

levels of oxygen. Based on these results, we hypothesize that small levels of oxygen increase the 

ω phase stability with respect to the β phase without significantly increasing α stability, while 

higher levels of oxygen dramatically increase α stability over that of the ω phase. These stability 

changes would result in differences in the α nucleation driving force that account for the observed 

changes in precipitation rate. Two step ageing results (Figure 3.9) also suggest that elevated 

oxygen helps to expand the region of ω phase stability to higher temperatures. During the second 

ageing step at 600 °C, which is above the reported ω solvus [18], Nb and Ti diffusion is expected 

to dissolve the ~200 nm ω phase that precipitated during the first ageing step at 450 °C [112]. This 

dissolution was observed in both DA specimens and the center of OXA specimens with lower 

oxygen content, and martensite is formed in these regions upon quenching. However, at the highest 

interstitial oxygen contents (4.8 at. %), ω and α were identified using electron diffraction, 

indicating that the elevated oxygen content helped to stabilize the ω phase even at 600 °C. These 

insights on oxygen as both an α and ω-stabilizer may open new avenues of microstructural control 

for future design and development of β-Ti alloys.  
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3.5 Conclusions 

 The nucleation and growth of ω and α precipitates in Ti-20 at. % Nb with 0.1-4.8 at. % O 

was systematically investigated during isothermal ageing to elucidate oxygen effects on phase 

transformations in metastable β Ti alloys. The main conclusions are as follows:  

 Oxidation experiments were used to investigate a range of oxygen contents in solid solution 

between 0.1 to 4.8 at. % on the subsequent ageing behavior of β titanium alloys.  

 Ti-20Nb specimens with oxygen levels up to about 5 at. % showed martensite formation 

upon quenching following oxidation exposure. Therefore, the ability of oxygen to suppress 

martensite formation in metastable β Ti depends on both Nb and O content.  

 Oxygen increases the stability of ω phase. During ageing, ω number density increases with 

elevated oxygen. Additionally, oxygen induces ω precipitates to form with a rod-like shape 

compared to an ellipsoid shape without oxygen present. Elevated oxygen content also 

expands the region of ω phase stability up to 600 °C, indicating that oxygen is an ω-

stabilizer in β Ti alloys. 

 Oxygen partitions to the ω phase during ageing and the growth rate of ω with high oxygen 

was slowed compared to ω formed with minimal oxygen. This growth rate change is 

attributed to an increased energy barrier for the β to ω transformation with oxygen. Thus, 

oxygen shows a dual effect on the ω phase by increasing phase stability but kinetically 

limiting the rate of transformation from β.   

 α nucleation in the presence of ω depends on oxygen content. With high oxygen (greater 

than 3.4 at. % O), α precipitates at the fastest rate due to the significant increase in α 

thermodynamic phase stability and nucleation driving force with elevated oxygen. With 

intermediate levels of oxygen (2.7 at. %), α forms at the slowest rate due to a reduced 

nucleation driving force from increased ω phase stability, but relatively unchanged α 

stability. Therefore, oxygen content allows for microstructural control of ω and α 

transformation rates in β titanium alloys.  
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Chapter 4: Enhanced Work Hardening from Oxygen-Stabilized ω Precipitates in an Aged 

Metastable β Ti-Nb Alloy 

 

4.1 Introduction 

High levels of oxygen in solid solution in Ti alloys are considered detrimental to 

mechanical properties because of embrittlement concerns. In metastable β titanium alloys, the 

formation of isothermal ω precipitates is also known to cause severe embrittlement and ductility 

reduction [6,46]. ω is known to form as small, coherent particles [46] which are sheared by moving 

dislocations leading to inhomogeneous slip and embrittlement [8,13,47]. Therefore, ω 

precipitation has been historically undesirable for structural applications, and commercial heat 

treatment practices for β Ti alloys are usually designed to avoid ω formation [48]. However, ω 

phase formation in β Ti alloys remains an important area of interest due to ω’s roles in controlling 

deformation behavior and structural properties. These roles include ω’s influence as a 

heterogeneous nucleation agent for precipitation of the stable α phase [36,38,113], ability to 

change transformation induced plasticity and twinning induced plasticity deformation mechanisms 

to dislocation channeling [51], and contribution to enhancing ductility while preserving high 

strength during short ageing treatments [49,50]. While it is clear that the significant impact of ω 

precipitates on the deformation behavior of metastable β Ti alloys can be controlled via appropriate 

ageing, whether the properties of ω precipitates and consequently the mechanical response of β Ti 

alloys can also be tailored via chemistry is less clear.  

Oxygen in solid solution has been shown to change ω’s phase stability [9] and significantly 

influence phase transformations during heat treatment and processing of β Ti alloys [6]. In general, 

titanium has a high affinity for oxygen at room and elevated temperatures [2], and interstitial 

oxygen has been reported to reduce ductility for both the α and β phases [5]. Specifically, 

interstitial oxygen changes the formation of metastable phases in β Ti alloys [2,114]. Oxygen has 

been shown to suppress the martensitic transformation in β titanium alloys during solution 

treatment and quenching [114]. This suppression of martensite reportedly results in novel 
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deformation behavior and thermal expansion properties in gum metal-like compositions [7,59–

61]. Oxygen also influences ω and α precipitation during low temperature isothermal ageing 

[9,69]. In particular, elevated oxygen in Ti-Nb alloys leads to changes in ω’s precipitate 

morphology, number density, and growth rate during ageing, and in α precipitation rate (Chapter 

3). Oxygen partitions to the ω phase after extended ageing, leaving minimal O present in the β 

phase matrix [9,69]. Although ω precipitates tend to promote shear band formation and slip 

localization, oxygen’s partitioning behavior to ω and its role in refining ω precipitate distributions 

create an opportunity to investigate the synergy between two detrimental factors, the presence of 

oxygen and ω formation, on the resulting mechanical properties. Specifically, we show that 

oxygen-stabilized ω leads to increased resistance to shear localization and consequently to 

increased strength and strain hardening. The results may suggest design strategies to address the 

significant embrittlement and loss of ductility observed for ω-strengthened β Ti alloys without 

oxygen.  

4.2 Experimental methods 

An arc-melted button with a nominal composition of Ti-32.7 wt. % Nb (Ti-20 at. % Nb) 

was provided by ATI. The button was remelted three times to improve homogeneity. Specimens 

were cut from the button using a slow speed diamond saw, encapsulated with pure Ti pieces in a 

quartz tube backfilled with Ar gas, solution treated at 1000 °C for 10 h, and quenched in water. 

Interstitial oxygen levels were measured in the arc-melted button and after solution-treatment as 

0.1 at. % by inert gas fusion using a LECO analyzer. A set of solution treated specimens was 

oxidized at 900 °C for 5 h in a 1 standard cubic centimeter per minute (SCCM) O2/4 SCCM Ar 

environment (approximately pO2 = 0.2 atm/20.3 kPa), which were termed as “pre-oxidized”. The 

as-solution treated specimens and pre-oxidized specimens were subsequently isothermally aged 

using the following conditions: 300 °C for 3 days or 450 °C for 2 h or 3 days. Oxidation and ageing 

heat treatments were conducted according to methods reported in Chapter 3. The aged samples 

without the oxidation treatment are hereafter referred to as directly aged (DA) samples, and the 

pre-oxidized and aged samples (with the created oxygen gradient) are referred to as oxidized and 

aged (OXA). Investigation at different cross-sectional depths of the OXA specimens corresponded 

to microstructures with different oxygen contents, which were measured using wavelength 

dispersive spectroscopy (WDS) as reported in Chapter 3. Specimens for characterization were 
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mounted in epoxy and ground using 320-1200 grit SiC papers followed by polishing with 0.03 μm 

colloidal silica suspension. Scanning electron microscopy (SEM) imaging and focused ion beam 

(FIB) preparation of site-specific transmission electron microscopy (TEM) foils and needle-shaped 

atom probe tomography (APT) specimens were performed using a Thermo Fisher Scientific FEI 

Helios 650 Nanolab with a Ga+ ion FIB. TEM specimens were cleaned using low energy Ar ion 

milling to remove damage induced during Ga+ ion FIB milling [115]. TEM images, scanning 

transmission electron microscopy (STEM) images, and selected area electron diffraction (SAED) 

patterns were obtained using a JEOL 3011 microscope operated at 300 kV and Thermo Fisher 

Scientific Talos F200X G2 microscope operated at 200 kV. APT data collection was performed 

with a Cameca local electrode atom probe (LEAP) 5000 XR operated in laser mode. APT data was 

collected using a specimen temperature of 30 K, a detection rate of 0.005 atoms per pulse, laser 

pulse energy of 25 pJ, and pulse repetition rate of 200 kHz. Data reconstruction, background 

subtraction, peak deconvolution, and compositional analysis were performed using the Integrated 

Visualization and Analysis Software (IVAS) package 3.8.2 and AP Suite software package 6.1. 

Given the compositional gradient and resulting microstructural variation of OXA Ti-20Nb 

specimens, micropillar compression testing was utilized to probe deformation mechanisms of 

localized regions within samples. Precise crystallographic grain orientations were measured using 

electron backscatter diffraction (EBSD) for polished DA and OXA samples. Large β phase grains 

(approximately 500 μm to 1 mm in size) observed in polished specimens were selected for circular 

micropillar fabrication (Appendix II). One grain in each sample was selected with an out-of-plane 

(100)β orientation to ensure a high Schmid factor for the reported operative <111>{112}β slip 

system for uniaxial compression of ω-enriched β Ti alloys [116,117]. Representative Schmid 

factor maps calculated from EBSD inverse pole figure (IPF) maps for uniaxial compression with 

<111>{112}β slip and <111>{110}β slip are shown in Appendix II. Although micropillar 

compression may show size-related effects based on pillar dimensions and tested microstructures 

[118], precipitate-strengthened alloys with fine precipitate sizes have shown a much weaker size 

dependence, where deformation behavior is controlled by internal microstructural length scales 

that dominate over specimen size effects [119,120]. In general, extrinsic size effects tend to 

dominate when specimen dimensions are sufficiently larger than dispersed microstructural features 

and the tested volume contains ample dislocation sources [121]. Under such conditions, small-

scale mechanical testing methods yield meaningful yield strength values [121]. Therefore, single 
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crystal micropillars with 2 or 5 μm diameters (d) were fabricated using FIB and SEM in a Thermo 

Fisher Scientific FEI Helios 650 Nanolab in order to better approximate bulk-like properties. FIB 

micropillar fabrication was performed using an automated script with coarse annular milling at 30 

kV, 9 nA and fine milling at 30 kV, 0.79 nA. Milled micropillars had a diameter-to-height aspect 

ratio of approximately 1 to 2.5 to avoid a triaxial stress state for low aspect ratios and pillar 

buckling at high aspect ratios [122], and had a maximum vertical taper angle of ~3° due to the Ga+ 

ion beam profile [123]. Representative 2 and 5 μm diameter circular pillars are shown in Appendix 

II. For OXA specimens, micropillars were fabricated at distances of approximately 100, 500, and 

1000 μm from the α lath/β matrix interface, corresponding to oxygen levels of 4.1, 2.7, and 1.5 at. 

% O, respectively, as measured by WDS (Chapter 3).  

Compression of the micropillars was performed using in-situ and ex-situ systems. In-situ 

testing was performed using a Bruker Hysitron PI 85 SEM Picoindenter with a diamond flat punch 

indenter (11 μm diameter flat end) in a Thermo Fisher Scientific FEI Magellan SEM. Ex-situ 

testing was performed using a Bruker Hysitron TI 950 Triboindenter equipped with a flat punch 

indenter (60° cone angle, 10 μm diameter flat end) or a spherical probe indenter (60° cone angle, 

50 μm diameter spherical indenter). Loading was displacement-controlled with a constant loading 

rate of 2.5 nm/s, resulting in a strain rate of ~0.0005 s-1. Since there may not be an obvious failure 

point for micropillar compression testing, tests were manually stopped at a predetermined 

displacement amount in order to characterize compressed pillars at specific nominal strain levels. 

Videos collected during in-situ compression testing in the SEM show the progression of 

micropillar deformation for specific conditions and are reported in Appendix II. Buckling was not 

observed for any tested micropillars in this study. Additionally, compression of 2 and 5 μm 

diameter pillars and using different probe indenter geometries indicated no difference in observed 

experimental trends (Appendix II). Engineering stress and strain values were calculated from in-

situ and ex-situ load versus displacement data. The engineering stress was calculated as σ = F/A0 

where F is the measured force and A0 is the cross-sectional area at the top of the pillar, and the 

engineering strain was calculated as ε = ΔL/L0 where ΔL is the pillar displacement and L0  is the 

initial pillar height [117]. During in-situ testing and after ex-situ testing, the morphology of 

compressed pillars was observed using SEM, TEM, and high-angle annular dark-field (HAADF) 

STEM imaging of deformed pillars using cross-sectional FIB liftouts similar to Refs. [124,125].   
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4.3 Results 

4.3.1 Initial microstructures of aged Ti-20Nb with varying oxygen content  

 The aged microstructures for DA and OXA Ti-20Nb specimens were characterized using 

SEM, TEM, and APT prior to micropillar compression testing to determine differences in 

precipitate size, number density, and chemistry. The oxidized Ti-20Nb microstructures prior to 

ageing and detailed discussion of the role of oxygen on ω and α precipitation kinetics were reported 

in Chapter 3. After isothermal ageing for 3 d at 300 °C, second phase precipitates identified as 

the ω phase by electron diffraction formed in the β phase matrix of DA and OXA Ti-20Nb 

specimens (Figures 4.1a-b). SAED patterns of the [110]β zone axis for both DA and OXA 

specimens showed ω reflections at 1/3 and 2/3 {112}β positions. These ω reflections correspond 

to the diffraction spots for the ω1 and ω2 variants out of four total ω-variants that form from β. 

Diffraction spots for the ω3 and ω4 variants are not observed since they are overlapping with the 

diffraction spots for the β phase [117]. Dark-field TEM images formed by selecting an ω 

diffraction spot revealed that DA and OXA Ti-20Nb specimens both showed a high number 

density of ω precipitates distributed homogeneously throughout the β matrix (Figure 4.1a-b). ω’s 

size, aspect ratio, area density, and volume fraction are listed in Table 4.1. The average lengths of 

the major and minor axes for ω were used to calculate an equivalent spherical diameter, 2r, which 

were ~4-6 nm regardless of oxygen content. The measured aspect ratio of ω particles based on the 

major and minor axes increased slightly without oxygen present. Neglecting particles below 1 nm, 

ω particles were counted in Figure 4.1a-b for DA and OXA specimens, and then multiplied by 4 

to account for the four crystallographic ω variants that form with equal population to obtain the 

total ω particle count. The average area densities ns of ω were then estimated by dividing the total 

particle count by the area of the TEM images in Figure 4.1a-b. The area fraction of ω was 

estimated using image thresholding and measurement of TEM images using ImageJ processing 

software to be approximately 11% for both DA and OXA specimens. These area fractions were 

assumed to equal the volume fraction, f, of ω based on stereology [126]. Finally, the inter-particle 

spacing D for ω particles was calculated by taking into account the effect of finite obstacle size for 

impenetrable particles and represents the measure of the free spacing between finite obstacles 

[127]. The average planar radius <rs> was calculated using < 𝑟𝑠 > =  𝜋 < 𝑟 >/4 , which was then 

used to calculate D using the following equation [127]:  
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𝐷 = [(32/3𝜋𝑓)1/2 − 2] < 𝑟𝑠 > (1). 

Although elemental partitioning during ageing is known to occur following ω formation [9], APT 

measurements for OXA Ti-20Nb with 4.1 at. % O aged for 3 d at 300 °C did not display strong 

partitioning behavior, as shown by the lack of solute-rich and solute-depleted regions in the 

reconstructed APT dataset shown in Figure 4.1c. A proximity histogram (or proxigram) that 

represents a concentration profile as a function of distance from the β/ ω interface was generated 

using an iso-concentration surface of 77 at. % Ti, which showed only slight concentration 

differences between the ω and β phases with respect to Ti, Nb, and O (Figure 4.1d). In particular, 

interstitial oxygen was still present in both the β and ω phases at approximately 2.5 at. %. These 

results suggest that elemental partitioning of Ti, Nb, and O has begun, but full partitioning has not 

yet occurred after ageing at 300 °C.  

 

 

Figure 4.1: Dark-field TEM images of Ti-20Nb aged for 3 d at 300 °C with (a) 0.1 at. % O and (b) 4.1 at. % O. Insets show 

SAED patterns for the [110]β zone axis showing β and ω diffraction spots. Dark-field images were formed using selected ω 

diffraction spot in red circle shown in inset. (c) APT reconstruction of OXA Ti-20Nb aged for 3 d at 300 °C with 4.1 at. % 

O and (d) proxigram showing Ti, Nb, and O concentration as a function of distance from 77 at. % Ti iso-concentration 

surfaces. 
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Table 4.1: Quantification of initial microstructural features for ω precipitates in aged Ti-20Nb with varying oxygen content. 

Specimen 

Ageing 

Treatment 

Oxygen 

Concentration 

(at. %) 

Equivalent 

Diameter, 

2r, (nm) 

Aspect 

Ratio 

Area 

Density, ns 

(um-2) 

Volume 

Fraction, f 

Inter-particle 

spacing, D 

(nm) 

DA 3 d, 300 °C 0.1 6.1 3.0 12837 0.11 8.6 

OXA 3 d, 300 °C 4.1 4.5 2.5 28877 0.11 6.3 

DA 2 h, 450 °C 0.1 33 2.8 1457 0.34 15 

OXA 2 h, 450 °C 4.1 27 3.8 1796 0.34 12 

DA 3 d, 450 °C 0.1 115 1.6 88 0.45 34 

OXA 3 d, 450 °C 1.5 110 1.6 84 0.45 32 

OXA 3 d, 450 °C 2.7 104 1.9 102 0.45 31 

OXA 3 d, 450 °C 4.1 86 3.9 127 0.45 25 

 

Ageing times at 450 °C and oxygen levels were selected to clarify the influence of elevated 

oxygen on ω precipitation kinetics and morphologies. After ageing for 2 h at 450 °C, ω precipitates 

grew in size, and the DA and OXA microstructures showed fine ~30 nm ω precipitates with 

partitioned elements as evidenced from high compositional contrast in backscattered SEM (SEM-

BSE) images (Figure 4.2a-b). SEM-BSE images also showed a higher number density and 

elongated precipitate morphologies for ω with elevated oxygen levels. Previous TEM imaging had 

revealed that a more elongated and rod-like shape was observed for ω precipitates aged for 2 h at 

450 °C with elevated O compared to ellipsoidal shapes with minimal oxygen (Chapter 3). Similar 

quantifications for ω’s size, aspect ratio, area density, volume fraction, and inter-particle spacing 

were obtained for DA and OXA specimens after ageing for 2 h at 450 °C (Table 4.1). For these 

specimens, ω’s size, area density, and volume fraction were estimated using SEM-BSE images 

that showed all ω variants.  In particular, the aspect ratio for ω in OXA Ti-20Nb with 4.1 at. % O 

is higher than for DA specimens without oxygen, which reflects the elongated shape of ω that 

develops with oxygen. The volume fraction for ω precipitates increased to ~34% for DA and OXA 

specimens. APT measurements were also conducted to investigate the extent of elemental 

partitioning after ageing at 450 °C. A reconstructed APT dataset for OXA Ti-20Nb with 4.1 at. % 

O (Figure 4.2c) showed strong elemental partitioning as well as Ti-rich regions and Nb-rich 
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regions corresponding to the ω and β phase, respectively. Furthermore, proxigram measurements 

using a 77 at. % Ti iso-concentration surface showed up to 5 at. % O in the ω phase and ~1 at. % 

O in the β phase (Figure 4.2d). Therefore, oxygen partitioned to the ω phase after ageing at 450 

°C, leaving low levels of oxygen present in the β matrix. Such elemental partitioning behavior is 

consistent with ageing results reported for similar Ti-Nb-O containing alloys [9,69], and is also 

consistent with oxygen acting as an ω-stabilizer for Ti-Nb alloys (Chapter 3).  

 

Figure 4.2: SEM-BSE images of Ti-20Nb aged for 2 h at 450 °C with (a) 0.1 at. % O and (b) 4.1 at. % O. (c) APT 

reconstruction of OXA Ti-20Nb aged for 2 h at 450 °C with 4.1 at. % O and (d) proxigram showing Ti, Nb, and O 

concentration as a function of distance from 77 at. % Ti iso-concentration surfaces. 

Prolonged ageing for 3 d at 450 °C resulted in continued growth and coarsening of ω 

precipitates at all oxygen levels. SEM-BSE images and bright-field TEM observations showed 

changes in ω’s size, number density, and morphology related to oxygen content (Figure 4.3 and 

Table 4.1). The OXA specimens with elevated oxygen content exhibited a higher number density 

of ω precipitates than the DA specimens, and the shape of ω precipitates changed from ellipsoidal 

to rod-like with increasing oxygen levels. Such changes are consistent with previously reported 

results for Ti-Nb alloys with elevated oxygen (Chapter 3). The volume fraction of ω precipitates 

after 3 d of ageing for both DA and OXA specimens at all oxygen levels was approximately 45%, 

which is likely the maximum volume fraction for this alloy at 450 °C. Regardless of oxygen 

content, no α phase was noted after ageing for 3 d at 450 °C. Additionally, as expected from prior 

work [9] and the high compositional contrast in SEM-BSE images (Figure 4.3), significant 

elemental partitioning was observed, with the β and ω phases being rich in Nb and Ti, respectively. 

For OXA specimens, oxygen partitioned to the ω phase up to 6 at. % during isothermal ageing and 

minimal oxygen of ~0.3 at. % O was present in the β matrix, in accordance with previously 

reported ω partitioning behavior [9] and ω stabilization with oxygen (Chapter 3).  
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Figure 4.3: (a) SEM-BSE and (b) bright-field TEM images of Ti-20Nb aged for 3 d at 450 °C with 0.1 at. % O. SEM-BSE 

images of Ti-20Nb aged for 3 d at 450 °C with (c) 1.5, (d) 2.7, and (e) 4.1 at. % O. (f) Bright-field TEM image of Ti-20Nb 

aged for 3 d at 450 °C with 4.1 at. % O. Insets for bright-field TEM images in (b) and (f) show SAED patterns for the [110]β 

zone axis showing β and ω diffraction spots. 

4.3.2 Micropillar compression and deformed microstructures of Ti-20Nb aged at 300 °C  

Micropillar compression testing of DA and OXA specimens aged at 300 °C was conducted 

to determine the deformation behavior of microstructures with a high number density of 

nanometer-sized ω precipitates and interstitial oxygen that has not yet strongly partitioned to ω. 

Post-compression images of 2 μm diameter pillars for Ti-20Nb with 0.1 or 4.1 at. % O aged for 3 

d at 300 °C deformed to 15-20% strain showed a large number of slip bands regardless of oxygen 
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content (Figure 4.4a-b). In-situ observations showed slip band formation and fast catastrophic 

pillar failure for both DA and OXA micropillars (Appendix II). The associated compressive 

engineering stress-strain curves showed that serrated flow and several large drops in stress values 

were observed after initial yielding for both DA and OXA specimens (Figure 4.4c). In-situ 

compression testing revealed that the observed load drops matched the activation of macro-scale 

slip events on favorable slip planes (Appendix II). The similarity in behavior for the DA and OXA 

micropillars aged at 300 °C suggests that elevated oxygen levels did not affect the deformation 

mode. 

 

Figure 4.4: SEM-BSE images of compressed micropillars for Ti-20Nb aged for 3 d at 300 °C with (a) 0.1 at. % O and (b) 

4.1 at. % O. (c) Engineering stress-strain curves for compressed micropillars in (a) and (b). (d) Bright-field and (e) dark-

field TEM images of liftout sample from compressed pillar with 4.1 at. % O in (b) showing depleted ω precipitates and 

precipitate free channels (red arrows). 

In order to evaluate the deformed microstructure, TEM imaging was performed on liftout 

samples from cross-sections along [110]β for a deformed pillar from Ti-20Nb with 4.1 at. % O 

aged for 3 d at 300 °C. Several parallel slip bands were observed spanning the pillar’s width 

(Figure 4.4d) and the ω phase was depleted in the slip bands (Figure 4.4e), resulting in the 

formation of precipitate-free channels located in the slip bands. Slip trace analysis and direction 

of the slip bands revealed that the bands were parallel to the [000-1]ω2 // [-22-2]β directions and 

perpendicular to the (-112)β plane, as expected for dislocation activity on the <111>{112}β slip 

system. These results suggest that the removal of ω precipitates is related to localized dislocation 

slip that accounts for slip band formation. Similar observations of localized dislocation activity, 

removal of ω precipitates along the <111>{112}β slip system, and formation of precipitate-free 
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channels have been reported in several other β Ti alloys containing nanometer-sized ω with and 

without oxygen [8,51,116,117]. In particular, micropillar compression of β Ti-10V-2Fe-3Al alloy 

with nanometer-sized ω precipitates reported the formation of precipitate-free channels with 

localized dislocation slip that resulted in serrated flow and load drops observed during micropillar 

compression testing [117].  

4.3.3 Micropillar compression and deformed microstructures of Ti-20Nb aged at 450 °C  

To determine differences in mechanical properties and deformation behavior with varying 

oxygen content, micropillar compression testing was also performed for DA and OXA specimens 

aged at 450 °C for 3 days such that elemental partitioning to the ω precipitates and β matrix 

occurred. Without oxygen present, macroscopic slip bands readily formed across the pillars 

(Figure 4.5a, Appendix II). However, with increasing oxygen levels, the formation of slip bands 

after compression was gradually suppressed, and micropillars with 2.7 and 4.1 at. % O did not 

show any step formation or slip bands after compression (Figure 4.5c-d, Appendix II). A similar 

series of micropillar compression tests was conducted for DA and OXA specimens aged for only 

2 hours so that they contained finer ω precipitates. Comparable trends with increasing oxygen 

content were observed for compressed micropillars (Figure 4.5e-f). Micropillars for the DA 

specimen without oxygen showed several slip bands after deformation (Figure 4.5e). In contrast, 

deformed pillars for the OXA sample with 4.1 at. % O showed fewer slip bands with smaller step 

features (Figure 4.5f), and comparing the pillar’s shape before and after compression showed 

slight bulging that suggests more distributed deformation. The significant reduction in the size and 

number of slip bands formed with increasing oxygen for these pillars also supports the observation 

of suppressed slip bands for deformed micropillars with high oxygen after 450 °C ageing. 
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Figure 4.5: SEM-BSE images of compressed micropillars for Ti-20Nb aged for 3 d at 450 °C with (a) 0.1, (b) 1.5, (c) 2.7, 

and (d) 4.1 at. % O, and for Ti-20Nb aged for 2 h at 450 °C with (e) 0.1 and (f) 4.1 at. % O. Yellow and red arrows show 

slip bands formed on micropillars during compression testing. 

Compressive engineering stress-strain curves up to 15% strain calculated from the 

collected load versus displacement data during compression of DA and OXA specimens aged for 

3 d at 450 °C were plotted to evaluate the influence of ω’s size, number density, and oxygen content 

(Figure 4.6a). In the absence of oxygen, the stress-strain curve showed a flat curve after initial 

yielding and a drop in the stress with increasing strain, which corresponded to macro-scale slip 

band and step formation (Appendix II). In contrast, the stress-strain curves for pillars fabricated 

on the OXA specimen with higher oxygen contents exhibited smooth and continuous flow, as well 

as increased work hardening after initial yielding. The average compressive yield strengths based 

on 0.2% offset values of four tested micropillars for each condition were approximately 294, 358, 

364, and 464 MPa for the DA specimen without oxygen and the OXA specimen with 1.5, 2.7, and 

4.1 at. % O, respectively. Therefore, comparing the DA specimen without O and OXA specimen 

with 1.5 at. % O revealed that yield strength increased with higher oxygen levels for the same ω 

size. For OXA Ti-20Nb with 2.7 and 4.1 at. % O, the higher oxygen levels and more refined ω 

sizes likely both contributed to the observed increases in yield strengths. Changes in strain 
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hardening behavior were evaluated using true stress-true strain curves for micropillars tested on 

DA and OXA specimens. Strain hardening behavior is given by Ludwik’s equation [128]: 

𝜎 =  𝜎0 + 𝐾𝜀𝑛 (2) 

where 𝜎0 is the initial yield stress, 𝐾 is the strengthening coefficient, and 𝑛 is the strain hardening 

exponent. Strain hardening exponents for compressed micropillars were estimated by fitting the 

plastic region of true stress-true strain curves to Eq. (2) for specimens aged for 3 d at 450 °C. For 

the DA specimen that showed a load drop in the stress-strain curve, 𝑛 was calculated based on the 

plastic region up to the onset of the first load drop corresponding to slip band formation (located 

at blue arrow in Figure 4.6a). Notably, the strain hardening exponent n was approximately ~0.12 

for the DA specimen and ~0.25 for the OXA specimen with 1.5, 2.7, and 4.1 at. % O, respectively, 

based on four tested micropillars per condition, confirming the increase in work hardening for 

OXA specimens with higher oxygen. These trends were also observed in engineering stress-strain 

curves for DA and OXA micropillars aged for 2 h at 450 °C (Figure 4.6b). More instability in the 

stress-strain curve was observed for DA micropillars aged for 2 h (blue curve in Figure 4.6b) 

attributed to the activation of more slip bands that was observed for deformed pillars compared to 

after 3 d of ageing (Figure 4.5a and Figure 4.5e). With high oxygen content, stress-strain curves 

for micropillars fabricated on OXA specimens aged for 2 h with 4.1 at. % O exhibited similar yield 

strength values and work hardening capability as those with coarser ω precipitates aged for 3 d 

with 4.1 at. % O.  

 

Figure 4.6: (a) Engineering stress-strain curves for compressed micropillars from Ti-20Nb aged for 3 d at 450 °C with 

varying oxygen content. Dashed lines in (a) show regions used for fitting to Equation 2 to estimate strain hardening 

exponents for micropillars with a load drop (located at blue arrow). (b) Engineering stress-strain curves for compressed 

micropillars from Ti-20Nb aged for 2 h at 450 °C with 0.1 and 4.1 at. % O.  
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After compression, micropillars were cross-sectioned along [110]β and examined using 

SEM and TEM to observe the deformed microstructures. SEM imaging of a compressed 

micropillar deformed to ~15% strain for DA specimens without O aged for 3 days at 450 °C was 

consistent with ω precipitate shearing, and a slip band that propagated across the entire pillar 

diameter suggested significant localized deformation (Figure 4.7a). Dark-field TEM images 

formed using ω reflections showed a continuous slip band that cut through ω precipitates (Figure 

4.7b). Similar to deformed microstructures after 300 °C ageing, the slip bands that formed were 

also parallel to the [0001] ω1 // [2-2-2]β directions and perpendicular to the (1-12)β plane, indicating 

that dislocation activity took place along the <111>{112}β slip system. The larger sizes of ω after 

450 °C ageing prevented the complete disappearance of ω precipitates after shearing, but a 

deformation channel was still formed by shearing of precipitates that propagated in a continuous 

line across the entire pillar width. Similar ω-free channels have been reported with larger ω 

precipitates after bulk tensile testing of a Ti-Mo alloy [91]. Therefore, deformation of the oxygen-

free pillar for DA Ti-20Nb aged for 3 d at 450 °C resulted in shearing of ω precipitates along the 

<111>{112}β slip system in a continuous channel spanning the entire pillar.  

 

Figure 4.7: (a) SEM-BSE image of cross-section for compressed micropillar with 15% strain for Ti-20Nb aged for 3 d at 

450 °C with 0.1 at. % O. (b) Dark-field TEM image of liftout from blue outlined region in compressed pillar shown in (a). 

Inset shows TEM SAED pattern. White arrow points to slip bands and sheared ω precipitates along <222>β direction.  

The higher number density of rod-like ω precipitates in Ti-20Nb aged for 3 d at 450 °C 

with 4.1 at. % O complicated observation of potential precipitate shearing in FIB cross-sectioned 

pillars (Figure 4.8a). SEM-BSE images of the cross-sectioned pillar did not show obvious slip 
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band formation or ω shearing after deformation to ~15% strain (Figure 4.8a). HAADF STEM 

images for a liftout sample with a [110]β zone axis showed that the shape of ω precipitates 

remained largely intact without obvious channel formation (Figure 4.8b). However, possible 

indications of precipitate shearing were visible on select ω precipitates exhibiting a disruption in 

their surface curvature and cutting features that aligned with the [0001] ω1 // [2-2-2]β directions and 

perpendicular to the (1-12)β plane corresponding to the <111>{112}β slip system (Figure 4.8c-d). 

These presumably sheared precipitates tended to be isolated features, and no extended shearing 

across multiple precipitates was observed. Imaging was also conducted for an OXA Ti-20Nb 

micropillar aged for 2 h at 450 °C with 4.1 at. % O to understand the deformed microstructure with 

smaller ω precipitates that still showed significant chemical partitioning. HAADF STEM images 

of a cross-sectioned liftout for a deformed pillar to 15% strain also revealed regions with isolated 

shearing of ω precipitates aligned with the <111>{112}β slip system (located at pairs of red arrows 

in Figure 4.9), but no extended shearing was observed. While ω precipitates can still be sheared 

with elevated oxygen, the formation of a continuous channel spanning the entire pillar’s diameter 

that results in localized deformation was hindered.  

4.4 Discussion 

Micropillar compression testing of elevated oxygen and oxygen-free microstructures in 

aged metastable β Ti-20Nb alloys showed significant changes in deformation behavior and 

mechanical properties depending on initial microstructures and oxygen content. In specimens with 

nanometer-sized ω (smaller than ~6 nm), compression testing resulted in the formation of shear 

bands, and engineering stress-strain curves showed serrated flow and several load drops regardless 

of oxygen content. In specimens with larger ω sizes (50-120 nm), the oxygen content strongly 

influenced the deformation response and the associated compressive stress-strain data. In the 

absence of oxygen, compression testing resulted in the formation of shear bands and low work 

hardening. In contrast, the presence of 2.7 and 4.1 at. % O suppressed shear band formation, and 

the associated stress-strain curves showed enhanced work hardening after initial yielding, even 

though the microstructures consisted of known embrittling features in the form of interstitial 

oxygen and metastable ω phase formation.  
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Figure 4.8: (a) SEM-BSE image of cross-section for compressed micropillar with 15% strain for Ti-20Nb aged for 3 d at 

450 °C with 4.1 at. % O. (b) HAADF STEM image of black outlined region in compressed pillar shown in (a). Inset shows 

TEM SAED pattern. (c-d) Higher magnification images of (b) with inset showing schematic diagram of precipitate shearing. 

Red arrows point to sheared ω precipitates along <222>β direction.  
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Figure 4.9: HAADF STEM image of liftout sample from compressed micropillar with 15% strain for Ti-20Nb aged for 2 h 

at 450 °C with 4.1 at. % O. Pairs of arrows colored in shades of red show regions with sheared ω precipitates. 

Precipitate shearing, slip localization deformation mechanisms, and fast catastrophic 

failure in β Ti alloys containing ω precipitates is not unexpected. Similar observations have been 

reported for several nominally oxygen-free β Ti alloys in bulk testing [8,46,116] and micropillar 

investigations [52,117,129,130]. The ω phase formed during quenching or very short ageing, 

where significant elemental partitioning has not yet taken place, generally does not result in loss 

of ductility [49,50,91]. However, upon isothermal ageing, increased tensile strengths with reduced 

ductility are typically observed [6]. The loss of ductility has been attributed to the ω structural 

transition from trigonal to hexagonal and the onset of solute partitioning, both contributing to the 

hardening of ω precipitates and suppression of twinning [52]. Differences in shear modulus 

between β and ω may also account for the suppression of transformation induced plasticity and 

twinning induced plasticity deformation mechanisms [51]. Deformation then occurs by shearing 

of coherent ω particles resulting in planar slip and formation of localized slip bands [8], primarily 

for the <111>{112}β slip system [116], leading to negligible work hardening and fast fracture. 

Upon the onset of localized slip, dislocation channeling may occur, where dislocation activity is 

confined to precipitate-free channels that are devoid of ω particles due to shearing through the 

reverse transformation of ω to β phase during deformation [51,116]. The deformation mode may 
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be controlled by the deformation anisotropy of ω variants, in which the ω1 variant is easily sheared 

in continuous slip but the other variants show strong lattice resistance to dislocation slip leading 

to pile-up that triggers ω lattice disordering [52,117]. With these mechanisms, the removal of ω 

precipitates creates softer channels that concentrate and limit plastic flow in narrow slip bands 

leading to fracture [8,116,117]. With larger ω sizes, shearing of ω precipitates along a continuous 

channel similarly lead to slip band formation, localized plastic flow, and fast fracture with 

negligible ductility as demonstrated in literature bulk testing [8,91].  

The investigated microstructures aged at 300 and 450 °C showed a wide range of ω sizes 

related to ageing conditions and oxygen content that changed the growth kinetics for ω (Table 

4.1). To understand the relative roles of precipitate size and oxygen in suppressing shear band 

formation, the average and standard deviation of yield strengths based on four tested micropillars 

for each condition were plotted against ω’s equivalent diameter (Figure 4.10). For ω particles with 

an equivalent diameter smaller than 10 nm, corresponding to Ti-20Nb aged at 300 °C, pillars with 

and without oxygen showed similar yield strength values, and the large error bars for yield 

strengths at these ω sizes are attributed to the stochastic nature of the triggering events for fast 

catastrophic failure. At equivalent diameters between 20-40 nm corresponding to specimens aged 

at 450 °C for 2 h, micropillars containing oxygen showed a significant increase in yield strength 

while the strengths for those without oxygen remained constant or decreased. With equivalent 

diameters increasing above 80 nm for specimens aged at 450 °C for 3 d, the yield strength 

decreased with larger ω sizes for both oxygen-containing and oxygen-free pillars, and the oxygen-

containing micropillars maintained higher yield strengths than those of oxygen-free pillars. 
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Figure 4.10: Average compressive yield strength dependence on ω equivalent diameter for tested micropillars and 

calculated stresses for precipitate shearing and dislocation bypassing mechanisms for aged Ti-20Nb with and without 

interstitial oxygen. 

The transition in yield strength dependence with oxygen at ~10 nm equivalent diameters 

for ω suggests a change in the dislocation interactions. Dislocations are known to shear through 

coherent ω particles or bypass them through Orowan looping [8]. The increase in the critical 

resolved shear stress (CRSS) when dislocations shear through ordered misfit-free ω particles was 

estimated using the following equation derived by Gysler et al. [8,131]: 

Δ𝜏𝑠 = 1.02𝛾3/2𝐺−1/2𝑏−2𝑟1/2𝑓1/2 (3) 

where γ is the anti-phase boundary energy, G the shear modulus, b the Burgers vector of the β 

matrix, 2r the equivalent diameter for ω, and f the volume fraction of ω particles. The increase in 

CRSS due to a dislocation bypassing mechanism through Orowan looping was also estimated for 

the investigated microstructures using the following equation [8,132]:  

Δ𝜏𝑏 =
1

1−𝜈

𝐺𝑏

2𝜋𝐷
𝑙𝑛

√2/3𝑟

𝑏
  (4) 

where D is the inter-particle spacing. The values of Poisson’s ratio ν and G have been estimated 

for a similar Ti-Nb based gum metal alloy as 0.39 and 25 GPa, respectively, using single crystal 
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elastic constants measured with in-situ synchrotron x-ray diffraction [53,116]. Additionally, γ for 

ω particles in Ti-11Mo (at. %) has been estimated to be 0.3 J/m2 [8]. Assuming the same values 

for Ti-20Nb and using the microstructural parameters given in Table 4.1, ∆τs and ∆τb were 

calculated using the observed volume fractions in the initial ω microstructures (Figure 4.10). ∆τs 

for f = 0.45 is not shown, but such a high volume fraction would lead to even higher stresses for 

precipitate shearing. Importantly, the smaller applied stress for these two mechanisms transitions 

from precipitate shearing to dislocation bypassing at equivalent diameters of ~12 nm for f = 0.11, 

which is a similar value to the transition size noted for the experimental data (Figure 4.10). 

Furthermore, the stresses for dislocation bypassing estimated using f = 0.34 and f = 0.45 are lower 

than that of precipitate shearing for equivalent diameters greater than 20 nm. This simple analysis 

suggests that precipitate shearing is easiest for nanometer-sized ω in Ti-20Nb aged at 300 °C, 

while dislocation bypassing becomes possible at larger ω sizes obtained after ageing at 450 °C. 

Previous investigations have reported the presence of dislocation loops indicating the activation of 

dislocation bypassing and Orowan looping for deformed microstructures with larger ω precipitates 

after bulk tensile testing [8,46]. We now discuss the effect of oxygen with the different ω 

precipitate sizes. 

The mechanical response of specimens aged at 300 °C with nanoscale ω precipitates was 

similar with and without oxygen. The similar precipitate distributions and the lack of strong 

chemical partitioning during low temperature ageing suggest that oxygen did not significantly 

change the observed microstructures and the active deformation mechanisms, as was previously 

observed in related Ti-Nb-O gum metal alloys containing nanometer-sized ω precipitates [116]. 

Dislocation bypassing and Orowan looping of ω particles is unlikely considering the much higher 

stresses required compared to precipitate shearing. The predominance of shearing with and without 

oxygen contributed to the formation of precipitate-free channels observed after compression 

(Figure 4.4), resulting in negligible work hardening and fast failure. 

For specimens containing ω precipitates with equivalent diameters greater than ~15-30 nm 

depending on the specific ω volume fraction, dislocation bypassing of ω particles becomes 

feasible. The activation of dislocation bypassing at larger ω sizes can account for the shape of the 

stress-strain curves of DA specimens without O aged for 3 d at 450 °C (blue curve in Figure 4.6a). 

Some amount of plastic deformation was observed after initial yielding and prior to load drops that 

correspond to slip band formation, suggesting that some amount of distributed plasticity via 
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Orowan bypassing is possible before localization and catastrophic failure (Appendix II). Note that 

shearing and disordering of 3 of the 4 ω variants requires very high stresses [117] and therefore 

Orowan bypassing becomes a viable way to account for distributed plasticity. Eventually, shearing 

and disordering of ω particles leading to formation of a continuous deformation channel eventually 

still occurred (Figure 4.7b). This suggests that although the stresses to shear ω are quite high at 

large ω sizes, dislocations pile-up will eventually reach sufficient levels to shear and disorder ω 

variants [116,117]. This behavior differed significantly from those of micropillars aged at 300 °C 

where the high stresses required for Orowan bypassing allowed precipitate shearing to be the only 

possible deformation mechanism, and steep load drops occurred immediately after yielding 

(Figure 4.4, Appendix II).  

The presence of oxygen that partitioned to larger ω precipitates during the ageing treatment 

at 450 °C not only contributed to increasing the alloy’s yield strength, but also significantly 

increased the work hardening capability and prevented shear band formation. Oxygen’s 

partitioning behavior from β to ω during ageing, which was also previously noted in Refs. [9,69] 

and in Chapter 3, mitigates the ductility reduction known to occur with higher oxygen levels for 

β Ti [5]. Interstitial oxygen in ω may impede dislocation motion along the <111>{112}β slip 

system and improve ω’s resistance to precipitate shearing and disordering during deformation. The 

preferred site for interstitial oxygen atoms in the ω lattice is the octahedral site according to 

previous density functional theory calculations [109]. Consequently, oxygen in the octahedral site 

is also in the path of dislocation movement and may directly interfere with the ability of 

dislocations to pass through or disorder ω variants along the <111>{112}β slip system [116,117]. 

We note that the presence of oxygen in Ti-Nb-Fe alloys similarly hindered atomic movement and 

shearing along the same crystallographic system <111>{112}β during martensitic transformation 

[133]. The presence of oxygen atoms in ω likely increases the critical resolved shear stress required 

to shear through and disorder ω variants, improving the resistance to shearing. Consequently, 

dislocations are less likely to continuously shear ω particles to form precipitate-free channels that 

result in planar slip during deformation. Dislocation bypassing of ω precipitates accounts for the 

homogeneous deformation and improved work hardening observed during compression (Figure 

4.6). Oxygen-stabilized ω precipitates with partitioned O at these sizes may therefore behave 

similar to non-shearable particles, and the deformation of these microstructures would then be 

controlled by the inter-particle spacing during micropillar compression testing, as has been 
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demonstrated in an oxide dispersion strengthened Ni alloy [119]. It is thus the combination of 

larger ω sizes that enable dislocation bypassing during deformation and oxygen’s partitioning to 

ω that increases its resistance to precipitate shearing and disordering that lead to the suppression 

of precipitate-free channels and low work hardening behavior observed for DA Ti-20Nb 

specimens without oxygen.  

These results directly address the structural issues of ω precipitation and embrittlement 

during ageing of metastable β titanium alloys and may inform subsequent chemistry and heat 

treatment design strategies to improve and expand the use of β Ti alloys. Furthermore, these 

findings contradict the conventional wisdom that interstitial oxygen causes embrittlement in Ti 

alloys and must be kept at low levels. With oxygen-containing compositions, ageing treatments 

designed to promote ω growth and oxygen partitioning mitigate known challenges of 

embrittlement from isothermal ω precipitates and interstitial oxygen present in the β matrix. A 

significant outcome of forming oxygen-stabilized ω with sizes that allow for dislocation bypassing 

is the suppression of plastic flow localization responsible for severe embrittlement and poor 

ductility of ω-strengthened β Ti alloys without oxygen. This behavior combined with the high 

yield strengths generally observed for microstructures containing isothermal ω precipitates may 

enable new opportunities to develop new types of β Ti alloy chemistries and processing that 

intentionally utilize oxygen as a beneficial alloying element.  

4.5 Conclusions 

Micropillar compression studies of aged Ti-20Nb specimens with varying oxygen content 

were investigated to understand the effect of oxygen partitioning to ω on compressive deformation 

behavior. The following conclusions were drawn:  

 Ti-20Nb (at. %) aged at 300 and 450 °C showed extensive ω precipitation irrespective of 

oxygen content. For the same ageing condition, high oxygen levels slowed the growth 

kinetics for ω, resulting in higher number densities of smaller ω precipitates in samples 

with elevated O compared to specimens without O. In oxygen-containing specimens up to 

4.1 at. % O, oxygen partitioned to ω precipitates from the β matrix for aged samples at 450 

°C, but little oxygen partitioning was observed for those aged at 300 °C.  

 Different oxygen levels did not change the deformation behavior and pillar morphologies 

of Ti-20Nb aged at 300 °C. Compressed pillars showed slip bands on pillar surfaces, 
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serrated flow in stress-strain curves, and the formation of precipitate-free channels in post-

deformation TEM imaging regardless of oxygen content. These results are attributed to 

precipitate shearing and disordering of the nanometer-sized ω precipitates present after 

ageing at 300 °C that contributed to the formation of precipitate-free channels, slip 

localization, and fast fracture of compressed pillars.   

 Elevated oxygen content significantly changed the compressed micropillar morphologies 

and engineering stress-strain curve shapes for Ti-20Nb aged at 450 °C containing larger ω 

precipitates. Deformed pillars without oxygen showed large slip bands on pillar surfaces 

and negligible work hardening with load drops in stress-strain curves. In contrast, slip band 

formation was suppressed for tested pillars with elevated oxygen containing oxygen-

stabilized ω precipitates, and stress-strain curves showed improved work hardening with 

smooth, continuous plastic flow after initial yielding. These differences with oxygen 

content are attributed to oxygen’s partitioning to ω during ageing that improved ω’s 

resistance to precipitate shearing and impeded the formation of continuous deformation 

channels, which allowed for dislocation bypassing and homogeneous deformation resulting 

in improved work hardening behavior.  

 Microstructures with oxygen-stabilized ω precipitates offer significant benefits and 

pathways for future development of metastable β Ti alloys by mitigating two known 

challenges for embrittlement from interstitial oxygen impurities and isothermal ω 

formation. 
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Chapter 5: Oxygen-Induced Refinement of α Precipitates in an Aged Metastable 

β Ti-15-333 Alloy 

 

5.1 Introduction 

During ageing of metastable β Ti alloys, significant precipitation strengthening may occur 

from extensive intragranular α precipitation in the β matrix [6]. Many studies have focused on 

obtaining increasingly finer α precipitate sizes that yield very high strengths for applications such 

as aerospace components [6,48]. Specifically, the use of different heating rates, multi-step ageing 

treatments, ω-assisted α precipitation, and pseudospinodal mechanisms have been investigated to 

control α volume fraction, size, and number density [33,34,36,37,39,134–137]. With ω-assisted α 

nucleation mechanisms, previous investigations have focused on the influence of structural and 

compositional changes associated with ω phase formation to induce finer α precipitation 

[36,37,39]. It has also been hypothesized that oxygen-rich regions near ω embryos may assist the 

formation of α precipitates [38]. More generally, any structural and/or compositional heterogeneity 

can promote heterogeneous α nucleation, leading to higher nucleation rates and consequently 

increased refinement of α laths [6]. In addition, oxygen in concentrations of ~4 at. % was also 

shown to accelerate α precipitation yielding finer α precipitates in an aged Ti-20 at. % Nb alloy 

(Chapter 3). In this study, we demonstrate the use of oxygen solid solutions to refine α 

precipitation during ageing in a commercial metastable β Ti alloy Ti-15-333, which is known to 

have excellent properties including cold deformability and high strength after ageing [138].    

5.2 Experimental methods 

Commercial alloy Ti-15-333 (Ti-15V-3Cr-3Sn-3Al, wt. %) with nominally less than 0.1 

wt. % O was provided by ATI. Specimens were sectioned using a slow speed diamond saw, 

encapsulated in quartz tubes with Ar gas, solution treated at 1000 °C for 24 h, and quenched by 

breaking the tube in water. A subset of solution treated samples were oxidized in a 1 SCCM O2/ 4 

SCCM Ar (20% O2) environment at 900 °C for 5 hours. The oxygen concentration profile in the β 
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matrix after oxidation was measured on a polished cross-section using wavelength dispersive 

spectroscopy (WDS) in a Cameca SX100 electron microprobe as described in Chapter 3. 

Measurements of the O Kα, Ti Kα, V Kα, Cr Kα, Al Kα and Sn Lα X-rays were made using a 

beam current of 40 nA and accelerating potential of 15 keV. Calibration standards were synthetic 

MgO (O Kα), Ti metal (Ti Kα), V metal (V Kα), Cr metal (Cr Kα), synthetic NiAl alloy (Al Kα) 

and Sn metal (Sn Lα); Additional WDS method details are located in Appendix III.  

As-solution treated samples and oxidized samples were subsequently encapsulated in 

quartz tubes with Ar gas and aged using the following conditions: 250 °C for 64 h, and 482 °C for 

16 h. Specimens were inserted into a preheated furnace such that the sample heating rate was > 5 

°C/s. Aged specimens were cross-sectioned using a slow speed diamond saw, mounted in epoxy, 

ground using SiC papers, and polished using 0.03 µm colloidal silica suspension. Scanning 

electron microscopy (SEM) imaging and focused ion beam (FIB) preparation of transmission 

electron microscopy (TEM) foils were performed using a Thermo Fisher Scientific Helios 650 

Nanolab with a Ga+ ion FIB. TEM was performed using a Thermo Fisher Scientific Talos F200X 

G2 microscope operated at 200 kV.  

Due to the compositionally graded nature of specimens created after oxidation, micropillar 

compression testing was used to assess the mechanical properties as a function of oxygen content. 

A specific grain close to the (100)β out of plane orientation was selected in each specimen using 

electron backscattered diffraction (EBSD) (Appendix III). Single crystal micropillars with a 2 µm 

diameter were fabricated in the selected grains with a Thermo Fisher Scientific Helios 650 Nanolab 

using an automated script with coarse FIB annular milling at 30 kV, 9 nA and fine FIB milling at 

30 kV, 0.79 nA. Milled micropillars had a diameter-to-height aspect ratio of approximately 1 to 

2.5 to avoid a triaxial stress state for low aspect ratios and pillar buckling at high aspect ratios 

[122]. Micropillars were tested in compression in a Hysitron TI 950 Triboindenter with a flat punch 

indenter (60° cone angle, 10 μm diameter flat end) in displacement-controlled mode with a strain 

rate of ~ 0.0005-1. Tests were manually stopped at a predetermined displacement corresponding to 

a specific strain level. Compressive engineering stress-strain curves were calculated from collected 

load versus displacement data [117]. After compression, deformed pillar morphologies were 

observed using SEM.  
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5.3 Results and Discussion 

Solution-treated and quenched Ti-15-333 was exclusively made of the β phase with grain 

sizes greater than 500 µm. Previous work reported that as-quenched samples did not contain 

athermal ω phase [139]. However, electron diffraction from solution-treated and quenched Ti-15-

333 (Figure 5.1) showed reciprocal lattice streaking and secondary intensity maxima at 1/3 and 

2/3 {112}β locations corresponding to ω diffraction spots [29]. A dark-field TEM image formed 

from the secondary intensity maxima (marked by the orange circle in Figure 5.1) confirmed the 

presence of nanoscale athermal ω precipitates. After oxidation at 900 °C, the oxide scale that 

formed on the sample’s surface spalled easily during specimen handling and sectioning, leaving 

the base metal exposed and unprotected. Precipitation of α laths about 60 µm in length was 

observed in the subsurface metal below the oxide/metal interface (Figure 5.2a). Given oxygen’s 

role as a significant α stabilizer in titanium alloys, the formation of α laths during oxidation is 

consistent with oxygen dissolution in the β Ti matrix during high temperature oxidation that 

subsequently stabilizes α and promotes its precipitation [2]. Below the α lath + β matrix region, 

the single-phase β matrix contained a concentration gradient of oxygen created through oxygen 

diffusion during the oxidation exposure. This concentration profile was measured in the β matrix 

using WDS starting from the α lath + β region near the sample’s edges and moving towards the 

center of the cross-sectioned specimens. The measurements (Figure 5.2b) illustrated that oxygen 

diffused to a depth of ~1 mm during oxidation and reached a maximum interstitial oxygen level of 

~1.7 at. % in the β matrix near the α + β region. WDS measurements showed no change for V, Cr, 

Sn, and Al levels in the single-phase β matrix.  
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Figure 5.1: Dark-field TEM image and selected area electron diffraction (SAED) pattern of [110]β zone axis showing β and 

athermal ω diffraction spots for solution-treated and quenched Ti-15-333. 

 

 

Figure 5.2: (a) Backscattered SEM (SEM-BSE) image of base metal after oxide spallation showing α lath formation after 

oxidation exposure at 900 °C for 5 h. Orange arrow indicates starting location and direction of WDS line traces. (b) Average 

and standard deviation of four WDS line traces measuring experimentally-induced oxygen concentration beginning from 

the (α lath + β) / β matrix interface and traversing across the cross-section of oxidized Ti-15-333. 

As-solution treated specimens and oxidized specimens were subsequently aged directly at 

482 °C for 16 h to promote α precipitation according to a commercial heat treatment [140]. 

Specimens that were solution treated and aged are hereafter referred to as directly aged (DA), and 
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specimens that were solution treated, oxidized, and then aged are hereafter referred to as oxidized 

and aged (OXA). The heat treatment (482 °C for 16 h) resides in the region where α precipitates 

are known to form directly from the β matrix [138,141]. 482 °C is also above the ω solvus 

according to Thermo-Calc calculations of metastable phase fractions (Appendix III). Fast heating 

to 482 °C also avoided β phase separation and isothermal ω evolution that are known to promote 

heterogeneous α nucleation [33,141,142]. Consequently, the athermal ω phase observed in solution 

treated specimens and oxidized specimens was expected to dissolve quickly upon rapid heating 

and ageing at 482 °C. Extensive intragranular α precipitation in the β matrix was observed 

regardless of oxygen content (Figure 5.3). In DA samples without oxygen, α precipitates ranged 

from ~2-10 µm in size. However, α precipitates became more refined with increasing oxygen 

content in the OXA Ti-15-333 sample. In regions containing little oxygen (0.1 at. %) near the 

center of this sample, α precipitates showed similar sizes as DA specimens aged with the same 

treatment. In regions with the highest oxygen content such as just below the α lath / β matrix 

interface, corresponding to 1.7 at. % O, α laths were significantly smaller with submicron sizes. In 

the absence of β phase separation and ω precipitates that act as preferential nucleation sites, the 

observed α refinement is linked to the interstitial oxygen levels present in OXA Ti-15-333 rather 

than heterogeneous nucleation mechanisms. Interstitial oxygen in solid solution is known to 

significantly stabilize the α phase in Ti alloys [2]. This stabilization with elevated oxygen increases 

the nucleation driving force for α precipitation, leading to faster precipitation kinetics with a more 

refined lath size. Similar correlation was reported during isothermal oxidation of a β Ti Beta21S 

alloy with finer α laths forming in the β matrix near the surface where the oxygen content is the 

highest [143]. Changes in nucleation driving force have also been attributed to refined α 

precipitation in pseudospinodal transformation pathways [135,136], which are related to local 

composition fluctuations rather than intentional chemistry changes with oxygen. As a potent α-

stabilizing element, oxygen is known to partition to the α phase during ageing of β Ti alloys [9], 

so very little oxygen is expected in the β matrix after α formation during ageing.  
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Figure 5.3: SEM-BSE images of OXA Ti-15-333 aged for 16 h at 482 °C located (a) at the α lath/β matrix interface, (b) 100 

µm, (c) 300 µm, (d) 500 µm from this interface, and (e) in the center of the sample. Oxygen concentrations for (a-e) 

correspond to 1.7, 1.4, 0.4, 0.1, and 0.1 at. % O, respectively, from WDS measurements. (f) SEM-BSE image of DA Ti-15-

333 with 0.1 at. % O aged for 16 h at 482 °C. 

 After ageing directly at 482 °C, DA and OXA Ti-15-333 were tested using micropillar 

compression to determine local mechanical behavior (Figure 5.4a-b). For OXA specimens, 

micropillars were produced at a distance of 100 µm away from the α lath / β matrix interface 

corresponding to 1.4 at. % O. After compression to 15% strain, deformed pillars for DA and OXA 

Ti-15-333 (Figure 5.4c-d) both showed slip traces located near α-β interfaces. Previously reported 

micropillar compression results for dual phase α-β Ti alloys also showed that α-β microstructures 

typically slip along the interface between these phases if oriented favorably relative to the 

deformation direction [130,144,145]. However, significant morphology differences were observed 

for compressed pillars depending on initial microstructure and oxygen content. DA micropillars 

formed macroscopic slip bands spanning the entire pillar diameter due to the larger α lath sizes 

present without oxygen (Figure 5.4c). In contrast, the refined α precipitates in compressed pillars 

for OXA Ti-15-333 with 1.4 at. % O resulted in numerous shorter slip traces that formed in 
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multiple locations along the pillar’s length leading to slight bulging (Figure 5.4d), indicating more 

distributed deformation compared to DA pillars. 

 

Figure 5.4: SEM-BSE images of 2 µm diameter micropillars compressed to 15% engineering strain for (a, c) DA Ti-15-333 

with 0.1 at. % O and (b, d) OXA Ti-15-333 with 1.4 at. % O aged for 16 h at 482 °C before (a-b) and after (c-d) compression. 

Insets for (a-b) show SEM-BSE images of initial microstructure for each pillar. (e) Engineering stress-strain curves for 

compressed micropillars on DA Ti-15-333 with 0.1 at. % O and OXA Ti-15-333 with 1.4 at. % O aged for 16 h at 482 °C. 

Compressive engineering stress-strain curves revealed that the refined α sizes obtained 

with higher oxygen content increased the compressive yield strength, from an average value of 

~390 MPa for pillars without oxygen to 580 MPa in the presence of 1.4 at. % O. Figure 5.4e shows 

curves closest to the average yield strength out of four tested micropillars for each condition. 

Scatter in the stiffness and yield point values was observed in the stress-strain curves at both 

oxygen levels, which was attributed to intrinsic size effects stemming from the tested micropillar 

sizes and volumes. Indeed, intrinsic size effects can dominate when specimen dimensions are on 

the order of microstructural features and the specimen’s volume contains a lower number density 

of dispersed obstacles, leading to an observed size effect on measured yield strengths [121]. 

Nonetheless, the increased α refinement results in more α-β interfaces that act as dislocation 

barriers resulting in increased strength [2,34,48]. This trend in yield strength values is consistent 

with prior mechanical testing of β Ti alloys where higher densities and increased refinement of α 

precipitates resulted in increased bulk tensile strength [6,33,34] and micropillar compression 

strength [130,145]. Consistently, indentation studies of oxygen-enriched sublayers formed during 
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oxidation of other commercial metastable β Ti alloys correlated to hardness increases with refined 

α precipitation [143,146]. 

Finally, double ageing was conducted to understand the combined effects of ω-assisted α 

nucleation and oxygen-induced α refinement. Ageing of DA Ti-15-333 at 250 °C for 64 hours 

promoted chemical partitioning and growth of isothermal ω precipitates around ~5-10 nm in size 

(Figure 5.5a-b). With oxygen’s reported stabilization of the ω phase (Chapter 3), isothermal ω 

was also expected to be present in OXA Ti-15-333 aged at 250 °C for 64 h. Following the low 

temperature treatment, DA and OXA specimens were aged at 482 °C for 16 h. Irrespective of 

oxygen content, fine α precipitates were observed after the final 482 °C ageing step (Figure 5.5c-

d). The α laths were approximately 300 nm in size for the DA specimens, while those in the OXA 

specimens with 1.4 at. % O were even smaller at ~50 nm. The observed refined α sizes in the DA 

and OXA samples are attributed to ω-assisted α nucleation, in which the structural and 

compositional non-uniformities stemming from isothermal ω formation act as preferred sites for 

heterogeneous intragranular α nucleation [33,36,37,39]. Notably, oxygen-containing Ti-15-333 

showed further α refinement compared to oxygen-free specimens even though ω-assisted 

nucleation was active in both conditions, which suggests that oxygen-induced refinement can be 

used in tandem with other α refinement methods.     

 

Figure 5.5: (a) TEM SAED pattern for the [110]β zone axis showing β and ω diffraction spots for DA Ti-15-333 with 0.1 at. 

% O aged for 64 h at 250 °C. (b) Dark-field TEM image formed using selected ω diffraction spot shown in red circle of (a). 

Dark-field TEM images of Ti-15-333 aged for 64 h at 250 °C, then for 16 h at 482 °C: (c) DA specimen with 0.1 at. % O. (d) 

OXA specimen with 1.4 at. % O. Insets show SAED patterns for the [110]β zone axis showing β and α diffraction spots.  

While bulk tensile testing would be necessary to confirm scaling and applicability of the 

present results, this study illustrates the ability of interstitial oxygen in metastable β Ti alloys to 

create fine α lath microstructures with increased compressive yield strength. Since oxygen’s 

partitioning behavior to α precipitates during ageing [9] mitigates the detrimental embrittling 

effects of interstitial oxygen in the β phase matrix [5], intentional additions of oxygen to metastable 

β Ti alloys may act as another avenue for obtaining α phase refinement during ageing and improved 
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precipitation strengthening. Furthermore, this oxygen-induced refinement mechanism may be used 

in combination with existing α refinement strategies during ageing such as ω-assisted nucleation 

to obtain significantly reduced α sizes, as demonstrated with multi-step ageing treatments (Figure 

5.5d). These findings contradict the conventional wisdom that oxygen in Ti alloys is associated 

with embrittlement and that its level needs to be kept very low. The beneficial effects of oxygen 

in metastable β Ti alloys demonstrated here may have significant applications that include 

increased oxygen tolerance and impurities during Ti alloy manufacturing, increased recyclability 

of Ti alloys, and pathways for future alloy and processing design to utilize oxygen as an alloying 

element in β Ti alloys.  

5.4 Conclusions 

Elevated oxygen levels obtained through an oxidation exposure increased the nucleation 

driving force for α precipitation during ageing, leading to microstructures with refined α 

precipitates obtained with and without activation of ω-assisted α nucleation. These refined 

microstructures showed increased compressive strength during micropillar compression compared 

to those without oxygen due to a higher number of α-β interfaces that act as dislocation barriers. 

Therefore, ageing of β Ti alloys with high oxygen not only induces α refinement for increased 

strength, but also addresses the challenge of oxygen embrittlement in β Ti alloys. 
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Chapter 6: Role of Oxygen on the Precipitation and Deformation Behavior of an Aged 

β Ti-15Mo Alloy 

 

6.1 Introduction 

The results presented for Ti-Nb in Chapter 3 showed that elevated O levels stabilized the 

ω phase and oxygen partitioned to ω precipitates during ageing. Furthermore, Chapter 4 

demonstrated that O partitioning to large ω precipitates suppressed slip localization resulting in 

improved ductility and work hardening during micropillar compression of Ti-Nb alloys. High 

oxygen levels also affected α precipitation leading to oxygen-induced refinement and increased 

compressive strengths as shown in aged Ti-15-333 (Chapter 5). In the Ti-Mo system, limited 

reports showed that oxygen also affects precipitation kinetics and metastable phase stability. 

Oxygen reportedly suppresses athermal ω formation in Ti-Mo [72]. With higher oxygen levels, 

martensite formation in Ti-Mo still occurred, but the formation of α phase was also shown due to 

the stabilization of α with oxygen [71]. However, detailed investigations of oxygen’s influence on 

microstructural evolution and connection to mechanical properties have not been conducted. 

Understanding the effects of interstitial oxygen in Ti-Mo based alloys is an important area of 

investigation due to the frequent use of Mo in commercial β Ti alloy compositions and the low 

allowable oxygen levels in industrial alloy specifications due to embrittlement concerns. Mo is a 

highly effective β stabilizing element [48], which enables a metastable β phase matrix with lower 

solute levels leading to lower overall alloy density that is important for weight-sensitive aerospace 

components. Detailed study of oxygen’s effect on deformation for aged Ti-Mo alloys would enable 

specific understanding to mitigate the conventionally accepted detrimental effects of interstitial 

oxygen in commercially relevant alloys. Understanding the influence of oxygen on phase 

transformations in Ti-Mo would also demonstrate that the previously discussed oxygen effects in 

Chapter 3 and Chapter 4 are more generally applicable to ω forming β Ti alloys rather than just 

the Ti-Nb system.  
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 Similar to the approach used for Ti-Nb alloys, aged Ti-15Mo with varying oxygen content 

was evaluated to understand differences in ω and α precipitation kinetics and their impacts on 

mechanical behavior. Heat treatments were selected to promote ω nucleation and growth with 

oxygen partitioning to ω while preventing α phase formation. Higher temperature ageing to induce 

α formation was also conducted to understand oxygen’s influence on α’s size and precipitation 

rate. Micropillar compression testing of ω-containing microstructures with varying oxygen 

contents showed that ω with partitioned oxygen resulted in higher compressive yield strength and 

finer slip lines indicating less plastic flow localization than those without oxygen. Furthermore, 

the refinement of α precipitates with high oxygen after higher temperature ageing resulted in 

increased average compressive yield strengths compared to minimal oxygen specimens. These 

results provide evidence of oxygen’s beneficial effects on phase formation and the ensuing 

mechanical property changes that may enable future alloy design and processing methods 

specifically utilizing oxygen as an alloying element in β Ti alloys.  

6.2 Experimental methods 

Commercial alloy Ti-15Mo wt. % (Ti-8Mo at. %) with nominally less than 0.1 wt. % O 

was provided by ATI. Specimens were sectioned using a slow speed diamond saw, encapsulated 

in quartz tubes with Ar gas, solution treated at 1000 °C for 24 h, and quenched by breaking the 

tube in water. A subset of solution treated samples was oxidized in a 1 standard cubic centimeter 

per minute (SCCM) O2/4 SCCM Ar (20% O2) environment at 900 °C for 5 hours. Oxygen 

concentration profiles in the β matrix after oxidation were measured on polished cross-sections 

using wavelength dispersive spectroscopy (WDS) in a Cameca SX100 electron microprobe as 

reported in Chapter 3 and Chapter 5. Measurements of the O Kα, Ti Kα and Mo Lα X-rays were 

made using a focused electron beam with a beam current of 40 nA and accelerating potential of 15 

keV. Calibration standards were synthetic MgO (O Kα), Ti metal (Ti Kα) and Mo metal (Mo Lα); 

Additional WDS method details are located in Appendix III.   

As-solution treated samples and oxidized samples were subsequently encapsulated in 

quartz tubes with Ar gas and isothermally aged using the following conditions: 450 °C for 2 and 

24 h, 500 °C for 24 h, and 600 °C for 4 h. Specimens were inserted into a preheated furnace such 

that the sample heating rate was > 5 °C/s. Complete dissolution of ω has been observed at 560 °C 

in Ti-15Mo [147]. Therefore, ageing treatments for ω formation were conducted at 450 and 500 
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°C to promote fast ω precipitation and elemental partitioning while maintaining slower α 

precipitation kinetics. Ageing at 600 °C was also performed to induce direct α precipitation. 

Finally, a two step ageing treatment was conducted with the first step at 450 °C for 2 h, followed 

by a second step at 600 °C for 4 h to investigate the effect of ω-assisted α precipitation with 

elevated oxygen content. Aged specimens were cross-sectioned using a slow speed diamond saw, 

mounted in epoxy, then ground using 320-1200 grit SiC papers and polished using 0.03 µm 

colloidal silica suspension. Scanning electron microscopy (SEM) imaging and focused ion beam 

(FIB) preparation of transmission electron microscopy (TEM) foils and needle-shaped atom probe 

tomography (APT) specimens were performed using a Thermo Fisher Scientific FEI Helios 650 

Nanolab with a Ga+ ion FIB. TEM images and selected area electron diffraction (SAED) patterns 

were obtained using a Thermo Fisher Scientific Talos F200X G2 microscope operated at 200 kV. 

APT data collection was performed with a Cameca local electrode atom probe (LEAP) 5000 XR 

operated in laser mode. APT data was collected using a specimen temperature of 30 K, a detection 

rate of 0.005 atoms per pulse, laser pulse energy of 25 pJ, and pulse repetition rate of 200 kHz. 

Data reconstruction, background subtraction, peak deconvolution, and compositional analysis 

were performed using the AP Suite software package 6.1. 

 Due to the compositionally graded nature of specimens created after the oxidation 

exposure, micropillar compression testing was used to evaluate the compressive mechanical 

properties of local microstructural regions with varying oxygen content (corresponding to oxygen 

concentration profiles measured using WDS). A specific grain for pillar fabrication was selected 

in each specimen to be close to the (100)β out of plane orientation after characterization using 

electron backscattered diffraction (EBSD) (Appendix III). Single crystal micropillars with a 2 µm 

diameter were fabricated in the selected grain using FIB in a Thermo Fisher Scientific FEI Helios 

650 Nanolab. Pillars were fabricated with an automated script with coarse annular milling at 30 

kV, 9 nA and fine milling at 30 kV, 0.79 nA. Milled micropillars had a diameter-to-height aspect 

ratio of approximately 1 to 2.5 to avoid a triaxial stress state for low aspect ratios and pillar 

buckling at high aspect ratios [122]. Micropillars were tested in compression in a Hysitron TI 950 

Triboindenter with a flat punch indenter (60° cone angle, 10 μm diameter flat end) in displacement-

controlled mode with a strain rate of ~ 0.0005-1. Tests were manually stopped at a predetermined 

displacement amount to characterize compressed pillars at specific strain levels. Compressive 

engineering stress-strain curves were calculated from collected load versus displacement data. The 
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engineering stress was calculated as σ = F/A0 where F is the measured force and A0 is the cross-

sectional area at the top of the pillar, and the engineering strain was calculated as ε = ΔL/L0 where 

ΔL is the pillar displacement and L0  is the initial pillar height [117]. After compression, the 

morphology of deformed pillars was observed using SEM and TEM. Cross-sections and TEM foils 

of deformed micropillars were prepared using a cross-sectional FIB liftout technique similar to 

Refs. [124,125].  

6.3 Results 

6.3.1 Solution treated and oxidized Ti-15Mo prior to ageing 

Solution treated and quenched Ti-15Mo contained a single β phase matrix with grain sizes 

greater than 500 µm. Following the oxidation exposure at 900 °C for 5 h, a thick, porous oxide 

scale without strong adherence to the base metal formed on specimen surfaces, and oxide spallation 

was frequently observed during specimen handling and sectioning. Specific oxide growth 

mechanisms and oxide morphologies are not the focus of this work. Precipitation of α laths about 

50 µm in length was observed in the subsurface metal just below the oxide/metal interface of cross-

sectioned specimens (Figure 6.1a). Given oxygen’s role as a potent α stabilizing element in Ti 

alloys, the formation of α laths in the outermost subsurface metal region during oxidation is 

consistent with oxygen dissolution in the β Ti matrix that stabilizes α and promotes its precipitation 

[2]. Below the α lath + β matrix region, the single-phase β matrix contained interstitial oxygen that 

diffused in a concentration gradient during the oxidation exposure. This oxygen concentration 

profile was measured in the single-phase β matrix using WDS starting from the interface of the α 

lath + β matrix region near the sample’s edges and moving towards the center of the cross-

sectioned specimens (yellow arrow in Figure 6.1a). The average of four measured profiles (Figure 

6.1b) illustrated that oxygen diffused to a depth of ~1 mm in the β matrix during oxidation, which 

is a similar diffusion depth reported for Ti-20Nb (at. %) with the same oxidation exposure 

(Chapter 3). This depth agrees with mean diffusion lengths estimated using reported oxygen 

diffusion parameters in β Ti [95]. The maximum oxygen concentration of approximately 2.6 at. % 

O was located at the interface between the α lath / β matrix regions. WDS measurements did not 

show changes for Mo concentration as a function of distance in the single-phase β matrix.  
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Figure 6.1: (a) SEM-BSE image of cross-section for oxidized Ti-15Mo showing porous oxide scale and α lath formation 

after oxidation exposure at 900 °C for 5 h. Yellow arrow indicates starting location and direction of WDS line traces. (b) 

Average and standard deviation of four WDS line traces measuring oxygen concentration beginning from the (α lath + β) / 

β matrix interface and traversing across the cross-section of oxidized Ti-15Mo. 

 

6.3.2 ω precipitation and deformation in Ti-15Mo with varying oxygen content 

As-solution treated specimens and oxidized specimens were subsequently aged to 

understand ω precipitation with varying oxygen levels. Specimens that were solution treated and 

aged with minimal oxygen content are hereafter referred to as directly aged (DA), and specimens 

that were solution treated, oxidized, and then aged with the created oxygen diffusion gradient are 

hereafter referred to as oxidized and aged (OXA). The microstructure characterized at specific 

distances from the α lath / β matrix interface towards the center of the sample in OXA specimens 

corresponded to specific oxygen contents as measured by WDS (Figure 6.1b). DA and OXA 

specimens aged at 450 °C for 2 h resulted in dense ~10 nm metastable ω precipitates observed in 

backscattered SEM (SEM-BSE) images (Figure 6.2a-b). As expected from prior studies [148], 

elemental partitioning of Mo to the β matrix occurred as demonstrated by compositional contrast 

in SEM-BSE images. After 24 h of ageing at 450 °C, ω precipitates grew to ~20-30 nm in size. 

The ω particles in oxygen-free DA specimens exhibited ellipsoidal shapes, which is consistent 

with prior ω studies for the low misfit Ti-Mo system [148]. SEM-BSE images showed higher 

number densities of finer ω precipitates in the presence of oxygen compared to specimens without 

oxygen (Figure 6.2c-d). OXA Ti-15Mo with 2.2 at. % O also revealed alignment of ω precipitates 
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(Figure 6.2d). After ageing at 500 °C for 24 h, DA and OXA microstructures showed larger sizes 

and decreased number densities for ω precipitates (Figure 6.3a-b), and the morphology 

differences with oxygen were more pronounced than at 450 °C. Specific grains close to the (100)β 

out of plane orientation after EBSD characterization were selected to characterize ω precipitate 

alignment with elevated oxygen levels. SEM-BSE and bright-field TEM images confirmed that ω 

particles with higher oxygen were aligned along <001>β directions compared to more random 

arrangement of ω in DA specimens (Figure 6.3a-c). In addition, ω precipitates with oxygen 

formed cuboidal-like shapes faceted along the <001>β directions (Figure 6.3c) and also showed 

an elongated major axis aligned with <111>β directions that is typical for ω in Ti-Mo without O 

[19]. Finally, some regions with the highest oxygen levels of 2.2 at. % O in OXA Ti-15Mo after 

ageing at 500 °C showed the onset of lath-like α phase formation in addition to ω precipitates 

(Figure 6.3d). α precipitation was not observed for other oxygen levels in DA and OXA Ti-15Mo 

aged at 500 °C for 24 h.  

 

Figure 6.2: SEM-BSE images of DA and OXA Ti-15Mo after ageing at 450 ° C for (a-b) 2 h and (c-d) 24 h. DA Ti-15Mo are 

shown in (a) and (c). OXA Ti-15Mo are shown in (b) and (d). 

 

Figure 6.3: SEM-BSE images of (a) DA Ti-15Mo with 0.1 at. % O and (b) OXA Ti-15Mo with 1.5 at. % O aged for 24 h at 

500 °C. Insets show EBSD IPF maps with crystal grain orientations and the selected grain denoted by the black arrow with 

associated cubic lattice projection for microstructures in (a) and (b). (c) Bright-field TEM image of OXA Ti-15Mo aged for 

24 h at 500 °C with 1.5 at. % O. Inset shows SAED pattern for the [110]β zone axis showing β and ω diffraction spots. (d) 

SEM-BSE image of OXA Ti-15Mo with 2.2 at. % O aged for 24 h at 500 °C.  

ω’s size, aspect ratio, area density, and volume fraction for DA and OXA Ti-15Mo aged 

for 24 h at 450 and 500 °C were estimated using SEM-BSE images that showed all ω variants to 
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compare differences in the aged microstructures (Table 6.1). The average lengths of the major and 

minor axes for ω were used to calculate an equivalent spherical diameter, 2r, which decreased with 

higher oxygen after both 450 °C and 500 °C ageing. The measured aspect ratio of ω particles based 

on the major and minor axes increased slightly without oxygen present. The area densities of ω 

particles, ns, were estimated by counting ω particles in SEM-BSE images and dividing the total 

particle count by the area of the image. The area fraction of ω was estimated using image 

thresholding and measurement of SEM-BSE images using ImageJ processing software to be 

approximately 41% for both DA and OXA specimens aged at 450 °C and 500 °C. These area 

fractions were assumed to equal the volume fraction, f, of ω based on stereology [126]. The inter-

particle spacing D for ω particles was calculated by taking into account the effect of finite obstacle 

size for impenetrable particles and represents the measure of the free spacing between finite 

obstacles [127]. The average planar radius <rs> was calculated using < 𝑟𝑠 > =  𝜋 < 𝑟 >/4 , which 

was used to calculate D according to the following equation [127]: 

𝐷 = [(32/3𝜋𝑓)1/2 − 2] < 𝑟𝑠 > (1). 

 

Table 6.1: Quantification of microstructural features for ω precipitates in aged Ti-15Mo with varying oxygen content. 

Specimen 
Ageing 

Treatment 

Oxygen 

Concentration 

(at. %) 

Equivalent 

Diameter, 

2r (nm) 
Aspect 

Ratio 
Area Density, 

n
s
 (um

-2

) 

Volume 

Fraction, 

f 

Inter-particle 

spacing, D 

(nm) 
DA 24 h, 450 °C 0.1 46 2.4 271 0.41 16 

OXA 24 h, 450 °C 2.2 32 2.0 501 0.41 11 
OXA 24 h, 500 °C 0.1 75 2.3 181 0.41 26 
OXA 24 h, 500 °C 1.5 55 1.9 216 0.41 19 

 

In order to understand the extent of elemental partitioning to ω and β, APT measurements 

were performed after ageing at 450 and 500 °C. Reconstructed APT datasets of OXA Ti-15Mo 

aged for 24 h at 450 °C with 2.2 at. % O (Figure 6.4) and aged for 24 h at 500 °C with 1.5 at. % 

O (Figure 6.5) showed Ti-rich regions and Mo-rich regions corresponding to the ω and β phases, 

respectively. Proximity histograms (or proxigrams) that were generated using iso-concentrations 

surfaces of 90 at. % Ti for OXA specimens aged at 450 °C and 500 °C showed that Ti partitioned 

to the ω phase while Mo partitioned to the β matrix, as has been reported in literature [29,148]. 

However, the partitioning behavior of O changed for aged samples at 450 and 500 °C. For OXA 

Ti-15Mo aged at 450 °C, O did not strongly partition to either the ω or β phase, with similar 
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concentrations of ~3-4 at. % in both phases and across the ω/β interface (Figure 6.4c). In contrast, 

O noticeably partitioned to ω in OXA Ti-15Mo aged at 500 °C, and the ω phase with ~3 at. % O 

contained twice as much oxygen content as in the β matrix with 1.4 at. % O (Figure 6.5c). 

Similarly, this O partitioning behavior to ω during ageing has also been reported in the Ti-Nb-O 

system [9] and in Chapter 3. According to calculated proxigrams, the compositions for ω and β 

in OXA Ti-15Mo aged for 24 h at 500 °C with 1.5 at. % O are: 96 at. % Ti, 0.6 at. % Mo, 3.1 at. 

% O for ω and 84 at. % Ti, 13 at. % Mo, 1.4 at. % O for β. The oxygen diffusion coefficient in Ti-

15Mo was estimated by fitting WDS data (Figure 6.1b) to the model of transient diffusion through 

a semi-infinite flat specimen [149], which gives a diffusion coefficient at 900 °C of approximately 

8.3*10-12 m2/s. This value agrees with the estimated diffusion coefficient at 900 °C of 7.5*10-12 

m2/s obtained from similar fitting of a previously reported oxygen concentration profile for Ti-

20Nb (at. %) (Chapter 3) and with literature values for oxygen diffusion coefficients in β Ti at 

900 °C [95]. Therefore, the difference in oxygen partitioning behavior to ω for Ti-15Mo aged at 

450 and 500 °C observed in APT data is unknown and requires further investigation. 

  

Figure 6.4: (a) APT reconstruction of OXA Ti-15Mo aged for 24 h at 450 °C with 2.2 at. % O and (b-c) proxigram showing 

Ti, Mo, and O concentration as a function of distance from 90 at. % Ti iso-concentration surfaces. 
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Figure 6.5: (a) APT reconstruction of OXA Ti-15Mo aged for 24 h at 500 °C with 1.5 at. % O and (b-c) proxigram showing 

Ti, Mo, and O concentration as a function of distance from 90 at. % Ti iso-concentration surfaces. 

Micropillar compression was conducted to investigate the influence of elevated oxygen 

and the corresponding microstructural changes for ω on mechanical properties. For OXA Ti-15Mo 

aged at 450 °C for 24 h, micropillars were fabricated at distances of 100 µm from the α lath / β 

matrix interface corresponding to 2.2 at. % O. Since OXA Ti-15Mo with 2.2 at. % O aged at 500 

°C for 24 h showed the onset of α precipitation in some regions (Figure 6.3d), micropillars were 

fabricated at a distance of 300 µm from the α lath/β matrix interface corresponding to 1.5 at. % O 

showing only ω precipitation. Images of post-compression micropillars for DA and OXA Ti-15Mo 

after 15% strain revealed differences in deformed pillar morphologies with different oxygen 

contents (Figure 6.6). Deformed micropillars for oxygen-free DA Ti-15Mo aged at 450 °C for 24 

h with ω precipitates showed prominent step-like features that correspond to slip band formation 

during compression. Compressed pillars for OXA Ti-15Mo aged at 450 °C for 24 h with 2.2 at. % 

O also formed a large slip band after deformation, although other finer slip traces were observed 

near the base of the pillar (located at blue arrow in Figure 6.6b). Deformed micropillars for 
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oxygen-free DA Ti-15Mo and OXA Ti-15Mo with 1.5 at. % O after ageing at 500 °C showed 

similar post-compression morphologies as those aged at 450 °C. Notably, larger slip bands were 

suppressed in deformed OXA Ti-15Mo pillars with 1.5 at. % O and fine slip traces were instead 

observed after compression to 15% strain (located at blue arrow in Figure 6.6d).  

 

Figure 6.6: SEM-BSE images of 2 µm diameter micropillars compressed to 15% engineering strain for DA and OXA Ti-

15Mo after ageing for (a-b) 24 h at 450 °C, and (e-g) 24 h at 500 °C. DA Ti-15Mo are shown in (a) and (c). OXA Ti-15Mo 

are shown in (b) and (d), with blue arrows showing fine slip traces.  

Engineering stress-strain curves for micropillars compressed to 15% strain revealed that 

the influence of elevated oxygen differed for ω-enriched specimens aged at 450 °C and 500 °C 

(Figure 6.7a-b). Stress-strain curves for DA and OXA specimens aged for 24 h at 450 °C both 

showed discontinuous and unstable flow during compression (Figure 6.7a). Significant drops in 

measured stress values for these curves corresponded to the observed macroscale formation of slip 
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bands in compressed micropillars (Figure 6.6a-b). For DA and OXA Ti-15Mo aged for 24 h at 

500 °C with larger ω precipitates, stress-strain curves showed more stable plastic flow but still 

displayed a slight drop or plateau in the engineering stress after initial yielding (Figure 6.7b). 

However, the compressive yield strength of micropillars increased with the elevated oxygen 

content and finer ω sizes for OXA Ti-15Mo aged at 500 °C for 24 h. The average yield strength 

of four tested micropillars for OXA Ti-15Mo aged at 500 °C with 1.5 at. % O was ~574 MPa, 

which significantly exceeded the average value of about 419 MPa for DA micropillars without 

oxygen. In order to understand the internal microstructure of deformed micropillars, TEM imaging 

was performed on liftout samples from cross-sections along [110]β for a compressed OXA Ti-

15Mo pillar with 1.5 at. % O aged for 24 h at 500 °C (Figure 6.7c). Dark-field TEM images 

formed by selecting an ω reflection revealed that a continuous slip band cut through ω precipitates 

(blue arrow in Figure 6.7c). Slip trace analysis and direction of the slip bands observed in TEM 

images revealed that the bands were parallel to [0001] ω1 // [2-2-2]β directions and perpendicular 

to the (1-12)β plane, indicating that dislocation activity took place along the <111>{112}β slip 

system. The formation of the continuous slip bands suggests that ω precipitates were sheared as a 

result of highly localized dislocation activity along the <111>{112}β system.  

 

Figure 6.7: Engineering stress-strain curves for DA and OXA Ti-15Mo after ageing for (a) 24 h at 450 °C, and (b) 24 h at 

500 °C. (c) Dark-field TEM image of liftout sample from compressed pillar to 15% strain for OXA Ti-15Mo aged for 24 h 

at 500 °C with 1.5 at. % O showing sheared ω precipitates. Blue arrow points to sheared ω precipitates along <222>β 

direction. 

6.3.3 α precipitation and deformation in Ti-15Mo with varying oxygen content 

Ageing treatments conducted at 600 °C yielded widespread α precipitation in DA and OXA 

Ti-15Mo specimens, but the size and number density of α was directly influenced by oxygen 

content and sequence of heat treatment steps (Figure 6.8). Oxygen-free DA Ti-15Mo aged for 4 h 
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at 600 °C formed coarse α precipitates that were ~10 µm in length (Figure 6.8a). In contrast, α 

precipitates became more refined with high oxygen levels, and OXA Ti-15Mo with 2.2 at. % O 

under the same heat treatment contained a higher number density of α precipitates with 

approximately 0.5 to 2 µm laths sizes. (Figure 6.8b). As a potent α-stabilizing element, oxygen is 

known to partition to the α phase during ageing of β Ti alloys [9], so very little oxygen is expected 

in the β matrix after α formation. Two step ageing results (Figure 6.8c-d) showed additional α 

refinement for both DA and OXA specimens compared to those aged directly at 600 °C. The first 

step at 450 °C for 2 h allowed for ω precipitation (Figure 6.2a-b) that then acted as heterogeneous 

nucleation sites for α formation in the second 600 °C ageing step through ω-assisted α nucleation 

mechanisms [36,37,39]. The α microstructures observed after two step ageing also showed that 

elevated oxygen levels significantly increased α number density compared to specimens without 

oxygen. The combined effects of ω-assisted nucleation and oxygen-induced precipitation yielded 

the finest α precipitates of all observed conditions in OXA Ti-15Mo with two step ageing.  

 

Figure 6.8: SEM-BSE images of (a) DA Ti-15Mo with 0.1 at. % O and (b) OXA Ti-15Mo with 2.2 at. % O aged for 4 h at 

600 °C (Direct Aged), and (c) DA Ti-15Mo with 0.1 at. % O and (d) OXA Ti-15Mo with 2.2 at. % O aged for 2 h at 450 °C, 

then for 4 h at 600 °C (Two Step Aged). 
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After 600 °C ageing, micropillar compression testing of DA and OXA specimens was 

performed to understand changes in mechanical behavior with different α sizes and number 

densities. For oxygen-free DA Ti-15Mo aged directly for 4 h at 600 °C, compressed micropillars 

showed different morphologies depending on local α lath orientation in the pillar’s volume. In 

some of these DA pillars, step formation and slip traces were observed near α/β interfaces (Figure 

6.9a). Previously reported micropillar compression results for dual phase α-β Ti alloys also showed 

that slip may occur along the interface between α and β phases if oriented favorably relative to the 

deformation direction [130,144,145]. Alternatively, other compressed DA micropillars did not 

show significant step formation and instead formed fine slip traces in the β matrix (Figure 6.9b). 

These variations in deformed pillar morphology were attributed to the coarse α laths sizes observed 

after ageing that resulted in differences in α lath amounts and distributions in the tested micropillar 

volumes. In contrast, compressed pillars after 15% strain for OXA Ti-15Mo after two step ageing 

with 2.2 at. % O (Figure 6.9c-d) showed a larger number of short slip traces that formed in 

multiple locations on pillar surfaces, suggesting more distributed deformation occurred compared 

to DA samples.  

Compressive engineering stress-strain curves for micropillars on DA and OXA Ti-15Mo 

aged at 600 °C showed that the α lath size greatly influenced yield strength and curve shape 

(Figure 6.9e). Stress-strain curves for micropillars on DA Ti-15Mo specimens directly aged at 

600 °C for 4 h showed significant scatter in compressive yield strengths ranging from 200-350 

MPa. Additionally, little work hardening was observed after initial yielding for all DA micropillars 

directly aged at 600 °C, and the associated curves showed a plateau with a flat slope after yielding. 

In contrast, stress-strain curves for OXA Ti-15Mo after two step ageing with 2.2 at. % O displayed 

less variation in curve shapes and higher compressive yield strengths with improved work 

hardening after pillar yielding compared to directly aged specimens without O. Accordingly, the 

average compressive yield strength of OXA Ti-15Mo after two step ageing was ~440 MPa, which 

almost doubled the average yield strength of ~230 MPa for DA micropillars without oxygen.  
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Figure 6.9: SEM-BSE images of 2 µm diameter micropillars compressed to 15% strain for (a-b) DA Ti-15Mo with 0.1 at. 

% O aged for 4 h at 600 °C (Direct Aged) and (c-d) OXA Ti-15Mo with 2.2 at. % O aged for 2 h at 450 °C, then 4 h at 600 

°C (Two Step Aged). (e) Engineering stress-strain curves for DA Ti-15Mo with 0.1 at. % O aged for 4 h at 600 °C (Direct 

Aged) and OXA Ti-15Mo with 2.2 at. % O aged for 2 h at 450 °C, then 4 h at 600 °C (Two Step Aged). 

6.4 Discussion 

 Aged microstructures and micropillar compression results for Ti-15Mo revealed that 

interstitial oxygen levels obtained during oxidation directly influenced subsequent precipitate 

evolution and the associated mechanical properties. During the oxidation exposure, α precipitation 

in the metal substrate near the oxide/metal interface (Figure 6.1a) is attributed to the 

thermodynamic stabilization of α with high dissolved oxygen levels [2]. α formation is also 

accompanied by Mo rejection and partitioning from α to the β matrix, which is consistent with Mo 

as a β-stabilizer in Ti alloys [150]. In the single β phase matrix, the maximum oxygen content was 

measured as 2.6 at. % O and is controlled by the oxygen solubility limit in the β phase before 

inducing thermodynamic stabilization and precipitation of α. For Ti-Mo alloys, the extent of 

oxygen solubility in the metal substrate during oxidation has been reported to be influenced by the 

level of Mo, with higher Mo concentrations reducing the level of oxygen uptake by the substrate 

[146]. However, other metastable β Ti systems such as Ti-Nb based compositions have shown 

different maximum oxygen levels up to ~5 at. % obtained similarly through oxidation (Chapter 

3) or intentionally added to the bulk alloys [102,151,152]. The higher O solubility in the β phase 

for Ti-Nb compared to Ti-Mo alloys may be related to the electronic nature of the Ti atom and 

changes in the electron/atom (e/a) ratio based on alloy composition [146]. Decreased solid 
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solubility of oxygen has been reported for transition metal alloys with e/a ratios exceeding 5.75, 

whereas oxygen solubility increases for ratios below this value [153]. Indeed, the e/a ratios for Ti-

15Mo investigated here and a previously studied Ti-20Nb (at. %) alloy (Chapter 3) are 4.24 and 

4.2, respectively, and the lower value for Ti-20Nb may account for the higher maximum oxygen 

solubility of 4.8 at. % O compared to Ti-15Mo. Pure Mo shows essentially no solubility for 

interstitial oxygen before forming oxide phases [154,155], while pure Nb allows for limited 

oxygen solubility prior to oxide formation [155]. In Nb-Mo alloys, oxygen solubility also 

decreases with increasing Mo content from 0.35 wt. % (~2 at. %) in pure Nb to zero with 75 at. % 

Mo [153]. Therefore, alloying Ti with Mo would likely reduce oxygen solubility compared to 

alloying Ti with Nb. The tailoring of oxygen solubility and maximum saturation levels via alloy 

chemistry design may allow for more pronounced effects regarding oxygen-induced phase 

transformations. Therefore, the maximum oxygen solubility in metastable β Ti alloys may be an 

important design consideration during development of future alloy compositions that intentionally 

utilize high oxygen levels.  

Upon subsequent ageing at 450-500 °C, the microstructural evolution of ω precipitates 

showed noticeable changes depending on oxygen content. In the absence of oxygen, ω-like 

embryos form in Ti-Mo from phase separation during rapid cooling after solution treatment that 

induces the partial displacive collapse of {111}β planes [29]. With additional ageing, the full 

collapse of {111}β planes completes the β to ω transformation [29], and Mo is rejected from 

growing ω precipitates to the β matrix [19]. With elevated oxygen, several changes were noted for 

ω precipitates including higher number densities and smaller sizes compared to specimens without 

oxygen (Figure 6.2, 6.3), as well as oxygen partitioning to ω precipitates (Figure 6.5). Such 

differences were also observed in the binary Ti-Nb system, and the growth rate changes in 

particular were attributed to possible kinetic barriers for the β to ω transformation with high oxygen 

(Chapter 3). More generally, ω precipitates grew more slowly in Ti-Mo compared to Ti-Nb for 

similar ageing treatments at all oxygen levels. This observation is consistent with prior studies 

showing slower ω nucleation and coarsening kinetics in oxygen-free specimens for Ti-Mo 

compared to Ti-Nb systems [156] and is attributed to the slower Mo diffusion rate compared to 

Nb in Ti [157] resulting in slower rejection of β-stabilizing elements during ω growth. ω precipitate 

morphology changes were also seen for Ti-15Mo related to oxygen content (Figure 6.3), with 

slightly faceted shapes and aligned particles seen with elevated oxygen compared to ellipsoidal 
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shapes and more random arrangements without oxygen. The low lattice misfit Ti-Mo and Ti-Nb 

systems are known to yield ellipsoidal shapes for ω precipitates, while higher misfit systems like 

Ti-V form cuboidal morphologies [19]. However, changes in ω’s shape with elevated oxygen have 

been reported previously, such as for Ti-Nb that showed elongation along the major axis in the 

<111>β direction resulting in rod-like shapes (Chapter 3). The shape of ω in Ti-15Mo with high 

oxygen (Figure 6.3c) showed slight faceting along <001>β directions that matches the faceting of 

cuboidal ω observed in higher lattice misfit β Ti compositions such as the Ti-V system [15,31,96]. 

High oxygen levels may therefore result in the generation of additional misfit strains and higher 

lattice misfit for Ti-Mo to induce the faceted ω morphologies. The alignment of ω precipitates with 

elevated oxygen (Figure 6.3b) was not observed in prior Ti-Nb studies (Chapter 3). Precipitate 

alignment has been widely reported for other metallic systems such as nickel [158–160] and cobalt 

superalloy [161,162] γ/γ’ microstructures driven by complex interactions between interfacial 

energy, misfit strains, and elastic stiffness. The aligned morphologies observed here for OXA Ti-

15Mo suggest that the higher O levels may also result in possible changes for interfacial energy, 

misfit strains, and elastic stiffness that induce the observed aligned cuboidal-like microstructures. 

Finally, with the highest interstitial oxygen levels of 2.2 at. % O, α precipitation eventually 

occurred in addition to ω formation after ageing at 500 °C for 24 h (Figure 6.3d), and this faster 

α precipitation rate during isothermal ageing is due to the stabilization of α with higher oxygen 

contents [2].  

The influence of oxygen on mechanical properties evaluated using micropillar compression 

was dependent on the degree of oxygen partitioning to ω precipitates during ageing. Without 

oxygen partitioning, as seen in OXA specimens aged for 24 h at 450 °C (Figure 6.4), little change 

was observed for compressive yield strength and work hardening behavior in DA and OXA 

specimens (Figure 6.7a). With partitioned oxygen to ω observed for OXA Ti-15Mo aged for 24 h 

at 500 °C with 1.5 at. % O, micropillars showed higher compressive yield strength and marginal 

improvement in work hardening compared to specimens without oxygen (Figure 6.7b). However, 

ω precipitates with oxygen were still ultimately sheared leading to plastic flow localization (Figure 

6.7c). Shearing of isothermal ω precipitates during deformation leading to plastic flow localization, 

embrittlement, and loss of ductility have been extensively reported in metastable β Ti alloys 

without oxygen [46,91,116,163]. This embrittlement is caused by shearing and disordering of 

coherent ω particles along the <111>{112}β slip system to form precipitate-free channels that 
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promotes planar slip and localized slip band formation observed in bulk tensile testing and 

micropillar compression [8,116,117]. Notably, elevated oxygen levels that partitioned to larger ω 

precipitates during ageing of Ti-20Nb (at. %) after a similar oxidation exposure were reported to 

increase strength and improve work hardening behavior (Chapter 4). This improvement was due 

to oxygen partitioning that increased ω’s resistance to precipitate shearing and impeded the 

formation of continuous deformation channels, allowing for more homogeneous deformation to 

occur through dislocation bypassing (Chapter 4). Therefore, the stresses required to shear or 

bypass ω particles were calculated for the Ti-15Mo microstructures observed here to understand 

ω-dislocation interactions. The increase in critical resolved shear stress (CRSS) from dislocations 

shearing through coherent ω particles was estimated as [8]:  

Δ𝜏𝑠 = 1.02𝛾3/2𝐺−1/2𝑏−2𝑟1/2𝑓1/2 (1) 

where γ is the anti-phase boundary energy, G the shear modulus, b the Burgers vector of the β 

matrix, 2r the equivalent diameter for ω precipitates, and f the volume fraction of ω particles. The 

increase in CRSS due to a dislocation bypassing mechanism through Orowan looping was also 

estimated for the investigated microstructures using the following equation [8,132]:  

Δ𝜏𝑏 =
1

1−𝜈

𝐺𝑏

2𝜋𝐷
𝑙𝑛

√2/3𝑟

𝑏
  (2) 

where D is the inter-particle spacing. The values of Poisson’s ratio ν and G have been reported for 

a Ti-Nb based gum metal alloy as 0.39 and 25 GPa, respectively, using single crystal elastic 

constants measured with in-situ synchrotron x-ray diffraction [53,116]. Additionally, γ for ω 

particles in Ti-11Mo (at. %) has been estimated to be 0.3 J/m2 [8]. Assuming the same values for 

Ti-15Mo and using the microstructural parameters given in Table 6.1, ∆τs was calculated to exceed 

~1000 MPa for all observed microstructures while ∆τb ranged between ~330-640 MPa, which 

reveals that the smaller applied stress for these two mechanisms is dislocation bypassing. This 

simple analysis suggests that dislocation bypassing is possible for the ω sizes observed here, as 

was also reported for Ti-20Nb microstructures in Chapter 4. Although dislocation bypassing is 

possible, the load drops and formation of slip bands in compressed micropillars for DA and OXA 

Ti-15Mo aged for 24 h at 450 °C indicated that shearing of ω precipitates leading to continuous 

deformation channels still occurred. With oxygen partitioning to ω precipitates in OXA Ti-15Mo 

aged for 24 h at 500 °C, compressive yield strength increased compared to DA specimens. 

However, the work hardening behavior did not improve significantly since ω precipitates were 

ultimately still sheared (Figure 6.7c), unlike results reported for Ti-20Nb with higher O levels 
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where shearing of ω was suppressed (Chapter 4). This difference is attributed to the lower 

maximum O solubility in the β matrix of Ti-15Mo after oxidation compared to Ti-20Nb that 

resulted in a smaller amount of partitioned oxygen in ω. The lower oxygen level observed here is 

less effective in strengthening ω precipitates against shearing that would lead to better work 

hardening and ductility. Similar results were observed with lower oxygen levels during micropillar 

testing with 1.5 at. % O in Ti-20Nb, which also showed slip band formation indicating shearing of 

ω during deformation (Chapter 4). These results suggest that work hardening and ductility 

improvements stemming from partitioned elevated oxygen in ω-containing β Ti alloys are 

governed by the maximum solubility of O, which will need to be considered in future alloy design 

employing this mechanism.  

After ageing at 600 °C, elevated oxygen levels resulted in significant α precipitate 

refinement compared to specimens with minimal oxygen (Figure 6.8), observed both after direct 

ageing and with intentional prior ω formation in two step ageing. Rapid heating and direct ageing 

at 600 °C, which exceeds the reported 560 °C ω solvus [147], avoided potential β phase separation 

and isothermal ω evolution known to promote heterogeneous α precipitation in β Ti alloys [33]. 

Also, athermal ω phase that has been reported for similar Ti-Mo compositions [29] and is likely 

present in solution treated and oxidized samples was expected to quickly dissolve upon rapid 

heating to 600 °C. In the absence of intermediate phases, the microstructural changes in α 

precipitate size and number density observed after direct ageing at 600 °C are attributed to the 

increase in α nucleation driving force from elevated oxygen. Such differences have been 

demonstrated in a prior ageing study of the metastable β Ti-15-333 alloy with varying oxygen 

content (Chapter 5). Oxygen in solid solution is a potent α stabilizer in metastable β Ti alloys, 

and this stabilization increased the nucleation driving force for α leading to faster precipitation 

kinetics with a more refined lath size (Chapter 5). With two step ageing that intentionally formed 

ω prior to the 600 °C step, ω-assisted nucleation, where ω acts as a heterogeneous nucleation agent 

for α [37–39], was combined with oxygen-induced α refinement to obtain the finest α lath sizes in 

OXA specimens with 2.2 at. % O. During micropillar compression, significant variation was 

observed in the yield point of stress-strain curves for DA Ti-15Mo aged directly at 600 °C (Figure 

6.9e). This variation is attributed to intrinsic size effects related to the volume of tested micropillars 

relative to the α lath sizes. This type of size effect dominates when the micropillar’s dimensions 

are on the order of microstructural features and the pillar’s volume contains a small number density 



 93 

of dispersed obstacles, which leads to an observed size effect on measured yield strengths [121]. 

With smaller lath sizes in OXA Ti-15Mo after two step ageing, this size effect was noticeably 

reduced, and the compressive yield strength roughly doubled compared to specimens without 

oxygen (Figure 6.9e). Many α precipitation refinement studies in metastable β Ti alloys have 

focused on obtaining finer α laths leading to increased tensile strengths after bulk testing [34] and 

compression strengths in micropillar investigations [130,145]. Since the α-β interface acts as the 

main barrier for dislocation motion in two phase Ti alloys, increased α number density results in a 

greater number of these interfaces to impede dislocation motion for higher strength in bulk testing 

[2,48]. Therefore, using elevated oxygen content to induce α lath refinement offers an additional 

pathway to obtain high strength metastable β Ti alloys and can be combined with other 

mechanisms such as ω-assisted nucleation to yield even further refinement.  

These results revealed the influence of oxygen in Ti-15Mo on ω and α precipitation and 

microstructural evolution that directly impacted compressive mechanical properties. The 

partitioning of oxygen to ω (Figure 6.5) and α precipitates [9] mitigates the known embrittlement 

challenges with interstitial O in β Ti [5], which opens possibilities for future alloy and processing 

development that intentionally utilizes oxygen as an alloying element in β Ti alloys. Furthermore, 

these findings may be used to understand the effects of higher oxygen levels in commercially 

relevant Ti-Mo based compositions, which could allow for increased oxygen concentration limits 

in industrial materials specifications. Overall, these results demonstrate that high oxygen levels 

induce phase transformation and precipitation changes during ageing that result in improved 

mechanical properties for Ti-15Mo.  

6.5 Conclusions 

The impact of high interstitial oxygen contents up to 2.6 at. % O, obtained using an 

oxidation exposure, on ω and α precipitation and the resulting effects on compressive mechanical 

properties were investigated for aged Ti-15Mo. The following conclusions were drawn: 

  High oxygen levels reduced the growth rate of ω precipitates and induced ω morphology 

changes from randomly arranged ellipsoidal shapes without O to cuboidal-like shapes 

aligned along <001>β directions with oxygen. Although Ti partitioning to ω and Mo 

partitioning to β were observed after ageing at both 450 and 500 °C, oxygen partitioning 

to ω precipitates was only observed after ageing at 500 °C. With the highest oxygen levels 
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of 2.2 at. % O, α precipitation occurred in addition to ω formation after isothermal ageing 

at 500 °C.  

 The influence of oxygen on mechanical properties evaluated for ω-containing 

microstructures was dependent on oxygen partitioning to ω precipitates. After ageing at 

450 °C, micropillar compression results revealed that pillars with high oxygen but without 

significant oxygen partitioning to ω showed similar slip band formation, unstable plastic 

flow, and yield strength values as oxygen-free pillars. After ageing at 500 °C, compressed 

pillars with partitioned oxygen to ω showed higher compressive yield strengths than 

oxygen-free pillars, but ω precipitates with oxygen were ultimately still sheared in a 

continuous deformation channel. This strength improvement was attributed to more 

difficult shearing of ω precipitates with partitioned oxygen.  

 After ageing at 600 °C, elevated oxygen levels induced finer α precipitate sizes with a 

larger number density compared to oxygen-free specimens. This refinement was due to an 

increased nucleation driving force for α precipitation with high oxygen contents resulting 

in faster nucleation of finer laths. Oxygen-induced refinement was also combined with the 

ω-assisted nucleation mechanism to obtain even smaller sizes for α precipitates.   

 Micropillar compression testing of α-containing microstructures showed that the refined α 

precipitates obtained with elevated oxygen and two step ageing resulted in smaller size 

effects and higher compressive yield strengths, which is due to a higher number of α-β 

interfaces that act as dislocation barriers.  

 These results show the influence of high oxygen contents on ω and α precipitation with 

improvements to compressive mechanical properties in Ti-15Mo, which demonstrate the 

beneficial effects of intentional high oxygen levels in β Ti alloys and may be applicable to 

existing commercial alloy compositions as well as future alloy and processing design.  
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Chapter 7: Early Oxidation Behavior of Pure Ti and Si-Coated Ti 

 

7.1 Introduction 

Although titanium alloys are frequently used as structural materials due to their high 

specific strength and corrosion resistance, the use of Ti alloys has been limited above 550 °C due 

to poor oxidation resistance [1]. Oxidation of Ti and its alloys at elevated temperatures results in 

formation of a two-layered, non-adherent oxide scale and continuous dissolution of interstitial 

oxygen in the subsurface metal that is highly embrittling, as discussed in Chapter 2’s literature 

review. During high temperature exposures, the oxidation of uncoated titanium shows rapid 

kinetics with an initial parabolic growth rate transitioning to a linear rate at 700-1200 °C [81]. 

Titanium oxidation eventually becomes dominated by growth of the internal oxide scale 

[75,79,81]. A particular challenge for titanium oxidation studies is understanding the formation 

pathway of the complex oxide morphologies observed after long thermal exposures. Furthermore, 

the use of Si-containing coatings with a range of chemistries, deposition parameters, and coating 

microstructures on Ti alloys has shown improved oxidation resistance with thinner oxide scales, 

less porosity, and fewer cracks. These changes have been linked to the formation of silicide phases 

such as Ti3Si, Ti5Si3, Ti5Si4, TiSi, and TiSi2 [12,83,84,89]. This significant improvement with Si-

containing coatings necessitates additional study to comprehend the role of Si-rich coatings during 

oxidation. While most prior studies focused on characterization of oxide scales after 100+ h 

exposures that are relevant for technological applications, this work focuses on the early oxidation 

of pure Ti and Ti that has been sputtered with a Si thin film to characterize the initial growth of 

oxide scales. The selected model system isolates the role of Si and silicide phases during oxidation, 

and detailed characterization clarifies the oxidation paths and mechanisms leading to slower 

oxidation rate of Ti when coated with Si and silicide phases.  
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7.2 Experimental methods 

Commercially pure (99.999%) titanium plate, 3 mm thick, was purchased from Alfa Aesar. 

Ti specimens were sectioned using a slow speed diamond saw and cleaned using acetone and 

distilled water. Samples were then successively ground and polished using 30, 12, 9, 3, and 1 µm 

Al2O3 lapping films, rinsing with distilled water between steps. A set of polished pure Ti specimens 

were then sputtered with a 250 nm layer of amorphous pure Si using a Kurt J. Lesker Co. five 

source confocal, magnetron sputtering system. For another set of polished samples, one drop of 

50% distilled water/50% colloidal silica (30 nm) solution (Mager Scientific AP-342) was 

deposited on the polished surface and air-dried. Specimens were placed in an Al2O3 crucible and 

then oxidized at 800 °C for 0.5, 2, 8, 32, or 64 hours in a 1 standard cubic centimeter per minute 

(SCCM) O2/4 SCCM Ar environment (approximately pO2 = 0.2 atm/20.3 kPa). The exposures 

were such that specimens were inserted in the furnace after it was heated to 800 °C in a flowing 

Ar (40 SCCM) gas environment. After insertion and temperature equilibration back to 800 °C 

(approximately 15 minutes), the aforementioned oxidizing environment was introduced. 

Following the oxidation exposure, oxygen gas flow was stopped. Specimens were removed from 

the hot zone and cooled to room temperature in flowing Ar (40 SCCM). 

Coating and oxide scales were characterized using a Thermo Fisher Scientific FEI Helios 

650 or Nova 200 Nanolab scanning electron microscope (SEM) equipped with a Focused Ion 

Beam (FIB), also used to prepare cross-sectional transmission electron microscopy (TEM) foils 

and site-specific atom probe tomography (APT) samples. TEM bright field images and selected 

area electron diffraction (SAED) patterns were obtained using a JEOL 2010F microscope operated 

at 200 kV. Bright field TEM figures are composites of multiple individual specimen images. 

Scanning transmission electron microscope (STEM) Z-contrast images and energy dispersive 

spectroscopy (EDS) maps were collected using a Hitachi HD-2300A microscope at 200 kV 

equipped with an Oxford Instruments EDS detector. EDS maps were collected using an acquisition 

time of 1800 s. Data visualization and analysis of EDS maps were performed using Oxford 

Instruments INCA software. Bulk chemistry of oxidized specimens was analyzed by atom probe 

tomography performed with a Cameca local electrode atom probe (LEAP) 5000 XR operated in 

laser mode. A specimen temperature of 50 K, a detection rate of 0.005 atoms per pulse, a laser 

pulse energy of 30 pJ, and a pulse repetition rate of 250 kHz were used for data collection. Data 



 97 

reconstruction, background subtraction, peak deconvolution, and compositional analysis were 

performed using the Integrated Visualization and Analysis Software (IVAS) package 3.8.0. 

7.3 Results 

7.3.1 Pure titanium oxide characterization 

Surface observations of pure Ti samples after oxidation for 0.5, 2, and 8 hours revealed 

faceted oxide crystals (Figure 7.1), whose sizes increased with oxidation time. The scale formed 

on pure Ti showed a two-layer scale morphology, with an outer dense and compact scale showing 

columnar grains and an inner porous scale containing fine and coarse equiaxed grains. Both layers 

thickened with exposure time as illustrated by cross sectional bright field TEM images (Figure 

7.2). Thicknesses of the overall oxide and outer oxide layer for oxidized pure Ti specimens are 

shown in Figure 7.3a, which were calculated as an average of ten measurements in each region. 

The difference in the overall oxide and outer oxide thickness in Figure 7.3a corresponds to the 

inner oxide layer. Thickness measurements for specimens showing oxide separation from the metal 

(Figure 7.2c) did not include the separated void region. The outer layer grew at a faster rate 

initially and slowed down, while the inner layer showed a consistent growth rate over the exposure 

times considered here. Electron diffraction of the samples after the three different exposure times 

showed rutile TiO2 as the oxide phase in both outer and inner layers (Figure 7.3b). The outer and 

inner scales were separated by a row of small isolated voids that grew in size over time (indicated 

by the yellow arrows in Figure 7.2). Wider gaps and voids (located at red arrows in Figure 7.2) 

were present immediately above the oxide/metal interface and interspersed voids were also 

observed in the inner oxide (Figure 7.2c). Nanocrystalline grains in the inner oxide were observed 

bordering both rows of voids. In both outer and inner oxide layers, no cracking in the scale was 

observed even after 8 h. However, after 8 h, the inner oxide layer appeared delaminated at multiple 

sections of the oxide/metal interface (Figure 7.2c).  
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Figure 7.1: Top view SEM micrographs of the oxide scales formed on (a) Ti after 0.5 h, (b) Ti after 2 h, and (c) Ti after 8 h. 

All were oxidized at 800 °C in pO2 = 0.20 atm. 

 

Figure 7.2: Bright field TEM images of the oxide scales formed at 800 °C on (a) Ti after 0.5 h, (b) Ti after 2 h, and (c) Ti 

after 8 h. Red and yellow arrows denote rows of voids observed in oxide scales.  

 

Figure 7.3: (a) Overall and outer oxide thicknesses for Ti oxidized for 0.5, 2, and 8 h. The difference between overall and 

outer oxide thickness corresponds to the inner oxide thickness. (b) Representative oxide electron diffraction ring pattern 

showing rutile TiO2 phase in Ti oxidized for 0.5 h.   
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7.3.2 Colloidal silica deposited Ti oxide characterization 

Colloidal silica nanoparticles were deposited on Ti samples to serve as a marker of the 

original metal surface prior to oxidation. After oxidation for 2 h, this sample exhibited three layers: 

a rod-like outer layer, an intermediate nanocrystalline layer, and an inner fine-grained, porous layer 

(Figure 7.4a). The outer and inner layers of this colloidal SiO2 containing sample showed similar 

morphologies to the outer and inner oxides formed on pure Ti, but the inner layer thickness was 

noticeably reduced compared to that of the pure Ti specimen for the same oxidation exposure. The 

intermediate layer corresponded to the periodic arrangement of three to four layers of silica 

particles (Figure 7.4a), as determined through EDS mapping (Figure 7.4b-e). 

 

Figure 7.4: (a) STEM Z-contrast image and associated EDS maps for Ti, O, Si, and Pt (b-e) of the oxide scale for pure Ti 

deposited with a colloidal SiO2 layer oxidized at 800 °C for 2 h in pO2 = 0.20 atm. 

7.3.3 Si-coated Ti oxide characterization 

The evolution of the coating and surface oxides for Ti coated with a 250 nm Si thin film 

are shown through SEM images obtained after increasing oxidation exposure up to 64 h (Figure 

7.5). After 2 h of exposure, irregularly shaped protrusions up to 5 μm in diameter were observed 

on the specimen’s surface (Figure 7.5a), the largest of which remained visible after 8 h of exposure 

(Figure 7.5f). Nanocrystals present between the protrusions (Figure 7.5e, f) grew in size and 

density over time (Figure 7.5g, h). After 32 h and 64 h, the protrusions were no longer visible.  

Instead, the surface was fully covered by nanocrystals. The crystals’ wedge-like morphology, as 

well as striations that were observed only on one side of the crystals, are evident in Figure 7.5h. 
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Ridge-like features were also observed on the surface of specimens after 8, 32, and 64 h of 

oxidation exposure (Figure 7.5b, c, d).  

Bright field TEM images of cross sections obtained from specimens oxidized for 2 h reveal 

two distinct layers: a compact, polycrystalline layer above the Ti metal substrate and an amorphous 

layer at the surface (Layers 1 and 2 in Figure 7.6a). Layer 1 is identified as Ti5Si3 by electron 

diffraction (Figure 7.6b, c). The TEM foils used in Figure 7.6 were prepared such that they 

bisected one of the protrusions observed on the specimen’s surface. The surface protrusions 

correspond to a delaminated and buckled region of the amorphous layer. On both sides of the 

buckled region, the amorphous layer was depleted and fine columnar nanocrystals were instead 

observed, presumably corresponding to the clusters of nanocrystals observed from the surface 

along the edges of the protrusions (Figure 7.5e).  

 

Figure 7.5: Top view SEM micrographs of coating and oxide scales formed on pure Ti coated with 250 nm Si after (a, e) 2 

h, (b, f) 8 h, (c, g) 32 h, and (d, h) 64 h of oxidation exposure at 800 °C in pO2 = 0.20 atm. 
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Figure 7.6: (a) Bright field TEM image of the coating and oxide cross section for Si-coated Ti oxidized at 800 °C for 2 h. (b) 

Subset of TEM image outlined by yellow box showing grain selected for electron diffraction (yellow circle). (c) The 

corresponding selected area electron diffraction pattern indexed as the [𝟏�̅�𝟎] zone axis of Ti5Si3.  

Observed through STEM Z-contrast imaging, the Ti5Si3 layer (Layer 1 in Figure 7.7a) is 

clearly distinguished from the Ti substrate by a change in greyscale, and the amorphous layer 

(Layer 2 in Figure 7.7a) appeared as a dark region. EDS mapping of this region (Figure 7.7b-d) 

confirms that the amorphous layer is consistent with SiO2, and the compact polycrystalline layer 

with Ti5Si3. At the location of the protrusion, the delaminated and buckled amorphous layer is 

again consistent with SiO2 (Figure 7.8). The Ti5Si3 layer has not separated and is adherent to the 

Ti metal substrate; thus the delamination occurred at the interface between the Ti5Si3 layer and 

amorphous SiO2 layer. The thin layer observed in the inner surface of the buckled layer is rich in 

Ti and Ga, and is therefore interpreted as sputtered and redeposited material during FIB milling. 

Underneath the protrusion above the Ti5Si3 layer, a thin layer rich in Ti and O but not Si was also 

observed (yellow arrow in Figure 7.8a-d).  
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Figure 7.7: (a) STEM Z-contrast image and associated EDS maps for O, Ti, and Si (b-d) of the coating and oxide cross 

section for Si-coated Ti oxidized at 800 °C for 2 h. 

 

Figure 7.8: (a) STEM Z-contrast image and associated EDS maps for O, Ti, Si, and Ga (b-e) of the coating and oxide cross 

section at a protrusion of Si-coated Ti oxidized at 800 °C for 2 h. Yellow arrows denote region enriched in Ti and O, but 

not Si. 
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 The chemistry of the Ti5Si3 layer and underlying Ti substrate for the 2 h oxidized specimen, 

obtained from APT reconstructions (Figure 7.9), revealed that Ti5Si3 contained up to 0.6 at.% O 

in solid solution. The Ti substrate also contained dissolved O, as well as a small amount of 

dissolved Si. The measured compositions for the Ti5Si3 layer and Ti substrate were calculated after 

background subtraction and decomposition of overlapping peaks. The atomic composition of 

Ti5Si3 was measured as Ti: 61.5 ± 0.2%, Si: 37.2 ± 0.1%, O: 0.6 ± 0.1%, Al: 0.3 ± 0.1%, Cr: 0.2 ± 

0.01%, C: 0.1 ± 0.01%, V: 0.1 ± 0.1%. The measured level of H was on the order of 1.3 ± 0.6 at. 

%. The Ti substrate contained 8.9 ± 0.8 at. % O and 0.3 ± 0.04 at. % Si.   

 

Figure 7.9: Atom probe tomography reconstruction of the Ti5Si3 layer and Ti substrate for Si-coated Ti oxidized at 800 °C 

for 2 h. 

The oxide and coating morphology after 8 h of exposure observed in bright field TEM 

(Figure 7.10a-d) showed a similar polycrystalline and fine-grained Ti5Si3 layer above the Ti 

substrate. The TEM foils (Figure 7.10) were also prepared such that they bisected a surface 

protrusion. The amorphous SiO2 layer, previously observed in the specimen oxidized for 2 h 

(Layer 2 in Figure 7.6a), was only seen at the surface protrusions and was not present elsewhere 

in the cross sections after 8 h of oxidation. The Ti5Si3 layer was now covered by a two-layer scale 

with an inner equiaxed, nanocrystalline layer and an outermost layer of columnar crystals (Layer 

3 and 4 in Figure 7.10a), both identified by electron diffraction as rutile TiO2. The observed oxide 

scales were compact and dense, with few voids seen within the layers. There was no evidence for 

SiO2 within the diffraction patterns from the nanocrystalline oxide layer (Layer 3). The two-layer 
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scale was also observed underneath the protrusion above the Ti5Si3 layer. Thus, the Ti and O rich 

layer observed underneath the protrusion after 2 h of exposure (yellow arrow in Figure 7.8a-d) is 

interpreted as TiO2.  

 

Figure 7.10: (a) Bright field TEM image of the coating and oxide cross section for Si-coated Ti oxidized at 800 °C for 8 h. 

(b) Selected area diffraction pattern of an external oxide grain indexed as the [11 ̅4] zone of rutile TiO2. (c) Electron 

diffraction ring pattern of the internal oxide showing rutile TiO2. (d) STEM Z-contrast image of Si-coated Ti oxidized at 

800 °C for 8 h. 

After 32 and 64 h of oxidation exposure (Figure 7.11), the oxide morphologies observed 

in bright field TEM were similar to those of the 8 h specimen, showing fine-grained Ti5Si3 adjacent 

to the Ti substrate (Layer 1), a nanocrystalline inner oxide layer (Layer 3), and an outermost layer 

of oxide crystals that developed into a wedge-like shape (Layer 4). Both oxide layers (Layers 3 

and 4) thickened with longer exposure time. The evolved inward growing nanocrystalline oxide 

scale showed compact, dense, and equiaxed grains with isolated voids concentrated at the 

oxide/silicide interface. EDS mapping of the 32 h oxidized specimen (Figure 7.12) showed that 

Si, in addition to being present within the layer of Ti5Si3, is also within the nanocrystalline oxide 
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(Layer 3). Within this layer, STEM Z-contrast images after 32 and 64 h of exposure (Figure 7.11c, 

7.12a) show dark and light regions that could be attributed to mass contrast or voids. Bright field 

TEM shows that very few voids are observed within the nanocrystalline oxide (Figure 7.11a, b); 

therefore, the dark regions in STEM are attributed to mass contrast from SiO2 that was present at 

the interface between the external and internal oxide scales and dispersed throughout the internal 

oxide layer. STEM imaging (red arrow in Figure 7.12a) and higher magnification EDS maps 

(Figure 7.13) of the 32 h oxidized specimen revealed alternating Ti-rich and Si-rich layers in some 

regions of the nanocrystalline oxide. Considering that O was observed in both Ti-rich and Si-rich 

areas of the oxygen map, the layers are hypothesized to correspond to TiO2 and SiO2, respectively. 

The layered structure was also observed in the nanocrystalline oxide of the specimens oxidized for 

8 (Figure 7.10d) and 64 h.  

 

Figure 7.11: Bright field TEM image of the coating and oxide cross section for Si-coated Ti oxidized at 800 °C for (a) 32 h 

and (b) 64 h. (c) STEM Z-contrast image of Si-coated Ti oxidized at 800 °C for 64 h. 
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Figure 7.12: (a) STEM Z-contrast image and associated EDS maps for O, Ti, and Si (b-d) of the coating and oxide cross 

section for Si-coated Ti oxidized at 800 °C for 32 h. Red arrow denotes an example of alternating Ti-rich and Si-rich layers 

within the internal nanocrystalline oxide scale. 

 

Figure 7.13: (a) STEM Z-contrast image and associated EDS maps for O, Ti, and Si (b-d) of the internal oxide scale for Si-

coated Ti oxidized at 800 °C for 32 h showing regular alternating SiO2 and TiO2 layers. 
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7.4 Discussion 

7.4.1 Oxide evolution of Pure Ti 

The exclusive formation of rutile (TiO2) in the oxide scale and the absence of other oxide 

phases that are expected from the equilibrium phase diagram [164] are in agreement with prior 

oxidation studies for both bulk titanium and thin films [81,165]. The estimated equilibrium 

parameters for the relevant redox reactions among Ti and its different oxides (Table 7.1) reveal 

that any suboxide that might form initially would readily convert to TiO2 at pO2 > 10-26 atm, which 

clearly includes the oxidation environment in these experiments. In principle, one would anticipate 

that if the scale is dense, adherent and its growth is controlled by the inward diffusion of oxygen, 

there will be a thickness at which the pO2 at the oxide/metal interface would be sufficiently low to 

enable formation of TiOx with x < 2. This scenario, however, is compromised by the evolution of 

pores and cracks in the scale as it grows, whereupon the gaseous environment has direct access to 

the metal and the oxidation behavior becomes linear rather than parabolic [75]. In literature, 

cracking has been observed and attributed to volumetric expansion of the outer metal layer upon 

O ingress beyond a certain limit (x ~ 0.35), whereupon the spalled layer is assumed to oxidize to 

TiOx and then to TiO2 [75]. However, substrate cracking was not observed during the short 

oxidation time exposures in the present experiments. The more likely explanation for direct access 

of oxidizing gas to the metal surface is the clear evidence of extensive porosity just above the 

oxide/metal interface (Figure 7.2a-c). Porosity was observed between the outer and inner oxides, 

presumably at the original metal surface, and in the inner oxide at the oxide/metal interface of pure 

Ti specimens. Such porosity in the inner oxide has been reported in the literature for binary Ti-W 

specimens [166]. The present experiments did not provide sufficient insight to elucidate the 

specific pore formation mechanisms, which will require further investigation.   
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Table 7.1: Estimated equilibrium standard Gibbs free energies and oxygen partial pressures for Ti redox reactions 

[167,168]. 

Reaction ∆G (kJ mol-1) at 800 °C log pO2 

 -529.2 -26.1 

 -548.6 -28.5 

 -719.7 -34.6 

 -868.1 -42.4 

 

The structure of the TiO2 scale shows an outer and inner layer delineated by porosity. A 

two-layer scale has been observed in previous studies [75,79] but the underlying mechanisms are 

still under debate. The oxidation performed on Ti coated with colloidal silica particles (Figure 

7.4) revealed the SiO2 particles sandwiched between two oxide layers with characteristics of the 

outer and inner oxide scales found on the uncoated Ti samples. This strongly suggests that (i) the 

outer scale grew above the original metal surface, arguably by outward diffusion of Ti, while (ii) 

the inner oxide evolved underneath the surface maker layer by inward oxygen diffusion.  

7.4.2 Oxide evolution of Si-coated Ti 

The formation of the Ti5Si3 layer and its subsequent effect on the evolved oxide scales are 

major factors in the improved oxidation resistance of Si-coated Ti compared to uncoated material 

[169]. As a refractory metal silicide intermetallic, Ti5Si3 possesses a high melting point and 

excellent oxidation resistance at elevated temperatures [170]. Thus, it acts as a slow-oxidizing 

layer that helps to protect titanium from rapid oxide formation, and indeed the use of Ti5Si3 directly 

as a coating has been shown to improve oxidation resistance of pure Ti [11]. The present 

experiments demonstrate that a Si layer can also form a protective Ti5Si3 layer. The reaction of the 

Si coating to form Ti5Si3 and the evolution of oxide scales are discussed below, and the 

mechanisms of oxidation are illustrated schematically in Figure 7.14. 

2Ti3O5 +O2®6TiO2

6Ti2O3 +O2®4Ti3O5

4TiO+O2®2Ti2O3

2Ti+O2® 2TiO
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Figure 7.14: Schematic illustration of coating and oxide scale evolution for Si-coated Ti during early oxidation. Please see 

text for further discussion. (a) Concurrent reaction of the amorphous Si, Si(A), layer to form amorphous SiO2 and Ti5Si3. 

(b) Amorphous SiO2, SiO2(A), dissolution and reaction to form additional Ti5Si3. (c) Formation of external rutile TiO2
 
scale 

and internal TiO2/SiO2 scale with local regions of alternating TiO2/SiO2 layers. Arrow with a red X denotes the inhibition 

of oxygen inward diffusion into the Ti substrate by the Ti5Si3 layer. 

The evolution of the coating begins with two concurrent and independent reaction fronts: 

5Ti + 3Si → Ti5Si3 at the bottom interface of the Si layer and Si + O2 → SiO2 at the top outermost 

interface (Figure 7.14a). The intermetallic silicide phase Ti5Si3 is formed by Ti and Si 

interdiffusion, and fast reaction kinetics between Ti and Si at 800 °C and higher were reported 

previously [171]. The ternary phase diagram of Ti-Si-O at 800 °C (Figure 7.15), extrapolated from 

previously published phase diagrams [172–177], shows that a two phase region is indeed present 

between α Ti and Ti5Si3(O) and Ti5Si3 is the only silicide phase that allows significant oxygen in 

solid solution. The formation of Ti5Si3 and absence of Ti3Si are also consistent with prior literature 

results on Ti and Si-containing thin films [178] and with oxygen destabilization of Ti3Si to favor 

Ti5Si3 [179]. The measured O concentrations in the Ti5Si3 layer near the Ti interface and in Ti are 

indeed non-negligible at 0.6 and ~9 at. %, respectively (Figure 7.9). The measured Si 
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concentration in Ti (0.3 at. %) is in agreement with previously reported Si solubility in Ti [177]. 

The compositions are reported on the phase diagram for illustration and discussion (Figure 7.15), 

even though interfacial equilibrium may not be realized. At the top of the Ti5Si3 layer, SiO2 is in 

contact with Ti5Si3. The two phases may be at equilibrium (Figure 7.15), and the reaction paths 

avoided all other silicides or metastable titanium oxide phases.  

 
Figure 7.15: The ternary phase diagram in atomic % for Ti-Si-O at 800 °C extrapolated from previously published phase 

diagrams [172–177]. Red circles denote Ti5Si3 and α Ti compositions measured using atom probe tomography for Si-coated 

Ti specimens oxidized at 800 °C for 2 h. 

 Delamination and buckling of the amorphous SiO2 layer, which was observed in some 

areas of the coating after 2 and 8 hours, may be attributed to the generation of stresses that affected 

the mechanical stability of the SiO2 and Ti5Si3 layers. These stresses were relieved through 

decohesion at the interface between amorphous SiO2 and Ti5Si3 and outward bowing of the more 

compliant SiO2 layer (Figure 7.6). The observed decohesion and buckling morphologies are 

similar to those reported for the oxide buckling failure mechanism of protective oxide layers with 

a weak interface [180]. The generated stresses in the present system presumably arose from volume 

change during Si oxidation and/or thermal expansion mismatch between SiO2, Ti5Si3, and the Ti 
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substrate upon cooling. A set of complementary experiments where 250 nm of amorphous SiO2 

was deposited on pure Ti and then oxidized for 2 h at 800 °C revealed that SiO2-coated specimens 

showed limited delamination and no buckling (Figure IV.2 in Appendix IV). Therefore, 

compressive stresses generated from the significant volume change during Si oxidation to SiO2, 

rather than thermal stresses, are more likely to have played a role [181]. Moreover, relaxation 

through viscous flow of SiO2 is reportedly not significant at the oxidation temperature of 800 °C 

[182].   

With exception of the buckled locations, the amorphous SiO2 layer in contact with the 

Ti5Si3 layer was unstable and reacted with Ti, diffusing outward from the substrate through the 

silicide, to form additional Ti5Si3. Such reaction had been previously observed during vacuum 

annealing of Ti films on SiO2 substrates in the same temperature range yielding Ti5Si3 as the stable 

silicide product [183], and interpreted as dissociation of SiO2, oxygen diffusion into the Ti film, 

and Ti and Si reaction to form Ti5Si3. This reaction was also confirmed here to take place in 

oxygen-rich environments for the amorphous SiO2-coated Ti specimens oxidized for 2 h at 800 

°C, and the silicide reaction product that formed was identified as Ti5Si3 (Figure IV.1 in Appendix 

IV). For the samples originally coated with amorphous Si, once the adherent and amorphous SiO2 

layer was fully depleted, formation of an external rutile TiO2 scale resulting from the upward 

diffusion of Ti through the silicide layer ensued. In locations where amorphous SiO2 was buckled, 

outward growing TiO2 nanocrystals were observed at earlier times (Figure 7.6a), presumably 

accelerated by the absence of the SiO2 phase in contact with Ti5Si3 allowing for Ti to react with 

gaseous O2. 

 Oxidation of Ti and Ti alloys generally involves outward scale growth [75,79,169]. 

Similarly, in the case of Si-coated Ti presented here, the growth of TiO2 crystals on the surface 

with increasing exposure time required significant outward diffusion of Ti through the Ti5Si3 layer. 

Short exposures of pure Ti created dense coarse grained TiO2 external scales (Figure 7.2). 

However, the outer scale is neither fully dense nor compact for Si-coated Ti, and is formed of 

individual separated TiO2 crystals (Figure 7.11b). Since the externally growing scale is controlled 

by the outward flux of Ti, we speculate that the presence of the Ti5Si3 layer reduces the magnitude 

of the Ti outward flux, and that a change in the outward Ti flux influences the shape and 

morphology of the outward growing external oxide (Figure 7.5h). Prior work has shown that the 

nature of the oxidizing environment can affect the morphology of TiO2. Under high oxygen partial 
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pressure in Ar, a dense scale forms on pure Ti [169], while nanowires were observed on pure Ti 

and Ti alloys under low oxygen partial pressure in Ar [184,185]. Additionally, the chemistry of 

the oxidizing gas strongly influences the morphology of the scale and characteristics of the TiO2 

nanowires [186,187]. Therefore, the use of a coating to control the outward Ti flux may offer 

another possible method to control TiO2 nanostructure shape, but further work is required to 

understand the influence of Ti flux on the growth behavior and morphology of TiO2 nanocrystals. 

The findings could apply to controlling the geometry of 1-D TiO2 nanostructures that are of interest 

for applications such as chemical sensing, photo catalysis, photovoltaics [188,189], biosensors 

[190], and cell adhesion on biomedical implants [185,191].  

Concurrently to growth of the external TiO2 scale, the Ti5Si3 layer oxidizes by inward 

diffusion of O through the thickening internal oxide scale. The relative thermodynamic stability of 

Ti and Si assessed from standard Gibbs free energies of formation for the respective oxidation 

reactions suggests that TiO2 is slightly more stable than SiO2 at oxygen unit activity [192,193]. 

Therefore, it is conceivable that at the outermost interface of the Ti5Si3 layer, oxidation initially 

proceeds with that of Ti, leading to a local enrichment of Si. According to the ternary phase 

diagram, an excess of Si would then promote equilibrium between Ti5Si3 and SiO2 and therefore 

the oxidation of Si in Ti5Si3 rather than Ti5Si3 and Ti oxide. This is in part consistent with prior 

observations of oxidized bulk Ti5Si3 that exhibited a dual scale: outer TiO2 and inner SiO2-rich 

[192,193] as well as the formation of continuous SiO2 for non-stoichiometric, Si-rich Ti5Si3 [193]. 

However, it is also evident that the oxidation of the present silicide layer on Ti proceeds in a more 

complex manner than the formation of a single oxide or dual oxide scale. Oxidation of bulk Ti5Si3 

under identical conditions leads to a 100-200 nm thin mixed nanocrystalline TiO2/SiO2 internal 

oxide scale (Figure IV.3 in Appendix IV), while the internal oxide scale resulting from oxidation 

of the Ti5Si3 layer on Ti is significantly thicker (approximately 1.3-1.5 μm). Moreover, regular 

patterning of thin TiO2 and SiO2 layers formed in some areas (Figure 7.13), while in other areas a 

more mixed TiO2 and SiO2 nanocrystalline structure developed (Figure 7.12). It is conceivable 

that the composition of the top silicide interface alternates between being Ti-rich and Si-rich 

leading to the alternating formation of two equilibrium oxides: TiO2 and SiO2 respectively. We 

further hypothesize that in the case of the Ti5Si3 layer on Ti, Ti and Si diffusion through the silicide 

layer is linked to the oxide morphology and apparent accelerated oxidation of the Ti5Si3 layer. 

Such diffusion is limited in the case of bulk Ti5Si3. Outward diffusion of Ti, already discussed 
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above, may contribute to TiO2 formation in the inner scale. Furthermore, the continued formation 

of Ti5Si3 at the Ti interface suggests that the excess Si resulting from the oxidation of Ti at the top 

silicide interface is not only consumed by subsequent oxidation and SiO2 formation, but also by 

inward diffusion through the silicide layer and reaction with Ti to form silicide at the Ti interface 

(Figure 7.14c), which prolongs the effective thickness and effect of the silicide layer. In general, 

the Ti5Si3 layer evolved during the early stages of oxidation for Si-coated pure Ti specimens 

inhibited inward oxygen diffusion and the amount of oxygen ingress in the base Ti metal, which 

controls oxidation progression at longer exposures [81]. Indeed, the measured oxygen 

concentration in Ti at the silicide interface is ~9 at. %, and is significantly smaller than the 

maximum solubility of O in α Ti. In addition, the silicide layer persisted up to 64 h of oxidation 

even though only a thin 250 nm layer of Si was initially deposited, which demonstrates the 

extended influence of the silicide layer.  

Compared to uncoated Ti oxidized in the same conditions (Figure 7.2), the morphology of 

the internally growing oxide scale for Si-coated Ti exhibited a denser scale with fewer voids and 

nanocrystalline grain size that continued over longer exposures (Figure 7.11), which is in 

agreement with prior literature [11,83,88]. These coated morphologies were ascribed to both the 

formation of SiO2 [83,194] and Si in solid solution within TiO2 [11,88]. In the present work, SiO2 

grains and layers were identified in the internal oxide layer, and it is hypothesized that SiO2 

contributes to pinning of TiO2 grain boundaries thereby constraining grain growth and leading to 

the fine grain size of the oxide scale. Further evidence of the role of SiO2 on the resulting TiO2 

grain morphology and size is given by the oxidation of SiO2-coated Ti specimens for 32 h (Figure 

IV.4, IV.5 in Appendix IV). There, the different morphologies observed in the inward growing 

oxide correlated with the presence of Si detected through EDS mapping. At locations where SiO2 

was present, the internal oxide was nanocrystalline and compact with few voids. However, where 

Si was not detected, presumably corresponding to the complete oxidation of Ti5Si3, the internal 

oxide comprised only of TiO2 was coarse grained and porous at the oxide/metal interface. 

Reduced growth kinetics and improved oxidation resistance for Ti alloys with Si-

containing coatings have been linked to Ti5Si3 formation [83,87,88], but other titanium silicide 

phases including Ti5Si4, TiSi, and TiSi2 have also been identified [12,85,90]. The formation and 

stability of titanium silicide phases and oxide scales may be influenced by the addition of other 

elements such as Al in the coating or alloy chemistry [4,195]. The reduced kinetics and improved 
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oxidation resistance observed with other silicides suggest the mechanisms reported here may 

extend to other titanium silicide phases. There is little data available for the direct oxidation of 

Ti5Si4 and TiSi compounds, but oxidation studies of TiSi2 have revealed that a scale consisting of 

SiO2 with TiO2 precipitates or mixed TiO2/SiO2 will form depending on oxidation temperature and 

environment [196,197]. Furthermore, the performance of Si-containing coatings that form Ti5Si3 

may be further improved through doping with elements such as carbon [193,198]. In general, the 

formation of Ti5Si3 during oxidation of Si-containing coatings significantly contributes to 

oxidation mechanisms resulting in reduced scale formation and increased protection of titanium 

metal.  

7.5 Conclusions 

The oxidation behavior of pure Ti and Si-coated Ti at 800 °C was investigated to 

understand the mechanisms leading to the improvement in oxidation resistance for Si-containing 

coatings on titanium alloys. The following conclusions have been drawn: 

 A two-layer oxide scale for pure Ti was observed showing a compact, columnar outer scale 

and porous, equiaxed inner scale. Marker studies reveal that diffusion of oxygen and 

titanium both contribute to early stage titanium oxide growth, with Ti outward diffusion 

forming the dense outer oxide layer external to the original metal surface and O inward 

diffusion forming the porous inner layer. 

 The pure Si coating deposited on the Ti substrate reacted to form a bi-layer structure 

consisting of SiO2 and Ti5Si3. 

 Upon further exposure, an external TiO2 scale developed with nano-wedge shaped crystals. 

This outer scale required outward flux of Ti from the substrate through the Ti5Si3 layer. 

The flux for outward Ti may control the morphology and grain structure of the external 

TiO2 scale.  

 The internal oxide scale, which was formed by inward oxidation of Ti5Si3, was 

nanocrystalline, compact, and consisted of both TiO2 and SiO2. In some regions of the 

internal oxide scale, oxidation proceeded by regular formation of alternating SiO2 and TiO2 

layers.   
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 The excess Si resulting from the oxidation of Ti in the Ti5Si3 layer diffused inward through 

the silicide layer and reacted with the Ti substrate to form additional Ti5Si3, allowing the 

silicide layer to be maintained up to 64 h of oxidation exposure. 

 While allowing fast Ti and Si transport, Ti5Si3 significantly slowed the inward diffusion of 

oxygen, preventing fast growth of an internal TiO2 layer, and therefore acted as an oxygen 

diffusion inhibitor.  

 The silicide phase only retarded the onset of internal oxide formation. Once Ti5Si3 was no 

longer present at the oxide/Ti interface, the diffusion hindrance of O was lost, resulting in 

accelerated oxide growth that was coarse grained and porous.  

 Oxidation of the silicide layer proceeded differently than that of bulk Ti5Si3, which showed 

a thinner mixed TiO2/SiO2 internal scale and did not form regularly alternating SiO2 and 

TiO2 layers. Thus, oxidation investigations of the silicide alone are not sufficient to 

understand the more complex interactions that occur between the coating and substrate. 

The present results demonstrate that the system consisting of Ti5Si3 and Ti must be 

investigated in order to understand the role of the silicide during titanium oxidation.  
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Chapter 8: Summary and Future Directions 

 

Oxygen’s effect on titanium alloys as an interstitial alloying element has been extensively 

studied in metastable β Ti alloys, but prior evaluations have lacked a systematic focus on oxygen 

in relation to the metastable ω phase. The ω phase remains scientifically and commercially relevant 

for Ti alloys due to its importance in influencing phase stability and precipitation of the stable α 

phase, as well as controlling deformation behavior and mechanical properties. This dissertation 

work presents a comprehensive investigation of oxygen as an alloying element in aged metastable 

β Ti alloys that focuses on ω and α precipitation with varying oxygen content. Alloy compositions 

that were evaluated spanned several relevant model and commercially produced β Ti systems 

including Ti-Nb, Ti-Mo, and Ti-V containing compositions. A high temperature oxidation 

exposure was used to create an oxygen concentration gradient for efficient evaluation of 

compositional effects during subsequent ageing studies. This work focused on evaluation of 

microstructural evolution and mechanical properties using multi-scale characterization methods 

including SEM, TEM, APT, and WDS as well as micro-scale mechanical testing methods through 

micropillar compression.  

The study of ω and α phase transformations with oxygen in Ti-20Nb highlighted 

microstructural changes for ω with elevated O. Specifically, increasing oxygen concentrations 

yielded smaller ω sizes, increased number density, and a morphology transition from ellipsoidal 

shapes without oxygen to rod-like precipitate shapes. Oxygen’s partitioning behavior to ω during 

ageing indicated that oxygen acts as an ω stabilizer in β Ti alloys. Furthermore, the precipitation 

rate of α with continued ageing was directly influenced by oxygen content that changed the 

nucleation driving force for α. Notably, the slowest α precipitation rate was observed for 

intermediate levels of oxygen. The effect of these microstructural changes for ω with oxygen on 

deformation behavior were tested using micropillar compression. Severe embrittlement and 

ductility losses are known to occur through planar slip localization in ω-enriched metastable β Ti 

alloys without oxygen. However, Ti-20Nb alloys containing elevated O that were aged such that 

oxygen partitioned to large ω precipitates showed improved compressive yield strength and work 
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hardening during micropillar compression testing. Importantly, ω precipitate shearing and the 

formation of continuous deformation channels were suppressed leading to the observed increases 

in work hardening and ductility. Two effects contributed to this mechanical response: at these ω 

sizes, dislocation bypassing becomes feasible during deformation and oxygen partitioning to ω 

precipitates increased their resistance to shearing. Finally, studies of commercial alloys Ti-15-333 

and Ti-15Mo with elevated oxygen revealed similar changes in precipitation and microstructure 

evolution that directly influenced mechanical properties. In Ti-15-333, oxygen-induced refinement 

of α precipitates resulted in increased compressive yield strength. This mechanism can be 

combined with other refinement strategies such as ω-assisted nucleation to obtain very small α 

precipitates that are desired for high strength. Ti-15Mo with elevated oxygen showed slower 

growth kinetics for ω than Ti-Nb alloys due to slower Mo diffusion compared to Nb in Ti. In 

addition, the lower solubility of oxygen in this alloy compared to Ti-20Nb led to lower levels of 

O partitioning to ω that allowed these precipitates to still be sheared during compression. Similar 

to Ti-15-333, oxygen-induced α refinement and ω-assisted nucleation in Ti-15Mo led to higher 

compressive yield strengths. These results demonstrate the beneficial uses for interstitial oxygen 

in metastable β Ti alloys that contradict conventional wisdom of oxygen as a detrimental alloying 

element in Ti. In particular, the future development of β Ti alloys that intentionally utilize oxygen 

opens up new avenues for alloy chemistry, processing, and microstructural design for improved 

properties. Additionally, relaxing of strict commercial requirements for low oxygen levels in Ti 

alloys may enable improvements in commercial production such as more tolerable processing 

control as well as better recyclability and reuse of Ti alloys. The applications of this dissertation 

thesis therefore impact both our scientific understanding of metallic alloy design as well as 

industrially relevant alloy production and processing. 

This thesis work also investigated the oxidation behavior of pure Ti with a Si coating in 

order to obtain a systematic understanding of reported improvements in Ti oxidation resistance 

with complex Si-containing coatings. This model system allowed the observation of Ti5Si3 silicide 

formation during oxidation exposures that effectively inhibited inward oxygen diffusion and 

prevented the growth of fast growing internal porous oxide scales. However, after the Ti5Si3 layer 

was also consumed through oxidation, the diffusion hindrance of O was lost and the resulting 

internal oxide was once again coarse and porous. These microstructural observations provide 
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insight on the mechanistic role of Si during Ti oxidation that may enable additional coating and 

alloy design.  

The insights gained through the present results offer viable pathways for utilizing oxygen 

as an alloying element in metastable β Ti alloy compositions and enabling microstructural changes 

that directly affect mechanical behavior. However, this work primarily focused on local 

microstructural regions with varying oxygen content tested using micromechanical methods. 

Mechanical testing of bulk metastable β Ti alloys with constant elevated oxygen content is required 

in order to confirm results presented in this thesis work. Furthermore, several observations that 

were seen during this dissertation work resulted in additional unaddressed scientific questions due 

to limitations in material, equipment, or time. Therefore, the following sections discuss relevant 

open questions and future directions from this work.  

8.1 Bulk mechanical testing of β Ti alloys with elevated oxygen 

The elevated oxygen levels for β Ti alloys investigated in this dissertation were obtained 

through an oxidation exposure that produced varying local microstructures related to the created 

oxygen concentration gradient in the β Ti matrix. These heterogeneous microstructures 

necessitated the use of micromechanical testing to evaluate mechanical properties, but bulk tensile 

testing of homogeneous β Ti alloys with constant elevated oxygen content is also needed for further 

application of these materials to commercially relevant products. Directly adding small quantities 

of Ti oxides during alloy melting have been used to obtain bulk alloy compositions with up to ~3 

at. % O [7], which would then enable bulk tensile testing to confirm the reported microstructure 

and deformation changes. Bulk tensile testing of polycrystalline specimens with homogeneous Ti 

alloy compositions containing elevated oxygen would also allow the investigation of possible 

oxygen segregation to grain boundaries that may affect mechanical properties and previously 

reported β phase embrittlement with high O levels [5]. Furthermore, bulk mechanical testing of 

fracture toughness and fatigue behavior are also highly relevant for structural applications [48], 

particularly since lifetimes of structural components are driven by fatigue crack initiation and 

growth. Therefore, improvements in deformation behavior and properties with oxygen-stabilized 

ω and oxygen-induced α refinement demonstrated in this work may need to be characterized for 

fracture toughness and fatigue properties depending on specific applications.  
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8.2 ω precipitate shape changes with elevated oxygen 

Several ω precipitate morphology changes were observed for Ti-Nb and Ti-Mo alloys in 

this thesis work with elevated oxygen levels. Ti-Nb and Ti-Mo, which are known to be low misfit 

β Ti systems, typically produce ellipsoidal ω shapes [19], but high oxygen compositions showed 

elongated rod-like shapes for Ti-Nb (Chapter 3) and faceted cuboidal morphologies for Ti-Mo 

(Chapter 6). These changes are likely linked to oxygen’s partitioning behavior and possible misfit 

strains generated from interstitial oxygen. Cuboidal ω precipitate shapes are commonly reported 

for high misfit Ti-V systems [15], providing evidence that misfit strains may drive ω shape 

changes. One avenue for further investigation of ω shape changes would be understanding the 

lattice changes of ω with oxygen. High resolution characterization of the ω lattice may enable 

direct measurements of lattice changes with partitioned oxygen as well as the investigation of 

possible oxygen clustering or ordering in preferred interstitial or substitutional lattice sites of ω 

precipitates. The generation of misfit strains from elevated oxygen contents could also be 

investigated using density functional theory calculations that determine the energetically favorable 

structures for ω with high oxygen content. These calculations would be able to inform phase field 

models to predict equilibrium shapes of ω precipitates in Ti systems using similar methods 

demonstrated for γ/γ’ microstructures in cobalt-based alloys [162]. Such investigations may reveal 

interesting and useful knowledge on tailoring precipitate morphology evolution with the inclusion 

of interstitial elements such as oxygen that may influence structural properties with different ω 

shapes. The degree of misfit may also affect the stability of ω at higher temperatures, with low 

misfit systems reportedly showing ω that is stable for higher temperatures and longer times than 

high misfit systems [31]. Therefore, interstitial elements that influence misfit may potentially 

allow for tuning of ω stability relevant for strength and work-hardening improvements with 

oxygen-stabilized ω precipitation discussed in Chapter 4 and Chapter 6.   

8.3 Effect of nitrogen on phase stability in β Ti alloys and on oxide growth kinetics of Si-

coated Ti 

As with oxygen, interstitial nitrogen is a strong α phase stabilizer in Ti alloys, and nitrogen 

shows high solubility in α and β phases before forming titanium nitride phases [199]. Within β Ti 

alloys, higher levels of interstitial N also affect phase stability that may influence mechanical 
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properties. For example, N has been shown to decrease the martensite start temperature in a Ti-

Nb-Zr-Ta alloy resulting in superelasticity at room temperatures [200]. Additionally, laser 

deposition of a Ti-Mo alloy in a nitrogen-rich environment formed α with partitioned N that 

provided strengthening evaluated using microhardness measurements [201]. Given nitrogen’s 

stabilization and reported partitioning to α, it is reasonable to hypothesize that N may allow for 

similar mechanisms as those reported in this thesis work on oxygen-stabilization of ω precipitates 

(Chapter 4) and oxygen-induced α refinement (Chapter 5). Therefore, similar investigations of 

elevated nitrogen levels may yield complementary knowledge on nitrogen’s effect on metastable 

β Ti alloys. These studies may include the use of high temperature nitridation exposures to produce 

an N concentration gradient, which can then be utilized to understand the effect of N on ω and α 

phase stability and precipitation during subsequent ageing of β Ti alloys. Depending on these 

results, similar experiments using micropillar compression could be conducted on N-rich and N-

free microstructures to obtain preliminary results on the deformation mechanisms with elevated 

nitrogen. The understanding of both oxygen and nitrogen as alloying elements would provide 

synergistic understanding of interstitial element inclusions in β titanium alloys. 

Understanding the effect of nitrogen on oxide scale growth of Si-coated Ti is relevant for 

commercial applications of silicon-containing coatings. N accounts for roughly 80% of air 

atmospheres, and during oxidation, nitrogen is known to reduce the oxidation rate of titanium 

alloys [202]. The presence of nitrogen results in a thinner and more compact oxide scale with a 

smaller amount of dissolved oxygen in the metal substrate [203]. The results in Chapter 7 showed 

that Si-coated Ti in argon-oxygen atmospheres also reduced oxygen ingress through the formation 

of Ti5Si3 that acted as an oxygen diffusion barrier, but this effect was lost when the silicide layer 

was fully oxidized. Since N also reduces the amount of oxygen ingress, oxidation studies of Si-

coated Ti in oxygen-nitrogen (synthetic air) atmospheres may show slower oxidation and 

breakdown of the silicide layer resulting in longer protection of Ti alloys. Furthermore, 

understanding possible effects of N on outward growing oxide scales that dominate for Si-coated 

Ti may allow for additional opportunities to reduce the oxide growth rate. Although Si-based 

coatings have shown improvements in air oxidation resistance for Ti alloys compared to uncoated 

material [11,88], the complex chemistries, deposition parameters, and resulting microstructures of 

these coatings have prevented a holistic understanding of the effect of N. Investigating specific 

oxidation mechanisms in nitrogen-containing atmospheres using model systems for Si-coated Ti 
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would provide a more comprehensive and nuanced understanding of these coatings during air 

oxidation relevant for industrial applications. 

8.4 Future structural alloy design utilizing interstitial oxygen  

Titanium alloy design has typically focused on compositions with minimal interstitial 

elements due to conventional knowledge of detrimental effects with elevated oxygen and/or 

nitrogen. Although recent development of metastable β Ti alloys employ high oxygen levels, these 

alloys are frequently processed with solution treatment and quenching to retain the metastable β 

state that enables novel deformation behaviors [7,59,61,98]. The results in this thesis work have 

provided evidence for beneficial effects of high oxygen content in aged microstructures 

particularly containing ω and α phases. With these mechanisms, new titanium alloys and 

processing treatments that utilize these effects of elevated oxygen may open up new 

microstructures and design spaces that enable desirable properties. Particular efforts may focus on 

developing metastable β Ti alloy compositions that allow high solubility of dissolved oxygen 

contents prior to the stabilization and precipitation of α. Furthermore, this knowledge may allow 

for better understanding of the effects of oxygen impurities in β Ti alloys that could relax the 

current stringent requirements for oxygen in industrial materials specifications. Finally, tangential 

areas that may benefit from this thesis work include the understanding of oxygen influence in other 

related product forms and alloy systems. These areas may include oxygen pickup in titanium alloy 

powders used in additive manufacturing and/or powder metallurgy. Other relevant alloy systems 

that may utilize these findings include ω-forming Zr alloys [19] as well as refractory-based high 

entropy alloys that frequently include Ti, Nb, and Mo elements and have also shown notable 

oxygen-induced phase stability changes [204]. Ultimately, these approaches may result in new 

alloys and processing methods that intentionally utilize interstitial oxygen or other interstitial 

elements to enable beneficial properties.  
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Appendices  

 

Appendix I: Sample Preparation 

I.1 Heat treatment of Ti samples 

 Ti samples of interest were cut using a slow speed diamond saw to the correct dimensions 

and cleaned by ultrasonicating sequentially with tap water, acetone, and methanol for 2-3 

minutes each. Specimens were then wrapped in pure Ti foil and encapsulated in a quartz 

tube backfilled with Ar gas along with 3-4 pure Ti granules. The Ti foil and granules were 

included to act as getters for any remaining oxygen present in the sealed tube so the oxygen 

would not be absorbed by samples of interest during heat treatment.  

 Encapsulated samples were placed in a box furnace for ageing treatments (200-600 °C) or 

the vertical quench furnace for high temperature solution treatment (1000 °C). The furnace 

was preheated for about one hour prior to sample insertion such that the encapsulated 

sample was immediately exposed to the correct heat treatment temperature. After the 

required heat treatment time, encapsulated samples were removed from the furnace and 

quenched directly into a 5 gallon bucket filled partially with tap water. The encapsulated 

tube was then immediately broken into the water in the bucket using a heavy tool to fully 

quench the sample.  

I.2 Oxidation exposures 

 One side of Ti samples for oxidation exposure was polished by hand with alumina (Al2O3) 

grinding papers. Polishing was done successively with 30, 12, 9, 3, 1 μm papers, rinsing 

and ultrasonicating with tap water for 1-2 minutes between steps. 

 The gas environment for the tube furnace is controlled using a flow controller and can flow 

mixtures of argon, oxygen, and nitrogen.  

 To operate the tube furnace, open the gas cylinder and gas lines for gases that will be used 

for the exposure. Turn on the MKS 946 vacuum system flow controller to set gas flow. The 
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A1 channel is for argon gas and the B1 channel is for oxygen gas, and you can toggle 

between these channels using the up/down arrows. The green light indicates the active 

channel that you are changing. Set flow controller for each gas by pushing “Channel 

Setup”, which will bring you to the setup screen for the gas. Move cursor to “OP mode” 

for “Operation Mode”, push enter, and use up/down arrows to change from “close” to “set 

point”, and then push enter to save. Then change the “FlowRate SP” for Flow Rate Set 

Point to your intended gas flow rate, and then push enter to save it. Purge the system by 

setting the argon gas flow to 40 SCCM flow rate. Bubbles should be seen in the oil at the 

right end of the tube furnace glass column set-up when gas is flowing. Set “OP mode” to 

“close” to stop argon flow. Push “esc” to go back to the main screen of the flow controller.  

 Place sample in the tube furnace by opening the glass tube and removing the glass specimen 

holder (on a long arm). Place sample(s) in an Al2O3 crucible, and place crucible in the 

specimen holder. Insert the glass specimen holder with the crucible and samples back into 

the glass tube, with the sample/crucible side pointing into the tube. You can move the 

specimen holder in the glass tube by using a magnet on the outside of the glass tube that 

attracts the black magnet in the specimen holder (opposite end as the sample/crucible). 

Close the glass tube by spreading a thin layer of vacuum grease evenly on the connection 

point and connect the two pieces together again such that the tube is fully sealed. Move the 

specimen holder with the crucible and sample to the center of the hot zone of the furnace 

(near end of the thermocouple in the glass tube of the furnace) using the magnet. Mark the 

specimen holder position on the glass tube to know where to move it to when the furnace 

lid is closed. Move specimen holder out of the hot zone of the furnace into the long glass 

tube portion outside the furnace so the crucible and samples will not be heated as furnace 

ramps to correct temperature. Close furnace lid and lock.  

 Set argon flow rate back to 40 SCCM and set “OP mode” from “close” to “set point” to 

purge while heating furnace to the exposure temperature. Turn on Lindberg Blue M tube 

furnace and program set point to correct temperature. Press and hold “set/ent” button. Once 

it changes to “Node – res” (default option), then push “set/ent” once to change to Prg 

(program), and change this from 0 to 1 by pushing up arrow. Press “set/ent” to save. Press 

and hold “set/ent” button again, then push “set/ent” button repeatedly to cycle through 

parameters until you get to “A1”. Change A1 to 10-20° higher than your intended exposure 
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temperature. This is the upper maximum temperature that the furnace will allow as an 

emergency precaution. Press “set/ent” to save. Press and hold “set/ent” again to get back 

to the temperature reading of the furnace. 

 Set the set point of the furnace. Press and hold “set/ent”. Push up and down arrows until 

“Node” reads “LCL” to set the local set point. Press “set/ent”. Push up and down arrows 

to change set point temperature to intended exposure temperature. Push “set/ent” to save. 

Furnace will make a loud clicking sound to indicate it is turning on and starting to ramp 

the temperature.  

 Allow the furnace temperature to ramp and stabilize to correct exposure temperature. 

Monitor the temperature with the thermocouple and adjust the local set point so the correct 

temperature is reached, press “set/ent” to save new set point. The furnace set point will 

most likely need to be adjusted according to the thermocouple reading since it may 

overshoot or undershoot the temperature. The furnace should take about 20-30 minutes to 

stabilize temperature.  

 Insert the specimen holder with the crucible and sample into the hot zone of the furnace 

using the magnet to move to the marker previously made on the glass tube. Allow 

temperature to equilibrate again to correct exposure temperature (about 10-15 minutes). 

 Open oxygen cylinder and gas lines if not already opened. Change argon flow rate to 4 

SCCM (4.0 x 100 on controller) by changing “FlowRate SP” on flow controller. Go back 

to start menu by pushing “esc”. Push down arrow to “B1” for oxygen. Set up channel by 

pushing “Channel Setup” and change oxygen flow rate using “FlowRate SP” to 1 SCCM. 

Open oxygen gas flow to set point by going to “OP mode” and changing from closed to 

“set point”. Press enter to start oxygen flow at set point flow rate.  

 Keep furnace on with correct controlled environment/gas flow for intended exposure time. 

To end exposure, stop oxygen gas flow by changing “OP mode” to “close”, then close 

oxygen valves and gas cylinder. Change Ar gas flow back to 40 SCCM by changing the 

“FlowRate SP” to purge with Ar during sample cooling. Move specimen holder with 

crucible and sample out of the hot zone of the furnace into long glass tube region using 

magnet so sample is no longer being heated. Turn off furnace. Wait until furnace is cooled, 

then change Ar flow to closed by changing “OP mode” to close, closing Ar gas cylinder 

and valves, and turning off flow controller. Open glass tube and remove sample. 
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I.3 Mounting and polishing β Ti samples 

 As-received and heat treated samples were cut using a slow speed diamond saw into small 

pieces and mounted in cold mounting epoxy. Red 1.25” diameter mold cups were used to 

mount the titanium specimens in epoxy, which were coated with a mold release agent 

before putting in specimens and epoxy. The region of interest for microstructural 

characterization was placed face down in the mold cup so that it would be exposed from 

the mount after subsequent grinding and polishing. After pouring the epoxy, mold cups 

were left to cure and harden overnight in the fume hood. After full hardening, mounted 

samples in epoxy were removed from the mold cups.  

 Mounted samples were manually ground using the polisher in the Marquis Laboratory 

using 320, 600, 800, and 1200 grit SiC papers in succession. Polishing using each grit was 

performed for 2-4 minutes until the sample was planar and scratches from the prior grit 

paper were fully removed. After each grit paper, specimens were rinsed and ultrasonicated 

with tap water for 1-2 minutes.  

 Final polishing to mirror finish was performed using the Van Vlack Laboratory 

autopolishers according to Table I.1. Polishing was conducted using 0.03 μm colloidal 

silica solution added directly to the polishing pad during each polishing step, with 

additional solution added as needed every few minutes while polishing. Additional time 

was added up to user discretion.  

Table I.1: Colloidal silica polishing sequence for titanium samples. 

Step  Description Time (min) Speed (rpm) Force (N) 

1 Polish with colloidal silica 

solution 

8 200/60, Contra direction 30 

2 Polish with colloidal silica 

solution 

4 200/60, Complementary 

direction 

30 

3 Polish with colloidal silica 

solution 

8 200/60, Contra direction 30 

 

 Polished specimens were rinsed with tap water immediately after polishing to remove 

colloidal silica solution, then ultrasonicated sequentially with tap water, acetone, and 



 126 

methanol for 2-3 minutes each. After cleaning with methanol, the cleaned sample was dried 

with compressed air. For SEM evaluation, a SEM pin stub was attached to the backside of 

the epoxy-mounted sample using silver paint. Silver paint was also applied around the edge 

and top of the mount to touch a corner of the polished sample face so that there was a 

conductive path between the SEM stub and polished sample to prevent charging. 

Additional silver paint was applied to the top face of the epoxy mount near the polished 

sample location to prevent charging in the SEM.  

I.4 Wavelength dispersive spectroscopy 

 Wavelength dispersive spectroscopy (WDS) characterization was performed at the Robert 

B. Mitchell Electron Microbeam Analysis Lab (EMAL) located in the North University 

Building on Central Campus at the University of Michigan.  

 Samples for WDS evaluation were mounted, ground, and polished using the same above 

procedure but did not have silver paint or SEM stubs attached. Some WDS specimens were 

also mounted in 1” mold cups instead of 1.25”. 

 Dr. Owen Neill conducted chemistry measurements for WDS characterization.  

I.5 Micropillar compression testing 

 Samples of interest were first characterized using electron backscatter diffraction (EBSD) 

to identify suitable grains for micropillar fabrication. EBSD was performed on mounted 

and polished samples in epoxy.  

 Following EBSD characterization, samples were removed from epoxy mounts because 

mounted samples were too tall for the nanoindentation systems used for micropillar 

compression. Removing samples from the epoxy mounts was performed by cutting into 

the epoxy close to the polished sample face using a slow speed diamond saw, then 

compressing the mount in a vice clamp perpendicular to the cut direction in order to 

promote cracking along the interface between the sample and epoxy to remove the sample. 

After cutting into the epoxy, the mounted sample was put in a plastic sealable sandwich 

bag before compressing with the vice so that the sample would not be lost after cracking 

of the epoxy. This specimen removal method from epoxy was suggested by Bobby Kerns 

at the Michigan Center for Materials Characterization (MC2). 
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 After the polished sample was successfully removed from epoxy, it was cleaned by 

ultrasonicating sequentially with acetone and methanol for 2-3 minutes each. The cleaned 

sample was then attached to an SEM pin stub using silver paint, using enough silver paint 

so that the specimen was well attached and would not move during micropillar compression 

in the nanoindenter.  

 Fabrication of the micropillars was performed using a focused ion beam in an SEM. Dr. 

Allen Hunter at MC2 developed an automated script for pillar fabrication and provided 

training on micropillar fabrication. FIB ion beam currents were aligned at every session 

prior to micropillar fabrication to prevent misshapen pillar dimensions due to beams being 

out of focus or having astigmatism.  

 Compression of micropillars was performed using a nanoindentation system. Dr. Haiping 

Sun at MC2 provided training on micropillar compression. Compression was performed 

using the “High Load” mode for the nanoindenter and using a modified HL trapezoidal 

loading curve. Compression was conducted primarily using the flat end probe, with 

additional testing using a 50 μm spherical probe. Prior to testing a specific micropillar, 

nanoindentation with a ~700 nm displacement indent was performed in the bulk material 

close to the micropillar to identify precise location of the probe for better alignment of the 

probe to the micropillar.  

I.6 Argon ion milling of TEM samples using PIPS 

 After fabrication of TEM liftout samples using a focused ion beam in an SEM, focused 

ion beam damage was removed and cleaned using a Gatan PIPS II instrument with a 

broad Ar ion beam.  

 PIPS milling was conducted according to the procedure available at the Michigan Center 

for Materials Characterization (MC2): “SOP for PIPS II Milling of a FIB TEM Sample”, 

The SOP is also included in the following section.  
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Standard Operating Procedure (SOP) for PIPS II Milling of a FIB TEM Sample 

Purpose 

1. This SOP provide procedure for Ar ion polishing of a standard FIB lift out sample for 

TEM analysis. A complete “PIPS II Manual and guide.pdf” is availble on the desk top of 

the PC next to the instrument. 

2. Section 1 and 2 can be skipped if it’s already aligned. For daily operation, you can start 

from section 3. 

Instrument 

1. Gatan PIPS II Model 695 in (MC)2. 

Safety Precautions 

1. User must be trained by (MC)2 staff before using this instrument. 

2. Do not operate any regulator in the compressed gas cabinet. 

3. Handeling liquid nitrogen with care and must ware necessary personal protection 

equipment if cold stage is used. 

Procedures 

1. Align center of phosphor screen with center of stage rotation 

1.1. Raise the stage by moving the arrow up on the control screen, then press vent to vent the 

chamber.  

1.2. Remove the cover, and place the phosphor screen in the sample stub holder. Replace cover 

and lower the stage by moving the arrow down on the control screen. This will also pump 

down the chamber. 

1.3. Change the focus of the optical microscope so that the hole in the center of the phosphor 

screen is in focus. On the alignment tab, press the left front button, then draw a line starting 

from a recognizable feature. Press the left rear button, and then move the opposite end of 

the line to the same recognizable feature. Press the right front button, then draw a second 

line starting from the same recognizable feature, and finally, press the right rear button, 

then move the opposite end of the second line to the same recognizable feature. The point 

of intersection for the two lines should be the center of stage rotation.  

1.4. Press the home button on the alignment tab of the control screen. Then draw a third line 

from the center of the hole to the center of rotation. The third line is relative shift between 

the two centers. 
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1.5. Raise the stage and vent the chamber. The hole in the phosphor screen will move when 

the stage is raised, but the relative shift won’t change.  

1.6. Now move the third line (without changing the length or endpoints) so that one endpoint 

is aligned with a feature, either the center of the hole or any other feature, on the image. 

1.7. Using the stage movement screws, physically move the feature from one endpoint to the 

other endpoint. Be careful not touching the position of optical microscope. 

1.8. Replace the cover and lower the stage.  

1.9. Check if the center of the hole is aligned with the center of rotation. Repeat steps 3-9 until 

the center of the hole is aligned with the center of rotation.  

 

2. Align beam to center of phosphor screen (manual section 3.10) 

2.1. Align beam for left gun top milling (manual section 3.10.1): Go to the milling tab on the 

control screen. Follow instructions for aligning the left gun (top milling) and right gun 

(bottom milling) in section 3.10 of the manual. Perform alignment for top milling using 

the left gun at +10 and +5 degrees. 

2.2. Align beam for right gun bottom milling (manual section 3.10.2): Raise stage and vent 

chamber. Remove the phosphor screen and insert the glass slide sample. Lower stage. 

Follow instructions for aligning right gun (bottom milling). Perform alignment for bottom 

milling using the right gun at -10 and -5 degrees.  

2.3. Raise stage and vent chamber. Remove glass slide sample.  

 

3. Milling a TEM lamella that was thinned using FIB (mounted on side of post on Cu grid) 

3.1. Insert the TEM grid with your sample into the sample holder for PIPS II. Clamp in sample 

such that the flat edge containing the tops of the posts are aligned across the clamping 

posts. Raise stage and vent chamber. Insert sample holder with TEM grid into the sample 

stub holder in the chamber. Make sure the flat edge containing the tops of the posts are 

parallel with the front side of the PIPS II instrument. Replace cover and lower stage.  

3.2. Change the focus of the optical microscope so that the TEM sample is in focus. Follow 

the same steps in the “Align center of phosphor screen with center of stage rotation” 

section to align the TEM FIB sample with the center of rotation.  
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3.3. PIPS milling on a TEM sample will be doing with the two guns in “Stationary mode” with 

the sample aligned in the plane of the guns. The sample will be milled using the left gun 

(top milling) and right gun (bottom milling) in two separate steps for each beam current 

and voltage combination. Draw a 35 degree line in Digital Micrograph to show the angle 

at which the left gun will mill from. If the TEM sample is side mounted on the left of the 

finger as shown in (a) for the following figure, on the alignment tab, change the angle to 

315 degrees so that the sample is rotated and the beam from the left gun travels at an angle 

relative to the Cu grid to minimize redeposition on the sample. Draw a -35 degree line in 

Digital Micrograph to show the angle at which the right gun will mill from. Similarly, 

change the angle to 65 degrees so that the sample is rotated and the beam from the right 

gun travels at an angle relative to the Cu grid to minimize redeposition on the sample. If 

the TEM sample is side mounted on the right of the finger as shown in (b) for the 

following figure, on the alignment tab, change the angle to 295 degrees when milling with 

left gun, and then change the angle to 45 degrees when milling with right gun. 

 

 

 (a) TEM lamella is mounted on the left side of the finger. (b) TEM lamella is mounted 

on the right side of the finger. 

 

3.4. On the milling tab, choose your beam voltage and milling time. Select “stationary left” for 

milling mode. This mode will only mill using the left gun, and the sample will not rotate, 

so it will be stationary in the position that you set.  

3.4.1. The gas flow rate, which changes the beam current, can be automatically set using 

“Automatic gas”, or can be set manually by changing to “Manual gas”. At low beam 

voltages (1 kV or lower), more consistent beam current has been achieved using the 
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Manual gas mode. Some reference gas flow levels and the corresponding beam 

currents are listed below. These can be adjusted for your specific sample or material, 

but can be used as a starting suggestion.  

3.4.1.1. Left gun: 0.125 SCCM = ~17 µA. Right gun: 0.170 SCCM = ~17 µA 

3.4.1.2. When starting milling, the beam current usually will start out high initially 

(~30 µA), but then drop and stabilize out to a stable beam current.  

3.4.2. The milling rate of the PIPS II is high due to the focused Ar beam, therefore since 

FIB prepared TEM samples are already pre-thinned, it is recommended that milling 

should start at 500 V and then progress to smaller beam voltages (300 V, 200 V). The 

500 V step seems to mill the sample slightly if the sample is still on the thicker side 

but not too quickly so that the sample is completely milled away. 300 V seems to 

clean the sample to remove beam damage, but not mill too much of the sample, so 

this seems to be a good beam voltage for a longer step.  

3.4.3. A sample recipe for milling a TEM sample prepared by FIB is below. These are 

intended to be guidelines, but may need to be adjusted for different materials or 

different starting thicknesses of the sample after FIB. 

3.4.3.1. Ni-based alloy; starting thickness after FIB (last step in FIB – 5 kV 

cleaning) ~ 250 nm; 1 kV 2 min/side, 500 V 3 min/side, 300 V 3 min/side, 200 

V 3 min/side. 

3.4.3.2. Ti-based alloy; starting thickness after FIB (last step in FIB – 5 kV cleaning) 

~ 150 nm; 500 V 3 min/side, 300 V 8 min/side, 200 V 10 min/side. 

 

3.5. On the alignment tab, change the angle to 315 degrees so that it is aligned and slightly 

offset from the left gun. Press start to begin your milling cycle. This will mill the top of 

your sample using the left gun. (Use 295 degree when mounted on the other side of the 

finger, as mentioned in step 3 in Milling a TEM lamella that was thinned using FIB) 

3.6. When the cycle is complete, go to the milling tab and select “stationary right” for milling 

mode. Change the manual gas flow for the right gun if you are using the Manual Gas mode 

so that the beam current of the right gun matches the beam current that you had for the left 

gun. Go back to the alignment tab, and change the angle to 65 degrees so that the sample 

is aligned and slightly offset from the right gun. Press start to begin your milling cycle. 
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This will mill the bottom of your sample using the right gun using the same parameters as 

the top of your sample. (Use 45 degree when mounted on the other side of the finger, as 

mentioned in step 3 in Milling a TEM lamella that was thinned using FIB) 

3.7. Raise the stage and vent the chamber. Remove your sample from the sample stub holder 

and take your sample out of the holder.  

3.8. Check the condition of the sample using the TEM. Repeat milling steps as needed for your 

milling recipe. 

3.9. For more details, please visit Gatan’s website on argon ion polishing of focused ion beam 

specimens in PIPS II system: http://www.gatan.com/argon-ion-polishing-focused-ion-

beam-specimens-pips-ii-system. Additionally, Gatan has a video detailing the steps of 

using argon ion polishing for FIB samples in PIPS II at this link: 

https://www.youtube.com/watch?v=3P-_sAOB-bc. 
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Appendix II: Micropillar Dimension Effects, EBSD Maps, and Supplemental Images From 

In-Situ Compression Testing for Ti-20Nb 

II.1 On the use of micropillar compression testing for comparing deformation behavior of 

ω-strengthened β Ti alloys 

Small-scale mechanical testing methods such as micropillar compression, which was used 

to investigate deformation behavior of aged Ti-20Nb, are sensitive to local microstructural 

changes. Given the compositional gradient and resulting microstructural variation of OXA Ti-

20Nb specimens (Chapter 4), micropillar compression testing was utilized to probe deformation 

mechanisms of localized regions within samples. Micropillar compression testing may show 

significant size-related effects based on pillar diameter and size that may influence operative 

deformation mechanisms and dislocation processes in addition to the obtained mechanical 

properties [118]. In particular, single crystal and single phase pillars can exhibit size-dependent 

mechanical behavior from intrinsic mechanisms such as single-arm source theory and dislocation 

starvation leading to very high measured stresses [205,206]. In contrast, precipitate-strengthened 

alloys with fine precipitate sizes have shown a much weaker size dependence, where deformation 

behavior is controlled by internal microstructural length scales that dominate over specimen size 

effects [119,120]. In general, extrinsic size effects tend to dominate when specimen dimensions 

are sufficiently larger than dispersed microstructural features and the tested volume contains ample 

dislocation sources [121]. Under such conditions, small-scale mechanical testing methods yield 

meaningful yield strength values [121]. In Chapter 4, TEM imaging of initial microstructures 

after ageing for 3 d at 450 °C (Figure 4.3) revealed dense distributions of ω phase precipitates 

with a diameter and spacing of ~50-100 nm. Consequently, micropillars were fabricated with 

diameters greater than 1 µm in order to better approximate bulk-like properties. The compressive 

stress-strain curves (Figure 4.4 and 4.6) displayed low strain hardening similar to ω-containing 

bulk materials without oxygen [51,116].  

Similar values, curve shapes, and slip band features were observed for 2 and 5 μm diameter 

pillars, indicating that pillars in this diameter range showed minimal size-related effects for the 
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tested microstructures. Compressive engineering stress-strain curves up to 20% strain for 2 and 5 

μm diameter pillars were plotted to compare influences of probe indenter geometry, micropillar 

diameter, and specimen conditions. Comparison between stress-strain curves for 2 (Figure 4.5 and 

Figure 4.6a) and 5 μm (Figure II.3) diameter micropillars showed similar trends for DA and OXA 

specimens with ageing time and oxygen content. Compression of 2 μm diameter pillars using both 

flat punch and spherical probe indenters also showed good agreement of collected stress-strain 

data regardless of indenter shape (Figure II.4), which indicates probe indenter geometry does not 

influence relative magnitude and shape of stress-strain curves.  

 

 

Figure II.1: EBSD inverse pole figure maps and crystal lattice outline for selected grain (black arrow) with crystallographic 

orientation close to out-of-plane orientation (100)β for micropillar fabrication on Ti-20Nb with the following ageing 

conditions: (a) DA 3 d, 300 °C with 0.1 at. % O, (b) OXA 3 d, 300 °C with an O concentration gradient, (c) DA 3 d, 450 °C 

with 0.1 at. % O, (d) OXA 3 d, 450 °C with an O concentration gradient, (e) DA 2 h, 450 °C with 0.1 at. % O, (f) OXA 2 h, 

450 °C with an O concentration gradient. Representative micropillars fabricated using FIB with a (g) 2 µm and (h) 5 µm 

diameter.  
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Figure II.2: Calculated Schmid factor value maps based on EBSD IPF map for Ti-20Nb aged for 3 d at 450 °C with 0.1 at. 

% O. (a) EBSD IPF map. (b) Schmid factor values for (11-2)[111]β slip system. (c) Schmid factor values for (1-10)[111]β slip 

system.  

 

 

Figure II.3: SEM-BSE images of 5 µm diameter micropillars compressed to 15% engineering strain for Ti-20Nb aged for 

3 d at 450 °C with (a) 0.1 at. % O and (b) 4.1 at. % O. Insets show initial microstructure prior to compression. (c) 

Engineering stress-strain curves for compressed micropillars shown in (a-b).  

 

 

Figure II.4: SEM-BSE images of compressed micropillars for Ti-20Nb aged for 3 d at 450 °C with 0.1 at. % O tested using 

(a) flat punch and (b) spherical probe geometries for compression. (c) Engineering stress-strain curves for compressed 

micropillars in (a-b).  
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Figure II.5: (a) Load versus displacement data collected during in-situ testing of a 2 μm diameter micropillar for Ti-20Nb 

aged for 3 d at 300 °C with 0.1 at. % O. SEM images of pillar after (b) 370 nm and (c) 540 nm of displacement.  

 

 

Figure II.6: (a) Load versus displacement data collected during in-situ testing of a 2 μm diameter micropillar for Ti-20Nb 

aged for 3 d at 300 °C with 0.1 at. % O. SEM images of pillar after (b) 600 nm and (c) 3760 nm of displacement.  
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Figure II.7: (a) Load versus displacement data collected during in-situ testing of a 2 μm diameter micropillar for Ti-20Nb 

aged for 3 d at 300 °C with 4.1 at. % O. SEM images of pillar after (b) 280 nm, (c) 665 nm, and (d) 1115 nm of displacement.  

 

 

Figure II.8: (a) Load versus displacement data collected during in-situ testing of a 2 μm diameter micropillar for Ti-20Nb 

aged for 3 d at 300 °C with 4.1 at. % O. SEM images of pillar after (b) 200 nm and (c) 700 nm of displacement.  
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Figure II.9: (a) Load versus displacement data collected during in-situ testing of a 2 μm diameter micropillar for Ti-20Nb 

aged for 3 d at 450 °C with 0.1 at. % O. SEM images of pillar after (b) 600 nm and (c) 1000 nm of displacement.  

 

 

Figure II.10: (a) Load versus displacement data collected during in-situ testing of a 2 μm diameter micropillar for Ti-20Nb 

aged for 3 d at 450 °C with 4.1 at. % O. SEM images of pillar after (b) 600 nm and (c) 1000 nm of displacement.  
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Appendix III: WDS Method Details, EBSD Maps, and Thermo-Calc Simulations 

for Ti-15-333 and Ti-15Mo 

III.1 Methods for WDS measurements 

Measurements were made using a Cameca SX100 electron microprobe located in the 

Robert B. Mitchell Electron Microbeam Analysis Lab, part of the University of Michigan’s 

Department of Earth and Environmental Sciences. Measurements of the O Kα, Ti Kα, V Kα, Cr 

Kα, Al Kα, Sn Lα, and Mo Lα X-rays were made using a focused electron beam with a beam 

current of 40 nA and an accelerating potential of 15 keV. Peak X-ray intensities were measured 

for 40 seconds, while off-peak measurements of continuum X-ray intensity were made for 20 

seconds each, except for Ti Kα (10 seconds on-peak, 5 seconds each off-peak) and V Kα (20 

seconds on-peak, 10 seconds each off-peak). Calibration standards and unknowns were coated 

with ~15nm of carbon prior to analysis, and were coated together time to minimize any differences 

in measured X-ray intensities due to differences in coating thicknesses. Calibration standards were 

synthetic MgO (O Kα), Ti metal (Ti Kα) V metal (V Kα), Cr metal (Cr Kα), synthetic NiAl alloy 

(Al Kα), Sn metal (Sn Lα), and Mo metal (Mo Lα); reference compositions of metal standards 

were adjusted to account for surface oxidation. Also, the peak position for O Kα X-ray line was 

adjusted between standards and unknowns to account for the peak shifts due to bonding 

environment [207]. 

Titanium alloys oxidize rapidly in air, and therefore a surface oxidation layer will develop 

on all samples after preparation but before analysis [94,208]. Only preparing and analyzing the 

samples in a completely inert atmosphere, with no exposure to oxygen during preparation, 

transport, or analysis, can prevent this; the layer can also be removed in situ prior to analysis, e.g. 

by focused ion beam. Neither of these were possible in this study, and therefore at each measured 

spot, the X-ray signal will include contributions from the pre-experimental oxygen present in the 

sample, from oxygen introduced by the post-preparation surface oxidation described above, and 

from oxidation induced by the experiments in presented herein.  
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The intrinsic oxygen in the samples prior to any oxidation experiments was provided by 

ATI. Also, measurements of portions of the Ti-15-333 and Ti-15Mo alloys that did not experience 

oxidation during the experiments conducted for this study can be used to estimate the oxygen 

concentration of the post-prep oxidation layer. The amount of oxygen induced by the experiments 

presented here can therefore be calculated by subtracting the oxygen from the oxidation layer and 

the intrinsic oxygen from the total measured oxygen, as follows: 

𝑂𝐸𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙= 𝑂𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑 − (𝑂𝐼𝑛𝑡𝑟𝑖𝑛𝑠𝑖𝑐 + 𝑂𝑂𝑥𝑖𝑑𝑒 𝐿𝑎𝑦𝑒𝑟)  

  

III.2 EBSD maps and Thermo-Calc simulations 

 

Figure III.1: EBSD inverse pole figure maps showing grain and crystal lattice outline for selected grain (black arrow) with 

crystallographic orientation close to out-of-plane orientation (100)β for micropillar fabrication on (a) DA Ti-15-333 with 0.1 

at. % O and (b) OXA Ti-15-333 with an O concentration gradient.  
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Figure III.2: Thermo-Calc simulation of metastable phase fractions with increasing temperature for Ti-15-333 alloy.   

 

 

Figure III.3: EBSD inverse pole figure maps and crystal lattice outline for selected grain (black arrow) with crystallographic 

orientation close to out-of-plane orientation (100)β for micropillar fabrication on Ti-15Mo with the following ageing 

conditions: (a) DA 24 h, 450 °C with 0.1 at.% O, (b) OXA 24 h, 450 °C with an O concentration gradient, (c) DA 24 h, 500 

°C with 0.1 at.% O, (d) OXA 24 h, 500 °C with an O concentration gradient, (e) DA 4 h, 600 °C with 0.1 at.% O, and (f) 

OXA 2 h, 450 °C, then 4 h, 600 °C with an O concentration gradient. 



 142 

Appendix IV: Data on the Early Oxidation of SiO2-Coated Pure Ti and Bulk Ti5Si3 at 

800 °C 

IV.1 Oxidation exposure procedure 

The oxidation of pure Ti specimens sputtered with a 250 nm layer of amorphous SiO2 was 

conducted for 2 or 32 h exposures at 800 ˚C in a 1 standard cubic centimeter per minute (SCCM) 

O2/4 SCCM Ar environment (approximately pO2 = 0.2 atm/20.3 kPa) using a Thermo Scientific 

Lindberg Blue M tube furnace. The exposures were such that specimens were inserted in the hot 

zone of the furnace after it was heated to 800 °C in a flowing Ar (40 SCCM) gas environment.  

After insertion and temperature equilibration back to 800 °C (approximately 15 minutes), the 

aforementioned oxidizing environment was introduced. Following the oxidation exposure, oxygen 

gas flow was stopped. Specimens were removed from the hot zone and cooled to room temperature 

in flowing Ar (40 SCCM). Sputtering of the amorphous SiO2 layer was performed using a Kurt J. 

Lesker Co. five source confocal, magnetron sputtering system. Additionally, the oxidation of bulk 

Ti5Si3 was conducted for a 32 h exposure at 800 ˚C in a 1 SCCM O2/4 SCCM Ar environment 

using the same procedure. The bulk Ti5Si3 sample was synthesized through arc melting of bulk Ti 

and Si pieces. The resulting bulk Ti5Si3 sample prior to oxidation exposure had an as-cast 

microstructure consisting of Ti5Si3 and α Ti.   

IV.2 Characterization methods 

Cross-sectional transmission electron microscopy (TEM) foils of the coating and oxide 

were prepared using a Thermo Fisher Scientific FEI Helios 650 Nanolab scanning electron 

microscope (SEM) equipped with a Focused Ion Beam (FIB). TEM bright field images and 

selected area electron diffraction (SAED) patterns were obtained using a JEOL 2010F microscope 

operated at 200 kV. Bright field TEM figures are composites of multiple individual specimen 

images. Scanning transmission electron microscope (STEM) images and energy dispersive 

spectroscopy (EDS) maps were collected using a Hitachi HD-2300A microscope at 200 kV 

equipped with an Oxford Instruments EDS detector. EDS maps were collected using an acquisition 
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time of 1800 s. Data visualization and analysis of EDS maps were performed using Oxford 

Instruments INCA software.   

IV.3 Results 

The coating and oxide structure for SiO2-coated Ti oxidized for 2 h (Figure IV.1-2) 

showed similar layers to a Si-coated Ti specimen also oxidized at 800 °C for 2 h (Chapter 7). A 

compact and polycrystalline layer, identified as Ti5Si3 through EDS mapping and selected area 

electron diffraction patterns, was observed adjacent to the Ti metal. This was covered by a two-

layer scale that contained an inner equiaxed, nanocrystalline layer containing TiO2 and SiO2 and 

outermost layer of TiO2 oxide crystals, identified through EDS mapping. Delamination of the SiO2 

layer was observed in some areas at the SiO2/Ti5Si3 interface (Figure IV.2a); however, in contrast 

with Si-coated Ti specimens in the accompanied study (Chapter 7), no outward bowing of the 

SiO2 layer was observed.  

 

 

Figure IV.1: (a) STEM diffraction contrast image and associated EDS maps for O, Ti, and Si (b-d) of the coating and oxide 

cross section for SiO2-coated Ti oxidized at 800 °C for 2 h. (e) Selected area diffraction pattern at location of yellow circle 

in (a), indexed as Ti5Si3 and α Ti.   
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Figure IV.2: (a) STEM diffraction contrast image and associated EDS maps for O, Ti, and Si (b-d) at a delamination in the 

coating and oxide layers for SiO2-coated Ti oxidized at 800 °C for 2 h.   

 

STEM imaging and EDS mapping of oxidized bulk Ti5Si3 for 32 h (Figure IV.3) showed 

a two-layer scale: the outermost scale was Ti-rich and corresponded to TiO2 and the internal scale 

showed mixed Ti-rich and Si-rich regions, corresponding to TiO2 and SiO2. In contrast with 

oxidation of Si-coated Ti (Chapter 7), no regular patterning of alternating SiO2 and TiO2 layers 

was observed for oxidized Ti5Si3.  
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Figure IV.3: (a) STEM Z-contrast image and associated EDS maps for O, Ti, and Si (b-d) for bulk Ti5Si3 oxidized at 800 

°C for 32 h.   

 

 Oxidation of the SiO2-coated Ti specimens for 32 h revealed locations with distinctly 

different scale morphologies and internal oxide thicknesses (Figure IV.4, IV.5). An outward 

growing wedge-like external scale comprised of rutile TiO2 was observed at all locations in the 

cross section. The presence of the Ti5Si3 layer between the internal oxide and Ti substrate, 

identified through EDS mapping, corresponded to regions with a thin internal nanocrystalline 

oxide scale (Figure IV.4), which was similar to Si-coated Ti oxidized specimens (Chapter 7). In 

regions where the Ti5Si3 layer was no longer observed, the internal oxide was much thicker (Figure 

IV.5). Si was detected through EDS mapping at the top of the internal oxide, but the underlying 

oxide contain very little Si signal and showed a much larger grain size. The lack of Si in the large 

grained portion of the internal oxide indicates that the Ti5Si3 layer had been fully oxidized and was 

no longer contributing to oxidation behavior of the Ti substrate. 
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Figure IV.4: (a) STEM Z-contrast image and associated EDS maps for O, Ti, and Si (b-d) of the coating and oxide cross 

section for SiO2-coated Ti oxidized at 800 °C for 32 h. 
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Figure IV.5: (a) STEM Z-contrast image for SiO2-coated Ti oxidized at 800 °C for 32 h. (b) STEM Z-contrast image for 

subset outlined by red box and (c-e) associated EDS maps for O, Ti, and Si showing Si distributed within the internal oxide. 

(f) STEM Z-contrast image for subset outlined by blue box and (g-i) associated EDS maps for O, Ti, and Si, in which Si is 

not detected at the oxide/metal interface.  
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