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ABSTRACT

Inertia-dominated hydrodynamic instabilities at material interfaces are ubiquitous

phenomena observed in nature and man-made applications, spanning core collapse

supernovae, inertial confinement fusion, supersonic combustion, and cavitation bub-

ble collapse. When subjected to accelerations, perturbations along an interface

may grow due to the Rayleigh-Taylor (RT) or Richtmyer-Meshkov (RM) instabil-

ity, while in the presence of shear, they may grow due to the Kelvin-Helmholtz

(KH) instability. The main focus of this thesis is the RM instability.

The RM instability occurs when a perturbed interface separating two fluids of dif-

ferent densities is impulsively accelerated, e.g., by the passage of a shock wave.

During the interaction of the shock with the interface, baroclinic vorticity is gener-

ated along the interface due to the misalignment between the density and pressure

gradients, thus leading to perturbation growth. The subsequent interface evolution

can be described using vorticity dynamics. Although the early stage of vorticity

deposition along the interface is relatively well understood, the late-time vorticity

dynamics and their effects on the interface evolution are less well known. Our ob-

jective is to understand the role of vorticity dynamics in the late-time evolution of

RM-type problems. To examine the vorticity dynamics of the RM instability, we

implement a vortex-sheet model allowing us to isolate the different contributions of

vorticity production in the evolution of the interface.

We first use the vortex-sheet model to understand the relative importance between

RM and KH in the evolution of perturbations subjected to an oblique shock under

xiv



high-energy-density (HED) conditions. At early times, the perturbation growth is

dominated by the impulsive acceleration of the shock (RM), as evidenced by our

proposed scaling accounting for the normal and tangential components of the shock.

At later times, the perturbation growth is modulated by the positive and negative

vorticity generated by the shear and the decompression due to the arrival of the

rarefaction produced by laser turn off. As the tilt angle is increased, the onset

of the shear-dominated dynamics occurs earlier and becomes more pronounced.

We further demonstrate the ability of the vortex-sheet model to reproduce roll-up

dynamics for non-zero Atwood numbers by comparing to past laser-driven HED

experiments.

We then explain the mechanisms of vorticity generation in the late-time evolution

of the single-mode RM instability. In particular, we explore the generation of sec-

ondary opposite-sign vorticity occurring inside the roll-ups as the interface spirals

inward. We show that, in the case of a zero Atwood number (i.e., matched density

at the interface), opposite-sign vorticity never develops. In this case, the vorticity

distribution along the interface is only governed by the rate of change of the sheet

surface. Near the vortex core, the rate of change of the sheet surface alternates

between positive and negative values, indicating that the interface near the vortex

core undergoes a series of contractions and expansions, thus giving rise to oscil-

lations in the corresponding sheet strength. These oscillations have a frequency

corresponding to approximately half the orbital frequency of the points along the

interface. In the case of small Atwood numbers, performing a vorticity budget sug-

gests that opposite-sign vorticity is generated by the nonlinear vorticity advection

along the interface. The onset of this opposite-sign vorticity generation is referred

to as the onset time. To quantify the amount of opposite-sign vorticity generated

along the interface, we consider positive and negative circulations, and their depen-

dence of the strength of the incident shock and the Atwood number. For a positive

xv



Atwood number (i.e., light-to-heavy) in the range 0.2 ≤ A ≤ 0.8, we show that after

a short time following the onset time, opposite-sign (negative) circulation behaves

as ∼ t−3/2. When varying the strength of the incident shock, we discover that the

interface evolution scales in time with respect to the shock Mach number, resulting

in the curves of opposite-sign circulation vs. time to collapse onto one.

Finally, we discuss how the vortex-sheet model may be appropriately initialized to

study the vorticity dynamics of finite-size perturbations
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CHAPTER 1

The Occurrence of Hydrodynamic Instabilities

This chapter introduces fundamental concepts needed to understand the occurrence of inertia-

dominated hydrodynamic instabilities at material interfaces relevant to natural phenomena

and man-made applications. A brief review of canonical instabilities is presented, and their

relevance to high-energy-density applications motivate the focus of this work. Finally, I lay

down the objective and overview of this thesis, along with contributions.

1.1 Fundamental concepts

The fundamental problem of hydrodynamic stability may be traced back to the pioneering

work of Reynolds (1883) on the transition of a smooth laminar flow in a pipe to a turbulent

state. Reynolds (1883) observed that this transition occurs at a critical velocity, sensitive

to some disturbances at the inlet of the tube. Below the critical velocity, small disturbances

do not grow and the flow is stable, whereas above the critical velocity, small disturbances

grow exponentially and the flow is unstable. The problem of hydrodynamic stability can be

described as being that of finding whether small disturbances introduced in a steady-state

flow grow, and if so, whether these disturbances grow to reach a new equilibrium, or if the flow

breaks down to turbulence. Several tools are available to study the time evolution of small

disturbances (or perturbations). If the amplitude of the perturbations is small compared to

the relevant state variables of the base flow, and that the latter is steady, a linear stability

analysis may be performed using the method of normal modes (Chandrasekhar, 2013; Drazin
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& Reid, 2004). The governing equations are linearized about small sinusoidal perturbations

to the base flow, and solutions growing exponentially in time are sought in the form ent,

for some complex number n. Beyond the linear growth of perturbations, the method of

normal modes does not apply, as the modes cannot be considered linearly independent due

to the rise of non-linearities, causing different modes to interact with each other. One

approach to couple non-linear effects to growing perturbations, known as weakly non-linear

stability analysis (Landau, 1944), is to account for higher-order terms in the Taylor expansion

of the growth rate in powers of the perturbation amplitude. Eventually, the non-linear

effects become so important that theoretical analyses become intractable, requiring the use

of computational methods. With the latter, all stages of perturbation growth, from early

exponential growth to late turbulent and chaotic state, can be described.

Hydrodynamic instabilities are ubiquitous in many areas of science and occur in a wide

range of engineering applications and natural phenomena. Their occurrence affects systems

of all size in the spectrum of length scales; from millimeter-size to stellar-size objects. The

type of instabilities that may grow in a system depends on the physical mechanisms driving

the instability. The system may contain a single fluid or multiple fluids, which can be

at rest or in motion, ionized, in thermal equilibrium or transporting heat, subjected to

accelerations, etc. A dimensional analysis based on the characteristic scales of the system

can be useful in determining the relative importance of the different mechanisms involved.

For example, the breakup of a liquid jet into droplets, which is dependent upon the Rayleigh-

Plateau instability, can be described as a competition between the destabilizing action of

surface tension, and the stabilizing action of fluid inertia. The Rayleigh-Bénard instability,

which occurs when a fluid layer is heated from below is an example of a thermal instability,

controlled by the relative importance of the destabilizing force of buoyancy and the stabilizing

thermal diffusion.

The present thesis focuses on inertially driven hydrodynamic instabilities, where the

equilibrium of the external forces is perturbed by the presence of fluid accelerations and/or
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velocity gradients. Such instabilities typically occur in high-Reynolds number flows, where

viscous stresses can be considered small compared to the fluid inertia.

1.2 Inertia-driven hydrodynamic instabilities at inter-

faces

Hydrodynamic instabilities give rise to fluid mixing and affect the overall flow dynamics of

the system in which they occur. Material interfaces are found in flows involving density in-

homogeneities, i.e., multi-fluid flows, and physically represent the mutual boundary between

different fluids present in a system. When subjected to accelerations, small perturbations on

the interface may grow due to the Rayleigh-Taylor (RT) or the Richtmyer-Meshkov (RM)

instability, while in the presence of shear, they may grow due to the Kelvin-Helmholtz (KH)

instability. Each one of these instabilities is important in a wide range of applications, and

are briefly described below.

1.2.1 The Kelvin-Helmholtz instability

The Kelvin-Helmholtz instability (Thomson Lord Kelvin, 1871; Helmholtz, 1868) is a shear

instability, i.e., occurring when two parallel streams move at different nominal velocities.

The instability is characterized by the formation of billows, or co-rotating vortices, which

eventually may break down to turbulence. Examples where this instability is observed in

nature and engineering applications are shown in Figure 1.1. The interaction between solar

winds and the boundary layer of planetary atmospheres has been shown to lead to the

growth of the KH instability (Masters et al., 2010, 2009; Johnson et al., 2014), as illustrated

in Figure 1.1a. On a much smaller scale, the stability of a round jet coming out of a

nozzle in propulsion systems, is greatly affected by the KH instability, leading to a turbulent

combustion region (Yule et al., 1981), as illustrated in Figure 1.1b. The mechanism of the

KH instability can be described in different ways. If the separating shear layer is a rippled
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(a) KH billows in Saturn’s atmosphere. (b) KH billows along a round jet.

Figure 1.1: Examples of the Kelvin-Helmholtz instability. Photographs credit: (a) National
Aeronautics and Space Administration (Cassini spacecraft), and (b) R. Drubka and H. Nagib
(Van Dyke, 1982).

interface, the fluid velocity near the crest (on one side of the interface) and trough (on the

other side of the interface ) increases, due to a reduction of the cross-sectional area, creating

a “Bernoulli effect”. A lift force, similar to that experienced by airfoils, is therefore created

on each side of the interface, leading to exponential growth of the perturbation amplitude

(Charru, 2011). Batchelor (2000) provides a description of the KH instability in terms of

vorticity. The flows on each side of the interface can be considered irrotational, such that the

only non-zero vorticity in the system is at the interface, due to the sharp velocity gradient.

The vorticity is distributed along the interface (usually sinusoidally), and induces a velocity

on the interface itself, which, in the case of incompressible fluids, can be determined from

the Biot-Savart law. According to the Biot-Savart law, the x-component of a point velocity

located on the interface depends on the y-coordinate difference between that point and the

other points along the interface. As such, the x-component of the velocity for points located

on the crests is opposite to that of the points located on the troughs. As a result, the

fluid tends to rotate around points located halfway between crests and troughs, leading to

the perturbation growth. In both approaches, the linear stability analysis yields the same
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perturbation growth rate

n = −ik
ρ1U1 + ρ2U2

ρ1 + ρ2
±

!
k2ρ1ρ2∆U2

(ρ1 + ρ2)2
, (1.1)

where ρ1,2 and U1,2 are the densities and velocities on each side of the interface, respectively,

∆U = U1 − U2, and k is the perturbation wavenumber. The imaginary part does not

contribute to exponential growth, but only adds modulations. The operand under the square

root is always positive, showing that the positive mode of the real part is always unstable

given ∆U ∕= 0. If ρ1 = ρ2, we recognize the familiar growth rate, n = k∆U
2

, and shows that

perturbations are subjected to the KH instability even if there is no density gradient across

the interface (as long as ∆U ∕= 0).

1.2.2 The Rayleigh-Taylor instability

The Rayleigh-Taylor instability (Rayleigh, 1900; Taylor, 1950) occurs when a heavier fluid

is accelerated into a lighter one, causing any disturbance at the interface to grow. The RT

instability results in the interpenetration of the two fluids, eventually leading to a turbulent

mixing region. A particular case is when a heavy fluid lies on the top of a relatively lighter

fluid subjected to the action of gravity. A force balance between the weight of the heavy

fluid and buoyancy shows that the light fluid rises into the heavy fluid (analogous to an air

bubble rising into water), while the heavy fluid falls into the light fluid as a spike. Figure 1.2a

shows an example of buoyant clouds forming a mushroom-like shape rising into the Earth’s

atmosphere. The formation of supernovae from the collapse of dying stars involves the

development of filament structures due to the RT instability, causing material mixing with

the interstellar medium, as illustrated in Figure 1.2b. A generalization of the buoyancy-

driven configuration is whenever a heavy fluid is accelerated or decelerated into a lighter

fluid, causing a pressure gradient, ∇P , in the direction opposite to that of the density

gradient, ∇ρ, i.e., ∇P ·∇ρ < 0. As for the KH instability, the mechanism of RT instability
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(a) Buoyant clouds due to RT instability. (b) RT filaments in Crab nebula.

Figure 1.2: Examples of the Rayleigh-Taylor instability. Photographs credit: (a) Prof.
David Jewitt, University of California, Los Angeles. From Zhou (2017a), reproduced with
permission from Elsevier, Copyright (2017), and (b) National Aeronautics and Space Ad-
ministration (Hubble Space Telescope).

can be described in terms of vorticity (Roberts & Jacobs, 2016). The misalignment of the

pressure gradient, from the acceleration of the heavy fluid into the lighter fluid, with the

density gradient at the interface, generates baroclinic vorticity along the interface, such that

∇ρ×∇P ∕= 0, which amplifies any perturbation due to the induced velocity, as illustrated

in Figure 1.3. In the canonical case of two incompressible, inviscid fluids, with no surface

tension, the linear stability analysis reveals that a small perturbation of initial amplitude η0

Figure 1.3: Mechanism of RT instability from baroclinic torque. From Roberts & Jacobs
(2016), reproduced with permission from Cambridge University Press, Copyright (2015).
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and wavenumber k grows exponentially in time as (Chandrasekhar, 2013)

η(t) = η0e
√
Agkt, (1.2)

where A = (ρ2 − ρ1)/(ρ2 + ρ1) is the Atwood number. This equation indicates that the

system is unstable only in the case ρ2 > ρ1.

1.2.3 The Richtmyer-Meshkov instability

The Richtmyer-Meshkov instability (Richtmyer, 1960; Meshkov, 1969) occurs whenever a

perturbed interface separating two fluids of different density is impulsively accelerated, e.g.,

by the passage of a shock wave. This instability is of fundamental importance in shock-

induced turbulent mixing applications, such as inertial confinement fusion (Hicks et al.,

2012; Meezan et al., 2013) and fuel combustion in supersonic aircrafts (scramjets) (Waitz

et al., 1993; Yang et al., 1994a). The RM instability may also play a role in diagnostic-

ultrasound-induced lung hemorrhage (Patterson & Johnsen, 2018). The driving mechanism

of the RM instability is the baroclinic vorticity generated along the interface. As in the

RT instability, the misalignment of the pressure gradient, now across the shock, and the

density gradient, across the interface, generates a baroclinic torque, leading to perturbation

growth. As opposed to the RT instability, however, the RM configuration is always unstable,

regardless of the relative position of the heavy and light fluids. Another difference with the

RT instability is that, once the shock has traversed the interface, there is no sustained

mechanism (like gravity) feeding energy to the system. Using the linear stability theory of

Taylor (1950) performed for RT, Richtmyer (1960) replaced the constant acceleration by an

impulsive acceleration, i.e., g = ∆vδ(t), where ∆v is the change in interface velocity due

to the shock, and δ is the Dirac delta function. Doing so, Richtmyer (1960) obtained an
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impulsive relation for the perturbation growth rate as

η̇(t) = k∆vAη0. (1.3)

This equation reveals that the perturbation growth rate is constant, showing that the am-

plitude grows linearly in time. If the shock propagates from a light fluid to a relatively

heavier fluid, the perturbation amplitude only increases, whereas if the shock propagates

from a heavy fluid to a lighter fluid, the perturbation first decreases before increasing, a

phenomenon called phase inversion (Brouillette, 2002).

1.3 Hydrodynamic instabilities under High-Energy-Density

conditions

As described above, hydrodynamic instabilities due to inertia such as KH, RT, and RM are

ubiquitous in nature and man-made applications. Of particular interest in this thesis is the

role of these instabilities in high-energy-density (HED) systems.

The study of HED physics in the laboratory is a relatively new area of research, and

is concerned with the behavior of matter when the energy-density is high. Energy density,

i.e., the amount of energy available in a given volume, has the same dimensions as pressure.

Drake (2018) defines a system operating under HED conditions when the pressure exceeds

approximately 1 Mbar, or 1 million atmospheres. At such high pressures, matter is typically

ionized and behaves differently than the conventional solid/fluid states, overlapping with

behaviors observed in stars and other astrophysical systems. Plasma effects, radiation trans-

port, electron heat conduction, and magnetic fields are only a few examples of additional

physics that one needs to consider when studying such systems. Fig. 1.4 shows a map of

different physical and astrophysical systems based on their density and temperature, with

the approximate boundary of 1 Mbar (=0.1TPa) separating the realm of HED systems. Gas,
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Figure 1.4: Map of different physical systems based on their density and temperature. Re-
produced from Drake (2010) with the permission of the American Institute of Physics. DOI:
https://doi.org/10.1063/1.3455249.

liquid, and solid states of matter, which are relevant to most applications on Earth, can be

sustained until temperatures of about 10, 000 K and densities of a few orders of magnitude

lower than the density of water. The region where matter is in a plasma state corresponds to

systems where the temperature is high enough and the density low enough that matter may

be ionized. If electric and magnetic fields, viscous effects, and radiation effects are negligible,

the behavior of plasmas is known as “ideal plasmas” and can be described as a simple fluid,

i.e., with the Euler equations for a polytropic gas.

With the invention of the laser in the mid-twentieth century, scientists appreciated that

the process of energy production occurring in stars by nuclear fusion may be possible to

reproduce on Earth, which led to the growing interest in developing technologies able to

harness energy from nuclear fusion.
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(a) Energy consumption.
Btu: British Thermal Unit.

(b) Carbon dioxide emission.
Mtonnes: metric ton.

Figure 1.5: History of the world energy consumption and carbon dioxide emission for different
sources of primary energy since 1980. Source: U.S. Energy Information Administration
(EIA).

1.3.1 Inertial-Confinement Fusion

1.3.1.1 The need for future sources of energy

The production of energy on a global scale is becoming more and more a central topic of

concern due to the Earth’s continually increasing population, along with the increase of

energy consumption per capita. The world total energy consumption has been increasing

for the last forty years, with oil still being the dominant source of primary energy fuel,

as shown in Fig. 1.5a. Energy consumption can be measured in British Thermal Unit

(Btu), which corresponds to the amount of energy needed to raise the temperature of one

pound of water by one degree Fahrenheit. Future projections further predict an increase

of almost 50% of the world energy by 2050, see the International Energy Outlook 2019

of the U.S Energy Information Administration. Along with the increasing trend of the

world energy consumption, carbon dioxide emission into the atmosphere, which is one the

main gases contributing to greenhouse pollution, is also increasing, as shown in Fig. 1.5b.
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Resources of the Earth’s primary energy, such as coal, oil, etc., are limited, and the trends

shown in Fig. 1.5 demonstrate the need of new sources of energy for the future of planet

Earth. Although not developed to the point of producing energy from fusion power plants,

Inertial Confinement Fusion (ICF) has the potential to provide energy without carbon dioxide

emission and with reduced amount of nuclear waste, generated by current fission plants.

1.3.1.2 General description and principles

Inertial Confinement Fusion is a technology aiming at producing energy from nuclear fu-

sion, which is the process by which two nuclei are combined together. Fusion between two

nuclei occurs when the Coulomb force, the repulsive force existing between protons of the

nuclei, is overcome by the nuclear strong force, the attractive force binding neutrons and

protons together, resulting in the nuclei to fuse. When the mass of the resulting reaction

product is smaller than the mass of the initial nuclei, huge amounts of energy are released,

as described by Einstein’s relationship between mass and energy, E = mc2. To overcome

the Coulomb barrier, i.e., the energy required to overcome the Coulomb repulsion, very high

temperatures and densities must be achieved. For instance, most fusion reactions produced

in the laboratory today use Deuterium (D) and Tritium (T) elements, known as DT fuel,

requiring temperatures of tens of millions of degree Fahrenheit (Betti & Hurricane, 2016).

In these conditions, the fuel is a plasma, i.e., an ionized, electrically conducting gas. One

of the key elements in achieving thermonuclear fusion, is that these high temperatures and

densities be sustained long enough, hence the plasma has to be confined in some way. In

stars, for example, confinement is achieved through gravitational compression. On Earth,

confinement through inertia is one possibility.

The basic idea behind ICF is to compress the DT fuel to thermonuclear conditions, which

can be obtained by imploding a spherical capsule, called a target. Two main approaches

are commonly used to drive the target implosion: indirect drive and direct drive. In the

United States, the indirect-drive approach is mostly developed at the National Ignition Fa-
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Figure 1.6: Schematic of an ICF capsule implosion in the case of indirect and direct drives.
From Betti & Hurricane (2016), reproduced with permission from Springer Nature, Copyright
(2016).

cility (NIF) (Campbell & Hogan, 1999; Moses, 2008) at the Lawrence Livermore National

Laboratory. The direct-drive approach is mostly developed on the OMEGA Laser Facility

(Boehly et al., 1997) at the Laboratory for Laser Energetics and the Nike laser (Obenschain

et al., 1996) at the Naval Research Laboratory. In the indirect-drive approach (Lindl, 1995;

Lindl et al., 1992), the target is suspended inside a gold vessel, called a hohlraum, in which

lasers irradiate the inner walls, producing X-rays, which bathe the capsule, as seen in the

left schematic of Fig. 1.6. In the direct-drive approach (Brueckner & Jorna, 1974; McCrory

et al., 2008), the capsule is directly irradiated by incident lasers, as seen in the right schematic

of Fig. 1.6. Typical target sizes are of the order of the millimeter, and are generally com-

posed of an outer plastic shell (or other low-atomic-number material), called the ablator,

encapsulating the DT fuel, made of a layer of DT ice followed by DT gas, as seen in Fig.

1.6. Whether indirect or direct drive, to reach the required high temperatures and densities,
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the ablator is heated by absorption of sustained high-intensity-laser energy, from X-rays in

the indirect-drive approach, or directly from the lasers in the direct-drive approach. This

intense irradiation of the capsule produces high-enough pressures that material is ablated

away from the capsule surface, flowing outward. As a consequence of Newton’s third law,

the remaining fuel is accelerated and compressed inward, behaving as a “spherical rocket”.

As the fuel is compressed, it eventually reaches a stagnation point at the center of the target,

where kinetic energy is converted into internal energy, leading to a hot, dense core, called

the hot-spot, where fusion reactions take place and may ignite the fuel.

1.3.1.3 Role of hydrodynamic instabilities and transition to turbulence

One of the key challenges during capsule implosion is the growth of hydrodynamic instabil-

ities, which are responsible for degrading the conditions necessary to achieve ignition. In

the early time of the implosion (Fig. 1.6a.), laser irradiation of the outer shell of the cap-

sule produces a pressure pulse, which launches a shock wave propagating into the target.

Any modulations on the ablator material, for example originating from target fabrication,

will therefore grow due to the RM instability. In the acceleration phase (Fig. 1.6b.), these

perturbations grow exponentially due to the acceleration of the relatively high-density ice

layer into the relatively low-density DT gas, leading to the development of RT instability.

Subsequently, the initial shock wave moving ahead of the accelerating shell, reflects from

the target center and interacts back with the converging shell, decelerating it (Fig. 1.6c.).

Multiple shock reflections can occur during the implosion, such that the combination of the

shell deceleration and its interaction with the reflected shocks seeds further growth for the

RT and RM instabilities. The RT and RM instabilities play a critical role into the implosion

dynamics of ICF capsules, as they initiate mixing between the hot fuel and the relatively

cooler outer shell, thus reducing the temperature necessary for ignition in the hot-spot. An-

other challenge in ICF is to be able to achieve the most efficient compression, which requires

to implode the target as symmetric as possible. This constraint of a spherical implosion is
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challenged by the presence of asymmetries, e.g., a non-uniform pressure distribution orig-

inating from a non-uniform laser irradiation. Such asymmetries in the laser-energy input,

called asymmetric drive, results in asymmetrical implosions, which reduces the amount of

fuel compression, ultimately reducing the required temperature at the core. Furthermore,

asymmetric drives could launch non-spherical shocks, i.e., the normal direction to the shock

is misaligned with respect to the radial direction, introducing elements of shear in addition

to the radial momentum propagation. In this case, we say that the shock is oblique with

respect to streamwise direction of propagation.

1.4 Previous work

In this section, we review some of the past work most relevant to this thesis on the RM

instability achieved under classical fluid conditions and high-energy-density conditions. For

an exhaustive review of past studies of RT and RM instabilities, the reader is referred to

Zhou (2017a,b).

1.4.1 Laboratory experiments

The RM instability was first investigated experimentally by Meshkov (1969), who confirmed

the earlier theoretical result predicted by Richtmyer (1960), i.e., the instability grows at a

constant growth rate. Since then, a considerable amount of research has been dedicated to

studying the RM instability. Great progress has been made in terms of new techniques to

produce shocks (or impulsive accelerations), interfaces, as well as diagnostics to observe the

instability.

1.4.1.1 Classical-fluids experiments

A common way of producing shock waves is by using shock tubes, in which a high pressure

source is created, e.g., by a driving piston or puncturing a diaphragm. The resulting shock
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wave then travels to meet a perturbed interface separating two different gases, and where the

instability develops. One of the main difficulties when using gases is to create, and maintain,

a well-defined sharp interface, due to their relatively high mass diffusion coefficients compared

to liquids. The strength of the shock, measured by the shock Mach number, is typically in

the range 1 ≲ Ms ≲ 3. Different methods are used to create the interface. Early experiments

in vertical shock tubes have used a solid barrier to separate two different gases, typically

a horizontally sliding plate separating a layer of air above the plate from a test gas below

the plate, e.g., helium or sulfur hexafluoride (SF6) (Brouillette & Sturtevant, 1993, 1994;

Bonazza & Sturtevant, 1996). Immediately before firing the shock, the plate is removed,

which creates a wake behind the plate, serving as perturbation. This technique generates

relatively diffuse thick interfaces (≈ 1cm), which reduces the growth rate, and wall vortices

created from shock boundary-layer interaction have to be carefully distinguished from the

interface during the diagnostics. Instead of a solid barrier, other studies have used thin

membranes to separate gases, which can be pre-shaped to form a sinusoidal perturbation

(Aleshin et al., 1988; Vasilenko et al., 1992; Benjamin, 1988; Andronov et al., 1976). One

of the main shortcomings of this technique is that fragments of the broken membrane due

to the passage of the shock interfere with the evolution of the interface, and hinder the use

of advanced visualization techniques, such as Particle-Image Velocimetry (PIV) and Planar

Laser-Induced Fluorescence (PLIF). Other studies were successful in creating relatively sharp

interfaces by using liquids instead of gases (Benjamin & Fritz, 1987; Castilla et al., 1993).

However, the evolution of the interface in these experiments could only be visualized in the

early development of the instability, due to the effect of gravity, which tends to stabilize

the flow. To avoid this effect of gravity, Jacobs & Sheeley (1996) designed a setup in which

the tank containing the liquids bounces off a spring, making the evolution of the instability

essentially in free-fall. The initial perturbation along the interface was introduced by gently

oscillating the tube in the lateral direction. Their experiments showed good agreement with

the linear theory and collapse of the data at late time when scaled with the initial circulation.
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(a) Secondary instability (b) Roll-up disintegration

Figure 1.7: Examples of (a) the growth of secondary instabilities and (b) their consequence
on the roll-ups behavior. (a) From Niederhaus & Jacobs (2003), reproduced with permission
from Cambridge University Press, Copyright (2003), and (b) from Jacobs & Krivets (2005),
reproduced with permission from AIP Publishing, Copyright (2005).

As part of this study, they developed a point-vortex model.

Although the early-time, linear regime of the perturbation growth is fairly well under-

stood, the late-time, non-linear regime is less known. Experimental difficulties associated

with the use of membranes were alleviated by Jones & Jacobs (1997), who designed a

membrane-less technique for gas-gas interfaces in shock tubes. The insertion of fog in the

tube allowed them to visualize the large mushroom-like structures far into the non-linear

regime, but were unable to observe the smaller-scale structures developing inside the roll-

ups. Using PLIF, Collins & Jacobs (2002) and Niederhaus & Jacobs (2003) were able to

obtain detailed images of the roll-up morphologies, and observed the growth of small-scale

secondary instabilities along the spirals of the roll-ups, as illustrated in Fig. 1.7a. These

unstable structures first appear as some form of waviness, which subsequently grow into a

KH-type instability, ultimately breaking down and destroying the vortex cores, leading to

a fully turbulent region, as illustrated in Fig. 1.7b. Other studies also observed similar

secondary instabilities in shock-cylinder interactions (Jacobs, 1993; Vorobieff et al., 2003).
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The flow transition to turbulence in RT- and RM-driven mixing environments is an active

topic of research, and the quest for self-similarity is one of the most sought-after questions

in the community.

1.4.1.2 High-energy-density experiments

Although classical-fluids experiments are extremely valuable in the understanding of hydro-

dynamic instabilities, they are typically limited to low-Mach numbers (Ms ≲ 3) and face

challenges in producing sharp interfaces, introducing uncertainties in the initial conditions.

In contrast, HED experiments can produce much stronger shock waves (Ms ≳ 20), which is

more relevant to ICF. Because the pre-shock materials are in the solid phase, well-defined,

sharp interfaces can be accurately manufactured and easily reproduced. The laser-generated

pressure can reach such extreme values (≳ 300Mbar) (Nora et al., 2015), that the post-shock

materials are in the plasma state. One of the downsides, however, is that HED experi-

ments diagnostics are typically limited to x-ray imaging, and do not produce high-resolution

images. HED experiments are generally conducted with high-intensity lasers available in

facilities such as the NIF and OMEGA Laser Facility.

Early RM experiments under HED conditions mainly aimed at reducing discrepancies

between theory and experiments that classical-fluids studies had revealed (Dimonte et al.,

1996; Dimonte & Remington, 1993). Validation of hydrodynamics codes was also important,

further motivating the need for HED experimental data (Holmes et al., 1999). The ability to

create laser-produced plasma environments in the laboratory also motivated astrophysically

relevant experiments, where conditions similar to those of supernovae formation could be

achieved (Remington et al., 1997; Kuranz et al., 2011, 2018, 2005). Recently, experiments of

single mode perturbation RM instability produced relatively clear images of the perturbation

growth well into the non-linear regime (Nagel et al., 2017). When more than one mode

characterizes the initial shape of the perturbation, the perturbation growth into the non-

linear regime is associated with mode interaction, which was studied in the case of two initial
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modes (Di Stefano et al., 2015b) and for a wide band of wavenumbers (Malamud et al., 2013a;

Di Stefano et al., 2015a, 2017).

The first successful design of HED experiments for observation of the KH instability

was developed by Hurricane (2008), although the first measurements of perturbation growth

was performed by Harding et al. (2009). Beyond the early growth of the perturbation, the

development of KH roll-ups, i.e., large co-rotating vortices, may lead to turbulent mixing

(Smalyuk et al., 2012; Doss et al., 2013). The design of the shock/shear experiments on the

NIF, where two counter-propagating shocks are used to induce a shear flow at an interface,

allowed the instability to be observed at later times (Doss et al., 2015), and to characterize

the transition to turbulence with initial conditions (Flippo et al., 2018). The KH instability

was also observed for compressible flows (Wan et al., 2015, 2017).

1.4.2 Numerical simulations and models

Because of the development of ever smaller length scales in the late-time evolution of the

KH, RT, and RM instabilities, it is difficult to obtain precise measurements of the flow

variables for all stages of perturbation growth, i.e., from linear growth to fully turbulent.

Uncertainties in the initial conditions in classical-fluids experiments, and the constraint of

sustaining a long enough laser drive in HED experiments make predictions challenging. The

temporal and spatial resolution of the diagnostics is limited, making the flow turbulence

challenging to study; numerical simulations and turbulence models may alleviate this issue.

Furthermore, experiments typically do not generate large amounts of data (especially HED

experiments). Developing theoretical models and performing numerical simulations may

provide a way to complement experiments, and ultimately predict the late-time behavior of

the flow.

Besides the linear impulsive model derived by Richtmyer (1960), other studies have de-

veloped linear models based on the linearization of the compressible Euler equations (Yang

et al., 1994b; Wouchuk & Nishihara, 1996, 1997). These models allowed the early growth of
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the RM instability to be determined for more general cases than the impulsive model consid-

ered, e.g., reflected rarefaction, arbitrary incident shock strengths, and gases with different

ratio of specific heats. Early compressibility and bulk vorticity effects were also considered.

The linear phase of the RM instability being short-lived, these models fail to describe the

growth when the size of the perturbation becomes of the order of the wavelength. Multiple

models have therefore been developed to describe the non-linear regime.

The first simple model based on potential flow theory was developed by Layzer (1955),

who derived an ordinary differential equation for the constant asymptotic bubble velocity for

the RT instability. Hecht et al. (1994) used the same approach for the RM instability and

showed that the asymptotic bubble velocity behaves as λt−1 (where λ is the perturbation

wavelength). The approach of using potential flow theory was also used to derived buoyancy-

drag models (Oron et al., 2001). The basic idea is to express the bubble velocity as a balance

between the buoyancy force and the kinematic drag, originating from the bubble of light

fluid rising into a relatively heavier fluid. These Layzer-type models, however, are generally

valid only in the asymptotic stage of perturbation growth and for infinite density ratio, i.e.,

A = 1. Layzer-type models were extended to arbitrary Atwood number by Goncharov (2002)

for RT, and Sohn (2003) for RT and RM. Jacobs & Sheeley (1996) modeled the late-time

RM instability for small Atwood number by using a point-vortex model, which assumes that

the flow evolves into a row of point vortices, allowing them to provide a lower bound for the

perturbation amplitude. One technique to obtain the perturbation growth analytically in the

non-linear regime of the RM instability is to expand the potential flow equations in terms

of power series of the initial perturbation amplitude. By matching the solution obtained

from the compressible linear theory to the incompressible non-linear solution obtained by

Padé approximations, the perturbation growth may be determined from the early-time to

the late-time regime (Zhang & Sohn, 1996, 1997a,b).

Although theoretical models are valuable due to the analytical formulae they provide,

they are limited to a specific range of parameters and quantities of interest, as well as initial
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conditions. High-fidelity numerical simulations are therefore inevitable. In the linear regime

of the RM instability, experiments, numerical simulations, and theories agree relatively well

with each other. However, the behavior of the instability in the non-linear regime is still

controversial and discrepancies still remain. The work of Holmes et al. (1999) provides com-

parisons between experiments, numerical simulations performed with three different codes,

and analytical theories. Although they found good agreement with linear theories at early

times, non-linear models struggle to predict the late-time growth rate. Similar discrepancies

have been observed by Long et al. (2009), who found that the overall late-time growth rate

behaves as t−0.54, and that the spike velocity shows a vs ∼ t−0.38 dependence, compared to

the ∼ t−1 dependence predicted by nonlinear models. Dimonte & Ramaprabhu (2010) have

also found disagreements between existing nonlinear models and their simulations but for

Atwood numbers and initial amplitudes relevant to ICF conditions (A ≳ 0.9 and kη0 ≳ 1).

For moderate Atwood numbers and initial amplitudes, better agreement is achieved. One

of the aspects of the RM instability that researchers have focus their attention on is the

so-called “reshock” phenomenon. Reshock refers to when a second shock, originating from

the reflection at a boundary for example, interacts with the perturbation, depositing addi-

tional baroclinic vorticity and enhancing mixing. The interaction of the second shock with

the interface may also produce a rarefaction, which itself reflects off the boundary and in-

teracts again with the interface. Many reflections can occur and are relevant to ICF capsule

implosions, as a shock may be reflected from the point of convergence, interacting back with

the converging shell. Using shock-capturing weighted essentially nonoscillatory (WENO)

scheme, Latini et al. (2007a,b) were able to reproduce some of the observations of the exper-

iments of Collins & Jacobs (2002), and obtained good agreement between linear/non-linear

models and their simulations before reshock. Schilling et al. (2007) extended the simulation

time of Latini et al. (2007b) to after reshock, and qualitatively described the reshock process

by providing the evolution of the density and vorticity fields. They showed that the positive

and negative circulation magnitudes are the same before and after reshock until the arrival of
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the reflected rarefaction on the interface, introducing flow asymmetry and different evolution

of positive and negative circulation. They further quantify the evolution of the mixing layer

after reshock by considering energy spectra and turbulence statistics to show that reshock

amplifies fluctuations in all fields. Movahed & Johnsen (2013) also considered the WENO

scheme for the RM instability, but solving the Navier-Stokes equations. They developed a

new approach in which a discontinuity sensor is introduced to differentiate between smooth

and discontinuous regions, preventing spurious oscillations at the interface. Because the

process of reshock includes a wide range of turbulent scales, methods such as Large-Eddy

Simulations (LES) have also been used to estimate statistics of the unresolved scales of the

turbulent mixing zone (Hill et al., 2006; Lombardini et al., 2011). When more than one

wavenumber characterize the initial perturbation, direct simulations of the compressible Eu-

ler equations were performed by Leinov et al. (2009) in the case of a random multimode

perturbation, and Cohen et al. (2002) for a two-scale initial perturbation. Finally, using

the Discontinuous Galerkin method (Henry de Frahan et al., 2015b), Henry de Frahan et al.

(2015a) investigated the RM instability for successive material interfaces, a configuration

relevant to ICF.

1.5 Vorticity paradigm and motivation for a vorticity-

based approach

1.5.1 The vorticity paradigm

The late-time, non-linear evolution of RT-, RM-, and KH-driven flows is associated with

the formation of large vortex structures (of the order of the perturbation wavelength), in

which turbulent mixing may occur. By “vortex structures” we refer to the interface rolling

over itself, forming roll-ups similar to those shown in Fig. 1.7. Since much of the vorticity

in the flow is localized at the interface, a connection between the motion of the interface
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and the vorticity dynamics exists. For example, in their study of the RM instability, Jacobs

& Sheeley (1996) recognized that the late-time interface dynamics is related to the initial

vorticity generated along the interface. Knowing how the vorticity is initially generated and

distributed along the interface is therefore critical in the understanding of the subsequent

evolution of the flow. For RT and RM instabilities, the source of this initial vorticity is baro-

clinic, i.e., caused by the misalignment between a density gradient and a pressure gradient.

For RM, the density gradient is initially located at the interface, and the pressure gradient

at the shock location (or more generally pressure wave). For RT, the density gradient is also

initially located at the interface, but the pressure gradient comes from the acceleration due

to gravity (or more generally fluid acceleration). For the KH instability, the mechanism of

vorticity production is kinematic (velocity gradient across the interface), although baroclinic

vorticity may also be generated if there is a density mismatch at the interface.

Zabusky (1999) and Hawley & Zabusky (1989) were the first to qualitatively describe the

evolution of the RM instability in terms of vorticity dynamics, although similar descriptions

for shock-bubble interactions were previously made (Picone & Boris, 1988). Zabusky (1999)

introduced a vorticity paradigm by decomposing the perturbation evolution in four differ-

ent phases: the vorticity deposition phase, the linear and early non-linear phase until the

interface becomes multivalued, the intermediate non-linear phase where the roll-ups form,

and the late-time phase leading to mixing and turbulence. The vorticity-deposition phase

is crucial to understand, as it dictates the subsequent flow evolution. During the vorticity

deposition phase, the shock deposits baroclinic vorticity along the interface until the shock

leaves the interface. As the incident shock interacts with the interface, a transmitted shock

and a reflected wave (shock or rarefaction) propagate into each media. In Chapter 2, we

will give more details on shock refraction. When the speed of the transmitted shock is

larger (smaller) than the speed of the incident shock, the refraction is known as “slow-fast”

(“fast-slow”). The amount of deposited vorticity therefore depends on the size of the per-

turbation, the media on each side of the interface, and the strength of the incident shock.

22



Using shock-polar analysis, Samtaney & Zabusky (1994) obtained an analytical expression

for the circulation deposited on an inclined interface in the fast-slow case, while Samtaney

et al. (1998) obtained the counterpart expression for the slow-fast case (see Chapter 2).

1.5.2 Vortex-sheet modeling of vorticity dynamics

After the vorticity-deposition phase, the interface is left to evolve according to two elements:

the amount of vorticity that was deposited, and the changes in the vorticity distribution along

the interface over time. Because of the large number of degrees of freedom in numerical sim-

ulations, it is challenging to obtain these elements and isolate the role of vorticity dynamics

in the evolution of the interface from numerical simulations. The latter may provide the

knowledge of the vorticity field, but their Eulerian-based framework makes it challenging to

understand the vorticity contributions to the interface evolution. Even if infinite resolution

was available, numerical simulations do not allow for a consistent way of interpreting the evo-

lution of the vorticity distribution along the interface. Consequently, an approach in which

vorticity is directly represented in the reference frame of the interface may be more useful

in understanding the vorticity-dominated dynamics of the interface. A unique approach

specifically designed for this purpose is to model the interfacial vorticity distribution as a

vortex-sheet strength, defined as the jump in the tangential velocity across the interface (see

Chapter 2). Doing so allows the equations of motion (the Euler equations in our case) to be

reduced to a weaker form, allowing both the motion of the interface and its corresponding

vorticity distribution to be tracked over time. The uniqueness of the vortex-sheet model

lies in the fact that the reduced-set of the governing equations describe the evolution of the

vorticity kinematics and baroclinic vorticity (if surface tension is neglected) of a vortex sheet.

One of the main drawbacks that early vortex-sheet models faced was the formation of

singularities, e.g., when simulating the KH instability, due to the fact that the vortex sheet

stops to be analytic past a critical time, leading to infinite sheet curvature (Moore, 1979,

1985; Krasny, 1986b; Meiron et al., 1982a). Similar singularities formation was also found
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when simulating the RT instability (Baker et al., 1993) and the RM instability (Matsuoka &

Nishihara, 2006c). Some investigators have proposed methods allowing simulation of vortex

sheets past the time of singularity, for example by using higher-order accurate methods

(Higdon & Pozrikidis, 1985; Baker, 1980), or by applying some kind of smoothing (Krasny,

1986a; Chorin & Bernard, 1973). The method of kernel smoothing introduced by Krasny

(1986a) (see Chapter 2) is now widely used in vortex-sheet computations. While the vortex-

sheet model has been used to study the RT instability (Tryggvason, 1988; Baker et al., 1980;

Kerr, 1988; Zufiria, 1988; Sohn, 2011) and the KH instability (Krasny, 1986a,b; Meiron et al.,

1982b; Sohn et al., 2010), only a few studies considered the RM instability. The first study to

have applied a vortex-sheet model to the RM instability was by Matsuoka et al. (2003), who

were able to observe the early stage of roll-up formation. Sohn (2004) performed simulations

until later times and for different values of the density ratio. Other studies have also used the

vortex-sheet model for the RM instability in convergent, cylindrical geometries (Matsuoka

& Nishihara, 2006a,b), and the recent work of Matsuoka & Nishihara (2020) investigated

the interaction of bulk vortices with vortex sheets. In the HED community, the vortex-sheet

model has yet to be used for KH, RT, and RM instabilities, with the exception of the recent

work by Rasmus et al. (2019), which did not include a density mismatch at the interface.

One of the most difficult tasks when implementing vortex-sheet computations is the

determination of the initial conditions. For example, in the case of the RM instability, an

appropriate evaluation of the sheet-strength distribution and interface morphology after the

passage of the shock over the interface is required. If the perturbations are small enough

(ka ≪ 1), the sheet strength may be evaluated from the velocity potentials on either side of

the interface (Jacobs & Sheeley, 1996; Sohn, 2004), and the interface shape may be assumed

to be unchanged. For analyses focused more on the improvement of the numerics, one may

choose a fairly arbitrary sheet-strength distribution, e.g., a sinusoidal distribution. However,

these initialization techniques do not account for changes in the interface morphology, and

may become invalid when applied to more general problems, e.g., arbitrary perturbations,
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arbitrary incident wave, non-ideal equations of state. One attempt to initialize vortex-

sheet computations under HED-relevant conditions was made by Rasmus et al. (2019), but

provided a kinematics-only description of the interface. Furthermore, there are no techniques

to date available allowing the determination of the sheet-strength distribution for finite

amplitude perturbations.

1.6 Thesis overview and contributions

As illustrated in this chapter, flows induced by the growth of RT, RM, and KH instabilities

are complex, due to their multi-physics character and the wide range of spatial and temporal

scales they involve. These flows are unsteady, compressible, involve sharp gradients (shocks,

interfaces), and may evolve to a state of turbulence. Under HED conditions, this picture is

even further complicated by additional complex physics, e.g., radiation, magnetic fields, and

non-ideal gas equations of state.

The research undertaken in the present thesis is motivated by the realization that the late-

time behavior of these interfacial instabilities is connected to the vorticity generated along

the interface initially. The overarching hypothesis guiding this work is that perturbation

growth can be described by the vorticity dynamics of the interface. Because experiments

and numerical simulations include all field variables in the entire domain of interest, they

cannot isolate the vorticity-dominated dynamics of the flow. The objective of this work is

to understand the role of vorticity dynamics in:

• The evolution of perturbed interfaces driven by combined effects of KH, RT, and RM,

arising simultaneously, Chapter 3. Our vortex-sheet model allows us to readily control

the relative importance between KH and RM by an appropriate choice of the initial

vorticity distribution, and to account for time-dependent acceleration related to RT.

• The late non-linear regime of the RM instability, Chapter 4. We first explore the origin

of opposite-sign vorticity generation, and its connection to roll-up behavior in the late
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stage of RM instability. We then investigate vorticity deposition on finite-amplitude

perturbation, and cast the results in the context of reshock environments, Appendix

C.

The main contributions of the work reported in this thesis to the field of interfacial

hydrodynamic instabilities are:

• Vortex-sheet simulations of combined KH, RM, and RT instabilities under HED con-

ditions

– Determination of dominant mechanism (RM vs. KH) based on the evolution of

the vorticity distribution along the interface

– Scaling of perturbation growth with initial vorticity, demonstrating the early dom-

inance of the impulsive acceleration, and the amplification of shear at later times

– Extension of the vortex-sheet model to time-dependent acceleration

• Identification of vorticity-dominated mechanisms responsible for generation of opposite-

sign vorticity

– Connection between vortex-core oscillatory behavior and sheet-strength oscilla-

tions

– Discovery of a time scaling of perturbation evolution with initial vorticity

– Determination of power-law behavior for opposite-sign circulation
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CHAPTER 2

Vortex-Sheet Model and Numerical Methods

In this chapter, we review some of the concepts necessary to understand the description

of shock-driven interfaces in terms of vorticity dynamics. The governing equations of the

vortex-sheet model are presented, along with their numerical discretization. A point-insertion

procedure is also presented, along with the determination of the initial conditions.

2.1 Description of the physical problem

In the context of RT, RM, and KH flows, the velocity field typically exhibits sharp gradients

across a thin layer separating two different fluids (the interface). An important feature of

these type of flows is that vorticity is localized to only well-defined regions (typically at

the interface), such that the flow away from the interface can be considered irrotational.

Furthermore, the thickness of the interface is typically small compared to its wavelength

(approximately 10% of the wavelength (Jones & Jacobs, 1997; Collins & Jacobs, 2002; Latini

et al., 2007b)), such that effects due to a diffuse interface can be neglected. In this context,

it is not unreasonable to assume that the interface is sharp, i.e., a zero-thickness layer, and

that the density and velocity are discontinuous across the interface. The density gradient at

the interface is therefore infinite, and the vorticity field, ω(x, t), is zero everywhere except

at the interface, where it is also infinite. Such a singular vorticity distribution is known as
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Figure 2.1: Schematic of a two-dimensional vortex sheet.

a vortex sheet, defined, in two dimensions, as

ω(x, t) = γ(x, t)δ(x), (2.1)

where γ is the scalar vortex-sheet strength, and δ(x) is the Dirac delta function in the normal

direction to the sheet, n, as depicted in Fig. 2.1. The sheet strength is defined as the jump

in the tangential velocity across the sheet as

γ = (u− − u+) · T̂ = ∆u · T̂ , (2.2)

where ∆u ≡ u− − u+ and T̂ is the tangential vector to the sheet. Only the tangential

component of the velocity across the sheet is discontinuous, as conservation of mass requires

that the normal component be continuous. Therefore, a vortex sheet is a zero-thickness

surface (or line in two dimensions) where the vorticity magnitude is infinite, and across

which the velocity tangential component is discontinuous. In such configurations, it is not

appropriate to use the governing equations of the flow in their strong form. A weak form, in

which discontinuities are handled more appropriately, is therefore necessary. For a discussion

on the existence of weak solutions to the governing equations, we refer the reader to Majda

& Bertozzi (2001) and Cottet et al. (2000). In Sec. 2.2.3, I show that the velocity induced
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by a vorticity distribution (such as a vortex sheet for example) can be expressed in a simple

form if the fluids on each side of the sheet are assumed to be incompressible.

Next, I present the equations governing the flow evolution, i.e., the Navier-Stokes equa-

tions, and the corresponding vorticity equation. Under appropriate assumptions, I show how

an alternative formulation to the vorticity equation can be obtained when considering vortex

sheets.

2.2 Vorticity formulation of the equations of motion

2.2.1 The Navier-Stokes equations

The continuum physical model describing the evolution of Newtonian fluids motion is based

on the Navier-Stokes equations, which describe the conservation of mass, momentum, and

energy. For the purposes of this work, which mainly focuses on the RM instability, the

fluids can be considered incompressible once all pressure waves have propagated away from

the interface. In Sec. 2.2.3, I show how the incompressibility condition allows the velocity

vector to be written in terms of vorticity (i.e., the Biot-Savart law). The Navier-Stokes

equations for incompressible flows can be written as

∇ · u = 0

∂u

∂t
+ (u ·∇)u = g(t)− 1

ρ
∇p+ ν∇2u

(2.3)

where ρ and u are the fluid density and velocity, respectively, g(t) is a general reference frame

acceleration that may be time-dependent, p the pressure, and ν the kinematic viscosity. In

the context of RT, RM, and KH instabilities, it is reasonable to assume that the fluids have

constant temperature, such that heat transfer through conduction can be neglected. If no

additional heat sources are present, such as combustion, radiation, or electromagnetic forces,

and that viscous effects can be neglected, only the conservation of mass and momentum are
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relevant.

2.2.2 Mechanism of baroclinic vorticity generation

To better understand the vorticity evolution along the interface, it is convenient to express

the equations of motion in terms of vorticity. In addition, for flows with singular vorticity

distributions (as in RT, RM, and KH), a vorticity formulation allows the equations of motion

to be solved only in these regions, greatly reducing the computational cost. By taking the

curl of the momentum equation in Eq. 2.3, the vorticity equation is given by (where the

compressible term is included to be more general)

∂ω

∂t
+ (u ·∇)ω" #$ %

advection

− (ω ·∇)u" #$ %
vortex stretching

+ ω (∇ · u)" #$ %
compressibility

=
∇ρ×∇p

ρ2
− ∇ρ× g

ρ" #$ %
baroclinic

+ ν∇2ω" #$ %
diffusion

, (2.4)

where ω = ∇×u is the vorticity vector. The second, third, and fourth terms on the left-hand

side represent the advection of vorticity with the flow velocity, vorticity production due to

the stretching of vortex tubes, and vorticity production due to compressibility, respectively.

In two dimensions, the vortex-stretching term vanishes. The first term on the right-hand

side represents the production of vorticity through baroclinic torque, while the last term rep-

resents the diffusion of vorticity through viscosity. By an appropriate choice of characteristic

scales, we can obtain the dimensionless form of the momentum equation as (where the tilde

denotes the dimensionless variables),

∂ũ

∂ t̃
+ (ũ ·∇) ũ =

1

Fr2
g̃ − P

ρ0V 2
∇p̃+

1

Re
∇2ũ, (2.5)

and the corresponding vorticity equation

∂ω̃

∂ t̃
+ (ũ ·∇) ω̃ − (ω̃ ·∇) ũ+ ω̃ (∇ · ũ) = P

ρ0V 2

∇ρ̃×∇p̃

ρ̃2
− 1

Fr2
∇ρ̃× g̃

ρ̃
+

1

Re
∇2ω̃. (2.6)
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Two important dimensionless numbers appear

Reynolds number: Re =
V L

ν

Froude number: Fr =
V√
gL

(2.7)

where L, V , and P are characteristic length, velocity, and pressure scales, respectively. We

see that if the Reynolds number is large (Re ≫ 1), and the flow considered incompressible

and two-dimensional, the vorticity equation simplifies to

∂ω̃

∂ t̃
+ (ũ ·∇) ω̃ =

P
ρ0V 2

∇ρ̃×∇p̃

ρ̃2
− 1

Fr2
∇ρ̃× g̃

ρ̃
. (2.8)

Eq. 2.8 is the main equation driving the discussion of the present work, and shows that for

an RT-, RM-, and KH-type flow, the only source of vorticity is baroclinic. If the Froude

number is also large (Fr ≫ 1), neglecting the effect of gravity is a reasonable assumption.

2.2.3 Vorticity-velocity formulation

Although the dependent variable in Eq. 2.8 is the vorticity, the equation still depends

on the velocity. To simplify the amount of algebra, the following discussion is restricted

to two-dimensional flows, though the final result is similar in three dimensions. From the

incompressibility condition, the components of the velocity u can be expressed in terms of

the scalar stream function ψ as

u =
∂ψ

∂y
, v = −∂ψ

∂x
, (2.9)

which leads to a Poisson equation for the stream function forced by the vorticity in the

z−direction

ω = −∇2ψ. (2.10)

31



A solution to this equation is given by the convolution of a Green’s function G(x) with the

vorticity, such that

ψ(x) = (G ∗ ω)(x) =
&

R2

G(x− x′)ω(x′)dA(x′), (2.11)

where A is an infinitesimal surface element, and G is a fundamental solution (Neumann

potential) for the Laplace operator ∇2 (Majda & Bertozzi, 2001)

∇2G(x) = −δ(x), (2.12)

where δ(x) is the Dirac delta function. In two dimensions, a solution to Eq. 2.12 is

G(x) = − 1

2π
log |x|. (2.13)

Substituting Eq. 2.13 into Eq. 2.11, the stream function is given by

ψ(x) = − 1

2π

&

R2

log |x− x′|ω(x′)dA(x′), (2.14)

and we can recover the velocity field from Eq. 2.9

u(x, t) =

&

R2

K(x− x′)ω(x′)dA(x′), (2.15)

which is known as the Biot-Savart law, and where the kernel K is given by

K(x− x′) =
1

2π

'
−(y − y′)

|x− x′|2 ,
x− x′

|x− x′|2

(T

. (2.16)

From Eq. 2.15, we see that any vorticity distribution in the flow induces a velocity at any

point. Eq. 2.8 with Eq. 2.15 represent the vorticity-velocity formulation of the governing

equations.
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2.3 Singular vorticity distribution: vortex sheets

2.3.1 Self-induced Lagrangian sheet velocity

In the present study, the two-dimensional vortex sheet is described parametrically by intro-

ducing the arclength parameter s such that x = x(s, t). Using this parametrization and

substituting Eq. 2.1 into Eq. 2.15 yields the transformation of the surface integral into a

line integral along the vortex sheet C as

u(x, t) =

&

C
K(x− x′)γ(s, t)ds. (2.17)

In three dimensions, the integral would be transformed from a volume integral to a surface

integral. Eq. 2.17 represents the velocity at any point P in the flow induced by the vortex

sheet. Since we are interested in the motion of the vortex sheet, Eq. 2.17 needs to be

evaluated at a point on the sheet itself, i.e., when x ∈ C, which represents the velocity of

the sheet induced by itself. The value of the velocity when the point P is on the interface

depends on which side P is approaching the interface from, and can be given by the Plemelj

formulas (Levinson, 1965)

u+ ≡ lim
P→C

from above

u = −
&

C
K[x(s, t)− x(s′, t)]γ(s′, t) ds′ +

1

2
γ(s, t)

u− ≡ lim
P→C

from below

u = −
&

C
K[x(s, t)− x(s′, t)]γ(s′, t) ds′ − 1

2
γ(s, t),

(2.18)

where now both x and x′ belong to the sheet, such that when x = x′, the Cauchy principal

value of the integral must be taken. In practice, it is common to choose the self-induced

velocity of the sheet, denoted by uvs, as the average of the two limiting values, such that

uvs ≡ u+ + u−

2
= −
&

C
K[x(s, t)− x(s′, t)]γ(s′, t)ds′. (2.19)
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From the value of this velocity, the Lagrangian position of the sheet can be integrated from

the relation

dx

dt
= uvs. (2.20)

2.3.2 Equation governing the sheet strength

Since the sheet strength in Eq. 2.19 is a function of time, its value and spatial distribution

along the sheet change as the sheet evolves. An equation describing the evolution of γ

is therefore necessary. If one assumes that the sheet strength is independent of time, then

∂γ/∂t = 0, and Eq. 2.19 can be solved given appropriate initial and boundary conditions. In

this limit, the problem is purely kinematic. In reality, the sheet strength varies in space and

time due to the dynamics of motion. Although this thesis is concerned with two-dimensional

vortex sheets, great insights into the physical interpretation of the sheet-strength governing

equation can be gained from the three-dimensional case. We will therefore derive the sheet-

strength equation in 3D first, followed by the derivation in 2D. The following derivations

can be found in greater detail in other studies (Pozrikidis, 2000; Wu, 1995; Wu et al., 2005,

2007; Stock, 2006).

2.3.2.1 Three-dimensional vortex sheets

A vortex sheet described in three dimensions is actually a two-dimensional surface that can

deform in a 3D fashion. In this case, a vortex sheet is defined as

ω = ζδ(n), (2.21)

where ζ is now the vectorial sheet strength with two components in the plane of the sheet,

and defined as

ζ = N̂ ×∆u. (2.22)
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From the definition of the sheet velocity, Eq. 2.19, we can express the fluid velocity on each

side of the sheet in terms of the sheet velocity and the velocity jump as

u+ = uvs − 1

2
∆u , u− = uvs +

1

2
∆u. (2.23)

The goal is then to derive an evolution equation for the velocity jump ∆u, which allows us

to relate it to the vortex sheet strength ζ. To this end, we start from the Euler equations

on each side of the interface

∂u±

∂t
+
)
u± ·∇

*
u± = g − 1

ρ±
∇p±. (2.24)

After taking the curl of Eq. 2.24, the problem where the right-hand-side of Eq. 2.24 is ignored

is first examined, which corresponds to the case where the effects of baroclinic vorticity are

ignored. Doing so allows me to identify the kinematic contributions to the evolution of the

sheet strength. After multiple steps described in Appx. A.1.1, the evolution equation of the

sheet strength when there is no baroclinic mechanism is

Dζ

Dt
= (ζ ·∇)uvs

" #$ %
vortex stretching

− ζ∇s · uvs

" #$ %
sheet expansion

, (2.25)

where D(·)
Dt

= ∂(·)
∂t

+ (uvs ·∇) (·) is the total derivative with respect to the sheet velocity, and

∇s · uvs ≡ (P ·∇) · uvs is the surface divergence, where P = I − N̂ ⊗ N̂ is a tangential

projection operator, with I the identity matrix. The surface divergence emerges when con-

sidering the evolution of a material surface in curvilinear coordinates. Eq. 2.25 reveals that

the rate of change of the sheet-strength with time is a combination of vorticity stretching

due to velocity gradients (the familiar vortex-stretching term), and vorticity change due to

the sheet-velocity distribution (second term). The second term represents the rate of change

of the surface area, and expresses the expansion or contraction of the sheet in the tangential

direction. This term is not to be associated with the compressible term in the vorticity
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equation (Eq. 2.4). As opposed to dilatation due to compressibility, which is a volumetric

process, the sheet-expansion term is a surface process, which is non-zero even in the case of

incompressible flows.

Let us now take into account the mechanism of baroclinic vorticity generation, and follow

similar steps, shown in detail in Appx. A.1.2. The final equation for the sheet-strength

evolution is then

Dζ

Dt
= (ζ ·∇)uvs

" #$ %
vortex stretching

− ζ∇s · uvs

" #$ %
sheet expansion

− 2A N̂ × (ā− g)" #$ %
baroclinic

+
2

ρ+ + ρ−
N̂ ×∇

)
p+ − p−

*

" #$ %
surface tension

,
(2.26)

where A = (ρ− − ρ+)/(ρ− + ρ+) is the Atwood number, and ā is the average of the fluid

acceleration on each side of the sheet given by (see Appx. A.1.2 for details)

ā ≡ 1

2

'
Du+

Dt

++++
fluid

+
Du−

Dt

++++
fluid

(
=

Duvs

Dt" #$ %
sheet acceleration

+
1

4
(∆u ·∇)∆u" #$ %
strength advection

.
(2.27)

We see that now the sheet strength is governed by two additional terms: the baroclinic

term and a term that would correspond to a surface tension term (if surface tension was

considered). Eq. 2.27 reveals that baroclinic vorticity is generated by the self-induced

acceleration of the sheet, and by the advection of the jump velocity with 1/4 of the jump

velocity.

2.3.2.2 Two-dimensional vortex sheets

In two dimensions, we can write Eq. 2.23 as

u+ = uvs − 1

2
γT̂ , u− = uvs +

1

2
γT̂ , (2.28)
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such that, when substituting it in Eq. 2.24 and projecting onto the tangential direction, the

following expression is obtained (see Appx. A.2)

Dγ

Dt
= −γ

∂uvs

∂s
· T̂

" #$ %
sheet expansion

− 2A (ā− g) · T̂" #$ %
baroclinic

+
2

ρ+ + ρ−
∇

)
p+ − p−

*
· T̂

" #$ %
surface tension

,
(2.29)

where

ā · T̂ =
Duvs

Dt
· T̂ +

1

8

∂γ2

∂s
. (2.30)

Eq. 2.30 is the two-dimensional counterpart of Eq. 2.27, and indicates that the advection of

the jump velocity is related to the sheet-strength advection; it is a nonlinear advection term

similar to a nonlinear advection equation.

2.4 Summary of the governing equations

In light of the previous sections, we present here a summary of the governing equations that

are solved in this work. We recall that we only consider the evolution of two-dimensional peri-

odic vortex sheets with no surface tension effects. Furthermore, since we adopt a Lagrangian

description of the vortex-sheet motion, i.e., the equations are solved in the reference frame

of the sheet, the total derivative with respect to the sheet velocity, D(·)
Dt

= ∂(·)
∂t

+ (uvs ·∇) (·),

reduces to the Lagrangian derivative d(·)
dt

. The vortex sheet governing equations are then

Sheet velocity:
dx

dt
= uvs =

&

C
K[x(s, t)− x(s′, t)]γ(s′, t)ds′ (2.31)

Sheet strength:
dγ

dt
= −2A

'
duvs

dt
· T̂ +

1

8

∂γ2

∂s
− g(t) · T̂

(
− γ

∂uvs

∂s
· T̂ , (2.32)
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where K is the periodic Biot-Savart kernel

K =
1

2λ

,

----.

− sinh[k(y − y′)]

cosh[k(y − y′)]− cos[k(x− x′)] + δ2

sin[k(x− x′)]

cosh[k(y − y′)]− cos[k(x− x′)] + δ2
,

/

00001
, (2.33)

which is desingularized by a smoothing parameter δ (Krasny, 1986a), such that the Cauchy

principal value integral does not need to be taken when evaluating the velocity. In all the

results presented in the next chapters, δ = 0.1 is chosen, which was also used in previous

investigations (Sohn, 2011). The Atwood number is defined as A = ρ−−ρ+

ρ++ρ− , where ρ± is

the fluid density on either side of the sheet (see Fig. 2.1). The three terms multiplying the

Atwood number represent the change in vortex-sheet strength due to generation of baroclinic

vorticity. The first term is the acceleration of a point on the interface duvs/dt due to the

self-induced motion of the sheet. The second non-linear term corresponds to the advection

of the sheet strength along the sheet. When combined together, these two terms represent

the average of the fluid acceleration on each side of the sheet in the tangential direction

(Tryggvason, 1988; Pozrikidis, 2000). The third term g(t) is a time-dependent acceleration

accounting for the fact that the interface may not be in an inertial reference frame. The

fourth term represents the expansion/contraction of the sheet in the tangential direction.

The initial conditions are determined by the shape of the initial perturbation, and the

corresponding sheet-strength distribution. The initial perturbation is characterized by its

wavelength λ (wavenumber k = 2π/λ), and the amplitude-to-wavelength ratio a0/λ. In

Sec. 2.6, I show how the sheet-strength distribution is determined for RM-type problems.

Because we are considering periodic perturbations, periodic boundary conditions are applied.

The important parameters governing the problem are the amplitude-to-wavelength ratio, the

Atwood number, and the magnitude of the initial sheet-strength distribution, γ0.
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Figure 2.2: Schematic of the vortex sheet discretization

2.5 Numerical discretization

2.5.1 Discretization of the governing equations

A common approach to discretize the equations is to use the point vortex method first

introduced by Rosenhead (1931). In this approach the vortex sheet is discretized into N

arclength elements of length ∆si = si+1/2 − si−1/2, i = 1 : N , with position xi, each

corresponding to a point vortex of strength γi, as depicted in Fig. 2.2. The arclength

element ds is defined as ds =
2

dx2 + dy2, where the elements dx and dy are given by

dx = xi+1/2 − xi−1/2 and dy = yi+1/2 − yi−1/2 such that

∆si =

3)
xi+1/2 − xi−1/2

*2
+
)
yi+1/2 − yi−1/2

*2
. (2.34)

The point xi+1/2 (respectively, xi−1/2) is evaluated halfway between the points xi and xi+1

(respectively, xi−1 and xi), i.e., xi+1/2 = (xi + xi+1) /2 and xi−1/2 = (xi−1 + xi) /2, such

that ∆si =
1
2
|xi+1 − xi−1|. The circulation Γi enclosed by a contour around ∆si is given by

Γi =

& si+1/2

si−1/2

γids = γi∆si. (2.35)

For convenience, in the results presented in Chapter 4, we sometimes use a Lagrangian

parameter αi instead of the arclength to plot the quantities of interest. Eqs. 2.31 and 2.32

are discretized by second-order finite differences, with the exception of the second term in

Eq. 2.32, which is a non-linear flux term solved using the Godunov method (LeVeque, 1992;
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Toro, 2013). The physical flux, f(γ) = 2A
8
γ2, is used to evaluate the numerical flux, F , by

solving a Riemann problem at the cell boundaries si±1/2, such that Fi+1/2 = F (γi, γi+1) and

Fi−1/2 = F (γi−1, γi). The integral in Eq. 2.31 is discretized by using the midpoint rule.

The coupled Eqs. 2.31 and 2.32 constitute a Fredholm equation of the second kind, whose

solution is complicated by the presence of the term duvs/dt on the right-hand-side of Eq.

2.32. This difficulty is resolved by following an iterative procedure (Tryggvason, 1988). The

discretized version of Eqs. 2.31 and 2.32 form a set of 3N ordinary differential equations

dxi

dt
=

1

2λ

N4

j=1

− sinh[k(yi − yj)]

cosh[k(yi − yj)]− cos[k(xi − xj)] + δ2
γj∆sj

dyi
dt

=
1

2λ

N4

j=1

sin[k(xi − xj)]

cosh[k(yi − yj)]− cos[k(xi − xj)] + δ2
γj∆sj

dγi
dt

= −2A

'
duvs

i

dt
· T̂i − gi · T̂i

(
−

Fi+1/2 − Fi−1/2

∆si
− γi

uvs
i+1 − uvs

i−1

2∆si
· T̂i.

(2.36)

By definition, the tangential vector is given by

T̂ (s) =
x′(s)

|x′(s)| =
dx

ds
, (2.37)

and is numerically computed using T̂i = (xi+1/2 − xi−1/2)/∆si. The system of equations is

advanced in time using an explicit second-order Runge-Kutta scheme. To provide sufficient

spatial resolution to accurately describe the interface distortion and roll-up features at late

time, a point insertion procedure is implemented, and is described next.

2.5.2 Point-insertion procedure

The point-insertion procedure is based on the relative distance between neighboring points

(Krasny, 1987; Feng et al., 2009), as depicted in Fig. 2.3. If either of the two distances d

or h are greater than a certain threshold, two additional points (red points) are inserted,
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Figure 2.3: Schematic of the point-insertion procedure. Original points: blue, inserted
points: red.

one between the points xi−1 and xi, and the other between the points xi and xi+1. These

two additional points are inserted with respect to a Lagrangian parameter α, such that

α1 = (αi−1 + αi)/2 and α2 = (αi + αi+1)/2. The position, velocity, and sheet strength

at the new points are then determined by a third-order Lagrange interpolation. To verify

this procedure, we consider two cases allowing us to observe the convergence of the results

when applying our point-insertion procedure. For convenience, we call the point-insertion

procedure “AMR” (Adaptive-Mesh Refinement),

The first case considers the evolution of an initially flat interface with no density mismatch

(A = 0), subjected to velocity perturbations of the form (Rikanati et al., 1998)

5
67

68

u(x, y) = v0 sin(kx) (2H(y)− 1) e−k|y|

v(x, y) = v0 cos(kx)e
−k|y|,

(2.38)

where v0 = 0.01 m/s is the initial velocity, k = 2π/λ is the wavenumber (λ = 0.01 m), and

H(y) is the Heaviside function given by

H(y) =

5
67

68

1 if y > 0

0 if y < 0.

(2.39)

Since A = 0, by Kelvin’s theorem of circulation, the total circulation along a contour around
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(a) Without AMR. (b) With AMR.

Figure 2.4: Interface morphology for the velocity-perturbations case (a) without AMR for
different resolutions, and (b) with AMR. The red points on the right figure corresponds to
the solution obtained with AMR (starting with N = 513 points).

the interface stays constant over time and is given by

Γ =
4v0
k

. (2.40)

To non-dimensionalize the variables, we choose the wavelength and sound speed (c = 1

m/s) as characteristic length and velocity, respectively. In this case, the dimensionless exact

circulation is Γ/(λc) ≈ 6.37 · 10−3. Fig. 2.4 shows the interface morphology at a given time

for three different resolutions, and for the procedure with AMR (starting with N = 513

points). The solution obtained without AMR converges with the number of points when

N → ∞. For a chosen initial number of points, the solution obtained with AMR gives

a more accurate representation of the roll-up than the one obtained without AMR. Fig.

2.5 shows the convergence of the total circulation to the exact solution (Eq. 2.40) when

increasing the number of points, along with the interface length. The solution obtained

when using AMR slightly overpredicts the total circulation compared to the N = 2049 case.
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(a) Total circulation. (b) Interface length.

Figure 2.5: Time evolution of (a) the total circulation over half a wavelength, and (b) the
interface length, for different resolutions in the velocity-perturbations case. The red line
corresponds to the solution obtained with AMR (starting with N = 513 points).

Since the AMR solution is not as resolved as the N = 2049 solution (N = 1393 by the end

of the simulation), one may argue that the discrepancy is due to the fewer number of points

in the AMR solution. However, the discrepancy is due to the fact that the improvement of

the solution obtained with AMR is relative to the number of points chosen initially. In our

case, the initial number points is N = 513, thus improving the solution with respect to the

one obtained with a fixed number of points corresponding to N = 513.

Next, we consider the case corresponding to the RM experiments of Collins & Jacobs

(2002), where the Atwood number is A ≈ 0.6, and is investigated in great detail in Chapter

4. We therefore do not include the problem set-up again here. Fig. 2.6 shows the convergence

of the interface morphology and the total circulation when using our AMR procedure.
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(a) Interface morphology

(b) Total circulation

Figure 2.6: (a) Interface morphology, and (b) total circulation over half a wavelength for
different resolutions and AMR in the RM case.

2.6 Initial conditions

The set of Eqs. 2.31 and 2.32 constitutes an initial-value problem, thus requiring initial

values for the position of the interface x and the sheet-strength γ. Because the present work

focuses on RM-type problems, i.e., a shock wave impinging upon an interface, the sheet

strength before the shock reaches the interface is zero. Therefore, the initial conditions of

a vortex sheet in an RM environment must be determined after the passage of the shock

over the interface. This requirement poses great challenges when initializing vortex sheet

computations, as one must know the change in the initial shape of the perturbation caused

by the passage of the shock, and the corresponding sheet-strength distribution.

In a light-to-heavy configuration (when there is no phase inversion), if the initial am-

plitude of the perturbation is small relative to its wavelength, the change in interface mor-

phology due to the passage of the shock may be neglected. In this case, the pre-shock
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Figure 2.7: Schematic of shock refraction at an inclined planar interface. Blue: incident
shock (i), red: transmitted shock (t), green: reflected shock or rarefaction (r), and black:
interface.

perturbation is the same as the post-shock one. This configuration is adopted in Chapter 4.

However, in a heavy-to-light configuration (when a phase inversion occurs), three cases need

to be considered. The first is when the speed of the shocked interface, uint, is greater than

the speed of the incident shock, ushock, called direct phase inversion (Holmes et al., 1999),

such that the perturbation inverts during shock transit. The second is when uint < ushock,

called indirect phase inversion, in which case the perturbation inverts after the passage of

the shock. The third is when uint ≈ ushock, in which case the perturbation is flat at the time

the shock leaves the interface. The latter case is the one relevant to Chapter 3; in the HED

experiments, the shocked interface speed is nearly identical to the incident shock, such that

the post-shock interface can be considered flat.

Samtaney & Zabusky (1994) developed a model allowing the determination of the circu-

lation per unit length, i.e., the sheet strength, on planar tilted interfaces, as shown in Fig.

2.7. For convenience, we refer to their model as the SZ model. The SZ model is based on

shock-polar analysis, which considers the deviation of the flow due to the refraction of the
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incident shock at the interface. By definition (Henderson, 1989), shock refraction occurs

when the speed of an incident shock i changes when propagating from one fluid (density ρ0,

ratio of specific heat κ0) to another (density ρb, ratio of specific heat κb). The interaction

between an incident shock and an interface produces a transmitted wave t, and a reflected

wave r. The transmitted wave is always a shock, whereas the reflected wave can be a shock or

a rarefaction. If the speed of the transmitted shock is larger (respectively, smaller) than the

speed of the incident shock, the refraction is known as “slow-fast” (respectively, “fast-slow”).

If the refraction is regular, i.e., the system of waves meets at a single node, the circulation

per unit length can be derived analytically, and is given, for the fast-slow case, by

dΓ

ds
= c0

9:
F1 +

M2
s

sin2 θ
−

:
F2 +

M2
s

sin2 θ

;
cos θ

cos(θ − δb)
, (2.41)

where c0 is the sound speed in fluid 0, Ms is the incident shock Mach number, and F1 and

F2 are two functions given by

F1 =
2κb

κ0(κb − 1)

1− A

1 + A

<
1− ψ

'
p2
p0
, µb

(=

F2 =
2

κ0 − 1

<
1− ψ

'
p2
p1
, µ0

(
ψ

'
p1
p0
, µ0

(= (2.42)

where µ2
i ≡ (κi − 1)/(κi + 1) (i = 0, b), and p1/p0, p2/p0, and p2/p1 are the pressure ratios

across the incident, transmitted, and reflected waves, respectively. The function ψ(ξ, ζ) is a

function of two variables defined as

ψ(ξ, ζ) = ξ
1 + ζ2ξ

ζ2 + ξ
. (2.43)

The factor cos θ/ cos(θ− δb) is a geometric factor taking into account the change in interface

length due to the passage of the incident shock. The angle δb is the streamline deflection in

the fluid b due to the transmitted wave, and is determined by the equations of shock polars.

The pressure ratio p2/p0 can be determined by solving a twelve-degree polynomial in p2/p0,
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which also depends on the streamline deflections due to each wave. Note that the functions

F1 and F2 are implicitly dependent on the shock Mach number as well.

When the refraction is irregular, e.g., due to large tilt angles θ, Eq. 2.41 does not hold, as

no physically relevant solutions to the polynomial solving for the pressure ratio p2/p0 exist.

In such cases, Samtaney & Zabusky (1994) derived an approximate expression by expanding

the exact expression into a Taylor series about sin θ = 0

dΓ

ds
= σ1 sin θ + σ3 sin

3 θ +O(sin5 θ), (2.44)

where

σ1 =
c0
2Ms

>
F̃1 − F̃2

?
, (2.45)

and F̃1,2 are the values of the functions F1 and F2 evaluated at p2/p0 in the limiting case

θ → 0. In this case, the pressure ratio p2/p0 is the solution to the algebraic equation of the

one-dimensional Riemann problem

p1/p0 − 12
µ2
0 + p1/p0

− p2/p1 − 12
µ2
0 + p2/p1

!

ψ

'
p1
p0
, µ0

(
−

:
1− A

1 + A

p2/p0 − 12
µ2
b + p2/p0

:
κ0 + 1

κb + 1
= 0. (2.46)

The expression for the coefficient σ3 is too complicated to be considered here, and was

shown to have a negligible influence on the circulation value. Therefore, we only consider

the approximation to first order in sin θ. Eq. 2.44 directly gives the expression for the sheet

strength γ, since by definition,

γ =
dΓ

ds
. (2.47)

In the case of a sinusoidal perturbation, the angle θ between the shock and the interface

varies along the interface, such that a distribution for the sheet strength is obtained. Note

that the above equations are valid for the fast-slow case only, where the reflected wave is

a shock. For the slow-fast case, where the reflected wave is a rarefaction, Samtaney et al.

(1998) derived similar expressions.
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CHAPTER 3

Vortex-Sheet Modeling of Hydrodynamic Instabilities

Produced by an Oblique Shock Interacting with a

Perturbed Interface in the HED Regime

This chapter is adapted from Pellone et al. (2021)

3.1 Abstract

We consider hydrodynamic instabilities produced by the interaction of an oblique shock

with a perturbed material interface under high-energy-density (HED) conditions. During

this interaction, a baroclinic torque is generated along the interface due to the misalign-

ment between the density and pressure gradients, thus leading to perturbation growth. Our

objective is to understand the competition between the impulsive acceleration due to the

normal component of the shock velocity, which drives the Richtmyer-Meshkov instability,

and the shear flow across the interface due to the tangential component of the shock ve-

locity, which drives the Kelvin-Helmholtz instability, as well as its relation to perturbation

growth. Since the vorticity resulting from the shock-interface interaction is confined to the

interface, we describe the perturbation growth using a two-dimensional vortex-sheet model.

We demonstrate the ability of the vortex-sheet model to reproduce roll-up dynamics for non-

zero Atwood numbers by comparing to past laser-driven HED experiments. We determine

the dependence of the interface dynamics on the tilt angle and propose a time scaling for the
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perturbation growth at early time. Eventually, this scaling will serve as a platform for the

design of future experiments. This study is the first attempt to incorporate into a vortex-

sheet model the time-dependent interface decompression and the deceleration (as well as the

corresponding Rayleigh-Taylor instability) arising from laser turn-off.

3.2 Introduction

The growth of perturbations due to hydrodynamic instabilities at material interfaces plays an

important role in the evolution of high-energy-density systems (HED), as it initiates multi-

material mixing, possibly altering the overall flow dynamics of such systems. In inertial con-

finement fusion, for example, the growth of Rayleigh-Taylor (Rayleigh, 1900; Taylor, 1950)

(RT), Richtmyer-Meshkov (Richtmyer, 1960; Meshkov, 1969) (RM), and Kelvin-Helmholtz

(Thomson Lord Kelvin, 1871; Helmholtz, 1868) (KH) instabilities may cause the outer cold

ablator material to mix with the central hot spot, thus degrading the performance of capsule

implosions (Meezan et al., 2013; Hicks et al., 2012). At larger scales, the development of

RT and RM instabilities in core-collapse supernovae also cause material mixing (Abarzhi

et al., 2018; Kane et al., 1997). The KH instability plays a critical role in the development

of turbulent boundary layers in planetary atmospheres (Johnson et al., 2014). Under HED

conditions, shock-driven instabilities have been investigated at high-energy laser facilities

by depositing kilojoules of laser energy into millimiter-size targets, leading to instabilities

growing over nanoseconds (Drake, 2010; Ryutov & Remington, 2002; Remington, 2005; Rem-

ington et al., 2019).

Beyond the early linear stage, the flow dynamics resulting from the growth of these

instabilities sometimes involve combined effects of RM, RT, and/or KH (Kuranz et al., 2009).

Much of the past work on shock-driven perturbation growth at interfaces has emphasized a

single one of these instabilities (Jacobs & Krivets, 2005; Jacobs & Catton, 1988a,b; Zhou,

2017a,b); less attention has been paid to combinations. In the conventional RM instability,
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the shock front propagates in the direction normal to the mean interface, thereby causing

an impulsive acceleration (Malamud et al., 2013a; Di Stefano et al., 2015b,a; Nagel et al.,

2017; Dimonte et al., 1996; Aglitskiy et al., 2006, 2010). In a shock-driven KH geometry, the

shock front propagates in the direction tangential to the mean interface, producing a shear

across the interface (Harding et al., 2009; Hurricane, 2008; Flippo et al., 2018; Doss et al.,

2020; Malamud et al., 2013b; Wan et al., 2015, 2017). The intermediate case of a mean

interface tilted with respect to the incident shock wave, or an oblique shock interacting with

an interface, introduces elements of shear in addition to the impulsive acceleration from the

shock, such that both RM and KH instabilities contribute to perturbation growth.

Rasmus et al. (2018, 2019) showed that varying the tilt angle alters the relative impor-

tance of KH and RM in their HED experiments. However, they studied only a small number

of initial conditions and their model did not include post-shock baroclinic vorticity genera-

tion effects, which occur due to the misalignment of the density gradient across the interface

with the pressure gradient across the incident shock. The late-time, non-linear dynamics of

perturbation growth are characterized by the formation of large vortical structures, which

dominate and eventually drive the mixing. Baroclinic vorticity generation alters the forma-

tion of these structures and is therefore critical to include in the description of the non-linear

perturbation growth. Of particular interest to this work is the post-shock generation of baro-

clinic vorticity due to the self-induced acceleration of the interface and vorticity transport

along the interface. As the shock interacts with the interface, a sheet of vorticity is generated

along the interface due to the misalignment of the density gradient (across the interface) and

the pressure gradient (across the shock) (Zabusky, 1999; Brouillette, 2002). This baroclinic

torque causes interfacial perturbations to grow, eventually giving rise to familiar bubble

and spike structures. Furthermore, in HED experiments, laser turn-off gives rise to a rar-

efaction that can affect perturbation growth. Experimental studies of these phenomena in

the HED regime require specialized facilities and expertise, and generally do not yield large

amounts of data. Numerical simulations of shock-driven interfacial instabilities necessitate
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significant resolution and modeling of complex physics (laser-matter interaction, radiation-

hydrodynamics, turbulence). Although such approaches are comprehensive in the physics

they account for, it is difficult to isolate specific contributions to perturbation growth, e.g.,

the role of vorticity dynamics.

The initial growth of perturbations can be determined from the interface velocity induced

by this baroclinic torque. The relationship between vorticity and velocity, i.e., the Biot-

Savart law (Saffman, 1992; Pozrikidis, 2011), allows the problem to be reduced to evolving

the interface from an initial distribution of vorticity along the interface. Vortex-sheet models

are uniquely designed to represent vorticity-dominated interfacial dynamics. This paradigm

is computationally attractive as it provides a one-dimensional parametrization of a two-

dimensional interface, which allows for a detailed description of roll-up behavior lacking in

current theoretical models of both linear (Richtmyer, 1960; Yang et al., 1994b; Wouchuk

& Nishihara, 1996, 1997) and non-linear (Zhang & Sohn, 1996, 1997a; Alon et al., 1995;

Oron et al., 2001) phases of the growth. In classical fluid dynamics, Rosenhead (1931)

considered the evolution of a vortex sheet discretized as a set of point vortices applied to the

KH instability. Numerical difficulties associated with roll-up formation, leading to curvature

singularity, have been investigated for cases with (Baker et al., 1982; Higdon & Pozrikidis,

1985; Pozrikidis, 2000; Sohn et al., 2010) and without (Krasny, 1986b,a, 1987; Tryggvason,

1989) a density jump across the interface. The inclusion of a density jump in the vortex-

sheet formulation complicates both the physical model and the numerical treatment of the

equations, as additional non-linear terms must be incorporated in the equation governing

the time evolution of the vortex sheet. Previous studies have successfully investigated RT

(Tryggvason, 1988; Sohn, 2011, 2004; Zufiria, 1988) and RM (Matsuoka et al., 2003; Matsuoka

& Nishihara, 2006c) instabilities using the vortex-sheet model with these additional terms. A

challenge with vortex-sheet modeling lies in prescribing initial conditions as current strategies

have been developed for traditional fluid systems (Samtaney & Zabusky, 1994). Under HED

conditions, however, the dynamics of vortex sheets have yet to be used, with the exception
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of the purely kinematic study of Rasmus et al. (2019).

In this work, we use a vortex-sheet model to investigate the growth of interfacial per-

turbations subject to an oblique shock under HED conditions. HED-relevant initial condi-

tions are prescribed by combining an analytical model with complementary hydrodynamic

simulations. To better understand the relative importance of impulsive acceleration vs.

shear, we investigate the dependence of the interface morphology on the initial tilt an-

gle. This work is the first account of using a vortex-sheet model to describe a problem

in the HED regime and predict secondary effects from experimental laser turn-off, such as

time-dependent interface deceleration and decompression, as opposed to prior vortex-sheet

modeling of constant-acceleration RT instability (Tryggvason, 1988; Sohn, 2011, 2004; Zu-

firia, 1988). The manuscript is organized as follows. First, we describe the vortex-sheet

paradigm and the governing equations, along with a strategy allowing the determination of

the vortex-sheet strength distribution following the passage of the shock. Next, we investi-

gate the dynamics for a given tilt angle and density jump, corresponding to the experiments

performed by Rasmus et al. (2018, 2019). The role of the tilt angle on the perturbation

growth is then examined, before ending with concluding remarks.

3.3 Governing equations and numerical discretization

During the interaction of a shock wave with a perturbed interface, a baroclinic torque is

generated along the interface due to the misalignment between the density gradient across

the interface, ∇ρ, and the pressure gradient across the shock wave, ∇p. The subsequent

dynamics of the post-shock interface evolution can be described by the vorticity equation.

The thin vortex sheet along the interface induces a velocity field whose solenoidal component

is given by the Biot-Savart law (Saffman, 1992; Cottet et al., 2000). The subsequent evolution

of this vortex sheet is obtained by following the trajectories of Lagrangian markers located

along the sheet (Pozrikidis, 2011). In this section, we describe the problem set-up, the
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shock (38 km/s)
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a0

Heavy PAI= 1.45 g/cm3

Light foam= 0.1 g/cm3 u+

u−
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Figure 3.1: Problem set-up for the interaction of an oblique shock with a perturbed interface.

physical/numerical models, and the initial conditions.

3.3.1 Problem set-up

The problem set-up, shown in Fig. 3.1, is based on the experiments of Rasmus et al. (2018)

and Rasmus et al. (2019), performed on the OMEGA-EP laser facility on a target composed

of a layer of polyamide-imide (PAI of density 1.45 g/cm3) next to a layer of foam (density

0.1 g/cm3), resulting in a pre-shock Atwood number Apre ≈ 0.87. A shock wave travels from

the heavy material into the light material, and interacts with a two-dimensional sinusoidal

perturbation (wavelength λ = 100 µm, initial amplitude a0 = 0.1λ) tilted by an angle θ = 30◦

with respect to the shock. The shock speed is approximately 38×103 m/s and the post-shock

Atwood number is A ≈ 0.67. We take our baseline case to be θ = 30◦ and investigate the

dynamics as the tilt angle is varied between 0◦ ≤ θ ≤ 50◦.

3.3.2 Vortex-sheet model

We start by performing a Helmholtz decomposition of the velocity field into solenoidal (ro-

tational) and dilatational (irrotational) components. The equations governing the solenoidal

component are solved using the vortex-sheet formulation described by Pozrikidis (2011). The

high flow velocities in the experiments (∼ 104 m/s) result in high Reynolds numbers, such
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that viscosity can be neglected. The effect of gravity is too weak at these time and length

scales to play a significant role in the evolution of the interface. The equations governing

the motion of the sheet and the numerical discretization are given in Sec. 2.4. As explained

in Sec. 3.3.3, the dilatational velocity component is modeled using a factor accounting for

shock compression and decompression due to laser-turn off, the latter represented by the

third term in Eq. 2.32. Although investigations of similar problems have been conducted

in the past (Sohn et al., 2010; Sohn, 2011), the present study is the first report of highly

resolved computations for oblique interfaces under HED conditions.

3.3.3 Deceleration and decompression due to laser turn-off

In the context of the problem under consideration, compressibility has two primary effects.

First, velocity changes are accompanied by pressure changes, which give rise to density

changes. Second, local flow changes are communicated to the rest of the domain at a fi-

nite speed (e.g., waves interacting with target boundaries), by contrast to incompressible

flow where this information propagation speed is effectively infinite. Volumetric changes in

the compressible component due to shock compression and laser turn-off are modeled by a

decompression factor prescribed from corresponding one-dimensional simulations; a corre-

sponding acceleration term must also be added to the vortex-sheet equation. With regard to

transient wave propagation effects, experimental data do not suggest that such effects take

place over the relevant observation time. Experimental data further indicates that the shock

recedes from the interface at a higher velocity than the interface velocity such that shock

proximity effects (Glendinning et al., 2003) can be neglected.

Upon laser turn-off, a rarefaction is launched into the system, interacting with the inter-

face at t ≈ 5 ns, leading to decompression and deceleration of the interface (Rasmus et al.,

2019). Both effects result in modifications of the perturbation growth. The decompression

is accompanied by a gradient of velocity across the interface, thus stretching the interface in

the streamwise direction, while the deceleration causes a pressure gradient opposite to the
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(a) Interface velocity and acceleration (b) Decompression factor

Figure 3.2: Time evolution of (a) the interface velocity and corresponding acceleration, and
(b) the interface decompression factor from xRAGE simulations.

density gradient at the interface, such that the system is Rayleigh-Taylor unstable during

the interaction with the rarefaction. This latter effect is represented by the third term on

the right-hand-side of Eq. 2.32, and corresponds to a body force due to the non-inertial

reference frame. The time-dependent acceleration profile g(t) is obtained from the interface

velocity computed from one-dimensional simulations, using the radiation-hydrodynamics

xRAGE code (Gittings et al., 2008), as is shown in Fig. 3.2a. The time origin is taken to

be when the shock reaches the interface, causing an impulsive interface velocity. Thereafter,

the interface velocity increases slightly until t ≈ 5 ns, after which it decreases, indicating

the arrival of the rarefaction at the interface. Because of the heavy-to-light configuration,

negative values of the acceleration give rise to the RT instability.

The effect of the interface decompression is taken into account by multiplying the per-

turbation amplitude by a decompression factor determined by the distance between two

Lagrangian tracer particles relative to their distance before the arrival of the rarefaction.

One tracer particle is located in the foam, while the other is located in the PAI material,

each initially located 30 µm away from the interface. The position of each particle over

time (yfoam and yPAI) is obtained from 1D xRAGE simulations, such that the decompression
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factor is given by +++++
yfoam(t)− yPAI(t)

(yfoam − yPAI)post-refract

+++++ , (3.1)

where the “post-refract” subscript denotes the state after all waves produced during the

refraction have crossed the tracer locations, as shown in Fig. 3.2b. Before the incident shock

reaches the tracer particle in the PAI material (t < 0), the decompression factor is constant,

as none of the particles have moved. After the shock has passed over the PAI particle, the

decompression factor decreases, due to the positive velocity of the PAI particle and the fact

that the shock has not yet reached the particle in the foam. As the shock interacts with the

interface, a reflected rarefaction originates due to the heavy-to-light configuration, causing

the particle in the PAI material to be accelerated towards the interface. During this time,

there is also a transmitted shock propagating in the foam material, which reaches the tracer

particle in the foam at t ≈ 0 ns. As a result, this particle has a positive velocity, increasing

the decompression factor after t = 0 ns. After the reflected rarefaction has passed over the

particle in the PAI material (t ≈ 1 ns), the decompression factor remains constant, and

corresponds to the RT-stable phase. After t ≈ 5 ns, the decompression factor increases,

indicating the arrival of the rarefaction from laser turn-off.

Results with additional tracer particles initially located at ±10 µm and ±20 µm demon-

strated that the decompression factor is not sensitive to the choice of initial tracer position

(data not shown). The choice ±30 µm is an example where the tracers are far enough from

the interface that the mesh resolution at the interface is not an issue, but close enough to

correctly represent the rarefaction conditions experienced by the interface structure.

Our approach to representing compressible phenomena has two main limitations. First,

the acceleration g(t) and the decompression factor are prescribed from a 1D precursor sim-

ulation, rather than fully coupled to the 2D dynamics. Second, transient wave-propagation

effects (e.g., reflections from boundaries) are ignored. We therefore expect the present ap-

proach to be applicable for nominally 1D base flows in geometries such that wave-propagation

effects can be neglected, which are reasonable assumptions in the problem of interest.
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3.3.4 Initial vortex-sheet strength distribution

The initial conditions consist of the shape of the interface and the corresponding distribution

of the vortex-sheet strength along the interface immediately after the passage of the shock.

Rasmus et al. (2019) showed that in the experiments the interface undergoes a marginal

direct phase inversion, causing the interface to be compressed so strongly (by a factor of

∼20 of its original amplitude) that the post-shock shape of the interface can be considered

flat.

We initialize the vortex-sheet strength distribution along the interface with the approach

of Samtaney & Zabusky (1994), who showed that the circulation per unit length of the pre-

shock interface is proportional, to first order, to the local angle between the incoming shock

and the pre-shocked interface α as

γ ≡ dΓ

ds
≈ σ sinα = σ

dy

ds
, (3.2)

where σ is independent of the interface geometry but is a function of the material properties,

the shock Mach number, and pressure ratios across the waves generated by the incident shock

refraction at the interface. Note that the local angle α varies along the perturbed interface,

whereas θ denotes the mean angle between the interface and the shock. The expression for

σ provided by Samtaney & Zabusky (1994) is not valid under HED conditions given the

exceedingly strong shock and the non-ideal gas equation of state. Instead, to determine σ,

we use xRAGE to extract the total circulation Γ, as done by Rasmus et al. (2019), where

a diagnostic box surrounding the post-shock flat interface is used to compute the total

circulation. Integrating Eq. 3.2 directly with respect to the unit length of the pre-shock

interface ds would not yield the amount of circulation obtained from xRAGE, due to the

compression of the interface. After an appropriate change of variable (Rasmus et al., 2019),
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(a) Pre-shock interface (b) Post-shock sheet-strength distribution

Figure 3.3: (a) Pre-shock interface and (b) corresponding post-shock sheet-strength distri-
bution for 0◦ ≤ θ ≤ 50◦. The red line represents the baseline case (θ = 30◦).

it can be shown that Γ =
@
γdx. For θ = 30◦ and λ = 100 µm, we obtain Γ = 1.4 m2/s and

σ =
Γ@
dy
ds
dx

= 4.3× 104 m/s. (3.3)

Fig. 3.3 shows the initial conditions for different tilt angles up to the critical value θ = 50◦ for

initial amplitude a0 = 0.1λ. Beyond θ ≳ 50◦, part of the interface crosses the y-axis multiple

times, in which case the assumption of a flat post-shock interface is not valid. In addition,

higher-order terms need to be accounted for in Eq. 3.2 when the local angle α is too large.

Such a scenario is beyond the scope of this study. In the case θ = 30◦, the sheet-strength

distribution is mainly negative, with only minor positive values at the extremities. A closer

inspection reveals that the sheet strength is entirely negative for a tilt angle θ ≳ 32◦. In our

study of the role of the tilt angle in section 3.4.2, the largest negative value of the initial

sheet-strength distribution γ0, seen in Fig. 3.3b, is used as a characteristic velocity to non-

dimensionalize the time variable as t̃ = γ0t/λ. For a given value of t̃ = 3, the corresponding

physical time is given in table 3.1. We note that the perturbation in Fig. 3.3a is included

for illustrative purposes; the present simulations are initialized with a flat interface and the
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θ [◦] 0 10 20 30 40 50
γ0 × 104 [m/s] 2.3 2.9 3.4 3.8 4.1 4.3

t [ns] 13 10 8.8 7.8 7.3 7.0

Table 3.1: Maximum magnitude of vortex-sheet strength γ0 and corresponding physical time
for different tilt angles and t̃ = 3.

sheet-strength distributions in Fig. 3.3b.

3.4 Results and discussion

3.4.1 Dynamics of the baseline case

We first investigate the dynamics of our baseline case (θ = 30◦), including the role of interface

deceleration and decompression due to laser turn-off. We also include, in Appendix B, a

comparison to experiments and xRAGE simulations of the case θ = 0◦ (single-mode at

normal incidence, i.e., RM instability (Di Stefano et al., 2019)), which can be validated

against existing well-established theory. The passage of the shock deposits vorticity along

the interface, whose dynamics subsequently evolves according to the induced velocity field.

Fig. 3.4 shows the post-shock time evolution of the interface and its associated sheet-

strength distribution. The time evolution t ≤ 15 ns corresponds to the experimental time

range (Rasmus et al., 2019). The width of each frame in Fig. 3.4a is x/λ = 1, but the

post-shock interface wavelength corresponds to the effective wavelength λ cos θ, hence the

extra space on the left and right of the interface.

As explained in the previous section and as supported by the experiments of Rasmus

et al. (2019), the initial interface morphology is initialized as flat, with a mean sheet-strength

distribution that is negative. This negative mean sheet strength indicates mean clockwise

rotation. The location of the largest negative value of the sheet strength achieved over the

course of the simulation is denoted by s−, and initially coincides with s = 0.5sN . This point

separates the interface into two parts: the part between the arclength of the first point and
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(a) Interface morphology

Time

(b) Sheet-strength distribution

Figure 3.4: Time evolution of (a) the interface morphology, and (b) its associated sheet-
strength distribution along the interface arclength normalized by the total length of the
interface (arclength value of the last point sN) for the baseline case (θ = 30◦).
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s− is referred to as the “left arm” of the interface, while the part between s− and the last

point is referred to as the “right arm” of the interface.

In the linear regime, the interface adopts a sinusoid-like shape (not shown for visualization

purposes). The point s− of the sheet-strength profile moves to the left and increases in

magnitude, as the predominantly negative vorticity causes the left arm of the interface to

rise and the right arm to sink. The point s− is the point at which the average tangential

component of the acceleration vanishes. The points on the left (right) of s− have a positive

(negative) average tangential acceleration, such that the points on each side of s− move

toward s−, leading to an accumulation of vorticity near s−. Heavy and light fluids start to

penetrate each other.

By t = 1.5 ns, the perturbation amplitude is no longer small. The mean shear and

mean negative vorticity cause the interface to start rolling up and become multivalued, i.e.,

for at least one x-coordinate along the interface there are two values of the corresponding

y-coordinate. This first instance of a multivalued interface perturbation occurs along the

right arm. Although gradually decreasing along the left arm, the rate of change of the sheet

strength in s along the right arm changes abruptly at s+ (inflection point), which eventually

becomes the location of maximum positive strength.

After the interface has become multivalued, the perturbation rolls up, causing the inter-

face to become multivalued along the left arm as well, and the crest to topple over, due to

the large negative rotation at s−. By t = 5 ns, the amount of heavy fluid separating the

left and right arms on the rolled up side of the interface is vanishingly small, except for a

blob near the vortex core. The roll-up has now a filament-like structure with the blob of

primarily negative vorticity. At this time, the co-rotating vortex structure is evident. The

centripetal acceleration causes the vorticity at s+ to increase and eventually become positive

(Peng et al., 2003).

The large negative vorticity at and near s− causes the blob to rotate with a local angular

velocity, entraining some of the light fluid into the heavy fluid. As the blob rotates, its shape
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changes, and eventually breaks down into smaller blobs, which themselves rotate with their

own angular velocity. More filament-like structures form, and by t = 10 ns, the angular

momentum associated with the original blob causes un upward velocity of the now broken-

down blob. As the latter keeps on breaking down, by t = 12 ns, the upward velocity causes

this region of broken blobs to separate itself from the main mixing region. At these late times,

three-dimensional and diffusive effects may alter the behavior of the interface by reducing

the angular momentum of the rotating blob, which are beyond the scope of this study.

The interface morphologies shown in Fig. 3.4 can be used to produce synthetic radio-

graphs. Approximating the densities of the heavy and light sides of the parametrized interface

as the post-shock densities reported by Rasmus et al. (2019), and modeling other properties

of the radiograph, such as interface curvature (Di Stefano et al., 2019), yields the synthetic

radiographs in Fig. 3.5. The time evolution corresponds to the experiments (1 ns ≤ t ≤ 11

ns) with increments of ≈ 1.32 ns. The result of this process is a blurring of the roll ups, thus

making fine-scale filaments difficult to discern. In the experiments, the complicated structure

of the roll-up at late times may seed smaller-scale 3D mixing, further blurring out the tips.

This visualization demonstrates that blurry features observed in experimental radiographs

could in fact be due to the finite resolution of the experimental diagnostics averaging out

sub-pixel-scale flow dynamics, in addition to diffusion, as previously suggested (Haines et al.,

2014).

The above description of the time evolution of the vorticity distribution along the inter-

face is important as it relates the interface morphology to the vorticity-dominated dynamics

of the flow. Another important quantity is the time evolution of the mixing zone. Fig. 3.6

compares the time evolution of the perturbation amplitude obtained with the vortex-sheet

model to the experiments of Rasmus et al. (2019). Error bars of ±3 µm accounting for the

uncertainty in the measured amplitude, and ±0.5 ns accounting for the uncertainty in the

shock timing are added. To distinguish between the effects of volumetric changes and (incom-

pressible) Rayleigh-Taylor-induced growth produced when turning off the laser, four cases
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(a) Experimental radiograph

Time

(b) Vortex-sheet synthetic radiograph

Figure 3.5: Roll-up morphology of the baseline case (θ = 30◦) from (a) the experiments
(Rasmus et al. (2019)) (Reproduced from Rasmus, A. M. et al. “Shock-driven hydrodynamic
instability of a sinusoidally perturbed, high-Atwood number, oblique interface.” Physics of
Plasmas 26.6 (2019): 062103, with the permission of AIP Publishing), and (b) reproduced
synthetic image from vortex-sheet data.
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Figure 3.6: Time evolution of the perturbation amplitude obtained from the vortex sheet,
without RT-acceleration or decompression ( ), with RT-acceleration but without de-
compression ( ), without RT-acceleration but with decompression ( ), with both RT-
acceleration and decompression ( ), and experiments ( ).

are considered: the full dynamics, i.e., with RT-acceleration and decompression, the dynam-

ics ignoring RT-acceleration, the dynamics ignoring the decompression, and the dynamics

ignoring both the RT-acceleration and decompression. Until the arrival of the rarefaction

at 5 ns, the four solutions are close to each other; the solutions ignoring the acceleration

term show slightly more rapid growth due to the increase of the interface acceleration in the

absence of the positive acceleration present until t ≈ 5 ns. Until this point, decompression

and baroclinic vorticity due to the mean acceleration field do not play a prominent role

in the perturbation growth; growth is primarily dictated by the baroclinic vorticity due to

the self-induced vortex-sheet acceleration and its elongation. Once the rarefaction reaches

the interface, discrepancies between the different solutions become manifest. Both RT ac-

celeration and decompression contribute to growth during this interaction, as evidenced by

the fact that the solution ignoring these two effects shows the largest discrepancy with the

experiments. Accounting for RT acceleration (but ignoring decompression) only affects the
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growth at late times (after ∼ 11 ns). For this problem, decompression plays a more promi-

nent role in altering the perturbation amplitude growth starting at t ≈ 7 ns. The late-time

evolution of the perturbation growth is also altered by the above-mentioned upward velocity

of the broken-down blob, resulting in a kink at t ≈ 10 ns. This amplification of the growth is

neither related to the RT acceleration nor to the decompression, since the solution ignoring

these two effects exhibits the same behavior as well. Because of this growth amplification,

the combination of RT acceleration and decompression produces a solution that slightly over-

predicts the experimental results. The solution accounting for decompression (but ignoring

RT acceleration) produces a solution closest to the experimental results. Discrepancies be-

tween the modeling and experimental results may be due to three-dimensional effects, the

modeling of the decompression, equation-of-state effects, or diffusion effects.

3.4.2 Dependence of the dynamics on the tilt angle

Having related the interfacial dynamics to the vortex-sheet strength in the previous section,

we now investigate the dependence of the interfacial dynamics on the tilt angle to understand

the relative importance of impulsive acceleration vs. shear in the interface evolution. For

simplicity, we neglect the effects of RT acceleration and interface decompression due to

laser turn off. Upon inspection, the RT acceleration only has a minor effect on the roll-up

morphology, and the interface decompression only scales the perturbation amplitude by the

decompression factor.

3.4.2.1 Interface morphologies and vortex-sheet strength

As the tilt angle is increased, the pressure and density gradients become more misaligned,

thus leading to an increased magnitude of the initial baroclinic torque. As confirmed by

Fig. 3.3b, a larger tilt angle gives rise to a more skewed and narrow strength profile in the

initial conditions. To perform a meaningful comparison when varying the tilt angle, we thus

normalize time with the initial magnitude of the sheet strength γ0, i.e., t̃ = γ0t/λ. Figs.
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3.7 and 3.8 show the time evolution of the interface morphology and its associated sheet

strength until t̃ = 3 for tilt angles between 0◦ ≤ θ ≤ 50◦.

The case θ = 0◦ corresponds to the classical RM problem, which is characterized by

the formation of counter-rotating vortices. The associated sheet-strength profile is initially

symmetric with respect to the point s0, which corresponds to the spike tip and point of zero

vorticity; the interface remains symmetric about the vertical axis passing through this point

and the sheet strength symmetric about this point. Tracking this point over time, the sheet

strength is positive on the left of s0, causing the interface to roll-up counterclockwise. On

the right, the sheet strength is negative for the most part, eventually leading to clockwise

roll up. This symmetry is sustained over time and leads to two peaks of equal and opposite

strength, which correspond to the core of each counter-rotating vortices.

For θ = 10◦, the interface first forms a clockwise roll-up until t̃ ≈ 1 due to the non-zero

(negative) mean sheet strength. The positive contributions to the initial baroclinic vorticity

along the interface are thus smaller than the negative contributions, such that the interface

rolls up in the clockwise direction. A consequence is that there is no longer a symmetry

point like so. Eventually (t̃ ≈ 2) the sheet-strength on the left arm forms a positive peak,

corresponding to a counterclockwise roll-up. This peak and physical size of the roll up are

smaller in magnitude than those corresponding to the clockwise roll-up on the right arm. At

the largest tilt angle under consideration (θ = 50◦), the initial sheet strength has a mean that

is more negative than for lower tilt angles. Only co-rotating vortices develop and eventually

form an intricate pattern as the vortices roll over.

Fig. 3.9 shows the time evolution of the mean value of the sheet-strength profile for the

tilt angles under consideration. The mean value of the sheet strength physically corresponds

to the bulk shear flow across the interface. Initially, the mean sheet-strength increases in

magnitude with the tilt angle due to the initial increased shear with the latter. For θ = 0◦,

which corresponds to pure RM, the mean sheet strength is zero throughout and there is no

bulk shear across the interface. For θ > 0◦, as time progresses, the mean sheet strength
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(a) θ = 0◦

(b) θ = 10◦

(c) θ = 50◦

Figure 3.7: Time evolution of the interface morphology for different tilt angles: (a) θ = 0◦

(RM), (b) θ = 10◦, (c) θ = 50◦. The left and right extremeties of the interface correspond
to the effective wavelength λ cos θ.

67



(a) θ = 0◦

(b) θ = 10◦

(c) θ = 50◦

Figure 3.8: Time evolution of the sheet-strength over the interface arclength for different tilt
angles: (a) θ = 0◦ (RM), (b) θ = 10◦, (c) θ = 50◦. The arclength is normalized by the total
length of the interface (arclength value of the last point sN).
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Figure 3.9: Time evolution of the mean sheet-strength value for different tilt angles.

becomes weaker and eventually reaches a non-zero asymptotic value, corresponding to a

constant bulk shear flow. This reduction in magnitude of the sheet strength indicates that the

amount of bulk shear decreases relative to its original value; the rate of decrease in strength

magnitude is higher for higher tilt angles as the magnitude of the shear (characterized by

a non-zero mean) is increased relative to that of the impulsive acceleration (characterized

by the difference between the minimum and maximum of the initial distribution). The

asymptotic value of the mean sheet strength increases with the tilt angle, except for θ = 30◦,

which has a slightly larger value than that of θ = 50◦.

To better understand the role of shear vs. impulsive acceleration, Fig 3.10 shows the

extrema of the sheet-strength profile with respect to its mean value for 0◦ ≤ θ ≤ 50◦.

Physically, the minimum sheet strength corresponds to the point of maximum vorticity in

the flow (in magnitude) located at the vortex core, and is associated with the formation

of the primary clockwise roll-up. Initially, the negative sheet strength amplitude relative

to the mean increases (i.e., becomes more negative). This behavior is consistent with the

observations of Rasmus et al. (2019), who showed that the mean value of the initial vorticity
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(a) Minimum sheet strength (b) Maximum sheet strength

Figure 3.10: Time evolution of (a) the minimum and (b) the maximum sheet-strength with
respect to its mean value for θ = 0◦ ( ), θ = 10◦ ( ), θ = 30◦ ( ), and θ = 50◦ ( ).

profile becomes larger than the variations in the limit θ → 90◦ (corresponding to pure

KH). Eventually, each case reach a minimum in negative sheet strength, before decreasing

in magnitude over time. This decrease is due to the development of opposite-sign vorticity

associated with the centripetal acceleration of the roll-up, which cancels part of the primary

vorticity. The maximum sheet-strength physically represents the point at which either a

counterclockwise roll-up forms on the left arm, or opposite-sign vorticity develops. For

θ = 0◦ and 10◦, the maximum sheet strength corresponds to the former and is located on the

left of so, while for θ = 30◦ and 50◦, it corresponds to the latter and is located to the right

of so. Note that for θ = 0◦, the evolution of the maximum and minimum relative strengths

are the same due to the symmetry of the vorticity profile. Other than in the RM case, the

largest negative strengths reach greater magnitudes than the maximum positive strengths.

This preferential negative vorticity is a manifestation of the clockwise rotation imparted by

the shear.
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(a) Unscaled amplitude (b) Scaled amplitude

Figure 3.11: Time evolution of the perturbation amplitude for different tilt angles when (a)
unscaled, and (b) scaled using Eq. 3.10.

3.4.2.2 Early time scaling of the perturbation amplitude

When scaling time with the initial sheet strength, smaller perturbation growth is achieved

over time with increasing tilt angle, as illustrated by Fig. 3.7. This behavior is quantitatively

illustrated in Fig. 3.11, which shows the time evolution of the perturbation amplitude for

0◦ ≤ θ ≤ 50◦. Here we investigate the early time growth of the perturbation and connect

this behavior to the late time dynamics. Based on linear stability analysis of an oblique

shock impinging upon a perturbed interface, Mikaelian (1994) found that the perturbation

amplitude behaves as

a(t)

a0
= cosh(ωt) + 2

∆V

∆U

A√
1− A2

sinh(ωt), (3.4)

where a0 is the initial perturbation amplitude, ∆V is the change in the velocity normal to

the interface from the shock, ∆U is the difference in shear velocity across the interface, and

ω is the KH growth rate

ω =
k∆U

2

√
1− A2. (3.5)
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In the linear regime, ωt is small enough that Eq. 3.4 may be linearized as

a(t)

a0
= 1 + kA∆V t, (3.6)

thus indicating that the perturbation amplitude does not depend on the shear velocity ∆U at

early times. In this case, the decrease of the amplitude with the tilt angle may be explained

from the initial profile of the vorticity distribution along the interface. In the case θ = 0◦, the

initial vorticity profile is symmetric with respect to s0 (see first frame of Fig. 3.8a). When

evaluated from the y-component of Eq. 2.31, the contributions of the vorticity profile to the

integral, from the first point to s−, double the velocity at the tip of the spike s0. Additionally,

the contributions from s− to the last point cancel out. In the oblique case, however, the

negative mean value of the vorticity profile leads to a lower tip velocity magnitude.

Eq. 3.6 suggests a scaling of the perturbation amplitude in time by k∆V . In practice,

∆V is obtained using the post-shock velocity of the interface, u∗. Both ∆U and ∆V can be

written in terms of the corresponding projection along the tangential and normal directions

to the interface: ∆U = u∗ sin θ and ∆V = u∗ cos θ. If θ = 0◦ and if there is no interfa-

cial perturbation, the velocity u∗ is given by the solution to the one-dimensional Riemann

problem. Therefore, Eq. 3.6 can be written as

a(t)

a0
= 1 + kA(u∗ cos θ)t. (3.7)

For our purposes, since the sheet-strength magnitude γ0 is the characteristic velocity, it is

convenient to replace u∗ by γ0. Recalling Eq. 3.2, the rotation matrix from the tilted frame

of reference (τ, η) to the (x, y) coordinate system allows the sheet strength to be written as

γ = σ
dy

dτ

dτ

ds
= σ(sin θ + ka cos θ cos(kτ))

dτ

ds
. (3.8)

The maximum magnitude of the sheet-strength γ0 is located at τ = 0. Upon inspection,
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the term dτ/ds at τ = 0 is close to unity for all tilt angles under consideration, with

(dτ/ds)τ=0 ≈ 0.8. Therefore, γ0 can be written as

γ0 ∝ sin θ + ka cos θ. (3.9)

As such, we propose the following scaling in time of the perturbation amplitude with the tilt

angle

a(t)

a0
= 1 + kAf(θ)γ0t, (3.10)

where f(θ) = cos θ/(sin θ + ka cos θ). Fig. 3.11b shows the growth for the different tilt

angles, with time scaled by kAf(θ)γ0. The curves collapse at early times, thus illustrating

the dominance of the impulsive acceleration (and its geometrical decomposition into normal

and tangential components) early on. Eventually, shear becomes important, such that a

greater tilt (and hence stronger shear), leads to an earlier departure from this behavior. Our

analysis confirms and extends the conclusion drawn by Rasmus et al. (2019) for the 30◦ case,

namely that, for the HED problem under consideration, the instability is dominated at early

times by RM, and at late times by shear. The effect of introducing a stronger shear is that

the overall amplitude at late times is smaller, because part of the momentum drives the

instability in the transverse direction, leading to a reduced growth, compared to pure RM

driven by a momentum in the streamwise direction. As observed in Fig. 3.7, the structure

becomes complex more rapidly, which could have ramifications for transition to turbulence.

3.4.3 Kinematics vs. dynamics

The roll-up behavior is affected by the flow dynamics, which are coupled to the kinematics

(Eq. 2.31) through Eq. 2.32. Past studies of this problem (Rasmus et al., 2019) assumed

a constant sheet strength in time, thus effectively neglecting the dynamics. That study

predicted that the roll-up develops symmetrically over time. As described in Sec. 3.3.2,

the vortex-sheet dynamics are governed by two main mechanisms: baroclinic vorticity and
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(a) Interface

(b) Sheet strength

Figure 3.12: Time evolution of (a) the interface and (b) associated sheet-strength distribution
for the baseline case (θ = 30◦) when solving the kinematics coupled with the dynamics
assuming A = 0.

sheet elongation. The former is pre-multiplied by the Atwood number: assuming A = 0

effectively neglects generation of baroclinic vorticity, such that the sheet evolves according

to its elongation only (fourth term on the right-hand-side of Eq. 2.32). As such, we expect

that the asymmetry of the roll-up originates from non-zero Atwood number effects. To

demonstrate this behavior, we consider the interface evolution and the corresponding sheet

strength for the baseline case with A = 0 (Fig. 3.12) and kinematics only (Fig. 3.13),

in comparison to the full model with finite Atwood number (Fig. 3.4). In the baseline

case with A = 0, the interface rolls up symmetrically with respect to its vortex core and

the sheet-strength profile stays symmetric with respect to the mid-arclength over time. The

only source of sheet-strength evolution is due to sheet-elongation, leading to an amplification

of the sheet-strength magnitude at the vortex-core. Based on this observation, we conclude

that the asymmetry in the roll-ups originates from finite Atwood number effects, namely

the acceleration terms, which generate vorticity. When considering the kinematics only, the
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(a) Interface

(b) Sheet strength

Figure 3.13: Time evolution of (a) the interface and (b) associated sheet-strength distribution
for the baseline case (θ = 30◦) when solving the kinematics only.

interface also rolls up symmetrically with respect to its vortex core and the sheet-strength

profile is symmetric. However, the sheet strength being independent of time, there is no

sheet-strength magnitude amplification due to sheet-elongation. As a result, the interface

does not roll up as much as in the A = 0 case. This approach prohibits vorticity generation

of any kind. Note that the sheet strength at the Lagrangian points and the total circulation

do not change over time; the apparent changes in the shape of the strength in Fig. 3.13b are

due to the increasing arc length in the region of high vorticity.

3.5 Conclusions

In this work, we use a vortex-sheet model to investigate the interaction of an oblique shock

with a perturbed interface in two dimensions under HED conditions. At early times, the

pertubation growth is dominated by the impulsive acceleration of the shock (RM), as evi-

denced by our proposed scaling accounting for the normal and tangential components of the
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shock. At later times, the perturbation growth is modulated by the positive and negative

vorticity generated by the shear and the decompression due to the arrival of the rarefaction

produced by laser turn-off. As the tilt angle is increased, the onset of the shear-dominated

dynamics occurs earlier and becomes more pronounced. We further demonstrate how At-

wood number effects break the symmetry in the flow. By appropriately prescribing the initial

conditions, accounting for the body force corresponding to the accelerating reference frame,

and incorporating the effect of decompression, reasonable agreement with experimental data

is achieved.

Having shown the applicability of our vortex-sheet model to an instance of single-mode

oblique-shock-driven interfacial instability, a possibility for further study is to investigate the

role of the Atwood number on the perturbation growth. Another possibility is to investigate

more complex interface structure, such as multimode initial perturbations (Di Stefano et al.,

2015b,a; Malamud et al., 2013a), relevant in practice, and their vorticity dynamics. The key

challenge with multimode studies is to prescribe an initial vortex-sheet strength distribution

consistent with the initial interface morphology, which can be achieved using the model

of Samtaney & Zabusky (1994). This approach would be applicable to sufficiently small-

amplitude perturbations for which the superposition principle can be leveraged. However,

for finite-size perturbations, other strategies must be devised.
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CHAPTER 4

Vorticity Dynamics of the Late-Time

Richtmyer-Meshkov Instability

This chapter is adapted from Pellone & Johnsen (2021)

4.1 Introduction

The Richtmyer–Meshkov (RM) instability occurs following the interaction of a shock wave

with a perturbed interface separating fluids of different densities. These perturbations grow

over time, possibly into a turbulent mixing region. This instability is of fundamental impor-

tance in inertial confinement fusion (Meezan et al., 2013; Hicks et al., 2012) and core-collapse

supernovae (Abarzhi et al., 2018; Kane et al., 1997). The RM instability may also occur in

combustion systems for high-speed aircrafts (Yang et al., 1994a), and may play a role in

diagnostic-ultrasound-induced lung hemorrhage (Patterson & Johnsen, 2018).

The interaction between the shock wave and the perturbed interface generates a baroclinic

torque along the interface due to the misalignment of the pressure gradient across the shock,

and the density gradient across the interface. Richtmyer (1960) first showed that the early

linear stage of perturbation growth is characterized by a constant growth rate, which was

later confirmed by the experiments of Meshkov (1969). In the non-linear stage of the growth,

a bubble of light fluid “rises” into the heavy fluid, while a spike of heavy fluid “falls” into

the light fluid. Eventually, the initially single-valued interface becomes multivalued and
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rolls over, leading to the formation of roll-ups. Additional instabilities become important

at later times. For instance, shear (i.e., Kelvin-Helmholtz (KH)) instabilities develop along

the interface as it rolls up (Niederhaus & Jacobs, 2003; Morgan et al., 2012; Vorobieff et al.,

2004). Additionally, the radial centripetal acceleration originating from the roll ups gives rise

to a secondary baroclinic vorticity as the interface spirals inward (Peng et al., 2003; Zabusky

et al., 2003; Lee et al., 2006). As a result, unstable vortex bilayers may form and vortex

projectiles may be ejected (Zabusky & Zeng, 1998; Zabusky & Zhang, 2002; Gupta et al.,

2003; Zhang & Zabusky, 2003; Wadas & Johnsen, 2020). If one considers the vorticity along

an initially single-mode interface from a bubble to a spike, the vorticity is of just one sign

just after the interaction. At some point in time during the formation of the roll-up, vorticity

of the opposite sign is generated (Peng et al., 2003), which gives rise to the formation of

smaller-scale flow features possibly important as the flow transitions to turbulence. However,

the mechanism responsible for generation of opposite-sign vorticity is currently unknown.

Late-time vorticity-induced effects on the flow dynamics of RM are not well understood,

although observed in previous numerical and experimental investigations. Peng et al. (2003)

observed that, due to the generation of opposite-sign vorticity, the asymptotic growth rate of

RM is a positive constant, in contrast with previously predicted zero asymptotic growth rate

(Sadot et al., 1998; Zhang & Sohn, 1997a). Additionally, Morgan et al. (2012) experimentally

measured that the RM bubble velocity increases at late times, indicating flow acceleration

attributed to the growth of boundary layers. Bubble reacceleration is not exclusive to the

RM instability, but has also been observed during the evolution of the Rayleigh-Taylor (RT)

instability. For example, Ramaprabhu et al. (2006) and Ramaprabhu et al. (2012) showed

that KH roll-ups form along the interface between the bubble and spike, causing the bubble

to reaccelerate past the time of constant terminal velocity predicted by potential flow theories

(Oron et al., 2001; Goncharov, 2002).

The above studies suggest that the evolution of the vorticity between the bubble and

spike plays a significant role in the flow behavior, yet scarcely documented and not well
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Figure 4.1: Problem set-up of the single-mode RM instability.

understood. Direct simulations and experiments typically focus on other quantities than

vorticity (e.g., size of the mixing region, turbulent kinetic energy), and are unable to isolate

the contributions of the vorticity-dominated dynamics in the evolution of the interface. Our

objective is to explain the role of the vorticity dynamics in the evolution of a perturbed

interface subjected to the RM instability. Our hypothesis is that, after the passage of the

shock over the interface, the resulting vortex sheet can be described by the initial vorticity

distribution between the bubble and spike. To understand the temporal and spatial evolution

of this distribution, we use a vortex-sheet model, allowing us to isolate specific contributions

to the vorticity evolution along the interface.

4.2 Problem set-up and methods

Fluids of density ρ+ and ρ− are adjacent to each other, separated by a sharp, nominally flat

interface on top of which a perturbation y0(x) = a0 cos(kx) is superposed, where k = 2π/λ

is the wavenumber and λ is the wavelength. The pre-shock Atwood number is A = (ρ− −

ρ+)/(ρ− + ρ+). A shock of Mach number Ms is propagating in fluid ρ+ at normal incidence

to the interface, as illustrated in Fig. 4.1. The parameters governing the problem are the

(normalized) initial amplitude, a0/λ, the shock Mach number, Ms, and the Atwood number,

A.

As a baseline, we consider the RM experiments of Collins & Jacobs (2002) performed
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in a vertical shock tube consisting of an air layer (ρ+ = 1.351 kg/m3) next to a layer of

SF6 (ρ− = 5.494 kg/m3) at atmospheric pressure, and with corresponding ratio of specific

heats, κ+ = 1.276 and κ− = 1.093. The incident shock (Ms = 1.21) propagates from air

to SF6, and meets a sinusoidal perturbation (λ = 5.933 cm, a0 = 0.03λ). The Atwood

number corresponding to the experiments is A = 0.6053. To investigate the role of the shock

strength and density ratio on the vorticity dynamics, we consider Mach numbers in the range

1.21 ≤ Ms ≤ 5, and Atwood number between 0 ≤ A ≤ 0.8. The wavelength λ and the speed

of sound in air, c ≈ 307 m/s, are chosen as characteristic length and velocity to define the

non-dimensional time t̃ = t/(λ/c).

As the shock traverses the interface, a layer of vorticity is generated along the interface

due to the baroclinic torque originating from the misalignment of the pressure and density

gradients. Diffusive effects are negligible over the time scales under consideration, so for an

initially sharp interface this layer is a vortex sheet, i.e., a surface with zero thickness. In

the context of the experiments of Collins & Jacobs (2002), the flow evolution on each side of

the interface after shock passage can be considered incompressible (Brouillette, 2002). As a

result, the vorticity equation can be reduced to the evolution of a vortex sheet governed by

dγ

dt
= −2A

duvs

dt
· T̂

" #$ %
T1

− A

4

∂γ2

∂s" #$ %
T2

− γ
∂uvs

∂s
· T̂

" #$ %
T3

, (4.1)

where the right-hand side of Eq. 4.1 consists of three terms: the first term (T1) represents

the acceleration of the sheet in the tangential direction due to the self-induced motion of the

sheet, the second term (T2) represents nonlinear advection of vorticity along the sheet, and

the third term (T3) is related to the rate of change of the surface area in the direction of

T̂ . As evidenced by the Atwood number, the first two terms account for baroclinic vorticity

production.

To initialize our vortex-sheet calculations, the morphology of the interface immediately

after shock passage and the corresponding sheet-strength distribution along the interface
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❍❍❍❍❍❍Ms

A
0 0.2 0.4 0.6053 0.8

1.21 2 32 61 88 118
2 250
3 368
4 471
5 573

Table 4.1: Values of σ1 [m/s] for different incident shock Mach numbers and Atwood numbers.
The bold font corresponds to our baseline case from Collins & Jacobs (2002).

must be specified. In this work, the pre-shock perturbation amplitude is considered small

compared to its wavelength, i.e., ka0 ≪ 1, such that the time the shock takes to traverse the

interface is small compared to the post-shock evolution of the interface; it is thus reasonable

to expect the interface morphology not to change. Furthermore, the incident shock travels

from a light fluid to a heavy fluid, such that no phase inversion occurs. Therefore, the post-

shock interface is assumed to be the same as the pre-shock interface. The sheet-strength

distribution along the interface after shock passage is obtained from the model of Samtaney

& Zabusky (1994):

dΓ

ds
= σ1 sin θ +O(sin3 θ), (4.2)

where θ is the local angle between the incident shock and the interface, and σ1 is given by

Eq. 2.45. Table 4.1 gives the values of σ1 for the incident shock Mach numbers and Atwood

numbers under consideration. The resulting sheet-strength distributions are shown in Fig.

4.2.

In addition to vortex sheet modeling, we conduct direct simulations of the multispecies

Euler equations using a high-order accurate, discontinuous Galerkin method (Henry de Fra-

han et al. (2015b)). The scheme is fifth-order accurate in space and fourth-order in time.

The code has been validated against Richtmyer-Meshkov experiments.
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(a) Mach number dependence of the sheet
strength.

(b) Atwood number dependence of the sheet
strength.

Figure 4.2: Initial sheet-strength distribution along the interface for different shock Mach
numbers with A = 0.6053 and Atwood numbers with incident shock Mach numberMs = 1.21.
The red solid line corresponds to the baseline case.

4.3 Vorticity dynamics of the baseline case

We first describe the vorticity dynamics corresponding to the baseline case (Ms = 1.21 and

A = 0.6053). Fig. 4.3 shows the time evolution of the interface and its corresponding

sheet-strength distribution. Initially, the sheet strength is distributed sinusoidally along the

interface, with positive values on the left of the spike (left half of domain) and negative values

on the right of the spike (right half of domain). As the perturbation grows, the spike of heavy

fluid penetrates the light fluid at a faster rate than the bubble of light fluid penetrates the

heavy fluid. Given the positive Atwood number, the points located near the spike have a

higher velocity magnitude than those located near the bubble. At t̃ ≈ 11, the combination

of this higher velocity with the positive torque causes the perturbation height near the spike

ys(x, t) to become multivalued. The time at which the interface becomes multivalued is

referred to as the multivalue time tm (Zabusky et al., 2003; Peng et al., 2003). The sheet

strength profile steepens on the left and right of the spike. The arclength corresponding to the
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(a) Interface morphology

Time

(b) Sheet-strength distribution

Figure 4.3: Time evolution of (a) the interface and (b) the corresponding sheet-strength
distribution for the baseline case (Ms = 1.21 and A = 0.6053). The arclength is normalized
by the sheet length. The interface and sheet strength colored in red show the development
of opposite-sign vorticity.
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maximum and minimum sheet strength is shifted toward the spike arclength (s = 1.5sN) due

to the advection of vorticity in the direction of the spike. By t̃ ≈ 22, part of the sheet strength

in the left-half domain (initially positive) becomes negative, while part of the sheet strength

in the right-half domain (initially negative) becomes positive, and is illustrated by red points

in Fig. 4.3. We refer to the onset of this emergence of vorticity of the opposite sign as the

onset time ton. At that time, a counter-clockwise (respectively, clockwise) roll-up forms on the

left-half (respectively, right-half) domain. After the onset time, this opposite-sign vorticity

becomes more prominent, as shown by the increase (in magnitude) of negative (respectively,

positive) sheet strength on the left-half (respectively, right-half) domain at t ≈ 33. Each

roll-up has now a filament-like structure, and opposite-sign vorticity spreads along the arms

of the interface, from the inside of the roll-up toward the neck of the interface. Eventually,

as the interface on each side of the spike continues to roll up, opposite-sign vorticity also

appears along the neck of the interface, as seen at t ≈ 44. This second instance of emergence

of opposite-sign vorticity causes additional initially-positive (respectively, initially-negative)

strength to become negative (respectively, positive).

To validate our vortex-sheet model, Fig. 4.4 compares the time evolution of the per-

turbation amplitude from the vortex-sheet model with the experiments of Collins & Jacobs

(2002), the direct simulations, and the linear theory (Eq. 1.3). The results obtained with

the current vortex-sheet model agrees well with the linear theory, and good agreement is

achieved throughout the time range of the experiments.

To quantify the development of opposite-sign vorticity along the interface, we consider

the amount of opposite-sign circulation generated after the onset time. Choosing the left-

half of the interface to compute the circulation from the sheet strength (i.e., Γ =
@
γds), the

total circulation Γ can be decomposed as

Γ = Γ+ + Γ−, (4.3)
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Figure 4.4: Time evolution of the perturbation amplitude for the experiments of Collins &
Jacobs (2002) ( ), the linear theory ( ), the direct simulations ( ), and the vortex-sheet
model ( ).

where Γ+ is the circulation of the original sign (positive in this case), and Γ− is the circu-

lation of the opposite sign. Fig. 4.5 shows the time evolution of the total circulation, the

original-sign (positive) circulation, and the opposite-sign circulation. Since our vortex-sheet

simulations are initialized immediately after the shock has deposited vorticity along the in-

terface, the circulation is initially non-zero. During the linear phase of the perturbation

growth, the sheet strength decreases, causing a slight decrease in the total circulation until

t̃ ≈ 6. The total circulation then increases as the interface becomes multivalued and the

roll-up forms. Before circulation of the opposite-sign develops, i.e., before the onset time,

both the total circulation and the original-sign circulation coincide, while the opposite-sign

circulation is zero. At the onset time, t̃ ≈ 22, the total circulation and original-sign circula-

tion no longer coincide due to generation of opposite-sign vorticity. Opposite-sign circulation

thus starts to increase (in magnitude), causing the total circulation to eventually decrease,

at t̃ ≈ 34, due to negative contributions to the overall circulation.
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Figure 4.5: Time evolution of the total circulation Γ ( ), circulation of the original sign
Γ+ ( ), and circulation of the opposite sign Γ− ( ) over the left-half of the interface for
the baseline case (Ms = 1.21 and A=0.6053).

4.4 Opposite-sign vorticity generation

In this section, we investigate the mechanisms leading to generation of opposite-sign vorticity.

We start by considering the case A = 0, such that only the term T3 governs the time evolution

of the sheet strength. To understand the effect of the two other terms, we then investigate

the generation of opposite-sign vorticity for finite but small Atwood numbers. Because the

multivalue time tm is a characteristic time in the evolution of the interface, we choose to

non-dimensionalize time with tm in this section.

4.4.1 Vorticity dynamics for A = 0

4.4.1.1 General behavior

As shown in Sec. 4.6, opposite-sign vorticity does not develop when the Atwood number is

zero. Nevertheless, we consider the zero-Atwood-number case (with Ms = 1.21) to under-

stand the role of the term T3 in the evolution of the sheet strength. Term T3 accounts for
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changes in the sheet strength due to the expansion and contraction of the interface. Fig. 4.6

shows the time evolution of the interface over half a wavelength, along with the correspond-

ing sheet strength and T3/γ distributions, and Fig. 4.7 shows the x- and y-velocity of the

points along the interface. For visualization purposes, we substitute a Lagrangian parameter

α for the arclength s, such that the sheet strength, T3/γ, and the x- and y-velocities are

shown with respect to α. Based on the definition of T3, negative (positive) values represent

an expansion (contraction) of the interface.

Initially, the sheet strength is positive due to the positive baroclinic vorticity generated

on this side of the interface, leading to the counter-clockwise rotation of the interface ob-

served at later times. The vortex core (VC) corresponds to the point of maximum sheet

strength over the course of the simulation, and is represented by a red star. The x-velocity

(respectively, y-velocity) is positive (respectively, negative) on the left of VC and negative

(respectively, positive) on the right of VC, such that points on either side of VC move toward

the vertical axis passing through VC. However, since the perturbation amplitude is initially

small compared to its wavelength, the x-velocity is small compared to the y-velocity. As

a result, the motion of the interface is initially almost entirely in the streamwise (vertical)

direction, which causes the interface to expand, as illustrated by the negative value of T3/γ.

Since A = 0, the x- and y-velocity is equal and opposite on either side of VC, such that the

points trajectory on either side of VC is symmetric with respect to VC.

At t = 0.5tm, the x-velocity increases (in magnitude) on either side of VC, and has larger

values at points farther away from VC than near VC. As a result, the rate of change of

the x-velocity along the interface, ∂vx/∂α, increases (becomes more negative) at points near

VC, causing T3/γ to become positive. The interface near VC therefore starts to contract.

Meanwhile, at points near the left and right extremity of the interface, ∂vx/∂α also increases

but with the opposite sign (becomes more positive). The interface in that region therefore

further expands, causing T3/γ to become more negative. As a result, the sheet strength

slightly increases at points near VC but slightly decreases at points farther away from VC.
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(a) Interface morphology.

(b) Sheet-strength distribution.

(c) T3/γ.

Figure 4.6: Time evolution of (a) the interface, (b) the corresponding sheet-strength distri-
bution, and (c) the corresponding T3/γ distribution for A = 0. In each time frame, quantities
are plotted over one-half wavelength. The variable α is a Lagrangian parameter.
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(a) x-velocity.

(b) y-velocity.

Figure 4.7: Time evolution of (a) the x-velocity, (b) the y-velocity for A = 0. In each
time frame, quantities are plotted over one-half wavelength. The variable α is a Lagrangian
parameter.
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At the multivalue time (t = tm), the initially-negative y-velocity at points near VC (on

the left side) becomes positive, while the initially-positive y-velocity at points near VC (on

the right side) becomes negative. This change in the sign of the y-velocity causes the rate

of change of the y-velocity along the interface, ∂vy/∂α, to become negative at these points.

Therefore, both ∂vx/∂α and ∂vy/∂α are now negative, such that the positive part of T3/γ

rapidly increases. The interface therefore further contracts at these points, and the sheet

strength increases.

After the multivalue time, the interface rolls over such that T3/γ and the sheet strength

further increase. By t = 1.5tm, ∂vx/∂α is now positive at points near VC, such that T3/γ

decreases, but the sheet strength does not change significantly at these points. As the

interface further rolls up, T3/γ becomes negative at points near VC, and the sheet strength

has reached a relatively constant value at these points, as seen at t = 2tm.

4.4.1.2 Prediction of the multivalue time

The multivalue time is an important time in the evolution of the interface, as it is the time

at which the roll-up becomes visible. To determine tm, we evaluate the time it takes for a

line between two points (A and B) on either side of the vortex core VC to become vertical,

as illustrated in Fig. 4.8. Assuming that both of these points have a circular trajectory

starting at a distance r from the point VC, and travel with the same constant speed v, their

angular velocity Ω = v/r is constant. The time taken to reach the vertical axis from an

initial angle β is thus

tm =
ℓ

v
=

π
2
− β

Ω
, (4.4)

where ℓ =
@ θ=π

2

θ=β
rdθ. The angle β depends on the perturbation amplitude a0 as follows

β = tan−1
>
2π

a0
λ

?
. (4.5)
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Figure 4.8: Schematic of two points rotating with constant angular velocity around the
vortex core.

If the points A and B are close enough to each other they rotate about the point VC with

angular velocity equal to half the local vorticity at VC,

ΩVC =
ωVC

2
. (4.6)

Since the vorticity is related to the sheet strength by ω = γδ(n), where δ(n) is the Dirac

delta function in the normal direction n, we can write the angular velocity in terms of the

sheet strength as

ΩVC =
γVCδ(n)

2
. (4.7)

Using the analytic expression for the sheet strength from Samtaney & Zabusky (1994) for a

shock passing over a sinusoidal perturbation, the sheet strength at the point VC is given by

γVC =
2πc

Ms

a0/λ3
1 + 4π2 (a0/λ)

2

<
1− A

1 + A
F1 − F2

=
, (4.8)
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(a) tm vs. initial amplitude (b) tm vs. shock Mach number

Figure 4.9: Dependence of the multivalue time on (a) the initial perturbation amplitude
(Ms = 1.21), and (b) the shock Mach number (a0/λ = 0.03). The solid black line is the
prediction from Eq. 4.9, and the red circles are from vortex-sheet simulations.

where c is the sound speed in the + material, and F1 and F2 are given in Sec. 2.6. Substituting

Eq. 4.8 with A = 0 into Eq. 4.4, the multivalue time is therefore given by

tm =
1

2πcδ(n)

Ms

A
π − 2 tan−1

)
2π a0

λ

*B3
1 + 4π2

)
a0
λ

*2

a0
λ
(F1 − F2)

. (4.9)

The value of the Dirac delta function δ(n) is chosen to be of the order of the wavelength,

i.e., δ(n) = 1/λ. Eq. 4.9 reveals that for A = 0 and a given ratio of specific heats and

sound speed, the multivalue time only depends on the amplitude-to-wavelength ratio and

the shock Mach number. To verify Eq. 4.9, Fig. 4.9 compares the multivalue time from Eq.

4.9 with values obtained from the vortex sheet simulations for different initial perturbation

amplitudes and shock Mach numbers. The multivalue time decreases with the amplitude-to-

wavelength ratio, which is consistent with the fact that the crests and troughs of the initial

perturbation have a steeper slope for larger perturbation amplitudes. When increasing the

shock Mach number, the multivalue time decreases as well, due to the larger initial interface

velocity for stronger shocks. Our analysis of the multivalue time accurately describes the
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dynamics given the good agreement between the results from Eq. 4.9 and the simulations.

4.4.1.3 Time epochs and regimes

To better understand the behavior of the sheet-strength evolution, it is useful to consider the

time evolution of representative points along the interface: four in the region of the vortex

core, and five far away from it. By symmetry, we only select points initially on the left arm

of the interface; similar conclusions can be drawn for the point on the right arm of VC.

Fig. 4.10 shows the time evolution of T3/γ at these points (Fig. 4.10a), along with their

corresponding sheet strength value (Fig. 4.10b). To determine segments along the interface

that are expanding or contracting, the distance between adjacent points, d, relative to their

initial value, d0, is also shown (Fig. 4.10c). Fig. 4.10a reveals three critical times (at which

the interface morphologies close to VC are shown), defining four epochs:

- Epoch 1: this epoch starts from t = 0 and extends to the multivalue time tm. In

this epoch, the term T3/γ is initially negative for all points, thus corresponding to the

expansion of the interface immediately after shock passage. After a short time, the

interface in the vortex core region starts to contract, as evidenced by the fact that T3/γ

becomes positive for the four points in this region, and that the distance d decreases

slightly. T3/γ starts to increase exponentially, causing an exponential rise in the sheet

strength at these points. For the other points away from the vortex core, T3/γ is

negative, causing a decrease in the sheet strength and expansion of the interface at

those points.

- Epoch 2: this epoch ranges from t1 to t2, the latter being the time at which the slope

of the interface at VC is horizontal for the first time. For points in the vortex core

region, T3/γ initially increases exponentially, reaches a maximum value indicating the

greatest rate of interface contraction, and starts to decrease. The distance d therefore

decreases rapidly, while the sheet strength increases exponentially. For the points
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(a) Sheet expansion term (b) Maximum sheet strength

(c) Distance between adjacent points (d) Interface morphology

Figure 4.10: Time evolution at different points along the interface of (a) T3/γ, (b) the sheet
strength, and (c) the relative distance between adjacent points. The points in the vortex
core region are represented by a red solid line, blue dashed line, green dash-dotted line,
and maroon dotted line. The other colored points represent points farther away from the
vortex core. (d) Interface morphology at the three critical times, with the colored markers
corresponding to the colors in (a), (b), and (c).
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farther from VC, T3/γ is still negative, causing a further decrease of the sheet strength

and expansion of the interface, thus increasing the distance d.

- Epoch 3: this epoch is defined from t2 to t3, the latter being the time at which the

interface in the vortex core region becomes multivalued a second time, i.e., when the

slope of the interface at VC is infinite. A rotation of 180◦ has been achieved by the

interface from time t1. In this epoch, T3/γ for the points in the vortex core region

decreases rapidly, indicating a reduction of the rate of contraction of the interface in

that region. The distance d and the sheet strength therefore do not change significantly.

The term T3/γ for points further away from the vortex core (maroon and green points)

eventually becomes negative, indicating the expansion of the interface in that region.

- Epoch 4: this epoch starts after t3. From this time onward, T3/γ oscillates for points

in the vortex core region. These oscillations are the result of the fact that after t3 the

points on either size of VC rotate about the vortex core. The interface slope becomes

zero and infinite, and so on, thus repeating the epochs outlined previously. This process

gives rise to an oscillation in the interface length of points close to VC.

4.4.1.4 Interfacial length oscillations near the vortex core

As described in Sec. 4.4.1.3, the vortex core region undergoes a series of expansions and

contractions, leading to oscillations in the sheet strength. As illustrated in Fig. 4.10d,

points A and B adopt an orbital trajectory starting approximately at the time when the

line between A and B becomes vertical a second time. To better understand this oscillatory

behavior, we examine T3/γ and the angle of the line between A and B and the vertical axis

θ in Fourier space in Fig. 4.11. There is a dominant frequency and a mode at n = 0 for each

of the four points. For T3/γ, this n = 0 mode corresponds to a mean shift of the oscillatory

profile, indicative of the fact that the oscillations are not centered about equal contraction

vs. expansion time. A positive mean shift favors the contraction of the interface, while a
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(a) |Ân| (b) |θ̂n|

Figure 4.11: Frequency spectra of (a) the term T3/γ, and (b) the angle θ, for four different
points located in the vortex core region. The colors and line styles are the same as in Fig.
4.10. The red curve corresponds to the vortex core.

negative mean shift favors its expansion. Only the point VC has a positive mean shift. For

the angle θ, the n = 0 mode simply indicates that the angle is measured with respect to

the vertical axis rather than the horizontal axis (see Fig. 4.10d). The dominant frequency

of T3/γ for points closest to the vortex core is n/L ≈ 3, indicating that the interface in the

vortex-core region undergoes approximately three cycles of contraction/expansion per tm.

Inspecting Fig. 4.11b reveals that the points near the vortex core orbit the point VC at a

frequency n/L ≈ 1.5, indicating that the contraction/expansion frequency is approximately

two times the orbital frequency. The slight difference in frequency between points close to

VC and points father away from VC comes from the fact that the latter do not orbit VC as

often as points close to VC, hence the lower orbital frequency, resulting in fewer cycles of

contractions/expansions.

The oscillatory behavior of the vortex core region may be analogous to the oscillations

in the vortex core observed in the evolution of vortex pairs and vortex rings by Krasny &

Nitsche (2002). The authors showed that the vortex-core oscillations are the result of the

onset of chaos in vortex-sheet flows. Whether the oscillations observed in the present work
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(a) Interface morphology.

(b) Sheet-strength distribution.

Figure 4.12: Time evolution of (a) the interface, and (b) the corresponding sheet-strength
distribution for A = 0.05 over half a wavelength. The variable α is a Lagrangian parameter.

are related to the chaotic phenomenon observed by Krasny & Nitsche (2002) is not clear,

and will be the focus of a future investigation.

4.4.2 Vorticity dynamics for small Atwood number

We now turn our attention to the case of non-zero but small Atwood number. As a repre-

sentative example, Fig. 4.12 shows the evolution of the interface and the sheet strength for

A = 0.05 and Fig. 4.13 shows the evolution of the terms T1, T2, and T3 (Eq. 4.1). The heavy

fluid is on the − side and the light fluid is on the + side (see Fig. 4.1).

Initially, the interface, the sheet-strength distribution, and T3 are the same as in the case

A = 0 (Fig. 4.6). The terms T1 and T2 are now non-zero and distributed sinusoidally along

the interface. For A > 0, T1, representing the local tangential acceleration of the points along
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(a) T1

(b) T2

(c) T3

Figure 4.13: Time evolution of the three terms for A = 0.05: (a) T1, (b) T2, and (c) T3 over
half a wavelength. The variable α is a Lagrangian parameter.
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the interface, is negative on the left arm and positive on the right arm, due to the fact that

the interface velocity is negative on the left arm, and positive on the right arm. Similarly,

T2, representing the advection of the sheet strength, is negative on the left arm and positive

on the right arm, indicating that the sheet strength on both arms is advected toward VC.

Until the multivalue time (t = tm), the behavior of the interface, the sheet strength, and

T3 are similar as in the A = 0 case, and T1 and T2 do not change significantly. At t = tm,

the profile of T2 slightly steepens near VC; its magnitude is of the order of that of T1, but is

an order of magnitude smaller than T3. As in the A = 0 case, T3 forms a peak due to the

contraction of the interface near VC, but is slightly asymmetric, i.e., T3 is no longer equally

distributed on either side of VC. The sheet-strength profile is now slightly shifted to the

right due to the non-zero term T2 . As stated previously, this term is effectively a nonlinear

advection term similar to that of an advection equation, which translates and steeps the

initial profile.

At t = 1.5tm, the profile of T2 steepens further near VC; its magnitude significantly

increases and reaches values larger than T3. However, T2 is close to zero elsewhere, indicating

that the sheet strength is advected primarily in the vortex-core region. The sheet-strength

profile steepens and forms a peak at the vortex core, further shifting to the right. By t = 2tm,

the asymmetry between the left and right arms of the interface morphology is clearly visible.

When compared to the A = 0 case, the vortex core (red star) has shifted above the y = 0

axis, due to the slightly higher momentum associated with the heavy fluid.

4.5 Dependence of opposite-sign vorticity on the shock

Mach number

We now investigate the effect of the incident shock Mach number on the generation of

opposite-sign vorticity. The Atwood number is kept constant and corresponds to the value

given by our baseline, A = 0.6053.
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(a) Ms = 2

(b) Ms = 5

Figure 4.14: Time evolution of the perturbation for (a) Ms = 2, and (b) Ms = 5, with
A = 0.6053. The red dots show the development of opposite-sign vorticity along the interface.

4.5.1 Multivalue and onset times

The effect of the incident shock Mach number inherently lies in the initial conditions, as the

magnitude of the sheet-strength distribution along the interface, γ0, increases with the shock

Mach number, as shown in Fig. 4.2a. From the Biot-Savart law in Eq. 2.31, this increase

in the sheet-strength magnitude results in a larger initial interface velocity. Therefore, we

expect that, for a given Atwood number, the interface evolves faster for a higher shock Mach

number, which in turn leads to opposite-sign vorticity to develop sooner. This observation

is confirmed in Fig. 4.14, which shows the interface morphology for two different shock

Mach number, Ms = 2 and Ms = 5. For Ms = 2, the perturbation growth is mainly in the

linear phase and before its multivalue time (t̃ ≈ 4), after which the roll-up just started to

form. Opposite-sign vorticity has not developed for the time range considered, t̃ ≤ 6. For
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(a) tm and ton vs. Ms (b) ton/tm vs. Ms

Figure 4.15: Shock Mach number dependence of (a) the multivalue time tm/(λ/c) and onset
time ton/(λ/c), and (b) the ratio ton/tm. The Atwood number is A = 0.6053.

Ms = 5, however, the linear phase and the first instance of a multivalued interface occurs

sooner (t̃ < 2), and the development of opposite-sign vorticity is now evident. Note that for

Ms = 1.21, see Fig. 4.3, the interface did not become multivalued until t̃ = 11, emphasizing

the fact that the interface develops sooner for higher shock Mach numbers. This behavior is

further demonstrated in Fig. 4.15, which shows the dependence of the multivalue time and

the onset time with the shock Mach number. When increasing the shock Mach number, both

the multivalue and onset times decrease, indicating that the interface becomes multivalued

and develops opposite-sign vorticity sooner, further confirming the behavior seen in Fig.

4.14. The relationship between the onset time and the multivalue time is illustrated in Fig.

4.15b, which shows the ratio of the onset time to the multivalue time as a function of the

shock Mach number. The ratio has a maximum variation of ∼ 0.1% with respect to its

arithmetic average value. Therefore, it can be considered constant with respect to the shock

Mach number, such that ton/tm = C, where C ≈ 2. The variation in the values of the ratio

comes from the fact that the numerical output time step is not exactly the same for each

case. This behavior is the result of a scaling in time of the interface with velocity, or shock
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❍❍❍❍❍❍Ms

A
0 0.2 0.4 0.6053 0.8

1.21 0.4 6 11 16 22
2 46
3 68
4 87
5 106

Table 4.2: Values of γ0 [m/s] for different incident shock Mach numbers and Atwood numbers.
The bold font corresponds to our baseline case from Collins & Jacobs (2002).

Mach number.

4.5.2 Time scaling with the shock Mach number

The Samtaney & Zabusky (1994) model (Eq. 3.2) indicates that the initial sheet-strength

profile along the interface depends on the geometry of the perturbation alone, and not on the

shock Mach number. Varying the latter only results in changing the initial magnitude of the

sheet-strength profile, γ0, as observed in Fig. 4.2a. As such, using γ0 to non-dimensionalize

the sheet-strength variable, results in collapsing all the curves in Fig. 4.2a onto a single

one. Table 4.2 shows the value of γ0 for the shock Mach numbers and the Atwood numbers

under consideration. Since the shock Mach number only appears in the initial conditions

and does not appear in the equations governing the kinematics or dynamics, this collapse

of the initial sheet-strength profile indicates that the time evolution of the perturbation

scales with the shock Mach number. Therefore, using γ0 as characteristic velocity, instead

of the sound speed c, to non-dimensionalize time as t/(λ/γ0), this scaling is demonstrated

in Fig. 4.16, showing the interface morphology at two different times. At a given time,

the interface morphology is the same regardless of the value of the shock Mach number.

Therefore, the shock Mach number acts as a time scaling of the evolution of the interface,

where the stronger the incident shock, the sooner the interface goes through the different

phases of the growth: first the linear regime, then the interface becomes multivalued, rolls

up, to eventually generate opposite-sign vorticity.
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(a) t/(λ/γ0) = 1 (b) t/(λ/γ0) = 2

Figure 4.16: Interface morphology at (a) t/(λ/γ0) = 1 and (b) t/(λ/γ0) = 2 for different shock
Mach numbers. The interface morphology is shown over half a wavelength for each shock
Mach number and separated by a vertical dashed line. The Atwood number is A = 0.6053.

This time scaling of the interface behavior with the shock Mach number results in the

multivalue time and onset time to be independent of the shock Mach number, as shown in

Fig. 4.17. Therefore, both the multivalue and onset times can be written as

tm = Cm
λ

γ0
, ton = Con

λ

γ0
, (4.10)

where Cm(A) and Con(A) are two different functions that only depend on the Atwood num-

ber. The dependence of the initial sheet-strength magnitude, γ0, on the shock Mach number

can be obtained from the scaling laws derived by Samtaney & Zabusky (1994), who showed

that the circulation per unit length of the interface scales as

γ =
2c

κ+ 1
sinα

)
1 +M−1

s + 2M−2
s

*
(Ms − 1)

C
1−

:
1− A

1 + A

D
. (4.11)

The value of γ0 is located where the angle between the incident shock and the interface is

maximum, i.e., at x = λ/4, which gives tanαmax = ka0. Therefore, using Eq. 4.11 the
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Figure 4.17: Dependence of the scaled multivalue time tm/(λ/γ0) and onset time ton/(λ/γ0)
on the shock Mach number with A = 0.6053.

multivalue and onset times can be written as

tm =
κ+ 1

2c
· λ

sinαmax

· 1

(1 +M−1
s + 2M−2

s ) (Ms − 1)
· Cm(A)

1−
3

1−A
1+A

ton =
κ+ 1

2c
· λ

sinαmax

· 1

(1 +M−1
s + 2M−2

s ) (Ms − 1)
· Con(A)

1−
3

1−A
1+A

.

(4.12)

The right-hand side of Eq. 4.12 indicates that the multivalue and onset times depend on

the products of four factors: the first related to the fluids material properties, the second

related to the geometry of the initial perturbation, the third related to the strength of the

incident shock Mach number, and the fourth one related to the density mismatch across the

interface.

4.5.3 Opposite-sign circulation

The fact that the onset time is smaller for higher shock Mach number results in opposite-

sign vorticity to develop over a longer period of time, thus leading to a larger amount of

opposite-sign circulation at a given time. Fig. 4.18 shows the time evolution of opposite-sign

104



(a) Opposite-sign circulation vs. time (b) Opposite-sign circulation vs. Ms

Figure 4.18: (a) Time evolution of opposite-sign circulation shifted by the onset time for
different shock Mach numbers, and (b) dependence of opposite-sign circulation with the shock
Mach number at different times past the onset time. The Atwood number is A = 0.6053.

vorticity for different shock Mach numbers. The time origin in Fig. 4.18a is shifted by the

onset time, which has a different value for each shock Mach number. The time evolution of

opposite-sign circulation for all the shock Mach numbers considered follows a similar trend

as for the baseline case, i.e., monotonically increasing (in magnitude). Fig. 4.18b shows the

dependence of opposite-sign circulation with the shock Mach number at different given times

past the onset time. Opposite-sign circulation increases monotonically with the shock Mach

number, at a rate increasing with increasing Mach number. For large Mach numbers, the

rate of increase of opposite-sign circulation is relatively constant. This behavior is consistent

with the linear scaling with respect to the shock Mach number of the initial circulation for

large shock Mach numbers found in Samtaney & Zabusky (1994), thus suggesting that any

vorticity generated after the primary vorticity (from the shock-interface interaction) follows

a similar behavior. This observation is consistent with the fact that both primary (initial)

and secondary (late-time) vorticity originate from a baroclinic mechanism. Fig. 4.19 shows

the results of Fig. 4.18a but scaled with the initial sheet strength γ0. Since the interface

behavior scales in time with the shock Mach number, all the curves collapse onto a single
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Figure 4.19: Time evolution of the scaled opposite-sign circulation shifted by the onset time
for different shock Mach numbers with A = 0.6053.

one, demonstrating the fact that the amount of opposite-sign circulation is independent of

the shock Mach number.

4.6 Dependence of opposite-sign vorticity on the At-

wood number

We now investigate the effect of the Atwood number on the generation of opposite-sign

vorticity. The shock Mach number is kept constant and corresponds to the value given by

our baseline, Ms = 1.21. To simplify the determination of the initial conditions, we focus on

a light-to-heavy configuration (A > 0); the heavy-to-light configuration (A < 0) is currently

under investigation. Like with the shock Mach number, the initial sheet strength depends

on the Atwood number (see Fig. 4.2b); a larger value of the Atwood number results in a

larger magnitude of the initial sheet strength, leading to a higher initial interface velocity,

which would result in opposite-sign vorticity to develop sooner. However, unlike the shock

Mach number, the Atwood number explicitly appears in the vortex-sheet dynamics equation
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(Eq. 4.1), such that different Atwood numbers give rise to different dynamics and therefore

interface morphologies that are no longer similar. Fig. 4.20 shows the interface morphology

for three different Atwood numbers, A = 0.4, A = 0.6053, and A = 0.8. When increasing

the Atwood number, the distance (in the x-direction) between points located on the left-

half domain and points on the right-half domain decreases, forming a narrower mushroom

neck, as illustrated at t̃ = 11 for example. Furthermore, the perturbation height increases

when increasing the Atwood number due to the relatively higher momentum of the heavy

fluid. The interface morphology is also different when increasing the Atwood number, both

in terms of the spike shape and the roll-up. For A = 0.4 and A = 0.6053, the spike has

a rounded shape (e.g., at t̃ = 33), whereas the spike is not as well-rounded for A = 0.8.

The roll-up in the A = 0.6053 case has a filament-like structure, while the roll-up is less

elongated for A = 0.4 and A = 0.8. In the latter case, part of the roll-up near the neck is

nearly horizontal.

As opposed to the shock Mach number, the perturbation evolution shown Fig. 4.20 does

not suggest a time scaling of the interface behavior with the Atwood number, as differ-

ent Atwood numbers lead to different interface morphologies. We therefore do not expect

opposite-sign vorticity to increase monotonically with the Atwood number. To demonstrate

this behavior, Fig. 4.21 shows the dependence of the multivalue time and onset time on

the Atwood number. For visualization purposes, the y−axis is in logarithmic scale. The

multivalue time decreases monotonically with increasing Atwood number, indicating that

the interface becomes multivalued sooner for increasing Atwood numbers. The onset time,

however, does not decrease monotonically with the Atwood number, but has a minimum

value at A ≈ 0.6. For A = 0, no value of the onset time is shown, due to the fact the

onset time is infinite, i.e., opposite-sign vorticity never develops. Fig. 4.22 shows the de-

pendence of opposite-sign circulation with the Atwood number. As with the shock Mach

number, the amount of opposite-sign circulation increases monotonically with time for all

values of the Atwood number considered. However, Fig. 4.22b shows that as the Atwood

107



(a) A = 0.4.

(b) A = 0.6053.

(c) A = 0.8.

Figure 4.20: Time evolution of the perturbation for (a) A = 0.4, (b) A = 0.6053, and (c)
A = 0.8 with Ms = 1.21. The red dots show the development of opposite-sign vorticity along
the interface.
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ton

tm

Figure 4.21: Atwood number dependence of the multivalue time tm/(λ/c) and onset time
ton/(λ/c) in logarithmic scale for the y−axis. The shock Mach number is Ms = 1.21.

(a) Opposite-sign circulation vs. time (b) Opposite-sign circulation vs. A

Figure 4.22: (a) Time evolution of opposite-sign circulation shifted by the onset time for
different Atwood numbers, and (b) dependence of opposite-sign circulation with the Atwood
number at different times past the onset time. The shock Mach number is Ms = 1.21.
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Figure 4.23: Time evolution of the scaled opposite-sign circulation shifted by the onset time
for different Atwood numbers in log-log scale: A = 0.2 ( ), A = 0.4 ( ), A = 0.6053
( ), and A = 0.8 ( ). The solid black line is obtained from a linear regression.

number increases, opposite-sign circulation increases and then decreases, with a maximum at

A ≈ 0.6, showing the non-monotonic behavior of opposite-sign circulation with the Atwood

number. The fact that the maximum is for A ≈ 0.6 is due to the fact that the onset time

is minimum for that Atwood number, thus leading to opposite-sign vorticity to develop over

a longer period of time. For A = 0, there is no opposite-sign circulation, confirming our

previous observation that opposite-sign vorticity never develops for A = 0. Fig. 4.23 shows

the results of Fig. 4.22a but scaled with the initial sheet strength γ0 and in log-log scale.

For convenience, time is scaled with the onset time ton. Opposite-sign circulation shows a

power-law behavior:

|Γ−|
λγ0

= eb
'

t

ton
− 1

(p

, (4.13)

where b is a function only of the Atwood number. Applying a least-squares fit to the data
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reveals that p ≈ 3/2. For t/ton ≫ 1,

|Γ−|
λγ0

∝
'

t

ton

(p

, (4.14)

and from Eq. 4.10, opposite-sign circulation evolves as

|Γ−| ∝ γp+1
0 tp. (4.15)

4.7 Dependence of opposite-sign vorticity on both the

shock Mach number and the Atwood number

In Secs. 4.5 and 4.6, we investigated the dependence of opposite-sign vorticity on the shock

Mach number (respectively, Atwood number) when the Atwood number (respectively, shock

Mach number) is held constant. Fig. 4.24 shows the dependence of the multivalue time

and onset time on the shock Mach number and the Atwood number in the full parameter

space. The largest values of the multivalue time lie in the region of low-Atwood and low-

Mach numbers, A ≲ 0.2 and Ms ≲ 2. Since the onset time takes place after the multivalue

time, the onset of opposite-sign vorticity is delayed in that region of the parameter space,

as demonstrated by the large values of the onset time. As observed in Sec. 4.6, opposite-

sign vorticity does not develop for A = 0, such that for low Atwood numbers (A ≲ 0.1),

the onset time is large for all values of the shock Mach number. In contrast, regions of

high-Atwood and high-Mach numbers, A ≳ 0.6 and Ms ≳ 4, correspond to cases where

opposite-sign vorticity develops sooner, as evidenced by the small values of the multivalue

and onset times. To relate these findings to practice, the experiments of Collins & Jacobs

(2002), represented by a white dot, lie in the region of high-Atwood number (A = 0.6053),

but low-Mach number (Ms = 1.21), indicating that opposite-sign vorticity develops relatively

late compared to the same experiments performed at a higher shock Mach number. This
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(a) (b)

Figure 4.24: Logarithmic value of (a) the multivalue time tm/(λ/c) and (b) the onset time
ton/(λ/c) in the parameter space (A,MS). The white dot corresponds to the experiments of
Collins & Jacobs (2002) (baseline case).

observation is confirmed in Fig. 4.25, which shows the dependence of opposite-sign vorticity

on the shock Mach number and Atwood number in the parameter space at three different

times past the onset time. The experiments of Collins & Jacobs (2002) lie in the region where

the amount of opposite-sign circulation is small compared to the amount produced at higher

Mach numbers. As observed in Secs. 4.5 and 4.6, the amount of opposite-sign vorticity

increases with time, as shown by the different color bar scales. The region of maximum

opposite-sign vorticity decreases over time.

4.8 Conclusion

In this chapter, we use a vortex-sheet model to investigate the development of opposite-

sign vorticity in the single-mode Richtmyer–Meshkov instability. The vortex-sheet model

allows us to isolate the different contributions of vorticity production in the evolution of the

interface: a term accounting for the local acceleration of the interface, a term accounting for

the advection of vorticity along the interface, and a term accounting for the expansion and
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(a) (b) (c)

Figure 4.25: Value of opposite-sign circulation in the parameter space (A,Ms) at (a) t =
1.3ton, (b) at t = 1.7ton, and (c) at t = 2ton. The white dot corresponds to the experiments
of Collins & Jacobs (2002) (baseline case).

contraction of the interface.

In the case of no density mismatch at the interface (A = 0), opposite-sign vorticity

never develops, due to the fact that there is no baroclinic mechanism in the evolution of

the vorticity dynamics. In this case, changes in the vorticity distribution along the interface

originate only from the expansion and contraction of the interface. We observe that the

vortex core undergoes a series of expansions and contractions with frequency 3tm, where

tm is the multivalue time, which corresponds to approximately twice the orbital frequency

of the points along the interface. By using geometric arguments, we derive an analytical

expression for the multivalue time, which agrees well with our vortex-sheet simulations.

When considering positive and negative vorticity between a bubble and a spike for non-

zero Atwood numbers, part of the initially-positive vorticity eventually becomes negative,

suggesting that opposite-sign (negative) vorticity is generated only is A is not zero. By

contrast with the zero-Atwood number case, the evolution of the vorticity distribution for

small Atwood numbers is additionally affected by the local tangential acceleration of the

interface and nonlinear vorticity advection along the interface. For a short period after

the multivalue time, the latter is dominant over the former, suggesting that opposite-sign

vorticity is generated by the nonlinear vorticity advection along the interface.
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Finally, when varying the incident shock Mach number and the Atwood number, the

emergence of opposite-sign vorticity is delayed for low-Atwood numbers (A ≲ 0.2) and low-

Mach numbers (Ms ≲ 0.2); the amount of opposite-sign circulation is the lowest for these

Mach and Atwood numbers. In contrast, the amount of opposite-sign circulation is the

largest for A ≳ 0.6 and Ms ≳ 4. When only varying the shock Mach number but keeping the

Atwood number fixed, the interface behavior scales in time with respect to the shock Mach

number, such that the latter simply acts as a time scaling in the evolution of the interface.

This behavior results in opposite-sign vorticity to develop at the same time for all shock

Mach numbers, and to behave according to a power law in time.
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CHAPTER 5

Concluding Remarks and Future Directions

This chapter summarizes the work presented in the current thesis, with key findings and

contributions to the field, along with suggestions for future directions.

5.1 Summary and conclusions

The objective of this work is to develop a vorticity-based framework to explain the role of

vorticity dynamics in the evolution of hydrodynamic instabilities driven by baroclinic vor-

ticity, relevant to many applications, e.g., in high-energy-density (HED) systems (inertial

confinement fusion, supernova explosion), cavitation, lung hemorrhage, and supersonic air-

crafts. To accomplish this objective, we used a vortex-sheet model appropriately initialized

under conditions relevant to these applications, which allowed us to

• Investigate the late-time vorticity dynamics of perturbations subjected to an oblique

shock to understand the relative importance between Kelvin–Helmholtz (KH) and

Richtmyer–Meshkov (RM) instabilities in HED experiments. Using complementary di-

rect simulations, the vortex-sheet initial conditions were carefully determined to match

the conditions of the experiments. The subsequent evolution of the perturbation is dic-

tated by the changes in the sheet-strength distribution along the interface. At early

times, the perturbation growth is dominated by the impulsive acceleration of the shock

(RM), as evidenced by our proposed scaling accounting for the normal and tangential
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components of the shock. At later times, the perturbation growth is modulated by

the positive and negative sheet strength generated by the shear. By extending the

vortex-sheet model to time-dependent field accelerations, we were able to account for

the interface decompression and RT-acceleration occurring due to experimental laser

turn-off, and obtained reasonable agreements with the experiments.

• Study the role of opposite-sign vorticity generation in the late-time evolution of the

single-mode Richtmyer–Meshkov instability. By isolating the vorticity dynamics, we

showed that for zero Atwood number, the vorticity distribution between a bubble and

a spike maintains its sign forever, with the interface near the vortex core undergoing

expansions and contractions, thus giving rise to oscillations in the corresponding sheet

strength. These oscillations have a frequency corresponding to approximately half the

orbital frequency of the points along the interface. By using geometric arguments,

we derived an analytical expression for the multivalue time, i.e., the time at which

the slope of the interface first becomes vertical, which agrees well with our vortex-

sheet simulations. In the case of small Atwood numbers, the evolution of the vorticity

distribution is additionally affected by the local tangential acceleration and nonlinear

vorticity advection along the interface. After a time proportional to the multivalue

time, these two additional mechanisms lead to the generation of opposite-sign vortic-

ity between the bubble and spike. When varying the strength of the incident shock

(measured by the shock Mach number Ms) and the density ratio (measured by the At-

wood number A), the emergence of opposite-sign vorticity is delayed for low-Atwood

numbers (A ≲ 0.2) and low-Mach numbers (Ms ≲ 0.2); the corresponding amount of

opposite-sign circulation is the lowest for these Mach and Atwood numbers. In con-

trast, the amount of opposite-sign circulation is the largest for A ≳ 0.6 and Ms ≳ 4.

When only varying the shock Mach number but keeping the Atwood number fixed, the

interface behavior scales in time with respect to the shock Mach number, such that

the latter simply acts as a time scaling in the evolution of the interface. This behavior
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results in opposite-sign vorticity to develop at the same time (scaled with the initial

sheet strength) for all shock Mach numbers, and to behave according to a power law

in time.

In Appendix C, we further provide insights into the vorticity deposition on finite-size

perturbations, relevant to the study of reshock for the RM instability. We extended current

vorticity-deposition models to arbitrary perturbation amplitude, by extracting the interface

morphology and vorticity distribution from direct simulations of the Euler equations. In

a light-to-heavy configuration, increasing the amplitude of the initial perturbation results

in a narrower vorticity distribution compared to that of a small initial perturbation. In a

heavy-to light configuration, the interface morphology after shock passage is significantly

distorted due to a phase inversion; kinks appear in the the vorticity distribution close to the

bubble.

5.2 Recommendations for future research directions

The research presented in this work can be extended in several directions, which we suggest

here.

5.2.1 Improvements of the numerics

The presence of the non-linear, Burgers-like term in the governing equation of the sheet

strength (Eq. 2.32) requires the use of conservative numerical schemes to avoid spurious

oscillations. As of now, we employ the first-order Godunov method to discretize this term.

A second-order accurate method, such as Monotonic Upstream-centered Scheme for Conser-

vation Laws (MUSCL), could be readily implemented into the current code. Higher-order

accurate methods, such as Weighted Essentially Non-Oscillatory (WENO), can also be con-

sidered. Using high-order schemes for non-linear advection would enable the sharp peaks

in the sheet-strength profile to not be smoothed by the use of first-order schemes. Further-
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more, the approximation of the Biot-Savart integral (Eq. 2.31) with the mid-point rule can

be improved by using a higher-order accurate method, such as a Gaussian quadrature. This

improvement would be useful in three dimensions if triangular mesh elements are used.

5.2.2 Extensions of the vortex-sheet model

The current vortex-sheet model simulates the evolution of interfacial perturbations in in-

compressible and inviscid fluids, with no surface tension, i.e., continuity of pressure at the

interface. Although we have considered gas/gas interfaces, where the effect of surface tension

may be neglected, this assumption may not be justifiable for other type of interfaces, e.g.,

gas/liquid interfaces. It is straightforward to incorporate a surface-tension term in Eq. 2.32,

by evaluating the pressure jump across the interface with the local curvature. Furthermore,

the current model relies on the assumption that the vorticity is infinite at the sheet. This

assumption can be relaxed by considering a small but finite-thickness layer in which vorticity

is allowed to diffuse. Such a scenario would provide a more realistic description of roll-up

formation at late times. The vortex sheet becomes a vortex layer, whose evolution can be de-

termined by the method of asymptotic matching, where the flow inside the layer is matched

to the flow outside the layer (Moore, 1978). Another study that considered the evolution

of vortex layers is by Pozrikidis & Higdon (1985), who considered initial perturbations on

the boundaries of a shear layer to simulate the evolution of the Kelvin-Helmholtz instability.

Furthermore, in the context of HED physics, where electric and magnetic fields affect the

behavior of the pure hydrodynamics, the vortex-sheet model can be further extended to

include additional vorticity production from external body forces, e.g., a magnetic field.

The current code capabilities can be extended to three-dimensional vortex sheets (Pozrikidis,

2000; Stock et al., 2008). The main difference in terms of the governing equations lies in

the additional vortex-stretching term, as seen in Eq. 2.26. Another important difference

from the two-dimensional case is the fact that the sheet strength is a two-component vector,

which lies in the plane tangential to the sheet.
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5.2.3 Transient initial conditions

As illustrated in this thesis, the determination of the vortex-sheet initial conditions for RM-

type problems can be challenging if the perturbation evolves during its interaction with the

incident shock. In Appendix C, we discovered that, after the shock has traversed the inter-

face, the morphology of the interface can be convoluted, especially when a phase inversion

occurs. In such cases, even our extraction algorithm, introduced in the same appendix, is

limited by the resolution of the direct simulations. An alternative could be to develop a

technique in which the vortex sheet evolves as the shock is still traversing the initial per-

turbation. Doing so would avoid the need to determine the interface morphology and the

corresponding sheet-strength distribution immediately after shock passage.

5.2.4 Arbitrary geometries and pressure waves

The results presented in the present research were obtained for single-mode initial perturba-

tions in an RM environment. However, in practical applications such as inertial confinement

fusion, target imperfections typically contain more than one mode, even a full spectrum

of modes, which interact with each other in the non-linear regime of perturbation growth.

Therefore, the current vortex-sheet model may be extended to simulate such cases. Here

again, the initial conditions are the limitation. However, a first step would be to apply the

model of Samtaney & Zabusky (1994) by determining the local angle between the initial

perturbation and the incident shock. Next, using my extraction algorithm, the vorticity

distribution would be obtained from a given initial mode spectrum.

The case of multimode perturbations provides further motivation to consider the evolu-

tion of vortex sheets with arbitrary shapes. A step further would be to consider the vorticity

distribution originating from arbitrary pressure waves, e.g., rarefactions, acoustic waves, etc.,

interacting with interfaces. This extension of the vortex-sheet model would allow the study

of general pressure-wave-interface interaction problems, e.g., the role of vorticity dynamics
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in cavitation bubble collapse induced by acoustic waves (Shpuntova et al., 2021).

5.2.5 Parallelization and high-performance computing

In order to be able to capture the intricate roll-up morphology of the vortex core at late

times, sufficient spatial resolution is required, which can be achieved with a point-insertion

procedure. However, since the number of points increases over time, the run-time of the

simulations can be significantly long, especially in three dimensions. This aspect provides

motivation for extending the code capabilities to run simulations in parallel with multiple

CPUs/GPUs on supercomputers.
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Appendix A

Derivation of the Sheet-Strength Governing Equation

A.1 The three-dimensional case

A.1.1 Kinematics only

Using Eq. 2.23, we have, for the + side

∂u+

∂t
+
)
u+ ·∇

*
u+ = 0

∂uvs

∂t
− 1

2

∂∆u

∂t
+
)
u+ ·∇

*
uvs − 1

2

)
u+ ·∇

*
∆u = 0

∂uvs

∂t
− 1

2

∂∆u

∂t
+ (uvs ·∇)uvs − 1

2
(∆u ·∇)uvs − 1

2
(uvs ·∇)∆u+

1

4
(∆u ·∇)∆u = 0.

(A.1)

Defining the total derivative with respect to the vortex-sheet velocity

D(·)
Dt

=
∂(·)
∂t

+ (uvs ·∇) (·), (A.2)

we have

Duvs

Dt
− 1

2

D∆u

Dt
− 1

2
(∆u ·∇)uvs +

1

4
(∆u ·∇)∆u = 0. (A.3)
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Doing the same operations on the other side (side −) we obtain

Duvs

Dt
+

1

2

D∆u

Dt
+

1

2
(∆u ·∇)uvs +

1

4
(∆u ·∇)∆u = 0. (A.4)

Taking the difference between Eqs. A.3 and A.4 leads to

D∆u

Dt
= − (∆u ·∇)uvs. (A.5)

To relate this expression to the sheet strength ζ, we take the cross product of N̂ with Eq.

A.5

N̂ × D∆u

Dt
= −N̂ × [(∆u ·∇)uvs] . (A.6)

Following Stock (2006), it can be shown that

N̂ × D∆u

Dt
=

Dζ

Dt
+ N̂

C
ζ · DN̂

Dt

D
, (A.7)

such that

Dζ

Dt
= −N̂

C
ζ · DN̂

Dt

D
− N̂ × [(∆u ·∇)uvs] . (A.8)

Further simplifications lead to Eq. 2.25.

A.1.2 Addition of baroclinic terms

The Euler equations on the + side are now (from Eq. A.3)

ρ+
Duvs

Dt
− 1

2
ρ+

D∆u

Dt
− 1

2
ρ+ (∆u ·∇)uvs +

1

4
ρ+ (∆u ·∇)∆u = ρ+g −∇p+. (A.9)

123



On the other side, they are

ρ−
Duvs

Dt
+

1

2
ρ−

D∆u

Dt
+

1

2
ρ− (∆u ·∇)uvs +

1

4
ρ− (∆u ·∇)∆u = ρ−g −∇p−. (A.10)

Taking the difference between these two equations leads to

)
ρ+ − ρ−

* Duvs

Dt
− 1

2

)
ρ+ + ρ−

* D∆u

Dt
− 1

2

)
ρ+ + ρ−

*
(∆u ·∇)uvs+

1

4

)
ρ+ − ρ−

*
(∆u ·∇)∆u =

)
ρ+ − ρ−

*
g −∇

)
p+ − p−

*
.

(A.11)

The Atwood number being A = (ρ− − ρ+)/(ρ+ + ρ−), we have

D∆u

Dt
= − (∆u ·∇)uvs − 2A

'
Duvs

Dt
+

1

4
(∆u ·∇)∆u− g

(
+

2

ρ+ + ρ−
∇

)
p+ − p−

*
.

(A.12)

If we define the average fluid acceleration on each side of the sheet, ā, as

ā ≡ 1

2

'
Du+

Dt

++++
fluid

+
Du−

Dt

++++
fluid

(
, (A.13)

where D·
Dt

++
fluid

is the total derivative with respect to the fluid velocity (not the sheet velocity),

i.e.,

D(·)
Dt

++++
fluid

=
∂(·)
∂t

+ (u± ·∇)(·), (A.14)

then we can show, using Eq. 2.23, that

ā =
Duvs

Dt
+

1

4
(∆u ·∇)∆u. (A.15)
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Therefore, Eq. A.12 can be written as

D∆u

Dt
= − (∆u ·∇)uvs − 2A (ā− g) +

2

ρ+ + ρ−
∇

)
p+ − p−

*
. (A.16)

As before, we relate that equation to the sheet strength by taking its cross product with the

normal vector

N̂ × D∆u

Dt
= −N̂ × [(∆u ·∇)uvs]− 2A N̂ × (ā− g) +

2

ρ+ + ρ−
N̂ ×∇

)
p+ − p−

*
.

(A.17)

We already simplified the left-hand-side and the first term on the right-hand-side (Eqs. A.6

and 2.25), which leads to Eq. 2.26.

A.2 The two-dimensional case

We start from the equation governing the jump in velocity, Eq. A.12. In two dimensions,

the velocity jump is ∆u = γT̂ , such that, when substituted in Eq. A.12, we have

D(γT̂ )

Dt
= −

>
γT̂ ·∇

?
uvs − 2A

'
Duvs

Dt
+

1

4

>
γT̂ ·∇

?
γT̂ − g

(
+

2

ρ+ + ρ−
∇

)
p+ − p−

*
.

(A.18)

Since we want an evolution equation for γ only, we project onto the tangential direction.

Evaluating each term separately, the left-hand side can be written as

D(γT̂ )

Dt
· T̂ =

C
Dγ

Dt
T̂ + γ

DT̂

Dt

D
· T̂ =

Dγ

Dt
+ T̂ · γDT̂

Dt
(A.19)

The rate of change of the tangential vector can be given by

DT̂

Dt
= (T̂ ·∇u) · (I − T̂ ⊗ T̂ ), (A.20)
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where∇u is the velocity gradient tensor, and I the identity matrix. The operator (I−T̂⊗T̂ )

removes the tangential component of a multiplying vector, hence DT̂ /Dt lies in a plane

normal to the tangential direction. Therefore, when projecting onto the tangential direction,

we have

T̂ · DT̂

Dt
= 0. (A.21)

The first term on the right-hand side can be written as

T̂ ·
>
γT̂ ·∇

?
uvs = T̂ · γ(T̂ ·∇)uvs = T̂ · γ ∂u

vs

∂s
, (A.22)

where (T̂ ·∇)(·) = ∂(·)
∂s

is the directional derivative in the direction of the tangential vector.

The third term on the right-hand side can be written as

T̂ ·
>
γT̂ ·∇

?
γT̂ = T̂ · γ

>
T̂ ·∇

?
γT̂ = T̂ · γ ∂(γT̂ )

∂s
= T̂ · γ

C
∂γ

∂s
T̂ + γ

∂T̂

∂s

D
= γ

∂γ

∂s
,

(A.23)

where we have used the fact that T̂ · ∂T̂
∂s

= 0. Substituting everything back into Eq. A.18

and rearranging, we obtain

Dγ

Dt
= −γ

∂uvs

∂s
· T̂ − 2A

'
Duvs

Dt
· T̂ +

1

4
γ
∂γ

∂s
− g · T̂

(
+

2

ρ+ + ρ−
∇

)
p+ − p−

*
· T̂ . (A.24)

If there is a jump in pressure across the vortex sheet, e.g., due to surface tension, the pressure

difference, ∆p ≡ p+ − p−, can be written as

∆p = σκ, (A.25)
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where σ is the surface tension (assumed constant), and κ the interface curvature. In that

case, the surface tension term in Eq. A.24 can be re-written as

∇(∆p) · T̂ = (T̂ ·∇)∆p =
∂∆p

∂s
= σ

∂κ

∂s
. (A.26)

Therefore, a non-dimensional form of Eq. 2.29 is given by

Dγ̃

Dt̃
= −γ̃

∂ũvs

∂s̃
· T̂ − 2A

'
¯̃a− 1

Fr2
g̃

(
· T̂ +

2

We

∂κ̃

∂s̃
, (A.27)

where the Weber number is defined as

We =
(ρ+ + ρ−)V 2L

σ
, (A.28)

and represents the importance of inertia relative to surface tension.
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Appendix B

Single-mode Richtmyer-Meshkov instability

We compare our vortex-sheet model against the RM experiments of Di Stefano et al. (2019),

along with the corresponding two-dimensional xRAGE simulations with a laser model (Marozas

et al., 2018; Haines et al., 2016). The experimental conditions of Di Stefano et al. (2019) are

the same as those considered in the current work, with an initial tilt angle θ = 0◦. Since the

laser-turn-off conditions are the same, early RM growth is followed by RT growth once the

rarefaction reaches the interface.

Fig. B.1 compares the time evolution of the perturbation amplitude obtained with the

vortex-sheet model (with and without laser-induced deceleration and decompression) to the

experiments and the xRAGE simulations. Both vortex-sheet solutions give similar results

until t ≈ 5 ns, at which point the rarefaction produced by laser turn-off reaches the interface.

When not accounting for this deceleration, the vortex-sheet solution predicts a saturation

of the growth, contrary to the experiments and the simulations. When accounting for the

laser-induced deceleration and interface decompression, reasonable agreement with the late-

time behavior predicted by the xRAGE simulations is achieved. The overprediction of the

vortex-sheet solution accounting for laser-induced effects (red curve) may come from a slight

overprediction of the total circulation at the time at which the shock leaves the interface.

The total circulation may be affected by additional vorticity along the transmitted shock,

thus slightly overpredicting the initial growth rate.
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Figure B.1: Time evolution of the perturbation amplitude obtained from the vortex sheet,
without laser-induced deceleration or decompression due to laser turn-off ( ), with both
deceleration and decompression ( ), the experiments ( ), and xRAGE simulations (Di Ste-
fano et al., 2019) ( ).

129



Appendix C

Vorticity Dynamics of Finite-Amplitude Perturbation

in the Richtmyer-Meshkov Instability

C.1 Introduction

Perturbations on an interface separating two materials of different densities grow under the

influence of an impacting shock wave, due to the baroclinic vorticity generated along the

interface. Such an interaction is known as the Richtmyer–Meshkov instability (Richtmyer

(1960); Meshkov (1969)), and occurs both in nature and in engineering applications, such as

supernovae collapse (Kane et al. (1997)) and inertial confinement fusion (Betti & Hurricane

(2016)).

The Richtmyer–Meshkov instability (RM) can be described as consisting of four main

stages (Zabusky (1999)): a first vorticity-deposition stage where baroclinic vorticity is gen-

erated along the interface by the shock passage, an early stage where the growth is linear

in time, an intermediate stage where the growth saturates due to nonlinearities, and a late

stage where the flow may become turbulent. In this work we focus on the first three stages.

In the early stage, baroclinic vorticity is deposited along the interface due to the misalign-

ment between the pressure gradient across the shock, and the density gradient across the

interface (Brouillette (2002)). After the shock passage, the resulting vortex sheet along the

interface dictates the flow behavior in the linear and non-linear regimes. Previous studies

have shown that in the non-linear regime additional vorticity may further be generated. For
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example, studies of RM experiments performed in shock tubes have observed a phenomenon

called “reshock”, where shocks reflected from the tube boundaries interact a second time

with the interface (Balasubramanian et al. (2012); Latini et al. (2007b); McFarland et al.

(2014)). In high-energy-density experiments, where finite-pulse lasers are used to produce

shocks, rarefactions originating from laser turn-off also interact with the interface well after

the primary shock has traversed the initial interface (Di Stefano et al. (2019); Rasmus et al.

(2019)).

The evolution of the vorticity dynamics can be difficult to measure and understand

from direct simulations or laboratory experiments. Thus, models directly representing the

vorticity evolution can provide insights into these flows. Given an initial distribution of

vorticity, its evolution is readily determined by solving the vorticity equation, e.g., using

a point vortex model (Jacobs & Sheeley (1996)) or a vortex-sheet model (Matsuoka et al.

(2003); Matsuoka & Nishihara (2006c)). Therefore, the performance of these models relies

on a correct determination of the vorticity-deposition stage.

In the case of a small initial perturbation relative to its wavelength, the initial vorticity

distribution may be determined by using a velocity potential ansatz, as previously suggested

by Jacobs & Sheeley (1996) and Sohn (2004). A more sophisticated approach was developed

by Samtaney & Zabusky (1994) (SZ), who considered shock-polar analysis to determine the

initial distribution of the circulation per unit length of a perturbed interface. They showed

that the circulation per unit length depends on the material properties, the shock strength,

the pressure ratios across the waves originating from shock refraction, and the geometry of

the interface. If the perturbation amplitude is sufficiently small, changes in the interface

geometry due to the shock passage are negligible. However, for a finite-size amplitude per-

turbation, none of these models can describe the vorticity distribution immediately after the

shock passage.

The goal of this work is to understand the role of vorticity dynamics in the evolution of

finite-size perturbations subjected to a shock wave. We first present the governing equations
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of the vortex sheet model followed by a description of the SZ model and a novel technique

in the initialization of vortex sheets. Next, we validate our current technique in the case

of small amplitude perturbation against the SZ model. After that, we apply our technique

to finite-amplitude perturbations in light/heavy and heavy/light configurations. Finally, we

show results of the interface evolution for two cases of finite amplitude perturbations.

C.2 Vortex sheet initialization for the Richtmyer–Meshkov

instability

The initial conditions of the vortex-sheet model require the initial location of the interface

x = (x, y) and the distribution of the sheet strength γ immediately after the shock has

finished traversing the interface. In the case of infinitesimal perturbation amplitudes, the

model of Samtaney & Zabusky (1994) can be used to determine the sheet-strength distribu-

tion, and was presented in Chapter 2. However, this model breaks down when the size of

the perturbation is finite.

Our goal is to initialize the vortex sheet model by prescribing the vortex-sheet strength,

γ = (u− − u+) · T̂ , along the appropriate interface morphology at the time when the shock

ends its interaction with the interface, for arbitrary shock strength and perturbation am-

plitude. To do so, we conduct direct simulations of the Euler equations until that time,

and extract the interface morphology and vorticity distribution from those datasets. The

interface morphology is constructed by identifying the jump in tangential velocity, while the

sheet strength is determined based on this jump according to the definition of the sheet

strength. The algorithm we use to initialize the vortex sheet model is illustrated in Fig.

C.1. Again, the purpose is to identify the initial interface morphology and the corresponding

sheet strength.

As a first estimate, we identify the interface location from the volume fraction field

vf (x, y). The interface location (xi, yi) is obtained by interpolating the position where vf =
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Get interface location
(xi, yi) from volume fraction

Compute tangential
and normal vectors

(T̂i, N̂i) along interface

Take cut along N̂i of
slope ai = Ny/Nx and

y-intercept given by (xi, yi)

Interpolate x- and y-velocities
(ux, uy) along normal line

Compute tangential velocity
uT along the normal line

Compute jump in tan-
gential velocity across
interface γi = u+T − u−T

Distribution of VS
strength γ is obtained

Step 1
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Figure C.1: Flowchart of the extraction algorithm for the location of the interface and sheet-
strength distribution after shock passage
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0.5.

Next, the tangential and normal vectors T̂i and N̂i are computed at any point along the

interface. The tangential vector is defined as

T̂i =
ṙi
|ṙi|

=

'
dr

ds

(

i

, (C.1)

where ri is a parametrization of the interface with respect to a parameter αi such that

ri = (x(αi), y(αi)) and the dot notation refers to the derivative with respect to α, ṙ = dr/dα.

The normal vector is defined as

N̂i =
1

κi

dT̂i

ds
, (C.2)

where κi is the curvature of the interface at point i given by

κi =

+++++
dT̂i

ds

+++++ . (C.3)

In the following step, the velocity vector is interpolated along the interface. For this

purpose, we take a cut (referred to as the normal line) in the direction defined by the normal

vector N̂i along the interface. The normal line has a slope ai = (Ny/Nx)i and the y-intercept

is given by the point (xi, yi).

We then interpolate the x- and y-components of the velocity (ux, uy)j along the normal

line from the velocity field. Note that the index j refers to the normal line, not the interface.

Then, the tangential velocity (uT )j component is computed along the normal line. From

the values (ux, uy) in the coordinate system (x, y), the value of (uT )j is obtained by coordinate

transformation as

(uT )j = (ux)j cos θ + (uy)j sin θ, (C.4)

where θ is the angle between the unit vectors x̂ and T̂ .

Next, the jump in the tangential velocity uT across the interface is computed. As an

example, Fig. C.2 shows the tangential velocity uT as a function of the normal direction.

134



0

2

4

-0.05

0

0.05

R

L

Figure C.2: Tangential velocity as a function of the normal direction at the point (xi, yi).

The jump is taken as the difference between the two values designated by the red stars R

and L. These values correspond to the right and left of the vorticity peak, respectively (see

bottom of figure C.3). This choice comes from the observation that the vorticity field after

shock passage is concentrated in a thin layer around the interface (see top of figure C.3).

From this definition of the jump, a value of the VS strength at the point (xi, yi) is obtained

γi = u+
T − u−

T .

These steps are repeated to obtain a more accurate interface location and strength dis-

tribution.

To verify our algorithm, we consider the experiments of Collins & Jacobs (2002), who

investigated single-mode Richtmyer-Meshkov instability at an interface between air (ρair =

1.351kg/m3, κair = 1.276) and SF6 (ρSF6 = 5.494kg/m3, κSF6 = 1.093) for an incident shock

of Mach number Ms = 1.21 in air. For a small initial perturbation (a0/λ = 0.03), Fig. C.4

shows the sheet-strength distribution along the interface based on the SZ model and our

initialization algorithm. The results compare well except at the extrema of γ0, which are the

locations along the interface where the slope of the interface is maximum, with a discrepancy

of approximately 6%. At these points, the normal line to the interface is the most misaligned

with respect to the mesh, which introduces numerical errors when interpolating the x- and

y-velocities along the normal line. Moreover, the SZ model does not take into account the

change in morphology of the interface from the passage of the shock, which is another source
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Figure C.3: Top: vorticity fields with normal line (dashed line) at a point (xi, yi) on the
interface. Bottom: vorticity plotted along the normal line. The two red stars correspond to
the width of the peak.
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Figure C.4: Sheet-strength distribution along the interface from the SZ model ( ) and the
extraction algorithm ( ).

of discrepancy between the two methods. Fig. C.5 compares the subsequent growth of the

perturbation amplitude as a function of time for vortex sheet computations initialized using

the SZ model and the current algorithm, as well as the experiments of Collins & Jacobs

(2002), and the direct simulations. Overall, the agreement between the different approaches

and the data is good, as the early linear growth is well represented, as is later-time saturation.

C.3 Finite-amplitude single-mode Richtmyer-Meshkov

instability

In the case of a finite-amplitude initial perturbation, the interaction time between the in-

coming shock and the interface is not small compared to the evolution of the perturbation.

As a consequence, the deposition of vorticity cannot be assumed to occur instantaneously,

such that the change in the morphology of the interface while the shock is traversing it

cannot be neglected. Furthermore, as the perturbation amplitude is increased, a complex

system of waves emerges from shock refraction at the interface (Mach stems, irregular re-

fractions, etc), which the SZ model cannot represent. In this section, we investigate the
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Figure C.5: Amplitude vs. time from the experiments of Collins & Jacobs (2002) ( ), the
direct simulations ( ), the vortex sheet using the SZ model ( ), and the vortex sheet
using the algorithm ( )

vorticity-deposition phase and the subsequent vorticity evolution for four finite-amplitude

perturbations: a0/λ = 0.05, 0.1, 0.2, 0.3. We consider both light-to-heavy and heavy-to-

light configuration; in the latter, phase inversion occurs.

C.3.1 Light-to-heavy configuration

Fig. C.6 shows the evolution of the perturbation during the passage of the shock across the

interface for a0/λ = 0.05, 0.1, 0.2, 0.3, obtained from direct simulations. The effect of the

finite time over which the shock interacts with the interface is evident as a0/λ is increased.

Since the incoming shock travels from a light fluid to a heavy fluid, both transmitted and

reflected waves are shocks as well. Due to the acoustic impedance mismatch at the interface,

the transmitted shock travels more slowly than the incoming shock, such that vorticity is

first deposited by the incoming shock and then deposited by the transmitted shock. As a0/λ

is increased, the shock refraction becomes more complex, such that secondary transmitted
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(a) a0/λ = 0.05

(b) a0/λ = 0.1

(c) a0/λ = 0.2

(d) a0/λ = 0.3

Figure C.6: Evolution of the perturbation during the interaction with the incoming shock for
a light/heavy configuration: (a) a0/λ = 0.05, (b) a0/λ = 0.1, (c) a0/λ = 0.2, (d) a0/λ = 0.3.
Numerical Schlieren (top) and vorticity contours (bottom).
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Figure C.7: (a) Interface morphology, and (b) sheet-strength distribution vs. arclength,
immediately after shock passage for the light/heavy configuration for a0/λ = 0.05 (t = 1),
a0/λ = 0.1 (t = 2), a0/λ = 0.2 (t = 3), and a0/λ = 0.3 (t = 4). Dashed lines: SZ model.

shocks also appear, depositing more vorticity, as shown for a0/λ = 0.2 and a0/λ = 0.3.

Fig. C.7a shows the interface morphology immediately after the passage of the incoming

shock for the different initial amplitudes. We ignore the vorticity deposited by the secondary

transmitted shocks after the incoming shock has traversed the interface, such that the time at

which vorticity is extracted is t = 1, 2, 3, 4, for a0/λ = 0.05, 0.1, 0.2, 0.3, respectively. As

a0/λ is increased the interface morphology loses its sinusoidal shape and the sheet-strength

distribution departs from the dependence on the local angle between the interface and the

incoming shock predicted by the SZ model, as illustrated in Fig. C.7b. For small initial

amplitudes, the sheet-strength magnitude is similar in both the SZ model and the present

calculations, but their profile differs as a0/λ is increased; the profile is narrower in the present

calculations. This discrepancy is due to the fact that the Taylor expansion of the circulation

per unit length in the SZ model becomes invalid as a0/λ is increased. As a result, the total

circulation deposited along the interface from the SZ model is overpredicted, as shown in Fig.

C.8. The circulation along half of the interface is computed immediately after shock passage
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Figure C.8: Circulation along half of the interface immediately after shock passage for the
light/heavy configuration for the direct simulations ( ), the SZ model ( ), and our algorithm
(*).

from the current approach and compared to the SZ model for different initial amplitudes and

grid resolutions, and that obtained from the direct simulations is also included. Both the

SZ model and the present algorithm show good agreement with the direct simulations for

small amplitude (a/λ ≲0.05). For higher amplitudes, the proposed approach yields closer

values to the direct simulations than the SZ model; the latter differs by ∼ 18% while the

former by ∼ 4% (for a/λ = 0.3). One of the factor influencing the success of the algorithm

is the mesh resolution of the direct simulations. In Fig. C.8, three different resolutions are

considered for the direct simulations, which shows the convergence of the current approach to

a single value of circulation as N → ∞. Note that although the total circulation in the direct

simulations is corrected by removing the vorticity production from transmitted and reflected

waves, the discrepancy is still significant. This discrepancy comes from interpolation errors

in the current algorithm.

C.3.2 Heavy-to-light configuration

When the incident shock travels from a heavy fluid to a light fluid, the initial perturbation

undergoes a phase inversion, which significantly affects the process of vorticity deposition
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along the interface. Fig. C.9 shows the evolution of the perturbation when the incoming

shock traverses the interface for a0/λ = 0.05, 0.1, 0.2, 0.3. Compared to the light-to-heavy

case, the sign of the baroclinic vorticity is opposite, such that clockwise (counterclockwise)

vorticity is generated along the left (respectively, right) half of the perturbation, causing

the phase inversion. As a result, a spike of heavy fluid is entrained and falls into the

light fluid during the interaction, which causes the interface to be significantly distorted

after the passage of the incoming shock, as shown in Fig. C.10a. At this stage in the

perturbation growth, the vorticity distribution is not sinusoidal like in the light-to-heavy

case0, as shown in Fig. C.10b. As in the light-to-heavy case, we ignore vorticity contributions

from transmitted/reflected wave patterns occurring after the passage of the incoming shock,

such that vorticity is extracted at t = 1, 2, 3, 3 for a0/λ = 0.05, 0.1, 0, 2, 0.3, respectively.

In the heavy-to-light case, the reflected wave is a rarefaction, though the transmitted wave

is still a shock that now travels faster than the incoming shock. As a result, vorticity is first

generated by the transmitted shock and then by the incoming shock and reflected waves.

The Schlieren images of Fig. C.9 show a region of strong density gradient at the location

where the incoming shock and reflected waves intersect at the interface, which results in a

kink in the vorticity distribution close to the bubble, as shown in figure C.10b. Contrary to

the light-to-heavy case, both the sheet-strength magnitude and its profile differ from the SZ

model, as shown in Fig. C.11.
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Figure C.9: Evolution of the perturbation during the interaction with the incoming shock for
a heavy/light configuration: (a) a0/λ = 0.05, (b) a0/λ = 0.1, (c) a0/λ = 0.2, (d) a0/λ = 0.3.
Numerical Schlieren (top) and vorticity contours (bottom).
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Figure C.10: (a) Interface morphology, and (b) sheet-strength distribution vs. arclength,
immediately after shock passage for the heavy/light configuration for a0/λ = 0.05 (t = 1),
a0/λ = 0.1 (t = 2), a0/λ = 0.2 (t = 3), and a0/λ = 0.3 (t = 4). Dashed lines: SZ model.
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Figure C.11: Circulation along half of the interface immediately after shock passage for a
heavy/light configuration for the direct simulations ( ), the SZ model ( ), and our algorithm
(*).
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Levinson, N. 1965 Simplified treatment of integrals of Cauchy type, the Hilbert problem
and singular integral equations. appendix: Poincaré-Bertrand formula. Siam Review 7 (4),
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Zhang, Q & Sohn, S-I. 1997b Padé approximation to an interfacial fluid mixing problem.
Appl. Math. Lett. 10 (5), 121–127.

Zhang, S & Zabusky, NJ 2003 Shock-planar curtain interactions: Strong secondary
baroclinic deposition and emergence of vortex projectiles and late-time inhomogeneous
turbulence. Laser Part. Beams 21 (3), 463.

Zhou, Ye. 2017a Rayleigh–Taylor and Richtmyer–Meshkov instability induced flow, tur-
bulence, and mixing. i. Phys. Rep. 720, 1–136.

Zhou, Ye. 2017b Rayleigh–Taylor and Richtmyer–Meshkov instability induced flow, turbu-
lence, and mixing. ii. Phys. Rep. 723, 1–160.

Zufiria, JA. 1988 Vortex-in-cell simulation of bubble competition in a Rayleigh–Taylor
instability. Phys. Fluids 31 (11), 3199–3212.

158


