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Abstract 

Controlling phase transformation has been of particular interest for the past several 

decades. The properties of a phase transformation interface have a direct correlation with the 

performance of the surface and control of this performance opens up numerous opportunities for 

applications in: efficient liquid condensers, steam power production, oil separation and 

distillation, ice resistant aircraft, and microelectronics cooling. Previous research has employed a 

variety of techniques to control phase transformation from selectively textured surfaces, 

interfacial free energy modified surfaces, and porous surfaces infused with lubricant. However, 

while many of these researchers have focused on the capability to induce phase transformation 

on these surfaces, there has been a lack of focus on the optimization of these processes. 

Furthermore, many of the prior technologies suffer from poor durability and lifespan longevity in 

their intended applications.  These factors have combined to inhibit the widespread adoption of 

these technologies due to cost and logistical pitfalls. 

This dissertation presents a systematic method to design optimized surfaces to control 

phase transformation on a surface while simultaneously enhancing the durability of the surfaces 

to resist environmental damage. The first research chapter addresses condensation heat transfer 

surfaces, optimizing the interfacial heat transfer when condensing a liquid. Using 

thermodynamic analysis, we design parameters for the optimal surface conditions during 

condensation, identify surface treatments that have selectively tuned contact angle and 



 xx 

hysteresis, and display quantifiable improvements. These novel design parameters go against 

prior trends in condensation and exhibit efficient condensation on hygrophilic surfaces by 

minimizing the hysteresis on a surface using amorphous thin films. The second research chapter 

then addresses boiling heat transfer, maximizing the capability and useability of a smooth 

surface. No previous study has effectively used smooth surface modifications for boiling due to 

the fragility of such surface modifiers. This novel surface coating, based on diamond-like carbon, 

demonstrates high temperature stability and simultaneously enhances the heat transfer rate and 

maximum capable heat transfer compared to an uncoated surface. 

In chapter 4, we then transition to examining icing performance and the ability to delay 

the onset of ice formation on a surface, typically referred to as frosting. There have been a 

multitude of studies that have developed anti-icing surfaces, though scalability and applicability 

have been varied with no clear use cases. We demonstrate a simple coating that inhibits ice 

formation in conditions far harsher than would be experienced in a real-life application. The 

facile coating can easily be tuned to the specific application and performance properties required 

for use. We then compare it to prior state of the art and prove a significant improvement under 

standardized test conditions. Lastly, the final chapter utilizes the learnings of diamond-like 

carbon in chapter 3 to develop a novel fluorinated diamond-like carbon that maintains a 

superhydrophobic state and resists high temperature and abrasion. Such a surface coating 

exhibits as a useful application for nucleate boiling cooling of microelectronics, the fluorinated 

surface can conduct the same amount of heat as an uncoated surface at about 20°C lower 

temperature. This surface is also the first to demonstrate superhydrophobic capabilities in 

environments in excess of 500°C. The work herein has identified the properties necessary to 
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optimize phase transformation surfaces and developed coatings that conform to the optimized 

design and display the predicted enhancements.
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Introduction 

 

1.1  Introductory Remarks 

Surfaces with controlled wettabilities have garnered significant attention for decades due 

to their usefulness in a variety of applications like stain resistant textiles1, marine drag reduction 

and anti-biofouling2, and self-cleaning surface.3 There have been a variety of published methods 

to reduce the interactions between a liquid and surface such that droplets easily roll or slide off. 

Modified surfaces have been of particular interest for the use in phase transformation 

applications. Phase transformation of water is associated with nearly 500x as much energy as the 

specific heat of water, leading to an opportunity for enhanced heat transfer if phase transformation 

can be stimulated. Further, it has been shown that the Gibb’s free energy barrier of phase 

transformation varies directly with the free energy of the surface.4 The control of surface free 

energy has been shown to enhance both the vaporization (boiling) and condensation of water.5–7 

To maintain an efficient surface, droplets or bubbles must be allowed to quickly form and easily 

depart from the surface without coalescing with nearby neighbors.  Surface texturing has been of 

particular interest as it can be used to enhance both boiling and condensation.8,9 To further improve 

condensation behavior, lubricant can be infused into the surface so that droplets are held on a 



 2 

lubricant layer to slide freely, or the texture can be treated such that droplets literally jump off the 

surface uninhibited.10,11 Lastly, texturing can improve boiling through a variety of methods: 

increased surface area, capillary wicking, and increased nucleation sites.12–14 Prior work has 

demonstrated numerous advances in phase transformation heat transfer utilizing one or more the 

above strategies. 

However, many of these methods are limited by their inability to scale to a useful point, 

suffer from severe degradation with sustained use, and/or are only useful in specific conditions 

that limit their widespread use. This thesis works to address these downfalls by developing surfaces 

that are optimized for their intended use, are robust for sustained use cases, and have direct 

applicability for widespread adoption. The surfaces fabricated have been tested against 

comparable, state of the art, surfaces to display excellence in the field of research.  

1.2 Wettability of Smooth and Textured Surfaces 

The wettability of a surface is derived from the interaction between a liquid and the surface. The 

manner in which a liquid will interact with the surface is dependent on a wide array of variables, 

including the roughness, surface free energy, liquid surface tension, polarity, chemical 

homogeneity, and crystallinity. This interaction is typically quantified as the contact angle (θ) 

between a liquid droplet and the surface (Figure 1.1), varying from 0° < θ < 180°. 

1.2.1 Contact Angle and Surface Tension 

Both liquids and solids inherently prefer to remain in a bulk and resist surface area; in the 

absence of any external forces, a liquid would revert to its minimum surface area shape, a sphere. 

Surface tension can be considered a measure of the energy required to deform these substances 

and create additional surface area. The contact angle between a liquid and a smooth surface is 
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based on the energy balance at the 3-phase contact line; where the solid-vapor (gsv), liquid-vapor 

(glv), and solid-liquid (gsl) meet. 

 

Figure 1.1: Liquid droplet on a smooth surface exhibiting a contact angle at equilibrium (θE), determined by the 
balance of forces at the 3-phase contact line. 

The equilibrium contact angle (θE) can be determined using the Young’s Equation (below) and the 

corresponding liquid surface tension (glv) and surface free energy (gsv).15 

  𝑐𝑜𝑠𝜃! =
"!"#"!#
"#"

 (1.1) 

Typically, the solid-liquid interfacial tension (gsl) is unknown as it depends on the interactions 

between the solid and liquid. However, the solid-vapor (gsv) and liquid-vapor (glv) are known, 

which necessitates the need to measure the contact angle so as to infer gsl. 

 The contact angle is typically calculated through an optical method in which a camera is 

used in conjunction with software to calculate the visual contact angle of a droplet with the surface. 

While this is typically close to the actual contact angle of a surface, and is commonly used and 

reported in research, there are some inherent errors to consider. This method is a better reference 

for the average intrinsic contact angle. The Young Equation was designed for an ideal, 

homogeneous, solid surface, roughness, heterogeneity, and molecular interactions at the 3-phase 

contact line can all affect the contact angle.16 While a visual measure will be used throughout this 

work, it is sufficiently close to an accurate measure, and the dynamic contact angles are more 

commonly used to give a more accurate representation of the liquid-surface interactions. If more 
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accurate results are required, researchers will use methods like the Wilhelmy plate method17 or 

capillary bridge system18, though the accuracies of these methods are not needed herein. For a 

smooth surface, the maximum achievable intrinsic contact angle is θE ≈ 120°, which occurs on a 

fluorinated monolayer with a surface free energy gsv = 9 mJ m-2.19 Fluorine containing solids are 

typically desired for liquid repellency due to the electronegativity and low polarizability of the 

fluorine, which resist interactions with other molecules imparting the low adhesion properties 

desired.20,21 Thereby the fluorinated monolayer would lend to the most liquid repellant surface, 

though there is a limit to the liquid resistance as no know substance can exhibit θE > 90° for any 

liquids with glv < 40 mN m-1.22 

 The surface tension glv of a liquid can rather easily be determine experimentally through a 

variety of measurement methods. The pendant drop method is a commonly used technique in 

which a droplet it suspended from a needle. If the density of the liquid is known, the force of 

surface tension opposes the force of gravity on the droplet, and a profile can be fit to the droplet 

to calculate the surface tension via the Young-Laplace equation.23 There are numerous other 

methods to calculate surface tension, including the Du Noüy ring24, Wilhemy plates25, maximum 

bubble pressure26, and capillary rise27 methods. Table 1.1 lists the surface tension of various 

liquids, including those utilized herein. 

 

Table 1.1: Surface tension of various liquids that are used, or referenced, throughout this work, in descending order 
by surface tension.28–34 
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Liquid glv (mN m-1) 

Water 72.1 
Diiodomethane 50.8 
n,n-Dimethylformamide 35.1 
Toluene 27.9 
n-Hexadecane 27.5 
Chloroform 26.7 
Dichloromethane 26.5 
Acetone 23.5 
2-Propanol 23.3 
Ethanol 22.1 
Methanol 22.1 
n-Octane 21.1 
1-Propanol 20.9 
Krytox 100 17.0 
Pentane 15.8 
Vertrel XF 14.1 
Perfluorohexane 11.5 

 

 Lastly, the surface free energy gsv can be determined through a comparative study utilize 

the prior two measurements (contact angle and surface tension). One of the simplest techniques is 

the Zisman method, which can be used to estimate the critical surface tension (gc). This method 

utilizes liquids with varying surface tension (ie n-Ethers with varying lengths) to determine the 

highest surface tension that would wet the surface (θ = 0°). This technique is very rudimentary, 

and even Zisman carefully pointed out that the resulting gc is merely symbolic of the surface free 

energy but not equal to. Many subsequent studies have further refined this method to get a more 

accurate estimation of the surface free energy. One of these methods, which is used in this work, 

is the Owens-Wendt35 calculation, which extends from the Fowkes36 method. The Owens-Wendt 

calculation utilizes the contact angle from a polar liquid (typically water) and a non-polar liquid 

(hexadecane for gsv < 25 mJ m-2; diiodomethane for gsv > 25 mJ m-2), which have known polar and 

dispersive components to their surface tensions. From the contact angles and known surface 
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tensions, the surface free energy gsv can be inferred. This method does have its own limits as it can 

only be utilized for surfaces on which at least two of the probe liquids do not wet (diiodomethane 

glv ≈ 67 mN m-1). This limitation becomes essentially irrelevant for most studies as high surface 

energy materials (such as plasma cleaned Si or metals) are prone to hydrocarbon absorption to the 

surface.37 This makes the accurate measurement of the contact angle and surface free energy of 

these surfaces exceedingly difficult, unless the surfaces are stored in a high vacuum environment 

with minimal atmospheric contaminants, and this results in widely varying reported literature 

values.38 Table 1.2 lists the surface energy of a selection of surfaces.  

Table 1.2: Approximate surface energy of various solids and surfaces, including analogous solids to substances 
referenced throughout this work.39–45 

Solid gsv (mJ m-2) 

-CF3 monolayer 9 
Perfluoropolyether 17.7 
Polytetrafluoroethylene 19 
-CH3 monolayer 23 
Polydimethylsiloxane 23.5 
Polypropylene 31 
Polyethylene glycol 48.3 
Cellulose 89 
Glass ~310 
Titanium Dioxide ~530 
Copper 1650 

 

1.2.2  Wettability Terminology 

How a liquid interacts with a solid can be categorized into two distinct states, “-phobic” or 

“-philic” where the former refers to a surface that resists wettin67g and the latter a surface that 

spontaneously wets. Generally, a surface on which θ > 90° is considered “-phobic” and θ < 90° is 

considered “-philic”. When the liquid is water, these distinctions are termed hydrophobic and 

hydrophilic, and equivalent nomenclature exists for describing oils (“oleo-“) and low glv liquids 

(“omni-“) as shown in Figure 1.2. 
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Figure 1.2: Conventional terminology for describing wetting and droplets representing the corresponding behavior. 
These representative images were captured on a goniometer using water on smooth Si substrates treated with 

decreasing surface energy: plasma-cleaned Si, polyethylene glycol, polydimethylsiloxane, and perfluoropolyether. 
The far right surface is a superhydrophobic surface made from a fluorintaed diamond-like carbon with rms 
roughness of ~100 nm. Below the images are the corresponding terminology for wetting behavior with oils. 

 There are numerous surfaces that have been reported to display contact angles about 120°, 

which is the theoretical limit for a perfect -CF3 monolayer.46–50 These surfaces are deemed 

“superhydrophobic” and display a contact angle in excess of 150°. This is only possible through 

the combination of hydrophobicity and roughness such that a liquid is suspended in a composite 

interface with the roughness; this leads to liquids easily beading up and rolling off the surface. The 

influence of surface roughness will be covered further in section 1.4. Some low gsv surfaces have 

been referred to as omniphobic despite θE < 90°, typically associated with surfaces that can easily 

shed and repel low glv liquids, though the literature is not consistent with this classification.51,52 

Table 1.3 contains some commonly used nomenclature to describe the wetting behavior of various 

liquids on different surfaces. 

 

Table 1.3: Array of possible wettability classifications that are commonly used by the scientific community. 
"Hydro-" refers to the distinction of water with a generally high surface tension and polarity, "Oleo-" refers to oils 

with moderate surface tension and are typically non-polar, and “Omni-” encompasses most low surface tension 
liquids which can include polar solvents and fluorinated liquids. Adapted from dissertation by Mathew Boban. 

Superhydrophilic 
θ ≈ 0° 

Hydrophilic 
0° < θ < 90°

Hydrophobic 
θ > 90° 

-CF3 Monolayer 
θ ≈ 120°

Superhydrophobic 
θ > 150° 

Superoleophilic 
 

Oleophilic 
 

Oleophobic 
 

Oleophobic Superoleophobic 
 

Decreasing glv 
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Nomenclature Liquids 
Repelled q (°) Example Surfaces 

Superomniphilic/ 
Superhydrophilic 

None θE » 0° High surface energy solids (metals, glass, TiO2) 

Superoleophilic Water θE » 0° 
Typically moderate surface energy polymers that 
have roughness so as water displays more “-phobic” 
and oils display more “-philic” 

Hydrophilic/ 
Oleophobic 

Oil, 
not water 

θE » 0° for water 
θE > 90° for oil 

Counter intuitive surfaces since glv,water > glv,oil; 
achievable with functional groups that selectively 
wet water due to its polarity53,54 

Hydrophobic Water θE > 90° 
A wide variety of solids including polyethylene and 
PTFE55 

Oleophobic Oil θE > 90° Roughened PTFE1 

Omniphobic All Dq » 0°† Surfaces with fluorinated lubricant infused56, 
smooth perfluorinated films57 

Superhydrophobic Water θE > 150° 
Textured, hydrophobic surfaces, like the lotus 
leaf58 

Superoleophobic Oil θE > 150° Electrospun or  microstructured surfaces59–62 

Superomniphobic All θE > 150° 
Hierarchically textured surfaces that are treated 
with a perfluorinated coating63–65 

† Not a generally accepted classification, but some studies have used this terminology. 
 

 

1.2.3 Contact Angle Hysteresis 

While hydrophobicity is commonly used as a reference to the ability of a surface to resist 

wetting, this description is insufficient to convey the mobility of a droplet on the surface. Static 

contact angle only provides a snapshot of the surface and is rarely representative of actual use. All 

surfaces have some variation across the surface in homogeneity and roughness which can create 

small variations in the contact angle at different points on the surface.66,67 This variation can make 
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it exceedingly difficult to measure a consistent static contact angle as a droplet can take on multiple 

equilibrium contact angles on the same surface, caused by metastable states where it can be locally 

pinned.68 

In most applications, the shedding ability of a liquid is far more important than the static 

wetting angle, which is why contact angle hysteresis is a much better measurement for a surface. 

To obtain the contact angle hysteresis, the dynamic contact angles can be collected for when the 

liquid is advancing and receding from the surface, as shown in Figure 1.3. One method of 

measuring the dynamic contact angles is to tilt a surface just until a droplet of liquid starts moving 

across it, then measuring the contact angle at the forward and aft edges of motion, corresponding 

to the advancing and receding contact angles. The method utilized herein is by use of the sessile 

drop technique.69 A drop suspended from a syringe and the surface is brought up to contact with 

the drop. Liquid is then added to the drop so as to expand the drop and progress the 3-phase contact 

line forward. When the contact line is moving at a constant contact angle, the angle is measured; 

this is the advancing contact angle (qadv). The liquid is then slowly withdrawn back into the syringe 

so that the contact line moves inward, and the angle is measured when it is constant; this is the 

receding contact angle (qrec). The contact angle hysteresis (Dq) can then be determined by the 

difference in the advancing and receding contact angles (Dq = qadv - qrec). The relationship between 

these angles is complex and will be examined later in this thesis. The hysteresis, though, is directly 

representative of the mobility of a liquid on a surface, so although a surface may present as “-

philic”, it could still easily shed liquid depending on the hysteresis. Since hysteresis is so closely 

related to how a liquid interacts on a surface, we will report dynamic contact angles throughout 

this thesis as the dynamic contact angles can provide insight into both the wetting behavior and 

the mobility behavior of a liquid. 
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Figure 1.3: Methods for measuring the dynamic contact angles on most substrates. The sessile drop technique 
utilizes a syringe to expand and contract a drop, thereby moving the contact line outward and inward, respectively, 

to obtain the advancing and receding contact angles. A droplet sliding on an inclined surface can also be used to 
obtain the same angles. Both of these methods are depicted (top) with corresponding images of actual droplets being 

measured (bottom). 

1.3 Textured Surfaces 

Up to this point, all wettability classifications have been under the assumption of a smooth 

surface. Any surface roughness or texturing will change the wetting characteristics of any surface, 

and the contact angle will take on an apparent contact angle q*, dependent on the wetting state. 

Figure 1.4 displays the two distinct states of wetting on a textured surface that a liquid can take 

on: Wenzel state in which the texture is fully wetted, and the Cassie-Baxter state in which air 

pockets are entrapped underneath the liquid. 
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Figure 1.4: There are two possible wetting states for a liquid on a textured surface. The Wenzel state, in which the 
liquid fully penetrates the texture, or the Cassie-Baxter state in which the liquid rests on top of the texture with 

composite surface underneath from the entrapped air pockets. 

1.3.1  Textured Surface Creation 

There are a variety of methods employed to create surface texture, most employ some type 

of removal of a substrate to get the desired surface geometry. Some of the simplest manners 

involve randomly etching the surface whether by an acid or base etch2,9, laser etching70, or plasma 

etching71. In order to achieve omniphobic surfaces, it requires systematically etching the substrate 

in a specific manner to get a pattern, typically with reentrant features; this etching is typically done 

using photolithography techniques with plasma etching.63,72,73 Lastly, porous surfaces can be 

created (either additively or through etching) to create texture.74,75 After the surface texturing, most 

of these surface undergo a treatment, typically a perfluorinated coating, to reduce the surface 

energy to produce the desired wetting state below. 

1.3.2 Wenzel Wetting State 

The first study on the effect of textural roughness and its influence on wetting was 

conducted by Wenzel, hence the term Wenzel state.76 The Wenzel equation relates that the 

apparent contact angle of a surface (q*) will vary according to the intrinsic contact angle (qE) and 

the roughness (r). 

 cos 𝜃∗ = 𝑟 cos 𝜃! (1.2) 

In essence, this equation says that a “-philic” surface will become more “-philic” (ie apparent 

contact angle will be lower than the intrinsic contact angle) with roughness, and a “-phobic” 

surface will become more “-phobic” (ie apparent contact angle will be higher than the intrinsic 

contact angle) with roughness. However, because the liquid is wetting the roughness, as r 

increases, the solid-liquid contact area will also increase in area which creates more pinning points 
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for the liquid. It would then follow, that the hysteresis (Dq) will inevitably increase on any Wenzel 

wetted surface. Generally, a Wenzel wetted liquid is immobile from the surface as qrec à 0°. 

1.3.3 Cassie-Baxter Wetting State 

As the texture increases in roughness and/or the surface energy decreases from a Wenzel 

state, the surface eventually reaches a point in which microscopic air pockets can be trapped under 

the liquid. This state of composite wetting (partially wetting the surface, partially wetting the air 

pockets) is called a Cassie-Baxter state.77 In this wetting state, the apparent contact angle is always 

above 150° and is in essence and average of the contact angle on the wetted surface and the air 

pockets (inherent contact angle of 180°). The generic form of this equation is the weighted average 

of these contact angles and the surface area of that contact angle:78 

 cos 𝜃∗ = ∑𝑟%𝜙% cos 𝜃% (1.3) 

The term f refers to the areal fraction of the total contact area. Since a droplet in air reverts to a 

sphere (q = 180°) to minimize surface area, and the cos(180°) = -1, this equation can be simplified 

as follows: 

 cos 𝜃∗ = 𝑟&𝜙' cos 𝜃! + (1 − 𝜙') cos 180° (1.4) 

 cos 𝜃∗ = 𝑟&𝜙' cos 𝜃! + 𝜙' − 1 (1.5) 

Where the term rf is the same roughness term used in the Wenzel equation, the wetted area in 

proportion to the total projected area. As such, there is a crossover point of the intrinsic contact 

angle (qE) at which there is a critical contact angle (qc) in which a liquid will transition from a 

Wenzel wetting state to a Cassie-Baxter state. This transition is associated with a minimum energy 

configuration, and if done spontaneously, can result in the release of excess energy due to the 

reduction in surface area.79 
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1.4  Heat Transfer During Phase Transformation 

As mentioned above, the enthalpy of vaporization of water is about 500x greater than the 

enthalpy associated with changing water by 1°C. This presents an opportunity to transport 

significant amounts of thermal energy with a minimal temperature change. Being able to harness 

the most efficient method of phase transformation has been sought after for decades with 

significant progress, but still limited by the applicability. One of the largest inhibitors of heat 

transfer is with insulating films, and when the opposing state of the liquid covers the surface it acts 

as a large resistance.80 Thereby the challenge with heat transfer has been in both enhancing the 

heat transfer properties, while also inhibiting the resistive films forming. 

1.4.1 Condensation Heat Transfer 

Condensation heat transfer is predicated on the nucleation, growth, and departure of 

droplets from a surface, forming from a vapor rich atmosphere. The heat transfer performance of 

a surface is dependent on this cyclic behavior of the droplets and is averaged across the surface 

and displayed in a heat curve, analogous to the one shown in Figure 1.5. The onset of droplets 

nucleating sees a sudden increase in heat flux (q’’) as the surface shifts from pure convection heat 

transfer to phase transformation heat transfer, once the surface temperature is depressed enough to 

overcome the energetic barrier (DT = Tvapor - Tsurface). As droplets nucleate, grow, and depart 

individually, referred to as the dropwise condensation region, the heat transfer coefficient (HTC) 

can be determined by q’’/DT. Eventually the surface reaches a critical heat flux (CHF) point at 

which droplets form much faster than the rate at which they can depart, and the condensate forms 

a film over the surface, referred to as the filmwise condensation region. This transition is associated 

with up to a 3-fold decrease in heat transfer coefficient.81 Condensate has a low thermal 

conductivity, so a film of water insulates the surface and reduces the surfaces ability to transfer 
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heat efficiently.82 The objective of any enhanced condensation surface is to  maximize the heat 

transfer coefficient and delay the critical heat flux to be as high as possible. 

 

Figure 1.5: Schematic of a condensation heat curve plotted with heat flux (q’’) on the vertical axis and surface 
subcooling (DT) on the horizontal axis. The plot can be divided into 4 distinct regions with images of condensation 
in these regions shown below the plot: Convection in which no condensation is occurring; Dropwise Condensation 

in which droplets nucleate, grow and depart the surface individually; Transition region where droplets begin to 
coalesce and form a film in regions of the surface; Filmwise condensation where a film on condensate completely 

cover the surface. From a plot like this, several heat transfer properties can be inferred. The subcooling temperature 
at which droplet nucleation begins is shown by a sudden increase in heat transfer at low subcooling. The heat 

transfer coefficient (HTC) can be determined by the average slope of the curve in the dropwise nucleation region. 
The critical heat flux is the highest heat flux achievable in the dropwise region before droplets start to coalesce and 

form a film. Figure adapted from Nature Review.83 

In a saturated or sub-saturated atmosphere, the vapor and liquid phases are in equilibrium 

so condensation will not occur spontaneously; an energetic driving force for condensation to occur 

on a surface is created by a subcooling of the surface, below the vapor temperature. While the 

scientific community is still undecided on the mechanism of condensation, whether it is droplets 

nucleating on the surface or unstable, thin films of liquid breaking up, there is consensus that it is 

driven by heterogeneous nucleation.84–86 The energetic driving force that initiates heterogeneous 

condensation is highly dependent on the wetting properties of the liquid and the surface on which 
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condensation will occur. Heterogeneous nucleation is dependent on the Gibbs free energy 

associated with creating a nucleus on the surface which varies directly with the contact angle such 

that:87 

 ∆𝐺()*)+,-).),/' = 𝜙∆𝐺(,0,-).),/' (1.6) 

 where 𝜙 = 1
2
(2 − 2 cos 𝜃! − cos 𝜃! sin3 𝜃!) (1.7) 

The Gibbs free energy of homogeneous nucleation is the least energetically favored mechanism of 

nucleation as this would be analogous to a drop of water spontaneously nucleating in the vapor, 

suspended in space. The factor f varies from 0 to 1 as the contact angle (qE) varies from 0° to 180°, 

such that the Gibbs free energy barrier is negligible on a superhydrophilic surface (qE = 0°). 

Thereby as a surface becomes more hydrophobic, the energetic barrier for condensation becomes 

increasingly more difficult to initiate nucleation. Since the heat transfer coefficient is dependent 

on the rate at which droplets can be formed, a decrease in contact angle should lead to an increase 

in heat transfer coefficient. 

 Droplet nucleation begins at very small sizes, on the scale of just a few nanometers in 

diameter. Given this small size, nucleation sites are essentially independent of the macroscale 

roughness because any surface is smooth on this size scale.88 Due to the higher enthalpy of 

vaporization compared to specific heat, the HTC is directly related to the rate at which droplets 

nucleate and depart the surface. As the droplets grow on the surface, the resistance of the 

condensate inhibits heat transfer. At sufficiently small radii (less than a few hundred nanometers), 

the resistance through the surface dominates and limits the heat flux, but as the droplet grows 

larger, the resistance through the liquid dominates.89  Therefore, the residence time of a droplet on 

the surface is so significant because the longer a droplet remains on the surface, the larger it gets, 

and the more it inhibits heat transfer.  
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 Departure of droplets has been the primary focus to enhance condensation and this has 

been done through a variety of mechanisms. Passive departure of droplets has been limited; much 

of the work has focused on using very low surface energy, highly fluorinated self-assembled 

monolayers.57,90 While this can be paired with a pattern of hydrophilic regions to enhance 

nucleation, these are still reliant on the low surface energy, hydrophobic regions for depature.91,92 

There are also active methods used to assist in droplet departure, these can include from sweeping 

arms, ultrasonic sound, and vibrations to assist in droplet removal from the surface.93,94 

 Lastly is the use of textured surfaces. While it may seem logical that a superhydrophobic 

surface would be exceptional with enhancing droplet departure, this is generally not true for 

condensation. Superhydrophobic surfaces rely on the Cassie-Baxter state such that the droplet 

needs to be suspended above the surface texture with air gaps under the interface. Due to the 

nanoscale size of the droplets as they nucleate, the droplets form within the surface structure and 

then as they grow, they grow in the Wenzel wetting state, pinning the droplets to the surface and 

preventing departure.95,96  There have been a few notable exceptions to this. The first is to infuse 

the texturing with a non-volatile lubricating oil; as condensate droplets form, they form on top of 

the lubricant and they can easily run off.10,56,97,98 At sufficiently low heat fluxes, surface texturing 

that has been treated with a low surface energy coating, have displayed jumping behavior in the 

droplets.11 This behavior is caused by the release of excess surface energy by the coalescence of 

droplets.99 The excess surface energy is converted into kinetic energy, causing the droplet to break 

the adhesive force with the substrate and depart from the surface. As the heat flux increases, 

though, and the rate of condensation increases, the droplets cannot depart the surface quickly 

enough and eventually begin to coalesce in the Wenzel state.100 



 17 

1.4.2  Boiling Heat Transfer 

Similar to condensation, boiling heat transfer is predicated on the nucleation, growth, and 

departure of vapor bubbles from the surface to transfer heat from the surface to a liquid. The heat 

transfer performance of a surface is an average of the cyclic behavior of the bubbles on the surface 

as displayed in Figure 1.6. The incipience of nucleate boiling is defined by the sudden increase in 

heat flux (q’’), typically at low superheating (DT = Tsurface – Tvaporization). The bubbles then continue 

to nucleate, grow, and depart from the surface, referred to as the nucleate boiling region. 

Eventually, the surface reaches a high enough temperature that the liquid cannot rewet it and a 

film of vapor forms over the surface. This point can go by different names, most commonly 

referred to as the critical heat flux (CHF) or departure from nucleate boiling (DNB) and is very 

sudden, with minimal to no transition region. Just as in condensation, the heat transfer coefficient 

(HTC) is measured in the nucleate region by q’’/DT. Once film boiling occurs, surface experiences 

is sudden increase in temperature. The far less efficient film boiling regime requires a superheat 

many hundreds of degrees, Celsius, higher than that of a similar heat flux achievable in the nucleate 

boiling regime, at just a few degrees superheat.101 The utility of a high efficiency boiling surface, 

especially in use for power production, is predicated on increasing the HTC while delaying the 

CHF to as high of a surface superheat as possible 
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Figure 1.6: Schematic of a boiling heat curve plotted with heat flux (q’’) on the vertical axis and surface superheat 
(DT) on the horizontal axis. The plot can be divided into 4 distinct regions with images of boiling in these regions 
shown below the plot: Convection in which no boiling is occurring; Nucleate Boiling in which bubbles nucleate, 

grow, and depart the surface individually; Transition region where bubbles begin to coalesce and form a vapor layer 
in regions of the surface; Filmwise boiling where a film on vapor completely covers the surface. From a plot like 

this, several heat transfer properties can be inferred. The initiation of nucleate boiling where bubbles begin to form 
on the surface. The heat transfer coefficient (HTC) can be determined by the average slope of the curve in the 
nucleate boiling region. The critical heat flux is the highest heat flux achievable in the nucleate region before 

bubbles start to coalesce and form a film. Figure adapted from Nature Review.83 

 Just as in condensation, the energy barrier to initiate bubble nucleation is dependent on the 

wetting properties of the liquid on the surface. The Gibbs free energy associated with nucleating a 

bubble varies with the contact angle such that:102 

 ∆𝐺()*)+,-).),/' = 𝜙∆𝐺(,0,-).),/' (1.8) 

 where 𝜙 = 343 5678$45678$ 79:% 8$
2

 (1.9) 

Again, heterogeneous nucleation is favored over a bubble spontaneously nucleating in the bulk 

liquid (homogeneous nucleation). Unlike condensation, though, the factor f varies inversely for 

boiling, in that it varies from 0 to 1 as the contact angle varies from 180° to 0° respectively. 

Thereby, as a surface becomes more hydrophobic, the energy barrier to nucleate a bubble 
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decreases. Since the heat transfer coefficient is dependent on the rate of nucleating bubbles, a 

higher contact angle leads to a higher HTC. This works counter to the critical heat flux, though, as 

a lower contact angle increases the ability of the liquid to wet the surface and therefore increases 

the critical heat flux. 

 The behavior of bubbles nucleating is not entirely dependent on the contact angle. Given 

Gibbs free energy barrier for bubbles to nucleate, incipience of nucleate boiling on a Teflon surface 

should theoretically not initiate until a surface superheat of about 188°C, at standard atmospheric 

conditions.103 We know this not to be true from just observing boiling water in a kitchen, bubbles 

during boiling commence at a significantly lower superheat. Rather than pure heterogeneous 

nucleation on the surface, surfaces facilitate the nucleation of bubbles from gas and vapor trapped 

within the pits and cavities on a surface.104 These trapped pockets significantly reduce the 

activation energy required to nucleate a bubble. Significant progress has been made to increase the 

HTC of boiling surfaces by adding increasingly complex geometries which further enhance the 

number of nucleation sites. Despite the enhancement by trapped vapor, there is still a correlation 

between the number of active nucleation sites on a rough surface that relates to the contact angle.105 

Furthermore, the significance of surface texturing on the HTC is not fully understood as the 

increased complexity has led to inherent randomness that cannot be modeled, though there has 

been some evidence that most of the HTC enhancement is caused simply by the increased wetted 

surface area of textured surfaces.12,106 

 The other important design consideration is the critical heat flux; delaying the CHF is 

important to operate at high heat fluxes without the extreme temperatures inherent with film 

boiling. In addition to analysis of the Gibbs free energy barrier, critical heat flux has been 

experimentally proven to decrease with increasing contact angle.107 The CHF can be enhanced 
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with surface texturing, though the exact mechanism by which texture prevents a vapor film from 

forming, is still unclear. The current theory is that the texturing allows for capillary wicking such 

that the surface can more easily resupply and wet with liquid, thereby maintaining attachment of 

the liquid to the surface for longer.108–110 

 Despite these improvements, much of the prior boiling heat transfer enhancements have 

been achieved through use of surface roughness and texturing. This presents problems in that it is 

difficult to understand the exact mechanism of enhancement which leads to difficulty in modeling 

and predicting the behavior of both the heat transfer coefficient and critical heat flux.  

1.4.3 Frost Formation and Icing 

 There is a wide variety of phase changes towards the solid phase for a variety of liquids; 

this work will examine specifically the freezing of water. Although we don’t specifically measure 

heat transfer, frost formation is an inhibitor of heat transfer as it forms an insulating layer, akin to 

the liquid insulating film in condensation and vapor insulating film in boiling. Preventing this frost 

layer has significant implications in efficiency of refrigeration systems, reducing energy use in air 

ducts, and increasing safety in numerous industrial applications.111–113 Prevention of this undesired 

ice formation on a multitude of surfaces is the focus of this work. 

 Just as with condensation and boiling, the spontaneous nucleation of ice crystals is 

extremely unlikely. Homogeneous nucleation requires a significant thermodynamic driving force 

and can only occur under specific conditions when the instantaneous alignment of temporary 

hydrogen bonds align and form a seed crystal. Heterogeneous nucleation is far more likely and is 

relevant in most practical situations. Again, heterogeneous nucleation induces a lower free energy 

barrier for nucleation which can be represented, similar to boiling and condensation:114 

 ∆𝐺()*)+,-).),/' = 𝜙∆𝐺(,0,-).),/' (1.10) 
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 where 𝜙 = 3#; 5678$4567& 8$
2

 (1.11) 

Similar to condensation, the factor f varies from 0 to 1 as the contact angle varies from 0° to 180°, 

leading to a direction in that more hydrophilic surfaces nucleate ice easier, whereas a highly 

superhydrophobic surface (qE = 180°) requires the same nucleation energy as homogeneous 

nucleation. 

 Several different methods have been attempted to prevent ice and frost formation on 

surfaces. Logically, the first direction was to utilize hydrophobic and superhydrophobic surfaces 

as the high contact angle should prevent nucleation. Superhydrophobic showed initial success in 

elongating icing time of water on a surface, but this was due to the reduced heat transfer from the 

liquid into the surface, a result of the composite interface since the liquid was in a Cassie-Baxter 

wetting state.115 These surfaces suffered from poor durability as the surface texturing was easily 

damaged by departing ice, exposing high surface energy material, and causing a Wenzel wetting 

state.116 Furthermore, the surfaces did not prove to be anti-frosting because they were susceptible 

to contamination from dust and other particles. These particles acted as nucleation points for ice 

to form, and once any ice or water is present, these points act as growth platforms since water has 

an effective 0° contact angle on water or ice.117 

 The discovery of surface contamination leading to enhanced frost formation led to the use 

to materials that could suppress ice formation. Anti-freeze proteins (AFPs) were first discovered 

in polar fish that could survive in sub-freezing conditions.118,119 Applying similar proteins to a 

surface was shown to prevent ice growth by bonding to the crystal face of the ice and preventing 

propagation of the crystal.120 This was significant because even if a surface was contaminated and 

ice began to nucleate, the proteins could prevent the ice from propagating.121 A similar focus of 

suppressing ice formation as AFPs has been the use of ions to reduce the freezing temperature of 
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water such that it will not freeze on the surface but remain in the liquid state. Various hydrogels 

and polyelectrolyte brushes have been created that can hold ions within the bulk.122–124 These 

materials have ions that can be exchanged for ions with lower freezing temperatures; once water 

diffuses into the surface, the ions suppress the ice formation temperature and the water remains in 

the liquid state.125 

1.5  Research Overview 

There have been numerous studies on a wide array of mechanisms to control and 

optimize phase transformation surfaces. However, all of these studies can be categorized as 

failing it at least one of the following areas: optimization for heat transfer performance, 

durability and long-term longevity, and/or facile and easily scalable. This dissertation is divided 

into 4 chapters, each addressing the performance of a surface during either condensation, boiling, 

or ice/frost deposition. 

In chapter 2, we identify the design criteria necessary to maximize the heat transfer 

coefficient and enhance performance for condensation heat transfer on a smooth surface. By 

utilizing mildly hygrophilic surface energy combined with very low contact angle hysteresis 

enabled by thin, amorphous films, we demonstrate an enhancement over traditional technologies 

using high contact angle coatings. We are also the first study to demonstrate dropwise 

condensation improvements on hydrophilic surfaces and maintain dropwise condensation on the 

lowest contact angle surface (30°).  These amorphous surfaces also demonstrated exceptional 

longevity and durability with negligible degradation after extended use and mechanical abrasion. 

Chapter 3 addresses boiling heat transfer and focuses specifically on smooth surfaces 

whereas prior studies have focused on textured surfaces. Textured surfaces face economic and 

logistical difficulty when considering the scale up to industrial use cases, and investigations of 
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smooth surface coatings have been sparce due to the temperature degradation of boiling surfaces. 

We create a diamond-like carbon (DLC) doped with silicon, which is the first, high temperature 

stable boiling surface that simultaneously enhances both heat transfer coefficient and critical heat 

flux. The silicon stabilizes the film at high temperatures and increases the contact angle which 

enhances the heat transfer coefficient. The smoothness of the film reduces the contact angle 

hysteresis and enables an enhancement in the critical heat flux. This diamond-like carbon surface 

also exhibits exceptional durability and shows little affect by harsh mechanical abrasion. We 

continue the use of DLC for boiling in chapter 5 with a fluorine doped DLC that maintains a 

superhydrophobic Cassie-Baxter wetting state above 500°C, higher than any silane modified 

superhydrophobic surface. This is particularly valuable for high heat flux boiling applications, 

like electronics cooling, in which a similar degree of cooling can be achieved at 20°C lower 

temperature compared to an uncoated surface. The fluorinated DLC maintains its 

superhydrophobicity in harsh boiling environments allowing for an HTC enhancement of 120% 

with a minor reduction in CHF. 

Lastly, chapter 4 examines the icing and frosting properties of surfaces in which we 

develop a coating that delays frost formation on a surface by over 2000%. Poly-zwitterionics 

have the ability to strongly bind water in a non-freezing state within a network. We develop a 

network of 2-(Methacryloyloxy)ethyl-dimethyl-(3-sulfopropyl)ammonium hydroxide (SBMA) 

that inhibits frost formation and delays icing of liquid water on the surface. The coating is easily 

produced and can be scaled by thickness to each specific use case. We also demonstrate superior 

performance over prior technologies when compared in identical environmental conditions. 

In this dissertation, we address all three phase transformations of liquids and identify design 

criteria to enhance the desirable performance characteristics of a surface for each phase 
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transformation. We also apply the design criteria and create surfaces that demonstrate the desired 

performance enhancements. Lastly, many of the surfaces exhibited superior longevity of use and 

mechanical durability, especially when compared to prior published technologies.
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Durable, Amorphous Polymer Brushes for Enhanced 

Condensation Heat Transfer 

 

This chapter is primarily adapted from a first-author article submitted to Advanced Materials. 

2.1 Introduction 

 As discussed in the introduction, condensation heat transfer is a highly effective 

mechanism for removing energy from a system. Condensation is used across a breadth of industrial 

settings, some of which are the largest energy consumers in the world, like oil refining, water 

distillation, power generation, and refrigeration.126–129 Improving the heat transfer properties for 

condensation by just 10% has the potential to reduce energy consumption by up to 4% if 

implemented in the processes above.  This enables increased output, smaller and cheaper 

equipment, and significant cost and energy savings.130 

 Condensation can take on two distinct modes, dropwise condensation (DWC) and filmwise 

condensation (FWC). Dropwise condensation is far preferred due to the lower energy requirement 

and increased heat transfer rate, though filmwise condensation is nearly ubiquitous in commercial 

operations for cost and durability considerations. The two key design parameters for any 
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condensation surface are balancing the high heat transfer rates during dropwise condensation while 

preventing the critical heat flux, or transition from dropwise to filmwise. 

 The performance of a surface during dropwise condensation is predicated on the rate at 

which droplets can form (nucleation rate) and the rate at which droplets depart (shedding rate); 

increasing both of these factors, increases the heat transfer and prevents the CHF. As mentioned 

in the introduction, the nucleation rate is directly associated with the contact angle through the 

Gibbs free energy of nucleation, but liquids have a tendency to “stick” to more hygrophilic 

surfaces. The Kim and Kim model combines these factors to account for the nucleation rate and 

the shedding rate.131 

 Prior work can be categorized into three mechanisms to promote dropwise condensation: 

low surface energy smooth films, superhydrophobic texturing, and lubricant infused surfaces 

(LIS). Surfaces like hydrophobic waxes, PTFE, and omniphobic self-assembled monolayers were 

first used to enhance dropwise condensation. By maintaining a high contact angle, droplets had 

reduced contact area with the surface and could easily run off. This promoted a high shedding rate 

but suffered from poor nucleation due to the high Gibbs free energy barrier.11,132,133 Soon after 

discovery, lubricant infused surfaces were quickly used for condensation, with the initial surfaces 

merely proving out that a droplet could condense and roll off the surface without wetting the 

underlying texturing.10,97,134,135 Even with enhancements in texturing and lubricant to minimize 

shedding of the lubricant and improve heat transfer, LIS has always suffered from poor 

durability.56,98,136 This degradation of the lubricant layer is caused by cloaking, in which a thin film 

of lubricant sits on top of every droplet and runs off the surface when the droplet departs, means 

that LIS can only sustain dropwise condensation for a few minutes to hours.137–140 Lastly, 

superhydrophobic surfaces have shown a unique ability to remove droplets from the surface when 
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the droplets coalesce due to the reduction in surface energy being converted to kinetic energy.11 

While successful at enhancing heat transfer coefficient for a low heat flux, once the subcooling 

exceeds just a few degrees, the nanotexture wets and droplets continue forming in the Wenzel 

state.141  

Here, I report the design and fabrication of a solid, smooth coating that enhances 

condensation heat transfer for a variety of liquids with different surface tensions. These coatings 

exhibit mechanical durability and use longevity in excess of 200 hours. Through a thermodynamic 

and polymer analysis, I report the first stable, dropwise condensation on hygrophilic surfaces 

through a combination of moderate contact angle, low hysteresis, and ultra-low glass transition 

temperature. 

2.2 Design Criteria for Condensation 

 There are numerous design considerations that go into a condensation surface for heat 

transfer. Many of these considerations can be derived from the modeling that has been done to 

predict the heat transfer properties of a variety of surfaces. One of the most notable and widely 

used models is the Kim and Kim model which accounts for a variety of factors including the 

droplet distribution, droplet sizes, conductivity of the surface, liquid and vapor thermodynamic 

properties131. Utilizing this model, with additional analysis and interpretation, I have created a set 

of design criteria that can be utilized to maximize the condensation heat transfer properties for any 

surface and condensate combination. 

 An ideal condensing surface for enhanced heat transfer performance would be a self-

assembled monolayer that is polymer based with a glass transition temperature far below the 

ambient temperature and a moderate surface energy such that the contact angle for the target 
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condensate is mildly hygrophilic. The following describes the design rationale for each of these 

parameters and the considerations taken to get to this conclusion. 

2.2.1 Resistance 

Resistance plays two critical roles in heat transfer during condensation, the first is in 

consideration of the surface coating. Every material has a thermal conductivity, or the ability to 

transfer thermal energy through its bulk. A smaller conductivity means that there is a large 

temperature drop across a material for a given heat flux. For condensation, the performance of a 

surface is quantified by the heat flux achieved at a given subcooling (DT). If there is a large 

temperature drop across the coating layer, then the temperature at the surface of the coating will 

be higher than the substrate temperature.142 Since the nucleation rate is directly related to the 

surface temperature, the heat flux would therefore be lower with a coating compared to the 

uncoated substrate (if all other properties were the same). This can be mitigated by utilizing 

thermally conductive and/or very thin coatings. If the conductivity is large enough, the temperature 

drop through the coating becomes negligible and the surface of the coating has essentially the same 

temperature as the surface of the substrate. Reducing the thickness has a similar effect; since 

conductivity is kW m-1 K-1, the temperature drop across a material is dependent on the thickness 

of the material. Reducing the thickness to be very small again minimizes the temperature drop to 

a point that it is negligible. This trade-off was modeled by Kim and Kim and is shown in Figure 

2.1. Any coating that will enhance condensation heat transfer must minimize the effect of 

resistance in the coating either through minimal thickness or increased conductivity. 
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Figure 2.1: Heat flux versus vapor subcooling for different thickness of a coating layer. As the thickness increases, 
the temperature drop across the coating increases which reduces the net heat flux. For example, at a heat flux of 200 

kW m-2, there is about a 4°K temperature drop across a 1 µm coating, so the substrate would have to be cooled to 
4°K cooler with the coating to achieve the same heat transfer performance as the bare substrate. This figure was 

adapted from the study by Kim and Kim with a coating conductivity of 0.2 W m-1 K-1.131 

To address the coating resistance, polymer based self-assembled monolayers were identified as 

ideal candidates. Since most unmodified, polymer-based coatings will have relatively low 

thermal conductivity, the best approach is to minimize the thickness; as seen in Figure 2.1, a one 

magnitude increase in thickness can lead to about a 300% reduction in heat transfer. Self-

assembled monolayers (SAMs) are only a few nanometers thick, so the thermal conductivity 

becomes negligible. Take for example a 10 nm film of Teflon (k=0.25 W m-1 K-1) at a heat flux 

of 250,000 W m-2, the temperature drop across the Teflon would be just 0.08 K. Furthermore, 

wettability is only dependent on the surface, so it is unnecessary to have a bulk material with 

contributes to thermal losses but does not improve performance. 

 Liquid on the surface can also introduce resistance in a similar fashion as the coating 

above. If there is a layer of water covering the surface, as is present in filmwise condensation, 

additional vapor can only condense on the outside of the liquid film. Thus, there is a temperature 

drop across the thickness of the liquid film that reduces performance in a similar way. When a 
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liquid film is present, the heat transfer is reduced 2-3 fold compared to dropwise condensation, 

and this is almost entirely due to the difference in condensing temperature between the coating 

surface temperature and the liquid surface temperature.143 Even in dropwise condensation, 

though, the conductivity of the liquid and the resistance it induces is critical to the design of 

maximizing the performance. Heat flux is based on energy per unit area, the more exposed area 

on a surface, the greater the heat transfer. As droplets form, portions of the surface are covered 

by droplets which add an additional resistance to heat transfer, shown in Figure 2.2. Just as in 

filmwise condensation, this increased liquid resistance reduces the heat transfer performance due 

to a temperature drop across the droplet. Although this reduction in performance is isolated to the 

surface area covered by the individual droplet, when a surface is covered by many droplets, this 

becomes a more dominant factor.  

 

Figure 2.2: Resistance diagram of a condensing surface, both exposed and covered by a droplet. Droplets covering a 
surface can introduce significant resistance on the isolated area the droplet is covering. 

 Just as with the coating resistance, the liquid resistance should be minimized for 

maximum heat transfer performance. Since the conductivity of the liquid cannot be varied, the 

droplet size is the only factor that can control the liquid resistance. Minimizing the droplet size 

on the surface by enabling droplets to depart early and when they are small will reduce the effect 

of liquid resistance, and the method to do so is analyzed later in how to enable early departure of 

droplets.  
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2.2.2 Optimize Surface Energy for Condensation 

As described in section 1.4.1, the Gibbs free energy for a droplet to nucleate will vary 

with the contact angle. The nucleation density on a surface will vary between 109-1015 m-2 and, 

although it cannot be directly modeled, is directly associated with the contact angle (i.e. the 

surface energy).144 The nucleation density then relates to the heat flux since it is correlated with 

the volume of liquid being condensed, a greater nucleation density means more liquid 

condensing which leads to a higher heat flux. Logically, minimizing the contact angle would be 

the best way to maximize the heat transfer as that would maximize the nucleation density. As the 

contact angle decreases, though, the droplets on the surface cover more and more surface area for 

the same volume of droplet. When the droplets cover more of the surface, this increases the 

resistance across that cover portion of the surface as described above, and also leads to more 

droplets coalescing and spreading, increasing the likelihood of a liquid film forming (CHF). It 

turns out there is an ideal contact angle which balances the increased nucleation rate of a 

hygrophilic surface, with liquid repellence to prevent significant droplet spreading on the 

surface. This can be directly modeled, shown in 

Figure 2.3, by the Kim and Kim model which predicts that there is a maximum heat 

transfer coefficient when the contact angle is between 40° and 80°. If the contact angle is higher 

than the maximum point, then the system is dominated by the rate of nucleation as the nucleation 

density decreases with increasing contact angle. If the contact angle is lower than the maximum 

point, then the system is dominated by the resistance of the droplets as they spread across the 

surface and inhibit heat transfer.  
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Figure 2.3: Numerical model of heat transfer coefficient (HTC) versus the contact angle for water and toluene. 
There exists a maximum heat transfer coefficient at a moderately hygrophilic contact angle (40° < qE < 80°). As the 
contact angle increases (to the right), the nucleation rate of the surface decreases which inhibits condensation. As the 

contact angle decreases (to the left), the droplets that nucleate, spread across the surface leading to increased 
resistance and increased coalescence. Plot created assuming a constant contact angle hysteresis of 10°. 

There exists a range for the ideal contact angle since the condensate surface tension, 

condensate conductivity, and enthalpy of vaporization will all vary with different liquids. 

Typically, lower surface tension liquids have a lower ideal contact angle for condensation heat 

transfer. As the surface tension decreases, the departing droplet size decreases as well, as shown 

in Figure 2.4. When the droplets depart from the surface at smaller sizes, a surface can maintain 

a more efficient condensation mode, therefore with low surface tension liquids, the maximum 

heat transfer coefficient will occur at a slightly lower contact angle. 
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Figure 2.4: Prediction for the departure diameter of a droplet from a vertical surface versus contact angle for water, 
dimethylformamide, and toluene, liquids with decreasing surface tensions, respectively. As the surface tension 

decreases, the diameter at which a droplet will depart the surface gets smaller for a given apparent contact angle. 
Plot created assuming a constant contact angle hysteresis of 10°. 

 From this model, it is obviously that this classification of “moderately hygrophilic” 

surfaces would produce the maximum condensation heat transfer. Upon examination of prior 

condensation heat transfer work, this has not been pursued as prior work has focused on 

condensing on low surface energy (high contact angle) films.57 Even lubricant infused surfaces 

utilize a fluorinated lubricant which gives a water contact angle of about 120°. Before this work, 

there was not any previously study that sustained dropwise condensation on a hydrophilic 

surface. Condensing on a surface with a contact angle qE < 90° typically results in the early onset 

of filmwise condensation as droplets would get pinned to the surface. The key to fulfilling this 

design criteria to have a moderate surface energy, is to enable early and facile departure of 

droplets from the surface to prevent them from coalescing. 
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2.2.3 Minimize Hysteresis for Early Departure 

As described above, it is obvious that reducing the contact angle (increasing the surface 

energy) would produce a higher heat transfer coefficient for condensation, though previous 

studies have not developed such a surface. Simply increasing the surface energy, thereby 

decreasing the contact angle, is not sufficient to create efficient condensation. Typically, a 

reduced contact angle leads to droplets getting pinned to the surface and unable to slide off. This 

presents two problems in that droplets that grow too large before departing introduce increased 

thermal resistance, compounded by the fact that it is a hygrophilic surface so the droplet spreads 

and covers a large area. Further, delayed departure eventually causes droplets to coalesce leading 

to a liquid film forming. To properly utilize a hygrophilic surface and realize a heat transfer 

enhancement, the droplet departure must be addressed. 

For this, we can turn to the Furmidge equation which shows that the force for a droplet to 

slide on an inclined (a) surface is related to the gravitational (g) force of the droplet:145 

 𝐹'<%=) = 𝑚	𝑔 sin 𝛼 

 (2.1) 

 𝐹'<%=) = 𝛾<>(cos 𝜃+)? − cos 𝜃@=>)2𝑟 (2.2) 

Since the mass (m) and radius (r) of the droplet are directly related, they can both be minimized 

by minimizing the difference of the cosines. This difference approaches zero as the difference 

between the advancing and receding contact angles, or the hysteresis (CAH = qadv - qrec), 

approaches zero. The influence of hysteresis for different advancing contact angles is shown in 

Figure 2.5. From this, one can identify that as the hysteresis approaches zero, the advancing 

contact angle becomes nearly negligible. That is to say that the surface energy becomes 

irrelevant to the departure behavior of droplets if the hysteresis is minimized. Analysis of this 
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also directs that if the hysteresis can be reduced to less than 8°, the departure diameter of a 

droplet will be about 1mm, regardless of advancing contact angle. 

 

Figure 2.5: Estimated departure diameter for a droplet on a vertical surface versus the contact angle hysteresis for a 
series of advancing contact angles (30°, 60°, 90°, and 120°). As the hysteresis gets sufficiently low, the droplets 

depart at essentially the same diameter. 

 This influence of hysteresis is also reflected when we compare the heat transfer 

coefficients on various surfaces in Figure 2.6. At very low hysteresis, when the departure 

becomes nearly independent of the contact angle, the highest surface energy displays the highest 

heat transfer coefficient, as would be expected as that surface would also have the highest 

nucleation density of droplets. This plot also displays the critical tradeoff with pursuing high 

surface energy surfaces in that the performance of them quickly drops off to well below 

hygrophobic surfaces with just a minor decrement in the hysteresis. It becomes obvious why so 

many studies were performed with low surface energy surfaces (high contact angle), because the 

hysteresis was nearly negligible and has little to no effect on the heat transfer coefficient as long 

as it is below 30° (CAH < 30°). 
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Figure 2.6: Numerical modeling comparing the estimated heat transfer coefficient (HTC) to the contact angle 
hysteresis with water for various advancing contact angles (30°, 60°, 90°, and 120°). When hysteresis approaches 

zero, the HTC of the system becomes highest with hydrophilic surfaces. 

While contact angle hysteresis has always been a factor in the performance of condensing 

surfaces, it becomes far more critical in this study. Where previous studies utilized high contact 

angle surfaces, where hysteresis had little effect, with hygrophilic surfaces, the hysteresis must 

be kept to minimum to enhance performance. It is only through a reduction in hysteresis that 

hygrophilic surfaces can exceed the performance of hygrophobic surfaces but can also lead to an 

enhancement in heat transfer not previously shown before.  

2.2.4 Tuned Glass Transition Temperature 

As mentioned above, in order effectively develop these hygrophilic condensing surfaces, 

the hysteresis must be minimized. Two effective methods that have been clearly demonstrated 

previously has been by reducing surface roughness and maximizing surface homogeneity.55,146 

The hysteresis can be further reduced through use of liquid surfaces, which is the premise of 

lubricant infused surfaces. Along this line of thought, an amorphous surface exhibits properties 
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similar to liquid surfaces and have been shown to further reduce surface defects and improve 

hysteresis with most liquids.67,147,148 By controlling the glass transition temperature of a solid 

surface such that it is sufficiently low and is in an amorphous state, it will take on “liquid-like” 

behaviors at room temperature. Combining all of the above design parameters, an ideal 

condensation surface would be a polymer-based self-assembled monolayer that has a surface 

energy that is mildly hygrophilic for the target condensate and has a glass transition temperature 

significantly below the application temperature to produce an amorphous surface that is mobile, 

minimizing contact angle hysteresis. 

2.2.5 Surfaces Identified to Conform to Design Parameters 

Identified herein, are a set of polymer brushes that exhibit contact angles between 40° 

and 80° for the target liquid. They also have glass transition temperatures below -70°C such that 

they are amorphous and mobile at the testing conditions, >30°C. The three polymer brushes 

identified are polyethylene glycol [PEG-3], polydimethylsilozane [1,3 cPDMS], and 

perfluoropolyether [PFPE] based silanes that were selected by tuning the surface energy to be 

only marginally lower (Dg < 20 mN m-1) to obtain contact angles that will maximize heat transfer 

for water, dimethylformamide, and toluene. The resulting films are shown in Table 2.1 with 

Figure 2.3 and Figure 2.6 overlaid with the corresponding properties of each film tested. 
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Table 2.1: Surface energy and glass transition temperature for each polymer brush along with dynamic contact 
angles for each condensate and surface combination. An additional fluorinated monolayer (F13Cl) is shown to be 

representative of a fully crystalline surface. Testing will also be performed on the crystalline fluorosilane. Note that 
contact angles for the low surface tension liquids are not shown for PEG-3 as they completely wet the surface. 

 

Figure 2.7: Modified version of Figure 2.3 with the contact angles of all coatings tested in this chapter overlayed on 
the graph for a visual representation of the expected improvement in HTC. 

Surface Properties 
Water 

(𝛾lv=72.1) 

Dimethyl-

formamide 

(𝛾lv=35.1) 

Toluene 

(𝛾lv=27.5) 

Pentane 

(𝛾lv=14.5) 

Coating 𝛾sv (mN m-1) Tg (°C) θa/θr (°) θa/θr (°) θa/θr (°) θa/θr (°) 

PEG-3 61.7 -70 52/45 -- -- -- 

1,3 cPDMS 25.1 -130 106/101 67/62 31/30 22/20 

F13Cl 15.1 175 113/91 78/46 58/31 34/14 

PFPE 14.8 -110 120/115 87/81 70/64 34/32 
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Figure 2.8: Modified version of Figure 2.6 with the approximate advancing contact angle and contact angle 
hysteresis overlayed for all experiments run with water as the condensate. The results reported later in this chapter 

reflect a realized improvement utilizing the PEG-3 due to the lower contact angle. 

 

2.3 Materials and Methods 

2.3.1 Coating Deposition Processes 

All coatings were self-assembled monolayer silanes that were deposited onto silicon 

wafers. Prior to silane deposition, the silicon was plasma cleaned for 20 minutes to activate the 

hydroxyl groups on the surface which subsequently reacted with the silane. 

 

Materials 

Silicon wafers (University Wafer test grade, 500 μm thickness, 1.5 nm native oxide layer, double 

sided polished <100> orientation) were used. On one side of the wafer, a 25 nm layer of NiCr 

followed by a 200 nm layer of copper were physical vapor deposited using a Cooke Evaporator. 

The coated wafers were then divided into 20 x 20 mm squares using an ADT 7100 Dicing saw. 
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The 1,3-dichloromethyldisiloxane, perfluorodecyldimethylchlorosilane, and 

methoxypolyethyleneoxypropyltrimethoxysilane were purchased from Gelest and Optool DSX 

was sourced from Daikin. Probe liquids and test liquids were used as received: ethanol, acetone, 

2-propanol, toluene, pentane, hexadecane, and dimethylformamide (Fischer Scientific), Vertrel 

XF dihydrodecafluoropentane (Chemours), trimethylchlorosilane (Acros Organic), 

diiodomethane (Sigma Aldrich), perfluorohexane (VWR International). 

 

 

1,3 cPDMS Process 

The 1,3-dichlorotetramethyldisiloxane was drop cast onto the plasma cleaned silicon and left to 

react at atmospheric conditions for 1 hour. It was then rinsed with toluene, acetone, and 2-

propanol. The ‘capping’ process involved attaching methyl groups to the free silanols on the 

surface to further reduce the surface energy and hysteresis. The PDMS treated silicon was placed 

in a PTFE container with 200 μL of trimethylchlorosilane for 2 hours. The sample was again 

rinsed with toluene, acetone, and 2-propanol. 

 

F13CL Process 

 The perfluorinated, ‘glassy’ surface was prepared as a comparison to the amorphous surfaces. 

The plasma cleaned silicon was exposed to (tridecafluoro-1,1,2,2-

tetrahydrooctyl)dimethylchlorosilane at 120℃ at <5mm Hg in a vacuum oven for 24 hours. The 

treated surface was then rinsed with Vertrel XF, toluene, acetone, and 2-propanol. The mono-

functional version was chosen over the more reactive tri-chloro counterpart to minimize self-

polymerization and surface roughness. 
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PEG-3 Process 

A 200 mL solution was prepared of toluene with 0.2w% 

methoxypolyethyleneoxypropyltrimethoxysilane and 0.1w% 1 molar hydrochloric acid to act as 

catalyst. The solution was placed in a PTFE container and the plasma cleaned silicon surface 

submerged in the solution for 2 hours. After treatment, the surface was sonicated in toluene, 

acetone, and 2-propanol for 2 mins each. 

 

PFPE Process 

The plasma cleaned silicon was exposed for 100 hours to Optool DSX at 150℃ at <5mmHg in a 

vacuum oven. After treatment, the surface was rinsed with Vertrel XF, toluene, acetone, and 2-

propanol. Due to the very slow reaction rate of the silane, the extended silanization time was 

necessary to create a densely packed monolayer that had minimal hysteresis. 

 

Lubricant Infused Surface (SLIPs) 

The lubricant infused surface was produced to give a comparison in durability. It was 

manufactured from an aluminum substrate (6061 T6 Aluminum Alloy, McMaster-Carr) which 

was first etched in 2.5 molar hydrochloric acid (Fischer Scientific) for 20 minutes to create nano-

structure. It was then agitated in a bath sonicator for 10 minutes to remove loose aluminum 

particles and placed in boiling water to convert the outer layer to boehmite nano-crystals (𝛾-

AlO(OH)). The textured aluminum was reacted with a vapor of (heptadecafluoro-1,1,2,2-

tetrahydrodecyl)triethoxysilane (Gelest) in a vacuum oven at 100℃ and ~5 mTorr for 24 hours. 

After rinsing with Vertrel XF, Toluene, and IPA, Krytox GPL-100 perfluoropolyether oil 
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(Miller-Stephenson Chemical Company) was drop cast onto the surface, and the sample inverted 

for 12 hours to allow excess oil to be removed.  

2.3.2 Measurement of Contact Angle and Surface Energies 

Advancing and receding contact angles for the liquids were obtained from a sessile drop 

method using a Ramé-Hart 200 F1 contact angle goniometer. A dispensing needle was placed just 

above the substrate surface and a 10 μL droplet was suspended from the needle. The volume of 

the droplet was then increased to obtain advancing contact angles and decreased to obtain receding 

contact angles. DROPImage Advanced software was used to obtain the contact angle using a 

circular drop fit. Three points on each substrate were measured, and the mean value reported with 

a standard error of ±2°. The measured contact angles for each surface are shown in Table 2.2. 

 

Table 2.2: Measured contact angle for the four test liquids on each of the four surfaces tested. Only water was 
measured on the PEG-3 as all other liquids fully wet the surface due to the high surface energy, higher than the 

surface tension of the liquids. 

Surface 

Type 

Water 

θa 

Water 

θr 

DMF 

θa 

DMF 

θr 

Toluene 

θa 

Toluene 

θr 

Pentane 

θa 

Pentane 

θr 

F13Cl 113° 91° 78° 46° 58° 31° 34° 14° 

PEG-3 52° 45° -- -- -- -- -- -- 

1,3 cPDMS 106° 101° 67° 62° 31° 30° 22° 20° 

PFPE 120° 115° 87° 81° 70° 64° 36° 34° 

 

To estimate the surface energy of each coating, we used the Owens-Wendt Method.35 After 

silanizing each surface, the Owens-Wendt analysis was performed with water (dispersive surface 

tension, γlv
d =21.1 mN m-1, and polar surface tension γlv

p =51.0 mN m-1) and hexadecane 
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(γlv
d =27.5 mN m-1 and γlv

p =0.0 mN m-1). Using the mean static contact angles of each liquid on the 

surface, the dispersive (γsv
d ) and polar (γsv

p ) components of the solid surface energy can be 

calculated by: 

 2

⎣
⎢
⎢
⎡ Cγwater

d Cγwater
p

Cγhexadecaned Cγhexadecane
p

⎦
⎥
⎥
⎤
G
Cγsv

d

Hγsv
p
I= J

(1+ cos θwater)γwater
(1+ cos θhexadecane )γhexadecane

K (2.3) 

Results of these calculations for each surface can be found in Table S.3. Note that for the PEG 

surface, since the surface energy is so high and hexadecane fully wet the surface, we had to use 

Diiodomethane (γlv
d =50.8 mN m-1 and γlv

p =0.0 mN m-1) instead of hexadecane in the Owens-

Wendt calculation to obtain the surface energy. 

Table 2.3: Summary of the polar, dispersive, and net surface energy for each of the experimental coatings. Surface 
energies were calculated using the Owens-Wendt method described above. 

Surface Type γsv
d (mN m-1) γsv

p (mN m-1) γsv,  net (mN m-1) 

F13Cl 14.5 0.6 15.1 

PEG-3 45 16.7 61.7 

1,3 cPDMS 23.7 1.4 25.1 

PFPE 14.6 0.2 14.8 

 

2.3.3 Droplet Departure Diameter Calculation 

Analysis of the experimental departure diameter was performed using ImageJ. Various photos 

were used that imaged the surface at 5°C and 10°C subcooling. The scale of the image was first 

calculated using the edge length of the samples which was consistent at 20 mm x 20 mm. 

Departed droplets near the top of the sample on the surface, were identified as being just 

departed if there was a droplet with an absence of droplets just above it, indicating that a droplet 



 44 

recently departed that area, which is depicted in Figure 2.9. If there was a long path above a 

droplet, that droplet was not used in this analysis as it would indicate the droplet has been 

moving and coalescing which would give an inaccurately large diameter. Once a droplet was 

identified, the brightness and contrast was adjusted on ImageJ to provide a clear and 

distinguishing border around the perimeter of the departed droplet. Provided the scale previously 

set, the diameter of the droplet could be directly measured. 

 

Figure 2.9. Example image of the droplet departure analysis performed. Larger droplets (a) surrounding a (b) void 
with newly nucleated droplets implying a recently departed droplet (c). When a droplet departs, it moves across the 
surface and coalesces with other droplets. Once it moves down, there is space where it recently was that is free of 

any droplets and new droplets nucleate. If there are larger droplets above these newly nucleated droplets, it implies 
that the moving droplet didn’t sweep past them and thus must have departed from the void with the newly nucleated 

droplets. 

2.3.4 Durability and Longevity Characterization 

To compare the durability of the surfaces, they were subjected to two tests to expose 

them to mechanical and chemical abuse. The first test was a series of linear abrasions that 

reciprocated an abrasive felt over the surface with contact angle being measured after set 

numbers of abrasions. The second test was an extended use test in which the samples were 

placed in the heat transfer chamber and experienced continuous condensation for multiple hours. 

A B 

C 
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 The mechanical durability test was performed by comparing the θadv and θrec with both 

water and hexadecane after a series of linear Taber abrasions. A piece of silicon was cut to be 

approximately 75mmx25mm. The silicon was then treated according to the deposition process 

outlined in 2.3.1. Sample was then mounted to a Taber model 5750 Linear Abrader which has a 

CS-5 (~12.5 mm diameter) abrasive felt tip attached, and a 500-gram load was applied which 

produced an equivalent pressure of about 40 kPa. The abrasion head was moved in a 

reciprocating fashion back-and-forth across the surface in a one-inch length at a speed of 60 

cycles/min. After a set number of abrasions, the system was stopped, the surface rinsed with 

acetone, IPA, and water, and the sample was dried with compressed air. The contact angles were 

measured at three different places along the abrasion length using both water and hexadecane. 

After the contact angles were measured, the sample was returned to the abrader for additional 

abrasion cycles. For most surfaces, the contact angles were collected after every 1000 abrasion 

cycles initially, and then every 3500 cycles thereafter. For surfaces that degraded rapidly, the 

contact angles were collected every 100 abrasion cycles. 

For the extended use tests, a specimen was first mounts to the condensation test apparatus 

and deposited with the coating. The system was then operated at normal test conditions with an 

absolute pressure of 15 kPa and saturated water vapor. The thermal flux of was fixed at 0.1 MW 

m-2 and thermocouple measurements and elapsed time were collected every 20-30 hours. The 

heat transfer coefficient was calculated at each time interval and plotted to show any degradation 

in heat transfer performance the surface experiences over extended use. 

2.4 Testing in Environmental Chamber 

The heat transfer measurements were performed in a custom designed and built 

environmental chamber. This testing chamber was modified to conform to testing conditions 
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utilized by other research groups. Testing is done at negative relative pressure to increase 

efficiency as outlined below. This also replicates commercial condensers which are operated at 

2-10 kPa to maximize efficiency.  

2.4.1 Chamber Layout 

The outside view of the chamber can be seen in Figure 2.10 and schematic in Figure 

2.11, with the main body of the chamber composed of a stainless steel 4-way cross, vacuum 

fitting with 6-inch ConFlat flanges. Each of the 4 openings have an attachment to them. The first 

opening has the sample mounting that is insulated by Teflon and connected to a liquid chiller that 

uses a PID controller to regulate the cooling temperature. The top opening has a smaller cross 

attached that consolidates multiple openings. This cross includes a pressure gauge (absolute 

piezo vacuum transducer, measurement range from 0.1-1300 torr), type T thermocouple (12-inch 

stainless steel sheath), and valve that opens/isolates the chamber to a vacuum pump. The vacuum 

pump can reach an absolute pressure of 0.1 Pa, and there is a liquid nitrogen trap (not pictured) 

between the chamber valve and pump to prevent any vapors from entering the pump. During 

operation, all flanges are sealed with a perfluoroelastomer (FFKM) gasket and 6 bolts. Heaters 

are attached to the outside of the chamber to heat the chamber walls. The wall temperature can 

be controlled with a variable voltage controller to maintain a wall temperature 1-2°C above the 

boiling temp of the liquid. This prevents vapor from condensing on the walls of the chamber 

which would reduce the condensation rate on the sample surface. 
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Figure 2.10: Outside view of the environmental test chamber. The main body is a stainless-steel cross with 4 
openings. A) Sample mount with PID liquid controlled cooling. B) Measurement and vacuum stack which 

consolidates the vacuum measurement, temperature measurement, and vacuum port. C) Quartz viewing window that 
allows photographs and videos to be imaged of the sample at the back of the chamber. D) Base plated of chamber 
that has heaters for evaporating liquid and port to allow liquid into the chamber. E) Strip heaters attached to the 

outside of the stainless-steel cross with heat transfer putty to maintain the wall temperature and prevent preferential 
condensation on the chamber walls. 

 

A 

B 

C 

D 

E 
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Figure 2.11: Schematic of a cross sectional view of the experimental chamber. Liquid at the base of the chamber is 
vaporized into the chamber. Liquid colling controls the test specimen surface and liquid condenses on the surface. 
Imaging can be performed through the viewing window. The heat transfer and temperature data are collected along 

the copper measuring block. 

Copper 
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Valve to vacuum Pressure gauge 

Thermocouple 
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 The heat transfer occurs in the copper shown on the left side of Figure 2.11 with a 

detailed view in 

 

Figure 2.12. A silicon subsrate is attached to a length of copper with a tin and lead based solder. 

The backside of the silicon has 25 nm of NiCr followed by 250 nm of copper deposited on it, this 

allows the solder to strongly adhere to the silicon and introduce minimal interfacial resistance 

between the copper length and silicon. On the opposite end of the copper, liquid flow channels 

are attached which are connected to a recirculating chiller. The chiller can maintain a 50/50 

water/ethylene glycol bath at a set temperature within 0.1°C. The chilled ethylene glycol mix is 

circulated through the cooling channels attached to the copper to constantly remove chill the 

substrate, creating the heat flux that is measured. Along the length of the copper, thermocouples 

are inserted to measure the temperature at known intervals (Dl) of 7.5 mm. Based on the 

temperature readings at each interval, the heat flux and surface temperature can be inferred. The 

copper is surrounded by a thick wall of Teflon. Since the conductivity of copper is more than 

Mounting surface of copper 

2 cm x 2 cm 

Δl 

Thermocouples (1-4) 

Teflon insulation Liquid cooling 

Silicon substrate 

2 cm x 2 cm 
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200x greater than Teflon, it can be assumed that any lateral heat transfer is negligible, and all 

heat transfer is through the surface of the substrate. The surface of the silicon substrate is treated 

with the target experimental coating. Since the heat transfer due to convection in a vacuum is 

negligible to that for phase transformation, the heat flux measured by the thermocouples can be 

attributed entirely to the condensation behavior of the surface. Along the perimeter of the Teflon 

insulation and the copper, there are FFKM gaskets to seal the chamber and maintain vacuum 

pressure. 

 

Figure 2.12: Detailed schematic of how the surface is cooled and heat transfer measured. The liquid cooling one the 
left provides the heat transfer out of the system while the silicon substrate condenses liquid due to the temperature 

differential with the vapor in the chamber. The thermocouples measure the temperature gradient between the sample 
and heat sink so the heat flux and surface temperature can be calculated. 

 During the experiment, the temperature readings of each thermocouple are recorded at 

various liquid cooling temperatures. For each thermocouple recording, data is averaged over 120 

second at 100 readings per second. A linear fit is then applied to the 4 thermocouple readings and 

the slope of the line calculated (dT/dx). Based on the slope of the temperature differential 

Mounting surface of copper 

2 cm x 2 cm 

Δl 

Thermocouples (1-4) 

Teflon insulation Liquid cooling 

Silicon substrate 
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(dT/dx) and the thermal conductivity of copper (kcu), the heat flux through the narrow portion 

that the thermocouple were could be calculated by: 

 𝑞.@++,ABB = −𝑘?/
=C
=D

 (2.4) 

Since heat flux is dependent on area, this would not be the same as the heat flux at the surface. 

The heat flux through the narrow, round portion (d = 15 mm) can be converted to a total energy 

transmission and then scaled to the corresponding area of heat transfer, the 2 cm x 2 cm square 

substrate. 

 𝑞'/E'*+@*)BB = 𝑞.@++,ABB F(H.J)%

3L%
 (2.5) 

The surface temperature (Tsurf) can also be calculated from the heat flux and thermocouple data. 

The temperature drop from the thermocouple nearest the substrate (T4) to the surface of the 

substrate could be calculated as follows: 

 𝑇'/+M = 𝑇2 + ∆𝑇.@++,A + ∆𝑇0,/.* + ∆𝑇N% (2.6) 

The temperature drop through the narrow portion of the copper, between the thermocouple (T4) 

and the bottom of the mounting portion of copper, can be determined by the heat flux previously 

calculated and the distance between them (7.5 mm): 

 ∆𝑇.@++,A =
O'())*+,,

P-.
(7.5) (2.7) 

The temperature drop through the mounting portion of copper (length = 15 mm) can then be 

calculated from the heat flux of the substrate as they are the same cross-sectional area: 

 ∆𝑇0,/.* =
O!./!0)(01
,,

P-.
(15) (2.8) 

Lastly, the temperature drop through the silicon can be calculated from the same heat flux and 

the thickness of the silicon substrate (500 µm): 

 ∆𝑇N% =
O!./!0)(01
,,

P23
(0.5) (2.9) 
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The conductivity of copper is nearly constant at 400 W m-1 K-1, but the conductivity of silicon is 

more temperature dependent in the working range for these experiments so it was estimated 

by:149 

 𝑘N% = 150( C!.)4
;LL[R]

)#2 ;T  (2.10) 

Based on these calculated values, the heat flux (q’’) and surface temperature could be used to 

determine the heat transfer performance of the surface. With the heat transfer coefficient being 

determined by the slope of the linear fit when heat flux (vertical axis) is plotted against surface 

subcooling (horizontal axis). The surface subcooling (dT) was calculated from the surface 

temperature and vapor temperature (Tvapor) measured by the thermocouple at the top of the 

chamber in Figure 2.11: 

 𝛿𝑇 = 𝑇>@U,+ − 𝑇'/+M (2.11) 

2.4.2 Significance of Non-Condensable Gases 

All of the condensation experiments in this work were performed under vacuum, and a 

majority of work published by other researchers is also done under vacuum conditions. The 

reason for this is to remove as many non-condensable gases from the testing chamber as 

possible. Non-condensable gases (NCGs) (i.e. oxygen, nitrogen, etc.) inhibit the condensation on 

the surface and therefore reduce the heat transfer performance of the surface. Initial work to 

rectify this used rapid air streams or increased vapor flow rates to diminish the effect of 

NCGs,150–156 but it wasn’t well understood until a study in 2008 identified the mechanism by 

which NCGs inhibit heat transfer with a direct comparison of different ratios of NCGs present 

shown in Figure 2.13.157 It found that there are two methods by which condensation is inhibited. 

The first is by way of forming a resistive boundary layer that increased the thermal resistance for 

heat transfer between the bulk vapor and surface. Just as a thick resistive coating, or a film of 
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resistive liquid, inhibits heat transfer, a layer of gases covering the surface prevent heat transfer. 

The more NCGs that are present, the thicker and more resistive this boundary layer is. The 

second mechanism is by the creation of a diffusive layer that the vapor must move through. The 

layer of NCGs present near the condensing surface creates a gas phase diffusion layer that 

inhibits the movement of vapor to the surface, thereby inhibit the condensation of the vapor. 

These two factors, combined, can lead to a more than 50% decrease in heat transfer coefficient, 

bringing the performance of a dropwise condensing surface to a comparable level as filmwise 

condensation. Even a marginal 1% NCGs present can reduce the heat transfer by 30%. 

Therefore, extensive efforts were made to ensure that the test chamber in this work was 

sufficiently vacuum tight and to ensure non-condensable gases were minimized. 

 

Figure 2.13: Effect that the presence of non-condensable gases have on the heat transfer performance of a surface. 
Tests were performed with a fluoropolymer coating and tested at atmospheric conditions. Plot is adapted from study 

in the International Journal of Heat and Mass Transfer.158 

2.4.3 Experimental Procedure 

Condensation experiments were conducted in a manner consistent with other research 

groups’ studies. Silicon substrates were first mounted on onto the copper measurement block by 
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heating to 190°C and using a tin and lead solder to adhere the two together. Prior to adherence, 

the double-sided silicon wafers were deposited with NiCr and Cu to enhance adhesion with the 

solder. The Cu backed wafers were then backed at 400°C to relax the internal stress and then the 

wafers were diced into 20 mm x 20 mm. Once the silicon substrate was mounted and cooled, the 

silicon was plasma cleaned and deposited with the desired coating. The Teflon enclosure with 

copper measurement block and mounted sample were mounted to the condensation chamber with 

the test surface flush with the chamber wall. 

Prior to the test commencing, the chamber was evacuated down to a pressure of 1 Pa for 

2 hours to ensure all non-condensable gases were sufficiently removed. At the same time, the 

strip heaters on the outside of the chamber were turned on at a voltage to maintain a chamber 

surface temperature 2-3°C above the expected boiling temperature of the liquid at 3 kPa. After 

the 2-hour evacuations, the chamber was sealed and a valve on the bottom of the chamber 

opened to allow the test liquid to enter the chamber. Once approximately 500 mL of liquid 

entered the chamber, the liquid valve was also closed, and chamber now isolated. The immersion 

heaters were turned on with a voltage to maintain the liquid and vapor temperatures were 

identical. The pressure of the chamber increased and stabilized between 2-3 kPa with saturated 

vapor. The liquid cooling was then initiated with a liquid set point temperature 5°C below the 

vapor temperature. Once the thermocouple readings stabilized, the data was readings were 

collected as described above. The liquid cooling was decremented by 2-5°C, depending on the 

proximity to the critical heat flux, and once the thermocouples stabilized, the readings were 

collected in the same manner. This procedure was repeated until the maximum heat flux was 

achieved which correlated with the maximum cooling capacity of the recirculating chiller (~100 

watts). 
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  While efforts were made to use similar test conditions to comparable studies, there were 

small variations, and in an attempt to better correlate the results, all results were extrapolated to 

atmospheric conditions for better comparison. To make the adjustment, the experimental data 

was divided by the ratio of the expected heat transfer from the model at test pressure and the 

expected heat transfer from the model at 101.3 kPa (atmospheric). The model calculated the heat 

transfer coefficient (HTC) from the heat transfer through individual drops q(r) and the 

distribution of the number of drops of a given radius.159 

 HTC= q''
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Where ∆T is the subcooling of the surface, r is the droplet radius, re is the radius of coalescence 

for the droplets, rmin is the minimum radius for a droplet to heterogeneously nucleate, r̂ is the 

droplet departure radius and was assumed to be the capillary length, n(r) is the distribution of 

non-coalescing droplets, N(r) is the distribution of coalescing droplets, kc is the thermal 

conductivity of the condensate, hi is the interfacial heat transfer coefficient of a droplet, tp is the 

thickness of the promoter layer, and kp is the conductivity of the promoter layer. The first 

integral in equation S2 relates to the total heat transfer through droplets smaller than the 

coalescence length, and the second integral is that for droplets larger than the coalescence length. 

The nucleation density was assumed to be 2×1011m-2 in accordance with other published 

assumptions. 
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For filmwise condensation, the Nusselt model was used estimate the HTC at the test 

pressure and atmospheric pressure160: 

 HTCfilmwise=0.729 Wg*ρl
Yρl-ρvZkl

3hfg
'

μl(2r)∆T
X (2.16) 

 hfg' =hfg+0.68cp,l∆T (2.17) 

Where g is the acceleration of gravity (9.8 m s-2), ρl is the condensate liquid density,  ρv is the 

vapor density, kl is the thermal conductivity of the condensate, μl is the dynamic viscosity of the 

condensate, hfg'  is the modified latent heat of vaporization with the change in specific heat of the 

condensate, and cp,l is the specific heat of the condensate. 

2.5 Results 

2.5.1 Heat Transfer Results 

Heat transfer performance was collected for liquids with water, dimethyl formamide, and 

toluene, which covered a range of surface tensions, 72.1 mN m-1, 35.1 mN m-1, and 27.5 mN m-1, 

respectively. Given the wetting interactions of these liquids on the previously identified coatings, 

a direct comparison was able to be made for the effect the contact angle on HTC, effect that 

hysteresis has on HTC, and the effect that hysteresis has on CHF. Table 2.4 summarizes the heat 

transfer results collected in all the experiments performed. 

 Heat Transfer Coefficient (kW m-2 K-1) 

 
Water 

(𝛾lv=72.1) 

Dimethylformamide 

(𝛾lv=35.1) 

Toluene 

(𝛾lv=27.5) 

Bare Si 10.26 ± 0.79 2.97 ± 0.16 1.87 ± 0.21 
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Table 2.4: Summary of heat transfer results for all combinations of liquid/surface coatings that were measured 
herein. The highest HTC achieved for water, dimethylformamide, and toluene were achieved utilizing the PEG-3, 1-

3 cPDMS, and PFPE polymer brushes, respectively. 

 

The first comparison can be done when examining the heat curve for water, which was 

condensed on the PEG-3, 1,3 cPDMS, and bare Si, shown in Figure 2.14. This study is the first 

to show sustained dropwise condensation with water on a surface with an apparent contact angle 

less than 60°. The PEG-3 monolayer combined all of the design factors outlined above: a thin 

chemically homogenous surface with minimal roughness to minimize thermal resistance and 

decrease hysteresis, a glass transition temperature of -70°C, ~100°C below the vapor temperature 

of water (~30°C), and a contact angle near the peak heat transfer in Figure 2.7. Although the 

contact angle is not at the maximum point, it is nearer the maximum than a hydrophobic surface, 

represented by the 1-3 cPDMS in this comparison. Given that the 1-3 cPDMS is a similar coating 

with similarly very low hysteresis (5° compared to 7° for 1-3 cPDMS and PEG-3, respectively) 

and is in an amorphous state with a Tg of -130°, the only distinguishable difference between 

these surfaces is the apparent contact angle. The contact angle displayed by the 1-3 cPDMS is 

PEG-3 26.85 ± 0.89 -- -- 

1,3 cPDMS 21.34 ± 0.82 8.73 ± 0.58 
DWC: 5.06 ± 0.25 

FWC: 1.51 ± 0.22 

F13Cl -- 5.48 ± 0.25 
DWC: 3.73 ± 0.20 

FWC: 1.63 ± 0.13 

PFPE -- 6.52 ± 0.43 
DWC: 6.88 ± 0.31 

FWC: 1.52 ± 0.14 
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50° higher than the PEG-3 and is further from the maximum HTC peak indicating the 

hydrophilic PEG-3 should display a higher HTC compared to the hydrophobic 1-3 cPDMS. 

 

Figure 2.14: Condensation heat transfer results for water on PEG-3, 1-3 cPDMS, and bare Si. A) Heat curve with 
data collected for the 3 surfaces along with a representation of the Nusselt model, a numerical model predicting the 
heat transfer for filmwise condensation. B-D) Images of the condensation mode at 5°C subcooling on 1-3 cPDMS, 
PEG-3, and bare Si, respectively. PEG-3 and 1-3 cPDMS both displayed dropwise condensation for the entirety of 

the testing range, up to the maximum achievable heat flux of 200 kW m-2. 

The resulting heat curve shows that this hypothesis is correct, reducing the contact angle 

enabled greater heat transfer with minimal changes to hysteresis or other material properties. The 

PEG-3 had a heat transfer coefficient of 26.85 kW m-2 K-1, a 26% improvement over the 

hydrophobic 1-3 cPDMS which only had an HTC of 21.34 kW m-2 K-1. While both the PEG-3 

and 1-3 cPDMS exhibited ultra-low Tg, hysteresis of 8° or less, and were able to sustain 

dropwise condensation, the higher surface energy of the PEG-3 enabled a greater condensation 
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rate. When scaled to atmospheric conditions, this represents an HTC of 53.51 kW m-2 K-1, which 

is a 373% improvement over filmwise condensation. Once scaled to atmospheric, this can also be 

directly compared to a study in Advanced Materials that condensed on smooth, hydrophobic, 

thin, polymer films which achieved an HTC of about 38 kW m-2 K-1; the PEG-3 coating presents 

a 41% improvement in heat transfer performance compared to this published work.132 

 Moving on to lower surface tension, dimethylformamide (DMF) provides a direct 

comparison of the effect of contact angle and the effect of hysteresis. While all the sample tested 

exhibited contact angles in the previously identified, ideal range (30° < θa < 80°), there was 

significant variation in the heat transfer performance which can be directly attributed to the 

differences in wetting properties. 

First, examining the influence of contact angle, the importance of a hygrophilic surface is 

support again when comparing the 1-3 cPDMS and PFPE. Both of these polymer brushes have 

similar properties (ultra-low Tg, CAH £ 6°, thin film) with the only distinction between them is 

the 1-3 cPDMS has a contact angle 20° less than the PFPE. This leads to the 1-3 cPDMS 

exhibiting an HTC of 8.73 kW m-2 K-1, 34% higher than the comparable PFPE (HTC = 6.52 kW 

m-2 K-1). This difference can be visually seen in the images of these surfaces in Figure 2.15 b 

and d. They have very similar droplet diameters scattered on the surface, but the density of these 

droplets is greater on the 1-3 cPDMS as predicted by the Gibbs free energy model. 

 Next, a direct comparison of the significance of hysteresis can be seen when comparing 

the F13Cl to the PFPE brushes. According to the Kim and Kim model and Gibbs free energy, the 

F13Cl should present a high heat transfer coefficient due to the marginally higher surface energy. 

In reality, the PFPE (HTC = 6.52 kW m-2 K-1).  achieved an HTC 19% higher than the F13Cl 

(HTC = 5.48 kW m-2 K-1). This can be directly associated with the higher hysteresis of the 
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F13Cl. According to the design criteria, the hysteresis must be minimized to facilitate the 

departure of droplets from the surface; a high hysteresis will lead to delayed departure, 

increasing resistance and coalescence of droplets. This effect can be seen visually in Figure 2.15 

c and d in which the droplets on the F13Cl surface are significantly larger than on the PFPE 

surface and are already coalescing to form a film towards the base of the sample. While both 

coatings are thin, fluorinated silanes, there is a distinct difference in their glass transition 

temperatures. At the testing temperature (30°C), the PFPE (Tg = -110°C) would be in an 

amorphous state whereas the F13Cl (Tg = 175°C) would be in a crystalline “glassy” state. This 

displays the importance of the glass transition temperature in producing viable, hygrophilic 

surfaces for condensation. 
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Figure 2.15: Condensation heat transfer results for dimethylformamide on PFPE, 1-3cPDMS, and F13Cl polymer 
coatings in addition to bare Si for a filmwise reference. A) The 1-3 cPDMS displayed the highest heat transfer 

coefficient due to the lower hysteresis compared to F13Cl and lower contact angle compared to PFPE. B-D) Images 
of the condensation mode at 10°C subcooling on 1-3 cPDMS, F13Cl, and PFPE. At 10°C subcooling, the F13Cl is 
already beginning to display a transition to filmwise condensation as the droplets are coalescing too quickly and 

delayed from departing. 

Lastly, we examine the heat curve for toluene, a commonly used low-surface tension 

liquid. This was the only experimental liquid that had a clear and full transition from dropwise 

condensation to filmwise condensation as all three coatings eventually collapsed to the filmwise 

curve as shown in Figure 2.16. This provides a stark comparison between the F13Cl and PFPE 

coatings and the significance hysteresis can play. Despite having similar contact angles, the 

PFPE sustained dropwise condensation at 5 times higher subcooling and the HTC in the 

dropwise region for the amorphous PFPE was 85% higher than the glassy F13Cl. The 

importance of hysteresis played a most critical role with the 1-3 cPDMS, though. No previous 

study has shown dropwise condensation of any low surface tension liquids on a surface with a 

contact angle lower than 50°.57 The 1-3 cPDMS coating maintained dropwise condensation with 

an advancing contact angle of just 31° due to the minimal 1° hysteresis. This becomes clear in 

the images of condensation on 1-3 cPDMS and PFPE in Figure 2.14 b and c, respectively. 

Despite the contact angle of toluene on PFPE being more than twice as large, the droplet 

diameters are nearly identical as predicted in Figure 2.5. 
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Figure 2.16: Condensation heat transfer results for toluene on PFPE, 1-3 cPDMS, and F13Cl coatings along with 
bare Si for filmwise reference. All coatings displayed a distinct transition from dropwise to filmwise condensation 

during this experiment. A) The PFPE displayed the highest HTC and CHF of all the surfaces, while the 1-3 cPDMS 
displayed dropwise condensation on the lowest reported contact angle. B-D) Images of the condensation at 5°C 

subcooling on 1-3 cPDMS, PFPE, and F13Cl. The F13Cl has already started transitioning to filmwise condensation. 

2.5.2 Droplet Departure Analysis 

The behavior of how droplets grow and depart is critical to the efficiency of heat transfer 

during condensation. As mentioned above, the size of droplets as they depart can be imaged and 

is important in verifying the analysis for the mechanism by which these coatings improve the 

heat transfer. In consideration of Figure 2.5, if the hysteresis is sufficiently low, as the polymer 

brush coatings are, then the departure diameter of droplets should be approximately the same 

regardless of surface energy. An analysis of the images for water and toluene support this when 

examining surfaces with similarly low hysteresis but very different contact angles.  
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Figure 2.17 compares the departure of water droplets from 1-3 cPDMS and PEG-3 

coated surfaces.  

 

Figure 2.17: Water droplets departing the 1-3 cPDMS (left) and PEG-3 (right) coated surfaces. Despite surface 
energies and contact angles that are very different, droplets depart the surface at approximately the same diameter. 

Despite PEG-3 having a surface energy twice as large, and a contact angle half that, of the 1-3 

cPDMS, the droplets depart at nearly the same diameter. This analysis was performed on 

multiple droplets in   

Table 2.5 on each surface and showed that the average departure diameters were nearly 

identical.  

Table 2.5: Measured departure diameter for droplets on 1-3 cPDMS, PEG-3, and PFPE with two of the test liquids. 
Results show that when hysteresis is sufficiently low, the departure diameters are nearly identical. 

 Water Toluene 

 1-3 cPDMS PEG-3 1-3 cPDMS PFPE 

D
ep

ar
tu

re
 D
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m

et
er

 

(m
m

)  

1.19 1.22 1.01 0.85 

1.13 1.28 0.89 0.92 

1.12 1.14 0.91 0.87 

1.05 1.21 0.98 0.94 
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1.08 1.29 0.99 0.93 

1.11 1.11 1.04 0.89 

Average (mm) 1.11 1.21 .97 .90 

Standard Deviation (mm) 0.05 0.07 0.06 0.04 

 

The same analysis was performed with toluene to ensure that this is independent of the liquid. 

With 1-3 cPDMS and PFPE, shown in Figure 2.18, the droplets depart at nearly the same 

diameter and this proved true in the analysis of multiple droplets as well. Therefore, the 

hysteresis is the primary consideration in droplet departure; if the hysteresis is sufficiently 

minimized, dropwise condensation can be maintained on nearly any surface. Using this 

important design parameter, a surface could be customized to maximize condensation heat 

transfer for any liquid by tuning the surface energy. If that surface has minimal hysteresis, it will 

sustain dropwise condensation. 

 

Figure 2.18: Toluene droplets departing the 1-3 cPDMS (left) and PFPE (right) coated surfaces. Again, the surface 
energy and contact angle becomes negligible when the hysteresis is sufficiently minimized. 
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2.5.3 Applicability to other substrates and other liquids 

 An important design consideration when considering the widescale use is the 

applicability of these coatings to a variety of surfaces and utilization with a variety of liquids. 

Condensation surfaces have potential use in numerous refrigeration and distillation applications. 

To display the applicability for such uses, two additional liquids were condensed on the surface 

in Figure 2.19, a common refrigerant R-30 (dichloromethane) (glv = 26.5) and a low surface 

tension component of fuels, pentane (glv = 15.6). Both liquids were condensed on the PFPE 

brushes and displayed dropwise condensation up to the maximum subcooling capability. 

 

Figure 2.19: Condensation of dichloromethane (left) and pentane (right) on PFPE coated surface. Both liquids 
displayed dropwise condensation up to the maximum subcooling capability. Due to the volatility of these liquids, 

collecting a heat curve was difficult and inaccurate. 

 Widespread adoption of this classification of surfaces also requires the ability to apply to 

current machinery. Since most condensing surfaces are not made from silicon, copper pipes were 

coated and condensed on in Figure 2.20. The copper required a slightly different deposition 

method to activate the surface hydroxyl groups for silanization. The copper was first cleaned 

with toluene, acetone, and IPA. It was then plasma treated for 30 mins and placed in a 2 molar 

potassium hydroxide (KOH) base bath. After 2 hours in the base bath, the copper was rinsed with 

water, dried with compressed air, and then treated with the PFPE silane as described in section 

2.3.1. After coating deposition, the pipe was attached to the liquid cooling with a vacuum sealed 

pass through which allowed the liquid to cool the copper pipe while maintaining vacuum in the 
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chamber. Both water and toluene successfully condensed on the PFPE coated pipe, though no 

heat transfer data could be collected due to the minimal temperature drop in the cooling liquid. 

 

Figure 2.20: Condensation of water (left) and toluene (right) on a copper pipe coated with PFPE brushes. The 
coated copper sustained dropwise condensation with both liquids, though heat transfer measurements could not be 

reliable collected. 

2.5.5 Comparison of Results to Prior Work 

To make a proper comparison of this data to previously published data, all data was 

scaled to atmospheric conditions based on the analysis outlined previously. The enhancement 

shown in this study was directly compared to the highest enhancement in any prior study, 

summarized in Table 2.6. This comparison can be done in two ways, the first is comparing to the 

relative enhancement at the test pressure of the corresponding study, and the second is to scale 

all results to atmospheric pressure. Both the highest relative improvement and the highest 

improvement scaled to atmospheric are shown in the table. While the results herein do not 

exceed some of the highest improvements shown prior, it is important to consider the context for 

the enhancements. Many of these highest enhancements were performed using mechanisms other 

than a smooth surface, either through micro- and nano-textured surfaces or through lubricated 

surfaces. As has been previously discussed, these types of surfaces are limited in either their 

short time span on enhancement (as with SLIPs) or their narrow usability window (as with 

jumping droplets). It is important to consider the real-world use conditions of these surfaces and 
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the next section goes to show that the coatings outlined in this study exhibit superior usability 

characteristics. 

Table 2.6: Summary of the heat transfer enhancement of this study compared to the highest previously published 
enhancement. Note that this study focused solely on smooth films whereas prior studies have used other mechanisms 

like micro texturing and lubricated surfaces 
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Water 10.26 11.4 26.85 53.51 162% 373% 120%150 484%161 

Toluene 1.87 2.09 6.88 9.44 270% 355% 450% 
(LIS)162 611% (LIS)161 

DMF 2.97 -- 8.73 -- 294% -- 350%163  

 

2.6 Durability and Longevity 

As mentioned above, while other surface treatments can yield greater heat transfer enhancements 

for condensation, these enhancements may not be feasible for actual use conditions because they 

either degrade rapidly or can easily be damaged. The tests were conducted in accordance with 

the procedures outlined in section 2.3.4. Abrasion testing was performed to validate the 
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mechanical durability of the polymer brush surfaces. The results of evolution of contact angle for 

water and hexadecane are shown in Figure 2.21. There is a clear degradation in the glassy 

fluorinated surface compared to the negligible change in contact angle for all the amorphous 

surfaces. With crystalline surfaces, any defect caused by the abrasion becomes a pinning point 

where liquid can interact with the underlying substrate. Whereas the advantage of an amorphous 

coating is that when a defect occurs, the coating is mobile and can cover the exposed substrate so 

the liquid is still only interacting with the coating. 

 

Figure 2.21: Mechanical durability testing where the dynamic contact angles, for water (left) and hexadecane 
(right), are plotted after a series of linear abrasion cycles for each of the surface coatings in this study. The 

amorphous polymer brush surfaces displayed negligible change in contact angles after 12,000 cycles, whereas 
lubricated surfaces degraded in less than 1,000 cycles and the glassy F13Cl degraded in less than 10,000 cycles. 

Note hexadecane contact angles were not collected on PEG-3 as the liquid fully wets the surface. 

 A similar trend was seen when testing the chemical stability of these coatings. An 

important property of any condensing surface is how long it can maintain its performance. As 

seen above, lubricated surfaces degrade in the matter of a few hours. To validate the stability of 

these surfaces, they were subjected to continuous condensation of water at a high heat flux. 

Figure 2.22 shows that the amorphous coatings maintain condensation performance and remain 

in dropwise condensation, whereas the glassy F13Cl degraded to filmwise condensation rapidly. 

This can be attributed to the ability for amorphous surfaces to resist hydrolysis of the coating, 
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and, just as with mechanical abrasion, “repair” any defect spots to prevent exposure of the 

condensate to the underlying substrate. 

 

Figure 2.22: Chemical stability of test surfaces based on their ability to maintain condensation performance over 
extended periods of use. All amorphous surfaces had less than a 10% change in HTC over 200 hours, whereas the 

crystalline coating degrades to filmwise condensation in less than 50 hours. 

2.7 Conclusion 

In this study, we demonstrated new design criteria for enhanced heat transfer 

performance of condensation surfaces. By utilizing thin, amorphous polymer films, the surface 

energy of the coating can be tuned to maximize the heat transfer characteristics. This 

combination enables efficient departure of droplets while increasing the nucleation rate. We 

show that by minimizing contact angle hysteresis, the departure of condensate droplets can 

become independent of contact angle so the contact angle can be chosen, specific to the 

condensate, to maximize nucleation. While other studies have shown slightly higher 

enhancement of heat transfer properties, the coatings identified here are smooth and conformal 

coatings that could be easily applied to current infrastructure. Additionally, the amorphous 
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coatings exhibited far greater durability and longevity of use, greatly expanding their applicable 

use cases. This tunable control of condensation demonstrates the importance of hysteresis in the 

rational design of condensation heat transfer surfaces and a new design and optimization 

approach with widespread applicability.
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Enhanced pool boiling performance of thermally and 

mechanically durable diamond-like carbon coating 

 

This chapter is primarily adapted from an article submitted to Nature Materials and was part of a 

collaborative effort with John Heron and Ctirad Uher. Production of the target materials was 

performed by Trevor Bailey. Deposition and characterization were performed by Peter 

Meisenheimer, who is an equal first author on the manuscript. 

3.1 Introduction 

 Boiling phase transformation is an important process in a variety of industrial processes 

and is critical in electric power generation, the world’s largest CO2 emitter. A majority of world 

energy consumption is used for power generation, with nearly 50% of power generated with a 

steam turbine cycle.164,165 Even with the increasing use of renewable energy, steam power 

generation is still employed across nuclear, geothermal, and solar energy such that steam is 

expected to grow 25% over the next 20 years.166 Even marginal improvements in the efficiency 

of steam generation can lead to the prevention of tons of CO2 emissions each year.167 
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 Boilers in fuel burning power plants are operating at increasingly hotter and hotter 

temperatures in search of greater efficiency. The next generation of fuel burning boilers will 

operate in excess of 600℃; this brings with it a necessity for all new materials that are heat stable 

and can operate at these severe temperatures.168 A surface coating to enhance the heat transfer 

coefficient into the operating fluid would lead to reduced material cost, smaller machine 

footprint, and increased operating efficiency.169,170 

 Despite the shift towards renewable energy sources, the use of steam generated power is 

expected to continue to grow for the next 20 years, and enhanced surface performance is just as 

applicable to nuclear and solar thermal power. A major risk in the regular operation of nuclear 

boilers is the departure from nucleate boiling, or the shift from bubbles nucleating and departing 

the surface to coalescing and forming an insulating film over the surface (dryout).171 Dryout of 

the fuel rods is directly related to their failure, uncontrolled temperature increase, and eventually, 

meltdown.172,173 Nuclear boilers are limited in their operating temperature by this critical heat 

flux (CHF) point when the vapor film forms.174,175 A non-insulating surface coating that can 

increase the critical heat flux would allow for greater operational efficiency of nuclear power 

production. 

 The efficiency of a boiling surface is quantified by the heat transfer coefficient (HTC), 

the ratio of heat flux across the surface and the superheat temperature, and the critical heat flux 

(CHF), the point at which bubbles coalesce to form a vapor film across the surface, sometimes 

referred to as dryout or departure from nucleate boiling.83 Prior research on boiling has taken two 

directions, surface texturing and suspended nano-particulates in the fluid.  

Numerous studies have been published regarding pool boiling on micro- and nano-

textured surfaces, which has been shown in simultaneously increase HTC and CHF.176–190 The 
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heat transfer coefficient is primarily enhanced by surface texturing through an increase in both 

wetted area and nucleation sites. Since the heat flux is a measure of energy per unit area, it would 

follow that an increase in that area would lead to more energy transfer. In studies, heat flux is 

calculated by the projected area though, so surface texturing would increase the surface area in 

contact with liquid, but not in the reporting of heat flux. This increase in heat flux being 

correlated to the increased wetted surface area has been shown in multiple studies.12,191,192 Not all 

increases in HTC can be attribute to the increase in wetted surface area, there is also a correlation 

with an increase in nucleation sites. Trapped air cavities act as additional activation sites for 

nucleation, and surfaces with nano-texturing creates additional cavities for air to be trapped.193–

195 These extra cavities increase the nucleation density of the surface, and since the heat transfer 

coefficient is correlated with the volume of liquid evaporated, the HTC increases with it.196,197 

The surface texture has an equally important role in enhancing CHF through both hydrodynamic 

pumping, and when textured, can create pathways for fresh liquid to wick in. Both mechanisms 

rely on expeditiously bringing cooler liquid across the surface to prevent dryout of any regions. 

When the texturing is smaller than the capillary length, the structure can wick liquid in from the 

sides and deliver it to the middle of the sample, which typically reaches dryout first. 109,198,199 

While wicking utilizes the structure to draw in liquid from the sides, the surface texture can also 

be patterned to create non-nucleating regions that develop into liquid pathways for liquid to 

come down to the surface while vapor pathways have the enhanced nucleation sites.8,105 

 Fluids with very small fractions of nanoparticles in them have been shown to also 

increase HTC and CHF, though not as significantly as surface texturing. This is because the 

nanoparticles enhance the heat transfer for many of the same reasons. When a bubble forms, the 

particles suspended in the liquid, deposit on the surface and introduce increased roughness which 
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increases the wicking and nucleation sites.200–207 The nanofluids also see an increase in HTC due 

to the reduced surface tension of the liquid and increased fluid conductivity, but these 

improvements are small compared to surface texturing.208–210 Despite these improvements, the 

enhancement from nanofluids is temporary as the nanoparticles eventual start scaling on the 

surface which leads to a decline in performance.211–213 

 Both surface texturing and nanofluids can add ever increasing complexity to the surface 

to enhance boiling heat transfer properties, but this deviates from common use cases and inhibits 

scalability. Therefore, this study focused on developing a smooth surface that can enhance HTC 

and CHF. This would not only be more scalable to industrial applications but could be 

conformally coated to any surface texturing to further enhance performance. 

3.2 Design Criteria for Boiling 

3.2.1 Optimized Surface Properties 

There are two important physical properties for a boiling surface, a high heat stability and 

low thermal resistance. In all of the previous boiling studies, the surfaces are untreated, high 

surface energy materials. Self-assembled monolayers (SAMs) have been extensively used for 

other heat transfer applications for their ability to control the wetting properties and are 

sufficiently thin such that the conductivity becomes negligible.131,214 There are few studies that 

reliably control the wettability of the surface, and those that do, typically do so with a 

fluoropolymer like Teflon (PTFE).105,215,216 Unfortunately, these types of coatings are unsuited 

for industrial boiling due to the extreme operating temperatures in excess of 400℃; silanes and 

thiols begin degrading at temperatures well below this and even PTFE degrades at 400℃.217,218 

Any coating designed for boiling applications requires greater heat stability that is displayed by 
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polymer and silane options, and it should be able to maintain performance up to at least 700°C to 

be viable for industrial boilers. 

Low thermal resistance is the other critical design parameter for an efficient boiling 

surface. One of the major pitfalls of nanofluid enhancement is that the improvement is only 

temporary, as boiling progresses, the nanoparticles deposit on the surface creating a scale. This 

scale increases the thermal resistance for heat transfer and reduces the HTC as shown in Figure 

3.1.213 Just as the layer of scale inhibits heat transfer, any polymer coating would also reduce the 

heat transfer performance. Unfortunately, the rate of scale deposition increases with temperature 

making nanofluids even less viable for high temperature industrial applications.219 Resistance is 

also important when considering PTFE, which is stable in lower temperature applications, 

though the resistance makes it an unviable solution. Consider a moderate heat flux of 200 kW m-

2 across a 100 µm layer of PTFE (k = 0.25 W m-1 K-1), the result would be an 80°C temperature 

drop across the PTFE layer nullifying any performance advantage it may otherwise produce.220 
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Figure 3.1: Correlation between thermal resistance of the scale and the heat transfer coefficient. The progressive 
deposition of scale on the surface has the same effect of any thick polymer coating in inhibiting heat transfer 

performance. Figure is adapted from study in Experimental Thermal and Fluid Science.213 

3.2.2 Surface Energy 

As described in section 1.4.2, the Gibbs free energy for a bubble to nucleate on the 

surface is highly dependent on the contact angle of the liquid on the surface such that as the 

contact angle increases, the Gibbs free energy for nucleation decreases. This trend can be 

captured by the nucleation density of a surface, which is shown as an inverse in Figure 3.2.106,221 

This in contrasted against the contact diameter of a bubble on the surface.222 As the contact angle 

increases, the nucleation density increases, and the bubbles spread across the surface more. 

 

Figure 3.2: Plot comparing the areal nucleation coverage to the contact diameter for bubbles. The areal nucleation 
coverage represents the average distance between nucleation sites and is the inverse of the nucleation density. The 
contact diameter relates to the spreading of bubble on a surface. Since the vapor phase is now contained in a liquid, 

the trend is opposite of a droplet in that a bubble on a hydrophobic surface spreads whereas a bubble on a 
hydrophilic surface does not. 

These trends in Figure 3.2 can be directly correlated to the heat transfer coefficient and 

critical heat flux for a surface. With the enthalpy of vaporization significantly higher than the 

specific heat of a liquid, the amount of thermal energy transferred to the liquid is directly related 
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to the amount of vapor that is formed. The nucleation density represents the rate of bubble 

formation and therefore is directly correlated to the heat transfer coefficient. As the bubbles 

spread out more and more, they also cover more of the surface in a vapor, and the narrower 

spacing between nucleation sites which leads to greater coalescence of bubbles. The contact 

diameter can be directly related to the onset of the critical heat flux, with some influence by the 

nucleation density. Therefore, a general correlation can be made that as the contact angle 

increases, the HTC increases and CHF decreases, and this has been modeled in Figure 3.3. 

 

Figure 3.3: Correlation between the heat transfer coefficient and critical heat flux to the contact angle of the surface. 
This is a general estimation made form numerical models, though it does not account for the hysteresis of the 

surface. 

From these models, a balance between high HTC and high CHF can be struck when the 

contact angle is between 70° and 90°, though it would appear that both HTC and CHF cannot be 

increased simultaneously. While these models can provide general direction of these two 

performance factors, no model incorporates the influence of hysteresis. 
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3.2.3 Contact Angle Hysteresis – Bubble Growth and Departure 

Although the contact angle hysteresis is not incorporated into any of the numerical 

models, it is critical when considering the growth and departure of bubbles. Just as the hysteresis 

is determinant in the mobility of droplets on a surface, it is also important in the consideration of 

bubbles moving on a surface. As described in Section 1.4.2, the growth and departure of bubbles 

is the most critical consideration in the performance of a boiling surface. The rapid growth, 

departure, and re-nucleation of a new bubble are the driving factors of the heat transfer 

coefficient. Since the HTC is dependent on the volume of liquid vaporized, the faster a bubble 

grows and departs, the more liquid that can be vaporized, and therefore the higher the HTC. 

Similarly, the critical heat flux is also highly dependent on the behavior of bubbles on the 

surface. If bubbles grow too large, they cover the surface in a vapor layer which accelerates the 

onset of filmwise boiling. This can be attributed to either the contact angle being too large such 

that a relatively small bubble, in volume, spreads out and covers a large area of the surface, or to 

bubbles that are delayed from departing the surface and cover the surface in a vapor layer for 

long periods of time. It is clear that any surface that can accelerate the rate of bubbles growing, 

departing, and re-nucleating on the surface would thereby increase the HTC and CHF. 

There is no prior study on the influence of hysteresis on a boiling surface, primarily 

because it is difficult to create tuned surfaces that can sustain their surface wettability during a 

boiling test. The only known study that assesses mildly hydrophilic surfaces (30° < q < 90°) does 

so with copper that has been oxidized to varying degrees, but this leads to high hysteresis, which 

will be shown later to inhibit heat transfer performance.223,224 Although we cannot quantify the 

effects of contact angle hysteresis in this work, we can show the qualitative analysis that we use 

to structure the design parameters for a good boiling surface. 



 79 

The first key to under is the growth of a bubble on the surface. As mentioned above, the 

behavior of a bubble is the inverse of that of a droplet, so the growth of a bubble is associated 

with the recession of the liquid contact line. Thus, the force for a bubble to grow and expand the 

contact area on a surface is dominated by the receding contact angle such that: 

 𝐹)DU@.= = g	𝑤 cos 𝜃+)? (3.1) 

As the bubble grows larger, there is a tension force around the surface area of the bubble causing 

it to expand and this is counteracted by the force to move the 3-phas contact line across the 

surface (dictated by the receding contact angle. Increasing the receding contact angle, though 

maintaining it below 90°, would decrease this force and allow a bubble to more easily increase 

its contact area. Though, this would seem counter intuitive to what was described above because 

an increased contact area would cover more of the surface with vapor. That brings in the second 

consideration for the bubble in that we want the bubble to grow quickly. The evaporation of 

liquid primarily occurs as the 3-phase contact line which is the perimeter of the contact 

area.225,226 This rate of evaporation of liquid to vapor (Vm) in the bubble has been modeled:227 
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In this model, C1, C2, f, and nl are all liquid dependent, so they would not vary with the surface. 

The equation can be simplified down to Vm µ R3, where R is the radius of the contact area. Thus, 

a large contact area is actually desired as it rapidly vaporizes liquid and expands the bubble 

volume. 

 Though there is a limit to the desirability of bubbles to quickly grow in that they also 

need to quickly depart the surface. If a bubble expands and then remains on the surface, then it 

leads to dryout. This brings us to the final consideration with hysteresis that the bubble needs to 

quickly depart the surface. Opposite of bubble growth, the departure of a bubble is driven by the 



 80 

advancing contact angle as the water contact line progresses across the surface to eventually 

cover up the dry area where the bubble is in contact.228 Overcoming the surface tension forces, 

the buoyancy force is now dominates; although buoyancy existed during bubble growth, in that 

phase, it was minimal, and the recession of the contact line was dominated by surface tension. 

This combined force can be represented by: 

 𝐹?,.*+@?* 	= 	g	𝑤 cos 𝜃@=> +
^/.*7('0
_`:8(8"

 (3.3) 

Where the buoyant force is a function of the bubble volume (Vb) and the liquid and vapor 

densities (r): 

 𝐹E/,a@.* = 𝑉E(𝜌< − 𝜌>)𝑔 (3.4) 

Accordingly, the force for the contact area to shrink is driven by the advancing contact angle and 

the force is minimized when the advancing contact angle is very small. Since the advancing 

contact angle must be larger than the receding contact angle, a dilemma arises in which a large 

receding contact angle and small advancing contact angle is most desirable. Since this is 

impossible, the best combination would be for the two angles to be identical. Therefore, we can 

get to the assumption that minimizing hysteresis is the best possible fulfillment of this dilemma 

such that qrec > qadv > 90° and Dq » 0°. Combining this with our previous criteria for a 

moderately hydrophilic surface 50° < q < 90°, we can assume that a surface with an advancing 

contact angle between 50° and 90° should balance good heat transfer coefficient and critical heat 

flux, while potentially being able to simultaneously increase both if the contact angle hysteresis 

is reduced.  

3.2.4 Diamond-like Carbon 

Diamond-like carbon (DLC) is a class of materials derived from metastable amorphous 

carbon-carbon bonding. It is characterized by a combination of sp2 (graphitic) bonds and sp3 
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(diamond) bonds. This combination of bonding provides a material significantly easier to create 

than diamond, but exhibits similar properties to diamond like exceptional physical, mechanical, 

and inert properties. Though not to the same extent as diamond, DLC is an excellent compromise 

between the favored properties of diamond and the cost effectiveness of graphite. DLC was 

identified as an exceptional candidate for boiling heat transfer because it exhibits good stability at 

high temperatures and can be doped with various elements to control its wetting dynamics. 

Diamond-like carbon typically has an indentation hardness of 5-30 GPa, depending on the 

constituents and degree of sp3 bonding present. While there are numerous variables that contribute 

to the difference in hardness exhibited by various DLC surfaces, the difference can typically be 

attributed to the dopants, deposition process, and degree of sp3 bonding achieved. These 

parameters will be examined further in the methods section, but the high hardness of DLC is 

associated with the high degree of abrasion resistance. DLC has been shown to resist many 

thousands of harsh abrasion cycles with minimal deformation or material removal.229 Additionally, 

DLC has also shown high temperature resistance, maintaining performance above 500°C.230,231 

Though there has been some evidence that fully carbon diamond-like carbon begins to degrade 

and oxidize above 500°C, the films can be stabilized with dopants, like silicon, that can retard the 

degradation of the material.232 All-together, DLC exhibits very high mechanical and thermal 

resistance that is ideal for a thin boiling surface. 

Although DLC does not exhibit very high thermal conductivity (1-3 W m-1 K-1), just as 

with silanes for condensation, the conductivity becomes negligible at sufficiently small thicknesses 

(< 1µm).233 With the high abrasion and chemical resistance inherent with DLC, coatings on the 

scale of just a few nanometers are sufficient as the additional protection of bulk materials is not 

necessary.234 
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3.3 Materials, Methods, and Characterization 

3.3.1 Pulsed Laser Deposition (PLD)  

DLC can be deposited in a variety of ways including plasma enhanced vapor deposition 

(PECVD), ion beam deposition, magnetron sputtering, and pulsed laser deposition. We have 

deposited utilizing pulsed laser deposition (PLD) which directs a high-powered laser at a carbon-

based target in a vacuum chamber and ablates material in a directed flux towards a substrate. 

PLD offers advantages over PECVD, which is more commonly used for DLC deposition. 

Particularly the PECVD process employs hydrocarbon process gases for the carbon source which 

lead to hydrogenation of the film and less control over final stoichiometry. Hydrogen free 

diamond-like carbon is associated with a higher degree of sp3 bonding and therefore a harder 

film.235 PLD also creates higher energy carbon atoms that imping on the substrate which trends 

toward a higher degree in sp3 bonding.236 

Samples were deposited from stoichiometric targets by ablation from a 248 nm KrF 

excimer at 30 °C and in 20 mTorr Ar for 20,000 shots. Samples were deposited at a pulse rate of 

20 Hz. Final film thickness of samples was approximated by a lift-off photolithography process, 

after which height was determined using AFM. The thickness correlation was approximately 10 

shots per Å deposited for pure carbon DLC, and 12 shots per Å deposited for Si-DLC. 

3.3.2 Target Forming 

The pure carbon target was cut from a graphite rod 25mm in diameter. Silicon doped 

targets discs, 20 mm diameter by 5 mm high, were formed using spark plasma sintering. The 

target stoichiometry was achieved by mixing graphite powder with silicon carbide powder to 

achieve the desired carbon to silicon ratio. The mixed powder was consolidated in a 20 mm 
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diameter graphite die lined with graphite paper under an axial compressive stress of 50 MPa in 

vacuum inside a spark plasma sintering furnace (KCE – FCT HP D 10 – SD spark plasma 

sintering furnace) for 10 minutes at a sintering temperature of 1700°C. After cooling and 

removal, targets were prepared for deposition by sanding with progressively finer sandpaper, 

starting at 500 grit, and progressing through 1000, 1200, 1500, to finish with 2000 grit 

sandpaper. 

3.3.3 Contact Angle and Surface Energy 

Advancing and receding contact angles for the liquids were obtained from a sessile drop 

method using a Ramé-Hart 200 F1 contact angle goniometer. A dispensing needle was placed just 

above the substrate surface and a 10 μL droplet was suspended from the needle. The volume of 

the droplet was then increased to obtain advancing contact angles and decreased to obtain receding 

contact angles. DROPImage Advanced software was used to obtain the contact angle using a 

circular drop fit. Three points on each substrate were measured, and the mean value reported in 

Figure 3.4 with a standard error of ±2°. 

 

Figure 3.4: Dynamic water contact angles for each of the films deposited in this study. The contact angles reported 
in other studies is also shown for comparison for graphite (pure sp2 bonded)237 and diamond (pure sp3 bonded)238. 
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To estimate the surface energy of each substrate, we used the Owens-Wendt Method.35 

After depositing each surface, the Owens-Wendt analysis was performed with water (dispersive 

surface tension, γlv
d =21.1 mN m-1, and polar surface tension γlv

p =51.0 mN m-1) and diiodomethane 

(γlv
d =50.8 mN m-1 and γlv

p =0.0 mN m-1). Using the mean static contact angles of each liquid on the 

surface, the dispersive (γsv
d ) and polar (γsv

p ) components of the solid surface energy can be 

calculated by:  

 2
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Table 3.1: The advancing (qadv) and receding (qrec) contact angles are reported along with the calculated polar (gp) 
and dispersive (gd) surface energy determined by the Owens-Wendt Method, for each of the deposited films. 

Si Ratio θadv (°) θrec (°) 𝛾d (mN/m) 𝛾p (mN/m) 

100% C-DLC 71 ± 2 43 ± 3 38 ± 1.1 12.4 ± 1.2 

30% Si-DLC 77 ± 3 52 ± 4 33 ± 1.3 11 ± 1.1 

40% Si-DLC 79 ± 3 59 ± 3 32 ± 1.2 9.3 ± 1.1 

50% Si-DLC 83 ± 2 56 ± 2 30.5 ± 1.0 7.2 ± 0.9 

 

3.3.4 Nano-indentation 

Hardness was measured by nanoindentation using a Hysitron TI 960 TriboIndenter fitted 

with a Berkovitch probe. Indentation was performed on each sample in 5 different regions of the 

sample, and to a depth of 50nm, or about 20% of the film thickness, to avoid any contribution of 

the underlying silicon substrate. The hardness was calculated from the unloading curve of the 

force-displacement plot following principles published by Oliver and Pharr.239 The fit function 
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was calibrated prior to each use by indenting a fused quartz standard. The hardness for each of the 

deposited films, as measured by nano-indentation, is shown in Figure 3.5. 

 

Figure 3.5: Hardness of each deposited film as measure by nanoindentation. The hardness for PTFE is provided for 
comparison, as reported in journal Strain.240 

3.3.5 Abrasion 

The abrasion testing was performed using a Taber Model 5750 Linear Abrader with a CS-

10 tip (~6.6 mm diameter), which has aluminum oxide particles embedded in a rubber matrix, and 

500g of applied load, equivalent to about 150 kPa of pressure. The abrasion head was moved across 

a one-inch length of the surface in a reciprocating fashion at 60 cycles/min. After a set number of 

abrasions, the system was stopped, the surface was rinsed with acetone, IPA, and water, and the 

contact angles with water were measured at three different places along the 1-in abrasion length. 

The sample was then placed back into the machine for additional abrasion cycles, and the cycle 

was repeated until the surface displayed significant degradation in contact angles compared to the 

as deposited. 
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3.3.6 Additional Characterization 

X-ray photoelectron spectroscopy (XPS) was performed on the samples to measure the 

relative composition of the samples and the chemical bonding structure. Spectra were obtained 

using a Kratos Axis Ultra XPS with monochromated Al source and using a charge neutralizer. 

Spectra were taken from 0 to 500 (Si-DLC) eV to determine relative composition of each of the 

four films in Table 3.2. High-resolution scans were taken about the C 1s peak to quantify sp2/sp3 

character; data was processed and fit in CASAXPS analysis software. The bonding curves along 

with the processing and fit are displayed in Figure 3.6 for the 100% carbon and 40% Si-DLC. 

Table 3.2: Summary of the carbon and silicon composition of each of the deposited films, as measured by XPS. 

Composition Carbon Content (%) Silicon Content (%) 

100% Carbon DLC 100 0 

30% Si-DLC 78.4 21.6 

40% Si-DLC 63.7 36.3 

50% Si-DLC 54.6 45.4 

 

Figure 3.6: Spectra collected for the 100% carbon DLC sample (left) and the 40% Si-DLC (right), which exhibited 
the lowest hysteresis of the deposited films. The black line represents the as measured spectra, with the sp2 and sp3 

curves fit in post processing. 

 Atomic force microscopy (AFM) was performed to measure roughness and thickness of 

the films. Samples were measured using and ND-MDT NTEGRA Prima AFM in contact mode 
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and analyzed using Gwyddion AFM analysis software. As described in the deposition method, 

part of the film was lifted-off with photolithography so the thickness of the deposited film could 

be measured with AFM. AFM was also used to measure the roughness of the films. Figure 3.7 

shows the evolution of the roughness of the 40% Si-DLC film. Even after deposition, the film is 

extremely smooth with an RMS roughness of just 1.7 µm, but the film gets even smoother with 

longer and longer annealing times at 700°C. After 50 hours at 700°C, the film has an RMS 

roughness of 0.89 µm. We believe the smoothing of the film isn’t caused by any actual mobility 

of the material, but rather any substances that are laying on the surface, but not part of the actual 

amorphous carbon, get baked off during the annealing leading to fewer larger particulates on the 

surface. 

 

Figure 3.7: Evolution of surface roughness of the 40% Si-DLC sample after deposition (left), after 2 hours at 700°C 
(middle), and 50 hours at 700°C. The longer annealing time produces an extremely smooth film. 

3.3.7 Heat Transfer Measurements 

The testing apparatus for boiling heat transfer measurements is shown in Figure 3.8 with 

a schematic of the same structure in Figure 3.9. The apparatus consists of a column of copper that 

contains immersion heaters which provide a thermal source to the system, up to 2 kW of heat. The 

immersion heaters are connected to a continuously variable voltage controller so the heat flow can 

be controlled from 0-100% power. The thermal energy is conducted up the copper to the top which 
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contains the substrate. Between the heaters and the substrate are four equally spaced 

thermocouples which measure the temperature at each point. Surrounding the copper is a Teflon 

jacket to insulate and prevent any convection. Since the thermal conductivity of Teflon is about 

200x lower than copper, any conductance through the Teflon can be neglected.  

Surrounding the exposed substrate is a column of liquid contained within a quartz cylinder 

and stainless-steel plates on each end. At the top of the column is a port leading to a condensation 

column. The recondensed liquid returns to the column of liquid at the base of the lower containing 

plate. The recondensed liquid is returned to the liquid to maintain a constant liquid level throughout 

the collection for the heat curve. Any variation in the height of the liquid would affect the pressure 

at the surface and thereby change the forces acting on bubbles. Lastly, an immersion heater is 

submerged in the liquid and connected to a PID controller. The PID controller used a thermocouple 

in the liquid to maintain a liquid temperature of 99°C; this ensures the heat transfer from the 

substrate was due solely to the vaporization and not from convective heating of the liquid.  
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Figure 3.8: Image of the testing apparatus that was used for heat transfer measurements. The chamber containing 
the liquid is surrounded by a quartz cylinder between two stainless steel plates. The sample is inside this cylinder 
with the heat source embedded in copper and extending below the bottom plate. At the top is a tube leading to a 

condensation column that fees the recondensed liquid back into the liquid chamber. 
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Figure 3.9: Schematic of the apparatus used to collect heat transfer measurements. Heat is added from the 
immersion heaters at the base of the copper. As the heat conducts up to the sample, the thermocouples measure the 
heat flux. The heat then transfers from the sample into the liquid in the chamber, vaporizing it. The vapor leaves the 
chamber at the top to condensation column where the vapor condenses, and the liquid is then returned to the base of 

chamber so the liquid level does not vary during the experiment. 

A silicon substrate (2 cm x 2 cm) is soldered to the copper heating column, as shown in 

Figure 3.10, using a tin and lead solder; we assume zero contact resistance in our calculations as 

the solder should provide a good heat transfer interface. On the other end of the heating column 

are 4 immersion heaters connected to a variable AC power supply. By controlling the input voltage, 

the thermal flux can be varied. Between the heaters and substrate are 4, equally spaced, 



 91 

thermocouples from which the heat flux can be determined based on the thermal conductivity of 

copper and the temperature difference between the thermocouples. Lastly, the surface temperature 

can be extrapolated from the thermocouple measurements, heat flux, and conductivities of copper 

and silicon. The copper is insulated by a Teflon jacket to prevent any lateral heat transfer since the 

thermal conductivity of Teflon is less than 1% of that of copper. The Teflon jacket is mounted 

under the lower stainless-steel plate such that the soldered substrate is level with the top of the 

steel plate. Water is contained in a column above the steel plate such that the substrate is exposed 

to the liquid. 

 

Figure 3.10: The copper is the most critical portion of the apparatus. The immersion heaters in the base provide the 
heat which is transferred into the liquid from the substrate opposite the heaters. The data is collected from the 

thermocouples to determine the heat flux and surface temperature. 

To create the heat curve, data is collected as the variable power source is adjusted. The 

variable power supply is set to 10% power and the system allowed to reach steady state. Once the 

thermocouples reach a steady state temperature, the temperature readings of the thermocouples are 

recorded (averaged over 60 seconds with 100 readings measured per second). A linear fit was used 

to calculate the average temperature variation over the measurement length such that the heat flux 

could be calculated by:  

 𝑞BB = −𝑘?/
=C
=D

 (3.6) 
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The surface temperature could then be extrapolated by estimating the temperature drop from the 

thermocouple nearest the substrate (T4) to the substrate surface as follows: 

 𝑇'/+M = 𝑇2 + ∆𝑇[/ + ∆𝑇N% (3.7) 

The temperature drop through the copper, between the topmost thermocouple and the top of the 

copper (17.5 mm) can be easily calculated from the heat flux previously calculated: 

 ∆𝑇[/ =
O,,

P-.
(17.5) (3.8) 

Lastly, the temperature drop through the silicon can be calculated from the same heat flux, since 

the heat flux is constant regardless of material and the thickness of the silicon substrate (500 

µm): 

 ∆𝑇N% =
O,,

P23
(0.5) (3.9) 

The conductivity of copper is nearly constant at 400 W m-1 K-1, but the conductivity of silicon is 

more temperature dependent in the working range for these experiments so it was estimated 

by:149 

 𝑘N% = 150( C!.)4
;LL[R]

)#2 ;T  (3.10) 

Based on these calculated values, the heat flux (q’’) and surface temperature were used to 

determine the heat transfer performance of the surface. With the heat transfer coefficient being 

determined by the slope of the linear fit when heat flux (vertical axis) is plotted against surface 

subcooling (horizontal axis). The surface superheat (dT) was calculated from the surface 

temperature and vapor temperature (Tvapor) assumed to be 100°C since the experiments were 

conducted at atmospheric pressure: 

 𝛿𝑇 = 𝑇'/+M − 𝑇>@U,+ (3.11) 
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After each data collection at the incremented power ratio, the variable power supply was then 

incremented up with additional readings collected after steady state of each incremental increase 

in power. As the heat flux approached the critical heat flux, the power was increased in smaller 

and smaller increments to capture the CHF, once the surface formed a vapor film and the CHF was 

reached, the temperature readings increased rapidly, and the power was cut to the system. The last 

stable temperature measurement was used as the CHF point. The heat flux was then plotted against 

the surface superheat with the heat flux on the vertical axis and dT on the horizontal axis. The 

HTC was determined by the average slope of the plotted heat curve. 

 It is important to note the size of the sample chosen for this study (2 cm x 2 cm). A study 

was performed that compared the critical heat flux that can be achieved by identical surfaces to 

the length of a square heated surface with the plot adapted in Figure 3.11. As the length gets 

shorter and shorter, the critical heat flux increases exponentially, but the increases levels off after 

the heater length is 2 cm or longer. Therefore, the length of the sample chosen in this study is 2 

cm to avoid this length influence in artificially inflating the CHF value. It is also an important 

consideration when comparing to other studies as numerous pool boiling studies utilize heated 

surfaces less that 2 cm long, some down to just 5 mm. Although they display very high heat 

fluxes, it is important to put the improvement in context, there may be specific applications that 

these short lengths are valuable, but in consideration of industrial boilers, long length scales 

should be considered. 
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Figure 3.11: Plot comparing the critical heat flux achievable by identical surfaces to the length of the heated 
surface. As the length of the heated surface decreases, the critical heat flux that the surface can achieve increases in 

an exponential fashion. Steady state is reached when the heater length is approximately 2 cm or longer. Figure is 
adapted from a study in the International Journal of Thermal Sciences.241 

3.3.8 High Speed Imaging 

High speed videos on bubbles departing were imaged using a Fastec Imaging HiSpec 

camera with a 105mm lens attached. Videos were taken at 1,000 frames/sec to provide each image 

as 1 millisecond in time. All bubble analysis was done when the surface heat flux was at a constant 

1.5 kW m-2 to focus on a singular bubble and this provided a surface in which a singular nucleation 

point was consistently nucleating, growing, and departing a bubble. Length measurements were 

performed using ImageJ, and in each video, a 3mm diameter metal disk was suspended in the 

liquid to provide a scale reference for image analysis to measure lengths. 

Bubble nucleation, growth, and departure analysis 

There were two analysis done on the bubble dynamics, the first was to analyze the growth 

characteristics of the bubble and the way the contact area changed during the growth phases. The 
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data analyzed were captured at five distinct instances in the growth of a bubble. Instance 1, 

nucleation of a new bubble, was captured immediately after a prior bubble departed and a new 

bubble could visibly be seen forming. Instance 2 was captured the first moment the new bubble 

maintained a stable shape and the contact diameter could be measured. Instance 3 was captured as 

the largest contact diameter the bubble presented, before the contact diameter started to recede. 

Instance 4 was captured during recession of the contact diameter when the bubble was not actively 

departing. Instance 5 was captured immediately prior to the moment the bubble fully departed 

from the surface. As the bubble leaves the surface, there is a wave that ripples through the surface 

area of the bubble, instance 5 was captured just before this wave. This analysis was performed at 

five different bubbles to ensure consistency amongst them, the analysis displayed was 

representative of all bubbles analyzed. 

The second analysis was performed to measure the departure time of bubbles from the 

surface. The data displayed was performed by recording elapsed time from the moment a bubble 

visibly nucleates to the moment it detaches from the surface. Seven different bubbles were 

analyzed for elapsed time to capture an average time from nucleation to departure. 

Volume calculation 

In all of the data presented analyzing the bubbles using high speed imaging, the bubble 

volume was reported. This analysis in approximated using the data captured from ImageJ using a 

solid of revolution “disc method”, an approximation for the integral revolution. First, the image 

brightness, contrast, and color threshold were adjusted to provide a clear boundary along the 

perimeter of the bubble (barrier between vapor and liquid). The data was then exported as an image 

file which listed each pixel value in a comma separated value matrix. In this file, the white 

background of the liquid was displayed as a value of 255 and the black of the bubble was displayed 
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as a value of 0. The values corresponding to the bubble could then be located. Using the scale bar, 

the approximate length per pixel could be measured, typically around 110 pixels per millimeter. 

Using the number of pixels per row of pixels for the bubble, the radius could be determined and a 

volume for that layer of the disc calculated. Then summing the volume of each of these discs for 

the entire volume provides an estimation for the total volume of the bubble. 

3.4 Results 

Based on the design analysis, it was determined that the 40% Si-DLC sample presented 

the best opportunity for enhanced boiling heat transfer performance as it had a contact angle in 

the “balanced” range identified and had the lowest hysteresis. For these reasons, the results 

shown below were performed using the 40% Si-DLC sample. 

3.4.1 Heat Transfer Results 

The results of the following data were first predicated on the useability of the surfaces. 

Any surface that improves boiling heat transfer performance but is not stable at high 

temperatures has far less utility for industrial applications. Therefore, the high temperature 

stability was tested first. To verify the high temperature stability of the 40% Si-DLC, the sample 

was subjected to thermal stresses and compared to a perfluoropolyether based silane that 

displayed exceptional properties for condensation heat transfer. Figure 3.12 shows that after just 

1 hour at 400°C, the silane coating was completely degraded and the surface fully wetting. This 

is a stark contrast to the 40% Si-DLC which was subjected to 12 hours at 400°C, 50 hours at 

700°C, and 5 boiling cycles to the critical heat flux, and displayed negligible change to the 

dynamic contact angles after these stresses. 
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Figure 3.12: Contact angle evolution of surfaces subjected to high heat with a droplet image and corresponding 
dynamic contact angles shown. A) A perfluoropolyether based silane degraded from fully hydrophobic to fully 

wetting after just 1 hour at 400°C. B) The 40% Si-DLC sample showed negligible changed in contact angles after 50 
hours at 700°C and multiple boiling cycles. 

 More importantly, the 40% Si-DLC displayed clear improvements in both HTC and CHF 

compared to an uncoated surface. Figure 3.13 shows the heat curve for the 40% Si-DLC and a 

bare Si sample that would be representative of the high surface energy copper surfaces typically 

used as boiling surfaces currently. The 40% Si-DLC enhanced both HTC and CHF by more than 

40% over the bare Si and maintained these improvements even after annealing at 700°C. This 

coated sample also surpassed the CHF of nearly all other smooth surfaces previously studied, 

except for one study on titania (TiO2), though the titania had to be activated by ultraviolet light 

and last only a few minutes before the contact angles returned to those akin to bare Si. 
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Figure 3.13: Heat curve measured for bare Si (hydrophilic) substrate, 40% Si-DLC before annealing at 700℃, and 
40% Si-DLC after annealing at 700℃. The 40% Si-DLC exhibited an HTC 43% higher and a CHF 42% higher than 

bare Si, and it maintained its performance after the 700℃ anneal. This plot has been overlayed with various other 
studies on smooth surfaces including a biphilic105, Teflon216, titania (TiO2)242, and surfaces with contact angles of 

18°, 34°, 90°,243 and 116°215. 

This is an important progression for boiling surfaces as this 40% Si-DLC displays three key 

characteristics for widespread application: high heat stability, long term stability, and 

simultaneous improvement of HTC and CHF. Furthermore, this surface displays the highest CHF 

of any smooth, stable surface that has been previously published. 

3.4.2 Bubble Growth and Departure Dynamics 

The key to understanding why this surface can simultaneously increase both HTC and 

CHF comes in understanding the bubble dynamics on the surface. The cycle of a bubble from 

nucleation, growth, to departure was captured and is shown in  using high speed imaging, and 

has been divided into five characteristic phases: 

1. Nucleation- this is the point that a bubble is first visible on the surface 
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2. Initial Bubble- the time at which a bubble is formed and stable on the surface, this 

is the first point the dimensions of a bubble can be reliably measured 

3. Bubble Growth- growth phase of the bubble where the contact are is increasing 

and the contact line is receding in the liquid 

4. Bubble Recession- the bubble is continuing to grow, but the buoyancy forces are 

now dominating. The contact area is shrinking, and the contact line is advancing 

in the liquid. 

5. Bubble Departure- bubble departs from the surface 

 

Figure 3.14: Progression of bubble growth from nucleation to departure for a bubble on 40% Si-DLC surface (top) 
and bare Si (bottom). The cycle can be divided into 5 phases which are described above. 

Further analysis of these phases was performed to measure the elapsed time, contact diameter, 

and bubble volume during each of these phases. The parameters were measured for five bubbles 

on each surface, with the resulting data is shown in Table 3.3. There is a clear trend in the data 

that the contact diameter of the 40% Si-DLC grows and then contracts during the growth of the 

bubble. This is a stark comparison to the bare Si, which had a near constant diameter throughout 

the bubble cycle, caused by the pinning of the liquid at the 3-phase contact line. 
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Table 3.3: Data collected for each of the bubble cycle phases for 40% Si-DLC and bare Si. The nucleation, growth, 
and departure of individual bubbles was captured at low heat flux using high speed imaging. The imaging was then 
analyzed to calculate the elapsed time, contact diameter, and bubble volume at each of the five instances identified 

in Figure 3.14 This data was collected for 5 individual bubbles on each surface with the averages shown. 

A further analysis was performed by only examining the departure time and volume with the 

data shown in Table 3.4. This shows a similar trend in which the bubbles on the 40% Si-DLC 

departed the surface 40% faster and departed with 30% less volume than on the bare Si. 

Table 3.4: Boiling at a very low heat flux was used to isolate individual bubbles and measure the growth time and 
departure volume from the two surface of interest, bare Si and 40% Si-DLC. Seven different instances of a bubble 

nucleating, growing, and departing the surface were captured and analyzed for departure time and volume at 
departure. The departure volume was calculated from the projected cross-sectional area. 

 Bare Si 40% Si-DLC 

 
Time to Depart 

(ms) 

Volume at Departure 

(mm3) 

Time to Depart 

(ms) 

Volume at Departure 

(mm3) 

 
40% Si-DLC Bare Si 

In
st

an
ce

 Growth 

Stage 

Elapsed 

Time 

(ms) 

Contact 

Diameter 

(mm) 

Bubble 

Volume 

(mm3) 

Elapsed 

Time 

(ms) 

Contact 

Diameter 

(mm) 

Bubble 

Volume 

(mm3) 

1 Nucleation 0 Nucleation 0 Nucleation 

2 Initial 

Bubble 
3.2 0.46 0.71 6.4 0.46 1.00 

3 Growth 6.7 1.28 3.21 13.4 0.51 3.66 

4 Recession 9.7 0.73 4.81 19.6 0.50 7.14 

5 Departure 11.6 0.39 5.13 22.1 0.34 7.94 
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21.3 8.34 11.6 5.13 

22.1 7.94 10.9 4.96 

24.6 9.15 14.5 6.35 

18.7 7.13 12.8 5.87 

19.6 7.68 11.3 5.39 

22.9 8.36 13.4 6.03 

26.1 9.27 12.9 5.88 

Average 22.2 ± 2.61 8.27 ± 0.77 12.48 ± 1.28 5.66 ± 0.51 

From the above data, it is clear why the 40% Si-DLC enhances both HTC and CHF. With faster 

growth of bubbles, the heat transfer coefficient is enhanced because the liquid can be vaporized 

in a shorter period of time. The rapid departure time reduces the residence time of bubbles on the 

surface and inhibits the coalesces of bubbles. This leads to the increase in CHF seen in the data 

as the surface is covered by less vapor. An analysis of each of these phases showed that the 40% 

Si-DLC allows the bubbles to grow more rapidly, depart from the surface in a shorter length of 

time, and the volume at departure was lower. This combination of rapid growth, facilitated by the 

receding contact angle, and the rapid departure, facilitated by the advancing contact angle, lead 

to the simultaneous enhancement of both HTC and CHF of the 40% Si-DLC surface. 

3.4.3 Abrasion Resistance 

In addition to the enhanced heat transfer performance and high temperature stability 

displayed by the 40% Si-DLC sample, it also demonstrated exceptional mechanical durability. A 

comparison was again made against two silane coatings, a crystalline and fluorinated monolayer 
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and an amorphous PDMS based silane. The two silanes degraded rapidly under the harsh 

abrasion and were completely wetting after just a few tens of cycles. By 100 cycles, both were 

nearly completely wetting. Compare this to the 40% Si-DLC which saw nearly no change in the 

dynamic contact angles after 2000 abrasion cycles, and even after 10,000 cycles still presented a 

receding contact angle greater than 30°. When considering a coating for industrial use, it must be 

able to withstand significant abuse and maintain its performance. The 40% Si-DLC displays the 

exceptional durability necessary for widespread use.  

 

Figure 3.15: Plot comparing the wettability of surfaces to the number of abrasion cycles by aluminum oxide 
particles in a rubber matrix. Traditional surface modifiers degraded in a matter of a few cycles whereas the 40% Si-

DLC maintained wettability properties for thousands of cycles. 

3.5 Conclusion 

In this chapter, we have explored the development of a novel, high temperature stable, 

boiling surface that can simultaneously enhance both the heat transfer coefficient and critical 

heat flux for boiling heat transfer. This surface was deposited from a silicon and carbon target 

using pulsed laser deposition to create a silicon doped diamond-like carbon surface. The 

resulting surface exhibited very high temperature stability with no noticeable degradation after 

50 hours at 700°C, and exceptional mechanical durability under harsh abrasion by aluminum 
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oxide particles. There is no previously published surface that exhibits the stability shown on the 

40% Si-DLC surface while also maintaining increased boiling heat transfer. The mechanism 

believed to allow for this enhancement is a unique combination of a mildly hydrophilic surface, 

low hysteresis, and high durability. The moderate contact angle assists in the rapid growth of 

bubbles on the surface that cause them to spread slightly on the surface which enhances the 

vaporization rate into the bubble. The low hysteresis then allows the 3-phase contact line 

between the bubble and surface, to rapidly recede allowing the bubble to depart quickly and with 

a low volume. These surfaces and design parameters will usher in a new material that can be 

used to significantly improve boiler efficiencies in a variety of industrial applications, with 

significant utility in steam-based power generation.
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Ice prevention using bound water to inhibit crystal 

formation 

 

This chapter is primarily adapted from an article submitted to Science Advances which was 

equally co-authored by Brian Macdonald and Abhishek Dhyani. Data collection and 

characterization was performed in part by Jiayue Huang. 

4.1 Introduction 

Ice and frost accretion is a serious problem affecting a wide range of industries which 

include but are not limited to: aircraft, ships, refrigerators, and heat exchangers.115,244–246 Frost on 

climate controlling heat exchangers result in a decrease of heat transfer efficiency by up to 

75%.247,248 To combat this, recent efforts have sought various methods to suppress ice formation 

rather than facile removal of bulk ice. However, the performance of recent frost prevention 

innovations remained limited and are difficult to utilize in real world applications.  

Ice formation and nucleation is relatively simple process and becomes more complex 

when involving a surface. In homogeneous nucleation processes, supercooled water molecules 

will achieve hydrogen bonding for successively longer durations until a compact nucleus is 
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formed. Once the ice nucleus reaches a point termed the critical radius, spontaneous 

crystallization occurs within the entire system.114 In most industrial, transportation, and 

residential sectors, homogeneous nucleation does not occur. Heterogeneous ice nucleation occurs 

when water freezes upon a surface at the solid/liquid interface. The presence of a solid/liquid 

interface reduces the energy barrier of ice nucleation, facilitating freezing to occur notably easier 

than in the homogeneous form.249 Therefore, surface design strategies which increase the 

thermodynamic barrier of ice nucleation to, or in some cases beyond that homogeneous ice 

nucleation, are necessary to prevent the icing of surfaces. 

Initial surface design efforts included the reduction of surface energy and tuning of 

surface roughness and geometric structures. It was found that for a perfectly flat substrate, the 

free energy barrier of ice nucleation is reduced by a geometric factor compared with the free 

energy barrier of homogeneous nucleation. This geometric factor scales with increasing water 

contact angle to limit of perfect non wettability (ie 180º), whereby the homogeneous nucleation 

state is reached.114 Generally, the more nonwetting a substrate is, the lower the ice nucleation 

temperature. However, perfectly flat substrates are unrealistic, and surface features will facilitate 

nucleation. Although surface geometry and roughness tend to aid in ice nucleation, achieving 

sufficiently small features can reduce the ice nucleation temperature.250,251 Once features reach 

the size of the critical nucleation radius, the process reverts to that of homogeneous nucleation. 

Superhydrophobic surfaces displayed an icing delay with liquid water, but this can be attributed 

to the reduced heat transfer across the composite interface in a cassie-baxter state.77,252   

Lubricant infused surfaces (LIS) have also been show to resist icing by allowing water and ice 

droplets to easily slide off the surface on the lubricant layer.253 Both of these hydrophobic 

surfaces rely on shedding water or ice (applicable to freezing rain) rather than inhibiting frost 
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growth from humid air and suffer from deteriorating performance during icing/deicing cycles 

due to surface damage or lubricant depletion.10,116,254 

 Recent advances have been made utilizing molecules that suppress ice crystals by either 

preventing formation or preventing growth. Anti-freeze proteins have been of particular interest 

since the discovery of the mechanism in plants and fish to survive subzero temperatures.119,255,256 

These helical proteins bind to the crystal planes of ice and inhibit growth of the 

crystal.120,121,257,258 Proteins are susceptible to depletion, similar to the lubricated surfaces, as the 

surface goes through multiple ice/deice cycles, and experience a decrease in performance when 

surface confined, due to the necessity of the protein to bind to the crystal face.259 Polyelectrolyte 

brushes with a substituted counterion have shown to significantly inhibit ice formation. The 

counterion in the hydrogel is used to suppress the ice nucleation temperature and delay ice 

crystallization.260 The useability of these brush surfaces is limited by the complex process to 

create them, and the inability to scale the thickness to further enhance anti-icing properties.123,261  

 We have developed a simple, 1-step coating that can easily be applied to surfaces, 

inhibits ice formation for longer than 4,000 seconds, and maintains its performance through 

multiple ice/deice cycles. Poly-zwitterionics contain both a cation and anion, similar to a 

counterion coating, but the ions are bound together on a monomer chain. The ionic monomer 

assists in strong hydrogen bonding with water molecules that condense on the surface, which 

have been shown to be non-freezing when strongly bound.262,263 Meanwhile the bound ions 

prevent any ionic depletion when the ice melts and water runs off the surface. 
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4.2 Design Criteria for Anti-Icing Surfaces 

4.2.1 Hydrophilicity and implications for non-freezable water 

There are two effects of the contact angle on heterogeneous icing on a surface. The first, 

similar to condensation and boiling, is the influence of contact angle on the Gibbs free energy. 

Just as with condensation, as the contact angle of a surface decreases, frost formation on the 

surface is more energetically favored.264 Also, as a surface becomes smoother and the roughness 

(R/rc) is reduced, then heterogeneous nucleation becomes less energetically favored, both shown 

in Figure 4.1.114 

 

Figure 4.1: Three-dimensional graph comparing the contact angle (q), surface roughness (R/rc), and the free energy 
barrier for heterogeneous nucleation (g). As a surface becomes smoother or more hydrophilic, then heterogeneous 

ice nucleation is more energetically favored. Figure adapted from article in Progress in Materials Science.114 

 This correlation between contact angle and heterogeneous ice nucleation (HIN) would 

seem to imply that a hydrophilic surface would be unfavorable for anti-icing. Thus, we get to the 

second effect of contact angle, the binding of water. Hydrophilic polymers have been shown to 

bind water to the polymer in various states: free water, freezable bound water, and non-freezable 
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bound water.265,266 The free water acts as one would expect and freezes at approximately the 

freezing point (0°C) at atmospheric pressure. The freezable, bound water exhibits a slightly 

depressed freezing point, typically about 2-3°C, but is still freezable once the temperature drops 

sufficiently. The state of most interest in this study is the non-freezable, bound water. This is 

water that is tightly bound to the polymer and will never freeze. More importantly, the ability for 

a polymer to bind water in this non-freezable state is directly correlated to the hydrophilicity of 

the polymer.267 In the case of anti-icing, if a coating can absorb enough water in the non-

freezable, bound state, then this becomes the dominant mechanism for anti-icing, and the 

inhibition of icing can be greater than that induced by the surface energy alone. 

4.2.2 Crosslinking polymer network 

Based on the above analysis, a very hydrophilic polymer network should produce a 

surface with maximum ice inhibition. Prior studies have shown this by grafting thin layers of 

polyelectrolyte brushes and exchanging the ions to increase the hydrophilicity of the surface.268 

By tuning the ion used, the ice nucleation temperature can be suppressed and bound water 

increased, this is due to the higher polar bonding between the water and ions.269,270 A similar 

effect can be achieved with zwitterionics though, in which the ions are not separated but actually 

contained along the same monomer chain.271 These zwitterionics can be crosslinked into a 

network and exhibit superhydrophilicity with good water binding properties.272 A network of 

poly-zwitterionics presents additional ease in production as the ions do not require exchange as is 

needed in the counterion hydrogels. Therefore, a polymer network consisting of a poly-

zwitterionic would produce a viable anti-icing coating by strongly binding water in a non-

freezable state within the superhydrophilic network. 



 109 

4.3 Materials and Methods 

All samples were created as 3 cm x 3 cm squares. The measured area was 2 cm x 2 cm, 

with the overhang allowing for proper clamping to the copper cooling post. Adhesive foam was 

placed along the 2 cm x 2 cm perimeter of the contact area to isolate the sample area outside of 

the cooled surface area. 

4.3.1 SBMA 

The zwitterionic selected for the polymer network was a [2-

(Methacryloyloxy)ethyl]dimethyl-(3-sulfopropyl)ammonium hydroxide (SBMA). This 

zwitterion contains both the polar groups necessary for strong water bonding and the functional 

groups for crosslinking, as shown in Figure 4.2. SBMA has repeatedly been shown to be able to  

form superhydrophilic networks with strong interactions with water which is necessary to bind 

water in a non-freezable state.273–275 

 

Figure 4.2: Molecular structure of [2-(Methacryloyloxy)ethyl]dimethyl-(3-sulfopropyl)ammonium hydroxide 
(SBMA). The molecule contains both functional groups for crosslinking into a polymer network and ionic groups 

for strong binding to water in a non-freezable state. 

4.3.2 Hydrogel Casting 

Anti-ice SBMA coatings were generated by: oxidizing the surface of aluminum 

substrates, reacting the silane linker to the oxidized aluminum, dissolving reagents in water, and 
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casting the solution onto the activated aluminum. The casted samples were then heated to 

polymerize the SBMA network and bond to the aluminum.  

Functionalized Aluminum 

M-D building products 0.019-inch aluminum was cut to 32x32mm squares. The 

aluminum squares were cleaned with isopropyl alcohol (IPA), wiped dry with a kim wipe, and 

rinsed with more IPA. The samples were then blown dry with air. The dry samples were then 

placed clean side up within water on a hotplate turned to 150C. Once the aluminum samples 

chaned from grey metallic in color to a brass color, sufficient oxidation existed for the linker 

reaction. 3-(Trimethoxysilyl)propyl methacrylate (TMSPMA) purchased from Sigma Aldrich 

CAS# 2530-85-0  , was chosen as the linker between the oxidized aluminum and bulk coating. 

50 µL of TMSPMA was mixed with 10ml of anhydrous ethanol and 400µL of 1:10 (v/v) acetic 

acid/water solution (silanization catalyst). After sufficient mixing, 350 µL of the linker solution 

was dispensed onto the oxidized aluminum squares and allowed to react for 25 minutes. Once 

complete, unbound silane was rinsed off with IPA and dried with compressed air.  

SBMA Solution 

1 gram of [2-(Methacryloyloxy)ethyl]dimethyl-(3-sulfopropyl)ammonium hydroxide 

(SBMA), purchased from Sigma Aldrich CAS# 3637-26-1 was mixed into a 20ml glass 

scintillation vial containing 2ml of deionized water. A 40mg/ml solution of thermoinitiator 

potassium persulfate (KPS) CAS# 7727-21-1 purchased from Sigma Aldrich, and deionized 

water was separately generated. 75 µL was added to the SBMA solution. Bifunctional 

crosslinkers N,N′-Methylenebis(acrylamide) (MBA), CAS# 110-26-9 and polyethylene glycol 

diacrylate (PEGDA) CAS# 26570-48-9,  Mn: 250 both purchased from Sigma Aldrich were 

added to the SBMA solution in desired proportions. For low concentrations of 0.5% and 0.25% 
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crosslinker, 20mg/ml (crosslinkers/water) were developed and added to the SBMA solutions. 

The aggregate solution sonicated for 10minutes and gyrated for 20 minutes to fully solubilize all 

reagents. 

Anti-Ice SBMA Network Coated Aluminum 

The solubilized SBMA solution containing thermoinitiator KPS and crosslinker were 

dispensed onto the functionalized aluminum in the necessary amount to achieve 100 µm, 150 

µm, and 200 µm thick coatings. The solutions were spread across the entire area of the 

functionalized aluminum with a rubber squeegee upon a glass stir rod. Once fully applied, the 

aluminum with SBMA solution was placed on top of a hotplate set to 80ºC and covered with a 

glass Corning petri dish with a 53mm diameter and 15mm height. The samples were allowed to 

cure for 20 minutes. Unflushed samples were tested without further modification. Flushed 

samples were created by submerging cured SBMA coated aluminum within water and stirring 

for 1hr to remove free, uncross-linked SBMA. 

4.3.3 Alternate Surface Fabrication 

The bare aluminum surface was cut from 6061 T6 Aluminum alloy (McMaster-Carr), and 

was sonicated in Acetone, IPA, and water before testing. 

The slippery lubricant infused porous surfaces (SLIPs) was manufactured from an 

aluminum substrate (6061 T6 Aluminum Alloy, McMaster-Carr) which was first etched in 2.5 

molar hydrochloric acid (Fischer Scientific) for 20 minutes to create nano-structure. It was then 

agitated in a bath sonicator for 10 minutes to remove loose aluminum particles and placed in 

boiling water to convert the outer layer to boehmite nano-crystals (𝛾-AlO(OH)). The textured 

aluminum was reacted with a vapor of (heptadecafluoro-1,1,2,2-tetrahydrodecyl)triethoxysilane 

(Gelest) in a vacuum oven at 100℃ and ~5 mTorr for 24 hours. After rinsing with Vertrel XF, 
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Toluene, and IPA, Krytox GPL-100 perfluoropolyether oil (Miller-Stephenson Chemical 

Company) was drop cast onto the surface, and the sample inverted for 12 hours to allow excess 

oil to be removed.  

4.3.4 Contact Angle Measurement 

Contact angles were measured with a Ramé-Hart 200 F1 goniometer. A droplet of 2.5 µL 

of water was dispensed on the coating. Measurements were taken on 3 different spots across the 

coating at 10 seconds, 1minute, and 5 minutes in order to assess wettability and absorption 

properties. 

4.4 Data Collection 

4.4.1 Chamber Configuration 

The same environmental chamber that was used for condensation (described in section 

2.4) was used for icing tests, with some minor modifications shown in Figure 4.3. Experiments 

were no longer conducted under vacuum, and the humidity and temperature were closely 

monitored with a ¼ second refresh time. The humidity of the chamber was controlled by flowing 

dry air through a box with water in it, then into the chamber. By varying the flow rate of the dry 

air, the residence time in the water box was varied, and the humidity varied inversely of the flow 

rate. To prevent pressurization in the chamber, a second valve at the base of the chamber was 

opened to allow for exhaust air to exit the chamber. Using this configuration, the humidity in the 

chamber could be controlled to ±1% relative humidity (RH).  
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Figure 4.3: Schematic of the testing chamber that icing tests were performed in. The same environmental chamber, 
as was used for condensation experiments (section 2.4), was used for icing with some minor modifications. The 

humidity of the chamber was controlled by flowing dry air through a box containing water to humidify the air before 
entering the chamber. The same liquid cooling channels were used with a sample adhered to the copper using silver 

paste. 

 The air temperature in the chamber was not controlled and left at ambient temperature 

and pressure (~20 ± 0.5°C). Samples were tested at ambient temperatures to accelerate the icing 

tests and allow for more rapid data collection. We attempted tests at reduced air temperatures but 

found that the icing times for samples were unreasonably long. Since the absolute humidity 

reduces significantly with the air temperature, even at 100% RH and an air temperature of 5°C, 

there is less water in the air than at 20°C and 45% RH.276 When one of the experimental samples 

was tested at 5°C and 75% RH, the surface did not ice after 48 hours, therefore it was unrealistic 

to test in these conditions. The higher air temperature and absolute humidity means that water 

condenses on the surface more rapidly leading to quicker icing. 
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 Lastly, the same liquid cooling channels that were used for condensation were used for 

icing as well. Since the heat flux across the surface is so low, there is a negligible temperature 

drop between the sample and the liquid cooling channels, therefore the surface temperature is 

approximately the same as the recirculating liquid temperature. The samples were mounted to the 

copper with silver paste and then pressed together with Teflon frame that surrounded the 

perimeter of the sample. Silver paste was used instead of solder since the system would be 

operating at such a low heat flux. Given the low heat flux, the interfacial resistance is not as 

critical and silver paste allowed for rapid sample changes. The copper was still surrounded by a 

Teflon jacket to prevent any lateral heat transfer ensuring the surface temperature was nearly 

equivalent to the liquid temperature. This created a sandwich structure, as shown in Figure 4.4, 

in which the screws fastened together the substrate to the copper, the Teflon frame distributed the 

force evenly around the substrate, and the insulating foam between the sample and Teflon 

isolated the experimental area that was cooled. The completed assembly can be seen in Figure 

4.6. 

 

Figure 4.4: Schematic of the assembly adhering the sample substrate to the copper cooping post. Four screws 
fastened a Teflon frame around the perimeter of the sample. The Teflon frame pressed together the insulating foam 

and substrate to the copper cooling post. Schematic not drawn to scale. 
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4.4.2 Icing Time Collection 

Surface icing times were determined visually by the sudden opacity change of the 

surface. Video of the surface was recorded from the moment liquid recirculation commenced and 

continued until the surface was completely iced. After the surface was iced, the video was 

accelerated 200x and the ice initiation time was determined to be the instance that icing 

commences. Since the propagation of ice across the surface varied by sample, it was determined 

that the formation of the first crystal was the best indicator of ice inhibition. 

4.4.3 Cyclic Testing 

Cyclic testing was performed to be representative of the cycles a condenser coil would be 

subjected to in an industrial freezer. A typical condenser coil would go through a series of on and 

off cycles before being heated to melt any ice formation. A single cycle consists of 8 “on” 

periods, each follow by an “off” period with the period following the final “on” period being the 

heating. With each period lasting for 20 minutes, therefore a full cycle of on/off cycles lasts 5 

hours followed by the 20 minutes heating period. To simulate this cycle, during the “on” periods, 

the liquid cooling was set to -20°C and during the “off” periods, the liquid cooling was set to 

0°C. The off cycle was set to 0°C instead of completely off since the air temperature was 

significantly higher than what would be experienced by the coil in the freezer. This ensured the 

surface experienced comparable conditions to those of a freezer and the results would be 

representative of the anti-icing performance in a real freezer. During the simulated heat period, 

the surface was heated to 20°C to allow any ice to melt. A depiction of 2 simulated cycles and 

corresponding surface temperature set points are shown in Figure 4.5. 
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Figure 4.5: Depiction of the thermal periods for cyclic ice testing to simulate the thermal cycles of a commercial 
condenser coil in a freezer. A single cycle consists of 8 “on” periods (surface temperature of -20°C), each followed 

by an “off” period (0°C), with the final period as a heat period that thaws the ice. Each period lasts 20 minutes, 
making one full cycle 5 hours and 20 minutes long. 

4.4.4 Droplet Freezing Time 

One commonly used method to quantify the anti-icing capabilities of a surface is to 

measure the heterogeneous ice nucleation (HIN).116,122,123,123,277–281 To perform a comparable 

experiment, observed the freezing time of a droplet on the sample surface and recorded the 

elapsed time to freeze the droplet. The same assembly described in Figure 4.4 was placed on a 

flat surface such that the sample was level. A 20 µl droplet was placed in the middle of the 

sample as shown in Figure 4.6. Simultaneously, cooling liquid began flowing through the 

cooling channels to reduce the surface temperature to -20°C and a camera placed directly above 

the sample began imaging at 15 second intervals. Using a polarizing film on the camera lens, the 

freezing time could be determined by a sudden change in opacity of the droplet between 
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subsequent pictures. The first picture with a noticeable opacity change was determined to be the 

freezing time as this would be accurate to within 15 seconds. 

 

Figure 4.6: Image of the experimental set-up used to measure droplet freezing time. The same sample assembly 
described in Figure 4.4 was placed on a flat surface and a 20 µl droplet was placed in the middle of the sample 

(right). A camera was placed directly above the sample to image the droplet at 15 second intervals (left). 

4.5 Results 

4.5.1 Effect and Selection of Crosslinker 

There are two viable crosslinkers, PEGDA and MBA, that have been shown to be suited 

with SBMA that we examined further, both are shown in Figure 4.7.282,283 A short chain version 

of the PEGDA was chosen such that the molecular weights, and therefore the reactive sites per 

gram, were approximately the same for each crosslinker. 

 

Figure 4.7: The two cross linkers examined for this study were poly(ethylene glycol) diacrylate (PEGDA, left) and 
N,N′-Methylenebis(acrylamide) (MBA, right). 

Next, a series of coatings were created with these two crosslinkers, all with 1% of the 

respective crosslinker in them, and the icing times were compared. Some samples were flushed, 
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in that they were soaked in water after the reaction to extract any free, unreacted SBMA, whereas 

other samples were unflushed in that the excess SBMA remained within the network. Figure 4.8 

shows the results of these icing tests, and the PEGDA crosslinked coatings inhibited icing for 

significantly longer than the MBA crosslinked coatings. In the flushed network, without the 

excess SBMA, the PEGDA crosslinked coating delayed the onset of icing by nearly 20% longer. 

 

Figure 4.8: Icing time results comparing the effectiveness of the two crosslinker options, PEGDA and MBA. 
Regardless of the inclusion of the excess SBMA (flushed vs. unflushed network), the PEGDA crosslinked coatings 

performed significantly better. 

 This can be explained by comparing the wetting behavior of water on networks 

crosslinked with the PEGDA and MBA, shown in  

Table 4.1. The PEGDA crosslinked networks consistently displayed a contact angle about 20° 

lower than that of the equivalently crosslinked MBA networks, and the equilibrium contact angle 

was always more hydrophilic. Referring back to section 4.2.1, it is clear why the more 

hydrophilic network (PEGDA crosslinked) can delay icing for a longer period of time as it can 

bind more water in a non-freezable state. Therefore, the PEGDA networks, for identical network 

volumes, can absorb a greater amount of water into it before the free and freezable bound water 

become dominant and induce icing. 



 119 

Table 4.1: Contact angles for SBMA networks crosslinked with varying amounts of PEGDA and MBA. The 
droplets on the PEGDA crosslinked networks consistently displayed a more hydrophilic contact angle compared to 
MBA. Since the network is a hydrophilic hydrogel, it partially absorbs water, and the contact angle evolves with 

time. Contact angles were recorded immediately after contact with the surface (10 sec.), 1 minute after, and 5 
minutes after. The contact angle stayed constant after 5 minutes. 

 Time on surface 

(seconds) 

Crosslinker Ratio (%) 

 0.25% 0.5% 1% 3% 

PE
G

D
A

 

10 51.1 ± 0.76 59.3 ± 1.28 85.7 ± 0.53 89.4 ± 0.83 

60 40.9 ± 0.77 41.1 ± 0.69 75.8 ± 0.5 84.2 ± 1.07 

300 20.6 ± 0 24.9 ± 0 42.4 ± 0 58.6 ± 0 

M
B

A
 

10 76.3 ± 8 87.9 ± 3.96 94.9 ± 3.43  

60 51.9 ± 5.76 63.1 ± 9.6 86.7 ± 4.7  

300 24.8 ± 4.37 43.4 ± 7.81 56.2 ± 6.85  

 

4.5.2 Tuning the Surface for Maximum Frost Delay 

Based on the previous section, it is clear that PEGDA is the optimal crosslinker to 

enhance the icing delay time, but there are other characteristics that can further affect the 

performance of the network. As described in section 4.2, the ability for these SBMA networks to 

delay icing is dependent on the amount of water that the surface can absorb into a non-freezable, 

bound state. This was supported by the correlation between thickness and icing delay time, 

shown in Figure 4.9, which follows a linear trend and correlates to an icing delay of 30 seconds 

for each µm of coating. This follows our assumptions that a larger volume would be able to 

absorb more water into a non-freezable, bound state due to the greater number of binding sites. 
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The linear trend also has a negative intercept which agrees with our assumption that as the 

thickness gets sufficiently thin, the Gibbs free energy barrier dominates the ice formation. 

Therefore, to maximize the performance of an SBMA network, the thickness should be 

maximized, though there will be an upper limit at which the diffusion of water through the 

surface is inhibited by the thickness and delaying will not be delayed further. This also implies 

that the thickness can be tuned to the specific needs of the application, take for example, a 

freezer condensing coil will need a balance of icing inhibition (requiring a thick coating) and the 

heat transfer to the air (requiring a thin coating). 

 

Figure 4.9: Correlation between ice initiation time and thickness of the SBMA network crosslinked by 0.25% 
PEGDA. The correlation follows a linear trend implying that for every µm of coating, the icing time will be delayed 

approximately 30 seconds. 

The diffusion of water and accessibility of binding sites was also directly investigated. As 

the crosslinker ratio increases, the crosslink density of the network would also increase, and the 

network more tightly bound. This would have a two-fold effect, a reduction in diffusion and 

reduction in binding sites. As the network gets more tightly bound with increasing crosslinker, 

the diffusion of water through the network to reach the binding sites slows down.  Additionally, 

as more of the reactive sites on the SBMA are occupied by the crosslinker, there is a reduction in 
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the number of binding sites. Both of these factors combine to reduce the amount and the rate at 

which water can be absorbed into the network and reduces the ice initiation time, as shown in 

Figure 4.10. Once the crosslinker ratio is high enough, the crosslink density of SBMA reaches 

steady state and does not vary significantly with the amount of crosslinker. At this point, the 

icing time remains mostly constant, showing the direct correlation between the icing time and 

crosslink density. 

 

Figure 4.10: Correlation between the icing time and crosslinker ratio of PEGDA. Increasing the crosslinker ratio, 
increases the crosslink density of the network. Eventually the network reaches a steady state crosslink density, and 

the icing time remains constant. 

4.5.3 Performance of Optimized Surface 

Based on the analysis in sections 4.5.1 and 4.5.2, it is clear that an optimized SBMA 

network for anti-icing would be a crosslinked by PEGDA, maximally thick, and the excess 

SBMA monomer would not be flushed from the network (unflushed). Using this optimized 

coating, we were able to make direct comparisons of the anti-icing ability which is displayed in 

Figure 4.11. The optimized 0.25% PEGDA, 150 µm coating far exceed the performance of any 

other surface, delaying icing by 600% more than a current state of the art technology of 

lubricated porous surfaces. It is also notable that the SBMA silane, a monolayer of SBMA, still 
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delayed icing by about 25% compared to an untreated surface, further exemplifying the water 

binding capabilities of the SBMA and the thickness correlation to the volume of water bound. 

 

Figure 4.11: Performance comparison of icing delay of various surfaces. The 0.25% PEGDA is our optimized 
surface at 150 µm thick, SLIPs is a lubricated surface, SBMA silane is a monolayer of SBMA, and the bare 

aluminum is untreated. 

It was equally important to display the longevity of an anti-icing surface as any coating 

for widescale use would go through thousands of freeze-thaw cycles in its lifetime, and the cyclic 

performance of the SBMA networks is shown in Figure 4.12. A counterion or lubricated surface 

would degrade over time as the anti-icing constituent (lubricant or free ions) are susceptible to 

removal by the liquid water during the thaw cycle. Whereas the SBMA networks would maintain 

their performance since the SBMA is bound into a network. Although an unflushed surface 

would see a decline in performance as the free SBMA is removed with melting ice, the 

performance would not drop below that of the flushed surface. 



 123 

 

Figure 4.12: Cyclic performance of a flushed and unflushed SBMA network compared to SLIPs. Where the SLIPs 
saw a decline in performance of 50%, there was no change in the performance of the flushed network. The 

unflushed network saw a minor decline, though it would not drop below that of the flushed network. 

Lastly, we compared the performance of the SBAM networks at different subcooling 

conditions. As mentioned previously, prior publications have used a wide variety of experimental 

conditions, so we wanted to check for any temperature dependence of the coating. Interestingly 

the icing time is dramatically extended by a marginal shift from -20°C to -10°C surface 

temperature, as shown in Figure 4.13. This is important when considering the absolute 

performance of each surface. As mentioned in section 4.4.2, these tests were performed in an 

accelerate fashion, in actual use conditions, the ambient temperature and humidity would be 

significantly lower, slowing the rate of water absorption into the network. Figure 4.13 shows 

that the icing delay time increases non-linearly with the surface-ambient temperature differential 

indicating these SBMA networks could exhibit ice resistance for many hours in actual use. 

Interestingly, there also appears to be a crossover point at which the MBA crosslinked networks 

begin performing better than the PEGDA networks. It is unclear what is leading to this relative 
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performance different, though they are within the standard error of each other and the difference 

may not be as pronounced as it appears. 

 

Figure 4.13: Comparison of 0.25% crosslinker, 150 µm SBMA network with PEGDA and MBA at different surface 
cooling temperatures. The performance of each surface increases dramatically with a marginal increase in surface 
temperature indicating very good performance in real world conditions. There is also a crossover in performance 

between the two crosslinkers between -20°C and -10°C. 

4.5.4 Heterogeneous Ice Nucleation Suppression 

 A good test of ice inhibition is in measuring the time for heterogeneous ice nucleation to 

commence. Since the droplet is the same volume for all the surfaces, the test is independent of 

the rate of condensation or absorption on the surface, which is dependent on contact angle. The 

elapsed time for a 20 µl droplet of water on a surface to initiate ice nucleation is shown in Figure 

4.14. The SBMA based surfaces all outperformed the lubricated surface despite the droplets 

spreading out more which would accelerate the heat transfer out of the water. This indicates that 

there is not only strongly bound, non-freezing water, but also a suppression in the heterogeneous 

ice nucleation of water since not all of the liquid is absorbed into the network. This is likely 

caused by a suppression in the ice nucleation temperature by weakly bound water which inhibits 

ice formation for many times longer than on the untreated surface. The unflushed network also 
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likely had free SBMA diffusing into the droplet, thereby further suppressing the ice nucleation 

compared to the unflushed network. This far surpasses the HIN inhibition time for a counterion 

surface, previously published at 2200 seconds, or about 38 minutes.122,123 

 

Figure 4.14: Elapsed time for the commencement of heterogeneous ice nucleation of a 20 µl droplet on a variety of 
surfaces. The time corresponding to the first instance of ice in the images is the time at which icing initiated. The 

SBMA surfaces all outperformed the SLIPs surface while the unflushed SBMA network delayed HIN by more than 
1000%. 

4.6 Conclusion 

We have successfully demonstrated a very simple and effective anti-icing coating 

developed from an SBMA network that can be easily scaled based on the desired performance 

parameters. By selecting a more hydrophilic crosslinker, we were able to optimize the 

performance of the network. The coating can then be customized for each application by varying 

the thickness for desired anti-icing properties or heat transfer performance, and by varying the 

crosslink density for anti-icing performance or durability. Lastly, we successfully demonstrated 
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superior anti-icing performance compared to prior state of the art technologies. Although there is 

variability in experimental conditions, under consistent conditions in this study, we demonstrated 

longer ice initiation times, superior durability in repeated freeze-thaw cycles, and great 

heterogeneous ice nucleation delay. The simple, 1-step application of this SBMA coating makes 

this an easily scalable materials that exhibits exceptional anti-icing performance.
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Heat Resistant Super-Hydrophobic Coating for High 

Boiling Heat Transfer Coefficient 

 

This chapter is primarily adapted from an article drafted for Nature Materials and was part of a 

collaborative effort with John Heron and Ctirad Uher. Production of the target materials was 

performed by Trevor Bailey and Yinying Zhang. Deposition and characterization were 

performed by Peter Meisenheimer, who is an equal first author on the manuscript. 

5.1 Introduction 

Development of durable, hydrophobic surfaces has been a significant focus over the past 

several decades as it would have a wide range of useability like commercial condensers, 

cookware and ovens, automotive, naval drag reduction, and many more.284–287 While the 

functionality of super-hydrohpobic surfaces has made significant progress, the durability and 

usability of these surfaces have hindered by complex geometries and/or the coating stability, 

preventing their widespread adoption.214,288–291 Self-healing surfaces were developed to 

withstand damage but continuously renew the surface with hydrophobic properties292–295. Recent 

advances have been made to develop materials with hydrophobic properties throughout the bulk 
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which maintain their hydrophobic properties even after wear and damage296–298. These types of 

surfaces all cover up the effects of damage to the surface caused by mechanical or chemical 

attack. This work presents a material that is, instead, resistant to damage so it can be applied at 

nanoscale thickness and maintain hydrophobic properties in harsh environments. Such a coating 

would be particularly useful in boiling applications that require high heat transfer coefficients. 

Demand for industrial heat sinks that can rapidly remove large amounts of heat have 

become a focus with electronic chips.299 The trend towards smaller and smaller microelectronics 

has driven the need for larger heat removal capacity over a smaller area.300 Microelectronics and 

micro-electromechanical systems (MEMS) require high heat dissipative rates, and pool boiling in 

a non-conductive liquid is recognized as an effective technique due to the high heat fluxes that 

can be achieved.301,302 Since the performance of such systems deteriorates with heat, it is 

desirable to dissipate heat at low superheat (temperature above the boiling temperature of the 

liquid).303  

Diamond-like carbon (DLC) is of particular interest because it exhibits exceptional 

physical, mechanical, and inert properties that no other low surface energy coating has displayed. 

DLC, also referred to as amorphous carbon, is characterized by a combination of sp2 and sp3 

bonds with the former contributing to a more “graphitic” and the later forming a harder, more 

“diamond-like” film304. It offers excellent compromise between graphite and diamond in that it is 

significantly harder and more durable than graphite but easier and cheaper to produce than 

diamond305. 

DLC has been studied extensively since it was discovered in 1971306, but much of the 

research since its discovery has focused on optimizing the film’s optical, dielectric, abrasion, 

and/or friction properties307–315. While some work has been done to investigate surface energy 
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modification of DLC, this has certainly not been the focus, and it has been exclusive to films 

deposited by plasma enhanced vapor deposition (PECVD)316–321. The addition of fluorine into 

the DLC reduces the hardness of the film, and the deposition using PECVD introduces 

contamination with hydrogen and/or oxygen further reducing the hardness and durability of the 

film322–324. 

This introduction of hydrogen into the film is the most significant hinderance in creating 

a durable, scratch resistant, and hydrophobic coating as increased hydrogen content leads to 

graphitization which softens the film and creates a more “polymer-like” hardness325,326. The 

PECVD process inherently includes hydrogen into the films since the process gases are 

hydrocarbon based327. Pulsed Laser deposition (PLD) has been used recently to create hydrogen 

free DLC films; this method uses a high-powered laser directed at a carbon-based target inside a 

vacuum chamber. The plume of ablated material from the laser creates a directed flux at a 

relatively low temperature target328. The high energy carbon atoms impinging on the surface, 

combined with the limited atom mobility on the cold surface contributes to a high degree of sp3 

bonding, up to 85%236. This combination of a fluorinated, high sp3 content carbon film should 

provide for a durable hydrophobic film that can resist high temperature degradation. 

5.2 Design Criteria for Heat Stability 

Diamond-like carbon has also shown high temperature resistance, maintaining 

performance above 500°C.230,231 Though there has been some evidence that diamond-like carbon 

begin to degrade and oxidize above 500°C, this would still be in excess of the current limits for 

superhydrophobic coatings.232 The addition of dopants would allow for control over the 

wettability of the coating. In Chapter 3, we examined the influence of silicon as a dopant, though 

this did not impart a significant enough drop in surface energy to create a hydrophobic surface. 
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Therefore, fluorine dopant is necessary to create a hydrophobic surface with a high enough 

contact angle to maintain a superhydrophobic cassie-baxter state. This high contact angle should 

lead to a high heat transfer coefficient with a large heat flux at low superheat temperatures. 

5.3 Materials and Methods 

5.3.1 Pulsed Laser Deposition 

The DLC was deposited using PLD with the same tool as described in section 3.3.1. 

Samples were deposited from stoichiometric targets by ablation from a 248 nm KrF excimer at 

30 °C and in 20 mTorr Ar for 2,000 shots. Samples were deposited at a pulse rate of 1 Hz. Final 

film thickness of samples was approximated by a lift-off photolithography process, after which 

height was determined using AFM. The thickness correlation was approximately 1 shot per Å 

deposited for fluorinated DLC. 

5.3.2 Target Forming 

There has been no prior work to deposit a fluorinated diamond-like carbon film using 

pulsed laser deposition. One of the difficult barriers in creating such a film is creating the target 

material. In PECVD, the flow rates of the hydrocarbon and fluorocarbon gases can be varied to 

achieve different fluorination ratios, but with PLD, the target must be created with the intended 

stoichiometry329,330. This presents additional difficulty as there are limited pure fluorocarbon 

solids that contain no additional elements, the ones that do exist are difficult to create a dense 

target to be used for PLD, and it is difficult to create targets with tunable ratios as substance, like 

PTFE, have fixed F:C ratios (2:1). For this study we used graphite powder for the carbon source, 

and a fluorinated graphite, CF1.1, for the fluorine source and mixed the powders to achieve the 

target stoichiometry. The difficulty comes in that carbon typically anneals around 1800°C 
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whereas the fluorinated graphite degrades at 550°C. This created significant difficulty in creating 

viable targets as they needed to be hard and rigid for deposition to be performed properly. 

Targets were formed with a variety of stoichiometries to determine if the variation in graphite 

and fluorinated graphite changed the annealing properties. A series of different target forming 

methods were used as outlined below: 

1. Targets were pressed in a 20 mm diameter stainless steel die with 24,000 pounds of force. 

After the force was removed, the target was removed from the die and annealed at 350°C 

for 100 hours. 

2. Targets formed using spark plasma sintering. The mixed powder was consolidated in a 20 

mm diameter graphite die lined with graphite paper under an axial compressive stress of 

50 MPa in vacuum inside a spark plasma sintering furnace (KCE – FCT HP D 10 – SD 

spark plasma sintering furnace) for 4 hours at a sintering temperature of 400°C. 

3. Targets formed using spark plasma sintering, described in #2, but a small fraction (2-

10%w) of Teflon AF was dissolved in Vertrel XF with the mixed powder. The XF was 

then allowed to evaporate so the powder was evenly coated with Teflon AF to serve as a 

binder. 

4. Targets formed using spark plasma sintering, described in #2 above, but the mixed 

powder was a combination of Teflon and graphite. Teflon powder was mixed with 

graphite to achieve the desired fluorine to carbon ratio and the Teflon would serve as a 

binder and fluorine source. These targets were pressed at 250°C, above the glass 

transition temperature but below the melting temperature of Teflon. 

Ultimately, none of the above procedures produced targets hard enough for deposition. All of the 

targets either fell apart when impacted by the laser, or in the case of those with Teflon, the 
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Teflon melted when struck by the laser which caused the target to fall apart. The best targets 

formed were made from pure fluorinated graphite and pressed using spark plasma sintering, as 

described in #2 above, for 4 hours at 400°C. Although this did not allow for stoichiometric 

variation of the samples, it did lead to a target with only fluorine and carbon, both about 50% 

stoichiometrically. 

5.3.3 Contact Angle 

Advancing and receding contact angles for the liquids were obtained from a sessile drop 

method using a Ramé-Hart 200 F1 contact angle goniometer. A dispensing needle was placed 

just above the substrate surface and a 10 μL droplet was suspended from the needle. The volume 

of the droplet was then increased to obtain advancing contact angles and decreased to obtain 

receding contact angles. DROPImage Advanced software was used to obtain the contact angle 

using a circular drop fit. Three points on each substrate were measured, and the mean value and 

drop images shown in results. 

5.3.4 Surface Characterization 

Hardness was measured in accordance with the nano-indentation procedure outlined in 

section 3.3.4. XPS and AFM were also performed on the sample, in accordance with the 

procedures outlined in section 3.3.6. 

5.3.5 Abrasion 

 The mechanical durability test was performed by comparing the θadv and θrec with both 

water after a series of linear Taber abrasions. A sample was coating with the fluorinated DLC as 

described in section 5.3.1.  The sample was then mounted to a Taber model 5750 Linear Abrader 

which had a CS-5 (~12.5 mm diameter) abrasive felt tip attached, and a 500-gram load was 

applied which produced an equivalent pressure of about 40 kPa. The abrasion head was moved in 
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a reciprocating fashion back-and-forth across the surface in a one-inch length at a speed of 60 

cycles/min. After a set number of abrasions, the system was stopped, the surface rinsed with 

acetone, IPA, and water, and the sample was dried with compressed air. The contact angles were 

measured at three different places along the abrasion length using both water and hexadecane. 

After the contact angles were measured, the sample was returned to the abrader for additional 

abrasion cycles. The contact angles were collected after every 1000 abrasion cycles initially, and 

then every 3500 cycles thereafter. 

 The F-DLC sample was compared to a fluorinated monolayer (F13Cl, deposition 

described in 2.3.1) and a superhydrophobic aluminum. The superhydrophobic aluminum was 

manufactured from an aluminum substrate (6061 T6 Aluminum Alloy, McMaster-Carr) which 

was first etched in 2.5 molar hydrochloric acid (Fischer Scientific) for 20 minutes to create nano-

structure. It was then agitated in a bath sonicator for 10 minutes to remove loose aluminum 

particles and placed in boiling water to convert the outer layer to boehmite nano-crystals (𝛾-

AlO(OH)). The textured aluminum was reacted with a vapor of (heptadecafluoro-1,1,2,2-

tetrahydrodecyl)triethoxysilane (Gelest) in a vacuum oven at 100℃ and ~5 mTorr for 24 hours. 

After cooling, it was rinsing with Vertrel XF, Toluene, and IPA. 

5.3.6 Heat Transfer 

Heat transfer measurements were collected by the same method outlined in section 3.3.8. 

No variations to the method were employed for this chapter. 

5.4 Results 

Many of the target combinations outlined in section 5.3.2 resulted in targets that could 

not be deposited by PLD due to being too soft, or targets that when deposited, resulted in large 

particulates being deposited on the surface and not forming a diamond-like coating. The target 
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that gave the best results was the pure fluorinated graphite target pressed at 400°C for 4 hours. 

The resulting coating was slightly rough, as displayed by the AFM results in Figure 5.1, with an 

RMS roughness of just over 50 nm. Although not as smooth as pure carbon diamond-like carbon, 

this is significantly smoother than the microscale roughness on many textured boiling surfaces. 

 

Figure 5.1: Atomic force microscopy (AMF) measurement of the as deposited fluorinated DLC from the pure 
fluorinated graphite target. The measured RMS roughness is 52.9 nm. 

The XPS results of the deposited film also show high sp3 bonding in the coating, as shown in 

Figure 5.2. The composition is nearly 40% sp3 with less than 5% sp2. There also exist three other 

peaks which comprise the remaining ~50% of carbon bonding, and these peaks are associated 

with various carbon-fluorine bonding groups. These irregular XPS peaks are known to come 

from pulsed laser deposition of polymers and are due to various local arrangements of carbon 

and fluorine groups.331 
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Figure 5.2: Carbon peaks of the collected XPS data. In addition to the sp2 and sp3 peaks, three additional carbon 
peaks were present which represented different carbon-fluorine bonding in the material that is not represented in the 

C-C bonding. 

 Although the resulting film is relatively smooth, the roughness present does induce a 

Cassie-Baxter wetting state, and shows good heat stability in Figure 5.3. The apparent contact 

angle of the coating was 154° with a 155° advancing contact angle and a 153° receding contact 

angle. The films also maintained its superhydrophobicity after thermal cycles to 400°C and 

500°C, in atmospheric, conditions for 12 hours each. There was nearly no change in the contact 

angle or hysteresis after the thermal cycles indicating a good thermal stability of the final film 

compared to the fluorinated silane which degraded quickly at elevated temperature. A test was 

performed to heat the F-DLC to 700°C but the material appears to have evaporated off from the 

surface indicating that the thermal limit for the material lies between 500°C and 700°C. 
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Figure 5.3: Apparent contact angle collected by goniometry, of an A) fluorinated monolayer (F13Cl) and B) the 
fluorinated diamond-like carbon film. The fluorinated monolayer was wetting after just 1 hour at 400°C whereas the 

F-DLC remained superhydrophobic after 12 hours at 400°C and 500°C each. 

 Expectedly, the high contact angle of the F-DLC translated to a large improvement in the 

boiling heat transfer coefficient, as shown in Figure 5.4. The F-DLC displayed an HTC of 86.1 

kW m-2 K-1 compared to just 39.5 kW m-2 K-1 for the bare Si, a 120% improvement. This 

performance was achieved while the critical heat flux was decreased by only 23%, from an 

average of 848 kW m-2 to 651 kW m-2. This presents significant performance improvements for 

heat transfer, especially when considering microelectronics as the F-DLC can transfer that same 

amount of heat from the surface at a temperature about 20°C cooler than an uncoated surface. 
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Figure 5.4: Boiling heat curve comparing the performance of fluorinated diamond-like carbon to an uncoated, high 
surface energy sample (bare silicon). The F-DLC displayed a heat transfer coefficient 120% higher than the bare Si 

while achieving a critical heat flux just 23% lower than the bare Si. 

Lastly, mechanical durability was compared to a smooth hydrophobic surface (F13Cl) 

and a superhydrophobic, etched aluminum (SHP Al), shown in Figure 5.5. The F-DLC exhibited 

exceptional durability and sustained water in a Cassie-Baxter wetting state even after 10,000 

linear abrasion cycles. This was a stark comparison to the etched aluminum which transitioned 

from a Cassie-Baxter state after just 4,000 cycles and was partially wetting after 8,000. 
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Figure 5.5: Apparent contact angle of water on fluorinated, diamond-like carbon (F-DLC) compared to a flat 
hydrophobic (F13Cl) and nanotextured superhydrophobic (SHP Al). The F-DLC had minimal change to the 

advancing and receding contact angles after 10,000 abrasion cycles and remained superhydrophobic whereas the 
fluorinated monolayer degraded to fully wetting, and the superhydrophobic aluminum transition to hydrophobic and 

eventually to partially wetting. 

 The culmination of these results show that a fluorinated diamond-like carbon surface can 

be produced that exhibits good thermal and mechanical durability while increasing the thermal 

transport rate for nucleate boiling. The deposited coating had a variety of bonding, though it was 

dominated by sp3 C-C bonds which leads to the superior mechanical durability compared to a 

representative superhydrophobic surface. This also provides for the surface to maintain its 

superhydrophobicity after high temperatures where other fluorinated compounds would 

otherwise degrade. Lastly, due to the high contact angle and high thermal stability, the F-DLC 

enhanced the heat transfer coefficient more than 2-fold for boiling heat transfer and maintained 

its performance after repeated tests. 

5.5 Conclusion 

In this chapter, we present a novel method of depositing fluorine doped diamond-like 

carbon (F-DLC) with a high degree of sp3 C-C bonding. This novel surface is superhydrophobic, 
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with an apparent contact angle above 140°, and sustains water in a Cassie-Baxter wetting state. 

Where a traditional superhydrophobic surface would degrade at high temperatures or under harsh 

abrasion and be unable to sustain superhydrophobicity, the F-DLC remains superhydrophobic. 

One of the key applications for such a high temperature stable, hydrophobic surface, would be in 

microelectronic applications. Microelectronics utilize nucleate boiling to cool the systems and 

they require high thermal transport at low superheat temperatures. We show that the deposited F-

DLC dramatically increases the heat transfer coefficient as compared to an uncoated surface and 

can transport a similar amount of heat at about 20°C cooler. This difference can lead to 

significant efficiency and performance gains for electronics cooling and similar applications.
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Summary and Future Outlook 

6.1 Hygrophilic Condensation Surfaces 

The condensation work published in this thesis is groundbreaking and presents major 

advances in the breadth of surfaces capable of being used for condensation heat transfer. Not 

only did we successfully display dropwise condensation on multiple surfaces with contact angles 

never before used for this mode, but we also showed increases in both HTC and CHF with these 

surfaces. This work ushers in a new classification of solid surfaces that can be used to maximize 

the capabilities of condensation heat transfer. 

There is still room for additional work to make these surfaces fully scalable and useable 

on an industrial scale. First, we were unable to identify a truly “optimal” surface for some 

liquids. Examining Figure 2.7, although the surfaces identified herein are nearer the maximum 

peak compared to prior work, they are not at the absolute maximum. Creating a surface with the 

exact correct contact angle would allow for the maximum achievable heat transfer coefficient 

and the most efficient condensing surface. Furthermore, although our surfaces displayed very 

low hysteresis, there is still opportunity for additional improvements. Reducing the hysteresis 

further will enhance condensation further, though this becomes increasingly more difficult as 

you get nearer 0° hysteresis. A better understanding of the true glass transition temperature could 
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provide additional insight into the amorphous behavior of the solid surfaces. Since the silanes 

used were based on polymers, the Tg was assumed to be similar to that of the virgin polymer, 

though this may not be exact. Using an ellipsometer with a cooling stage that can reach sub-zero 

temperatures, valuable insights into the behavior of these surfaces could be gathered. This could 

enable better tuning of future surfaces and how to further reduce the hysteresis. 

Another avenue of opportunity to further improve condensation surfaces could be in 

creating solid polymer networks reacted with oils or other ultra-low Tg polymers. This would, in 

essence, create a lubricated surface but with the lubricant now covalently bound to the network 

and surface. By having the lubricant bound to the surface, it could provide the lubricating effects 

seen in previous studies and allow the condensate to be easily removed, but the lubricant will not 

cloak the droplets and deplete from the surface. One risk of this route would be the increased 

thermal resistance of the network though this could be mitigated with very thin or conductive 

coatings. 

Lastly, the deposition methods of any prospective surface need to be scaled to be easily 

applied. Although we displayed condensation on coated copper tubes, they did require extensive 

pre-treatment. Developing a more facile deposition process that can be used for current industrial 

condensers would be critical to realize the gains from any solution. 

6.2 Temperature Stable Diamond-Like Carbon for Boiling 

The published work on a smooth and durable boiling surface is the first to show stable, 

enhanced boiling heat transfer on a smooth surface. However, this is only the beginning of the 

capabilities that finely tuned diamond-like carbon can present. Studies have shown that the 

doping with different elements (oxygen, nitrogen, hydrogen) can have different effects on the 

wettability, though there is no clear guide as to how. Understanding this interplay in elemental 
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doping and being able to tune the contact angle and hysteresis opens up a huge variety of uses for 

DLC. In addition to being able to further improve the boiling heat transfer, these surfaces could 

also be used to condensation. Future focus of this work should examine how dopants into the 

DLC can be used to control the wetting characteristics and then developing a series of surfaces 

with a variety of contact angles and low hysteresis. 

Another interesting use for such surfaces could come in the solid fouling characteristics. 

Anti- corrosion, biofouling, and micro-organism surfaces have significant value in marine 

shipping industry. A diamond-like carbon surface that can resist solid fouling would be 

particularly valuable with its added durability that would prevent damage and require less 

frequent upkeep. Finely tuned diamond-like carbon presents the greatest growth opportunity of 

any surface material in this dissertation if it can be well understood and closely controlled. 

6.3 Anti-Icing Poly-Zwitterionic Network 

The anti-icing surface present in chapter 4 is the first coating of its kind that can be easily 

produced and scaled. This surface can easily be tuned for a variety of applications from industrial 

refrigeration to commercial aircraft. While the poly-SBMA network showed significant 

improvement in delaying ice formation, the durability of the coating needs to be improved before 

it can reach widescale use. Defects tended to induce ice crystallization, so damage to the surface 

has the potential to reduce the efficacy of the surface. Increasing the durability of the surface 

while also finding a method to mitigate the crystallization around defects would significantly 

expand the useability of the surface. Additionally, some surfaces were particularly fragile and 

prone to cracking under certain conditions. As the crosslinking ratio increased, the networks 

were noticeably more brittle and prone to cracking if left in a dry environment too long. This was 

especially pronounced with the flushed networks, as we believe the excess SBMA in the 
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unflushed networks acted as a plasticizer and increased the elasticity of the network. 

Unfortunately, in normal application, the network would eventually become flushed with the 

icing/deicing cycles, and since these surfaces would normally operate in dry conditions, they 

would be susceptible to this cracking. Addition of a plasticizer that could not be removed from 

the surface would be one potential route to resolving this brittleness. 

6.4 Heat Stable Superhydrophobic Diamond-Like Carbon 

The fluorinated diamond-like carbon presented in the final research chapter is a 

promising proof of concept that exemplifies significant promise for future surfaces, but as it 

currently stands, requires further development and refinement to be fully useful. Although the 

deposited surface exhibited superior temperature stability to other wettability modifying solids, 

the F-DLC did not remain stable up to 700°C as was seen with the Si-DLC. This is not 

completely unexpected as other studies have found that the stability of diamond-like carbon 

surfaces can vary above 500°C. One likely pathway to stabilize the film would be the addition of 

small amounts of other elements, like silicon, which have been shown to induce temperature 

stability above 500°C.  

Most important to refine is the deposition process to create a more uniform and smoother 

surface. The primary limitation with pulsed laser deposition is that the target needs to be hard to 

get a good deposition from it. As we saw with the F-DLC, it is incredibly difficult to create 

targets suitable for deposition given the instability of fluorine. If PLD is desired, a different 

target formation process, or different constituents, will be needed to get higher quality targets to 

deposit from. An alternative route would be to deposit with plasma enhanced chemical vapor 

deposition (PECVD) and refine the process to remove hydrogenation. Using PECVD would lead 

to significantly smoother films and more uniform chemical bonding which would eliminate 
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much of the irregular C-F bonding seen in Figure 5.2. If a different gaseous carbon source can 

be identified for PECVD that would reduce the hydrogen content of the film and allow for a 

purer stoichiometry, the high hardness and sp3 content can be achieved with PECVD that are 

typical with PLD. 

6.5 Closing Remarks 

As a whole, the field of surface science is addressing engineering challenges on a micro- 

and nano- scale and remain a fascinating study as we try to control liquids around us. Phase 

transformation is particularly interesting as we attempt to just reach a point in which we can even 

replicate nature which has found unique ways to control phase transformation better than we can. 

The work in this thesis represents only a small insight into the global effort to use engineered 

surfaces to control and enhance performance of phase transformation interfaces for a variety of 

applications. Materials research is an ever-evolving field and the high demand for condensation, 

boiling, and anti-icing surfaces will ensure that this research area will remain of particular 

interest for the foreseeable future.
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