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ABSTRACT

Non-linear dynamical systems are of significant interest to a wide range of sci-

ence and engineering communities. This dissertation is focused on the advancement

of theory and algorithms for operator-theoretic modeling and decomposition of non-

linear dynamical systems, with a particular emphasis on the Koopman operator.

The Koopman operator represents non-linear dynamics in the form of an infinite-

dimensional linear operator over the space of observables of the system state. Despite

the broad appeal of the Koopman operator in modal analysis, reduced-order modeling

and control, discovering accurate finite-dimensional representations presents consid-

erable challenges. Most of the existing data-driven approaches for non-linear systems

target prediction, which in effect amounts to interpolation within parameter space.

In contrast, the Koopman operator presents the potential of a systematic framework

for physics-consistent, stable predictions, control and modal analysis.

Data-driven methods including time-delay dynamic mode decomposition (TD-

DMD), extended DMD (EDMD), kernel DMD (KDMD), and deep learning-based

techniques have been developed for Koopman approximations. While the promise

of these techniques is clear, stability, robustness, spurious modes, and uncertainty

quantification continue to be a challenge. As a consequence, the above methods are

often employed as qualitative postprocessing tools instead of quantitative, robust, and

accurate a posteriori models. This dissertation aims to address the above challenges,

and demonstrates applications in modal decomposition, predictive modeling, and

control of non-linear dynamics.

We begin by developing theoretical results on the structure of TD-DMD models

xix



of non-linear dynamics on an attractor. We demonstrate that the minimal number

of time delays required for perfect reconstruction is directly related to the sparsity

of the Fourier spectrum of the dynamics. Furthermore, we explain why TD-DMD

can “extrapolate in time”, i.e., why a model trained on a partial period of data

can perfectly predict the future. We also prove that an increase in the number of

time delays benefits numerical conditioning, making the model robust to noisy data.

For example, we demonstrate the numerical stabilization effect of “over-delays” on

the 3D Turbulent Rayleigh-Bénard convection. We also construct a ROM based on

TD-DMD, and compare it to state-of-the-art methods for a chaotic single injector

combustion process.

Next, we develop robust and accurate mode selection algorithms for non-linear

Koopman approximation methods (e.g., EDMD/KDMD). We propose a model-agnostic

sparsity promoting framework based on a) pruning Koopman eigenfunctions that ex-

cessively deviate from linear evolution, and b) multi-task learning for selecting the

most informative Koopman modes. From an analytical perspective, we show a close

relationship between the well-known sparsity-promoting DMD (spDMD), and an em-

pirical criterion through the lens of optimization. The performance of the proposed

framework is demonstrated in several unsteady flow cases ranging from strongly tran-

sient flows including the cylinder wake and a 3D turbulent ship air-wake.

Finally, we propose a probabilistic deep learning framework for the continuous-

time Koopman operator, with an option to either purely rely on the data, or to use the

knowledge of the physics in the form of governing equations. With regard to imposing

physical consistency, we introduce a novel parameterization that guarantees temporal

stability of the Koopman operator. The effectiveness of the proposed framework is

evaluated on several non-linear dynamical systems with varying amounts of training

data and noise levels. The proposed framework shows better robustness to noise and

improved accuracy compared to the standard Long Short-Term Memory (LSTM)

xx



model. We take the unforced Duffing oscillator as an example to reveal that linear

reconstruction can be useful for systems with symmetrical attractors. Lastly, we show

an application of our framework on the data-driven optimal control of a simple non-

linear dynamical system, and highlight performance benefits over traditional local

linearization.

In summary, this dissertation places an emphasis on the development of inter-

pretable and robust methods for approximating the Koopman operator, and provides

mathematical insight where possible.
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CHAPTER I

Introduction

We choose to go to the moon. We

choose to go to the moon in this

decade and do the other things, not

because they are easy, but because

they are hard, because that goal

will serve to organize and measure

the best of our energies and skills,

because that challenge is one that

we are willing to accept, one we are

unwilling to postpone, and one

which we intend to win, and the

others, too.

John F. Kennedy Moon Speech,

Rice Stadium (1962)

1.1 High Dimensional Non-linear Dynamical Systems

The need for faster, more efficient and versatile air transport vehicles continues to

drive challenging design problems in Aerospace engineering. As examples, the desire
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to reduce travel time from New York City to London by half has led to silent super-

sonic commercial aircraft initiated by Aerion Supersonic, while SpaceX is developing

vehicles for space exploration as shown in fig. 1.1.

Figure 1.1:
Left: Aerion SBJ designed by jet builder Aerion Supersonic that ex-
pects to fly silent supersonic planes by 2024, unlocking a $40 billion
market (Commons , 2020a). Right: Human launch of SpaceX’s Falcon
9 rocket raises the company value to $44 billion (Commons , 2020b).

Such design problems involve complex high-dimensional nonlinear phenomena

such as turbulent combustion, laminar-to-turbulence transition, shock wave-boundary

layer interaction. Despite the discovery of the Navier–Stokes equations two centuries

ago, our understanding of underlying flow mechanisms and the development of effi-

cient predictive models remains a challenge, primarily due to the non-linear, multi-

scale and chaotic nature of the partial differential equations (PDE).

With the ever-increasing compute power and advances in computational algo-

rithms, high-fidelity simulations (e.g., Direct Numerical Simulation (DNS) with one

trillion unknowns on the K computer (Ishihara et al., 2016)) are providing a wealth of

data that would be challenging or impossible to acquire in experiments (Bulat et al.,

2013; Raman et al., 2005). However, high fidelity simulations such as DNS become

impractical in practical flow configurations due to the disparate range of time and
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length scales. For typical high fidelity simulations of the Navier-stokes equations,

multi-scale phenomena associated with turbulence lead to a OpRe2.25q degrees of free-

dom, where Re is the Reynolds number. For example, a typical Re in an automotive

application is Op106q, which requires a DNS mesh size on the order of Op1013.5q, and

thus, even storing a single snapshot of such field requires 760 TB. Even for large eddy

simulation (LES) which is of moderate fidelity, Chapman (1979) wall-resolved LES

for an airfoil would require OpRe1.8q DOF, which is still close to DNS scaling and the

corresponding single snapshot at Op106q requires 1.52 TB. It should be noted that

with various “near-wall modeling” techniques, ideally speaking one could resolve only

to the outer layer which reduces the scaling to OpRe0.4q (Chapman, 1979). However,

wall-modeling in LES is still an active research area.

In addition to multi-scale phenomena, coupling with multi-physics, e.g., chemistry,

plasma, droplets and bubbles, fluid dynamics with additional non-linearity becomes

even more challenging to analyze. Thus, lower fidelity methodologies have been more

popular in design applications. For example, multidisciplinary design optimization

(MDO) typically relies on Euler (Mader et al., 2008; He et al., 2019) or Reynolds-

averaged Navier-Stokes equations (Lyu et al., 2013). However, the modeling error

introduced in these model can be significant in many situations and should be ac-

counted for. Therefore, high-fidelity simulations or experiments are still required to

validate or improve the downstream applications of these lower-fidelity models (e.g.

in aerodynamic design.)

As a result, the conventional computational design paradigm faces several major

challenges. First, it involves prohibitively high computational costs and human effort

in the design & validation process, or in pursuing accurate models for missing physics.

Second, the complex flow field from high-fidelity simulations or experiments is chal-

lenging to interpret (e.g. extracting meaningful coherent structures). Third, data

from high-fidelity simulations and experiments are not fully exploited (e.g. under-
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standing the flow phenomena beyond validation for low-fidelity models). Traditional

theories and tools of modeling and analysis of non-linear dynamical system - originat-

ing from the controls community - are designed either for linear (Juang and Pappa,

1985; Phan et al., 1993) or non-linear ordinary differential equations (ODE) (Billings ,

2013; Khalil and Grizzle, 2002) with relatively small degrees of freedoms (DOF).

Moreover, effective controllers require a computationally feasible model for online

implementation and efficient solvers to minimize the latency introduced in the es-

timation of the states (Proctor et al., 2018). Thus, the prevailing state of the art

in dynamics and control requires new developments when analyzing, modeling and

controlling high dimensional fluid dynamical systems.

Figure 1.2:
Prevalence of high dimensional non-linear systems in aerospace engineer-
ing (Pan and Johnsen, 2017; Yu, 2012).
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1.2 Fluid Dynamic Modeling

The development of effective descriptive and predictive models has been actively

pursued throughout the history of fluid mechanics (Kundu and Cohen, 2001). Success-

ful examples include potential flow theory, waves propagation models in compressible

flow and hydrodynamic instability analysis. Successful theories demonstrate clear

causality between assumptions and observations. Thus, as long as the underlying

assumptions are satisfied, one can safely “transfer” conclusions to many other situa-

tions. However, with the ever-more complex applications, assumptions that underpin

simple theories often become too restrictive. For that reason, fluid dynamicists have

leveraged inductive reasoning by searching for phenomenological assumptions from

experiments that makes closed-form design feasible (Anderson Jr , 2010). Modern

inductive reasoning approaches, e.g., the search for useful patterns in scientific data

automatically using mathematical methods (Brunton and Kutz , 2019), sometimes re-

ferred to as “data-driven science and engineering”, has received attention in recent

years. One of the key factors for the surge is the abundant spatial-temporal data from

numerical simulations e.g. DNS and LES (Moin and Mahesh, 1998; Pitsch, 2006),

and experiments e.g., Tomographic PIV (Scarano, 2012).

This dissertation investigates Operator theoretic learning, with a focus on Koop-

man operator theory and falls in the intersection among: 1) modal analysis/decomposition

of fluid flows, 2) model order reduction and flow control, 3) non-intrusive reduced or-

der modeling. The Koopman operator provides an elegant framework that can enable

a wide spectrum of applications in data-driven modeling, prediction, analysis, and op-

timal control of high-dimensional non-linear dynamical systems.
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1.3 Dimensionality-reduction

The main idea of modal decomposition is to extract coherent modes, e.g., traveling

waves, that capture essential features of complex dynamics. The resulting modes can

help extract a low-dimensional form of the complex nonlinear flows either from an

energy perspective, linearized dynamics or input-output standpoint. Based on how

much information is required from the governing equation, there are data-based and

operator-based techniques (Taira et al., 2017). Data-based techniques obtain modal

decomposition from data while operator-based techniques target the characterization

of underlying operators.

For example, proper orthogonal decomposition (POD) (Berkooz et al., 1993) is

a data-based technique. It requires a data matrix that consists snapshots of a field

of quantities of interest, e.g., velocity, pressure. The decomposition represents a low

dimensional representation that optimally preserves the variance (e.g., kinetic energy

for velocity). For example, consider the full field is velocity field u, v, w on a mesh

of Nx ˆ Ny ˆ Nz grid points sampled from t1, . . . , tM , we can have a r-dimensional

presentation of the snapshots X,

X “

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

upx1, y1, z1, t1q . . . upx1, y1, z1, tMq

vpx1, y1, z1, t1q . . . vpx1, y1, z1, tMq

wpx1, y1, z1, t1q . . . wpx1, y1, z1, tMq

...
...

...

upxNx , yNy , zNz , t1q . . . upx1, y1, z1, tMq

vpxNx , yNy , zNz , t1q . . . vpx1, y1, z1, tMq

wpxNx , yNy , zNz , t1q . . . wpx1, y1, z1, tMq

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

«

r
ÿ

1

σiUiV
J
i , (1.1)

where Ui is the i-th POD mode and σiVi is the i-th POD coefficient. Since the

corresponding kinetic energy is ordered by σ1 ě σ2 . . . ě σr, we have an energy-based
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hierarchical description of the full field.

A closely related technique is called spectral POD (SPOD) (Towne et al., 2018)

in which one performs POD in the Fourier space. The resulting SPOD modes are

both orthogonal to each other in time and space while the conventional POD only

guarantees space orthogonality.

Another example is Balanced POD (BPOD) (Rowley , 2005) which is an approx-

imation to a classic model order reduction technique called balanced truncation. It

starts with a potentially high-dimensional linear time-invariant input-output system:

9x “ Ax`Bu, (1.2)

y “ Cx, (1.3)

where even saving the Gramians for large fluid system is not possible. Rowley (2005)

proposed a trade-off by additionally performing simulations with pulse inputs to the

above linear system and the following adjoint system:

9z “ AJz`CJv, (1.4)

w “ BJz. (1.5)

One can obtain the balanced transformation by taking an SVD of the product between

the response from linear system and that from the adjoint system. In terms of modal

analysis, BPOD provides insight into the flow pattern that is most sensitive to control

inputs and those that trigger large growth in the observables.

Examples of operator-based techniques include global linear stability analysis (Monke-

witz et al., 1993), which consider eigen-decompositions of the linearized system of

equations (e.g. linearized Navier–Stokes equations). The resulting eigenvector repre-

sents a linearly evolving pattern following a certain growth rate and frequency. Other

examples include resolvent analysis (McKeon and Sharma, 2010), which relates the
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quadratic non-linear forcing in N-S with the linear counterpart. This starts with the

full N-S equations, but separating non-linear terms on the right hand side. So that

one can view the behavior of the fluid system from an input-output point of view:

M
Bq

Bt
`Aq “ fpqq, (1.6)

where q represents the spatially discretized flow variables (e.g., velocity, pressure).

For statistically stationary flows, the corresponding frequency representation of the

above becomes

piωM`Aqq̂ “ f̂ , (1.7)

where qptq “ q̂eiωt, fptq “ f̂eiωt. Thus, the resolvent operator describes the amplifi-

cation from non-linear interaction of different time scales in frequency space as

R “ piωM`Aq´1. (1.8)

Normally, we choose A evaluated at the time-averaged solution for statistically sta-

tionary flows. By performing SVD on the resolvent operator, one can gain insights

on the most amplified inputs, and corresponding outputs.

As the last but perhaps most important example of operator-based techniques,

the Koopman operator (Mezić, 2013) is an evolution operator on the infinite dimen-

sional space of observables of non-linear dynamical systems. An introduction to the

Koopman operator is provided in the following section.
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1.4 Introduction to Koopman Operators

1.4.1 Mathematical Formulation

Consider an autonomous dynamical system

9x “ Fpxq, (1.9)

where x PM Ă Rn, M is a smooth manifold in the state space, F :M ÞÑ TM is a

vector-valued smooth function and TM is the tangent bundle, i.e., @p PM,Fppq P

TpM. Instead of a geometric viewpoint (Guckenheimer and Holmes , 2013; Hirsch

et al., 2012), Koopman (Koopman, 1931) offered an operator-theoretic perspective

by describing the “dynamics of observables” on the measure space pM,Σ, µq via the

Koopman operator Kt : F ÞÑ F , such that for an observable on the manifold, @f P F ,

t P Rě0, f :M ÞÑ C,

Ktf fi f ˝ St, (1.10)

where Stpx0q fi Spx0, tq is the flow map that takes the initial condition x0 and ad-

vances it by time t by solving the initial value problem for the aforementioned non-

linear dynamics, with F “ L2pM, µq, where µ is some positive measure on pM,Σq.

Therefore, it can be also written as

Ktfpx0q fi fpxptqq, (1.11)

where xptq is the solution of initial value problem of eq. (1.9) given xp0q “ x0.

The semigroup of Koopman operators tKtutPR` is generated by the so-called Koop-

man generator K : DpKq ÞÑ F , Kf fi limtÑ0pKtf ´ fq{t where DpKq is the domain

in which the aforementioned limit is well-defined and DpKq “ F . This operator is

linear, but defined on F , which makes it inherently infinite-dimensional. Physically,

Kt governs the temporal evolution of any observable in F . Specifically, for measure-
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preserving systems, e.g., Hamiltonian system or the dynamics on an attractor of

the Navier–Stokes equations, as displayed in eq. (1.12) one can guarantee a spectral

decomposition of any observable f P F ,

Ktf “ f˚
loomoon

time-average

`
ÿ

j
eλjtPjf

looooomooooon

point spectra

`

ż 1

0

ei2πθtdEpθqf
loooooooomoooooooon

continuous spectra

, (1.12)

where λj “ i2πωj is j-th Koopman eigenvalue, and E is a complex, continuous,

operator-valued spectral measure on F .

Similar to the triple decomposition in fluid dynamics (Hussain and Reynolds ,

1970), such spectral decomposition in eq. (1.12) is a sum of three essentials (Mezić,

2005): temporal averaging of the observable, the contribution from the point spec-

trum, which is almost periodic in time, and that from the continuous spectrum, which

is chaotic (Koopman and Neumann, 1932). It should be noted that pointwise spectra

approximation, i.e., considering the first two terms only, can be quite usually useful

already1 by neglecting the continuous spectra in eq. (1.12). For a more comprehensive

discussion, readers are referred to the excellent review by Budǐsić et al. (2012). It

should be stressed that for measure-preserving systems, the Koopman operator is not

only well-defined on L2pM, µq but also can be shown to be unitary, which ensures

properties such as simple eigenvalues and the existence of the aforementioned spectral

resolution (Budǐsić et al., 2012). Throughout this dissertation, we employ the simple

but practical assumption (Korda and Mezić, 2018a) F “ L2pM, µq, where µ is some

positive measure with support equal toM. Note that this implies that the Koopman

operator is well-defined on F .

1Indeed, the continuous spectrum is empty for most types of attractors, e.g., fixed points, limit
cycle, quasi-periodic tori (Mauroy and Mezić, 2016).
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Figure 1.3: Schematic of finding a Koopman-invariant subspace.

1.4.2 Koopman Invariant Subspace & Koopman Analysis

Despite its appealing properties, the Koopman decomposition cannot be directly

pursued described above for practical large-scale scientific applications. To accommo-

date practical computation of the Koopman operator, we adopt the pointwise spectra

assumption: we assume only a finite dimensional space invariant to Kt is of interest.

This excludes the possibility of dealing with a chaotic system since it is impossi-

ble for a finite dimensional linear system to be topologically conjugate to a chaotic

system (Budǐsić et al., 2012).2

Then, as shown in fig. 1.3, the task of finding Koopman operator becomes equiv-

alent to find a special D dimensional subspace FD in the observables space F that is

invariant to Koopman operator. That is to say, for any φ in the FD, for any t P R`,

we have Ktφ also in the FD. Further, as shown in eq. (1.13), we refer Koopman anal-

ysis of a dynamical system in eq. (1.9) to searching for the Koopman eigenfunctions

ψ1, . . . , ψD that span a non-trivial FD that contains the identity mapping f “ x and

its associated eigenvalues λ1, . . . , λD
3.

2However, one could assign a state-dependent Koopman operator to work around this limita-
tion (Lusch et al., 2018a). Indeed, one can establish a duality between the measure-preserving
dynamics on the attractor with a stationary stochastic process, which reflects a close relationship
between the estimation of a continuous spectrum from the data, and the extraction of the power
spectral density of stochastic signals (Arbabi and Mezić, 2017).

3While we assume that the eigenvalues are simple in this dissertation, it is possible to extend to
the generalized case (Budǐsić et al., 2012).
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xptq
loomoon

non-linear dynamics

“

D
ÿ

j“1

ψjpxqe
λjtbj

looooomooooon

single mode of linear dynamics

, (1.13)

where we call b1, . . . ,bD, the projections coefficients of x onto the eigenfunctions as

Koopman modes.

Such non-trivial FD would correspond to a linear system that is topologically

conjugate to the nonlinear dynamical system. This concept is particularly useful

in high-dimensional system such as fluid dynamics. Moreover, such decomposition

essentially generalizes the Hartman-Grobman theorem to the entire basin of attraction

of the equilibrium point or periodic orbit (Lan and Mezić, 2013). From the viewpoint

of understanding the behavior of the dynamical system in state space, the level sets

of Koopman eigenfunctions form the invariant partition in the state space (Budǐsić

and Mezić, 2012). Further, the ergodic partition can be analyzed with Koopman

eigenfunctions (Mezić and Wiggins , 1999).

1.4.3 Implications of Koopman Operators

1. Physical insight. Complex unsteady flow phenomena such as turbulence (Pope,

2001), flow instability (Drazin and Reid , 2004; Lietz et al., 2017), and fluid-

structure interactions (Dowell and Hall , 2001) are prevalent in many physical

systems. To analyze and understand such phenomena, it is useful to extract

coherent modes associated with important dynamical mechanisms and track

their evolution. Koopman operator theory (Budǐsić et al., 2012) offers an el-

egant framework to reduce spatio-temporal fields associated with non-linear

dynamics as a linear combination of time evolving modes ordered by isolated

frequencies and growth rates (Rowley et al., 2009). For example, DMD which is

the simplest approximation of the Koopman operator, has been widely applied

in transitional flows (Sayadi et al., 2012, 2014), acoustics (Song et al., 2013),
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combustion instability (Arnold-Medabalimi et al., 2020; Huang et al., 2016), etc.

From the viewpoint of understanding the behavior of the dynamical system

in state space, the level sets of Koopman eigenfunctions form the invariant

partition in the state space (Budǐsić and Mezić, 2012), which can help study

mixing. Further, the ergodic partition can be analyzed with Koopman eigen-

functions (Mezić and Wiggins , 1999).

2. ROMs for prediction, control & state estimation. The Koopman op-

erator naturally induces a low-dimensional model that can enable predictive

modeling and the possibility of real-time control. It is notable that controllers

based on linear optimal control theory can be implemented efficiently (Deem

et al., 2020). On one hand, in terms of reduced order modeling for predic-

tion, we are interested in learning the reduced dynamics from data. Intrusive

ROMs (Huang et al., 2018; Carlberg et al., 2013; Huang et al., 2020a) involve

stability and efficiency issues when applied to stiff and convection-dominated

chaotic problems (e.g., combustion). Although non-intrusive (NI) ROMs (Xu

and Duraisamy , 2019) show can be more efficient, there are typically no solid

guarantees for the long time prediction to be accurate and stable. In contrast,

Koopman-based NI-ROMs have two major advantages over standard NI-ROM.

First, generally speaking, the off-line computational complexity of Koopman-

based NI-ROM is lower than standard NI ROM in that one only needs to

evaluate a matrix exponential for the prediction at an arbitrary future time

step. This can be particularly attractive for real-time forecasting applications.

Meanwhile, standard NI-ROMs have to integrate non-linear latent dynamics

which is much more computational costly than evaluating a matrix exponential.

Second, one can elegantly enforce stability within the framework of Koopman

operator (Pan and Duraisamy , 2020c) while such integration of non-linear la-

tent dynamics from standard NI-ROMs could lead to uncontrolled instability.
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It has to be mentioned, however, that a linear dynamics may demand a much

higher dimensional latent space than would be required if non-linear dynamics

is pursued.

Koopman-based system identification models are particularly desirable in data-

driven control due to the potential to leverage linear optimal control theory (Abra-

ham et al., 2017; Mamakoukas et al., 2019; Kaiser et al., 2017), linear model pre-

dictive control (MPC) (Korda and Mezić, 2018b) and state estimation (Surana

and Banaszuk , 2016). This is particularly attractive for identifying non-linear

systems where the full dynamics is either too high dimensional to handle (e.g.,

flow control (Arbabi et al., 2018b)), contains important missing physics and

uncertainty (e.g., frictions, contact dynamics) or just simply difficult to ob-

tain (e.g., soft robotics (Bruder et al., 2019)). For example, the main idea of

Koopman-MPC (Korda and Mezić, 2016) is to consider the approximation of

the original non-linear dynamical system

9x “ Fpx,uq, (1.14)

with a linear time-variant input-output system in the Koopman lifted space,

9Ψ “ AΨ`Bu, x “ CΨpxq. (1.15)

It is thus natural to leverage the infinite-horizon linear quadratic regulator

(LQR) in the form

u˚ptq “ arg min
uptq

Jpu,x0q “ arg min
uptq

ż 8

0

`

xJQx` uJRu
˘

dt, (1.16)

“ arg min
uptq

ż 8

0

`

ΨJQΨΨ` uJRu
˘

, (1.17)

14



where the closed form solution induces a non-linear feedback controller:

u˚pxq “ ´R´1BJPΨpxq. (1.18)

and P can be solved via the following algebraic Ricatti equation just for one

time,

QΨ `PA`AJP´PBR´1BJP “ 0. (1.19)

3. Operator-informed deep learning architectures. One of the most noto-

rious problems in training deep recurrent neural networks (RNN) is the issue

of vanishing gradient. This is a result of the contracting behavior when infor-

mation is propagated in each layer, and hampers learning from long sequences.

One of the popular remedies is “Long short-term memory(LSTM)” (Hochre-

iter and Schmidhuber , 1997). Even though applying Koopman operator theory

with a finite-dimensional linear representation of fully chaotic systems is less

ideal compared to the non-chaotic counterparts, several studies from different

groups recently reported by Otto and Rowley (2019b); Morton et al. (2019);

Eivazi et al. (2020) have all demonstrated favorable performance of the Koop-

man operator in modeling high-dimensional chaotic systems over LSTM. This

benefit is a consequence of the linear embedding which makes the information

propagation much easier in the recurrent structure. This can be generalized

to many other deep learning applications (e.g., video predictions) by equipping

CNN with Koopman operator (Leask and McDonell , 2020; Gin et al., 2019).
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1.5 Overview of the state-of-the art in the Approximation of

Koopman Operators

In this section, we provide a high-level overview of the state-of-the-art in the

approximation of Koopman operators. A more detailed presentation is provided in

Chapter II. Since we adopt the pointwise spectral assumption, i.e., we neglect the con-

tinuous spectrum, our goal is to seek a finite number of Koopman eigenfunctions and

corresponding eigenvalues. Existing methods for the discovery of such eigenfunctions

and eigenvalues can be broadly classified into two kinds:

• Analytic approximations : These techniques directly manipulate the PDE to

find the Koopman decomposition. For example, Bagheri (2013) considered a

weakly non-linear analysis with 1D Stuart-Landau equation to obtain Koopman

eigenvalues and eigenfunctions for 2D cylinder flow; Page and Kerswell (2018);

Nathan Kutz et al. (2018) leveraged Cole-Hopf transformation to find Koopman

decompositions for the 1D Burgers equation.

• Data-enabled/data-driven approximations : This class of techniques use the state

or observable data and/or the governing equations to search for Koopman eigen-

functions in an appropriate function space.

Since the analytical approach is restricted to a few simple problems, we focus our at-

tention on data-driven and data-enabled techniques to approximate Koopman opera-

tors. The most straightforward idea (Williams et al., 2015) is to manually construct

a finite number of so-called dictionary functions of the state x, and then assume

that the space spanned by these functions is invariant to the Koopman operator.

Then the realization of Koopman operator becomes a finite-dimensional square ma-

trix. Without loss of generality, we consider a trajectory of the original non-linear

dynamical system: xp∆tq, . . . ,xpM∆tq. The simplest way to obtain such a square

matrix is to fit a linear mapping between dictionary functions at time t and those
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at time t ` ∆t. Then one can simply perform an eigendecomposition to obtain the

corresponding approximation of Koopman eigenvalues and eigenfunctions. Based on

how one constructs such dictionary functions, there are three different categories of

approximation methods:

1. DMD (Rowley et al., 2009), Extended DMD (Williams et al., 2015), Kernel

DMD (Williams et al., 2014): These methods use fixed dictionary functions, ei-

ther from linear features, polynomial features, or implicit features via the kernel

trick. The latter two methods yield non-linear approximations to the Koop-

man operator, whereas while the former is a linear approximation (Rowley et al.,

2009). Such dictionary-based methods (e.g., EDMD) enjoy rigorous theoretical

justification as a L2 projection of the Koopman operator in a measure-theoretic

sense (Korda and Mezić, 2018a). Moreover, when an appropriate space is cho-

sen, these techniques converge in the strong operator topology to the Koopman

operator with infinite number of dictionary functions. In practice, non-linear ap-

proximations of Koopman operator have been shown to improve the accuracy of

approximation compared to linear counterpart (DMD) (Pan et al., 2020). How-

ever, due to its simplicity, DMD is much more popular in the fluid dynamics

community (Schmid , 2010; Schmid et al., 2011).

2. Time delay DMD (Brunton et al., 2017): Time-delay embedding, also known

as delay-coordinate embedding, refers to the inclusion of history information in

dynamical system models. This idea has been employed in a wide variety of

contexts especially in Koopman operators (Arbabi and Mezic, 2017; Arbabi and

Mezić, 2017; Kamb et al., 2018; Brunton et al., 2017). The use of delays to

construct a “rich” feature space for geometrical reconstruction of non-linear dy-

namical systems is justified by the Takens embedding theorem (Takens , 1981)

which states that by using a delay-coordinate map, one can construct a diffeo-

morphic shadow manifold from univariate observations of the original system in
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the generic sense. Extensions are possible in a measure-theoretic sense (Sauer

et al., 1991), filtered memory (Sauer et al., 1991), deterministic/stochastic forc-

ing (Stark et al., 2003b,a), and multivariate embeddings (Deyle and Sugihara,

2011). In the context of the Koopman operator, instead of considering manually

built dictionary functions in the previous category, one can consider using the

previous states of the system as augmented observables. Interestingly, this can

be equivalently viewed as taking a series of time-delayed reverse flow maps as

fixed dictionary functions with the current state as the initial condition. Such

a dictionary function is, however, implicitly defined by the dynamics of the au-

tonomous system and most of the time one cannot find an explicit expression4.

Therefore, one has to either collect experimental measurements for the initial-

ization or run numerical simulations to obtain enough history data to start the

model for prediction purposes.

3. Neural Networks (Lusch et al., 2018b): Neural networks drives many state-

of-the-art deep learning applications (Krizhevsky et al., 2017; Ren et al., 2015).

They provides a special compositional parameterization that can approximate

arbitrary functions (see appendix B.1.3). Neural networks can be used to con-

struct observables, following which one can penalize the deviation from linear

dynamics (Otto and Rowley , 2019b; Yeung et al., 2017). The benefits of this ap-

proach compared to previous methods is the expressiveness and the potential to

be adaptive to the data while still enjoying explicit transformations. However,

one need to pre-determine the dimension of the Koopman invariant subspace

and such training process suffers from issues of non-convex optimization.

As a side note, other algorithms for the approximation of the Koopman operator

(but not included in this thesis) include generalized Laplace analysis (GLA) (Budǐsić

et al., 2012; Mauroy and Mezić, 2012), and the Ulam Galerkin method (Froyland

4One needs to have an explicit expression for the flow map.
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et al., 2014).

1.6 Motivating Questions

From the standpoint of the approximation of Koopman operators, the following

fundamental questions serve as the motivation for this work:

1. How best can one leverage time delays in DMD?: What is the minimal number

of time delays required to develop accurate approximations? From a numerical

conditioning perspective, how do time delays affect model performance?

2. Since we assume that the space spanned by all dictionary functions is Koopman

invariant, how can we choose a sparse and robust Koopman invariant subspace

from data-driven nonlinear approximations for Koopman operators, e.g., Ex-

tended DMD, Kernel DMD?

3. Beyond the black-box nature of deep neural networks, how can we use physics

information and how can we guarantee the stability of the Koopman approx-

imation? Further, how can we address uncertainties arising from finite data

and noise? As a consequence, how can we quantify the confidence in Koopman

operator-based predictions?

The goal of this dissertation is to address the above questions and advance the

theoretical & numerical understanding of Koopman operator approximations.

1.7 Contributions

As summarized in fig. 1.4, the key contributions of this dissertation are:

1. Theoretical explanation of the role of time delays in data-driven Koopman ap-

proximation. This includes quantitative details on the number of time delays
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required in linear embedding of non-linear dynamics on an attractor, and the

impact of time delays on numerical conditioning.

2. Multi-task learning and error analysis to choose an optimal basis which dra-

matically reduces the dimension of the Koopman invariant subspace.

3. Theoretical analysis of the connection between a empirical criterion, sparse-

promoting DMD and the proposed multi-task learning framework from non-

convex optimization.

4. Successful applications on several transient fluid flows demonstrate the power

of extracting correct coherent structures without the need to separate training

data for the strongly non-linear dynamics (Taira et al., 2020).

5. A complete measure-theoretic formulation of data-driven approximation of Koop-

man operators with deep neural networks.

6. Devised and proved a technique to enforce non-linear stability in Koopman

operators with no degradation on expressiveness.

7. Developed a hierarchical Bayesian deep learning framework to address the un-

certainty in the approximation of Koopman operators.

The above contributions are also presented in the following publications:

1. Pan, S., and Duraisamy, K. (2020) Physics-informed probabilistic learning of

linear embeddings of nonlinear dynamics with guaranteed stability. SIAM Jour-

nal on Applied Dynamical Systems, 19(1), 480-509

2. Pan, S., and Duraisamy, K. (2020). On the structure of time-delay embedding

in linear models of non-linear dynamical systems. Chaos: An Interdisciplinary

Journal of Nonlinear Science 30 (7), 073135
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Figure 1.4: Sketch of contributions in this dissertation.

3. Pan, S., Arnold-Medabalimi, N., and Duraisamy, K. (2020). Sparsity-promoting

algorithms for the discovery of informative Koopman invariant subspaces. arXiv

preprint arXiv:2002.10637. (conditionally accepted Journal of Fluid Mechanics)

While not explicitly included in the thesis, the following papers - written over the

duration of the PhD - served to further refine numerical treatments and overarching

questions in this dissertation:

1. Pan, S., and Duraisamy, K. (2018). Data-driven discovery of closure models.

SIAM Journal on Applied Dynamical Systems, 17(4), 2381-2413.

2. Pan, S., and Duraisamy, K. (2018). Long-time predictive modeling of nonlinear

dynamical systems using neural networks. Complexity, 2018.

3. Singh, A. P., Duraisamy, K., and Pan, S. (2017). Augmentation of turbulence

models using field inversion and machine learning. In 55th AIAA Aerospace

Sciences Meeting (p. 0993).
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4. Sun, L., Gao, H., Pan, S., and Wang, J. X. (2020). Surrogate modeling for

fluid flows based on physics-constrained deep learning without simulation data.

Computer Methods in Applied Mechanics and Engineering, 361, 112732.

5. Ji, W., Qiu, W., Shi, Z., Pan, S., and Deng, S. (2020). Stiff-PINN: Physics-

Informed Neural Network for Stiff Chemical Kinetics. arXiv preprint arXiv:2011.04520.

6. Singh, A. P., Pan, S. and Duraisamy, K., (2017). Characterizing and improving

predictive accuracy in shock-turbulent boundary layer interactions using data-

driven models. In 55th AIAA Aerospace Sciences Meeting (p. 0314).

7. Gao, Q., Li, Q., Pan, S., Wang, H., Wei, R., and Wang, J. (2019). Particle

reconstruction of volumetric particle image velocimetry with strategy of machine

learning. arXiv preprint arXiv:1909.07815.

8. Bhatnagar, S., Afshar, Y., Pan, S., Duraisamy, K., and Kaushik, S. (2019).

Prediction of aerodynamic flow fields using convolutional neural networks. Com-

putational Mechanics, 64(2), 525-545.

1.8 Outline

The structure of the dissertation is as follows: Chapter II presents a review of the

state-of-the-art in data-driven approximation of Koopman operators and remaining

challenges. In the next following three chapters, the major contributions of this thesis

are presented. Chapter III presents the theory on the role of the number of delays in

time delay DMD restricted to a periodic attractor with several validations including

chaotic turbulent flows. Chapter IV addresses the issue extracting compact Koopman

invariant subspaces from traditional methods (EDMD/KDMD) using a multi-task

learning framework with error analysis. Several applications on transient non-linear

dynamical systems are also provided. Chapter V presents a Bayesian deep learning
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framework with stability guarantees to extract Koopman operators with and without

the use of data. Finally, conclusions and perspectives are provided in Chapter VI.
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CHAPTER II

Data-Driven Approximation of Koopman

Operators

Truth ... is much too complicated to

allow anything but approximations.

John von Neumann (1947)

2.1 Introduction

In section 1.4.2, we showed that the goal of extracting Koopman operators for

non-linear dynamical systems under the assumption of pointwise spectra is equiva-

lent to finding a finite set of Koopman eigenfunctions ψ1, . . . , ψD and corresponding

eigenvalues λ1, . . . , λD. Different methods of approximating the Koopman operator

were briefly introduced in section 1.5. In this chapter, we will provide a more detailed

description of the state-of-the-art.

We also develop the mathematical setting necessary for the advances pursued in

this thesis.

The three categories of data-driven methods for the approximation the Koopman

eigenfunctions and eigenvalues are:

• EDMD/KDMD. This is perhaps the most common approach for approximating
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the Koopman operator. The main idea behind EDMD (Williams et al., 2015)

and KDMD (Williams et al., 2014) is to assume that the Koopman invariant

subspace FD is spanned by a finite dictionary of functions given by the user (e.g.,

monomials or implicit functions defined by the kernel (Mercer , 1909a)), and

then minimize the empirical risk of the residual that comes from the imperfect

Koopman invariant subspace. Note that EDMD is essentially a least-squares

regression of the (linear) action of the Koopman operator for the features in

the dictionary. Such samples are drawn from some measure µ with fixed fea-

tures, which can be proved as a L2pM, µq orthogonal projection in the limit

of large independent identically distributed data (Klus et al., 2015; Williams

et al., 2015). Indeed, by framing the data-derived Koopman operator in the

Hilbert space endowed with a proper measure, one can prove optimality in the

asymptotic sense with an infinite amount of data and dictionary functions for

EDMD (Korda and Mezić, 2018a). For Hankel-DMD, convergence to the Koop-

man eigenfunctions and eigenvalues can be guaranteed for an ergodic system

with an infinite amount of data (Arbabi and Mezic, 2017). Unfortunately, the

original EDMD (Williams et al., 2015) is seldom used for data-driven Koopman

analysis in high-dimensional systems such as fluid flows due to its poor scaling

with the dimension of the system state. However, one can leverage random

Fourier features (Rahimi and Recht , 2008) to construct a scalable version of

EDMD (DeGennaro and Urban, 2019) for high-dimensional systems.

• Time Delay DMD. Following the similar spirit of EDMD, time delay DMD takes

current and past L system states on the trajectory to construct an observable

space that approximates the Koopman invariant subspace. We formalize it in

discrete-time, which can be viewed as taking a sequence of flow maps with differ-

ent time intervals for constructing the observable space to build an orthogonal

projection of the Koopman operator. As a side note, it is possible to formalize
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in continuous-time with the inclusion of Lie derivative.

• Deep learning-based DMD (DL-DMD) in differential form and recurrent form.

Differential form refers to enforcing the time derivative of Koopman eigenfunc-

tions within the subspace spanned by the eigenfunctions. Recurrent form refers

to enforcing the recurrent prediction from the Koopman-based model to match

the discretely sampled trajectory data. Further, we formalize the DL-DMD

with statistical learning concepts in a probabilistic sense.

2.2 Extended Dynamic Mode Decomposition

2.2.1 Discrete-time Formulation

For simplicity, consider M sequential snapshots sampled uniformly in time with

∆t on a trajectory, txiu
M
i“1. The EDMD algorithm (Williams et al., 2015) assumes

a dictionary of L linearly independent functions i “ 1, . . . , L, ψipxq : M ÞÑ C that

approximately spans a Koopman-invariant subspace FL

FL “ spantψ1pxq, . . . , ψLpxqu. (2.1)

Thus we can write for any g P FL as gpxq “ Ψpxqa with a P CL, where the feature

vector Ψpxq is

Ψpxq “

„

ψ1pxq . . . ψLpxq



. (2.2)

Consider a set of L
1

observables as tglu
L
1

l“1 “ tΨalu
L
1

l“1, where al P CL is arbitrary.

After the discrete-time Koopman operator K∆t is applied on each gl, given data

txiu
M
i“1, we have the following for l “ 1, . . . , L1, and i “ 1, . . . ,M ´ 1,

K∆tglpxiq “ glpxi`1q “ Ψpxi`1qal “ ΨpxiqKal ` ri,l, (2.3)
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where ri,l is simply the residual for the l-th function on the i-th data point. The

standard EDMD algorithm seeks a constant matrix K P CLˆL that governs the linear

dynamics in the observable space such that the sum of the square of the residuals ri,l

from eq. (2.3) over all samples and functions,

JpK, talu
L
1

l“1q “

L
1

ÿ

l“1

M´1
ÿ

m“1

|pΨpxm`1q ´ΨpxmqKqal|
2
“ ‖pΨx1 ´ΨxKqA

1‖2
F , (2.4)

is minimized over txiu
M`1
i“1 . In the above equation,

Ψx “

»

—

—

—

—

–

ψ1px1q . . . ψLpx1q

...
...

...

ψ1pxM´1q . . . ψLpxM´1q

fi

ffi

ffi

ffi

ffi

fl

,Ψx1 “

»

—

—

—

—

–

ψ1px2q . . . ψLpx2q

...
...

...

ψ1pxMq . . . ψLpxMq

fi

ffi

ffi

ffi

ffi

fl

(2.5)

A
1

“

„

a1 . . . aL1



. (2.6)

Considering BJ{BK “ 0, one obtains ΨH
x Ψx1A

1

A
1H “ ΨH

x ΨxKA
1

A
1H. Thus, the

corresponding minimizer Kopt is,

Kopt “ G`ApA
1

A
1H
qpA

1

A
1H
q
`, (2.7)

where ` denotes the pseudoinverse and

G “

M´1
ÿ

m“1

Ψpxmq
HΨpxmq “ ΨH

x Ψx, (2.8)

A “

M´1
ÿ

m“1

Ψpxmq
HΨpxm`1q “ ΨH

x Ψx1 , (2.9)

where H denotes conjugate transpose. Note that when the set of observable fully

span FL, i.e., A
1

is full rank, pA
1

A
1HqpA

1

A
1Hq` reduces to identity. Then we have
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the more familiar KEDMD as,

KEDMD “ G`A. (2.10)

which is independent of the choice of talu
L
1

l“1.

Assuming that all eigenvalues of KEDMD are simple1, for i “ 1, . . . , L, the corre-

sponding Koopman eigenfunctions ϕi associated with Koopman eigenvalues λi are

ϕipxq “ Ψpxqvi, (2.11)

where KEDMDvi “ λivi. Finally, the Koopman modes of a vector-valued Q dimen-

sional observable function g :M ÞÑ CQ, are the vectors of weights tbiu
L
i“1 assoicated

with the expansion in terms of eigenfunctions tϕiu
L
i“1 as,

gpxq “
L
ÿ

i“1

ϕipxqbi, (2.12)

where bi is often numerically determined in practice by ordinary least squares,

B “

»

—

—

—

—

–

b1

...

bL

fi

ffi

ffi

ffi

ffi

fl

“ pΨxVq`

»

—

—

—

—

–

gpx1q

...

gpxMq

fi

ffi

ffi

ffi

ffi

fl

, (2.13)

with V “

„

v1 . . . vL



.

2.2.2 Continuous-time Formulation

Consider M data snapshots of the dynamical system with state x sampled overM

as txi, 9xiu
M
i“1 where 9xi “ Fpxiq. Recall the generator of the semigroup of Koopman

operators K : DpKq ÞÑ F ,K “ limtÑ0pKtf ´ fq{t where DpKq is the domain in which

the aforementioned limit is well-defined and the closure of DpKq is F . One can have

1This is an immediate consequence for ergodic system (Parry , 2004).
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the evolution of any observable g “ Ψa P FL as,

Kg “ 9g “ F ¨∇xΨa “ ΨKa` r, (2.14)

where r is the residual. Similarly, one can find a K that minimizes the sum of the

square of residual r minimized solution,

KEDMD “ G`A, (2.15)

where

G “

M
ÿ

m“1

Ψpxmq
HΨpxmq, (2.16)

A “

M
ÿ

m“1

Ψpxmq
H
pF ¨∇xqΨpxmq “

M
ÿ

m“1

Ψpxmq
H
p 9xm ¨∇xqΨpxmq. (2.17)

Consider eigenvalues tµiu
L
i“1 and eigenvectors tviu

L
i“1 of KEDMD. Koopman eigen-

functions are in the same form as that in discrete-time formulations while continuous-

time Koopman eigenvalues µi can be converted to the aforementioned discrete-time

sense as λi “ eµi∆t.

2.3 Kernel Dynamic Mode Decomposition

2.3.1 Discrete-time Formulation

Instead of explicitly expressing a dictionary of candidate functions, one can instead

implicitly define a dictionary of candidate functions via the kernel trick, which is

essentially the dual form of EDMD (Williams et al., 2014). Note that, from the

EDMD formulation in eq. (2.4), any vector in the range of K orthogonal to the range of

ΨH
x is annihilated, and therefore cannot be inferred (Williams et al., 2014). Assuming

Ψx is of rank r, we can obtain a full SVD Ψx “ QΣZH and the corresponding
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economical-SVD as QrΣrZ
H
r . With the aforementioned definitions, we have K “

ZrK̂ZH
r without loss (Otto and Rowley , 2019b).

Since the multiplication by a unitary matrix preserves the Frobenius norm, we

have

JpK, talu
L
1

l“1q “ ‖pΨx1 ´ΨxKqA
1‖2
F (2.18)

“ ‖pQHΨx1 ´QHQrΣrK̂ZH
r qA

1‖2
F (2.19)

“ ‖pQH
r Ψx1 ´ΣrK̂ZH

r qA
1‖2
F ` ‖QH

r,KΨx1A
1‖2
F , (2.20)

where QH
r,K are the last m ´ r rows of QH. By taking derivatives with respect to K̂,

one can obtain the minimal-norm minimizer as,

K̂opt “ Σ`
r QH

r Ψx1A
1

A
1HZrpZ

H
r A

1

A
1HZrq

`. (2.21)

Notice that, since any column in the span of A
1

that is orthogonal to the span

of Zr will be annihilated by ZH
r and thus cannot be utilized to determine K̂, it is

reasonable to restrict al within the column space of Zr. Assuming L
1

is sufficiently

large such that the column space of A
1

fully spans Zr, eq. (2.22) can be proved as

follows:

A
1

A
1HZrpZ

H
r A

1

A
1HZrq

`
“ Zr. (2.22)

Proof. Consider the economy SVD of A
1

“ USVH. Since the column space of A
1

spans the column space of Zr, there exists an invertible matrix P such that ZrP “ U.

Hence,

A
1

Zr “ VSUHZr “ VSPHZH
r Zr “ VSPH,

and ppA
1

Zrq
HA

1

Zrq
` “ pP´1qHS´2P´1. Thus

A
1

A
1HZrpZ

H
r A

1

A
1HZrq

`
“ pUSVH

qpVSPH
qpP´1

q
HS´2P´1

“ UP´1
“ Zr.
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With eq. (2.22), we can rewrite eq. (2.21) as the familiar KDMD formulation,

K̂KDMD “ Σ`
r QH

r Ψx1Z
H
r “ Σ`

r QH
r Ψx1Ψ

H
x QrΣ

`
r , (2.23)

where ΨxΨH
x “ QrΣ

2
rQ

H
r with pΨxΨH

x qij “ kpxi,xjq, pΨx1Ψ
H
x qij “ kpxi`1,xjq for

0 ď i, j ďM ´ 2. Again, such a minimizer is independent of the choice of A
1

.

Notice that, to compute Koopman eigenvalues and eigenfunctions, one would only

need access to Ψx1Ψ
H
x and ΨxΨH

x , i.e., the inner product among features on all

data points. Fortunately, on a compact domain M, it is well-known from Mer-

cer’s theorem (Mercer , 1909b) that once a suitable non-negative kernel function

kp¨, ¨q : M ˆM ÞÑ R is defined, kpx,yq is the inner product among a potentially

infinite dimensional feature vector Ψ evaluated at x,y PM. Note that the choice of

such a feature vector might not be unique but the corresponding reproducing kernel

Hilbert space (RKHS) is (Aronszajn, 1950). In the case of a Gaussian kernel, one can

choose the canonical feature vector kp¨,xq which are “bumps” of a certain band-width

distributed on M. From the view point of kernel PCA (Williams et al., 2014), Qr

resulting from the finite dimensional rank truncation on the Gram matrix ΨxΨH
x is a

numerical approximation to the r most dominant variance-explained mode shapes in

the RKHS evaluated on the data points (Rasmussen, 2003), and Zr represents the r

dominant variance-explaining directions in terms of the feature vector in the RKHS.

Similar to EDMD, given K̂KDMD “ V̂Λ̂V̂´1, V̂ “

„

v̂1 . . . v̂r



, for i “ 1, . . . , r,

the corresponding i-th Koopman eigenfunctions ϕi and Koopman modes for a vector
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observable g are,

ϕipxq “ ΨpxqΨH
x QrΣ

`
r v̂i, (2.24)

B “ pΨxΨH
x QrΣ

`
r V̂q`

»

—

—

—

—

–

gpx0q

...

gpxM´1q

fi

ffi

ffi

ffi

ffi

fl

. (2.25)

2.3.2 Continuous-time Formulation

To the best of our knowledge, continuous-time KDMD has not been previously

reported in the literature. This can be helpful when non-uniform multi-scale samples

are collected. For the kernel trick to be applied in the continuous formulation, we

write Ψx1 as,

Ψx1 “

»

—

—

—

—

–

Fpx0q ¨∇xΨpx0q

...

FpxM´1q ¨∇xΨpxM´1q

fi

ffi

ffi

ffi

ffi

fl

“

»

—

—

—

—

–

9x0 ¨∇xΨpx0q

...

9xM´1 ¨∇xΨpxM´1q

fi

ffi

ffi

ffi

ffi

fl

. (2.26)

To compute Ψx1Ψ
H
x , denoting the q-th component of F as fq,

pΨx1Ψ
H
x qij “ Fpxiq ¨∇xΨpxiqΨ

H
pxjq

“

L
ÿ

l“1

N
ÿ

q“1

ˆ

fqpxq
Bψlpxq

Bxq

˙
ˇ

ˇ

ˇ

ˇ

x“xi

ψlpxq
ˇ

ˇ

ˇ

x“xj

“

N
ÿ

q“1

fqpxiq
B

Bxq

L
ÿ

l“1

´

ψlpxqψlpx1q
¯ˇ

ˇ

ˇ

x“xi,x1“xj

“ Fpxiq ¨∇xkpx,x
1
q|x“xi,x1“xj

“ 9xi ¨∇xkpx,x
1
q|x“xi,x1“xj , (2.27)

where the overline symbol is the complex-conjugate operator, and the appearance of

Jacobian indicates that a differentiable kernel function is required for the extension to
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continuous-time. For common kernels used in Koopman analysis, the kernel function,

Jacobian, and hyperparameters are listed in table 2.1.

Table 2.1: Common choice of differentiable kernel functions.

kernel type kpx,x1q ∇xkpx,x
1q hyper para.

linear xx1H x1H

polynomial p1` xx1Hqα αp1` xx1Hqα´1x1H α

isotropic Gaussian expp´‖x´ x1‖2{σ2q
´2px´x1qH

σ2 expp´‖x´ x1‖2{σ2q σ

2.4 Time Delay Dynamic Mode Decomposition

2.4.1 Discrete-time Formulation

Still, we consider M uniformly sampled trajectory data txju
M´1
j“0 . The essence of

time delay DMD is simply a linear model with time-delay embedding order L assumes

that the predicted future state x̂j`1 is a sum of L`1 linear mappings from the present

state xj and previous L states txj´lu
L
l“1, j P N,

x̂j`1 “ W0xj `W1xj´1 ` . . .`WLxj´L, (2.28)

where Wl P Rnˆn is the associated weight matrix for the l-th time-delay snapshot, l “

0, . . . , L. As a side note, many data-driven models such as ERA (Juang and Pappa,

1985), AR, VAR (Box et al., 2015), SSA (Vautard et al., 1992), HAVOK (Brunton

et al., 2017), Hankel-DMD (Arbabi and Mezic, 2017) or HODMD (Le Clainche and

Vega, 2017), can be derived from the above setup by leveraging impulse response data,

introducing stochasticity, analyzing the eigenspectrum on the principal components,

or adding intermittent forcing as inputs.

Given a set of M sequential snapshots: x̂j`1, the goal of linear models is to

determine the weight matrices that result in the best possible approximation of the
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actual future state xj`1 in a priori L2 sense, i.e.,

W0, . . . ,WL “ arg min
tWiu

L
i“0PR

nˆn

›

›

›

›

›

„

WL . . . W0



»

—

—

—

—

–

x0 . . . xM´2´L

...
...

...

xL . . . xM´2

fi

ffi

ffi

ffi

ffi

fl

´

„

xL`1 . . . xM´1



›

›

›

›

›

F

,

(2.29)

if the minimizer is unique. Otherwise,

W0, . . . ,WL “ arg min
W0,...,WLPRnˆn

‖
„

WL . . . W0



‖F , (2.30)

subject to

„

WL . . . W0



»

—

—

—

—

–

x0 . . . xM´2´L

...
...

...

xL . . . xM´2

fi

ffi

ffi

ffi

ffi

fl

“

„

xL`1 . . . xM´1



.

The analytical solution of the above optimization in Equations (2.29) and (2.30) is

simply the pseudoinverse with SVD (Schmid , 2010), with truncation for robustness.

However, straightforward SVD computation of the L time-delay matrix for large-

scale dynamical systems, e.g., fluid flows n „ Op106q with L „ Op102q, is challenging.

Therefore, it is prudent to perform truncation in terms of spatial degree of freedom

using the SVD computed from txju
M´1
j“0 that reduces the dimension from n to r (r ! n

and r ď minpn,Mq) and then perform the above optimizations with L time-delays

on the r-dimensional system (Le Clainche and Vega, 2017).

2.4.2 Mode Decomposition with Time Delays

As indicated earlier, the trajectory predicted by linear models with time-delay

can be viewed as constructing observable from an associated high dimensional linear

system. To see this, consider a uniformly sampled trajectory data of length M ,

txju
M´1
j“0 . The L time-delay vector for an n-dimensional non-linear system x P Rn is
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defined as,

hk “

»

—

—

—

—

–

xk´L
...

xk

fi

ffi

ffi

ffi

ffi

fl

, L ď k ďM ´ 1. (2.31)

Suppose the trajectory data can be well approximated by a linear model with L time-

delays of the form in Equation (2.28). In that case, one has the so-called high order

dynamic mode decomposition (Brunton et al., 2017; Le Clainche and Vega, 2017)

that approximates the non-linear dynamics well, for L ď k ďM ´ 2,

hk`1 « ALhk, (2.32)

xk`1 “ ELhk`1 « ELALhk “ WLxk´L ` . . .`W0xk (2.33)

xk`1 “ ELhk`1 « ELAk`1´L
L hL “ QLΛk`1´LPL (2.34)

xk`1 «
ÿnpL`1q

i“1
λk`1´L
i qip

J
i hL (2.35)

where EL fi

„

0 . . . 0 I



P RnˆnpL`1q, and AL P RnpL`1qˆnpL`1q is known as the

block companion matrix,

AL “

»

—

—

—

—

—

—

—

—

—

—

–

I

I

. . .

I

WL WL´1 WL´2 . . . W0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“ PLΛLP´1
L , (2.36)

and

P´1
L fi

»

—

—

—

—

–

pJ1
...

pJnpL`1q

fi

ffi

ffi

ffi

ffi

fl

, QL fi ELPL “

„

q1 . . . qnpL`1q



. (2.37)

Note that the above decomposition in Equation (2.35) reduces to the standard
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DMD when L “ 0, i.e.,

xk`1 “
ÿn

i“1
λk`1´L
i qip

J
i x0, @L ď k ďM ´ 2, (2.38)

where qi and tλk`1´L
i pJi x0u

M´2
k“0 are sometimes referred to as the i-th spatial and tem-

poral modes, respectively. With more time-delays L, the maximal number of linear

waves in the model increases with npL`1q. As a side note, the above modal decompo-

sition can be interpreted as an approximation to the Koopman mode decomposition

on the trajectory with L time-delays as observables.

2.5 Deep Learning DMD

2.5.1 Neural network

The basic building block for DL-DMD is called feedforward neural network (FNN)

(see appendix B.1 for more information). A typical FNN with L layers is the mapping

gp¨; Wgq : Rn ÞÑ Rm such that

ηl “ σlpηl´1Wl ` blq, (2.39)

for l “ 1, . . . , L ´ 1, where η0 stands for the input of the neural network x, ηl P Rnl

is the number of hidden units in the layer l. σl is activation function of layer l. Note

that the last layer is linear, i.e., σLpxq “ x:

gpη0; Wgq “ ηL´1WL ` bL, (2.40)

where Wg “ tW1, b1, . . . ,WL, bLu, Wl P Rnl´1ˆnl , bl P Rnl , for l “ 1, . . . , L. Note that

n0 “ n P N, nL “ m P N. Such a mapping, given an arbitrary number of hidden units,

even with a single hidden layer, is a universal approximator in the Lp sense 1 ď p ă
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8, as long as the activation function is not polynomial almost everywhere (Leshno

et al., 1993). Throughout this thesis, we use the Swish (Ramachandran et al., 2017)

activation function, which is continuously differentiable and found to achieve strong

empirical performance over many variants of ReLU and ELU on typical deep learning

tasks.

2.5.2 Searching for Koopman operator as a constrained variational prob-

lem

Here we define the ideal problem of learning the Koopman decomposition as a

constrained variational problem and incorporate assumptions to make it tractable

step by step. Then, we introduce data as an empirical measure into the optimization

in the function space. Specifically, we propose two slightly different formulations

based on varying requirements.

1. Differential form: for low-dimensional systems when the governing equations,

i.e., eq. (5.5) are known, they can be leveraged without the trajectory data.

2. Recurrent form: for high-dimensional systems where one can only access discrete

trajectory data, which implies the access to the action of Kt over discrete t.

Recall that we are searching the Koopman operator defined on F “ L2pM, µq,

which is the space of all measurable functions φ :M ÞÑ R such that,

‖φ‖F fi

d

ż

M
|φ|2dµ ă 8. (2.41)

As a natural extension, for any finite n, given the vector-valued function Φ “
„

φ1 . . . φn



P Fn, we define the corresponding norm as,

‖Φ‖Fn fi

g

f

f

e

ż

M

n
ÿ

j“1

|φj|2dµ. (2.42)
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2.5.2.1 Leveraging known physics: differential form

For any D-dimensional observation vector Φ “

„

φ1 . . . φD



P FD, we can

define the following Koopman error functional J r¨s : FD ÞÑ Rě0, Rě0 “ r0,`8q as

the square of maximal distance for all components in Φ between the action of K and

its L2 projection onto FD (Korda and Mezić, 2018a),

J rΦs “ max
ψPtφ1,...,φDu

min
fPFD

‖f ´Kψ‖2
F , (2.43)

which describes the extent to which FD is invariant to the Koopman operator Kt with

tÑ 0 with respect to each basis. Ideally, if we can find Φ such that the corresponding

F is invariant to K, i.e., J rΦs “ 0, then FD is invariant to Kt, @t ą 0, i.e., a perfect

linear embedding in the L2pµq sense. Once such an embedding is determined, the

realization of K is simply the matrix K. In this work, we are interested in those Φ such

that one can recover x and J rΦs ě 0. Note that if Φ is restricted to linear mapping,

then the resulting Φ spans a D-dimensional Koopman invariant subspace that also

contains the system state x, which can be very helpful for optimal control. Otherwise,

if Φ becomes non-linear, then we refer it as searching a linear embedding of the non-

linear dynamical system, which can be efficient in modeling and prediction of the

dynamical system (Otto and Rowley , 2019b). However, since one can’t reconstruct

the system state linearly, the concept of Koopman modes in eq. (1.13) is not applicable

anymore.

Although the above problem setup only contains minimal necessary assumptions,

it is both mathematically and computationally challenging. For practical purposes,

we consider the following assumptions to make the problem tractable:

1. Instead of solving the equation J rΦs “ 0, we search for Φ by finding the
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minimum of the following constrained variational problem,

Φ˚
“ arg min

ΦPFD,DΨ:RD ÞÑM
Ψ˝Φ“I

J rΦs. (2.44)

2. Instead of directly solving the variational problem in the infinite-dimensional

FD, we optimize Φ in the finite-dimensional parameter space of feedforward

neural networks with fixed architecture. Note that the number of layers and

the number of hidden units in each layer are determined heuristically. Thus, we

are searching in a subset of FD described by WΦ, which might induce a gap

due to the choice of the neural network architecture,

0 ď min
ΦPFD,DΨ:RD ÞÑM

Ψ˝Φ“I

J rΦs ď min
WΦ,DΨPCpRD,RN q

Ψ˝Φp¨;WΦq“I

J rΦp¨; WΦqs. (2.45)

Clearly, the gap is bounded by the right-hand side of the second inequality

above. In addition, it should be noted that the requirement of linear indepen-

dence in tφ1, . . . , φDu is relaxed, but dimFD is bounded by D.

3. As a standard procedure in deep learning (Goodfellow et al., 2016), we use the

penalty method to approximate the constrained optimization problem with an

unconstrained optimization with unity penalty coefficient. Since this still entails

nonconvex optimization, we define a global minimum as follows:

W˚
Φ “ arg min

WΦ,DΨPCpRD,RN q
Ψ˝Φp¨;WΦq“I

J rΦp¨; WΦqs, (2.46)

xWΦ,xWΨ “ arg min
WΦ,WΨ

J rΦp¨; WΦqs `RrΦp¨; WΦq,Ψp¨; WΨqs, (2.47)

where the reconstruction error functional Rr¨, ¨s : FD ˆ CpRD,RNq ÞÑ Rě0, is
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defined as

RrΦ,Ψs “ ‖Ψ ˝Φ´ I‖2
FN , (2.48)

for Φ P FD, Ψ P CpRD,RNq. Then we assume Φp¨; xWΦq approximates one

of the global minima, i.e., Φp¨; W˚
Φq. Note that the convergence to a global

minimum of the constrained optimization can be guaranteed if one is given the

global minima of the sequential unconstrained optimization and increasing the

penalty coefficient to infinity (Luenberger , 1973).

4. We then optimize the sum of square error pJ overall components of Φ, which

serves an upper bound of J ,

J rΦs ď pJ rΦs “
D
ÿ

i“1

min
fPFD

‖f ´Kφi‖2
F “ min

KPRDˆD
rJ rΦ,Ks, (2.49)

rJ rΦ,Ks “ ‖ΦK´KΦ‖2
FD . (2.50)

The above formulation also implies equal importance among all components of

Φ.

5. Despite the non-convex nature of the problem, we employ gradient-descent op-

timization to search for a local minimum.

In summary, based on the above assumptions, we will solve the following opti-

mization problem by gradient-descent:

xWΦ,xWΨ, pK “ arg min
WΦ,WΨ,K

rJ rΦp¨; WΦq,Ks `RrΦp¨; WΦq,Ψp¨; WΨqs. (2.51)

2.5.2.2 Unknown physics with only the trajectory data: recurrent form

From the viewpoint of approximation, it can be argued that the most natural way

to determine the continuous Koopman operator is in the aforementioned differential

form. However, higher accuracy can be achieved by taking advantage of trajectory
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information and minimizing the error over multiple time steps in the trajectory. This

is the key idea behind optimized DMD (Askham and Kutz , 2018). Recently, Lusch

et al. (2018a), Otto and Rowley (2019a) extended this idea to determine the discrete-

time Koopman operator using deep learning.

Recall that we assume that the space of observation functions F “ L2pM, µq is

invariant to Kt, @t P Rě0. Thus, we consider the t-time evolution of any function

φ P F , i.e., Ktφpxq, as a function on U “M ˆ T , given an initial condition x PM

and time evolution t P T where T is a one dimensional smooth manifold, sometimes

also referred to as the time horizon. Recall that we assume Ktφpxq P G fi L2pU , νq.

Based on the fact that F is invariant to Kt, such an assumption can be shown to be

valid for compact T for a proper measure ν.

Similar to the differential form, for any observation vector Φ P FD, we define the

following Koopman error functional Jrr¨s : FD ÞÑ Rě0 as the square of maximal L2

distance for all components in Φ between the predicted and ground truth trajectory,

JrrΦs “ max
ψPtφ1,...,φDu

min
KPRDˆD

∥∥ΦetKcψ ´Ktψ
∥∥2

G , (2.52)

where ψ “ Φcψ, cψ P RDˆ1. Following similar assumptions in section 2.5.2.1, we need

to define a reconstruction error functional to describe the discrepancy between the

reconstructed and original states. Indeed, one can directly define the prediction error

functional in the recurrent form, rPr¨, ¨, ¨s : FD ˆ CpRD,RNq ˆ RDˆD ÞÑ Rě0 as

rPrΦ,Ψ,Ks “
∥∥Ψ ˝ΦetK ´KtI

∥∥2

GN . (2.53)

Similarly, we define

rJrrΦp¨; WΦq,Ks “
∥∥ΦetK ´KtΦ

∥∥2

GD , (2.54)
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and solve the following optimization problem via a gradient-based algorithm:

xWΦ,xWΨ, pK “ arg min
WΦ,WΨ,K

rJrrΦp¨; WΦq,Ks ` pPrΦp¨; WΦq,Ψp¨; WΨq,Ks. (2.55)

As a side note, one might also define the following reconstruction functional similar

to previous differential form that is independent of K,

RrΦ,Ψs “ ‖KtpΨ ˝Φ´ Iq‖2
GN , (2.56)

which can bound the prediction error functional together with the Koopman error

functional by triangular inequality,

∥∥Ψ ˝ΦetK ´KtI
∥∥
GN ď

∥∥Ψ ˝ΦetK ´KtΨ ˝Φ
∥∥
GN ` ‖KtpΨ ˝Φ´ Iq‖GN , (2.57)

ď LΨ

∥∥ΦetK ´KtΦ
∥∥
GD ` ‖KtpΨ ˝Φ´ Iq‖GN , (2.58)

where LΨ is the Lipschitz constant for Ψ. However, in this work, we do not have

control over LΨ, and thus we prefer to directly minimize the prediction error function

as in previous studies (Otto and Rowley , 2019a; Lusch et al., 2018a).

2.5.3 Measures

2.5.3.1 Measure for data generated by sampling in phase space

We consider the situation where M data points on M, i.e., txmu
M
m“1 are drawn

independently from some measure µ on M, e.g., uniform distribution. This induces

the following empirical measure µ̂M ,

µ̂M “
1

M

M
ÿ

m“1

δxm , (2.59)
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where δx is the Dirac measure for x. Note that µ̂M uniformly converges to µ (Vapnik

and Chervonenkis , 2015) as M Ñ 8. Thus, one can rewrite the differential form in

eq. (2.51) as an empirical risk minimization (Vapnik , 1992),

xWΦ,xWΨ, pK “ lim
MÑ8

xWΦ,M ,xWΨ,M , pKM (2.60)

“ lim
MÑ8

arg min
WΦ,WΨ,K

rJM rΦp¨; WΦq,Ks `RM rΦp¨; WΦq,Ψp¨; WΨqs

“ lim
MÑ8

arg min
WΦ,WΨ,K

‖Φp¨; WΦqK´KΦ‖2
pFDM
` ‖Ψp¨; WΨq ˝Φp¨; WΦq ´ I‖2

pFNM

“ lim
MÑ8

arg min
WΦ,WΨ,K

1

M

M
ÿ

m“1

ˆ

‖Φpxm; WΦqK´ F ¨∇xΦpxmq‖2

` ‖ΨpΦpxm; WΦq; WΨq ´ xm‖2

˙

,

where pFM “ L2pM, µ̂Mq.

2.5.3.2 Measure for trajectory data generated by solving the initial value

problem

In the general case, information content in trajectory data resulting from the

solution of the initial value problem is strongly dependent on the initial condition.

For instance, when the initial condition is in a region of phase space with sharp

changes, it would be sensible to use a high sampling rate. On the other hand, if the

initial condition is near a fixed point attractor, one might prefer to stop collecting

the data after the system arrives at the fixed point. Such a sampling pattern for

the specific initial state can be summarized as a Markov kernel (Klenke, 2013) κ :

MˆΣT ÞÑ r0, 1s. For every fixed initial state x PM, the map κpET ,xq is a measure

on pT ,ΣT q, ET P ΣT , where ΣT is the σ-algebra on T . Then, there exists a unique

measure ν on U (Klenke, 2013) such that,

νpEM ˆ ET q “
ż

EM
κpET ,xqdµpxq, (2.61)
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for ET P ΣT , EM P ΣM.

Assume we are given M trajectories, ttxm,ju
Tm
j“1u

M
m“1, tttm,ju

Tm
j“1u

M
m“1. The initial

condition for each trajectory is drawn independently from µ. For the m-th trajectory

with initial condition xm, there are Tm samples drawn independently from measure

κp¨,xm,1q where the time elapse of j-th sample away from initial condition xm,1 is tm,j

(tm,1 “ 0), where m “ 1, . . . ,M . Then, we can define the corresponding empirical

measure from eq. (2.61),

ν̂M, pT “
1

M

M
ÿ

m“1

δxm

˜

1

Tm

Tm
ÿ

j“1

δtm,j

¸

, (2.62)

where pT “ max
m“1,...,M

Tm, and ν̂M, pT uniformly converges to ν as M, pT Ñ 8.

Similarly, we can rewrite eq. (2.55) as the following,

xWΦ,xWΨ, pK “ lim
M,TÑ8

xWΦ,M, pT ,
xWΨ,M, pT ,

pKM, pT (2.63)

“ lim
M, pTÑ8

arg min
WΦ,WΨ,K

rJr,M, pT rΦp¨; WΦq,Ks ` pPM, pT rΦp¨; WΦq,Ψp¨; WΨq,Ks

“ lim
M, pTÑ8

arg min
WΦ,WΨ,K

∥∥ΦetK ´KtΦ
∥∥2
pG
M, pT

`
∥∥Ψ ˝ΦetK ´KtI

∥∥2
pGN
M, pT

“ lim
M, pTÑ8

arg min
WΦ,WΨ,K

1

M

M
ÿ

m“1

1

Tm

ˆ Tm
ÿ

j“2

‖Φpxm,1; WΦqe
tm,jK ´Φpxm,jq‖2

`

Tm
ÿ

j“1

∥∥ΨpΦpxm,1; WΦqe
tm,jK; WΨq ´ xm,j

∥∥2
˙

,

where pG “ L2pU , pνM, pT q.Note that eq. (2.63) generalizes the LRAN model with a

simpler loss function (Otto and Rowley , 2019a) and the discrete spectrum model in

the paper of Lusch et al. (Lusch et al., 2018a).

Note that the above data setup also generalizes to cases where data along a sin-

gle long trajectory is “Hankelized” (Arbabi and Mezic, 2017), i.e., dividing a long

trajectory into several smaller-sized consecutive trajectories. This would lead to a
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truncated time horizon in the model, which leads to better computational efficiency

compared to the original data, at the cost of some loss in prediction accuracy.

2.6 Summary

In this chapter, we provided a detailed mathematical description of three differ-

ent classes of methods in approximating Koopman operators: EDMD/KDMD, Time

Delay DMD, Deep Learning DMD. EDMD/KDMD relies on approximating the or-

thogonal projection of the Koopman operator with explicit/implicit dictionary func-

tions. Time Delay DMD takes the historical information as augmented observables

for approximating the Koopman operator. Deep Learning DMD parameterizes the

dictionary functions by the neural network. Therefore, it becomes an approximation

of a constrained variational problem. Moreover, one can further make the network

recurrent to increase accuracy for long-time prediction.

In the following chapters, we will discuss the remaining technical issues of these

methods and present our contributions towards discovering accurate, informative

Koopman operator with uncertainty quantification in resolving several issues of these

existing techniques and providing theoretical, numerical insights into the mechanism

of these methods.
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CHAPTER III

Structure of Delay Embedding in Time Delay

Dynamic Mode Decomposition

We are not makers of history. We

are made by history.

Martin Luther King Jr. (1963)

3.1 Background and Motivation

Time delay embedding naturally arises in the representation of the evolution of

partially observed states in dynamical systems. As an illustrative example, consider a

n-dimensional linear autonomous discrete dynamical system withQ partially observed

(or resolved) states, Q ă n:

xj`1 fi

»

—

–

x̂j`1

x̃j`1

fi

ffi

fl

“

»

—

–

A11 A12

A21 A22

fi

ffi

fl

»

—

–

x̂j

x̃j

fi

ffi

fl

, (3.1)

where x̂j P RQ, x̃j P Rn´Q, j P N, A11 P RQˆQ, A12 P RQˆpn´Qq, A21 P Rpn´QqˆQ,

A22 P Rpn´Qqˆpn´Qq. The dynamical evolution of the observed states x̂ is given by:

x̂j`1 “ A11x̂j `
j´1
ÿ

k“0

A12A
k
22A21x̂j´1´k `A12A

j
22x̃0. (3.2)
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Typically, the last term decays rapidly, and thus the above equation can be considered

to be closed in the observed variables x̂. The second term on the right-hand side

of Equation (3.2) describes how the time-history of the observed modes affects the

dynamics. Thus, Equation (3.2) implies that it is possible to extract the dynamics of

the observables x̂ using time delayed observables, i.e., x̂j`1 “ C0x̂j `
řL
k“1 Ckx̂j´k,

where Ck P RQˆQ, and L is the number of time delays. It should, however, be

noted that explicit delays might not be necessary if one has access to high order time

derivatives (Takens , 1981) or abundant distinct observations (Deyle and Sugihara,

2011).

Theorem III.1 (1981 Takens’ embedding theorem). Consider a compact manifold

M of dimension m, for pairs pϕ, yq, ϕ : M ÞÑ M , a smooth diffeomorphism and

y : M ÞÑ R is a smooth function, it is a generic property that the map Φpϕ,yq : M ÞÑ

R2m`1, defined by

Φpϕ,yq “ rypxq ypϕpxqq ypϕ2
pxqq . . . ypϕ2m

pxqqs

is an embedding, where “smooth” means C2, i.e., continuously differentiable.

Leveraging delay coordinates to construct predictive models of dynamical sys-

tems has been a topic of great interest. Such models have been studied extensively

in the time series analysis community via the well-known family of autoregressive

and moving average (ARMA) models (Box et al., 2015). In a dynamical systems

context, time delay embedding is leveraged in higher order or Hankel Dynamic Mode

Decomposition (Le Clainche and Vega, 2017; Arbabi and Mezic, 2017; Brunton et al.,

2017).

A relevant and outstanding question in each of the contexts above is the follow-

ing: Given time series data from a non-linear dynamical system, how much memory

is required to accurately recover the underlying dynamics, given a model structure?
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The memory can be characterized by the two hyperparameters, namely the number

of time delays and the corresponding data sampling intervals if uniformly sampled.

Takens embedding theorem (Takens , 1981) proved the generic existence of a time

delayed system with L “ r2nboxs delays, where (nbox is box-counting dimension of the

attractor, given the model has enough non-linearity to approximate the diffeomor-

phism. However, the question of how to determine the number of time delays and

the sampling rate is not well-addressed. Given nbox as the box-counting dimension of

the attractor, the number of required time delays Ltakens “ r2nboxs is rather conser-

vative (Gilmore and Lefranc, 2011). For example, it is both well known in practice

and shown analytically (Pan and Duraisamy , 2018a) that a typical chaotic Lorenz

attractor with box-counting dimension « 2.06 (McGuinness , 1983) can be well em-

bedded with L “ 2, i.e., an equivalent 3D time delay system. Meanwhile, L “ 4 is

required from Takens embedding theorem.

However, other than acknowledging a diffeomorphism, Takens embedding theorem

does not posit any constraints on the mapping from time delay coordinates to the

original system state. Clearly, the required number of time delays depends on the

richness (non-linearity) of the embedding. In general, for non-linear models, the deter-

mination of the time delays becomes a problem of phase-space reconstruction (Frank

et al., 2001; Abarbanel et al., 1993). Popular methods include the false nearest neigh-

bor method (Kennel et al., 1992), singular value analysis (Broomhead and Jones ,

1989), averaged mutual information (Sugihara et al., 1990), saturation of system in-

variants (Abarbanel et al., 1993), box-counting methods (Sauer and Yorke, 1993),

correlation integrals (Kim et al., 1999), standard model selection techniques (Cao,

1997), and even reinforcement learning (Liu et al., 2007). On the other hand, for

linear models, criteria based on statistical significance such as the model utility F-

test (Lomax and Hahs-Vaughn, 2013) or information-theoretic techniques such as

AIC/BIC (Box et al., 2015) are used. The use of the partial autocorrelation in linear
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autoregressive (AR) models to determine the number of delays can be categorized as

a model selection approach. It should be mentioned that by treating the models as a

black-box, a general approach such as cross validation can be leveraged.

From the viewpoint of discovering the dynamics of a partially observed system,

the goal is to determine the non-linear convolution operator (Chorin and Hald , 2014;

Gouasmi et al., 2017) or the so-called closure dynamics (Pan and Duraisamy , 2018a).

It has to be recognized that the number of time delays will also be dependent on the

specific structure of the model. The interchangeability between the number of distinct

observables and the number of time delays is also reflected in Takens’ original work

on the embedding theorem (Takens , 1981). Such interchangeability with the latent

space dimension is also explored in closure dynamics (Pan and Duraisamy , 2018a;

Gouasmi et al., 2017; Parish et al., 2018) and recurrent neural networks (Goodfellow

et al., 2016). Since the required number of delays is strongly dependent on the model

structure, it is prudent to first narrow down to a specific type of model, and then

determine the delays needed.

The connection between time delay embedding and the Koopman operator is elu-

cidated by Brunton et al. (2017). Further theoretical investigations were conducted

by Arbabi and Mezic (2017). For an ergodic dynamical system, assuming that the ob-

servable belongs to a finite-dimensional Koopman invariant subspace H, they showed

that Hankel-DMD, a linear model (first proposed and connected to ERA (Juang

and Pappa, 1985)/SSA (Vautard et al., 1992) by Tu et al. (2013)), can provide an

exact representation of the Koopman eigenvalues and eigenfunctions in H. This pi-

oneering work, together with several numerical investigations on the application of

Hankel-DMD to non-linear dynamical systems (Champion et al., 2019; Le Clainche

and Vega, 2017; Brunton et al., 2017) and theoretical studies on time-delayed ob-

servables using singular value decomposition (SVD) (Kamb et al., 2018) highlight the

ability of linear time delayed models to represent non-linear dynamics. From a heuris-
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tic viewpoint, SVD has been demonstrated (Broomhead and Jones , 1989; Broomhead

and King , 1986; Gibson et al., 1992) to serve as a practical guide to determine the

required number of time delays and sampling rate, for linear models.

It should be noted that much of the literature (Tu et al., 2013; Schmid , 2010; Brun-

ton et al., 2013) related to DMD and Hankel-DMD consider SVD projection either in

the time delayed dimension (e.g. singular spectrum analysis) or the state dimension.

SVD can provide optimal linear coordinates to maximize signal-to-noise ratio (Gib-

son et al., 1992), and thus promote robustness and efficiency. On the other hand,

projection via Fourier transformation enables the possibility of additional theoretical

analysis. For instance, Fourier-based analysis of the Navier–Stokes equations include

non-linear triadic wave interactions (Pope, 2000) and decomposition into solenoidal

and dilatational components (Pan and Johnsen, 2017). Pertinent to the present the-

sis, ergodic systems characterized by periodic or quasi-periodic attractors have been

shown to be well approximated by Fourier analysis (Schilder et al., 2006; Rowley

et al., 2009; Mezić, 2005).

In this chapter, our goal is to leverage a Fourier basis representation to uncover the

structure of time delay embeddings in linear models (described in section 2.4) of non-

linear dynamical systems. Moreover, we will also address related issues of numerical

conditioning and robustness to noises. We will conclude with several examples that

demonstrate our findings.

3.2 Problem Setup and Assumptions

Recall that we are interested in an n-dimensional continuous autonomous non-

linear dynamical system,

d

dt
x “ Fpxq, (3.3)
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on a state space M Ă Rn, n P N`. The initial condition is denoted as xp0q “ x0.

By uniformly sampling with time interval ∆t, the trajectory data of the dynamical

systems can be obtained as txju
8
j“0, where xj fi xpj∆tq, j P N. This is our setup for

the data with the time delay DMD previously described in section 2.4.

To provide insight into role of time-delays, we consider the following simplification

for the ease of analysis: we restrict ourselves to the dynamics on a periodic attractor,

for which one can determine an arbitrarily close Fourier interpolation in time at a

uniform sampling rate (Attinger et al., 1966). In addition, without loss of generality,

we assume that the data has zero mean, i.e.,
ş

R` xpτqdτ “ 0.

3.3 Theory

3.3.1 Scalar Time Series

Here we start the theoretical analysis with the scalar case i.e., n “ 1. Then we

will extend to the vector case n ą 1. Note that the corresponding data is collected

by uniformly sampling a T -periodic time series xptq P R. The number of samples per

period is M , with uniform sampling interval ∆t “ T {M . Without loss of generality,

we assume that sampling is initiated at t “ 0, xk “ xptkq, tk “ k∆t, k P IM ,

IM “ t0, 1, . . . ,M ´ 1u, and T is the smallest positive real number that represents

the periodicity.

3.3.1.1 Projection on Fourier basis

With the above simplifications, we consider a surrogate signal of xptq as SMptq

defined in eq. (3.4).

SMptq “
ÿ

iPIM

aie
´j 2πit

T with ai “
1

M

ÿ

kPIM

xke
j 2πki
M P C, (3.4)
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where j “
?
´1 and

@k P IM , xk “ xpk∆tq “ SMpk∆tq, (3.5)

which is obtained by projecting xptq on the following linear space HF

HF “ spant1, e´j
2πt
T , . . . , e´j

2πpM´1qt
T u, (3.6)

which is spanned by the Fourier basis in Equation (3.6) with test functions as delta

functions as δpt´tkq, k P IM . This step is equivalent to the discrete Fourier transform

(DFT).

The above procedure naturally represents the uniformly sampled trajectory in

the time domain txku
M´1
k“0 using coefficients in the frequency domain taiu

M´1
i“0 . Since

we consider real signals, taiu
M´1
i“0 possess reflective symmetry: @i P IM , Repaiq “

RepaM´iq, Impaiq` ImpaM´iq “ 0, where Re and Im represent the real and imaginary

part of a complex number. In addition, since T is the smallest period by definition,

we must have a1 “ aM´1 ‰ 0. Further, since F is smooth, the flow φtpx0q “ xptq

is also smooth in t (Nijmeijer and Van der Schaft , 1990). Thus, the error in the

Fourier interpolation is uniformly bounded by twice the sum of the absolute value of

truncated Fourier coefficients (Boyd , 2001). This leads to the uniform convergence

lim
MÝÑ8

|xptq ´ SMptq| “ 0. (3.7)

Hence, one can easily approximate the original periodic trajectory uniformly to the

desired level of accuracy by increasing M above a certain threshold.

It should be emphasized that the following theoretical sections of this chapter is

purely concerned with deterministic linear models and noise free data.
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3.3.1.2 Formulations of linear models

Given discrete M uniform samples of a scalar trajectory: txku
M´1
k“0 , consider con-

structing L-time delays of xptq, L P N. Note that L “ 0 corresponds to no delays

considered. To avoid negative indices, we utilize the modulo operation defined in

Equation (3.8),

@q P N, Ppqq fi q pmod Mq “

$

’

’

&

’

’

%

q, if q P IM ,

q ´M tq{M u , otherwise

(3.8)

to construct the L time-delay vector Yk,

Yk “

»

—

—

—

—

—

—

—

–

xPpkq

xPpk´1q

...

xPpk´Lq

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

P RL`1, (3.9)

where k P IM , t¨u is the floor function. Considering Fourier interpolation, we have

@q P IM , xPpqq “
ÿ

iPIM

aiω
qi, ω fi e´j

2π
M P C, (3.10)

which is also true for q R IM

xPpqq “ SMppq ´M tq{M uq∆tq “
ÿ

iPIM

aie
´j

2πipq´Mtq{Muq

M

“
ÿ

iPIM

aiω
qi. (3.11)

Using Equation (3.4), we can rewrite the L time-delay vector Yk in Equation (3.9)

in the Fourier basis as

Yk “ Ωk,La, (3.12)
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where @k P IM , Ωk,L fi

»

—

—

—

—

–

1 ωk ω2k . . . ωpM´1qk

...
...

...
. . .

...

1 ωk´L ω2pk´Lq . . . ωpM´1qpk´Lq

fi

ffi

ffi

ffi

ffi

fl

, a fi

»

—

—

—

—

–

a0

...

aM´1

fi

ffi

ffi

ffi

ffi

fl

P

CMˆ1.

The problem of finding the minimal time delay required for the linear model with

L time delays in Equation (2.28) to perfectly predict the data txku
M´1
k“0 is equivalent

to the existence of the delay transition matrix K such that,

xPpk`1q “ KJYk, @k P IM , (3.13)

where

K “

„

K0 K1 . . . KL

J

P RpL`1qˆ1,

and

xPpk`1q “ ΥJ
k a, (3.14)

where

Υk fi

„

1 ωk`1 ω2pk`1q . . . ωpM´1qpk`1q

J

. (3.15)

For convenience, we vertically stack Equation (3.13) @k P IM ,

YMK “ xM , (3.16)

where YM fi

»

—

—

—

—

—

—

—

—

—

—

–

YJ
0

YJ
1

...

YJ
M´2

YJ
M´1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

, xM fi

»

—

—

—

—

—

—

—

—

—

—

–

x1

x2

...

xM´1

x0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

Based on the above formulation, we will discuss the minimal number of required

time delays, the exact solution of K and the number of samples required on the time
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domain in the following sections.

3.3.1.3 Minimal time delays

Recall that our goal is to determine the minimal number of time delays L, such

that there exists a matrix K that satisfies the linear system Equation (3.13). Given

one period of data, we can transform the system from the time domain to the spectral

domain. Consider Equations (3.12) and (3.14), then Equation (3.16) is equivalent to

the following, @k P IM :

aJ

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

»

—

—

—

—

—

—

—

—

—

—

–

1

ωk`1

ω2pk`1q

...

ωpk`1qpM´1q

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

´

»

—

—

—

—

—

—

—

—

—

—

–

1 . . . 1

ωk . . . ωk´L

ω2k . . . ω2pk´Lq

...
. . .

...

ωpM´1qk . . . ωpM´1qpk´Lq

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

K

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

“ 0. (3.17)

This can be written as

aJ

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

»

—

—

—

—

—

—

—

—

—

—

–

1

ω

ω2

. . .

ωpM´1q

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

k¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

»

—

—

—

—

—

—

—

—

—

—

–

1

ω

ω2

...

ωM´1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

´

»

—

—

—

—

—

—

—

—

—

—

–

1 . . . 1

1 . . . ω´L

1 . . . ω2p´Lq

...
. . .

...

1 . . . ωpM´1qp´Lq

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

K

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

“ 0.

(3.18)

55



We define the residual matrix R as,

R fi

»

—

—

—

—

—

—

—

—

—

—

–

1

ω

ω2

...

ωM´1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

´

»

—

—

—

—

—

—

—

—

—

—

–

1 1 . . . 1

1 ω´1 . . . ω´L

1 ω´2 . . . ω2p´Lq

...
...

. . .
...

1 ω´pM´1q . . . ωpM´1qp´Lq

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

K. (3.19)

Given one period of data, we vertically stack the above equation for each k P IM .

Recognizing the non-singular nature of a Vandermonde square matrix with distinct

nodes, we have

»

—

—

—

—

—

—

—

—

—

—

–

a0 a1 a2 . . . aM´1

a0 ωa1 ω2a2 . . . ωM´1aM´1

a0 ω2a1 ω4a2 . . . ω2pM´1qaM´1

...
...

...
. . .

...

a0 ωM´1a1 ω2pM´1qa2 . . . ωpM´1qpM´1qaM´1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

R “ 0. (3.20)

This gives

»

—

—

—

—

—

—

—

–

1 1 . . . 1

1 ω . . . ωM´1

...
...

. . .
...

1 ωM´1 . . . ωpM´1qpM´1q

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

»

—

—

—

—

—

—

—

–

a0

a1

. . .

aM´1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

R “ 0, (3.21)

and thus
»

—

—

—

—

—

—

—

–

a0

a1

. . .

aM´1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

R “ 0. (3.22)

56



Note the equivalence between Equation (3.22) and Equation (3.16). Now, we

consider the case when the Fourier spectrum is sparse with P non-zero coefficients,

P P N and P ďM . Moreover, it is consistent with the finite point spectral resolution

of Koopman operator appears in the laminar unsteady flows (Mezić, 2013). Denote

the set of wave numbers associated with non-zero coefficients as,

IPM fi tai ‰ 0|i P IMu “ tipuP´1
p“0 , (3.23)

with ascending order 0 ď i0 ă i1 ă . . . ă iP´1 ď M ´ 1, where |ÎPM | “ P P N. Note

that there is a reflective symmetry restriction on the Fourier spectrum.

The feasibility of using the number of time delays L to ensure the existence of a

real solution K for the linear system is equivalent to the existence of the linear system

R “ 0 after removing the rows that correspond to zero Fourier modes in R, denoted

as RIPM
,

RIPM
“ 0 ðñ AIPM ,L

K “ bIPM
, (3.24)

where

AIPM ,L
“

»

—

—

—

—

—

—

—

—

—

—

–

1 ω´i0 . . . ω´Li0

1 ω´i1 . . . ω´Li1

1 ω´i2 . . . ω´Li2

...
...

. . .
...

1 ω´iP´1 . . . ω´LiP´1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

P CPˆpL`1q, (3.25)

and

bIPM
“

»

—

—

—

—

—

—

—

—

—

—

–

ωi0

ωi1

ωi2

...

ωiP´1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

P CPˆ1. (3.26)

57



Before presenting the main theorem Theorem III.5, we define the Vandermonde

matrix in Definition III.2 and introduce Lemma III.3 and Lemma III.4.

Definition III.2. Vandermonde matrix with nodes as α0, α1, . . . , αM´1 P C of order

N is defined as,

VNpα0, α1, . . . , αM´1q fi

»

—

—

—

—

—

—

—

–

1 α0 . . . αN´1
0

1 α1 . . . αN´1
1

...
...

. . .
...

1 αM´1 . . . αN´1
M´1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

Lemma III.3. @M,N P N, the Vandermonde matrix A “ VNpα0, α1, . . . , αM´1q

constructed from distinct tαiuiPIM , αi P C, has the two properties,

1. rankpAq “ minpM,Nq,

2. if A has full column rank, @Q P N, Q ď M , the rank of the submatrix A1 by

arbitrarily selecting Q rows is minpQ,Nq.

Proof.

A “ VNpα0, α1, . . . , αM´1q “

»

—

—

—

—

—

—

—

–

1 α0 . . . αN´1
0

1 α1 . . . αN´1
1

...
...

. . .
...

1 αM´1 . . . αN´1
M´1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(3.27)

If M ě N , then

VNpα0, α1, . . . , αM´1q “

»

—

–

VNpα0, α1, . . . , αN´1q

VNpαN , . . . , αM´1q

fi

ffi

fl

(3.28)

Since tαiuiPIM are distinct, VNpα0, α1, . . . , αN´1q is full rank with rank N . Since

M ě N , the row space of VNpα0, α1, . . . , αM´1q and is fully spanned by the first N
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rows, and is thus full rank. Likewise, if M ă N ,

VNpα0, α1, . . . , αM´1q “

„

VMpα0, α1, . . . , αM´1q ˚



(3.29)

Similarly, the first M columns are full rank and VNpα0, α1, . . . , αM´1q is also full

rank. Thus in either case, VNpα0, α1, . . . , αM´1q is full rank with rank as minpM,Nq.

To show the the second property, one can simply replace tαiuiPIM with tαiuiPJ in the

above arguments. Since |J | “ Q, rank pVNptαiuiPJ qq “ minpQ,Nq.

Lemma III.4. @m,n P N,A P Rmˆn,b P Rmˆ1, Dx P Cnˆ1 s.t. Ax “ b ðñ Dx1 P

Rnˆ1 s.t. Ax1 “ b. Further, when the solution is unique, the above still holds and the

solution is real.

Proof. First, let’s prove from left to right. If Dx P Cnˆ1, we have Ax “ b. Note that

ĎAx “ sAsx “ Asx “ sb “ b then consider x1 “ sx`x
2
P Rnˆ1. Ax1 “ pAx `Asxq{2 “

pb` bq{2 “ b. Second, it is easy to show from right to left. Third, when uniqueness

is added, note that Ax “ b ðñ Asx “ b, it is easy to show both directions since it

is impossible to have complex solution being unique and not real.

Theorem III.5. For a uniform sampling of SMptq with length M and P non-zero

coefficients in the Fourier spectrum, the minimal number of time delays L for a perfect

prediction, i.e., one that satisfies Equation (3.16) is P´1. Moreover, when L “ P´1,

the solution is unique.

Proof. Consider the discrete Fourier spectrum of SMptq with M uniform samples per

period. The perfect prediction using a time-delayed linear model requires the exis-

tence of a real K that satisfies Equation (3.16), which is equivalent to Equation (3.22).

Therefore, Equation (3.16) and Equation (3.22) share the same solutions in CpL`1qˆ1.

Since the Fourier spectrum contains only P non-zero coefficients, Equation (3.22) is

equivalent to Equation (3.24). The necessary and sufficient condition to have a so-

lution (not necessarily real) K for Equation (3.24) follows from the Rouché-Capelli
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theorem Meyer (2000),

rank

ˆ„

AIPM ,L
bIPM

˙

“ rank
´

AIPM ,L

¯

. (3.30)

Using the first property in Lemma III.3, rankpAIPM ,L
q “ minpP,L` 1q. While for the

augmented matrix,

rank

ˆ„

AIPM ,L
bIPM

˙

“ rank

ˆ„

bIPM
AIPM ,L

˙

(3.31)

“ rank

¨

˚

˚

˚

˚

˚

˚

˚

˝

»

—

—

—

—

—

—

—

–

ωi0 1 ω´i0 . . . ω´Li0

ωi1 1 ω´i1 . . . ω´Li1

...
...

...
. . .

...

ωiP´1 1 ω´iP´1 . . . ω´LiP´1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

˛

‹

‹

‹

‹

‹

‹

‹

‚

“ rank

¨

˚

˚

˚

˚

˚

˚

˚

˝

»

—

—

—

—

—

—

—

–

ωi0

ωi1

. . .

ωiP´1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

»

—

—

—

—

—

—

—

–

1 ω´i0 . . . ω´pL`1qi0

1 ω´i1 . . . ω´pL`1qi1

...
...

. . .
...

1 ω´iP´1 . . . ω´pL`1qiP´1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

˛

‹

‹

‹

‹

‹

‹

‹

‚

“ rank
`

diagpωi0 , . . . , ωiP´1qVL`2pω
´i0 , . . . , ω´iP´1q

˘

“ rank
`

VL`2pω
´i0 , . . . , ω´iP´1q

˘

“ minpP,L` 2q.

Therefore, if L`2 ď P , i.e., L ď P´2, minpP,L`2q “ L`2 ‰ L`1 “ minpP,L`1q.

If L`1 ě P , i.e., L ě P ´1, then minpP,L`2q “ P “ minpP,L`1q. So the minimal

L for Equation (3.30) to hold is P´1, which makes AIPM ,L
an invertible Vandermonde

square matrix. Thus the solution is unique in CpL`1qˆ1. From Lemma III.4, consider

Equation (3.16), the solution is real.

From the above Theorem III.5, we can easily derive Propositions 1 and 2 that are

intuitive.
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Proposition 1. If there is only one frequency in the Fourier spectrum of SMptq,

simply one time delay in the linear model is enough to perfectly recover the signal.

Proposition 2. If the Fourier spectrum of SMptq is dense, then the maximum number

of time delays, i.e., over the whole period M ´ 1 is necessary to perfectly recover the

signal.

In retrospect, the result of the minimal number of time delays for a scalar time

series is rather intuitive: any scalar signal with R frequencies corresponds to a certain

observable of a 2R-dimensional linear system. Since more time delays in linear model

increases the number of eigenvalues in the corresponding linear system, one requires

a minimum of L “ 2R ´ 1 “ P ´ 1 to match the number of eigenvalues.

3.3.1.4 Exact explicit solution for the linear model

One of the benefits of projecting the trajectory on a Fourier basis instead of

a tailored basis such as proper orthogonal decomposition basis is the possibility of

explicit theoretical analysis.

Two interesting facts have to be brought to the fore:

1. From Equation (3.24), it is clear that K is independent of the quantitative

value of the Fourier coefficients, but only depends on the pattern in the Fourier

spectrum.

2. For L “ P ´ 1, AIPM ,L
is an invertible Vandermonde matrix, which implies the

uniqueness of the solution K.

Consider the general explicit formula for the inverse of a Vandermonde matrix (Pe-

tersen et al., 2008). Note that AIPM ,P´1 “ VP pω
´i0 , . . . , ω´iP´1q.
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Thus

A´1
IPM ,P´1

“ V´1
P pω

´i0 , . . . , ω´iP´1q. (3.32)

V´1
P pω

´i0 , . . . , ω´iP´1qmn “ p´1qm`1

ÿ

0ďk1ă...ăkP´mďP´1
k1,...,kP´m‰n´1

ω´pik1
`...`ikP´m q

ź

0ďlďP´1,l‰n´1

ω´il ´ ω´in´1
.

Km “ V´1
P pω

´i0 , . . . , ω´iP´1qmnbIPM ,L,n
(3.33)

“

P
ÿ

n“1

p´1qm`1

ÿ

0ďk1ă...ăkP´mďP´1
k1,...,kP´m‰n´1

ω´pik1
`...`ikP´m q

ź

0ďlďP´1,l‰n´1

ω´il ´ ω´in´1
ωin´1

“

P
ÿ

n“1

p´1qm`1

ÿ

0ďk1ă...ăkP´mďP´1

e
j2πpik1

`...`ikP´m
q

M

ź

0ďlďP´1,l‰n´1

e
j2πil
M ´ e

j2πin´1
M

.

where 1 ď m,n ď P and Km ” Km´1.

Despite the explicit form, the above expression is not useful in practice. Without

loss of generality, considering P is even, the computational complexity at least grows

as
`

P
P {2

˘

. As an example, for a moderate system with 50 non-sparse modes,
`

50
25

˘

«

1.2ˆ 1014.

3.3.1.5 Minimal number of samples

Projection of the trajectory onto a Fourier basis implies that at least one period

of training data has to be obtained to be able to construct a linear system that has

a unique solution corresponding to K˚. However, we will show that in the time

domain, a full period of data is not necessary to determine the solution K˚ if the

Fourier spectrum is sparse.

Denote the number of non-zero Fourier coefficients as P P N, and its index set as

IPM as before. Instead of having a full period of data, without loss of generality, we
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consider L time delays and select the Q rows in Equation (3.16), for which the index

is denoted as 0 ď k0 ă . . . ă kQ´1 ď M ´ 1, and Q P N, L ` Q ď M . Therefore, we

have the following equation in the time domain,

»

—

—

—

—

—

—

—

—

—

—

–

YJ
k0

YJ
k1

...

YJ
kQ´2

YJ
kQ´1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

K “

»

—

—

—

—

—

—

—

—

—

—

–

xPpk0`1q

xPpk1`1q

...

xPpkQ´2`1q

xPpkQ´1`1q

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

. (3.34)

Consider a Fourier transform and recall Equation (3.18). Choosing k over k0, . . . , kQ´1,

the above equation can be equivalently rewritten as

»

—

—

—

—

—

—

—

—

—

—

–

a0 ωk0a1 ω2k0a2 . . . ωpM´1qk0aM´1

a0 ωk1a1 ω2k1a2 . . . ωpM´1qk1aM´1

a0 ωk2a1 ω2k2a2 . . . ωpM´1qk2aM´1

...
...

...
. . .

...

a0 ωkQ´1a1 ω2kQ´1a2 . . . ωpM´1qkQ´1aM´1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

R “ 0. (3.35)

Recall that only P Fourier coefficients are non-zero, and thus the above equation that
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constrains K equivalently becomes

»

—

—

—

—

—

—

—

—

—

—

–

ai0 ωk0ai1 ω2k0ai2 . . . ωpP´1qk0aiP´1

ai0 ωk1ai1 ω2k1ai2 . . . ωpP´1qk1aiP´1

ai0 ωk2ai1 ω2k2ai2 . . . ωpP´1qk2aiP´1

...
...

...
...

...

ai0 ωkQ´1ai1 ω2kQ´1ai2 . . . ωpP´1qkQ´1aiP´1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

RIPM
“ 0 (3.36)

ðñ

»

—

—

—

—

—

—

—

—

—

—

–

1 ωk0 ω2k0 . . . ωpP´1qk0

1 ωk1 ω2k1 . . . ωpP´1qk1

1 ωk2 ω2k2 . . . ωpP´1qk2

...
...

...
. . .

...

1 ωkQ´1 ω2kQ´1 . . . ωpP´1qkQ´1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

»

—

—

—

—

—

—

—

—

—

—

–

ai0

ai1

ai2
. . .

aiP´1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

RIPM
“ 0

ðñ VP pω
k0 , . . . , ωkQ´1q diagpai0 , . . . , aiP´1

qRIPM
“ 0. (3.37)

Since tωkjuQ´1
j“0 are distinct from each other, from Lemma III.3, rankpVP pω

k0 , . . . , ωkQ´1qq “

minpP,Qq. Therefore, if we choose to have training data points no less than the num-

ber of non-zero Fourier coefficients, i.e., Q ě P , then VP pω
k0 , . . . , ωkQ´1q is full rank,

which leads to RIPM
“ 0. Meanwhile, the solution K is uniquely determined given

L “ P ´ 1. Therefore, given Q ě P ,

»

—

—

—

—

—

—

—

—

—

—

–

YJ
k0

YJ
k1

...

YJ
kQ´2

YJ
kQ´1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

K “

»

—

—

—

—

—

—

—

—

—

—

–

xPpk0`1q

xPpk1`1q

...

xPpkQ´2`1q

xPpkQ´1`1q

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

ðñ RIPM
“ 0

L“P´1
ðñ K “ K˚ (3.38)

For the case with minimal number of data samples, i.e., Q “ P , a natural choice

is to construct P rows of the future state from the P -th to 2P ´ 1-th rows in Equa-
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tion (3.16). In the above setting, in order to construct the linear system in time

domain that has the unique solution K˚ of Equation (3.24), we only require access

to the first 2P snapshots of data. The key observation is that when the signal is

sparse, instead of constructing the classic unitary DFT matrix (Equation (3.21) to

Equation (3.22)), a random choice of P rows will be sufficient to uniquely determine a

real solution K˚. It has to be mentioned, however, that randomly chosen data points

might not be optimal. For example, in Equation (3.36), the particular choice of sam-

pling (i.e. the choice of Q rows), will determine the condition number of the complex

Vandermonde matrix VP pω
k0 , . . . , ωkQ´1q. The necessary and sufficient condition for

perfect conditioning of a Vandermonde matrix is when tωkjuQ´1
j“0 are uniformly spread

on the unit circle (Berman and Feuer , 2007).

At first glance, our work might appear to be in the same vein as compressed sensing

(CS) (Donoho, 2006; Candes and Tao, 2006) where a complete signal is extracted

from only a few measurements. However, it should be emphasized that CS requires

random projections from the whole field to extract information about a broadband

signal in each measurement, while we simply follow the setup in modeling dynamical

systems where only deterministic and sequential point measurements are available,

and limited to a certain time interval.

Moreover, the above instance of accurately recovering the dynamical system with-

out using a full period of data on the attractor is also reported elsewhere, for in-

stance in sparse polynomial regression for data-driven modeling of dynamical sys-

tems (Champion et al., 2019). Indeed, this is one of the key ideas behind SINDy (Brun-

ton et al., 2016b): one can leverage the prior knowledge of the existence of a sparse

representation (for instance, in a basis of monomials), such that sparse regression can

significantly reduce the amount of data required with no loss of information.
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3.3.2 Vector Time Series

3.3.2.1 Formulations of linear models

In this section, we extend the above analysis in section 3.3.1 to the case of a vector

dynamical system. Assuming the state vector has n components, given the time series

of l-th component, tx
plq
k u

M´1
k“0 , l “ 1, . . . , n, we have, @k P IM

x̃Ppk`1q “

»

—

—

—

—

–

x
p1q
Ppk`1q

...

x
pnq
Ppk`1q

fi

ffi

ffi

ffi

ffi

fl

P Rnˆ1, (3.39)

where k P IM , @1 ď l ď n, l P N, xplqPpkq P R, n P N. Rewrite Equation (3.13) in a

vector form:

x̃Ppk`1q “ K̃JỸk, @k P IM , (3.40)

where x̃Ppk`1q P Rn, K̃ P RnpL`1qˆn and

Ỹk “

»

—

—

—

—

–

Y
p1q
k

...

Y
pnq
k

fi

ffi

ffi

ffi

ffi

fl

P RnpL`1qˆ1, (3.41)

where Y
plq
k are the L time-delay embeddings defined in Equation (3.9) for the l-th

component of the state. In the present thesis, we treat the time-delay uniformly

across all components.

3.3.2.2 Minimal time delays

Following similar procedures (projecting on Fourier basis) as before in section 3.3.1,

denoting the Fourier coefficient of l-th component as aplq P CMˆ1, the following lemma

which is an analogy to Equation (3.22) in the scalar case.

66



Lemma III.6. The necessary and sufficient condition for the existence of a real

solution K̃ in Equation (3.40) is equivalent to the existence of a solution for the

following linear system:

„

diagpap1qq . . . diagpapnqq



¨

˚

˚

˚

˚

˝

»

—

—

—

—

–

bIMM
. . .

bIMM

fi

ffi

ffi

ffi

ffi

fl

´

»

—

—

—

—

–

AIMM ,L

. . .

AIMM ,L

fi

ffi

ffi

ffi

ffi

fl

K̃

˛

‹

‹

‹

‹

‚

“ 0.

(3.42)

The existence of the above solution is equivalent to the following relationship,

rank

ˆ„

diagpap1qqAIMM ,L . . . diagpapnqqAIMM ,L

˙

“ rank

ˆ„

diagpap1qqAIMM ,L . . . diagpapnqqAIMM ,L diagpap1qqbIMM
. . . diagpapnqqbIMM

˙

.

(3.43)

Proof. Given the definitions in Equations (3.39) to (3.41), note Equation (3.12), we

have

Ỹk “

»

—

—

—

—

–

Ωk,L

. . .

Ωk,L

fi

ffi

ffi

ffi

ffi

fl

»

—

—

—

—

–

ap1q

...

apnq

fi

ffi

ffi

ffi

ffi

fl

. (3.44)

Recall Equation (3.15), note that

Υk “ ΛkbIMM
, (3.45)

where Λ fi

»

—

—

—

—

—

—

—

–

1

ω

. . .

ωpM´1q

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.
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Moreover, note that

ΩJ
k,L “ ΛkAIMM ,L. (3.46)

We rewrite Equation (3.40) for a given k using Equation (3.14) for the left hand

side and Equation (3.44) for the right hand side in Equation (3.40),

»

—

—

—

—

–

ΥJ
k

. . .

ΥJ
k

fi

ffi

ffi

ffi

ffi

fl

»

—

—

—

—

–

ap1q

...

apnq

fi

ffi

ffi

ffi

ffi

fl

“ K̃J

»

—

—

—

—

–

Ωk,L

. . .

Ωk,L

fi

ffi

ffi

ffi

ffi

fl

»

—

—

—

—

–

ap1q

...

apnq

fi

ffi

ffi

ffi

ffi

fl

. (3.47)

Using Equations (3.45) and (3.46) for the above, we have

»

—

—

—

—

–

ap1q

...

apnq

fi

ffi

ffi

ffi

ffi

fl

J¨

˚

˚

˚

˚

˝

»

—

—

—

—

–

Υk

. . .

Υk

fi

ffi

ffi

ffi

ffi

fl

˛

‹

‹

‹

‹

‚

´

»

—

—

—

—

–

ΩJ
k,L

. . .

ΩJ
k,L

fi

ffi

ffi

ffi

ffi

fl

K̃ “ 0, (3.48)

»

—

—

—

—

–

ap1q

...

apnq

fi

ffi

ffi

ffi

ffi

fl

J»

—

—

—

—

–

Λk

. . .

Λk

fi

ffi

ffi

ffi

ffi

fl

˜

»

—

—

—

—

–

bIMM
. . .

bIMM

fi

ffi

ffi

ffi

ffi

fl

´

»

—

—

—

—

–

AIMM ,L

. . .

AIMM ,L

fi

ffi

ffi

ffi

ffi

fl

K̃

¸

“ 0. (3.49)
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Considering k “ 0, 1, . . . ,M ´ 1, we stack

»

—

—

—

—

–

ap1q

...

apnq

fi

ffi

ffi

ffi

ffi

fl

J»

—

—

—

—

–

Λk

. . .

Λk

fi

ffi

ffi

ffi

ffi

fl

row by row as

»

—

—

—

—

—

—

—

–

a
p1q
0 . . . a

p1q
M´1 . . . a

pnq
0 . . . a

pnq
M´1

a
p1q
0 . . . ωM´1a

p1q
M´1 . . . a

pnq
0 . . . ωM´1a

pnq
M´1

...
. . .

... . . .
...

. . .
...

a
p1q
0 . . . ωpM´1q2a

p1q
M´1 . . . a

pnq
0 . . . ωpM´1q2a

pnq
M´1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“ VMptω
j
u
M´1
j“0 q

„

I . . . I



diagptaplqunl“1q

“ VMptω
j
u
M´1
j“0 q

„

diagpap1qq . . . diagpapnqq



. (3.50)

Then plug the above equality into Equation (3.49), and notice the non-singularity

of VMptω
ju
M´1
j“0 q, for k “ 0, 1, . . . ,M ´ 1, Equation (3.49) can be rewritten as

„

diagpap1qq . . . diagpapnqq



˜

»

—

—

—

—

–

bIMM
. . .

bIMM

fi

ffi

ffi

ffi

ffi

fl

´

»

—

—

—

—

–

AIMM ,L

. . .

AIMM ,L

fi

ffi

ffi

ffi

ffi

fl

K̃

¸

“ 0. (3.51)

From the Rouché-Capelli theorem Meyer (2000), the necessary and sufficient con-
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dition for the existence of a complex solution to Equation (3.51) is,

rank
´

„

diagpap1qqAIMM ,L . . . diagpapnqqAIMM ,L



¸

“ rank
´”

diagpap1qqAIMM ,L . . . diagpapnqqAIMM ,L (3.52)

diagpap1qqbIMM
. . . diagpapnqqbIMM

ı¯

. (3.53)

Note that since the above procedures are can be retained in Equation (3.40), Equa-

tion (3.40) and Equation (3.51) share the same solution in CnpL`1qˆn. From Lemma III.4,

Equation (3.52) is also the necessary and sufficient condition for Equation (3.40) to

have a real solution.

Next, with the introduction of the Krylov subspace in Definition III.7 which fre-

quently appears in the early literatures of DMD (Rowley et al., 2009; Schmid , 2010),

we present Remark 1 and Remark 2 from Equation (3.42) that interprets and reveals

the possibility of using less embeddings than the corresponding sufficient condition

for the scalar case in Theorem III.5.

Definition III.7 (Krylov subspace). For n, r P N, A P Cnˆn, b P Cnˆ1, Krylov

subspace is defined as

KrpA,bq “ spantb,Ab, . . . ,Ar´1bu. (3.54)

Remark 1 (Geometric interpretation). For j “ 1, . . . , n, define cpjq fi diagpapjqqbIMM
,

and E pjqL as the column space of diagpapjqqAIMM ,L. The existence of the solution in

Equation (3.42) is then equivalent to

@j P t1, . . . , nu, cpjq PWL fi E p1qL ‘ . . .‘ E pnqL

ðñ span tcp1q, . . . , cpnqu ĎWL, (3.55)
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Figure 3.1: Illustration of the geometrical interpretation of Lemma III.6.
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where WL is the column space from all components, and ‘ is the direct sum operation

between vector spaces. Note that the column space of AIMM ,L can represented as a

Krylov subspace KL`1pΛ
´1, eq, where

e fi

„

1 . . . 1

J

, (3.56)

Λ fi diagpω0, . . . , ωM´1
q. (3.57)

A geometric interpretation of the above expressions is shown in Figure 3.1: for

each j, bIMM
“ Λ´pM´1qe and e are projected, stretched and rotated using the j-th

Fourier spectrum diagonal matrix diagpapjqq yields E pjqL and its total column subspace

WL. If all of the projected and stretched bM ’s are contained in WL, a real solution

exists for Equation (3.40). Notice that in Equation (3.55), @i ‰ j, E piqL expands the

column space E pjqL to include cpjq. Thus, the minimal number of time delays required

in the vector case as in Equation (3.40) can be smaller than that of the scalar case.

Remark 2 (Interplay between Fourier spectra). The vector case involves the inter-

action between the n different Fourier spectra corresponding to each component of the

state. This complicates the derivation of an explicit result for the minimal number of

time delays as in the scalar case (Theorem III.5). We note two important observations

that illustrate the impact of the interplay between the n Fourier spectra:

• To ensure cpjq lies in WL, each E pjqL should provide distinct vectors to maximize

the dimension of WL. If a linear dependency is present in tapjqunj“1, Equa-

tion (3.55) no longer holds.

• Since cpjq is projected using diagpapjqq, if apiqJapjq “ 0, E piqL will not contribute

to increasing the dimension of WL.

Drawing insight from the representation of the column space of AIMM ,L as the

Krylov subspace in Remark 1, we present a connection between the output control-
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lability from linear system control theory (Kreindler and Sarachik , 1964), and the

number of time delays required for linear models in a general sense.

Definition III.8 (Output controllability). Consider a linear system with state vector

xptq P CMˆ1, M P N, t P R`,

9x “ Ax`Bu, (3.58)

y “ Cx`Du, (3.59)

where A P CMˆM , B P CMˆN , C P CPˆM , D P CPˆN . yptq P CPˆ1 is the output

vector. The above system is said to be output controllable if for any yp0q,y1 P CPˆ1,

there exists t1 P R`, t1 ă `8 and u1 P CNˆ1, such that under such input and initial

conditions, the output vector of the linear system can be transferred from yp0q to

y1 “ ypt1q.

Recall that the necessary and sufficient condition (Kreindler and Sarachik , 1964;

Gruyitch, 2018) for a linear system to be output controllable is given in Defini-

tion III.9. A natural definition for the output controllability index that is similar

to the controllability and observability index is given in Definition III.10. We sum-

marize the conclusion in Theorem III.12 that the output controllability index minus

one is a tight upper bound for the number of time delays required for the linear model

in the general sense. We again emphasize that the particular linear system with in-

put and output in Theorem III.12 is solely induced by the Fourier spectrum of the

non-linear dynamical system on the attractor.

Definition III.9 (Output controllability test). The system in Equations (3.58) and (3.59)

is output controllable if and only if,

OCpA,B,C,D;Mq fi

„

CB CAB . . . CAM´1B D
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is full rank. Note that when D “ 0, we omit D in the notation.

Definition III.10 (Output controllability index). If the system in Equations (3.58)

and (3.59) is output controllable, then the output controllability index is defined as

the least integer µ such that OCpA,B,C,D;µq P CPˆpµ`1qN is full rank.

Lemma III.11. For any matrix A that is a horizontal stack of diagonal matrices,

the row elimination matrix E that removes any row that is a zero vector leads to a

full rank matrix with the rank of original matrix. Moreover, EJEA “ A.

Proof. For m,n P N, consider n diagonal matrices in A, for j “ 1, . . . , n, with the

j-th diagonal matrices being diagpapjqq P Cmˆm. apjq “

„

a
pjq
1 a

pjq
2 . . . a

pjq
m

J

. Thus

A “

„

diagpap1qq diagpap2qq . . . diagpapmqq



P Cmˆmn.

We define the following row index set that describes the row that is not a zero

row vector in A.

Γ “ tl|l P t1, . . . ,mu, Dj P t1, . . . ,mu, a
pjq
l ‰ 0u, (3.60)

where we further order the index in Γ as

1 ď γ1 ă γ2 ă . . . ă γP ď m,

where P “ |Γ|. Now we construct the row elimination matrix E P CPˆm from Γ with

i P t1, . . . , P u, j P t1, . . . ,mu,Eij “ δγi,j. (3.61)

For EA, since E only removes the zero row vector, the rank of the matrix EA is the

same as A. To show EA is full rank, simply consider the following procedure:
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From the definition of Γ, on each row with row index i “ 1, . . . , P , there are

non-zero entries. Start by choosing an entry, denoted as ajiγi that is non-zero (while

the choice of ji is not unique). Then, one can simply perform column operations that

switch the column with index ji corresponding to the non-zero entry of i-th row, with

the current i-th column. These operations can be iteratively performed, after which

the following matrix is obtained:

EAR “

»

—

—

—

—

—

—

—

–

aj1γ1
˚

aj2γ2
˚

. . . ˚

ajPγP ˚

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

, (3.62)

where @i “ 1, . . . , P, ajiγi ‰ 0 and R is the elementary column operation matrix. Thus

EAR is full rank, and EA is full rank.

Define F “ EJ, i.e., Fjk “ δγk,j. Thus

i, j P t1, . . . ,mu,Gij fi FikEkj “ δγk,iδγk,j

“

P
ÿ

k“1

δγk,iδγk,j “

$

’

’

&

’

’

%

1, i “ j P Γ,

0, otherwise.

(3.63)

Therefore, G is simply a diagonal matrix that keeps the row with index in Γ un-

changed, but makes the row zero when the index is not in Γ. However, the row

index that is not in Γ corresponds to a zero row vector, and thus GA “ A, i.e.,

EJEA “ A.

Theorem III.12. Following definitions in Equations (3.56) and (3.57), consider the
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following induced linear dynamical system with output controllability index µ:

9Z “ AZ`Bu

y “ CZ

with

A “

»

—

—

—

—

–

Λ´1

. . .

Λ´1

fi

ffi

ffi

ffi

ffi

fl

P CMnˆMn,

B “

»

—

—

—

—

–

e

. . .

e

fi

ffi

ffi

ffi

ffi

fl

P CMnˆn,

C1
“

„

diagpap1qq . . . diagpapnqq



P CMˆnM ,

C “ EC1
P CPˆnM ,

where P is the number of non-zero row vectors in C1, and rank pCq “ rank pC1q “ P

as indicated by Lemma III.11. Then, µ ´ 1 is a tight upper bound on the minimal

number of time delays that ensures the existence of solution of Equation (3.42), and

thus a perfect reconstruction of the dynamics.
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Proof. Consider

OCpA,B,C;µq “ C

„

B AB . . . Aµ´1B



(3.64)

“ C

„

I A . . . Aµ´1



»

—

—

—

—

–

B

. . .

B

fi

ffi

ffi

ffi

ffi

fl

“ EC1

»

—

—

—

—

–

I Λ´pµ´1q

. . . . . .
. . .

I Λ´pµ´1q

fi

ffi

ffi

ffi

ffi

fl

»

—

—

—

—

–

e

. . .

e

fi

ffi

ffi

ffi

ffi

fl

“ E

„

diagpap1qqe . . . diagpapnqqe . . . diagpap1qqΛ´pµ´1qe . . . diagpapnqqΛ´pµ´1qe



.

Following Definition III.8, for any integer i ě µ, OCpA,B,C; iq is full rank. Thus,

@v P CPˆ1, v lies in the column space of OCpA,B,C; iq. Therefore, Fv should lie in

the column space of FOCpA,B,C; iq. Noticing Lemma III.11 and Remark 1, we have

Fv P ColpFOCpA,B,C; iqq “Wi´1. (3.65)

Now, consider @j “ 1, . . . , n, vpjq “ E diagpapjqqbIMM
P CPˆ1, from the above, we have

Fvpjq “ FE diagpapjqqbIMM
“ diagpapjqqbIMM

“ cpjq PWi´1. (3.66)

Since the minimal i for OCpA,B,C; iq to be full rank is µ, the output observability

index is µ. Correspondingly, when the number of time delays L “ µ ´ 1, a solution

exists for Equation (3.42), which makes µ ´ 1 an upper bound for the minimal time

delay in Lemma III.6. Finally, to show that the bounds are tight, consider that when

n “ 1, Theorem III.12 reverts to Theorem III.5 where µ “ P , and thus µ´ 1 “ P ´ 1

is essentially the minimal number of time delays required.
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3.4 Numerics

In this section, we start with a simple example and discuss practical numerical

considerations.

3.4.1 Sanity check: 5-mode sine signal

First, an explicit time series consisting of five frequencies with a long period T “

100 is considered:

xptq “ 0.3 cosp
2πt

100
q ` 0.5 sinp

4πt

100
q ` 0.9 cosp

8πt

100
q

` 1.6 sinp
16πt

100
q ` 1.2 cosp

24πt

100
q. (3.67)

Such a signal may be realized, for instance, by observing the first component of a

10-dimensional linear dynamical system. The sampling rate is set at 1 per unit time,

which is arbitrary and considered for convenience, and the signal is sampled for two

periods from n “ 0 to n “ 199. Thus we have a discretely sampled time series of

length 200 as txnu
199
n“0 with xn “ xptq|t“n. Only the first 20% of the original signal is

used, which is 40% of a full period with around 20 to 30 data points sampled. The

variation in the number of data points is due to the fact that we fix the use of first

20% of trajectory, and then reconstruct the signal with a different number of time

delays. We solve the least squares problem in the time domain with the iterative least

squares solver scipy.linalg.lstsq (Jones et al., 2014) with lapack driver as gelsd,

and cutoff for small singular values as 10´15. The analysis in Theorem III.5 implies

that one can avoid using the full period of data for exact prediction. Numerical results

are presented in Figure 3.2 with number of time delays L “ 9. These results show

that time delayed DMD, unlike non-linear models such as neural networks, avoid

the requirement of a full period of data when the dynamics is expressible by a set

of sparse harmonics. From Theorem III.5, the 5-mode signal has P “ 10 non-zero
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Figure 3.2:
Top: A posteriori prediction vs ground truth, time delayed linear model
with number of delays L “ 9. Bottom: A posteriori MSE normalized by
standard deviation of xptq vs number of time delays.
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Fourier coefficients in the Fourier spectrum, and thus the least number of delays is

L “ P ´ 1 “ 9, which agrees well with Figure 3.2 which shows the a posteriori mean

square error normalized by the standard deviation of the data , between prediction

and ground truth. Figure 3.2 clearly shows that a sharp decrease of a posteriori error

when the number of delays L “ 9.

Now we will consider a different scenario. As explained earlier, linear time delayed

models can avoid the use of a full period of data if there is enough information to

determine the solution within the first P states. Thus, if one increases the sampling

rate, less data will be required to recover an accurate solution. However, one still

needs to numerically compute the solution of a linear system, while the condition

number grows with increasing sampling rates. As displayed in Figure 3.4, the condi-

tion number increases in both time and spectral domain formulations, with increasing

sampling rate.

Using scipy.linalg.lstsq (Jones et al., 2014) and a time domain formulation,

we found that there is no visual difference between the truth and a posteriori predic-

tion when the condition number is below 1013, i.e., M ď 300 in the spectral domain,

or M ď 200 in the time domain. However, as the condition number grows beyond

1013 (i.e. machine precision noise of even 10´16 can contaminate digits around 0.001),

a posteriori prediction error can accumulate when M “ 400 (Figure 3.3).

3.4.2 Temporal & Spectral Formulations

In practical terms, one can pursue two general formulations to numerically com-

pute the delay transition matrix K in Equation (2.29):

1. Formulation in time domain: If all available delay vectors and corresponding

future states are stacked, the direct solution of Equation (2.29) is a least square

problem in the time domain with the requirement of at least P samples.

2. Formulation in spectral domain: In this approach, the Fourier signals from a
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Figure 3.3:
Prediction vs ground truth when sampling rate is excessive, e.g., M “ 400

full period of data is extracted and Equation (3.24) is numerically solved.

3.4.3 Ill-conditioning due to excessive sampling rate

Consider signals that consist of a finite number of harmonics with the index set

of Fourier coefficients as IPM . Since the first half of the indices i0, . . . , iP {2´1 is deter-

mined by the inherent period of each harmonic, these indices are independent of the

number of samples per period M , as long as M satisfies the Nyquist condition. It is

thus tempting to choose a relatively large sampling rate. However, this may not be

favorable from a numerical standpoint. When L “ P ´ 1 and the sampling rate is

excessive compared to the potentially lower frequency dynamics of the system, each

column could become nearly linearly dependent. We will now explore the circum-

stances under which the corresponding linear system in either the spectral or time

domain can become ill-conditioned. It has to also be recognized that the denominator

in Equation (3.33) consists of the difference between different nodes on the unit circle,

and can therefore impact numerical accuracy.

The condition number of the Vandermonde matrix with complex nodes Equa-
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tion (3.24) is also pertinent to the present discussion. It is well known that the

condition number of a Vandermonde matrix grows exponentially with the order of

matrix n when the nodes are real positive or symmetrically distributed with respect

to the origin (Córdova et al., 1990). When the nodes are complex, the numerical

conditioning of a Vandermonde matrix can be as perfect as that of a DFT matrix, or

as poor as that of the quasi-cyclic sequence (Gautschi , 1990). Specifically, it has been

shown that a large square Vandermonde matrix is ill-conditioned unless its nodes are

nearly uniformly spaced on or about the unit circle (Pan, 2016). Interestingly, for

a rectangular Vandermonde matrix with n nodes and order N , i.e., VNpz1, . . . , znq,

Kunis and Nagel (2018) provided a lower bound on the 2-norm condition number of

the Vandermonde matrix that contains “nearly-colliding” nodes:

κ2pVNpz1, . . . , znqq ě

?
6

πτ
«

0.77

τ
, (3.68)

for all τ ď 1, i.e., “nearly colliding”, where τ fi N minj‰l |tj ´ tl|T, |tj ´ tl|T fi

minrPZ |tj ´ tl ` r|. Applying the above result to Equation (3.24), when M is large

enough so that τ ď 1 is satisfied1, the lower bound of the 2-norm condition number

will increase proportionally with the number of samples per period M . Thus, the

tightly clustered nodes due to excessive sampling will lead to the ill-conditioning of

the linear system in Equation (3.24).

3.4.4 Sub-sampling within Nyquist limits

Equation (3.68) shows that the tight clustering of nodes due to excessive sampling

can lead to ill-conditioning. A straightforward fix would thus be to filter out unim-

portant harmonics, and re-sample the signal at a smaller sampling rate that can still

capture the highest frequency retained in the filtering process. In this way, the nodes

can be more favorably redistributed on the unit circle. Recall that, if the complex

1since τ “ Op1{Mq
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nodes of the Vandermonde matrix are uniformly distributed on a unit circle, then one

arrives at a perfect conditioning of the Vandermonde matrix with condition number

of one similar to the DFT matrix (Pan, 2016). Without any loss of generality, we

assume the number of samples per period M is even. The wave numbers of sparse

Fourier coefficients are denoted by IPM . The sorted wave numbers are symmetrical

with respect to M{2 and recall that the values of the first half of IPM , i.e., i0, . . . , iP
2
´1

is independent of M , as long as the Nyquist condition is satisfied (Landau, 1967).

Then, a continuous signal xptq is sub-sampled uniformly. Due to symmetry, the

smallest number of samples per period M˚ that preserves the signal is 2piP
2
´1 ` 1q.

3.4.5 Effect of sampling rate, formulation domain, and numerical solver

on model accuracy

To compare the impact of different solution techniques, we choose several off-the-

shelf numerical methods to compute K in either the time domain or spectral domain.

These methods include:

(i) mldivide from MATLAB (MATLAB , 2010), i.e., backslash operator which effec-

tively uses QR/LU solver in our case;

(ii) scipy.linalg.lstsq (Jones et al., 2014), which by default calls gelsd from

LAPACK (Anderson et al., 1999) to solve the minimum 2-norm least squares solution

with SVD, and an algorithm based on divide and conquer;

(iii) Björck & Pereyra (BP) algorithm (Björck and Pereyra, 1970) which is de-

signed to solve the Vandermonde system exactly in an efficient way exploiting the

inherent structure. For a nˆ n matrix, instead of the standard Gaussian elimination

with Opn3q arithmetic operations and Opn2q elements for storage, the BP algorithm

only requires npn`1qp2OM`3OAq{2
2 for arithmetic operations and no further storage

than storing the roots and right hand side of the system.

2OA and OM denote addition/subtraction and multiplication/division.
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As shown in Figure 3.4, the condition number increases exponentially with in-

creasing number of samples per period M , leading to a significant deterioration of

accuracy. Comparing the time and spectral domain formulations, Figure 3.4 shows

that the solution for the spectral case is more accurate than the time domain solution

when the sampling rate is low. This is not unexpected as one would need to perform

FFT on a full period of data to find the appropriate Fourier coefficients in the spec-

tral case. When M ą 600, however, the spectral domain solutions obtained by BP

and mldivide algorithms blow up, while the time domain solution is more robust in

that the error is bounded. Note that the singular value decomposition - in lstsq and

in mldivide that removes the components of the solution in the subspace spanned

by less significant right singular vectors - is extremely sensitive to noise. Further,

from Equation (3.36), the difference between the formulations in the spectral and

time domains can be attributed to VP pω
k0 , . . . , ωkQ´1q and diagpai0 , . . . , aiP´1

q, which

could be ill-conditioned. Thus, regularization in the time domain formulation is more

effective. Figure 3.4 also shows that, when the system becomes highly ill-conditioned,

i.e., M ą 600, lstsq with thresholding ε “ 10´15 results in a more stable solution

than mldivide.

It should be mentioned that the condition number computed in Figure 3.4 around

the inverse of machine precision, i.e., Op1016q, should be viewed in a qualitative rather

than quantitative sense (Drmac et al., 2019).

3.4.6 Effect of the number of time delays L on condition number

By adding more time delays than the theoretical minimum, the dimension of the

solution space grows, along with the features for least squares fitting. Accordingly,

the null space becomes more dominant, and thus one should expect non-unique solu-

tions with lower residuals. Note that, for simplicity, the following numerical analysis

assumes the scalar case, i.e., n “ 1.
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Figure 3.4:
Top: A posteriori MSE normalized by the standard deviation of xptq
with increasing sampling rate and different numerical solvers. Bottom:
Numerical condition number with increasing sampling rate
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For the complex Vandermonde system in Equation (3.24), following Bazán (2000),

we discovered very distinct features of the asymptotic behavior of the solution, and

the corresponding system in Equation (3.24) when the number of time delays LÑ 8.

(i) The norm of the minimum 2-norm solution of Equation (3.24) ‖K̂L‖2 Ñ 0 , as

shown in Proposition 3.

(ii) An upper bound for the convergence rate of ‖K̂L‖2
2 is derived in Lemma III.13.

(iii) An upper bound on the 2-norm condition number of Equation (3.24) is shown

in Proposition 4 to scale with 1`Op1{
?
Lq.

Proposition 3. lim
LÑ8
‖K̂L‖2 “ 0, where K̂L is the minimum 2-norm solution of Equa-

tion (3.24).

Proof. To begin with, consider the following under-determined linear system for f P

RN , given N ě n

VNpz1, . . . , znqf “ diagpz1, . . . , znqe, (3.69)

where e “

„

1 1 . . . 1

J

. Denote fN to be the minimum 2-norm solution. Suppose

for all nodes, i “ 1, . . . , n, |zi| ď 1. Bazán Bazán (2000) showed that

lim
NÑ`8

‖fN‖2 “ 0. (3.70)

Consider multiplying Equation (3.24) on both sides from the left with diagpωLi0 , . . . , ωLiP´1q.

Notice that the diagonal matrix is non-singular for any L P N, and the inverse of per-

86



mutation matrix is its transpose. Then we have

»

—

—

—

—

–

ωLi0 ωpL´1qi0 . . . 1

...
...

...
...

ωLiP´1 ωpL´1qiP´1 . . . 1

fi

ffi

ffi

ffi

ffi

fl

K “

»

—

—

—

—

–

ωpL`1qi0

...

ωpL`1qiP´1

fi

ffi

ffi

ffi

ffi

fl

, (3.71)

»

—

—

—

—

–

1 ωi0 . . . ωLi0

...
...

...
...

1 ωiP´1 . . . ωLiP´1 ,

fi

ffi

ffi

ffi

ffi

fl

PJK “

»

—

—

—

—

–

ωi0

. . .

ωiP´1

fi

ffi

ffi

ffi

ffi

fl

L`1

e, (3.72)

VL`1pω
i0 , . . . , ωiP´1qf “ pdiagpωi0 , . . . , ωiP´1qq

L`1e, (3.73)

where f fi PJK, P P RpL`1qˆpL`1q is the column permutation matrix that reverses

the column order in AIPM ,L
. Note that a solution exists when L ` 1 “ P and it

is not unique when L ` 1 ą P . Denote fL as the corresponding minimal 2-norm

solution of Equation (3.73). From Equation (3.70), consider Equation (3.73) and

take LÑ `8, ‖fL‖2 Ñ 0. The row permutation matrix does not change the 2-norm

of a vector, and hence there is a one-to-one correspondence between the solution in

Equation (3.73) and Equation (3.24), such that the corresponding minimal 2-norm

solution for Equation (3.24) is K̂L fi PfL thus ‖K̂L‖2 Ñ 0.

Lemma III.13. @L ě P ´ 1, denote K̂L as the minimum 2-norm solution of Equa-

tion (3.24). The following tight upper bound can be derived

‖K̂L‖2
2 ď

‖K̂P´1‖2
2

1`
X

L´P`1
M

\ . (3.74)

Proof. For q P N, denote Lq “ qM ` P ´ 1. Note that in Equation (3.24), when

L “ P ´ 1, the minimal 2-norm solution K̂P´1 is also unique. Specifically we denote

K̂P´1 “

„

K̂0 . . . K̂P´1



. Note that, for any L ě P ´ 1, we can find q “
X

L´P`1
M

\

,

such that L P Tq fi rLq, Lq`1q. From the definition of the minimal 2-norm solution,
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we have ‖K̂L‖2 ď ‖K̂Lq‖2.

Consider AIPM ,Lq
and notice that for q “ 0, i.e., L0 “ P´1 ď L ă L1 “M`P´1,

so ‖K̂L‖2 ď ‖K̂L0‖2 “ ‖K̂P´1‖2; for q ě 1, for any 1 ď j ď P , the j-th column of

AIPM ,Lq
is duplicated with the pj`kMq-th column, k “ 1, . . . , q. For q ě 1, AIPM ,Lq

in

Equation (3.24), consider the following easily validated special class of real solutions,

K “

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

K0

...

KP´1

0

...

0

KM

...

KL1

0

...

0

...

KqM

...

KLq

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

J

P R1ˆpLq`1q, (3.75)

with the constraint that for any 1 ď j ď P ,
řq
l“0Kj´1`lM “ K̂j´1. To find the

minimal 2-norm solution, note that we have

min‖K‖2
2 “

P
ÿ

j“1

min
q
ÿ

l“0

K2
j´1`lM . (3.76)
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From Jensen’s inequality, @j “ 1, . . . , P ,

řq
l“0K

2
j´1`lM

q ` 1
ě

ˆřq
l“0Kj´1`lM

q ` 1

˙2

, (3.77)

q
ÿ

l“0

K2
j´1`lM ě

K̂2
j´1

q ` 1
, (3.78)

where the equality holds when Kj´1`lM “ K̂j´1{pq ` 1q for l “ 0, . . . , q. Thus

min‖K‖2
2 “

řP
j“1 K̂

2
j´1{pq ` 1q “ ‖K̂P´1‖2

2{pq ` 1q. Since the above minimal norm

is found within a special class of solutions in Equation (3.24), the general minimal

2-norm is

‖K̂L‖2
2 ď ‖K̂Lq‖2

2 ď ‖K̂P´1‖2
2{pq ` 1q.

Combining both cases for q “ 0 and q ě 1, we have the desired result.

Proposition 4. Let P be the number of non-zero Fourier coefficients. @L ě P ´ 1,

denote K̂P´1 as the unique solution of Equation (3.24). With the minimal number of

time delays, the upper bound on the 2-norm condition number of the system is given

by

κ2pAIPM ,L
q “ κ2pVL`1pω

´i0 , . . . , ω´iP´1qq

ď 1`
d

2

«

1`

c

1`
4

d

ff

, (3.79)

where

d fi P

»

–

˜

1`
‖K̂P´1‖2

2

pP ´ 1qp1`
X

L´P`1
M

\

qδ2

¸
P´1

2

´ 1

fi

fl , (3.80)

δ fi min
0ďjăkďP´1

|ω´ij ´ ω´ik |. (3.81)

Further, if LÑ 8, then κ2pAIPM ,L
q Ñ 1, i.e., perfect conditioning is achieved.

Proof. Consider the fact that the Vandermonde matrix VNpz1, . . . , znq with n distinct
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nodes tziu
n
i“1, zi P C of order N , N ě n, i.e., VN is full rank. The Frobenius-

norm condition number is defined as κF pVNq fi ‖VN‖F‖V:

N‖F , where : represents

Moore-Penrose pseudoinverse. Bazán Bazán (2000) showed that if @i “ 1, . . . , n, with

distinct |zi| ď 1, N ě n, then

κF pVNq ď n

„

1`
pn´ 1q ` ‖fN‖2

2 `
śn

i“1 |zi|
2 ´

řn
i“1 |zi|

2

pn´ 1qδ2


n´1

2

φNpα, βq, (3.82)

where δ fi min
1ďiăjďn

|zi´zj|, φNpα, βq fi
b

1`α2`...`α2pN´1q

1`β2`...`β2pN´1q , α fi max
1ďjďn

|zj|, β fi min
1ďjďn

|zj|.

The key to understand the behavior of the upper bound of κ2pVNq, is to estimate

the convergence rate of ‖fN‖2 which is considered difficult for a general distribution

of nodes Bazán (2000). For the particular case of Equation (3.24), we can show a

tight upper bound in Lemma III.13. Thus, @1 ď i ď n, |zi| “ 1, Equation (3.82)

becomes,

κF pVNq ď n

ˆ

1`
‖fN‖2

2

pn´ 1qδ2

˙
n´1

2

. (3.83)

Now we note a general inequality between the condition number in the 2-norm and

in the Frobenius norm Bazán (2000) by considering,

n´ 2 ă n´ 2` κ2pVNq ` κ
´1
2 pVNq ď κF pVNq, (3.84)

κ2pVNq ď
1

2

”

κF pVNq ´ n` 2`
a

pκF pVNq ´ n` 2q2 ´ 4
ı

. (3.85)

The right hand side in Equation (3.85) is monotonically increasing with respect to

κF pVNq. Therefore using the upper bound from Equation (3.83) in Equation (3.85),

and some algebra we have the following upper bound, @N ą n,

κ2pVNq ď 1`
d

2

«

1`

c

1`
4

d

ff

, (3.86)
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where

d fi n

«

ˆ

1`
‖fN‖2

2

pn´ 1qδ2

˙
n´1

2

´ 1

ff

. (3.87)

Finally, note that d monotonically increases with ‖fN‖2, and thus with n “ P , N “

L ` 1, zl “ ω´il , l “ 0, . . . , P ´ 1 and Lemma III.13, the desired upper bound is

achieved. As L Ñ 8, K̂L Ñ 0 and d Ñ 0, and thus it is trivial to show that

κ2pAIPM ,L
q Ñ 1.

Remark 3. Note that the bound in Proposition 4 does not demand a potentially

restrictive condition on the number of time delays, i.e., L ` 1 ą 2pP ´ 1q{δ that is

required in Bazán’s work, which utilizes the Gershgorin circle theorem for the upper

bound of the 2-norm condition number (Bazán, 2000). More recently, this constraint

has been defined in the context of the nodes being “well-separated” (Kunis and Nagel,

2018). Applying such a result to our case, we have

κ2pAIPM ,L
q ď

d

1`
2

δpL`1q
2P´2

´ 1
(3.88)

since we have an estimation for the convergence rate of the minimal 2-norm solution.

However, although our upper bound in Proposition 4 holds3 for all L ě P ´ 1, it is

too conservative compared to Bazán’s upper bound when LÑ 8. To see this, denote

km fi mini,jPIPM ,i,‰jt|k||k “ pi ´ jq mod Mu, i.e., the minimal absolute difference

between any pair of distinct indices in IPM , in the sense of modulo M . Assuming

that the number of samples per period is large enough so that M " 2πkm, we have

δ “
a

2 r1´ cosp2πkm{Mqs « 2πkm{M “ Op1{Mq. If we assume that the system

with time delay L is far from being perfectly conditioned, we have κF pVL`1q " P ` 2,

3and is more general than Bazán’s upper bound Equation (3.88)
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which leads to the following approximation for our upper bound,

κ2pVNq ď
1

2

”

κF pVL`1q ´ P ` 2

`
a

pκF pVL`1q ´ P ` 2q2 ´ 4
ı

« κF pVL`1q ´ P ` 2

ď d` 2. (3.89)

Hence, for an excessively sampled case, if L is small enough such that κF pVL`1q ě

κ2pVL`1q " P ` 2 holds but large enough such that

‖K̂P´1‖2
2

pP ´ 1qp1`
X

L´P`1
M

\

qδ2
! 1, (3.90)

then the approximated upper bound becomes

2` d “ 2` P

»

–

˜

1`
‖K̂P´1‖2

2

pP ´ 1qp1`
X

L´P`1
M

\

qδ2

¸
P´1

2

´ 1

fi

fl ,

« 2`
P‖K̂P´1‖2

2

2δ2p1`
X

L´P`1
M

\

q
« 2`

P‖K̂P´1‖2
2

8π2k2
m{M

2p1`
X

L´P`1
M

\

q

“ 2`O

ˆ

M3

L

˙

. (3.91)

Meanwhile, when L is very large, and thus δpL ` 1q ą 2pP ´ 1q is satisfied, Bazán’s

bound in Equation (3.88) scales with 1`O
`
?
M{
?
L
˘

for L{M " 1. Thus, to retain

the same upper bound of condition number, one only needs to increase the number of

time delays at the same same rate as the sampling.

Figure 3.5 shows that the residuals from the least squares problem in both the

time and spectral domains decrease exponentially with the addition of time delays.

Further, the a posteriori MSE shows significant improvement with the addition of

time delays.

Figure 3.6 shows the trend of the 2-norm condition number in both the time and
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Figure 3.5:
Effect of time delay L on M “ 500 oversampling case. Top: A posteri-
ori MSE normalized by standard deviation of xptq with increasing time
delays. Bottom: Sum of squared residuals with increasing time delays.

93



spectral domains. The condition number decays exponentially in the spectral case,

but increases in the time domain case. This appears to be contradictory since the

condition number is typically reflective of the quality of the solution. However, since

SVD regularization is implicit in scipy.linalg.lstsq with gelsd option, computing

the 2-norm condition number in the same way as in the numerical solver, i.e., effective

condition number 4 is a more relevant measure of the quality of the solution of the

SVD truncated system. Thus, the reasons for improved predictive accuracy are due to

a) the increasing dimension of the solution space for a potentially under-determined

system with more time delays, and b) the well conditioned system after SVD trun-

cation as shown in Figure 3.6. The large condition number in the time domain with

increasing number of delays is a result of the ill-conditioning of VP pω
k0 , . . . , ωkQ´1q

and diagpai0 , . . . , aiP´1
q in Equation (3.37).

Figure 3.6:
M “ 500 oversampling case: effective condition number decreases with
increasing time delay L

4i.e., SVD with the same thresholding (ε “ 10´15) such that any singular value below ε ¨ σmax is
removed
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3.4.7 Effect of subsampling on model performance

As indicated in Remark 3, reducing the number of samples per period M is shown

to decrease the upper bound on the condition number. For a given signal, however,

there is a restriction on the minimum possible M compared to the number of time

delays L. In the above case for the 5-mode sine signal, iP
2
´1 “ 12, and thus the

minimal sampling per period that one can use to perfectly preserve the original signal

in the subsampling is M “ 26. The condition number with M ranging from 26 to 98

is shown in Figure 3.7. This shows the effectiveness of subsampling in reducing the

condition number significantly. Correspondingly, the a posteriori normalized MSE is

also reduced as shown in Figure 3.7.

The previous two subsections demonstrated the role of numerical conditioning on

model performance. We note that explicit stabilization techniques (Le Clainche and

Vega, 2017; Champion et al., 2019) require further investigation.

3.4.8 Analysis of noise effect with pseudospectra

Note that our analysis and experiments thus far have been based on noise-free

assumptions. When additive noise is present in the data, the minimal number of

time delays as given by the results in Section 3.3 can be optimistic as we will confirm

shortly. Alternatively, one might de-noise the data as by using for instance, optimal

SVD thresholding Gavish and Donoho (2014) for the delay matrix with i.i.d. Gaussian

noise. To illustrate the effect of noise, the toy 5-mode sine signal in Section 3.5.1.1

is considered, but the training horizon is increased to one complete period of data.

Consider additive i.i.d. Gaussian noise with signal-to-noise ratio (with respect to

the standard deviation) of 1%. To assess the influence of noise rigorously, we take

an ensemble of 500 data trajectories and train a linear model with ordinary least

squares on such data. In other words, for each sample trajectory, we have a slightly

perturbed linear model associated with the data. The influence of noise is evaluated
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Figure 3.7:
Top: Condition number as a function of sampling rate. Bottom: A pos-
teriori normalized MSE with sampling rate.
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in the resulting distribution of eigenvalues (a priori sense) and long-time predictions

(a posteriori sense). As shown in Figures 3.8 and 3.9, the theoretical optimality of

L “ 9 does not hold as the model becomes overly dissipative. Instead, L “ 20 is

required to have a reasonable prediction. It should be noted that the noise in the

training data is too small to be observed in Figure 3.9, while the impact on the

linear model is significant, as represented from the red shaded region. Moreover, as L

increases, it is observed that the “cloud” of eigenvalues shifts from the left half plane

towards the imaginary. Interestingly, the “clouds” associated with spurious modes

are much more scattered than those of the exact modes on the imaginary axis, i.e., the

spurious modes are more sensitive to the noise in the data. As L becomes increasingly

large, e.g., L “ 39, those clouds merge together along the imaginary axis, resulting

in higher uncertainty due to the possibility of unstable modes. This is also reflected

in the a posteriori predictions in Figure 3.9. Interestingly, the ensemble average of a

posteriori prediction appears to show better predictions, even though each individual

prediction can be divergent. This implies that an appropriate Bayesian reformulation

could make the model more robust to noise Pan and Duraisamy (2020c).

Next, we will analyze the robustness of the linear time delayed model with respect

to noise in a more general sense. Recall that the previous analysis on condition number

in Section 3.4.6 with periodic assumptions indicates robustness to noise with increas-

ing time delays. For a more stringent description of the robustness, we introduce the

concept of pseudospectra Trefethen et al. (1993). Here we define the ε-pseudospectra

of the block companion matrix AL in Section 3.4.1 as Λε in Equation (3.92).

ΛεpALq “ tz P C : σminpzI´ALq ď εu, (3.92)

where σmin represents the minimal singular value. As shown in Figure 3.10, it is

observed that the robustness of the solution decreases the increasing L and becomes

most sensitive to noise at the noise-free optimal L “ 9, following which the robust-

97



Figure 3.8:
Eigenvalue distribution of linear model from noisy data with signal-to-
noise ratio as 0.01 (orange) and noise-free data (blue). Time delay ranges
from L “ 6 to L “ 39.
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Figure 3.9:
A posteriori prediction from noisy data with signal-to-noise ratio of 0.01.
Green: training data. Black: whole data. Red: prediction from linear
model. Shaded regions represents the uncertainty range of ˘2 standard
deviations. Note that all of training, whole and predictions contain shaded
region but the noise on training/whole data is too small to be observed.
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ness improves as L increases, which is consistent with previous analysis on condition

number.

Figure 3.10:
Isocontours of pseudospectra at ε “ 10´2, 10´3, 10´4, 10´5, 10´6 for
different time delays L for the toy 5 waves case.

3.4.9 Appropriate time delay for large-scale chaotic dynamical systems

Linear time delayed models have been investigated for chaotic dynamics on an

attractor (for instance, Brunton et al. (2017)). The main challenges are two fold:

100



a) Chaotic systems may require an infinite number of waves to resolve the contin-

uous Koopman spectrum (Mezić, 2005), and b) Practical chaotic systems of inter-

est in science and engineering science are large-scale. For example, realistic fluid

flow simulations, may be very large even after dimension reduction, especially for

advection-dominated problems (Lee and Carlberg , 2020). This would further limit

the expressiveness of linear models with time delay.

To illustrate this, consider dimension reduction using SVD on the trajectory data

txju
M´1
j“0 . One can extract a reduced r-dimensional trajectory, tx̂ju

M´1
j“0 , i.e.,

„

x0 . . . xM´1



« UrΣrV
J
r , x̂j “ UJ

r xj P Rr. (3.93)

Recalling Equations (2.29) and (2.30), we have a similar analytic SVD-DMD solution

on the time delay data matrix of the reduced r-dimensional system, i.e.,

pAL “ QJ

r1
UJ
r

„

hL`1 . . . hM´1



Zr1Σ
´1

r1
P Rr

1
ˆr
1

, (3.94)

with the following r
1

´SVD regularization purely for numerical robustness

UJ
r

„

hL . . . hM´2



« Qr1Σr1Z
J

r1
. (3.95)

Note that AL “ Qr1
pALQJ

r1
P RrpL`1qˆrpL`1q with rankpALq “ r

1

. Following the

notations of the mode decomposition in Section 2.4.2, we have

xk`1 «
ÿr

1

i“1
λk`1´L
i Urqip

J
i hL, (3.96)

where Urqi and tλk`1´L
i pJi hLu

M´2
k“0 are the spatial and temporal modes respectively.

Now we can describe the constraints on the maximal number of modes in the
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linear model r
1

from the time delay L. From the restrictions on matrix rank, we have

r ď mintn,Mu, r
1

ď mintrpL` 1q,M ´ 1´ Lu, (3.97)

as illustrated in Figure 3.11. Clearly, we see the maximal number of waves r
1

stops

increasing after the time delay L surpasses the intersection point where L˚ “
M
r`1
´1,

r
1

˚ “
r
r`1

M . This relation indicates that keeping more POD modes in the dimension

reduction increases the upper limit of the number of waves in the resulting linear

models. The corresponding time delay would decrease with respect to the peak. In-

terestingly, for L ą M
r`1
´1, called “overdelay”, might yield an underdetermined linear

system as in Equation (2.30). For example, we can choose Lopt “ r M
r`1

s. The solution

of that system would, however, result in a least square residual near machine preci-

sion, leading to overfitting even in a posteriori sense. Note that practical problems

may require denoising on the trajectory data.

Figure 3.11:
Constraints on maximal number of waves r

1

in the linear model with
time delays.
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Table 3.1: Summary of the structure of time delay embedding for VdP.
P L iP {2´1 Mmin

x̃1ptq 10 9 9 20
x̃2ptq 18 17 18 38
x̃1,2ptq 8 38

3.5 Applications

3.5.1 Van der Pol oscillator

Now we consider the Van der Pol oscillator (VdP) with forward Euler time dis-

cretization:
»

—

–

xn`1
1

xn`1
2

fi

ffi

fl

“

»

—

–

xn1

xn2

fi

ffi

fl

`∆t

»

—

–

xn2

µp1´ xn1x
n
1 qx

n
2 ´ x

n
1

fi

ffi

fl

, (3.98)

where µ “ 2, x0
1 “ 1, x0

2 “ 0, ∆t “ 0.01. After 530 time steps, the system approxi-

mately falls on the attractor with an approximate period of 776 steps. Total data is

collected after the system falls on the attractor for 4 periods.

As shown in Figure 3.12, Fourier spectrum for each component of VdP system

shows that the exhibition of an approximate sparse spectrum with P “ 10 and P “ 18

for x1 and x2 respectively. As indicated from Theorem III.5, the corresponding time

delay and minimal sampling rate is summarized in Table 3.1.

3.5.1.1 Extrapolation: scalar case

From Table 3.1, it is clear that the smallest number of samples per period is

significantly smaller than the original number of samples per period, i.e., M “ 776.

The analysis in the previous section also showed that the choice of a smaller number

of samples per period is helpful in reducing the condition number. Thus, we choose a

moderately subsampled representation without any loss in reconstruction compared

to the filtered representation. Individually treating the first and second components,
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Figure 3.12: Fourier spectrum for VdP system. Top: x1. Bottom x2.
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we choose M “ 200, 100 with theoretical minimum time delays L “ 9, 17, respectively.

Numerical results displayed in Figure 3.13 show that, even using training data that

covers less than 25% of the period for the first component, and 50% of the period

for the first component, the linear model with minimal time delays is still able to

accurately predict the dynamics over the entire time period of the limit cycle. Note

that a similar predictive performance is expected for the original (unfiltered) VdP

system.

Figure 3.13:
Prediction vs ground truth for each component of VdP. Top: first com-
ponent. Bottom: second component.
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3.5.1.2 Extrapolation: vector case

As given in Table 3.1, Lemma III.6 predicts that the consideration of both compo-

nents requires only 8 delays. The effectiveness of the criterion developed in Lemma III.6

is confirmed to a resounding degree in Figure 3.14. The top figure shows the predic-

tive performance of the time delayed linear model for the minimum number of delays

and the bottom figure shows the behavior of the a posteriori normalized MSE versus

the number of time delays. It should be recognized that in contrast to the scalar case,

in which the minimal time delay can be directly inferred from the Fourier spectrum,

the vector case requires iterative evaluations of the rank test in Lemma III.6.

3.5.2 Quasi-periodic signal

As indicated in Laudau’s route to chaos Landau (1944), quasi-periodic systems

play an important role in the transition from a limit cycle to fully chaotic flow.We

consider the following quasi-periodic signal

xptq “ cosp
?

2t{2q sinp
?

3t{2q cosptq, (3.99)

where t P r0, 40s. Consider a sampling interval ∆t “ 0.1, we consider the linear model

trained on the first 60 snapshots, i.e., t P r0, 6s.

As shown in Figure 3.15, the linear model with L “ 7 accurately predicts the

future state behavior of the quasi-periodic system with only a fraction of data limited

in the range r´0.25, 0.55s while the whole data ranges from r´0.944, 0.902s. Indeed,

the minimal time delay L “ 7 is determined by the number of frequencies in the

signal. The analysis on the minimal number of time delays for scalar time series as

in Section 3.3 can be extended to quasi-periodic system. Consider the trigonometric

106



Figure 3.14:
Top: Prediction vs ground truth with M “ 80 for VdP system. Bottom:
A posteriori MSE normalized by standard deviation with as a function
of the number of time delays for the vector case.
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Figure 3.15:
Top: Prediction vs ground truth for the toy quasi-periodic signal. Bot-
tom: A posteriori MSE normalized by standard deviation with as a
function of the number of time delays.
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identity, we have the following equivalent equation of Equation (3.99),

xptq “
1

4

ˆ

sin
´

p
?

2`
?

3` 2qt

2

¯

` sin
´

p
?

2`
?

3´ 2qt

2

¯

´ sin
´

p
?

2´
?

3` 2qt

2

¯

´ sin
´

p
?

2´
?

3´ 2qt

2

¯

˙

.

Therefore, we require L “ P ´ 1 “ 7 time delays to fully recover the signal which is

confirmed in Figure 3.15.

3.5.3 3D Turbulent Rayleigh-Bénard convection

As a final test case, we consider Rayleigh-Bénard convection, which is a problem

of great interest to the fluid dynamics community. As displayed in Figure 3.16, the

fluid is confined between two infinite horizontal planes with a hotter lower plane.

The Rayleigh number, which represents the strength of buoyancy with respect to

momentum and heat diffusion is defined as Ra “ U2
fH

2{νκ “ αg∆TH3{νκ where α

is the thermal expansion coefficient, κ is the thermal diffusivity, ∆T is the temperature

difference between hot and cold planes, and Uf fi
?
αg∆TH is the so-called free-fall

velocity of a fluid parcel. Additional parameters that govern the dynamics are aspect

ratio Γ fi L{H, the Prandtl number Pr “ ν{κ. L is the horizontal length scale of

the domain. The computational domain is taken as a rectangular box with periodic

side walls. We set Ra “ 107 for fully turbulence; H “ πLx “ πLy and Pr “ 1.

This domain is discretized uniformly in x and y direction with 128ˆ 128 grid points

and in z direction with 128 grid points highly refined near the wall. The thickness

of thermal boundary layer is sufficiently resolved Verzicco and Camussi (2003) since

δθ{H „ 1{2Nu « 10∆z, where ∆z is the grid size in z direction closest to the wall.

The simulation is performed by solving 3D incompressible Navier-Stokes equa-

tions with a Boussinesq approximation using OpenFOAM Jasak et al. (2007). Linear

heat conduction, i.e., an unstable equilibrium state is set as initial condition. The
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simulation is performed over four thousand characteristic advection time units, ap-

proximately 1.264τdiff, where τdiff fi H2{ν, τadv fi
a

H{αg∆T . The sampling interval

is ∆t “ 4τadv. Note that this dynamical system contains approximately 2 million

degrees of freedom. Here we perform dimension reduction on the sampled system

state u, v, w, T similar to Pan et al. (2020). First, normalization for each component

and mean subtraction is performed. Second, as shown in the bottom subfigure in the

Figure 3.16, more than 99% of variance for the non-linear system is retained in the

first r “ 800 POD modes on the normalized data. After removing the effect of initial

condition (the first 100 snapshots), we use 900 snapshots Pan and Arnold-Medabalimi

(2020) for analysis.

Figure 3.16:
Top: Iso-surfaces of temperature at T “ 295 (red) and T “ 285 (blue)
with streamlines of velocity field (grey) at t “ 7.28 for the Rayleigh-
Bénard turbulent convection at Ra “ 107. Bottom: Singular value
distribution and percentage of variance explained.

We consider the first 800 out of 900 snapshots as training data. Then we perform
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a posteriori evaluation for 900 steps to examine the reconstruction performance and

predictions on future time steps. As shown in Figure 3.17, performing SVD-DMD

(L “ 0) on this dataset with r “ 800 results in a set of unstable eigenvalues, leading

to undesired blow up in a posteriori evaluation after 180∆t. While the model with

time delay L “ 1, overfits to the training data from 0 to approximately 800∆t, it

yields stable predictions. Note that in this case Lopt “ r M
r`1

s “ 1.

Figure 3.17:
Comparison of a posteriori evaluation between linear model with-
out/with time delay L “ 1 for the reduced system with r “ 800. Note
that 0 ď t ď 800 is training horizon while 800 ă t ď 900 is testing
horizon.
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We then take the entire 900 snapshots trajectory as training data to investigate

the impact of of time delays L on stabilizing the reconstruction at various r. As shown

in Figure 3.18, we first observe that as r decreases, the numerical condition number

increases simply as a consequence of retaining more small singular values. Secondly,

we observe a general trend that, for each r, model performance worsens as L increases

from 0 to Lopt´1, i.e., the transient point where linear systems approximately change

from over-determined to under-determined. For the current data specifically, we

observe that the system becomes stable as L increases as the system becomes under-

determined. Thirdly, we observe that the condition number shares a similar pattern

with the reconstruction performance for each r.

Figure 3.18:
Dependency of model reconstruction performance and condition number
on the number of time delays L with varying reduced dimension r for
turbulent Rayleigh-Bénard convection. Solid line: normalized mean-
squared-error. Dashed line: condition number.

3.5.4 2D Single-Injector Combustion Process with Input

Constructing efficient models for optimization, design, uncertainty quantification,

and control of combustion processes is an active research area. The compressible,
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chemically reacting and turbulent flows present formidable challenges in intrusive

ROMs (Huang et al., 2018, 2020b). In this section, we alternatively consider the use

of time delay DMD with input (TD-DMDc) to construct ROMs of the combustion

problem shown in fig. 3.19.

Figure 3.19: Setup of 2D combustion process

3.5.4.1 Full Order Model

The Full order simulation (FOM) is performed by solving the 2D compressible N-S

equations using the GEMS solver (Harvazinski et al., 2015). The following one-step

combustion reaction with finite-rate chemistry is employed:

CH4 ` 2O2 Ñ CO2 ` H2O. (3.100)

Non-reflective boundary conditions are imposed on the exit while a constant mass

flow is imposed at the inlet. An unsteady forcing in pressure shown in eq. (3.101) is

imposed at the exit.

pbackptq “ pback,refp1` A sinp2πftqq, (3.101)

where pback,ref “ 106 Pa, A “ 0.1, f “ 5000 Hz. The FOM is simulated from 15ms to

17ms. More details can be found in Swischuk et al. (2020). The above test problem

has been used as a benchmark (Swischuk et al., 2020) using a regularized multivariate

quadratic polynomial regression approach on the POD coefficients. This technique is

termed operator-inference.
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3.5.4.2 Modeling

After uniformly sampling with the SVD-reduced data collected as txju
M´1
j“0 , at

time tj, we have the following expression for TD-DMDc in eq. (3.102) (which can be

viewed as a natural extension to DMDc (Proctor et al., 2016)):

x̂j`1 “ W0xj `W1xj´1 ` . . .`WLxj´L `Buj, (3.102)

where uj fi uptjq P Rniˆ1 is the known external forcing at time tj. Similar to

eq. (2.29), it is natural to formulate least-squares regression to determine the param-

eters:

W0, . . . ,WL,B “ arg min
BPRnˆni ,tWiu

L
i“0PR

nˆn

›

›

›

›

›

„

WL . . . W0 B


»

—

—

—

—

—

—

—

–

x0 . . . xM´2´L

...
...

...

xL . . . xM´2

uL . . . uM´2

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

´

„

xL`1 . . . xM´1



›

›

›

›

›

F

, (3.103)

As in Swischuk et al. (2020), our task is to predict the future state from t P r16, 17s

ms given only the data from FOM for t P r15, 16s ms.

First of all, we construct a set of POD basis from the 10,000 snapshots between

15ms to 16ms with 22 POD modes, which retains 98.5% of the variance. Then,

we uniformly downsample the 22-D 10,000 snapshots to 500 snapshots, following the

setup from Swischuk et al. (2020). First, we find the optimal delay embedding by using

the first 400 snapshots as training data and the remaining 100 snapshots as validation

data. Note that improved accuracy was noted with a larger time delay in the previous

3D turbulent convection case, because of improved numerical conditioning as stated in

section 3.4.6. However, we observed the existence of unstable modes in this problem
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even with large time delays. This is perhaps unsurprising given our previous example

on a noisy system with all eigenvalues on the imaginary axis in section 3.4.8. Hence,

we consider an explicit stabilization procedure, by projecting unstable eigenvalues

onto the unit circle. Given the results in fig. 3.20, we select L “ 47 as it achieves

minimal a posteriori MSE.

Figure 3.20:
Impact of number of time delays L: number of unstable modes (first
row); condition number (second row); a posteriori error (third row) on
the entire range of data (only initial condition is given).
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3.5.4.3 Comparisons against vanilla LSTM-RNN and OpInf

Next, we compare our model against two popular state-of-the-art methods:

• Operator-inference (OpInf) (Peherstorfer and Willcox , 2016): second order reg-

ularized multivariate polynomial regression on POD coefficients. The results are

chosen from their best model with λ “ 65476 (Swischuk et al., 2020; McQuarrie

et al., 2020), which is computed from their open-source package (McQuarrie

et al., 2020).

• Vanilla LSTM-RNN (Hochreiter and Schmidhuber , 1997). We implement LSTM-

RNN using Keras (Chollet et al., 2015) with two sequences returning an LSTM

layer with 50-dimensional output units, one LSTM layer with single 100-dimensional

output, followed by a linear layer to reconstruct the state. Here we neglect

the known input and consider it as a purely data-driven time series prediction

task. We normalize the data by subtracting the mean and dividing by the

component-wise maximal standard deviation from training data (15ms-16ms).

The look-back length (similar to the number of time delay) is chosen as L “ 30

as it can reconstruct the training data extremely well 5. We did not observe

significant differences in the training data as we further increase the look-back

length. We used the Adam optimizer with a learning rate 1e ´ 3 to train the

network.

As displayed in figs. 3.21 to 3.23, we compare predictions of pressure, tempera-

ture and mass fraction of methane from three models at three “red dot” monitored

locations defined in fig. 3.19. From figs. 3.21 to 3.23, we find that T and YCH4 is

more difficult to predict than p. Further, we summarize the MSE normalized by the

standard deviation of the ground truth for each model in table 3.2. Our TD-DMDc

model with over-delay appears to perform slightly better than the two other methods

5One of the critical issues with any vanilla neural network model is that they are difficult to
reproduce due to the randomness of the stochastic gradient descent.
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in predicting the future state of the pressure from t “ 16 ms to t “ 17 ms except for

the temperature monitored at location 1. Finally, flow-field predictions of pressure,

velocity, temperature and mass fraction of methane at a future time 16.5 ms is sum-

marized in fig. 3.24. Again, we find that pressure field is easier to predict than other

field, presumably due to the dominance of larger scale coherent structures.

Table 3.2: Normalized MSE from 16ms to 17ms for three models.
Location/p, T OpInf LSTM-RNN TD-DMDc

1, p 0.4318 0.5404 0.3836
2, p 0.2127 0.4105 0.1897
3, p 0.4619 0.5879 0.4491
1, T 0.0873 0.1786 0.1807
2, T 3.1453 2.6600 2.3236
3, T 0.6333 0.1626 0.1269

In terms of model complexity, the number of parameters in OpInf grows exponen-

tially with the polynomial order (which is fixed to be second order). The number of

model parameters only grows linearly with the number of time delays in TD-DMD,

with the obvious caveat that the technique requires L steps to be initialized. Note

that although OpInf and TD-DMD share the computational cost of least square mini-

mization, selecting the hyperparameter in OpInf requires tuning the L2 regularization

parameter. In TD-DMD, theoretical results indicate that over-delay is encouraged,

but again, the precise number has to be tuned. A key benefit of the TD-DMD is

that a stable ROM can be guaranteed by removing unstable modes. This is not the

case in OpInf or LSTM-RNN. As reported in Swischuk et al. (2020), L2 regularization

does not entirely resolve the issue of ROM stability. In addition to the difficulties in

choosing appropriate network topologies and higher computational cost, the temporal

stability of LSTM and other neural networks is a challenge in learning the evolution

of a non-linear dynamical system unless certain structure is imposed as we will see in

chapter V.
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Figure 3.21:
Pressure time traces monitored on location 1-3: comparison against
OpInf model and vanilla LSTM for future prediction from t “ 16 ms to
t “ 17 ms.
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Figure 3.22:
Temperature time traces monitored on location 1-3 with comparison
against OpInf model and vanilla LSTM for future prediction from t “ 16
ms to t “ 17 ms.
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Figure 3.23:
Mass fraction of CH4: time traces monitored on location 1-3 with com-
parison against OpInf model and vanilla LSTM for future prediction
from t “ 16 ms to t “ 17 ms.
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Figure 3.24:
Field prediction at t “ 0.0165 sec from TD-DMDc, LSTM-RNN versus
ground truth.
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3.6 Summary

This chapter addressed fundamental questions regarding the structure and condi-

tioning of linear time-delay models of non-linear dynamics on an attractor.

The following are the main contributions of this chapter:

1. We proved that for non-linear scalar dynamical systems, the number of time

delays required by linear models to recover limit cycles correctly is determined

by the sparsity in the Fourier spectrum.

2. In the vector case, we proved that the minimal number of time delays has a

tight upper bound that is precisely the output controllability index of a related

linear system.

3. We developed an equivalent representation of the linear time-delayed model in

the spectral domain and provided the exact solution of the delay transition

matrix K for the scalar case.

4. We derived an upper bound on the 2-norm condition number as a function of

the sampling rate and the number of time delays. Thus, ill-conditioning can

be mitigated by increasing the number of time delays and/or subsampling the

original signal.

5. We explicitly showed that the dynamics over the full period could be perfectly

recovered by training the linear time-delayed model over just a partial period,

and provided an explanation.

6. Influence of noise is evaluated with ensemble realizations. We further analyzed

the stability of the model with the concept of pseudospectra. The results are

consistent with our finding on the stabilizing role of the number of time delays.
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7. Numerical experiments on simple problems were shown to confirm each of the

above theoretical results.

8. The impact of time delays on linear modeling of large-scale chaotic systems (3D

turbulent convection and 2D combustion process) was investigated and TD-

DMD was confirmed to produce stable and accurate results given enough time

delays.

A few observations are pertinent to the above conclusions:

• Due to accuracy considerations on the numerical integrator, the sampling rate

in the raw data may be excessively high. We believe that instabilities in predic-

tion arise from choices that lead to poor numerical conditioning. Thus, as an

alternative to pursuing explicit stabilization techniques (Le Clainche and Vega,

2017; Champion et al., 2019), appropriate sub-sampling and time delays can be

employed. Indeed, when a significant amount of noise is present in the data,

explicit stabilization, Bayesian inference, or denoising techniques (Rudy et al.,

2019) should be warranted.

• The effectiveness of linear time delayed models of non-linear dynamics is that -

by leveraging Fourier interpolation - an arbitrarily close trajectory from a high

dimensional linear system can be derived. This also intuitively explains the

ability of the model - when the signal has a sparse spectrum - to perform “true”

predictions without training on a full period of data.

• A key benefit of the TD-DMD is that a stable ROM can be guaranteed by

removing unstable modes. This is not the case in OpInf or LSTM-RNN.
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CHAPTER IV

Sparsity-Promoting Algorithms to Extract

Compact Koopman Invariant Subspaces

The purpose of computing is

insight, not numbers.

Richard Hamming (1962)

4.1 Background and Motivation

In general, physical systems governed by PDEs, e.g., fluid dynamics, are infinite-

dimensional. From a numerical viewpoint, the number of degrees of freedom can be

related to the spatial discretization (for example, the number of grid points). Al-

though a finite-dimensional manifold can be extracted (Holmes et al., 2012), e.g.,

Op10q-Op103q dimensions via Proper Orthogonal Decomposition (POD), finding a

Koopman-invariant subspace on such manifolds is still challenging. The most popular

method to approximate the Koopman operator is the dynamic mode decomposition

(DMD) (Schmid , 2010; Rowley and Dawson, 2017) mainly for two reasons. First,

it is straightforward and computationally efficient compared to non-linear counter-

parts such as Extended DMD (EDMD) (Williams et al., 2015) and Kernel DMD

(KDMD) (Williams et al., 2014). Second, the essence of DMD is to decompose a
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spatio-temporal field into several temporally growing/decaying traveling/stationary

harmonic waves, which are prevalent in fluid mechanics. However, the accuracy of

DMD is limited by the assumption that the Koopman-invariant subspace lies in the

space spanned by snapshots of the state x. Thus, DMD is used to identify and visu-

alize coherent structures mainly. Indeed, DMD can be interpreted as a L2 projection

of the action of the Koopman operator on the linear space spanned by snapshots of

the system state (Korda and Mezić, 2018a).

To overcome the above limitations, one might naturally augment the observable

space with either the history of the state (Arbabi and Mezic, 2017; Brunton et al.,

2017; Kamb et al., 2018; Le Clainche and Vega, 2017) or non-linear observables of

the state (Williams et al., 2014, 2015). Time-delay embedding can be very useful in

reduced-order modeling of systems for which sparse measurements can be easily ob-

tained, assuming the inputs and outputs are not high dimensional (Korda and Mezić,

2018b). Although time-delay embedding is simple to implement and has strong con-

nections to Takens’ embedding (Kamb et al., 2018; Pan and Duraisamy , 2020b), the

main practical issue arises in reduced-order modeling of high fidelity simulations in

a predictive setting due to the requirement of a large number of snapshots of the

full order model. Further, if one is only interested in the post-transient dynamics of

the system state on an attractor, linear observables with time delays are sufficient

to extract an informative Koopman-invariant subspace (Arbabi and Mezic, 2017; Pan

and Duraisamy , 2020b; Brunton et al., 2017; Arbabi and Mezić, 2017; Mezić, 2005;

Röjsel , 2017). However, if one is interested in the strongly non-linear transient dy-

namics leading to an attractor or reduced-order modeling for high fidelity numerical

simulations (Xu and Duraisamy , 2019; Xu et al., 2020; Huang et al., 2018; Parish

et al., 2020; Carlberg et al., 2013), time-delay embedding may become less appropri-

ate as several delay snapshots of the full order model are required to initialize the

model. In that case, non-linear observables may be more appropriate.
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Figure 4.1: Sketch on finding the minimal Koopman invariant subspace.

Driven by the interest in modal analysis and control of transient flow phenomena,

we consider augmentation of the observable space with non-linear functions of the

state, e.g., EDMD (Williams et al., 2015)/KDMD (Williams et al., 2014). Although

it has been reported that KDMD allows for a set of more interpretable Koopman

eigenvalues (Williams et al., 2014) and better accuracy (Röjsel , 2017), issues such as

modes selection, spurious modes (Kaiser et al., 2017; Zhang et al., 2017), and choice

of dictionary/kernel in EDMD/KDMD remain open. In fact, the choice of kernel type

and hyperparameter can significantly affect the resulting eigenmodes, distribution of

eigenvalues (Kutz et al., 2016), and the accuracy of predictions (Zhang et al., 2017).

Naturally, for a given observable f , we are often interested in the minimal FD

as shown in fig. 4.1. Searching for an accurate and informative Koopman-invariant

subspace has long been a pursuit in the DMD community. Rowley et al. (2009) and

Schmid et al. (2012) considered selecting dominant DMD modes in order of their am-

plitudes. However, following such a criterion (Tu et al., 2013; Kou and Zhang , 2017),

may result in the selection of unimportant modes that may have large amplitudes

but decay rapidly. As a result, Tu et al. (2013) considered weighting the loss term

by the magnitude of eigenvalues to penalize the retention of fast decaying modes.

Sparsity-promoting DMD (referred as “spDMD” throughout the paper) developed

by Jovanović et al. (2014) recasts mode selection in DMD as an optimization prob-
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lem with a `1 penalty. With a preference of stable modes over fast decaying ones,

Tissot et al. (2014) proposed a simpler criterion based on time-averaged-eigenvalue-

weighted amplitude. This was followed by Kou and Zhang (2017) who used a similar

criterion but computed the “energy” of each mode, yielding similar performance to

spDMD at a lower computational cost. Based on the orthonormal property of pseudo-

inverse, Hua et al. (2017) proposed an ordering of Koopman modes by defining a new

“energy”. Compared with previous empirical criteria, the “energy” for each mode in-

volves a pseudo-inverse which combines the influence from all eigenmodes. Therefore

the contribution from each mode cannot be isolated.

Instead of selecting modes from a “reconstruction” perspective, Zhang et al. (2017)

studied the issue of spurious modes by evaluating the deviation of the identified eigen-

functions from linear evolution in an a priori sense. Further, Optimized DMD (Chen

et al., 2012; Askham and Kutz , 2018) combines DMD with mode selection simulta-

neously, which is the forerunner of recently proposed neural network-based models

for Koopman eigenfunctions in spirit (Takeishi et al., 2017; Lusch et al., 2018b; Otto

and Rowley , 2019b; Pan and Duraisamy , 2020a; Li et al., 2017; Yeung et al., 2019).

Regardless of the above issues related to non-convex optimization (Dawson et al.,

2016), an extension of optimized DMD to EDMD/KDMD is not straightforward.

Further, neural network-based models require large amounts of data, are prone to

local minima, and lack interpretability.

There have been a few attempts towards mode selection in EDMD/KDMD. Brun-

ton et al. (2016a) present an iterative method that augments the dictionary of EDMD

until a convergence criterion is reached for the subspace. This is effectively a recursive

implementation of EDMD. Recently, Haseli and Cortés (2019) showed that given a

sufficient amount of data, if there is any accurate Koopman eigenfunction spanned

by the dictionary, it must correspond to one of the resulting eigenvectors. Moreover,

they proposed the idea of mode selection by checking if the reciprocal of identified
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eigenvalue also appears when the temporal sequence of data is reversed, which is

similar to comparing eigenvalues on the complex plane from different trajectories, as

proposed by Hua et al. (2017). In contrast to the “bottom-up” method of Brunton

et al. (2016a) with subspace augmentation, Hua et al. (2017) proposed a “top-down”

subspace subtraction method relying on iteratively projecting the features onto the

null space. A similar idea can be traced back to Kaiser et al. (2017) who propose a

search for the sparsest vector in the null space.

In this chapter, we are interested in learning an accurate minimal Koopman-

invariant subspace for the full state x. As illustrated in fig. 4.1, extracting such a

subspace yields the linear representation we seek and results in useful coordinates

for a multitude of applications, including modal analysis and control (Arbabi et al.,

2018a). As the main contribution of this work, we propose a novel sparsity promoting

framework equipped with the following strategy to extract an accurate yet minimal

Koopman-invariant subspace:

1. We first evaluate the normalized maximal deviation of the evolution of each

eigenfunction from linear evolution in a posteriori fashion.

2. Using the above criteria, we select a user-defined number of accurate EDMD/KDMD

modes;

3. Among the accurate EDMD/KDMD modes obtained above, informative modes

are selected using multi-task feature learning (Argyriou et al., 2008a; Bach et al.,

2012).

4.2 Challenges

Recall that we have briefly intorduced EDMD and KDMD section 2.2 and sec-

tion 2.3. In this section, we will further discuss two existing challenges in the use of

EDMD and KDMD for Koopman analysis.
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4.2.1 Mode Selection

The number of approximated Koopman tuples (eigenfunction, eigenvalue, modes)

from EDMD grows with the dictionary size, whereas the KDMD grows with the

number of snapshots. However, in most cases, a significant number of the eigenfunc-

tions fail to evolve linearly, or are redundant in contribution to the reconstruction

of the state x. For example as shown by Budǐsić et al. (2012), the Koopman eigen-

functions that vanish nowhere form an Abelian group under pointwise products of

functions, while polynomial observables evolve linearly for a general linear system.

These eigenfunctions, associated with the polynomial observables, are redundant in

terms of providing an intrinsic coordinate for the linear dynamics.

When the number of features is larger than the number of data snapshots, EDMD

eigenvalues can be misleading (Otto and Rowley , 2019b) and often plagued with

spurious eigenfunctions that do not evolve linearly even when the number of data

snapshots is sufficient. Analytically, it is clear that a Koopman eigenfunction in

the span of the dictionary will be associated with one of the eigenvectors obtained

from EDMD, given Ψx is full rank, and contains sufficient snapshots M (Haseli

and Cortés , 2019). Indeed, the EDMD is a L2 projection of the Koopman operator

under the empirical measure (Korda and Mezić, 2018a). As a result, we seek a

Koopman-invariant subspace following the standard EDMD/KDMD. Since KDMD

can be viewed as an efficient way of populating a dictionary of nonlinear features in

high dimensional spaces, the above arguments apply to KDMD as well. It should be

noted that numerical conditioning can play a critical role since full rank matrices

can be ill-conditioned.

4.2.2 Choice of Hyperparameters in Dictionary-based Methods

Although the use of a kernel defines an infinite-dimensional feature space, the

resulting finite number of effective features can still be affected by both the type of

129



the kernel and the hyperparameters in the kernel as clearly shown by Kutz et al.

(2016). Compared to EDMD/KDMD, which are based on a fixed dictionary of fea-

tures, neural network approaches (Otto and Rowley , 2019b; Pan and Duraisamy ,

2020a; Lusch et al., 2018b) have the potential to be more expressive in searching

for a larger Koopman-invariant subspace. From a kernel viewpoint (Cho and Saul ,

2009), feedforward neural networks enable adaptation of the kernel function to the

data. Such a characteristic could become significant when the underlying Koopman

eigenfunction is discontinuous. From an efficiency standpoint, a kernel-guided scal-

able EDMD (DeGennaro and Urban, 2019) may be pursued. This can be achieved by

generating kernel-consistent random Fourier features or approximating a few compo-

nents of the feature vector constructed from Mercer’s theorem, i.e., the eigenfunctions

of the Hilbert–Schmidt integral operator on the RKHS.

4.3 Methodology & Analysis

To address the challenges described in section 4.2, we develop a novel frame-

work that uses EDMD/KDMD modes to identify a sparse, accurate, and informative

Koopman-invariant subspace. Our framework first prunes spurious, inaccurate eigen-

modes and second determines a sparse representation of the system state x from

the accurate eigenmodes. In addition to the training data, as required in standard

EDMD/KDMD, a validation trajectory data-set is required to avoid overfitting on

training data. The terms spEDMD/spKDMD will refer to filtered mode selections of

EDMD and KDMD, respectively.

4.3.1 Pruning spurious modes by a posteriori error analysis

Given a validation trajectory xptq where t P r0, T s associated with the non-linear

dynamical system, for i “ 1, . . . , L, we define the goodness of i-th eigenfunctions in a

posteriori way as the maximal normalized deviation from linear evolution conditioned
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on trajectory xptq as Qi in the form

ei,xp0qptq “
|ϕipxptqq ´ eλitϕipxp0qq|

‖ϕipxq‖2

, (4.1)

Qi fi emaxi,xp0q “ max
t
ei,xp0qptq, (4.2)

where ‖ϕipxq‖2 fi

b

1
T

şT

0
ϕ˚i pxptqqϕipxptqqdt. In practice, we evaluate the above in-

tegral terms discretely in time. A similar a priori and less restrictive method has

been previously proposed (Zhang et al., 2017). In contrast, in the proposed method,

the maximal error is evaluated in an a posteriori way to better differentiate spurious

modes from accurate ones. For any 1 ď L̂ ď L, we can always select top L̂ accu-

rate eigenmodes out of L eigenmodes denoting their index in eigen-decomposition

as ti1, i2, . . . , iL̂u, i.e., Qi1 ď . . . ď QiL̂
ď . . . ď QiL . Then, for the next sparse

reconstruction step, we simply use ϕ defined as follows to reconstruct the state x,

ϕL̂pxptqq fi

„

ϕi1pxptqq . . . ϕiL̂pxptqq



P CL̂. (4.3)

To choose an appropriate L̂ to linearly reconstruct the system state x, we monitor

the normalized reconstruction error for the aforementioned set of top L̂ accurate

eigenmodes in the following form

RL̂ fi
‖pI´ΨL̂Ψ`

L̂
qX‖F

‖X‖F
, (4.4)

where I is the identity matrix, and

X “

»

—

—

—

—

–

x0

...

xM´1

fi

ffi

ffi

ffi

ffi

fl

, ΨL̂ “

»

—

—

—

—

–

ϕL̂px0q

...

ϕL̂pxM´1q

fi

ffi

ffi

ffi

ffi

fl

. (4.5)
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As a result, the evaluation of eq. (4.4) for each L̂ is of similar expense to least-square

regression. For an increasing number of selected eigenfunctions L̂, the reconstruction

error RL̂ decreases, while the largest linear evolution error QiL̂
increases. Then, a

truncation L̂ can be defined by the user to strike a balance between linear evolution

error QiL̂
and reconstruction error RL̂. In the next subsection, we will further select

a subset of eigenmodes for spanning the minimal Koopman-invariant subspace.

4.3.2 Sparse reconstruction via multi-task feature learning

Numerical experiments revealed that, in the selected set of L̂ most accurate eigen-

functions, two types of redundant eigenfunctions were found:

1. Nearly constant eigenfunctions with eigenvalues close to zero,

2. Pointwise products of Koopman eigenfunctions introduced by non-linear ob-

servables, not useful in linear reconstruction.

To filter the above modes, we consider sparse regression with L̂ most accurate

eigenfunctions as features and the system state x as target. Note that, since we

have guaranteed the accuracy of selected eigenmodes, one can either choose features

a priori: ϕipxptqq or a posteriori (multi-step prediction) eλitϕipxp0qq. Here we choose

the latter since it is directly related to prediction, and can actually be reused from the

previous step without additional computational cost. We denote the corresponding

multi-step prediction feature matrix as Ψ̂L̂ ,

Ψ̂L̂ “

»

—

—

—

—

—

—

—

–

ϕL̂px0q

ϕL̂px0qe
∆tΛL̂

...

ϕL̂px0qe
pM´1q∆tΛL̂

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

P CMˆL̂, (4.6)

where ΛL̂ “ diagpλi1 , . . . , λiL̂q. Note that similar features Ψ̂L̂ were also considered in
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sparsity-promoting DMD (Jovanović et al., 2014) and optimized DMD (Chen et al.,

2012). Finally, the fact that there is no control over the magnitudes of the implicitly

defined features in the standard KDMD may cause unequal weighting between dif-

ferent features. Thus, we consider scaling the initial value of all eigenfunctions to be

unity in eq. (4.7),

Ψ̂L̂,scaled “ Ψ̂L̂Λ´1
ini “

»

—

—

—

—

—

—

—

–

1 . . . 1

e∆tλi1 . . . e
∆tλi

L̂

...
...

...

epM´1q∆tλi1 . . . e
pM´1q∆tλi

L̂

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

, (4.7)

where

Λini “ diagp

„

ϕi1px0q . . . ϕiL̂px0q



q. (4.8)

Since x is finite-dimensional, searching for a sparse combination of Ψ̂L̂ to recon-

struct x is equivalent to the solution of a multi-task feature learning problem with

preference over a relatively small size of features. Note that this type of problem has

been studied extensively in the machine learning community (Argyriou et al., 2008a;

Zhao et al., 2015; Argyriou et al., 2008b). In this work, given X and Ψ̂L̂,scaled, we

leverage the multi-task ElasticNet (Pedregosa et al., 2011) to search for a row-wise

sparse B
1

, which solves the following convex optimization problem:

B
1˚
“ arg min

B1PCL̂ˆn

1

2M
‖X´ Ψ̂L̂,scaledB

1‖2
F ` αρ‖B

1‖2,1 `
αp1´ ρq

2
‖B1‖2

F , (4.9)

and

B “ Λ´1
iniB

1˚, (4.10)
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Figure 4.2:
Illustration of `1{`2 norm (defined in eq. (4.11)) for different N ˆ N 0-1
binary matrices.

where ‖¨‖2,1 defined in eq. (4.11) is the so-called `1{`2 norm for a matrix W,

‖W‖2,1 fi
ÿ

i

d

ÿ

j

W2
ij “

ÿ

i

‖wi‖2, (4.11)

and Wi is i-th row of W. This norm is special in that it controls the number of

shared features learned across all tasks, i.e., i-th Koopman mode bi is either driven

to a zero vector or not while the standard `1 only controls the number of features for

each task independently.

As a simple illustration, the `1{`2 norm for three different N ˆN square matrices

(hereN “ 5) with 0-1 binary entries is displayed in fig. 4.2. Since
?
N ď 1`

?
N ´ 1 ď

N , minimizing the `1{`2 norm leads to a penalty on the number of rows. As shown

in the second term on the right hand side of eq. (4.9), minimizing the `1{`2 norm

penalizes the number of Koopman eigenmodes.

The above procedure not only serves the purpose of selecting modes that ex-

plains the behavior of all components in the state, but is also particularly natural for

EDMD/KDMD since Koopman modes are obtained via regression. α is a penalty

coefficient that controls the amount of total regularization in the `1{`2 and `2 norms,

while ρ is the ElasticNet mixing parameter (Zou and Hastie, 2005) that ensures

uniqueness of the solution when highly correlated features exist. In our case, we

choose ρ “ 0.99 and sweep α over a certain range with Lr non-zero features denoted
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as Ψ̂Lr for each α, while monitoring the normalized residual minB‖X´Ψ̂LrB‖F {‖X‖F

to choose a proper α. It has to be mentioned that, sometimes the sparsest solution

from a multi-task ElasticNet was found to shrink to a small number instead of zero.

This is a consequence of the insufficiency of the current optimization algorithm which

employs coordinate descent (Pedregosa et al., 2011). Hence for each target compo-

nent, we consider an additional hard-thresholding step by setting the corresponding

magnitude of the coefficient, i.e., contribution of any mode, to zero if it is smaller

than a certain threshold ε P r10´2, 10´3s.

Finally, we refit the Koopman modes as BLr “ Ψ̂`
Lr

X which avoids the bias intro-

duced by the penalty term 1 in eq. (4.9). To summarize, the general idea of the frame-

work is illustrated in fig. 4.3. As a side note for interested readers, if one only performs

multi-task feature learning without hard-thresholding and refitting, one would obtain

a smooth ElasticNet path instead of a discontinuous one with hard-thresholding and

refitting. However, the smooth ElasticNet can lead to difficulties in choosing the

proper α visually, especially when the given dictionary of EDMD/KDMD is not rich

enough to cover an informative Koopman-invariant subspace. Further discussion on

the computational complexity of our framework is presented in appendix C.

Thus far, we have presented our main contribution: a novel optimization-based

framework to search for an accurate and minimal Koopman-invariant subspace from

data. An appealing aspect of our framework is the model agnostic property, which

makes the extension easy from the standard EDMD/KDMD to more advanced ap-

proximation methods (Jungers and Tabuada, 2019; Mamakoukas et al., 2019; Azencot

et al., 2019). In the following subsection, we present two mathematical insights: 1)

multi-task feature learning generalizes spDMD under a specific constraint; 2) a pop-

ular empirical criterion can be viewed as a single step of proximal gradient descent.

1spDMD does not refit B
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Figure 4.3:
Schematic illustrating the idea of sparse identification of Koopman-
invariant subspaces for EDMD and KDMD.
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4.3.3 Relationship between sparsity-promoting DMD, Kou’s criterion and

multi-task feature learning

For simplicity, neglecting the ElasticNet part (i.e., using ρ “ 1), eq. (4.9) with L

modes leads to a multi-task Lasso problem,

min
B1PCLˆn

1

2M
‖X´ Ψ̂L,scaledB

1‖2
F ` α‖B

1‖2,1. (4.12)

Recall that in spDMD (Jovanović et al., 2014), DMD modes φ1, . . . , φL with ‖φi‖2 “ 1

remain the same as standard DMD. Similariy, if we posit a structural constraint on B
1

in eq. (4.12) by enforcing the modes as those from DMD, then there exist α1, . . . , αL

such that,

B
1

“

»

—

—

—

—

–

α1

. . .

αL

fi

ffi

ffi

ffi

ffi

fl

»

—

—

—

—

–

φT
1

...

φT
L

fi

ffi

ffi

ffi

ffi

fl

. (4.13)

Note the fact that ‖B1‖2,1 “
řL
i |αi|. Hence, we recover the `1 optimization step in

the spDMD (Jovanović et al., 2014) from eq. (4.12) as,

min
α1,...,αLPC

1

2M

›

›

›

›

›

X´

»

—

—

—

—

–

1 . . . 1

...
...

...

epM´1q∆tλi1 . . . epM´1q∆tλiL

fi

ffi

ffi

ffi

ffi

fl

»

—

—

—

—

–

α1

. . .

αL

fi

ffi

ffi

ffi

ffi

fl

»

—

—

—

—

–

φT
1

...

φT
L

fi

ffi

ffi

ffi

ffi

fl

›

›

›

›

›

2

F

` α
L
ÿ

i“1

|αi|,

(4.14)

where φ1, . . . , φL are the DMD modes corresponding to eigenvalues as λ1, . . . , λL.

Hence, multi-task feature learning solves a less constrained optimization than spDMD

in the context of DMD.
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Kou and Zhang (2017) proposed an empirical criterion for mode selection by

ordering modes with “energy” Ii defined as

Ii “
M
ÿ

j“1

|αie
pj´1q∆tλi | “

$

’

’

&

’

’

%

|αi|p1´|e∆tλi |M q
1´|e∆tλi | , if |e∆tλi| ‰ 1,

M |αi|, otherwise,

. (4.15)

From an optimization viewpoint, consider a posteriori prediction matrix XDMD from

DMD

X « XDMD “

»

—

—

—

—

–

1 . . . 1

...
...

...

epM´1q∆tλ1 . . . epM´1q∆tλL

fi

ffi

ffi

ffi

ffi

fl

»

—

—

—

—

–

α1

. . .

αL

fi

ffi

ffi

ffi

ffi

fl

»

—

—

—

—

–

φT
1

...

φT
L

fi

ffi

ffi

ffi

ffi

fl

, (4.16)

where XDMD is determined from DMD using the snapshot pair pX,X
1

q. XDMD is a

rank-1 summation of contributions from different modes (Schmid , 2010). Hence, a

general mode selection technique with a user-defined preference weighting w is the

following weighted `0 nonconvex optimization problem:

min
aPCL

∥∥∥∥∥XDMD ´

»

—

—

—

—

–

1 . . . 1

...
...

...

epM´1q∆tλ1 . . . epM´1q∆tλL

fi

ffi

ffi

ffi

ffi

fl

diagpaq

»

—

—

—

—

–

φT
1

...

φT
L

fi

ffi

ffi

ffi

ffi

fl

∥∥∥∥∥
2

F

` λ‖a‖w,0 (4.17)

where ‖a‖w,0 fi
ř

iwi|ai|
0, |ai|

0 is one if ai ‰ 0 and zero otherwise. Note that this

pseudo-norm can be viewed as a limiting case of a weighted composite sine function

smoothed `0 regularization (Wang et al., 2019).

To solve this non-convex optimization problem, compared to the popular `1 relax-

ation method such as the one in sparsity-promoting DMD, a less-known but rather

efficient way is iterative least-squares hard thresholding. This has been used in sparse

identification of dynamical systems (SINDy) (Brunton et al., 2016b), and conver-
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gence to a local minimum has been proved (Zhang and Schaeffer , 2019). Indeed, a

more rigorous framework that generalizes such an algorithm is the proximal gradient

method (Parikh et al., 2014). Much like Newton’s method is a standard tool for un-

constrained smooth optimization, the proximal gradient method is the standard tool

for constrained non-smooth optimization. Here, it is straightforward to derive the

iterative algorithm that extends to the weighted `0 norm from step k to step k` 1 as

ak`1
“ proxλ

2
ηk‖¨‖w,0

pak ´ ηk∇aQpakqq, (4.18)

where

Qpaq “ 1

2

∥∥∥∥∥XDMD ´

»

—

—

—

—

–

1 . . . 1

...
...

...

epM´1q∆tλ1 . . . epM´1q∆tλL

fi

ffi

ffi

ffi

ffi

fl

diagpaq

»

—

—

—

—

–

φT
1

...

φT
L

fi

ffi

ffi

ffi

ffi

fl

∥∥∥∥∥
2

F

, (4.19)

and ηk is the step-size at step k. Notice that the weighted `0 norm is a separable sum

of ai. After some algebra, we have the proximal operator as

proxλ
2
ηk‖¨‖w,0

paq “

„

H?ληkpa1{
?
w1q . . . H?ληkpaL{

?
wLq

T

, (4.20)

where H?ληkpaq is an element-wise hard thresholding operator defined as a if |a| ă
?
ληk and zero otherwise.

Particularly, if one considers the initial step-size to be extremely small η1 ! 1,

then the second term in eq. (4.18) can be neglected. Thus, for i “ 1, . . . , L, with the

following weighting scheme that penalizes fast decaying modes:

wi “ 1{β2
i , βi “

$

’

’

&

’

’

%

1´|e∆tλi |M
1´|e∆tλi | , if |e∆tλi | ‰ 1,

M, otherwise,

(4.21)

139



one immediately realizes the thresholding criterion for i-th entry of a becomes

a

ληk ą |αi{
?
wi| “ |αiβi|. (4.22)

Then plugging eq. (4.21) in eq. (4.18), the first iteration in eq. (4.18) reduces to mode

selection with Kou’s criterion in eq. (4.15). Normally, βi is very large for unstable

modes and small for decaying modes. It is important to note that a) such a choice

of w preferring unstable/long-lasting modes over decaying modes is still user-defined;

2) Optimization is in an a priori sense to obtain DMD. Thus, the insufficiency of the

a priori formulation to account for temporal evolution is indeed compensated by this

criterion, while DMD in an a posteriori formulation (e.g., sparsity-promoting DMD)

includes such a effect implicitly in the optimization. Hence, it is possible that in some

circumstances spDMD and Kou’s criterion could achieve similar performance (Kou

and Zhang , 2017).

Lastly, as summarized in fig. 4.4, it is important to mention the similarities and

differences between spKDMD and spDMD: 1) spKDMD will refit Koopman modes

while spDMD does not; and 2) The amplitude for all the modes in spKDMD is fixed

as unity while it has to be determined in spDMD.

4.3.4 Hyper-parameter selection

For simplicity, hyper-parameter selection for KDMD is only discussed in this sec-

tion. To fully determine a kernel in KDMD, one would have to choose the following:

1. kernel type,

2. kernel parameters, e.g., scale parameters σ,

3. rank truncation r.
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Figure 4.4: Differences and similarities among existing mode selection methods.

In this work, for simplicity, we fix the kernel type to be an isotropic Gaussian. Moti-

vated by previous work on error evaluation in Koopman modes by Zhang et al. (2017),

we consider evaluation with cross validation on a priori mean normalized accuracy

defined in eqs. (4.23) and (4.24) for i-th eigenfunction,

discrete form: Qa
i “

1

M ´ 1

M´2
ÿ

j“0

|ϕipxj`1q ´ λiϕipxjq|
b

1
M

řM´1
k“0 ϕ˚i pxkqϕipxkq

(4.23)

continuous form: Qa
i “

1

M

M´1
ÿ

j“0

| 9xj ¨∇xϕipxjq ´ λiϕipxjq|
b

1
M

řM´1
k“0 ϕ˚i pxkqϕipxkq

(4.24)

on validation data for different number of rank truncation and kernel parameters.

Note that evaluation on maximal instead of mean normalized accuracy would

lead to the error metric to be strongly dependent on the local sparsity of training

data in the feature space. This is particularly true for a single trajectory for a

141



high-dimensional dynamical system is used, and random shuffled cross validation is

performed (Pan and Duraisamy , 2018c).

For each set of hyperparameters, we first compute the number of eigenfunctions of

which the error defined in eqs. (4.23) and (4.24) is below a certain threshold on both

training and validation data for each fold of cross validation. Then we compute the

average number of such eigenfunctions over all folds which indicates the quality of the

corresponding subspace. Finally, we plot the average number versus rank truncation

r and kernel scale parameters σ to select hyperparameters.

4.3.5 Implementation

We implement the described framework in Python with moderate parallelism in

each module. We use scipy.special.hermitenorm (Jones et al., 2001–) to generate

normalized Hermite polynomials and MultiTaskElasticNet in the scikit-learn (Pe-

dregosa et al., 2011) for multi-task feature learning where we set the maximal iteration

as 105 and tolerance as 10´12. MPI parallelism using mpi4py (Dalcin et al., 2011) is

used for the grid search in hyperparameter selection. To prepare data with hundreds

of gigabytes collected from high fidelity simulations, a distributed SVD written in

C++ named Parallel Data Processing (PDP) Tool is developed for dimension reduc-

tion (Arnold-Medabalimi et al., 2020).

4.4 Applications

4.4.1 Simple Non-linear ODE System

We first consider a simple fixed point non-linear dynamical system which has

an analytically determined, finite-dimensional non-trivial Koopman-invariant sub-

space (Brunton et al., 2016a; Kaiser et al., 2017) to show the effectiveness of proposed

method. We consider a continuous-time formulation. The governing equation for the
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dynamical system is given as follows,

9x1 “ µx1, (4.25)

9x2 “ λpx2 ´ x
2
1q, (4.26)

where µ “ ´0.05, λ “ ´1. One natural choice of the minimal Koopman eigenfunc-

tions that linearly reconstructs the state is (Brunton et al., 2016a)

ϕ1pxq “ x2 ´ λx
2
1{pλ´ 2µq, ϕ2pxq “ x1, ϕ3pxq “ x2

1 (4.27)

with eigenvalues λ “ ´1, µ “ ´0.05, 2µ “ ´0.1 respectively.

The way we generate training, validation, and testing data is described below with

distribution of the data shown in fig. 4.5,

1. training data: a point cloud with M “ 1600 pairs of txpiq, 9xpiquM´1
i“0 , is generated

by Latin hypercube sampling (Baudin et al., 2015) within the domain x1, x2 P

r´0.5, 0.5s.

2. validation data: a single trajectory with initial condition as x1p0q “ x2p0q “ 0.4,

sampling time interval ∆t “ 0.03754 from t “ 0 to t “ 30.

3. testing data: a single trajectory with initial condition as x1p0q “ x2p0q “ ´0.3,

sampling time interval ∆t “ 0.06677 from t “ 0 to t “ 40.

As an illustration, we consider two models to approximate the Koopman operator

from training data:

1. a continuous-time EDMD with normalized Hermite polynomials up to fifth order

with L “ 36 features,

2. a continuous-time KDMD with isotropic Gaussian kernel σ “ 2 with reduced

rank r “ L “ 36.
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Figure 4.5: Data distribution for 2D fixed point attractor.

Details of the above choices based on the steps of hyperparameter selection in

section 4.3.4 are given in appendix D.1.

4.4.1.1 Results for continuous-time EDMD with mode selection

As displayed in fig. 4.6, we begin with an error analysis of all of the eigenmodes on

validation data in fig. 4.5 according to linearly evolving error Q defined in eq. (4.2) and

R defined in eq. (4.4). From the left subfigure in fig. 4.6, considering both the linearly

evolving error and the quality of the reconstruction, we choose the cut-off threshold at

L̂ “ 10. We observe a sharp cut-off in the left subfigure in fig. 4.6 around the number

of selected eigenmodes L̂ “ 8. This is a reasonable choice, since from the eigenvalues

in the right subfigure in fig. 4.6, we notice the analytic Koopman eigenmodes are

not covered until first 8 accurate eigenmodes are selected. Note that the legend in

the right subfigure is ordered by the maximal deviation from linear evolution, e.g.,

the second most accurate mode is 34-th mode with zero eigenvalue. Indeed, the first

four eigenfunctions (index=1, 34, 35, 36) are redundant in terms of reconstruction in

this problem 2. The fifth (index=29) and sixth (index=33) eigenmodes correspond to

2This could be interesting if the system is instead Hamiltonian.
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Figure 4.6:
Error analysis of 36 eigenmodes from continuous-time EDMD for the 2D
fixed point attractor. Left: trends of linearly evolving error Q and re-
construction error R. Right: temporal evolution of relative error for top
L̂ “ 10 accurate eigenmodes.

two of the analytic eigenfunctions that span the system, and the seventh (index=32)

eigenmode is indeed the product of the fifth and sixth eigenfunctions. Similarly,

the ninth and tenth eigenfunctions (index=31, 28) also appear to be the polynomial

combination of the true eigenfunctions.

According to eq. (4.9), to further remove redundant modes, we perform multi-task

feature learning on the L̂ “ 10 eigenmodes . The corresponding ElasticNet path is

shown in fig. 4.7. Note that each α corresponds to a minimizer of eq. (4.9). To

choose a proper α so as to find a proper Koopman-invariant subspace, it is advisable

to check the trend of the normalized reconstruction error and number of non-zero

features. Given the dictionary, for simple problems for which there exists an exact

Koopman-invariant subspace that also spans system state, a proper model can be

obtained by selecting α « 10´6 which ends up with only 3 eigenfunctions as shown in

fig. 4.7. Moreover, as is common for EDMD with polynomial basis (Williams et al.,

2014, 2015), a pyramid of eigenvalues appears in fig. 4.7.

As shown in fig. 4.8, both the identified eigenvalues, and contour of the phase

angle and magnitude of selected eigenfunctions from spEDMD match the analytic

eigenfunctions given in eq. (4.27) very well. As expected, the prediction on unseen
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Figure 4.7:
Result of multi-task feature learning on top L̂ “ 10 accurate eigenmodes
from continuous-time EDMD for the 2D fixed point attractor. Top left:
ElasticNet path for x1. Top right: ElasticNet path for x2. Bottom left:
trends of normalized reconstruction error and number of non-zero terms
versus α. Bottom right: selected continuous-time eigenvalues.
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Figure 4.8:
Sparsely selected eigenfunctions and eigenvalues from continuous-time
EDMD for 2D fixed point attractor with corresponding prediction on
testing data with an unseen initial condition x1p0q “ x2p0q “ ´0.3. From
left to right, the top three figures show contours of magnitude of eigen-
functions, while the bottom three figures are those of phase angle of eigen-
functions. Last column: comparison between prediction and ground truth
for an unseen testing trajectory.

testing data is also excellent. Note that the indices of true eigenfunctions ϕ1, ϕ2 and

ϕ3 ordered by Kou’s criterion in eq. (4.15) are 8, 5 and 6. In this case, all of the true

eigenfunctions are missing in the top 3 modes chosen by Kou’s criterion. Indeed, the

top 3 modes chosen by Kou’s criterion have nearly zero eigenvalues.

4.4.1.2 Results of continuous-time KDMD with mode selection

The mode selection algorithm presented above can be applied in precisely the

same form to KDMD, given a set of eigenfunctions and eigenvalues. Error analysis

of eigenfunctions is shown in fig. 4.9, from which we choose L̂ “ 10 as well. As

before, eigenvalues ordered by maximal deviation from linear evolution are shown in

the legend in the right subfigure in fig. 4.9. Again, in the left subfigure in fig. 4.9,

we observe a sharp decrease in the reconstruction error after the 4 most accurate

modes are included. This is expected, as the second to fourth most accurate modes
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Figure 4.9:
Error analysis of 36 eigenmodes from continuous-time KDMD for the
2D fixed point attractor. Left: trends of linearly evolving error Q and
reconstruction error R. Right: temporal evolution of relative error for
top L̂ “ 10 accurate eigenmodes.

are analytically exact from the right subfigure. As shown in figs. 4.10 and 4.11, it is

confirmed that that both spEDMD and spKDMD arrive at the same analytic eigen-

functions with difference up to a constant factor. It should be noted that, although

polynomials are not analytically in the RKHS (Minh, 2010), good approximations

can still be achieved conditioned on the data we have, i.e., x1, x2 P r´0.5, 0.5s. Again,

the indices of true eigenfunctions ϕ1 to ϕ3 ordered by Kou’s criterion are 8, 2 and 3.

Hence, ϕ1 is missing in the top 3 modes chosen by Kou’s criterion. Similarly, the first

mode chosen by Kou’s criterion has a zero eigenvalue.

4.4.1.3 Effect of SVD regularization

SVD truncation is a standard regularization technique in the solution of a poten-

tially ill-conditioned linear system. In the standard EDMD in eq. (2.7) - for example

- G could be potentially ill-conditioned, leading to spurious eigenvalues in K. Hence,

Williams et al. (2014) recommend SVD truncation in eq. (2.8) to obtain a robust so-

lution of K. Effectively, it shrinks the number of EDMD/KDMD modes. It has to be

recognized, however, that the mode reduction from SVD truncation is not the same

as mode selection. Most importantly, one should not confuse numerical spuriousness
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Figure 4.10:
Result of multi-task feature learning on top L̂ “ 10 accurate eigenmodes
from continuous-time KDMD for the 2D fixed point attractor. Top left:
ElasticNet path for x1. Top right: ElasticNet path for x2. Bottom left:
trends of normalized reconstruction error and number of non-zero terms
versus α. Bottom right: selected continuous-time eigenvalues.
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Figure 4.11:
Sparsely selected eignefunctions and eigenvalues from continuous-time
KDMD for 2D fixed point attractor with corresponding prediction on
testing data with an unseen initial condition x1p0q “ x2p0q “ ´0.3.
From left to right, the top three figures show contours of the magnitude
of eigenfunctions, while the bottom three figures are those of phase angle
of eigenfunctions. Last column: comparison between predictions and
ground truth for an unseen testing trajectory.

from poor numerical conditioning with functional spuriousness from the orthogonal

projection error of the Koopman operator (Korda and Mezić, 2018a). Indeed, SVD

truncation does not always lead to better approximation of a Koopman-invariant sub-

space. It is rather a linear dimension reduction that optimally preserves the variance

in the feature space conditioned on the training data without knowing the linear

evolution property of each feature.

For demonstration, we take the above fixed point attractor system where we use

the same data and standard EDMD algorithm with the same order of Hermite polyno-

mials. The results of prediction on the unseen testing data shown in fig. 4.12 indicate

that even though only 3 eigenfunctions (indeed 3 feature in the Hermite polynomial)

are required, standard EDMD fails to identify the correct eigenfunctions with 26 SVD

modes while the results improve with 31 modes retained. The sensitivity of standard

EDMD with respect to SVD truncation is likely a result of the use of normalized
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Hermite polynomials where SVD truncation would lead to a strong preference over

the subspace spanned by the higher order polynomials. We did not observe such a

sensitivity for KDMD, unless the subspace is truncated below 10 modes.

4.4.2 Transient flow past a cylinder

As a classical example for Koopman analysis in fluid dynamics (Bagheri , 2013;

Williams et al., 2014; Otto and Rowley , 2019b), transient two-dimensional flow past

cylinder (fig. 4.13) is considered at different Reynolds numbers (Re “ U8D{ν), where

U8 “ 1 is the freestream velocity, D “ 2 is the diameter of the cylinder, and ν is

the kinematic viscosity. The two-dimensional incompressible Navier–Stokes equations

govern the dynamics with far-field boundary conditions for pressure and velocity and

no-slip velocity on the cylinder surface. Numerical simulations are performed using

the icoFoam solver in OpenFOAM (Jasak et al., 2007) solving the 2D incompressible

Navier-Stokes equations. We explore Re “ 70, 100, 130 by changing the viscosity.

The pressure field is initialized with i.i.d Gaussian noise N p0, 0.32q. The velocity is

initialized with a uniform freestream velocity superimposed with i.i.d Gaussian noise

N p0, 0.32q. It should be noted that the noise is generated on the coarsest mesh shown

in fig. 4.13, and interpolated to the finer meshes. Grid convergence with increasing

mesh resolution is assessed by comparing the temporal evolution of the drag coefficient

CD and lift coefficient CL.

Note that the dynamics of a cylinder wake involves four regimes: near-equilibrium

linear dynamics, non-linear algebraic interaction between equilibrium and the limit

cycle, exponential relaxation rate to the limit cycle, and periodic limit cycle dynam-

ics (Chen et al., 2012; Bagheri , 2013). Instead of considering data only from each

of these regimes separately (Chen et al., 2012; Taira et al., 2019) or with only the

last two regimes where exponential linear dynamics is expected (Bagheri , 2013), we

start collecting data immediately after the flowfield becomes unstable, and stop after
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Figure 4.12:
Standard EDMD prediction on unseen trajectory with different SVD
truncations for fixed point attractor.
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Figure 4.13:
Left: illustration of computational mesh for 2D cylinder wake problem
(coarsest). Right: contour of vorticity ωz for Re “ 70 when vortex
shedding is fully developed (t = 175).

the flowfield experiences several limit cycles. Note that the regime with algebraic

interaction is non-modal (Schmid , 2007), and therefore cannot be expressed as in-

dividual exponential terms (Bagheri , 2013). This becomes a challenging problem

for DMD (Chen et al., 2012). The sampling time interval is ∆t “ 0.1tref where

tref “ D{U8.

For each Re, 891 snapshots of full velocity field U and V with sampling time

interval ∆t are collected as two matrices of size Ngrid ˆ Nsnapshots. Following this,

each velocity component is shifted and scaled (normalized) between r´1, 1s. Since

space-filling sampling in any high-dimensional space would be extremely difficult,

we split the trajectory into training, validation, and testing data by sampling with

strides similar to the “even-odd” sampling scheme previously proposed by Otto and

Rowley (2019b). As illustrated in fig. 4.14, given index i, if i mod 3 “ 0, the i-th

point belongs to training set while i mod 3 “ 1 corresponds to validation, and i

mod 3 “ 2 for testing data. Consequently, the time interval in the training, testing,

validation trajectory is tripled as 3∆t “ 0.3tref . Thus, training, validation, and

testing data are split into 297 snapshots each. Finally, we stack data matrices along

the first axis corresponding to the number of grid points, and perform a distributed

SVD described in section 4.3.5. For all three cases, the top 20 POD modes are

retained, corresponding to 99% of kinetic energy. Next, we apply our algorithm to
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Figure 4.14:
Illustration of splitting a uniformly sampled single trajectory in high
dimensional phase space into training, validation and testing sets.

discrete-time KDMD with isotropic Gaussian kernel on this reduced-order non-linear

system. We choose the hyperparameters σ “ 3 and r “ 180. Further details are given

in appendix D.2.

4.4.2.1 Results of discrete-time KDMD with mode selection

For all three Reynolds numbers, a posteriori error analysis is shown in fig. 4.15. A

good choice of the number of accurate modes L̂ retained for reconstruction is around

60 since the corresponding maximal deviation from linear evolution is still around 5%

while the reconstruction error reaches a plateau after L̂ ą 60.

After the mode selection on validation data, a α-family of solutions is obtained

with corresponding reconstruction error and the number of non-zeros terms as shown

in fig. 4.16. Note that the chosen solution is highlighted as blue circles. As shown in

table 4.1, nearly half of the accurate KDMD eigenmodes identified are removed with

the proposed sparse feature selection. Note that for all three cases, the number of

selected modes (around 32 to 34) is still larger than that required in neural network

models (around 10) (Pan and Duraisamy , 2020a; Otto and Rowley , 2019b). This is

because the subspace spanned by KDMD/EDMD relies on a pre-determined dictio-
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Figure 4.15:
Trend of linear evolution error Q and reconstruction error R from
discrete-time KDMD for the 20D cylinder wake flow case. Left: Re “ 70.
Center: Re “ 100. Right: Re “ 130.

Figure 4.16:
Variation of reconstruction error R and number of non-zero terms for
the 20D cylinder wake flow. Left: Re “ 70. Center: Re “ 100. Right:
Re “ 130. Blue circle corresponds to selected α.

nary rather than being data-adaptive like neural network models. Nevertheless, due

to the additional expressiveness from non-linearity, we will see in section 4.4.2.3 that

spKDMD performs significantly better than DMD (Schmid , 2010) and spDMD (Jo-

vanović et al., 2014), while enjoying the property of convex optimization at a much

lower computational cost than the inherently non-convex and computationally inten-

sive neural network counterparts.

The predictions of the top 8 POD coefficients (denoted as x1 to x8) on testing

data are displayed in figs. 4.17 to 4.19. The results match very well with ground

truth for all three cases. Figure 4.21 shows that there appear to be five clusters of

selected eigenvalues while most of the modes are removed by the proposed algorithm.
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Table 4.1: Summary of mode selection on 20D cylinder wake flow.
Re “ 70 Re “ 100 Re “ 130

αselect 7.19ˆ 10´4 7.19ˆ 10´4 1.39ˆ 10´3

number of selected modes 34 32 33
number of total modes 297 297 297
normalized reconstruction error R 0.075 0.105 0.113

Figure 4.17:
A posteriori prediction of testing trajectory for Re “ 70 in terms of top
8 POD coefficients with sparsity-promoting KDMD.
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Figure 4.18:
A posteriori prediction of testing trajectory for Re “ 100 in terms of top
8 POD coefficients with sparsity-promoting KDMD.
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Figure 4.19:
A posteriori prediction of testing trajectory for Re “ 130 in terms of top
8 POD coefficients with sparsity-promoting KDMD.
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Similar observations were also made in (Bagheri , 2013) when DMD is applied to the

full transient dynamics. This pattern consisting of a stable eigenvalue on the unit

circle surrounded by several decaying eigenvalues is observed for all clusters. The

stable eigenvalue contributes to limit-cycle behavior, while the decaying eigenvalues

account for the transient phenomenon. Due to symmetry, only eigenvalues in the

first quadrant are shown in the bottom row of fig. 4.21. It is observed that the

frequency associated with the type-II cluster is approximately twice that of type-I.

This is in good agreement with previous analytical results from the weakly non-linear

theory (Bagheri , 2013). The frequency f is normalized as St “ fD{U8, where St is

the Strouhal number.

Recall that in the laminar parallel shedding region (47 ă Re ă 180), the charac-

teristic Strouhal number St scales with ´1{
?
Re (Fey et al., 1998). Therefore, it is

expected that St of both types tend toward higher frequency as Re increases from

70 to 130. Further, it is interesting to note that the corresponding Strouhal numbers

for lift and drag when the system is on the limit-cycle - StL and StD
3 - coincide with

the stable frequency of type-I and II respectively as indicated in fig. 4.21. This is

due to the anti-symmetrical/symmetrical structure of the velocity field of type-I/II

Koopman mode respectively as can be inferred from fig. 4.22. A schematic is is also

shown in fig. 4.20.

The higher frequency mode is symmetrical (along the freestream direction) in U

and anti-symmetrical in V . As a consequence, this only contributes to the oscillation

of drag. The lower frequency mode is anti-symmetrical in U and symmetrical in V ,

and only contributes to the oscillation of lift. Thus, the fluctuation in the lift mostly

results from the stable mode in type-I, while that for drag results from the stable

mode in type-II with twice the frequency.

Finally, several representative Koopman modes from spKDMD for three Re are

3we observe that each of lift and drag coefficients exhibits only one frequency at limit-cycle regime
for the range of Re studied in this work.
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Figure 4.20:
Illustration of the structure of velocity field for the lower (top) and higher
frequency (bottom) Koopman modes. The arrow roughly indicates the
velocity direction.

Figure 4.21:
Discrete-time eigenvalue distribution of full KDMD and spKDMD. Left:
Re “ 70. Center: Re “ 100. Right: Re “ 130. Blue dot: full KDMD
eigenvalues. Red dot: spKDMD eigenvalues. Bottom row: zoomed. I
and II correspond to two types of eigenvalue clusters of distinct frequen-
cies, with each of them enclosed by cyan dashed circles. Green/cyan
solid line correspond to StD/StL.
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shown in figs. 4.22 to 4.24. For a better comparison of mode shapes, contributions

from the stable modes of type-I and II with a threshold of 0.001 at t “ 0 is displayed

in the top left of fig. 4.25. To remove the effect of time, the “envelope” of the mode

shape, i.e., time average of the iso-contours is shown in the top right of fig. 4.25. From

these results, we observe the following interesting phenomena:

• the minimal dimension of the Koopman-invariant subspace that approximately

captures the limit cycle attractor for all three Re that fall into laminar vortex

shedding regime (White and Corfield , 2006) is five, which is consistent with

previous multi-scale expansion analysis near the critical Re (Bagheri , 2013).

• the lobes of stable Koopman modes in the type-I cluster show an approximately

50% larger width than those in a type-II cluster.

• similarity/colinearity among Koopman modes within each cluster is observed.

Such a finding is previously reported in the theoretical analysis by Bagheri

(2013). A similarity in spatial structure exists among the Koopman modes

belonging to the same family, even though the structures are clearly phase

lagged.

• as Re increases from 70 to 130, mode shapes flatten downstream while expand

upstream.

• at Re “ 70, the shear layer in the stable Koopman modes continues to grow

within the computational domain. However, at Re “ 100, 130, the shear layer

stops growing after a certain distance that is negatively correlated with Re.

4.4.2.2 Net contribution of clustered Koopman modes

By examining figs. 4.22 to 4.24, we observe that the colinearity of the spatial

structures among each cluster can cause cancellations. A famous example of such
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Figure 4.22:
Contours of Koopman modes of Re “ 70 cylinder wake flow at t “ 0.
Red squares indicate stable modes.

162



Figure 4.23:
Contours of Koopman modes of Re “ 100 cylinder wake flow at t “ 0.
Red squares indicate stable modes.
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Figure 4.24:
Contours of Koopman modes of Re “ 130 cylinder wake flow at t “ 0.
Red squares indicate stable modes.
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Figure 4.25:
Top left: contribution of stable Koopman modes corresponding to type-
I and type-II cluster for Re “ 70, 100, 130 at t “ 0 visualized with
threshold 0.001. Top right: time-averaged iso-contour of top left plot.
Bottom: tendency of “envelope” of type-I and II modes as Re increases.
Separation lines in U component of type-I are drawn for Re “ 70 (black),
Re “ 100 (red) and Re “ 130 (blue).
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non-oscillatory cancellation is the “shift mode” defined by Noack et al. (2003), in

conjunction with two oscillating modes. As the “shift mode” decays, the stationary

component of the flow transitions from the unstable equilibrium to the time-averaged

mean. The existence of such non-oscillatory decaying Koopman modes is also con-

firmed by weakly non-linear analysis (Bagheri , 2013). Interestingly, our algorithm

is able to identify not only the non-oscillatory cancellation (from the “shift mode”)

but also oscillatory cancellations from two clusters with distinct frequencies. Such

cancellations elegantly explain why no unstable Koopman eigenvalues appear in this

flow given the co-existence of an attracting limit cycle and an unstable equilibrium.

These modes could be understood as “oscillatory shift modes”, as a generalization of

the model proposed by Noack et al. (2003).

Since modes within each cluster appear to be colinear to each other, it is intriguing

to investigate the net contribution from each cluster. For the above Re “ 70 case,

effects from different clusters for different time in the transient regime are shown in

fig. 4.26. There are several interesting observations throughout the transient period

from t “ 80 to t “ 200:

• The net contribution from “cluster 0” does not exhibit strong oscillations. For

the contribution from “cluster 0 ”, the U component shows a decrease in the

length of the reverse flow region behind the cylinder with an increase in the low

speed wake layer thickness while the V component remains unchanged. This

is similar to the effect of “shift mode” which also characterizes the decay of

recirculation behind the cylinder.

• Initially at t “ 80, the net contribution from “cluster I” is rather weak primarily

due to the “cancellation” from the lagged phase. Further, the development of

vortex shedding downstream from the top and bottom surfaces of the cylinder

is nearly parallel. This corresponds to the initial wiggling of the low speed

166



Figure 4.26:
Contribution of Koopman modes at cluster level in the transient regime
of Re “ 70 case. “cluster 0” denotes the cluster near the real axis in
fig. 4.21. “cluster I” /“cluster II” takes the effect of mirror cluster
in fourth quadrant into account. “full modes” denotes the aggregated
contribution of Koopman modes.

wake flow downstream. As time increases, the pattern of corresponding vortices

develops away from the center line.

• Although the net contribution from “cluster 0+I” captures most of the flow fea-

tures from “full modes” throughout the transient regime, with increasing time,

the net contribution from “cluster II” becomes more important and contributes

to the strength of vortex shedding downstream.

4.4.2.3 Comparison with DMD and sparsity-promoting DMD at Re “ 70

To confirm the advantage of sparsity-promoting KDMD over DMD (Schmid , 2010)

and spDMD (Jovanović et al., 2014), we compare the following three models on the

unsteady cylinder wake flow at Re “ 70:
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1. sparsity-promoting KDMD on top 20 POD coefficients with 34 modes selected,

2. DMD on top 20 POD coefficients,

3. spDMD 4 on top 200 POD coefficients with α chosen carefully such that only

34 modes are selected.

Note that DMD with top 200 POD coefficients, i.e., r “ 200 in SVD-DMD (Schmid ,

2010), contains 10 times stable/decaying harmonics as DMD on the top 20 modes.

Hence, it is not surprising to expect that the corresponding prediction of the evolution

of the top 20 POD coefficients to be very good (not shown for clarity). However, to

make a fair comparison against sparsity-promoting KDMD, we consider spDMD (Jo-

vanović et al., 2014) on the top 200 POD coefficients with 34 modes selected5.

As shown in fig. 4.27, given the same number of eigenmodes, sparsity-promoting

KDMD performs remarkably better than spDMD, especially in the transient regime.

This is likely due to the inability of DMD in capturing non-linear algebraic growth

in the transient regime (Bagheri , 2013). spDMD overestimates the growth in x1 and

x2 while ignoring a turnaround near the onset of transient regime in x5 and x8. As

expected, DMD with 20 POD coefficients performs the worst especially for the modes

where transient effects are dominant. Given the results in fig. 4.27, among all of the

top 8 POD coefficients, x6 and x7 appear to be most challenging to model: DMD

and spDMD cannot match the limit-cycle while spKDMD performs very well. Notice

that the frequency in x6 and x7 corresponds to StD. Hence, there will be a difference

in predicting the fluctuation of CD between spDMD and sparsity-promoting KDMD.

Finally, comparison of the identified Koopman eigenvalues between DMD, spDMD

and spKDMD is shown in fig. 4.28. On one hand, both spDMD and spKDMD exactly

capture the stable eigenmodes that correspond to StD and StL. This is expected since

4We used the original Matlab code from http://people.ece.umn.edu/users/mihailo/
5Although there are 200 POD coefficients used for spDMD and 20 for KDMD, it is not an unfair

comparison given that the same number of spatial modes are selected. Further, these are reduced
order models of the same the full order dynamical system.
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Figure 4.27:
Comparison of a posteriori prediction on the top 8 POD coeffi-
cients of the testing trajectory between sparsity-promoting KDMD,
DMD (Schmid , 2010) and spDMD (Jovanović et al., 2014) for the 2D
cylinder flow at Re “ 70. xi denotes i-th POD coefficient.
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Figure 4.28:
Comparison of identified eigenvalues between spKDMD, DMD (Schmid ,
2010) and spDMD (Jovanović et al., 2014) for the 2D cylinder flow at
Re “ 70

DMD with 200 POD coefficients represents the dynamics very well, and deviation

from limit-cycle behavior would be penalized in spDMD. On the other hand, several

erroneous stable DMD modes are obtained by DMD. This explains the deviation of a

posteriori prediction from the ground truth limit cycle in fig. 4.27. For those decaying

modes, similarity is observed between two clusters of eigenvalue from spDMD and

spKDMD. However, spKDMD contains more high frequency modes than spDMD.

Finally, it is interesting to note that, although the correct stable eigenvalues are

captured accurately by both spDMD and spKDMD, the former does not capture

accurate amplitudes for stable eigenvalues of type-II as seen in fig. 4.27.

As a side note, when the temporal mean was used instead of maximal error in the

definition of Q in eq. (4.2), spKDMD with the above setting was found to not find a

stable eigenvalue corresponding to STD.

4.4.3 Transient turbulent ship airwake

Understanding unsteady ship airwake flows is critical to design safe shipboard

operations, such as takeoff and landing of fixed or rotary wing aircraft (Forrest and
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Owen, 2010), especially when the wind direction becomes stochastic. Here we obtain

snapshots from an unsteady Reynolds Averaged Navier–Stokes (URANS) simulation

of a ship airwake using FLUENT (Ansys , 2016) with the shear layer corrected k-ω two-

equation turbulence model. Unsteadiness arises from both bluff-body separation, and

an abrupt change in wind direction. We consider a conceptual ship geometry called

simple frigate shape 2 (SFS2). For the details of the geometry, readers are referred to

(Yuan et al., 2018). Configuration of the simulation setup is shown in fig. 4.29 where

α8 denotes the angle of side wind.

To prepare a proper initial condition, a URANS simulation for U8 “ 15m{s

with α8 “ 0˝, i.e., no side wind, is conducted to reach a physical initial condition.

Following this, the last snapshot is used as the initial condition for a new run with an

impulsive change in the wind direction from α8 “ 0˝ to α8 “ α0 “ 5˝. The boundary

conditions for outlet/input is pressure outlet/velocity inlet while top and bottom are

set as symmetry for simplicity. No-slip conditions are used at surface of the ship.

Further details on the simulation setup are provided in (Sharma et al., 2019).

The sampling time interval is ∆t “ 0.1s with 500 consecutive samples of the three

velocity components. This corresponds to several flow through times over the ship

length. The domain of interest is a cartesian region of mesh size 24ˆ40ˆ176 starting

on the rear landing deck. For dimension reduction, the trajectory of the top 40 POD

coefficients (temporal mean subtracted) are collected, yielding ą 99% kinetic energy

preservation. Discrete-time KDMD with an isotropic Gaussian kernel is employed to

perform non-linear Koopman analysis where σ “ 200, r “ 135 is chosen. Details of

hyperparameter selection are provided in appendix D.3.

4.4.3.1 Results of discrete-time KDMD with mode selection

First, the error analysis of eigenfunctions is shown in fig. 4.30, where we choose

L̂ « 60 for good reconstruction. However, the level of deviation from linear evolution
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Figure 4.29:
Left: geometry of the ship (SFS2). Right: generated computational
mesh.

Figure 4.30:
Left: Trend of linearly evolving error Q and reconstruction error R from
discrete-time KDMD for the ship airwake. Right: Trend of linearly
evolving error Q and reconstruction error R from discrete-time KDMD.

is around 10%. This error will be reflected later as deviation in a posteriori prediction

on the testing trajectory6.

Second, the result of mode selection is summarized in table 4.2. Note that nearly

2/3 modes are removed. Furthermore, model performance in terms of a posteriori

prediction on the testing trajectory is evaluated. Comparison between KDMD and

the ground truth on contours of velocity components on a special z´plane (1.2 meters

above the landing deck) is shown in fig. 4.31. Effects of an impulse change in wind

6This implies difficulties in finding an accurate yet informative Koopman operator with isotropic
Gaussian kernels. However, choosing an optimal kernel type is beyond the scope of this work.
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Table 4.2: Summary of mode selection for ship airwake.
αselect 7.19ˆ 10´4

number of selected modes 55
number of total modes 167
normalized reconstruction error R 0.133

direction in the following are observed from t “ 1.5s to t “ 30s and well-captured by

spKDMD:

• growth of a large shear layer in U on the rear (left) side of the superstructure

on the ship

• a strong side wind sweep in V above the landing deck propagating downstream

• development of vortex on the upwind (right) downstream side of the ship

Further, three velocity components of the Koopman mode decomposition on the

previously mentioned z´plane is shown in fig. 4.32 together with the isocontour of

vorticity colored by the velocity magnitude for the two stable harmonics. Note that

frequency is normalized using U8 as the reference velocity and funnel width of the

ship L “ 3.048m as the characteristic length scale (Forrest and Owen, 2010). As

expected, the spKDMD yields a large number of decaying modes with only three

nontrivial stable harmonics, since significant transient effects are present in the data.

From the Koopman mode decomposition in fig. 4.32, we observe the following:

• modes with eigenvalues close to each other exhibit similar spatial structure,

• modes associated with higher frequency are dominated by smaller scales,

• the stable harmonic mode near St “ 0.09 associated with a strong cone-shape

vortex originating from the upwind (right) rear edge of the superstructure on

the ship,
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Figure 4.31:
Contour of velocity components near the ship on z´plane slice at t “
1.5s, 3.9s, 9.0s, 30s. For each subfigure, left: prediction from KDMD;
right: ground truth.
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• the stable harmonic mode near St “ 0.068 corresponds to vortex shedding

induced by the funnel,

• the slowly-decaying mode near St “ 0.022 shows unsteady circulation directly

behind the superstructure,

• the steady mode (St “ 0) is consistent with the large circulation behind the

superstructure, the roll-up wind on the side of landing deck, and vertical suction

towards the floor on the landing deck.

4.4.3.2 Comparison with sparsity-promoting DMD

We again repeat the comparison between our spKDMD and spDMD (Jovanović

et al., 2014). Note that DMD on the first 40 POD modes performs poorly similar to

section 4.4.2.3 and therefore not shown here. To make a fair comparison against the

spKDMD from previous subsection, however, we collect the first 200 POD coefficients

for spDMD to ensure that a sufficient number of modes are used to fit the trajectory

well. We then carefully choose the penalty coefficient in spDMD to ensure that the

same number of modes are retained as in spKDMD. As shown in fig. 4.33, within

the time horizon t ă 50, a posteriori evaluation shows that spKDMD offers much

improved predictions compared to spDMD (Jovanović et al., 2014) on the testing

trajectory.

Moreover, as further illustrated in the left subfigure of fig. 4.34, eigenvalues iden-

tified from spKDMD only contain two stable modes while nearly all eigenvalues from

spDMD are located near the unit circle, among which there are 30 out of 56 slightly

unstable modes. These unstable modes inevitably lead to the identified system be-

ing numerically unstable when predicting beyond the current training time horizon,

whereas spKDMD predicts a “physically consistent” limit cycle behavior. As indi-

cated in the right subfigure of fig. 4.34, such instability is related to the inability
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Figure 4.32:
Contours of Koopman modes of ship airwake on the z-plane at t “ 0. For
each subfigure, left: U , middle: V , right: W . Red squares indicate stable
modes. Bottom: iso-contour of vorticity colored by velocity magnitude
zoomed near the landing deck.
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Figure 4.33:
Comparison of a posteriori prediction of the 4 most significant POD
coefficients of the testing trajectory between sparsity-promoting KDMD
and spDMD (Jovanović et al., 2014) for the 3D ship-airwake flow. xi
denotes i-th POD coefficient.

of the (linear) features to approximate the Koopman-invariant subspace, where only

8 modes are within 10% of maximal deviation from linear evolution, compared to

60 modes in KDMD. We note that similar observations of the drastically different

eigenvalue distribution were reported in the original KDMD paper (Williams et al.,

2014).

4.5 Summary

The main contribution of this chapter is a model agnostic technique to extract

compact Koopman-invariant subspaces. Particularly, we developed a) sparsity pro-

moting technique based on a posteriori error analysis, and b) multi-task learning

techniques for mode selection as an extension of spDMD into the non-linear variants.

Further, analytical relationships between spDMD, Kou’s criterion, and the proposed

method are derived from the viewpoint of optimization. The algorithm is first eval-

uated in detail on a simple two state dynamical system, for which the Koopman
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Figure 4.34:
Left: Comparison of identified eigenvalues between spKDMD and
spDMD (Jovanović et al., 2014) for the 3D ship-airwake flow. Right:
Trend of linear evolving error Q and reconstruction error R from DMD
for the 3D ship-airwake flow.

decomposition is known analytically. If one is only interested in the post-transient

dynamics of the system on an attractor, linear observables with time delays are suf-

ficient to extract an informative Koopman-invariant subspace. Thus, the present

techniques are evaluated on two unsteady flows which involve strong transients: 2D

flow over a cylinder at different Reynolds numbers and a 3D ship air wake. We demon-

strate the effectiveness of discovering accurate and informative Koopman-invariant

subspaces from data and constructing accurate reduced-order models from the view-

point of Koopman theory. Furthermore, with the proposed algorithm, the parametric

dependency of Koopman mode shapes on the Reynolds number is investigated for the

cylinder flows. In this case, as Re increases from 70 to 130, the shape of stable modes

become flattened downstream and larger upstream. Moreover, the similarity of mode

shapes between Koopman modes with similar eigenvalues is observed in both fluid

flows. Specifically, five clusters of eigenvalues are observed in the case of 2D cylinder

wake flow which is confirmed with weakly non-linear theoretical analysis from Bagheri

(2013). Type-I, II clusters are found to correspond to fluctuations in lift and drag,

respectively. We identify non-oscillatory as well as oscillatory cancellations from the
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above two clusters with distinct frequencies. These modes could be understood as

“oscillatory shift modes”, as a generalization of the model proposed by Noack et al.

(2003). For the 3D ship airwake case, two stable modes, and one slowly-decaying

mode with distinct frequencies and mode shapes resulting from vortex shedding are

extracted, and accurate predictive performance is observed in the transient regime

while spDMD produces a set of unstable modes around the unit circle.
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CHAPTER V

Robust Deep Learning for Koopman Operators

with Uncertainty Quantification

And whenever the modelers come

in, they give a worst-case scenario

and a best-case scenario. Generally,

the reality is somewhere in the

middle. I’ve never seen a model of

the diseases that I’ve dealt with

where the worst-case scenario

actually came out. They always

overshoot.

Dr. Anthony Fauci on CNN’s

“State of the Union” (2020)

5.1 Background and Motivation

Recently, several attempts have leveraged deep learning architectures (Otto and

Rowley , 2019a; Li et al., 2017; Takeishi et al., 2017; Wehmeyer and Noé, 2018; Yeung

et al., 2017), to extract Koopman decompositions. Yeung et al. (2017) used feed-

forward neural networks to learn the dictionary function for the Koopman operator,
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but the reconstruction loss was not included. Li et al. (2017) enforced several non-

trainable functions, e.g., components of the system state, in the Koopman observables

to ensure an accurate reconstruction but one that could be inefficient in terms of ob-

taining a finite-dimensional Koopman observable subspace (Otto and Rowley , 2019a).

Further, Takeishi et al. (2017) utilized linear time-delay embedding in the feedfor-

ward neural network framework to construct Koopman observables with non-linear

reconstruction, which is critical for partially observed systems (Pan and Duraisamy ,

2018b). Lusch et al. (2018a) further extended the deep learning framework to chaotic

systems. Otto and Rowley (2019a) considered a recurrent loss for better performance

on long time prediction on trajectories that transit to the attractor. Recently, Mor-

ton et al. (2019) addressed the uncertainty in a deep learning model with a focus on

control. The benefit of formulating the search for the Koopman operator in an opti-

mization setting enables the enforcement of stability. For example, it is also feasible to

constrain eigenvalues in optimized DMD (Chen et al., 2012; Askham and Kutz , 2018).

Specifically, in the neural network context, Erichson et al. (2019) considered stability

promoting loss to encourage Lyapunov stability of the dynamical system. From the

viewpoint of carefully managing uncertainties, Galioto and Gorodetsky (2020) intro-

duced a comprehensive Bayesian framework for DMD and dictionary-based non-linear

regression techniques.

A unified approach towards uncertainty quantification, stabilization, and incorpo-

ration of physics information is lacking for the Koopman operator. Further, most of

these techniques are formulated in a discrete dynamical system setting. This moti-

vates us to establish a probabilistic stabilized deep learning framework specifically to

learn the Koopman decomposition for a continuous dynamical system. We employ

automatic differentiation variational inference (ADVI) (Kucukelbir et al., 2017) to

quantify parametric uncertainty in deep neural networks and structural parameteri-

zation to enforce stability of the Koopman operator extracted from the deep neural
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networks. A broad comparison of the present work with other approaches is shown

in table 5.1.

Table 5.1:
Summary of comparison with other Koopman approximation techniques
in the literature.

Previous works
continuous
/discrete

non-linear
reconstruction

continuous
spectrum uncertainty stability

Yeung et al. (2017) discrete 7 7 7 7

Li et al. (2017) discrete 7 7 7 7

Takeishi et al. (2017) discrete 3 7 7 7

Otto and Rowley (2019a) discrete 3 7 7 7

Lusch et al. (2018a) discrete 3 3 7 7

Morton et al. (2019) discrete 3 7 3 7

Erichson et al. (2019) discrete 3 7 7 3

Our framework continuous 3 7 3 3

In contrast to previous approaches (Otto and Rowley , 2019a; Lusch et al., 2018a;

Yeung et al., 2017; Li et al., 2017), our framework pursues continuous-time Koopman

decompositions. The continuous formulation is more amenable to posit desired con-

straints and contend with non-uniform sampling (Otto and Rowley , 2019a; Askham

and Kutz , 2018), which is frequently encountered in experiments or temporal multi-

scale data. To begin with, recall the general form of autonomous continuous non-linear

dynamical systems,

9x “ Fpxq, x PM Ă Rn. (5.1)

We seek a finite dimensional Koopman invariant subspace FD with D linearly inde-

pendent smooth observation functions, defined as

FD “ spantφ1, . . . , φDu Ă F , (5.2)

where φi P C
1pM,Rq and φi P F , i “ 1, . . . , D. Correspondingly, the observation
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vector Φ is defined as

Φpxq “

„

φ1pxq φ2pxq . . . φDpxq



P FD. (5.3)

Based on the aforementioned structure, we require the following two conditions. First,

Φpxq evolves linearly in time, i.e., D K P RDˆD s.t.

9Φ fi dΦ{dt “ ΦK. (5.4)

By the chain rule, the relationship between eq. (5.4) and eq. (5.1) is

F ¨∇xΦ “ ΦK. (5.5)

Second, D Ψ : RD ÞÑM, s.t. Ψ˝Φ “ I, I :M ÞÑM is the identity map. Therefore,

we can recover the state x from Φ.

From now on, we will use deep neural nets to find the Koopman operator. Note

that the formulation of deep learning DMD in differential and recurrent forms are

previously presented in section 2.5. However, before that, we will highlight a difference

between non-linear reconstruction and linear reconstruction.

5.2 Non-linear reconstruction vs linear reconstruction

The original concept of the Koopman operator studies the evolution of any ob-

servable in the Koopman invariant subspace. Thus, the observables of interest can

be linearly reconstructed from the Koopman eigenfunctions. Regarding the fact that

linear reconstruction is desirable especially in the content of control (Kaiser et al.,

2017). Li et al. (2017) considered augmenting the Koopman invariant subspace with

neural network-trained observables together with the system state x to force linear

reconstruction. However, for systems with multiple fixed points, there does not exist
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a finite-dimensional Koopman invariant subspace that also spans the state globally1

due to the impossibility of establishing such a topological conjugacy (Brunton et al.,

2016a) with the linear system. Therefore, attention naturally moves to the introduc-

tion of non-linear reconstruction that is more expressive than linear reconstruction,

together with extra modes that indicate different basins of each attractor (Takeishi

et al., 2017; Otto and Rowley , 2019a). Otto and Rowley (2019b) reported that non-

linear reconstruction improves prediction accuracy over linear reconstruction on the

problem of transient flow past cylinder. Unfortunately, non-linear reconstruction is

equivalent to removing the concept of Koopman modes (Otto and Rowley , 2019a). In

other words, this is equivalent to removing the constraint that the system state lies

in the finite-dimensional Koopman invariant subspace. Unfortunately, this becomes

a disadvantage in the context of modal analysis for fluid flows.

Although systems with multiple fixed points cannot be topological conjugate to a

linear system, in section 5.7 we will show that linear reconstruction is still helpful if

we relax the topological conjugacy to linearly spanning the system state x in a weak

sense.

5.3 Guaranteed stabilization of the Koopman operator

Eigenvalues of the Koopman operator are critically important in understanding

the temporal behavior of certain modes in the dynamical system. For a measure-

preserving system (Budǐsić et al., 2012) or systems on an attractor, e.g., post-transient

flow dynamics (Arbabi and Mezić, 2017), even if the system is chaotic, the eigenspec-

trum of the continuous-time Koopman operator would still be on the imaginary axis.

It should be noted that although the Koopman operator still accepts unstable modes,

i.e., the real part of the eigenvalues of continuous-time Koopman operator being pos-

1In this thesis, the term “global embedding” is used to imply non-locality in phase space. Note
that the Hartman-Grobman theorem (Arrowsmith and Place, 1992) establishes a topological conju-
gacy to a linear system with the same eigenvalues in a small neighborhood of the fixed point.
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itive, its absence in systems governed by Navier-Stokes equation in fluid mechanics

has been documented (Mezić, 2013). Hence, in this work, we assume that the Koop-

man eigenvalues corresponding to the finite dimensional Koopman invariant subspace

of interest have non-positive real parts. It is important to note that the concept of

unstable Koopman modes should not be confused with that of flow instability. Prior

models (for instance, Otto and Rowley (2019a)) have not explicitly taken stability

into account, and thus resulted in slightly unstable Koopman modes. While this is

acceptable for relatively short time predictions, long time predictions will be prob-

lematic.

Before presenting the stabilization technique, it is instructive to note the non-

uniqueness of ideal observation functions Φ, i.e., the one corresponding to the exact

Koopman invariant subspace. This is because one can simultaneously multiply any

D ˆD invertible real matrix and its inverse before and after the observation vector

Φ while keeping the Koopman eigenfunction, eigenvalues, and the output from the

reconstruction the same. Thus, observation functions described by neural networks

cannot be expected to be uniquely determined. We will leverage this non-uniqueness

to enforce stability.

Enlightened by recent studies (Haber and Ruthotto, 2017; Chang et al., 2018, 2019)

in the design of stable deep neural network structures where skew-symmetric weights

are used inside non-linear activations, we devised a novel parameterization for the

realization of the Koopman operator in the following form:

Kstable “

»

—

—

—

—

—

—

—

–

´σ2
1 ζ1

´ζ1
. . . . . .

. . . . . . ζD´1

´ζD´1 ´σ2
D

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

, (5.6)

where ζ1, . . . , ζD´1, σ1, . . . , σD P R.
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In appendix E, we show that the real parts of the eigenvalues of a n ˆ n real

(possibly non-symmetric) negative semi-definite matrix A are non-positive. We then

prove that the above parameterization posits a constraint that the time evolution

associated with Kstable in eq. (5.6) for any choice of parameters in R is always stable.

Further, the constraint from the parameterization in eq. (5.6) is actually rich enough

such that any diagonalizable matrix corresponding to a stable Koopman operator can

be represented without loss of expressivity.

Theorem V.1. For any real square diagonalizable matrix K P RDˆD that only has

non-positive real parts of the eigenvalues D ě 2, there exists a set of ζ1, . . . , ζD´1,

σ1, . . . , σD P R such that the corresponding Kstable in eq. (5.6) is similar to K over R.

Moreover, for any ζ1, . . . , ζD´1, σ1, . . . , σD P R, the real part of the eigenvalues of the

corresponding Kstable is non-positive.

Proof. For any real square diagonalizable matrix K P RDˆD that only has non-positive

real parts of the eigenvalues, there exists an eigendecomposition,

K “ MJM´1, M,J P CDˆD. (5.7)

Without loss of generality, the diagonal matrix J contains 2Dc complex eigenvalues

tλcju
2Dc
j“1 and Dr real eigenvalues tλrju

Dr
j“1 where 2Dc `Dr “ D.

Consider a 2 ˆ 2 real matrix, Aj “

»

—

–

´σ2
j ζj

´ζj ´σ2
j

fi

ffi

fl

where the eigenvalues are

λ1,2 “ ´σ2
j ˘ jζ2

j . We use this matrix to construct a 2 ˆ 2 matrix that has eigen-

values λcj. For each pair of complex eigenvalues, j “ 1, . . . , Dc, we have Aj “
»

—

–

Repλcjq
b

|Impλcjq|

´

b

|Impλcjq| Repλcjq

fi

ffi

fl

. Next, combining with the Dr real eigenvalues, we have
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the following block diagonal matrix that shares the same eigenvalues as J,

rK “

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

A1

. . .

ADc

λr1
. . .

λrDr

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

P RDˆD. (5.8)

Since two matrices with the same (complex) eigenvalues are similar (Meyer , 2000),

K is similar to rK over C. However, since K and rK are matrices over R, they are

already similar over R (Refer Corollary 1 on p. 312 in Ref. (Herstein, 1975)). Notice

that the general form of rK is just a special form of Kstable in eq. (5.6). Therefore,

one can always find a set of ζ1, . . . , ζD and σ1, . . . , σD such that Kstable is similar to

K over R. Next, notice that given σ1, . . . , σD, ζ1, . . . , ζD, @v P RDˆ1, we have

vJKstablev “
1

2
vJpKstable `KJ

stableqv “ vJ

»

—

—

—

—

–

´σ2
1

. . .

´σ2
D

fi

ffi

ffi

ffi

ffi

fl

v ď 0. (5.9)

Therefore, Kstable is a negative semi-definite matrix. Following lemma E.2, the real

part of any eigenvalue of Kstable is non-positive.

Thanks to the conjugation over R, the last layer of encoder, i.e., Φ, and the

first layer of the decoder, i.e., Ψ, will absorb any linear transformation necessary.

Hence, the above theorem simply means one can parameterize K with eq. (5.6) that

guarantees stability of the linear dynamics of Φ without loss of expressibility for cases

where unstable modes are absent.

Careful readers might notice that indeed one can further truncate the parameter-
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ization with a 2 ˆ 2 block matrix instead of the tridiagonal form used in eq. (5.6).

However, since this reduction takes more effort in the implementation while the pa-

rameterization in eq. (5.6) has already reduced the number of parameters from OpD2q

to OpDq, we prefer the tridiagonal form. For the rest of the work, we will use this

parameterization for all of the cases concerned.

5.4 Design of neural network architecture with SVD-DMD

embedded

In the previous subsection, we described the deep learning formulation for the

Koopman operator as a finite dimensional optimization problem that approximates

the constrained variational problem, together with a stable parameterization for K.

In this subsection, we will describe the design of our neural network that further

embeds the SVD-DMD for differential and recurrent forms, which were presented in

sections 2.5.2.1 and 2.5.2.2.

5.4.0.1 Input normalization

As a standard procedure, we consider normalization on the snapshot matrix of

state variable X,

X “

»

—

—

—

—

–

x0

...

xM´1

fi

ffi

ffi

ffi

ffi

fl

P RMˆn (5.10)

for better training performance on neural networks (Goodfellow et al., 2016). Specif-

ically, we consider Z-normalization shown in eq. (5.11), i.e., subtracting the mean of

x then dividing the standard deviation to obtain z.

z “ px´ xqΛ´1, (5.11)
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where x “ 1
M

řM´1
m“0 xm, Λ “ diagtd1, . . . , dNu, dj is the uncorrected standard devia-

tion of j-th component of x, i.e.,

dj “

g

f

f

e

1

M

M
ÿ

m“1

pxm,j ´ xjq2, (5.12)

where xm,j is j-th component of m-th data, j “ 1, . . . , n.

While such a normalization is helpful for neural network training in most cases, in

some cases where the data is a set of POD coefficients, it cannot differentiate between

components that could be more significant than others. Therefore, for those cases, we

consider a different normalization with the Λ that sets the ratio of standard deviation

between components as:

Λ “ dmaxI, (5.13)

where dmax “ maxj“1,...,n dj, and I is the identity matrix.

5.4.0.2 Embedding with SVD-DMD

Instead of directly using the standard feedforward neural network structure em-

ployed in previous works, we embed SVD-DMD (Schmid , 2010) into the framework

and learn the residual. Recall for the standard SVD-DMD algorithm, given M sequen-

tial snapshots in eq. (5.10) uniformly sampled at intervals ∆t, one linearly approxi-

mates the action of K∆t of the first r dominant SVD modes of centered snapshots,

i.e., q “ px ´ xqVr. Here, r is empirically chosen as a balance between numerical

robustness and reconstruction accuracy, and Vr are the first r columns from V of the

SVD of centered snapshots,

X “

»

—

—

—

—

–

x1 ´ x

...

xM ´ x

fi

ffi

ffi

ffi

ffi

fl

“ UΣVJ. (5.14)
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Then the SVD-DMD operator is simply the matrix A that minimizes
řM´2
m“0 ‖qm`1 ´

qmA‖, where qm is the corresponding orthogonal projection of xm.

To embed the above SVD-DMD structure into the neural network, we introduce

two modifications. First, we take r “ D. Since D is arbitrary, if n ă D, we simply

append zero columns in VD. Second, we would also need to accommodate z with the

input normalization in section 5.4.0.1. Thus, we cast q “ zΛVD. We then have,

Φsvdpzq “ zΛVD, ΨsvdpΦq fi ΦVJ
DΛ´1, (5.15)

Φpzq “ ΦnnpzqWenc,L
looooooomooooooon

non-linear observables

`ΦsvdpzqWenc,L
looooooomooooooon

linear observables

, (5.16)

ΨpΦq “ ΨnnpΦq
looomooon

non-linear reconstruction

` ΨsvdpΦWdec,1q
looooooomooooooon

linear reconstruction

, (5.17)

where Φnn fi Φp¨; WΦztWenc,Luq, WΦ “ tWenc,1, benc,1, . . . ,Wenc,Lu, Ψnn fi Ψp¨; WΨq,

WΨ “ tWdec,1, . . . ,Wdec,L, bdec,Lu, L is the number of layers for encoder or decoder

neural network. The embedding is illustrated in fig. 5.1.

Figure 5.1:
Sketch of SVD-DMD embedding in the feedforward neural network. Red
blocks represent neural network weights and biases. Yellow blocks repre-
sent states. Light blue block represent observables.

The intuition behind the embedding of the SVD-DMD into the framework is given

below:
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1. Schmid’s DMD algorithm (Schmid , 2010) relies on the dominant POD modes

to reduce the effect of noise, and has been shown to approximate the Koopman

invariant subspace (Rowley et al., 2009). This has been demonstrated even for

high-dimensional non-linear dynamical systems with millions of degrees of free-

dom (Schmid et al., 2011). Moreover, for systems with continuous spectra, POD

appears to be a robust alternative to Koopman mode decomposition (Mezić,

2015). Thus, we assume that the true Koopman invariant subspace is easier to

obtain by only learning the residual with respect to the dominant POD sub-

space.

2. Although we did not precisely implement ResNet blocks (He et al., 2016) (em-

pirically, for the problem concerned in this thesis, our network does not have

to be as deep as common architectures in the deep learning community (He

et al., 2016)), we believe that such fixed mappings may have similar benefits in

ResNets.

3. For an ideal linear dynamical system, using the aforementioned neural network

model with non-linear reconstruction can result in an infinite number of un-

necessary Koopman modes as global minima. For example, consider the case

of a linear dynamical system, i.e., Fpxq “ xA, A P Rnˆn. The desired Koop-

man invariant subspace is trivially the span of the projections of x onto each

component and the desired Koopman eigenvalues are simply that of A. As-

suming simple and real eigenvalues, one can have 9y “ yΛ, where y “ xM,

A “ MJM´1 as the eigen-decomposition with J “ diagtλju
n
j“1. Then for each

component yj, we have 9yj “ λjyj. For any nj P N, consider the observable

φj “ y
2nj`1
j , one can have 9φj “ p2nj`1qλjφj, i.e., spantφ1, . . . , φNu is invariant

to Kt 2. Then, consider the non-linear decoder as one that simply takes the

2Budǐsić et al. (2012) showed that the set of eigenfunctions naturally forms an Abelian semigroup
under pointwise products.
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2nj ` 1-th root on φj, and one can recover y exactly. Finally, augmenting the

decoder with M´1 and the encoder with M, the neural network model can find

a spurious linear embedding, with eigenvalues as tp2n1`1qλ1, . . . , p2nN`1qλNu

rather than the desired tλ1, . . . , λNu, which is an over-complicated non-linear

reconstruction. It is trivial to generalize the above thought experiment to cases

where eigenvalues are complex for a real-input-real-output neural network to

accommodate. On the other hand, since most often the neural network is ini-

tialized with small weights near zero, the effect of the non-linear encoder and

decoder can be small initially compared to the DMD part. Thus, if the system

can be exactly represented by DMD, the optimization for the embedded archi-

tecture is initialized near the desired minimum. We note that this could lead

to attenuation of the spurious modes due to the non-linear reconstruction for

essentially linear dynamics.3

The neural network architecture for the differential form is shown in fig. 5.2,

and for the recurrent form in fig. 5.3. Note that, if the non-linear part, i.e., the

Figure 5.2:
Sketch of the framework of learning a continuous-time Koopman operator
in the differential form.

feedforward neural network is not activated, the above formulation reverts to an over-

parameterized SVD-DMD. Specifically, the recurrent form model with neural network

deactivated can be viewed as a simplified version of optimized DMD (Askham and

Kutz , 2018; Chen et al., 2012).

3It has to be mentioned that that such an issue could exist also in cases where DMD is not
desired.
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Figure 5.3:
Sketch of the framework of learning a continuous-time Koopman operator
in the recurrent form.

5.5 Implementation

The framework is built using Tensorflow (Abadi et al., 2016). Neural network

parameters WΦ,WΨ, are initialized with the standard truncated normal distribu-

tion. K is initialized with the corresponding DMD approximation. The objective

function is optimized using Adam (Kingma and Ba, 2014), which is an adaptive first

order stochastic optimization method using gradient updates scaled by square roots

of exponential moving averages of previous squared gradients. Note that we also

include weight decay regularization, Lreg “ ‖WΦ‖2
` ‖WΨ‖2, in the objective func-

tion, to avoid spurious oscillations in the learned Koopman functions, which helps

generalization in an interpolation sense (Goodfellow et al., 2016).
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5.6 Probabilistic formulation

5.6.1 Bayesian neural networks

A Bayesian formalism is adopted to quantify the impact of several sources of

uncertainty in model construction on the model predictions. Bayes’ rule is

P pΘ|Dq “ P pD|ΘqP pΘq
P pDq

ðñ Posterior “
Likelihoodˆ Prior

Evidence
, (5.18)

where D is data, and Θ is the set of parameters. For simplicity, P represents the

probability density function (PDF) on the measure space generated by the data and

parameters. From a traditional Bayesian standpoint, as the number of parameters

in the neural network is large, it is impossible for common inference tools such as

Markov Chain Monte Carlo (MCMC) to be practical. To overcome the curse of di-

mensionality, several general approaches such as Laplacian approximation (Denker

and Lecun, 1991) and variational inference (Kucukelbir et al., 2017; Blundell et al.,

2015) have been proposed. The former is computationally economical but has two

major limitations: First, computing the full Hessian is impossible and expensive for

a high dimensional problem and most often approximations such as J JJ , where J

is the Jacobian are employed MacKay (1992). Second, it only provides a local ap-

proximation, which can often be far removed from the true posterior. Variational

inference has become popular in the deep learning community as it offers an informed

balance between the computationally expensive MCMC method, and the cheap but

less descriptive models such as the Laplacian approximation. Historically, variational

inference for neural networks (Hinton and Van Camp, 1993) has been difficult (Neal ,

2012) to formulate, largely due to the difficulty of deriving analytical solutions to

the required integrals over the variational posteriors (Graves , 2011) even for sim-

ple network structures. Graves (2011) proposed a stochastic method for variational

inference with a diagonal Gaussian posterior that can be applied to almost any dif-
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ferentiable log-loss parametric model, including neural networks. However, there is

always a trade-off between the complexity of the posterior and scalability and ro-

bustness (Zhang et al., 2018). In this work, we adopt the mean-field variational

inference (Kucukelbir et al., 2017).

5.6.2 Mean-field variational inference

As illustrated in the left figure of fig. 5.4, the key idea in variational inference (Blei

et al., 2017) is to recast Bayesian inference as an optimization problem by searching

the best parameterized probability density function qpΘ; ξ̂q in a family of approximat-

ing densities, namely the variational posterior, tqpΘ; ξq|ξ P Ξu, such that it is closest

to the true posterior P pΘ|Dq. Most often, the Kullback–Leibler (KL) divergence

is employed to measure the distance, which is defined as KLpqpΘ; ξq}P pΘ|Dqq “
ş

Ω
qpΘ; ξq log qpΘ;ξq

P pΘ|DqdΘ “ EqpΘ;ξq

“

log qpΘ; ξqP pΘ|Dq
‰

, where Ω is the support of

qpΘ; ξq. This implies supppqpΘ; ξqq Ď supppP pΘ|Dqq. Further, we assume supppP pΘ|Dqq “

supppP pΘqq. Ξ is the domain of ξ, depending on the parameterization and family of

approximating densities.

However, direct computation of the KL divergence is intractable, since we do not

have access to logP pDq. Instead, we choose an alternative, the evidence lower bound

(ELBO), i.e., the negative KL divergence plus logP pDq, in eq. (5.19) to be maximized.

Lelbopξq “ EqpΘ;ξq

“

logP pD,Θq
‰

´ EqpΘ;ξq

“

qpΘ; ξq
‰

. (5.19)

To maximize the ELBO, we leverage automatic differentiation from Tensorflow

to compute the gradients with respect to ξ, following the framework of Automatic

Differentiation Variational Inference (ADVI) (Kucukelbir et al., 2017) where Gaussian

distributions are considered as the variational family. Specifically, we employ the
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mean-field assumption in eq. (5.20) such that,

qpΘ; ξq “
Z
ź

j“1

qpθj; ξjq, (5.20)

where Z is the total number of parameters. For j “ 1, . . . , Z, θj is the j-th pa-

rameter as random variable, and ξj is the corresponding variational parameter that

describes the distribution. This is particularly convenient for neural network mod-

els constructed in Tensorflow since weights and biases are naturally defined on some

real coordinate space. If the support of the parameter distribution is restricted, one

can simply consider a one-to-one differentiable coordinate transformation ΥpΘq “ Z,

such that Z is not restricted in some real coordinate space, and posit a Gaussian

distribution on Z. Note that this naturally induces non-Gaussian distribution. Here,

we employ the ADVI functionality in Edward (Tran et al., 2016), which is built upon

Tensorflow to implement ADVI. Interested readers should refer to the original paper

of ADVI (Kucukelbir et al., 2017) for the specific details of implementing mean-field

variational inference including the usage of the reparameterization-trick to compute

the gradients. In contrast, note that the maximum a posteriori (MAP) estimation of

the posterior can be cast as a regularized deterministic model as illustrated in fig. 5.4.

Since weight decay is employed in previous deep learning models (Otto and Rowley ,

2019a; Lusch et al., 2018a) to learn the Koopman decomposition, one can show that

the previous model is essentially a MAP estimation of the corresponding posterior.

Note that the mean-field Gaussian assumption is still simplified, yet effective and

scalable for deep neural nets (Blundell et al., 2015). It is interesting to note that sev-

eral recent works (Zhu and Zabaras , 2018; Zhu et al., 2019) leverage Stein Variational

Gradient Descent (SVGD) (Liu and Wang , 2016), a non-parametric, particle-based

inference method, which is able to capture multi-modal posteriors. Robustness and

scalability to high dimensions, e.g., deep neural nets, is still an area of active re-
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Figure 5.4:
Left: illustration of variational inference. Right: difference between MAP
and variational inference.

search (Zhuo et al., 2017; Liu and Wang , 2018; Shi et al., 2018; Lu et al., 2019). We

provide further background on variational inference in appendix A.

5.6.3 Bayesian hierarchical model setup

Recall that we have the following parameters for the deep learning models intro-

duced in section 2.5.2.1 and section 2.5.2.2: 1) weights and biases for the “encoder”,

WΦ, 2) weights and biases for the “decoder”, WΨ, and 3) stabilized K with ζ1, . . . , ζD

and σ1, . . . , σD. Based on mean-field assumptions, we just need to prescribe the prior

and variational posterior for each parameter. For each weight and bias, we posit a

Gaussian prior with zero mean, with the scaling associated with each parameter to

follow the recommended half–Cauchy distribution (Gelman, 2004; Polson and Scott ,

2012), which has zero mean and scale as 1 (empirical). The variational posterior

for each weight and bias is Gaussian, and Log-normal for scale parameters. For the

off-diagonal part of K, ζi, we posit the same type of Gaussian prior as before with

the scale parameter following a hierarchical model for each i “ 1, . . . , D. The corre-

sponding variational posterior for ζi is still Gaussian while log-normal for the scale

parameter. For the non-negative diagonal part of K, we posit a Gamma distribution

for each σ2
i , i “ 1, . . . , D, with rate parameter as 0.5 and shape parameter follow-

ing the previous half-Cauchy distribution. Variational posteriors for both σ2
i and its
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shape parameter are log-normal.

For the differential form in section 2.5.2.1, we set up the following likelihood

function4 based on Z-normalized data D “ tzm, 9zmuM´1
m“0 :

D|Θ „

M´1
ź

m“0

N

¨

˚

˝

»

—

–

ΨpΦpzm; WΦq; WΨq ´ zm

9zm ¨∇zΦpzm; WΦq ´Φpzm; WΦqKstable

fi

ffi

fl

;

»

—

–

0

0

fi

ffi

fl

,

»

—

–

Λrec

Λlin

fi

ffi

fl

˛

‹

‚

,

(5.21)

where Λrec,Λlin are diagonal covariance matrices with the prior of each diagonal

element following the previous half–Cauchy distribution. We also posit log-normals

to infer the posterior of Λrec,Λlin. We denote Θ as WΦ,WΨ, and associated scale

parameters together with Λrec, Λlin.

For the recurrent form in section 2.5.2.2, given normalized data,

D “ tttzm,juTmj“1u
M´1
m“0 , tttm,ju

Tm
j“1u

M´1
m“0 u, (5.22)

we consider the following likelihood, 5:

D|Θ „

M
ź

m“1

Tm
ź

j“1

N

¨

˚

˝

»

—

–

ΨpΦpzm,1; WΦqe
tm,jKstable ; WΨq ´ zm,j

Φpzm,1; WΦqe
tm,jKstable ´Φpzm,j; WΦq

fi

ffi

fl

;

»

—

–

0

0

fi

ffi

fl

,

»

—

–

Λrec

Λlin

fi

ffi

fl

˛

‹

‚

.

(5.23)

5.6.4 Propagation of uncertainties

Given data D and the inferred posterior P pΘ|Dq, assuming a noise-free initial

condition z0, we are interested in future state predictions with uncertainties. For the

4Note that independence between the data and the structure of the aleatoric uncertainty is
assumed. Such an assumption correlates well with existing deterministic models based on mean-
square-error.

5Alternative likelihoods can be chosen to account for the variation of aleatoric noise in time,
which is well-suited for short-horizon forecasting. However, we are more interested in a free-run
situation where only the initial condition is given.
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differential form in eq. (5.21), we have

P pzptq|z0,Dq “
ż

P pzt|WΦ,D, z0qP pWΦ|DqqdWΦ, (5.24)

“

ż

P pzt|Φpz0; WΦq,WΦ,D, z0qP pWΦ|DqqdWΦ,

“

ĳ

P pzt|Φptq,WΦ,D, z0qP pΦptq|Φpz0; WΦq,WΦ,D, z0qP pWΦ|DqqdΦptqdWΦ,

“

¡

P pzt|WΨ,ΦptqqP pΦptq|Φpz0; WΦqqP pWΦ|DqqP pWΨ|DqdΦptqdWΨdWΦ,

“

żżżżĳ

P pzt|Λrec,WΨ,ΦptqqP pΦptq|Λlin,K,Φpz0; WΦqqP pWΦ|DqqP pK|Dq

P pWΨ|DqP pΛlin|DqP pΛrec|DqdΛlindΛrecdΦptqdWΨdWΦdK.

However, P pΦptq|K,Φpz0; WΦqq is unknown because the differential form does not

use trajectory information. If we assume multivariate Gaussian white noise with the

same covariance in the linear loss Λlin, then one can forward propagate the aleatoric

uncertainty associated with the likelihood function of the linear loss. Then one im-

mediately recognizes that the continuous-time random process of Φptq becomes a

multivariate Ornstein–Uhlenbeck process,

dΦJ
ptq “ KJΦJ

ptqdt`Λ
1{2
lindBptq, (5.25)

where Bptq is a D-dimensional Gaussian white noise vector with unit variance. Note

that (Ross et al., 1996)

Φptq|z0,Λlin,WΦ,K „ N pΦpz0; WΦqe
tK,

ż t

0

esKΛline
sKJdsq, (5.26)

where
şt

0
esKΛline

sKJds “ vec´1p´pK ‘Kq´1pI ´ etpK‘KqqvecpΛlinqq. vecp¨q is the

stack operator, and ‘ is the Kronecker sum (Meucci , 2009).

It is interesting to note that, since K is restricted by eq. (5.6) and does not contain

any eigenvalues with positive real part, the variance in eq. (5.26) will not diverge in
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finite time. One can thus simply draw samples of Φptq from eq. (5.26). Thus, we

approximate eq. (5.24) with Monte Carlo sampling from the corresponding variational

posterior,

P pzptq|z0,Dq «
1

NmcMmc

Nmc
ÿ

i“1

Mmc
ÿ

j“1

P pzt|Λ
piq
lin,Λ

piq
rec,W

piq
Φ ,K

piq,W
piq
Ψ ,Φ

pjq
ptq, z0q,

(5.27)

where the superscript with parentheses represents the index of samples, Nmc, Mmc

are the number of samples corresponding to variational posteriors and the Ornstein–

Uhlenbeck process.

For the recurrent form in eq. (5.23), the posterior predictive distribution of zptq

given the initial condition is straightforward:

P pzptq|z0,Dq “
żżżż

P pzptq|Λrec,K,WΨ,WΦ, z0qP pWΦ|DqP pWΨ|DqP pK|Dq

(5.28)

P pΛrec|DqdWΨdΛrecdKdWΦ,

«
1

Nmc

Nmc
ÿ

i“1

P pzptq|Λpiq
rec,K

piq,W
piq
Ψ ,W

piq
Φ , z0q.

5.7 Discussion: Role of lifting and linear reconstruction for

system with multiple attractors

Brunton et al. (2016a) pointed out that no system with multiple fixed points can

admit a finite-dimensional Koopman invariant subspace containing the state variables

explicitly. It is tempting to believe that for a system with multiple fixed points, it will

be impossible to find a finite-dimensional Koopman invariant subspace to recover the

state variables via linear reconstruction. However, many data-driven studies (Li et al.,

2017; Otto and Rowley , 2019a; Williams et al., 2015) have shown success with linear

reconstruction for the above Duffing problem. Surprisingly, Otto and Rowley (2019a)
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found that linear reconstruction generalizes better than non-linear reconstruction for

the Duffing case. Therefore, there appears to be a contradiction between the common

knowledge in the dynamical system and is observed empirically.

Here, we provide an explanation hoping to shed light on the above dilemma. Otto

and Rowley (2019a) empirically found that in the Duffing system, lifting the two-

dimensional state into a three-dimensional space, leads to an interesting non-trivial

Koopman eigenfunction with a “trivial” Koopman eigenvalue, i.e., zero, acting as

an indicator to distinguish different attractors. The idea of partitioning the invariant

sets by such Koopman eigenfunctions has been reported before for measure-preserving

systems and hybrid systems (Govindarajan et al., 2016; Mezić and Wiggins , 1999).

As shown in fig. 5.5, the third “indicator” Koopman eigenfunction shows that the

neural network has learned how to differentiate the basins of attraction, i.e., initial

conditions that would lead to different long-term behavior, by letting them evolve on

“parallel” subspaces.

Figure 5.5:
Illustration of lifting a two-dimensional Duffing oscillator into three-
dimensional space. Note that the observables φ1, φ2, φ3 in the figure is
only for the ease of illustration since it is just one of the acceptable ob-
servables rather than the one we obtained in the actual training.

We then consider the two following assumptions:

1. For the system in eq. (5.1), there are J attractors on M, J P N. Moreover, for
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j “ 1, . . . , J , the union of disjoint basins of attraction is Σ “
ŤJ
j“1 Sj Ă M

where Sj ĂM, is full measure6.

2. For j “ 1, . . . , J , within j-th basin of attraction, one can always find a finite-

dimensional Koopman invariant subspace from real functions7, i.e., rFDj “

spantrφj,1, . . . , rφj,Dju, with Dj ě n, that spans the centered state variable rx “

x´ bj locally in Sj,

@x P Sj,
Dj
ÿ

l“1

wj,l
Ăφj,lprxq “ rx. (5.29)

Equivalently in the uncentered coordinate space, for j-th basin of attraction,

with φj,lpxq “ Ăφj,lpx ´ bjq, one has FDj “ spantφj,1, . . . , φj,Dju , that linearly

reconstructs the state variable x,

@x P Sj, bj `

Dj
ÿ

l“1

wj,lφj,lpxq “ x, (5.30)

where bj is some constant vector associated to the attractor, e.g., fixed point

location, and wj,l P Rnˆ1 and rankp

„

wj,1 . . . wj,Dj



q “ n.

Now consider the following observable vector Φ in FD, where D “ J `
řJ
j“1Dj,

Φ “

„

χS1 χS1φ1,1 . . . χS1φ1,D1 . . . χSJ χSJφJ,1 . . . χSJφJ,DJ



, (5.31)

where χSpxq :M ÞÑ t0, 1u is the indicator function defined as,

χSpxq “

$

’

’

&

’

’

%

1, if x P S,

0, otherwise.

(5.32)

6Clearly, not all continuous dynamical systems belong to such a category. An alternative par-
titioning for a measure-preserving continuous system is the ergodic partition (Mezić and Wiggins,
1999). Due to Birkhoff’s pointwise ergodic theorem, one can guarantee that such partitions can
cover almost the entire manifold.

7We restricted to real functions due to the its popularity in deep learning.
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Note that χSj is also invariant to Kt.

Then we can find a linear combination of each component of Φ, namely px “

řJ
j“1 χSjpbj `

řDj
l“1 wj,lφj,lq, such that it approximates the state variable x almost

everywhere,

‖x´ px‖2
F “

∥∥∥∥x´
J
ÿ

j“1

χSjpbj `

Dj
ÿ

l“1

wj,lφj,lq

∥∥∥∥2

F
“

ż

M

∥∥∥∥x´
J
ÿ

j“1

χSjpbj `

Dj
ÿ

l“1

wj,lφj,lq

∥∥∥∥2

dµ

(5.33)

“
ÿ

k“1

ż

Sk

∥∥∥∥x´ bj ´

Dj
ÿ

l“1

wk,lφk,l

∥∥∥∥2

dµ “ 0.

Back to the apparent dilemma, although it is impossible to find a finite-dimensional

Koopman invariant subspace that globally spans the state, as indicated by both nu-

merical experiments (Otto and Rowley , 2019a; Li et al., 2017) and analysis above, it

is possible in a weak sense, i.e., to span the state with respect to some measure µ.

This finding is also one of the motivations that motivated us to formulate the problem

of searching for the Koopman operator in the measure theoretical framework.

Given the above reasoning, one might still be surprised by the phenomena that

linear reconstruction outperforms non-linear reconstruction for the Duffing case (Otto

and Rowley , 2019a), since there are two attractors but only requires three observables.

Indeed, for the Duffing problem, with mild assumptions, we explicitly show that one

only needs three Koopman observables with linear reconstruction due to the inherent

symmetry around the origin between the two basins of attraction.

Denoting the two basins of attraction as S1,2, assume we can find a two dimensional

(for centered attractor) Koopman invariant subspace on just one of the basins of

attraction, say S1. Note that for convenience, we consider the uncentered attractor for

S1 so it would be a three-dimensional Koopman invariant subspace spant1, φ1,1, φ1,2u

defined on S1. Moreover, we also assume such a Koopman invariant subspace spans

the state variable within S1, i.e., Dw1,1,w1,2,b1 P R2ˆ1 such that x “ w1,1φ1,1 `
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w1,2φ1,2 ` b1.

Then, consider the following extensions with three observables φ1, φ2, φ3 defined

on M where S1

Ť

S2 is full measure,

φ1 “

$

’

’

&

’

’

%

p2χS1 ´ 1qφ1,1 ˝ p2χS1 ´ 1q, if x P S1

Ť

S2,

0, otherwise.

, (5.34)

φ2 “

$

’

’

&

’

’

%

p2χS1 ´ 1qφ1,2 ˝ p2χS1 ´ 1q if x P S1

Ť

S2,

0, otherwise.

, (5.35)

φ3 “

$

’

’

&

’

’

%

2χS1 ´ 1, if x P S1

Ť

S2,

0, otherwise.

. (5.36)

Our goal is to show that when the observables t1, φ1,1, φ1,2u are extended from S1

to M as φ1, φ2, φ3 in the above, the corresponding subspace is still invariant to Kt

and such a Koopman invariant subspace spans the state variable in a weak sense, as

discussed before. When x P S1, 2χS1pxq´1 “ 1, we have φ1 “ φ1,1, φ2 “ φ1,2, φ3 “ 1,

of which the subspace is still invariant to Kt by assumption (since it is restricted on

S1). Thus @t P R`, @φ P spantφ1,1, φ1,2, 1u, we have

Kt|S1φ P spantφ1,1, φ1,2, 1u. (5.37)

Moreover, we have by assumption,

x “ w1,1φ1,1 `w1,2φ1,2 ` b1 “ w1,1φ1 `w1,2φ2 ` φ3b1. (5.38)

Now let us consider the case for x P S2. Given eqs. (5.34) to (5.36) we have

φ1pxq “ ´φ1,1p´xq, φ2pxq “ ´φ1,2p´xq, φ3pxq “ ´1. Also, due to symmetry, we
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have @x P S2, ´x P S1. Then, we have

w1,1φ1`w1,2φ2`φ3b1 “ ´pw1,1φ1,1p´xq`w1,2φ1,2p´xq`b1q “ ´p´xq “ x. (5.39)

Next, consider any x P S2, @φ P spantφ1, φ2, φ3u, we have φ “
ř3
i“1 αiφi, αi P R,

Kt|S2φpxq “
3
ÿ

i“1

αiφipSpx, tqq “ ´pα1φ1,1p´Spx, tqq ` α2φ1,2p´Spx, tqq ` α3q, (5.40)

“ ´pα1φ1,1pSp´x, tqq ` α2φ1,2pSp´x, tqq ` α3q,

“ ´Kt|S1φp´xq,

where the property of symmetry with respect to the origin is used: for any initial

condition x P S1

Ť

S2, with the corresponding flow map Sp¨, tq for the Duffing system,

one can have @t P R`, ´Spx, tq “ Sp´x, tq. From eq. (5.37), @x1 P S1, for such φ, we

have Kt|S1φ “ α1φ1,1pSpx
1, tqq`α2φ1,2pSpx

1, tqq`α3 “ β1φ1,1px
1q`β2φ1,2px

1q`β3 for

some βi P R. Thus, take x1 “ ´x, for any x P S2, we have

Kt|S2φpxq “ β1p´φ1,1p´xqq ` β2p´φ1,2p´xqq ´ β3, (5.41)

“ β1φ1pxq ` β2φ2pxq ` β3φ3pxq P spant´φ1,1p´xq,´φ1,2p´xq,´1u.

Therefore, the subspace spanned by the set of observables in eqs. (5.34) to (5.36)

is invariant to Kt while the case when x R S1

Ť

S2 is trivially satisfied as well. Last,

notice eqs. (5.38) and (5.39) and the fact that S1

Ť

S2 is full measure, we have

‖w1,1φ1 `w1,2φ2 ` b1φ3 ´ x‖F “ 0. (5.42)

Thus, with mild assumptions, we have shown that one can search for three ob-

servables to construct a finite-dimensional Koopman invariant subspace while spans

the state variable including the bias, in a weak sense. In the specific case of the Duff-
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ing oscillator, linear reconstruction exploits the inherent symmetry in the dynamical

system and leads to fewer parameters.

However, it must be noted that we do not imply that eqs. (5.34) to (5.36) are the

observables learned by a neural network in reality, especially the non–smooth “cliff”

function in eq. (5.36). Rather, we surmise that as long as the third observable contains

enough information for the decoder to differentiate the two basins of attraction, two

attractors can be accommodated.

5.8 Applications: Modal Analysis and ROM

To demonstrate and analyze the approaches presented herein, three numerical

examples are pursued for modal analysis and non-intrusive ROMs.

5.8.1 2D fixed point attractor

Consider the two-dimensional non-linear dynamical system (Lusch et al., 2018a)

with a fixed point,

9x1 “ µx1,

9x2 “ λpx2 ´ x
2
1q,

where µ “ ´0.05, λ “ ´1. For this low dimensional system with known governing

equations, we consider the differential form in section 2.5.2.1, with 1600 states as train-

ing samples, sampled from r´0.5, 0.5s using the standard Latin-Hypercube-Sampling

method (McKay et al., 1979) for both x1 and x2. The embedding of SVD-DMD is

not employed in this case since it is not very meaningful. The hyperparameters for

training are given in table 5.2.

After we obtained the inferred posterior, we consider Monte Carlo sampling de-

scribed in section 5.6.4 with Nmc “ 100, Mmc “ 10 to approximate the posterior
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Table 5.2: Hyperparameters of differential form model for 2D fixed point attractor.
layer structure optimizer learning rate total epoch batch size

2-8-16-16-8-2-8-16-16-8-2 Adam 1e-4 20000 128

distribution of the Koopman observables and prediction on the dynamical system

given an initial condition x0. The mean Koopman eigenvalues are λ1 “ ´0.99656

and λ2 “ ´0.05049, and the amplitude and phase angle for the mean eigenfunc-

tions are shown in section 5.8.1, which resembles the analytic solution with ϕ1 “

x2 ´ λx
2
1{pλ´ 2µq, ϕ2 “ x1.

Figure 5.6:
2D fixed point attractor: mean of the variational posterior of learned
Koopman eigenfunctions in differential form. Top left: mean of the am-
plitude of Koopman eigenfunction corresponding to λ1. Top right: mean
of the amplitude of Koopman eigenfunction corresponding to λ2. Bottom
left: mean of the phase angle of Koopman eigenfunction corresponding
to λ1. Bottom right: mean of the phase angle of Koopman eigenfunction
corresponding to λ2.

Finally, since we have a learned a distribution over the Koopman operator, we can

obtain the posterior distribution of the predicted dynamics, given an arbitrary unseen
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initial condition following section 5.6.4, for example, at x0 “ p0.4,´0.4q. The effect

of the number of data samples M on the confidence of the predicted dynamics can be

seen in section 5.8.1. Clearly, as more data is collected in the region of interest, the

propagated uncertainty of the evolution of the dynamics predicted on the testing data

decreases as expected. It is interesting to note that, even when the data is halved, the

standard deviation of the Koopman eigenvalue is very small compared to the mean.

Figure 5.7:
2D fixed point attractor case: Monte Carlo sampling of the predicted
trajectory with x0 “ r0.4,´0.4s. Left: 800 (50% of) original data points.
Middle: original 1600 data points. Right: 10000 data points.

5.8.2 2D unforced duffing oscillator

Next, we consider the unforced duffing system:

9x1 “ x2,

9x2 “ ´δx2 ´ x1pβ ` αx
2
1q,

where δ “ 0.5, β “ ´1, α “ 1. We use 10000 samples of the state x distributed

on x1, x2 P r´2, 2s from Latin-Hypercube-Sampling. We infer the posterior using

the differential form model in section 2.5.2.1, with the following hyperparameters in

table 5.3.
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Table 5.3: Hyperparameters of differential form model for unforced Duffing system.

layer structure optimizer learning rate total epoch batch size

2-16-16-24-16-16-3-16-16-24-16-16-2 Adam 1e-3 20000 128

To assess the uncertainty in the Koopman eigenfunctions, we draw 100 samples

from the variational posterior of WΦ and K. First, the mean of the non-trivial Koop-

man eigenvalues are λ1,2 “ ´0.535 ˘ 0.750i and the mean of the third eigenvalue is

λ3 “ ´2ˆ10´5. The mean of the module and phase angle of the Koopman eigenfunc-

tions is shown in fig. 5.8. The results are similar to Ref. (Otto and Rowley , 2019a)

in which a deterministic model is employed. The Koopman eigenfunction associated

with λ3 acts as an indicator of the basin of attraction. Second, to better visual-

ize the effect of uncertainty on unseen data, we normalize the standard deviation of

the module of Koopman eigfunctions by the minimal standard deviation over r´4, 4s.

fig. 5.8 shows a uniformly distributed standard deviation within r´2, 2sˆr´2, 2s where

sampling data is distributed, and a drastic increase outside that training region as

expected. Note that the area where the normalized standard deviation is larger than

ten is cropped.

To obtain the posterior distribution of the evolution of the dynamics predicted by

the Koopman operator, we arbitrarily choose an initial condition within the range of

training data as xp0q “ r1.2, 1.2s. Note that we did not input the model with any

trajectory data other than the state and the corresponding time derivative obtained

from the governing equation. With Monte Carlo sampling, we obtain the distribution

of the trajectory in fig. 5.8. Note that the uncertainty is quite small since it is within

the training data region with enough data.
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Figure 5.8:
2D unforced Duffing oscillator system case: mean of Koopman observables
and predicted trajectory from the differential form model. Top left: mean
of the amplitude of Koopman eigenfunction associated with λ1,2. Top
middle: mean of the phase angle of Koopman eigenfunction associated
with λ1,2. Top right: mean of the amplitude of Koopman eigenfunction
associated with λ3. Bottom left: Monte Carlo sampling of the predicted
trajectory with initial condition x0 “ r1.2, 1.2s. Bottom right: contour of
the normalized standard deviation over x1, x2 P r´4, 4s where the black
square represents the boundary of training data.
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5.8.3 Transient flow wake behind a cylinder

We consider the velocity field of a two-dimensional laminar flow past a cylinder in

a transient regime at a Reynolds number ReD “ U8D{ν “ 100 , which is above 47,

the critical Reynolds number associated with Hopf bifurcation. U8 is the freestream

velocity, D is the cylinder diameter, and ν is the kinematic viscosity. The transient

regime is rather difficult due to the high non-linearity of post-Hopf-bifurcation dy-

namics between unstable equilibrium and the limit cycle (Chen et al., 2012). Data is

generated by solving the two-dimensional incompressible Navier–Stokes equations us-

ing OpenFOAM (Jasak et al., 2007). Grid convergence was verified using a sequence

of successively refined meshes.

The initial condition is a uniform flow with the freestream velocity superimposed

with standard Gaussian random noise and with pressure initialized with Gaussian

random noise. Although this initial condition is a rough approximation to the devel-

opment of true instabilities from equilibrium (Chen et al., 2012), the flow is observed

to converge to a quasi-steady solution after a few steps rapidly, and then starts to

oscillate and form a long separation bubble with two counter-rotating vortices. The

first 50 POD snapshots of velocity are considered with the kinetic energy captured up

to 99%. We sample 1245 snapshots of data on the trajectory starting from the unsta-

ble equilibrium point to the vortex shedding attractor with ∆t “ 0.1tref “ 0.1D{U8

where the characteristic advection time scale tref “ D{U8 “ 2 sec. The first 600

snapshots are considered as training data, i.e., 0 ď t ď 60tref .

To further analyze the robustness of the model to noisy data, Gaussian white noise

is added 8 to the temporal data of POD coefficients by considering a fixed signal-to-

noise ratio as 5%, 10%, 20%, 30%, for each component at each time instance. The

model performance is evaluated by predicting the entire trajectory with the (noisy)

8Note that noise was not added to the original flow field since taking the dominant POD modes
on the flow field would contribute to de-noising.
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Table 5.4:
Hyperparameters of recurrent form model for flow past cylinder at ReD “
100.

layer structure optimizer learning rate total epoch batch size T

50-100-50-20-20-20-50-100-50 Adam 1e-3 20000 64 100

initial condition given, including the remaining 645 snapshots. We consider the re-

current form model described in section 2.5.2.2 together with SVD-DMD described in

section 5.4.0.2 with the corresponding hyperparameters given in table 5.4. Note that

we consider 20 intrinsic modes, i.e., at most ten distinct frequencies can be captured,

which are empirically chosen. Also, the finite-horizon window length corresponding

to T “ 100 is 10tref , which is much less than the time required for the system to

transit from unstable equilibrium to the attractor.

The continuous-time Koopman eigenvalue distribution of 20 modes for the training

data with five different signal-to-noise ratios is shown in fig. 5.9. First, all Koopman

eigenvalues are stable according to the stable parameterization of K in eq. (5.6).

Second, when noise is added, the eigenvalues are seen to deviate except the one on the

imaginary axis with λ “ ˘0.528j, which corresponds to the dominant vortex shedding

frequency on the limiting cycle with St “ λD{p2πU8q “ 0.168. This exercise verifies

the robustness of the present approach to Gaussian noise.

Recall that we have a posterior distribution of the predicted trajectory of POD

components for with five different noise ratios. Monte Carlo sampling of the poste-

rior distribution is shown for the noisy training data in fig. 5.10. Clearly, uncertainty

from the data due to the Gaussian white noise is well characterized by the ensemble of

Monte Carlo sampling on the distribution. As a side comparison, we also performed

vanilla LSTM-RNN with 20 look-back length (Hochreiter and Schmidhuber , 1997)

with Keras on clean and the noisiest case with 30% signal-to-noise ratio with ex-

actly the same setup. The structure contains two LSTM layers with 100-dimensional

sequential output units, one LSTM layer 100-dimensional units, and one Dropout
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Figure 5.9:
Distribution of continuous-time Koopman eigenvalues for fixed signal-to-
noise ratio from 5%, 10%, 20%, 30%.

layer (Srivastava et al., 2014) with a linear output layer. We used Adam optimizer

with the default setting. We randomly choose 5% data as validation. We stopped

batched optimization when it becomes to overfit (i.e., fitting all the noisy data). The

results are displayed in the last two rows of fig. 5.10.

In the noiseless case (sixth row in fig. 5.10), we observe that LSTM-RNN can cap-

ture the amplitude of the limit cycle as accurate as our model but failed to capture

the phase accurately. This might be caused by the lack of multi-step ahead predic-

tions in the loss function of the vanilla LSTM-RNN since the current LSTM-RNN

only considers look-back, i.e., history information, with one-step-ahead prediction.

Meanwhile, note that even a kernel DMD (one-step state prediction, and no look

back) can learn the same dynamics of cylinder flows (noiseless) back in section 4.4.2

very accurately.

In the noisiest case (seventh row in fig. 5.10), it is clear that the current LSTM-

RNN model slightly under-predicted the amplitude of the limit cycle and failed to

capture the phase of the dynamics significantly. Therefore, we can conclude that
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vanilla LSTM-RNN is more sensitive to the noise in the data than our framework.

To further analyze the effect of the difference between the mean of the posterior

distribution of the prediction and the ground truth clean trajectory on the flow field,

we show the (projected) mean and standard deviation of the predicted POD coeffi-

cients at t “ 100tref , in fig. 5.11 and fig. 5.12. As seen in fig. 5.11, there is hardly any

difference between the mean of the posterior distribution and the ground truth. The

contour of standard deviation projected onto the flow field shows a similar pattern

to the vortex shedding, and the standard deviation near the wake region is relatively

small compared to other domains in the flow field.

Figure 5.10:
Comparison between Monte Carlo sampled distribution of predicted tra-
jectory (Red) and the noisy training data (Black) for signal-to-noise ratio
from top to bottom except last two rows as 0% 5%, 10%, 20%, 30%. Bot-
tom two rows: Prediction from vanilla LSTM-RNN with 0% and 30%
signal-to-noise ratio, respectively. Left: first POD coefficient. Right:
rest 49 POD coefficients.
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Figure 5.11:
Contours of velocity magnitude at t “ 100tref . Top left: flowfield pro-
jected from the true dominant 50 POD coefficients. Top right: flowfield
projected from the 50 POD coefficients of the mean of posterior distri-
bution with clean data. Middle left and right, bottom left and right
correspond to noisy training data with signal-to-noise ratio 5%, 10%,
20%, 30%, respectively.
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Figure 5.12:
Contours of standard deviation of velocity magnitude at t “ 100tref .
Top left and right, bottom left and right correspond to noisy training
data with signal-to-noise ratio 5%, 10%, 20%, 30% respectively.
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5.9 Applications: Data-driven Optimal Control for Non-linear

System

Given the following general n-dimensional control-affine dynamical system,

9x “ fpxq ` gpxqu, (5.43)

where gpxq P RnˆNI , NI is the number of independent input for the system, we are

interested in finding a full-state feedback control law upxq such that it minimizes the

following cost function, given initial condition x0 P Rn,

Jpu,x0q “

ż 8

0

`

xJQx` uJRu
˘

dt (5.44)

constrained by the system dynamics in eq. (5.43). For purely linear systems, the

optimal solution is provided by the linear quadratic regulator (LQR). For a non-

linear system, the standard approach (Khalil and Grizzle, 2002) starts with a linear

approximation of the system around the origin and then follows the LQR.

To leverage the Koopman operator for controlling non-linear systems, we fol-

low Kaiser’s idea of Koopman LQR control (Kaiser et al., 2017) by first learning a

Koopman decomposition for the autonomous system with our proposed deep learning

framework with linear reconstruction in section 5.4. Next, we formulate the optimal

control problem in the Koopman representation and apply state-dependent LQR to

approximate the optimal feedback control law.

1. Perform simulations of the non-linear system with a certain distribution of initial

condition X ,

xp0q fi x0 „ X (5.45)
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2. Learning a Koopman representation for the autonomous dynamics,

9x “ fpxq, xp0q “ x0, (5.46)

such that by lifting the system into a higher dimensional space with a set of

non-linear mapping

Φ : Rn
ÞÑ RNK (5.47)

we have

9Φ “ AΦ, x “ BΦ` x, (5.48)

where A P RNKˆNK , B P RnˆNK and x is a constant vector from the neural

network. Once we have the mapping Φ, the corresponding control-affine system

can be rewritten as

9Φ “ AΦ`∇xΦ ¨ gpxqu “ AΦ`Bupxqu (5.49)

3. Consider the original infinite horizon LQR problem for n-dimensional non-linear

system,

u˚ptq “ arg min
uptq

Jpu,x0q “ arg min
uptq

ż 8

0

`

xJQx` uJRu
˘

dt, (5.50)

“ arg min
uptq

ż 8

0

`

pBΦ` xqJQpBΦ` xq ` uJRu
˘

dt, (5.51)

“ arg min
uptq

ż 8

0

`

pBΦ´BΦp0qqJQpBΦ´BΦp0qq ` uJRu
˘

dt, (5.52)

“ arg min
uptq

ż 8

0

`

pΦ´Φp0qqJQΦpΦ´Φp0qq ` uJRu
˘

dt, (5.53)

which becomes an infinite horizon LQR problem for NK-dimensional linear sys-

tem with

QΦ “ BJQB, (5.54)

218



and a potentially non-linear control-affine input.

4. While eq. (5.49) is not the standard linear input system since the input is in-

troduced non-linearly. For such optimal control problem, we consider state-

dependent LQR algorithm (sub-optimal) which solves P in the state-dependent

Ricatti (SDRE) equation,

QΦ `PA`AJP´PBupxqR
´1BJ

u pxqP “ 0, (5.55)

then the we have the control feedback law as

u˚pxq “ ´R´1BJ
u pxqPpΦpxq ´Φp0qq. (5.56)

5.9.1 Stabilization of two dimensional non-linear system

Here we revisit the aforementioned toy example in section 5.8.1. However, here

we choose a set of parameters such that the non-linear system without actuation

would become unstable. To stabilize the non-linear system, we consider augmenting

the system with a linear actuation,

d

dt

»

—

–

x1

x2

fi

ffi

fl

“

»

—

–

µx1

λpx2 ´ x
2
1q

fi

ffi

fl

`Bu, (5.57)

where B “

»

—

–

1 0

0 1

fi

ffi

fl

and µ “ ´0.05, λ “ 1. Hence, x1 is naturally stable while x2 is

unstable. The origin is an unstable equilibrium. The optimal control is to stabilize

the system on the origin while the energy from the input is still minimized in some

sense.

The training data is prepared as 22,500 data pairs: txi, 9xiu
22500
i“1 which is sampled

by Latin hypercube sampler within r´10, 10s2. Note that no time integration on the
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Figure 5.13:
Comparison of three controllers with x0 “ r´8, 8s within training regime:
controlled trajectory in x1 and x2 phase plane.

system is performed. The layer structure of the feedforward neural network for the

encoder Φpxq is 2-64-64-64-3 while the decoder is a linear affine mapping. Swish

activation function is chosen, and Adam optimizer with learning rate 10´3 is used for

mini-batched stochastic optimization with batch size as 512.

We initiate the system at x0 “ r´8, 8s and consider Q “ R “

»

—

–

1 0

0 1

fi

ffi

fl

. In

addition, we also perform traditional linearized LQR control on the same problem.

As shown in fig. 5.13, Deep Koopman LQR converges to analytic Koopman LQR

perfectly. From fig. 5.14, comparing to traditional linearized LQR, Koopman LQR

achieves a factor of three reduction in J with 50% faster in the time required for

stabilization.

As a sanity check, we take the initial condition x0 close to the origin so that the

traditional linearization becomes a good approximation of the non-linear dynamics.

From fig. 5.15, the controlled system starting from x0 “ r0.1, 0.1s with Koopman LQR
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Figure 5.14:
Comparison of three controllers with x0 “ r´8, 8s within training regime:
cost functional vs time t

controller is very close to that from the linearized LQR controller. As a result, fig. 5.16

shows that three controllers share almost the same behavior of cost functional.

Next, we consider a more challenging testing problem with initial condition x0 “

r´20, 20s, which starts outside the training regime. As shown in figs. 5.17 and 5.18, a

factor of 7 reduction in J is achieved. Moreover, it is interesting to note that the cost

functional of Deep Koopman LQR is even slightly smaller than the analytic Koopman

LQR for the unseen regime.

Besides, we investigate the distribution of cost depending on the initial state x0

on the regime r´20, 20s2 which is twice as big as our training regime r´10, 10s2. As

shown in fig. 5.19, it is somewhat surprising that Deep Koopman LQR performs as

well as the analytic Koopman LQR far outside the training regime.
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Figure 5.15:
Comparison of three controllers with x0 “ r´0.1, 0.1s within training
regime: controlled trajectory in x1 and x2 phase plane.

Figure 5.16:
Comparison of three controllers with x0 “ r´0.1, 0.1s within training
regime: cost functional vs time t
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Figure 5.17:
Comparison of three controllers with x0 “ r´20, 20s within training
regime: controlled trajectory in x1 and x2 phase plane.

Figure 5.18:
Comparison of three controllers with x0 “ r´20, 20s within training
regime: cost functional vs time t
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Figure 5.19:
Distribution of cost J with respect to x0 for three different con-
trollers: linearized LQR, Deep Koopman LQR and Analytic Koopman
LQR (Kaiser et al., 2017). Red square: boundary of training regime.

5.10 Summary

In this chapter, a probabilistic, stabilized deep learning framework was presented

to extract the Koopman decomposition for continuous non-linear dynamical systems.

We formulated the deep learning problem from a measure-theoretic perspective with

a clear layout of all the assumptions. Two different forms: differential and recurrent,

suitable for different situations, were proposed and discussed. A parameterization

of the Koopman operator was proposed, with guaranteed stability. Further, a novel

deep learning architecture was devised such that the SVD-DMD (Schmid , 2010) is

naturally embedded. Finally, mean-field variational inference was used to quantify

uncertainty in the modeling. For evaluating the posterior distribution, Monte Carlo

sampling procedures corresponding to different forms were derived. Finally, the model

was evaluated on three continuous non-linear dynamical systems ranging from toy

polynomial problems to an unstable wake flow behind a cylinder, from three different

aspects: the uncertainty with respect to the density of data in the domain, unseen

data, and noise in the data. Meanwhile, vanilla LSTM-RNN is sensitive to the noise

in the data and performs worse than our framework. All in all, our results show that

the proposed model can capture the uncertainty in all the above cases and is robust

to noise.
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We also explain the mechanism for learning a Koopman operator with linear

reconstruction for a system with multiple fixed-point attractors. We analytically

show that one can exploit the inherent symmetry of the dynamical system to reduce

the number of Koopman observables.

Lastly, we show an application in data-driven non-linear optimal control on a sim-

ple problem. In this problem, the Koopman-based controller is shown to significantly

reduce the stabilization time and cost function compared to the linearization-based

LQR, and performs as well as the analytically-derived LQR even outside the training

region.
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CHAPTER VI

Conclusions, Perspectives and Future Work

6.1 Summary and Conclusions

In contrast to the more traditional geometric viewpoint of dynamical systems

analysis, Koopman analysis offers an operator-theoretic perspective by describing the

dynamics of observables of the system state. The appeal of the Koopman operator

lies in the possibility of finding intrinsic coordinates in which the dynamics is globally

linear. basin of attraction of the equilibrium point or periodic orbit. This dissertation

advances theoretical and computational aspects of the approximation of the Koop-

man operator using data-driven and physics-informed techniques. Applications are

presented in reduced-order modeling, modal analysis, and non-linear optimal control,

including problems that involve strong transients and chaotic behavior.

A comprehensive description of the state-of-the-art in data-driven approximation

of Koopman operators is presented in chapter II. Motivated by the following three

fundamental challenges,

1. Theoretical and quantitative interpretation on the delay structure in the time-

delayed dynamic mode decomposition,

2. Interpretable and sparse algorithms for non-linear approximation of Koopman

operators (which is critical for the strongly non-linear process),
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3. Uncertainty quantification and stability guarantees for Koopman operators for

physically realizable non-linear systems,

the major contributions were presented in chapter III, chapter IV, and chapter V,

respectively.

Chapter III provides a rigorous theoretical analysis of the structure and numer-

ical conditioning of delay embedding in time-delayed dynamic mode decomposition

(TD-DMD) for dynamics on a periodic attractor. We explicitly show that the mini-

mal number of time delays is associated with the sparsity in the Fourier spectrum for

scalar dynamical systems. For the vector case, we provide a rank test and a geometric

interpretation for the necessary and sufficient conditions for the existence of an accu-

rate linear time-delayed model. Additionally, the explicit exact solution for TD-DMD

in the spectral domain is provided for the first time. From a numerical perspective,

the effects of the sampling rate and the number of time delays on numerical condi-

tioning are further examined. An upper bound on the condition number is derived,

with the implication that conditioning can be improved with additional time delays

or decreasing sampling rates. Moreover, it is explicitly shown that the underlying dy-

namics can be accurately recovered using only a partial period of the attractor, and

the underlying reason is identified. Our analysis is first validated in simple periodic

and quasi-periodic systems, and sensitivity to noise is also investigated. Finally, issues

and practical strategies of choosing time delays in large-scale chaotic systems are dis-

cussed and successfully demonstrated on 3D turbulent Rayleigh-Bénard convection.

Lastly, we demonstrate the competitive performance of TD-DMD with control (TD-

DMDc) on reduced-order modeling of a highly chaotic 2D combustion process against

the well-known operator-inference framework. A key benefit of the TD-DMD is that

a stable ROM can be guaranteed by removing unstable modes. This is not the case

in state of the art techniques such as Operator Inference or LSTM-RNN.

Chapter IV presents a model-agnostic sparsity-promoting framework for extract-
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ing an accurate and informative Koopman invariant subspace from data. This frame-

work is based on a) multi-task feature learning to extract the most informative Koop-

man invariant subspace, and b) pruning spurious Koopman triplets that do not evolve

linearly above a certain threshold. We analytically showed an elegant relationship be-

tween empirical energy-based criterion, spDMD, and our framework through the lens

of non-convex optimization, under the assumption of using linear observables, which

is the most well-known simplification on Koopman operator of fluid dynamics. As a

demonstration, our framework successfully extracts the exact Koopman decomposi-

tion on a simple two state non-linear dynamical system. If one is only interested in the

post-transient dynamics of the system on an attractor, linear observables with time

delays are sufficient to extract an informative Koopman-invariant subspace. Thus,

the present techniques are evaluated on two unsteady flows which involve strong tran-

sients: the widely studied 2D flow over a cylinder at different Reynolds numbers and a

3D turbulent ship air-wake. We studied the parametric dependency of modal shapes

with the proposed algorithm on the Reynolds number for the transient cylinder flows.

As Re increases from 70 to 130, stable modes become flatter downstream and larger

upstream. For the 3D ship air-wake case, two stable modes and one slowly-decaying

mode with distinct frequencies and mode shapes are extracted. The visualization

clearly shows their dependency on the different parts of the ship geometry. As a

comparison against state-of-the-art methods, for the ship air-wake case, we find that

spDMD (a widely-used technique in the fluid dynamics community) produces a set

of unstable modes, which is a result of the poor approximation of Koopman invari-

ant subspace using linear features. In contrast, our sparsity-promoting framework

with KDMD not only isolates the three most dominant coherent structures, but also

provides a stable reduced-order model for long-time prediction. At the same time,

spDMD blows up immediately beyond the training horizon.

Finally, Chapter V describes a probabilistic deep learning framework and enforce-
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ment of stability in approximating the Koopman operator for physically realizable

non-linear systems. As we have formalized learning the continuous-time Koopman

operator with deep neural networks in a measure-theoretic way, it is natural to in-

duce two types of models: differential and recurrent form, based on how we choose

a measure to introduce data, and the availability of the governing equations. We

then enforce a structural parameterization that renders the realization of the Koop-

man operator provably stable, i.e., the most basic measure of physical consistency

necessary to model chaotic, noisy systems. Finally, we employ the mean-field varia-

tional inference in a hierarchical Bayesian setting for the deep neural nets to quantify

uncertainties in the Koopman decomposition and prediction of the dynamics of ob-

servables. The effectiveness of our framework is successfully demonstrated on several

non-linear dynamical systems, including the Duffing oscillator and an unstable cylin-

der wake flow with noisy measurements. Our framework shows superior performance

over the well-known LSTM-RNN framework. As a side note, we explicitly show that

linear reconstruction can be useful for non-linear systems with symmetrical attrac-

tors. Lastly, we demonstrated a simple application in non-linear optimal control that

leverages the Koopman operators learned by our framework. In this problem, the

Koopman-based controller was shown to significantly reduce the stabilization time

and cost function compared to the linearization-based LQR, and performs as well as

the analytically-derived LQR even outside the training region.

6.2 Perspectives

In contrast to non-linear data-driven modeling approaches (e.g. LSTM-RNN (Mo-

han et al., 2019), Neural-ODE (Maulik et al., 2020), OpInf (Peherstorfer and Willcox ,

2016), CNN (Xu and Duraisamy , 2019), GAN (Lee and You, 2019)), Koopman op-

erator theory brings interpretability and structure that enables flexible imposition of

physics information and non-linear optimal control. Generic non-linear data-driven
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modeling frameworks are often criticized for being a black-box. Consider a scenario

in which one already has a bunch of datasets with varying parameters. Traditional

data-driven modeling frameworks target the task of prediction, which amounts to an

interpolation within parameter space. The Koopman operator framework - on the

other hand - has the potential to offer physics-consistent predictions, control and

modal analysis. The most important contribution of this dissertation is to bring

robustness and interpretability in Koopman operator modeling, which further differ-

entiates it from other non-linear frameworks.

This thesis developed theoretical results for the structure of time delay embedding

for linear models on the periodic/quasi-periodic attractors. However, these results are

not strictly valid for complex chaotic systems where an infinite number of time delays

may be required for a perfect prediction. Nevertheless, the theory developed for

improvement on numerical conditioning with over-delays is still valid for stabilizing

model performance for chaotic systems, as we have demonstrated in the 3D thermal

convection problem. It is noted that we only leverage the insights of “over-delays”

from our developed theory for modeling complex chaotic systems, when searching for

the optimal time delays for a stable model empirically with validation split as shown

in 2D combustion process.

As mentioned in the introduction, this thesis is restricted to discrete spectra in

approximating the Koopman operator. Therefore, rigorously speaking, compared to

approaches such as the SPOD (Towne et al., 2018), and resolvent operators (McKeon

and Sharma, 2010), the methodology developed in this dissertation may not be the

most appropriate tool for modal analysis for highly chaotic flows. For systems with

dominant discrete spectra, our sparsity-promoting framework is suitable to extract a

set of interpretable spectra from the data as demonstrated in the 3D ship air-wake.

In terms of more general predictive modeling, the methodology developed in this

dissertation can be used as an efficient model with competitive predictive accuracy
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as demonstrated by TD-DMDc in the 2D chaotic combustion case.

Since the methodology developed in this dissertation is mainly - though not exclu-

sively - data-driven, it is particularly useful in modeling increasingly complex systems

for which first-principle models are difficult to obtain or too costly to be practical.

This can be very helpful in several domains of application such as flow control, soft

robotics, robotic fish, etc. In terms of temporal stability, which has been a notorious

problem in projection-based ROM, the methodology developed in this thesis provides

the only known robust framework that guarantees temporal stability. Moreover, with

additional modification, one can similarly impose constraints such that Koopman

eigenvalues lie on the unit circle. This naturally introduces physics-based constraints

for Hamiltonian systems.

6.3 Suggestions for Future Work

Given the above developments in the data-driven approximation of the Koopman

operator, we envision several future directions for further applications on non-linear

dynamical systems ranging from turbulent flows to robotics:

1. Data-driven Koopman-based optimal control for robotics. Recently (Ma-

makoukas et al., 2019; Abraham et al., 2017; Kaiser et al., 2017) the Koopman

operator has been used in data-driven control, especially in scenarios in which

accurate governing equations are challenging to obtain via first principles. For

such systems, one could perform model-free deep reinforcement learning (DRL)

but at the cost of higher sample complexity and no guarantee for control per-

formance even though input constraints will also be difficult to impose. To the

contrary, when considering model predictive control (MPC) or linear quadratic

regulator (LQR), Koopman-based models can leverage linear, convex optimiza-

tion to ensure real-time efficiency and global optimality. It has recently been
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shown that such an approach leads to a significant reduction in training samples

when compared against standard DRL technique (Hao and Han, 2020).

2. Non-linear Koopman analysis for extracting coherent structures in

turbulent Flows. Given the abundant applications of DMD in analyzing and

sensing in turbulent flows Sayadi et al. (2012); Alessandri et al. (2019); Kramer

et al. (2017), one can develop upgrades with non-linear sparsity-promoting

KDMD/EDMD method for improving accuracy and predictability. Since our

framework involves mode-by-mode error analysis, Koopman modes will be more

linearly consistent than all previous methods. This can lead to a more accurate

and interpretable decomposition of fluid flows. As for the fully chaotic, incoher-

ent part of the flows, further research can leverage spectral estimation in signal

processing to extract the continuous spectrum (Arbabi and Mezić, 2017).

3. Generalizability of Koopman decomposition in high-dimensional sys-

tems. Most existing Koopman decompositions for (nominal) high-dimensional

systems are based on only a single trajectory. This may be a good approxima-

tion only in ergodic systems. Indeed, the dimensionality of the high dimensional

system is only significantly reduced when it falls on an attractor, which can be

easily achieved if the simulation is performed long enough. In general, since we

do not have access to trajectory data for an arbitrary initial condition, one can-

not provide guarantees on the Koopman ROM for a completely unseen initial

condition, especially in the initial phase. Thus, it is interesting to analyze the

behavior, especially in the transition towards the attractor. If all of the Koop-

man modes are stable, and if the new initial condition still converges to the

same attractor as before, the long time prediction should fall approximately on

the same modal shape of the attractor. However, small errors in the amplitude

and phase can complicate matters.
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APPENDIX A

Variational Inference

The Bayes rule (Friedman et al., 2001) to update the probability distribution of

a parameter θ given data D is given by

ppθ|Dq “ ppD|θqppθq
ppDq

, (A.1)

where

• ppD|θq represents the likelihood of observing the data D given the model pa-

rameter.

• ppθq is called the prior distribution. This represents our knowledge of the model

parameter θ before observing the data.

• ppθ|Dq is called posterior distribution. It represents the updated distribution

of parameter θ compared to the prior distribution.

• ppDq “
ş

ppD|θqppθqdθ is called the evidence. It represents the marginal prob-

ability of the data, and numerical integration for this term is in the θ space,

which can be high dimensional.
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Figure A.1:
Left: sketch of variational inference. ppθ|Dq is the posterior. qpθ; ξq is
a family of probabilistic distributions. qpθ; ξ̂q is the optimal approxima-
tion within such family that parameterized by ξ. Right: VI vs MAP
approximation where qMAP only finds the maximal location for posterior.

A.1 Introduction to Variational Inference

Instead of explicitly evaluating the posterior ppθ|Dq or using the Monte carlo

method to approximate the posterior, variational inference (VI) (Blei et al., 2006)

searches for the best approximation to the posterior within a predefined function space.

An illustration of the main idea compared with the simple maximum a posterior

(MAP) approximation is shown in fig. A.1. In the following, we will briefly go through

the main idea used in VI for measuring the difference between distributions called

KL divergence and the practical general computational framework called automatic

differentiation variational inference (ADVI) (Kucukelbir et al., 2017).

A.1.1 KL divergence

Originated from information theory, KL divergence measures the difference be-

tween two probability distributions p and q, according to the difference between
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cross-entropy and its entropy

KLpp||qq fi

ż

ppθq log
ppθq

qpθq
dθ (A.2)

“ ´

ż

ppθq log qpθqdx`

ż

ppθq log ppθqdθ, (A.3)

“ Hpp, qq ´Hppq, (A.4)

where

Hppq “ ´

ż

ppθq log ppθqdθ “ ´Eprlogpppθqqs (A.5)

is the Shannon entropy on distribution p. One can simply show KL divergence is non-

negative with Jensen’s inequality. Intuitively, if p “ q, then according to eq. (A.2),

the KL divergence will be zero. However, it is not a formal distance since it is not

symmetric.

An interesting fact that might help the readers on connecting KL divergence with

the usual distance metric is the following Pinsker’s inequality :

δpp, qq ď

c

1

2
KLpp||qq (A.6)

where the total variation distance is defined as,

δpp, qq “ supt|ppAq ´ qpAq||A P Σ is a measurable eventu, (A.7)

It shows that KL divergence relates to an upper bound for the maximal possible

difference between two distributions. Thus, if we can minimize the KL divergence,

the two corresponding distributions should be closer to each other.

236



A.1.2 Evidence lower bound

Now let us get back to searching for the best approximation of posterior distribution

ppθ|Dq within a family of probabilistic distributions, i.e., qpθ; ξq. Then, it becomes

natural to directly minimize the KL divergence between the parameterized family of

distributions as,

ξ̂ “ arg min
ξ

KLpqpθ; ξq||ppθ|Dqq arg min
ξ
“

ż

qpθ; ξq log
qpθ; ξq

ppθ|Dq
dθ. (A.8)

Unfortunately, naively evaluating eq. (A.8) requires access to the posterior distribu-

tion, which is exactly we are looking for. To resolve this issue, we alternatively con-

sider maximizing the so-called evidence lower bound (ELBO) or sometimes referred

to as variational lower bound which shares the relation to KL divergence between our

candidate distribution qpθ; ξq and ground true posterior distribution ppθ|Dq. Recall

the KL divergence in eq. (A.8),

KLrqpθ; ξq‖ppθ|Dqs “
ż

qpθ; ξq log
qpθ; ξq

ppθ|Dq
dθ

“ ´

ż

qpθ; ξq log
ppθ|Dq
qpθ; ξq

dθ

“ ´

ż

qpθ; ξq log
ppθ,Dq

qpθ; ξqppDq
dθ

“ ´

ˆ
ż

qpθ; ξq log
ppθ,Dq
qpθq

dθ ´

ż

qpθ; ξq log ppDqdθ
˙

“ ´

ż
ˆ

qpθ; ξq log
ppθ,Dq
qpθ; ξq

dθ ` log ppDq
ż

qpθ; ξq

˙

dθ

“ ´

ż

qpθ; ξq log
ppθ,Dq
qpθ; ξq

dθ ` log ppDq

“ ´ELOB` log ppDq
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where ELBO can be rewritten as,

ELBO “ Eqpθ;ξqrlog ppD|θqs ´KLrqpθ; ξq‖ppθqs (A.9)

as the variational lower bound or evidence lower bound. The first term is related

to the likelihood while the second term is a regularization term that measures the

difference between variational posterior and prior belief. Note that ppDq is a constant

(unknown), so only variational lower bound is related to the KL divergence. Moreover,

now we have access to every term inside the ELBO comparing to the previous KL

divergence in eq. (A.8). Therefore we choose to vary ξ in qpθ; ξq to maximize ELBO

in order to minimize the KL divergence.

A.2 Automatic Differentiation Variational Inference

In this thesis, we employ a computational framework of variational inference called

automatic differentiation variational inference (Kucukelbir et al., 2017) that enables

an automatic variational inference in Tensorflow. It is designed to be general and

flexible for arbitrarily large neural networks.

In general, ADVI performs these steps:

1. automatically transforms the latent variable θ to the real coordinate space Rp

as θ̂, where p is the dimension of the parameter space.

2. computes the ELBO with Monte Carlo integration which only requires sampling

from the variation distribution qpθ̂; ξq.

3. apply stochastic gradient ascent to maximize the ELBO.

In the following, we will briefly provide a collection of the tricks and ideas of

ADVI. For more specific details, we refer to Kucukelbir et al. (2017).

238



A.2.1 Transforming θ to θ̂

Consider a transformation that removes the constraints on θ,

` θ̂ “ T pθq (A.10)

the corresponding joint density function of dataD and transformed parameter θ̂ would

be,

ppθ̂,Dq “ ppT´1
pθ̂q,Dq

ˇ

ˇ

ˇ

ˇ

det
dT´1

dθ̂
pθ̂q

ˇ

ˇ

ˇ

ˇ

, (A.11)

“ ppθ,Dq| det JT´1pθ̂q| (A.12)

where the last term on the above right hand side associated with the Jacobian is

to make sure the volume property is preserved after the transformation. Similar

relationship also holds for their corresponding variational posterior.

A.2.2 Variational approximation in θ̂ space

As a natural choice, we parameterize the family of distribution qpθ̂; ξq with multi-

variate normal distribution (MVN). It should be noted that by considering Gaussian

in the transformed space θ̂, implicitly, non-Gaussian variational distribution is in the

original latent space θ. Here are some common choices of covariance in the MVN:

1. Mean-field Gaussian. A simple assumption is to consider all variables are sta-

tistically independent, i.e., qpθ̂; ξq has a diagonal covariance matrix:

qpθ̂; ξq “ N pθ̂|µ, diagpσ2
qq “

p
ź

k“1

N pθ̂k|µk, σ2
kq (A.13)

However, note that the variance should always be positive. So we choose the

transformation ω “ logpσq such that all optimization variables becomes un-
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constrained, i.e., ξ “

ˆ

µ1 . . . µp, ω1 . . . ωp

˙

P R2p. That is to say, the

p-dimensional random distribution is uniquely described by a deterministic 2p-

dimensional variational parameters.

2. Full-rank Gaussian. Note that, removing the correlation among θ could be

potentially harmful to the accuracy of model. So a better option is to posit a

full rank Gaussian variational approximation with ξ “ pµ, Lq, where L is the

Choleksy factorization of Σ. Note that L has ppp`1q{2 components. Therefore,

together with µ, we have p ` ppp ` 1q{2 parameters for ξ. Unfortunately,

with full-rank approximation, the number of variational parameters becomes

Opp2q, instead of Oppq that comes from the previous mean-field approximation.

Therefore, full-rank approximation is seldom considered for large deep neural

networks.

A.2.3 ELBO in θ̂ space

ELBO in the transformed space is the following:

ELBOpξ,Dq “
ż

qpθ; ξq log

„

ppD, θq
qpθ; ξq



dθ (A.14)

“

ż

qpθ̂; ξq log

»

–

ppx, T´1pθ̂qq
ˇ

ˇ

ˇ
det dT´1pθ̂q

dθ̂

ˇ

ˇ

ˇ

qpθ̂; ξq

fi

fl dθ̂ (A.15)

“ Eqpθ̂;ξq
”

log ppx, T´1
pθ̂qq ` log

ˇ

ˇ

ˇ
det JT´1pθ̂q

ˇ

ˇ

ˇ

ı

`Hpqpθ̂; ξqq, (A.16)

where Hpqpθ̂; ξqq “ ´
ş

qpθ̂; ξq log qpθ̂; ξqdθ̂ is the entropy in information theory.

A.2.4 Reparameterization trick

Even though we made a simplification on the variational posterior being MVN,

eq. (A.16) still contains an expectation with respect to the unknown variational pos-

terior distribution. Therefore, it is often difficult to find the closed-form expression.

240



However, we know how to sample from the standard normal distribution. Moreover,

since we assumed MVN, there is an analytical transformation Sξ that “regularize”

the randomness of the variational parameters θ̂ into the standard normal distribution.

Therefore, we can convert the unknown variational posterior (which is assumed to be

MVN) into a standard Gaussian, i.e., zero mean and unit standard deviation.

• In the mean-field case, η “ Sξpθ̂q “ diagpexppωqq´1pθ̂ ´ µq

• In the full-rank case, the standardization is η “ Sξpθ̂q “ L´1pθ̂ ´ µq,

where L is the Cholesky factorization matrix of the covariance matrix in the multi-

variate Gaussian distribution.

Now we rewrite eq. (A.16) with η so that

qpS´1
ξ pηqq

ˇ

ˇ

ˇ
det JS´1

ξ
pηq

ˇ

ˇ

ˇ
“ qpη; ξq “ N pη|0, Iq. (A.17)

Thus, we can minimize the following expectation,

ξ˚ “ arg maxξEN pη;0,Iq

“

log ppx, T´1
pS´1

ξ pηqqq ` log
ˇ

ˇdet JT´1pS´1
ξ pηqq

ˇ

ˇ

‰

`Hpqpθ̂; ξqq.

(A.18)

Notice that the expectation is computed over the standard Gaussian, which is

independent of the ξ. Therefore, we can take the ∇ inside the expectation. Recall

that we have ξ “ pµ,ωq for mean-field approximation or ξ “ pµ,Lq for full rank

approximation. Thus, we can derive the gradients for ξ analytically: with respect to

µ,

∇µL “ EN pηq

”

∇θ log ppx, θq∇θ̂T
´1
pθ̂q `∇θ̂

ˇ

ˇ

ˇ
det JT´1pθ̂q

ˇ

ˇ

ˇ

ı

. (A.19)

and the gradients with respect to the covariance for mean-field Gaussian:

∇ωL “ EN pηq

”

p∇θ log ppx, θq∇θ̂T
´1
pθ̂q `∇θ̂

ˇ

ˇ

ˇ
det JT´1pθ̂q

ˇ

ˇ

ˇ
qηJ

ı

` pL´1
q
J, (A.20)
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and that for full-rank Gaussian:

∇ωL “ EN pηq

”

p∇θ log ppx, θq∇θ̂T
´1
pθ̂q `∇θ̂

ˇ

ˇ

ˇ
det JT´1pθ̂q

ˇ

ˇ

ˇ
qηJdiagpexppωqq

ı

` 1.

(A.21)

Finally, to approximate the expectation, one draws samples from the standard

Gaussian and evaluates the empirical mean of the gradients within the expectation.

Such approximation of the gradient is unbiased. We suggest considering only one

sample for speed. However, it should be noted that increasing the number of samples

would decrease the variances in the computed gradients, with the scaling rate as

Op1{
?
Sq. S is the number of samples in the Monte Carlo. To update the gradients,

one can use Adam or standard SGD algorithm.

A.2.5 Computational complexity

The above ADVI framework has a computational complexity as OpNSKq. N

is the number of data points. S is the number of Monte Carlo samples, K is the

number of variational parameters in the model. It is important to note that we

choose mean-field approximation due to efficiency for large models, e.g., deep neural

networks. Note that the computational cost is reduced to OpBSKq for the mini-

batched version, where B is the batch size.
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APPENDIX B

Deep Learning and Bayesian Neural Networks

B.1 Deep Learning

Deep learning is a research area within the machine learning community, which

aims to learn meaningful relationship from data using deep neural networks (DNN).

It has been an active community in computer science in the recent two decades,

especially with the ever growing computational power and improved stochastic opti-

mization techniques that enable the possibility of efficient training on huge datasets.

The core of deep learning is representation learning, i.e., learning a set of features

that encapsulate information in the data that determine the input-output relation-

ship. Notably, a huge amount of success has been reported in the subject of object

detection and image recognition. For example, deep convolutional neural network

(D-CNN) that embeds the translation invariance is reported to surpass the human

expert’s performance in the task of image classification (Krizhevsky et al., 2017) .

In the following sections, several basic engines behind deep learning will be briefly

introduced.
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B.1.1 Feedforward Neural Network

Feedforward neural network (FNN) is the most fundamental deep learning archi-

tecture. Typically, one can regard any feedforward neural networks with more than

five layers as deep neural nets. We define a L-layer feedforward neural network as a

vector-valued function f : Rn ÞÑ Rm with L ´ 1 hidden layers and last output layer

as linear affine mapping. Such L-layer FNN is compositional. Each hidden layer is

defined by following recursive expression:

ηl “ σlpWlη
l´1
` blq, l “ 1, . . . , L´ 1, (B.1)

where η0 stands for the input of the neural network, i.e., η0 “ x, ηl P Rnl . nl P N`

is the number of hidden units in layer l. σl is the activation function of layer l. The

last output layer is free of any activation function, since it might introduce unwanted

constraints on the output. Therefore, the last output layer is defined as a linear affine

mapping:

fpx;WL, bLq “ ηL “ WLη
L´1

` bL, (B.2)

where parameters of the neural network are WL “ tWiui“1,...,L, bL “ tbiui“1,...,L.

To give an example, let us consider using two hidden layers, i.e., L “ 3, and keep

the number of units the same for all hidden layers. Then the complete expression for

the neural network model from the input x to output ŷ is,

ŷ “ fpx;W, bq “ W3σpW2σpW1x` b1q ` b2q ` b3, (B.3)

where x P Rn is the input of the neural network. ŷ P Rm is the output of the neural

network. σ : R ÞÑ R is a non-linear activation function. W1 P Rnhˆn, W2 P Rnhˆnh ,

W3 P Rmˆnh . b1 P Rnh , b2 P Rnh , b3 P Rm. Sets of weights and biases are W 3 “

tW1,W2,W3u and b3 “ tb1, b2, b3u.
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Similar to linear regression, we consider finding the parameters of neural networks

as an optimization problem. This process is often called training in deep learning

community. For example, for a two hidden layer networks L “ 3, the corresponding

minimization problem of finding the fpx,W˚, b˚q can be formulated as,

W˚, b˚ “ arg min
W 3,b3

1

M

ÿ

i

‖fpxi;W 3, b3
q ´ yi‖2

2. (B.4)

B.1.2 Training Neural Networks

Unfortunately, solving above eq. (B.4) becomes a formidable non-convex optimiza-

tion problem. Currently, there is no established algorithm that guarantees global

optimality. Therefore, local optimality is pursued with the help of stochastic gradient

descent.

The simplest first-order gradient descent algorithm for minimizing a loss function

Losspθ;Dq is,

θn`1 “ θn ´ α∇θLosspθn,Dq, (B.5)

where α is the learning rate and D is the training data.

For large datasets, directly performing the above algorithm can be extremely

expensive as computing the loss function would require to go through every single

sample at each step for updating the parameters. However, we only care about

gradient, which is “averaged” over all samples. Naturally, one can subsample the

whole data D with Dbatch to have an unbiased estimator of the gradient. Then one can

elongate the training iterations by going over each small patch of the whole dataset.

This is called stochastic gradient descent algorithm, where ∇θLosspθn,Dq is replaced

with ∇θLosspθn,Dbatchq. It has been shown that the “randomness” introduced by

subsampling the data helps the training of neural network to avoid the saddle points

and converge to the local minimizer (Jin et al., 2017).

Most of the popular algorithms in training deep neural nets are first-order opti-
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mizers, primarily due to the efficiency of optimizing millions of parameters on huge

datasets. Overfitting and poor generalization is often the major concern in deep learn-

ing rather than poor training errors. Therefore, higher order optimization methods

become less popular. Empirically speaking, the best first order optimizer is Adam

optimizer (Kingma and Ba, 2014), which can be thought as introducing a mechanism

of adapting the learning rate in eq. (B.5) with the past information on trajectory of

gradient dynamics.

B.1.3 Universal Approximator Property

Note that the key of deep learning is to learn high dimensional and complicated

features, which is typically referred to as “representation learning”. Naturally, it trig-

gers a question for the neural network: is the feedforward neural network structure

capable of describing arbitrarily complex features? Fortunately, universal approxi-

mator property of neural networks confirms the power of neural nets in describing

arbitrarily complex high-dimensional functions.

One of the most prominent results came from Hornik et al. (1989). They start

from a special class of FNN with squashing function defined as below:

Definition B.1 (Squashing function). A function G : R ÞÑ r0, 1s is a squashing

function if it is non-decreasing and limited to 0 at ´8 and 1 at 8.

As stated in theorem B.2, they show that there is always a member in the family of

a single hidden layer FNN with squashing function with arbitrary hidden layer width

that can approximate any Borel measurable function arbitrarily well in any measure.

Theorem B.2. For all squashing function G and all probability measure µ on pRr,Brq,

ΣrG is ρµ´dense in Mr.

Note that ΣrG is a notation for a single hidden layer FNN with G as non-linear

activation that maps from Rr to R. Br is the Borel σ-field of Rr. Mr is a set of all
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Borel measurable function Rr ÞÑ R. ρµ ´ dense implies two functions in each sets

are likely to be close to each other1. For example, theorem B.2 indicates sigmoid is

a universal approximator:

σsigmoidpxq “
1

1` e´x
. (B.6)

Another important work came from the famous work by Chen and Chen (1995) on

learning non-linear operators with universal approximator. Surprisingly, they show

that any continuous activation function that is not a polynomial, is qualified to be a

non-linear activation that guarantees universal approximator property for FNN. For

example, eLU activation function (Clevert et al., 2015) falls in such category:

σeLUpxq “

$

’

’

&

’

’

%

x, if x ą 0

αpex ´ 1q, otherwise

, (B.7)

where α is a hyperparameter that controls the amount of activation for negative input.

Recently, studies on leveraging finite-width but increasing depth of layers have

been reported. Notably, Perekrestenko et al. (2018) proved finite-width deep ReLU

networks are also universal approximators. However, there is a bound on the width

imposed by the topological constraints (Johnson, 2018).

B.1.4 How to efficiently train a neural network?

As a highly non-linear non-convex optimization problem, deep neural nets are

well-known for its difficulty to train, i.e., to obtain small training/validation error.

Empirically, we found several useful tricks to obtain a good model:

• “scale” of the input and output matters. One should perform standard nor-

malization on both inputs x and outputs y. The standard normalization is to

1@g PMr one can always find a sequence of function fn s.t. lim
nÑ8

ρµpfn, gq “ 0, where µ defines a

metric ρµ fromMr ˆMr to R`: for f, g PMr, ρµpf, gq “ inftε ą 0 : µtx : |fpxq´ gpxq| ą εu ă εu,
which says the area of the region where f and g differs is larger than a certain threshold.
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subtract its sample mean and then divide by its sample standard deviation.

This is because the parameters is often initialized between -1 and 1, which is

data-independent.

• initialization matters. Usually, truncated normal distribution from Tensorflow

as tf.compat.v1.truncated normal initializer performs very well.

• size of batch matters. Size of batch determines the number of subsampled data in

a gradient update for the weights. The smaller the batch, the faster the training

process but the higher the variance in the gradient so it might be fast in reducing

the loss initially but at later stage, one can observe a substantial amount of

fluctuations in the learning curve. As a rule of thumb, it is recommended to

choose batch size between 16 and 512 depending on the size of the training data.

• optimizer matters. Usually Adam optimizer (Kingma and Ba, 2014) performs

the best in training.

• activation matters. Swish activation (Ramachandran et al., 2017) x ¨ σsigmoidpxq

usually performs well. Sometimes penalized tanh (Xu et al., 2016),

σptanhpxq “

$

’

’

&

’

’

%

σtanhpxq, if x ą 0,

0.25σtanhpxq, otherwise,

, (B.8)

also performs good.

• randomly shuffling data matters for mini-batch training. Note that mini-batch

training requires subsampling a subset from the whole training data. In order

to obtain an unbiased estimator of the true gradient, randomly shuffling the

data before training is necessary.

• monitoring learning curve during training. Although one doesn’t have to per-
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form cross validation in training deep learning models, it is suggested to ran-

domly split out a small fraction of data (usually 5% to 10%) as validation data.

Then, model performance on these data will be monitored to inform the selec-

tion of hyperparameter.

• trial-and-error searching for best architectures. Such architecture includes the

number of units in each layer, type of activations, etc. They are called hyper-

parameters in machine learning community. The simplest way to find a good

architecture is to start randomly choosing such hyperparameters then train re-

peatedly and only save the best model, e.g., Lusch et al. (2018b). For interested

readers, there is a large amount of related literature with more sophisticated

ways to find the optimal architecture under the topic of Auto-ML (Hutter et al.,

2019).

B.1.5 How to choose a deep learning platform?

There are two most popular platforms in Python developing deep learning models:

Tensorflow and PyTorch. The former also has two versions v1 and v2. Tensorflow

v1 is based on static computational graph (construct the graph then execute many

times) while Tensorflow v2 and PyTorch are based on dynamic computational graph.

In terms of research and development, we recommend either using Tensorflow v1 or

PyTorch. The former is a bit more difficult to learn at the beginning. However, expe-

rienced user can easily construct any customized deep learning model easily. While

the latter is easier for beginners and has better supports from deep learning research

community (e.g., more off-the-shelf packages of state-of-the-art algorithms). However,

it can be slow in execution due to the dynamic nature. Nevertheless, PyTorch has so

far the best C++ support because one can almost write the same amount of code with

similar syntax in C++ to build a standard deep learning model.
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Figure B.1:
Illustration of Bayesian neural network with two inputs and one output.

B.2 Bayesian Deep Learning

One of the most critical concerns from science and engineering community for deep

learning is safety : for any deep learning model implemented in real life, it is natural

to ask: how much confidence does the black-box model have for a certain input? One

straightforward idea originated from scalable Bayesian inference community (Neal ,

2012; MacKay , 1992) is to combine Bayesian inference with deep learning to construct

Bayesian neural networks.

Recall that in appendix A.2, we have described ADVI, which is a powerful scalable

Bayesian framework with automatic differentiation. Consequently, one can establish

a Bayesian deep learning (BDL) model with ADVI. As illustrated in fig. B.1, instead

of being deterministic parameters, the weights and biases in the model now become

probabilistic distributions. Therefore, one can simply sample weights and biases from

the distribution and perform Monte Carlo approximation to obtain the distribution

of output given a certain input.

In this thesis, we establish Bayesian deep learning models with the ADVI. For

readers that are reluctant to perform the aforementioned variational inference on the

deep neural nets, there are several other easier options:

• Monte Carlo Dropouts (Gal and Ghahramani , 2016). One just need to train a
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neural network with dropout regularization then the resulting model is simply

an approximated variational inference for deep neural nets under mild assump-

tion,

• Laplace Approximation (Ritter et al., 2018),

• Deep Ensembles (Lakshminarayanan et al., 2017).

B.2.1 How to efficiently train a Bayesian deep neural net with ADVI?

In practice, performing the ADVI above on neural networks is not as efficient as

performing the deterministic counterpart. For a typical application in fluid dynam-

ics, it would take five times the CPU time. Therefore, it is recommended to start

with training with a small variance on the distribution of model parameters, i.e., let

the mean converges first and then optimize for the variance. Alternatively, one can

equivalently train a deterministic network then save the parameters as initial weights

for distribution mean of the Bayesian neural nets.
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APPENDIX C

Computational complexity of SPKDMD

Computational cost of the proposed framework can be divided in three parts:

1. Distributed SVD

2. KDMD/EDMD algorithms

3. Multi-task feature learning with the parameter sweep (solving eq. (4.9) with

different values of α)

The computational complexity for each step in the algorithm is summarized in

table C.1, where n is the dimension of the system state, M is the number of snapshots

in the training 1, r is the rank of the reduced system after SVD, L̂ is the user-defined

cut off for “accurate” features, and Niter is the maximal number of iterations user-

defined to achieve a residual threshold, e.g. 10´12.

As shown in the Table. C.1, the theoretical computational complexity for multi-

task ElasticNet with an α sweep is OpNαNiterL̂
2rq. Note that this is a worst case

simply because - except for the first α - we reuse the previous optimal solution as

the initial condition for the new objective function to start the iterative optimization

1for conciseness, we assume the number of training snapshots equals the number of validation
snapshots.
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Table C.1:
Computational complexity of each step in the proposed sparsity-
promoting framework.

Step Computational complexity

SVD (QR iteration with vectors) OpMn2q (Dongarra et al., 2018)
KDMD OpM3q

error evaluation & pruning OpM2nq

multi-task ElasticNet with a fixed penalty coef. α OpNiterL̂
2rq

multi-task ElasticNet with Nα coefs. (worst case) OpNαNiterL̂
2rq

process. Also, thanks to SVD-based dimension reduction, the cost scales linearly

with the reduced system rank r. Moreover, the user-defined linearly evolving error

truncation L̂ helps reduce that complexity as well instead of scaling with the number

of snapshots M . Lastly, there is a cubic theoretical complexity associated with the

number of snapshots when applying KDMD. The number of snapshots in a typical

high fidelity simulation is Op103q. That is to say, r ă 103 and L̂ ă 103. We note

that computational efficiency can be further improved, but this will be left for future

work.
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APPENDIX D

Hyperparameter selection for SPKDMD

D.1 2D fixed point attractor

We perform grid search in parallel for the selection of σ and the truncated rank

r over the range: σ P r10´1, 10s with 80 points uniformly distributed in the log sense

and r “ 36, 50, 70 to find a proper combination of r and σ. As shown in fig. D.1, the

higher rank r leads to larger number of linearly evolving eigenfunctions. Thus, it is

more crucial to choose a proper scale σ than r from fig. D.1. However, considering

the simplicity of this problem, σ “ 2 and r “ 36 would suffice.

D.2 Cylinder flow case

As the flow is not turbulent, we choose hyperparameters for the Re “ 70 case and

fix them for all the other cases. We sweep σ from r1, 105s with 30 points uniformly

distributed in the log sense and r “ 120, 140, 160, 180, 200 as shown in figure D.2.

From the plot, we choose r “ 180 and σ “ 3 for an approximate choice of the

hyperparameter. Again, we observe that the number of accurate eigenfunctions first

increases then decreases with σ increasing and the saturation of rank truncation at
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Figure D.1:
Hyperparameter search for isotropic Gaussian KDMD on the 2D fixed
point attractor.

Figure D.2:
Hyperparameter search for isotropic Gaussian KDMD on transient cylin-
der wake flows.

higher σ which is related to the variation in the characteristic scale of the features

with respect to σ.

D.3 Turbulent Ship-airwake case

Grid search in parallel for the selection of σ and r is performed over the range

σ P r1, 105s with 50 points uniformly distributed in the log sense, r “ 40, 80, 120, 130.

As shown in fig. D.3, a good choice of σ can be 200 for the case of α8 “ 5˝. Note
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Figure D.3:
Hyperparameter search for isotropic Gaussian KDMD on transient ship
airwake.

that since the hyperparameter selection is performed with a 5-fold cross validation

on the training data, we only have upto 166 ˚ 0.8 « 132 data points, i.e., maximal

possible rank is 132. While in the actual training, we have maximal rank up to 166.

Note that as long as the system is well-conditioned, the higher the rank, the richer

the subspace. Here we take σ “ 200 and r “ 135.
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APPENDIX E

Property of negative semi-definite matrix

Definition E.1. An n ˆ n real matrix (and possibly non-symmetric) A is called

negative semi-definite, if xJAx ď 0, for all non-zero vectors x P Rnˆ1.

Lemma E.2. For a negative semi-definite real square matrix, the real part of all of

its eigenvalues is non-positive.

Proof. Consider the general negative semi-definite matrix defined in definition E.1 as

A P Rnˆn, such that xJAx ď 0 for any non-zero vector x P Rnˆ1. Without loss of

generality, denote its eigenvalues as λ “ α ` jβ, where α, β P R and corresponding

eigenvectors as v “ vr ` jvi where vr,vi P Rn.

Then we have 0 “ pA ´ λqv “ pA ´ α ´ jβqpvr ` jviq, which further leads to

pA ´ αqvr “ ´βvi and pA ´ αqvi “ βvr. Then we have vJr pA ´ αqvr “ ´βvJi vr,

and vJi pA´ αqvi “ vJi βvr. Thus adding the two equations, we have vJr pA´ αqvr `

vJi pA´ αqvi “ 0, which implies α “ pvJr Avr ` vJi Aviq{pv
J
r vr ` vJi viq.

Using the definition of negative semi-definite matrices, we have vJr Avr ď 0 and

vJi Avi ď 0, even if vr or vi “ 0. Since there is at least one non-zero vector between

vr and vi, one can safely arrive at α ď 0 that the real part of any eigenvalue of A is

non-positive.
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Rowley, C. W., I. Mezić, S. Bagheri, P. Schlatter, and D. S. Henningson (2009),
Spectral analysis of nonlinear flows, Journal of fluid mechanics, 641, 115–127.

Rudy, S. H., J. N. Kutz, and S. L. Brunton (2019), Deep learning of dynamics and
signal-noise decomposition with time-stepping constraints, Journal of Computa-
tional Physics, 396, 483–506.

Sauer, T., and J. A. Yorke (1993), How many delay coordinates do you need?, Inter-
national Journal of Bifurcation and Chaos, 3 (03), 737–744.

Sauer, T., J. A. Yorke, and M. Casdagli (1991), Embedology, Journal of statistical
Physics, 65 (3-4), 579–616.

Sayadi, T., J. Nichols, P. Schmid, and M. Jovanovic (2012), Dynamic mode decom-
position of h-type transition to turbulence, in Proceedings of the Summer Program,
pp. 5–14, Citeseer.

274



Sayadi, T., P. J. Schmid, J. W. Nichols, and P. Moin (2014), Reduced-order repre-
sentation of near-wall structures in the late transitional boundary layer, Journal of
fluid mechanics, 748, 278–301.

Scarano, F. (2012), Tomographic piv: principles and practice, Measurement Science
and Technology, 24 (1), 012,001.

Schilder, F., W. Vogt, S. Schreiber, and H. M. Osinga (2006), Fourier methods for
quasi-periodic oscillations, International journal for numerical methods in engi-
neering, 67 (5), 629–671.

Schmid, P. J. (2007), Nonmodal stability theory, Annu. Rev. Fluid Mech., 39, 129–
162.

Schmid, P. J. (2010), Dynamic mode decomposition of numerical and experimental
data, Journal of fluid mechanics, 656, 5–28.

Schmid, P. J., L. Li, M. Juniper, and O. Pust (2011), Applications of the dynamic
mode decomposition, Theoretical and Computational Fluid Dynamics, 25 (1-4),
249–259.

Schmid, P. J., D. Violato, and F. Scarano (2012), Decomposition of time-resolved
tomographic piv, Experiments in Fluids, 52 (6), 1567–1579.

Sharma, A., J. Xu, A. K. Padthe, P. P. Friedmann, and K. Duraisamy (2019), Simula-
tion of maritime helicopter dynamics during approach to landing with time-accurate
wind-over-deck, in AIAA Scitech 2019 Forum, p. 0861.

Shi, J., S. Sun, and J. Zhu (2018), Kernel implicit variational inference, international
conference on learning representations.

Song, G., F. Alizard, J.-C. Robinet, and X. Gloerfelt (2013), Global and koopman
modes analysis of sound generation in mixing layers, Physics of Fluids, 25 (12),
124,101.

Srivastava, N., G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov (2014),
Dropout: a simple way to prevent neural networks from overfitting, The journal of
machine learning research, 15 (1), 1929–1958.

Stark, J., D. S. Broomhead, M. Davies, and J. Huke (2003a), Delay embeddings for
forced systems. II. stochastic forcing, Journal of Nonlinear Science, 13 (6), 519–577.

Stark, J., D. S. Broomhead, M. E. Davies, and J. Huke (2003b), Delay embeddings
for forced systems. I. Deterministic forcing, Journal of Nonlinear Science, 13 (6),
519–577, doi:10.1007/s00332-003-0534-4.

Sugihara, G., B. T. Grenfell, and R. M. May (1990), Distinguishing error from chaos
in ecological time series, Phil. Trans. R. Soc. Lond. B, 330 (1257), 235–251.

275



Surana, A., and A. Banaszuk (2016), Linear observer synthesis for nonlinear systems
using koopman operator framework, IFAC-PapersOnLine, 49 (18), 716–723.

Swischuk, R., B. Kramer, C. Huang, and K. Willcox (2020), Learning physics-based
reduced-order models for a single-injector combustion process, AIAA Journal, pp.
1–15.

Taira, K., M. S. Hemati, S. L. Brunton, Y. Sun, K. Duraisamy, S. Bagheri, S. T.
Dawson, and C.-A. Yeh (2019), Modal analysis of fluid flows: Applications and
outlook, AIAA Journal, pp. 1–25.

Taira, K., M. S. Hemati, S. L. Brunton, Y. Sun, K. Duraisamy, S. Bagheri, S. T.
Dawson, and C.-A. Yeh (2020), Modal analysis of fluid flows: Applications and
outlook, AIAA Journal, 58 (3), 998–1022.

Taira, K., et al. (2017), Modal analysis of fluid flows: An overview, Aiaa Journal, pp.
4013–4041.

Takeishi, N., Y. Kawahara, and T. Yairi (2017), Learning koopman invariant sub-
spaces for dynamic mode decomposition, in Advances in Neural Information Pro-
cessing Systems, pp. 1130–1140.

Takens, F. (1981), Detecting strange attractors in turbulence, in Dynamical systems
and turbulence, Warwick 1980, pp. 366–381, Springer.

Tissot, G., L. Cordier, N. Benard, and B. R. Noack (2014), Model reduction using
dynamic mode decomposition, Comptes Rendus Mécanique, 342 (6-7), 410–416.
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