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ABSTRACT

Natural hazards and extreme weather events have the potential to cause significant disrup-

tions to the electric power grid. The resulting damages are, in some cases, very expensive and 
time-consuming to repair and they lead to substantial burdens on both utilities and 
customers. The frequency of such events has also been increasing over the last 30 years and 
several studies show that both the number and intensity of severe weather events will increase 
due to global warming and climate change. An important part of managing weather-induced 
power outages is being properly prepared for them, and this is tied in with broader goals of 
enhancing power system resilience. Inspired by these challenges, this thesis focuses on devel-

oping data-driven frameworks under uncertainty for predictive and prescriptive analytics in 
order to address the resiliency challenges of power systems. In particular, the primary aims of 
this dissertation are to:

1. Develop a series of predictive models that can accurately estimate the probability

distribution of power outages in advance of a storm.

2. Develop a crew coordination planning model to allocate repair crews to areas affected

by hazards in response to the uncertain predicted outages.

The first chapter introduces storm outage management and explains the main objectives 
of this thesis in detail. In the second chapter, I develop a novel two-stage predictive modeling 
framework to overcome the zero-inflation issue that is seen in most outage related data. 
The proposed model accurately estimates customer interruptions in terms of probability 
distributions to better address inherent stochasticity in predictions. In the next chapter, I 
develop a new adaptive statistical learning approach based on Bayesian model averaging to 
formulate model uncertainty and develop a model that is able to adapt to changing conditions and 
data over time. The forth chapter uses Bayesian belief network to model the stochastic 
interconnection between various meteorological factors and physical damage to different power 
system assets. Finally, in chapter five, I develop a new multi-stage stochastic program model to 
allocate and relocate repair crews in impacted areas during an extreme weather event to restore 
power as quickly as possible with minimum costs.

xiii



This research was conducted in collaboration with multiple power utility companies, and 
some of the models and algorithms developed in this thesis are already implemented in those 
companies and utilized by their employees. Based on actual data from these companies, I 
provide evidence that significant improvements have been achieved by my models.
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CHAPTER I

Introduction

1.1 Motivation

Every year, millions of customers lose their power in the U.S. because of weather related

events, and in some areas they are left without power during difficult conditions such as

extreme cold or extreme heat. We cannot avoid many of these outages; however, by being

better prepared for the event, we can reduce losses and restore power more quickly. Power

outage forecasts can help utility companies and emergency officials make better decisions in

terms of budget allocation and resource planning.

Power infrastructure is a complex system with many constraints and much inherent

uncertainty. To appreciate the complexities and nuances of this system, I start by describing

the general background on storm outage management, including different types of practices

that can be done to improve the resilience of this critical system. Next, I give a chapter-by-

chapter summary of the remainder of this thesis.

1.2 Background on Storm Outage Management

Natural hazards such as severe weather events including hurricanes, thunderstorms, win-

ter storms, lightning storms, and tropical cyclones have the potential to damage electric

utility transmission and distribution systems and result in long-term and widespread loss of

electrical power for affected locations [39, 83]. It is reported that 87% of the total power

outages in the U.S. are caused by severe weather events. Loss of electrical power can be

either from direct impact to a power generation or distribution system, or indirectly from

other objects like fallen trees and branches, which are knocked into overhead lines and cause

the poles to snap and dislodge overhead lines from crossarms [70, 51]. This type of damage

will disrupt electrical service until the physical facilities can be replaced or repaired. Large

storms can result in a massive number of electric power outages, sometimes taking from days
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Figure 1.1: Four steps performed in a storm outage management.

to weeks to repair. Due to the complex interdependencies that exist between the electric

infrastructure and other critical lifelines in the U.S., electric power outages can adversely

affect national security, digital economy, public health, and the environment, which results

in huge losses. A congressional research service study done in 2012 estimates the annual

inflation-adjusted cost of weather-related outages at 25 to 55 billion [9].

To restore service after a major storm, utilities send a large number of crews into the

affected areas. The number of dispatched maintenance crews depends on the scope of the

damage and the number of impacted customers. The lowest level is the normal day-to-

day outages due to minor storms, animal contact, broken tree limbs, etc., which can be

handled locally through conventional outage management system processes. However, in a

larger scale such as outages caused by severe storms impacting multiple operating areas,

the internal crews might not be enough and so, a centralized storm outage management is

required to thoroughly coordinate both internal crews and extra resources called in from

other utilities or contracting agencies [70]. Storm outage management is then utilized when

large-scale storms cause massive amounts of physical damage, and requires a large number

of repair crews for restoring customer service [69]. Figure 1 shows the four steps performed

in a storm outage management [69].

Damage prediction: The first stage in storm outage management is damage prediction.

This involves using weather forecasts, asset information and historical data to predict the

amount of damage a storm will produce, the number of people without power, the resources

required for restoration and the resulting time needed to restore service to customers. This is

a rough estimate, but it allows the utility companies to get resources into place or on stand-by,

speeding up the restoration process after the storm hits. A diverse collection of engineering

and statistical models are currently used to estimate the geographical distribution of power

outage probabilities stemming from the storms to aid in the preparedness and recovery

efforts [70, 69]. In these models, power outage can be reported in two different unites: (1)

population without power (customer outages), and (2) number of outages. If something

(e.g., a tree falls on a line) causes physical damage to the electric power system during a

storm, the closest protective device upstream is activated to handle this damage [113]. All

customers on the isolated portion of the system lose power. In this situation, such a scenario

is considered to be a single outage (i.e., activation of a protective device caused by physical

damage requiring repair by a crew). One outage, hence, may be associated with a few or a

2



large number of physical damage, and from one to many customers losing power [113].

Repair crew and material staging: The repair crew and material staging process

involves specifying the number of crews and materials required for restoring the affected ar-

eas in an appropriate amount of time, and if more resources are needed, to make immediate

arrangements for external crews to be called in. It also involves making decisions about

where to stage these crews and materials and where they should be lodged and fed. Staging

is a logistically challenging task because it includes making arrangements for housing and

feeding a large crew. The crew and material staging function would take the damage pre-

diction results and make initial assignments for internal crews, identify need and locations

for external crews and determine need and locations for materials ahead of time [113].

Damage assessment: Damage assessment process starts once the storm has hit. It

involves filing reports based on customer calls to provide service outage information, sending

trained teams of crews to investigate the type and location of damages, or using some

automated metering tools to detect outages [113, 105, 13]. Using the collected damage

information, managers can then decide how to dispatch their repair crews and materials

that are staged before the storm. Using the verified damage information, and number of

assigned crews and materials to each location, an estimate for customers as to how long

they will be without power can be computed. In this stage, predicted damage estimates and

the customer outages obtained from previous phases are converted to the verified damage

information and customer outages [69].

Restoration management: The restoration process, which is done after the storm

passes through the utility’s service region, lasts the longest. In this process, repair crews are

initially dispatched to areas according to storm damage and are allocated to work specific

substations and feeders to restore service. Crews can also be reallocated as necessary by the

storm outage coordinator. It is a challenging task to track crew progress in real time manner

because there are many crews operating at the same time coming in from different utilities

or contracting firms. Given the number of crews allocated per feeder, time to restore power

to each customer is estimated. This is based on predefined guidelines for how restoration

is to take place. In the restoration process, repair tasks are prioritized such that fixing the

damages that return power to larger number of customers has higher priority than other

tasks. In this stage, total cost estimates for making the repairs based on the crew allocation

can also be made.

3



Figure 1.2: Three phases of analytics.

1.3 Use of Analytics in Storm Outage Management

The main goal of this thesis is to use analytics in order to do better storm outage man-

agement and address the needs of modern power systems. Analytics start with data and

once we have data, we need to analyze it to have better understanding of the system. Build-

ing on these data, we deploy statistical and machine learning models in order to forecast

future scenarios. Finally, we use math and optimization to drive decision making. Figure

1.2 represents these three steps of analytics.

In the context of storm outage management, I start with data collection and data pre-

processing. I use utility provided outage data. There are some other asset data that are

utility specific and I have to get them from the utility companies. I also obtain other data

such as weather forecasts, geographic and environmental data from related sources. In each

chapter, I provide a detailed explanation about the source of the data used for that study.

The next step is to clean the data and prepare it for analysis. The better data I collect and

prepare in this stage, the better predictive and prescriptive models I can obtain.

In the predictive modeling phase, I train, test and validate statistical and machine learn-

ing models. Once these models are developed, real-time outage predictions can be made

to predict the impacts of a hazard on the power system. As more data is collated, data

and models can be updated as well. Outage predictive models transfer data into informed

decision making. The more accurate these estimates are; the better preparation decisions

can be made by utility companies. This helps utilities better plan their resource needs,

and increase the rate of restoration. Finally, before the weather event, especially extreme

ones, utility companies start planning based on the predictions. Descriptive and predictive

analytics are done in advance of a storm or hazard. However, prescriptive analytics starts

prior to the event but continues untill the end of restoration process. Chapter II and III
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are focused on predictive analytics, and Chapter V is concentrated on prescriptive analytics

for power systems. Descriptive analytics is an important part of each chapter while it is the

main focus of Chapter IV.

1.4 Dissertation Outline

This dissertation is structured as follows. Chapters II-V are based on independent aca-

demic papers. This first chapter introduces the broader area of power outage management

and how predictive and prescriptive analytics can be utilized in this context. In the following

I summarize each chapter.

Chapter II - Predicting Thunderstorm-Induced Power Outages To Support

Utility Restoration: Extreme weather events such as hurricanes and thunderstorms have

substantial impacts on power systems, posing risks and inconveniences due to power outages.

Developing models predicting outage variables (e.g., number of customers who experienced

an outage, outage duration and number of physical damages) prior to a storm facilitates

disaster response decision-making by electric power utilities as well as other organizations of

critical importance to society. Typically, the area of interest is divided into grid cells and the

number of outages is forecasted for each grid cell. Developing models based on real-world

infrastructure data in resolutions smaller than census tract or county level is a challenge due

to the zero-inflation or imbalance in the data. This occurs whenever there exist significantly

more observations of zero outages than non-zero. This issue leads to bias and inaccuracy

in predictive modeling. In addition, power outages are stochastic and there always exists

irreducible variability in outage predictions. However, developing models estimating power

outages with a single value gives the decision maker a false impression of perfect accuracy.

Inspired by these challenges, in Chapter II, I develop a novel two-stage predictive model-

ing framework to overcome the zero-inflation issue and accurately estimate outages in terms

of probability distributions to better address inherent stochasticity in predictions. It inte-

grates mixture models with imbalanced-learning techniques. Validating my approach using

actual thunderstorm data, I demonstrate that it captures the effects of climatological, geo-

graphical, and environmental variables on the power systems and offers more accurate point

and probabilistic predictions compared to existing modeling approaches. This modeling

framework is currently being implemented by a large utility company in the central Gulf

Coast region, and they used for predicting the number of thunderstorm-induced customers

without power.

Chapter III - Adaptive Two-stage Bayesian Model Averaging for Estimating

the Impact of Hazards on Power System Service: In Chapter II, I capture uncertain-
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ties existing in model outputs and represent them using probabilistic predictions. However,

there is another important source of uncertainty in statistical machine learning models called

model uncertainty. Due to noise in observations and incomplete coverage of data, selecting

one model as the one describing the process is not always a proper approach. This hides the

existing uncertainty in the model and results in decision-making that is not well-informed.

Furthermore, the power system, climatological, and environmental variables are changing

over time. This necessitates models that are able to adapt to changing conditions and data

over time, which allows utility companies achieve better outage predictions while investing

less time, effort and resources.

Motivated by these research gaps, I develop a new adaptive statistical learning approach

based on Bayesian Model Averaging (BMA). Instead of developing one single model, this

algorithm is built upon a number of competing base learners. Unlike the classical BMA, I

consider a decision-theoretic approach and formulate weights of the base learners with an

online multinomial logistic model. This allows the algorithm to assign weights to the base

learners that are specific to each newly observed data point according to its features. By using

(i) Bayes theorem, (ii) Laplace approximation, and (iii) stochastic gradient ascent, posterior

distributions of the parameters of the multinomial logistic model are estimated and updated.

Validating my algorithm using daily customer interruption data, I showed that my algorithm

results in a more accurate probabilistic prediction than the base learners individually, and

yields more accurate predictions as more data are observed. This algorithm is already

implemented in the American Electric Power (AEP) company to make daily predictions

for the number of customers without power. Although my work is motivated by power

system application, my methodology and insights can be implemented in other predictive

modeling problems dealing with high model uncertainty.

Chapter IV - An Assessment of Drivers of Power System Damage During

Severe Weather: Due to the ease of collecting outage variables through an automated

system, existing research has focused mostly on modeling the number of outages, number of

customers without power, and power outage duration. However, outage focused predictive

modeling is not very applicable for making system reinforcement decisions at the asset level.

In this chapter, I study the impacts of meteorological variables on the failure of utility

assets including conductors, transformers, and poles. I develop a Bayesian belief network

to model the stochastic interconnection between various meteorological factors and physical

damage to different power system assets. Hypothesis tests, matching for controlling con-

founders’ effects, maximum relevant explanation, and mutual information are the tools I

use to perform belief propagation and variable importance analysis. These techniques help

the policy maker (i) understand the effects of each individual variable on the power system
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damages, (ii) find the weather conditions that derive the maximum level of damages, and

(iii) rank the meteorological factors based on their influence on the power system damages.

Using real data of daily damage occurring in districts served by multiple utility companies,

I provided them with several critical insights on how to find the vulnerable components of

power systems, understand the factors driving outages, and suggest actionable strategies to

perform cost-benefit analysis and effective system reinforcement.

Chapter V - A Multi-stage Stochastic Crew Coordination Model for Power

Outage Restoration: Before an extreme weather event, based on the expected damage,

repair crews are often dispatched to impacted areas to be able to start restoration pro-

cess as quickly as possible. In most large-scale outages, utilities must request crews from

other companies. The coordination of crews between different districts in real time is a

challenging task, because there are many crews from multiple utilities operating simultane-

ously. Inspired by this challenge, I develop a new data-driven multi-stage stochastic program

(MSSP) methodology for allocation and relocation of repair crews in impacted areas during

an extreme weather event to restore power as fast as possible with minimum costs. Due to

the inherent uncertainty in damage rates and restoration time, there is a huge uncertainty

in demand for which I build a finite set of scenarios, described in the form of a scenario

tree. This decision-making framework integrates a MSSP optimization model with a crew

demand prediction model. The main feature of this framework is that its decisions are im-

plementable in real time, because these decisions can be adjusted progressively based on

realized uncertainty. Numerical results demonstrate the significance of my model. Finally,

several key managerial and practical insights in terms of resource allocation are highlighted.

Chapter VI - Conclusions and Future Research: The works presented in Chapters

II-V make contributions into three important parts of storm outage management including

damage prediction, crew staging and restoration management. In Chapter VI, I summarize

some of the most important contributions. I also highlight areas of future research that could

expand on this work.
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CHAPTER II

Predicting Thunderstorm-Induced Power Outages To

Support Utility Restoration 1

2.1 Introduction

2.1.1 Research Motivation

The electric power system is one of the backbones of modern society and economies.

Loss of electricity causes considerable inconvenience for residents and widespread economic

and non-economic losses. Extreme weather events are the major cause of damage to electric

distribution networks and resultant power outages in the U.S. [44]. The U.S. Department of

Energy has estimated that annual economic losses due to weather-related power outages are

$25 billion [71]. A key component in reducing losses from weather-induced power outages

is being able to predict outages in advance. This helps utilities better plan resource needs,

increasing the rate of restoration. This ties in with broader goals of enhancing power system

resilience.

In recent decades, the problem of power system resilience has been studied from different

perspectives and considerable progress has been made (e.g., [58, 89, 116, 2]). In addressing

resilience to extreme weather, models and strategies are exploited in three stages: (i) prior to

the event (e.g., [136, 66, 127, 2]), (ii) during the event (e.g., [120, 116]), and (iii) after the event

(e.g., [12, 107]). Predicting power outages, hardening existing distribution lines, vegetation

management, deploying resources such as back-up distributed generators and automatic tie

switches are effective resiliency strategies that can be done prior to the storm with vary

degrees of required lead time [89]. Physically changing power systems, controlling power

flow in distribution networks, islanding, and self-healing schemes are some of the resiliency

activities that can be implemented during a storm. System status evaluation, establishing a

1Kabir, E., Guikema, S.D., and Quiring, S.M. (2019), Predicting thunderstorm-induced power outages to
support utility restoration, IEEE Transactions on Power Systems, 34(6), 4370-4381.

8



strong bulk power network, and fast load restoration are some practices performed after the

storm [116].

However, having a predictive model accurately estimating power outages is a critical

part of pre-storm resiliency practices, and it also directly influences the decisions made in

all above-mentioned three stages of the power resilience problem [116]. This key observation

is also highlighted by the recent survey of Wang et al., [119] on the resilience of power

systems. They mention two promising directions for future power outage prediction models:

(i) enhancing the accuracy of the predictions by developing new statistical models, and (ii)

establishing models that link prediction and hardening investment guidance. This chapter

is motivated by this research gap, and provides a comprehensive study to develop models

accurately predicting power outages and improve the resilience of power systems.

2.1.2 My Contributions to the Literature

In this chapter, a probabilistic modeling approach is developed for the power outage

prediction problem, which focuses on outage prediction for thunderstorms, an under-studied

type of outage cause. Furthermore, this proposed modeling framework improves the accuracy

of the predictions by using statistical techniques to overcome the challenges caused by the

zero-inflation property of outage data. The algorithm is trained on data obtained from 11

strong thunderstorms that occurred in Alabama over the past ten years. I seek to address (i)

how accurate are these models in providing point estimates? and (ii) how efficient are these

models in estimating probability distributions for zero-inflated outages? In the following, I

detail the major departures of this chapter from the existing literature and also highlight my

high-level approaches and techniques.

(1) Overcoming the zero-inflation: Machine learning (ML) models used in the lit-

erature have worked well in predicting power outages (e.g., [58, 82]). However, these ML

models are based on some assumptions that are often violated in practice. One of these

critical violations is that power outage data are often highly zero-inflated. That is, the

number of zero outages is significantly higher than the number of non-zero outages. With

zero-inflated data, classical ML models struggle to appropriately model the data and make

accurate predictions. Ignoring zero-inflation has substantial consequences. First, the esti-

mated parameters and standard errors may be biased toward zeros if parametric regression

models are used. Second, the excessive number of zeros can cause over-dispersion. Third,

the use of global performance metrics such as overall accuracy induces a bias toward zero;

that is, even though the model does not make accurate predictions for the non-zero observa-

tions, it has a high overall “accuracy” due to precise predictions made for zero observations.

Putting this differently, models can make “accurate” predictions for zero-inflated data by
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always predicting zero if global error metrics MAE or RMSE are used, but these predictions

are useless in practice because they under-estimate outages in impacted locations.

The two-stage modeling approach used in [37] and [74] is recognized to be a successful

approach to tackle both zero-inflation and the complexities existing in the power outage

data. Building on their approach, I develop a novel two-stage modeling framework for pre-

dicting outages due to thunderstorms. The first stage of my framework is based on random

forest, boosting trees and support vector machine classifiers, and determines whether a grid

cell (a record in the data set) has at least one customer without power during the storm. To

overcome the above-mentioned challenges arising from the zero-inflation, I then incorporate

two unbalanced learning techniques, including resampling and cost-sensitive learning into

the first stage of this two-stage model. The results show that both techniques, by reducing

the bias of the first-stage model towards zero-class data, enhance the accuracy of predictions

specifically for the non-zero class data which results in improvement in the overall accuracy.

Even though both unbalanced learning techniques improve the point estimate of power out-

ages compared to the traditional two-stage model developed by [74], only the cost-sensitive

learning enhances the accuracy of probabilistic predictions significantly. The authors be-

lieve that this is because un-like resampling, cost-sensitive learning does not change the

distribution of the data.

(2) Producing probabilistic power outage predictions: Weather-induced power

outages have inherent stochasticity, and uncertainty exists in any outage prediction. How-

ever, the power outage prediction literature lacks models accurately estimating the proba-

bility distributions of outages [119]. Almost all developed models estimate power outages by

a single value (e.g., [58, 74]) rather than a probability distribution, which gives the decision

maker a false impression of precision and hides the existing uncertainty.

In the proposed novel two-stage model, the second stage is based on a Quantile Regres-

sion Forest (QRF). This allows the model to predict not only point estimates, but also full

probability distributions for the number power outages. Thus, it provides more complete

information about the uncertainty associated with the power outage predictions. These pre-

dictions then better support utility decision-making. This is the first study that predicts the

probability distribution of power outages in advance of the storm. The results demonstrate

the high accuracy of the QRF in effectively modeling the probability distribution of power

outage data (see §2.4.1 for details).

(3) Developing models for thunderstorm outages: Extreme weather events include

hurricanes, tornadoes, thunderstorms, snowstorms, and ice storms [58]. Thunderstorms,

which occur more frequently than hurricanes, can cause power outages lasting from several

hours up to several days or more. Many studies have developed predictive models for hurri-
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cane power outages; however, only a few focused on thunderstorms (see Table 2.1 in §2.2.1).

Although thunderstorms generally cause more frequent outages than hurricanes, their conse-

quent outages are spatially irregular rendering them very difficult to predict. The proposed

two-stage model can help utilities significantly in outage recovery for thunderstorms.

2.1.3 Chapter Organization

This chapter is organized as follows. Section 2.2 provides a literature review of power

outage predictive modeling (POPM) and approaches proposed for learning from imbalanced

or zero-inflated data. In Section 2.3, after describing the data, I introduce the probabilistic

two-stage modeling framework. Section 3.4.3 provides the computational results from using

the proposed method for modeling the actual data from 11 thunderstorms in Alabama. In

this section, the importance and influence of different variables in modeling the power outages

are also investigated. Finally, Section 2.5 concludes the chapter.

2.2 Literature Review

This chapter is closely related to two main domains of research, namely predictive models

for storm power outages and learning from zero-inflated data.

2.2.1 Power Outage Prediction

Statistical models for POPM: A wide range of models have been developed in the

literature, beginning with parametric statistical models. Han et al. [42] developed a negative

binomial generalized linear model (NB-GLM) to estimate the spatial distribution of hurricane

power outages. Han et al. [41] further improved the predictive accuracy of their previous

work [42] by using a Poisson generalized additive model (GAM). They found that GAM

can capture the nonlinearity in the data, and overcome the over-prediction problems of the

NB-GLM.

Non-parametric models gained popularity shortly thereafter. Guikema et al. [38] de-

veloped non-parametric models for outage forecasting including classification and regression

trees (CART), and Bayesian additive regression splines (BART). They compared the pre-

dictive accuracy of their models with the GAM and GLM, and showed that non-parametric

approaches outperform the parametric ones. Later, an ensemble of tree-based models gained

popularity. Kankanala et al. [58] proposed an ensemble model based on a boosting algo-

rithm for estimating wind and lightning related power outages. They showed that boosting

algorithms estimate power outages better than neural networks and a mixture of experts.
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Nateghi et al. [82] developed another ensemble method based on random forests (RFs) to

estimate the number of hurricane power outages. They showed that this model yields more

accurate predictions than the Han et al. [42] model.

Unbalanced data in POPM: Xu et al. [126, 127] considered the issue of imbalanced

data in power systems. They applied the E -Algorithm and artificial immune recognition

system to identify distribution fault causes. They showed that these two algorithms offered

improved performance relative to artificial neural networks when the data is imbalanced.

Two-stage modeling is another approach suggested by Guikema and Quiring [37] to deal

with the zero-inflation. Building on [37], McRoberts et al. [74] developed a two-stage model

using RF models in the first and second stages. They showed that the two-stage approach

effectively handled the zero-inflation issue and captured the complexities existing in power

outage data.

POPM for various weather events: There exists a considerable body of research on

estimating power outages caused by hurricanes (e.g., [74, 82, 83, 91, 38, 41]). But, there

are only a few papers in the literature developing models for non-hurricane weather events.

He et al. [44] and Wanik et al. [121] developed models for predicting outages caused by

various storm events including hurricanes, blizzards, and thunderstorms. Zhou et al. [136]

presented two models to estimate the failure rates of overhead power distribution lines caused

by thunderstorms and ice/snow storms. Liu et al. [66] developed models based on a large

data set of historical hurricane and ice-storm outages. Sarwat et al., [97] use the combined

effects of common weather conditions to predict the total number of daily power distribution

interruptions in a region.

Uncertainty in POPM: Despite more than a decade of research in storm POPM that

have led to a steady reduction in forecast errors, power outage forecasts are not yet perfect

and there are different types of uncertainty in the forecasts. They include uncertainty in

the inputs (e.g., model structure or predictors) or outputs (e.g., estimated parameters of the

models or predicted outages) of the models. Quiring et al. [90] investigated the impacts of

tropical cyclone track and forecast errors on hurricane POPM using Monte Carlo simulation.

They show that small errors in the official track and/or intensity forecast lead to large errors

in the resulting outage predictions. He et al. [44] developed two models based on BART

and quantile regression forest (QRF) for obtaining prediction intervals. They find that the

BART model predicts more accurate point estimates, but the QRF makes better prediction

intervals. Table 2.1 summarizes the power outage predictive modeling literature.
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Table 2.1: Literature review table for storm power outage predictive modeling
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Response
variable

spatial
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(km*km)
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study

[136]
Poisson-regression;
Bayesian network

X X Power outage
Circle of 9
mile radius

Manha-
ttan,KS

[127] AIRS X X X Outage causes Each outage NC, SC
[126] E-Algorithm X X X Outage causes Each outage NC, SC

[66] AFT X X X
Power
restoration time

Zip code
NC, SC,
VA

[94]
Combined
statistical-GIS
method

X X X
Outage duration
fragilities and
restoration

Entire area
affected by
storms

Seattle

[67] GLMM X X X Power outages
Zip code
& 3*3

NC, SC,
VA

[41] GLM(NB) X X Power outages 3.66*2.44 GCR
[42] GAM X Power outages 3.66*2.44 GCR

[38]
GLM(NB); GAM
CART; BART

X X Damaged poles 3.66*2.44
Missi-
ssippi

[91] CART X X Power outages 3.66*2.44
Central
GCR

[83]
CART; BART;
MARS

X X Outage duration 3.66*2.44
Central
GCR

[37] CART-GAM X X X Power outages 3.66*2.44 GCR
[58] AdaBoost X X Power outages Entire city KS

[90] CART-GAM X X X Power outages 3.66*2.44
Central
GCR

[82] RF X X Power outages 3.66*2.44
Central
GCR

[81] RF X X Outage duration 3.66*2.44
Central
GCR

[39] RF X X Power outages 3.66*2.44
U.S.
Coastline

[121]
DT; RF; BT;
DT+RF

X X X X Power outages
2*2 & 6*6
& 18*18

Conne-
cticut

[74] RF-RF X X X Power outages 3.66*2.44
U.S.
Coastline

[44] BART; QRF X X X X X Power outages 2*2
Conne-
cticut

M
y

m
o
d

el

RS-RF-QRF
RF-QRF
CS-RF-QRF
BT-QRF
RS-BT-QRF
SVDD-QRF
CS-BT-QRF
SVM-QRF
RS-SVM-QRF

X X X X
Customer
outages

3.66*2.44 AL

AFT: accelerated failure time; GLMM: generalized linear mixed model; MARS: multi additive regression splines
BT: boosting trees; DT: decision trees; RS: resampling; CS: cost-sensitive; SVM: support vector machine
SVDD: support vector data description; GCR: Gulf Coast region; NC: North Carolina; SC: South Carolina
KS: Kansas; VA: Virginia; AL: Alabama
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2.2.2 Learning from Zero-inflated or Imbalanced Data

Zero-inflated models are mostly based on a two-stage process and are divided into hurdle

and mixture models.

Hurdle models: In the first stage of a hurdle model, a binomial probability formulation

models whether the outcome variable has a zero or non-zero value. If the first stage model

determines that the realization is non-zero, then the conditional distribution of the non-zero

realizations is modeled with a zero-truncated model. Building upon the hurdle model, zero-

altered Poisson is built in which zero observations are modeled with a binomial distribution

and the non-zero observations are modeled with a truncated Poisson model.

Mixture models: In the first stage of a mixture model, instead of modeling all zeros,

only a proportion of them are modeled with a classifier. The other part of the data which is

not yet labled as zeros, are considered as the second population. Then another model is fit

to the second population. This model produces zeros as well as non-zeros. In zero-inflated

Poisson (ZIP) [63], a binomial-GLM fits to the data to model the probability of being zero,

then a Poisson-GLM is used to model the count process. The main difference between the

mixture and hurdle models is that unlike the hurdle models, the count process produces

zeros in the mixture models, which results in more flexibility.

Since ZIP and zero-inflated negative binomial (ZINB) cannot always explain the perfor-

mance of the system adequately, Guikema and Quiring [37] proposed a mixture model for

predicting zero-inflated power outages. The first stage is a CART predicting whether the

outage is zero or not, and a Poisson-GAM model is used for the second stage to predict

the number of outages. This model improves the accuracy of predictions over the ZIP and

ZINB models. Building on [37], McRoberts et al. [74] proposed the use of a random forest

model for the first and second stages of their mixture model and improved the accuracy of

the model significantly.

Classifying unbalanced data: In above-mentioned models, there is a binary classifier

in the first stage, which explains whether the response variable is zero or not. Having an

accurate classifier helps improve the overall performance of the two-stage model. Standard

classification algorithms assume that the number of observations from different classes is

roughly similar while in zero-inflated data, a high proportion of records is zeros. To overcome

the challenges arising from imbalanced data, two main approaches are used including (1)

algorithm-level methods, and (2) data-level methods [61].

Algorithm-level approaches: Algorithm-level approaches concentrate on modifying

the existing ML models to reduce their bias towards the majority class and improve their

performance. A common approach is cost-sensitive methods in which higher costs are as-

signed to the prediction error of the minority class [22]. This approach boosts the importance
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of the minority class and alleviates the bias towards the majority class. Since their compu-

tational efficiency is higher than resampling methods, they are more suitable for large data

sets [40]. Another approach is one-class learning which is used to capture the properties of

the minority class. To train a one-class learning model, two strategies are followed. In the

first, only the objects from the target class are used to train a model describing the target

set and objects from another class are ignored. In the second, examples of both classes are

used, although the focus is more on accurate predictions for the minority class [76].

Ensemble methods combine several base learners to improve the performance of any

single one. They have become a popular method for learning from imbalanced data. These

methods are categorized into iterative based ensembles (e.g., boosting methods), and parallel

based ensembles (e.g., bagging and RF). Galar et al. [31] present a survey of using ensemble

methods for imbalanced learning. The performance of an ensemble model is affected by the

accuracy of the base learners, and diversity between all the learners [118].

Data-level approaches: Data-level approaches include resampling and feature selec-

tion. Resampling is a method for rebalancing the training set to reduce the effect of the

majority class. They are independent of the selected classifier [40] and fall into three groups:

under-sampling, over-sampling, and hybrid methods. In under-sampling, it is assumed that

many instances from the majority class are redundant and so, some are discarded to make

the training set roughly balanced. In over-sampling, new examples from the minority class

are created. Hybrid methods are a combination of over-sampling and under-sampling. Re-

sampling can be done randomly, or based on some strategies (e.g., clustering-based, distance-

based, and evolutionary-based). Feature selection is, in general, selecting a subset of variables

among all potential predictive variables to allow a leaning algorithm to achieve optimal per-

formance. It has been used less than resampling methods for imbalanced data [40]. It can

improve the predictive accuracy and reduce the bias toward the majority class because the

irrelevant features might cause the model to discard the minority class examples as noise

[132].

2.3 Data Description and Methods

2.3.1 Data Description

I use data from 11 strong thunderstorms that have occurred over the past ten years in

the state of Alabama. This area is divided into 6,623 3.66 km by 2.44 km grid cells (see

Figure 2.1-a). The variables are divided into two categories. The first is related to the

power system, geographic characteristics, and tree and soil characteristics which are time-

invariant. The second contains the variables that are time dependent and represents the
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Figure 2.1: The red area in the left figure shows the total coverage area of my data set. The
right figure plots the number of customers vs number of customers with power outages for all
the instances. It shows the concentration of customer outages around zero, and zero-inflation
issue in the data.

pre-storm conditions such as various measures of soil moisture, precipitations and weather

forecasts. The data originate from different sources and have different spatial resolutions.

All data are converted to the level of grid cells, and the number of customers without power

are predicted for each cell. Each of these variables is explained bellow.

Geographic variables: Geographic variables include measures of topography and land

cover. The topographical variables are collected from a global 30-arcsec digital elevation

model produced by the U.S. Geological Survey. They include the min, max, mean, standard

deviation, and median of elevation. The land cover (LC) variables are from the National Land

Cover Database. They are summarized into eight major classes including water, developed,

barren, forest, scrub, grassland, pasture, and wetlands.

Tree and soil characteristics: The eight tree-related variables are collected from 2012

National Insect and Disease Risk Map. They include fractional area of a grid cell covered by

trees, percentage of deep-rooted trees, percentage of tap-rooted trees, maximum diameter at

breast height, maximum height, wood density, Janka Hardness Scale, and crushing strength

of trees. Root zone depths variables are derived from the USDA Gridded Soil Survey Geo-

graphic. They are defined as the depth within the soil column from which roots can extract

water [74].

Power system variables: To characterize the power system, I include the number of

poles, switches, transformers, and total length of overhead and underground line in each grid

cell. They provide a measure of the extent of power system exposure to high winds.

Soil moisture and Precipitation: These variables, derived from the North America
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Land Data Assimilation System, are measures of local drought and soil moisture prior to

the storm. They help to explain the stability of poles and trees. Soil moisture is estimated

at three depths: 0-10 cm, 10-40 cm, and 40-100 cm. The standardized precipitation index

(SPI) is a measure of precipitation deviations from normal conditions. SPI is estimated

for different duration: 1, 3, 6, 12, and 24 months (e.g., a 3-month SPI is a measure of the

deviation of precipitation from the long-term average in the 3 months prior to a storm).

Weather forecasts: The weather data are obtained from the National Digital Forecast

Database and include dewpoint, temperature, relative humidity, sky cover, air temperature,

2-minute wind speed, maximum instantaneous wind gust (m/sec) and wind direction. The

data also include probability of a tornado within 25 miles, 12 hour(h) probability of precip-

itation, 24 h quantitative precipitation forecast, probability of winds greater than 58 mph

within 25 miles, probability of Enhanced Fujita scale 2 tornadoes within 25 miles, risk of fire,

daily probability of a convective hazard, probability of hail greater than 0.75 and greater

than 2 inches in diameter within 25 miles, and probability of winds greater than 75 mph

within 25 miles. I also included binary variables that indicate whether the NWS has issued

a flash flood, severe thunderstorm, and tornado watch for a given grid cell.

Response variable: The response variable for my model is the number of customers

without power in each grid cell. This data comes from a combination of customer call-in

data and a model of the electric power system that estimates which customers would be

without power given the activated protective devices and customer call-ins. The number of

customer outages is highly zero-inflated. Over 90% of grid cells have no power outages in

my data set. Figure 2.1-b illustrates the number of customer outages versus the number of

customers by grid cell. The density of instances equal to zero indicates the zero-inflation

property of the data.

Variable selection: Variable selection is an important task especially when the number

of variables is large and the data set is unbalanced [61]. Since the original data set contains

many covariates that are highly correlated with each other, variable selection can help ob-

tain a simpler model and improve accuracy. My approach for variable selection is to find

a subset of covariates in which there is no significant sign of collinearity. Collinearity does

not necessarily harm the predictive accuracy; however, variables which have high collinearity

with others can potentially be removed without deteriorating model performance. Further,

it can simplify the model and make the interpretation easier. In this study, the correlated

covariates are found using the pairwise correlation plots, and calculating the variance infla-

tion factor (VIF) of each covariate. The covariates with high VIF can be explained by linear

combinations of other covariates. By considering both correlation plots and VIF values, I

then remove the covariate with the highest collinearity with others in an iterative process.
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Figure 2.2: The illustration of the proposed two-stage framework. In the preprocessing step,
either training data are rebalanced or misclassification costs of the non-zero class instances
are enhanced in the classifier. In the first stage, a classifier predicts the probability of each
instance, xi, having non-zero outages, Pxi . In the second stage, firstly, a simulator generates
random numbers between 0 and 1, ui,∀i = 1, ..., S; then, QRF 0 and QRF 1 predict two
separate distributions for each instance by assuming that the instance belongs to the zero
or non-zero class respectively. Finally, by considering the values of Pxi and uis, random
records are generated from the predicted distributions. These records together estimate the
full probability distribution for each instance xi.

This results in a set of 32 covariates. All of the models described in the following section are

trained on this reduced set of variables.

2.3.2 Models Implemented

In this study, a novel two-stage framework (see Figure 2.2 for graphical presentation) is

proposed to model the distribution of power outages prior to a storm. In this framework,

a classifier is embedded in the first-stage predicting the probability of having at least one

customer without power in each spatial unit. In this regard, three state-of-the-art classifiers

(RF, BT and SVM) are chosen. Each of these methods is explained later in this section.

Aiming to overcome the zero-inflation issue and boost the accuracy of these classifiers toward

non-zero class data, resampling and cost-sensitive learning are used. In the former case, the

classifier is trained on the rebalanced data; while in the latter one, different misclassification

costs are selected for the record belonging to the zero and non-zero classes. Applying cost-

sensitive learning is different for each of the RF, BT and SVM classifiers and later it is

explained for each classifier. In the second stage of my framework, I developed two QRF

models, one for those grid cells classified as zero and one for those grid cells classified as

non-zero. Using these models, and the predicted probability from the first stage, the full

probability distribution for the number of customer outages in each grid cell is predicted.

I have developed 9 two-stage models in total. The second stage of all these models is

QRF. However, the first stage and pre-processing step of each model are different. It is a

combination of one of the pre-processing steps (resampling, cost-sensitive learning or none of
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them) and RF, BT or SVM. So, I shall call these 9 two-stage models RF-QRF, Resampled-

RF-QRF, Cost-sensitive-RF-QRF, BT-QRF, Resampled-BT-QRF, Cost-sensitive-BT-QRF,

SVM-QRF, Resampled-SVM-QRF, and SVDD-QRF. In the following, each component of

my two-stage framework is explained in more detail.

2.3.2.1 Resampling

To rebalance the data, I apply two techniques (1) random under-sampling in which

many instances from the zero class data are removed randomly, and (2) Synthetic Minority

Over-Sampling Technique (SMOTE). SMOTE [11] is a popular approach in which, rather

than replicating minority class records, synthetic instances are generated and added to the

original data. It can help to avoid over-fitting. Both random under-sampling and SMOTE

are successful techniques commonly applied to the class imbalanced problems [6]. In section

3.4.3, their effectiveness in improving the accuracy of outage prediction is evaluated.

2.3.2.2 Random Forest

RF [8] is an ensemble model in which many trees are trained on the bootstrapped data

and the output is the average of trees’ predictions. At each node of a classification tree, the

best splitting variable and point are picked from a set of variables selected randomly from

all variables aiming to reduce the impurity in each node. RF uses both bagging and ran-

dom variable selection for tree building, which results in low correlation between individual

trees. As a result of low bias and variance, RF often yields strong predictive accuracy. For

regression, RF uses the sum of squared errors as the impurity measure. Moreover, for each

terminal node of a grown tree, only the mean of the response values is kept and all other

information of the instances are neglected. This mean value is represented as a prediction

for any instance belonging to the corresponding leaf. In contrast, QRF [75], which is a

generalization of RF model, keeps the value of all observations in each leaf. QRFs there-

fore consider the spread of the response variable and estimate any quantile of the response

variable. QRF is selected for the second stage of my models because it is appropriate for

producing probabilistic predictions, and the initial analysis shows its high performance in

effectively modeling the power outage data.

I develop Resampled-RF-QRF and Cost-sensitive-RF-QRF models. The first trains the

RF on the rebalanced data using resampling. The second is based on a cost-sensitive RF

in which higher cost is assigned to misclassification of the minority class (non-zero outages)

by using a weighted Gini index as node impurity function, and minimize the overall cost.

Performance of these models is compared together and with RF-QRF and results are shown

19



in §3.4.3.

2.3.2.3 Boosting Trees

Boosting [98] combines the performance of many weak learners to improve predictive

power. AdaBoost [30] is a commonly used boosting method. AdaBoost calls a weak learner,

which can be any statistical model, in a series of rounds and in each round it provides the

weak learner with the distribution Dt, which is updated in each round for any instance.

Initially, the same weight is given to all instances. In next rounds, for any correctly classified

instance, Dt(i) is decreased; however, it is increased for the incorrectly classified ones. Thus,

the easy instances that are classified correctly in many of the rounds get lower weight, while

the hard ones that are mostly misclassified get higher weights [30].

There are multiple ways to introduce the cost items to the AdaBoost, and the most

common ones are AdaC family [108], AdaCost [25], and CSB [111]. Because a preliminary

study indicates that the AdaC2 outperforms other AdaC methods for separating zero outages

from non-zeros, I use the AdaC2 method as the cost-sensitive BT classifier. Thus, I develop

Cost-sensitive-BT-QRF mixture model in which the first stage is a AdaC2 and the second

stage is a QRF.

2.3.2.4 Support Vector Machine

SVM [17] combined with kernel techniques can be used for classification of both linear

and non-linear data. It maps the original data to a higher dimension, where a maximal

distance hyper-plane can be found as a discriminant function for the separation of data

using instances called support vectors. The determination of an optimal hyperplane leads

to solving the following optimization problem by using Lagrangian multiplier αi:

min
αi,αj≥0

1

2

n∑
i=1

n∑
j=1

αiαjyiyjk(xi, xj)−
n∑
i=1

αi

s.t.
n∑
i=1

αiyi = 0, ∀i = 1, ..., n

where xi and yi are predictors vector and response variable respectively, and k(xi, xj) is the

kernel matrix. The choice of kernel function affects the model performance, and the common

kernels are linear, polynomial, Gaussian and sigmoid. I use the Gaussian kernel because it

is by far one of the most powerful ones and develop Resampled-SVM-QRF and SVM-QRF

models in which the first is trained on the rebalanced data, and the second is trained on the

original data.
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Figure 2.3: Comparison of the boundaries obtained by SVDDs with linear and nonlinear
kernels.

A SVM classifier is also used in the context of one-class learning for unbalanced data,

which is called Support Vector Data Description (SVDD) [110]. Instead of partitioning the

space with boundaries, SVDD makes a hypersphere which surrounds the target class (usually

the minority class). The hypersphere is learned by using data of both classes or data of

the single target class. Using non-linear kernels in the SVDD results in more flexible and

tighter hypersphere around the target class. Figure 2.3 indicates the boundaries obtained

by SVDDs with linear and nonlinear kernels. It shows that SVDD with nonlinear kernel is

more flexible to build a separating boundary around the target class. In this study, I employ

the SVDD method in the first stage of my mixture model as a classification technique. My

analysis indicates that the SVDD with Gaussian kernel yields more accurate boundaries.

This method finds optimal boundaries around non-zero class data and predicts whether each

instance belongs to the boundary (i.e., non-zero), or not (i.e., zero). Second stage of this

model is a QRF and I call it SVDD-QRF.

2.4 Computational results and analysis

Using the proposed framework, nine mixture models are developed to predict distribu-

tions and point estimates of thunderstorm power outages. The number of trees in QRF is

500 and the minimal number of instances in each terminal node is 50 to generate a large

number of quantiles. The models produce 101 percentiles (0%, 1%, ..., 100%) as the predicted

distribution for each grid cell and the means of these predicted distributions are calculated as

point estimates. To compare the models, 10 random holdout validation tests are conducted.

In each, I randomly hold out 20% of the data as the validation set, leaving the remaining as

the training set. The model is developed on the training set, and tested on the validation
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Figure 2.4: Continuous Ranked Probability Score (CRPS) for three typical grid cells with
observed outages equal to (a) 0, (b) 104, and (c) 1470 for the storm occured in April 2006.The
green solid curve shows the predicted CDF, and the black vertical line shows the actual value
for the number of customers without power for each grid cell examples. The shaded green
area under the green dashed curve is the CRPS for the predicted CDF. CRPS is a measure
for presenting the variation of the predicted CDF from the actual value. The closer the green
solid curve is to the black stepwise function, the more accurate is the predicted CDF and
smaller is the CRPS value.

set. In each iteration, the performance metrics are calculated for each model.

In Resampled-RF-QRF, Resampled-BT-QRF, and Resam-pled-SVM-QRF models, the

training set is rebalanced by randomly removing half of the records with zero outages (ran-

dom undersampling), and doubling the number of records with non-zero outages by adding

new non-zero records using SMOTE. In Cost-sensitive-RF-QRF model, the cost of misclas-

sifying the records with outages larger than 100 is set four times of the cost of the other

records. For Cost-sensitive-BT-QRF, the misclassifying cost is set to 4 for the records with

outages larger than 100, and 1 for the other records. In SVDD-QRF, the SVDD is trained by

using the data of only non-zero outages. The nine mixture models are also compared with

the null model, in which the predicted distribution of outages in the validation set is set to

the distribution of outages in the training set. Note that all model parameters are chosen

based on cross-validation (C.V.) technique to maximize the accuracy of these nine mixture

models.

2.4.1 Probabilistic and Point Predictions

Training phase: In all nine models, the first stage model is trained on the training

set where the response is binary indicating whether the outage is zero or not. I call this

model f 1(x). Using this model, prediction for the training set is made and the output is the

probability of each record being non-zero. By specifying a threshold assumed to be 0.6 (set

through C.V.), the training set is divided into two sets, zeros and non-zeros. For any xi, if

f 1(xi) > 0.6 then xi is added to the non-zero class and the zero class otherwise. Then two

separate QRF models are trained on these sets which are called QRF1 (the non-zeros set)
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Figure 2.5: Comparing probabilistic predictions of all models based on CRPS

and QRF0 (the zeros set).

Prediction phase: To make a probabilistic prediction for a grid cell in the validation

set, I follow the procedure in Algorithm 1 where S is set to 10, 000. This approach helps us

not assign the records for which the output of the first stage model is close to the threshold

deterministically to one class.

Continuous Ranked Probability Score (CRPS): To evaluate the probabilistic mix-

ture models, CRPS [34] is used. CRPS generalizes MAE to the case of probabilistic forecasts.

It is defined as

CRPS(F, y0) =

∞∫
−∞

(F (y)− 1{y ≥ y0})2dy

where F is the predicted cumulative density function (CDF) for the response value yo. In

hold-out analysis, the CRPS is calculated for each record in the validation set, and the mean

Algorithm 1 Probabilistic Prediction by Two-stage Modeling Framework

1: Initialize the classifier, QRF 1, QRF 0, S and the validation set.
2: for each instance xi, i = 1, ..., T in the validation set, do
3: Predict probability of non-zero response using the classifier, Pxi

.
4: Using QRF 0 predict a CDF for the response variable, CDF0.
5: Using QRF 1 predict a CDF for the response variable, CDF1.
6: for j = 1, ..., S do
7: Generate a random value, uj ∼ Unif(0, 1).
8: if Pxi

> uj then
9: Generate a random record from CDF1.

10: else:
11: Generate a random record from CDF0.

12: Estimate CDF of response variable by all generated records together.
13: Output the mean of generated records as the point estimate for the response variable.
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Figure 2.6: Comparison of the point estimates obtained by different models in terms of the
MAE. The overall MAEs as well as the MAEs of the records with zero outages and records
with non-zero outages are calculated separately.

of all CRPSs over the validation set is considered as the mean CRPS for the corresponding

model and iteration. Figure 2.4 illustrates the predicted CDF and the actual number of

outages for three typical grid cells. In this figure, the green shaded area presents the CRPS

for each predicted CDF. It also shows how CRPS can capture the variation of the predicted

distributions from its actual value.

Figure 2.5 compares the models by their CRPS in the hold-out analysis. It shows that

all mixture models predict distributions of outages significantly better than the null model.

Applying cost-sensitive learning in Cost-sensitive RF-QRF has improved the probabilistic

predictions significantly. However, applying the resampling technique has deteriorated the

performance in almost all three types of models. This may be because resampling changes

the distribution of the training set, and so the predicted distributions do not match the data

very well.

The mean of predicted distributions is calculated as a model’s point predictions. To eval-

uate the model’s point predictions, mean absolute error (MAE) is estimated. Since my data

is highly zero-inflated, the overall MAE as well as the MAEs of records with zero outages and

records with non-zero outages are compared separately. Figure 2.6 summarizes the accuracy

of all models. Comparing the MAE for non-zero records shows that both resampling and

cost-sensitive methods are effective in improving the model performance for predicting non-
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Figure 2.7: Analyzing the accuracy of cost-sensitive RF-QRF model for difference values of
the cost parameter.

zero outages while they do not deteriorate the model performance for predicting zero outages.

They handle the zero-inflation issue better than the two-stage modeling approach without

the preprocessing step proposed by [74] and predict power outages with higher accuracy.

Figure 2.6 shows that the mixture models with a RF in the first stage perform significantly

better than others for predicting both zero and non-zero outages. It also illustrates that all

9 models estimate outages with significantly greater accuracy than the null model. Table

2.2 summarizes the MAE and CRPS values for all models.

Since the cost-sensitive RF-QRF performs better than other models in predicting the

Table 2.2: Comparing the accuracy of various models

Probabilistic
Predictions

Point Predictions

Model CRPS
MAE
Zero class

MAE
Nonzero class

MAE
Overall

RF-QRF 14.4 1.4 102 15.4
Resampled RF-QRF 15.8 1.3 101.1 15.2
Cost-sensitive RF-QRF 11.1 1.2 92.9 14.1
BT-QRF 12.0 3.4 100.1 16.9
Resampled BT-QRF 17.6 3.3 98.9 16.6
Cost-sensitive BT-QRF 11.5 3.5 96.5 16.4
SVM-QRF 15.4 3.5 100.3 17.8
Resampled SVM-QRF 16.3 3.6 98.4 16.5
SVDD-QRF 14.5 3.6 96.6 16.5
Null 54.5 13.7 100 24.6
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outages, I next evaluate the impact of the misclassification cost in its first-stage classifier on

the model’s performance. Figure 2.7 indicates the overall MAE as well as the MAEs of the

records with zero outages and records with non-zero outages for 10 different misclassification

costs. These values are the costs of misclassifying the records with outages greater than 100

to the class of records with zero outages, while the misclassification cost for all other records

is set to 1. As the cost of misclasifying the records with outages greater than 100 increases,

the MAE for the non-zero class records decreases. On the other hand, the overall MAE and

MAE for the zero-class records do not change significantly for small cost values. However,

these errors increase as the cost parameter increases. Choosing the cost parameter depends

on the policies taken by the decision maker and the trade-off between these three types

of errors. Large error for the zero-class records results in over-estimating the outages and

causes higher costs of preparation for utility companies, while under-estimating the outages

results in higher customers dissatisfaction. In this analysis, the main purpose is to have the

minimum overall MAE and thus, I choose the cost of 4 (which has the lowest overall MAE)

for the records with outages greater than 100.

2.4.2 Partial Dependence Plot and Variable Importance

A partial dependence plot (PDP) illustrates the marginal contribution of a single variable

to the response. I use PDPs (Algorithm 2), presented by [51], for assessing the influence

of variables in the two-stage model. In this algorithm, xi = (xi1, xi2, ..., xim) ∀i = 1, ..., n

denotes ith instance from the data set. Given the lowest CRPS and MAE in the hold-out

analysis, the cost-sensitive-RF-QRF model performs the best, and so it is trained on the

whole data and used as a reference model for making PDPs. Based on this model, I plot the

PDPs. Figure 2.8 shows PDPs for the 9 most influential variables. A relatively flat PDP

Algorithm 2 Partial Dependence Plots and Variable Importance

1: Initialize the predictive model f(xi) trained on the whole data, number of covariates m, and total
number of instances n in the whole data.

2: for each variable xj , j = 1, ...,m do
3: Define a range with discrete values for the covariate to iterate over i.e., (a1j , a2,j , ..., aKj).
4: for each akj , k = 1, ...,K do
5: for i = 1, ..., n do
6: Substitute akj with xij within xi = (xi1, ..., xij , ..., xim) (new instance is denoted

by x̄i).
7: Make prediction for x̄i (output is f(x̄i)).

8: Calculate fakj
= 1

n

∑n
i=1 f(x̄i)).

9: Plot PDP for variable k (i.e., plot fakj
against akj).

10: Find Mj = maxk(fakj
), and mj = mink(fakj

).

11: Estimate the importance of each variable as V Ij =
Mj−mi∑n

j=1Mj−mi
.
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Figure 2.8: Partial dependence plot for the 8 most important variables

indicates that the covariate of interest has relatively little influence on the predictions, while

a large variation indicates that the covariate has a large degree of effect on the predictions.

Figure 2.8 indicates that the number of outages has a direct relationship with probability of

winds being greater than 58 mph, 12 hour precipitation probability, probability of tornadoes,

number of customers and number of transformers. Increases in these variables cause the

mean of outages to also increase. However, sky cover and mean value of relative humidity

have reverse relationship with the number of outages. Also, PDPs for the wind direction

indicate that as the wind direction changes from southerly (wind direction of 180 degrees)

to northerly (wind direction of 0 or 360 degrees), the number of outages increases steadily.

Variable importance (VI), on the other side, is a single metric based on which variables

can be ranked according to their importance and influence. Algorithm 2 explains how VI

is calculated and the relationship between PDP and VI. Table 2.3 shows the VI for each

covariate based on its relative swing in partial dependence values. The VI values are nor-

malized by giving the most important variable a score of 100. High VI values implies that

the covariate has a large influence on predictions. As observed from Table 2.3, the weather

data, number of customers and power system components are the most important types of

variables. However, other types of variables like land cover, soil moisture and characteristics,

tree related variables, and precipitation are less important.
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2.4.3 Prediction for New Storms

In order to visualize the model’s predictions, the distribution of outages for one thun-

derstorm occurred in April, 2006 is predicted using the final cost-sensitive-RF-QRF model.

Figure 2.9 shows the spatial variation of actual outages (Figure 2.9-a) versus the mean esti-

mated outages (Figure 2.9-b), and the width of 90% confidence intervals for the estimated

outages (Figure 2.9-c). Figure 2.9 shows that the overall predicted outages follow the same

Table 2.3: Variable importance in the final cost-sensitive-RF-QRF model

Rank Type Variable VI
1 Weather data Prob. of winds > 58 mph 100.00
2 Weather data 12 hours Prob. of precipitation 93.97
3 Weather data Sky cover (mean) 83.77
4 Weather data Wind direction (mean) 74.85
5 Weather data Prob. of tornadoes 73.52
6 Customers Num. of customers 70.62
7 Weather data Relative humidity (mean) 68.07
8 Power system Num. of transformers 59.22
9 Weather data Wind direction (min) 46.34
10 Weather data Precipitation forecast 42.31
11 Weather data Convective hazard outlook 34.59
12 Weather data Wind direction (max) 32.99
13 Power system Total mileage of overhead lines 30.77
14 Weather data Apparent temperature(mean) 30.27
15 Power system Num. of poles 29.37
16 Weather data Wind gust speed (mean) 27.86
17 Precipitation 12 month SPI 25.28
18 Power system Num. of switches 24.94
19 Weather data Severe thunderstorm watch 23.12
20 Topography Elevation (mean) 20.23
21 Land cover Forest land cover 17.58
22 Soil moisture Soil moisture (10-40cm depth) 17.21
23 Tree Area covered by trees (%) 17.15
24 Precipitation 6 month SPI 15.59
25 Land cover Grassland land cover 13.56
26 Land cover Water land cover 12.94
27 Tree Janka hardness of tree species 11.97
28 Soil moisture Soil moisture (0-10cm depth) 11.73
29 Land cover Scrub land cover 11.14
30 Soil characteristic Root zone (mean) 10.71
31 Land cover Barren land cover 10.23
32 Tree Trees height (max) 6.95
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Figure 2.9: Comparison between spatial distribution of actual outages and estimated ones
for the storm occurred in April 2006

general spatial pattern as the observed outages. Based on Figure 2.9-c, the estimated 90%

confidence intervals for the number of outages are wider in the central and northern parts

of the state relative to the other portions of the state. This might happen because these

areas, which are generally associated with urban areas where a large number of customers

are living, have higher concentrations of power outages.

2.5 Summary and Conclusions

In this study, a novel two-stage model that accurately predicts the distribution of thunder-

storm-induced power outages is developed. The first stage is based on RF, BT and SVM

classifiers. To deal with the zero-inflation and also improve the predictive performance of

these classifiers, two techniques including cost-sensitive learning and resampling are com-

pared.

In the second stage, there are two QRF models one of them trained on the zero class data

and another one trained on the non-zero class data. Conditioning on the fact that each record

belongs to the zero or non-zero class data, each QRF makes a separate prediction for the full

distribution of that record. The role of the first-stage classifier is to predict the probability

of the outcome variable being non-zero. Once this probability is estimated, a large number

of random samples between 0 and 1 are generated. Then each random sample is compared

with the probability of the outcome being non-zero. For each random sample larger than the

estimated probability, a data point is randomly generated from the predicted distribution

by the QRF 0, while for each random sample smaller than the estimated probability, a data

point is randomly generated from the predicted distribution by the QRF 1. These data points
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together estimate the full probability distribution of each record from first stage.

The models are trained and validated using the actual thunderstorm data obtained from

a decade of data collection in Alabama. The studied area is divided into grid cells and all the

data and predictions are produced per grid cell. Validating my models through holdout anal-

ysis, I demonstrate that my approach offers more accurate point and probabilistic predictions

compared to traditional approaches. Comparing with the traditional two-stage modeling ap-

proach [74], the results of holdout analysis indicate that the proposed two-stage framework

improves the accuracy of the point estimates. It is also found that applying cost-sensitive

learning techniques in the first-stage results in not only more precise and computationally

efficient point predictions, but also higher accuracy in probabilistic predictions. More ac-

curate predictions produced by my modeling framework help utility companies make better

decisions for post-storm restoration. The probabilistic predictions help them incorporate the

existing uncertainty in the predictions in their decision making process.

To further improve the accuracy of the power-outage predictions, specially in much more

zero-inflated data sets than the one used in this study, more research on the zero-inflation

property is required. Moreover, due to recent technological and methodological progresses

made in the data collection field, researchers are able to collect and store power-outage data

more quickly than the past. Furthermore, the power system variables, weather conditions,

and other parameters affecting the outages are changing over time. Therefore, future research

is needed to further develop outage forecasting models to better adapt to changing conditions

and data over time.
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CHAPTER III

Adaptive Two-stage Bayesian Model Averaging for

Estimating the Impact of Hazards on Power System

Service 1

3.1 Introduction

3.1.1 Research Motivation

Weather events have the potential to cause disruptions in the electric power grid and

result in power outages lasting from a few hours up to multiple days in the United States

[74, 82, 117, 135]. As electrical power grids are highly interconnected with other critical

infrastructures, a blackout may result in widespread economic and non-economic losses [26,

78]. A congressional research service study done in 2012 estimates the inflation-adjusted

cost of weather-related outages at $25 to $55 billion annually, though there is a large annual

variability [9, 26]. The frequency of such weather events has also been increasing over the

last 30 years. It has been predicted that both the number and severity of them will increase

due to global warming and climate changes [26]. Generally, the impacts of weather events on

the electric power systems cannot be entirely prevented. However, by being better prepared,

utility companies can restore service in a shorter time, and so reduce their costs [117].

Accurately estimating the number of power outages prior to a forecast event can help utility

companies be better prepared and restore outages more quickly. Accordingly, in the recent

years, more utility companies have started to build outage prediction models for forecasting

storm impacts.

In the last two decades, a wide range of modeling techniques from parametric statistical

models to nonparametric machine learning methods have been proposed for outage prediction

1Submitted to European Journal of Operational Research as Kabir, E., Guikema, S.D., and Quiring,
S.M, Adaptive Two-stage Bayesian Model Averaging for Estimating the Impact of Hazards on Power System
Service.
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modeling (OPM). In almost all of these studies, several candidate models are chosen and

trained on the collated power outage data. The models are then compared based on some

accuracy criterion, typically using hold-out testing, and the best one is selected. Finally, this

model is introduced as the one describing the process of weather-induced power outages, and

all the inferences about the parameters and the variables are done based on this selected

model. Despite their widespread use, however, there are a number of limitations with this

modeling approach.

First, the uncertainty existing in the model is ignored. In these studies, one model is

selected as the best one and all others are ignored even though the selected model may

be only slightly more accurate than others. Parameter estimation, variable importance

analysis and other inferential studies are all done based on the selected model ignoring

the uncertainties existing in this model being the most accurate model in a given future

scenario. Not conditioning the inferences on the selected model gives the decision maker a

false impression of precision and hides the existing uncertainty in the model, which results

in decision making that is not well-informed. Second, the current data may not be sufficient

to select the best model explaining the data generating process and an observation of new

data may lead to the selection of a completely different best model. This may yield sudden

changes in estimates and the inclusion of new data may require revisiting a model that was

previously rejected. This can appear to be erratic to model users. Third, in OPM, we care

most about the predictive accuracy and the stability of the predictions rather than identifying

the true model. Thus, we should look for a procedure that produces both accurate and stable

predictions.

Despite over a decade of research in OPM, there still exists some amount of uncertainty

in the forecasts which may arise from different sources such as the input data or the model

choice. It is not enough to model the outages with a single output and instead, we should

present the uncertainties that exist in the predictions as well. Based on conversations with

utility storm personnel, in order to have a better recovery process and restoration planning,

they need probabilistic models accurately estimating power outages in terms of probability

distributions. However, most developed models estimate power outages as a single value

rather than a probability distribution, and so, further research should be conducted in this

area.

Furthermore, all developed models are based on traditional statistical or machine learning

models and no adaptive learning methods have been developed for OPM. Adaptive prediction

models can allow utility companies achieve better outage predictions while investing less

time, effort and resources. This is because an adaptive model learns from the updates made

to the input and output data. Therefore, the OPM literature needs models addressing this
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adaptivity issue. Finally, almost all the models in the literature are developed for a single

type of weather event, such as a hurricane (e.g.,[74]) or a thunderstorm (e.g., [53]). There

are relatively few studies addressing multiple types of weather events (e.g., [44]), but even

in these studies, separate models are developed for different types of weather events. Thus,

the power outage prediction literature lacks a single ”all weather” model estimating outages

for many different types of weather events simultaneously.

This chapter is motivated by the above-mentioned research gaps. It develops a new

adaptive statistical learning approach based on Bayesian Model Averaging (BMA) to form

an ensemble model estimating distributions of daily customer interruptions. I call this model

Adaptive Two-stage Bayesian Model Averaging (AT-BMA).

3.1.2 My Contributions to the Literature

The contributions of this study are two-fold, as discussed below.

From a methodological perspective, I propose a new adaptive two-stage BMA algorithm.

This proposed algorithm differs from a classical BMA approach in three aspects. First,

unlike the traditional BMA approach, I formulate the weights of base learners (models) as

an online multinomial logit model of the features. The posterior distribution of this model’s

parameters are approximated by using a Laplace approximation method. Then, I deploy a

stochastic gradient ascent approach to update parameters of the posterior distribution as

new data are observed. This helps not only tackle the challenge of likelihood estimation,

but also provides a means to consider a variety of statistical and machine learning models

such as quantile regression forest (QRF) as the algorithm’s base learners. In other words,

since the base learners’ weights are affected by the number of times a model makes the best

prediction among all considered models and not the distribution of error of each model, we

can choose any type of statistical model for making the predictions and are not limited to

specific parametric statistical models. Furthermore, in this approach, the weight of each

base learner for a newly observed data point is different and based on the features of this

record. This idea significantly extends the practicality of the BMA for various applications

dealing with complex datasets.

Second, I have extended the BMA approach for the case of having multiple clusters of

data instead of one comprehensive dataset. This makes my algorithm capable of modeling

more complex data because we can initially divide the dataset into smaller clusters where

data in each cluster are more similar to each other. Moreover, this leads to higher accuracy in

the predictions. Third, in the classical BMA approach, only the weights of the base learners

get updated as new data are collated and the base learners themselves are not updated.

However, in my algorithm, I assign a training set to each base learner and newly collected
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data are added to the training set of the model making the best prediction for that record.

Periodically, each base learner is retrained on its own training set to get updated.

From an application perspective, although BMA has been employed successfully for pre-

diction tasks in other disciplines, this is the first application of the BMA approach for OPM.

Applying BMA for modeling weather-induced customer interruptions brings several advan-

tages including: (i) formulating and representing model uncertainty, (ii) the ability to be

updated as more data are accumulated, and (iii) resulting in optimal predictions under sev-

eral loss functions, such as logarithmic, squared error loss, and continuous ranked probability

score (CRPS) [106]. Finally, I develop a single algorithm for predicting daily customer in-

terruptions over a large area covering multiple U.S. states and a wide variety of weather

conditions. Such comprehensive model has never been developed in any of the past studies

and can help utility companies make better restoration decisions.

3.1.3 Chapter Organization

This chapter is organized as follows. Section 3.2 provides a literature review of power

outage predictive modeling. In Section 3.3, after describing the classical BMA approach,

I introduce my proposed algorithm. Section 3.4 presents the case study. In this section

I initially describe the large dataset used for validating my algorithm, and then provide

the computational results from using the proposed method for modeling the daily customer

interruptions. Finally, Section 3.5 concludes the chapter.

3.2 Literature Review: Weather-induced Outage Prediction Mod-

eling

Parametric statistical models: A wide range of studies have been done in power

outage prediction, beginning with the work of Davidson et al. [19]. Using a quantitative

investigation of the performance of two electric power distribution systems, they showed that

most tropical cyclone-related outages are caused by fallen trees on overhead power lines, and

gust wind speed is a necessary, but not sufficient predictor of damage. Later, Liu et al. [68]

utilized a negative binomial generalized linear model (GLM) to predict hurricane-related

outages in the Carolinas. Han et al. [42] used the same model type in combination with

principal component analysis, but with only variables that can be well measured prior to

landfall, as opposed to the hurricane-indicator variables used by Liu et al. [68], to estimate

the spatial distribution of hurricane outages in Gulf Coast region. Similarly, Zhou et al. [136]

used a Poisson GLM and a Bayesian network to predict the yearly weather-related failure

events on overhead lines. Comparing these two models, they found the Bayesian network
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model preferable due to being (1) more informative than Poisson regression, (2) easier to

implement, and (3) capable of getting updated with additional data.

Later, Liu et al. [66] used accelerated failure time models to predict outage duration from

hurricanes and ice storms. One main limitation of their model was not incorporating key

factors such as tree-trimming covariates or other features describing restoration resources

(e.g., number of repair crews). Accordingly, Guikema et al. [36] developed a Poisson gen-

eralized linear mixed model (GLMM) to estimate the impacts of tree trimming on electric

power system outages under normal operating conditions. Their results revealed that (1)

increasing tree trimming frequency significantly decreases the number of resultant outages,

and (2) the Poisson GLMM outperforms the negative binomial GLM for modeling the power

outage data for one operating company. Liu et al. [67] also developed a GLMM using outage

data from three large East coast utility companies for multiple hurricanes and ice storms to

predict the spatial distribution of outages. However, their model still suffers from including

the hurricane and ice-storm indicator variables because the models cannot be used for new

storms. Building on Liu et al. [68, 67], Han et al. [41] developed a Poisson generalized

additive model (GAM) in which the hurricane-indicator variable is replaced with physically

measurable variables. The authors noted that the GAM could capture nonlinearity in the

data, and overcome the over-prediction problems related to the negative binomial GLM. Hav-

ing only physically measurable variables, they also could substantially improve the practical

usefulness of the model.

Non-parametric and Ensemble models: One of the first uses of nonparametric mod-

els for hurricane outage prediction was conducted by Guikema et al. [38]. They developed two

non-parametric models including classification and regression trees (CART) and Bayesian

additive regression splines (BART). Comparing these two models with the previously intro-

duced GAM and GLM showed that non-parametric approaches outperform the parametric

ones in terms of predictive accuracy. Using a CART model, Quiring et al. [91] showed that

the inclusion of certain soil and topographic variables significantly improves the predictive

accuracy. Later, models based on ensembles of trees (explained in [51]) gained more popular-

ity and Kankanala et al. [58] proposed an ensemble learning approach based on a boosting

algorithm to estimate wind and lightning-related outages. Their results clearly showed that

their proposed model estimates outages with greater accuracy than other models like neural

networks and a mixture of experts. Shortly thereafter, Nateghi et al. [82] developed an

ensemble model based on the method of random forest (RF) to estimate hurricane power

outages for two states in the Gulf Coast region. They showed that their RF model yields

much more accurate predictions using a significantly reduced number of predictors as com-

pared with the Han et al. [42] and Liu et al. [68]. Wanik et al. [121] showed that an
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ensemble model of RF, boosting tree and decision tree obtained the highest accuracy in

terms of predicting the spatial distribution of outages per 2km grid cells.

To support wider emergency response planning, Guikema et al. [39] developed a Spatially-

Generalized Hurricane Outage Prediction Model (SGHOPM) based on the RF method. This

model was developed for the entire U.S. coastline. Using a RF coupled with a quantile re-

gression forest (QRF) model, Tonn et al. [112] conducted a longitudinal study of outages

at the zip code level to gain insight into the causal drivers of power outages during hur-

ricanes. In another study, Wanik et al. [122] developed a RF to improve the OPM over

eastern Connecticut for hurricanes. They incorporated tall vegetation that could come in

contact with overhead distribution power lines, along with other vegetation management and

infrastructure data. He et al. [44] conducted another study to compare two nonparametric

tree-based models, QRF and BART, in terms of both power outage point estimates and

prediction intervals for different types of weather events including hurricanes, blizzards, and

thunderstorms. They found that BART produces more accurate point estimates than QRF,

while QRF provides better prediction intervals for high spatial resolutions, but it does not

aggregate well for coarser resolutions.

Dealing with zero inflation: Power-outage data, especially at high spatial and tem-

poral resolutions, are zero-inflated. That is, the majority of locations experience no outages

and so, the response variable has many zeros. This issue can result in some challenges in

predictive modeling such as bias and inaccuracy. To deal with these issues, Guikema and

Quiring [37] proposed a two-stage modeling approach in which the first stage, a CART model,

predicts whether at least one outage will occur in each location. If the CART model deter-

mines that an outage will occur, a Poisson GAM estimates the number of outages in that

area. They showed that their two-stage model outperforms the classical zero-inflated Poisson

GLM and zero-inflated negative binomial GLM for their power outage prediction problem.

The SGHOPM was extended by McRoberts et al. [74] to the two-stage approach using RF in

both stages. Later, the two-stage modeling technique was extended by Kabir et al. [53] for

predicting thunderstorm-induced customer interruptions which are highly zero-inflated. In

their approach, resampling and cost-sensitive learning are incorporated within the first-stage

model, and the QRF is used in the second-stage to produce probabilistic prediction. In their

approach, instead of producing point estimates, the full probability distributions of the num-

ber of customers interrupted in each grid-cell are estimated. They showed that incorporating

both resampling and cost-sensitive learning techniques enhances the accuracy of predictions

specifically for the non-zero class. They also showed that their approach outperforms the

two-stage model developed by McRoberts et al. [74].

The OPM literature shows that a wide range of modeling techniques have been employed
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in past studies. This highlights the model uncertainty issue that was discussed in section ??.

Furthermore, most OPMs are developed for a single weather event (e.g., [37, 39, 53, 74]).

There are a few cases where separate models are developed for different weather events, but

for each type of weather one model is selected to make a prediction (e.g., [44]). This approach

is operationally challenging for the utility companies because it is not always clear what type

of weather event it is and which model should be run. Accordingly, utility companies are

looking for models that are not weather-event specific and can make predictions for all types

of weather events. Finally, studying the literature shows the lack of an adaptive model able

to learn from new data and keep the system updated. Thus, in this study, I address the

above-mentioned gaps and develop an adaptive all-weather model.

3.3 Model

3.3.1 Model Averaging

The selection of one particular model among a set of trained ones may lead to overconfi-

dent predictions and riskier decision making because it ignores the existent model uncertainty

in favor of very particular distributions and assumptions on the model of choice. This mod-

eling strategy, which is used by many researchers, is called model selection. To deal with

model uncertainty, an alternative approach that has attracted increasing attention is model

averaging. In this approach, I take into account all the models existing in the model space

and the prediction is averaged over all these models using weights. Model averaging has two

main strands: Bayesian model averaging and frequentist model averaging.

Bayesian Model Averaging (BMA) introduced by Leamer [64] and later used in Min and

Zellner [77], and Raftery et al. [92] is a direct consequence of the Bayes’ theorem in a model

uncertainty setting. BMA adds a layer to the hierarchical modeling in Bayesian inference

by assuming a prior distribution over the set of all considered models, which describes the

prior uncertainty over each model’s capability to accurately describe the data. Let M =

(M1,M2, ...,MK) denote the set of models under consideration. There is a probability

mass function (prior) over all the models with values p(Mk) ∀k = 1, ..., K. By using Bayes’

theorem, I derive posterior model probabilities given the observed data by:

p(Mk|D) =
p(D|Mk)p(Mk)∑K

m=1 p(D|Mm)p(Mm)

where D is the observed data, and p(D|Mk) is the model’s marginal likelihood or model

evidence. Suppose we are interested in estimating a quantity of interest ∆, such as a future

observation or a model parameter, on the basis of the data. Then, its marginal posterior
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distribution across all models is obtained by:

p(∆|D) =
K∑
k=1

p(∆|D,Mk)p(Mk|D)

This is an average of the posterior predictive distributions for ∆ over all the considered

models, weighted by their corresponding posterior model probability. In the classical BMA,

it is assumed that the model space contains the ”true” data generating model, although it

is unknown. In this situation, which is referred to as M-closed, p(Mk|D) is the posterior

probability that model Mk is true. In BMA, there are priors for both models and model-

specific parameters, and their specification is quite important for the final outcomes and the

posterior model probabilities. In some simple settings, such as GLMs with conjugate priors,

the model’s marginal likelihood can be calculated analytically, but in general it does not

have a closed form and must be approximated. Some well-known approximations are done

through using Bayesian Information Criteria (BIC), Kullback Information Criterion (KIC),

Bayes factor, or Akaike information criterion (AIC) [28]. These approximations might not

be adequate for more complex models because they rely on many regularity conditions.

Classical BMA focuses on identification of the true model in an M-closed framework.

However, this assumption is not realistic in many situations. Recently, several researchers

have considered the M-open framework in which it is assumed that the true model does

not exist in the model space. Under this assumption, models’ posterior probabilities are

determined using cross validation [131]. Several empirical and theoretical analyses of the

performance of the BMA approach have been done in the literature. They show that BMA

leads to better predictions with lower variance under a logarithmic scoring rule [72] rather

than using a single model. This practice is also considered as a standard post-processing

approach in order to make inference in the presence of multiple competing statistical models

for producing probabilistic forecasts [93, 104]. In the frequentist model averaging (FMA),

unlike BMA, no priors are considered on the candidate models and the outputs are point

estimates. Model weights and parameters are totally determined by data. For an overview

of FMA, see [28].

3.3.2 Proposed model: Adaptive two-stage BMA

Starting in the late 1980s, Bayesian modeling and inference gained attention in the re-

liability literature. Since then, advances in computational abilities have significantly con-

tributed not only to an increase in their implementation but also in their use for solving

decision-making problems [49, 130]. In this study, I present a new BMA approach to tackle
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model uncertainty. I relax the classical assumption that the model space includes the true

model. I treat the models as part of the action space and my objective is to combine their

predictions with each other to achieve improved forecasts. In my approach, model weights

represent how close they are to the true model and they are functions of the data. In the

following, I explain this approach in detail.

3.3.2.1 Bayesian Model Averaging for Clustered Data

Initially, the data are divided into smaller clusters in such a way that the objects in the

same cluster are more similar. I denote these clusters by C1, C2, ..., CL where L is the number

of clusters. Next, I assume that there are K candidate probabilistic base learners, denoted

by M1,M2, ...,MK . Each of these K base learners has a separate training set represented

by Φ1,Φ2, ...,ΦK . The goal is to combine the predictions of these base learners such that the

error in the final prediction is lower and more stable. To estimate the probability distribution

of the response variable y given a newly observed covariate vector x, I condition on the cluster

to which the covariate vector x belongs. Thus, we have the following probability distribution

of the response variable y given observed covariate x.

p(y|x) =
L∑
l=1

p(y|x, Cl)p(Cl|x),

where p(Cl|x) is the probability of covariate x belonging to the cluster Cl. As an example,

in a Gaussian Mixture Model (GMM), p(Cl|x) is equal to probability density of a data point

x in lth multivariate Gaussian model divided by sum of probability density values obtained

from all multivariate Gaussian models at point x. We can also think of K-means clustering

as a GMM with fixed variance components.

The marginal posterior distribution of the response variable y across all K base learners

is given by:

p(y|x, Cl) =
K∑
k=1

p(y|x, Cl,Mk)p(Mk|x, Cl).

We shall refer to the above equation as Bayesian model averaging where p(y|x, Cl,Mk) is the

predictive probability density function based on base learnerMk given covariate vector x and

knowing that x belongs to cluster Cl. Here, p(Mk|x, Cl) denotes the posterior probability

that the base learner Mk is the most accurate model given x ∈ Cl (i.e. Mk makes the

best forecast for covariate x). In the following, I formulate the posterior probabilities as a

multinomial logit model and show how it can be updated with each newly observed data.

Figure 3.1 represents my algorithm graphically.
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Figure 3.1: This figure summarizes my proposed adaptive two-stage Bayesian model aver-
aging algorithm. There are K base learners represented by M1,M2, ...,MK . Each base
learner independently predicts probability distribution of response variable y for each co-
variate vector x knowing the cluster this record belongs to, C(x). The final probabilistic
prediction for covariate vector x is a weighted average over all predicted probability distribu-
tions. The weights of models in the final prediction is a multinomial logit model of covariate
x. Parameters of the multinomial logit model as well as all the base learners are updating
over time using newly observed data.
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3.3.2.2 Models’ Posterior Probabilities as a Multinomial logit model

In my proposed algorithm, the performance of candidate models does not have to be the

same for all records. I formulate the probability of models making the best prediction as a

multivariate logit function of covariate vector x:

p(Mk|x, Cl) =

{
exp(βT

k x)

Zx
for k = 1, ..., K − 1

1
Zx

for k = K

where Zx = 1 +
∑K−1

k=1 exp(βTk x) and βk = [βk1, ..., βkd]
T
k=1,...,K−1 is a parameter vector cor-

responding to the kth model. If B = [β1, ..., βK−1] represents the matrix of parameters, the

posterior distribution of B given observed data D is calculated as follows:

p(B|D) ∝
{
p(D|B) · p(B)

}
log p(B|D) ∝

{
log p(D|B) + log p(B)

}
where D = 〈xi, yi〉i=1,...,n is a sequence of n data points with xi ∈ IRd and yi ∈ {1, ..., K},
p(D|B) is the likelihood of the data in the model with parameter matrix B and it is computed

as:

p(D|B) =
n∏
i=1

exp(βTyixi)

1 +
∑K−1

j=1 exp(βTj xi)
,

where βK is a d dimensional vector of zeros. Also, p(B) is the prior of the parameter matrix. I

assume this prior is a univariate Gaussian with mean µkj and variance σ2
kj on each parameter

βkj. I also assume that the components of B are independent and hence, the overall prior

for B is the product of the priors for its components:

p(B) =
K−1∏
k=1

d∏
j=1

(
1√

2πσkj
exp

(
−(βkj − µkj)2

2σ2
kj

))
.

Exact Bayesian inference for the posterior distribution of parameters of a multinomial

logistic regression is intractable. I can either deploy analytic approximations to the posterior,

or solutions based on Markov Chain Monte Carlo (MCMC) methodology [29]. The MCMC

is usually computationally inefficient in terms of both time and space complexity. There-

fore, in what follows, I consider the Laplace approximation method which approximates the

posterior distribution with a Gaussian distribution. If I denote the log posterior probability

of parameters with Ψ(B) = log p(D|B) + log p(B), the second-order Taylor expansion of this
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Algorithm 3 Adaptive Two-stage Algorithm based on Bayesian Model Averaging

1: Given: Models M1,M2, ...,MK ; Sets Φ1,Φ2, ...,ΦK ; and Clusters C1, C2, ..., CL
2: Initialize: Mean and variance (respectively µkj and σ2

kj ,∀k = 1, ...,K − 1&∀j = 1, ..., d) of Gaussian
prior distributions defined on the parameters of the multinomial logit model.

3: for t = 1, 2, ... do
4: Get new batch of data, called D = 〈xi, .〉i=1,...,n.
5: for each record xi ∈ Dt ; ∀i = 1, 2..., n do
6: Estimate probability of the record belonging to each cluster, p(Cl|xi) ∀l = 1, ..., L
7: Using each base learner, make prediction for the probability distribution of the response variable.

The produced probabilistic prediction is shown by p(yi|xi, Cl,Mk) ∀k = 1, ...,K

8: Set βk = [µk1, ..., µkd]
T

for k = 1, ...,K−1 and Zxi = 1+
∑K−1
k=1 exp(βTk xi). Estimate probability

of each base learner making the best prediction for covariate vector xi as follows:

p(Mk|xi, Cl) =

{
exp(βT

k xi)
Zxi

for k = 1, ...,K − 1
1
Zxi

for k = K

9: Make the final probabilistic prediction for xi, shown by p(yi|xi), according to the following
formula:

p(yi|xi) =

L∑
l=1

p(yi|xi, Cl)p(Cl|xi)

p(yi|xi, Cl) =

K∑
k=1

p(yi|xi, Cl,Mk)p(Mk|xi, Cl)

10: Observe the actual response variable yi for record xi and set bki equal to 1 if kth model makes
the best prediction for xi, and 0 otherwise.

11: Add the new record 〈xi, yi〉 to set Φj where j = argmaxk b
k
i

12: Update µkj and σ2
kj ,∀k = 1, ...,K − 1&∀j = 1, ..., d according to Algorithm 2.

13: Update the models: retrain each model on the updated corresponding training set

function at point B̂ is written as:

Ψ(B) ≈ Ψ(B̂) + (B− B̂)Ψ′(B̂) +
1

2
(B− B̂)2Ψ′′(B̂).

By choosing B̂ at the peak (mode) of the Ψ(.), where the derivative is zero, the posterior

distribution of parameters can be approximated with a Gaussian centered at the mode:

B|D ∼ Gaussian(B̂,−Ψ′′(B̂))

The problem is thus reduced to find B̂ such that:

B̂ = arg maxβ Ψ(B)

= arg maxβ
{

log p(D|B) + log p(B)
}

To obtain B̂, I deploy a stochastic gradient ascent algorithm. Details of this optimization
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Algorithm 4 Stochastic Gradient Ascent Algorithm for finding the Optimal Solution of Ψ(B) Function

1: Given: Batch of Data D = 〈xi, yi〉i=1,...,n; Dimension of feature space and response variable (d and K
respectively); Mean and variance of prior distributions of model parameters (µkj , σ

2
kj) ∀k = 1, ...,K −

1 & j = 1, ..., d
2: Initialize: Maximum number of training iteration, T ; Minimum relative error improvement per itera-

tion, ε ∈ IR+; Initial learning rate, η0; Annealing rate, δ ∈ IR+

3: for t = 1, 2, ..., T do
4: ηt = η0

1+t/δ

5: for i = 1, 2, ..., n do
6: Z ← 1 +

∑K−1
k=1 exp(βTk xi)

7: for k = 1, 2, ...,K − 1 do
8: p(k|xi,B)← exp(βTk xi)/Z
9: βk ← βk + ηt(

1
n∇kΨ(B))

10: lt = Ψ(B)

11: if |lt−lt−1|
|lt|=|lt−1| < ε then

12: Return B

methodology are given by Algorithm 4, where elements of the (K−1)∗d dimensional matrix

∇Ψ(B) is calculated as:

∇k,jΨ(B) =
n∑
i=1

(
xij
(
I(k = yi)− p(k|xi,B)

)
− βkj − µkj

nσ2
kj

)
,

and ∇kΨ(B) is the kth row of the gradient matrix. Using the stochastic gradient ascent

(Algorithm 4), I am able to estimate the mean and variance of the posterior distributions

of parameters of the multinomial logit (ML) model. In Algorithm 2, in each iteration of

receiving new data and updating the parameters of the ML model, the previous values of

parameters are used as the prior for the next iteration. For every instance, the ML model

predicts the probability that each base learner makes the best prediction. These predicted

probabilities are the weights of base learners’ in the BMA model.

3.3.2.3 Updating the models

In my proposed adaptive two-stage algorithm, I assume that each base learner Mk; k =

1, .., K has a training set denoted by Φk; k = 1, ..., K. Each of these training sets is updated

when observing new data. Every time I recieve a new record, this record is added to the

training set of the base learner which makes the best prediction for that record. I then

periodically retrain each base learner on its own updated training set. See Algorithm 3 to

find my approach step by step.
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Figure 3.2: Spatial extent of the service territory for AEP Ohio, I&M Power and AEP Texas.
The total service territory is divided into 46 subareas that are defined by the utility company
and shown in different colors.

3.4 Case Study: Predicting The Number Of Customers Inter-

rupted

3.4.1 Data Description

My case study uses the daily number of customers interrupted from 2012 to 2018 in the

service territory of a major utility serving Michigan, Indiana, Ohio and Texas. These data

were provided by American Electric Power (AEP). The colored areas in Figure 5.1 show the

spatial extent of the service territory. This service territory is divided into 46 subareas that

are defined by the utility company and I model at these subareas. Every reported outage was

recorded with an address and the number of affected customers by this outage. I geolocated

and aggregated all outages that occurred within the same subarea. Therefore, I define the

response variable as the total number of customers interrupted in each subarea.

The covariates used in this study are divided into two main categories, static and dynamic.

The first group is related to the power system and includes time-invariant covariates, and

the second one is related to weather, precipitation and soil moisture that changes every day.

All the covariates and response variables are aggregated to the level of subareas. Each group

of variables is explained below.

Static covariates: To characterize the power system, I include the number of poles,
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Figure 3.3: CH factor is estimated for
different number of clusters. Having six
clusters results in the optimum CH value.

Figure 3.4: Data is clustered based on
the static variables, and different colors
show the resultant six clusters.

switches, overhead and under-ground transformers, reclosers, fuses, and total length of over-

head and underground lines in each subarea. These variables provide a measure of the extent

of power system exposure to weather events. The number of customers in each subarea is

another variable included in my model. The static variables are used in the clustering in

order to divide the whole dataset into smaller ones. The Calinski-Harabasz (CH) factor is

deployed as a measure to choose the optimal number of clusters. It is defined as betweenSS/k−1
withinSS/n−k ,

where k is the number of clusters, and n is the dataset length. BetweenSS is the average of

distances between cluster centers, and withinSS is the average of distances from each record

to the center of its own cluster. Ideally, I would like to have a clustering that has the prop-

erties of internal cohesion and external separation. Thus, I look for the k maximizing the

CH factor. Based on this, the optimal number of cluster is chosen to be 6 (see Figure 3.3).

Figure 3.4 illustrates the spatial distribution of these six clusters.

Dynamic covariates: The dynamic covariates used in this study are soil moisture,

historic precipitation levels, and weather forecast variables. Soil moisture and precipitation

data are derived from the North America Land Data Assimilation System. Soil moisture is

extracted at three depth levels including 0-10 cm, 10-40 cm, and 40-100 cm. The values of

total water volume are converted to volumetric water content and then mapped to an em-

pirical cumulative distribution function (CDF). Soil moisture CDFs for the three mentioned

depth levels are used in the model. The standardized precipitation index (SPI) is a mea-

sure of precipitation deviations from normal conditions. SPI is also estimated for different

durations of 1, 3, 6, and 12 months where an n-month SPI is a measure of the deviation

of precipitation from the long-term average in the n months prior. The weather data were

obtained from the National Digital Forecast Database. They include temperature, maxi-

mum instantaneous wind gust (m/sec) speed, probability of a tornado, hail, and damaging
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Figure 3.5: Decrease of the CRPS error of the BMA model as a function of iterations.

thunderstorm, snow amount and 24 hour quantitative precipitation forecast (QPF).

3.4.2 Evaluation metric

The continuous ranked probability score (CRPS) is a proper scoring rule addressing two

important aspects of probabilistic forecast which are calibration and sharpness [34]. These

two aspects help to ensure that the forecast is accurate and the predicted distribution is

concentrated. CRPS compares the cumulative distribution function of the prediction to that

of the observed data. It is defined as

CRPS(F, y0) =

∞∫
−∞

(
F (y)− 1

{
y ≥ y0

})2
dy,

where F is the predicted CDF for the response value yo.

3.4.3 Computational results and analysis

To test and validate my proposed algorithm, I use daily customer interruptions data.

My dataset includes the data from 1988 days of customer interruptions in 46 subareas in

Indiana, Michigan, Ohio and Texas. To test the predictive accuracy of my model, I use

holdout testing. In every hold-out test, I leave one month of data out. I then train the

model on the remaining 71 month data, and test it against the held-out data.

As we can see in Algorithm 3, to train the AT-BMA model, we need a number of models

referred as the base learners (M1,M2, ...,MK), as well as their corresponding training sets

(Φ1,Φ2, ...,ΦK). I choose four probabilistic model types including Bayesian additive regres-

sion tree (BART), Bayesian classification and regression tree (BCART), QRF, and Bayesian

linear regression model (BLM) in order to construct the initial base learners. Then, based

on the spatial clustering distribution shown in Figure 3.4, I divide the first month of data

from the training set into six clusters. Next, I train the above-mentioned models on each of
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Figure 3.6: Boxplot comparison of the CRPS errors of the proposed BMA model with its
base learners.

these clusters of data using all 55 dynamic covariates described in section 4.3. Therefore, I

construct K = 24 initial base learners that are not similar. The data used for each model

being trained are also considered as the base training sets (Φi; i = 1, ..., 24). In the first

iteration and before any information is obtained from the data, I set the prior mean to be

zero and the prior standard deviation to 10 (i.e., µkj = 0 and σ2
kj = 100 for all k and j) for

all the parameters of the multinomial logit model which is formulating the weights of base

learners.

In every iteration of the algorithm, the data from one day including the number of

customers interrupted in all 46 subareas are observed by the algorithm (i.e., t = 1, ..., 1988

and n = 46 in Algorithm 3). For each newly observed data point xi, i = 1, ..., 46, the

probability of the record belonging to cluster C l is estimated as the distance of xi to the

center of cluster C l divided by sum for distances of xi to the centers of all the clusters. Each

base learner produces a probabilistic prediction for each record. Then, the multinomial logit

model estimates the probability of each base learner making the best prediction for record

xi. The final probabilistic prediction is obtained based on step 9 in Algorithm 3.

The parameters of the multinomial logit model are updated according to Algorithm 4

as any new record of data is observed. In every iteration of t = 1, ..., 1988, after the true

number of customers interrupted value (response variable), is observed, I calculate the CRPS

value for each forecast obtained by the base learners. Then, for each record, I find the model

which made the best prediction (i.e., had the least CRPS value). This information creates

a new dataset D = 〈xi, yi〉i=1,...,46, where yi ∈ {1, 2, ..., 24} and xi is a d = 21 dimensional

vector of covariates that are shown in the first row of Table 3.1 (the cluster covariate is a

categorical variable with 6 levels and so, I model it with five binary variables). To implement
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Figure 3.7: Comparison of the MAE error of the proposed BMA model with its base learners.

Algorithm 4 and update parameters of the multinomial logit model, I set T = 100, ε = 0.01,

η0 = 1 and δ = 1. Each newly observed record is added to the training set of model making

the best prediction for that record. Then, after observing data of one month, I retrain the

base learners on their updated training sets.

As discussed previously, I held out data of one month and trained the algorithm on the

training set step by step. Every day, after the model is updated using newly observed data,

I make prediction for the test set. Therefore, in total, I make predictions for the test set

1988 times. I also repeat this process by choosing every one month of data as the test set.

So, the process is repeated for 72 times. This analysis results in Figure 3.5. In this figure,

due to the limited space, instead of a boxplot of the 72 CRPS values in each iteration, I only

represent the median as a single point. Furthermore, data points related to each month are

shown with different colors. Figure 3.5 indicates that the AT-BMA algorithm makes more

and more accurate predictions for the test set as more data is revealed and used. I also find

that the improvement in the model is a result of both model updating (change of color), and

model weights. We see that 90% of the improvements in the CRPS value are due to model

updating, and the remaining 10% are due to weight updating. Therefore, both practices are

successful in improving the model performance.

I also compare the AT-BMA model with the predictive performance of its base learners.

Figures 3.6 and 3.7 illustrate that the out-of-sample CRPS and MAE of the AT-BMA are

less than the CRPS and MAE of all base learners individually. This shows that the model

averaging approach results in obtaining more accurate predictions. The lower CRPS value

obtained by the BMA model is an expected result because I choose weights of base learners

such that the CRPS value of the combined prediction is minimized. However, Figure 3.7
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Table 3.1: Average coefficients of the multinomial logit model in the AT-BMA algorithm
are shown in this table. Each row of the table indicates the average of coefficient values
for each model. The multinomial logit model is built of 21 variables including an intercept,
15 continuous weather-related variables, and 5 binary variables associated with the cluster
covariate. The larger each variable coefficient is, the better prediction the model makes for
records with larger values of that variable.
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1 -0.75 0.08 -0.07 -0.36 0.06 0.27 0 1.17 0.79 -0.57 -0.35 0.01 -0.01 -0.05 0.04 0.03 0.09 -1.19 0.27 -2.63 -1.75
2 2.65 -0.03 -0.03 0 -0.12 0.05 0 -0.04 0.08 0.09 -0.01 -0.02 -0.03 0.06 -0.01 -0.05 1.2 -0.78 0.88 -2.89 -1.19
3 0.05 0.1 -0.06 0.17 -0.25 -0.39 0.16 0 0.01 -0.07 -0.05 -0.17 0.07 0.04 0.01 -0.06 0.38 1.05 0.33 0.47 -0.55
4 2.84 0.07 -0.07 -0.07 -0.07 0.2 -0.04 -0.47 0.39 1.96 1 -0.31 -0.02 0.09 -0.03 -0.06 0.84 -0.26 1.14 -3.59 -0.97
5 -1.08 0.04 -0.06 -0.31 0.16 0.38 -0.18 -0.26 -0.52 -0.2 -0.1 0.06 -0.02 0.03 -0.04 0.01 1.03 0.85 0.59 1.35 -0.04
6 -1.23 0.04 -0.07 -0.35 0.19 0.38 -0.19 -0.19 -0.08 -0.44 -0.26 0 -0.02 -0.03 0.03 0.01 0.14 -0.75 -0.09 -1.18 -1.01
7 -0.2 0.21 -0.1 0.37 -0.22 -0.36 0.12 0.09 0.15 -0.12 -0.06 -0.05 0.01 0.05 -0.04 -0.01 0.25 -0.38 0.46 0.77 -0.61
8 -0.22 0.21 -0.16 -0.15 0.12 0.26 -0.04 -0.25 -0.07 -0.06 -0.03 0.1 0.05 -0.04 -0.03 0.07 -0.06 0.67 -0.2 0.62 -0.4
9 -0.11 0.23 0.17 -0.35 -0.4 -0.54 -0.81 -0.22 -0.49 -0.05 -0.02 -0.04 0.07 0.15 0.11 -0.27 0.65 -0.52 -0.64 0.05 0.72
10 -0.13 -0.15 0.09 0.13 -0.2 0.02 0.15 -0.35 0.11 -0.07 -0.04 0.16 -0.07 -0.02 -0.04 0.05 -0.04 1.43 -0.5 0.18 -0.89
11 0.03 0.04 0 0.03 -0.26 -0.03 -0.06 0.47 0.83 0.01 0 0.83 -0.34 0.11 -0.12 0 -0.27 0.56 -0.46 -0.71 0.33
12 -0.09 0.6 -0.19 0.23 0.21 -0.5 0.03 -0.14 -0.34 -0.02 -0.01 -0.36 0.03 -0.28 0.21 0.04 -0.24 -0.51 -0.38 1.18 -0.31
13 -0.36 0.06 -0.05 -0.41 0.17 0.4 -0.14 0.31 -0.37 -0.09 -0.09 -0.21 0.04 -0.05 0.08 -0.02 -0.62 -0.07 0.09 -0.25 -0.98
14 0.12 0.01 0 0.04 -0.11 0.14 -0.07 0 -0.64 0.09 0.11 -0.21 0.08 0.06 -0.04 -0.01 -0.34 -0.17 0.03 -1.83 -1.07
15 -0.1 0.09 -0.07 0.1 -0.07 -0.06 0.03 0.01 -0.12 -0.08 0.01 -0.04 0.03 0.04 -0.03 -0.01 0.35 0.79 0.45 1.69 -0.37
16 -0.14 0 -0.03 0.28 -0.19 -0.33 0.19 0.05 -0.26 0.36 0.37 -0.59 0.13 0.08 -0.01 -0.06 -0.21 0.27 0.73 0.01 -0.68
17 -0.25 0.09 -0.01 -0.19 0.06 0.25 0 -0.24 -0.24 -0.04 -0.04 0.15 0 0.03 -0.08 0.05 -0.52 0.9 0.79 1.39 -0.38
18 -0.79 0.03 -0.02 -0.11 0.01 0.11 -0.02 -0.09 -0.07 -0.44 -0.24 0.22 -0.1 0.07 -0.08 0.01 -0.43 0.45 -0.15 0.36 -0.46
19 0.12 0.04 0.01 -0.31 0.14 0.24 -0.14 0.52 -0.25 -0.45 -0.2 0.26 -0.07 0.07 -0.06 -0.01 -0.81 0.09 -0.46 0.26 -1.51
20 0.59 0.14 -0.08 -0.33 0.11 0.32 -0.24 -0.11 0.57 0.71 0.32 0.49 -0.14 0.07 -0.13 0.05 1.01 0.62 0.89 0.28 -0.74
21 -0.41 0.01 0.05 0.33 -0.11 -0.36 0.11 -0.39 -0.07 -0.25 -0.13 -0.01 0.07 0 0.02 -0.03 0.3 0.49 0.24 0.42 -0.59
22 0.12 0.08 -0.04 -0.18 0.08 0.32 -0.21 -1.41 0.96 0.22 0.1 0.18 -0.03 0.05 -0.08 0.03 -0.27 -0.03 0.42 -0.05 -1.2
23 -0.06 0.02 0.03 -0.04 0.01 -0.03 -0.02 0.09 -0.13 -0.26 -0.14 0.2 -0.01 0.07 -0.03 -0.04 0.66 0.7 0.63 1.86 -0.08
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indicates that my algorithm is not only resulting in better probabilistic prediction, but also

better point estimates compared to its base learners.

The multinomial logit model which predicts the probability of each base learner making

the best prediction is built of 16 covariates (excluding the intercept) shown in Table 3.1. The

hold-out-analysis resulted in training 72 various multinomial logit models. To understand

their parameters and obtain some managerial insights, I derive an average over them through

all the hold-outs. Table 3.1 summarizes these average values for the coefficients of this

model. From Table 3.1, we can derive critical insights. Large positive variable coefficients

is an indication for a direct relationship between that variable and the goodness of the

corresponding model in prediction. For example, Table 3.1 indicates that model number 9

tends to make better predictions for windy days. Model number 12 preforms better than

other models in the event of thunderstorms, and model number 1 outperforms other models

in case of hail or tornadoes. The large positive coefficients for the two variables mean snow

amount and max snow amount in the forth row indicate that model number 4 tends to make

better predictions for winter storms. Similarly, the large positive coefficients for the mean

QPF (Quantitative Precipitation Forecast) in the 11th row indicate that model number 11

makes better predictions for wet events. Having coefficients close to zero for the temperature-

related variables indicates that these variables do not play a significant role in determining

the best model. Finally, we see that model 2 performs better in cluster 2, model 3 and 10

perform better than others in cluster 3, and model 4 is the best model in cluster number 4.

We also see that there are several models making good predictions in cluster number 5, but

only a few of them perform well for cluster 6.

3.5 Summary and Conclusions

In this study, my goals were to develop a new BMA model for predictive modeling and ad-

dress model uncertainty in the field of power outage prediction modeling. I developed a new

two-stage adaptive algorithm based on Bayesian model averaging and used this algorithm for

modeling daily customer interruptions. My approach had three main characteristics. (i) To

implement BMA, I considered a decision-theoretic approach and modeled weights of the base

learners with an online multinomial logit model. Weights of the base learners are dependent

on the feature of the instances. (ii) In my model, unlike the classical BMA approach, the

base learners are updated gradually as more data are observed. (iii) I extended my algorithm

for the case when data are divided into multiple clusters. This helped my model be able to

handle more complex datasets.

I validated my algorithm based on daily customer interruptions data. This was the first

50



application of BMA approach in the OPM literature. The results of holdout analysis showed

that my algorithm results in more accurate probabilistic prediction than the base learners

individually. I also found that as more data are observed, more accurate predictions are made

by the proposed BMA model. Another important property of my algorithm was the strong

inferences we can make. It helped us understand the conditions under which each of the base

learners performs well. My case study was also the first single all-weather model developed

in power outage predictive modeling literature. This significantly could help utilities better

plan resource needs, and increasing the rate of restoration.

Although my work is motivated by power system application, my methodology and in-

sights can be implemented in other predictive modeling problems dealing with high model

uncertainty. It can especially be used in the problems for which not much initial informa-

tion is available regarding the true model, or multiple models perform well formulating the

process and we are looking for robust predictions. In general, my methodology can be used

in various fields of application including biological and medical sciences (e.g., [5]), economics

and social sciences (e.g., [27]), and other physical sciences and engineering applications (e.g.,

[55]).
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CHAPTER IV

An Assessment of Drivers of Power System Damage

During Severe Weather 1

4.1 Introduction

4.1.1 Research Motivation

Severe weather events have the potential to cause significant disruptions to the electric

power grid. The resulting damages are, in some cases, very expensive and time-consuming

to repair and they lead to substantial burdens on both utilities and customers [51]. Some

examples of these events include tropical storms, flood, wind-storms, and heat waves. In

January 1998, for instance, a major ice storm resulted in thousands of utility poles breaking

and consequently the loss of power for more than 5 million people in Canada and northeastern

U.S. In September 2003, Hurricane Isabel caused 1.8 million customers of Dominion Virginia

Power to lose power, and also thousands of poles, spans of wires and transformers had to be

replaced [67].

An important part of managing weather-induced power outages is being properly pre-

pared for them, and this is tied in with broader goals of enhancing power system resilience.

Modeling impacts of extreme weather events on the power system is a critical part of pre-

storm resiliency practices because it directly influences the decisions made prior to, during,

and after the event [41]. Accordingly, in the last two decades, a wide range of studies have

been conducted in the outage prediction modeling (OPM) area. However, despite their

widespread use, there are a number of limitations with current studies. In the next section,

I briefly review these studies and summarize the contribution of my work in regard to these

shortcomings.

1Submitted to Reliability Engineering and System Safety as Kabir, E., Guikema, S.D., and Quiring, S.M,
McRoberts, B., An Assessment of Drivers of Power System Damage During Severe Weather
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4.1.2 My Contributions to the Literature

Power outages, defined as a non-transitory activation of a protective device, are recorded

by utility companies through an automated outage management system. A single outage

may be associated with a widely varying degree of physical damage to the power system, and

it could affect a small number of customers or hundreds of customers. The primary assets

that experience damage in the power distribution network are overhead conductors and

distribution lines, transformers, and utility poles that support conductors and transformers.

Previous works in the area of OPM have focused on predicting the number of outages

(e.g., [37, 41, 42, 44, 67]), customers without power (e.g., [53]), or power outage duration

(e.g., [83]). This is due to the ease of collecting outage data by utilities through an automated

system. The results of these models are mainly used to inform the customer community about

the size of outages and their length before the event and to inform utility decisions during

an event. These predictions are also useful for the utilities to demonstrate to regulators that

they can predict the extent of damage to the power distribution network. However, from

a decision-making perspective, these predictions are not very useful for utilities to decide

how many crews they need, what type of crews to request, and where to deploy them. Also,

customer-focused OPM are not useful for making system reinforcement decisions at the asset

level.

In this study, I first move beyond the previous OPM approaches and focus on damage

data for different asset types including overhead (OH) and underground (UG) conductors,

OH and UG transformers, and utility poles. I study the impacts of different meteorological

variables on the failure probability of these utility components. Direct estimates of the effect

of various meteorological factors on damage to the power system provide a much stronger

basis on which utilities can make decisions about system reinforcement (hardening) as well

as the level of emergency response materials (e.g., poles and line) to keep on hand before an

extreme weather event.

In previous studies, the focus has been primarily on modeling and predicting outage-

related variables in advance of a storm. The literature lacks an inferential study in which

the effects of various factors on damage data are investigated. Thus, the second contribution

of this article is to focus on studying the associations between meteorological variables and

damaged power system assets using the Bayesian belief network (BBN) analysis. Having

sound, long-term estimates for the impact of different factors on the power system provides

utility companies with a basis on which to make more informed asset hardening decisions

and to better explain the reasoning for their decisions to the regulators and the public. This

study provides actionable strategies for the utilities to find vulnerable components of their

system and to perform cost benefit analysis.
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4.1.3 Chapter Organization

This chapter is structured as follows. Section 5.2 describes the literature. In Section

4.3, I define the input data and describe the BBN analysis in detail. Section 4.4 presents

the BBN that I developed, and the effects of various weather events on the power system.

Section 4.5 provides a list of insights from my analysis. Finally, the chapter closes with the

summary and conclusion section.

4.2 Literature Review

This chapter is closely related to two main domains of research, namely power system

damage modeling and Bayesian belief network.

4.2.1 Modeling Power System Damage

A number of studies have been conducted in the literature for modeling weather-induced

damages to the power system. These studies can be divided into two primary approaches

(1) fragility-based models, and (2) statistical learning models. In the fragility-based models,

for each individual system component (e.g., a pole), a transfer function, which is called the

fragility function, translates the key aspects of the weather hazard (e.g., gust wind speed)

into the conditional probability of damage for that component. The damage probabilities

are then used to simulate a number of replications of the damaged components, with each

being converted into a set of customers without power through a power flow or network

connectivity model.

Three examples of this approach are Winkler et al. [123], Han et al. [43] and Zhai et

al. [134]. Winkler et al. [123] extended the fragility curve approach for power system poles

impacted by hurricanes. They combined the fragility curves with topology-based simulation

to use a connectivity model to characterize the impact of hurricanes upon power system

reliability. Zhai et al. [134] developed a method to create a realistic synthetic network for

a community and to then simulate realizations of damages and outages. Han et al. [43]

also used a fragility-based approach to estimate the hurricane-related pole damage in the

distribution system for a case study service area. They used the Bayesian methods for

updating the results of structural reliability models with observed failure data.

Statistical learning models are trained using historic data about the performance of power

systems during the previous weather events. The data usually includes the amount of damage

in defined geographic areas together with information about the utility system, environmen-

tal and meteorological conditions. Statistical models learn the relationships between these
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variables and the power system damages, and can predict the impact of future weather

events. Guikema et al. [38] developed and compared the out of sample error of various

statistical and machine learning models for predicting the number of damaged poles in the

event of a hurricane. They found that non-parametric regression and data mining models

may provide a better basis for accurate prediction of hurricane damage. In this study, they

also emphasized that having accurate, geographically detailed damage data from multiple

hurricanes is a strong basis for developing damage models. However, their damage data were

not sufficient to develop a model with strong predictive accuracy.

The literature for estimating physical damage to the power system is very limited. In

a few cases that address the physical damage to the power system, the models are usually

developed for physical damage to the poles only. Furthermore, in all of these studies, the

damage models were developed for hurricanes. Therefore, there is no article studying the

effect of weather events such as windstorm, snowstorm, heatwaves, and rain events on dif-

ferent power system components. In this study, I address the above-mentioned gaps, and

by using BBN I study the influence of various events on the failure probability of various

components of the power system.

4.2.2 Bayesian Belief Network

Bayesian Belief Networks (BBNs) were introduced by Wright [124] and further devel-

oped by Pearl [86] and Shafer and Pearl [101]. BBNs are a widely-used graphical model

that provides a structured representation of the relations between random variables in an

uncertain domain. A BBN consists of a qualitative part, which is a directed acyclic graph

(DAG), and a quantitative part, which is a set of conditional probability tables . Each node

in the DAG represents a random variable, while directed arcs between nodes represent de-

pendencies or causal relationships between the variables. The BBN then represents the joint

probability distribution over the set of random variables X = {X1, X2, ..., Xn} denoted by

P (X) =
∏n

i=1 P (Xi|PAi), where PAi stands for the parent set of Xi. A variable Xj is called

a parent for Xi if there is a directed arc from Xj to the child variable Xi [21, 57].

The structure of a BBN also illustrates the conditional independence amongst the vari-

ables. D-separation is the criterion that summarizes the correspondence between conditional

independence and a certain BBN structure. An undirected path p is said to be d-separated

(blocked) by a set of nodes Z if and only if (i) the path p contains a chain Xi → Xj → Xk

or a fork Xi ← Xj → Xk such that the middle node Xj is in Z, or (ii) the path p contains a

collider Xi → Xj ← Xk such that the middle node Xj as well as any of its descendants does

not exists in Z. Then, for any three disjoint node sets X, Y, and Z in a BBN, X is said to

be d-separated from Y by Z if and only if Z blocks every path from a node in X to a node
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in Y.

Two main aspects of learning a BBN are (i) network structure learning and (ii) conditional

probabilities learning. Once the network structure is realized, the conditional probabilities

can be obtained using the data. In this step, the exact maximum likelihood estimates can

be calculated by counting frequencies in the dataset. Learning the network structure is thus

the crucial part [109].

4.2.2.1 Network Structure Learning

A Bayesian network structure can be learned either from data, if available, or from

experts, or a combination of both. The task of learning the network structure from data

is computationally non-trivial due to the large size of the space of possible DAGs and it

grows super-exponentially in the number of variables (nodes). Various learning methods are

developed for this NP-hard problem. The structure learning algorithms can be classified into

two groups: (i) scoring-based and (ii) constraint-based methods.

Score-based methods evaluate the quality of BBN structures using a scoring function

and selects the one that has the best score. Therefore, score-based methods have two main

elements: scoring functions and search strategies. Bayesian Dirichlet score [45], minimum de-

scription length (MDL) [62], Bayesian information criterion (BIC) [99], Akaike information

criterion (AIC) [1], normalized maximum likelihood function [95], and the mutual infor-

mation tests (MIT) score [10] are commonly used score functions in these methods. Two

classes of search strategies are local search strategies (e.g., greedy hill climbing, Max-Min

Hill Climbing [114], and stochastic search [80]) and optimal search strategies (e.g., search

strategies based on Branch-and-Bound [20], Dynamic Programming [85], and Integer Linear

Programming BN [50]).

Constraint-based methods operate in two independent phases: (i) constraint identifica-

tion, and (ii) edge orientation. In the first phase, they use a series of conditional hypothesis

tests to learn conditional independence relations among the variables in the model. Follow-

ing these constraints, in the second phase, they build a (fully or partially) directed Bayesian

network structure that best fits those independence relations. Classical (e.g., χ2, and G2

statistics [125]), Bayesian (e.g., BDeu [18]) and information theoretic (mutual information

[14]) tests are the most commonly used hypothesis tests in practice. The performance of

these algorithms is critically determined by the accuracy of the adopted statistical tests.

Thus, they may not work well when there are insufficient or noisy data.
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4.2.2.2 Belief Propagation

Belief propagation (BP) is a technique for making inference in Bayesian networks. In BP,

we estimate the marginal posterior distribution of some unobserved variables in the system,

conditional on observed variables. Then, we find the value of the unobserved variable that

maximizes the posterior distribution. In BP, there are two types of message passing: (i)

message from parents to children, which is called forward BP and (ii) message from children

to parents, which is called backward propagation. In this study, I use both types of message

passing using techniques that are explained below.

Matching for confounding control: In order to study the influence of an independent

covariate on a target variable, we can compare distributions of the target variable for different

values of the covariate under study. Then, hypothesis tests can be done to identify if there is

a significant deviation between the distributions. In such circumstances, if observational data

are used, the existence of confounding variables can cause bias in the hypothesis test results.

A confounder is referred to as a variable that influences both the independent variable and

the target variable without being an intermediate cause in the causal pathway between the

independent variable and the target variable.

Matching is a technique from experimental design literature that attempts to mimic

randomization [96]. Rather than pooling the entire sample for statistical analysis, matching

creates pairs of instances that are similar in terms of the confounding variables, but have

different values for the independent covariate under the study. The matched records are then

used for hypothesis testing and the rest of the data are thrown away. We typically cannot

match the confounders exactly especially when we have multiple confounders and thus, we

need a metric of closeness. A commonly used closeness metric is the Mahalanobis distance

which is calculated as: D(X,Y) =
√

(X−Y)TS−1(X−Y). This is the square root of the

sum of squared distances between each covariate scaled by the covariance matrix S.

Most Relevant Explanation: Most relevant explanation (MRE) is a method for finding

multivariate explanations for a given set of evidence in a Bayesian network [133]. The main

idea is to traverse a trans-dimensional space containing all the partial instantiations of the

target variables, and find the one instantiation that maximizes a relevance measure. For a

set of target variables X, each observed (known) subset of X is called a partial instantiation.

Potentially, MRE can use any measure that provides common ground for comparing the

partial instantiations of the target variables. Generalized Bayes factor (GBF) is a commonly

used measure and has been shown to provide a plausible measure for representing the degree

of evidential support. In this case, let X denote a set of target variables, and the vector

e be the evidence on the remaining variables in the Bayesian network. Maximum relevant
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Figure 4.1: Spatial extent of the service territory for six operating companies serving 29
districts in 10 U.S. states. The total service territory is divided into 29 subareas that are
defined by the AEP utility company and shown in different colors.

explanation is then defined as:

MRE(X, e) = argmax
x⊆X,x 6=∅

GBF (x; e),

where GBF is defined as GBF (x; e) = P (e|x)
P (e|x̄)

.

Mutual Information: In information theory, the mutual information (MI) between two

random variables quantifies the amount of information obtained about one random variable

through observing the other random variable [16]. MI is a dimensionless quantity and can

be thought of as the reduction in uncertainty about one random variable given knowledge

of another. High MI indicates a large dependence between the two variables, while zero MI

means the variables are independent. The MI of two random variables Xi and Xj is defined

as:

I(Xi, Xj) =
∑
xi,xj

P (xi, xk) log
P (xi, xk)

P (xi)P (xj)
.
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Table 4.1: List of explanatory variables used for learning the model

Variable Description Source
Temperature
(Mean of the eight 3-hour subperiods
taken at each grid and averaged
over the district area)

Forecast air temperature taken at a height of
2 meters above the surface.

Global Forecast
System (GFS)
model.

12-month standard precipitation index
(daily value taken at each grid and
averaged over the district area)

For a 12-month period, the number of standard deviations
of aggregated precipitation amount above or below
the median from a probability distribution function
that is computed from historical data.

North American
Land Data
Assimilation v.2
(NLDAS-2)

Soil moisture
(at the 40-100 cm layer)

At the given layer, the mean instantaneous volumetric water
content taken daily and transformed to a percentile based
on the cumulative distribution function of historical data
taken from a 31-day window surrounding the given date.

NLDAS-2

Snow depth
(Mean of the eight 3-hour subperiods
taken at each grid and averaged
over the district area)

The depth of snow on the surface (m) GFS model.

Total rain
(24-hour total taken at each grid and
averaged over the district area)

Total amount of precipitation accumulated
(kg/m2) in the form of rain.

GFS model.

Wind gust speed
(Mean of the eight 3-hour subperiods
taken at each grid and averaged
over the district area)

The maximum instantaneous wind speed (m/sec)
forecast; it does not account for localized
wind gusts resulting from thunderstorms.

GFS model

Surface lifted index

The forecast difference between the observed temperature
at 500 hPa and the temperature of an air parcel
lifted to 500 hPa from near the surface. Negative
values indicate an unstable environment, with instability
increasing as the magnitude negative values increase.

GFS model

Convective precipitation
(24-hour total at each grid and
averaged over the district area)

Total amount of liquid precipitation (kg/m2),
caused by unstable air (commonly in the
form of thunderstorms).

GFS model

Sea level pressure
(Mean of the eight 3-hour subperiods
taken at each grid and averaged
over the district area)

The atmospheric pressure reduced to
mean sea level (Pa)

GFS model

Dewpoint (k)
(Mean of the eight 3-hour
subperiods over the total subarea)

A forecast of the temperature (K)
to which air must be cooled to become
saturated with water vapor.

GFS model

General thunder A forecast representing the chance of a thunderstorm.
National Weather
Service Storm
Prediction Center

Storm relative helicity
The cyclonic updraft rotation in right-moving
supercells (m2/s2), calculated for the lowest
1-km and 3-km layers above ground level.

GFS model

Convective inhibition
(Mean of the eight 3-hour subperiods
over the total subarea)

The amount of energy (J/kg) needed to lift an air
parcel from the lifting condensation level to
the level of free convection.

GFS model

Absolute vorticity - 500 mb
(Mean of the eight 3-hour subperiods
taken at each grid and averaged
over the district area)

The strength of rotation in the atmosphere (sec-1).
Positive values represent cyclonic rotation and
negative values anti-cyclonic rotation.

GFS model

Severe thunderstorm risk
(daily value taken at each grid and
averaged over the district area)

A binary forecast where a value of one indicates that there
is an enhanced risk of severe thunderstorms; Qualitatively as
”isolated severe thunderstorms possible” and quantitatively
as ”5% probability of severe storms within a 25-mile radius”.

National Weather
Service Storm
Prediction Center
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4.3 Data Description

The daily damage data used for training the Bayesian network is acquired from six

operating companies from 2016 to 2020. They serve 29 utility-defined subareas in Michigan,

Indiana, Ohio, Kentucky, West Virginia, Virginia, Tennessee, Arkansas, Louisiana, Texas,

and Oklahoma. Figure 4.1 shows the spatial extent of their service territory. The subareas

are defined by the utility companies serving the area and I model at these subarea levels.

The damage data that forms the basis for my model consists of the daily percentage

of damaged poles, UG and OH transformers as well as the number of damage in OH and

UG conductor divided by the number of miles of OH and UG conductors, respectively.

These damage proportions are recorded for each subarea. The proportion of daily customer

interruptions for each subarea is also recorded. The utility provides monthly refreshes of

the damage and customers interrupted data, with each district typically recording several

hundred events leading to a loss of transmission to customers each month. For every single

event, the initial outage time, the type of equipment damaged, the number of customers

affected, and duration of the event are recorded. These data are aggregated spatially to the

district-level and assigned to a single calendar day based on the start times of the outage

events. The damage and customer interruption data are combined with other explanatory

variables described in Table 4.1.

To develop a BBN using the above-described data, I transform each continuous variable

into a categorical one with at most five categories (levels). Table 4.2 shows the range of

values in each category. To divide each variable into the five levels, the breaking points are

selected such that the number of records is approximately the same in all the five categories.

Variable Selection: The 15 explanatory variables were selected, because they were

deemed the most influential on the response variables. Here, being influential means that a

change in one of these 15 variables will have a more significant effect on the damage variables

than any of the other variables considered. To test for influence, I consider two factors

including each variable’s impact on: (i) increasing the overall BIC score of the network,

and (ii) reducing the uncertainty about the damage variables. After repeating the forward

adding and backward elimination process based on variable importance, I observe that these

15 variables appeared with a high level of importance for both the network and the damage

variables.
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Table 4.2: List of all variables with their ranges. Each continuous variable is transformed
into a categorical one with at most five levels. Each column of the table indicates the range
of values falling in the corresponding category (level).

Level 1 Level 2 Level 3 Level 4 Level 5
Damaged OH conductors (0, 0] (0, 2.1e− 4] (2.1e− 4, 4.0e− 4] (4.0e− 4, 7.1e− 4] (7.1e− 4, 1.3e− 1]
Damaged UG conductors (0, 0] (0, 9.3e− 4] (9.3e− 4, 1.7e− 3] (1.7e− 3, 3.2e− 3] (3.2e− 3, 1.5]
Damaged poles (0, 0] (0, 4.4e− 6] (4.4e− 6, 5.8e− 6] (5.8e− 6, 1.0e− 5] (1.0e− 5, 6.7e− 4]
Damaged OH transformers (0, 0] (0, 1.8e− 5] (1.8e− 5, 2.7e− 5] (2.7e− 5, 3.7e− 5] (3.7e− 5, 1.4e− 3]
Damaged UG transformers (0, 0] (0, 4.4e− 5] (4.4e− 5, 7.9e− 5] (7.9e− 5, 1.4e− 4] (1.4e− 4, 3.7e− 2]
Customer interruptions (0, 1.9e− 4] (1.9e− 4, 6.0e− 4] (6.0e− 4, 1.6e− 3] (1.6e− 3, 5.7e− 3] (5.7e− 3, 8.2e− 1]
Temperature (2.53e2, 2.78e2] (2.78e2, 2.85e2] (2.85e2, 2.92e2] (2.92e2, 2.97e2] (2.97e2, 3.10e2]
12-month SPI (−2.5,−2.6e− 1] (−2.6e− 1, 7.6e− 2] (7.6e− 2, 3.8e− 1] (3.8e− 1, 7.6e− 1] (7.6e− 1, 2.7]
Soil moisture (0, 2.9e− 1] (2.9e− 1, 4.6e− 1] (4.6e− 1, 6.3e− 1] (6.3e− 1, 8.0e− 1] (8.0e− 1, 1]
Snow depth (0, 0] (0, 3.6e− 1] NA NA NA
Total rain (0, 0] (0, 1.5e− 2] (1.5e− 2, 4.9e− 1] (4.9e− 1, 3.5] (3.5, 1.22e2]
Wind gust speed (9.4e− 1, 3.5] (3.5, 5.2] (5.2, 7.0] (7.0, 9.2] (9.2, 2.3e1]
Surface lifted index (−1.2e1,−1.4] (−1.4, 3.4] (3.4, 1.0e1] (1.0e1, 1.7e1] (1.7e1, 3.9e1]
Convective precipitation (0, 0] (0, 3.4e− 2] (3.4e− 2, 4.1e− 1] (4.1e− 1, 2.8] (2.8, 8.2e1]
Sea level pressure (9.924e4, 1.012e5] (1.012e5, 1.015e5] (1.015e5, 1.018e5] (1.018e5, 1.022e5] (1.022e5, 1.046e5]
Dewpoint (2.48e2, 2.73e2] (2.73e2, 2.80e2] (2.80e2, 2.87e2] (2.87e2, 2.92e2] (2.92e2, 2.99e2]
General thunder (0, 0] (0, 1.4e− 1] (0, 1] NA NA
Storm relative helicity (−1.1e2, 4.7e1] (4.7e1, 8.0e1] (8.0e1, 1.2e2] (1.2e2, 1.8e2] (1.8e2, 9.1e2]
Convective inhibition (−7.0e2,−4.6e1] (−4.6e1,−1.3e1] (−1.3e1,−8.2e− 1] (−8.2e− 1, 1.9] (1.9, 5.77e1]
Absolute vorticity-500mb (−2.6e− 5, 5.9e− 2] (5.9e− 2, 7.2e− 5] (7.2e− 5, 8.6e− 5] (8.6e− 5, 1.1e− 4] (1.1e− 4, 3.8e− 4]
Severe thunderstorm risk (0, 0] (0, 1] NA NA NA

4.4 Method and Computational Results

4.4.1 Network structure learning

The aim of this research is to develop a Bayesian network for assessing and quantifying

the resilience of an electric power system. I use daily damage data for 29 districts in 10

states shown in Figure 4.1, from 2016 to 2020. I use daily damage data for poles, OH and

UG transformers, and OH and UG conductors because it provides us with the opportunity

to assess the impact of different weather events on the power system. Different parts of a

power network may experience disruptions due to weather events. Damage in any of these

assets can result in loss of power for a number of customers. I also study the daily number

of customers without power (customer interruptions).

Figure 4.2 demonstrates the Bayesian belief network that I develop to represent the asso-

ciations between meteorological variables and the damaged assets and customer interruptions

in the power grid. To learn this Bayesian network structure and the conditional probability

functions, I respectively use the hc() and bn.fit() functions from the bnlearn package in R

[100]. The hc() function learns the network structure based on the score-based hill-climbing

algorithm. The hill-climbing algorithm usually starts from an empty network without any

edge, or a randomly generated structure, and then iteratively applies single edge operations,

including addition, deletion and reversal, looking for the choice that locally maximizes the

score improvement. I selected BIC as the score function for this algorithm. The bnlearn
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Figure 4.2: The Bayesian belief network representing the associations among meteorological
variables (shown by white circles), damaged assets (shown by yellow circles) and customer
interruptions (shown by brown circle) in the power grid.
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Table 4.3: List of the features I study their effects on the damage and customers interrupted
variables using forward BP. For each studied feature, I also show its confounders that have
backdoor path to the damage variables (i.e., variables that influence both the studied feature
and the damage or customers interrupted variables without being an intermediate cause in
the causal pathway between the studies feature and the damage or customers interrupted
variables). The confounders are discovered using the BBN shown in Figure 4.2.

Studied Features Confounders
Total rain Temperature, Surface lifted index
Snow depth Temperature, Wind gust speed
Temperature 12-month SPI
12-month SPI -
Soil moisture Temperature, 12-month SPI, Total rain
Wind gust speed Temperature
Surface lifted index Temperature

package allows us to define black and white lists indicating the arcs that should be avoided by

the algorithm as well as the arcs that should certainty be included in the network. This prop-

erty of the bnlearn package and the hc() function allows us to combine the expert knowledge

with data-driven algorithm in order to learn the network structure. In this regard, I first

force the network to avoid any arcs from the damage and customer interruption variables to

the weather forecast nodes. Second, I force the network to include arcs from each damage

variable to the customer interruption node. The latter is because I believe that each damage

can cause a number of customers losing their power. The rest of the arcs in the network

shown in Figure 4.2 are data driven using the hill-climbing algorithm.

4.4.2 Belief Propagation Analysis

4.4.2.1 Forward propagation

In performing inference on the network, my goal is to study the effects of various weather

conditions on the failure of power system. The weather events that I study include (1) high

rain (level 5), (2) high snow (level 2), (3) low (level 1) and high (level 5) temperature, and

(4) low (level 1) and high (level 5) 12-month precipitation index, (5) low (level 1) and high

(level 5) soil moisture, (6) high wind speed (level 5), and (7) low surface lifted index (level

1). The first column of Table 4.3 indicates the variables that describe these different weather

conditions. I study and compare the effects of these variables on the failure of different parts

of the system as well as the customer interrupted variable.

Before performing the analysis, I need to investigate if there exists any confounding

variable that may cause bias in the results. The confounding variables that I need to control
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Figure 4.3: Results of the ANOVA test for each variable and damage type. The boxplots
show the distribution of damages in various levels of each variable. The connected red points
indicate the mean damage in each group. P-value of the ANOVA test, the maximum and
minimum damage means are also shown in each sub-figure.
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Figure 4.4: The daily proportion of different damage types in the service territory of each
operating company.

for are those predecessors, which have backdoor path to the damaged variables. I find these

confounders given the Bayesian network shown in Figure 4.2. The second column of Table

4.3 shows the confounders that I should control for. For a given variable and damage type,

after I apply matching for confounders, I conduct a one-way analysis of variance (ANOVA)

to see if there exists a statistically significant difference between means of damages given

various levels of that variable. The result of the ANOVA test for each variable and each

damage type is shown in Figure 4.3. In each test, the null hypothesis is that the means of

damages are the same in different levels of that variable, and the alternative hypothesis is

that the damage mean in at least one of the levels of that variable is not equal to the damage

means of other levels. In Figure 4.3, each sub-figure represents the result of each hypothesis

test as well as the boxplot of damage sizes in different levels of the variable. The p-value,

maximum and minimum means are also reported for each test.

From Figure 4.3, we observe that higher rain results in more damage to all components

of the power system, and consequently, more customer interruptions. This increase may be

due to an increase in soil moisture, which reduces its stability, or due to extra pressure/force

on trees and poles that can cause them breaking (that can also cause damage to OH con-

ductors and transformers). We also find that a high level of damage to the UG and OH

65



transformers occurs when rain level is equal to its minimum level. High snow (level 2 snow

depth) on the other side does not increase chance of failure in OH conductors, OH transform-

ers and poles. However, it results in more damage to UG conductors and UG transformers,

and consequently, more customer interruptions. Studying the temperature variable indicates

that OH and UG transformers are very vulnerable to temperature. Increase in temperature

significantly enhances damage rate of these two components. It also makes some enhance-

ment in the damage rate of OH and UG conductors and finally, results in higher customer

interruptions. My results show that low temperature is also associated with higher damage

level in OH and UG conductors. We know that low temperature is associated with high rain

and soil moisture and these two increase damage rate of OH and UG conductors. Thus, low

temperature, indirectly, increases damage rate in these assets.

12-month SPI represents long term (one year) precipitation condition. Figure 4.3 shows

that higher precipitation during 12-month period significantly increases the chance of damage

in OH and UG conductors and poles, but surprisingly, it does not result in higher customer

interruptions. My results also show that damage rate of UG conductor is also high in the

days with lowest 12-month SPI. This may because of the impact of 12-month SPI on the

temperature variable. Higher soil moisture enhances damage rate of UG conductors and UG

transformers. Very low (level 1) and very high (level 5) soil moisture are also associated with

higher pole damage and they end up with more customer interruptions. Higher wind gust

speed increases damage level of OH conductors, poles and OH transformers. This increase is

more significant in OH conductors than other parts of the system. Higher wind gust speed

also causes a higher rate of customer interruptions. The surface lifted index variable has a

significant impact on the OH conductors and poles. The lower level of this variable indicates

highly unstable weather condition and is associated with significantly more damages to these

two assets. This leads to a significantly higher rate of customer interruptions. We also see

that the influence of this variable is much more than the wind gust speed variable, especially

in pole failures.

Figures 4.4 and 4.5, respectively, represent the daily proportion of different damage types

and the distribution of various weather features in the service territory of each operating

company over time. In these figures, I remove the names of the operating companies for

the purpose of protecting identity of the individual operating companies and represent them

with the names: OC1, OC2, ..., OC6. Studying and comparing Figures 4.3, 4.4 and 4.5 help

us better detect the vulnerable components as well as the main damage causing factors in

the power system for each operating company.

Figure 4.4 shows that in OC1, damage rate in all asset types as well as customer in-

terruptions are in the middle level compared to other OCs. OC2 has the second rank of
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Figure 4.5: The distributions of different variables in the service territory of each operating
company.

damaged OH and UG conductors and first rank of damaged poles. High rain, snow depth,

soil moisture and wind in the service territory of this operating company are the potential

reasons for high rate of damaged OH and UG conductors, and poles. Although this operat-

ing company has high rate of damage in these asset types, it has the second lowest rate of

customer interruptions among all operating companies. This shows that their power system

is more resilient than others.

OC3 has the highest rate of damaged OH and UG conductors and second rank of customer

interruptions among all OCs. The service territory of this OC experiences high rain, high

snow and low temperature compared to other OCs and these factors may be the potential

reasons for the high damage rates. My results also show that although OC2 experiences

higher winds and more unstable weather, its damage rate of OH and UG conductors is

less than OC3. OC4 has the second rank in damage rate of OH and UG transformers.

High temperature and low rain are the potential reasons for these damages. This OC also

experiences highest wind speed and low surface lifted index, but rate of damage in OH

conductors and poles is not significant compared to others. Studying damage rate of different

components in OC5 shows that even though ratio of damaged assets in this OC is not high

compared to other OCs, it experiences the highest rate of customer interruptions. This may

be due to not recording damage data precisely or having a very vulnerable power system in

which a damage results in loss of power for a large number of customers. OC6 experiences
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Table 4.4: Summary of the backward belief propagation results. In each analysis, I set a
damage/outage variable equal to its highest level and compute the generalized Bayes factor
(GBF) for every combination of the set of target variables. I then report the condition under
which the GBF value is maximized. In some cases, more than one condition may result in
maximum GBF.

Evidence
MRE Weather

Description

Max
GBFTotal

rain

Snow

depth
Temperature

12-month

SPI

Soil

moisture

Wind gust

speed

Surface

lifted index

OH conductors = 5
4 2 2 3 4 5 snowy, windy

10.1
5 3 3 2 5 1 rainy, windy, unstable weather

UG conductors = 5 2 5 5 1 1 unstable weather, saturated soil 15.5

Poles = 5
3 2 5 5 5 windy, saturated soil

25.3
2 1 4 2 4 3 snowy, windy

OH transformers = 5
4 5 2 4 4 warm, windy

14.5
4 2 2 4 3 5 4 snowy, windy

UG transformers = 5
1 1 2 5 3 3 cold, saturated soil

72.5
5 1 4 4 3 2 2 warm, rainy

Customers

interrupted = 5

5 3 5 1 4 hot, saturated soil
5.32 2 3 3 4 snowy, windy

5 1 1 3 2 5 cold, rainy

the highest rate of damages in OH and UG transformers. In this area, frequency of very

high temperature and low rain is higher than other places and these two factors may be the

reasons for these damages. Although high wind speeds and unstable weather conditions are

very frequent in this area, OC6 does not have significant rate of damaged OH conductors and

poles. Thus, we can conclude that high wind and unstable weather are not by themselves

the deriving causes of damages in poles and OH conductors. But, they are dangerous when

combined with high rain, saturated soil and cold weather as we see in OC2 and OC3.

4.4.2.2 Backward propagation

In the backward belief propagation analysis, I set each damage/outage variable equal to

its highest level, and find the MRE. Table 4.4 summarizes the results. Note that the minimum

possible value of GBF is one and it happens when the evidence and the values of the target

variables are independent from each other. The higher the GBF is, the more association

exists between the values of the target variables and the evidence. Unlike hypothesis test

method in which I study the effect of each individual variable on the failure of the power

system, in this approach, I find the weather events that have the highest association with the

highest rate of damage to the power system. Each weather event is represented by multiple

weather factors. Table 4.4 shows that the highest rate of damaged OH conductors is observed

under (i) warm and rainy event and (ii) snowy and windy events. The highest rate of UG

conductor damages is seen under snowy and unstable weather with saturated soils. Pole

damages are also found more often under (i) windy and saturated soil and (ii) snowy and

windy conditions. The highest rate of OH transformer damages is observed under (i) warm
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Figure 4.6: The comparison of the MI between different meteorological variables and dam-
age/customer interruptions variables. The larger the size of the circle is, the larger the MI
exists between the two corresponding variables.

and windy, and (ii) cold and windy events. The highest damage rate of UG transformers is

seen under both cold events with saturated soil and rain events with warm weather condition.

Finally, since each instance of damage results in loss of power for customers, we see that

different weather conditions including (i) hot weather with saturated soil conditions, (ii)

snowy and windy, and (iii) cold and rainy are the most common explanations for the highest

level of customer interruptions.

4.4.2.3 Variable Importance

To find the importance and influence of different variables on the power system damage

and customer interruptions, I estimate the mutual information (MI) between each variable

and the damage or customer interruption variable. Figure 4.6 compares the size of the MI

between different variables and the damage/customer interruption variables. The larger the

size of each circle is, the larger the MI exists between the two corresponding variables. Table

4.5 for each damage/outage type, ranks the variables based on their MI. Lower numbers

represent higher MI between the two corresponding variables. Figure 4.6 and Table 4.5 show

that temperature, surface lifted index and convective inhibition have the highest MI with OH

and UG transformers. Total rain and convective precipitation are the two variables having

highest MI with both damage OH conductors and poles. Absolute vorticity has the maximum

MI with damaged UG conductor and finally, total rain and convective precipitation are the

most important features for the rate of customers interrupted.

Figure 4.6 shows that damaged UG conductor has the lowest level of MI with the vari-

ables, while customers interrupted variable has the highest level of MI. Table 4.5 shows

that storm relative helicity, snow depth, and severe thunderstorm risk have respectively the
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Table 4.5: Ranking of the variables based on their MI with the damage data. Lower numbers
represents higher MI between the two corresponding variables.
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Damaged underground transformers 1 8 6 13 12 14 3 11 7 2 10 9 4 5 15
Damaged overhead transformers 1 15 11 12 8 13 2 5 7 3 6 14 4 10 9
Damaged poles 5 11 13 15 1 6 7 2 4 3 12 14 9 8 10
Damaged underground conductors 2 5 3 4 7 11 8 9 13 6 15 12 10 1 14
Damaged overhead conductors 6 7 13 14 1 3 4 2 8 10 12 15 9 5 11
Customer interruptions 7 15 13 12 1 5 3 2 8 10 4 11 6 14 9

lowest mutual information with the damage/outage variables and thus, are the least im-

portant variables in the model. On the other side, temperature, total rain, surface lifted

index and convective precipitation have the highest level of mutual information with the

damage/outage variables.

4.5 Discussion and Insights

Severe weather events lead to damage to power system components and result in customer

interruptions. In this chapter, I studied the impacts of various weather conditions on five

different components of the power system: OH and UG conductors, poles, OH and UG

transformers in the service territory of six operating companies serving 29 districts within

10 U.S. states.

In this chapter, I provided a list of insights, which can help utility companies understand

the factors driving outages, find the vulnerable components of power systems and suggest

actionable strategies for the utilities to perform cost-benefit analysis. The first insight was

that the areas that experience high rain, snow and wind have higher rate of damage to

OH conductors and poles. In such areas, utilities may decide to perform hardening practices

such as vegetation management, replacing wooden poles with poles that can withstand higher

wind speeds, or replacing OH conductors with UG conductors if there is not high risk of

flooding in the area. We found that high wind and unstable weather are not by themselves

the deriving causes of damages in poles and OH conductors. However, they are dangerous

when combined with high rain, saturated soil and cold weather. The second insight is

that extreme heat especially when paired with rising humidity levels are very dangerous

and cause more damage to the OH transformers. This implies that in the areas with such
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weather conditions, utilities should consider upgrading their transformers. The next insight

is that UG conductors are vulnerable to very cold, rainy, and saturated soil conditions and

thus, in the areas that experience these conditions more often, undergrounding conductors

are better to be avoided.

There are many challenges in gathering power system damage data, and that is why not

many studies have been done with a focus on weather-induced power system damages [38].

In this study, I used a dataset of daily damage to the power system covering 29 districts

in 10 U.S. states. However, there were still a few limitations with my dataset. One issue

was the fact that the recorded damages could be caused by any factor (e.g., car accident,

or animals) and not just meteorological factors. Even though the influence and frequency

of the non-weather-related damages were not substantial, it might cause some errors in the

developed model and results. The other issue was not including the energy consumption data

in the model. Under severe weather events, like very hot or very cold conditions, customers

might consume more energy and the increase in energy consumption might cause damage

to the power system and result in customer interruptions. In such situation, the weather

by itself might not be the reason for damages to the system. Therefore, in future studies,

including energy consumption in the model may help professionals understand the effect of

various factors more precisely.

I suggested that operating companies should pay more attention on collecting the damage

data more precisely in their service territory. This data can help better evaluate the resiliency

level of their system and find the vulnerable component that need more focus. If in an

OC a few damages result in a large proportion of customers losing their power, the OC

should invest more on improving the resilience of their power network. I also suggested

that deploying resources such as back-up distributed generators, automatic tie switches,

physically controlling power flow in distribution networks, and self-healing schemes are the

effective resiliency strategies that can be helpful in these situations.

4.6 Summary and Conclusions

Extreme weather events, from winter storms to heat waves, impact the power system

and are potential to cause significant damages. Current climate models indicate that the

risk from extreme weather events is severe and has increased in the recent years. Frequency

and intensity of hazards such as high winds, heavy precipitation, and prolonged heat events

have also increased over the past years. Currently, extreme weather events are the main

cause of damage to the power system and consequently electric power outages in the U.S.

To mitigate these risks, utility companies invest millions of dollars every year for hardening
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the power systems and improving their resilience.

In this study, I developed a Bayesian belief network, which represents the interconnection

between various meteorological factors and damages to different power system components.

To estimate the impacts of the meteorological variables, I conducted hypothesis tests. To

control the effects of confounding variables on the hypothesis test results and mimic random-

ization in the data, I applied a matching technique before performing the hypothesis tests.

This approach helped us to understand the effects of each individual variable on the power

system damages. In addition to the forward belief propagation (i.e., hypothesis tests), I con-

ducted the backward belief propagation using the maximum relevant explanation technique.

In this method, I investigated the weather conditions that derived the maximum level of

damages to the different parts of the power system. Unlike the first approach, it showed the

combined weather conditions that causes maximum level of damages. Finally, I performed

variable importance analysis to rank the meteorological factors based on their influence on

the power system damages.

This study was based on a real dataset of daily damages occurring in 29 districts of 10

U.S. states from 2016 to 2020. These districts were served by six operating companies. The

results of my analysis found that temperature, total rain, surface lifted index and convective

precipitation are the most important variables identifying the level of damage to the power

system. It also suggested that the UG conductors are more susceptible to cold weather

conditions with high soil moisture, while damaged UG transformers are caused under both

warm and cold events with high soil moisture. I also found that high wind by itself does not

cause significant damage to the system, but when it is combined with high rain, snow and

soil moisture, it becomes very dangerous.

Among the studied operating companies, OC2 looks more resilient than others. Although

it experiences the worst weather and highest damage rates in its power system components,

it has the second lowest rank of customer interruptions. On the other side, OC5 seems to be

the least resilient. Even though weather conditions in this area are milder than other studied

places and the operating company does not experience large number of damages, it has the

highest rate of customer interruptions. Thus, my results suggested that this company should

invest more on improving the resilience of their system by proper practices.
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CHAPTER V

A Multi-stage Stochastic Crew Coordination Model for

Power Outage Restoration 1

5.1 Introduction

Natural hazards often cause significant economic and physical disruptions to energy in-

frastructures and lead to substantial inconvenience for residents living in the impacted areas

due to loss of electricity [123]. The growing number of people affected by natural hazards,

the inherent uncertainty and complexity of such phenomena and the difficulties they cause,

establish the necessity for utility companies to make better measures and practices in order

to reduce risk and environmental damage of these events on the power system [53]. However,

this is not an easy task considering the large uncertainty these phenomena present. As re-

ported by the International Disaster Database, the total number of natural disasters appears

to be growing, as well as the number of people affected by them. This may be influenced

by problems ranging from limited resources and delay in the arrival of these resources (e.g.,

maintenance crews and materials), huge uncertainty in response times, lack of emergency

planning, and demand uncertainty.

Some studies have been presented in the context of emergency planning for power systems

in the face of natural hazards. Almost all of these studies focus on developing a scheduling

model for maintenance crews and sequencing and routing to disrupted network components

in order to optimize restoration process given the knowledge about the power network and

available resources. However, in the case of extreme events, such as hurricanes, local resources

are not sufficient for restoring power in a reasonable time and utilities have to request extra

resources, in particular repair crews, from other utilities. The resource allocation decisions

should be initiated prior to the event because in most cases it takes time until external crews

arrive to the impacted areas. These decisions significantly affect other resiliency decisions

1We intend to submit a modified version of this chapter as a journal paper.
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made by the utility companies prior, during and after the event (e.g., scheduling, sequencing

and routing decisions). To the best of my knowledge, there are few optimization models

(e.g., [117]) in the literature concentrating on these types of resource allocation decisions.

In addition to the above mentioned shortcoming, a number of research gaps have been

highlighted by recent survey papers [47, 35, 32] and my literature review on optimization

methods developed in disaster operations management. First, most optimization models are

single-objective. However, there exist many conflicting objectives such as minimization of

total costs on the one hand and maximization of satisfied demand on the other, that are

important to be optimized simultaneously as a multi-objective optimization model. The

use of multi-objective models for decision making is appropriate considering the different

actors involved in the decision process. Second, although many papers in this area design

a one-echelon network, such models reflect reality in a limited way. Because in general

the network contains more than one participant, more realistic models can be achieved by

considering multi-echelon network including, for example, headquarter companies, utility

companies and staging areas. Such an extension to a multi-echelon model is necessary

for establishing a more realistic counterpart to the single-echelon model. A multi-echelon

network can help authorities serve the affected people more properly and in a timely manner.

Third, in the existing literature, the possibility of inter-facility crew and material transfers

is not considered. Each distribution center has to serve a specific number of demand areas,

but the possibility of transporting some resources to another distribution center in case

of immediate needs has not been considered yet this is common in practice. forth, most

optimization models consider a single-period framework and use the two-stage stochastic

programming (TSSP) approach as a common way of dealing with uncertainties for their

single-period framework. However, the use of a multi-period model helps the decision maker

because it is a more comprehensive analysis and new information (once it is known) can

be included for the future periods. Further, considering multi-period models, the common

TSSP framework can also be expanded to multiple stages, where additional information can

be incorporated in the model formulation allowing a more detailed decision process.

To address the above concerns, I propose a comprehensive and generic optimization ap-

proach for establishing staging areas, allocation and relocation of repair crews between utility

companies, staging areas, utility stores, and other contracting agencies. This approach in-

cludes a new multi-stage and multi-echelon stochastic programming model. My optimization

model determines which staging areas should be opened in advance of a disaster, and how

supplies (including repair crews with vehicles provided by various utility companies) should

be pre-positioned in staging areas and distributed among a network of demand centers and

other distribution centers. I also consider lead times between crew transshipments used for
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sharing. I consider and evaluate two conflicting objectives including (1) minimizing total

restoration cost, and (2) maximizing the expected utility levels of demand points concur-

rently (unlike all single objective models in the literature). My model can mitigate each

of the issues mentioned above through a new multi-stage stochastic programming (MSSP)

model.

The rest of this chapter is organized as follows. Section 5.2 summarize the literature

on optimization models for improving the restoration process in power systems. Section 5.3

explains the problem and Section 5.4 describes the proposed mathematical model for my

crew coordination problem. Section 5.5 illustrates the numerical results and performance of

the proposed model. Finally, Section 5.6 provides the concluding remarks.

5.2 Literature Review

Several studies in recent years have focused on developing optimization models and algo-

rithms to improve the restoration process of power systems after disruptive events. Many of

the fundamental studies in the field of post disruption power infrastructure resilience focus

on scheduling and sequencing disrupted network components to restoration crews. Kim et

al. [60] developed a mixed integer programming model to minimize the weighted sum of

total damage while considering a repair crew problem in which aspects of damage vary at

certain times. Nurre et al. [103] introduced an integrated network design and scheduling

problem to improve the infrastructure network construction and restoration process. They

developed a heuristic dispatching rule to identify the next set of network components to be

restored by crews in order to maximize the cumulative weighted flow in the network over a

horizon. Sharkey et al. [102] proposed a model that incorporates the restoration interdepen-

dencies among different infrastructure networks (e.g., water, power, transportation) into the

network design and scheduling problems. They also investigated the effects of centralized

and decentralized decision making on the service levels across infrastructures.

Xu et al. [128] proposed a stochastic integer program to find the optimal schedule for

inspection, damage evaluation, and repair of post-earthquake damaged electric power sys-

tem. Their aim was to minimize the average time that each customer is without power.

Arab et al. [3] developed a mixed-integer model for preventive maintenance program in

improving the reliability of electric power systems. Their model considers component de-

terioration, as well as two competing and independent failure modes including failure due

to loss of reliability and failure due to hurricane damages. Their objective is to minimize

the downtime cost of the power system due to component outage. They used a stochastic

dynamic programming model to derive the optimal maintenance policy for the component.
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Arif et al. [4] proposed a two-stage method for the outage management of power distribution

systems. The first stage is to cluster repair tasks based on their distances from the depots

and the availability of resources. The second stage is to co-optimize the repair, reconfig-

uration, and distributed generation dispatch considering routing repair crews to maximize

the picked-up loads and minimize the repair time. By integrating infrastructure restoration

with transportation network dispatch, Morshedlou et al. [79] proposed a new problem that

addresses the dependent relationship between a disrupted infrastructure network and the

routing network that connects all disrupted components.

In the context of maintenance vehicle routing, Van Hentenryck et al. [115] developed a

joint model on how to schedule and route a fleet of repair crews to restore the power network

as fast as possible after a disaster. Garcia et al. [33] proposed a mathematical model to

schedule maintenance vehicles when considering emergency scenarios in electric distribution

systems, from their corresponding GPS information to assign the most appropriate set of

pending emergency orders previously defined. They must be assigned to the most appropriate

set of pending emergency orders previously defined.

In the context of resource allocation for restoration of power systems, Yao and Min [129]

presented three mathematical goal programming models in order to locate repair units and

restore transmission and distribution lines in an efficient manner. The first model finds

the optimal repair-unit dispatch tactical plan for a forecast of adverse weather conditions.

The second model derives the optimal repair-unit location for a short-term strategic plan

under normal weather conditions. The third model finds the optimal number of repair

units for a long-term strategic plan. Coffrin et al. [15] developed a power system stochastic

inventory model to stockpile components in order to recover from blackouts as best as possible

after a disaster. Their proposed mixed-integer programming model combines power flow

simulators, discrete storage decisions, discrete repair decisions given the storage decisions,

and a collection of scenarios describing the potential effects of the disaster. In Wang et al.,

[117], a decision-making model was proposed to manage the required resources for economic

power restoration operation. The optimal number of depots, the optimal location of depots,

and the optimal number of repair crews were determined by their model in order to minimize

the transportation cost associated with restoration operation. Arab et al. [2] proposed a

stochastic resource allocation model for repair and restoration of potential damages to the

power system infrastructure located on the path of an upcoming hurricane to minimize

potential damages to power system components in a cost-effective manner.

Comprehensive surveys of models and algorithms for emergency response logistics in

electric distribution systems, including reliability planning with fault considerations and

contingency planning models, were presented in [87] and [88]. Borba et al. [7] also presented
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the workforce problem focused on power utilities, as well as some topics related to power

distribution planning at strategic, tactical and operational levels. Their survey reveals that

most studies of the workforce problem in electrical distribution utilities analyses operational

planning.

Although a variety of optimization models for power system planning for disruptive events

have been addressed in the literature, to the best of my knowledge, in almost all above studies,

the concentration is on the scheduling planning of repair crews and sequencing and routing

for doing restoration. Knowledge about the state of the power network is used in their

optimization models, and it is assumed that prior knowledge about the available number

of repair crews or materials is available. However, in the case of extreme events, such as

hurricanes, local crews are not enough for restoring power in reasonable time and utilities

have to request crews from other states or sometimes other countries. These decisions should

be made prior to the event because in most cases it takes time until external crews arrive and

they significantly affect other decisions made by the utilities after the event. In this chapter,

an efficient decision support tool is developed for proactive restoration planning of power

systems to minimize the expected restoration costs, and maximize customer satisfaction by

shortening the restoration period.

5.3 Problem Statement

This study focuses on developing an optimization approach based on MSSP for modeling a

real-world crew coordination planning problem that many utility companies deal with in face

of a natural hazard. The setting of this problem is derived based on my conversations with

personnel from multiple utilities. It should be noted that the parameters of the model are

not data driven, but based on some estimates obtained through these conversations. Thus,

they should not be considered as parameters’ actual values. However, by doing sensitivity

analysis, I evaluate their influence on the decisions.

The proposed optimization approach represents a model to request crews from internal

and external sources, establish staging areas, and allocate and relocate repair crews to differ-

ent staging areas and districts (demand zones) in the face of extreme power outages caused

by natural hazards. A planning horizon divided into multiple periods is taken into account

to capture the variations of my network parameters and decisions. There are many side

constraints and assumptions that are treated concurrently in this problem while minimizing

the expected costs and maximizing the utility level of service (or customer satisfaction). In

this section, I present the general description and assumptions of my problem. I shall call

this problem the repair crew coordination problem (RCCP) . The essential assumptions of
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this problem are as follows:

Considering a network with three echelons: A supply chain network is considered

with three echelons: (i) operating companies and contracting agencies, (ii) staging areas and

stores, and (iii) demand zones. In the first echelon, there exist several utility companies or

contracting agencies that share and provide repair crews. Some of these utility companies

work as parts of a large electric energy company. I call this set of companies the local

operating companies (OCs) and denote them by J , where each local OC is presented by

j ∈ J . Other companies and agencies that do not belong to this set are called external

companies. If needed, local operating companies share their resources with each other with

lower costs compared to the case in which resources are provided from external companies.

In the second echelon, utility stores and a set of potential locations (e.g., military facilities,

college facilities) for establishing staging areas exist. Staging areas are closed and used for

other purposes in normal periods. But, in case of an extreme event in which a large number

of external crews are supposed to come for faster power restoration, these areas are opened.

For each period, the model needs to decide which existing staging area to be closed and which

potential one to be opened. The set of staging areas of OC j is denoted by L(j), where each

area is presented by l ∈ L(j). Based on conversations with personnel from multiple utilities,

it is assumed that each staging area has a specific capacity for holding and handling crews.

It is presumed that all crews are staged in utility stores or staging areas before being sent

to demand zones and thus, they cannot go directly from OCs to the demand zones.

Finally, each local OC serves an area, which is divided into districts with boundaries

defined by the operating company serving the area. These districts are the problem’s demand

zones, which are the last echelon of my network. Because there exists one and only one store

in each district, I use the same notation for both of them. Thus, the set of districts of OC j

is also denoted by K(j), where each district is presented by k ∈ K(j). It is not mandatory

to satisfy all crew needs in each period and some of it can be transferred to the next periods

to be satisfied. However, this reduces customer satisfaction, which is one of my objectives

to be maximized.

Repair crew sharing between utilities in multiple stages: Two types of crew

sharing are considered in my model. Internal crew sharing is done inside the service territory

of each OC and crews can move between stores and staging areas. External crew sharing is

done between two local OCs or a local OC and an external company. Crews cannot directly

be transshipped from an utility site in the service area of one local OC to a utility site within

another local/external company. They should first be sent to their own local OC, then to the

target local/external company and from there to one of its staging areas or stores. Figure

5.1 illustrates the crew supply network and decisions in my problem.
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Figure 5.1: The crew supply network structure for power restoration in disasters. This figure
demonstrates my network including utility companies, contracting agencies, staging areas,
stores and demand points. It also shows resource flows between these entities for my repair
crew coordination problem.
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Figure 5.2: Decision-making process in my optimization model include two types of variables:
(i) here and now decisions and (ii) wait and see decisions.

Modeling different types of decisions: In the proposed network, four types of de-

cisions are required to be determined: location, transportation, shortage and utility levels.

Location decisions include opening a staging area or closing an existing one. Transportation

decisions include decisions about the number of crews transshipped between various facili-

ties. Shortage is the difference between the needed demand and the satisfied demand, and

utility levels represent customer satisfaction and are a function of total demand and satisfied

demand. Each of these decisions is made in multiple stages and in every stage, some deci-

sions are made based on the past realizations of parameters and some based on the forecasts

for the future. Accordingly, decisions are divided into two categories, here-and-now (HN)

decisions and wait-and-see (WS) decisions. The decisions regarding the HN variables have

to be made at the beginning of each period, and we cannot wait until we have more or full

information on the uncertain parameters in that period. However, the WS decisions can be

determined at the end of the period, after the value of uncertain parameters in that period is

revealed. In my problem, location and transportation decisions are HN type and have to be

set before knowing stochastic demands at each period. Shortage and utility decisions on the

other side are WS decisions and will be made only after the demands are disclosed in each

period. Figure 5.2 demonstrates how these decisions should be determined over the planning

horizon. Set T represents the periods within a planning horizon, t ∈ T , and t = 1, 2, ..., |T |.
Considering release time and transportation time for crew sharing: Each OC

or contracting agency has a specific release time for its crews, and when they send their

crews to other OCs or contracting agencies, their crews have to stay there until their release

period ends. During this period, they can relocate between the stores and staging areas

of that OC. Release times of a crew sent from OC j or company/contracting agency i are

respectively represented by ρJj and ρIi . I also consider transportation time when crews are

sent to somewhere outside their own operating company. Transit times between OC j and

OC j′ and the company/contracting agency i ∈ I are respectively represented by τJjj′ by and

80



τ Iij. During these periods, crews are out of service.

Coordinating ”heavy” crew type: Basically, there are two types of crews (i) big/heavy

crew and (ii) service/light crew. Heavy crews are usually 4-7 people with a heavier equip-

ment and they are able to repair any type of damage to the power system (e.g., setting poles

up). Service/light crew on the other side are generally 2 people with a bucket truck and they

can handle smaller tasks. In my problem, I propose a coordination model for the “heavy”

crew type.

Having two contradicting objectives: I consider two objectives: (i) minimizing costs

and (ii) maximizing customer satisfaction. Total costs include administration costs of crews

and the cost of establishing staging areas, where administration costs of crews includes

transportation cost and daily salary of crews. Customer satisfaction is represented using a

utility function, which is a function of two variables: available crews in a demand area, and

extra crew need for repairing the remaing damages. To deal with the nonlinearity arises from

the utility function, I employ the triangle method [65] and convert the the non-linear utilities

to a linear approximation form. The two objectives are optimized simultaneously. To convert

my bi-objective problem into a single objective counterpart, I employ the improved version

of the ε-constraint method, namely AUGMECON [73].

Uncertainty in crew needs: Due to variability in the impact of hazards on the power

system and restoration time, there exists inherent uncertainty in the number of repair crews

needed for restoring power. Despite the existing uncertainty, I can estimate the future crew

needs in the form of probability distributions. Using historical data (i.e., data presented

in Chapter IV) as well as a probabilistic machine learning model (i.e., model presented

in Chapter III [52]), I develop a statistical model predicting the damage to power system

components including overhead and underground conductors, overhead and underground

transformers, and poles. Before training the models, I re-frame my time series dataset with

a window width of one. This means that I use the previous time step values of damages

as new features. The probabilistic power system damage predictions are produced for every

period in the planning horizon based on the forecasted weather and other influencing factors.

These predicted probability distributions are then converted to the probability distributions

of need for crews using data in Table 5.4, which is obtained from interviews with utility

personnel.

The resulting continuous probability distributions for crew needs over the planning hori-

zon form a multidimensional stochastic process. This stochastic process is approximated

(discretized) via a set of discrete scenarios and multi-stage stochastic program (MSSP) is

used to formulate my dynamic decision model. To generate scenarios, I employ the Latin

Hypercube Sampling (LHS), introduced by Olsson et al. [84]. Compared with the Monte
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Carlo simulation method, LHS can approximate the stochastic process through fewer sam-

pling iterations while cover more of the domain of the random variables [59, 54]. Despite

the use of an efficient algorithm, the scenario generation process for my multi-echelon and

multi-period problem results in a very large number of scenarios, which makes the MSSP

model hard to solve. Therefore, it is necessary to efficiently decrease the number of scenarios.

For scenario reduction, I employ the backward reduction technique presented by Dupačová

et al.[24]. Finally, the output scenarios is converted into a scenario tree using the forward

scenario tree construction method [46].

Multi-stage stochastic programing model: A multi-stage stochastic program (MSSP)

allows us to have several decision layers, where random outcomes are progressively realized,

and the crew transshipment decisions should be adapted to this process. In general, a

T + 1-stage stochastic program includes a sequence of random parameters ξ1, ξ2, ..., ξT with

a discrete support. A scenario is a realization of these stochastic parameters, and a scenario

tree represents the progressive observation of random parameters. To model stochasticity

in the number of crew needs as a scenario tree, a set of scenarios S with a countable size

S = |S| is defined. The corresponding scenarios’ probabilities are π1, π2, ..., πS, and a real-

ization of the stochastic parameters for scenario s ∈ S is presented by (ξs1, ξ
s
2, · · · , ξsT ), where

ξst = {djkts : j ∈ J , k ∈ K(j)} is a realization for the number of crew needs on period t ∈ T
over different districts under scenario s ∈ S.

Note that the realization of random parameters ξ1, ξ2, ..., ξt−1 has been observed at inter-

mediate stage t, and the remaining uncertainty includes ξt, ξt+1, ..., ξT . In a MSSP, a policy

should be non-anticipative, meaning that the decisions made at stage t must not be depen-

dent on the future realization of stochastic parameters. There are two common ways for

formulating a MSSP ([23]). In the first, a MSSP is formulated as a sequence of nested two-

stage stochastic programs in which non-anticipativity is implicitly imposed. In the second

(used in this chapter), a set of non-anticipativity constraints (NAC) is explicitly modeled.

Figure 5.3 (left-hand side) shows an example of a scenario tree with four stages and eight

scenarios. Figure 5.3 (right-hand side) is an alternative representation of the scenario tree,

which is called scenario fan, where the individual scenarios observed in the particular stages

are aggregated over all periods to form eight scenarios. However, this scenario fan is not

permissible. If I solve my problem for each of the scenarios, the solution found might not be

feasible for the overall problem because they imply decisions that anticipate future uncertain

events. So, I need to enforce NACs to have permissible decisions. The dashed ovals covering

the nodes present NACs. These constraints assure that all the decisions in a given stage t

are identical for each pair (s, s′) of scenarios with a common ancestor node in that stage. If

two scenarios s and s′ share the same history of random parameters ξs and ξs
′

up to stage
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Figure 5.3: A scenario tree example for a MSSP with four stages and eight scenarios (left
figure) and the decomposed scenario tree to represent the non-anticipativity constraints
(right figure).

t, then the decisions made at stage t are the same among all scenarios placed in the same

scenario bundle. For example, since all eight scenarios have the same realizations at stage 1,

they share the same scenario bundle, and so a NAC is imposed to guarantee that the same

crew transshipment decisions are made at all nodes in this scenario bundle.

5.4 Mathematical formulation

In this section, the MSSP model for the repair crew coordination problem described in

Section 5.3 is presented. In Section 5.4.1, I develop a MSSP model which has some non-

linear terms. In Section 5.4.2, I linearize these terms in the original model and convert the

bi-objective problem into a single objective counterpart using ε-greedy methodology.

5.4.1 Multi-stage Stochastic Mixed-Integer Program Model

The planning horizon T is defined for my problem. T is the set of periods from current

period until period T = |T |, over which we decide the number of crews that should be

transshipped between different facilities, and whether or not to establish staging areas. The

other indices, parameters and decisions used in the model are given in Table 5.1.

Objective function for costs: The objective function (5.1) minimizes the sum of the

administration costs of crews (i.e., terms 1, 2, 3, 4, 5 and 6 respectively) and the costs of

establishing and keeping open staging areas (i.e., last two terms). The first term includes

transportation cost and daily salary of crews sent from store k to district k′. The second

term includes transportation cost of crews transshipped from staging area l to district k. The
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Table 5.1: The description of indices, parameters and decisions of the model.

Sets and Indices
T The set of periods indexed by t, t′ ∈ T .
J The set of operating companies (OC) indices, j, j′ ∈ J .
K(j) The set of districts/stores of OC j ∈ J indexed by k ∈ K(j).
L(j) The set of staging areas of OC j ∈ J indexed by l ∈ L(j).
I The set of other companies and contracting agencies indexed by, i ∈ I.
S The set of scenario indexed by, s ∈ S.
Parameters
Vjlt Total external crew capacity of staging area l ∈ L(j) at period t ∈ T .
Ujkt Total external crew capacity of store k ∈ K(j) at period t ∈ T .
NK

jkt Total number of available internal crews in store k ∈ K(j) at period t ∈ T .

NI
it Total number of available crews in the company/contracting agency i ∈ I at period t ∈ T that we can request for.

ajkt Proportion of crews in store k ∈ K(j) at period t ∈ T that can be transshipped to other OCs.
djkts The crew demand at district k ∈ K(j) at period t ∈ T under scenario s ∈ S.
πs Probability of occurrence of scenario s ∈ S.
Edit The crew request by the company/contracting agency i ∈ I to OC j ∈ J at period t ∈ T .
ρJj Release time of a crew sent from OC j to outside the OC.

ρIi Release time of a crew sent from the company/contracting agency i ∈ I to OCs.
τJ
jj′ Transit time between OC j and j′ (j, j′ ∈ J ).

τIij Transit time between OC j ∈ J and the company/contracting agency i ∈ I.

FCjlt Fixed cost of establishing staging area l ∈ L(j) at period t ∈ T .
ACjlt Administration cost of keeping staging area l ∈ L(j) at period t ∈ T open.
ACK

jkk′t Administration cost of a crew sent from site k to district k′ (k, k′ ∈ K(j)) at period t ∈ T .

ACL
jlkt Administration cost of a crew sent from staging area l ∈ L(j) to district k ∈ K(j) at period t ∈ T .

ACJK
jkt Administration cost of a crew transshipped between site k ∈ K(j) and OC j ∈ J at period t ∈ T .

ACJL
jlt Administration cost of a crew transshipped between staging area l ∈ L(j) and OC j ∈ J at period t ∈ T .

ACJJ
jj′t Administration cost of a crew sent from OC j to j′ (j, j′ ∈ J ) at period t ∈ T .

ACJI
ijt Administration cost of a crew sent from the company/contracting agency i ∈ I to OC j ∈ J at period t ∈ T .

Here and Now Decisions
xjkk′ts The number of crews sent from store k to district k′ (k, k′ ∈ K(j)) at period t ∈ T under scenario s ∈ S.
yjlkts The number of crews sent from staging area l ∈ L(j) to district k ∈ K(j)) at period t ∈ T under scenario s ∈ S.
ujlts The number of crews sent from OC j ∈ J to staging area l ∈ L(j) at period t ∈ T under scenario s ∈ S.
zFjkts The number of crews sent from OC j ∈ J to store k ∈ K(j)) at period t ∈ T under scenario s ∈ S.

zBjkts The number of crews sent from store k ∈ K(j)) to OC j ∈ J at period t ∈ T under scenario s ∈ S.

qjj′ts The number of crews sent from OC j to j′ (j, j′ ∈ J ) at period t ∈ T under scenario s ∈ S.

wF
ijts

The number of crews sent from the company/contracting agency i ∈ I to OC j ∈ J at period t ∈ T under
scenario s ∈ S.

wB
ijts

The number of crews sent from OC j ∈ J to the company/contracting agency i ∈ I at period t ∈ T under
scenario s ∈ S.

vjlts
Binary variable equal to 1 if staging area l ∈ L(j) within the service territory of OC j ∈ J is open at t ∈ T
under scenario s ∈ S.

vEjlts
Binary variable equal to 1 if staging area l ∈ L(j) within the service territory of OC j ∈ J is established at t ∈ T
under scenario s ∈ S.

ojkts The number of available crews (internal and external) in district k ∈ K(j) at period t ∈ T under scenario s ∈ S.
Wait and See (WS) Decisions
∆jkts The number of crew shortage in district k ∈ K(j) at period t ∈ T under scenario s ∈ S.
ϕjkts Utility level of service in district k ∈ K(j)) at period t ∈ T under scenario s ∈ S.
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third term represents total costs of transportation and salary of crews for ρJj days. The forth

and fifth terms represent the transportation cost of crews transshipped between OC j and

utility store k or staging area l. Finally, the sixth term represents total costs of transporta-

tion between OC j and the company/contracting agency i and the salary of crews for ρIi days.

min OF1 =
∑
j,k,k′,t

xjkk′tsAC
K
jkk′t +

∑
j,l,k,t

yjlktsAC
L
jlkt +

∑
j,j′,t

qjj′tsAC
JJ
jj′t +

∑
j,k,t

ujltAC
JL
jlt +∑

j,k,t

(zFjkts + zBjkts)AC
JK
jkt +

∑
i,j,t

wFijtsAC
JI
ijt +

∑
j,l,t

vEjltsFCjlt +
∑
j,l,t

vjltsACjlt(5.1)

Objective function for utility level of service: The objective function (5.2) is to

maximize the utility level of service in all districts. This utility level measure is calculated

through constraint (5.16) for each district in each period and scenario.

max OF2 =
∑
j∈J

∑
k∈K(j)

∑
t∈T

∑
s∈S

πsϕjkts(5.2)

Constraints for the relationship between flows and location capacities: Con-

straints (5.3) state that if no staging area is established at a location, there should not be

any flow from the OC to this staging area; otherwise, flow from the OC to this site should

be less than its capacity. Constraints (5.4) ensure that any flow from a staging area to other

districts should be less than the total crews that are staged in the staging area. Constraints

(5.5) state that the number of external crews sent from the OC to the stores should be less

than their capacity. Constraints (5.6) impose some capacity restriction on the number of

crews sent from the stores to their OCs to be transshipped to other OCs. Constraints (5.7)

ensure that the number of crews sent from a store to other districts or OCs should be less

than available crews in this site. Finally, constraints (5.8) impose capacity restriction on the

number of crews received from the external companies or contracting agencies.

ujlts ≤ Vjlt ∗ vjlts , ∀j ∈ J , l ∈ L(j), t ∈ T , s ∈ S.(5.3) ∑
k∈K(j)

yjlkts ≤ ujlts , ∀j ∈ J , l ∈ L(j), t ∈ T , s ∈ S.(5.4)

zFjkts ≤ Ujkt , ∀j ∈ J , k ∈ K(j), t ∈ T , s ∈ S.(5.5)

t∑
t′=t−ρj

zBjkt′s ≤ NK
jkt ∗ ajkt , ∀j ∈ J , k ∈ K(j), t ∈ T , s ∈ S.(5.6)
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t∑
t′=t−ρJj

zBjkt′s +
∑

k′∈K(j)

xjkk′ts ≤ zFjkts +NK
jkt , ∀j ∈ J , k ∈ K(j), t ∈ T , s ∈ S.(5.7)

t∑
t′=t−ρi

wFijt′s ≤ N I
it , ∀i ∈ I, j ∈ J , t ∈ T , s ∈ S.(5.8)

Flow constraints : Constraints (5.9) state that the number of available crews in each

district is equal to the sum of the number of crews sent from stores and staging areas to

that district. This shows that crews cannot be sent from OCs. They should first be staged

in the stores or staging areas and from there transshipped to districts to do restoration.

Constraints (5.10) ensure that every day, all the crews that are sent from stores to their OC

are dispatched to other OCs or external company/contracting agencies. Constraints (5.11)

state that at each period, the number of crews that are sent from other OCs, and other

utility companies/contracting agencies to an OC is equal to the number crews that are sent

from that OC to the staging areas and stores in their territory. When crews are dispatched

to an OC, they stay there for a period with the length of their release time. But, they can

relocate between the stores and staging areas of that OC. Constraints (5.11) show that each

OC should plan for staging all the crews that are sent to its company for all their release

periods.

ojkts ≤
∑

k′∈K(j)

xjk′kts +
∑
l∈L(j)

yjlkts , ∀j ∈ J , k ∈ K(j), t ∈ T , s ∈ S.(5.9)

∑
k∈K(j)

zBjkts =
∑
j′∈J

qjj′ts +
∑
i∈I

wBijts , ∀j ∈ J , t ∈ T , s ∈ S.(5.10)

∑
j′∈J

t−τJ
jj′∑

t′=t−ρJ
j′−τ

J
jj′

qj′jt′s+
∑
i∈I

t−τIij∑
t′=t−ρIi−τIij

wFijts =

∑
l∈L(j)

ujlts +
∑
k∈K(j)

zFjkts , ∀j ∈ J , t ∈ T , s ∈ S.(5.11)

Constraints related to establishing staging areas : Constraints (5.12) ensure that

if a staging area is closed, vEjlts variable is zero. Constraints (5.13), on the others side, ensure

that vEjlts variable is set equal to one at the period it is established.

vEjlts ≤ vjlts , ∀j ∈ J , l ∈ L(j), t ∈ T , s ∈ S.(5.12)

vjlts − vjl(t−1)s ≤ vEjlts , ∀j ∈ J , l ∈ L(j), t ∈ T , s ∈ S.(5.13)
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Demand and shortage constraints : External utility companies/contracting agencies

may also have crew requests from the local OCs. Usually, companies are committed to satisfy

their demands as many as possible. But, costs associated with these movements should be

paid by the utility company/contracting agency that requested for the crews. Thus, I include

these requests in my model by adding some constraints. Accordingly, constraints (5.14) are

added to assure that these demands are met. Constraints (5.15) assert that the sum of

satisfied demand and not-satisfied demand of each district in each period should be equal to

total crew need in this demand point, which is equal to the demand at the current period

plus not-satisfied demand from all previous periods.

∑
j∈J

t−τIij∑
t′=t−ρJj −τIij

wBijts ≥ Edit , ∀i ∈ I, t ∈ T , s ∈ S.(5.14)

ojkts + ∆jkts >= djkts + ∆jk(t−1)s , ∀j ∈ J , k ∈ K(j), t ∈ T , s ∈ S.(5.15)

Utility constraint : Constraints (5.16) compute the utility level of serving a district in

each time period. In next section, I will explain how these utility functions are defined and

and how I can convert these nonlinear constraints (5.16) into linear ones.

ϕjkts = f
( ojkts
ojkts + ∆jkts

)
, ∀j ∈ J , k ∈ K(j), t ∈ T , s ∈ S.(5.16)

Non-anticipativity constraints : Constraints (5.17-5.27) represent the NAC for my

MSSP model where ξs[t] = (ξs1, · · · , ξst−1). All the decisions represented in these constraints

have to be determined before knowing the potential crew need at each stage. Indeed, the

NAC are presumed only for HN decisions ([56]).

xjkk′ts = xjkk′ts′ , ∀s, s′ ∈ S : ξs[t] = ξs
′

[t], j ∈ J , k, k′ ∈ K(j), t ∈ T .(5.17)

yjlkts = yjlkts′ , ∀s, s′ ∈ S : ξs[t] = ξs
′

[t], j ∈ J , k ∈ K(j), l ∈ L(j), t ∈ T .(5.18)

ujlts = ujlts′ , ∀s, s′ ∈ S : ξs[t] = ξs
′

[t], j ∈ J , l ∈ L(j), t ∈ T .(5.19)

zFjkts = zFjkts′ , ∀s, s′ ∈ S : ξs[t] = ξs
′

[t], j ∈ J , k ∈ K(j), t ∈ T .(5.20)

zBjkts = zBjkts′ , ∀s, s′ ∈ S : ξs[t] = ξs
′

[t], j ∈ J , k ∈ K(j), t ∈ T .(5.21)

qjj′ts = qjj′ts′ , ∀s, s′ ∈ S : ξs[t] = ξs
′

[t], j, j
′ ∈ J , t ∈ T .(5.22)

wFijts = wFijts′ , ∀s, s′ ∈ S : ξs[t] = ξs
′

[t], j ∈ J , i ∈ I, t ∈ T .(5.23)

wBijts = wBijts′ , ∀s, s′ ∈ S : ξs[t] = ξs
′

[t], j ∈ J , i ∈ I, t ∈ T .(5.24)

vjlts = vjlts′ , ∀s, s′ ∈ S : ξs[t] = ξs
′

[t], j ∈ J , l ∈ L(j), t ∈ T .(5.25)
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vEjlts = vEjlts′ , ∀s, s′ ∈ S : ξs[t] = ξs
′

[t], j ∈ J , l ∈ L(j), t ∈ T .(5.26)

ojkts = ojkts′ , ∀s, s′ ∈ S : ξs[t] = ξs
′

[t], j ∈ J , k ∈ K(j), t ∈ T .(5.27)

5.4.2 Linear MSSP Crew Coordination Model

Linear approximation of the utility function: The term f(
ojkts

ojkts+∆jkts
) introduces a

non-linearity into the objective functions (5.2). Generally, non-linear programming models

are more difficult to solve than linear ones. Hence, I convert the presented non-linear model

to a linear approximation form through a piecewise linear approximation technique. Since

f(
ojkts

ojkts+∆jkts
) is a function of two variables, I employ the triangle method [65], which is an

extension of the piecewise linear approximation method of single variable functions to the

two-variable case.

In this case, the piecewise linear approximation is obtained by introducing n sampling

points o1
jkts, ..., o

n
jkts on the ojkts variable, and m sampling points ∆1

jkts, ...,∆
m
jkts on the ∆jkts

variable, with o1
jkts and onjkts (resp. ∆1

jkts and ∆m
jkts) coinciding with the left and right ex-

tremes of the ojkts (resp. ∆jkts). The function f(
ojkts

ojkts+∆jkts
) is evaluated for each breakpoint

(ogjkts,∆
h
jkts)(g = 1, ..., n;h = 1, ...,m). For any given (ojkts,∆jkts) point, say (ōjkts, ∆̄jkts),

with ogjkts ≤ ōjkts ≤ og+1
jkts and ∆h

jk(t−1)s ≤ ∆̄jkts ≤ ∆h+1
jkts, let us consider the rectangle of ver-

tices (ogjkts,∆
h
jkts), (o

g+1
jkts,∆

h
jkts), (o

g
jkts,∆

h+1
jkts), (o

g+1
jkts,∆

h+1
jkts) and the two triangles produced by

its diagonal [(ogjkts,∆
h
jkts)(o

g+1
jkts,∆

h+1
jkts)]. (The triangles produced by the other diagonal could

equivalently be used.) The function value is then approximated by a convex combination of

the function values evaluated at the vertices of the triangle containing (ōjkts, ∆̄jkts).

In order to implement the above technique in my problem, it is necessary to include in

the model, the variables and constraints that force any (ojkts,∆jkts) point to be associated

with the proper triangle surrounding it. Let us introduce nm continuous variables αghjkts for

each breakpoint g and h, such that αghjkts ∈ [0, 1] (g ∈ {1, ..., n}, h ∈ {1, ...,m}). Let hughjkts
and hlghjkts be two binary variables, respectively, associated with the upper and lower triangle

in the rectangle of vertices (ogjkts,∆
h
jkts), (og+1

jkts∆
h
jkts), (ogjkts,∆

h+1
jkts), (og+1

jkts,∆
h+1
jkts), with dummy

values hu0∗
jkts = hu∗0jkts = hun∗jkts = hu∗mjkts = hl0∗jkts = hl∗0jkts = hln∗jkts = hl∗mjkts = 0. Then, the

convex combinations in the three-dimensional space is computed as follows:

n∑
g=1

m∑
h=1

αghjkts = 1, ∀j ∈ J , k ∈ K(j), t ∈ T , s ∈ S.(5.28)

ojkts =
n∑
g=1

m∑
h=1

αghjktso
g
jkts, ∀j ∈ J , k, k

′ ∈ K(j), t ∈ T , s ∈ S.(5.29)
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∆jkts =
n∑
g=1

m∑
h=1

αghjkts∆
h
jkts, ∀j ∈ J , k, k′ ∈ K(j), t ∈ T , s ∈ S.(5.30)

Constraints (5.31) impose that, among all triangles, only one is used for the convex

combination. Then, constraints (5.32) impose that the only αghjkts values different from 0 can

be those associated with the three vertices of such triangle. Constraints (5.33) calculate then

the correct computation of the approximate value for ϕjkts.

n−1∑
g=1

m−1∑
h=1

(hughjkts + hlghjkts) = 1, ∀j ∈ J , k ∈ K(j), t ∈ T , s ∈ S.(5.31)

αghjkts ≤ hughjkts + hlghjkts + hug,h−1
jkts + hlg−1,h−1

jkts + hug−1,h−1
jkts + hlg−1,h

jkts ,

∀g ∈ {1, ..., n}, h ∈ {1, ...,m}, j ∈ J , k ∈ K(j), t ∈ T , s ∈ S.(5.32)

ϕjkts =
n∑
g=1

m∑
h=1

αghjktsf

(
ogjkts

ogjkts + ∆h
jkts

)
, ∀j ∈ J , k, k′ ∈ K(j), t ∈ T , s ∈ S.(5.33)

Single objective counterpart of the multi-objective model: After obtaining a lin-

ear approximation for the model by applying the piecewise linear approximation technique,

the problem is converted to a multi-objective mixed integer linear mathematical model.

Several methods have been developed in the literature to tackle the multi-objective math-

ematical models such as the weighted sum, ε-constraint, Chebycheff-based methods or the

fuzzy programming. In this work, I employ the improved version of the ε-constraint method,

namely AUGMECON [73], by which the multi-objective model is converted to a single ob-

jective counterpart. This method is an appropriate approach for my problem, because it

can handle non-convex pareto-optimal set, and assures the exact Pareto set with an efficient

amount of computational effort.

It is well known that the ε-constraint method has certain advantages in relation to the

weighting method [73]. AUGMECON addresses some drawbacks of the conventional ε-

constraint method, namely, the guarantee of Pareto optimality of the obtained solution in

the payoff table as well as in the generation process and the increased solution time for

problems with several objective functions.

The formulation of the AUGMECON method for my problem is as follows:
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max OF2 + eps× (
β

b
)(5.34)

s.t.

Constraints (5.3)− (5.15) and (5.17)− (5.33)

OF1− β = ε(5.35)

β < 0(5.36)

where ε is the right hand-side parameter for the specific iteration drawn from the grid

points of the objective functions 1. The Pareto-optimal solutions of the model are achieved by

parametrical variation of this parameter. The parameter b is the range of the respective ob-

jective functions. β is the surplus variables of the respective constraint and eps ∈ [10−3, 10−6].

The range of ε can be calculated by optimizing the constrained objective functions OF1 sep-

arately subject to the constraints and constructing the pay-off table. Afterward, different

values for ε can be calculated by dividing the range of constrained objectives OF1 to p equal

intervals. Thus, I have in total p + 1 grid points that are used to vary parametrically the

right hand side of the OF1.

b = OF1max −OF1min; εm = OF1max − b

p
×m; m = 0, · · · , p− 1

In the multi-objective integer programming, the ε-constraint method can be used to

produce the exact (or complete) Pareto optimal set. In this case, the size of the Pareto set

is finite and the AUGMECON is therefore suitable for generating the exact Pareto set.

5.5 Computational results and analysis

This section is presented in two main parts. First, the efficiency of the proposed MSSP

for the repair crew coordination problem is investigated by comparing the value of solution

obtained by MSSP and the one achieved by the two-stage version of the stochastic problem.

In the second part, the application of the proposed model is discussed by solving one instance

of the repair crew coordination problem based on the case study. I also carry out sensitivity

analysis on the crucial parameters of my model.

5.5.1 Assessing the performance of the MSSP

To evaluate the presented model’s performance, several test problems from different

classes including small-sized, medium-sized and large-sized are created. The complete char-
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acteristics of these test problems are provided in Table 5.2. The model is coded in Python

3.7.3 and solved using Gurobi 9.0.2. The computations are performed on a personal computer

with Core i7-1600 MHz CPU, 3 GHz and 16 GB of RAM.

It should be noted that given the concentration of this study on problem formulation,

solution interpretation and practical side of the study, rounding approach (for non-binary

integer variables) is utilized to efficiently solve the mixed-integer programming problem.

In this approach, the problem is solved as a linear program (LP) with continuous variables.

Then, solutions are rounded to an integer one by searching out satisfactory solutions wherein

the variable values are adjusted to nearby larger or smaller integer values. Finally, rounded

solutions are compared with unrounded ones to ensure that all the constraints are still

satisfied, and the difference between the optimal solutions obtained from solving the LP

problem and the rounded solutions is not significant.

The relative value of the multi-stage stochastic program: To highlight the im-

portance of my multi-stage stochastic model for the repair crew coordination problem, I

compare the multi-stage stochastic model with the two-stage stochastic version of this prob-

lem. To this aim, I need to calculate the relative value of MSSP with respect to TSSP, which

is obtained as follows [48]:

RVMS =
objMSSP − objTSSP

objTSSP
× 100%,

where objMSSP and objTSSP are respectively the optimal objective function values of multi-

stage and two-stage stochastic formulations of my problem.

In order to convert my proposed MSSP model into a two-stage stochastic program (TSSP)

model, I need to substitute constraints (5.37)-(5.47) with the non-anticipativity constraints

(5.17)-(5.27) in the proposed MSSP model.

xjkk′ts = xjkk′ts′ , ∀s, s′ ∈ S, j ∈ J , k, k′ ∈ K(j), t ∈ T .(5.37)

yjlkts = yjlkts′ , ∀s, s′ ∈ S, j ∈ J , k ∈ K(j), l ∈ L(j), t ∈ T .(5.38)

ujlts = ujlts′ , ∀s, s′ ∈ S, j ∈ J , l ∈ L(j), t ∈ T .(5.39)

zFjkts = zFjkts′ , ∀s, s′ ∈ S, j ∈ J , k ∈ K(j), t ∈ T .(5.40)

zBjkts = zBjkts′ , ∀s, s′ ∈ S, j ∈ J , k ∈ K(j), t ∈ T .(5.41)

qjj′ts = qjj′ts′ , ∀s, s′ ∈ S, j, j′ ∈ J , t ∈ T .(5.42)

wFijts = wFijts′ , ∀s, s′ ∈ S, j ∈ J , i ∈ I, t ∈ T .(5.43)

wBijts = wBijts′ , ∀s, s′ ∈ S, j ∈ J , i ∈ I, t ∈ T .(5.44)

vjlts = vjlts′ , ∀s, s′ ∈ S, j ∈ J , l ∈ L(j), t ∈ T .(5.45)
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Table 5.2: Results from solving test problems with Gurobi solver and estimated values of
the multi-stage stochastic program.

Test problems |S| |T | |J | |I| [|K(j)|] [|L(j)|] Average RVMS
Test problem 1 9 5 2 1 [3,4] [2,4] 3.04%
Test problem 2 9 7 3 2 [4,4,3] [3,4,2] 2.14%
Test problem 3 17 9 5 3 [5,2,3,6,3] [3,2,3,4,2] 6.32%
Test problem 4 29 10 7 4 [5,4,3,6,3,6,5] [3,2,1,3,1,3,4] 4.30%
Test problem 5 41 14 10 5 [5,4,3,6,3,6,5,3,6,5] [4,2,1,3,1,3,3,3,6,5] 3.49%

vEjlts = vEjlts′ , ∀s, s′ ∈ S, j ∈ J , l ∈ L(j), t ∈ T .(5.46)

ojkts = ojkts′ , ∀s, s′ ∈ S, j ∈ J , k ∈ K(j), t ∈ T .(5.47)

In my problem formulation, I have two objective functions and the value of the com-

bined objective (5.34) depends on the chosen value for the parameter ε in constraint (5.35).

Thus, for 10 different values of ε, I solve both the MSSP and TSSP problems and obtain

objTSSP , objMSSP , and accordingly calculate RVMS. The last column in Table 5.2 presents

the average RVMS values for different test problems. As shown by Table 5.2, the relative su-

periority of the MSSP is verified in comparison with the TSSP. It should be highlighted that

adding constraints (5.37)-(5.47) instead of NACs reduces the feasible region of the problem

and therefore, the optimal solution of the TSSP becomes less than or equal to the optimal

solution of the MSSP.

5.5.2 Application of the proposed stochastic model

In this section, an illustrative example of my model based on my case study is discussed.

I develop this illustrative example based on the data from one of the utility companies I

have been working with. In this example, crew transhipment decisions are made for seven

local operating companies (i.e., |J | = 7), where each one respectively serves [|K(j)|] =

[5, 4, 3, 6, 3, 6, 5] districts. I develop my model for a |T | = 10 day planning horrizon, and

I assume that |I| = 4, [|L(j)|] = [3, 2, 1, 3, 1, 3, 4], and the utility function is f(x) =
√
x.

Other corresponding parameters are generated based on Table 5.3. Based on the procedure

described in Section 5.3, I come up with a scenario tree with |S| = 29 scenarios. Using this

example, I study the impact of four important parameters in the model. These parameters

include (i) proportion of crews in each store that can be transshipped to other OCs (ajkt),

(ii) the number of crews requested by the other company/contracting agency to get from

local OCs (Edit), (iii) the crew need at each district (djkts), and (iv) the utility function (f(.)

function in equation (5.16)).
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Table 5.3: Characteristics of parameters for the test problems.

Symbol Value Symbol Value Symbol Value
Vjlt U(100, 200) ρJj U(2, 4) ACK

jkk′t U(15, 30)
Ujkt U(5, 20) ρIi U(2, 4) ACJK

jkt U(150, 250)
NK
jkt U(20, 100) τJjj′ U(0, 2) ACJJ

jj′t U(100, 2000)
N I
it U(100, 200) τ Iij U(0, 2) ACJL

jlt U(150, 200)
Edit U(0, 40) FCjlt U(1e+ 06, 3e+ 06) ACL

jlkt U(15, 30)
ACjlt U(5e+ 04, 2e+ 05) ACJI

ijt U(700, 2500)

Since I used the augmented ε-constraint method for combining the objectives, I have

pareto optimal solutions instead of single objective values. By changing the ε value in the

constraint (5.35), different pairs of pareto optimal solutions are obtained that are shown

with a curve in Figures 5.4 - 5.7. Figure 5.4 represents my analysis for three different values

of parameter a. I solve my case study for 3 different values of parameter a while I keep other

parameters of the model constant. This figure shows that as I increase parameter a, optimal

objective values improve. In another analysis, I study the effect of change in two parameters

including Ed and a, simultaniously. I solve my case study for 4 different scenarios. In each

case, I double the value of one of these two parameters. Results are shown in Figure 5.5.

We see that with increase in external demand (Ed), optimal objective value significantly

deteriorates. That is, same level of utility is obtained with much higher costs. We also

see that in both levels of external demand, increase in parameter a improves the objective

values, and this improvement is larger for the higher Ed values.

Based on my conversations with personnel of one of the utility companies with which I

collaborated in this study, I found that they tend to take a very conservative approach in

regard with the percentage of the crews that are allowed to be sent to other companies. In

other words, they set a very low limit (i.e., 0.15− 0.2) for the parameter a. This is because

they believe that increasing this parameter may put their company at a higher risk of not

being able to satisfy demand for crew needs in case of a sudden hazard. However, my results

show that increasing parameter a not only does not deteriorate solutions, but also results

in higher utility of service. What increases the risk for utility companies is the increase in

external demand. Thus, a better alternative policy is to set no limit for parameter a (i.e.,

a = 1), but put limits on the maximum number of crews that all OCs together can provide

Table 5.4: Approximate crew hour need for fixing power system damages.

Pole
Underground
Transformers

Overhead
Transformers

Underground
Lines

Overhead
Lines

Crew Need 4-8 hours 1 day 6-8 hours 1-2 days 1-2 hours
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for external companies.

Moreover, I analyze sensitivity of my model with respect to increase in crew needs.

Results are shown in Figure 5.6. Here, I have three scenarios for demand, including low,

medium and high demand, where the medium demand is twice as big as the low demand and

the high demand is four times as big as the low demand. As expected, we observe that given

the fixed resources, as the demand increases, utility level of service decreases and also the

system cost increases. Finally, I study the impact of different utility functions on model’s

optimal solutions. The three functions I considered are f(x) =
√
x, f(x) = x, and f(x) = x2.

The first one is a concave function and represents a system in which fixing initial damages

can return power to a higher number of customers and significantly improves utility level

of service. In other words, these systems can recover from a damaging event more quickly

and thus, are more resilient. However, the third utility function is convex and respresents

a system in which repairing the last damaged components plays a more significant role in

increasing the utility level. That is, the system does not recover until higher rate of damages

are fixed, which represents a less resilient system. The second utility function represents a

case between the previous two systems in which fixing each damage has a constant effect in

increasing the utility level. Figure 5.7 represents model’s optimal solutions for these three

different utility functions. Results show that in the first case, where f(x) =
√
x, the system

reachs out to any utility level with lower cost compared to the other two utilty functions.

In other words, as we have a more resilient system, lower cost is imposed to the system to

reach out a specific level of utility.

Figure 5.4: Sensitivity of the model to param-
eter a.

Figure 5.5: Sensitivity of the model to param-
eter Ed.
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Figure 5.6: Sensitivity of the model to increase
in demand.

Figure 5.7: Sensitivity of the model to the util-
ity function f(.).

5.6 Summary and Conclusions

In this chapter, I studied a repair crew coordination problem (RCCP) in which demands

for repair crews were stochastic. Under a multi-period planning horizon, a novel multi-

stage stochastic program (MSSP) was developed for the RCCP by using non-anticipativity

constraints. The objective of the MSSP was to simultaneously maximize the utility level

of service and minimize the costs. These two objective were combined using ε-constraint

method. Furthermore, a triangle method is used to convert the utility function into a linear

approximation function. To deal with uncertainty in the potential crew need of districts, the

LHS method was applied to generate a set of scenarios and then, using the forward scenario

selection method, the number of scenarios was decreased in such a way that I achieved an

appropriate scenario tree. The Gurobi solver was used for solving the problems. Using some

numerical experiments, the influences of increase in crew need and the ratio of crews that

can be sent to other places on the network costs and utility of service were highlighted. As

this chapter introduced a novel MSSP for RCCP, there are some interesting opportunities

for future researches such as considering uncertainty for other key parameters and other

methods for modeling uncertainty such as robust optimization. This research was one of a

few studies that applied the MSSP for RCCP for power system restoration.
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CHAPTER VI

Conclusions and Future Research

6.1 Summary and Conclusions

Severe weather events have the potential to cause significant disruptions to the electric

power grid. The resulting damages are, in some cases, very expensive and time-consuming to

repair and they lead to substantial burdens on both utilities and customers. The frequency

of such weather events has also been increasing over the past three decades and studies shows

that both the number and severity of them will increase due to global warming and climate

change. An important part of managing weather-induced power outages is being properly

prepared for them, and this is tied in with broader goals of enhancing power system resilience.

Modeling impacts of extreme weather events on the power system is a critical part of pre-

storm resiliency practices because it directly influences the decisions made prior to, during,

and after the event.

Accordingly, this dissertation is fundamentally motivated by the question of how we can

develop implementable models to improve the resiliency of our electric power systems in the

face of hazards. In particular, the dissertation has been geared towards leveraging advanced

analytical tools such as data and risk analytics, statistical machine learning, and optimiza-

tion for (i) improving the existing outage predictive models in terms of both accuracy and

applicability, and (ii) introducing data-driven decision-making frameworks that use forecast

outputs for driving better restoration and resiliency policies.

Chapter II focused on developing predictive models that can handle the zero-inflated

issue in power outage data. Zero-inflation occurs whenever there exist significantly more

observations of zero outages than non-zero and it is a common issue in power outage data

recorded in resolutions smaller than census tract or county level. This issue leads to bias and

inaccuracy in predictive modeling. Power outages are also stochastic and there always exists

irreducible variability in outage predictions. The second focus of Chapter II is to develop

models to accurately estimate power outages in terms of probability distributions to better
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address inherent stochasticity and uncertainty in predictions. In this chapter, I proposed

a novel two-stage approach integrating mixture models with resampling and cost-sensitive

learning for predicting the distribution of thunderstorm-induced power outages.

The first stage is based on random forest, boosting tree and support vector machine

classifiers and the second stage is based on the quantile regression forest (QRF) model. First-

stage models classified data into zero class and non-zero class. In the second stage, there are

two QRF models one of them trained on the zero class data and another one trained on the

non-zero class data. Conditioning on the fact that each record belongs to the zero or non-zero

class data, each QRF makes a separate prediction for the full distribution of that record.

The role of the first-stage classifier is to predict the probability of the outcome variable being

non-zero. Once this probability is estimated, a large number of random samples between

0 and 1 are generated. Then each random sample is compared with the probability of the

outcome being non-zero. For each random sample larger than the estimated probability,

a data point is randomly generated from the predicted distribution by the QRF 0, while

for each random sample smaller than the estimated probability, a data point is randomly

generated from the predicted distribution by the QRF 1. These data points together estimate

the full probability distribution of each record from first stage.

The models are trained and validated using the actual thunderstorm data obtained from

a decade of data collection in Alabama. The studied area is divided into grid cells and all the

data and predictions are produced per grid cell. Validating my models through holdout analy-

sis, I demonstrate that my approach offers more accurate point and probabilistic predictions

compared to traditional approaches. Comparing with the traditional two-stage modeling

approach, the results of holdout analysis indicate that the proposed two-stage framework

improves the accuracy of the point estimates. It is also found that applying cost-sensitive

learning techniques in the first-stage results in not only more precise and computationally

efficient point predictions, but also higher accuracy in probabilistic predictions. More ac-

curate predictions produced by my modeling framework help utility companies make better

decisions for post-storm restoration. The probabilistic predictions help them incorporate the

existing uncertainty in the predictions in their decision making process.

In chapter III, I proposed a new adaptive ensemble algorithm based on Bayesian model

averaging (BMA) in order to address model uncertainty. This algorithm is built upon a

number of competing base learners. The final prediction is made by averaging the predic-

tion of these base learners where the weight of each base learner in the final prediction is

proportional to its accuracy. A training set is assigned for each base learner. Each newly

observed data point is added to the training set of the model making the best prediction

for that record. Periodically, base learners are updated based on their new training sets. In
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the proposed algorithm, unlike classical BMA approach, the weights of the base learners are

based on a multinomial logistic function of the data. The weight of each base learner for a

newly observed data point is different and based on the features of this record. The poste-

rior distribution of the multinomial logit model’s parameters are approximated by using the

Laplace approximation method. Then, a stochastic gradient ascent approach is deployed to

estimate the parameters of posterior distributions.

I validate my algorithm based on real dataset of daily customers interruptions. My case

study is the first all-weather model developed for predicting customers interruptions. The

results of holdout analysis show that my algorithm results in a more accurate probabilistic

prediction compared to its base learners. It also provides more insights into the data gen-

erating process, and so, results in better support for utility restoration planning. Although

my work is motivated by the power system application, my methodology and insights can be

extended to other predictive modeling problems in which there are model uncertainty and

data is collated gradually.

Due to the ease of collecting outage variables through an automated system, existing re-

search has focused mostly on modeling the number of outages, number of customers without

power, and power outage duration. However, outage focused predictive modeling is not very

applicable for making system reinforcement decisions at the asset level. Inspired by this chal-

lenge, Chapter IV focused on the failure of utility assets including conductors, transformers,

and poles and studied the impacts of meteorological variables on the failure of these assets.

In this chapter, I developed a Bayesian belief network to model the stochastic interconnection

between various meteorological factors and physical damage to different power system assets.

Hypothesis tests, matching for controlling confounders effects, maximum relevant explana-

tion, and mutual information are the tools I use to perform belief propagation and variable

importance analysis. This study was based on a real dataset of daily damage occurring in

29 districts of 10 U.S. states, which are served by six operating companies. This chapter

provided several critical insights that can help the policy maker (i) understand the effects

of each individual variable on the power system damages, (ii) find the weather conditions

that derive the maximum level of damages, and (iii) rank the meteorological factors based

on their influence on the power system damages.

Finally, in Chapter V I focused on developing an optimization model that uses power

outage predictions for optimally allocating repair crews to disasterous areas before and during

a hazard to reduce restoration time. Based on multiple meetings with utility personnel, I

developed a new multi-stage stochastic program to simultaneously make resource allocation

and relocation decisions such that costs and customer satisfaction are optimized. In the

proposed model, the triangle method was used to turn the nonlinear utility function to a
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linear one, and ε-constraint method is utilized to convert the bi-objective problem in a single

objective one. I address a multi-period problem in which utility service zones (districts) have

stochastic demand for repair crews. Existing uncertainty in potential demands of customer

zones is modeled through a finite set of scenarios, described in the form of a scenario tree. The

LHS method was applied to generate a set of scenarios and then, using the forward scenario

selection method, the number of scenarios was decreased in such a way that I achieved an

appropriate scenario tree. The multi-stage stochastic problem is formulated as a mixed-

integer linear programming model and the Gurobi solver was used for solving the problems.

Numerical results demonstrate the significance of the stochastic model. Finally, several key

managerial and practical insights in terms of resource allocation are highlighted. The model

developed in this study as well as the results and insights can help utility companies make

better resource assignment decisions in advance of a storm.

6.2 Future Research

In summary, I addressed two major research areas concerning storm impacts on power

systems; however, several more avenues of research, with both methodological contribution

and practical impact, can be conducted to build on this thesis.

In the context of outage predictive modeling, new algorithms that capture other aspects

of a resilient power system could be developed. This includes the multifaceted concept that

requires an integrated approach to simultaneously predict multiple interconnected system

attributes. Neural networks are recomended because on one side, they are able to model

multivariate response variables and on the other side, if they are trained deep enough, are

able to learn from big data and obtain the highest level of performance. Furthermore, ex-

isting deep learning regressors consider either balanced or moderately imbalanced data, and

ignore the challenge of learning from significantly imbalanced data. Thus, future work is re-

comended for developing imbalanced deep learning frameworks for simultaneously estimating

multiple highly imbalanced loss attributes for our critical infrastructures

Future work related to Chapter V could explore incorporating prioritizion in recovery

planning. When the extent of disaster damage to infrastructure systems is severe and

widespread throughout an area, repair crews cannot respond to every damage at once. This

calls for establishing prioritization of recovery activities. They are mostly prioritized as han-

dling public safety hazards, recovering emergency facilities, repairing damages that restore

service to the greatest number of customers, and moving forward to lower levels. Crew

needs also are highly variable due to substantial uncertainty in damage rates. Accordingly,

developing a modular and tractable data-driven decision-making framework, which (i) treats
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such significant uncertainty via adaptive distributionally robust and stochastic optimization

models and (ii) guarantees priority-based crew coordination planning is recommended. This

allows policy makers to make optimal use of data that is revealed as time progresses and

adjust their decisions based on the uncertainty realization.

Based on the evidence I have provided, I believe the model I proposed in Chapter V can

be relatively easy to implement in utility companies from a technical perspective. Finally, the

work presented in this thesis provides a foundation for future research on resource allocation

for power system restoration.
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[84] Anders Olsson, Göran Sandberg, and Ola Dahlblom. On latin hypercube sampling for
structural reliability analysis. Structural Safety, 25(1):47–68, 2003.

[85] Sascha Ott, Seiya Imoto, and Satoru Miyano. Finding optimal models for small gene
networks. In Biocomputing 2004, pages 557–567. World Scientific, 2003.

[86] Judea Pearl. Probabilistic reasoning in inteligent systems. Morgan Kaufmann Publish-
ers Inc., 1988.

[87] Nathalie Perrier, Bruno Agard, Pierre Baptiste, Jean-Marc Frayret, André Langevin,
Robert Pellerin, Diane Riopel, and Martin Trepanier. A survey of models and algo-
rithms for emergency response logistics in electric distribution systems. part I: Reliabil-
ity planning with fault considerations. Computers & Operations Research, 40(7):1895–
1906, 2013.

[88] Nathalie Perrier, Bruno Agard, Pierre Baptiste, Jean-Marc Frayret, André Langevin,
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