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ABSTRACT

Understanding the formation of polycyclic aromatic compounds (PACs) in combustion not

only bridges the knowledge gap between the small gas-phase species and incipient soot

particles, but may also help address the global emission issues of both PACs and soot. In

this thesis, I present a kinetic mechanism utilizing reactive sites (i.e., the chemical and

physical neighbourhoods) to describe the PAC growth in combustion. This kinetic mech-

anism was implemented for a stochastic modeling code (i.e., SNapS2) recently developed

by the Violi Group. To address new experimental and computational discoveries, chemi-

cal reactions were gathered and categorized from various literature, while the reaction rate

constants came from either literature or my own calculations to ensure full reversibility and

thermodynamic consistency. These reactions were then implemented into SNapS2 kinetic

mechanism with precise reactive site definitions to eliminate the possibility of steric hin-

drance and unrealistic reactions. Compared with the previous version of SNapS2, thanks

to this new kinetic mechanism, the computational performance increased by an order of

magnitude, enabling the simulation of complex two-dimensional flames. Some missing

reaction pathways, which were identified from experimental evidence and simulations but

not available in the literature, were explored and calculated using quantum chemistry meth-

ods. These newly discovered reactions were included in the SNapS2 kinetic mechanism as

well, and some of them were already proven to be important under specific conditions.

The characteristics of the PACs predicted with the kinetic mechanism were compared

against different experimental measurements: mass spectra measured in a counterflow dif-

fusion flame, the oxygen-to-carbon ratios obtained at different locations of a coflow dif-

fusion flame, and the molecular structures observed in a premixed laminar flame. These

xi



successful validations demonstrate that the SNapS2 kinetic mechanism provides a high-

fidelity, and yet generic, description of the PAC formation under various combustion con-

ditions, making SNapS2 the first-of-its-kind to have such extensive flexibility and wealth

of information. It greatly contributes to reveal the underlying chemical pathways to the

experimental observations.

Furthermore, SNapS2 code and the kinetic mechanism have shown its capability to

provide valuable insights on the formation of aromatics beyond the limitation of diagnos-

tics. For one application, spatial dependence of the PAC growth in an ethylene counterflow

diffusion flame was characterized by SNapS2 simulations, revealing distinct PAC growth

pathways for the streamlines starting from fuel side and oxidizer side. Given the fidelity of

the SNapS2 predictions, it was also used to examine conditions that are impossible to test

experimentally, like completely decoupling the effects of flame temperature when study-

ing the effects of ethanol doping on the formation of aromatics, highlighting the chemical

pathways that result in soot reduction. Both applications show the uniqueness and great po-

tential of the model to obtain insights of the PAC formation when measurements are hard

to obtain or experiments are difficult to control. Altogether, this dissertation lays a solid

foundation that not only helps explain the experimental observations for the formation of

soot precursors, but also provides a powerful tool for exploring the gas-phase nanoparticle

growth that could drive the development of novel combustion technologies or the design of

new nanomaterials.

xii



CHAPTER 1

Introduction

The formation of Polycyclic Aromatic Compounds (PACs) and particles has become one of

the central themes of combustion research due to environmental concerns about pollutant

emissions [205, 138]. The global atmosphere emissions of the 16 PACs listed as the United

States Environmental Protection Agency priority pollutant was estimated to be 520 Gg per

year in 2004 with biofuel (56.7%), wildfire (17.0%) and consumer product usage (6.9%)

as the major sources [205]. Their toxic effects on both human and ecosystem health are

well documented [1]. Exposure to PACs may cause toxic effects including carcinogenicity,

teratogenicity, genotoxicity, and immunotoxicity [138].

The formation and growth of the PACs also bridge the main combustion zone chem-

istry with the formation of particles (i.e., nanoparticles and soot). The formation of PACs

has long been considered as an important step for soot formation, since PACs are the

key building blocks for the nucleation step that leads to the transition from gas-phase

species to nanoparticles. Thus, the characteristics of the PACs formed under various com-

bustion conditions would directly influence the soot formation. For example, Elvati et

al. [45, 43, 46, 44] indicated that the dimerization of PACs in general is affected by the

shape of the molecules as well as the oxygen content, and that oxygenated species have

less tendency to form dimers than pure hydrocarbons. Thus, understanding the formation

of PACs in combustion not only bridges the knowledge gap between the small gas-phase

species and incipient soot particles, but may also help address the global emission issues of

1



both PACs and soot. Their applications in material synthesis [69] and compression ignition

engines [167, 102] make PACs interesting and important to study as well.

1.1 Knowledge of Combustion-generated PACs

Knowledge of the combustion-generated PACs has been accumulated from both experi-

ments and simulations over the past few decades. Since these PACs are formed in very

complex gas-phase systems, early studies made a lot of assumptions to simplify, both exper-

imentally and computationally. Early experimental studies used shock-tubes to learn com-

bustion chemistry and premixed flames to understand the physical and chemical factors that

alter the formation of PAHs. At the same time, the computational works largely focused

on the formation pathways of six-membered aromatic PAHs. However, recent experimen-

tal evidence revealed the complex molecular structures of the combustion-generated PACs.

These new experimental discoveries showed a general lack of understanding and predict-

ing capabilities for most of the models to capture this complexity. While SNapS [96] was

promising for modeling the growth of these PACs, its code and kinetic mechanism need to

be completely reexamined and further improved.

1.1.1 Early Studies from Shock-tubes and Premixed Flames

The evolution of gas-phase species during combustion is well known to depend on the spe-

cific physical and chemical conditions of the system. Previous works in shock-tubes and

premixed flames have provided great insights on the formation of Polycyclic Aromatic Hy-

drocarbons (PAHs). Shock-tube studies have been significantly contributing to the under-

standing of the chemical process of PAH formation. Frenklach and his coworkers proposed

the Hydrogen-Abstraction-Acetylene(C2H2)-Addition (HACA) pathway in an acetylene

shock-tube pyrolysis study [54] in 1985. HACA pathways were later expanded and proven

to be the major route of PAH growth in most pure hydrocarbon flames [58, 53, 56, 57]. Gar-

2



diner [61] reviewed the early shock-tube studies of combustion chemistry, while Hanson

and Davidson [74] presented a detailed review of recent advances in shock-tube methods.

Both articles highlighted the importance of shock-tube studies for combustion chemistry

model validation and refinement.

Several studies have been conducted over the years on the effects of temperature, pres-

sure, fuel composition, oxygenates additions on both soot volume and PAH formation of

laminar premixed flames. Wagner et al. (see [48] and references therein) revealed a bell

shaped dependence of the final soot volume on the maximum flame temperature in exper-

iments, as well as the dependence of the final soot volume on pressure. Frenklach [52]

further applied the kinetic Monte Carlo (kMC) technique to model surface growth of soot

particles, finding that the growth rate of soot particle surface increases with temperature

while the growth rate of PAHs decays with temperature. Mauss and Bockhorn [48] later

confirmed this phenomena with numerical modeling. Maricq [108] examined soot compo-

sition as a function of four types of fuels, height in flame, equivalence ratio, and fuel/air

flow rate in experiments. Wu et al. [195] summarized the early work on the effects of

ethanol doping on PAHs or soot formation in flames and shock-tubes, and reported a simi-

lar reduction of PAHs and soot in premixed ethylene/air flames by addition of ethanol with

experiments. Elvati et al. [43] further studied the physical and chemical growth mecha-

nisms of the premixed laminar flames from literature by Wu et al. [195] and Salamanca et

al. [142], employing a variety of computational techniques and revealing some reasons of

soot reduction with addition of oxygenates. All these studies above involve comparisons

across several flames with similar conditions (e.g., equivalence ratio, carbon flow rate, and

maximum flame temperature) in order to isolate and observe the effect of changing a single

physical or chemical condition. These studies greatly contribute to the understanding of

the factors that could change the formation of PAHs and soot.
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1.1.2 The Formation of Six-membered Aromatic PAHs

The more fundamental understanding of the underlying reaction pathways for the PAH for-

mation have also been investigated for a long time. Great interests have been focused

on the formation of the six-membered aromatic PAHs, the honeycomb-like structures.

Among those, one of the most famous pathways is the HACA, which contains a repeti-

tive sequence of two reaction steps – a hydrogen abstraction reaction (i.e., activation step)

and an acetylene (C2H2) addition reaction to the radical site. An extra aromatic ring can

then be formed through a ring closure reaction. The HACA includes three major path-

ways, the Frenklach’s route [58], the alternative Frenklach’s route [54, 9], and the Bittner-

Howard’s route [13]. Beside the well-known HACA pathways, other pathways have been

proposed over the years, such as Diels-Alder growth [155, 90], cyclodehydrogenation (i.e.,

bay-closure) [14, 176, 131], Carbon(C2H2)-Addition-Hydrogen-Migration (CAHM) path-

way [204, 203], growth initiated by C3 species (such as propargyl radical, allene, propyne

and propene) [130, 117] and C4 species (such as vinylacetylene) [115, 104].

Diels-Alder-type pathway was proposed by Siegmann and Sattler [155] in 2000 as the

dominant route of PAH growth in methane combustion. Kislov et al. [90] later studied this

pathway extensively using ab initio Gaussian-3-type calculations and concluded that the

Diels-Alder pathway cannot compete with the HACA pathways even at high combustion

temperatures by examining the reaction rate constants. Bay-closure pathways were defined

by Böhm and Jander [14] in 1999. After that, quantum chemistry calculations were per-

formed and reaction rate constants were determined by Violi [176] on the five-membered

ring bay-closure pathways and by Raj et al. [131] on the six-membered ring bay-closure

pathways. CAHM pathway was proposed by Zhang et al. [204, 203] to be important in the

low-temperature, post-flame region. Frenklach et al. [57] later implied that both HACA

and CAHM pathways can explain the formation of aliphatic groups chemisorbed at edges

of aromatics. The six-membered aromatic growth initiated by propargyl radical (C3H3)

addition was studied by Raj et al. [130], with the pathways being developed up to the for-
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mation of pyrene. C3H3 is known to be a precursor of benzene (C6H6) in combustion and

has appreciable concentration in flames. The growth initiated by allene (AC3H4) addition

and propyne (PC3H4) addition was examined by Mebel et al. [117]. It was concluded

that, although phenyl radical (C6H5) + AC3H4 and C6H5 + PC3H4 reactions can produce

indene + H as the main product at low temperatures and pressures, under conditions rel-

evant to combustion, these reactions mostly form phenyl-substituted propyne or allene.

The six-membered aromatic growth initiated by vinylacetylene (C4H4) addition has been

systematically investigated by Liu et al. [104] recently.

1.1.3 Recent Experimental Evidences on the Complexity of the PACs

As complex as it already seems for the formation pathways of six-membered aromatic

PAHs, recent direct and indirect experimental evidences suggest that the actual combustion-

generated PACs are much more complex than the purely benzenoid aromatic compounds,

as it actually contains aliphatic chains [20, 28, 147], different types of five-membered

rings [147], oxygen contents [19, 82, 26], and curvatures [160, 15, 111].

For nascent soot surface, Cain et al. [20] observed large amounts of aliphatic C H

groups ranging from 1 to 30 times that of aromatic C H in a premixed, burner-stabilized

flame, and the amount of aliphatic C H relative to aromatic C H remained approxi-

mately constant with respect to particle sizes (Dp,m > 10 nm). For gas-phase PACs,

high-resolution Atomic Force Microscopy (AFM) was used for direct imaging of the build

blocks forming the particles in the early stages of soot formation [28, 147], observing the

noticeable presence of aliphatic side-chains. The same AFM study also showed a sig-

nificant presence of penta-rings as opposed to the purely benzenoid aromatic compounds.

Different types of peripheral pentagonal rings were observed, namely acenaphthylene-type,

acenaphthene-type, fluorene-type, and indane-type. Numerous experimental evidences also

suggest the presence of Oxygenated Polycyclic Aromatic Compounds (oxy-PACs) in even

pure hydrocarbon flames. Cain et al. [19] studied a coflow diffusion flame of a three-
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component Jet-A1 surrogate and characterized the oxygenated compounds in the range of

200 u to 600 u in mass, showing that the oxygenates are abundant in all soot samples at

different locations of the flame. Commodo et al. [26] studied a flat laminar premixed ethy-

lene/air flame, observing that just nucleated particles, with sizes of the order of 2 nm to

3 nm, contain about 3% of atomic oxygen over the total carbon atoms, and the O1s X-

ray Photoelectron Spectroscopy (XPS) spectra suggests the presence of C–O–C ether-like

bond. Johansson et al. [82] studied a premixed ethylene-oxygen flame and recorded XPS

spectra of soot samples, from which the fractions of C OH, C O C, and C O species

at different locations of the flame were determined. In addition, the AFM studies men-

tioned above identified three oxygenated species from the particles, a phenol, a ketone

and a derivative of benzopyran (labeled in the original work as PS7, PS2, and IS9 respec-

tively in [28]). Each molecule requires a different formation pathway, which indicates the

complexity of the oxygen reactions that occur in the flame. The curved PAHs, formed

by embedding the five-membered rings into the structures, have drawn some attentions in

the combustion community recently. From Martin et al. [111], high resolution transmis-

sion electron microscopy studies have shown that a significant fraction of curved PAHs is

present in soot [160, 15]. Significant curvature has been found in 28–49% of the fringes.

These new experimental discoveries showed a general lack of understanding and pre-

dicting capabilities for the current models to capture this complexity, and called for the

need of a new model for the growth of these PACs.

1.2 Deterministic Modeling of the PACs in Combustion

Due to the timescales and underlying assumptions, there are two classes of approaches

usually used to model the PAC formation, the deterministic modeling and the stochas-

tic modeling. The deterministic modeling approach, such as the one implemented in the

CHEMKIN software [135], is often used as a tool for studying the chemistry of small
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gas-phase species in combustion systems, and works reasonably well for predicting the

concentrations of gas-phase species with molecular mass less than benzene in a range of

flames [9, 139, 181, 133, 185]. The deterministic modeling approach solves a system

of coupled Ordinary Differential Equations (ODEs) [87], i.e., the Reaction Rate Equa-

tions (RREs) [67], derived from the Rate Laws [36] and provides the time evolution of all

the species, by assuming that all the species concentrations are continuous and determin-

istic. As a result, a list of species, reactions, and rate constants is provided as part of the

kinetic mechanism. The current gas-phase combustion kinetic mechanisms usually include

species up to pyrene (i.e., C16H10, 202 u) [9, 139, 181], some to coronene (i.e., C24H12,

300 u) [185].

Current deterministic modeling approach is less feasible for studying the large PAC

growth in combustion for the following reasons. First, there is a lack of reaction path-

ways and accurate rate constants, limited by the availability and accuracy of the quantum

chemistry calculations [158]. Because of this, the accuracy of predicting the concentra-

tions significantly decreases for larger species starting with naphthalene [133, 185, 151].

Second, because of the large reaction networks for PACs, the possibility of having a huge

kinetic mechanism raises as well. For example, the number of unique species and reactions

happening in a premixed laminar flame are at least in terms of millions [183]. The com-

putational cost increases dramatically as increasing the number of species in the kinetic

mechanism. Formulating and simulating such a system via deterministic approach are pos-

sible, but less feasible. Last but not the least, the continuous and deterministic assumptions

that allow for solving the RREs do not generally hold for the PACs. The majority of the

PACs have such low concentrations that would break the continuous assumption. These

limitations make deterministic modeling approach inadequate for modeling PAC formation

in great details and accuracy.
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1.3 Stochastic Modeling of PACs in Combustion

Stochastic modeling offers a more general approach by directly solving the Chemical Mas-

ter Equation (CME) [114]. The CME is a set of first-order differential equations describing

the probability as a function of time to evolve according to a specific chemical reaction. The

difficulty of solving the CME for even very simple systems eventually prompted the ap-

proach of constructing simulated temporal trajectories (i.e., traces) [67], as averaging over

sufficient traces can be used to estimate the time evolution of the reacting system. In 1976,

Gillespie et al. [65, 66] proposed the stochastic simulation algorithm for simulating the

chemical reactions. Gillespie and coworkers [67] later showed that through tau-leaping, the

discrete-stochastic CME formalism is connected with the continuous-deterministic ODE

formalism. As the thermodynamic limit is approached, where the molecular populations

are imagined to go to infinity along with the system volume while the concentrations re-

main constant, the CME reduces to the RRE. This means that the ODE formalism is an

approximation of the stochastic formalism which is generally accurate only if the system is

sufficiently large and the tau-leaping conditions are satisfied [67].

These findings promoted the usage of stochastic modeling on the formation of PACs

in combustion. The low concentrations of large PACs in combustion systems break the

underlying assumptions of the continuous-deterministic formalism, and require the more

general discrete-stochastic formalism. In addition, the stochastic modeling not only gives

macroscopic insights (e.g., PAC characteristics) like the deterministic modeling, but may

also offer the detailed time evolution of individual molecules by constructing traces. This

extra level of detail from the traces is very valuable, for example, for revealing the particle

nucleation mechanisms. Furthermore, the stochastic modeling approach can be coupled

with elementary reactions [175, 178, 24, 96] to expand the set of reactions based on reactive

sites but not specific species. Therefore, the stochastic modeling is more attractive for

studying the growth of PACs in combustion.
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1.4 Overview of the Stochastic Models in Combustion

Over the years, several stochastic models have been proposed to study the PAC formation in

combustion. Frenklach and coworkers pioneered the usage of kMC method in combustion

systems to study the relative importance of different reaction pathways. In 1996, Frenklach

et al. [52] applied a sterically resolved kMC technique to model the surface growth of soot

particles under conditions typical of flame environments, in which the outcome of a spe-

cific elementary chemical reaction depends on the collision frequency, nominal reaction

probability, and reactive sites. The reaction mechanism contained 13 gas-surface reactions

focusing on the formation of aromatic rings. In 2005, Frenklach, Schuetz, and Ping [56]

proposed a reaction pathway for the five-membered ring migration along a graphene edge,

known as FSP mechanism. Employing the new migration kinetics along with kMC, sim-

ulations were carried out at conditions typical of soot growth in pure hydrocarbon flames.

The reaction model developed to test the surface migration contained 9 overall reactions.

The results further highlighted the role of five-membered ring migration in the growth of

graphene layers.

In 2004, Violi [175, 178] introduced the Atomistic Model for Particle Inception (AMPI),

which was the first to use the elementary chemical reactions and the tracking of a single

species in stochastic simulations. Site descriptions included both five- and six-membered

rings and generic aliphatic chains. The AMPI was able to reproduce the hydrogen-to-

carbon trends identified in aromatic and aliphatic flames. The AMPI was later updated by

Chung and Violi [24] to study the effect of oxidation on nanoparticle structures formed in

a propane counterflow diffusion flame. In the case of high temperature and abundant rad-

icals, the AMPI successfully predicted the nanoparticle formation. Starting from AMPI,

later stochastic models until today, mostly track a single molecule under specific gas-phase

environments [193, 55, 131, 132, 96].

In 2008, Celnik et al. [23] proposed a soot particle model that describes soot particles

by their aromatic structure, including functional site descriptions and a detailed surface
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chemistry mechanism. The PAH growth model in this paper included 12 jump processes,

and is later named as kMC-ARomatic Site (KMC-ARS) model for PAHs surface growth.

The KMC-ARS model was expanded in the following years by Raj et al. [131, 132]. The

KMC-ARS model tracks each of the PAHs in the particles which evolve according to a

list of jump processes that make use of the steady-state assumption. In 2010, the model

included 20 jump processes [132]. The PAHs produced by KMC-ARS model was able

to match some of the hydrogen-to-carbon ratios compared with experiments in different

flames. The most recent work from Yapp et al. [200] further extended the model to allow

the inclusion of five-membered rings and to track the associated change in curvature using

the Gauss-Bonnet theorem.

In 2010, Whitesides and Frenklach [193] proposed a detailed chemical-kMC model of

graphene-edge growth. Unlike the model used in FSP, the new model incorporated five-

membered rings into growing structures, which further allowed for curved molecules to

appear. A total of 42 surface transformations were included in the model. The kMC re-

sults showed that the curvature occurred regardless of initial substrate at both 1500 K and

2000 K with higher curvature occurring at the lower temperature. No curvature was pro-

duced in numerical simulations at 2500 K, indicating that high-energy environments cause

the five-membered rings to be less stable. Building from previous work, recent kMC model

from Frenklach et al. [55] has 111 reactions including simple oxygen chemistry (i.e., the

formation of phenols and ring oxidation). In an effort to reproduce recent measurements

of soot oxidation rates, it was concluded that additional chemistry, oxidation through com-

plex formation at neighboring surface sites, is required to fully reproduce the experimental

observations.

Based on the philosophy of AMPI, Lai et al. [96] developed the Stochastic Nanopar-

ticle Simulator (SNapS) model using kMC scheme and Molecular Mechanism (MM) to

computationally investigate the growth of nanoparticle precursors through trajectories of

chemical reactions. The SNapS simulation was two magnitudes faster than the AMPI on
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a single kMC step basis as a result of obviating the use of MD. The SNapS was able to

predict the location and intensity of even-numbered carbon peaks for the mass spectrum

of a benzene premixed flame [168] in the range of 200 u to 400 u [96]. The simulation re-

sults also exhibited a significant presence of five-membered rings. The SNapS model was

later applied to study the importance of oxygen chemistry. For example, the formation of

furan-embedded PACs was emphasized in certain region of the flame [82], and the effect of

doping ethanol on the PAC formation was studied by Elvati et al. [43] in pure hydrocarbon

flames.

There are several limitations to the current stochastic approaches. First of all, the re-

action pathways that were proven to be important in certain combustion conditions are

missing from these models [82, 28, 147, 152]. In addition, for the reactions included,

jump reactions are frequently used (e.g., KMC-ARS model), meaning that the large va-

riety of the intermediates deviated from stabilomers [159] cannot be considered. These

limitations make the models incapable of reproducing some of the experimental measure-

ments. Furthermore, the computational performance impedes the simulation of complex

two-dimensional flames. Thus, a new stochastic code and a new kinetic mechanism are

much needed to address these limitations.

1.5 Scope, Objectives, and Achievements

Understanding the formation of polycyclic aromatic compounds (PACs) in combustion not

only bridges the knowledge gap between the small gas-phase species and incipient soot

particles, but may also help address the global emission issues of both PACs and soot. In

this thesis, I present a kinetic mechanism utilizing reactive sites (i.e., the chemical and

physical neighbourhoods) to describe the PAC growth in combustion. This kinetic mech-

anism was implemented for a stochastic modeling code (i.e., SNapS2) recently developed

by the Violi Group. To address new experimental and computational discoveries, chemi-
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cal reactions were gathered and categorized from various literature, while the reaction rate

constants came from either literature or my own calculations to ensure full reversibility and

thermodynamic consistency. These reactions were then implemented into SNapS2 kinetic

mechanism with precise reactive site definitions to eliminate the possibility of steric hin-

drance and unrealistic reactions. Compared with the previous version of SNapS2, thanks

to this new kinetic mechanism, the computational performance increased by an order of

magnitude, enabling the simulation of complex two-dimensional flames. Some missing

reaction pathways, which were identified from experimental evidence and simulations but

not available in the literature, were explored and calculated using quantum chemistry meth-

ods. These newly discovered reactions were included in the SNapS2 kinetic mechanism as

well, and some of them were already proven to be important under specific conditions.

The characteristics of the PACs predicted with the kinetic mechanism were compared

against different experimental measurements: mass spectra measured in a counterflow dif-

fusion flame, the oxygen-to-carbon ratios obtained at different locations of a coflow dif-

fusion flame, and the molecular structures observed in a premixed laminar flame. These

successful validations demonstrate that the SNapS2 kinetic mechanism provides a high-

fidelity, and yet generic, description of the PAC formation under various combustion con-

ditions, making SNapS2 the first-of-its-kind to have such extensive flexibility and wealth

of information. It greatly contributes to reveal the underlying chemical pathways to the

experimental observations.

Furthermore, SNapS2 code and the kinetic mechanism have shown its capability to

provide valuable insights on the formation of aromatics beyond the limitation of diagnos-

tics. For one application, spatial dependence of the PAC growth in an ethylene counterflow

diffusion flame was characterized by SNapS2 simulations, revealing distinct PAC growth

pathways for the streamlines starting from fuel side and oxidizer side. Given the fidelity of

the SNapS2 predictions, it was also used to examine conditions that are impossible to test

experimentally, like completely decoupling the effects of flame temperature when study-
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ing the effects of ethanol doping on the formation of aromatics, highlighting the chemical

pathways that result in soot reduction. Both applications show the uniqueness and great po-

tential of the model to obtain insights of the PAC formation when measurements are hard

to obtain or experiments are difficult to control. Altogether, this dissertation lays a solid

foundation that not only helps explain the experimental observations for the formation of

soot precursors, but also provides a powerful tool for exploring the gas-phase nanoparticle

growth that could drive the development of novel combustion technologies or the design of

new nanomaterials.
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CHAPTER 2

Methodology

Since the SNapS2 code was developed by Dr. Paolo Elvati from the Violi Group, in the

following section, I only briefly explain how the SNapS2 code works for clarity, and focus

more on the development of the the kinetic mechanism.

2.1 Overview of the SNapS2 Code

Dr. Jason Lai, the main contributor to the SNapS, the previous version of the SNapS2,

has provided detailed explanation of the SNapS code [96]. Briefly, SNapS is a kMC code

uses the atomic neighborhood (i.e., reactive sites) to describe the chemical reactions. The

SNapS generates particle time-histories (i.e., traces) given an initial molecule (i.e., seed)

and the gas-phase environment (i.e., temperature, pressure, and gas-phase species mole

fractions). When enough traces are generated, it is possible to collect information about the

statistical evolution and lifetime of different species, and gather data about the properties

of the species at various times. For the molecule to advance a single reaction, the code

searches its molecular structure for the reactive sites and makes a list of all the possible

reactions that could happen with this molecule from the kinetic mechanism. The code

then calculates the probability of reacting for all possible reactions, which has a higher

reaction rate would have a higher probability of reacting. Finally the code selects one of

the reactions stochastically. The modification of the molecule from the reactant to product

was defined in the kinetic mechanism.
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While SNapS2 uses some of the same concepts of SNapS, it was completely rewritten

to obtain better performances and greater flexibility. The major change of the code is the

time-dependent solver [67], enabling SNapS2 code to select reactions not based on the

condition at a given time, but all future time as well. Here I also highlight some changes

that affected the implementation of the kinetic mechanism. One of the changes is that

the kinetic mechanism is separated from the kMC code itself, allowing great flexibility

for frequent revision of the kinetic mechanism without affecting the integrity of the kMC

code. Another change is the removal of the MM for performance reason, which requires

a much more accurate kinetic mechanism, as discussed in later sections. With the new

code, the computational performance of SNapS2 is one magnitude higher than the previous

SNapS on a single KMC step basis, meaning SNapS2 now can simulate the PAC growth of

approximately a million molecules within one week using 48 cores for a premixed laminar

flame. This further makes SNapS2 capable of modeling complex two-dimensional flame

(e.g., coflow flame) within a relatively reasonable amount of time.

The SNapS2 code uses the kinetic mechanism, the gas-phase environment, and seed

molecules as inputs, and outputs the time-histories of an ensemble of particles. The SNapS2

code can be used for simulating the chemical growth in different gas-phase environments,

such as combustion, chemical vapor deposition, non–thermal plasma, etc. The kinetic

mechanism that is input to the SNapS2 code determines the system of interest for the sim-

ulations. In the scope of this dissertation, the kinetic mechanism is for the PAC growth

in combustion systems, and is my main contribution to the SNapS2 model. A description

of the gas-phase environment can be input to the SNapS2 code, in term of temperature,

pressure, and species mole fractions profiles. For combustion applications, these can gener-

ally be provided by experimental measurements, CHEMKIN simulations or Computational

Fluid Dynamics (CFD) simulations. An important assumption for SNapS2 is that the

growth of the particles have a negligible effect on the gas-phase environment. This as-

sumption generally is reasonable since the amount of particles is relatively small compared
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with the small gas-phase species. Thus, the seed molecules, which is the initial molecules

for SNapS2 simulations, were selected based on local relative concentrations among a pool

of small cyclic compounds (1 to 3 rings) with relatively well-known combustion chemistry

(e.g., cyclopentadiene, cyclopentadienyl radical, benzene, phenyl radical, toluene, phenol,

phenoxy radical, propylbenzene, naphthalene, acenaphthylene and phenanthrene), as the

concentration is directly proportional to the contribution of each species to the final statis-

tical ensemble. Specifically, I chose to select only the molecules with a local concentration

within two order of magnitude of the maximum concentration among all the seeds. The

output of the SNapS2 code is a sequence of the particle history, including the timestamp of

each reaction happened, reaction indices, as well as the description of the resulting molec-

ular structure after each reaction.

2.2 Implementation of the Kinetic Mechanism

The SNapS2 kinetic mechanism includes 396 generic reactions found in the literature,

grouped in five broad categories based on formation/breaking of different bond types:

carbon-hydrogen bond (C H), oxygen-hydrogen bond (O H), carbon-carbon bond (C C),

carbon-oxygen bond (C O), and isomerization reactions (i.e., hydrogen migrations). De-

tails about these reactions are discussed in the next chapter, Chapter 3. Each reaction

is identified with a unique index for simplicity of reference. To make a fully-reversible,

thermodynamically-consistent, and sterically-resolved kinetic mechanism that includes ma-

jor PAC growth pathways, efforts have been put on both the reaction rate constants and the

reaction descriptions.

2.2.1 Full Reversibility and Thermodynamic Consistency

The SNapS2 kinetic mechanism is fully-reversible and thermodynamically-consistent in

order to improve the accuracy and universality of modeling the PAC growth in different
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combustion systems. Full reversibility means that, for every reaction included in the ki-

netic mechanism, there is a corresponding reverse reaction included as well, no matter

how small the reaction rate constants seem to be. Thermodynamic consistency is one step

further compared with a fully-reversible mechanism, and is ensured using the following

procedure. If the reverse reaction rate constants or equilibrium constants were not avail-

able in the literature, I computed the reverse reaction rate constants using the thermody-

namics data to ensure thermodynamic consistency, the same as the method implemented in

CHEMKIN software [135, 87]. The thermodynamics data are from NASA-format polyno-

mials [17] which have 14 coefficients for one molecule: the first 7 coefficients are for the

high-temperature region and the rest 7 coefficients are for the low-temperature range. The

enthalpy (H◦
T ) and entropy (S◦

T ) at a specific temperature can be calculated according to

ref. [17]:

H◦
T

RT
= a1 +

a2
2
T +

a3
3
T 2 +

a4
4
T 3 +

a5
5
T 4 +

a6
T

(2.1)

S◦
T

R
= a1 · ln(T ) + a2T +

a3
2
T 2 +

a4
3
T 3 +

a5
4
T 4 + a7 (2.2)

where, R is the universal gas constant, T is the temperature, a1 through a7 are the 7 co-

efficients in NASA-format polynomials and are different for low- and high-temperature

ranges.

Then the following equations were used to compute the reaction rate constant for the re-

verse reaction (kreverse) [17], by calculating the Gibbs free energy (G◦
T ) and the equilibrium

constants (K), and then fitted into the modified Arrhenius form.

∆rG
◦
T = −RT · ln(K) = ∆rH

◦
T − T∆rS

◦
T (2.3)

kreverse =
kforward

K
(2.4)
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where, ∆r sums the products and subtracts the reactants as the change for the whole reac-

tion, kforward is the reaction rate constant for the forward reaction.

Of note, a few single-step reactions included in the kinetic mechanism were combina-

tions of two-step reactions. The reaction rate constants were calculated using steady-state

approximation [36], by assuming that the intermediate species are in steady-state, and fur-

ther fitted into modified Arrhenius form. Efforts were put on to keep as much intermediate

species as possible, and only apply steady-state approximation to a few two-step reactions

when the intermediate species have no other exits.

2.2.2 Sterically-resolved Reaction Descriptions

SNapS2 utilizes the Simplified Molecular Input Line Entry System (SMILES) [189, 38] to

describe molecules, and reactive SMiles ARbitrary Target Specification (SMARTS) [39]

to describe the chemical reactions. SMILES, one of the most common tool for molecule

description in atomistic modeling, describes the critical information of molecular struc-

ture (e.g., atoms, bonds, charges, branching, rings, aromaticity, and chirality) with a short,

unique string for easier computational process. SMARTS, similar to SMILES, can describe

the reactive sites by searching the sub-structure inside SMILES (e.g., hydroxyl group in

phenols). And reactive SMARTS further defines the reaction products by modifying the

SMILES of the reacting molecule if the reactive site matches. By using these systems,

the molecules were described using SMILES, while each chemical reaction found in the

literature was translated into one or more reactive SMARTS depending on the complexity

of the reactive sites. As the final result, the 396 generic reactions in the SNapS2 kinetic

mechanism was implemented by 430 reactive SMARTS.

Since the implementation of reactive SMARTS require the description of reactive sites,

not species (e.g., CHEMKIN software), a number of items need to be carefully examined

and specified. Examples of a few different scenarios that could occur during the implemen-

tation of the kinetic mechanism are shown in Figure 2.1.
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Figure 2.1: Examples of scenarios for the site selections in the SNapS2 kinetic mechanism:
(a) steric hindrance in phenyl radical addition reaction; (b) unrealistic reaction of hydrogen
abstraction for creating a second radical electron on a single aromatic ring; and (c) improper
ring closure. Arrows labeled with cross are the reactions need to be ruled out; arrows
labeled with tick are the possible reactions being selected instead.

Figure 2.1 (a) shows a possible steric hindrance case for phenyl radical addition reac-

tion, where one of the reactive sites is blocked by other atoms in the molecule. This would

slow down, even prevent the reaction from happening. Figure 2.1 (b) shows a possible

unrealistic reaction of hydrogen abstraction for creating a second radical electron on a sin-

gle aromatic ring. Once an aromatic six-membered ring already has a radical site, the fast

hydrogen migration can occur while a second hydrogen abstraction is usually unrealistic,

which would form a biradical inside the same aromatic six-membered ring. Figure 2.1

(c) shows a possible improper ring closure. All of these are challenges for the reaction

implementation.

In SNapS code [96], a process called ”rejection” is used to rule out these cases, as the

flow chart shown on the left of Figure 2.2. These reactions are allowed to happen first,

and then the wrong ones are rejected by utilizing MM. The change in potential energy for

the reacting and product molecules is computed as part of the rejection process. Since

steric hindrance, unrealistic reactions, and improper ring closures will result in an extreme

increase in the potential energy change, these products are discarded based on a preset

threshold. Then SNapS code rejects the reaction, reselects another one and checks again.

This rejection process takes about 90% of the SNapS computational time.
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Figure 2.2: Comparison of the reaction selection process between SNapS code and SNapS2
code. The left side is the process for SNapS code, and the right side is the process for
SNapS2 code. The process inside the red box is the reaction rejection process for SNapS
code, which is completely removed to improve the computational performance in SNapS2
code.

With SNapS2 code, MM is abandoned to improve the computational performance, and

instead, the burden is completely on the implementation of the kinetic mechanism to pre-

vent these reactions from happening. The site definitions were greatly expanded in the

SNapS2 kinetic mechanism to make sure that each reaction relies on sufficient description

of atomic neighborhoods to rule out steric hindrance and unrealistic reactions, not exter-

nal energy calculations. For example, Figure 2.1 (a) needs the reaction rejection process

in the SNapS code to rule out the wrong one [96]. Now with the recognition of the bay-

site aromatic carbon [14] (as shown in Figure 2.3) in the site description of the SNapS2

kinetic mechanism, reactive SMARTS eliminates the possibility of having the bay-site aro-

matic carbons as possible reactive sites for the phenyl addition, and the reaction can only

happen with free-edge aromatic carbons. This expansion of site definitions prevents steric
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hindrance scenario from the root causes. For Figure 2.1 (b), these hydrogen abstraction

reactions were specified in SNapS2 kinetic mechanism, so that if a radical electron already

appears on an aromatic ring, hydrogen abstraction will not happen on the same ring again.

The hydrogen migration could happen however, to transfer the radical site along the aro-

matic ring. Figure 2.1 (c), both outcomes are allowed by SNapS without the rejection pro-

cess [96], while SNapS2 kinetic mechanism specifies the armchair site [131] sufficiently to

eliminate the improper ring closure. With better site definitions in the kinetic mechanism,

the SNapS2 code is able to perform 10 times faster than the SNapS code for a single kMC

step.

Figure 2.3: Example of better site definition in the SNapS2 kinetic mechanism. SNapS2
kinetic mechanism can recognize the bay-site aromatic carbon, free-edge aromatic carbon,
as well as zig-zag aromatic carbon.

As the result of these processes, a fully-reversible, thermodynamically-consistent, and

sterically-resolved kinetic mechanism was implemented for SNapS2 code, describing 396

generic reactions with 430 reactive SMARTS that include major PAC growth pathways.

In the next chapter, I discuss the details of the generic reactions included in the kinetic

mechanism, and the rationales behind the selection of these reactions and rate constants.
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CHAPTER 3

A Kinetic Mechanism for the Formation of PACs

in Combustion

In this Chapter, I present a fully-reversible, thermodynamically-consistent, and sterically-

resolved kinetic mechanism describing PAC growth in combustion with 396 generic reac-

tions implemented by 430 reactive SMARTS. I discuss the details of the reaction pathways

included in the kinetic mechanism, and the rationales behind the selection of these reac-

tions and rate constants. The reaction were grouped in five broad categories based on for-

mation/breaking of different bond types: carbon-hydrogen bond (C H), oxygen-hydrogen

bond (O H), carbon-carbon bond (C C), carbon-oxygen bond (C O), and isomerizations

(hydrogen migrations).

3.1 Carbon-Hydrogen Reactions

The carbon-hydrogen reaction category includes the reactions for carbon and hydrogen

bond breaking and forming: the hydrogen abstraction and disproportionation from differ-

ent chemical neighborhoods of carbon atoms, as well as the hydrogen addition as reverse.

This category consists of 11 subcategories. Three of which are listed in Table 3.1: hy-

drogen abstraction from (reversely, addition to) six-membered aromatic carbon and five-

membered carbon ring. Seven of which are listed in Table 3.2: methyl group, α-hydrogen

of ethyl group, α-hydrogen of isopropyl group, β-hydrogen of vinyl group, α-hydrogen of
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vinyl group, alkynyl group, and vinyl to alkynyl group. The last subcategory (indexed with

CHb/f1b) which is not listed in this section, is for the formation of ring closure intermedi-

ates. These are shown in later tables grouped with ring closure reactions for clarity.

Table 3.1: Reaction schemes for carbon-hydrogen reaction category part I: reactions for
cyclic carbon sites

Generic Reaction Index Gas-phase* Reference

1R

R2

R3

R4

R5

+R
+RH 1R

R2

R3

R4

R5

C
H, O, OH [57, 97, 90]

CHb/f111-8 O2, HO2, CH3 [8, 6, 90]
C2H3, none [134, 119]

1R
R2

R3

R4

+R
+RH

1R
R2

R3

R4

CH
H, O, OH

CHb/f121–8 O2, HO2, CH3 [191, 134]
C2H3, C6H5

2R
R3

R4

1R

+R
+RH 2R

R3

R4
C

1R

CHb/f131–3 H, C2H3, none [55, 134]

* Gas-phase species indicate the secondary reactant for (forward) bimolecular reactions and ”none” is used
for (forward) unimolecular reaction.

While hydrogen abstraction by atomic hydrogen (H) [177, 21] has been extensively

studied because the high reaction rate constants and the abundance of H make it central

in HACA pathways [52, 53, 57], quantum chemistry calculations were also carried out

over decades for hydrogen abstraction reactions by other species, such as atomic oxygen

(O) [24], oxygen molecule (O2) [89], hydroxyl radical (OH) [122], hydroperoxyl radical

(HO2) [22, 7], methyl radical (CH3) [78], and vinyl radical (C2H3) [134]. These reactions, as

well as the hydrogen dissociation [119], are included in this mechanism to handle different

gas-phase environments.

For aromatic six-membered ring (CHb/f11 subcategory), ortho-, meta-, and para-sites

may influence the reaction rate constants depending on the attached functional group, as

shown by Bao et al. [11] for the hydrogen abstraction from toluene. While abstracting
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Table 3.2: Reaction schemes for carbon-hydrogen reaction category part II: reactions for
open-chain carbon sites

Generic Reaction Index Gas-phase* Reference

R1
+R

+RH
R1 CH2

H, O, OH [169, 25, 125]
CHb/f141–8 O2, HO2, CH3 [77, 169, 3, 169]

C2H3, none [134, 77]

R1 +R
+RH

R1

CH

H, O, OH [169, 25, 125]
CHb/f151–8 O2, HO2, CH3 [125, 3, 169]

C2H3, none [134, 77]

R1
+R

+RH
R1 C

H, O, OH [125, 191]
CHb/f161–8 O2, HO2, CH3 [125, 76, 3, 191]

C2H3, none [134, 191]

R1
+R

+RH
R1 CH

H, O, OH [121, 170, 18, 210, 174]
CHb/f171–8 O2, HO2, CH3 [18, 70, 191, 148, 170]

C2H3, none [134, 124]

R1
+R

+RH R1
C

H, O, OH [121, 170, 18, 210, 174]
CHb/f181–8 O2, HO2, CH3 [18, 70, 191, 148, 170]

C2H3, none [134, 124]

R1
+R

+RH
R1 C

H, O, OH [85, 77, 191]
CHb/f191–7 O2, HO2, CH3 [136, 110]

C2H3 [134]

R1 CH
+R

+RH
R1

CHb/f1a1 H [90]
CHb/f1a2 none [90]

* Gas-phase species indicate the secondary reactant for (forward) bimolecular reactions and ”none” is used
for (forward) unimolecular reaction.

hydrogen from ortho- and para-sites of the toluene has reaction rate constants close to

hydrogen abstraction from benzene, the rate constants for meta-site hydrogen abstraction

are much higher. Phenol, in contrast, makes ortho-site and para-site abstractions the major
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routes. I recently compared the differences in rate constants for the hydrogen abstraction by

H from benzene and from ortho-site of phenylethene, phenylacetylene, and phenol [152].

Results show that the reaction rate constants are within an order of magnitude between

500 K and 2000 K, with the highest rate constants being benzene and the lowest being

phenylethene.

The major issue in extending these site effects beyond simple molecules is that, for

complex PACs, an unrealistically complex characterization is needed since the number of

possible site increases exponentially. In addition, the ortho-, meta-, and para-sites become

arbitrary even for simple molecules (e.g., trimethylbenzene). Thus, I gathered literature on

these site effects to determine whether or not the difference is large enough (more than one

magnitude) to be added into the mechanism. One example is the CCf112 reaction discussed

in later section.

While the distinctions of reaction subcategories CHb/f14 to CHb/f19 are for site effects

of different types of aliphatic carbons, the influence of replacing R1 with aromatic ring

was also compared from the literature. Comparing with reaction CHb141 which yields

9.83× 1012 cm3 mol−1 s−1 at 2000 K, substituting R1 with benzene (i.e., hydrogen abstrac-

tion by H from the methyl group of toluene) gives 1.28× 1013 cm3 mol−1 s−1 at 2000 K,

showing that the difference is marginal.

CHb/f1a is the reaction subclass describing the formation of alkyne from vinyl radical

by Direct Hydrogen Elimination (DHE) or Hydrogen Disproportionation (HD) reactions.

This reaction subcategory is an important step of the major pathway for the HACA, after

attaching an acetylene to the aromatic carbon site. Through this reaction, ethenylphenyl

radical further evolves into the more stable molecule, phenylacetylene, and waits for a

second acetylene to attach and eventually closes a ring.

CHb/f1b is the reaction subclass forming an aromatic bond from a single, cyclic bond

by direct hydrogen elimination (i.e., disassociation) or hydrogen disproportionation reac-

tions. These reactions usually form stable aromatic structures from intermediates. Because
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of its close relationship with ring closure reactions, these CHb/f1b are included in the tables

of later section for reactions forming five- and six-membered rings.

In addition, rate estimations for groups of reactions have been developed in various

studies. Violi et al. [177] utilized reaction class transition state theory/linear energy rela-

tionship to evaluate the rate constants of hydrogen abstraction reactions by H atoms from

classes of aromatics. Carstensen et al. [21] established a relatively simple protocol to esti-

mate rate constants of hydrogen abstraction reactions by H atoms from alkanes, cycloalka-

nes, and allylic systems. Raman et al. [134] later employed these concepts and extended

the study to H abstraction by vinyl radicals. For the purpose of this dissertation, I as-

signed the same set of reaction rate constants for a given reaction regardless of the size

of the molecule. But in principle, this kinetic mechanism can be expanded using above

techniques.

3.2 Oxygen-Hydrogen Reactions

Similar to carbon-hydrogen reactions category, the oxygen-hydrogen reaction category in-

cludes the reactions for oxygen and hydrogen bond breaking and forming: the hydrogen

abstraction from hydroxyl group, as well as the hydrogen addition to oxygen as reverse.

This category includes three subcategories listed in Table 3.3: hydrogen abstraction from

(reversely, addition to) the oxygen which attached to aromatic carbon, aliphatic cyclic car-

bon (specifically five-membered ring), and aliphatic acyclic carbon.

The site effects of hydrogen abstraction from hydroxyl group are simpler than C-H

category, thus the hydroxyl group is further categorized into phenols (OHb/f11) and alco-

hols (OHb/f12 and OHb/f13). As a comparison, the reaction rate constants for OHb111,

OHb121, and OHb131 (i.e., hydrogen abstraction by H from different hydroxyl sites) are

5.1× 1012 cm3 mol−1 s−1, 8.6× 1012 cm3 mol−1 s−1 and 4.0× 1012 cm3 mol−1 s−1 respec-

tively at 2000 K. The difference is quite small. Since these reactive sites were simple to
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Table 3.3: Reaction schemes for oxygen-hydrogen reaction category

Generic Reaction Index Gas-phase* Reference

1R

R2

R3

R4

R5

O +R
+RH 1R

R2

R3

R4

R5

O H, O, OH [75, 47, 150]
OHb/f111–9 O2, HO2, CH3 [8, 7, 191]

C2H3, C6H5, none [47, 49, 198]

2R
R3

R4

O
1R +R

+RH 2R
R3

R4

O
1R

OHb/f121–4 H, O, OH, HO2 [191]

R1 O
+R

+RH
R1 O

H, O [126, 194]
OHb/f131–6 OH, O2 [208, 146]

HO2, CH3 [209, 199]

* Gas-phase species indicate the secondary reactant for (forward) bimolecular reactions and ”none” is used
for (forward) unimolecular reaction.

specify by reactive SMARTS, distinguishing them would not significantly increase compu-

tational cost. I chose to keep these site effects for better accuracy.

Similar to the discussion above regarding the activation of HACA pathways, hydrogen

abstractions from the hydroxyl group of phenols and alcohols are the important activation

step for the oxygen chemistry, which may further lead to the formation of ketones (i.e.,

COf/b14) and furans (i.e., COf/b15) discussed in later sections.

3.3 Carbon-Carbon Reactions

The carbon-carbon reaction category includes the reactions for aromatic and/or aliphatic

carbon bond breaking and forming: the carbon fragments addition/abstraction listed in

Table 3.4, five-membered ring formation/breaking listed in Table 3.5, six-membered ring

formation/breaking via HACA pathways listed in Table 3.6 and via other pathways listed

in Table 3.7, as well as ring conversion from/to five-membered to/from six-membered ring

listed in Table 3.8.
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Table 3.4: Reaction schemes for carbon-carbon reaction category part I: reactions for car-
bon fragments addition/abstraction to/from aromatic or aliphatic carbon

Generic Reaction Index Gas-phase* Reference

1R

R2

R3

R4

R5

C +R6/+R6H

+H 1R

R2

R3

R4

R5

6R

CH3, C2H2, C2H3 [139, 103, 139]
C2H4, C3H3, AC3H4 [139, 130, 117]

CCf/b111–b PC3H4, C3H6, C4H4 [117, 115]
C6H5, C6H6 [139]

CCf/b212 C2H2 [152]
R1 is O H

2R
R3

R4
C

1R

+R5/+R5H

+H
2R

R3

R4

R5

1R

CCf/b121–2 CH3, C2H2 [185, 103]

R1 CH2

+R2/+R2H

+H
C1R R2

CH3, C2H2, C2H3 [185, 117]
CCf/b131–8 C2H4, C3H3, PC3H4 [185]

C6H5, C6H6 [139, 185]

R1 CH
+R2/+R2H

+H
R1

R2

CH3, C2H2, C2H3 [185, 90]
CCf/b141–5

C2H4, C6H5 [185, 139]

* Gas-phase species indicate the secondary reactant for (forward) bimolecular reactions. ”R1 is O H” means
that this reaction rate is specifically used when the functional group R1 is hydroxyl group.

Acetylene addition to the aromatic six-membered ring is a major step for both the

HACA pathways (Table 3.6) and the formation of furan-embedded PACs (Table 3.10).

However as I recently shown in ref. [152], the C2H2 addition to different reactive sites (e.g.,

phenyl or 2-hydroxybenzene) makes a difference in the reaction rate constants as much as

two orders of magnitudes at 2000 K. For this reason, I included two generic reactions for

C2H2 addition: CCf212 when there is a hydroxyl group presents in ortho-site, which is the

key step for furan rings formation [152], and CCf112 for all other cases, such as the HACA

growth pathways [103].

In many combustion systems, there is generally a higher concentration of C2H2 than

other small carbonaceous species (e.g., C3 and C4 species). However, I also included other
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Table 3.5: Reaction schemes for carbon-carbon reaction category part II: reactions for five-
membered hydrocarbon ring formation/breaking

Generic Reaction Index Reference

1R

R2 R3

R4

R5

CH

1R

R2 R3

R4

R5
H

CH +H
+H/+H2 1R

R2 R3

R4

R5 CCf/b151 [103]
CHb/f1b1 [103]
CHb/f1b2 [90]

2R

R3 R4

R5

R6C1R

2R

R3 R4

R5

R6

CH

H
H

1R

+H 2R

R3 R4

R5

R61R CCf/b152 [56]
CHb/f1b3 [56]

2R

R3 R4

R5

R61R +H

2R

R3 R4

R5

R6

CH

H
H

1R CCf/b153 [55]

3R

4R

R5 R6

R7

R8

R9

R10

C

R1

2R

+H 3R

4R

R5 R6

R7

R8

R9

R10R1

2R

CCf/b154 [176, 131]

3R

R4

R1

2R +H
+H 3R

R4

R1

2R

CCf/b155 [117]

3R

R4

R1

2R +H
+H 3R

R4

R1

2R

CCf/b156 [117]

3R

R4

R1

2R +CH3

+H 3R

R4

R1

2R

CCf/b157 [117]

3R

R4

CH2

R1

2R +C2H2

+H 3R

R4

R1

2R

CCf/b158 [117]
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Table 3.6: Reaction schemes for carbon-carbon reaction category part III: reactions for
six-membered ring formation/breaking through HACA pathways

Generic Reaction Index Ref.

3R CH

R1

2R

3R CH

R1

2R +H
+H/+H2

3R

R1

2R

CCf/b161 [90]
CHb/f1b4 [90]
CHb/f1b5 [90]

3R

R4 CH

R1

2R

3R

R4

CH

R1

2R +H
+H/+H2 3R

R4

R1

2R CCf/b162 [103]
CHb/f1b6 [103]
CHb/f1b7 [90]

3R

R4

CH

R1

2R

3R

R4

C

R1

2R

CCf/b163 [103]

2R

R3

R4
R5

R6

R7

R8

CH

1R

2R

R3

R4

C

R5

R6

R7

R8

H
1R

+H
+H/+H2

2R

R3

R4
R5

R6

R7

R8

1R

CCf/b164 [92]
CHb/f1b8 [92]
CHb/f1b9 [92]

2R

R3

R4
R5

R6

R7

R8

C1R

2R

R3

R4
R5

R6

R7

R8

C
H

H

1R
+H

+H/+H2
2R

R3

R4
R5

R6

R7

R8

1R

CCf/b165 [92]
CHb/f1ba [92]
CHb/f1bb [92]

2R

R3

R4
R5

R6

R7

R8

C1R

2R

R3

R4
R5

R6

R7

R8

C

1R CCf/b166 [92]

2R

R3 R4

R5

R6

R7

R8

CH

1R

+H
2R

R3 R4

R5

R6

R7

R8

1R CCf/b167 [52]

growth mechanisms which involves the addition of many gas-phase species for compar-

isons in different environments. Allene (AC3H4) addition (CCf116) and propyne (PC3H4)
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Table 3.7: Reaction schemes for carbon-carbon reaction category part IV: reactions for
six-membered ring formation/breaking through pathways other than HACA

Generic Reaction Index Reference

2R

R3

R4
R5

R6

R7

R8

1R
+C2H2

+H2
2R

R3

R4
R5

R6

R7

R8

1R CCf/b168 [90]

2R

R3 R4

R5

R6

R7

R8

1R
+C2H2

+H2
2R

R3 R4

R5

R6

R7

R8

1R CCf/b169 [90]

5R

6R

R7 R8

R9

R10

R11

R12

C

R1

R2

3R

4R

+H 5R

6R

R7 R8

R9

R10

R11

R12
R1

R2

3R

4R

CCf/b16a [131]

3R

R4

R1

2R H
H 3R

R4

R1

2R

CCf/b16b [115]

3R

R4

CH2

R1

2R C3H3

H2 3R

R4

R1

2R

CCf/b16c [34]

3R

R4

C

R1

2R C4H4

H 3R

R4

R1

2R

CCf/b16d [115]

addition (CCf117) to the aromatic ring could be the first step for the PAC growth initiated

by C3 species, and may be followed by five-membered ring closure reactions described

by CCf155 and CCf156 [117], while vinylacetylene addition could initiate the C4 species

growth [115, 104] with six-membered ring closure of CCf16b. Addition of a phenyl radi-
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Table 3.8: Reaction schemes for carbon-carbon reaction category part V: reactions for ring
conversion from five-membered to six-membered hydrocarbon ring

Generic Reaction Index Reference

3R
R4

CH

R1

2R +C5H5

+2H 3R

R4

R1

2R

CCf/b171 [123]

3R
R4

CH

R1

2R +C2H2

3R

R4

CH2

R1

2R

CCf/b172 [30]

cal (CCf11a and CCf11b) introduces the biphenyl-type armchair site, which may then go

through directly Diels-Alder pathways (CCf168), or HACA pathways (CCf164 to CCf166)

when an C2H2 is attached, or dibenzofuran-type pathways (COf159 to COf15d) when an

oxygen atom is attached.

Furthermore, addition of the first aliphatic chain to the aromatic ring (CCf111 to CCf119)

could initiate the aliphatic chain growth described by subcategories CCf13 and CCf14. Ex-

perimental evidences suggest that aliphatic chains exist in both soot precursors (PACs) [147,

28] and nascent soot surfaces [20]. Subcategories CCf13 and CCf14 provide the aliphatic

carbon growth chemistry to study the competitive roles of aliphatic and aromatic growth in

different environments.

The acetylene addition to five-membered ring (CCf122) was estimated to be the same

as the addition on the six-membered aromatic ring (CCf112). This further allows the path-

way to form curved PACs [193, 200, 111] (e.g., corannulene) through HACA mechanism.

Indeed, the chemistry of PACs started with cyclopentadiene or cyclopentadienyl radical

needs to be further studied.

Table 3.5 includes the subcategory of five-membered ring formation through HACA

pathways (CCf151 to CCf153), bay closure (CCf154), C3 growth (CCf155 and CCf156),

and other pathways (CCf157 and CCf158). As mentioned in the introduction, many PAC
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kinetic mechanisms combined multi-step reactions using the steady-state approximation to

skip the formation of intermediates and only focus on aromatic structure growth. While I

used the steady-state approximation a few times to treat reactions which are too complex for

implementation (e.g., CCf154) when the intermediates have no other exits, I also preserved

the intermediates chemistry as much as possible since some intermediates might be impor-

tant from experimental observations: from recent studies of high-resolution AFM images

of soot samples [28], an appreciable number of aromatic molecules incorporating different

types of five-membered rings were observed, namely: acenaphthylene-type, acenaphthene-

type, fluorene-type and indane-type. The acenaphthene-type specifically, may come from

the intermediates after CCf152 and CCf153 reactions: instead of losing one hydrogen

(CHb1b3), it may add one more hydrogen (CHf12) and become acenaphthene-type five-

membered ring. Thus keeping these intermediates would help understand the experimental

observations and improve modeling predictions.

Six-membered ring formation by HACA pathways have been included for both free-

edge (CCf/b161/2/3) and armchair sites (CCf/b164/5/6/7) by attaching two or one C2H2

respectively, listed in Table 3.6. Introduced by Frenklach and coworkers [54] from shock-

tube pyrolysis of acetylene, HACA pathways are now considered to be the driven mecha-

nism for pure hydrocarbon PACs formation in many conditions [58, 53, 56, 57]. Pathway

CHb111 – CCf112 – CCf142 – CCf161 specifically is the Bittner-Howard’s route [13] of

the HACA pathways, computed by Kislov et al. [90]. In addition, the site effects of HACA

pathways has been recently discussed by Liu et al. [103].

Six-membered ring formation by other pathways, namely Diels-Alder, bay closure,

growth initiated by C3 species and by C4 species, have been listed in Table 3.7. Diels-

Alder pathway [155, 90], listed as CCf167 and CCf168 reactions, does not involve radical

species during the growth. The acetylene is directly added to form intermediate, and then

H2 leaves, forming the more stable molecule. C3 growth initiated by propargyl radical

has been studied by Raj et al. [130], and C4 growth initiated by vinylacetylene has been
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recently studied by Liu et al. [104]. However, both articles include multiple steps and in-

termediates which are too redundant to consider all. For simplification, I used the work

from D’Anna [34] and Mebel [115] as one-step reaction listed as CCf16a and CCf16b.

The self-combination of cyclopentadienyl radical (CCf171) as a source for forming

naphthalene has long been studied [123, 118, 106]. A single net rate expression was first

established by Murakami et al. [123] through experiments to describe a direct conversion.

Later studies found that the process is quite complex, which involves tens of intermedi-

ates [118]. A more recent study [106] with the pressure dependent kinetic analysis, ob-

served that C10H10 is a long-live species which may enter C10H9 surface with H abstraction,

and a detailed sub-mechanism describing the whole process was provided within. In my

mechanism for simplification, I still used a single rate expression (CCf/b171) by Murakami

et al. [123] for describing the conversion.

3.4 Carbon-Oxygen Reactions

The carbon-oxygen reaction category includes the reactions for aromatic or aliphatic car-

bon bond breaking and forming with oxygen: the oxygen addition/abstraction to/from car-

bon and carbon fragments addition/abstraction to/from oxygen listed in Table 3.9, furan

ring formation/decomposition listed in Table 3.10, as well as five- and six-membered ring

oxidation listed in Table 3.11.

While almost all of the combustion systems use oxygen as oxidizer, it is only in re-

cent years that large oxy-PACs as combustion byproduct started to get more of atten-

tions [82, 43, 46, 44, 64]. Several recent papers [157, 82, 43, 182] have revealed the

importance of including the oxygen chemistry of the PACs in order to explain the experi-

mental observations. Elvati et al. [45, 43, 46, 44] indicated that the dimerization of PACs

in general is affected by the shape of the molecules as well as the oxygen content, and

that oxygenated species have less tendency to aggregate than pure hydrocarbons. Thus a
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Table 3.9: Reaction schemes for carbon-oxygen reaction category part I: reactions for oxy-
gen addition/abstraction to/from carbon and carbon fragments addition/abstraction to/from
oxygen

Generic Reaction Index Gas-phase* Reference

3R

R4

R5

C

R1

2R +RO
+R 3R

R4

R5

O

R1

2R

COf/b111–3 OH, O2, HO2 [24, 55, 191]

3R

R4

R5

C

R1

2R +OH
3R

R4

R5

O

R1

2R COf/b114 OH [55]

3R

R4

R5

R1

2R +O
+H 3R

R4

R5

O

R1

2R

COf/b115 O [24]

3R

R4

R5

R1

2R +OH
+H 3R

R4

R5

O

R1

2R

COf/b116 OH [24]

3R

R4

R5

O

R1

2R +R6

3R

R4

R5

O
R6

R1

2R CH3, C2H2 [24, 171, 139, 152]
COf/b121–4

C2H3, C6H5 [139]

2R
R3

R4
C

H
1R +HO2

+OH 2R
R3

R4

O
1R

COf/b131 HO2 [191]

2R
R3

R4

1R

+O
+H 2R

R3

R4

O
1R

COf/b132 O [191]

2R
R3

R4
C

H
1R +R5

2R
R3

R4

R5
H

1R

COf/b133–6 O, OH, O2, HO2 [24, 60, 207]

2R
R3

R4

R5
H

1R

+H/OH/H2O 2R
R3

R4

O
1R

R5 is O
COf/b141–3 R5 is O O [207]

R5 is O OH

* Gas-phase species indicate the secondary reactant for (forward) bimolecular reactions. For COf/b14 subcat-
egory specifically, the atoms listed in the gas-phase are to replace R5 in the reactant of the forward direction
of the unimolecular reaction.
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Table 3.10: Reaction schemes for carbon-oxygen reaction category part II: reactions for
five-membered furan ring formation/breaking

Generic Reaction Index Reference

3R

O

CH

R1

2R

3R CH
H

O

R1

2R +H
+H/+H2

3R

O

R1

2R COf/b151 [152]
CHb/f1bc–d

3R

R4

C

O

R1

2R

3R

R4

CH

O

R1

2R +H
+H/+H2 3R

R4

O

R1

2R COf/b152
[152]

CHb/f1be–f

3R

R4

O

R1

2R

3R

R4

CH

O

R1

2R +H
+H/+H2 3R

R4

O

R1

2R COf/b153
[152]

CHb/f1bg–h

3R

R4

CH

O

R1

2R +H
+H/+H2 3R

R4

O

R1

2R

COf/b154–5 [152]

3R

R4

CH

O

R1

2R

3R

R4

O

R1

2R COf/b156 [152]

3R

R4

CH2

R1

2R +CO/+CO2

+H/+OH 3R

R4

O

R1

2R

COf/b157–8 [191]

3R

R4
5R

R6

R7

R8

O

R1

2R

+H
+H/+H2 3R

R4

5R R6

R7

R8O

R1

2R
COf/b159–a [152]

3R

R4
5R

R6

R7

R8C

O

R1

2R

+H
+H/+H2 3R

R4

5R R6

R7

R8O

R1

2R
COf/b15b–c [152]

3R

R4
5R

R6

R7

R8

O

R1

2R

+H2 3R

R4

5R R6

R7

R8O

R1

2R
COf/b15d [152]
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Table 3.11: Reaction schemes for carbon-oxygen reaction category part III: reactions for
ring oxidation

Generic Reaction Index Reference

3R

R4

O

R1

2R

+CO
3R

R4

CH

R1

2R

COb/f161 [191]

7R

R8

CH

R1

R2

R3R4

5R

6R
+O/+O2

+CO/+CO2
7R

R8

C

R1

R2

R3R4

5R

6R COb/f162–3 [55]

mechanism including the oxy-PAC formation would further help to understand these effects

during the transition of small gas-phase species to soot particles.

The subcategory COf11 contains the reactions describing the bonding of oxygen on aro-

matic rings, which may lead to the formation of ethers (COf12). The reaction rate constants

for vinyl (COf123) and phenyl (COf124) bonding with another phenyl is estimated to be the

same as methyl reacting with phenyl (COf121), since three reactions are all radical-radical

combination reactions [81]. The C2H2 addition to the phenoxyl was recently computed as

a possible pathway for the formation of furans (COf151 and COf152) [152].

The reaction subcategory COf13 is for attaching the oxygen onto five-membered rings,

which may further go through the formation of ketones in subcategory COf14. Zhong

and Bozzelli [207] studied the atomic hydrogen, hydroxyl radical, hydroperoxyl radical,

atomic oxygen, and oxygen molecule association reactions with cyclopentadienyl radical,

including the formation of cyclopentadienone from various species. While the ketones are

not formed by a lot at high temperatures in combustion suggested by some experimental

data [82], including these pathways would further complete the scope of oxygen chemistry

in my PAC kinetic mechanism.

Various experiments [128, 179, 201] have measured the benzofuran mole fraction pro-
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files and confirmed its significant presence. Johansson et al. [82] proposed a pathway

for forming benzofuran through acetylene addition to phenoxyl radical. Later PAC mod-

els implemented this pathway found that furan-embedded PACs indeed show up signifi-

cantly at certain region of the flame where both atomic oxygen and C2H2 concentrations

are high [43, 182]. Our recent ab initio study extended the formation pathways of benzofu-

ran to a total of six routes and proposed three new dibenzofuran [152] formation pathways.

These newly computed pathways have been included in this mechanism in Table 3.10.

Table 3.11 includes the oxidation of five- and six-membered rings. Five-membered

ring oxidation with gas-phase species atomic oxygen and oxygen molecule (COb162 and

COb163) has been studied recently by Frenklach and Mebel [55, 60]. These oxidation reac-

tions provide a possible exit for fluorene-type five-membered rings [28] discussed before.

3.5 Isomerizations

The isomerization reactions happening during the ring formation/breaking process have

been previously discussed, this category focuses on the reactions for hydrogen migration.

This category includes four subcategories listed in Table 3.12: hydrogen migration between

aliphatic acyclic atoms, between aromatic cyclic atoms, between aliphatic and aromatic

atoms, as well as between aliphatic acyclic atoms with the presence of aromatic rings.

The isomerization between PC3H4 andAC3H4 (Iso/Irv111) is a common hydrogen mi-

gration reaction in nature, and is important to bridge some of the reaction pathways in

this mechanism (e.g., C3 growth in CCf155 and CCf156). Davis et al. [37] provided the

Rice–Ramsperger–Kassel–Marcus rate coefficient parameters forPC3H4 toAC3H4 isomer-

ization reaction, while Miller and Klippenstein [120] reported the reverse. The isomeriza-

tion in both direction are studied by Giri et al. [68], compared with the competing role of

decomposition.

Reaction Iso121 accommodates hydrogen migration along a single aromatic ring. Hy-
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Table 3.12: Reaction schemes for isomerization reaction category

Generic Reaction Index Reference

R1 C C C R1 C C C Iso/Irv111 [68, 120, 37]

3R

R4

C

R1

2R

3R

R4

C

R1

2R

Iso/Irv121 [32]

3R

R4

C

R1

2R

3R

R4

CH2

R1

2R

Iso/Irv131 [32]

3R

R4

C

O

R1

2R

3R

R4

O

R1

2R

Iso/Irv132 [152]

3R

R4

C

R1

2R

3R

R4

CH

R1

2R

Iso/Irv133 [90]

3R

R4

C

O

R1

2R

3R

R4

O

CH

R1

2R

Iso/Irv134 [152]

2R

R3 R4

R5

R6C1R

2R

R3 R4

R5

R6

CH

1R

Iso/Irv135 [56]

3R

R4
5R

R6

R7

R8C

O

R1

2R

3R

R4
5R

R6

R7

R8

O

R1

2R

Iso/Irv136 [152]

3R

R4

CH

O

R1

2R

3R

R4

O

R1

2R

Iso/Irv141 [152]

drogen abstraction from an aromatic ring which already contains a radical site is not al-

lowed in CHb11 subcategory, since the hydrogen migration is much more often than a
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second hydrogen abstraction. Dames and Wang [32] studied isomerization kinetics of ben-

zylic and methylphenyl type radicals in single-ring aromatics, including the ring H-shifting

described by reaction Iso121.

The isomerization between the phenylethene radical and 2-phenylethene radical (Irv133)

is a step on the minor route of the HACA mechanism. While the dominant route of the

HACA mechanism forms phenylacetylene from the phenylethene radical through CHb1a1/2

reactions, the minor route can be achieved by this isomerization to preserve the vinyl group

before the second C2H2 addition.

The isomerization reaction Iso134 can bridge the furan formation pathway COf151 and

COf152. Similarly, reaction Iso136 connects the furan formation pathway COf159/a and

COf15b/c; and reaction Iso141 links the furan formation pathway COf153 and COf154/5.

Detailed pathways have been discussed by Shi et al. [152].
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CHAPTER 4

Exploring Missing Reaction Pathways

During the literature review for the SNapS2 kinetic mechanism, several missing reaction

pathways emerged. Together with Dr. Xuetao Shi, we were able to extensively study these

reaction pathways for the formation of benzofuran and dibenzofuran [152], as well as types

of five-membered rings [153]. Since the quantum chemistry calculations were carried out

by Dr. Xuetao Shi, in the following section I mainly discuss the reaction pathways that I

proposed, and the impact of these new reaction pathways on the formation of PACs. The

following sections are adapted from these publications [152, 153].

4.1 The Formation of Benzofuran and Dibenzofuran

Recent studies have reported the presence of oxy-PACs in flames [82, 43, 19, 27, 26],

and highlighted their role in soot formation [40, 99, 79, 80, 195, 113, 162, 142, 43, 46,

44, 64, 182]. One of the simplest among the oxy-PACs is furan, which is a heterocyclic

organic compound, consisting of a five-membered aromatic ring with four carbon atoms

and one oxygen atom. Furan has been thoroughly studied in high-temperature regimes due

to its simple structure and broad applications [107, 149, 50, 188, 173, 197, 4, 105, 196,

187, 100, 166]. However, limited information is available on larger oxy-PACs containing

furan unit, such as benzofuran and dibenzofuran, in which case furan ring is condensed

with one or two benzene rings. Recent experiments revealed the importance of benzofuran

and dibenzofuran in various conditions: Yuan et al. [201] studied the pyrolysis of anisole
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and in a flow reactor and reported the formation of benzofuran and dibenzofuran around

1000 K. Wagnon et al. [179] studied anisole oxidation in a jet-stirred reactor and measured

the formation of benzofuran. Similarly, Pousse et al. [128] reported on the formation of

benzofuran in an indane/methane/oxygen/argon premixed flame. In addition, the formation

and emission of large furan-embedded PACs start to get attentions. Johansson et al. [82]

proposed a pathway for the formation of benzofuran, from the unimolecular ring closure

of phenoxyvinyl radical. Later studies [43, 182], by implementing this pathway, confirmed

that the formation of furan-embedded PACs could be important in flames. In light of these

recent experiments, simulations, and a lack of a broader study on the formation of large

PACs containing furan group, the chemical pathways to benzofuran and dibenzofuran from

benzene or biphenyl were extensively studied in an environment characterized by various

gas-phase species (e.g., O, H, OH, C2H2) that are likely present in flame conditions.

4.1.1 Formation of Benzofuran from Benzene

The following chemical pathways leading to the formation of benzofuran from benzene

were proposed, as shown in Figure 4.1. These pathways provide a more complete picture

and would promote the formation of furan-embedded PACs even more.

The details of the quantum chemistry calculation can be found in ref. [152]. Here I

briefly discuss the reaction pathways. Two likely reactions to initiate part A were proposed:

oxygen atom (triplet) addition (A1 + O(3P)→ A3 + H) and hydroxyl radical addition (A1

+ OH → A9). Acetylene addition to A3 (A3 + C2H2 → A4), followed by Ring Closure

(RC) (A4 → A5) and Hydrogen Elimination (HE) by DHE, A5 → A6 + H, or by HD

reaction with another hydrogen atom (A5 + H→A6 + H2) leads to the first pathway toward

benzofuran (A4→ A6) [82]. This route was previously proposed [82] and is included here

for comparison purposes. Alternatively, due to the delocalized nature of phenoxy radical

(A3), acetylene addition can occur to the benzene ring by reacting with the alternative

resonance structures (see Figure 4.2) with radical site on the ortho-position. The second

42



O OH

OH

H

OH

H
3O+

+ OH

+H/OH/CH3 –H2/H2O/CH4

+C2H2 +C2H2

–H+H –H2

O

O

HH

O

H

O

O

H

H

H H

OO
H

H

O H

H

A12Z

–H

–H

–H

H

O

A12E

H

+H –H2

–H
+H –H2+H –H2

+H –H2

O
H

+H –H2+H –H2

A1

A9

A10

A3 A11

A4 A7 A13

A15A14A8A5

A6

ref a

-16.5 (2.5)

-1.4 (21.9)

26.0 (64.1)

-19.9 
(11.0)

1.9 
(15.5)

6.3 (18.8)

-100.3 (N/A)

-38.4
(8.9)-116.8

(11.9)

22.9
  (31.0)

-79.2 (N/A)

-7.6(41.8)

16.3 (27.3)-86.9 (N/A)

11.2 (19.1)/
-3.2 (3.9)/
11.1 (18.9)

-43.1 (1.7)

-22.6
(3.4)

4.7 (7.3)

-2.7 (38.0)

-109.6 (12.1)

-5.9
(27.6)

7.5 
    (16.6)

     30.5
(37.2)

-73.4 (N/A)
    -84.2
(4.8)

–H

A16

O

H

+C2H2
6.6 (22.6)

-27.9 
(13.6)

+H –H2

ref b

Figure 4.1: Reaction pathways for the formation of benzofuran from benzene. Heats of re-
action and barrier heights (in parentheses) are placed on the reaction arrows and calculated
by G3B3 compound method. Energy has the unit of kcal mol−1. The pathway A4 – A5 –
A6 was originally proposed by Johansson et al. [82]. a Reaction A1 + O→ A3 + H was
studied by Taatjes et al. [161] and b reaction A10 + H → A3 + H2 was studied by He et
al. [75]

pathway (A7→ A6) branches off from A4, where hydrogen migration can occur between

the terminal position of vinyl group and the adjacent carbon on the aromatic ring to form

A7 (A4→ A7). RC (A7→ A8) is followed by HE through DHE (A8→ A6 + H), or HD
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(A8 + H→ A6 + H2), leads to the formation of benzofuran, A4→ A6. RC can also happen

simultaneously with HE (A7 + H→ A6 + H2) instead of the above two-step pathway.

O O O O

Figure 4.2: Resonance structures for A3, demonstrating its delocalized radical site.

For the right part of the pathways reported in Figure 4.1, starting from hydroxyl addition

to benzene (A1 + OH→A9), the adduct A9 needs a HE and a hydrogen abstraction reaction

before forming A11. The HE can happen either by DHE (A9 → A10 + H) or HD (A9 +

H→ A10 + H2). Three types of H abstraction from A10 are considered, i.e., by H atom,

OH radical, and CH3 radical. The third and fourth pathways begin with acetylene addition

to A11 (A11 + C2H2 → A12Z). The third pathway (A12Z → A6) follows the acetylene

addition to A11. As opposed to the previous pathways, RC at this stage can happen only

if HE happens at the same time since the direct RC intermediate would be a structure with

formal charges on oxygen and the adjacent carbon. Similar to the second pathway, the

fourth pathway (A13 → A6) begins with a hydrogen migration from the hydroxyl group

to the vinyl group of A12Z, forming A13. If RC happens first (A13 → A14), a HE is

followed through either DHE (A14→ A6 + H) or HD (A14 + H→ A6 + H2). If it is the

other way around, i.e., hydrogen abstraction first (A13 + H→ A15 + H2), a RC (A15→

A6) is followed. It is worth nothing that this pathway forms a biradical intermediate, A15,

while the ensuing ring closure reaction is an intramolecular radical-radical combination

reaction. The possibility of inter-conversion between A8 and A14 via hydrogen migration

is considered as well.

In summary, four new pathways were proposed from benzene to benzofuran, and can

be grouped into two main branches, one through A3 and the other through A11.
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4.1.2 Formation of Dibenzofuran from Biphenyl

Dibenzofuran can be formed directly from benzofuran by forming a six-membered ring

on the side of the benzofuran via HACA pathways. The details of these pathways are

discussed in ref. [152]. Under certain conditions (e.g., benzene flames), biphenyl peaks

very early in the flame while acetylene is still accumulating [168]. Pathway B was based

on the idea of forming dibenzofuran without acetylene involved. Starting with biphenyl,

dibenzofuran can be formed through the addition of O or OH on the ortho-site and then

close the five-membered furan ring. Figure 4.3 shows the details of this pathways.
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Figure 4.3: Reaction pathways for the formation of dibenzofuran from biphenyl. Heats of
reaction and barrier heights (in parentheses) are placed on the reaction arrows and calcu-
lated by G3(MP2)B3 compound method. Energy has the unit of kcal mol−1.

To produce dibenzofuran (D11) from biphenyl (B1), two overall reactions were pro-

posed: B1 + O(3P)→ D11 + H2, and B1 + OH→ D11 + H + H2. The first route is initiated

by a triplet oxygen atom addition reaction (B1 + O(3P)→ B2) to biphenyl (B1). There are

two choices to go forth following the oxygen adduct, B2. One is a RC-HE-HE pathway:
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a RC reaction can occur immediately, followed by two separate HE reactions. Note that

H2 elimination is not feasible since the adduct has a triplet multiplicity while the product,

i.e., D11 and H2 are both singlet. The other is a HE-RC-HE pathway, a HE can occur first,

followed by a RC then another separate HE. And as before, HE can happen through either

DHE or HD. For RC-HE-HE pathway, the first HE by DHE reaction is B4→ B7 + H, while

by HD it is B4 + H→ B7 + H2. And the second HE by DHE is B7→ D11 + H, and by

HD it is B7 + H→ D11 + H2. For HE-RC-HE pathway, the first HE can happen either by

DHE (B2→ B5 + H), or through HD (B2 + H→ B5 + H2). Then follows the RC reaction

(B5 → B8). It should to be noted that B7 and B8 are mirror images of each other, and

hence chemically identical. Therefore, the second HE reaction for HE-RC-HE pathway is

the same as the second HE reaction for RC-HE-HE pathway.

For the overall reaction of B1 + OH → D11 + H + H2, the initial addition reaction is

B1 + OH → B3. An HE follows the addition reaction, either by DHE (B3 → B6 + H),

or by HD (B3 + H → B6 + H2). A concerted RC with H2 elimination reaction (B6 →

D11 + H2) can occur in theory following B6 as well. Alternatively, a hydrogen abstraction

reaction (B6 + H→ B9Z + H2) can occur instead. Before the RC can occur, a rotation of the

hydroxyl group (B9Z→B9E) is needed to expose the back side of the oxygen atom. On the

other hand, B9Z could undergo a hydrogen migration reaction from hydroxyl group to the

radical site (B9Z → B5), and connecting to the aforementioned HE-RC-HE mechanism.

After the rotation of hydroxyl group that forms B9E, RC occurs simultaneously with HE

either directly (B9E→ D11 + H), or through HD (B9E + H→ D11 + H2).

4.1.3 Alternative and Competing Pathways Study

The reaction pathways from benzene (A1) or phenyl radical to phenoxyl radical (A3) or

phenol (A10) can happen with multiple gas-phase species and have long been studied.

Benzene + O(3P) reaction was early studied by Leidreiter and Wagner [97], and its reac-

tion rates have been used by multiple combustion mechanisms ever since. A more recent
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study by Taatjes et al. [161] investigated the products of the benzene + O(3P) reaction

experimentally and computationally. The channel leading to the production of phenoxyl

+ H has the reaction rates of 2.0 × 107T 1.8e−2000/T , which is 6.4× 1012 cm3 mol−1 s−1

at 2000 K. The channel leading to the production of phenol has the reaction rates of

7.2 × 1022T−2.56e−7546/T + 1.5 × 1021T−2.60e−3364/T , which is 6.6× 1012 cm3 mol−1 s−1

at 2000 K. Both channels show relatively similar importance at high temperatures, and

the formation of phenol is the major channel for temperatures lower than 900 K. Kislov

et al. [89] studied the rate coefficients and product branching ratios for the oxidation of

phenyl and naphthyl radicals with oxygen (O2). From the branching ratios of phenyl + O2

reaction, formation of C6H5O + O route takes over 80% above 1500 K, making phenoxyl

radical the major product of this reaction. The phenyl + O2 reaction rate forming C6H5O

+ O at 2000 K and 10 atm is 1.45× 1013 cm3 mol−1 s−1. Comparing with both channels

of the reaction A1 + O(3P), the phenyl + O2 reaction is an important alternative pathway

forming A3. Altarawneh et al. [6] studied the low-temperature oxidation of benzene with

HO2. For the multi-channel reaction phenyl + HO2,the channel leading to the production of

phenoxyl + OH has the reaction rate of 1.4×101T 3.55e−9000/T , while the channel leading to

the production of phenol + O has the reaction rate of 1.8× 100T 3.71e−9900/T . Two channels

are highly temperature-dependent and have the rate constants of 8.1× 1010 cm3 mol−1 s−1

and 2.3× 1010 cm3 mol−1 s−1 respectively at 2000 K. Depending on the concentration of

the gas-phase species, the reaction with HO2 may also be a source for phenoxyl radical

(A3) and phenol (A10).

The pathway A4 – A5 – A6 was originally proposed by Johansson et al. [82] when

formation and emission of large furans start to get attentions. Later studies [43, 182], by

implementing this pathway, confirmed that the formation of furan-embedded PACs could

compete with HACA mechanism where both O and C2H2 concentrations are high. The

pathways in part A of this article provide a more complete picture and would promote

furan-embedded PACs formation even more. Johanssona et al. calculated the potential
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energy diagram by CBS-QB3 compound method. Their results are similar to ours (within

1 kcal mol−1 difference), which were calculated by G3B3 compound method. We also

added the hydrogen disproportionation reaction from A5 to A6.

For the hydrogen abstraction from phenol, a lot of works have been focusing on the

hydroxyl H (A10 to A3). He et al. [75] studied the kinetics of hydrogen atom attaching

on phenol at high temperatures. The reaction rates for phenol + H to produce phenoxyl

radical + H2 is 1.15 × 1014e−6240/T , which is 5.1× 1012 cm3 mol−1 s−1 at 2000 K. Al-

tarawneh et al. [7] gave the reaction rates for hydrogen abstraction from hydroxyl H of the

phenol (forming phenoxyl radical) by HO2 to be 7.6× 1011e−6300/T . Abstractions by other

gas-phase species such as O, OH, and O2 can be found in these works [47, 150, 8]. For

hydrogen abstraction from ortho-site H of phenol (A10 to A11), we considered common

gas-phase species H, OH, and CH3. Comparing the hydrogen abstraction by H, abstract-

ing from hydroxyl H has a rate of 5.1× 1012 cm3 mol−1 s−1 at 2000 K, while our results

for abstracting from ortho-site H has a rate of 1.1× 1012 cm3 mol−1 s−1 at 2000 K. The

difference is larger at lower temperatures, meaning that the hydrogen abstraction from hy-

droxyl H would dominate over the hydrogen abstraction from ortho-site H. Nevertheless,

the hydrogen migration between A3 and A11 does give another route to A11 once phenoxyl

radical is formed by the major-route hydrogen abstraction (from hydroxyl H).

Dames and Wang [32] studied the isomerization of benzylic and methylphenyl type

radicals in single-ring aromatics, similar to our reaction A3 to A11. The high-pressure

limit reaction rates for the isomerization from 2-methylphenyl radical to benzyl is 3.34 ×

1013e−23112/T , which is 3.2× 108 s−1 at 2000 K. The reaction rate for A11 to A3 at 2000 K

is 6.8× 108 s−1. Both reactions show close rates because of similarity.

The competition between hydrogen disproportionation and hydrogen addition is worth

to take a look. For example for the reaction A7 + H, the hydrogen disproportionation would

directly result the formation of benzofuran (A6) + H2, while the hydrogen atom addition

can also form a stable molecule, phenoxyvinyl, without the radical site. Hydrogen atom
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addition to an aromatic carbon is a fast radical-radical combination reaction, which rate

constant was estimated to be 2.0× 1013 cm3 mol−1 s−1 by Frenklach et al. [55]. While

the reaction A7 + H forming A6 + H2 has a rate constant of 6.7× 1011 cm3 mol−1 s−1

at 2000 K. Similar analysis goes for the reaction A13 + H. The direct hydrogen atom

addition to the phenoxyl site has a reaction rate of 4.34× 1014e−984/T from literature [55],

which is 2.65× 1014 cm3 mol−1 s−1 at 2000 K. While A13 + H forming A15 + H2 has a

rate constant of 2.6× 1012 cm3 mol−1 s−1 at 2000 K. With two magnitudes difference, the

hydrogen atom addition would make the contribution of the hydrogen disproportionation

smaller in a larger reaction network.

The hydrogen abstraction on the ortho-site aromatic carbon with the presence of dif-

ferent functional groups can be compared across literature to study the site effect, now

with the pathway A10 to A11 adding phenol (hydroxyl group) into the picture. Kislov et

al. [90] studied hydrogen abstraction from benzene (no functional group), phenylethene

(vinyl group), and phenylacetylene (ethynyl group), and the reaction rate constants are

3.88×108T 1.86e−8039/T , 5.23×105T 2.36e−8513/T , and 1.29×108T 1.89e−8847/T respectively

when abstracted by hydrogen atoms. As shown in Figure 4.4 top panel, the rate constants

of hydrogen abstraction from benzene by atomic hydrogen is the highest, while the rate

constants for phenol is between that of phenylacetylene and phenylethene. Since the latter

reactions are the first step of Frenklach and alternative Frenklach’s routes of the HACA

mechanism for activating aromatic sites, this result indeed shows that the benzofuran for-

mation route initiated by A11 is able to compete with HACA mechanism at the activation

step when hydroxyl group presents.

The previous discussion is also applied to the reaction A11 + C2H2 to A12Z. The acety-

lene additions to phenyl, 2-phenylethene, 2-phenylacetylene [90], and 2-hydroxybenzene

radicals are compared for studying the site effect of different functional groups on ortho-

site. As shown in Figure 4.4 bottom panel, the rate constants of acetylene addition on

phenyl is the highest, while the rate constants for 2-hydroxybenzene is between that of 2-
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phenylacetylene and 2-phenylethene below approximately 800 K. Since the latter reactions

are the second step of Frenklach and alternative Frenklach’s routes of the HACA mecha-

nism for attaching the second acetylene to the aromatic sites, this result again shows that

the benzofuran formation route followed by A11 – A12Z is able to compete with HACA

mechanism at the acetylene addition step when hydroxyl group presents.
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Figure 4.4: Reaction comparisons for hydrogen abstraction and acetylene addition with the
presence of different functional groups

In addition, the reaction rate constants for acetylene addition to ethenylphenyl radical

(p-C8H7) or to phenoxyl radical (A3 to A4) would also affect the relative importance of

pathway A3 to A6 compared with the Bittner-Howard’s route [13] of the HACA mecha-

nism. The rate constants for the C2H2 addition to p-C8H7 is 7.47× 105T 1.98e−2549/T , which

is 7.53× 1011 cm3 mol−1 s−1 at 2000 K [90]. While the results for the C2H2 addition to

C6H5O is 3.9× 1010 cm3 mol−1 s−1 at 2000 K. With one magnitude difference, it shows

that C2H2 has a greater tendency to add to ethenylphenyl radical rather than phenoxyl radi-
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cal. Nevertheless, both Bittner-Howard’s route and pathway A3 – A4 – A5 – A6 correspond

to minor pathway of HACA mechanism [54] and benzofuran formation from the branching

ratio study [152].

Overall, the results show that acetylene has a great tendency to add to the ortho-site of

phenol at high temperatures, which could further lead to the ring closure and the formation

of benzofuran. Once oxygen is attached to the edge of the aromatic ring, furan formation

pathways are able to compete with the major routes of the HACA mechanism to form furan-

embedded molecules when acetylene abundance is high too. More details of this study

and additional pathways for forming dibenzofuran can be found in [152]. The reaction

pathways in Figure 4.1 for the formation of benzofuran were included in the SNapS2 kinetic

mechanism for the generic reactions from COf151 to COf158 in Table 3.10, while the

reaction pathways in Figure 4.3 for the formation of dibenzofuran were included as COf159

to COf15d.

4.2 The Formation of Five-membered Rings

The presence of five-membered aromatic rings in PAHs and soot precursors has been re-

ported in many studies [42, 176, 56, 192, 193, 165, 163, 45, 96, 82, 200, 16, 147]. One

noteworthy example is the identification of methylene-bridged PAHs in catechol pyrolysis

by Thomas et al. [163]. As suggested by this work, a five-membered ring could form from

incorporating a C1 unit onto an existing PAH skeleton. A detailed reaction mechanism

study would help shed light on such possibility. More recent experimental studies, using

AFM [147, 28] have reported on the molecular constituents of soot nanoparticles, showing

a large complexity of structures, including peripheral five-membered rings of four types,

namely acenaphthylene-type, acenaphthene-type, fluorene-type, and indane-type. The for-

mation pathways of five-membered rings have long being studied as well. For example, the

formation of acenaphthylene-type rings can occur via the HACA mechanism. Indane-type
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five-membered rings have been studied by different groups. Mebel et al. [101, 117] studied

the formation of indene through phenyl radical + PC3H4 orAC3H4, benzyl radical + C2H2,

as well as phenylacetylene + methyl radical. Kislov et al. [91] reported on the formation of

indene by benzene and phenyl radical via ab initio methods. Pousse et al. [129] proposed

the combustion mechanism of indane, including the conversion between indene and indane

through multiple gas-phase species. Similarly to indene formation, benzoindene can be

formed from naphthalene as demonstrated in a recent publication [206].

Within the scope of expanding the understanding for the formation of five-membered

rings, I proposed the following reaction pathways for the formation of five-membered rings

onto existing PAH framework. In particular, from a ”zig-zag” (C3 motif) site and a C2

gas phase species to yield acenaphthylene/acenaphthene type hydrocarbons, and from an

”armchair” (C4 motif) site and a C1 gas phase species leading to fluorene-type compounds.

The formation of five-membered ring from a ”free-edge” (C2 motif) site and a C3 gas phase

species has been reported elsewhere [129, 117, 206]. Similarly, possible pathways for

the formation of pyrene by phenanthrene reacting with methyl radical have been reported

already in the literature Georganta et al. [62].

4.2.1 Five-membered Ring Formation on Zig-Zag Site from Naphtha-

lene

Reaction pathways to form five-membered rings on the zig-zag site begin with naphthalene

are shown in Figure 4.5.

As initial step, we considered the reactions of naphthalene (N1) either with a radical,

C2H5 and C2H3, or by first undergoing hydrogen abstraction to form N2. N2 radical can

then react with non-radical C2 species C2H2, C2H4, or C2H6. Furthermore, we considered

radical-radical combination reactions for N2, leading to the formation of N5 and N6 by

reacting with C2H3 or C2H5 radicals.

The intermediates formed at this stage are naphthalene with an ethyl group (N6), its
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Figure 4.5: Reaction pathways for the formation of five-membered ring from a zig-zag site
and a C2 gas phase species. Heats of reaction and barrier heights (in parentheses) are placed
on the reaction arrows and calculated by G3B3 compound method. Energy has the unit of
kcal mol−1.

radical on terminal site (N9), naphthalene with a vinyl group (N5) and its radical on ter-

minal site (N8). The alternative to radical on terminal site, is radical on the naphthalene

ring, N10 and N7 for ethyl and vinyl group, respectively. Inter-conversion between these

two types of radicals, N8→ N7 and N10→ N9, were also considered. The saturated five-

membered ring N15 can be directly formed from the intermediate N10. N15 can also be

formed through a two-step mechanism, RC then HE, from the other radical N9.

The unsaturated five-membered ring N14 can be directly formed from the intermediate

N7 with radical on the ring via a two-step RC-HE pathway. The pathway to form N14

from the other radical N8 via two-step RC-HE is the ring closure step of the classical

HACA pathway. An alternative pathway to form a saturated five-membered ring, N15

goes through the formation of N11 first, then undergoing a radical-radical combination

reaction with hydrogen atom. The conversion from unsaturated five-membered ring N14 to

saturated five-membered ring N15 can be achieved via two successive hydrogen addition

reactions, N14 + H→ N11 and N11 + H→ N15. The conversion from N15 to N14, on the

other hand, could most likely occur via a hydrogen abstraction reaction first, followed by a
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hydrogen elimination reaction: N15 + H→ N11 + H2 and N11→ N14 + H.

4.2.2 Five-membered Ring Formation on Armchair Site from Biphenyl

Formation of five-membered ring starting from an armchair site on biphenyl or phenan-

threne schematically mirror each other identically. Therefore here I only discuss the path-

ways from biphenyl, as shown in Figure 4.6. More information on the formation pathways

from phenanthrene can be found in ref. [153].
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Figure 4.6: Reaction pathways for the formation of five-membered ring from an armchair
site and a C1 gas phase species. Heats of reaction and barrier heights (in parentheses) are
placed on the reaction arrows and calculated by G3B3 compound method. Energy has the
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Similar to the previous part, the initial reaction of biphenyl B1 can occur by reacting

with either radicals, CH3 or triplet-carbene (CH2), or by first undergoing hydrogen abstrac-

tion and produce B2. We elected to not consider singlet-carbene addition since such reac-

tion usually result in three-membered ring and is likely irrelevant to five-membered ring

formation. The two pathways, addition of CH3 radical and hydrogen abstraction, converge

into forming B5 after one more reaction respectively. The second reaction for addition of

CH3 is a HE, while for the hydrogen abstraction, the follow-up reaction is a substitution

reaction with CH4.

In order to facilitate RC, a hydrogen abstraction is needed first from this point onward.
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This can occur at the terminal site of the newly added methyl group (forming B4), or at

the other ring adjacent (forming B6). The two newly formed radicals (B4 and B6) can

convert into each other via hydrogen migration. Alternatively, B2 can undergo radical-

radical combination reactions with CH3 and CH2 to form B5 and B4, respectively. RC

reaction from B6 is an one-step substitution reaction in forming B7, while RC from B4 is

followed by a HE reaction, B4→ B7 + H.

Looking at the result of triplet-carbene addition B9, since B9 is of triplet electronic

configuration, it cannot form a singlet stable structure in one step, unless spin-crossing is

considered, which is outside the scope of this study. It is possible to have a ring closure

reaction directly from B9, resulting in forming B10, followed by two sequential hydrogen

elimination reactions, forming B8 and B7, respectively. Alternatively, a hydrogen elimina-

tion reaction can occur first to B9 and form B4, and the rest has been discussed already.

4.2.3 Reaction Pathways in a Closed Homogeneous Batch Reactor

The relative importance of various kinetic pathways for the production of acenaphthylene

(N14) and acenaphthene (N15) was investigated in a closed homogeneous zero-dimensional

reactor. We used the CHEMKIN-Pro’s 0-D Closed Homogeneous Batch Reactor [135] to

study the relative importance of the proposed pathways under combustion conditions. The

mole fraction of the initial gas-phase species comes from the simulations using CHEMKIN-

Pro’s PREMIX code to model an atmospheric-pressure laminar premixed ethylene-air flame

with a cold gas velocity of 9.8 cm s−1 and an equivalence ratio of 2.03. The details of the

flame can be found in [147, 28], including the measured temperature profile, which was

provided to the CHEMKIN in order to minimize the inaccuracy of modeling heat loss. The

gas-phase simulation results of this flame are discussed in [184]. The mole fractions of

H, H2, C2H2, C2H3, C2H4, C2H5, C2H6 and naphthalene are 3× 10−4, 8× 10−2, 2× 10−2,

1× 10−5, 2× 10−2, 7× 10−5, 1× 10−3 and 6× 10−5 correspondingly. The remaining is

considered to be nitrogen. The simulations are run at 1 atm and 2000 K with a residence
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time of 20 ms. For the kinetic mechanism, we compiled the proposed reactions into the

CHEMKIN format. As results, a total of 46 species and 57 reactions are included in the

mechanism.
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Figure 4.7: The rate of production for the formation of acenaphthylene (N14).

As reported in Figure 4.7, both pathways from N11 and N12 are important for the

formation of acenaphthylene, and pathways from N11 have a higher rate of production

compared with the others. The results highlight the importance of the HACA as major

pathways for the formation of acenaphthylene. Acenaphthene (N15) starts to convert to

N11 after 1 ms, as shown in Figure 4.8.

The production of acenaphthene happens mostly via N11 + H→ acenaphthene, while

the consumption is due to acenaphthene + H→N11 + H2. From Figure 4.8, the net produc-

tion rate of acenaphthene becomes negative after 1 ms. There exists an equilibrium between

acenaphthylene and acenaphthene under this condition. The formation of acenaphthene is

an important path for acenaphthylene, and similarly, N13 is a significant exit for acenaph-

thene. Thus it is important to include the new proposed reactions to improve the predictions
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Figure 4.8: The rate of production for the formation of acenaphthene (N15).

of kinetic mechanisms for acenaphthylene and acenaphthene.

The 0-D Closed Homogeneous Batch Reactor is also used to study Part B for the for-

mation of B7 (fluorene). The main pathways for Part B are B1→ B3→ B5→ B4→ B8→

B7. PAHs with radical sites could cross-link and make biphenyl-type armchair site more

accessible for pathways in Part B.

The new reaction pathways provide a more complete description for the formation of

PAHs containing five-membered rings, more importantly, the embedded five-membered

rings such as methylene-bridged PAHs identified in catechol pyrolysis, that can play an

important role not only in the gas-phase chemistry of aromatics but also as pathways to

five-membered rings on armchair sites and cross-linking for soot models.
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CHAPTER 5

Validations of the SNapS2 in Various

Combustion Conditions

The characteristics of the PACs predicted with the kinetic mechanism were compared

against different experimental measurements: mass spectra measured in a counterflow dif-

fusion flame [182], the oxygen-to-carbon ratios obtained at different locations of a coflow

diffusion flame [144], and the molecular structures observed in a premixed laminar flame [184].

These successful validations demonstrate that the SNapS2 kinetic mechanism provides a

high-fidelity, and yet generic, description of the PAC formation under various combus-

tion conditions, making SNapS2 the first-of-its-kind to have such extensive flexibility and

wealth of information. It greatly contributes to reveal the underlying chemical pathways

to the experimental observations. The following sections are adapted from these publica-

tions [182, 144, 184].

5.1 Mass Spectrum in an Ethylene Counterflow Diffusion

Flame

The experiments were carried out at Sandia National Laboratories by Dr. K. Olof Johans-

son, Mr. Paul E. Schrader, and Prof. Hope A. Michelsen, while the CFD simulations were

conducted by Prof. Doohyun Kim at Hongik University. Thus in this dissertation, I only
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briefly introduce these results as part of the flame system for clarity, and focus mainly on the

stochastic modeling results. The following section is adapted from this publication [182].

5.1.1 The Flame System

The details of the experimental setup can be found in [182]. The flame is an atmospheric-

pressure ethylene/oxygen/argon counterflow diffusion flame. Fuel side delivered a mixture

of 0.23 slm (standard liters per minute at 0 °C and 101.325 kPa) ethylene and 1.10 slm ar-

gon; the oxidizer side supplied a mixture of 0.25 slm oxygen and 1.20 slm argon. The

gas-phase composition along the centerline of the flame was determined using flame-

sampling Molecular-Beam Mass Spectrometry with Vacuum-Ultraviolet Photoionizaiton

(VUV-MBMS). The species measured using VUV-MBMS had masses less than ∼200 u.

The Aerosol Mass Spectrometry with Vacuum-Ultraviolet Photoionization (VUV-AMS)

was employed to extend the mass range of measured species to ∼550 u.

The details of the CFD simulation can be found in [182] as well. The CFD results

were validated against the experimentally measured temperature and species profiles and

showed very good agreements. Figure 5.1 shows the temperature contours at steady state

on the central plane of the counterflow flame from CFD results. The flame, located on

the oxidizer side, is stabilized by the fuel diffusion across the stagnation plane and has a

maximum temperature of 1970 K at a Distance From the Fuel Outlet (DFFO) of 6.1 mm.

5.1.2 Stochastic Modeling

The growth of soot precursors was modeled using SNapS2. As input to the SNapS2 sim-

ulations, I used the gas-phase composition and temperature data obtained from the CFD

simulations, interpolating between mesh points. The flow streamlines of the counterflow

flame were obtained using MATLAB by solving the equations of motion given each posi-

tion and gas-phase velocity. Cyclopentadiene, benzene, and toluene were chosen as seeds

for this study from the criteria discussed in methodology. To obtain enough statistical data
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Figure 5.1: Snapshot of the central plane of the counterflow flame obtained via CFD
simulations. Background color indicates temperature, and lines represent flow stream-
lines, labeled by Roman numerals (both lowercase and uppercase). Colored segments on
each streamline separate different transit time (0.02 s, 0.04 s, and 0.06 s) along the line.
At a DFFO of 5.0 mm, the black semicircle shows the experimental probe size, and the
shadowed semicircle around it represents the computational probe sampling area used by
SNapS2. Dark gray bars at DFFOs of 0 mm and 12 mm display the radius of the center and
outer flow tubes, separated by tube thickness in light gray.

for the stochastic model, around 300 simulations at each starting points were simulated.

A total of 110 starting points along the centerline and the selected flow streamlines were

used, generally separated by 1 ms on each streamline, for a total of 32,000 SNapS2 traces.

The contribution of each seeds to the whole mass spectrum was then weighed by its con-

centration at the starting point.

As the first validation of SNapS2, I compared the mass spectra generated by SNapS2

with data obtained from the VUV-AMS measurements. First, I estimated the region sam-

pled by the experimental probe to define the sampling region for the SNapS2 simulations.
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The experimental setup provides sub-mm vertical resolution because the probe tip opening

diameter was 0.3 mm. Nevertheless, the probe likely extracted sample from a volume corre-

sponding to a vertical region that is somewhat larger than the probe-tip opening. Therefore,

we assumed that the probed region was a semicircle with a diameter of 0.5 mm (shown in

Figure 5.1). Second, I chose to analyze the mass spectra at a DFFO of 5.0 mm, close to the

stagnation plane where the growth of soot precursors is high. Since the VUV-AMS mea-

surements have a 0.2 mm shift towards the oxidizer side comparing with the CFD results

along the DFFO, the AMS data at a DFFO of 5.15 mm was compared with the SNapS2-

generated mass spectrum at a DFFO of 5.0 mm. Figure 5.2 shows the comparison between

the experimental aerosol mass spectrum and the mass spectrum predicted by SNapS2.

Figure 5.2: Mass spectra at a DFFO of 5.0 mm. The experimental aerosol mass spectrum
shown in the top panel was obtained with an ionization photon energy of 9.5 eV at a DFFO
of 5.15 mm. The mass spectrum predicted by SNapS2 at a DFFO of 5.0 mm is shown in
the bottom panel.

The comparison between the experimental and simulated mass spectra demonstrates

excellent agreement, indicating that SNapS2 produces a high fidelity model of the soot
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precursors formation in the counterflow flame: all major peaks in the range 200 u to 450 u

are reproduced, and the relative intensity (both within peak clusters and between clusters

over extended mass ranges) are well captured.

For the experimental results, transport efficiencies in the sampling line and aerosol

mass spectrometer lead to reduced peak intensities on the low-mass side of the mass spec-

trum [84], and may explain why the experimental mass peaks at 216 u and 226 u, for ex-

ample, have lower intensities relative to higher masses than predicted by the simulations.

In addition, the SNapS2 simulations predict a rapid and monotonic decrease in mass-peak

intensity with species size for both the even and the odd-carbon-numbered peak sequences.

The denser packing of mass peaks in the experimental spectrum, compared with the sim-

ulated spectrum, stems from 13C intensity shifts that add significant intensity on numerous

odd masses within peak clusters in the experimental spectrum.

In general, this validation on the mass spectrum shows that the SNapS2 code and ki-

netic mechanism are able to reassemble the pure hydrocarbon PACs in flames in terms

of the mass intensity and chemical formulas. This is a big leap compared with SNapS, for

which only even-numbered-carbon peaks were able to be reproduced in a benzene premixed

flame. This advancement in the SNapS2 modeling results demonstrate that the SNapS2 ki-

netic mechanism does provide a more complete description of the PAC formation, which

captures the major routes for the pure hydrocarbon growth in combustion systems.

5.2 Oxygen content in a Coflow Diffusion Jet A-1 Surro-

gate Flame

This work is a collaboration with Mr. Jacob C. Saldinger from the Violi Group and pub-

lished in [144]. The following section is adapted from this publication.
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5.2.1 The Flame System

The system consists of a coflow diffusion laminar flame with a Jet A-1 surrogate fuel (69 %

n-decane, 11 % n-propylcyclohexane, and 20 % n-propylbenzene) [31]. The details of the

CFD simulations can be found in Saffaripour et al. [140] while additional experimental

details used in validation can be found elsewhere [88, 19].

In order to describe the environment to use in the SNapS2 simulations, we used the

CFD data from a previous work [140] to build two-dimensional profiles of species mole

fractions, temperatures, and velocities for the flame. Velocities were used to identify the

center streamline, as shown in Figure 5.3, using the streamline function implemented in

MATLAB [112]. Of note, we have defined the centerline as the streamline originating at a

radius of 0.5 mm. This small discrepancy is needed to avoid discontinuities and numerical

artifacts arising from the boundaries in the CFD simulations, and we tested that this choice

does not affect the gas phase appreciably.

5.2.2 Stochastic Modeling

The formation of PACs was simulated by SNapS2. In these simulations, the starting seed

molecule was grown until the end of the streamline was reached or the mass exceeded

600 u, to match the experimental sampling range. In order to capture early growth, we

started our simulations at a Height Above the Burner (HAB) of 0 mm and at intervals of

1 ms or 5 ms depending if the concentration of the molecules used as a seed has already

reached (or not) the 5 % concentration threshold. At each time interval, we ran 100 sim-

ulations of the seed molecule with the highest peak concentration (benzene in this flame)

while the number of simulations for the remaining seed molecules was determined relative

to each molecule’s maximum concentration. Seed contributions to final properties were

normalized by the number of simulations performed at each time step so that the number

of simulations did not affect a molecule’s relative intensity. Overall, we performed approx-

imately 12,000 simulations along the center streamline. In these simulations, we observed
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Figure 5.3: Temperature profile from CFD simulations [140]. The streamline at a radius of
0.5 mm is shown as a dash-dotted line while the true centerline is a dashed line.

approximately 2 million unique compounds and 4 million unique reactions.

The experimental electron ionization mass spectrometry used to validate our results

identified a large range of oxy-PACs between 150 u and 600 u [19], indicating that the

oxy-PACs are an important contributor to the diversity of PACs. Figure 5.4 shows the com-

parison in the Oxygen-to-Carbon Ratio (O/C) between experimental and simulated com-

pounds along the center streamline at different HABs. To provide a clearer comparison, a

small number of PACs with more than 10 oxygen atoms and a larger number PACs without

oxygen were omitted from the figure. This choice reflects the experimental difficulty of de-

tecting signals from these compounds. On one hand, highly oxygenated species, consisting

of molecules with 11-13 oxygen atoms, contained a large number of hydroperoxides (and

derived groups) that are difficult to detect experimentally [190, 202]. On the other hand,
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apolar PACs, like most of the species with O/C of zero, cannot be measured experimentally

due to the ionization spray technique used.

Figure 5.4: Oxygen-to-carbon ratio plotted against the molecular mass for different loca-
tions along the center streamline. The experimental results are shown on the left and the
SNapS2 results on the right. The size of the circles in each plot is proportional to the loga-
rithm of species relative concentration. Experimental results are reproduced/adapted from
ref. [19] with permission from the PCCP Owner Societies.

With the exception of a few low masses, highly oxygenated species, the range of oxy-

PACs in mass and number of oxygen atoms generally match between 150 u and 450 u at
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HABs of 40 mm, 50 mm, and 60 mm. There are, however, some revealing discrepancies.

The most noteworthy deviation is the under prediction of oxygen in our simulations at

lower HABs. At an HAB of 30 mm where experiments observe a large number of di-

verse PACs up to 600 u, little growth is observed in the simulations. One possible reason

for this discrepancy could be that there exists some low-temperature PAC oxygen chem-

istry [186] not captured in the kinetic mechanism. Prior to this region, the temperature

along the centerline is relatively low and as such our simulations show only a few reactions

mostly involving PACs with a single or no oxygen atoms. An alternate explanation is that

the experimental measurements of the soot precursors do not accurately represent the true

undisrupted gas-phase environment. The rapidly increased mass growth and oxygenation

of up to 600 u and 6 oxygens seen at 40 mm demonstrates that the PACs’ formation in

this area is very spatially sensitive. Minor streamline disruptions during thermopheretic

sampling [141] may be significant enough to bring about this discrepancy. Furthermore,

although not as pronounced as in other flame configurations, studies of thermophoresis in

coflow diffusion flames have identified complex two dimensional migration patterns which

cause larger soot precursors to travel at a different rate and direction than the bulk gas-

phase [86]. Thus, PACs thermally diffusing from higher HABs [73] or nearby streamlines

may account for this difference. In addition, electron-spray ionization tends to produce

results that are biased towards more oxygenated compounds when samples with lower O/C

ratios are present [12] and as such it could be possible that these compounds are present

in very small amounts but appear at high concentrations. Finally, while our results suggest

the majority of these oxygenated compounds grow within the flame, it is not possible to

rule out, as the authors of the experimental study acknowledge [19], that some growth may

occur after experimental sampling [35].

Other deviations in our simulations are likely due to the intrinsic limitations of SNapS2.

First, simulations fail to capture some low mass, highly oxygenated compounds. Unlike

other differences, this issue is persistent at all heights in the flame. Such low masses and
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high O/C ratios suggest these molecules are most likely small acyclic or highly saturated

molecules. These molecules are likely not products of aromatic growth as the majority

of species observed in experiment with an O/C ratio of greater than 0.5 have less than 15

carbons and an Hydrogen-to-Carbon Ratio (H/C) between 1 and 2.25 which falls above

the PAC cata-condensed [155] limit. While SNapS2 does include the growth of aliphatic

chains and non-aromatic rings in the kinetic mechanism, these low mass, non-aromatic

molecules are not captured as our seed selection and mechanism emphasizes polycyclic

aromatic growth. Second, for HABs of 50 mm and 60 mm, the model over-predicts high

mass compounds (between 450 u and 600 u), especially with less than 5 oxygen atoms, that

are not observed in experiment. This is most likely due to the removal from the gas-phase of

heavier species through physical growth [2] or radical-radical combination reactions with

other PACs [81]. The importance of radical-radical combinations of PACs relative to other

growth mechanisms has been observed [43] to become a significant factor in predicting

mass growth at higher masses although eventually this is offset by the low concentrations

of these large PACs. Although the role of these reactions in this flame may differ, stochastic

modeling of the counterflow flame in previous section [182] have found good agreement

with experimental results up to approximately 450 u without including these radical-radical

reactions. Physical growth is thought to significantly contribute to mass growth in coflow

diffusion flames as masses approach 600 u [2]. This hypothesis is also sustained by the ob-

servation that this discrepancy occurs primarily for PACs with low oxygen content, which is

inline with the findings by Elvati et al. [44, 46] suggesting that oxygen can inhibit physical

dimerization.

In general, despite the complexity of the system, we were able to match the previous ex-

perimentally observed range of oxygenation and aromaticity at multiple locations along the

centerline of the flame. Although we observe generally an excellent agreement, our simu-

lations fall short in two areas: description of growth of almost purely aliphati-c species and

secondary growth which involves PAC-PAC interactions. This study further validated the
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oxygen chemistry of the kinetic mechanism. In addition to the validation of the pure hydro-

carbon growth in the counterflow flame, SNapS2 is able to predict the chemical formulas

of the PACs being formed in different combution systems.

5.3 Molecular Structures in an Ethylene Premixed Flame

The details of large PAC structures have remained largely a mystery with several proposed

hypotheses and models. Recent advances in experimental techniques have allowed us to

view the atomic structure of a few PACs. Namely, using AFM [147, 28], molecules from

an ethylene-air laminar premixed flame were analyzed and assigned detailed molecular

structures. Despite some inherent limitations of AFM, observations from these images

are of immense interest in the modeling field as they provide much needed feedback to

improve successful models and eliminate incorrect ones. I applied the SNapS2 to model

this flame, and compared the molecular structures between SNapS2 simulations and AFM

observations. The following section is adapted from this publication [184].

5.3.1 The Flame System and the Gas-phase Modeling

The flame system used in the AFM studies is a laminar atmospheric ethylene-air premixed

flame with a carbon-to-oxygen atomic ratio of 0.67 (equivalence ratio 2.03) and a cold

gas velocity of 9.8 cm s−1. I modeled the gas-phase environment of this flame with the

PREMIX code of CHEMKIN [135] and the KAUST mechanism II [185] as the kinetic

mechanism. The CHEMKIN simulations used the experimental temperature profile [28]

to improve the accuracy of heat modeling. The temperature profile and the mole fractions

of gas-phase species with molar masses less than benzene were then used as inputs for the

SNapS2.
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5.3.2 Stochastic Modeling

In order to compare the effect of oxygen chemistry in this flame, I ran the SNapS2 simu-

lations with both the full kinetic mechanism and a reduced mechanism which excludes the

formation of oxy-PACs. Since the contribution to computed PAC properties is weighted

by the concentration of the seed molecules, I selected benzene as the seed molecule as it

has the highest mole fraction (by at least one order of magnitude) compared to other small

cyclic molecules along the entire flame. I set the upper limit of the molecular mass to

be 1000 u (which corresponds to the molecules with around 80 carbon atoms) since other

growth mechanisms that are not yet included in SNapS2 are likely to dominate the growth

above this threshold [41, 154, 45], e.g., radical-radical reactions [43, 81]. I run a total of

37,000 traces and then analyzed the results at an HAB of 8 mm and 14 mm, which corre-

spond to the nucleation and growth zone from experiments [28].

Similar to the AFM images, the SNapS2 simulations predict a large diversity of PACs

in this flame. By analyzing the simulations, I observe that most of the PAC growth takes

place before 8 mm, in agreement with experiments [28] identifying the nucleation zone at

8 mm (or before). For this reason, the PACs observed at 8 mm and 14 mm do not exhibit

radically different structures, O/C ratios, or H/C ratios. In Figure 5.5, I show 32 examples

of molecules sampled at an HAB of 8 mm. These molecules (which represent less then

0.005% of all the SNapS2-generated unique structures at this height) show the presence of

oxy-PACs, condensed aromatics, curved molecules, different types of five-membered rings,

PACs with only six-membered rings, as well as aliphatic structures. All the SNapS2 simu-

lated molecules at two locations with two mechanisms have been provided in ref. [184].

5.3.2.1 Oxygenated PACs

There are only three oxygenated species identified from the AFM studies, a phenol, a ke-

tone and a derivative of benzopyran (labeled in the original work as PS7, PS2, and IS9

respectively). Each molecule, however, requires a different formation pathway, which in-
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Figure 5.5: Example molecules simulated by the SNapS2 at an HAB of 8 mm of the pre-
mixed flame

dicates the complexity of the oxygen reactions that occur in the flame. Due to a number

of reactions including the formation of peroxols and ketones [207] and furan-embedded

PACs [152], the simulations also show molecules containing phenols, peroxols, ketones,

and furans (ML1 to ML6) (see Figure 5.6). Among the experimentally observed oxy-

genated functional groups, however, the kinetic mechanism currently cannot reproduce the

oxygen-embedded six-membered rings, like the one in IS9.

While the structures from the AFM images cannot provide definitive indication of the

relative concentrations, the oxy-PACs seem to appear much less frequently than the pure

hydrocarbons compared to the simulations. I hypothesize that this may be due to two

factors. First, the SNapS2 mechanism may lack enough reactions for the decomposi-

tion/evolution of furan-embedded PACs, which leads to an overestimation of these types

of functional groups. Second, the AFM sample may be partially biased against oxy-PACs,
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Figure 5.6: Possible number of chemical groups involving oxygen observed in simulated
SNapS2-generated molecules at 8 mm. Number of phenols (blue, upper panel), furans
(red, middle panel), and ketones (black, lower panel) with respect to the number of oxygen
atoms.

which are more likely to form curved molecules and have generally weaker non-bonded

interactions [43, 46, 45], making them harder to sample. Details about the O/C ratio of the

SNapS2-generated molecules are shown in Figure 5.7.

The O/C ratio for the molecules at 8 mm and 14 mm do not show distinct distribution

along different number of carbons atoms. This similarity from the SNapS2 simulation is

also observed in experiments. Both Raman spectroscopy and AFM measurements indicate

that the average size of the molecules at 8 mm and 14 mm are similar [28]. Therefore, even

while I focus on two HABs, the results can likely be generalized to other locations in the

flame.

5.3.2.2 Hydrogen-to-Carbon Ratio

The sampled structures from AFM suggest a minimal presence of oxy-PACs. However,

when considering the H/C ratio at an HAB of 8 mm, inclusion of the oxygen chemistry
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Figure 5.7: Oxygen-to-carbon ratio for SNapS2-generated molecules with respect to the
number of oxygen atoms at 8 mm (blue dots) and 14 mm (red circles).

results in better agreement with experiment (see Figure 5.8). Of note, the radical electrons

that are present in the SNapS2-generated molecules were converted to hydrogen atoms to

ease the comparison with experimental results.

SNapS2-generated molecules with the full mechanism have a lower H/C ratio compared

to molecules with an equal carbon number simulated with the reduced mechanism. This is

expected as oxygen functional groups such as ketones will result in a lower H/C ratio than

condensed aromatics due to the presence of the the double bond (C O). For this reason,

the full mechanism results in a large number of structures below the stabilomer line [159].

Some structures below the stabilomer line are also present for the pure hydrocarbon model

as C CH groups and curvature also contribute to a lower H/C ratio. I note that there

is generally a good agreement between experiment (based on AFM-identified PACs) and

simulations. Comparing the H/C ratios at 8 mm and 14 mm, as shown in Figure 5.9, I do not

observe any relevant change regardless of whether I use the full or reduced mechanism. As
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Figure 5.8: Hydrogen-to-carbon ratio with respect to the number of carbon atoms for
SNapS2-generated molecules with full mechanism (blue dots) and reduced mechanism (red
circles) at 8 mm. Peri-condensed PAHs (black dash line) and experimental fitting curve (red
solid line) are from ref. [28].

we explained for the O/C ratios, this is also observed from the experiments, likely because

most of the PAC chemical growth takes place before the nucleation zone (8 mm).

To complement the information provided by the H/C ratio, I also analyzed the character-

istics of acyclic carbons, as shown in Figure 5.10. Among the groups with acyclic carbons,

the methyl group seems to be very common in both AFM images (e.g., IS11, IS17, and

IS57) and SNapS2-generated molecules (e.g., ML22, ML24, and ML26). However, while

the simulation results show a large number of C CH groups (ML17 through ML21) they

are not seen in the AFM images. The formation of C CH group is an important step in

a major pathway of the HACA pathways, which is considered the leading mechanism for

pure hydrocarbon growth under many conditions, and therefore some C CH groups are

expected to see in the AFM samples as well. I currently have no definitive explanation for

this discrepancy on whether this phenomenon is an effect of the sampling/measure or if
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Figure 5.9: Hydrogen-to-carbon ratio with respect to the number of carbon atoms for
SNapS2-generated pure hydrocarbons at 8 mm (blue dots) and 14 mm (red circles). Peri-
condensed PAHs (black dash line) and experimental fitting curve (red solid line) are from
ref. [28].

something is missing in the kinetic mechanism.

5.3.2.3 Ring Structures

While I observed a few example molecules containing only six-membered rings (ML25

to ML29), most of the SNapS2-generated molecules contain at least one five-membered

ring. For SNapS2-generated PACs, the number of five-membered rings is markedly lower

than the number of six-membered rings, and the difference becomes larger at a higher

number of carbon atoms, as shown in Figure 5.11. At the same time, the results indicate

that at least a small number of five-membered rings are a general feature of the PACs. The

results show more five-membered ring structures than the AFM images, but this difference

can partially arise from the experimental difficulty to sample or analyze curved molecules.

Therefore, I removed from simulation data the molecules with embedded five-membered
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Figure 5.10: The percentage of acyclic carbon with respect to the number of carbon atoms
for the SNapS2-generated molecules at an HAB of 8 mm of the premixed flame

rings, and compared the number of non-embedded five-membered rings from the remaining

structures with the PACs from AFM images, as shown in Figure 5.12.

Figure 5.11: The number of five-membered (blue dots) and six-membered (red circles)
rings with respect to the number of carbon atoms for the SNapS2-generated molecules at
an HAB of 8 mm of the premixed flame
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Figure 5.12: The number of non-embedded five-membered rings with respect to the number
of six-membered rings for SNapS2-generated molecules (blue dots) and assigned PACs
from AFM images (red circles) [28].

The comparison indicates that considering only the non-embedded five-membered rings,

SNapS2-generated molecules may still have more five-membered rings compared to exper-

imental data. The most likely reason for the overestimation is a lack of five-member ring

oxidation or migration pathways in the current available literature, in addition to the reac-

tions already included in the SNapS2 kinetic mechanism (such as ref. [55, 60]).

There are four types of five-membered rings identified by the AFM study, namely

acenaphthylene-type, acenaphthene-type, fluorene-type, and indane-type. SNapS2 simu-

lations show examples of the first three types (ML7 to ML24) but the SNapS2 kinetic

mechanism currently does not contain pathways that will lead to the formation of indane-

type five-membered rings. Figure 5.13, which shows the frequency of different types of

five-membered rings in the simulated structure, indicates that fluorene-type five-membered

ring are prevalent in this flame. While there is some literature on the formation pathways

of five-membered rings other than acenaphthylene type [129, 116], there is generally a lack

of systematic study for the formation pathways of different types of five-membered rings

and in the light of these and the AFM results, a more detailed analysis of five-membered
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ring formation pathways is discussed previously in Chapter 4.2 in light of this. A more ac-

curate description of the five-membered ring chemistry is also important because the large

PACs which seem to be formed by cross-linking, can also be formed from small gas-phase

species, as shown by ML6, ML16, and ML23 which are similar to IS30 and IS43 from

AFM studies.

Figure 5.13: Frequency of the three types of five-membered rings formed in the SNapS2-
generated molecules at 8 mm.

Of note, AFM images also show non-aromatic six-membered rings like IS13 and IS29,

a type of structure that SNapS2 simulations also produce like ML11 and ML27, showing

again the degree of accuracy in the prediction of SNapS2.

5.3.2.4 Curvatures of PACs

As mentioned above, I observe a large number of molecules, for example, ML8, ML9,

ML10, ML12, ML19, ML20, ML21, and ML22 which contain curvature. Since curved

structures were difficult to sample or characterize in the cited AFM work, here I focus the

discussion on the amount and frequency of the curvature I observe in SNapS2 traces more
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than the atomistic details of the curved molecules. There are different ways to quantify the

curvature of the molecules, but here I chose to use the value of the shortest principal axis

of inertia (so that carbon would contribute more than hydrogen atoms) and divide it by the

sum of all three axes, to make it size-independent. The results are shown in Figure 5.14.

Figure 5.14: The relative plane displacement with respect to the number of carbon atoms

The plot shows a large number of molecules with little to no curvature, namely less

than 0.05 (which is approximately the value caused by the presence of the aliphatic chain

in ethylbenzene). A general increase in the curvature occurs with higher carbon numbers

as more five-membered rings are added and additional growth occurs around previously

embedded five-membered rings, while the drop above approximately 70 carbons is simply

related to the simulation’s upper mass limit. Interestingly, a peak for a set of molecules

between 20 and 30 carbons can be observed, which is consistent with the number of carbons

needed for a structure with embedded five-membered rings (such as ML18).

In general, the SNapS2-generated PACs show great similarities with the ones assigned

experimentally showing that the kinetic mechanism includes the formation pathways of

many experimentally observed functional groups. Together with the validations on the mass

spectrum and oxygen contents, the SNapS2 kinetic mechanism provides a high-fidelity, and

78



yet generic model of the PAC formation under various combustion conditions, despite the

constant need to expand the pool of possible reactions and refine kinetic rates when direct

atomistic data is available. The SNapS2 showed a unique capability to match experimental

findings and a strong ability to predict molecular structures of PACs formed in combustion,

thus proves to be extremely useful in shedding light on the evolution of molecules from

gas phase to soot precursors and contributes to reveal the underlying mechanisms to the

experimental observations.
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CHAPTER 6

Applications of the SNapS2 Beyond the

Limitation of Diagnostics

SNapS2 code and the kinetic mechanism have shown its capability to provide valuable in-

sights on the formation of aromatics beyond the limitation of diagnostics. For one applica-

tion [182], spatial dependence of the PAC growth in an ethylene counterflow diffusion flame

was characterized by SNapS2 simulations, revealing distinct PAC growth pathways for the

streamlines starting from fuel side and oxidizer side. Given the fidelity of the SNapS2 pre-

dictions, it was also used to examine conditions that are impossible to test experimentally,

like completely decoupling the effects of flame temperature when studying the effects of

ethanol doping on the formation of aromatics [183], highlighting the chemical pathways

that result in soot reduction. Both applications show the uniqueness and great potential of

the model to obtain insights of the PAC formation when measurements are hard to obtain

or experiments are difficult to control. I will discuss these two applications of SNapS2 in

details in the following sections. The following sections are adapted from these publica-

tions [182, 183].
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6.1 Spatial Dependence of the PAC Growth in an Ethylene

Counterflow Diffusion Flame

While the diagnostics nowadays could provide sub-mm resolution for sampling the aerosol

PAHs and soot particles, it is still very hard to study the impact of the local thermodynamic

conditions on the spatial dependence of PACs because the effects of diffusion and sampling

area are hard to be decoupled. Now with the SNapS2 code and mechanism being validated,

it can be applied to shed light on this puzzle. The following section is adapted from this

publication [182].

6.1.1 The Flame System

As combustion system, counterflow diffusion flames are ideal to study the effect of spatial

differences in local environments. This configuration offers also the opportunity to isolate

the reaction zone of the diffusion flame from radical trapping, heat loss and partial premix-

ing at the burner [172], making them very attractive for the analysis of flame chemistry.

The flame system in this study is the same as the one in Chapter 5.1.1. The graphs in Fig-

ure 6.1 report the CFD results for the time evolution of selected gas-phase species along

two streamlines (i and I), highlighting the different chemical environments between the fuel

side and the oxidizer side of the flame.

6.1.2 Reactivity Along the Centerline and Streamlines

To analyze the differences that stem from approximating the counterflow flame with a 1D

model, I started by modeling the growth of soot precursors along the centerline. These

SNapS2 simulations, however, did not result in any significant growth of soot precursors.

When starting from the fuel side, I observed a negligible number of reactions because of

the low temperature and radical concentrations. Simulations started on the oxidizer side

displayed higher reactivity compared with those detected on the fuel side. However the
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Figure 6.1: Time evolution of selected species. The evolution of selected species mole
fractions are shown as a function of time along two streamlines identified in Figure 5.1.
Species mole fractions for streamline i are shown as black solid lines, and for streamline I
are shown as red dashed lines.

chemical changes were mostly limited to forward and corresponding reverse reactions (e.g.,

oxygen addition that resulted in the formation of some small phenols, ethers, and furans),

yielding no significant molecular growth. The results were consistent regardless of whether

I used the centerline gas-phase concentrations from the CFD model or the one-dimensional

CHEMKIN simulations as SNapS2 input. The outcome is not surprising, considering that

the growth along the centerline can only happen in close proximity to the stagnation plane

and over relatively long times. However, species lifetimes in this highly reactive region

are limited by different diffusion phenomena that remove species from the reactive region.

These phenomena, in addition to the small mass flow (compared to the total inlet flows)

around the centerline, make the molecular growth along the centerline insignificant.

The analysis of the molecular evolution along the streamlines as shown in Figure 5.1,

draws a different picture. Similarly to the centerline case, species starting from the oxi-

dizer side undergo a large number of early reactions that are limited to forward and reverse

reactions of oxygen addition but, when approaching the maximum temperature region, the

molecules go through rapid growth forming a large number of oxy-PACs containing phe-

nols, ethers and furan rings. On the fuel side, the molecular growth is negligible until the
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streamlines approach the stagnation plane (a DFFO of 5.0 mm). At this point, SNapS2

simulations indicate a rapid molecular growth driven by the HACA mechanism, that is,

the formation of five-membered and six-membered hydrocarbon rings through hydrogen

abstraction (by various species) and acetylene addition, in agreement with previous stud-

ies [93, 127, 83, 81]. The mole fraction of the atomic hydrogen stays around 10−4 in this

region, as shown in Figure 6.1. The difference in the dominant growth pathways between

the oxidizer and fuel sides is consistent with the high acetylene and benzene concentrations

and low amount of oxygen-containing gas-phase species (e.g., hydroxyl radical) near the

stagnation plane.

6.1.3 Spatial Dependence of the PAC Formation

Unlike the growth on the fuel side, where mostly pure hydrocarbons are formed by HACA

pathways (e.g., Figure 5.2), species following the streamlines on the oxidizer side go

through different stages as they travel through distinct parts of the flame. This phenomenon

can be seen from the SNapS2 simulation results for streamline i. While no significant

molecular growth and extremely low atomic hydrogen mole fractions (shown in Figure 6.1)

are observed before the transit time of 33 ms, a rapid molecular growth is detected when

atomic hydrogen starts to accumulate in the gas-phase. Figure 6.2 shows the evolution of

the mass spectra for streamline i at three different locations.

The top panel shows that the molecules crossing the maximum temperature region

(DFFO of 5.9 mm, a Distance From the Centerline (DFC) of 0.57 mm, and transit time

of 38 ms) are predicted to have a variety of structures with a relatively continuous distribu-

tion of masses, except for a few discernible peaks up to ∼ 280 u. Compared with the mass

spectra shown in Figure 5.2, there is a higher density of mass peaks because of the pres-

ence of oxygenated compounds at values of mass that would fall between peaks in a mostly

pure hydrocarbon spectrum. The analysis of the reactions in this region shows that, while

HACA pathways are responsible for the pure hydrocarbon part of the molecular growth,
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Figure 6.2: SNapS2-generated mass spectra at different locations along the streamline i.
The coordinates (listed as DFC and DFFO in mm) of the center of the circular sampling
region with diameter of 0.1 mm are reported on the top right corner between parentheses;
molecular structures of example molecules that contribute to the peaks at 212 u (top), 274 u
(middle), and 424 u (bottom) are shown in the respective panel.

a lot of phenols, ethers and furan-type structures are formed because of the high atomic

oxygen concentration. The peaks of oxy-PACs predicted by SNapS2 correspond to those

observed experimentally under very similar conditions [82].

The middle panel reports the changes in soot precursors mass right after passing through

the maximum temperature region (at a DFFO of 5.5 mm, a DFC of 0.73 mm, time of

42 ms), where the mole fraction of atomic oxygen significantly decreases while acetylene
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reaches its peak mole fraction. As expected, the molecular growth via HACA pathways

become to be important and the number of molecules containing oxygen declines, as does

the oxygen-to-carbon ratio. These phenomena can be seen in the appearance of stronger

and isolated peaks in the mass spectra, despite the persistence of signal over the entire

mass range. These peaks can be attributed to both pure hydrocarbons and oxygenated

compounds. For example, the mass peak at 274 u is due to both oxy-PACs and pure hydro-

carbons in approximately equal amounts; in the panel I show one example molecule from

each group.

The situation changes again when approaching the stagnation plane (at a DFFO of

5.1 mm, a DFC of 2.2 mm, time of 60 ms), as shown in the lower panel. In this region, the

growth is dominated by the HACA pathways, and pure hydrocarbons are mainly formed,

leading to the well-defined peaks in the mass spectrum. At this point, the abundance of

oxygenated compounds has dropped drastically; for example, the analysis of the structures

with a mass of 424 u shows that only 2.8% of the molecules contributing to this mass peak

contain oxygen atoms.

Statistical analysis of the reactions at these locations confirms the results discussed

above. Table 6.1 shows the percentage of 5 generic reactions at the three locations corre-

sponding to Figure 6.2, weighed by the lifespan of the reacting PACs. These 5 reactions

are the ones with the highest percentage at (0.57, 5.9). As shown in the table, closer to

the stagnation plane, there is a significant decrease in forming oxygenated species (reac-

tion row 4) while HACA (pathway through row 2) starts to take over the whole chemical

growth. It is worth mentioning that since the percentage is weighed by the lifespan of the

reacting PACs, the acetylene breaking (row 1 and row 5) would take much longer time

than acetylene attachment when chemical reactivity is very high at (0.57, 5.9). In terms of

reaction numbers, more acetylene-attachment reactions occurs while taking much less time

than acetylene breaking.

The results shown in Figure 6.2 and Table 6.1 demonstrate that the growth pathways
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Table 6.1: The time percentages of 5 reactions at three locations of the flame in terms of
(DFC, DFFO), weighed by the lifespan of the reacting PACs from SNapS2-simulated traces

Generic Reaction (0.57, 5.9) (0.73, 5.5) (2.2, 5.1)
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along the flow streamlines have a much more complicated evolution than the one that could

be inferred by sampling only the centerline. Indeed, a variety of compounds are formed

exclusively in certain parts of the flames, because of the strong dependencies on the exact

time-history of the gas-phase (i.e., composition and temperature)..

As conclusion, this study shows how the molecular chemical growth and the relative im-

portance of different kinetic mechanisms change in different regions of the flame. Whereas

HACA pathways dominate pure hydrocarbon growth on the fuel side of the flame and near

stagnation plane, oxy-PACs are preferentially formed on the oxidizer side when crossing

the maximum temperature region; in this location the high temperature and high concentra-

tion of oxygen atoms favor the formation of oxy-PACs. These oxy-PACs evolve to phenols
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and ethers if they cross a region with low acetylene concentration; they grow to furan-

embedded PACs if the acetylene concentration is high. Overall, these results show the

importance of simulating the counterflow flame as a two- or three-dimensional system to

capture the spatial dependence of soot precursors growth. Furthermore, the results show

the importance of oxygen chemistry to accurately predict molecular growth in some spatial

regions of the flame.

6.2 Effect of Ethanol on the Formation of Aromatics

Transportation is the largest consumer of petroleum-derived fuels in the world and the

main emitter of atmospheric pollutants in urban centers [164]. Due to a growing energy

demand, severe air pollution in cities, and more stringent environmental regulations in the

road-transport sector, there is an enormous need to develop and find alternative fuel sources

and technologies to reduce air pollutants from vehicular emissions. Ethanol has attracted

widespread interest because it is easily obtained from renewable resources (bio-ethanol)

and due to its versatile chemistry can be used as a fuel extender for petroleum-derived

fuels, as an octane enhancer, and as a pure fuel [10]. The oxygen atom in ethanol’s chemical

structure can significantly change the main oxidation and molecular growth pathways [43].

Reactions not occurring during hydrocarbon combustion can be activated or enhanced by

oxygen-borne atoms leading to high mass structures with covalently bonded oxygen, such

as furan-embedded PACs [152].

There are many studies on how the doping of fuels with oxygenates (e.g., methanol,

ethanol, and methyl tertiary-butyl ether) alters the chemistry of the gas-phase [80, 95, 98,

63, 71] and the characteristics of the resulting soot particles [142, 29, 156, 72]. Among the

main differences, the flame temperature [162], acetylene, and benzene mole fractions [195,

95, 51, 63, 142] generally decrease with increasing amount of ethanol doping, while hy-

drogen molecule and water mole fractions increase [63]. The increase in produced water
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is considered to influence soot formation by altering the concentration of hydrogen atoms

through the reaction H2O + H OH + H2 [137, 142]. Experiments from shock-tube py-

rolysis [59, 5] and premixed flames [142, 156] generally show that the addition of ethanol

leads to a reduction in both size and total volume fraction of soot, although counterflow

flame configurations show different behaviors on the fuel and the oxidizer side [143].

Less is known, however, about how ethanol doping changes the chemical composition

and structure of large PACs that lead to incipient soot particles. Several recent studies [157,

82, 43, 182] have revealed the importance of including oxy-PAC structures in order to

reconcile growth models with experimental observations. Elvati et al. [45, 43, 46, 44]

indicated that the dimerization of PACs in general is affected by the shape of the molecules

as well as the oxygen content, and that oxy-PACs have less tendency to form dimers than

pure hydrocarbons with similar mass. Thus, a detailed modeling of PAC formation with

ethanol doping would help us further understand the effect oxygenated fuels have on the

transformation of small gas-phase species into soot particles.

In this work, I report the latest findings on the effect ethanol addition has on the forma-

tion and growth of aromatics in premixed ethylene flames. Six ethylene and ethanol-doped

ethylene flames were analyzed using a combination of deterministic gas-phase modeling

and stochastic computational techniques. I assessed and compared the relative importance

of the observed molecular growth mechanisms for different flame conditions and stages in

the combustion process. This section is adapted from this publication [183].

6.2.1 The Flame System

Past studies indicate that the flame temperature generally decreases when increasing the

amount of ethanol doping [162]. For example, Wu et al. [195] observed this effect when

characterizing a total of six ethylene/air and ethylene/ethanol/air flames. Since tempera-

ture profiles differ among these flames, temperature and gas-phase chemistry cannot be

completely decoupled when studying the effects of ethanol doping. To avoid focusing on
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temperature related differences, I modeled a set of flames keeping the temperature profiles

nearly constant by solving the energy equations and adjusting the cold gas velocity to study

the effect ethanol doping. A similar approach has been reported in benzene flames by Golea

et al. [71]. I chose the ethylene/air (pure, or 0% doping) premixed flame by Wu et al. [195],

which has an equivalence ratio (φ) of 2.34 and mass flux of 7.82 mg s−1 cm−2, as my refer-

ence system. Then the flame system was chosen to be a set of ethylene/ethanol/air flames

with equivalence ratios of 2.34 and 2.64, and doping percentages (m/m) of 0 %, 20 % and

40 %.

6.2.2 Gas-phase Kinetic Mechanism

Several previous studies have developed multiple ethylene/ethanol combustion mechanisms.

Wu et al. [195] used the base mechanism from Howard et al. [139], and augmented the

ethanol reactions from Marinov [109]. Gerasimov et al. [63] tested three mechanisms

against experimental measurements: the first consists of a base mechanism from Fren-

klach and coworkers [9, 180] and ethanol oxidation chemistry from Marinov [109]; the

second from the USC-Mech-II mechanism [181] and again the ethanol oxidation from

Marinov [109]; the last one, proposed by Konnov [94], includes the reactions for both

ethylene and ethanol. Elvati et al. [43] has also applied a base ethylene mechanism de-

veloped by D’Anna and Kent [33] supplemented with ethanol oxidation reactions from

Marinov [109]. However, none of these mechanisms include a variety of large PAHs.

In this study, I merged the KAUST mechanism II (KM2) [185] with the ethanol oxi-

dation from Sarathy et al. [145]. Since the KM2 mechanism has species up to coronene

(i.e., C24H12), the newly merged mechanism enables to study the effect of ethanol doping

on large PAHs up to 300 u with deterministic simulations. A total of 13 species and 111

reactions related to ethanol were merged with the KM2 mechanism.
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6.2.3 Gas-phase Simulations

6.2.3.1 Gas-phase Mechanism Validation

To validate the new mechanism, I ran the PREMIX code implemented in the CHEMKIN

software [135] with the merged mechanism. The results were compared with the gas-

phase measurements by Gerasimov et al. [63] measuring premixed atmospheric-pressure

fuel-rich ethylene/ oxygen/ argon (pure flame) and ethylene/ethanol/oxygen/argon (doped

flame) with the same equivalence ratio (φ = 1.7). The pure flame has a mole fraction of

C2H4/O2/Ar = 0.088/0.155/0.757, while the doped flame replaces 50% of ethylene with

ethanol and has a mole fraction of C2H4/C2H5OH/O2/Ar = 0.044/0.044/0.155/0.757. The

flow rate for both flames was maintained at 25.8 cm3 s−1. The experimental temperature

profiles were input into the PREMIX code to minimize the uncertainty when modeling the

heat loss from the energy equations. Figure 6.3 compares the results with experimental

measurements for both pure and doped flames.
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Figure 6.3: Comparison between experimentally and computed properties of the pure (solid
lines) and 50% doped (dashed lines) systems. Upper left panel shows the experimentally
measured temperature [63], while the other panels show the mole fraction evolution of se-
lected gas-phase species, from modeling (lines) and experiments (symbols) of pure (cross)
and doped flame (circles).
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At almost all heights, the new mechanism predicts the fuel (C2H4 and C2H5OH), ox-

idizer (O2), and the final combustion products’ (H2O, CO, and CO2) mole fractions with

less than 20% deviation from the experimental measurements. While the new mechanism

captures some of the intermediate species profiles such as H2, others, such as C2H2, are

not well-predicted after the peak location. Despite this discrepancy, the computed C2H2

mole fraction profile is similar to previous simulation work of this flame by Gerasimov

et al. [63] and the relative difference in C2H2 mole fraction between the pure and doped

flames matches well with experimental data.

Still, it is important to consider the degree to which this C2H2 deviation might affect the

stochastic modeling results. First, the mechanism is able to capture the C2H2 mole fraction

profile before the concentration peak, which represents the region of the flame with the

most rapid PAC chemical growth. Furthermore, although the computed mole fraction of

C2H2 can be up to three times larger than the experimental values, this discrepancy will

only result in a small difference on the comparatively large rate of a typical acetylene

addition reaction (e.g., 1.65× 1012 cm3 mol−1 s−1 for C2H2 addition to phenyl radical at

1500 K [103]). Thus even with these differences in C2H2 mole fraction, I expect the PAC

growth rate to be affected only marginally.

In addition, I verified that the merged mechanism does not substantially change the base

mechanism (KM2). Simulations performed with both the base and the merged mechanisms

on the pure ethylene flame resulted in only minor differences (less than 1%) across all

species. Overall, I consider the gas-phase mechanism adequate for my simulations.

6.2.3.2 Gas-phase Modeling Results

With the new mechanism being validated, now I applied this mechanism to the chosen

flame system, i.e., a set of ethylene/ethanol/air flames with equivalence ratios of 2.34 and

2.64, and doping percentages (m/m) of 0 %, 20 % and 40 %, using the PREMIX code imple-

mented in the CHEMKIN software [135], to keep the temperature profiles nearly constant

91



by solving the energy equations and adjusting the cold gas velocity. Then the computed

gas-phase species in the set of six flames was compared to assess the effect of ethanol dop-

ing on gas-phase species distributions. Figure 6.4 shows the mole fractions of gas-phase

species C6H6, C2H2, H2, and H2O for all six flame conditions. Mole fractions of H2O are

similar for both equivalence ratios, while higher equivalence ratios yield larger mole frac-

tions of C6H6, C2H2, and H2 which is to be expected for a more sooting flame. Within the

same equivalence ratio, increasing ethanol doping percentage results in less C2H2 and C6H6

and more H2 and H2O.

0 5 10 15 20

Height above burner, mm

0

0.2

0.4

0.6

0.8

1

M
o

le
 f

ra
c
ti
o

n

10-3

C
6
H

6

Pure

20% Doped

40% Doped

0 5 10 15 20

Height above burner, mm

0

0.01

0.02

0.03

M
o

le
 f

ra
c
ti
o

n

C
2
H

2

0 5 10 15 20

Height above burner, mm

0

0.05

0.1

0.15

M
o

le
 f

ra
c
ti
o

n

H
2

0 5 10 15 20

Height above burner, mm

0

0.05

0.1

0.15

M
o

le
 f

ra
c
ti
o

n

H
2
O

Figure 6.4: Mole fraction profiles of selected species from gas-phase modeling results for
the set of six flames. Solid lines represent pure flames, dashed lines 20% doped flames,
dash-dot line 40% doped flames; equivalence ratio is indicated by the color: black for 2.34
and red for 2.64.

These trends agree with the observations from previous experimental studies. Several

studies observed a reduction of C2H2 when doping with ethanol and considered this to be

one of the reasons for a decrease in soot formation [80, 98, 195, 51, 142]. The reduction of

C6H6, which is the principal species for small aromatics, was observed by Wu et al. [195].

Finally, an increase in H2O was seen by Salamanca et al. who suggested that it reduced

soot formation by removing H atoms through the reaction H2O + H OH + H2 [142].

92



Since the KM2 mechanism contains species with molecular masses up to coronene, I

also analyzed how the amount of small aromatics (one to two rings) and large PAHs (three

or more rings) are affected by ethanol doping (see Figure 6.5).
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Figure 6.5: Mole fractions of small aromatics (one to two rings, upper) and large PAHs
(three or more rings, lower) from gas-phase simulations for the set of six flames. Solid lines
represent pure flames, dashed lines 20% doped flames, dash-dot line 40% doped flames;
equivalence ratio is indicated by the color: black for 2.34 and red for 2.64.

Benzene makes up most of the small aromatics (one or two aromatic rings). Thus,

the mole fraction profiles look very similar to the C6H6 profiles shown in Figure 6.4.

The small aromatics grow rapidly after an HAB of 2 mm, where both H and C2H2 reach

their peak values (H profile is shown in Figure 6.7), and start to decay after an HAB

of 10 mm where they are consumed to form other species such as larger PAHs. The

mole fraction of large PAHs is mostly comprised of acenaphthylene (A2R5, C12H8), cy-
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clopenta[cd]pyrene (A4R5, C18H10), and anthanthrene (C22H12). Unlike small aromatics,

the large PAHs steadily accumulate in the gas-phase since no consumption of these species

is included in the model (e.g., physical aggregation). Interestingly, two of the most common

large aromatics contain five-membered rings and at all times have mole fractions larger than

pyrene. This observation demonstrates the important role that five-membered rings play in

PAC growth mechanisms [96], even when a simplified PAC mechanism is considered.

For all cases, the mole fractions of both small aromatics and large PAHs decay with

an increase in ethanol doping percentage. A reduction of 20% and 50% of large PAHs is

observed when doping 20% and 40% ethanol into ethylene/air premixed flames.

6.2.4 Stochastic Simulations

Some of the small gas-phase species from the CHEMKIN results were used as inputs to

SNapS2 to study the PAC formation mechanisms. Benzene, cyclopentadiene, and phenol

were selected as seeds for the SNapS2 simulations using the criteria introduced in Chap-

ter 2. A total of 32,000 traces were simulated across all three seeds and six conditions, and

the final properties were obtained by weighting each trace based on the seed mole fractions

at the starting location of each trace. While SNapS2 can simulate chemical growth of PACs

of any size, different processes start to be relevant at high molecular mass (above 800 u –

1000 u) [41, 154, 45] and therefore I stopped the simulations when species reached a mass

of 600 u. In the 32,000 simulations, I observed a total of∼ 61.5 million reactions, of which

10.2 million were unique, and 6.1 million different PACs.

While gas-phase modeling can simulate growth trends for a select number of small aro-

matics and large PAHs, it cannot reproduce the vast diversity of the PACs as it is limited by

the number of species. On the other hand, SNapS2 provides detailed atomistic information

of the PAC evolution in the flame. To compare the two types of modeling, I computed the

PAC chemical growth rate for the flames, by averaging the molecular growth of different

traces starting at the same location, and the cumulative chemical growth, obtained by inte-
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grating the chemical growth rate from height above the burner of 0 mm. Of note, different

time intervals should be considered when integrating to compensate for differences in the

gas flow rate. The results for all the flames are shown in Figure 6.6.
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Figure 6.6: Average (upper panel) and cumulative (lower panel) chemical growth of PACs
as a function of height above the burner from SNapS2 simulations for the set of six flames.
Solid lines represent pure flames, dashed lines 20% doped flames, dash-dot line 40% doped
flames; equivalence ratio is indicated by the color: black for 2.34 and red for 2.64.

The plot shows a noticeable reduction in PAC chemical growth when increasing the

ethanol doping percentage and when decreasing the equivalence ratio. This is in agree-

ment with the results of the CHEMKIN simulations (Figure 6.5 lower panel). However,

SNapS2 simulations indicate that the growth starts earlier than the deterministic gas-phase

simulations due to the inclusion of reactions for the formation of PACs with oxygenated

groups.

To understand the contribution of oxygenated species to the growth of PACs, I com-
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puted the percentage of PACs that contained at least one oxygen at different HABs. To

avoid biasing the results by including a large number of unstable species, all the PACs

were weighted by their lifetime. Oxy-PACs were largely observed between 2 mm and

4 mm, which correspond to the region with the maximum growth rate and around the loca-

tion where both O and H concentrations peak, as shown in Figure 6.7. Collectively, these

results indicate that a large portion of the initial growth is due to the oxy-PACs, and that is

the reason why it was not captured by the deterministic simulations.

While there are some small differences between the 6 flames, both the location and the

fraction of oxy-PACs is not markedly affected by the doping level or the φ. This is in line

with the low sensitivity of the O and H mole fractions to the doping percentage, except for

a small increase in H with increasing ethanol content, likely a result of removing the effect

of temperature. A similar effect on the O and H mole fractions has been shown by Golea et

al. [71] when doping premixed benzene flames with ethanol and removing the temperature

effects.

This similarity has important implications, since O is critical for PAH oxidation as

indicated by several studies [82, 55]. Considering that the reaction pathways for oxy-PACs

usually start by attaching an O atom to an aromatic site, it is reasonable to assume that

similar mole fractions of gas-phase oxidizing radicals is the reason for similar percentages

of oxy-PACs. At the same time, the increase in H mole fraction corresponds to decrease in

PAC growth, whether considering the deterministic model or the stochastic simulations.

It is worth noting that when the temperatures were not held constant by changing the

flow velocity, this trend would not hold either. Doping ethanol generally decreases the

flame temperature [162]. This would then lower the O and H concentrations, as lower flame

temperatures will usually lead to lower radical concentrations, and therefore the percentage

of oxy-PACs is also expected to decrease.

The mole fraction of C2H2 also peaks around the same location as O, which makes this

environment ideal for the formation of furan-embedded PACs [82, 182]. Analysis of the
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Figure 6.7: Upper panel: percentage of oxy-PACs in different flames as a function of HAB
from SNapS2 simulations; Middle and bottom panel: the mole fraction profiles for atomic
hydrogen and atomic oxygen from gas-phase simulations correspondingly. Solid lines rep-
resent pure flames, dashed lines 20% doped flames, dash-dot line 40% doped flames; equiv-
alence ratio is indicated by the color: black for 2.34 and red for 2.64.

formed oxygenated structures shows that most of the oxy-PACs are phenols, 15% are fu-

rans, and a small amount are ethers. Interestingly, SNapS2 simulations indicate that the

formation and decomposition of PACs containing oxygenated groups happen frequently.
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Figure 6.8 shows the evolution of three examples of traces for the pure ethylene/air pre-

mixed flame with an equivalence ratio of 2.34. While some of the furan rings are preserved

at high HAB (trace 1, upper), others disappear (trace 2, middle). As the formation of phe-

nols and ethers are highly reversible at these conditions, aromatic molecules frequently

transform between pure hydrocarbons and oxy-PACs.

Figure 6.8: Example of compounds predicted in the pure ethylene/air premixed flame with
equivalence ratio of 2.34 using benzene as seed molecule. Atoms in dark, grey, and red
correspond to carbon, hydrogen, and oxygen atoms. The molecules on the second and third
column are sampled at an HAB of 2 mm and 10 mm respectively.

Statistical analysis of the reactions happening at different flame locations helps eluci-

date the PAC growth phenomena. Table 6.2 shows the top 5 generic reactions at HABs of

2 mm and 10 mm, weighed by the lifetime of the reacting PACs for the pure ethylene/air

premixed flame with an equivalence ratio of 2.34. This analysis validates many of the

points discussed above. Oxygen chemistry dominates around an HAB of 2 mm, while the

major formation route for HACA is more relevant at 10 mm. At the same time the rapid

decomposition of the oxy-PACs indicates that these reactions provide only a initial increase
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in PACs size and that they are not responsible for the sustained growth of PACs.

Table 6.2: Most frequent/relevant/important reactions occurring in SNapS2 simulation in
the pure ethylene/ air premixed flame with equivalence ratio of 2.34, at different HAB.

Reaction (HAB = 2mm) Relevance

3R

R4

R5

O
CH3

R1

2R

3R

R4

R5

O

R1

2R

+ CH3
17.6%

3R

R4

R5

C
CH

R1

2R

3R

R4

R5

C
C

R1

2R

+ H
12.4%

R1 CH3 + H R1 CH2 + H2 9.8%

3R

R4

R5

O

R1

2R

+ H
3R

R4

R5

R1

2R

+ OH
9.4%

R1 CH2 + H2 R1 CH3 + H 9.3%

Reaction (HAB = 10mm) Relevance

3R

R4

R5

C
CH

R1

2R

3R

R4

R5

C
C

R1

2R

+ H
27.4%

3R

R4

R5

C

R1

2R

+ H2
3R

R4

R5

R1

2R

+ H

24.5%

1R

R2 R3

R4

R5

CH

1R

R2 R3

R4

R5

+ H 11.4%

2R
R3

R4
C

1R

+ H2
2R

R3

R4

1R

+ H
10.8%

3R

R4

CH

R1

2R

3R

R4

R1

2R

+ H

9.7%

In this study, a combination of deterministic and stochastic simulations was used to

study the effect of ethanol addition on the formation of PACs. Six ethylene/air premixed
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flames with two equivalence ratios (2.34 and 2.64) and three different amounts of ethanol

doping (0 %, 20 % and 40 % by mass) were analyzed. By adjusting the cold gas velocity,

an almost identical temperature profile was kept among all the systems in order to remove

the effect of temperature from our analysis.

The gas-phase was modeled with a newly merged combustion mechanism that includes

both ethanol oxidation and the growth of large PAHs. This mechanism was validated

against experimental measurements from literature. The simulations for the selected system

show that the addition of ethanol causes a slight increase of H but a reduction of acetylene,

small aromatics, and large PAHs in agreement with previous works available in the litera-

ture. By increasing the ethanol doping percentage, C2H2, C6H6, small aromatics and large

PAHs show more reductions from deterministic simulations.

These reductions are also observed from the stochastic simulations, where both chem-

ical growth rate and cumulative growth of the PACs are reduced when the ethanol doping

percentage is increased. The doping however does not strongly affect the amount of oxy-

genated PACs nor the type of oxygenated groups, because the mole fraction profiles of both

atomic oxygen and atomic hydrogen are almost identical among six flames, as a result of

decoupling the effect of flame temperature. The number of oxy-PACs reach a maximum at

a height above burner around 2 mm–3 mm where they constitute 45% of all the PACs: most

of the oxygenated structures are phenols, mixed with approximately 15% of furans, and a

small amount of ethers. The rate of PAC growth then gradually slows down, with pure

hydrocarbon growth mechanisms being the main contributors in this region of the flame.

Overall, the results indicate that the formation pathways of oxygenated PACs can compete

with pure hydrocarbon growth mechanisms in the rapid growth region up to a height above

burner of 2 mm–3 mm. These oxy-PACs are responsible for the rapid growth of the precur-

sors at low HABs, while HACA reactions cause a slower growth that is sustained along the

whole flame.
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CHAPTER 7

Conclusions and Future Work

Understanding the formation of polycyclic aromatic compounds (PACs) in combustion not

only bridges the knowledge gap between the small gas-phase species and incipient soot

particles, but may also help address the global emission issues of both PACs and soot.

In this thesis, I present a fully-reversible, thermodynamically-consistent, and sterically-

resolved kinetic mechanism with 396 generic reactions describing PAC growth in combus-

tion. These reactions were then implemented by 430 reactive SMARTS for a stochastic

modeling code (i.e., SNapS2) recently developed by the Violi Group. While the SNapS2

code utilizes kinetic Monte Carlo scheme to enable simulations of the chemical growth in

different gas-phase environments (e.g., chemical vapor deposition, non–thermal plasma),

the kinetic mechanism is targeted at the formation of PACs in combustion systems. Reac-

tions are gathered and categorized from various literature to address some new experimen-

tal and computational discoveries, such as the presence of furan-embedded PACs, ketones,

aliphatic side chains, and types of five-membered rings, as well as the growth mecha-

nisms of aromatics other than the hydrogen-abstraction-acetylene(C2H2)-addition mecha-

nism. Some missing reaction pathways were identified from experimental evidences and

simulations, namely the formation of furan-embedded PACs and types of five-membered

rings. Quantum chemistry calculations have been carried out for those pathways. These

newly discovered reactions were then compared with major competing pathways and fur-

ther included in the kinetic mechanism as well.
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The characteristics of the PACs predicted with the kinetic mechanism were compared

against different experimental measurements: mass spectra measured in a counterflow dif-

fusion flame, the oxygen-to-carbon ratios obtained at different locations of a coflow diffu-

sion flame, and the molecular structures observed in a premixed laminar flame. The simu-

lation results show excellent agreement with experimental mass spectrum taken by aerosol

mass spectrometry coupled with vacuum-ultraviolet photoionization in the range of 200 u

to 450 u in terms of peak locations and intensities in an ethylene counterflow flame, re-

produce the diverse array of oxygenated PACs observed experimentally between 150 u and

450 u in a coflow diffusion Jet A-1 surrogate flame, and capture the PACs in terms of a large

variety of functional groups characterized experimentally by atomic force microscopy in

an ethylene premixed flame. These successful validations demonstrate that the SNapS2

kinetic mechanism provides a high-fidelity, and yet generic description of the PAC for-

mation under various combustion conditions, making SNapS2 the first-of-its-kind to have

such extensive validations. The SNapS2 code and the kinetic mechanism showed a unique

capability to match experimental findings, thus proves to be extremely useful in shedding

light on the evolution of molecules from gas phase to soot precursors and contributes to

reveal the underlying mechanisms to the experimental observations.

In addition to these validations, SNapS2 code and the kinetic mechanism have also

shown its capability to provide valuable insights on the formation of aromatics beyond the

limitation of diagnostics. As one application of the SNapS2, spatial dependence of the

PAC growth in an ethylene counterflow diffusion flame was characterized, revealing differ-

ent PAC growth mechanisms for the streamlines starting from fuel side and oxidiser side.

Whereas HACA pathways dominate pure hydrocarbon growth on the fuel side of the flame

and near stagnation plane, oxy-PACs are preferentially formed on the oxidizer side when

crossing the maximum temperature region; in this location the high temperature and high

concentration of oxygen atoms favor the formation of oxy-PACs. These oxy-PACs evolve

to phenols and ethers if they cross a region with low acetylene concentration; they grow to
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furan-embedded PACs if the acetylene concentration is high. Overall, these results show

the importance of simulating the counterflow flame as a two- or three-dimensional system

to capture the spatial dependence of soot precursors growth. Furthermore, the results show

the importance of oxygen chemistry to accurately predict molecular growth in some spatial

regions of the flame.

Given the fidelity of the SNapS2 predictions, it was also used to examine conditions

that are impossible to test experimentally, like completely decoupling the effects of flame

temperature when studying the effects of ethanol doping on the formation of aromatics,

highlighting the chemical pathways that result in soot reduction. From stochastic modeling

results, both chemical growth rate and cumulative growth of the PACs are reduced when

the ethanol doping percentage is increased. The doping however does not strongly affect

the amount of oxy-PACs nor the type of oxygenated groups, because the mole fraction

profiles of both atomic oxygen and atomic hydrogen are almost identical among all the

flames, as a result of decoupling the effect of flame temperature. The number of oxy-PACs

reach a maximum at a height above burner around 2 mm–3 mm where they constitute 45%

of all the PACs: most of the oxygenated structures are phenols, mixed with approximately

15% of furans, and a small amount of ethers. The rate of PAC growth then gradually

slows down, with pure hydrocarbon growth mechanisms being the main contributors in this

region of the flame. Overall, the results indicate that the formation pathways of oxygenated

PACs can compete with pure hydrocarbon growth mechanisms in the rapid growth region

up to a height above burner of 2 mm–3 mm. These oxy-PACs are responsible for the rapid

growth of the precursors at low HABs, while HACA reactions cause a slower growth that is

sustained along the whole flame. Both applications show the uniqueness and great potential

of the model to obtain insights of the PAC formation when measurements are hard to obtain

or experiments are difficult to control.

The future work includes implementation of the radical-radical combination and the

study of the physical growth. While SNapS2 code and the kinetic mechanism have done
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an extraordinary job on predicting the PAC formation in the range of 200 u to 450 u from

both the mass spectrum and oxygen content, it starts to be less accurate beyond 600 u.

The reason for that is likely to be the radical-radical combination [81, 43]. In the current

SNapS2 code, the molecules can only react with small gas-phase species (with molecular

mass less then benzene) and they cannot meet each other. But if two PACs both have radical

sites, they could react and likely react fast, i.e., the radical-radical combination. Elvati et

al. [43] have done some investigations on this topic, and showed that by including radical-

radical combination, the mass spectrum is significantly shifted toward higher masses. So

the next step for the SNapS2 could be the implementation of this. In addition, utilizing the

PACs obtain from SNapS2, the building blocks of the primary particles, further study of

the physical growth [45, 43, 46, 44] would be beneficial. Physical growth becomes relevant

for molecular masses beyond 1000 u. A combination of the SNapS2 and a physical growth

model would help reveal the soot formation process in great detail.

Altogether, this dissertation laid a solid foundation that not only helps explain the ex-

perimental observations for the formation of soot precursors, but also provides a powerful

tool for exploring the gas-phase nanoparticle growth that could drive the development of

novel combustion technologies or the design of new nanomaterials.
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WESTMORELAND, P. R. Kinetic modeling study of ethanol and dimethyl ether
addition to premixed low-pressure propene–oxygen–argon flames. Combust. Flame
158, 7 (2011), 1264–1276. 87, 92

[52] FRENKLACH, M. On surface growth mechanism of soot particles. Proc. Combust.
Inst. 26, 2 (1996), 2285–2293. 3, 9, 23, 30

[53] FRENKLACH, M. Reaction mechanism of soot formation in flames. Phys. Chem.
Chem. Phys. 4, 11 (May 2002), 2028–2037. 2, 23, 33

[54] FRENKLACH, M., CLARY, D. W., GARDINER, W. C., AND STEIN, S. E. Detailed
kinetic modeling of soot formation in shock-tube pyrolysis of acetylene. Proc. Com-
bust. Inst. 20, 1 (1985), 887–901. 2, 4, 33, 51

[55] FRENKLACH, M., LIU, Z., SINGH, R. I., GALIMOVA, G. R., AZYAZOV, V. N.,
AND MEBEL, A. M. Detailed, sterically-resolved modeling of soot oxidation: Role
of O atoms, interplay with particle nanostructure, and emergence of inner particle
burning. Combust. Flame 188 (Feb. 2018), 284–306. 9, 10, 23, 29, 35, 37, 38, 49,
76, 96

[56] FRENKLACH, M., SCHUETZ, C. A., AND PING, J. Migration mechanism of
aromatic-edge growth. Proc. Combust. Inst. 30, 1 (Jan. 2005), 1389–1396. 2, 9,
29, 33, 39, 51

[57] FRENKLACH, M., SINGH, R. I., AND MEBEL, A. M. On the low-temperature limit
of HACA. Proc. Combust. Inst. 37, 1 (2019), 969–976. 2, 4, 23, 33

[58] FRENKLACH, M., AND WANG, H. Detailed modeling of soot particle nucleation
and growth. Proc. Combust. Inst. 23, 1 (Jan. 1991), 1559–1566. 2, 4, 33

109



[59] FRENKLACH, M., AND YUAN, T. Effect of alcohol addition on shock-initiated
formation of soot from benzene. Proceedings of the 16th International Symposium
on Shock Tubes and Waves, 16 (1987), 487–493. 88

[60] GALIMOVA, G., AZYAZOV, V., AND MEBEL, A. Reaction mechanism, rate con-
stants, and product yields for the oxidation of Cyclopentadienyl and embedded five-
member ring radicals with hydroxyl. Combust. Flame 187 (Jan. 2018), 147–164.
35, 38, 76

[61] GARDINER, W. C. Shock tube studies of combustion chemistry. In Shock Waves
(Berlin, Heidelberg, 1992), K. Takayama, Ed., Springer Berlin Heidelberg, pp. 49–
60. 3

[62] GEORGANTA, E., RAHMAN, R. K., RAJ, A., AND SINHA, S. Growth of polycyclic
aromatic hydrocarbons (pahs) by methyl radicals: Pyrene formation from phenan-
threne. Combust. Flame 185 (2017), 129 – 141. 52

[63] GERASIMOV, I. E., KNYAZKOV, D. A., YAKIMOV, S. A., BOLSHOVA, T. A.,
SHMAKOV, A. G., AND KOROBEINICHEV, O. P. Structure of atmospheric-pressure
fuel-rich premixed ethylene flame with and without ethanol. Combust. Flame 159,
5 (2012), 1840–1850. 87, 89, 90, 91

[64] GIACCAI, J. A., AND MILLER, J. H. Examination of the electronic structure of
oxygen-containing PAH dimers and trimers. Proc. Combust. Inst. 37, 1 (2019),
903–910. 34, 41

[65] GILLESPIE, D. T. A general method for numerically simulating the stochastic time
evolution of coupled chemical reactions. J. Comput. Phys. 22, 4 (Dec. 1976), 403–
434. 8

[66] GILLESPIE, D. T. Exact stochastic simulation of coupled chemical reactions. J.
Phys. Chem. 81, 25 (Dec. 1977), 2340–2361. Publisher: American Chemical Soci-
ety. 8

[67] GILLESPIE, D. T., HELLANDER, A., AND PETZOLD, L. R. Perspective: Stochastic
algorithms for chemical kinetics. J. Chem. Phys. 138, 17 (May 2013), 170901. 7, 8,
15

[68] GIRI, B. R., FERNANDES, R. X., BENTZ, T., HIPPLER, H., AND OLZMANN, M.
High-temperature kinetics of propyne and allene: Decomposition vs. isomerization.
Proc. Combust. Inst. 33, 1 (2011), 267–272. 38, 39

[69] GOEL, A., HEBGEN, P., SANDE, J. B. V., AND HOWARD, J. B. Combustion
synthesis of fullerenes and fullerenic nanostructures. Carbon 40, 2 (2002), 177–
182. 2

[70] GOLDSMITH, C. F., KLIPPENSTEIN, S. J., AND GREEN, W. H. Theoretical rate
coefficients for allyl + HO2 and allyloxy decomposition. Proc. Combust. Inst. 33, 1
(2011), 273–282. 24

110



[71] GOLEA, D., REZGUI, Y., GUEMINI, M., AND HAMDANE, S. Reduction of PAH
and soot precursors in benzene flames by addition of ethanol. J. Phys. Chem. A 116,
14 (Dec. 2012), 3625–3642. 87, 89, 96

[72] GRIFFIN, E. A., CHRISTENSEN, M., AND GÜLDER, O. L. Effect of ethanol ad-
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[160] SU, D., JENTOFT, R., MÜLLER, J.-O., ROTHE, D., JACOB, E., SIMPSON, C.,
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