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Abstract 

 

Body weight and feeding regulation are carefully governed by complex homeostatic 

neural networks that respond to a myriad of peripheral signals that reflect both short- and long-

term energy status. A critical component of that regulation involves communication between the 

gut and the brain. This “gut-brain” axis delicately coordinates ingestive behaviors with 

physiological systems that must process and absorb what gets ingested. The gastrointestinal tract 

maintains two predominant but contrasting functions. One is nutrient absorption and the other is 

to act as a barrier to protect against toxic compounds and bacteria.  

The gut-brain axis plays a crucial role in an organism’s ability to regulate energy balance 

and maintain an appropriate body weight. A negative energy balance will stimulate hunger and 

food seeking and vice-versa to maintain a set-point of body weight and adiposity. In doing so, 

energy input and expenditure are carefully matched to maintain fuel availability and prevent 

shifts in long-term body weight. Under various conditions, this set-point can become too high 

and the resultant increase in body mass can have a myriad of detrimental effects. Similarly, 

under particular stress conditions, intestinal and neural signaling are altered to maintain a 

pathologically low set-point, resulting in maladaptive feeding and illness responses. Central 

networks that regulate illness symptoms of anorexia in pathophysiological states are still yet to 

be completely identified and understood. 
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Deciphering the key gut-brain signals that regulate feeding related disorders will open 

opportunities for critically needed therapeutics. For example, obesity has become one of the 

world’s largest health threats. Obesity and the associated comorbidities can decrease the quality 

of life and substantially increase susceptibility to pathologies such as cancer and infection. This 

dissertation examines the role of various peripheral signals in regulating feeding networks, 

weight patterns and illness in pathophysiological states of infection and obesity.  

Studies in Chapter 2 examined growth differentiation factor 15 (GDF15) and GDNF 

family receptor alpha-like neuronal signaling in a model of bacterial sepsis. We demonstrated 

that GDF15 secretion was highly induced with exposure to lipopolysaccharide (LPS) in mice, 

rats, and humans. Because infection responses are influenced by housing temperatures, we 

examined mice at several temperatures to increase the translational relevance of rodent to human 

thermoregulatory responses. We then tested the necessity of GDF15 in body weight regulation, 

feeding behavior, and illness outcomes in response to LPS. As physiological responses vary for 

differing microorganisms, we investigated a model of trichothecene infection in Chapter 3. Using 

genetically altered mouse models of GDF15 and glucagon-like peptide 1 (GLP-1) ligand and 

receptor, we determined that these gut-brain signals are not necessary for the illness and feeding 

responses to deoxynivalenol and LPS. 

Chapter 4 focuses on gut signals that are highly altered in gastro-intestinal restructuring 

surgeries. Bariatric surgeries result in long-term weight loss demonstrating the importance of the 

gastro-intestinal tract in regulating overall energy balance. One important goal is identifying the 

signals that are altered that account for the potent effects of bariatric surgeries. After surgery, 

there is a prominent increase of the hormone glucagon-like-peptide 2 (GLP-2). We used a loss-

of-function mouse model to test the role of GLP-2 in the effects of surgery to reduce weight, 
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improve glucose regulation and alter levels and composition of bile acids. We demonstrated that 

while GLP-2 is required for changes in bile acids, it is not necessary for the benefits of bariatric 

surgery.  
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Chapter 1: Introduction 

 

1.1 Body weight set-point 

 

Homeostatic neural mechanisms delicately balance nutritional and feeding states on a 

minute-to-minute basis. In response to nutrients entering the gastrointestinal tract, satiety signals 

influence the motivational and motor pattern generating aspects of brain signaling to generate 

decisions about which foods and the caloric content to ingest. In doing so, energy input and 

expenditure are carefully maximized to maintain metabolic needs and prevent shifts in long-term 

body weight. A negative energy balance will stimulate hunger and food seeking and vice versa to 

maintain a set-point of body weight. 

However, under certain environmental, social and genetic conditions, an organism’s body 

weight set-point can be altered. As such, obesity has become one of the world’s largest health 

threats. Two-thirds of the nation’s population suffer from comorbidities that decrease the quality 

of life and increase economic health burden. In mice, this increase in set point can be modeled by 

feeding rodents a palatable high-fat diet to induce diet induced obesity (DIO). While fasting can 

result in an acute reduction of body weight, obese rodents and individuals are able to maintain 

and defend elevated levels of fat mass when given free access to food. Thus, obesity represents a 

pathological state in which the energy homeostasis system is dysregulated. 

When challenged with infections, shifts in metabolic demands to mount immune 

responses are required. These mechanisms necessitate changes in metabolism and energy usage, 
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thus a change in energy balance. During illness, a negative energy balance is not accompanied by 

counterregulatory food seeking. Instead, food refusal/avoidance and negative energy balance are 

favored. Although acute shifts in energy balance are occasionally beneficial in recovery from 

acute challenges, chronic decrease can result in the lowering of the body weight set point that is 

pathological and can contribute to mortality. Illness associated weight loss is often present along 

with symptoms such as nausea and emesis, a response that is beneficial in the event of ingested 

toxins, but can be deleterious in the absence of the acute need to rid the body of toxins.   

To control both aspects of feeding (satiety vs illness) diverse peripheral signals 

communicate the state of nutrition, immunity, and energy stores to the brain. A variety of 

circulating mediators can activate receptors in the enteric nervous system, the vagus, or directly 

in the brain to signal peripheral health status. As such, central networks create a coordinated 

response to control ingestive behavior. In doing so, proper nutrient absorption and protection 

against harmful toxins are maintained. While the satiety response leads to reward and increased 

nutrient absorption, the infection response leads to aversion and expulsion of ingested substance. 

This key difference emphasizes that the signals generated by the gut and what the brain does 

with those signals must be distinct from one another.  Neuronal signals and networks that 

regulate the illness symptoms such as anorexia and nausea in pathophysiological states are still 

yet to be completely identified. Whether the symptoms and severity of anorexia and nausea are 

on a continuum, regulated by similar neural networks and reliant on the potency of the stimulus, 

or whether distinct neural networks signal distinct symptoms is also yet to be determined.  

The hindbrain represents a key integration point of gut to brain signaling as it represents a 

convergence of afferent and efferent projections from and to the intestinal tract as well as 

hormonal signals from the gut or its absorbed nutrients. Understanding the complex peripheral 
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and neural signaling, the gut-brain axis, that is necessary to drive behavioral changes creates 

therapeutic opportunities to regulate pathological conditions in which energy balance is skewed. 

Here we examine gut to brain signaling using models of obesity, weight loss surgery, and 

infection while highlighting the roles of peripherally derived mediators in circulation. 

1.1.1 GDF-15 

Amongst the peripheral mediators that signal to the brain, one protein that has recently 

gained attention is growth differentiation factor 15 (GDF15). GDF15 was initially characterized 

by the Breit academic group and initially calling it macrophage inhibitory cytokine 1 (MIC-1) 

due to its release from activated macrophages [1,2]. Several other groups also cloned the GDF15 

gene and named it placental transforming growth factor beta (PTGF-), prostate derived factor 

(PDF), non-steroidal anti-inflammatory drug-activated gene 1 (NAG-1), and placental bone 

morphogenic protein (PLAB) depending on the results and conditions of their experiments. 

GDF15 is localized to a 2 exon gene on chromosome 19p13.11b [2] and circulates as a 24.5kDA 

homodimer once it is cleaved from a 62kDa intracellular protein [2]. Although GDF15 does not 

bind any transforming growth factor (TGF-) receptors [3], GDF15 is a distant member of the 

TGF- superfamily of proteins due to the conserved 9 cysteine region conferring sequency 

homology. GDF15 has been found in a variety of organs, illustrated by detectable gene 

expression in the lung, heart, adipose, pancreas, small intestine and placental trophoblasts but 

most commonly detected in high levels within the liver and kidney [4–11]. The exact origins of 

GDF15 in various pathophysiological states are still poorly understood. A variety of tumors 

produce high levels of GDF15 that can enter the circulation which led to hypotheses about its 

potential role in various sequalae associated with specific tumors including weight loss [12] . 
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1.1.2 GFRAL 

2017 was a groundbreaking year for the field of GDF15 signaling. Four pharmaceutical 

companies simultaneously published the identification of GDNF family receptor -like 

(GFRAL), all of which showed the ability of GFRAL signaling to decease food intake and body 

weight in various species, including rodents and non-human primates [3,13–15]. Intriguingly, 

GFRAL expression is exceptionally narrow in the CNS. The companies discovered that GFRAL 

expression is restricted to a small hindbrain region near the fourth ventricle, the area postrema 

(AP), but is also present in a second hindbrain region of the NTS in lesser amounts. The AP is 

heavily interconnected to the lateral parabrachial nucleus (PBN) and the NTS. Both the AP and 

NTS play a crucial role in mediating satiety signals and appetite through a network including the 

lateral PBN and central amygdala (CeA). The AP is part of the circumventricular organs (CVO), 

an area that is outside of the blood brain barrier, and adjacent to the nucleus tractus solitarius 

(NTS). The CVOs are one of the only areas of the brain that have fenestrated vasculature along 

with slowed blood flow. These properties have resulted in the AP acquiring the nickname 

“chemoreceptor trigger zone” as many circulating factors can penetrate and signal onto receptors 

to regulate appetite and metabolism [16,17]. Thus, the AP/NTS is particularly situated as a hub 

of gut to brain signaling.    

GFRAL has been characterized as a distant member of glial cell line derived neurotrophic 

factor (GDNF) receptors. GFRAL is a transmembrane protein receptor that, unlike other GDNF 

family receptors GFRa1-4 which are anchored to the plasma membrane by GPI, is attached by a 

short cytoplasmic domain of 23aa [3,18]. Competitive binding assays testing BMP-1, TGF, and 

other GDNF family ligands found that GFRAL binds exclusively to GDF-15. Upon binding 

GDF-15, GFRAL forms a heterodimer with the coreceptor tyrosine kinase RET to induce 
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downstream Akt signaling pathway. Additionally, in vitro studies have shown phosphorylation 

of Erk1/2 and PLC [3,15]. Due to contamination of commercial GDF15, SMAD signaling was 

an initial mischaracterization of GDF15 action, primarily in cardiomyocyte in vitro experiments, 

often resulting in anti-inflammatory and anti-apoptotic action [19,20]. Unlike TGF-R1/2s, 

GFRAL does not activate serine/threonine kinase to downstream activate the SMAD family of 

transcription factors [3,14,15,21]. 

1.1.3 GDF15 in health and feeding 

Homeostatic feeding mechanisms coordinate peripheral hormonal signaling to 

hypothalamic neuronal circuits to maintain proper body weight and feeding behaviors. This 

circuitry is tightly controlled in normal states. Under stress or pathophysiological conditions, 

classically non-homeostatic neuronal mechanisms outside of the hypothalamus can be activated 

to reduce feeding. In the case of GDF15-GFRAL circuit, there is little evidence thus far for 

endogenous GDF15 to control feeding in lean, normal states. For example, healthy, lean mice fed 

chow diet seldom vary circulating GDF15 levels. Unlike many satiety factors, GDF15 is not 

released into circulation postprandially [22]. In fact, there is limited evidence to suggest that it is 

regulated by acute feeding states at all. As a testament to this, humans that ate 40% greater 

calories for 1 week had no change in circulating GDF15. Further, 24 hours of fasting in mice did 

not alter serum GDF15 [8]. Although a human study monitoring serum GDF15 every 30 minutes 

initially seemed to be associated with postprandial states, the authors found that the modest 

increases were explained by diurnal variation [22], an effect that likely also explains the 

postprandial fluctuation observed in a recent human blood sampling study [4]. In this study, the 

minor shifts in GDF15 are still within the range of normal circulating basal levels in healthy 

individuals (200-1200pg/ml). The effects of modest shifts in GDF15 within this normal range are 
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unknown, but unlikely to impact energy intake. Further, although some hindbrain cells such as 

calcitonin receptor neurons activate after an overnight fast and refeeding event, GFRAL neurons 

do not [23]. In contrast to gut satiety factors, GDF15 is therefore not influenced by nutritional 

status.  

The function of GDF15 signaling under nonpathological states remains elusive. Genetic 

deletion of GDF15 and GFRAL in lean animals fed chow diets alters body weight slightly in 

some studies and not at all in others. Both male and female GDF15 KO mice had 6-10% more 

body weight than WT controls at 5 weeks and increased fat mass by 14 weeks [24]. Two other 

reports of GDF15 KO mice show no differences in body mass, body composition, or feeding 

behaviors [3,14]. GFRAL KO mice have no difference in food intake and body weight up to 6 

months of age [15]. In contrast, genetic overexpression of GDF15 in mice decreases food intake, 

body weight and fat mass in mice fed chow or low-fat diet [25–28]. Under normal physiologic 

conditions and chow diets, loss of GDF15 or GFRAL in mice has little to no effect on energy 

balance.   

However, when challenged with chronic high-fat diet (HFD) or obesity, serum GDF15 

levels rise in mice, rats, and humans compared to lean controls [6]. Germline deletion of GFRAL 

or GDF15 in mice with overnutrition leads to a modest increase in weight gain and fat mass due 

to increased food intake. GFRAL KO mice were predisposed to HFD diet-induced obesity (DIO) 

in 2 studies [3,15]. In one study, after 12 weeks of HFD DIO, GFRAL KO mice accumulated 

32% greater fat mass and 9% greater lean mass compared to WT mice [3]. Mullican et al. 

showed that HFD for 9 weeks led to a small increase in food intake and at 18 weeks an increased 

body weight and adipose mass gain [15].  In other studies, lack of GFRAL after 16 weeks of 

HFD was not associated with alterations of body weight, food intake, or fat mass compared to 
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WT mice [14]. To circumvent the impact of developmental adaptations in GFRAL and GDF15 

KO mice, Tsai et al. used shRNA to knock down GFRAL in the AP and NTS and showed 

increase weight gain and fat mass of bilaterally injected AP/NTS with AAV-shRNA vs AAV-

shControl. They also tested the impact of a weekly injection of a monoclonal human GDF15 

neutralizing antibody in mice engineered to express human GDF15 and challenged with HFD. 14 

weeks of antibody use showed reduced body weight gain and food intake compared to vehicle 

treated mice [29]. Tran et al. also found that loss of GDF15 in DIO male mice leads to 

significant increase in body weight and food intake when fed HFD [30]. Consistently, GDF15 

signaling has been shown to induce weight loss and reduced energy intake under the challenge of 

diet induced obesity (DIO) in rodents.  

A correlational example in humans comes from the mostly prominent glucose lowering 

treatment used for type 2 diabetes (T2D) used since the 1950s, metformin .  Interestingly, 

metformin is associated with a small but reliable reduction in body weight. The dose of 

metformin in humans correlates with GDF15 levels in a trial of >8,000 participants [31]. 

Metformin treatment in humans for 2 weeks induced elevated serum GDF15 which was 

sustained for the duration of intervention and up to 18 months. This elevation of GDF15 is also 

correlated with the modest reduction of body weight accompanying metformin treatment. 

Further, metformin induced weight loss and anorexia under HFD conditions for 11 days were 

only present in WT mice and not in GDF15 KO and GFRAL KO mice, suggesting that 

metformin relies on GDF15 signaling for these effects [7].  

Not surprisingly, subcutaneous administration of recombinant GDF15 in mice, rats and 

non-human primates induces reductions of caloric intake and body weight [15]. Similar results 

are seen with i.c.v administration of recombinant GDF15 into obese rats and chow-fed mice 
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[14,32]. Rats that are pair-fed to those administered subcutaneous GDF15 lose just as much body 

weight and fat mass as those treated with GDF15, indicating that weight loss is a result of 

reduced food intake as opposed to alterations in energy expenditure [14]. Moreover, artificial 

activation of GFRAL neurons slows gastric emptying and pharmacological administration of 

GDF15 alters food choice preference in which fat intake is reduced in mice [23,33], both 

representing other potential ways of limiting calorie absorption and intake.  

While the ability of pharmacological GDF15 to elicit anorexia has been well investigated 

in both lean and obese animals, the current body of literature largely supports a role for 

endogenous GDF15 signaling to be of significance primarily during challenges of overnutrition, 

rather than during normal, healthy states. In contrast to peripheral satiety signals that are released 

in response to meal ingestion to control meal size and frequency, GDF15 is largely independent 

of nutrient intake. GDF15 thus represents a gut to brain alarm signal of threatening conditions. It 

is a peripheral signal that mediates a reduction of feeding behaviors when there is potent 

physiological stress, potentially to increase chances of survival, rather than a reaction to nutrient 

intake and long-term energy homeostasis.  

1.1.4 GFRAL neuronal circuitry 

Energy homeostasis is coordinated through a plethora of protein signaling mediators 

originating from peripheral organs such as the intestine, stomach, pancreas, and adipose tissue in 

response to a variety of factors including the feeding, circadian rhythms, adipose tissue mass, 

and metabolic states. In addition to direct hormone to receptor signaling in the brain, paracrine 

signals from the intestinal mucosa are released in response to nutrient intake and signal through 

vagal afferents to the NTS to relay information about nutrient content, density, volume of 

ingested food [34]. As such, the hindbrain regions of the AP and NTS are a central hub for 
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integrating diverse peripheral signals. A myriad of peripherally derived hormones such as CCK, 

ghrelin, leptin, PYY, and GLP-1 are well known to communicate nutrient and adiposity signals 

and impact food consumption via the NTS. Some of the downstream projections go to the 

hypothalamus and play a role in day to day energy balance, and others to the PBM to signal meal 

size in physiological and stress states. While it is established that many gut-brain signals reduce 

food intake, there is differential abilities of neural networks to transduce satiety compared to 

illness responses that still need resolution.  

Both the AP and NTS are included in the dorsal vagal complex (DVC), a region that is 

involved in gut-brain signaling. The AP receives modest vagal input but has the advantage of 

receiving peripheral signals via circulating factors. On the other hand, the NTS receives heavy 

input from both the AP and visceral structures via the vagus nerve in response to the ingestion of 

both meals and toxins. The largest neuronal output from the NTS is the PBN which integrates 

visceral signals of taste, sickness, pain, and importantly appetite suppression [35].  

The discovery of GFRAL and its narrow distribution in the CNS presented an important 

opportunity to identify the circuit that mediates the potent effects of GDF15 to reduce food 

intake and body weight.  Prior to the discovery of GFRAL, early ablation studies showed the AP 

and NTS to be necessary for GDF15 induced anorexia. i.p. and i.c.v. injection of hGDF15 

induced cFOS immunoreactivity in the AP, NTS [12,32] and CGRP neurons in the PBN and 

CeA [23]. Although a 5 day infusion using an osmotic minipump of recombinant (human) 

hGDF15 induced significant weight loss in sham mice, mice with an ablated AP or AP/NTS had 

stunted or no difference in weight gain, respectively [32]. Furthermore, subdiaphragmatic vagal 

deafferentation studies consistently show no impact on GDF15 mediated anorexia, confirming 
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that GDF15 likely signals directly onto the AP and NTS rather than through peripheral afferents. 

In fact, removal of the vagus nerve slightly heightened anorexia [14,36].  

Though some of the projections of GFRAL neurons are beginning to be mapped, there is 

less clarity on their composition and protein expression patterns that can distinguish differing 

neural populations. For example, since GLP-1 produces anorexia via GLP-1R and is highly 

expressed in the AP and NTS, it was hypothesized that GFRAL and GLP-1Rs are present on the 

same neuronal population, or at least work through similar neural pathways. Though GLP-1R 

expression is largely similar to GFRAL expression in the hindbrain, only a small portion of GLP-

1R neurons express GFRAL. GDF15 and GLP-1 agonists activate separate neuronal circuits in 

which the anorexic effects are additive if administered together [33]. In contrast, Worth et al. 

found that a subset of CCK neurons, which project from the NTS to the PBN, are GFRAL 

positive and that blocking CCK or GFRAL signaling can disrupt GDF15 induced anorexia [37]. 

Additionally, 27%-45% of GFRAL neurons immunostain for tyrosine hydroxylase, suggesting 

that they are catecholaminergic dopamine -hydroxylase (DBH) cells [14,37], although one 

study investigating immunostaining following GDF15 administration recently opposes this 

finding [32]. Both CCK and DBH neurons from the NTS to the PBN have been known to induce 

anorexia [38]. Over half of the GFRAL neurons within the AP colocalized with the glutamate 

transporter Slc17a6 fluorescent tag in mice, which is consistent with the understanding that 

~80% of NTS to PBN neuronal transmission is glutamatergic [37–39]. The exact composition of 

GFRAL neurons and downstream neuronal projections and circuitry is still under investigation. 

To further investigate the neuronal network downstream of GFRAL AP and NTS, our 

group recently used designer drug receptor DREADD and GFRALcre mice to artificially activate 

GFRAL neurons using clozapine N-oxide (CNO). CNO administration leads to subsequent cfos, 
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an early activation gene, expression in the PBN, central nucleus of the amygdala (CeA), and 

paraventricular nucleus (PVN). Furthermore, GFRAL neurons project from the AP to the lateral 

PBN in close proximity to calcitonin gene-related peptide (CGRP) expressing neurons. When 

stimulated, CGRP neurons cause a rapid and a profound reduction of food intake [35,38] and 

when silenced with TetTox, the anorectic (and aversive) response to GDF15 was dampened [23], 

suggesting that GFRAL neurons signal through CGRP PBN neurons. The PBN, however, also 

integrates satiety signals. Gastric distention and intestinal meal termination hormones such as 

CCK and GLP-1 can signal meal termination via the vagus to CGRP PBN pathway [38]. GFRAL 

neurons thus may signal through a pleiotropic neuronal population. 

The NTS to CGRP neuronal circuit is an interesting one, as it combines signals of meal 

termination as well as aversive, fear conditioning, pain and temperature stress responses [40]. 

Additionally, part of the hypothalamic feeding neurocircuitry to induce meal termination comes 

from orexigenic AgRP inhibition of CGRPPBN [41–43]. As such, the PBN represents a “hub” 

integrating diverse signals. Importantly, CGRPPBN neurons do not play a role in normal energy 

homeostasis, as the inhibition of neuron activity increases meal size but leads to a compensatory 

increase in meal frequency as well [43]. Instead, activation of CGRP PBN circuit represents an 

“emergency” response to noxious stimuli, as exemplified by induction by tumor bearing and 

cisplatin therapy, both of which produce malaise, lethargy, and sickness symptoms in both 

humans and mice [44,45]. If CGRP neurons in the PBN are inactivated by using cre dependent 

TetTox in mice, anorexia and malaise are reduced in the presence of cancer [46] and blocks pain 

and memory responses to foot shock [47]. Inhibition of CGRPPBN neurons using hM4Di/CNO or 

with tetanus toxin attenuates CTA formation [35]. This circuit is therefore an example of a 

network that signals anorexia in part due to illness, transducing cautionary signals to forebrain 
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regions. It is possible that GDF15 signaling on GFRAL neurons may contribute to the illness 

associated CGRPPBN circuit, resulting in the induction of both anorexia and aversion (Fig. 1).  

The hindbrain houses a heterogenous population of neurons that integrates continuous 

signals from the gut. Ingested compounds trigger vagal and hormonal signals that ultimately 

drive anorexia, both in the case of ingested nutrients as well as toxins. The NTS to PBN pathway 

is utilized by a variety of gut and adipose stimuli, including CCK, leptin, and GLP-1. Although 

some of this neurocircuitry is shared, there are many differences in the induction and impacts of 

gut signals that communicate satiety compared to illness from GDF15 (Table 1). For example, 

although CCK, leptin, and GLP-1 are triggered in response to the presence or absence of 

nutrients, GDF15 is not. Differences in NTS and PBN populations of neurons that drive the 

anorexia induction by satiety in contrast to illness are still being mapped and will be discussed 

further in this dissertation 

1.1.5 Biomarker of illness and mortality  

Normal circulating levels of GDF15 range from 200pg/ml- 1200pg/ml [48] with diurnal 

variations, but can become elevated in stress, injury, and pathophysiological conditions and 

infections. This elevation has made it a popular candidate as a biomarker or prognostic marker in 

a variety of diseases. In addition to cancers, GDF15 elevation specifically in cardiovascular 

disease has become one of the more popular pathologies for researchers. GDF15 circulating 

levels predict progression of cardiovascular disease (amongst many other disease states) [49,50]. 

For example, circulating GDF15 is correlated with both hospitalization and death due to heart 

failure [51]. It is upregulated in infarcted myocardium in humans but the source of GDF15 is 

debated [52–54]. Similarly, ischemic kidney tissue has upregulated GDF15 mRNA and there is 

an association with GDF15 and chronic kidney disease [55]. Currently, there are ongoing clinical 
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trials worldwide in progress to test the effectiveness of GDF15 as a plasma biomarker for a 

variety conditions, including polycystic ovarian syndrome, diabetes, and acute kidney disease. 

Interestingly, though not surprisingly, GDF15 has been associated with severe disease 

states and all-cause mortality in several studies [56] In a study done of 219 critically ill ICU 

patients, GDF15 levels predicted organ failure, severe illness, and ultimately mortality [57]. The 

Rancha Bernardo Study examined 1391 older patients and found serum GDF15 to be a predictor 

of all-cause mortality, including both cardiovascular and non-cardiovascular mortality [49]. 

Additionally, the Framingham study found GDF15 to be a marker for all-cause mortality, 

incident heart failure, and significant cardiovascular insults [50]. GDF15 can be thought of as a 

stress protein, due to its release in diverse pathologies and its strong prediction of death. 

1.1.6 Cancer anorexia and chemotherapy 

In a variety of cancers, patients often experience a reduction of appetite and food intake, 

leading to drastic and adverse weight loss which is termed cancer anorexia.  A disease state that 

represents a chronic state of stress is cancer, as well as its popular treatment, chemotherapy. In 

fact, the very first account of the ability of GDF15 to induce anorexia came from a landmark 

study that discovered nude mice implanted with a human prostate cancer cell line overexpressing 

GDF15 lost weight compared to control groups, with mice with greater circulatory GDF15 levels 

associating with higher weight loss, along with a reduced fat mass and food intake. This weight 

loss was reversed with an injection of an anti-GDF15 monoclonal antibody with no impact on 

tumor size [12]. This discovery opened the door to test a variety of tumors that induce cancer 

anorexia. GDF15 is found elevated in circulation in colorectal [48], esophageal [58,59],  

pancreatic [60], ovarian [61], and prostate cancers [62], and often correlates with progression of 

disease [36]. Levels as high as 10,000-100,000 pg/ml have been reported in advanced cancers 
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[12,63,64].  A cross-sectional study of male cancer patients found that patients with body weight 

loss had greater GDF15 than patients without weight loss and control subjects without cancer. 

GDF15 was further associated with decreased fat mass and poor survival with higher circulating 

GDF15 levels [65].  

Cancer cachexia is a devastating wasting syndrome of several advanced cancers in which 

there is an involuntary degradation of skeletal muscle, adipose, and overall body weight, a part of 

which is due to a reduction in appetite and energy intake [66,67]. Cachexia occurs in about 80% 

of advanced cancers [65]. Just a 5% loss in body weight is associated with an increase in poor 

clinical outcome and the risk increases with greater weight loss. Cancer cachexia accounts for 

approximately 25% of cancer mortality, rendering GDF15 a potential candidate for 

pharmacological therapies to control the anorexia associated with cancer and cachexia. Recently, 

a GFRAL monoclonal antibody antagonist (3P10) reduced cancer cachexia in mice [68]. 

Blocking GDF15 using a monoclonal antibody prevents anorexia, but not muscle atrophy in a 

model of GDF11 induced cachexia [69]. The discovery that blocking GDF15 using a monoclonal 

antibody prevents disease in seven additional models of rodent cachexia and increases survival 

[70] has led to ongoing clinical trials for potential treatments that target GDF15/GFRAL. One 

current phase 1a study involves an antagonistic antibody to GFRAL signaling to treat cancer 

anorexia and cachexia in metastatic pancreatic cancer and a variety of 10 advanced metastatic 

tumors (NCT04068896; NGM; NGM120). Another current clinical trial is a monoclonal 

antibody against GDF15 for cachexia in patients with non-small cell lung carcinoma 

(NCT04299048; Pfizer; PF-0646860).   

A commonly used treatment for many cancers is a platinum-based chemotherapeutic 

agent called Cisplatin. There is a growing body of research around the role of GDF15/GFRAL 
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network in mediating cisplatin therapy. Mice with cisplatin treatment at 6 weeks exhibit 

increased circulating GDF15 along with a reduction of energy intake and body weight of 15%. 

GFRAL knockout and monoclonal antibody against GFRAL pretreated mice both exhibit 

resistance to the effects of cisplatin [3,71]. Because of GFRAL’s implication in both cancer 

anorexia and the mechanism of action of cisplatin treatment, its therapeutic potential in cancer 

patients is two-fold. Patients suffering from cachexia and/or those that are being treated with 

cisplatin may benefit from cotreatments that reduce GDF15/GFRAL signaling.  

1.1.7 Nausea and emesis/aversion 

Several groups, including ours, have identified that pharmacological administration of 

GDF15 as a principal agent to trigger nausea and emesis. GDF15 induces a potent CTA 

[4,8,23,72] in addition to PICA behavior [72] and a conditioned place aversion [37] in rodents. A 

strong CTA is also induced when GFRAL neurons within the AP are activated using DREADDs 

[73]. Although we do not have clinical trial data from human studies, we can rely on data from 

patients with conditions or treatments that significantly elevate nausea to shed light into 

GDF15’s role in nausea and emesis. While short term activation of the GDF15 network via 

artificial GFRAL neuron activation or GDF15 administration certainly induces aversion and 

avoidance, the effects of long-term activation is not as conclusive.  

Along with anorexia, metformin side effects also include nausea and gastrointestinal 

malaise. However, patients using metformin long-term do not report a persistent symptom of 

nausea. A second clinical example comes from women with severe nausea and vomiting in 

pregnancy (NVP), called hyperemesis gravidarum (HG).  Modestly elevated circulating GDF15 

has been associated in one study of women in their second trimester who experience vomiting 

within, but not in those who experience nausea without vomiting [74]. 50-90% of women 
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experience nausea during their pregnancy and the vast majority of those women (<95%) do so 

beginning in the first trimester [75–77]. While GDF15 levels are highest in the first trimester 

when rates of nausea are highest in pregnant females, the elevations persist for the second and 

third trimesters, when many cases of nausea are significantly decreased [10]. Additionally, many 

females that do not experience nausea and vomiting in pregnancy also exhibit heightened GDF15 

at levels from 10,066-10,147 pg/ml. There is no question that GDF15 administration leads to an 

aversive response in rodents and may induce initial illness symptoms in humans. However, the 

cases in which endogenous GDF15 is elevated to high levels do not always present with 

persistent nausea. As pregnancy represents a large stressor on multiple organ system, elevations 

in GDF15 could be a secondary effect representing other factors. Unfortunately, current testing 

of this condition is limited to correlational human studies. Further testing of this hypothesis is 

difficult and requires clinical studies, as there are no adequate preclinical models for NVP and 

HG.  

 

1.2 Infection induced anorexia 

In response to infectious challenges, humans have evolved a number of host defense 

systems. Release of immune mediators, fever thermoregulatory responses, lethargic behavior, 

altered energy expenditure, metabolic changes, and of particular relevance for this thesis, altered 

feeding. An infection is often accompanied by anorexia and reduced energy intake. These 

mechanisms can be acutely advantageous and protective to the host. A response that may be 

initially adaptive, can become chronic and adverse, such as in the case of cancer cachexia.  

Anorexia in acute and chronic illness unsurprisingly often results in the catabolism of 

energy stores and reduction of body weight [78]. Fluctuations in body weight (under normal 
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circumstances) triggers a counter homeostatic responses. However, during infection, a reduction 

of food intake and weight with negative valence are favored. As early as the 1970s, we learned 

that anorexia is often adaptive and critical for the survival in the face of acute infection. Force 

feeding mice infected with some bacteria [79–82] results in increased mortality, illustrating the 

often protective effects of reducing food intake. Evolutionarily, illness induced anorexia is well 

conserved from flies to rodents and mammals, including humans [83,84]. Some researchers 

hypothesize that reduction of food seeking was developed to protect humans from infection 

particularly during bouts of famine [80]. Moreover, anorexia may serve to starve the invading 

microbe of necessary nutrients in the host to inhibit microbe replication, a resistant mechanism 

known as nutritional immunity [85,86] and lower the demands for humans to search for food in 

illness [87]. In contrast, mice infected with influenza and viral sepsis improve survival with 

caloric supplementation, regardless of the behavioral anorexic response [79] and worse outcomes 

with restriction [88]. Further, counterregulatory responses from particular microbes can adapt to 

host fasting [87], leading to unnecessary and potentially detrimental anorexia. Thus, whether the 

illness induced anorexia is beneficial or detrimental depends on the balance of host tolerance and 

resistance mechanisms. 

Sepsis is defined as organ dysfunctions from dysregulated host responses to infection 

[89]. Viral, fungal, and most commonly bacterial infections can result in sepsis, accompanied by 

high risks of severe tissue damage, organ failure and lethality. The signaling pathways and neural 

mechanisms that mediate anorexia during illness still largely remain elusive, though some gut to 

brain signals have been proposed [87]. Dissecting the driving mechanisms remain crucial to our 

understanding of feeding networks and understanding of illness induces metabolic dysregulation. 
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Altering gut-brain signals mediating anorexic responses that are detrimental is a profoundly 

impactful therapeutic opportunity for critically ill patients.  

1.2.1 Bacterial infection  

One of the most commonly used model systems to study the impact of bacterial infection 

is lipopolysaccharide (LPS), a component of gram-negative bacterial cell wall. Depending on the 

dose of infection, LPS in humans is capable of stimulating anorexia, lethargy and fever, all of 

which are well replicated in mouse models. Various brain regions activated by LPS injection 

have been long identified. However, the specific neural circuits responsible for signaling 

anorexia and nausea of LPS still remain undefined. Amongst the populations that are activated 

are PBN CGRP neurons [35]. Additionally, hypothalamic inhibitory AgRP signaling modulates 

CGRP PBN anorexic circuits. Optogenetic activation of AgRP terminals reduces PBN CGRP 

activation [43] and results in a blunting of the anorectic response to meal related signals, such as 

CCK and amylin [41]. Therefore, it was hypothesized that hypothalamic regulation of PBN 

CgRP neurons may directly control infection related signals from the PBN CGRP neurons as 

well. However, this is not the case for administration of LPS, which resulted in similar anorexia 

despite increased AgRP to PBN CGRP terminal stimulation [41]. These results show that neural 

networks regulating bacterial infection are to some capacity distinct from satiety in the hindbrain.  

LPS injection has been shown to activate rodent AP and NTS [90–92] and increase levels 

of glutamate in the NTS [93]. Further, peripheral LPS administration specifically induces cFos 

immunoreactivity in GFRAL cells within the hindbrain [73], suggesting a potential role of 

GFRAL neuronal signaling in mediating illness effects of bacterial infection. While cecal 

ligation puncture (CLP) in which a needle is passed through the cecum to create a perforation is 

a common model for bacterial sepsis. Though the needle gauge size is usually defined, the length 
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is poorly reported in research studies which contributes to the high variability of disease and 

mortality [94]. Endotoxin infection by administration of LPS represents a second model of 

sepsis. The role of GDF15 in LPS and CLP mediated sepsis has been debated, specifically 

whether GDF15 is protective or detrimental to the host. To date, two studies suggest that GDF15 

plays a protective role in LPS induced infection [5,95]. Li et al. shows increased survival with 

administration of recombinant GDF15 in a LPS and B-Galactosamine induced model of liver 

injury. Luan shows that blocking GDF15 with a monoclonal antibody increases mortality in 

sublethal LPS infection in mice. GDF15 activation is proposed to be necessary for to mediate 

immune tolerance mechanisms for improved survival. Taken together, these findings suggest that 

GDF15 may play a protective role in bacterial infections. It should be noted that the purity of the 

recombinant GDF15 is unknown and the antibody against human GDF15 has not been validated 

in these studies. In contrast, a separate group illustrated a positive correlation between survival 

and GDF15 levels in human patients with severe sepsis. GDF15 KO mice infected with a 

polymicrobial CLP model of sepsis exhibit longer survival compared to WT mice, suggesting a 

detrimental correlation of circulating GDF15 [96], which supports a number of studies linking 

GDF-15 to all-cause mortality [49,56]. The role that GDF15 plays in the pathology of bacterial 

infections and whether GFRAL signaling is necessary to alter physiological illness parameters 

such as food intake is still unknown. Chapter 2 tests the necessity of GFRAL signaling using a 

model of LPS in mice.  

The original name of macrophage inhibitory cytokine-1 (MIC-1) was earned due to the 

observation of GDF15/MIC-1 to inhibit macrophage TNF secretion in response to a LPS, prior to 

the discovery of GFRAL [2]. Further, many proinflammatory cytokines when administered ICV 

can induce anorexia [97]. LPS induces a dramatic inflammatory cytokine response and elicits 
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inflammation, both peripherally and centrally. IL-1b, TNF, IL-6, and IFN-y are elevated in LPS 

infection. One hypothesis for LPS anorexia is cytokine signaling [98]. Thus a combination of 

LPS induced cytokines and peptides may in concert contribute to physiological illness. While 

there are several proposed mechanisms, the neural network and signaling mediators responsible 

for the illness and food reduction have yet to be defined [99,100].  

1.2.2 Fungal infection 

A wide variety of fungal infections elicit illness symptoms that alter gut-brain signaling.  

Mycotoxins, secondary metabolites produced by several fungi, are potent chemical signals that 

are capable of inducing a wide variety of effects, ranging from antibiotic to mycotoxicosis [101]. 

Fungal contamination of food has made humans and animals particularly vulnerable for 

centuries. Trichothecenes, a family of mycotoxins, are common contaminants of grains such as 

corn, barley and wheat. For example, deoxynivalenol (DON) is a highly stable type-B mycotoxin 

produced by the Fusarium fungi and is found at highest concentrations of all trichothecenes in 

foods.  

The anorectic effect of DON toxicity was commonly observed in swine exhibiting 

chronic feed refusal and a reduction of body weight in the early 1900s. DON was later isolated 

during a human epidemic in Japan in the 1970s and its discovery explained many previous 

worldwide cases of human and animal gastroenteritis outbreaks [102]. Mice given DON, 

drastically reduce energy intake in a dose dependent manner, primarily within the first 4 hours 

after toxin administration. By 24 hours, mice rebound with increased total food consumption 

[103]. Thus, mild, acute doses of DON do not lead to a change in body weight, as the initially 

reduced energy intake is followed by a compensatory increase in food intake. DON exemplifies 
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an illness anorectic response and it received the nickname “vomitoxin” due to its ability to 

rapidly elicit gastrointestinal malaise symptoms such as diarrhea, nausea, and emesis.  

The mechanisms by which DON induces anorexia and nausea are not known but there are 

several hypotheses. DON can bind and activate calcium sensing receptor (CaSR) which is 

expressed in a variety of organs including the intestine and the brain. In the intestines, CaSR can 

be found on enteroendocrine cells, potentially explaining the mechanism by which gut hormones 

are increased into circulation after DON exposure. Exposing STC-1 cells to DON exhibits a dose 

dependent increase of GLP-1 and CCK release [104] which is reduced when a CaSR antagonist 

NPS2143 is present [105]. Within 15 minutes of DON exposure, intestinally derived peptides 

PYY, GLP-1, and CCK are highly elevated into circulation [106] and stay elevated for several 

hours. PYY, CCK and GLP-1 are all well-known anorectic hormones that signal to central 

networks via either vagal or direct brain activation.  

It is plausible to hypothesize that intestinal hormones may contribute to the anorectic 

response. For example, pharmacological PYY administration can acutely reduce feeding with 

accompanied nausea, however in vivo pharmacological antagonist studies have failed to alter 

DON induced anorexia [106]. Similarly, GLP-1 activates GLP-1Rs found in both the vagus and 

various brain regions, including the AP and NTS. In addition to a reduction of food intake, 

currently used GLP-1R agonists exhibit dose-dependent nausea, vomiting, and diarrhea as side 

effects [107–109]. This similarity between exogenous GLP-1 administration and DON suggests 

that GLP-1 and DON signaling may activate similar neurocircuitry. This hypothesis is tested 

Chapter 3. Whether changes in a combination or individual gut hormones lead to functional 

DON symptoms is debated, as differing animal models and time points show conflicting results.  
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A wide range of evidence points to the role that the brain plays in the response to DON. 

Low dose exposure of DON directly administered to the brain via i.c.v. injection leads to potent 

anorexia. Moreover both i.c.v and peripheral administration of DON leads to the activation of the 

NTS and AP neurons [110]. Whether these regions are activated directly by circulating DON or 

indirectly by peripheral mediators or vagal activation is currently unknown. Unilateral vagotomy 

has no impact on neuronal activation in the NTS after oral DON exposure [104,111,112]. 

Further, DON has been shown to cross the blood brain barrier in several species [104]. In mice, 

DON protein is detectable within 5 minutes in the brain after a single oral gavage of DON 

[113,114]. Thus, DON can directly reach the brain rapidly after exposure and may directly 

contribute to neural food intake and nausea signaling pathways. Some of these neurons that are 

activated within the AP may be GFRAL neurons. We directly test the necessity of GFRAL 

signaling in DON illness utilizing several genetic mouse models in Chapter 3.  

 

1.3 Metabolic disease 

 

1.3.1 Obesity  

Within the last 3 decades, obesity has become one of our country’s largest public health 

challenges. Though defined as excess body fat mass, obesity is most commonly assessed as an 

elevated body mass index (BMI). BMI is limited by accuracy, as it cannot differentiate between 

fat and lean mass, but excels in convenience and ease of measurement. BMI measures body 

weight as a function of height in which normal and obese BMI is defined as <25 kg/m2 and 

>30kg/m2, respectively. While average BMI in the US remained stable within the 1960s, since 

1975, worldwide obesity has tripled [115–117]. In 2017-2018, over 40% of the US population 
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was deemed obese. Thus, the US is currently in the midst of a severe obesity epidemic which is 

rapidly spreading to developing countries around the world.  

The burden of obesity on the individual spans far and wide. In 2006 alone, the estimated 

national medical cost for obesity was $147 billion dollars [118], amounting to an additional cost 

of $2,741 for each person with obesity. The reason for this grave economic cost to the healthcare 

system can be attributed to the wide variety of comorbidities associated, including higher risks of 

cardiovascular diseases, diabetes, and cancers. The result is not only a heavy economic burden, 

but reduction on the quality of life and lifespan for individuals with obesity. The demand for 

creating new treatments becomes increasingly high, as our rates nationally (and worldwide) soar. 

The steep incidence of obesity can be attributed to a combination of factors, changing 

environments and adaptive biology, much of which still remains only partially understood. In 

contrast to the common popular belief, obesity has proven to not be simply a matter of exercise 

and caloric intake, as defense of a higher energy set point in obese individuals suggests 

otherwise. The changing global food system with increasingly cheap, fast, and high-density food 

availability in combination with the impacts of our genetics, epigenetics, decreased physical 

activity contributes to the proliferation of obesity. This multifactorial nature makes obesity a 

complex area of study, therefore a complex disease to treat.  

1.3.2 Bariatric surgery 

In an attempt to alter the energy equation, diet and exercise are often the first line 

treatment for overweight patients. While this strategy can often lead to successful initial weight 

loss, this result is often short lived, as exemplified by the “yo-yo” dieting effect and more 

famously from the participants of the US television program “The Biggest Loser”. Although 
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participants were able to shed a dramatic amount of weight quickly, they regained most of the 

weight after the end of the show [119,120].  

This leaves us with more invasive approaches including permanent alterations to the 

anatomy of the GI tract termed bariatric surgery. Bariatric surgery comes in a variety of forms, 

the most common in the US being vertical sleeve gastrectomy (VSG) and roux-en-y gastric 

bypass (RYGB). In VSG, ~80% of the stomach along the greater curvature is removed, leaving a 

tube-shaped pouch (a sleeve). In RYGB, a small gastric pouch of the stomach and duodenum 

(the size of a walnut) is created and reattached to the middle of the jejunum. Nutrients thus flow 

through bypassing ~95% of the upper GI tract. While both VSG and RYGB involve a physical 

restructure and reduced capacity of the stomach, RYGB alters nutrient flow. 

Despite the differences in mechanical restructuring between the two surgeries, VSG and 

RYGB both lead to a sustained ~40% reduction of food intake and body weight in VSG and 

RYGB in addition to about a 38% remission of T2D [121–123]. Since glucose regulation is 

heavily tied to weight, this positive change may not seem surprising at first glance. However, for 

some patients, changes in glucose metabolism occur prior to weight loss, often while the patient 

is still in the hospital or within several days after the procedure [121]. For those whose diabetes 

isn’t completely resolved, necessity of diabetes medication usage decreased by 65% compared to 

0% in the lifestyle intervention alone group [121–123]. Further a first large case controlled 

clinical study called the Swedish Obesity Subjects study showed that bariatric surgery results in a 

reduction in mortality by 40% within 18 years, which includes a 92% reduction of mortality from 

diabetes specifically [124]. 

The mechanism underlying the potent effects of VSG and RYGB remain elusive.  

Diverse hypotheses have been postulated and tested. The most prevalent theory revolves around 
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the mechanical changes imposed on the GI tract. It has long been hypothesized that a reduction 

in both stomach volume and intestinal nutrient absorption represents the driving factors behind 

weight loss. However, there is much data that challenges this hypothesis. 

 To this point, the alterations in the pattern of food intake following VSG and RYGB is 

remarkable in both humans and rodents. The major point of appetite changes following bariatric 

surgery is that after an initial reduction of food intake, over several weeks, rodents return to 

eating the same daily caloric load as they had prior to surgery, without regaining the fat mass and 

weight [122,125,126]. In other words, rodents exhibit sustained weight loss despite a return to 

normal food intake. They defend a lower body weight. VSG rats that are food restricted, 

expectedly lose additional weight. When later given access back to food, they increase their food 

intake to gain weight. Further, rodents are able to increase energy intake and weight during 

pregnancy [127]. This illustrates that VSG does not eliminate homeostatic mechanisms, rather, 

changes them to maintain a lower body weight [128]. While the malabsorptive and mechanical 

restriction hypothesis are still widely cited, they simply do not explain the complex changes in 

eating behavior observed in both humans and rodents after bariatric surgery. The viability of 

surgery reminds us that it is possible to alter energy homeostasis sufficiently to battle obesity.  

Annual bariatric surgery procedure numbers jumped from 16,000 to 228,000 within the 

last 3 decades [129,130]. Understanding the mechanisms by which weight loss is attained and 

importantly, sustained, could drastically improve the accessibility of therapy for obese patients 

and allow us to treat a wider swath of the population. The last several decades have opened up a 

variety of hypotheses that have centered around altered communication between the GI tract and 

other organs including the brain. A key research goal is to identify the basis for this altered 

communication so that it may be more directly manipulated to mimic the potent effects of 
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surgery in a manner that does not require permanent rearrangement of GI anatomy. Further, 

bariatric surgery is a good model to study altered gut brain signaling that results in altered body 

weight and feeding behavior through changes in neural and hormonal signaling. 

1.3.3 Glucagon-like peptides 

Some of the gut signals that are clearly altered after bariatric surgery are glucagon-like 

peptides. These peptides that are made in both the gut and in the brain are thought to be a key 

component of the gut-brain axis as they coordinate food digestion and nutrient absorption. 

Specifically, glucagon like peptide 1 (GLP-1) has become on the most popular targets of gut 

secreted peptides. GLP-1 is a pleiotropic incretin involved in nutrient absorption, appetite 

regulation, intestinal motility, and glucose regulation. It is cleaved by proglucagon prohormone 

convertase 1/3 from the preproglucagon (Gcg) gene. Peripherally it is produced in 

enteroendocrine L cells primarily in the distal ileum and pancreatic islet cells. Centrally, it is 

cleaved in preproglucagon neurons largely residing in the NTS. While basal levels of GLP-1 are 

low, they are greatly elevated in response to a meal. Post-prandially, GLP-1 is well-known for its 

incretin effect which stimulates insulin secretion and inhibits glucagon to promote glucose 

clearance, but it also reduces appetite, gastric emptying and intestinal motility to increase 

nutrient absorption [131]. 

Peripherally, GLP-1 receptors (GLP-1R) are expressed in pancreatic  cells, intestinal 

vagal afferents and throughout the brain, including in key feeding regions such as the 

hypothalamus and hindbrain. Interesting, postprandial circulating GLP-1 levels dramatically and 

rapidly increase in circulation following both RYGB and VSG, nearly 10-fold, potentially due to 

intestinal adaptation and the resulting increase of L cells in the intestines [132]. Moreover, 

circulating levels are elevated in humans following surgery when compared to patients who have 
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lost weight via diet, confirming that the elevation in GLP-1 is specific to surgery and not weight 

loss [133]. Vagal GLP-1R transmission is not necessary to induce the weight loss effects, as 

illustrated by pharmacological agonism with liraglutide in a model of subdiaphragmatic vagal 

afferent deafferentation [134] . Despite the marked elevation of GLP-1 levels after weight loss 

surgery, studies using GLP-1R KO mice have shown that GLP-1R signaling after surgery is not 

critical to the resulting beneficial effects on weight and glucose metabolism [135]. 

Although it is likely not the critical component of surgery, GLP-1 has therapeutic value 

to diabetic patients whose endogenous incretin responses are blunted. Because GLP-1 is rapidly 

cleaved and inactivated by dipeptidyl peptidase 4 (DPP4) within minutes, long acting peptides 

were created. Several GLP-1R agonists, such as liraglutide, exenatide and semaglutide, and 

DPP4 inhibitors are approved for clinical use to improve glycemic control and body weight. 

However, a common side effect of these drugs is nausea and vomiting. To reduce feeding, GLP-

1 may work better in conjunction with other gut hormones. For example, newer therapeutics are 

focusing on dual and triple agonists of GLP-1 in combination with glucagon and GIP to improve 

therapeutic potential. 

 Interestingly, GLP-1 is not released in isolation. Gcg processing concurrently cleaves 

GLP-2, which signals onto GLP-2R, from L cells in the ileum. Unlike it’s incretin sibling, the 

main role of GLP-2 is intestinotrophic. It plays a principal role in intestinal cell proliferation, 

growth and barrier function. GLP-2 increases crypt and villus height in rodents and humans 

(Jeppesen 2005). Whether this effect is mediated by neural activation of enteric neurons is 

debated [136,137]. GLP-2 enhances mucosal structure and nutrient absorption in mice and rats 

with bowel resection, importantly, without causing malignant growth [138,139]. GLP-2 increases 

energy absorption, lean mass, crypt depth and villus height. These advantageous properties have 
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led a long-acting GLP-2 analog, Teduglutide, to become an approved treatment for short bowel 

syndrome, which presents with nutritional imbalance, diarrhea and weight loss.  

Although accurate measurement of GLP-2 has been a challenge, as reliable assays were 

not produced until recently, GLP-2 is released along with GLP-1. It is not surprising that GLP-2 

is increased in circulation along with GLP-1 after bariatric surgery, as the two hormones are 

processed by the same enzymes [140,141]. This increase has been associated with crypt cell 

proliferation and could reflect an adaptation to the mechanical structuring in an effort to increase 

nutrient absorption. Additionally the increase in enteroendocrine hormone secretion could thus 

be the result of GLP-2 action on intestinal growth. However, the necessity and function of GLP-

2R signaling following surgery is not well documented. Although GLP-2R has been mapped in 

various brain regions such as the medulla, amygdala, hippocampus, pons, and pituitary gland 

[142] there is little data on their impact to central neural signaling.  It is therefore best known for 

the local paracrine signaling effects within the intestine itself. Like glucagon like peptides, there 

are a variety of local intestinal changes following obesity and surgery. 

1.3.4 Microbiota  

Bariatric surgeries are highly successful long-term treatments that help reverse both obesity 

and the accompanying metabolic pathologies such as T2D. One of the potential mechanisms by 

which bariatric surgery impacts patients is via the gut microbiota. Both humans and rodents display 

significant alterations in intestinal microbial colonies following gastric bypass [143,144]. 

Alterations in composition may have a dramatic impact on obesity promoting parameters as 

illustrated by studies involving fecal transfers from one animal to another to alter microbial 

compositions in the receiving animal.  
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As a testament to this, germ-free mice colonized with bacterial composites isolated from 

the intestines of donor humans that previously went through a bariatric surgery, exhibit weight loss 

and reduced levels of body fat [145]. Further type II diabetes patients who are colonized with 

microbiota from lean donors using a fecal transplant have better metabolic parameters such as 

increased insulin sensitivity [146]. These effects suggest that the microbiota may be capable of 

producing changes to metabolic processes and phenotypes.  

Although the intestinal microbiota is best known for its role in processing nutrients, gut 

microbes are capable of generating metabolites and altering production of other intestinal 

signals, including EEC gut hormone secretion. GABA, serotonin, histamine, short chain fatty 

acids (SCFA) and secondary bile acids are some microbially derived signaling mediators 

[147,148]. It is hypothesized that refining the diversity and signaling molecules produced by gut 

microbiota could impact a variety of pathologies both locally in the GI tract (inflammatory bowel 

diseases and colorectal cancer), distally within the CNS (autism and Parkinson’s disease), and in 

whole body metabolism by altering gut-brain signaling [147,149]. Thus, therapeutic 

interventions centering the modulation of gut microbiota and microbial derivatives is a growing 

area of interest for a range of pathologies. 

The role of the microbiota in metabolic diseases is developing, but research has only just 

grazed the tip of the iceberg. Diverse factors such as diet, genetics, cognitive pathologies and 

exertion of stress pathways all impact composition and diversity of microbiota, potentially via 

the gut-brain axis. Thus, it is a complex system to study. Many microbial studies are limited to 

correlational analysis, as model systems to study microbial alterations are far from perfect. 

Germ-free mice are the primary model used to test the impacts of microbiota, but they usually 

present with a vast array of confounding developmental deformations. In many studies, it is 
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unclear whether microbial changes are a cause or effect of metabolic diseases. Further, the 

diverse species and strains of microbiota that inhabit the gut can vary from individual to 

individual, with over a 1000 different species and trillions of bacteria inhabiting the intestinal 

tract [150,151]. The way the statistical analysis is completed and taxonomic composition is 

defined and compared is tremendously important, but often greatly variable between studies.  

1.3.5 Bile acids 

A factor that has been proven to be a critical component for the beneficial impacts of 

bariatric surgery include farnesoid X receptor (FXR) which are the target of endogenous bile 

acids. Mice lacking FXR receptor fail to display improved blood glucose and weight loss 

induced from VSG surgery in mice [152]. Interestingly, wildtype mice receiving VSG exhibit 

microbial changes that mimic a “lean” phenotype, but mice lacking FXR do not. Taken together, 

FXR and bile acid signaling may impact microbial and metabolic changes following surgery. 

Bile acids are secreted from the liver postprandially into the duodenum via the common 

bile duct where they aid in the digestion and absorption of dietary fats. Primary bile acids such as 

cholic acid (CA) and chenodeoxycholic acid (CDCA) are created in the liver via oxidation of 

cholesterol [153]. Secondary bile acids on the other hand are derived via dehydroxylation by 

dehydroxylase enzymes of primary bile acids by the intestinal microbiota. Either primary or 

secondary free bile acids can form bile salts through conjugation to the amino acids glycine or 

taurine. Thus, a wide range of bile acids/salts are made, making the composition and effects of 

circulating bile acids diverse. Further, gut microbial composition and prevalence can impact the 

diversity of bile acids in circulation [154]. When microbial colonization was completely 

removed  or altered using antibiotics in mice, levels of bile acids plummeted [155]. 
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Beyond their role in lipid absorption, bile acids can act as signaling molecules by binding 

two receptors: an intracellular ligand-activated nuclear receptor (FXR) and a G protein-coupled 

receptor Gpbar-1 (TGR5). Bile acid binding to FXR can lead to secretion of fibroblast growth 

factor (FGF15/19), a gut hormone implicated in glucose tolerance and weight loss via signaling 

in the brain [156,157]. Intriguingly, increased enterohepatic circulation of bile salts and free 

acids is a major consequence following bariatric surgery, a change that is independent of weight 

loss. RYGB patients show increased serum bile salts along with increased production of 

FGF15/19 [158]. Although the function of elevated bile acids after surgery remains elusive, it is 

hypothesized that bile acids are important for improved metabolic parameters and weight loss 

[152,153,159,160] following surgery. Thus, bile acids represent yet another mechanism capable 

of altering gut to brain signaling and impacting metabolic phenotypes. 

Bile acids can signal to the CNS indirectly via the release of FGF15/19 or by directly by 

crossing the blood brain barrier [161]. In various models of neurodegenerative diseases such as 

Alzheimer’s disease [162], Huntington’s disease [163] and prion disease [161], bile acids 

(TUDCA or UDCA) administration exhibited neuroprotective effects. The mechanisms by which 

bile confers protection within the nervous system remain to be elucidated as central bile acid 

signaling research is still quite sparse.  

For all studies regarding bile acids in rodents, we must take into consideration the 

variability of bile acid composition between rodents and humans. While mice are primarily 

composed of hydrophilic acids such as muricholic acids and cholic acids, humans tend to display 

a hydrophobic profile of acids with increased CDCA, cholic acid and deoxycholic acid [155].  
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1.4 Summary and aims of dissertation 

This body of work is focused on periphery to brain signaling in the context of obesity and 

illness responses. It tests intestinal and peripheral signaling molecules to influence feeding 

networks and weight patterns in response to physical stressors such as infection, obesity, and 

bariatric surgery. Our understanding of gut-brain feeding networks and signaling will provide 

solutions for diverse diseases that present with dysregulated ingestive behaviors which reflect 

alterations in satiety (obesity) and illness responses (sepsis, cachexia) but currently have 

inadequate treatments.   

To do so, it is crucial to investigate signaling proteins and differential neural networks 

that are induced to regulate feeding in illness which can be modeled by bacterial and fungal 

infection. In Chapter 2 and Chapter 3, the hypothesis that the circulating stress hormone GDF15 

contributes to bacterial and viral illness respectively is associated anorexia and nausea is tested.  

Further, bariatric surgery in rodents is an exemplary model system in which gut brain 

signaling is altered and results in potent and sustained feeding and weight changes. The rising 

rates of obesity and metabolic disorders is a large public health concern, creating a need for 

developing accessible therapeutics. Bariatric surgery procedures to restructure the stomach and 

intestinal tract are highly successful treatments. The physiological systems by which the reversal 

of diabetes and adiposity is conferred with surgery has yet to be elucidated. Identifying 

mechanistic origins of the metabolic benefits for bariatric surgery are key to developing 

therapeutics targeting pathways rid of surgical intervention available to a wider population of 

patients with obesity. For example, both gut and liver derived hormones and bile acids may be 

crucial to beneficial impacts of surgery. To this end, we tested the contributions of GLP-2 and 

examined bile acid composition in mice undergoing bariatric surgery in Chapter 3. 
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 Leptin GDF15 Citations 

Tissue secretion Adipose Inducible in most peripheral 

tissues 

[164,165] 

Receptor 

expression 

Widely in the CNS AP, NTS [15,166] 

Loss of function 

ligand 

Hyperphagia 

Obesity 

Increase fat mass 

 

Slight hyperphagia or no 

change 

Slight increase body mass 

or no change 

Slight increase fat mass or 

no change 

 

[3,14,28,165]  

Loss of function 

receptor 

Hyperphagia 

Obesity 

Increase fat mass 

No difference in food intake 

No difference in weight 

No difference in fat mass 

[3,15,167] 

Circulating 

levels in lean 

Proportional to fat mass Low (<1200pg/ml) 

 

[8,168] 

Circulating 

levels in obese 

Proportional to fat mass Elevated [8,168,169] 

Pharmacological 

administration 

in lean 

Reduce body weight 

Reduce feeding 

Reduce body weight 

Reduce feeding 

[14,170] 

Pharmacological 

administration 

in obese 

No change in body weight 

No change in feeding 

Reduce body weight 

Reduce feeding 

[15] 

Effect of fasting 

on circulatory 

levels 

Decrease No effect  [8,171,172] 

 

CTA induction No Yes [8,173,174] 

 

Table 1: Comparison of Leptin and GDF15 effects 
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Figure 1: GDF15 signaling in response to pathophysiological stressors 

GFRAL is induced into circulation by pathophysiological states of obesity, tissue and organ 

stress, and sepsis in a myriad of peripheral organs. It signals onto GFRAL located primarily 

within the area postrema (AP) and secondarily in the nucleus tractus solitarius (NTS). Upon 

binding GDF15, GFRAL forms a heterodimer with the coreceptor tyrosine kinase RET to induce 

downstream Akt signaling pathway. The AP has dense projections to the NTS which further 

signals on the lateral parabrachial nucleus (PBN). The PBN receives GABAergic projections 

from hypothalamic arcuate nucleus (ARC) AgRP neurons. Figure was created using BioRender. 
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1 Chapter 2: LPS Induces Rapid Increase in GDF15 Levels but is Not Required for 

Anorexia in Mice  

 

2.1 Chapter summary 

Growth differentiation factor 15 (GDF15), a TGFβ superfamily cytokine, acts through its 

receptor, GDNF-family receptor α-like (GFRAL), to suppress food intake and promote nausea. 

GDF15 is broadly expressed at low levels but increases in states of disease such as cancer, 

cachexia, and sepsis. Whether GDF15 is necessary for inducing sepsis associated anorexia and 

body weight loss is currently unclear. We used a model of moderate systemic infection in 

GDF15KO and GFRALKO mice with lipopolysaccharide (LPS) treatment to define the role of 

GDF15 signaling in infection-mediated physiologic responses. Since physiologic responses to 

LPS depend on housing temperature, we tested the effects of subthermoneutral and 

thermoneutral conditions on eliciting anorexia and inducing GDF15.  Although we found a 

conserved LPS-mediated increase in circulating GDF15 levels in mouse, rat and human, we did 

not detect differences in LPS induced anorexia between WT and GDF15KO or GFRALKO mice. 

Further, there were no differences in anorexia or circulating GDF15 levels at either 

thermoneutral or subthermoneutral housing conditions in LPS treated mice. Our data 

 
1 This chapter reflects the following manuscript: 

 

Patel AP, Frikke-Schmidt H, Bezy O, Sabatini PV, Rittig N, Jessen N, Myers MG, Seeley RJ. LPS induces rapid 

increase in GDF15 levels but is not required for anorexia in mice. Submitted to Endocrinology.  
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demonstrate that GDF15 is not necessary to drive food intake suppression in response to 

moderate doses of LPS.  

 

2.2 Introduction 

 Growth differentiation factor-15 (GDF15) is a widely expressed, peripherally derived 

TGFβ superfamily cytokine. Pharmacological administration of GDF15 potently suppresses food 

intake via actions on glial cell line-derived neurotrophic factor a-like receptor (GFRAL), which 

is present primarily on limited sets of neurons that reside in the area postrema (AP) with fewer 

located in the nucleus solitary tract (NTS) [3,13–15]. Rather than being regulated by nutrient 

flux, as many peripherally derived anorectic agents, circulating GDF15 levels are associated with 

a wide array of pathological states including cardiovascular disease, kidney disease, cancer, 

chemotherapy and infection, sometimes correlating with weight loss and disease severity 

[48,175,176]. This has led many to hypothesize that GDF15 functions independently of the 

hypothalamus to act on circuits involved in non-homeostatic regulation of food intake.  

 Reduction of energy intake is a common response to illness and is initially induced as a 

protective mechanism but can become chronic and dysregulated. A prime example is cancer 

anorexia. A wide variety of tumors are associated with reduced appetite and precipitous weight 

loss that contributes to mortality [66,78,177].  The discovery that blocking GDF15 using a 

monoclonal antibody prevents disease in seven models of rodent cachexia and increases survival 

[70] has led to ongoing clinical trials for potential treatments that target reduced GDF15/GFRAL 

signaling. Similarly, a reduction of energy intake is common in states of visceral infection and 

sepsis. In a study done of 219 critically ill ICU patients, GDF15 predicted organ failure, severe 

illness, and ultimately mortality [57]. As one of the leading causes of death in hospitalized 
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patients with poorly understood mechanisms, new treatment options for sepsis are still needed. 

Whether GDF15 contributes to the response, either in a protective or pathogenic manner, is 

currently unclear. The focus of this study is to define the role of GDF15 in mediating the 

reductions in energy intake that occur during bacterial infection.   

 LPS, a component of the outer membrane of gram-negative bacteria, is a common and 

potent stimulator of the bacterial infectious response including loss of appetite and changes in 

body temperature. In addition to its appetite suppressing property, exogenously administered 

GDF15 can produce a conditioned taste aversion (CTA), a well-known behavior that 

accompanies illness including LPS infection in rodents [8,178], in which animals develop an 

aversion to a novel substance associated with visceral illness. Specific neural circuits involving 

the parabrachial nucleus (PBN) and central amygdala (CeA) are responsible for transducing 

visceral illness into behavioral responses [46,179]. Interestingly, the PBN is a hindbrain region 

well-known to contribute to the development of a CTA and more recently suggested to be 

involved in regulating appetite in stress. Specifically, calcitonin gene-related peptide (CGRP) 

neurons within the PBN are critical in acquiring and maintaining a CTA [44,179]. Activation of 

this neuronal circuitry by both GDF15 administration and LPS has been demonstrated in rodents 

[8,35,46,178,180]. Our group has recently shown GFRAL -expressing neurons in the AP project 

to CGRP neurons in the PBN and that silencing these neurons ablates both the anorexic and 

visceral illness responses to exogenous GDF15 [73]. Thus, CGRP neurons that appear to be 

critical to the response to both LPS and tumors are downstream of GDF15 responsive neurons in 

the area postrema. 

 Given the similarities between the physiologic response to pharmacological administration 

of GDF15 and LPS and that they appear to depend on CGRP neurons in the PBN, we 
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hypothesized that GDF15 may mediate some of the critical responses to LPS. To that end, we 

measured circulating levels of GDF15 in response to LPS in mice, rats and humans. 

Additionally, we used both GDF15 and GFRAL knockout mice to test the necessity of GDF15 

signaling to various responses to LPS.   

 

2.3 Results 

LPS is a potent driver of GDF15 secretion, anorexia, and hyperthermia 

 To understand the dynamics of GDF15 in human subjects in infection, we measured 

GDF15 levels in humans using a randomized crossover-trial (n=8) in which participants were 

administered an intravenous bolus infusion of either saline or LPS (1 ng/kg). We detected a ~1.5-

fold elevation in plasma GDF15 concentrations 3 hours after LPS exposure when compared with 

baseline (0 hours) concentrations (Fig. 2 A). We further tested the effect of two doses of LPS in 

inducing plasma GDF15 in rodents (Fig. 2 B). Hourly blood samples were drawn from rats 

implanted with carotid artery catheters and dosed with either saline, 500 μg/kg LPS, or 1500 

μg/kg LPS. Circulating GDF15 levels rose rapidly, peaking at 2 hours after LPS administration. 

As the potent GDF15 stimulating effects of LPS were conserved between rats and humans, we 

lastly tested the response in mice.  

 In rodent models of LPS infection, it is important to take housing temperature into account. 

The impact of the housing environment in the rodent response to LPS infection has been 

previously described [181–184]. When housed at thermoneutral conditions ~(28-30°C), a fever 

response is common and detectable, often at earlier stages [181,185]. However, when housed at 

subthermoneutral conditions and challenged with moderate or high doses of LPS, rodents drop 

their internal temperatures during the early phase of the febrile response [183,186–188]. At low 
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and high doses, rats increase warm environment seeking behaviors during the later phase of the 

fever response [186]. Additionally, septic patients displaying hypothermia have increased 

mortality [189,190]. As our goal was to adequately challenge the mice, without eliminating their 

food intake response, and ensuring recovery and survival, we performed studies at thermoneutral 

housing conditions, where hyperthermia would be predicted and detectable.  

 To choose an appropriate dose for mouse studies, we conducted a dose response curve in 

WT mice in response to i.p. administration of 100 μg/kg, 250 μg/kg, 500 μg/kg and 600 μg/kg of 

LPS or saline. LPS injected mice exhibited a dose dependent increase in rectal temperature (Fig. 

2D, G) along with a decrease in body weight (Fig. 2C, F) after 24 hours. Food intake was 

significantly reduced in 250 μg/kg 500 μg/kg and 600 μg/kg doses within 4 hours (Fig. 2E). 

Administration of the highest dose of 600 μg/kg LPS caused a ~50% reduction of food intake 

within 4 hours (Fig. 2E). A separate and larger cohort of mice was used to confirm these findings 

and measure circulatory GDF15 levels (Fig. 2F-H).  Within 24 hours, plasma GDF15 levels 

increased by ~14 fold in mice injected with 600 μg/kg compared to saline injected mice, 

reminiscent of LPS stimulated plasma levels in rats within 2 hours (Fig. 2H). As the highest dose 

of 600 μg/kg displayed the greatest measurable hyperthermia, moderate anorexia, along with 

strongly elevated levels of GDF15 protein in circulation, we continued to use this dose for all 

further studies. 

 We then aimed to determine whether housing temperature would alter the behavioral and 

physical response to LPS. To test this, we administered 600 μg/kg LPS to WT mice housed 

either at subthermoneutral (STN) or thermoneutral (TN) temperatures, 22°C or 29°C respectively 

(Fig. 3). LPS reduced body weight (Fig. 3A) and food intake (Fig. 3B-C) within the first 2 hours 

under both STN and TN housing temperatures. This effect was still present at 48 hours after 
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injection at both housing temperatures (Fig. 3D-F). Differences in body weight and food intake 

between LPS treated mice at STN and TN conditions were not significantly different at any 

timepoint. Within both the STN LPS and TN LPS groups, there are two animals that show 

unexpectedly elevated food intake for having been given LPS. This opens up the possibility that 

the few animals that failed to respond to the LPS potentially were not administered the 

appropriate dose of LPS. The data and analysis that is represented in figure 3 includes the entire 

data set, with no exclusions. However, when the data were analyzed excluding these outliers, 

there is still a significant effect of LPS and no effect of room temperature. Importantly, GDF15 

levels were significantly elevated at both temperatures with LPS infection (Fig. 3G). At the dose 

tested, we saw a similar anorexia, body weight loss, and GDF15 response between the TN and 

STN conditions. As there was no substantial difference observed between the two housing 

temperatures, we used TN temperatures for all further experiments. 

GDF15/GFRAL is not necessary for LPS induced anorexia, weight loss and inflammatory 

response 

 To investigate the necessity of GDF15 in mediating pathological and stress associated 

anorexia, we used mice lacking GFRAL or GDF15 protein. WT and GDF15 KO mice lost 7.4% 

and 7.8% body weight 24 hours after 600 μg/kg LPS, respectively (Fig. 4A). Food intake was 

significantly reduced in both WT and GDF15 KO mice with LPS beginning at 2 hours and 

lasting until 48 hours after infection (Fig. 4B-E). There was no significant difference between the 

anorexia induced in GDF15KO vs WT mice in response to LPS.  

 LPS, an activator of toll like receptor 4, is a potent stimulator of prostaglandins and 

proinflammatory cytokines, including  TNF- and IL-6[191]. The patients studied for our 

experiment measuring serum GDF15 protein levels in humans (Fig. 2A) additionally exhibited 

increases in TNF- by 25 fold and IL-6 by >90-fold 3 hours after receiving LPS as opposed to 
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placebo, as previously reported [191]. Many of these inflammatory mediators can exacerbate 

organ damage in severe sepsis [192,193], mediate the thermoregulatory response, and influence 

food intake [98,194]. Additionally, GDF15 has been hypothesized as a modulator of peripheral 

inflammation in models of visceral stress and organ damage [5,52,96,195–200]. We therefore 

asked whether GDF15 is involved in maintaining the peripheral inflammatory response to LPS 

by comparing WT and GDF15KO mice. Using an ELISA assay, we measured circulating 

inflammatory cytokines known to be regulated by LPS (Fig. 4F-G). Both LPS injected groups 

had expectedly elevated levels of circulating TNF- and IL-6, confirming an acute 

proinflammatory response to LPS. No differences in cytokines levels were observed between 

GDF15 KO and WT mice 3 hours after LPS treatment. GFRAL KO mice exhibited a 43% and 

44% reduction in food intake 4 and 24 hours after LPS administration, respectively when 

compared to saline controls. Similar to GDF15KO mice, no differences in either weight loss or 

food intake were observed between WT and GFRAL KO mice in response to LPS (Fig. 4H-J). 

Taken together, GDF15 and its receptor GFRAL were not necessary for the behavioral and 

physiological responses to LPS.   

GDF15 is not necessary for progression of disease with sublethal doses of LPS  

To understand if long-term deficiency in GDF15 could affect the progression of severe 

infection, we administered sublethal doses of LPS (i.p. 5mg/kg) to mice lacking GDF15 at 

subthermal housing temperatures of 22°C. Appearance (Fig. 5A), natural behavior (Fig. 5B), 

provoked behavior (Fig. 5C), and body condition (Fig. 5D) scores were assessed during the study 

using a health scoring scale (Fig. 6). Within 6 hours after LPS administration, mice exhibited a 35-

40% average reduction of appearance score due to a depreciation of their physical welfare 

including posture, fur, and facial expression. Indeed, mice displayed decreases in both natural 

activity within the home cage (Fig. 5B), and when provoked (Fig. 5C), an abnormal movement 
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response, often including movement delays and lethargy. Interestingly, there was no significant 

difference between the health of the GDF15 KO mice, when compared to WT mice in neither 

appearance nor movement behavior at any time point (Fig. 5A-C). Both WT and KO mice that 

survived the infection began recovery by 72 hours and were indistinguishable from their saline 

counterparts by 96 hours post injection, suggesting that GDF15 is not a necessary component of 

behavioral and physical degradation or recovery from infection, as the KO mice looked and 

behaved similarly as the WT control groups in all of our physiological measurements of illness. 

Finally, WT and GDF15 KO mice followed a similar survival trajectory with most deaths 

occurring at 72- and 96-hours post LPS administration. 58% and 75% of WT and KO mice 

survived by the 72-hour time point, respectively, with a total of 50% and 77% by 96 hours (Fig 

5D).  

An effect on body weight was observed at 48hr with LPS leading to 12-14% reduction 

when compared to saline controls (WT p<.036, KO p<.014) (Fig 6A). There was no significant 

difference of LPS induced anorexia or body weight loss between WT and GDF15 KO mice at any 

time point. Similarly, LPS challenged mice significantly reduced food intake within 24 hours for 

up to 72 hours when compared to saline injected mice with no significant differences between WT 

and GDF15 KO mice (Fig. 6B). These data further demonstrate that chronic inhibition of GDF15 

does not affect the impact of severe sepsis on body weight, food intake, health condition and 

survival induced by sublethal dose of LPS. 

 

2.4 Discussion 

 Our study demonstrates that peripheral LPS infection rapidly induces circulating GDF15 in 

humans, rats, and mice. Within 2 hours of infection, rat serum GDF15 levels peak at a 30-fold 
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increase from baseline levels in both a high and moderate LPS dose in rats. By 3 hours, GDF15 

levels are elevated by 7-fold from baseline, remaining steady for the next several hours. Our data 

show that circulating GDF15 in mice are comparable to those of rats at 2 hours. Administering 

LPS to humans significantly elevated GDF15 levels as well, though to a lesser degree compared 

with our rodent studies. One reason for this difference may be the 3-hour timepoint at which we 

collected human blood, potentially missing the peak values.  Needless to say, some of these 

intra-species comparisons are also limited by the smaller dose that was used in humans as 

compared to rats and mice.   

 The physiological and behavioral response to LPS varies depending on the concentration of 

LPS, timepoint after administrations and housing environment conditions. Specifically, 

thermoregulatory responses can fluctuate greatly and often predict the severity of disease in 

response to infection[187,189,190]. Both hyperthermia and hypothermia have been observed 

with LPS, depending on the ambient housing temperature and dose administered. Elevated body 

temperature, i.e. fever, is the predominant thermoregulatory response in thermoneutral 

environments to lower doses of LPS in rodents. Subthermoneutral environments and greater LPS 

doses often lead to hypothermia, which is predictive of increased mortality with severe bacterial 

infection or septic shock [187,201]. In order to model moderate illness, we used a dose response 

curve of LPS and found a dose-dependent increase in temperature and decrease in food intake. 

Furthermore, our studies show that in response to the same dose of LPS (600 μg/kg), GDF15 is 

similarly and significantly elevated in the circulation of mice under both thermoneutrality and 

subthermoneutral environments. However, GDF15 does not contribute to the food intake effects 

in either environment. While the housing temperature makes an important difference in the 
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physiological responses to LPS, it does not appear to be critical to the anorexic response. This 

finding implies that the key anorexic circuits engaged by LPS are not temperature dependent.     

 Given the potent ability of LPS to increase circulating GDF15, regardless of housing 

temperature, it made sense to further test whether GDF15 and its receptor, GFRAL, are required 

for the anorexic response. We did careful dose-effect curves to evaluate the appropriate dose of 

LPS to use that would elicit moderate illness including reducing food intake, without eliminating 

all food intake, and elevate body temperature. A dose of 600 μg/kg LPS moderately and acutely 

impairs the mice within hours of infection, reducing food intake of both WT and GDF15KO 

mice, while ensuring survival of all mice.  

 This dose of 600 μg/kg was subsequently tested in mice with targeted genetic disruption of 

either GDF15 or GFRAL. Surprisingly, the anorexic response to LPS was similar in both 

knockout models as compared to their respective littermate controls.   These data make a strong 

case that the GDF15 system is not necessary to the anorexic responses to LPS. Studies of 

whether GDF15 is a critical component of disease recovery and risk has had conflicting results, 

particularly in models of LPS infection [5,197]. A previous study evaluating the contribution of 

GDF15 to the LPS illness response utilized lethal and sublethal doses of LPS in rodents [5], both 

of which elicit a drastic infection response to severe sepsis that makes behavioral assays difficult 

to assess. The food intake test represents one such assay. When the infectious response renders 

the rodent sick enough to stop eating, it becomes difficult to resolve the contribution of GDF15 

with granularity. Additionally, in order to remove GDF15 signaling, Luan et al blocked GDF15 

using a monoclonal antibody designed for humans and its effects in mouse are unclear. In 

contrast, we use a moderate dose of LPS which did not result in lethality. Using GDF15 and 
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GFRAL KO mice, we found that GDF15 and GFRAL are not necessary components driving the 

energy intake and body weight responses in LPS infection.  

  While a large amount of data pointed towards GDF15 as a mediator of LPS responses, 

including anorexia, our results do not support this role. Both infections and LPS administration 

are complex stimuli that activate a host of systemic inflammatory responses, including the 

release of inflammatory cytokines and cellular immune activation. Many of these factors are also 

capable of inducing anorexia, at least under some inflammatory conditions [98,202]. Our data 

show proinflammatory mediators, TNF- and IL-6, as robustly elevated in both WT and 

GDF15KO mice when given LPS. In addition to TNF- and IL-6, IL-1 has been shown to 

further inflammatory mediator production and induce anorexic responses [98,203]. Furthermore, 

distinct peripheral (hepatic and pulmonary macrophages) and central cell types (perivascular, 

glial, endothelial cells) can produce prostaglandins, including PGE2 to drive anorexia by 

signaling onto neurons [194,202]. Prostaglandin production, including PGE2 which is 

synthesized by COX2, is involved in mediating other sickness responses. It is a critical factor to 

the thermoregulatory fever response [181,184,204] and has been implicated in illness-associated 

aversion learning [205]. Studies of which distinct cell types produce the various mediators and 

where they signal is still evolving. It is likely that this complex milieu of factors drives the 

anorexic response to LPS and any single factor is not required.  Key questions remain around the 

role that the pronounced increase in circulating GDF15 plays in directing the physiological 

responses to systemic infections. 
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2.5 Materials and methods 

 

Animals and housing 

All rodent experiments were approved by the University of Michigan Institutional Animal Care 

& Use Committee at (Animal Use Protocol # PRO00007908). Animals were single housed (at 

minimum for 1 week prior to experimentation) in temperature controlled rooms containing a 

12hr:12hr light:dark cycle and given ad libitum access to chow diet (PicoLab 5L0D). 

Subthermoneutral and thermoneutral housing conditions were maintained as 22°C  +/- 2°C and 

29°C +/-2°C, respectively.  

Rats: Male Long Evans rats (Envigo; Indianapolis, IN) weighing between 415-490 g were used 

for vascular catheterization surgeries and housed at 22°C. 

Mice: 21 week and 9 week old C57blk6/c mice (no: 000664, Jackson Laboratories; Bar Harbor, 

ME) were used to generate both the LPS dosing curve and housing temperature comparison 

studies, respectively. GDF15-/- and GFRAL-/-  mice were generated as previously described [33]. 

28 week-old male GDF15-/- mice and 15 week-old male (n=9) and female (n=11) GFRAL-/- mice 

were used for food intake experiments. For GFRAL-/- experiments, we did not include a WT LPS 

group due to a shortage of WT littermate mice.  

 

LPS stock 

For all rodent studies, lyophilized lipopolysaccharides from Escherichia coli O111:B4 (Sigma 

Aldrich; St Louis, MO; L4391-1MG; mouse studies lot 088M4067V) was diluted in saline and 

stored as 100ul of 1mg/ml aliquots at -80°C. On the day of the experiment, saline was used to 

further dilute the aliquots to appropriate concentrations for use.  For human subject experiments, 
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E. coli endotoxin (The United States Pharmacopeial Convention, Inc.;10,000 USP Endotoxin, lot 

H0K354; Rockville, MD) was used.  

 

Human blood collection 

A randomized crossover design was used over several experimental days in 8 human subjects as 

described previously (NCT01705782) [191]. The study and design was approved by The Central 

Denmark Region Ethics Committee in accordance with the Declaration of Helsinki (1-10-71-

410-12). Male subjects between the ages of 25-40 with a BMI of 20-30 kg/m2 were included. 

Blood was drawn from inserted catheters at baseline (0 hours) and 3 hours following an 

intravenous bolus infusion of either saline or LPS (1ng/kg). Plasma was separated and used to 

measure GDF15 levels. 

 

Rodent blood collection  

In rats, a catheter was surgically implanted into the left common carotid artery to allow in vivo 

blood sampling from an externalized sampling port as previously described [206]. Saline, 500 

μg/kg LPS or 1500 μg/kg LPS was i.p. injected into rats 1 hour prior to hourly blood sampling 

for 6 hours. In mice, tail vein blood from the tips of clipped tails was collected, kept on ice, and 

centrifuged at 2000g for 15 min in EDTA coated microvette blood collection tube (Sarstedt Inc.; 

CB300; Nümbrecht, Germany) to separate plasma.  

 

ELISA assays 

In all studies measuring GDF15 levels, a sandwich ELISA (R&D Systems, Inc.; MGD150; 

Minneapolis, MN) was used according to manufacturer’s directions. In rodent and human 
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studies, samples were diluted 1:1 and 1:10 respectively . To detect mouse plasma cytokines, a 

custom V-PLEX plus cytokine panel kit (Mesoscale Discovery, K152AOH-1, Rockville, MD) 

was used to detect IL-1ß and TNF- cytokines according to manufacturer’s directions. Plasma 

samples from mice were diluted 1:200 and run in duplicates. 

 

Food intake test 

Food was removed from cages and mice were fasted for 17-18 hours with full access to water. 

Animals were randomized for treatment and administered LPS or saline i.p. 1 hour prior to dark 

onset and return of pre-weighed chow diet. Remaining food in cage was measured at 2, 4, 24, 

and 48 hours after food return to determine food intake. 

 

Body temperature 

Mice were habituated to handling and rectal probe insertions prior to experimentation.   Body 

temperatures were measured by inserting a microprobe thermometer probe (Physitemp 

Instruments; BAT-12; Clifton, NJ), lightly coated in petroleum jelly, 2 cm into the rectum of 

scuffed mice prior to any other measurements or injections on days of experimentation. 

 

Statistical analysis  

All statistical analysis was performed in either GraphPad Prism v8.4.2 or v9.0.0 and is 

represented as mean +/- SEM. Student’s t-test, one-way, two-way or three-way ANOVA with 

Tukey’s or Dunnett’s post-hoc tests were utilized to determine significance. Significance was 

defined as p<0.05.  
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Figure 2: GDF15 in rats, mice, humans, and LPS dosing curve 

Plasma GDF15 levels in humans 3 hours after receiving a bolus of LPS or saline (A)(n=8). 2-

way ANOVA with Tukey’s multiple comparison test; ****p<0.0001 compared to 0hr (baseline) 

LPS treated subjects. Hourly plasma GDF15 levels from carotid cannulated rats administered i.p. 

saline, 500 μg/kg LPS, or 1500 μg/kg LPS from 0hr (baseline) to 6hrs post-injection (B) (n=2-4 

per group). 2-way ANOVA with Tukey’s multiple comparison test, *p<0.05 500 μg/kg 

compared to saline; #1500 μg/kg compared to saline. LPS dose effect measurements of WT mice 

administered 100 μg/kg, 250 μg/kg, 500 μg/kg, or 600 μg/kg LPS or saline at 0hr (baseline) and 

after 24 hours post injection (C-E). Body weights (C), rectal temperatures (D) and 4-hour post-

LPS injection food intake test (E)(n=5-10 per group). 2-way ANOVA with Tukey’s multiple 

comparison test (C,D) and Dunnett’s multiple comparison test (E); *p<0.05; **p<0.01; 

***p<0.001, ****p<0.0001 compared to 24 hr (C-D) or 4hr (E) saline. Body weights (F), rectal 

temperatures and (G) plasma GDF15 levels (H) at 0 and 24 hours (n=9-10 per group). 2-way 

ANOVA with Tukey’s multiple comparison test (F-G) or two-tailed students t-test (H);  

*p<0.05; **p<0.01; ****p<0.0001.  All data are represented as mean ± SEM.   
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Figure 3: Effects of housing temperature on body weight, food intake, and circulating GDF15 

WT mice housed at ambient temperatures of 22°C (subthermoneutral; STN) or 29°C 

(thermoneutral; TN) i.p. injected with saline or 600 μg/kg LPS. Body weight measurements one 

day prior, on the day of, and up to two days after treatment (A) (n=5-8 per group). Cumulative 

food intake test of overnight fasted mice at 1hr (B), 2hr (C) , 4hr (D), 24hr (E), and 48hr (F) post 

treatment (n=5-8 per group).Concentration of plasma GDF15 3hrs after treatment (G) (n=5-8 per 

group). All data are represented as mean ± SEM. */#p<0.05; **/##p<0.01; ***/###p<0.001; 

****/####p<0.0001 with  */ **/ ***/ **** compared to STN saline and #/ ##/ ###/ #### 

compared to TN saline by 3-way ANOVA (A) and 2-way ANOVA (B-G) with Tukey’s multiple 

comparison tests.  
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Figure 4: GDF15 and GFRAL KO mice response to LPS 

Body weights of WT and GDF15KO mice before (0hr, baseline) and 24 hr after LPS (600 μg/kg) 

or saline i.p. injection (A) (n=10 per group). Cumulative food intake measurements from 2hr (B), 

4hr (C), 24 hr (D), and 48 hr (E) after LPS (600 μg/kg) or saline i.p. injection of overnight fasted 

WT and GDF15KO mice (n=10 per group). Plasma levels of TNFa (F) and IL-6 (G) 3 hours after 

treatment (saline or 600 μg/kg LPS) (n=4-6 per group). */ **/ ***/ **** compared to WT saline 

and #/ ##/ ###/ #### compared to KO saline by 2-way ANOVA with Tukey’s multiple 

comparison tests. Body weights before (0hr, baseline) and after 24 hr from saline or LPS (600 

μg/kg) i.p. injection of WT and GFRAL KO mice (H) (n=5-10 per group). Cumulative food 

intake measurements at 4 hr (I) and 24hr (J) of WT and GFRAL KO mice i.p. injected with LPS 
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(600 μg/kg) or saline (n=5-10 per group). **** compared to GFRAL KO saline by 2-way 

ANOVA (H) and ANOVA (I,J) with Tukey’s multiple comparison tests. All data are represented 

as mean ± SEM. */# p<0.05; **/## p<0.01; ***/### p<0.001; ****/####p <0.0001. 
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Figure 5: GDF15 deficiency does not modulate body condition or survival with sublethal dose 

of LPS.  

LPS induced body condition score of WT and GDF15 KO mice following a i.p. 5 mg/kg LPS 

dose when housed at ambient temperatures of 22°C. Appearance (A), natural behavior (B), and 

provoked behavior (C) scores for 4 days following LPS injection. Kaplan-Meier survival curve 

indicating % survival in WT and GDF15 KO mice following LPS injection (Fig D); (n=6-12 per 

group); two-way ANOVA. Data were represented as mean ± SEM.  
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Figure 6: Health score chart for monitoring animal’s health condition. 

Animals were observed and scored on appearance, natural behavior, provoked behavior, and body 

condition score. Scores from these four criteria were summed into a final cumulative score.  
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Figure 7: GDF15 deficiency does not modulate weight loss or anorexia induced with a 

sublethal dose of LPS.  

LPS induced body condition score of WT and GDF15 KO mice following i.p. 5 mg/kg LPS dose 

when housed at ambient temperatures of 22°C. Body weight and cumulative food intake at 6 (A), 

24 (B), 48 (C), 72 (D) and 96 (E) hours following LPS in WT and GDF15 KO mice. #/ ##/ ###/ 

#### compared to WT and */ **/ ***/ **** compared to KO saline by two-way ANOVA with 

Tukey’s post hoc. */# p<0.05; **/## p<0.01; ***/### p<0.001; ****/#### p <0.0001.Data were 

represented as mean ± SEM. N=6-12 per group.   
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2Chapter 3: GFRAL Neurons Do Not Contribute to the Aversive or Anorectic Response to 

Deoxynivalenol 

 

3.1 Chapter summary 

Deoxynivalenol (DON), a type B trichothecene mycotoxin contaminating grains, 

promotes nausea, emesis and anorexia. In DON infection, circulating levels of intestinally 

derived satiety hormones, including GLP-1 are elevated. To directly test the role for GLP-1 

signaling in mediating the effects of DON, we examined the response of GLP-1 or GLP-1R-

deficient mice to dose of DON. We found comparable anorexic and conditioned taste aversion 

learning responses in GLP-1/GLP-1R deficient mice compared to control littermates which 

suggests that DON induces the effects via other mechanisms. We then used translating ribosome 

affinity purification with RNA sequencing (TRAP-seq) analysis of area postrema neurons that 

express the receptor for the circulating cytokine growth differentiation factor (GDF-15), growth 

differentiation factor -like (GFRAL). Interestingly, this analysis showed that a receptor for 

DON, calcium sensing receptor (CaSR), is heavily enriched in GFRAL neurons. Given that 

GDF15 potently reduces food intake and can cause visceral illness via activating GFRAL 

neurons, we hypothesized that DON may also act via activating CaSR on GFRAL neurons. 

When administered DON, GFRAL neuron-ablated mice exhibited similar aversion learning 

 
2 This chapter reflects the following manuscript: 

 

Patel AP, Frikke-Schmidt H, Bezy O, Sabatini PV, Rupp A, Myers MG, Seeley RJ. GFRAL neurons do not 

contribute to the aversive or anorectic response to deoxynivalenol. In preparation. 
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compared to the WT littermates and intact anorexia. Thus, GLP-1 signaling and GFRAL neurons 

are not required for DON-induced visceral illness or anorexia.  

 

3.2 Introduction 

Growth differentiation factor 15 (GDF15) is a peripherally derived cytokine that signals 

onto its receptor within the brain, GDNF family receptor -like (GFRAL). GFRAL has a very 

narrow distribution in the CNS that is limited to neurons within the area postrema (AP) and to a 

lesser extent the nucleus of the solitary tract (NTS) [3,13–15].  GDF15 and analogues of GDF15 

potently suppress food intake and cause weight loss via action on GFRAL neurons. Despite these 

profound effects on food intake and weight, there is little evidence for GDF15 or GFRAL to 

regulate body weight under normal circumstances. Rather, it would appear more likely that this 

system contributes to anorexic responses to a variety of pathophysiological states such as cancer, 

cachexia, sepsis, and cardiovascular disease in which circulating levels of GDF15 have been 

shown to be elevated [62,175,176].   

Given this small population of GFRAL neurons in the AP/NTS, we hypothesized that 

these neurons may input other signals that are related to pathophysiological states.  To identify 

other receptors on these neurons, we used Translating Ribosome Affinity Purification (TRAP-

seq) with RNA-seq (TRAP-seq) [207] to identify mRNA that are enriched in GFRAL neurons.  

We found that one of the highest enriched mRNAs on GFRAL neurons was the casr. Calcium 

sensing receptor (CaSR), is a g-protein coupled-receptor that responds to extracellular calcium. 

In addition to calcium, CaSR is activated by deoxynivalenol (DON), a type-B trichothecene 

mycotoxin produced primarily from Fusarium fungi. DON is a contaminate of grains and cereals 

including corn, wheat, oats, and barley and is frequently ingested by animals and humans. The 
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visceral illness effects of DON earned it the colloquial name of “vomitoxin” when it was 

discovered in the 1970s [208]. As summarized in a 1973 study, and later confirmed by dozens of 

additional studies, oral intake of DON contaminated grains by swine decreased body weight 

gain, induced food refusal and emesis [209–211]. Short-term exposure can cause gastroenteritis 

symptoms of acute nausea, vomiting, diarrhea, and pain [212]  and long term exposure can 

induce a reduction of body weight gain [213–216]. These adverse symptoms have since 

additionally been described in humans, rodents, and mink [212,217].  

The emetic response is a protective mechanism against potentially hazardous ingested 

compounds. In swine, the most sensitive species to DON [217], and mink animals exhibit emesis 

as quickly as 30 minutes after i.p. and 15 min after i.p. or oral DON administration, respectively 

[210,218]. Because rodents lack the vomiting reflex, assessing nausea typically uses a 

conditioned taste aversion (CTA) assay. A CTA is when a novel tastant is paired with the 

administration of a toxic compound that subsequently elicits malaise and nausea leading the 

animal to avoid that tastant when tested later. Consistent with the documented nausea associated 

with DON in other species, DON induces a potent CTA in rodents [219,220].   

Like many emetic agents, administration of DON also activates neurons in the AP. This 

could be the result direct neuronal activation in the AP since DON appears in the brain within 5 

minutes of administration. Given that CaSR is highly expressed in GFRAL neurons, it is possible 

that some of these AP neurons also express GFRAL.  Activation of GFRAL neurons (either via 

GDF15 administration or via activation of DREADD receptor) results in a profound CTA [8,23].  

Consequently, we hypothesized that the potent and rapid effects of DON are the result of direct 

activation of CaSR/GFRAL neurons in the AP.  To test this hypothesis, we used a variety of 

novel mouse models to test the role of GDF15 and GFRAL neurons to mediate effects of DON. 
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In addition to CaSR and GFRAL, receptors for the glucagon like peptide-1 (GLP-1) are 

also found in the AP. GLP-1 agonists also cause potent reductions in food intake and induce an 

aversion response that are the result of GLP-1R activation [221]. DON increases circulating 

GLP-1 levels presumably by increasing secretion of GLP-1 from the intestine [105,107,108].  

Thus it is possible that rather than acting directly upon AP neurons, DON activates circuits in the 

AP via increasing levels of GLP-1 that in turn activates emetic circuits in the AP.  To test this 

hypothesis, we used mice that lacked the ability to produce GLP-1 or to respond to GLP-1 via 

the GLP-1 receptor.    

 

3.3 Results 

As GLP-1, an anorectic intestinal hormone, has been shown to increase in circulation 

with DON infection, we hypothesized that GLP-1 signaling contributes to the food refusal and 

aversive effects. To test the necessity of GLP-1, we used mice lacking either GLP-1R or the 

preproglucagon gene (Gcg). We chose to use a dose (2.5mg/kg) of DON that has previously been 

shown to increase GLP-1 into circulation by 2-fold within 30 min in mice [107]. Male and 

female GLP-1RKO and GLP-1RWT mice do not show any differences in body weight due to 

genotype, however the female mice weigh significantly less than male mice (Fig. 8A). To assess 

the necessity of GLP-1R in inducing the nausea effects of DON, we performed a two-bottle 

choice CTA assay using 0.15% saccharine solution. DON induces a strong CTA in both GLP-

1Rf/f and WT littermate mice, reducing intake from 65-70% to merely 10-17% saccharine 

solution intake with no statistical impact of genotype (Fig. 8B). In a food intake test, DON 

induced a potent anorexia as early as 1-2 hours after food presentation in both GLP-1RWT and 

GLP-1RKO male (Fig. 8C) and female (Fig. 8D) mice. At 4 hours, DON reduced food intake in 

GLP-1RKO and WT mice by 33-35% in males and 29-30% in females. By 24 hours, there is no 
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statistical difference between DON and saline treated groups in males. Female GLP-1Rff mice 

continue to show a statistically significant slight decrease in feeding. However, we predict that 

this response would be eliminated within several hours. Although the data shown is separated by 

the sex of mice, when male and female data is combined there is still a similar trend, with DON 

inducing anorexia at 2 and 4 hours and no differences in the responses between genotypes.  

Next we tested the necessity of GLP-1 using Gcg KO mice. Gcg KO mice do not exhibit 

differences in body weight compared to Gcg WT littermates (Fig. 8E). DON induces a CTA in 

both Gcg KO and Gcg WT littermates, illustrated by reduction of saccharine intake beginning at 1 

hr and lasting for 25 hours (Fig. 8F). There was no significant difference between WT and Gcg 

KO DTA response. Further, food intake is reduced within 1 hour and up to 24 hours after DON 

injection (Fig. 8G). Gcg WT and Gcg KO mice reduce feeding by 35% and 32% within 1hr of 

DON exposure. Although data is represented with male and female mice combined, similar to 

GLP-1RKO mice, there is no difference between male and female food intake response when data 

are separated. This data demonstrates that neither GLP-1 nor GLP-1R are necessary for the 

anorexia and aversion effects of DON.  

We then investigated central neuronal activation within the AP using DON injected 

GFRALeGFP-L10  mice. 2 hours after DON injection, we found a high colocalization of eGFP 

positive GFRAL cells and immunofluorescence for cfos within the AP (Fig. 9A). Since DON 

clearly induces activation of GFRAL neurons, we then asked whether GFRAL signaling was 

necessary to the acquisition of a CTA and anorexia in response to DON. To test this, we used 

female GFRALKO and GFRALWT littermate mice. DON treated GFRALKO and GFRALWT mice 

both reduced saccharine intake and increased water intake within 2 hours and lasting for 24hours 

following two-bottle choice presentation (Fig. 9B-D). GFRALKO saline treated mice consumed 
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the saccharine solution 66-80% of total volume compared to only 10-13% in DON treated mice 

at 2 (Fig. 9B) and 4 hours (Fig. 9D). Although DON induced a potent CTA response, there were 

no differences observed between GFRALKO and GFRALWT mice. We then did a food intake test, 

in a separate cohort of male and female GFRALKO and GFRALWT mice. Within 1 hr, GFRALKO 

mice and WT littermates exhibit a strong reduction in food intake with DON compared to 

GFRALKO saline controls (Fig. 9E). DON induced anorexia was detectable at 2 and 4 hours (Fig. 

9E-G), and reduced by 24 hours (Fig. 9H) with no difference between the GFRALKO and 

GFRALWT DON responses at any timepoint. Taken together, this data determines that GFRAL 

signaling is not a necessary component regulating aversive or anorexic responses to DON.  

Although GFRAL is not necessary, other cell surface receptors on AP GFRAL neurons 

may be responsible for activation of the neuronal population. Thus, we next isolated the brains of 

GFRALeGFP-L10 mice for TRAP analysis on harvested AP extracts to separate the GFRAL (GFP-

L10+) containing cell mRNA from the non-GFRAL expressing supernatant (eGFP-L10-) 

mRNAs. Mice contain eGFP tagged ribosomal subunits in GFRAL cells. Key genes were 

measuired and analyzed for enrichment and expression levels. We observed a high enrichment of 

CaSR mRNA in AP GFRAL cells (Fig. 9I). This led us to hypothesize that GFRAL neuronal 

activation is the primary signaling network for the anorectic and aversive effects of DON. To 

functionally test the necessity of GFRAL neurons in mediating DON induced physiological 

illness, we used mice with GFRAL neuron ablation. We crossed GFRALcre mice onto the cre-

inducible diphtheria toxin receptor background, permitting the specific ablation of GFRAL 

neurons by i.p. diphtheria toxin (DT) administration in GFRALDTR mice while leaving GFRAL 

neurons intact in the GFRALWT mice. We administered 200ug/kg diphtheria toxin (DT) to all 

mice. To understand the impact of DT on the phenotypes of mice with and without GFRAL 
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neuron ablation, we measured body weight (Fig. 10A), fat and lean mass (Fig. 10B-C) before 

and after DT in a cohort of male and female mice. Weekly body weights, fat and lean mass did 

not differ between GFRALWT and GFRALDTR mice before or after DT administration (Fig. 10A-

C).  

7 weeks after DT administration, we conducted a two bottle choice CTA test in which we 

paired the flavor of 0.15% saccharine solution with DON. GFRALWT and GFRALDTR saline 

paired mice both drank saccharine 67% saccharine solution. GFRALWT and GFRALDTR mice 

paired with vomitoxin, consumed only 8% and 16% of saccharine solution at 4hrs, respectively, 

illustrating that DON induced a potent CTA in both genotypes (Fig. 10D). There was no 

significant difference between the amount of saccharine solution consumed by GFRALWT vs 

GFRALDTR mice at either 4 or 24 hours (Fig. 10E), suggesting that GFRAL neurons are not 

responsible for triggering a CTA. There is greater variability in saccharine intake for GFRALDTR 

mice at 24 hours, potentially reflecting differential ablation of GFRAL neurons in each subject. 

To test whether GFRAL neurons play a role in the strong anorexia induced by DON, we 

subjected mice to a food intake test after i.p. injection of either saline or 2.5mg/kg DON. While 

DON induced anorexia within 2 hrs of administration in both GFRALWT and GFRALDTR mice, 

we did not observe a difference in food intake between the GFRALWT and GFRALDTR mice (Fig. 

10F) 4 (Fig. 10G) or 24 hours (Fig. 10H). Thus, we conclude that GFRAL neurons are not 

necessary for DON induced food refusal. 

To functionally confirm the ablation of GFRAL neurons, we next challenged GFRALWT 

and GFRALWT mice with 60% high fat diet (HFD) feeding for 5 weeks and performed a food 

intake test following GDF15 administration. Pharmacological GDF15 is a potent anorectic agent, 

the effects of which are clearer in obese mice. Daily administration of GDF15 for 3 days does 
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not change body weight (Fig. 11A). GFRALWT mice exhibit a decrease in cumulative food intake 

in response to GDF15 by day 3 (Fig. 11B) and day 4 (Fig. 11C) compared to GFRALDTR mice. 

Next, we perfused and harvested mouse brains 4 hours after s.c. administration of GDF15. The 

AP/NTS of GFRALWT mice contained elevated eGFP fluorescence staining GFRAL neurons 

expressing eGFP compared to GFRALDTR mice (Fig. 11D). Further cfos in reponse to GDF15 is 

significantly reduced in GFRALDTR mice compared to GFRALWT (Fig. 11D).Taken together, the 

reduced anorexia in response to GDF15 and of eGFP signal in GFRALDTR mice confirm that 

GFRAL neurons are sufficiently depleted by DT in GFRALDTR 

 

3.4 Discussion 

A wide range of hypotheses have been offered to explain the potent effects of DON to 

induce anorexia. We tested the necessity of peripheral signaling molecules using GLP-1RKO, 

GcgKO, GFRALKO, and GFRALDTR ablation of GFRAL. Enteroendocrine cells are important in 

detecting luminal content and influencing appetite and satiety through the release of hormones. 

CaSR is found in enteroendocrine cells and downstream signaling leads to the exocytosis of 

GLP-1 [105,222,223] as quickly as 15 minutes after DON exposure [109,218,224,225]. Our 

results demonstrate that DON is a potent visceral illness inducing agent that does not require the 

production of GLP-1 or GLP-1R signaling to cause aversion or anorexia. GLP-1R KO and Gcg 

KO mice exhibited a similar anorexia and aversion response as the WT littermate controls when 

peripherally administered DON. Our results are in contrast to Jia et al, in which GLP-1 

antagonist Exendin9-39 pharmacologically increases food intake in orally infected mice.  This is 

likely due to the differences in the genetic vs pharmacological manipulation of GLP-1 model 

systems used. Feeding responses to a anorectic agent of GLP-1 and administering an anorectic of 

DON can vary depending on the dosage of each. The effect of Exendin9-39 to elicit increased 
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feeding may be overriding the anorectic capabilities of DON, but does not imply that the two 

mechanisms are inherently shared. Thus, manipulating well-known food reducing agents such as 

GLP-1 and DON signaling may be highly variable depending on the doses administered [226].  

Although we found that GLP-1 is not a necessary component, other intestinal hormone 

signals may be contributing to the response. Many peripheral agents are capable of signaling to 

the hindbrain to elicit behavioral responses. The AP and NTS have been identified as important 

regions for DON induced illness. An early lesion study showed that the development of a CTA 

in rats in response to DON is dependent on the AP [219] which is consistent with our current 

understanding of the AP’s role in illness. A population of neurons in the brain containing 

GFRAL receptor elicit similar illness behaviors of anorexia and aversion formation when 

activated [8,23]. We hypothesized that DON elicits GFRAL to produce nausea and food refusal 

and directly tested this hypothesis using GFRALKO mice. GFRALKO mice exhibit the same 

anorexia and aversion response as GFRALWT littermates. Thus, we concluded that GFRAL is not 

required for the physiological symptoms of DON.  

After peripheral DON administration, levels of DON detectable in the brain increase 

rapidly [114]. Instead of peripheral signaling, DON may induce CaSR directly in the brain. 

Using TRAP-seq to measure mRNA in the AP, we found a high enrichment of CaSR on GFRAL 

neurons. We then hypothesized that although GFRAL is not necessary, the neurons may play a 

critical role by direct activation of CaSR by DON. To test this, we developed GFRALDTR  mice 

that specifically express diphtheria toxin receptor on GFRAL neurons. DT administration ablates 

GFRAL cre expressing neurons. To control for DT, we administered DT to all mice. GFRALDTR 

mice exhibit similar feed refusal and CTA formation as GFRALWT mice. Our experiments 
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demonstrate that neither GFRAL itself nor the neurons are necessary to induce anorexia or 

aversion, as illustrated by the intact illness symptoms in GFRALKO and GFRALDTR mice.  

GFRALDTR mice exhibited a greater variability in CTA formation, with some DON 

conditioned mice drinking more saccharine than others compared to GFRALWT mice. It is 

possible that there is variable ablation of GFRAL neurons and very few GFRAL neurons are 

required to elicit aversion. In this case, the variability in saccharine consumption would be a 

result of differential GFRAL neuron ablation with diphtheria toxin. Further, GFRAL neurons 

represent just a fraction of neuronal populations within the AP and NTS. Although we have 

determined that GFRAL neurons are not necessary for DON’s illness effects, central CaSR 

signaling on other neuronal populations is possible, as CaSR is widely expressed in the brain 

[227–229]. Additionally, CaSR is expressed in the hypothalamus which has recently been 

vaguely hypothesized to be implicated in regulating DON induced food refusal. A handful of 

studies have detected alterations in cFos and mRNA within the arcuate nucleus and POMC and 

AgRP neurons in response to DON, though with conflicting results [104,112,224,230,231]. This 

is further confounded by variability between species. As many of these studies have inconsistent 

data at the contribution of various gut hormones and activation of hypothalamic networks, it is 

possible that a combination of hormones and factors are contributing. Thus, further research in 

mice investigating neuronal activation and the peripheral hormone response is necessary.  
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3.5 Materials and methods 

 

Animals 

All rodent experiments were approved by the University of Michigan Institutional 

Animal Care & Use Committee at (Animal Use Protocol # PRO00007908). Animals were single 

housed (at minimum for 1 week prior to experimentation) in temperature controlled rooms 

containing a 12hr:12hr light:dark cycle and given ad libitum access to chow (PicoLab 5L0D) or 

60% high fat diet (Research Diets Inc., D12492). 

GLP-1RKO, GcgKO and GFRALKO  mice were generated as previously described [33,206]. WT 

littermates (GFRALWT, GcgWT, GFRALWT) were used as controls. To generate the GFRALeGFP 

mice, the LSL cassette from the ROSA26eGFP-L10a allele was excised by GfralCre as previously 

described [23,232]. Male and female GFRALeGFP-L10a mice were used for cfos 

immunohistochemical analysis of the area postrema. A separate cohort of male and female 

GfralCreeGFP-L10a  were used for TRAP. Gfralcre-eGFP-L10 mice were bred with mice expressing B6-

iDTR, ROSA26iDTR (C57BL/6-Gt(ROSA)26Sortm1(HBEGF)Awai; no: 007900, The Jackson 

Laboratory) to generate GfraleGFP-DTR (GfralDTR) mice which express diphtheria toxin receptor in 

GFRAL cells. Gfralcre-eGFP-L10 mice were used as controls.  

 

Pharmacological agents 

Lyophilized deoxynivalenol (Sigma 5mg D0156) was reconstituted into 1mg/ml saline aliquots 

and frozen at -80deg. On the day of experiment, vomitoxin was thawed, diluted with saline to the 

appropriate concentration (1mg/ml or 2.5mg/ml) and filtered through a 0.22um PVDF membrane 
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filter (Millipore Sigma, SLGV033RS) for i.p. administration. 0.4mg/kg of mouse GDF15 (Novo 

Nordisk) was prepared by diluting with a MIC-1 buffer (5 mM acetate salt, 2.25% glycerol and 

70ppm Tween 20 at pH 4). Mouse GDF15 or buffer was injected subcutaneously in mice daily. 

All GFRALDTR and GFRALWT mice were dosed with 200ug/kg diphtheria toxin dissolved in 

saline (Sigma, D0564-1MG) prior to experimentation. 

 

Food intake test 

Clean cages were provided and all food was removed to fast mice for 4-5 hours (GFRALKO /WT; 

GFRALDTR /WT; GLP-1R KO/WT; Gcg KO/WT) with full access to water. Animals were randomized 

for treatment and administered saline or vomitoxin (2.5 mg/kg ip) 1 hour prior to dark onset and 

return of pre-weighed diet. Remaining food in cage was measured at 1,2,4, and 24 hours after 

food return to determine food intake. The same was repeated for food intake analysis of 

pharmacological GDF15 except GFRALcre/ GFRALWT mice were not fasted and measurements 

were taken at the same time every 24 hours. 

 

Conditioned taste aversion (CTA) assay 

Mice were handled and injected with saline for a minimum of 1 week prior to experimentation. 

On day 0, mice began habituation to removal of lixit access and replacement with two water 

bottles. On day 3, water bottles were removed 1 hour prior to lights off to induce thirst for 23 

hours. On day 4 (conditioning day), 2 bottles containing 0.15% saccharine in water solution were 

given to mice for 2 hours prior to lights out. At lights out, mice received an injection of either 

saline or DON (2.5mg/kg, ip). Saccharine bottles were then removed and 2 water bottles were 
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added back to the cages immediately. On day 5, water bottles were removed for 23 hours to 

induce thirst. On day 6 (test day), a pre-weighed water bottle and saccharine bottle were added to 

the cages (0 hr; baseline) to give the mice a two-bottle choice 1 hour prior to lights out. Bottles 

were measured for the following 1, 2, 4, and 24 hours. Volume of water and saccharine 

consumed were calculated at each time point and represented as a % of total volume intake 

(saccharine intake/(saccharine + water intake)*100. 

 

Body Composition  

Fat and lean mass were measured using an EchoMRI (Echo Medical Systems). 

 

 

 

IHC (DON cfos in GFRALeGFP mice; GFRALDTR ablation) 

GFRALeGFP-L10 mice were injected with 2.5mg/kg vomitoxin i.p. 2 hours prior to CO2 

asphyxiation. GFRALDTR and GFRALWT mice were injected with GDF15 s.c. 4 hours prior to 

euthanization with isoflurane. Mice were then perfused with phosphate buffered saline (PBS) 

followed by a 10% buffered formalin solution. Brains were harvested and post fixed in a 30% 

sucrose solution. 30um brain slices were taken using a freezing microtome (Leica). Brain sections 

were then treated with 1% hydrogen peroxide/0.5% sodium hydroxide, 0.3% glycine, 0.03% 

sodium dodecyl sulfate, and blocked with 0.1% triton, 3% normal donkey serum in PBS (Fisher 

Scientific). After an overnight room temperature incubation with anti-FOS antibody, slices were 

washed and incubated with secondary antibody. Microscopy and analysis of images were done 

(Olympus BX51 microscope).  
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Statistical Analysis 

All statistical analysis was performed in either GraphPad Prism v8.4.2 3BF and is represented as 

mean +/- SEM. Student’s t-test, one-way, two-way or three-way ANOVA with Tukey’s post-hoc 

tests were utilized to determine significance. Significance was defined as p<0.05.   
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Figure 8: GLP-1 signaling in male and female mice 

Body weights of male WT (n= 19), male GLP-1R KO (n=21), female WT (n=11) and female 

GLP-1R KO (n=21) mice prior to experimentation (A) 2-way ANOVA with Tukey’s multiple 

comparisons; **** male vs female. 

 Conditioned taste aversion (CTA) assay in male WT and GLP-1R KO mice conditioned to 

saline or 2.5mg/kg DON (n= 8-10 per group) (B).  

Food intake (FI) test in WT and GLP-1R KO male (n=8-10 per group) (C) and female (n=9-10) 

(D) mice fasted for 4-5 hours and injected with 2.5mg/kg DON; */ **/ ***/ **** compared to 

WT saline and #/ ##/ ###/ #### compared to KO saline by 2-way ANOVA with Tukey’s 

multiple comparison test. 

Body weights of WT and Gcg null male and female mice (n=19-20) (E) two-tailed students t-

test; no significant differences. CTA assay in male and female WT and Gcg null mice 
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conditioned to saline or 2.5mg/kg DON (n=4-14 per group) (F) Food intake test in WT and Gcg 

null male and female mice (n= 4-14) (G) */ **/ ***/ **** compared to WT saline and #/ ##/ 

###/ #### compared to KO saline by 2-way ANOVA with Tukey’s multiple comparison test. 

All data are represented as mean +/- SEM. */#p<0.05; **/##p<0.01; ***/###p<0.001; 

****/####p<0.0001.  
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Figure 9: GFRAL signaling  

Immunohistochemical staining of area postrema from male and female GFRAL eGFP-L10 mice 

injected with 2.5mg/kg DON for cfos (n=3)(Fig1.A). Conditioned taste aversion (CTA) assay of 

female GFRAL KO and WT mice with ip administration of saline or 2.5mg/kg DON at 2hr (B), 

4hr (C), and 24 hr (D) (n=5-6 per group). Food intake (FI) test of 5 hr fasted mice conditioned to 

saline or 2.5mg/kg DON at 1hr (E) 2hr (F) 4hr (G) and 24hr (H) (n=5-10). */ **/ ***/ **** 

compared to WT saline and #/ ##/ ###/ #### compared to GFRAL KO saline by 2-way ANOVA 

with Tukey’s multiple comparison test. Transcripts enriched in TRAP fraction of the AP in male 

and female GFRALeGFP-L10 mice (I). Differential expression was determined by CuffDiff analysis 

with threshold set to P <0.05. Expression is represented as fragments per million (FPM). (n=12). 

All data are represented as mean +/- SEM. */#p<0.05; **/##p<0.01; ***/###p<0.001; 

****/####p<0.0001.  
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Figure 10: GFRAL neuronal ablation  

Body weight 2 weeks before and 7 weeks after diphtheria toxin injection in GFRAL WT and 

GFRALcre mice (n=18-20 per group) (A); 2-way ANOVA with Sidak’s multiple comparison 

test. Body composition of GFRAL WT and GFRALcre mice 2 weeks prior to diphtheria toxin 

administration (n=18-20 per group) (B) and 15 weeks after diphtheria toxin administration 

(n=18-20 per group) (C); 2-way ANOVA with Tukey’s multiple comparison test. Conditioned 

taste aversion (CTA) assay in male GFRAL WT and GFRALcre mice conditioned to saline or 

2.5mg/kg DON at 4 hours (D) and 24 hours (E) after addition of two bottle choices (n= 9-11 per 

group); 2-way ANOVA with Tukey’s multiple comparison test. Food intake test after a 4-5 hour 

fast in GFRAL WT and GFRALcre mice with either saline or 2.5mg/kg DON injection at 2 

hours (F) 4 hours (G) and 24 hours (H) after food return; 2-way ANOVA with Tukey’s multiple 

comparison test. */ **/ ***/ **** compared to GFRAL WT saline and #/ ##/ ###/ #### 

compared to GFRALcre saline. All data are represented as mean +/- SEM. */#p<0.05; 

**/##p<0.01; ***/###p<0.001; ****/####p<0.0001. 
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Figure 11: GFRAL DTR neuron ablation confirmation 

GFRAL WT and GFRAL DTR mice 4 hours after s.c. dose of GDF15. Representative 

immunostaining of the AT/NTS for eGFP labeling GFRAL neurons (A) and cFOS (B). Body 

weights of mice dosed with s.c. vehicle or GDF15 daily on days 1, 2, and 3 (C) and cumulative 

food intake on day 3 (D) and day 4 (E) (n=6-7 per group); 2-way ANOVA with Tukey’s post hoc 

test. All data are represented as mean +/- SEM; *p<0.05 
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3Chapter 4: GLP-2 Receptor Signaling Controls Circulating Bile Acid Levels but Not 

Glucose Homeostasis in Gcgr-/- Mice and is Dispensable for the Metabolic Benefits Ensuing 

after Vertical Sleeve Gastrectomy 

 

4.1 Chapter summary  

Therapeutic interventions that improve glucose homeostasis such as attenuation of 

glucagon receptor (Gcgr) signaling and bariatric surgery share common metabolic features 

conserved in mice and humans. These include increased circulating levels of bile acids (BA) and 

the proglucagon-derived peptides (PGDPs), GLP-1 and GLP-2. Whether BA acting through 

TGR5 (Gpbar1) increases PGDP levels in these scenarios has not been examined. Furthermore, 

although the importance of GLP-1 action has been interrogated in Gcgr-/- mice and after bariatric 

surgery, whether GLP-2 contributes to the metabolic benefits of these interventions is not 

known. 

To assess whether BA acting through Gpbar1 mediates improved glucose homeostasis in 

Gcgr-/- mice we generated and characterized Gcgr-/-:Gpbar1-/- mice. The contribution of GLP-2 

receptor (GLP-2R) signaling to intestinal and metabolic adaptation arising following loss of the 

Gcgr was studied in Gcgr-/-:Glp2r-/- mice. The role of the GLP-2R in the metabolic 

 
3 This chapter represents the following manuscript: 

Patel, A., Yusta, B., Matthews, D., Charron, M.J., Seeley, R.J., Drucker, D.J., 2018. GLP-2 receptor signaling 

controls circulating bile acid levels but not glucose homeostasis in Gcgr−/− mice and is dispensable for the 

metabolic benefits ensuing after vertical sleeve gastrectomy. Molecular Metabolism 16: 45–54, Doi: 

10.1016/j.molmet.2018.06.006. 
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improvements evident after bariatric surgery was studied in high fat-fed Glp2r-/- mice subjected 

to vertical sleeve gastrectomy (VSG).  

Circulating levels of BA were markedly elevated yet similar in Gcgr-/-:Gpbar1+/+ vs. 

Gcgr-/-:Gpbar1-/- mice. Loss of GLP-2R lowered levels of BA in Gcgr-/- mice. Gcgr-/-:Glp2r-/- 

mice also exhibited shifts in the proportion of circulating BA species. Loss of Gpbar1 did not 

impact body weight, intestinal mass, or glucose homeostasis in Gcgr-/- mice. In contrast, small 

bowel growth was attenuated in Gcgr-/-:Glp2r-/- mice. The improvement in glucose tolerance, 

elevated circulating levels of GLP-1, and glucose-stimulated insulin levels were not different in 

Gcgr-/-:Glp2r+/+ vs. Gcgr-/-:Glp2r-/- mice. Similarly, loss of the GLP-2R did not attenuate the 

extent of weight loss and improvement in glucose control after VSG. 

These findings reveal that GLP-2R controls BA levels and relative proportions of BA species 

in Gcgr-/- mice. Nevertheless, the GLP-2R is not essential for i) control of body weight or 

glucose homeostasis in Gcgr-/- mice or ii) metabolic improvements arising after VSG in high fat-

fed mice. Furthermore, despite elevations of circulating levels of BA, Gpbar1 does not mediate 

elevated levels of PGDPs or major metabolic phenotypes in Gcgr-/- mice. Collectively these 

findings refine our understanding of the relationship between Gpbar1, elevated levels of BA, 

PGDPs, and the GLP-2R in amelioration of metabolic derangements arising following loss of 

Gcgr signaling or after vertical sleeve gastrectomy. 

 

4.2 Introduction 

Although multiple organ systems contribute to control of energy balance, the complex 

network of enteroendocrine cells has received increasing attention as physiological regulators of 

metabolic homeostasis [233,234]. Notably, L cells that produce the proglucagon-derived 
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peptides (PGDPs) have been extensively studied, as PGDPs exert pleiotropic actions regulating 

appetite, gastrointestinal motility, nutrient absorption, gut epithelial integrity, gallbladder 

emptying, and the uptake and assimilation of nutrients in peripheral tissues [235,236]. Indeed, 

PGDP secretion from enteroendocrine L cells is stimulated by a range of nutrients, microbial 

metabolites, and bile acids (BA), through direct and indirect mechanisms [234]. 

Glucagon-like peptide-1 (GLP-1), the best characterized PGDP, is a 30 amino acid 

peptide that exerts its actions through a single well-defined G protein-coupled receptor [236]. 

GLP-1 is physiologically essential for glucose control and energy homeostasis, as revealed in 

preclinical studies using GLP-1 receptor (GLP-1R) antagonists or Glp1r-/- mice [236]. GLP-1 

also attenuates the rate of gastric emptying and small bowel motility, and promotes expansion of 

the intestinal mucosal epithelium, actions serving to optimize the efficiency of nutrient 

absorption [237]. Although less well studied, the related PGDP GLP-2 also controls the 

absorption of nutrients through reduction of gut motility, upregulation of nutrient transport and 

via optimization of mucosal surface area and gut integrity [238]. 

A number of experimental therapeutic manipulations resulting in improvement of glucose 

metabolism and either resistance to weight gain or development of weight loss are characterized 

by simultaneous elevation of circulating BA and PGDPs. Thus, partial or complete blockade of 

glucagon action, achieved through genetic loss of hepatic glucagon receptor (Gcgr) expression or 

pharmacological antagonism of GCGR signaling, is associated with a rapid rise in circulating 

levels of GLP-1 and GLP-2 [239,240]. Unexpectedly, reduction of Gcgr signaling is also 

associated with markedly increased circulating levels of BA [241,242]. Indeed plasma levels of 

PGDPs and BA are increased in humans with T2D following daily or chronic administration of 

GCGR antagonists [240,243]. 
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Bariatric surgery represents a second therapeutic paradigm characterized by increased 

levels of circulating BA, GLP-1 and GLP-2. Both vertical sleeve gastrectomy (VSG) and Roux-

en-Y gastric bypass (RYGB), when performed experimentally in animals, or therapeutically in 

humans, lead to elevated levels of BA and PGDPs [160,244–247]. Although BA are known 

stimulators of L cell PGDP secretion via signaling through TGR5 (Gpbar1) [248–250], the extent 

if any, to which elevated levels and action of BA contribute to increased levels of circulating 

PGDPs i) in animals or humans with loss of GCGR action or ii) following bariatric surgery, has 

not been yet determined.  

The finding that enhanced circulating levels of BA and PGDPs are simultaneously 

associated with  improved glucose control in the setting of loss of GCGR signaling or metabolic 

surgery raises important mechanistic questions [251–253]. Notably, preclinical studies implicate 

a role for BA, acting through changes in the gut microbiota and via the nuclear Farnesoid X 

Receptor (FXR), in the improvements in glucose control and weight loss ensuing following VSG 

[152]. Consistent with the importance of BA in this setting, the metabolic benefits ensuing from 

bariatric surgery are also attenuated in Gpbar1-/- mice [254,255]. Although somewhat 

controversial, GLP-1 contributes to improvements in -cell function in some [256], but not all 

murine studies of metabolic surgery [251,257]. It seems likely that GLP-1 improves -cell 

function in humans after bariatric surgery, and in rare instances, promotes development of 

hyperinsulinemic hypoglycemia [252]. 

In contrast to the extensive literature describing the metabolic roles of GLP-1, much less 

is known about the effects of GLP-2 on glucose control and body weight. Notably, GLP-2 

inhibits ghrelin secretion [258], enhances hepatic insulin sensitivity [259], and suppresses food 

intake [260], actions mirroring some of the metabolic benefits ensuing after bariatric surgery or 
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GCGR antagonism. Furthermore, GLP-2 enhances gut adaptation and barrier function while 

reducing metabolic endotoxemia [238,261], consistent with intestinal adaptation evident after 

VSG or RYGB [262,263]. Collectively, these observations raise the possibility that elevated 

levels of GLP-2, arising secondarily to or independent from increased levels of BA, may 

contribute to the metabolic benefits arising following i) reduction of GCGR signaling or ii) 

metabolic surgery. To interrogate the potential role of BA signaling through Gpbar1 and the 

importance of GLP-2R for the metabolic improvements in Gcgr-/- mice, we generated Gcgr-/-

:Gpbar1-/- and Gcgr-/-:Glp2r-/- mice. Simultaneously, we examined the importance of GLP-2R 

signaling in Glp2r-/- mice following experimental VSG.  

 

4.3 Materials and methods 

Animals and vertical sleeve gastrectomy surgical procedure 

Gcgr-/- mice provided by Maureen Charron [264], Tgr5-/- (Gpbar1-/-) mice [265], obtained from 

Schering-Plough/Merck, and Glp2r-/- mice [266], all on a C57Bl/6 background were bred at the 

Toronto Centre for Phenogenomics animal facility. Gcgr-/-:Gpbar1-/- and Gcgr-/-:Glp2r-/- 

double knockout mice were generated by crossing double heterozygous Gcgr+/-:Gpbar1+/- or 

Gcgr+/-:Glp2r+/- to obtain wild-type, single knockout and double knockout littermates. All 

experiments involving Gcgr-/-:Gpbar1-/- and Gcgr-/-:Glp2r-/- double knockout mice and their 

single knockout and wild-type littermates were performed in male aged 12-26 weeks, housed up 

to 5 per cage, with free access to food (2018 Tecklad global, Envigo Corp, Mississauga, ON, 

Canada) and water. VSG or sham surgeries were performed on male Glp2r-/- and wild-type 

littermate mice bred in-house at the University of Michigan. Four to 11 week old mice were 

placed on a 60% high fat diet (HFD) (D12492, Research Diets, New Brunswick, NJ, USA) were 
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single housed and given ad libitum access to food. After 8 weeks, surgeries were performed as 

previously described [267]. Briefly, while mice were anesthetized under isoflurane inhalation, an 

abdominal midline laparotomy was made followed by incision of the underlying abdominal 

muscle and exteriorization of the stomach. For VSG the lateral 80% of the stomach was excised 

using an ETS 35-mm staple gun (Ethicon Endo-Surgery, Cincinnati, OH, USA) leaving a tubular 

gastric sleeve in continuity with the esophagus proximally and the pylorus distally. The sham 

procedure involved the application of light pressure on the stomach with blunt forceps. Mice 

were fed Osmolite 1.0 Cal liquid diet (Abbott Nutrition, Lake Forest, IL, USA) from 1 day prior 

to surgery to 3 days following surgery before returning to 60% HFD. Glp2r-/- pair-fed animals 

underwent sham surgery and were restricted to eating the daily average amount of food eaten by 

the Glp2r-/- mice subjected to VSG. Pair-feeding continued until sacrifice. Body composition 

was measured using an EchoMRI (Echo Medical Systems, Houston, TX, USA) 1 week prior to 

surgery and 6 and 8 weeks after surgery. Body weights were measured daily for 1 week after 

surgery and weekly for 10 weeks thereafter. All animal experiments performed in Toronto were 

conducted according to protocols approved by the Animal Care and Use Subcommittee at the 

Toronto Centre for Phenogenomics, Mt. Sinai Hospital, and were consistent with the ARRIVE 

guidelines. Studies on Glp2r-/- mice done in Ann Arbor were approved by the Institutional 

Animal Care & Use Committee at the University of Michigan (Animal Use Protocol 

#PRO00005678). 

 

Glucose tolerance tests and measurement of plasma insulin, GLP-1 and bile acids 

Glucose tolerance tests in Gcgr-/-:Gpbar1-/- and Gcgr-/-:Glp2r-/- double knockout mice and 

their single knockout and wild-type littermates were carried out in 12- to 15-week-old mice. Fed 
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or overnight fasted (16-18 hours in cages with wire grid flooring) mice were administered 

glucose (2 mg/g body weight) via either an oral gavage or i.p. injection. Glycemic excursion 

curves were delineated by measuring tail blood glycemia using a Contour blood glucose meter 

(Bayer Inc, Mississauga, ON, Canada) at 0, 15, 30 60 and 90 min after glucose loading. Glucose 

tolerance tests in Glp2r-/- and wild-type littermate mice that underwent VSG or SH surgeries 

were performed during postoperative week 5 following a 4 h fasting after the onset of light. 

Baseline blood glucose was measured in tail blood using an Accu-Check glucometer (Roche 

Diabetes Care, Mannheim, Germany) 30 min prior to i.p. injection of 2 mg glucose/g body 

weight or oral gavage of 2.6 mg glucose/g body weight. Tail blood glucose was measured at 15, 

30-, 45-, 60-, and 120-min following glucose administration. For plasma BA measurement, 

blood samples were collected from the tail vein into heparin-coated tubes (Sarstedt, Montreal, 

QC, Canada). For plasma insulin and GLP-1 determination, blood samples collected into 

heparin-coated tubes, were supplemented with 1/10 the blood volume of a solution containing 

5000 KIU/ml Trasylol (Bayer Inc, Mississauga, ON, Canada), 32 mM EDTA, and 0.01 mM 

Diprotin A (Sigma, St. Louis, MO, USA). Plasma was separated by centrifugation at 4°C and 

stored at –80°C until assayed for insulin (ultrasensitive mouse insulin ELISA; Alpco 

Diagnostics, Salem, NH, USA) and GLP-1 (mouse/rat total GLP-1 assay kit; Mesoscale 

Discovery, Gaithersburg, MD, USA). GLP-1, but not GLP-2, was measured as a readout of L 

cell secretion since the commercially available GLP-2 assays have not been sufficiently validated 

to ensure accurate measurement of total or intact GLP-2 [238]. Total bile acid levels in plasma 

were quantified using an assay kit based in the colorimetric detection of thio-NADH generated 

following oxidation of the bile acids by the enzyme 3-alpha-hydroxysteroid dehydrogenase in the 

presence of excess NADH (Diazyme Laboratories, Poway, CA, USA).  
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Intestinal biometry 

Following euthanasia, mice were weighed and tibial length measured with a caliper. The entire 

gastrointestinal tract from the stomach to the rectum was removed, cleaned of mesenteric fat and 

gut weight and length determined. Small intestine length was measured under tension by 

suspending a 1-g weight from the distal end, prior to flushing with PBS to remove luminal 

content, whereas colon length was measured on a horizontal ruler after flushing. The entire small 

bowel and colon were then blotted to remove PBS before being weighed. 

 

RNA isolation and analysis of mRNA expression 

Total RNA from mouse ileum and liver was extracted by the guanidinium thiocyanate method 

using TRI Reagent (Molecular Research Center Inc, Cincinnati, OH, USA). Reverse 

transcription was performed with 500 ng of total RNA treated with DNase I (#EN0521, Thermo-

Fisher Scientific, Markham ON, Canada), using random hexamers (#58875) and SuperScript III 

(#18080-044) from Thermo-Fisher Scientific. The resultant cDNA was used to assess mRNA 

expression by real-time quantitative PCR (QuantStudio 5 System, Thermo-Fisher Scientific) 

with TaqMan Fast Advanced Master Mix (#4444557, Thermo-Fisher Scientific) and TaqMan 

Gene Expression Assays (Thermo-Fisher Scientific). The specific gene expression assays used 

are listed in Supplementary Table 1. Quantification of transcript levels was performed by the 2-

Ct method using 18S rRNA or Ppia for normalization. 
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Quantitative profiling of bile acids from ileum and plasma  

Samples of plasma and ileum (with  associated luminal content) from random-fed Gcgr-/-:Glp2r-

/- double knockout mice and their single knockout and wild-type littermates, were analyzed by 

the Michigan Regional Comprehensive Metabolomics Resource (MRC2) facility using a 

modified protocol as previously described [268]. Serum and ileum samples underwent a two-step 

solvent extraction as follows. Samples were mixed with 100% ethanol with isotope-labeled 

internal standards and homogenized using a probe sonication. Samples rested on ice for 10 

minutes and subsequently vortexed. An aliquot of this sample was transferred to a new glass tube 

and centrifuged. Supernatant was transferred to a microtube. An 8:1:1 solution of methanol, 

chloroform, and water was mixed to the glass tube and rested for 10 min followed by 

centrifugation. Supernatants were collected and combined. Samples were then dried at 45°C 

using a vacuum centrifuge for 45min and reconstituted in 50% methanol in water solution.  

LC-MS analysis: LC-MS analysis was performed on an Agilent system consisting of a 1290 

UPLC module coupled with a 6490 Triple Quad (QqQ) mass spectrometer (Agilent 

Technologies, Santa Clara, CA) operated in MRM mode.  Metabolites were separated on a 

100mm x 2.1mm Acquity BEH UPLC (1.7 uM) column (Waters Corp, Milford, MA) using 

H2O, 0.1% Formic acid, as mobile phase A, and Acetonitrile, 0.1% Formic acid, as mobile phase 

B.  The flow rate was 0.25 mL/min with the following gradient: linear from 5 to 25% B over 2 

minutes, linear from 25 to 40% B over 14 mins, linear from 40 to 95% B over 2 minutes, 

followed by isocratic elution at 95% B for 5 minutes.  The system was returned to starting 

conditions (5% B) in 0.1 min and held there for 3 minutes to allow for column re-equilibration 

before injecting another sample. The mass spectrometer was operated in ESI.  Data were 

processed using MassHunter Quantitative analysis version B.07.00. Metabolites were normalized 
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to the nearest isotope labeled internal standard and quantitated using 2 replicated injections of 5 

standards to create a linear calibration curve with accuracy better than 80% for each standard.   

Bile acid data from ileum were normalized to sample weight prior to processing. Concentrations 

of GHDA and GUDCA in plasma and CA in ileum are not reported as they were below the 

detection threshold. (TαMCA+TβMCA), (CDCA+DCA) and (TUDCA+THDCA) indicate sum 

of concentrations of the indicated pairs of BA which could not be distinguished from each other 

in the analysis process. Bile acid abbreviations: αMCA (α-Muricholate), βMCA (β-Muricholate), 

ωMCA (ω-Muricholate), CA (Cholate), CDCA (Chenodeoxycholate), HCA (Hyocholate), DCA 

(Deoxycholate), UDCA (Ursodeoxycholate), HDCA (Hyodeoxycholate). Taurine (T) conjugated 

bile acids: TαMCA, TβMCA, TCA, THCA, TCDCA, TDCA, TUDCA, THDCA, TLCA 

(Taurolithocholate). Glycine (G) conjugated bile acids: GCA, GHCA, GCDCA, GDCA, 

GUDCA, GHDCA. 

 

Statistical analysis 

Except where indicated, results are presented as scatter plots with overlapping mean ± SD. As 

specified in the Figure legends, statistical significance was assessed by one-way or two-way 

ANOVA followed by Bonferroni’s multiple comparison post hoc test and, where appropriate, by 

unpaired Student’s t-test. Statistical significance was accepted when p<0.05. All statistical 

analyses were performed using GraphPad Prism v.7.0 (GraphPad Software, San Diego, CA, 

USA). 
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4.4 Results 

As GLP-2 induces the expression of intestinal BA transporters [269], and enhances bile 

flow [270], we examined whether BAs, acting through Gpbar1, or GLP-2, acting through the 

GLP-2R, contributes to the metabolic phenotypes arising in Gcgr-/- mice with markedly 

increased circulating levels of BA and PGDPs [239,263]. Plasma BA levels were increased in 

fasted and fed Gcgr-/- mice but not significantly different in Gcgr-/-:Gpbar1-/- mice (Figure 

12A). In contrast, plasma BA levels remained elevated but were significantly lower in the fed 

(but not the fasted) state, in Gcgr-/-:Glp2r-/- mice, relative to levels in Gcgr-/-Glp2r+/+ mice 

(Figure 12B). Hence GLP-2R controls fed state BA levels  in Gcgr-/- mice. 

We next examined the potential roles of Gpbar1 and Glp2r in the intestinal and metabolic 

phenotypes arising in Gcgr-/- mice. Body weight and tibial length were not different in Gcgr-/- 

mice with loss of Gpbar1 (Figure 13A,B) or Glp2r (Figure 13D,E). Small bowel (SB) mass and 

length was increased in Gcgr-/- Gpbar+/+ mice but not different in Gcgr-/-:Gpbar1-/- mice 

(Figure 13C), whereas large bowel (LB) weight and length were similar in Gcgr-/-:Gpbar+/+ vs. 

Gcgr-/-:Gpbar1-/- mice (Figure 13C). SB weight was increased in Gcgr-/-:Glp2r+/+ mice but not 

in Gcgr-/-:Glp2r-/- mice (Figure 13F). In contrast, increases in SB length, as well as LB weight 

and length were not dependent on the presence or absence of the Glp2r (Figure 13F). Hence 

GLP-2R mediates SB growth in Gcgr-/- mice. 

Consistent with favorable metabolic phenotypes described in Gcgr-/- mice [239,264,271]  

fasted and fed blood glucose levels were lower and plasma GLP-1 levels were markedly elevated 

in Gcgr-/-:Gpbar1+/+  mice, but not different from levels observed in Gcgr-/-:Gpbar1-/- mice 

(Figure 13A,B). Similarly, both intraperitoneal and oral glucose tolerance was improved and 

plasma levels of insulin were increased after glucose challenge in Gcgr-/-:Gpbar1+/+ mice, but 
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no differences in these parameters were observed following elimination of Gpbar1 (Figure 

14C,D). 

Despite evidence linking Glp2r to control of glucose homeostasis and insulin sensitivity 

in mice [259,260], the presence or absence of the Glp2r did not impair the reduction in fed or 

fasted glycemia, or improvements in glucose tolerance and increases in plasma insulin levels 

detected in Gcgr-/-:Glp2r+/+ vs.  Gcgr-/-:Glp2r-/- mice (Figure 14 E,G-H). Furthermore, 

although levels of fed BA were lower in Gcgr-/-:Glp2r-/- mice, fasted or fed plasma GLP-1 

levels measured as a surrogate for the co-secreted PGDP GLP-2, were not different in Gcgr-/-

:Glp2r+/+ vs. Gcgr-/-:Glp2r-/- mice (Figure 14F).  

As plasma BA were lower in fed Gcgr-/-:Glp2r-/- mice (Figure 14B), we next examined 

the profiles of different BAs in plasma vs. the ileum from Gcgr-/-:Glp2r+/+   vs. Gcgr-/-:Glp2r-/- 

mice. Notably, relative proportions of circulating taurine-conjugated BAs, cholic acid and 

muricholic acid were increased in Gcgr-/-:Glp2r+/+ but were lower in Gcgr-/-:Glp2r-/- mice 

(Figure 15A,B and Supplementary Figure 1). In contrast, no appreciable differences were 

detected in proportions of major BA species in the ileum from Gcgr-/-:Glp2r+/+ vs. Gcgr-/-

:Glp2r-/- mice (Supplementary Figures 2 and 3).  

To explore the impact of changes in BA in the same mice, we analyzed the relative 

expression of a panel of BA-regulated genes in liver and ileum. No consistent genotype-

dependent differences were detected in hepatic levels of mRNA transcripts for Abcc2, Abcc3, 

Slc10a1, Abcb11, Nr1h4, Nr0b2, Cyp7a1, Cyp8b1 (Figure 16A). In contrast, hepatic mRNA 

levels of Slc51b, encoding the membrane-associated bile acid transporter, were elevated in Gcgr-

/-:Glp2r+/+ but not in Gcgr-/-:Glp2r-/- mice (Figure 16A). Moreover levels of mRNA transcripts 

for Abcc2, Abcc3, Slc51a, Slc51b, Nr1h4, Fabp6, and Fgf15 were not different in ileum RNA 
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from Gcgr-/-:Glp2r+/+ vs. Gcgr-/-:Glp2r-/- mice (Figure 16B), whereas levels of Slc10a2 were 

elevated in ileum from Gcgr-/-:Glp2r+/+ but not in Gcgr-/-:Glp2r-/- mice. Similarly, although 

levels of Slc51b and Abcb11 were elevated in liver of Gcgr-/-:Gpbar1+/+ mice and Slc10a2 was 

increased in ileum, no genotype-dependent differences in expression of these transcripts was 

detected in liver or ileum from Gcgr-/-:Gpbar1-/- mice (Supplementary Figure 4) 

The results of recent studies have demonstrated that the metabolic improvements arising 

following VSG are attenuated in Nr1h4-/- [152] and Gpbar1-/- mice [254], in a body weight-

independent manner [255]. To determine whether the presence or absence of the Glp2r modifies 

key metabolic outcomes following bariatric surgery, we analyzed body weight and glucose 

control in high fat diet-fed Glp2r+/+ vs. Glp2r-/- mice after VSG. Body weight, fat mass and 

lean mass were reduced to a similar extent in Glp2r+/+ vs. Glp2r-/- mice (Figure 17A,B). 

Similarly, fasting glucose and both oral and intraperitoneal glucose tolerance were improved 

after VSG, but not different in Glp2r+/+ vs. Glp2r-/- mice (Figure 17C). 

 

4.5 Discussion 

The studies reported here were initiated in part to understand the potential relationship 

between and importance of the simultaneous elevations in BA and PGDPs observed in animal 

and human studies examining the metabolic consequences of genetic or pharmacological loss of 

GCGR signaling [239,240,243]. As BA are known to directly enhance PGDP secretion through 

TGR5, encoded by Gpbar1, localized to the basolateral surface of enteroendocrine L cells 

[248,249] it is plausible that increased levels of PGDPs may arise in part through the sustained 

activation of Gpbar1 on L cells. Nevertheless, Gcgr-/-:Gpbar1-/- mice continue to exhibit 

improvements in glucose homeostasis and maintain increased circulating concentrations of GLP-
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1 at levels comparable to those detected in Gcgr-/- mice. These observations reveal that Gpbar1 

is not critical for increased PGDP secretion or the principal metabolic phenotypes arising 

following genetic or pharmacological reduction of glucagon action. Furthermore, despite 

experimental evidence that BA independently promote intestinal growth [272], the increased 

bowel mass evident in Gcgr-/- mice was not diminished in Gcgr-/-:Gpbar1-/- mice. It remains 

possible that some of the metabolic benefit ensuing from elevated BA in the context of 

diminished or extinguished glucagon action reflects signaling through FXR.  Notably, both 

Gpbar1-/- and Nr1h4-/- mice exhibit independent reductions in acute nutrient-stimulated GLP-1 

secretion [273].  Hence the putative independent contribution(s) of FXR to the Gcgr-/- phenotype 

and the actions of BAs on PGDP secretion in different experimental paradigms requires further 

study.  

The examination of the role of GLP-2 in the phenotypes arising following loss of Gcgr 

signaling was prompted by observations in animals and humans that GLP-2 levels are increased 

following partial or complete attenuation of glucagon action [239,240,242]. Although studies of 

GLP-2 action are often focused on the gut mucosa where it acts to expands enterocyte mass and 

augment nutrient absorption [238,274], complementary evidence supports a role for central GLP-

2 action in the control of energy homeostasis and insulin action. Intracerebroventricular 

administration of GLP-2 inhibits food intake [275] through GLP-2R signaling within a subset of 

proopiomelanocortin (POMC) neurons [260]. The anorectic actions of exogenous GLP-2 were 

abolished in Mcr4-/- mice, whereas deletion of the Glp2r within POMC neurons produced 

hyperphagia and weight gain [260]. Furthermore, augmentation of central GLP-2 action 

suppressed hepatic glucose production and enhanced insulin sensitivity, favorable metabolic 

phenotypes overlapping with those reported in studies of Gcgr-/- mice [264,276]. Nevertheless, 
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we did not detect differences in body weight, fasting glucose, or glucose tolerance in Gcgr-/-

:Glp2r-/- mice, relative to findings in Gcgr-/-:Glp2r+/+ mice, alone. Hence, the GLP-2R does not 

contribute to the major metabolic phenotypes arising from whole body loss of glucagon action in 

mice. In contrast, our findings confirm the importance of GLP-2R for the intestinal mucosal 

adaptation, including increased small bowel weight and length, that arises in Gcgr-/- mice [277]. 

These findings are consistent with a similar role for GLP-2R in the gut mucosa, actions arising 

secondarily to stimulation of crypt cell proliferation and increased crypt and villous depth of the 

small bowel epithelium [266,278]. 

Our experiments revealed a role for the GLP-2R in the elevation of circulating BAs in 

Gcgr-/- mice, as BA levels were lower in fed Gcgr-/-:Glp2r-/- compared to Gcgr-/-:Glp2r+/+ 

mice. Moreover, the relative proportion of individual circulating BA is altered in Gcgr-/-:Glp2r-

/- mice. Understanding precisely how GLP-2 controls plasma BA levels will require further 

analysis, however we did not detect compelling evidence for GLP-2R in control of ileal BA 

levels in Gcgr-/- mice. Infusion of GLP-2 in neonatal piglets maintained on parenteral nutrition 

increased liver bile acid content and upregulated hepatic expression of several bile export genes, 

as well as FXR [279]. GLP-2 also increased the expression of mRNA transcripts encoding the 

bile acid transport protein (Fabp6) in the distal small intestine of parenterally-fed rats [269]. 

Nevertheless, our previous analyses did not reveal an acute effect of GLP-2 on hepatic bile flow 

or ileal uptake and systemic appearance of taurocholic acid in mice [280]. Furthermore, our 

current studies reveal that with the exception of i) a reduction in the ileal expression of Slc10a2 

(encoding the apical sodium dependent bile acid transporter), and ii) decreased hepatic 

expression of Slc51b (encoding a basolateral bile acid transporter), loss of the Glp2r in the 

context of Gcgr-/- mice had little effect on BA-regulated gene expression in the intestine or liver. 
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Hence the putative mechanisms linking GLP-2 action to the control of BA uptake, transport, or 

enterohepatic recirculation, and the corresponding reduction of circulating BA levels in Gcgr-/-

:Glp2r-/- mice, require further investigation. 

Metabolic surgery represents a second intervention associated with increased plasma 

levels of BAs and PGDPs  [252]. Indeed, there is considerable interest, based on results of 

preclinical studies of bariatric surgery in Gpbar1-/- [254,255] and Nr1h4-/- mice [152], in 

understanding the contributions of BAs to the mechanisms underlying improved glucose 

homeostasis and weight loss following experimental or clinical metabolic surgery. Similarly, 

plasma GLP-1 levels are often markedly increased after RYGB and increased, although to a 

lesser extent, after VSG [252]. These observations have fostered a vigorous debate surrounding 

the putative contribution(s) of GLP-1 action to the weight loss and improved glucose control 

evident following metabolic surgery [251–253]. Remarkably, although circulating GLP-2 levels 

are also considerably elevated after metabolic surgery [281], there has been little attention 

directed at examining whether GLP-2 receptor signaling contributes to the metabolic 

improvement after RYGB or VSG.  

Our current studies reveal that the GLP-2R is not essential for reduction in glycemia and 

weight loss, arising after VSG in high fat-fed mice. These findings are surprising given data 

supporting a role for the GLP-2R in control of food intake, body weight and insulin sensitivity in 

mice [259,260,275,282]. Nevertheless, the lack of contribution of Glp2r to weight loss and 

reduced glycemia after VSG in mice is consistent with related findings demonstrating that the 

Glp1r is not required for the metabolic improvements arising after RYGB or VSG in high fat fed 

mice [283–285]. Hence, the hypothesis that elevated circulating levels of PGDPs, including 
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GLP-2, contribute to the improvements in glucose control following glucagon receptor blockade, 

or metabolic surgery, is not substantiated by the current experimental evidence. 

 

4.6 Conclusions  

Our studies have a number of limitations. First, we studied BA biology and GLP-2 action 

in mice with germ line mutations in the Gcgr, Gpbar1, and Glp2r, and the interpretation of our 

data may be complicated by unanticipated compensatory adaptations arising in mice with 

germline gene deletions. Second, Gcgr-/- mice are relatively resistant to development of diabetes 

and obesity [286], hence the data generated here in non-obese Gcgr-/- mice may not be relevant 

to findings obtained with transient Gcgr antagonism in more obese or diabetic mice or humans. 

Furthermore, although plasma levels of PGDPs, including GLP-2, are elevated in mice, rats and 

humans after VSG [251,252,281], it is possible that GLP-2 levels may be elevated to a greater 

extent, and the biology of GLP-2R may be more important, in experimental models analyzing the 

metabolic consequences of RYGB. Surprisingly, despite multiple reports linking GLP-2 to the 

control of appetite, glucose homeostasis, and insulin sensitivity, our data using two different 

experimental models characterized by increased levels of PGDPs failed to demonstrate a key role 

for the GLP-2R in regulation of glucose control or body weight evident after disruption of Gcgr 

signaling, or following VSG. Similarly, despite the documented role for Gpbar1 for linking BA 

to control of PGDP secretion, plasma levels of circulating PGDPs were not different after loss of 

Gpbar1 in Gcgr-/- mice. Nevertheless, our findings reveal a role for the GLP-2R in a) gut 

adaptation b) the pathophysiological elevations of bile acids arising in fed Gcgr-/- mice and c) 

the relative proportions of circulating BA in Gcgr-/- mice, Our data, coupled with recent 

evidence linking GLP-2 to the control of gallbladder emptying [280], support the emergence of a 
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GLP-2-BA axis, further expanding the complex relationship between BA, enteroendocrine cells, 

and the actions of the glucagon-like peptides. 
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Figure 12: Plasma bile acids in Gcgr-/- and Gpbar-/- mice 

Plasma total bile acid levels in Gcgr-/-:Gpbar1-/- (A) and Gcgr-/-:Glp2r-/- (B) double knockout 

mice and their single knockout and wild-type littermates. Shown are individual data points with 

overlapping mean±SD (n=11-16 mice per genotype, combined from 2 independent mouse 

cohorts). Panel A: *p<0.05 & **p<0.01 Gcgr-/-:Gpbar1+/+ & Gcgr-/-:Gpbar1-/- vs 

Gcgr+/+:Gpbar1+/+& Gcgr+/+:Gpbar1-/-. Panel B: *p<0.05 Gcgr-/-:Glp2r+/+ & Gcgr-/-:Glp2r-/- 

vs Gcgr+/+:Glp2r-/-; **p<0.01 Gcgr-/-:Glp2r+/+ & Gcgr-/-:Glp2r-/- vs Gcgr+/+:Glp2r+/+ & 

Gcgr+/+:Glp2r-/-; +++p<0.001 Gcgr-/-:Glp2r-/- vs Gcgr-/-:Glp2r+/+. Statistical significance was 

assessed by one-way ANOVA followed by Bonferroni’s multiple comparison post hoc test. 
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Figure 13: Intestinal morphology in Gcgr-/- and Gpbar-/- mice 

Body weight (A & D), tibial length (B & E) and intestinal biometry (C & F) in Gcgr-/-:Gpbar1-/- 

(A-C) and Gcgr-/-:Glp2r-/- (D-F) double knockout mice and their single knockout and wild-type 

littermates. Body weight was assessed following overnight fasting 1 week before take down 

which was performed under random-fed conditions. Shown are individual data points with 

overlapping mean±SD (n=11-16 mice per genotype, combined from 2 independent mouse 

cohorts). SB: small bowel, LB: large bowel. Panel C: ***p<0.001 Gcgr-/-:Gpbar1+/+ & Gcgr-/-

:Gpbar1-/- vs Gcgr+/+:Gpbar1+/+ & Gcgr+/+:Gpbar1-/-; +++p<0.001 Gcgr-/-:Gpbar1+/+ vs 

Gcgr+/+:Gpbar1-/-; &&&p<0.001 Gcgr-/-:Gpbar1-/- vs Gcgr+/+:Gpbar1+/+ & Gcgr+/+:Gpbar1-/-. 

Panel F: **p<0.01 & ***p<0.001 Gcgr-/-:Glp2r+/+ & Gcgr-/-:Glp2r-/- vs Gcgr+/+:Glp2r+/+ & 

Gcgr+/+:Glp2r-/-; ++p<0.01 Gcgr-/-:Glp2r-/- vs Gcgr+/+:Glp2r+/+ & Gcgr+/+:Glp2r-/-; +++p<0.001 

Gcgr-/-:Glp2r-/- vs Gcgr-/-:Glp2r+/+; &&&p<0.001 Gcgr-/-:Glp2r+/+ vs Gcgr+/+:Glp2r+/+, 

Gcgr+/+:Glp2r-/- & Gcgr-/-:Glp2r-/-. Statistical significance was assessed by one-way ANOVA 

followed by Bonferroni’s multiple comparison post hoc test. 
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Figure 14: Glucose clearance in Gcgr-/- and Gpbar-/- and GLP2R-/- mice 

Fasting and fed glycemia (A & E) and plasma total GLP-1 (B & F), area under the glycemic 

excursion curves (AUC) (C & G) and plasma insulin at 0 and 15 min after oral glucose challenge 

in Gcgr-/-:Gpbar1-/- (A-D) and Gcgr-/-:Glp2r-/- (E-H) double knockout mice and their single 

knockout and wild-type littermates. Glycemic excursion curves were delineated by measuring 

tail blood glycemia at 0, 15, 30 60 and 90 min after the specified glucose challenge and glucose 

tolerance determined by calculating the corresponding AUCs. Shown are individual data points 

with overlapping mean±SD (n=11-16 mice per genotype, combined from 2 independent mouse 

cohorts, except data from fed mice in panels A, C, E and G wherein n=6-8 per genotype). Panels 

A, B & C: **p<0.01 & ***p<0.001 Gcgr-/-:Gpbar1+/+ & Gcgr-/-:Gpbar1-/- vs Gcgr+/+:Gpbar1+/+ 

& Gcgr+/+:Gpbar1-/-. Panels E, F, & G: *p<0.05, **p<0.01 & ***p<0.001 Gcgr-/-:Glp2r+/+ & 

Gcgr-/-:Glp2r-/- vs Gcgr+/+:Glp2r+/+ & Gcgr+/+:Glp2r-/-; ++p<0.01 Gcgr-/-:Glp2r-/- vs 

Gcgr+/+:Glp2r+/+, Gcgr+/+:Glp2r-/- & Gcgr-/-:Glp2r+/+. Panels D & H: insulin levels 15 min after 

oral glucose were significantly higher than at 0 min (p<0.001) irrespective of the mouse 

genotype. Panel D: **p<0.01 Gcgr-/-:Gpbar1+/+ & Gcgr-/-:Gpbar1-/- insulin at 15 min vs 

Gcgr+/+:Gpbar1+/+ & Gcgr+/+:Gpbar1-/- insulin at 15 min. Panel H: **p<0.01 Gcgr-/-:Glp2r+/+ & 

Gcgr-/-:Glp2r-/- insulin at 15 min vs Gcgr+/+:Glp2r+/+ & Gcgr+/+:Glp2r-/- insulin at 15 min  

Statistical significance was assessed by one-way ANOVA followed by Bonferroni’s multiple 

comparison post hoc test. Unpaired Student’s t test was used for the comparisons insulin at 15 

min vs insulin at 0 min. 
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Figure 15: Plasma bile acid profiling and composition in  Gcgr-/-  and Glp2r-/- mice 

Quantitative profiling of bile acid in plasma from random-fed Gcgr-/-:Glp2r-/- double knockout 

mice and their single knockout and wild-type littermates. Panel A: Bile acid composition 

analysis representing the percentage of the major BA which contribute to the BA pool in plasma. 

Total average concentrations of bile acids in plasma were: Gcgr+/+:Glp2r+/+ = 2947.6 nM, 

Gcgr+/+:Glp2r-/- = 4013.2 nM, Gcgr-/-:Glp2r+/+=24942.5 nM and Gcgr-/-:Glp2-/- =13513.9 nM. 

Panel B: Heat map summarizing the concentrations of the different molecular species of BA 

quantified in plasma samples. The color code represents the log2 transformation of the 

corresponding mean BA concentration values. For both Panels A & B n=8 mice per genotype, 

combined from 2 independent mouse cohorts. T-conjugated (taurine-conjugated BA), G-

conjugated (Glycine-conjugated BA), MCA (sum of αMCA, βMCA and ωMCA concentrations). 

Scatter plots for the BA illustrated in the heat map are presented in Supplementary Figure 1. 
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Figure 16: Bile acid metabolism in Gcgr-/- and Glp2r-/- 

Expression of genes involved in bile acid metabolism in the liver (A) and ileum (B) of random-

fed Gcgr-/-:Glp2r-/- double knockout mice and their single knockout and wild-type littermates. 

mRNA levels of the indicated genes was assessed by real-time qPCR and normalized to Ppia and 

18S rRNA levels in liver and ileum, respectively. Shown are individual data points with 

overlapping mean±SD (n=10 mice per genotype, combined from 2 independent mouse cohorts). 

Panels A & B: **p<0.01 Gcgr-/-:Glp2r+/+vs Gcgr+/+:Glp2r+/+ & Gcgr+/+:Glp2r-/-; ***p<0.001 

Gcgr-/-:Glp2r+/+ vs Gcgr+/+:Glp2r+/+, Gcgr+/+:Glp2r-/- & Gcgr-/-:Glp2r-/-. Statistical significance 

was assessed by one-way ANOVA followed by Bonferroni’s multiple comparison post hoc test. 
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Figure 17: VSG surgery in Glp2r-/- mice 

Body weight, body composition (A & B) and glucose tolerance (C) in Glp2r wild-type and 

knockout mice following vertical sleeve gastrectomy (VSG) surgery. Panel A: to facilitate body 

weight data visualization only means without their associated error bars are shown. The 

coefficients of variation of the entire data set were  5.1% and  17.7% (n=8-12 per group). 

Illustrated in panel B are individual data points with overlapping means ± SD (n=8-12 mice per 

group, except n=5 for Sham Surgery Pair Fed fat mass). Panel C: Glycemic excursion curves 

were delineated by measuring tail blood glycemia at 0, 15, 30, 45, 60 and 120 min after the 

specified glucose challenge, and glucose tolerance determined by calculating the corresponding 

AUCs. Shown are individual data points with overlapping mean±SD (n=8-12 mice per group). 2-

way ANOVA indicated a not significant interaction term and also a not significant effect  of 

VSG or genotype  on “8 weeks after surgery lean mass” (panel B) and “fasting glucose” (panel 

C). In contrast, 2-way ANOVA indicated a not significant interaction term and a not significant 

effect of the genotype but a highly significant effect of VSG on “10 week after surgery body 

weight” (F(1, 37)=56.79, p<0.0001), “8 weeks after surgery fat mass” (F(1, 34)=56.11, p<0.0001) 

(panel B), “Oral Glucose Challenge AUC” (F(1, 38)=15.84, p<0.0003) and “IP Glucose Challenge 

AUC” (F(1, 38)=13.76, p<0.0007) (panel C). Panels B and C: **p<0.01 & ****p<0.0001 VSG vs 

Sham Surgery. The Sham Surgery Pair Fed group was not included in the statistical analysis. 
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Supplementary Figure 1: Plasma bile acid concentration in Gcgr-/- and Glp2r-/- mice 

Bile acid concentrations in plasma from random-fed Gcgr-/-:Glp2r-/- double knockout mice and 

their single knockout and wild-type littermates. Illustrated are individual data points with 

overlapping mean±SD (n=8 per genotype combined from 2 independent mouse cohorts). 

++p<0.01 Gcgr-/-:Glp2r+/+& Gcgr-/-:Glp2r-/- vs Gcgr+/+:Glp2r+/+ & Gcgr+/+:Glp2r-/-, 

*p<0.05 Gcgr-/-:Glp2r+/+vs Gcgr+/+:Glp2r+/+ & Gcgr+/+:Glp2r-/-, **p<0.01 Gcgr-/-
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:Glp2r+/+vs Gcgr+/+:Glp2r+/+ & Gcgr+/+:Glp2r-/-, ***p<0.001 Gcgr-/-:Glp2r+/+vs 

Gcgr+/+:Glp2r+/+ & Gcgr+/+:Glp2r-/-, &p<0.05 Gcgr-/-:Glp2r+/+vs Gcgr+/+:Glp2r+/+, 

^p<0.05 Gcgr-/-:Glp2r-/- vs Gcgr-/-:Glp2r+/+, ^^p<0.01 Gcgr-/-:Glp2r-/- vs Gcgr-/-:Glp2r+/+, 

#p<0.05 Gcgr-/-:Glp2r-/- vs Gcgr+/+:Glp2r-/-, $p<0.05 Gcgr-/-:Glp2r-/- vs Gcgr+/+:Glp2r+/+. 

Statistical significance was assessed by two-way ANOVA followed by Bonferroni’s multiple 

comparison post hoc test.  
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Supplementary Figure 2: Ileum bile acid composition and profiling in Gcgr-/- and Glp2r-/- 

mice 

Quantitative profiling of bile acid in ileum from random-fed Gcgr-/-:Glp2r-/- double knockout 

mice and their single knockout and wild-type littermates. Panel A: Bile acid composition 

analysis representing the percentage of the major BA which contribute to the BA pool in ileum. 

Total average concentrations of bile acids in ileum were: Gcgr+/+:Glp2r+/+ = 737.3 pmol/mg, 
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Gcgr+/+:Glp2r-/- = 521.9 pmol/mg, Gcgr-/-:Glp2r+/+=208.3 pmol/mg and Gcgr-/-:Glp2r-/- 

=219.0 pmol/mg. Panel B: Heat map summarizing the concentrations of the different molecular 

species of BA quantified in ileum samples. The color code represents the log2 transformation of 

the corresponding mean BA concentration values. For both Panels A & B n=8 mice per 

genotype, combined from 2 independent mouse cohorts, except for αMCA, βMCA, ωMCA and 

GHCH wherein n=4-6 per genotype). T-conjugated (taurine-conjugated BA), G-conjugated 

(Glycine-conjugated BA), MCA (sum of αMCA, βMCA and ωMCA concentrations). Scatter 

plots for the BA illustrated in the heat map are presented in Supplementary Figure 3.  
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Supplementary Figure 3: Ileum bile acid concentrations in Gcgr-/- and Glp2r-/- mice 

Bile acid concentrations in ileum from random-fed Gcgr-/-:Glp2r-/- double knockout mice and 

their single knockout and wild-type littermates. Illustrated are individual data points with 

overlapping mean±SD (n=8 per genotype combined from 2 independent mouse cohorts, except 

for αMCA, βMCA, ωMCA and GHCH wherein n=4-6 per genotype). *p<0.05 Gcgr+/+:Glp2r-/- 

vs Gcgr+/+:Glp2r-/-, ^p<0.05 Gcgr-/-:Glp2r-/- vs Gcgr-/-:Glp2r+/+. Statistical significance was 

assessed by two-way ANOVA followed by Bonferroni’s multiple comparison post hoc test. 
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Supplementary Figure 4: Liver and Ileum bile acid metabolism in Gcgr-/- and Gpbar-/- mice 

Expression of genes involved in bile acid metabolism in the liver (A) and ileum (B) of random-

fed Gcgr-/-:Gpbar1-/- double knockout mice and their single knockout and wild-type littermates. 

mRNA levels of the indicated genes was assessed by real-time qPCR and normalized to Ppia and 

18S rRNA levels in liver and ileum, respectively. Shown are individual data points with 

overlapping mean±SD (n=10 mice per genotype, combined from 2 independent mouse cohorts). 

Panels A & B: *p<0.05 & **p<0.01 Gcgr-/-:Gpbar1+/+& Gcgr-/-:Gpbar1-/- vs 

Gcgr+/+:Gpbar1+/+ & Gcgr+/+:Gpbar1-/-. Statistical significance was assessed by one-way 

ANOVA followed by Bonferroni’s multiple comparison post hoc test. 
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Chapter 5: Conclusions 

 

5.1 Summary 

As obesity continues to rapidly spread, we face a threatening landscape worldwide. 

Comorbidities place a heavy burden on the quality of life and come with crippling healthcare 

costs. Amongst these, rates of cancer, associated with additional wasting conditions such as 

cachexia, have increased. Further, obesity renders individuals more susceptible to cancer and 

systemic infections which can be accompanied by severe anorexia and mortality. Thus, it 

becomes increasingly critical to investigate a variety of feeding disorders that currently have 

insufficient treatments. Pharmacologically regulating feeding through specific neural networks 

and coordinating central and peripheral responses is a promising strategy to create more 

accessible treatments for obesity, metabolic and feeding disorders. As there are a multitude of 

circulating peripheral signals, deciphering which gut mediators and downstream neural networks 

are important is a complex task.  

This body of work is focused on intestinal and peripheral signaling to neural networks, in 

the context of physical stressors such as obesity and visceral illness. The multifaceted 

relationship between peripheral signaling molecules and hindbrain neuronal networks to mediate 

visceral illness in bacterial and fungal infection is explored in Chapters 2 and 3, respectively. 

Chapter 4 explored the effects gut peptides on weight loss surgery and bile acids.  
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5.2 Illness anorexia 

While under normal conditions endogenous mechanisms to reduce feeding are triggered 

in response to excess nutrition, they are also induced in pathological states. Sickness behaviors 

have important purposes to the maintenance of the human species by promoting physiological 

adaptations and survival. Negative valence and aversive pathways ensure that toxic compounds 

stray away from repetitively ingesting toxic compounds. Further, anorexia limits caloric intake to 

promote immune tolerance mechanisms. In infections in which acute anorexia is maladaptive for 

host health it is hypothesized that the response is protective to transmission of the infection on a 

population level by reducing fecal shedding [87]. In contrast, forced feeding to counteract 

nutrient reduction in models of some bacterial infections show a beneficial impact on host 

mortality. Thus, reduction of energy intake is a common response to illness, initially induced as a 

protective mechanism, that can become chronic and detrimental.  

Using fungal and bacterial infection models, Chapters 2 and 3 show that GDF15 is 

significantly induced under stress conditions but does not drive anorexia and nausea. Moderate 

doses of LPS infection are enough to cause a marked elevation of GDF15 levels in circulation. 

However, GDF15 and GFRAL KO mice display intact anorexia and nausea in response to i.p. 

LPS.  Even at high doses of LPS administration which mimics severe sepsis, GDF15 is not a 

necessary signaling component as demonstrated by GDF15 KO mice. This effect is similarly true 

for the fungal infection by DON. Thus, the implications and functions of elevated GDF15 in 

response to infection remains to be determined. Whether GDF15 contributes to the pathogenicity 

or recovery from sepsis has been debated. In Chapter 3, we show that GDF15 KO animals do not 

have altered mortality in response to severe sepsis induced using a sublethal dose of LPS. 

Interestingly, while the function of elevated GDF15 levels remain elusive, there is potential for 
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GDF15 to be used as a biomarker of illness severity. A study done in 219 patients showed that 

serum GDF15 levels at the time of admittance to the ICU correlated with later organ dysfunction, 

and ultimately mortality over the course of 2 years [57].  

 

5.3 CaSR and DON 

The hindbrain represents a critical region to receive gut signals and is home to diverse 

sets of neuronal populations that are defined by the expression patterns of receptors or peptides. 

In order to separate the effects of hormone receptor signaling from the neuronal population, we 

can use inducible diphtheria toxin ablation or tetanus toxin silencing in combination with cell 

specific cre mice. Expression of diphtheria toxin receptor (DTR) onto specific cell populations 

allows ablation of DTR expressing neurons exclusively when exposed to diphtheria toxin. In 

Chapter 3, we crossed mice with cre inducible diphtheria toxin receptor expression with GFRAL 

cre mice to allow specific ablation of the GFRAL neuronal population. This allowed us to 

separate the effects of GFRAL signaling from the neurons themselves. Although key signaling 

regions for GDF15 (AP/NTS and PBN) are highly activated and necessary for the aversive and 

anorectic effects of DON, we found that GFRAL neurons are not an essential part of the illness 

inducing circuit. The AP is a likely target of deoxynivalenol, considering the permeable blood 

brain barrier and the rapid DON entry into the brain. Thus, other neuronal populations are likely 

required to mediate the effects of DON. 

Chapter 3 demonstrates that loss of GDF15/GFRAL signaling does not contribute to 

feeding or nausea responses to DON. In DON induced fungal infection, a myriad of gut 

hormones is altered. We tested the necessity of another gut anorectic hormone (GLP-1) and 

found that it is similarly unnecessary in inducing nausea and food refusal. Further, intestinal 
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hormones such as PYY and CCK are released rapidly after DON exposure in mice. It is 

reasonable to hypothesize that these gut hormones contribute to the anorectic effects, as they are 

both well-known anorectic factors. However, previous studies have shown conflicting results. 

Moreover, CaSR is present in diverse intestinal cells including intestinal L cells, I cells, and 

gastric cells, eliciting GLP-1, PYY and CCK and inhibiting ghrelin secretion. This efflux of gut 

hormones may simply be a byproduct of direct CaSR signaling on enteroendocrine cells that 

serve a function that has yet to be determined. 

Another possibility is that DON is signaling directly though the hindbrain AP /NTS cells 

onto a population of neurons that have yet to be characterized. CaSR expressed in the brain is 

widespread and has high expression in the hypothalamus, circumventricular organs and 

hippocampus. While CaSR has been demonstrated to play a role in neural development and 

plasticity, its impact on neuronal function is complex [228,229,287]. Heightened or artificial 

CaSR signaling in humans also leads to nausea. For example, patients experiencing 

hyperparathyroidism, in which pathological parathyroid hormone release is accompanied by 

increased calcium uptake and CaSR signaling, present with increased gastrointestinal symptoms 

such as nausea and loss of appetite. Hyperparathyroidism is sometimes treated with cinacalcet, a 

CaSR agonist used to suppress PTH levels and thereby reduce body calcium. 30% of patients 

treated with cinacalcet experience adverse effects of nausea and vomiting, which  [288,289]. 

While GFRAL neurons have a high enrichment of CaSR, they likely represent a fraction of 

CaSR positive cells in the AP capable of binding DON. Investigating CaSR positive neural 

populations within the AP /NTS and projections into the PBN would further provide value to 

understanding the illness neural networks. Deoxynivalenol signaling thus represents a model to 
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study activation of CaSR positive neurons, some of which are GFRAL cells, and illness networks 

in the hindbrain. 

Further, another hypothesis for DON induced anorexia is inflammatory signaling. Central 

cytokines such as IL-6 and TNFa, both of which are elevated with DON exposure, may 

contribute to acute anorexia [106,224,290]. Mouse liver, spleen, intestines hypothalamus and 

DVC all show increased inflammatory cytokine gene expression [111,290,291]. However, TNF-

aR KO and IL-6R KO mice do not show a difference in DON food refusal and nausea compared 

to WT mice [292,293]. The significance of inflammatory signaling is further complicated by the  

diversity of responses. Cellular sources of cytokines, various combinations of inflammatory 

signaling, and severity of signaling produce differing responses, and timing all play a role in 

disease progression and may be crucial to our understanding of nausea and anorexia. Though 

there is a clear increase in inflammatory mediators, functional significance for induction of 

anorexia still needs to be proven.  

 

5.4 GFRAL limitations 

Historically, there have been 2 major issues that have limited GDF15/GFRAL research. 

One is the integrity of commercial GDF15. A common way to study GDF15 actions was to use 

recombinant GDF15 which is often contaminated with TGF [21], which can have off target 

effects on a variety of receptors that are expressed widely. The use of these compounds have 

often concluded effects of GDF15 in culture systems that do not contain GFRAL. Secondly, lack 

of known receptor made it difficult to hone hypotheses around GDF15 signaling. The finding 

that GFRAL is localized to the AP refuted previous studies using pharmacological experiments 

in cell cultures in which endogenous GFRAL should not be present [15] . Thus, the source and 
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purity of GDF15 drugs, the antagonist abilities, all must be taken into consideration when 

reviewing current GDF15 literature. The last several decades since GDF15 has been discovered 

has shown a significant increase in research around the pathway, particularly after the 

identification of GFRAL, research has grown exponentially resulting in several clinical trials.  

 

5.5 Clinical applications 

Due to its potent ability to reduce food intake, body weight, and adiposity in mice and 

non-human primates when exogenously administered, GDF15 has become a strong candidate for 

obesity therapy. In contrast to the classical satiety hormones that are currently more prevalent in 

pharmaceuticals (i.e. GLP-1 and PYY analogues), GDF-15 represents a unique factor in 

mediating weight as a stress induced protein. Further, GDF15/GFRAL can be manipulated in 

both directions to either induce or reduce feeding in pathological conditions, increasing its 

utility.  

A common challenge to manipulating gut-brain signaling compounds is the limited half-

life of endogenous hormones. For GDF15, the half-life is only a mere 3 hrs. Because weight 

reducing compounds require long term use to show great and sustained effects, pharmacological 

enhancement of longevity is required. To date, several GDF15 analogs have been made with 

increased stability by attaching a human serum albumin HSA or constant fragment Fc domain. 

Recently, Merck pharmaceuticals licensed a once daily GDF15 (NGM386) but quickly dropped 

the clinical trial after a phase-1 clinical trial showed no benefits on weight loss in overweight and 

individuals with obesity. While this was disappointing, it may simply reflect the integrity of the 

compound. NGM is currently testing another long-acting once weekly GDF15 variant NGM395 

for weight and fat mass reduction. In contrast, there is great potential for GFRAL antagonists for 
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pathologies that are associated with devastating anorexia, such as cancer. Pfizer and NGM have a 

monoclonal antibody against GDF15 (PF-0646860) and GFRAL antagonist (NGM 120) 

respectively currently in phase 1 clinical trial.  

An obvious potential side effect of GDF15 analogs and GFRAL agonists is 

gastrointestinal malaise. However, despite the capability of GDF15 in mice to elicit aversion 

responses, there is evidence to suggest that it may be well tolerated in clinical use. For example,  

GLP1R agonists that are used to improve glucose tolerance in patients with type 2 diabetes 

initially present with mild nausea but most often do not result in discontinuation of therapy 

[294]. Most patients who remain on liraglutide treatment, become tolerant to effects of nausea 

[295]. Additionally, considering the recent discovery that the commonly prescribed drug 

metformin treatment may harness GDF15 signaling to induce its effect on energy balance, 

GDF15 analogues and GFRAL agonists may mimic the positive tolerability and safety profile 

[7]. More pointed data comes from pregnant individuals who exhibit high levels of GDF15 

circulating without concurrent vomiting events [74]. It is possible that nausea accompanying 

drugs targeting the GDF15 and GFRAL neuronal pathway may be elicited transiently, if at all. 

Thus the larger set of data set suggests that manipulating the GDF15 signaling pathway may be 

well tolerated in the long-term. However, the induction time course of adverse illness symptoms 

in humans remains to be clinically tested and will necessitate careful titration of dosage.   

While increasing GDF15 signaling is a promising candidate for obesity, we unfortunately 

do not currently have much data on long term effects of exogenous administration. Infection as a 

spectrum is a state of immediate stress, and as such, is accompanied by a substantial GDF15 

release whose function remains undetermined. Beyond cancer, systemic infection often presents 

with elevated GDF15 levels concurrent with anorexia, drawing into question whether GDF15 
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signaling is a key driver of protective or detrimental effects associated visceral illness. Levels of 

GDF15 are linked to mortality but it is unclear whether it contributes to that mortality. Most data 

on mortality thus far is correlational and is often associated with disease severity in sepsis, 

kidney and cardiovascular disease. Therefore, it remains to be investigated how long-term use of 

GDF15 will impact health, particularly in those prone to cardiovascular and kidney diseases.   

Some studies have linked high levels of circulating GDF15 to tissue damage or altered 

tolerance mechanisms [5]. Reducing physiological tolerance or resistance responses could have 

direct implications of GDF15 blocking therapies in cancer patients who are susceptible to 

infections. Although we did not test the impact of increasing GDF15 by overexpression or 

administration of GDF15 protein, our results in Chapter 2 show no differences in mortality to 

severe sepsis in mice with or without GDF15. Whether these data translate to humans remains to 

be determined, but data in mice of bacterial sepsis, in combination with that of metformin and 

pregnancy nausea supports a promising safety profile. 

Moreover, neural circuits that reduce feeding without the risk for nausea represent a 

highly attractive therapeutic opportunity. Many current mimetic therapeutics to reduce feeding 

result in some gastrointestinal malaise. Circumventing the illness response of aversion entirely 

while still eliciting anorexia via hindbrain neurocircuitry would be an ideal target for 

pharmacological interventions. Although illness is commonly cited as a dysregulated response, 

one that represents overactivation of the anorectic system, there is evidence to suggest that it is 

guided by distinct neural pathways from satiety. A key difference is the stimulation of aversion. 

In satiety, foods ingested during a meal induces reward for future consumption. In contrast, 

illness responses elicit a long-term learned aversion to ingested toxic substances.  
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Although the NTS is most well-known for inducing satiety and controlling meal size via 

nutrient induced gut-brain signaling, hindbrain neurocircuitry controlling illness induced 

behavior and long-term energy balance is gaining clarity. As such, distinct hindbrain neural 

circuits that control feeding are being identified.  It has been proposed that the NTS to CGRP 

network represents a generalized emergency “alarm” for diverse threats. However, different 

threats require different behavioral responses, as in the case of differing effects of immune 

tolerance mechanisms. Thus, differences in circuitry distinguishing responses to toxic 

substances, such as viral, bacterial and fungal infections would be interesting. Additionally, it is 

possible that there are more subset populations of neurons in the PBN that relay diverging 

signals of illness vs satiety.     

There is evidence to suggest that the two illness responses of anorexia and aversion do 

not completely overlap in NTS neuronal populations. That is, hindbrain networks that control 

food refusal may be separable from those that elicit aversive. Amongst the dense circuits 

projecting from the NTS to the PBN, there is some level of heterogeneity. The most recent and 

pointed data come from a study utilizing salmon calcitonin which results in the reduction feeding 

and elicits aversion via calcitonin receptors (CALCR). CALCR neurons within the NTS are 

responsible for reducing feeding without eliciting the aversive response by targeting non-CGRP 

cells within the PBN. The circuit represents an aversion independent anorectic network distinct 

from CCK NTS  to CGRP PBN neurons which can elicit both anorexia and aversion [296].. 

Similarly, it is possible that GFRAL neurocircuitry to elicit nausea and anorexia is similarly 

distinct in subpopulations in the NTS and PBN.  

Further, there is some evidence that suggests that NTS neurons implicated in feeding may 

communicate locally to neighboring cells. Activating CCK neurons within the NTS using CNO 
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activation of DREADDs induces cFOS in CCK neurons as well as local DBH neurons. Whether 

local communication within the NTS or within the PBN exists in distinct feeding circuits and 

whether it leads to any functional differences in anorectic and illness responses is unclear. 

GFRAL neurons have been shown to colocalize partially with CCK and DBH. The NTS DBH to 

CGRP circuit has been recently shown to induce anorexia without aversion.  Similarly, there may 

be subpopulations of GFRAL neurons in the AP that elicit distinct effects.  

 

5.6 Concluding remarks 

The gut sends a myriad of diverse hormonal and neural signals to hindbrain circuits in 

order to induce specific feeding behaviors. As such, distinct hindbrain neural circuits that control 

feeding behaviors are still being elucidated. Further understanding of the gut-brain axis will 

unquestionably lead to therapeutic development for a wide swath of diseases, including obesity, 

cachexia, and sepsis. GDF15 and GFRAL neural circuitry represents one such mechanism with 

considerable potential to manipulate feeding. Deciphering hindbrain neuronal populations within 

the AP/NTS and PBN with greater granularity will undoubtedly further our understanding of 

illness associated behaviors in pathological states. It is possible that a combination of gut-brain 

signaling changes are required to sustain long-term changes. Thus, we can continue to use 

various bariatric procedures not just as clinical tools, but also as research tools to alter gut-brain 

signaling.  
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