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ABSTRACT

Radiotherapy is currently the standard of care for treating non-small cell lung cancer (NSCLC)

patients, and while technological advancements in the field continue to improve our ability to suc-

cessfully treat these patients, serious side-effects, i.e. toxicities, may occur in response to the

delivered radiation. In fact, Grade 2 radiation pneumonitis (RP) {i.e. symptomatic, requiring med-

ical intervention} has been reported to occur in 20-30% of NSCLC patients that receive radiation

treatment (RT), whereas Grade 5 RP {i.e. death directly related to radiation treatment} is estimated

to occur in ∼5% of NSCLC patients that undergo RT.

In an effort to better understand functional lung response to radiation, our group developed

a novel method to model the patient-specific dose-function response using perfusion and ventila-

tion SPECT intensity as a surrogate measure of lung function. Because a patient’s signature, i.e.

patient-, treatment-, and disease-related factors, influences the dose-function response across all

dose bins, there is an inherent correlation amongst data points contributed by each patient. To ac-

count for these interdependencies, a mixed-effects nonlinear regression model was implemented to

allow for patient-specific parameters to be assigned to each patient’s dose-function response curve

individually. Once each patient’s dose-function response was modeled, a population-level model

was derived by averaging the patient-specific parameters to more accurately represent the expected

dose-function response for a future arbitrarily selected patient. As such, we believe this patient-

specific modeling approach can facilitate an enhanced characterization of personalized functional

changes from a population-based estimate.

Furthermore, by measuring the dose delivered to functional lung categorizations in NSCLC

patients undergoing RT, this thesis explicitly analyzed specific dose-function vulnerabilities that

may lead to increased rates of toxicities and found that high dose to low-functioning lung was

xxv



strongly associated with radiation-induced lung toxicity (RILT) incidence. Although surprising

and contrary to the prevailing mantra, this result suggests that low-functioning regions of the lung,

which are indicative of pulmonary dysfunction and possibly underlying disease, are susceptible to

high dose and should not be disregarded in treatment planning. While it is generally accepted that

the primary driving force of toxicity is dose to the normal lung, it is also known that pulmonary

comorbidities can become exacerbated in response to radiation and have the potential to influence

the incidence of severe forms of RILT. Consequently, by better understanding the mechanisms

that cause functional damage and the various toxicity pathways, there is great potential to further

mitigate RILT rates in NSCLC patients undergoing RT.

Based on these findings, a preliminary investigation regarding the utility of identifying and

quantifying specific phenotypes of pulmonary disease prior to RT was performed. By utilizing

parametric response mapping (PRM) of high-resolution inspiration/expiration computed tomog-

raphy (CT) scans, pre-treatment voxelwise classifications that characterized lung parenchyma as

normal, emphysema, small airways disease, or parenchymal disease were analyzed in a cohort of

lung cancer patients to determine the expected distribution of each PRM category and to assess

their correlation with RILT incidence. As a CT-based imaging technique, PRM offers significant

upside due to its wide-availability and its capability to provide spatially-resolved estimates for

various forms of pulmonary disease.

In summary, the aims of this thesis were to better understand the dose-function response in

lung cancer patients during and after RT, identify functional lung targets that may be useful in

mitigating toxicity incidence, and propose solutions to enhance personalized radiation treatment

of NSCLC patients in an effort to optimize patient outcomes.
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CHAPTER I

Introduction

1.1 Motivation

Lung cancer is a widespread, severe disease that can lead to pulmonary complications, and in

many cases, results in death. In fact, it is estimated that 235,760 adults will be diagnosed with lung

cancer and 131,880 will die as a direct result from lung cancer in 2021 alone [2]. Overall, lung

cancer accounts for about 25% of all cancer deaths, and specifically, non-small cell lung cancer

(NSCLC) encompasses a group of lung cancer subtypes, including adenocarcinoma, squamous

cell carcinoma, and large cell carcinoma, that all have similar prognoses and treatments and make

up ∼80-85% of all lung cancer diagnoses [2]. Based on numerous clinical trials, radiation therapy

has proven to be the most effective treatment for NSCLC, and it is often prescribed concurrently

with systemic therapies, such as chemotherapy or immunotherapy [3]. While the targeted radiation

is efficient in killing cancer cells, normal tissue cells and organs surrounding the tumor are also

damaged in the radiation delivery process, which can lead to negative side-effects. In the lung, the

possible side-effects, i.e. toxicities, are primarily pneumonitis, which is an acute inflammation of

the alveolar, or fibrosis, which is long-term scarring of the parenchyma. Because pneumonitis and

fibrosis are the main detriments affecting a patient’s quality of life following radiation treatment,

these toxicities are encompassed by the term radiation-induced lung toxicity (RILT).

Current radiation treatment plans are designed to limit dose to a large volume of the lung

in an effort to minimize the incidence of RILT. However, because these plans are developed
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using only CT imaging, which does not provide good resolution within the lung given its low

density, all regions of the lung are considered to be functionally-equivalent, and thus, are assumed

to respond equally to radiation. And yet, this assumption is often inaccurate due to tumor burden or

underlying disease that can causes regions of decreased functional capability, i.e. reduced ability

to exchange oxygen and carbon monoxide, which can consequently affect the tissue’s response to

radiation. In an effort to account for and understand the effect of radiation on these varying regions

of underlying functional lung, there has been a concerted effort to incorporate functional lung

imaging in radiation treatment planning, which has become known as functional-guided radiation

therapy.

Functional-guided radiation therapies have long been hypothesized to improve patient out-

comes [4–11]. By quantifying perfusion and/or ventilation in normal lung tissue, a patient’s three-

dimensional functional lung distribution can be spatially-aligned with the anatomical CT scan and

incorporated into treatment planning to personalize radiation delivery [12–15]. This is especially

important in NSCLC patients who are known to have comorbidities and functional lung defects that

change during the course of fractionated radiation therapy [16–19]. Recent clinical studies have

shown significant differences between anatomical- and functional-guided radiation treatment plans

using a variety of functional imaging modalities, such as single-photon emission computed tomog-

raphy SPECT [20–23], four-dimensional computed tomography (4DCT) [24–27], and hyperpo-

larized magnetic resonance imaging (MRI) [28, 29]. While preliminary studies have predicted

toxicity reduction using functional-guided radiotherapy [30–32], further work is still required to

explicitly understand normal tissue dose-function response and its effect on RILT incidence.

Ventilation and perfusion SPECT/CT imaging provides a quantitative measure of pulmonary

function such that normalized intensities within each lung voxel are representative of local con-

centrations of oxygen and blood, respectively [33]. In 1994, Boersma et al. first proposed using

a logistic model to describe dose-function response [34]. Due to the observed high variation in

patient-to-patient dose-response, Marks et al. used a voxel-weighted average to determine compos-

ite perfusion loss [1]. These studies provided the foundation to longitudinally quantify functional

2



lung using SPECT/CT imaging [4, 5] and the basis of these methodologies has been extensively ap-

plied to characterize dose-function response for various treatments, timepoints, and regions of the

lung [35–40]. And yet, most normal tissue complication probability (NTCP) models currently used

to assess risk of RILT rely on volumetric dose metrics that do not account for the heterogeneous

distribution of functional lung [41–45]. While dose-volume metrics are important determinants of

RILT incidence, recent evidence suggests functional information can provide additional benefit in

assessing and predicting treatment response [46, 47].

Ideally, a patient’s risk for developing toxicity could be predicted by quantifying the expected

cumulative functional lung damage for a given radiation treatment plan and by identifying patient-

, disease-, and treatment-related characteristics that may predispose a given patient to increased

toxicity risk. However, enhanced modeling methods are still needed to accurately characterize

lung function response, and patient-specific risk-factors need to be better understood such that

functional lung imaging can be appropriately applied to facilitate clinical implementation of per-

sonalized radiation therapy, and ultimately, optimize patient outcome.

1.2 Thesis Overview

The goals of this dissertation were to quantify the longitudinal dose-function response in

NSCLC patients treated with radiation therapy, identify patient-specific risk-factors that correlate

with RILT incidence, and introduce potential mechanisms to reduce negative reactions following

RT.

A historical background, including the previous works regarding the dose-function response in

lung cancer patients receiving RT and the risk factors associated with RILT incidence, is presented

in chapter II. Details on the methods and patient population used in this dissertation are then

described in chapter III. To facilitate the necessary analyses needed to accomplish the aims of this

dissertation, a novel software was developed in C# through the Varian Eclipse treatment planning

system (TPS) application programming interface (API) and the main applications and functionality

of this code are shown in chapter IV.
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The dose-function response, as characterized by ventilation (V)/perfusion (Q) SPECT imaging,

in a cohort of 81 NSCLC patients (60 treated with conventional RT; 21 treated with stereotactic

body radiation therapy (SBRT)) was described in chapter V. A patient-specific modeling approach

was applied to retrospectively characterize functional reduction using perfusion SPECT/CT during

and after RT such that a population-level model could be established to better represent the ex-

pected dose-function response in a presenting patient (section 5.7). The model was applied in well-

perfused voxels (section 5.8) and segmented by functional categorization at baseline (section 5.9)

to enhance the prediction of functional lung damage based on an individual’s pre-treatment condi-

tion.

Subsequently, pre-treatment dose-function metrics were quantified using perfusion, ventilation,

and combined VQ functional categorizations to analyze the sensitivity to radiation in each of these

functional lung regions (chapter VI). These novel dose-function metrics were implemented into

logistic regression models and receiver operator characteristic curves were used to compare pre-

dictability of the various models. Through this analysis, it was determined that high dose to a large

portion of the lung, and specifically, dose to the lower lung region and dose to low-functioning

lung were most correlated with RILT incidence (section 6.4).

Based on the findings of this work, a collaborative imaging solution, known as PRM of high-

resolution inspiration/expiration CT scans, was proposed and analyzed in chapter VII as a means

to circumvent the availability and interpretability issues that are associated with current functional

imaging modalities. Finally, the broad lessons learned through this dissertation and suggestions

for future research in this area are described in chapter VIII.
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CHAPTER II

Historical Context

2.1 SPECT Imaging

The mechanistic basis of SPECT imaging, the Anger gamma camera, was invented in 1958 by

Hal Anger [48]. This invention, as shown in Figure 2.1, facilitated the measurement and imaging of

emitted gamma radiation through the use of a collimator, scintillating crystal, and photomultiplier

tubes (PMTs).

Figure 2.1: A sectional drawing of the original gamma camera invented by Hal Anger in 1958.
Note: Image from “Scintillation Camera” by Hal O. Anger, 1958, Review of Scientific Instruments,
29, pp. 27-33.
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In summary, the scintillator crystal was used to absorb energy from the incident photons and

re-emit that deposited energy in the form of light. A collimator, in this case a pinhole aperture, was

applied in front of the scintillating crystal such that the incident radiation can only be detected from

a given area. Because the generated luminescence is produced isotropically within the scintillator,

the origin of the gamma radiation can be further refined based on the amount of absorbed light

in each of the PMTs. Once the light is detected within the PMTs, it is convert into an electrical

current and that signal is then amplified such that it can be read out by an oscilloscope.

Table 2.1: A timeline of notable developments in SPECT imaging. Note: Table from “The origins
of SPECT and SPECT/CT” by Brian F. Hutton, 2014, Journal of Nuclear Medicine and Molecular
Imaging, 41(Suppl 1), pp. S3-S16.

While Hal Anger was the pioneer of the SPECT imaging hardware, Kuhl and associates first

proposed [49] and demonstrated [50] the use of sectional imaging with a gamma camera, which

formed the basis for clinical SPECT imaging methodology. Their technique utilized linear motion

of the scintillation camera at various projection angles such that an image could be reconstructed
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to represent the distribution of the radioactive sources and served as the first work to employ

single-slice images such that only the radiation within a given plane was viewed. These seminal

works provided the foundation for SPECT imaging, and while many of these concepts still form

the basis for current SPECT imaging, there have been numerous innovations primarily focused

on improving spatial resolution, scatter correction, and anatomical localization. A timeline of the

technological developments related to SPECT imaging are listed in Table 2.1.

A schematic diagram for a typical SPECT detector system currently used in the clinic is shown

in Figure 2.2 [51].

Figure 2.2: SPECT detector system schematic. Note: Image from “Recent Advances in SPECT
Imaging” by M. Madsen, 2007, Journal of Nuclear Medicine, 48, pp. 661-673.

As observed, photons incident on the SPECT system pass through a collimator, which in this

case is a parallel hole collimator. Assuming the gamma ray enters at such an angle that it is not

filtered out, it deposits energy within the sodium iodide (NaI) scintillating crystal that is doped

with thallium (Tl) to enhance sensitivity and light output. The generated light is then sampled by

the array of photomultiplier tubes that generate an electrical signal and subsequently locational

coordinates based on where the light is collected within the array. If the signal falls within the
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set pulse height analyzer window, the event is counted and tallied in the appropriate image frame.

This process continues for a given time until the detector is translated to a new projection angle

to gather more counts. This is known as the step and shoot mode. The three-dimensional SPECT

image can then be reconstructed using either a filtered back projection or iterative method.

Nowadays, most SPECT devices are combined with a CT scanner (SPECT/CT) to enhance

the CT-based attenuation map and provide improved anatomical localization. Shown in figure

Figure 2.3 is a Siemens Symbia T6 SPECT/CT imaging system that was used to acquire the SPECT

images used in this thesis [52]. As observed, the large doughnut-shaped CT gantry is connected to

a dual-headed SPECT detector with a mobile patient couch that is utilized to position the patient.

Figure 2.3: Siemens Symbia T6 SPECT/CT imaging system. Note: Image from Siemens Health-
ineers, 11-19-2020, https://www.siemens-healthineers.com/en-us/molecular-imaging/spect-and-
spect-ct/symbia-t

For this particular imaging system, the NaI crystal has a size of 23.25 inches (in) x 17.5 in and

thickness of 5/8 in. A total of 59 photomultiplier tubes (with 53 having diameter of 3 in and 6

having a diameter of 2 in) are arranged in a hexagonal pattern that is used in each detector head.

The collimator used in this particular imaging system is a variation on the parallel hole collimator,

which is known as the BiCore collimator shown in figure Figure 2.4 [53]. For the low energy-high

resolution mode used in this study, the collimator is equipped with 148,000 holes that have a length

of 24.05 millimeters (mm), a septal thickness of 0.16 mm, and hole diameter of 1.11 mm. As such,

the collimator is quoted to have a sensitivity at 10 centimeters (cm) of 202 cpm/µCi, a system

resolution at 10 cm of 7.5 mm, and a septal penetration of 1.5%.
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Figure 2.4: BiCore collimator used in the Siemens Symbia T6 SPECT system shown from the A)
face, B) side, and C) back of the collimator. Note: Image from “A Parallel-Cone Collimator for
High-Energy SPECT” by C. Beijst et al., 2015, Journal of Nuclear Medicine, 56(3), pp. 476-482.

SPECT imaging facilitates the diagnosis and characterization of various metabolic processes.

By selecting targeted molecules that are tagged with gamma-emitting radionuclides and injected

into a patient’s body, internal radiation is imaged to display the distribution of the radiopharma-

ceutical molecule, which consequently provides insight into the physiology of an organ or patho-

physiology of a disease. In this thesis, SPECT imaging has been utilized to quantify local lung

function, and specifically, the distribution of pulmonary perfusion and ventilation within the lungs.

To accomplish this, the metastable state of technetium (Tc)-99, i.e. Tc-99m, is utilized as a gamma

emitting radionuclide. The decay scheme of molybdenum (Mo)-99, the parent nuclide of Tc-99,

is shown in Figure 2.5 [54]. Because the Mo-99 has a relatively stable half-life (66 h), it can be

housed at a medical institution and the produced Tc-99m daughter nuclide can be extracted for use

when needed. Tc-99m decays through a 141 kiloelectron volt (keV) gamma ray, which is in the

optimal energy range for detection by the NaI scintillating crystal.
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Figure 2.5: Molybdenum-99 decay scheme demonstrating the production of Technetium-99m and
emission of the 141 keV gamma ray used in pulmonary SPECT imaging. Note: Image from
“Cyclotron Based Production of Technetium-99m” from IAEA Radioisotopes and Radiopharma-
ceuticals Reports No. 2, International Atomic Energy Agency, 2017.

To specifically target pulmonary ventilation and perfusion, the Tc-99m radionuclide is attached

to molecules that mimic oxygen and blood, respectively. In the case of ventilation imaging, a

diethylenetriaminepentaacetic acid (DTPA) aerosol is utilized as the carrier molecule. As such,

the patient is instructed to breathe at tidal volume for around 5 minutes from an oxygen mask

that delivers the DTPA-labeled aerosol. Through this inhalation, the aerosol is deposited into the

bronhoalveolar spaces, where it can be imaged to represent pulmonary ventilation. Generally, the

half-time clearance from the lungs is 45-60 minutes but is often shorter in smokers (∼20 min-

utes). In patients with chronic obstructive pulmonary disease (COPD), an increased turbulent flow

compared to healthy patients can cause saturation within the central bronchial tree [55]. Because

the radiopharmaceutical is inhaled, the distribution of imaged ventilation depends on the breath-

ing condition of the patient, which can cause instability in the quantification. The DTPA aerosol

will eventually cross the alveolar-capillary membrane, enter pulmonary circulation, and finally, be

biologically-cleared through the kidneys. Therefore, while the physical half-life of Tc-99m is 6

hours, the biological half-life of the DTPA aerosol is typically only around one hour.

Alternatively, to assess pulmonary perfusion, Tc-99m is tagged to macroaggregated albumin

(MAA) particles, which are essentially blood plasma proteins. The prepared Tc-99m MAA parti-

cles are injected into the patient’s peripheral vein, then travel through the heart and into the lungs
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[56]. These particles are then localized due to the mechanism of capillary blockade. It is estimated

that 95% of the MAA particles will be filtered out of circulation after the first pass through the cap-

illary bed. The biological half-life for these particles is generally 2-3 hours, and they are removed

by the liver and spleen [55]. In the administration of both the ventilation and perfusion imaging

agents, the patient is laying supine in the treatment position to maintain constant circulation that is

minimally affected by patient motion.

Figure 2.6: Example SPECT images demonstrating normal and various degrees of abnormal per-
fusion and ventilation distributions. Note: Image from “Grading obstructive lung disease using to-
mographic pulmonary scintigraphy in patients with chronic obstructive pulmonary disease (COPD)
and long-term smokers” by M. Bajc et al., Annals of Nuclear Medicine, 2015, 29(1), pp. 91-99.

Example SPECT images demonstrating the perfusion and ventilation distribution in normal

and various degrees of abnormal are shown in Figure 2.6 [57]. Because the imaging is based

on the distribution of the DTPA and MAA particles, it is theorized that a normal healthy patient

should have a completely homogeneous distribution of imaged intensity throughout the lungs. On

the contrary, pulmonary abnormalities or diseases, such as a pulmonary embolism, COPD, or
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interstitial lung disease (ILD), may cause vessels or airways to be blocked such that a given region

does not receive a full influx of perfusion or ventilation [58, 59]. As such, patients with a more

heterogeneous distribution of lung function are generally considered to have a worse pulmonary

condition. While much of the analysis regarding the interpretation of a patient’s SPECT scan

has historically been qualitative, numerous works have been conducted to implement quantitative

assessment of pulmonary perfusion and ventilation intensity such that these scans can be used in a

broader clinical context.

2.2 Quantifying Functional Lung Dose-Response

In 1993, studies out of Duke University [4] and the Netherlands Cancer Institute (NKI) [5]

first investigated the application of functional lung imaging in RT planning. By utilizing SPECT

imaging, both Boersma [34] and Marks [1] demonstrated the ability to quantify longitudinal func-

tional changes in lung cancer patients following RT. This development was significant because

it created the potential to model functional lung damage such that, in theory, RT plans could be

prospectively tailored, based on a patient’s baseline distribution of lung function, to minimize the

expected damage, and ultimately, optimize patient outcome.

Preceding these studies, radiation treatment plans for lung cancer patients were designed solely

based on anatomical localization through CT scans. However, because of the limited resolution

within the lung on CT, this method essentially assumes each patient has a homogeneous distribu-

tion of lung function. Furthermore, before the use of SPECT in RT assessment and planning, the

only method implemented to determine a patient’s pulmonary condition prior to treatment was the

use of pulmonary function tests (PFTs). Effectively, spirometric PFTs are a noninvasive method

to measure the capacity and capability of a patient’s lungs by performing various breathing tests

that are quantified through an external electronic device. The primary metrics determined from the

PFTs are forced vital capacity (FVC), forced expiratory volume during the first second (FEV1),

and diffusing capacity of the lungs for carbon monoxide (DLCO), which respectively measure the

volume of air that can be retained within the lung, the initial flow rate upon expiration, and the
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ability for inspired gas to be transferred into the bloodstream. Based on these PFT metrics, three

diagnoses of pulmonary function are possible: 1) normal, 2) restrictive, or 3) obstructive. While

these clinical indications can be informative, PFTs do not provide any spatial or regional informa-

tion and have limited sensitivity to chronic diseases [60]. For these reasons, SPECT imaging was

proposed as an alternative modality to provide a higher resolution regarding a patient’s pulmonary

condition before and after RT [4].

An example SPECT image from the seminal work of Marks et al. is shown in Figure 2.7 and

demonstrates one of the first ever prospective functional-guided RT plans to limit dose to functional

lung [4].

Figure 2.7: Example perfusion SPECT image with an oblique opposed pair of treatment fields.
This is one of the first functional-guided RT plans applied to limit dose to functional lung. Note:
Image from “The utility of SPECT lung perfusion scans in minimizing and assessing the physio-
logic consequences of thoracic irradiation” by L.B. Marks et al., International Journal of Radiation
Oncology Biology Physics, 1993, 26(4), pp. 659-668.

As noted in their work, this patient was diagnosed with a 3 cm NSCLC tumor in the left lung

and had a history of smoking and COPD with markedly abnormal pulmonary function tests. From

the transverse SPECT scan, it is apparent that there is a functional defect surrounding the tumor in

the left lung. It can also be observed that nearly the entire portion of the contralateral lung in this

slice is poorly perfused with minimal intensity accumulation. Without the SPECT image in this
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particular case, the authors state that the treatment plan would have been designed using opposing

anterior-posterior (AP/PA) treatment fields. However, based on the supplemental functional lung

information, an alternative treatment plan was developed using opposing left anterior oblique and

right posterior oblique (LAO/RPO) treatment fields such that the functioning anterior and posterior

regions of the ipsilateral lung could be spared from the high dose fields. Although the authors

state that the “use of SPECT in the design of therapy clearly resulted in a superior treatment

strategy” and that because the region “is very dysfunctional prior to radiotherapy, the physiological

consequences of irradiating this area are probably small”, there is no direct evidence presented or

cited to support these statements [4].

Figure 2.8: Inidividual perfusion and ventilation dose-function response curves from the seminal
work of Boersma et al. in 1993. Note: Image from “A new method to determine dose-effect
relations for local lung-function changes using correlated SPECT and CT data” by L.J. Boersma
et al., Radiotherapy and Oncology, 1993, 29(2), pp. 110-116.

In the other seminal work regarding the use of functional lung in RT planning, Boersma et

al. produced some of the first dose-function response curves using three-dimensional SPECT
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imaging as shown in Figure 2.8 [5]. These dose-response curves represent the percentage change in

perfusion and ventilation relative to the pre-treatment scan in five individual patients, and intensity

values were normalized to the total counts. As noted by the authors in their work, each of these

five patients exhibited perfusion reductions in relation to the delivered dose, while four of the five

patients demonstrate dose-dependent reductions in ventilation (patient E apparently does not have a

decrease in ventilation in the high dose bins). While most of the functional reduction is observed to

occur in the dose bins >40 gray (Gy), the authors note that there is a high dose gradient (>5 Gy/cm)

in the 12-40 Gy dose bins, which caused less voxels to contribute in these bins and increased the

probability of registration errors in these regions [5].

Both of these studies [4, 5] were critically important to the development of SPECT imaging in

RT planning because they provided much of the methodology, and many of the subsequent studies,

that guided the direction of dose-function response modeling in the lung. Specifically, these stud-

ies outlined the blueprint for SPECT normalization, SPECT-CT registration, joint perfusion and

ventilation response assessment, and quantifying functional changes as as percentage of baseline

intensity.

Figure 2.9: Population-averaged perfusion (left), ventilation (middle), and density (right) dose-
response curves, normalized to the response in the 0-12 Gy dose bins, for 25 lymphoma patients
treated with RT from Boersma et al. in 1994. Note: Image from “Dose-effect relations for local
functional and structural changes of the lung after irradiation for malignant lymphoma” by L.J.
Boersma et al., Radiotherapy and Oncology, 1994, 32(3), pp. 201-209.
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In 1994, the NKI group produced their follow-up work regarding the dose-function response in

25 patients that received RT for malignant lymphomas, and these results were used to correlate the

lung function response to CT-based structural, i.e. density, estimates. As such, this study analyzed

local changes in both perfusion, ventilation, and density at 3-4 months following irradiation, as a

percentage of the pre-treatment value, within 4 Gy dose bins for each patient. These individual

patient data were then averaged across the entire cohort to produce the plots shown in Figure 2.9

[34].

Figure 2.10: Perfusion (solid lines) and ventilation (dashed lines) dose-function response curves
and associated lung volume histograms for two example patients, in which a functional improve-
ment following RT is demonstrated in Patient A from Boersma et al. in 1994. Note: Image from
“Dose-effect relations for local functional and structural changes of the lung after irradiation for
malignant lymphoma” by L.J. Boersma et al., Radiotherapy and Oncology, 1994, 32(3), pp. 201-
209.

It should be noted that perfusion and ventilation intensities were normalized to the average

intensity in the 0-12 Gy region for each patient. This low-dose region was used for normalization

because it was believed that no significant functional changes would occur longitudinally in these

areas. However, this study noted that most patients exhibited a functional increase in this region
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following RT, which was theorized to be due to redistribution of lung function caused by changes

in other areas of the lung. While compensation may occur in limited cases, an offset in some of

the dose-response curves (shown in Figure 2.10) from the same Boersma et al. study suggests

that this may due to a relatively small number of initially low-functioning voxels that have higher

intensity counts at the post-RT timepoint [34]. Essentially, this may be an artifact of the limited

number of voxels in this region and can be further exacerbated by the use of a relative percentage

change to measure the functional response and errors in the registration process. These effects will

be discussed in greater detail in chapter V.

Table 2.2: Dose-response logistic model parameters for the entire cohort (left) and for patients with
an average functional reduction larger than 20% (right) from Boersma et al. in 1994. Note: Image
from “Dose-effect relations for local functional and structural changes of the lung after irradiation
for malignant lymphoma” by L.J. Boersma et al., Radiotherapy and Oncology, 1994, 32(3), pp.
201-209.

Using the population-averaged data points, a logistic function of the form 1/(1+(D50/D)k)

was fitted to determine the population-averaged dose-effect, where D50 is the dose causing 50%

of the maximum functional reduction and k is the steepness parameter. Because the changes in

function were believed to represent changes in alveolar/vascular subunits, the logistic model was

selected as it is what is generally used to describe dose-effect relations for cell survival. As such,

this was the first study to apply a logistic model to quantify functional lung damage following

RT, and the model parameter values for D50 and k for the entire cohort and the patients with an

average functional reduction larger than 20% are shown in Table 2.2 [34]. While the perfusion

and ventilation reductions were generally similar, the authors noted that the ventilation scans for

17



7 patients were excluded due to excessive saturation and that there was a large variation in the

individual patient dose-response for both imaging modalities.

Figure 2.11: Conventional dose-volume histogram (left) versus enhanced dose-function histogram
(right) from Marks et al. in 1995. Note: Image from “The role of three dimensional functional lung
imaging in radiation treatment planning: The functional dose-volume histogram” by L.B. Marks
et al., International Journal of Radiation Oncology Biology Physics, 1995, 33(1), pp. 65-75.

In their follow-up work in 1995, Marks et al. studied SPECT scans from 56 patient lung

cancer patients and 30 patients with cancers originating in adjacent areas to the lung (14 breast,

12 lymphoma, and 4 others). Through this work, perfusion defects were identified, their location

in relation to the tumor was tallied, and ultimately, treatment fields were chosen based on the

potential to reduce radiation dose to functional lung. As such, it was determined that in the 50 lung

cancer patients without prior resection, perfusion defects at the tumor, adjacent to the tumor, and

separate from the tumor were found in 47 patients (94%), 37 patients (74%), and 21 patients (42%),

respectively. While sustained hypoperfusion at the tumor site was expected, this was one of the first

study to demonstrate the potential for reperfusion following RT in defects adjacent to the tumor,

which was attributed to a reduction in pulmonary arterial compression following tumor shrinkage.

Alternatively, the frequency of hypoperfusion separate from the tumor was found to be highest in

patients with the poorest pulmonary function, as determined by DLCO, and these regions were not
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found to reperfuse following RT, which the authors suggested represented regions of permanent

dysfunction caused by ”severe emphysema or scarring”. As such, the authors noted that ultimately

it is imperative to differentiate between permanent and reversible functional defects. Furthermore,

while it is noted that some of the perfusion defects were identified as severe bullous disease on

corresponding CT scans, this was not always the case, which supports the idea that functional-

guided RT plans and dose-function histograms may provide superior value compared to CT-based

RT plans and dose-volume histograms. To demonstrate this benefit, a dose-function histogram

was plotted, as shown in Figure 2.11, for an example patient in which functional avoidance was

implemented through oblique beams as opposed to the conventional AP/PA paired beams [6].

Figure 2.12: Longitudinal perfusion dose-response curves for 20 cancer patients that received
RT. Note: Image from “Quantification of radiation-induced regional lung injury with perfusion
imaging” by L.B. Marks et al., International Journal of Radiation Oncology Biology Physics,
1997, 38(2), pp. 399-409.

The modeling methods established by these preliminary studies were then implemented in

larger cohorts of patients at both Duke and NKI. In 1997, Marks et al. demonstrated the perfusion

dose-response for 20 cancer patients (7 breast cancer, 5 lymphoma, 1 esophagus, 1 sarcoma, and 6

lung) at multiple post-RT timepoints as shown in Figure 2.12, which suggested a time-dependent

functional reduction in the high dose regions [1].
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Figure 2.13: Ventilation (panel A) and Perfusion (panel B) dose-response curves for 82 cancer
patients that received RT. A comparison between perfusion dose-response curves from Theuws
et al. (squares) and Marks et al. (circles) [1] is also provided (panel C). Note: Images from
“Dose–effect relations for early local pulmonary injury after irradiation for malignant lymphoma
and breast cancer” by J.C.M. Theuws et al., Radiotherapy and Oncology, 1998, 48(1), pp. 33-43.

Figure 2.14: Perfusion dose-response data from NKI (circles) and Duke University (triangles) fit
with both linear and logistic models. Note: Image from “Pulmonary function following high-dose
radiotherapy of non–small-cell lung cancer” by Katrien De Jaeger et al., International Journal of
Radiation Oncology Biology Physics, 2003, 55(5), pp. 1331-1340.

In 1998, the NKI group published a comprehensive analysis of the perfusion and ventilation

dose-response in 82 patients (42 malignant lymphoma and 40 breast cancer). Using the previously

described logistic model [34], the perfusion (ventilation) paramerters were found to be D50 = 57±

3(66±7) and k = 1.5±0.1(1.8±0.3). The fitted population-level data are shown in Figure 2.13
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alongside a comparison to the previously discussed Marks et al. perfusion dose-response study

[1, 61]. Although a logistic model was fitted to these data, the dose-response curves show a fairly

linear response. Furthermore, there is clearly a strong agreement between the data from Duke and

NKI as shown on panel C, but this surprisingly shows an increasing functional reduction past 90

Gy, which is an exceedingly high dose for conventional fractionation RT. The difference in the

linear and logistic modeling methods is explicitly shown in Figure 2.14, which utilized the patient

data from NKI and Duke University to directly compare the perfusion dose-response [62].

Figure 2.15: Perfusion dose-response curves for various patient subgroups including smokers vs.
non-smokers (top-left), anterior vs. posterior regions of the lung (top-right), patients receiving con-
current chemotherapy (MOPP/ABV) vs. those without (bottom-left), and patients receiving post-
RT chemotherapy (CMF) vs. those without. Note: Images from “Dose–effect relations for early
local pulmonary injury after irradiation for malignant lymphoma and breast cancer” by J.C.M.
Theuws et al., Radiotherapy and Oncology, 1998, 48(1), pp. 33-43.

The Theuws et al. study also quantified the perfusion dose-response in various subgroups and

regions, as shown in Figure 2.15, including: smokers versus non-smokers, anterior versus posterior,

patients treated with concurrent chemotherapy (MOPP/ABV), prior to RT versus no chemother-
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apy, and patients treated with post-RT chemotherapy (CMF) versus no post-RT chemotherapy

[61]. From these plots, it appears that the perfusion reduction is increased in non-smokers (due to

generally healthier lungs), the posterior lung (due to gravitational accumulation), and patients the

received post-treatment chemotherapy (due to increased cytotoxicity).

Figure 2.16: Dose-response curves for patients (panel A) and regions (panel B) considered to be
well-perfused (triangles) versus hypoperfused (circles) prior to RT. Note: Images from “Radiation
dose-effect relations and local recovery in perfusion for patients with non–small-cell lung cancer”
by Y. Seppenwoolde et al., International Journal of Radiation Oncology Biology Physics, 2000,
47(3), pp. 681-690.

In 2000, the work by Seppenwoolde et al. further expanded on this type of segregated dose-

effect analysis by separately quantifying the functional response in well-perfused patients (n=6)

and well-perfused regions versus in patients with perfusion defects (n=19) and hypoperfused re-

gions [36]. The study included 25 NSCLC patients and the dose-response was compared to 81

patients, from the Theuws et al. study [61], that were considered to have healthy lungs as shown

in Figure 2.16.

As observed from these plots, the dose-response in patients with homogeneous perfusion prior

to RT generally matches the dose-response in the reference healthy patients, whereas patients with

hypoperfusion exhibit less reduction in the high dose bins. This is especially pronounced in the re-

gional plots in panel B of Figure 2.16 that demonstrate an increase in perfusion, i.e. reperfusion, in

the low dose regions and minimal damage in the high dose regions. To further analyze the effect of

reperfusion, the work of Seppenwoolde et al. examined the amount of observed reperfusion in rela-

tion to the initial perfusion deficiency in both the NSCLC patients and the lymphoma/breast cancer
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patient reference group as shown in Figure 2.17 [36]. It is not surprising to see that the NSCLC

group generally exhibited a larger area of perfusion defects due to tumor burden and propensity

for smoking, but clearly, more reperfusion occurs in patients with increased hypoperfusion prior to

RT.

Figure 2.17: The observed reperfusion effect in relation to the initial pre-RT perfusion defect for
malignant lymphoma (open squares), breast cancer (open triangles), and NSCLC patients (solid
circles). Note: Images from “Radiation dose-effect relations and local recovery in perfusion for
patients with non–small-cell lung cancer” by Y. Seppenwoolde et al., International Journal of
Radiation Oncology Biology Physics, 2000, 47(3), pp. 681-690.

Based on these results, Seppenwoolde et al. stated [36]:

“Because the overall effect of reperfusion is 7% at most (if membrane function is re-

tained), optimization of treatment plans by sparing the well-perfused regions will prob-

ably result in the best possible lung function after treatment. Placing beams through

bullous lung regions can also be considered as advantageous because bullous regions

will never regain their original lung function.”

It should also be noted that this study did not find an association between reperfusion and re-

covery in tissue density. Therefore, while the recommendation to place beams though bullous lung
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may be useful in preserving the most lung function, it was based on the limited ability for de-

fected lung to reperfuse following RT and was not based on the study of its direct impact to patient

outcome. Despite this subtle distinction, this recommendation formed the basis for functional-

avoidance radiotherapy, and subsequent studies by Seppenwoolde et al. (2002) [8], Christian et

al. (2005) [63], and Maguire et al. (2006) [64] all demonstrated methodologies to incorporate

functional-sparing in RT planning. However, as stated by Lavrenkov et al. in 2007 [20]:

“The assumption that the radiation dose to [functional lung (FL)] is a determinant

of radiation lung damage is a limitation of this study as the functional consequences

of replacing [whole lung (WL)] volumes by FL volumes in [RT planning] are not

known. Seppenwoolde et al. reported that radiation pneumonitis incidence increased

with mean perfusion-weighted lung dose (MpLD). However, validated predictive val-

ues of MpLD for pneumonitis or reliable parameters for NTCP-like models which

explicitly include functional data are not available to date, due to a lack of data corre-

lating functional imaging to clinical outcomes in radiotherapy.”

Despite the evidence being circumstantial that universal functional-avoidance can reduce tox-

icity, the overwhelming belief regarding the best application of functional-guided radiation treat-

ments for lung cancer patients is to avoid high-functioning regions of the lung, by allocating more

dose to low-functioning regions, to improve outcomes. Although functional-avoidance may play

a vital role in the treatment of some patients, further investigation of functional targets is needed

to better understand the specific pathways that lead to RILT and ensure optimal patient-specific

dose delivery. As such, a growing number of research studies and clinical trials have sought to

study functional-based metrics that could be utilized in treatment planning to mitigate pulmonary

toxicity in lung cancer patients undergoing RT, which will be discussed further in section 2.3.

In 2010, a study out of Duke University by Zhang et al. analyzed the longitudinal dose-function

response up to 9 years post-RT. Through this analysis, both individual patient and population-

averaged dose-response curves were generated as shown in Figure 2.18 [38]. However, while the

patient-specific response was shown to exhibit a logistic shape in the study by Zhang et al., the
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Figure 2.18: Longitudinal dose-response curves for individual patient data (left) versus the
population-averaged data. Note: Images from “Radiation-Induced Reductions in Regional Lung
Perfusion: 0.1–12 Year Data From a Prospective Clinical Study” by J. Zhang et al., International
Journal of Radiation Oncology Biology Physics, 2010, 76(2), pp. 425-432.

Figure 2.19: Dose-response curves in the ipsilateral lung (left) and contralateral lung (right). Note:
Images from “Radiation-Induced Reductions in Regional Lung Perfusion: 0.1–12 Year Data From
a Prospective Clinical Study” by J. Zhang et al., International Journal of Radiation Oncology
Biology Physics, 2010, 76(2), pp. 425-432.

population-averaged data was modeled using a linear fit. The dose-response in the ipsilateral lung

versus the contralateral lung was also studied, as shown in Figure 2.19, which demonstrated a more

erratic response in the ipsilateral lung due to an increased tumor burden and presence of functional

defects [38].

Although the majority of research had previously analyzed the dose-response in conventionally
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Figure 2.20: Perfusion dose-response curves in lung cancer patients that received SBRT. Note:
Image from “Local dose–effect relations for lung perfusion post stereotactic body radiotherapy”
by J. Scheenstra et al., Radiotherapy and Oncology, 2013, 107(3), pp. 398-402.

fractionated RT, Scheenstra et al. published a work in 2013 regarding the perfusion reduction in

42 lung cancer patients that received SBRT [39]. As shown in Figure 2.20, a logistic model was

used to characterize the functional reduction, which demonstrates a good agreement.

While numerous other studies have since analyzed the dose-function response within various

patient populations, the studies highlighted in this section provided much of the data that has

been used to understand functional lung changes following radiation therapy. Furthermore, as

shown in Figure 2.21, there is a good agreement amongst the five perfusion dose-response models

accumulated in the meta-analysis by Bucknell et al. [65].

In summary, there are a couple of main points to note regarding the methodologies and results

of these previous dose-function response studies:

1. All of these previous studies have utilized relative dose-response curves in which the change

in functional intensity for patient j within dose bin d is calculated as:

R j,d =
f j,d,t− f j,d,t=0

f j,d,t=0
×100 (2.1)
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Figure 2.21: A historical comparison of the dose-response models characterizing perfusion SPECT
changes following RT. Note: Image from “Functional lung imaging in radiation therapy for lung
cancer: A systematic review and meta-analysis” by N.W. Bucknell et al., Radiotherapy and On-
cology, 2018, 129(2), pp. 196-208.

where f j,d,t is the average functional intensity at timepoint t and f j,d,t=0 is the average func-

tional intensity prior to RT.

2. Population-level dose-function curves are generated by averaging the response in each dose

bin across the cohort and then applying a linear or logistic model to the population-averaged

data points.

3. While good agreement amongst the historical perfusion dose-response models was demon-

strated in Figure 2.21, there was uncertainty regarding the response in low-dose bins and the

magnitude of reperfusion and compensation effects.

4. A normalization factor, which standardizes the intensity value for normal lung, is necessary

to relate the functional intensities between patients and timepoints.

5. Perfusion SPECT is the gold standard of functional lung dose-response modeling, and ven-

tilation SPECT is widely considered too unstable to quantify longitudinally.

6. There is a clear time- and dose-dependent reduction in functional lung after RT.
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7. The ipsilateral lung, which receives the majority of the radiation dose, tends to have a more

erratic functional dose-response than the contralateral lung, primarily due to tumor burden

and the presence of functional defects.

2.3 Risk Factors for RILT

Similar to the previous section that detailed the historical works that contributed to the quantifi-

cation of functional lung response to RT, the timeline of studies that have investigated risk factors

associated with RILT incidence is important to understanding how radiation-induced lung toxici-

ties are currently mitigated in the radiation oncology clinic. In an attempt to thoroughly discuss and

organize the myriad of research regarding the various factors that may be associated with RILT,

this section was divided into the subsections listed below, which represent the broad categories of

influence that are believed to affect patient outcome.

1. Radiation Dosimetrics and Pulmonary Function

2. Patient Characteristics and Pre-Existing Disease

3. Geometric Characteristics

4. Biological Characteristics

2.3.1 Radiation Dosimetrics and Pulmonary Function

The use of radiation for cancer treatments is a double-edged sword. Although radiotherapy is an

effective mechanism for targeted treatment of cancerous nodules, dose to normal tissues can cause

extraneous complications. While this conundrum has been understood by radiation oncologists

for decades, Emami et al. produced the seminal work that provided concerted, literature-driven

estimates for the tolerance radiation doses in various organs at risk [41]. Based on this work,

it was estimated that the total dose producing 5% probability of complication within five years

following treatment (TD5) and the total dose producing 50% probability of complication within
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five years following treatment (TD50) for the whole lung volume, in terms of radiation pneumonitis

as the complication, was 17.5 Gy and 24.5 Gy, respectively. While these dose limits were useful

starting points, it was quickly recognized that a patient’s dosimetric tolerance varied based on a

variety of factors. Specifically, these estimates did not account for the underlying lung function

of the patient, and thus, it was hypothesized that utilizing SPECT imaging, which at this time was

becoming more available and more developed (see Table 2.1), may provide an enhanced resolution

regarding a patient’s tolerance to radiation.

Table 2.3: The cohort averaged perfusion distribution in various lung regions (left) and the rela-
tion between the perfusion distribution in the irradiated regions with a >10% loss of TLCO after
RT (right). Note: Tables from “Lung cancer in patients with borderline lung functions - zonal
lung perfusion scans at presentation and lung function after high dose irradiation” by Raymond P.
Abratt, 1990, Radiothearpy and Oncology, 19(4), pp. 317-322.

The use of functional-avoidance RT fields was initially justified based on the logical theory that

avoiding healthy lung would decrease the physiological impact to the patient. Furthermore, a 1990

study by Abratt et al. correlated reductions in carbon monoxide transfer factor with the irradiation

of regions that had reduced perfusion accumulation prior to treatment. As shown in Table 2.3, the

average perfusion intensity in the ipsilateral lung appears to be lower than 35% in most patients,

and yet, the patients that incurred a decreased diffusion capacity of carbon monoxide, i.e. DLCO

or transfer factor of the lungs for carbon monoxide (TLCO), tended to have >35% prior to RT.

However, as noted by Abratt et al. the reductions in DLCO were not correlated to negative patient

outcomes and the perfusion intensity was based on planar scans not three-dimensional SPECT

[66]. Therefore, it is possible that the patients with large declines in TLCO were generally healthy
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prior to treatment, whereas the patients with perfusion defects were at a lower initial TLCO, and

thus, appear to have less decline following RT. Either way, this was not a direct study of patient

outcome with regard to irradiating SPECT regions.

Figure 2.22: The relationship between the overall perfusion response parameter, i.e. the total
reduction in perfusion from pre-RT to 3-4 months post-RT, and reductions in PFTs (left) and the
incidence of radiation pneumonitis (right) in 25 malignant lymphoma patients. Note: Image from
“Estimation of overall pulmonary function after irradiation using dose-effect relations for local
functional injury” by L.J. Boersma et al., Radiotherapy and Oncology, 1995, 36(1), pp. 15-23.

In 1995, Boersma et al. produced a corollary to their previous work [34], using the same

cohort of patients studied to determine local dose-function changes, in an effort to understand and

estimate which patients would be subjected to the largest loss of perfusion and ventilation based

on pre-treatment PFTs and post-treatment changes in PFTs. As such, this was one of the first

studies to analyze patient factors that might correlate with functional lung changes and incidence

of RILT after radiotherapy. In contrast to the study by Abratt et al. [66], this study found that

values of DLCO were not significantly different in patients that incurred RP [7]. However, a

fairly strong relationship between the decrease in PFTs and the reduction in perfusion following
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RT was established as shown in Figure 2.22. This study also found that the integral perfusion

reduction was higher on average in patients that incurred RP incidence, also shown in Figure 2.22.

Alternatively, ventilation response was found to be too unstable to be properly correlated with

PFTs or RP incidence.

Figure 2.23: The fraction of lung volume receiving ≥ 30 Gy versus the pre-treatment predicted
FEV1 in patients with (filled circles) and without (open squares) RT-induced pulmonary symptoms
from Marks et al. in 1997. Note: Image from “Physical and biological predictors of changes in
whole-lung function following thoracic irradiation” by L.B. Marks et al., International Journal of
Radiation Oncology Biology Physics, 1997, 39(3), pp. 563-570.

Figure 2.24: The relationship between fractional reduction in the percent predicted DLCO and
V30 (left). The ratio between the x and y axes from panel A (left) is then plotted against the
pre-RT DLCO value (right). Note: Image from “Physical and biological predictors of changes in
whole-lung function following thoracic irradiation” by L.B. Marks et al., International Journal of
Radiation Oncology Biology Physics, 1997, 39(3), pp. 563-570.

In 1997, Marks et al. produced a similar analysis regarding the physical and biological factors

that correlated with reductions in pulmonary function and incidence of RT-induced pulmonary
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symptoms. In 100 patients (50 of whom had SPECT scans available) that received partial-lung

irradiation, 21 were scored to have incurred RT-induced pulmonary symptoms. As noted in their

work and observed in Figure 2.23, the patients with RT-induced pulmonary symptoms tended to ei-

ther receive a high volume of lung receiving≥ 30 Gy (V30) or exhibit poor FEV1 prior to treatment

[67]. As such, high dose and pre-RT PFTs were noted to be significant predictors of RT-induced

pulmonary symptoms and decline of DLCO. As shown in Figure 2.24A, patients receiving a higher

V30 exhibited a larger fractional loss of DLCO, however, it can also be observed in the left side

of Figure 2.24B that in patients with poor DLCO prior to RT, the correlation breaks down. When

patients with poor pre-RT PFTs were excluded, the association between dose-volume parameters

and symptomatic outcome was markedly stronger. Overall, the CT-based NTCP was found to be

the best predictor of RT-induced pulmonary symptoms, while the SPECT-derived perfusion V30

and SPECT-based NTCP were found to not add any predictive value, which was contrary to the

previous hypothesis that dose to the functional regions of the lung would be most predictive of

patient outcome. The authors noted this result could be due to a limited amount of SPECT scans

available compared to dose-volume data, and furthermore, that perfusion defects in the distal re-

gions of the lung can occur due to occlusion of blood vessels, which subsequently causes variations

in the perfusion-based metrics [67]. However, these results were an early indications that dose to

functional lung, as defined by high perfusion intensity, was not a straightforward predictor of poor

patient outcomes.

This work by Marks et al. clearly delineates a difference in the responses between patients

with poor pre-RT PFTs and those with more normal pre-RT PFTs, which was further reinforced by

a study in 2002 from their group at Duke University. Through an assessment of various receiver

operating curves (ROCs) to predict RT-induced symptomatic pulmonary injury conducted by Lind

et al., mean perfusion-weighted lung dose (MpLD) produced an area under the curve (AUC) of 0.5,

signifying that this metric was completely unable to predict toxicity in these 100 patients. Overall,

single metrics did not perform well in predicting toxicity as mean lung dose (MLD), V30, and

pre-RT FEV1 were all found to have an AUC of 0.56. Alternatively, the best models of prediction
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Figure 2.25: Scatterplot of patients that incurred RP (filled) and did not incur RP (open) with re-
spect to MLD (left) and perfusion-weighted MLD (right) versus pre-RT DLCO. Note: Image from
“Receiver operating characteristic curves to assess predictors of radiation-induced symptomatic
lung injury” by Pehr A. Lind et al., International Journal of Radiation Oncology Biology Physics,
2002, 54(2), pp. 340-347.

used the MLD-ratio, i.e. MpLD/MLD, or the MLD-diff,i.e. the difference between MLD and

MpLD, in conjunction with pre-RT DLCO (AUCs of 0.71 and 0.72), which seems to indicate that

multiple factors are at play in the onset of toxicity making a single metric unable to accurately

predict RP. A scatter plot showing each patient’s MLD or perfusion-weighted MLD versus their

pre-RT DLCO value is shown in Figure 2.25. When removing patients with pre-RT DLCO <40%,

the AUC for MpLD increased to 0.83, which demonstrates that in patients with good pulmonary

condition prior to RT there is a predictable reduction in pulmonary function. However, this result

also further enforces the inability for MpLD to predict toxicity in patients with poor PFTs prior to

RT [68].

Shortly after, in a study by De Jaeger et al., MpLD was found to be the best predictor of PFTs,

specifically reductions in FEV1 and DLCO, following RT as shown in Figure 2.26 [62]. While this

result is similar to the findings of Marks et al. [67], this particular analysis utilized MpLD instead

of MLD. Based on this result, De Jaeger et al. stated [62]:

“The consistent and statistically significant (albeit weak) association of the reduction

of PFTs with the MpLD supports the hypothesis that for patients with unequal perfu-
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Figure 2.26: The measured reduction in TLCO (top) and FEV1 with respect to mean lung dose or
mean perfusion-weighted lung dose in breast cancer and lung cancer patients. Note: Image from
“Pulmonary function following high-dose radiotherapy of non–small-cell lung cancer” by Katrien
De Jaeger et al., International Journal of Radiation Oncology Biology Physics, 2003, 55(5), pp.
1331-1340.

sion the radiation dose delivered to nonperfused lung regions contributes less to func-

tional lung damage. By directing radiation beams preferentially through hypoperfused

lung regions, the MpLD can be minimized resulting in less functional lung damage.”

However, the MLD and MpLD metrics are known to have a high correlation (shown in Fig-

ure 2.27), and furthermore, the relationship between delivered dose and change in PFTs has been

shown to break down in patients with low PFTs at baseline (shown in Figure 2.24). Therefore,

because the change in PFTs are not a direct indicator of patient outcome and because there is
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evidence that patients with compromised PFTs at baseline still incur toxicity with relatively low

delivered dose (exhibited by the 4 patients that incurred RP in the bottom left of Figure 2.25), it

should not be presumed that all patients will benefit from dose funneled through hypoperfused lung

regions. This is a subtle, but important, point: despite a correlation between increased reduction

in PFTs given increased MLD/MpLD, this association does not directly translate to a guaranteed

improvement in patient outcome given a decreased MLD/MpLD.

Figure 2.27: Scatterplot of the mean lung dose versus the mean perfusion-weighted lung dose
in patients with peripheral (open circles) and central (filled circles) tumors. Note: Image from
“Pulmonary function following high-dose radiotherapy of non–small-cell lung cancer” by Katrien
De Jaeger et al., International Journal of Radiation Oncology Biology Physics, 2003, 55(5), pp.
1331-1340.

And yet, despite the poor predictability of MpLD in patients with compromised pulmonary

function, subsequent works investigating the use of functional-avoidance RT fields determined

that patients with small perfusion defects prior to treatment would receive a minimal benefit, and

thus, recommended that functional-avoidance should primarily be applied in patients with large

defects [8, 21]. As stated by Seppenwoolde et al. in 2002 [8]:

“Only for patients with a large pre-treatment perfusion defect, perfusion-weighted

optimization resulted in clinically well applicable treatment plans, which may have

caused less radiation damage to functioning lung, compared to treatment plans that
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were optimized on the mean lung dose and a homogeneous target dose alone. For

patients with small perfusion defects, perfusion-weighted optimization yielded a treat-

ment plan equal to the non-perfusion weighted optimized plan.”

However, these perfusion-weighted RT plans were optimized and theorized to cause less radi-

ation damage based on a reduction in the MpLD, which is calculated as shown:

MpLD =
1
N

N

∑
n=1

Cn ·Dn (2.2)

where N is the number of voxels, Dn is the dose in voxel n, and Cn is the number of perfusion

counts, normalized to the average perfusion counts for that patient, prior to RT in voxel n. There-

fore, by definition, the MpLD is only reduced when less dose is delivered or when dose is delivered

to below-average perfusion voxels.

Table 2.4: Dosimetric correlations, based on a fitted logistic regression, for mean dose, de f f , NTCP,
fdam and V20 in the total lung, ipsilateral lung, contralateral lung, upper lung, and lower lung. The
study included 49 NSCLC patients of which 9 incurred Grade 3+ RP. Note: Table from “Dose-
volume factors contributing to the incidence of radiation pneumonitis in non-small-cell lung cancer
patients treated with three-dimensional conformal radiation therapy” by Ellen D. Yorke, 2002,
International Journal of Radiation Oncology Biology Physics, 54(2), pp. 329-339.

Also in 2002, Yorke et al. published an analysis quantifying radiosensitivity in various regions

of the lung. Through this study, it was determined that dose to the ipsilateral lung and dose to

the lower lung were most significantly correlated with grade 3+ pneumonitis, whereas dose to the
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contralateral lung and upper lung were found to not be associated as shown in Table 2.4 [69]. It

was reported that the ipsilateral lung had the highest mean dose (median=26.3 Gy; range=6.1-

51.6 Gy), the whole lung dose was intermediate (median=17.1 Gy; range=4.1-29.3 Gy), and the

contralateral lung dose was low (median=6.6 Gy; range=0.08-18.0 Gy). Alternatively, only 8/49

patients exhibited greater than 50% of the PTV volume in the lower lung, and the lower lung

structure (inferior, geometric half of both lungs) had a median dose of 8.0 Gy (range=0.15-27.2

Gy) while the upper lung structure (superior, geometric half of both lungs) had a median dose of

24.0 Gy (range=2.3-35.07 Gy). As such, the ipsilateral lung appears to be susceptible to radiation

based on increased delivered dose, whereas the lower lung susceptibility appears to be more of a

locational, or anatomical, vulnerability.

Table 2.5: Mean perfusion values in various regions of the lung averaged over all patients. P-
values were calculated using a two-tailed t test. Note: Table from “Regional differences in lung
radiosensitivity after radiotherapy for non–small-cell lung cancer” by Yvette Seppenwoolde, 2004,
International Journal of Radiation Oncology Biology Physics, 60(3), pp. 748-758.

This lower lung radiosensitivity was further confirmed in a study by Seppenwoolde et al. in

2004 [70]. Specifically, a statistically significant difference was found in the incidence of RP in

patients with cranial versus caudal tumors (11% vs. 40%, respectively). This study also quanti-

fied the average perfusion, with all SPECT counts normalized to the average number of perfusion

counts, i.e. global lung perfusion average is 1.0, in various regions of the lung as shown in Ta-

ble 2.5. Based on this table, there are clear differences in the perfusion distributions between the
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ipsilateral and contralateral lung (tumor burden), the peripheral and central regions (vessel deliv-

ery), and the anterior and posterior regions (gravitational accumulation in supine position). This

study also found that the MpLD was typically lower than the MLD because the perfusion defects

were generally localized near the tumor and received a high dose, and it was reported that the

TD50 was 30 Gy for MLD and 27 Gy for MpLD. This result is slightly confounding because if

functional lung was more susceptible to radiation than non-functional lung, the TD50 for MpLD

should be higher than the TD50 for MLD.

As previously noted in section 2.2, despite much work to investigate the use of functional-

avoidance RT, a study by Lavrenkov et al. in 2007 clearly notes the need for more evidence to

support a tangible benefit through the avoidance of functional lung:

“If the dose to [functional lung] is shown to be the primary determinant of lung tox-

icity, IMRT would allow for effective dose escalation by specific avoidance of [func-

tional lung].” [20]

Table 2.6: The lung perfusion score grading scale based on visual assessment of SPECT scans.
Note: Image from “Lung Perfusion Imaging Can Risk Stratify Lung Cancer Patients for the De-
velopment of Pulmonary Complications after Chemoradiation” by Isis W. Gayed et al., Journal of
Thoracic Oncology, 2008, 3(8), pp. 858-864.
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In 2008, a study by Gayed et al. of 50 patients that received RT (18 of whom incurred Grade 2+

pulmonary complications within 8 months following treatment) found that there were no significant

differences in the pulmonary function tests, mean dose delivered, volume of lung irradiation, or

volume of lung receiving ≥20 Gy between the patients with and without complications. However,

they did report that there was a significant difference in the lung perfusion score (LPS), which

was a grading system developed to guide the visual assessment of SPECT perfusion scans by 5

manual reviewers. As shown by the scale in Table 2.6, a higher value of the LPS equates to a lower

quality of lung function. In the 18 patient that incurred pulmonary complications, the mean LPS

was found to be 4.9 versus 3.5 in the patients that did not incur complications. Furthermore, as

the patients’ LPS increased, the odds of the patient having complications also increased, and the

association remained significant through multivariate analysis that adjusted for age, sex, history of

COPD, stage of tumor, RT technique, total RT dose, mean lung dose, and volume of lung receiving

≥ 20 Gy (V20). Overall, an AUC of 0.7 was determined for the ability of LPS to predict the onset

of pulmonary complications. As such, this work demonstrates that patients with perfusion defects

prior to RT are at-risk for adverse reactions to radiation [71].

Figure 2.28: A comparison of the distribution of relative volumes between standard and functional
dosimetrics, further broken down by patients that incurred radiation-induced lung injury (RILI) and
without RILI. Note: Image from “Functional dosimetric metrics for predicting radiation-induced
lung injury in non-small cell lung cancer patients treated with chemoradiotherapy” by Dongqing
Wang, 2012, Radiation Oncology, 7(69).
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Table 2.7: Chi-suare univariate analysis for the association between functional and volumetric
dosimetric parameters with radiation induced lung injury. Cut-off values for each metric, based on
optimizing the ROC analysis, and the RILI rate above and below that cut-off value are also listed.
Note: Table from “Functional dosimetric metrics for predicting radiation-induced lung injury in
non-small cell lung cancer patients treated with chemoradiotherapy” by Dongqing Wang, 2012,
Radiation Oncology, 7(69).

Following the initial studies that demonstrated minimal benefit of functional-weighted metrics

to predict negative outcomes, recent works have reported more promising results regarding the use

of dose-function metrics for determining patients at risk for radiation-induced lung injury. By an-

alyzing 57 stage III NSCLC patients that received chemoradiotherapy, Wang et al. concluded that

although dose-volume and dose-function metrics had strong correlations with each other, func-

tional metrics seemed to have increased predictive power in the high dose ranges. However, the

Pearson correlation coefficients were calculated between the volumetric and functional dosimet-

ric values in 5 Gy increments, i.e. V5/FV5-V60/FV60, and all but one of the pairs (V45/FV45)

had a coefficient greater than r>0.6, which indicates a significant correlation between the metrics.

Due to this colinearity between the dose-volume histogram (DVH) and functional dose-volume

histogram (fDVH) metrics, a multivariable analysis was not implemented, and instead, univariate

Chi-square and ROC analyses were performed. The results of the univariate Chi-square analysis
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are shown in Table 2.7 [72].

As demonstrated by the relative volume distribution for each of these volumetric and functional

dosimetrics shown in Figure 2.28, there is clearly less volume and functional intensity receiving

higher doses than lower doses, which also means there is a higher uncertainty in the high dose met-

rics. It is also interesting to note a consistent trend, shown in both Table 2.7 and Figure 2.28, where

the functional metric, in terms of relative volume and cut-off value, appears to be greater than the

volumetric dosimetric in the low-dose bins, but in the high-dose bins, the functional dosimetric

appears to be less than the volumetric dosimetric in patients with RILI.

Table 2.8: ROC analyses for volumetric (left) and functional (right) dosimetrics as predictors for
RILI incidence from Wang et al. in 2012. Note: Tables from “Functional dosimetric metrics
for predicting radiation-induced lung injury in non-small cell lung cancer patients treated with
chemoradiotherapy” by Dongqing Wang, 2012, Radiation Oncology, 7(69).

When the functional dosimetric is higher than the volumetric dosimetric, it tends to suggest that

a higher portion of functional intensity is being irradiated, and alternatively, when the functional

dosimetric is relatively less than the volumetric dosimetric, it suggests that more low-functioning

tissue is receiving that dose. Therefore, this observed trend seems to suggest that irradiating a

large portion of functional intensity with a low dose (<20 Gy) makes patients more susceptible to
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RILI, whereas more high-dose to lower-functioning tissue makes patients more susceptible to RILI.

While the Wang et al. study concluded that functional metrics may provide improved predictive

outcome in the high dose region based on the ROC analyses shown in Table 2.8, there was no

discussion regarding this potential that patients with a lower fDVH value, relative to the DVH

value, are at a higher risk, which is contradictory to the idea that limiting dose to functional tissue

can reduce toxicity incidence [72].

Figure 2.29: A comparison of the distribution of relative volumes between standard and functional
dosimetrics, further broken down by patients that incurred RILI and without RILI. Note: Image
from “SPECT-based functional lung imaging for the prediction of radiation pneumonitis: A clin-
ical and dosimetric correlation” by Douglas A. Hoover, 2014, Journal of Medical Imaging and
Radiation Oncology, 58, pp. 214-222

In a subsequent study by Hoover et al., it was similarly found that functional dosimetrics,

including both perfusion and ventilation dosimetrics, performed better in predicting toxicity than

volumetric dosimetrics. However, in this study, the functional and volumetric dosimteric values

were very similar in patients that incurred RP, while the patients that did not incur RP clearly

had lower functional dosimetric values than the corresponding volumetric dosimetric as shown in

Figure 2.29. As such, this study appears to demonstrate evidence to support the use of functional-

avoidance RT, although the sample size was quite limited with only 26 patients enrolled, and of
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those patients, only 7 incurred grade 2+ RP [73].

Figure 2.30: A ranking plot for standard (A:MLD, C:V20, E:V30) and functional (B:fMLD,
D:fV20, F:fV30) dosimetrics in patients that incurred grade 2-5 RP (solid circles) and those with
grade 0-1 RP (open circles). Note: Image from ”Inclusion of functional information from perfu-
sion SPECT improves predictive value of dose–volume parameters in lung toxicity outcome after
radiotherapy for non-small cell lung cancer: A prospective study” by Katherina P. Farr, 2015,
International Journal of Radiation Oncology Biology Physics, 117(1), pp. 9-16

Ultimately, the study that best supports the theory that decreasing radiation to functional lung

can reduce the incidence of RILT was performed by Farr et al. in 2015 [46]. In this study of 58

NSCLC patients (primarily 58% Stage III), a strong correlation between perfusion SPECT dosi-

metrics, specifically functional-weighted mean lung dose (fMLD) and functional intensity receiv-

ing ≥ 20 Gy (fV20), and RP incidence was found. As shown in the ranking plot in Figure 2.30,

43



it appears that all patients who received an fV20 >30% incurred RP. Similarly, threshold cutoffs

for fMLD and functional intensity receiving≥ 30 Gy (fV30) also demonstrate a clear stratification

in which functional dosimetrics above these bounds relate to near imminent toxicity incidence.

While the horizontal line, shown in Figure 2.30A, relating to an MLD=20 Gy represents the clini-

cal constraint used in the RT planning of these cases, it is often suggested that V20 should also be

limited to less than 30% to maintain rates of RP below 20% incidence [45]. Because this bound

was exceeded in many of the cases that incurred RP, it is believed that the excessive amount of high

dose delivered to a large area (a global lung V20>30% often relates to an exceedingly high V20 in

the ipsilateral lung) is the cause of the high incidence (43%) of RP in this study. Furthermore, the

high Spearman correlation coefficients (all metrics had r≥0.85) demonstrate a close association

between these standard and functional dosimetrics suggesting they represent similar information.

Therefore, although the functional dosimetrics appear to better delineate the cutoff for imminent

toxicity incidence in the cases of RP, it is possible these particular cases of toxicity are caused due

to an excessively high dose delivered across a large portion of the normal lung tissue. As such,

this data suggests that V20 and fV20 should both be kept below 30% to ensure toxicity rates below

20%, but it is also clear that there are other cases of toxicity that are not captured strictly by the

amount of dose delivered [46].

Despite this long history of promising research regarding the use of functional lung imaging

for use in RT planning and outcome assessment, RT plans are currently developed solely to limit

volumetric dosimetrics, such as MLD and V20. Clearly, normal lung doses should be kept to a

minimum, however, these metrics do not account for patients with a heterogeneous distribution of

lung function, which creates regions of varying functional capability that respond differently to

radiation [74]. And yet, functional-guided RT has not yet been clinically adopted due to three pri-

mary factors: 1) inaccessibility of functional imaging in radiation oncology clinics, 2) uncertainty

in clinical efficacy of functional-avoidance RT to reduce RILT, and 3) technological barriers to

incorporate functional images in commercial treatment planning systems. As such, more research

is needed to successfully integrate functional imaging in RT planning to improve patient outcomes.
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(a) SPECT Functional Radiation Lung Publications

(b) 4DCT Functional Radiation Lung Publications

(c) SPECT/4DCT Functional Radiation Lung Publications

Figure 2.31: Annual PubMed publications containing keywords SPECT/4DCT Functional Radia-
tion Lung.
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While the majority of functional lung studies have been performed using V/Q SPECT imaging,

its limited accessibility has constrained the widespread use of SPECT imaging in clinical radiation

oncology applications. As shown by the number of annual publications containing the keywords

”SPECT Functional Radiation Lung” in Figure 2.31(a), the seminal functional imaging studies in

the early 1990s generated a short period of discovery, but the lack of technological capability at

the time hindered any significant advancements regarding the use of functional information in RT

planning. As this technological gap closed, more studies began to investigate the use of SPECT/CT

for functional-avoidance RT [63, 64].

More recently, 4DCT has become of interest as a functional imaging modality due to its ability

to quantify ventilation-based metrics and its wide-availability in the clinic. The number of publi-

cations containing the keywords ”4DCT Functional Radiation Lung” are shown in 2.31(b), which

portrays the sharp increase in research in this area in the past decade, and 2.31(c) demonstrates a

similar recent trajectory with SPECT functional imaging in CT.

As mentioned, the major advantage of CT-based ventilation imaging is its accessibility in the

radiation oncology clinic since nearly all RT patients are already required to receive a CT scan for

anatomical localization and RT beam arrangement. As such, if this CT information could also be

utilized for functional lung quantification, it is essentially free data that does not require any extra

appointments or scans. However, the primary drawback for CT-based ventilation imaging is the

uncertainty in whether its estimates are physiologically accurate in quantifying true lung function.

Whereas V/Q SPECT imaging is a direct measure of oxygen and blood flow, CT-based ventilation

is based on quantifying mechanical deformation and/or density changes within lung parenchyma

[75], which provides an indirect indication regarding the presence of local functional gas exchange.

The use of phase-resolved CT images was first proposed in 2005 by Rietzel et al. [76] and

this technique was extended to quantify ventilation by Guerrero et al. [77] shortly after. Many of

the subsequent studies in this area focused on the 4DCT ventilation quantification technique and

its potential implications [15]. In 2013, Vinogradskiy et al. produced the first study seeking to

correlate radiation-induced lung toxicity incidence with 4DCT ventilation metrics [78]. Shown in
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Figure 2.32: 4DCT ventilation slice images and the corresponding dose-volume and dose-function
histograms for two example patients. Note: Image from “Use of 4-Dimensional Computed
Tomography-Based Ventilation Imaging to Correlate Lung Dose and Function With Clinical Out-
comes” by Yevgeniy Y. Vinogradskiy, 2013, International Journal of Radiation Oncology Biology
Physics, 86(2), pp. 366-371

Figure 2.33: Scatter plot of mean lung dose versus ventilation-weighted mean lung dose (left)
and ROC analysis of volumetric and functional dosimetrics as predictors for RP incidence (right).
Note: Image from “Use of 4-Dimensional Computed Tomography-Based Ventilation Imaging to
Correlate Lung Dose and Function With Clinical Outcomes” by Yevgeniy Y. Vinogradskiy, 2013,
International Journal of Radiation Oncology Biology Physics, 86(2), pp. 366-371
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Figure 2.32 are the distributions of 4DCT-derived ventilation and dose, along with the correspond-

ing DVH and dose-function histograms (DFHs), for two example patients included in the study.

As demonstrated by these example patients, there is a stark difference between the ventilation

distributions within each individual lung, with each patient exhibiting a near complete ventilation

defect in one lung. However, in these particular cases, the patient that received a large dose to

the ventilated lung (signified by the DFH curve greater than the DFH curve in patient 2) was the

patient that incurred grade 3 RP, whereas patient 1 did not incur RP and received the majority of

dose in the lung with the ventilation defect (represented by the relatively lower DFH curve). As

such, these two cases are suggestive of the potential benefit for using 4DCT ventilation to reduce

radiation to functional lung in an attempt to decrease toxicity rates. While this patient appeared

to derive a benefit from the inadvertent functional-avoidance, this study did not find a significant

correlation between functional dosimetrics and RP across the cohort. However, it was suggested

that the CT-based ventilation dosimetrics had better predictive power than the standard dosimet-

rics, despite both showing a limited association with toxicity incidence, as shown in Figure 2.33

[78].

In a subsequent analysis by Vinogradskiy et al., 4DCT ventilation estimates were compared

to SPECT ventilation estimates in a cohort of 15 lung cancer patients [79]. Through this study, a

moderate correlation was found between the two functional imaging modalities in regards to the

functional balance between the right/left lung as shown in Figure 2.34. In certain cases though,

there appears to be a strong agreement as shown in Figure 2.35. However, the comparative analysis

between these modalities is difficult because it relies on a relative analysis regarding the amount of

functional intensity within each lung or region. More recent studies comparing 4DCT ventilation

with SPECT ventilation have also reported only marginal correlations with large inter-patient and

inter-method variability between the two functional lung imaging modalities [80, 81].

In addition, Vinogradskiy et al. has reported on the extensive functional defects in Grade

III NSCLC patients [19] and has also demonstrated functional-avoidance techniques using 4DCT

ventilation images [27]. In 2017, two studies by Faught et al. reported on the 4DCT-based ven-
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Figure 2.34: Fraction of 4DCT ventilation versus SPECT ventilation in the right/left lung in a
cohort of 15 lung cancer patients. Note: Image from “Comparison of 4-Dimensional Computed
Tomography Ventilation With Nuclear Medicine Ventilation-Perfusion Imaging: A Clinical Vali-
dation Study” by Yevgeniy Y. Vinogradskiy, 2014, International Journal of Radiation Oncology
Biology Physics, 89(1), pp. 199-205

Figure 2.35: SPECT ventilation (A), 4DCT ventilation (B), and quantitative assessment for each
of the relative distributions. Note: Image from “Comparison of 4-Dimensional Computed Tomog-
raphy Ventilation With Nuclear Medicine Ventilation-Perfusion Imaging: A Clinical Validation
Study” by Yevgeniy Y. Vinogradskiy, 2014, International Journal of Radiation Oncology Biology
Physics, 89(1), pp. 199-205
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tilation dose-function metrics that were most associated with RP incidence and the potential re-

duction in toxicity rates if functional-avoidance methods were implemented using 4DCT-based

ventilation images [26, 31]. Both of these analyses have been used as evidence that 4DCT-based

functional-avoidance should be implemented for all patients, however, a number of questions re-

garding functional-avoidance RT techniques remain: 1) if the correlations between 4DCT and

SPECT ventilation estimates are only marginal, how do we ensure that the CT-based ventilation es-

timates are properly quantifying functional lung? 2) While functional-guided radiation treatments

offer the potential to limit radiation damage in certain cases, the implications of shifting dose from

high-functioning regions into low-functioning regions, which are indicative of pulmonary dysfunc-

tion, have not yet been directly studied, so are we confident that functional-avoidance is the optimal

strategy for all lung cancer patients?

In an attempt to answer these questions, functional-guided RT clinical trials are underway at

the institutions listed in Table 2.9.

While most of these clinical trials are still active (and the contents of this thesis will describe

the results from the completed University of Michigan clinical trial), an interim analysis has been

published by the University of Colorado group, which demonstrates feasibility and acceptability

regarding the 4DCT-based ventilation functional-avoidance RT technique [82]. In the first 17

patients treated on this trial, toxicity rates for grade ≥2 and ≥3 radiation pneumonitis were found

to be 17.6% and 5.9%, respectively. These results are promising, as they demonstrate a reduction

from the historical RP rate of 25%. However, the functional-avoidance technique was reported

to have only reduced the mean dose to functional lung by 1.4 Gy and decreased V20 by 3.2%,

which demonstrates the limited ability to drastically redistribute dose to functional lung due to the

numerous other strict clinical constraints and lack of functional heterogeneity in other cases.

Ultimately, the extensive studies conducted as a part of these clinical trials will help to clarify

the utility of functional imaging in radiation treatment planning and motivate the development of

technology to better incorporate these imaging modalities into the radiation oncology clinic. As

such, this thesis will describe the knowledge gained and technology developed as a part of three
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Table 2.9: Fraction of 4DCT ventilation versus SPECT ventilation in the right/left lung in a cohort
of 15 lung cancer patients. Note: Image from “Comparison of 4-Dimensional Computed Tomog-
raphy Ventilation With Nuclear Medicine Ventilation-Perfusion Imaging: A Clinical Validation
Study” by Yevgeniy Y. Vinogradskiy, 2014, International Journal of Radiation Oncology Biology
Physics, 89(1), pp. 199-205

functional imaging clinical trials conducted at the University of Michigan.
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2.3.2 Patient Characteristics and Pre-Existing Disease

In 2010, a group of experts in radiation oncology convened to update the tolerance doses orig-

inally established by Emami et al. in 1991. This work resulted in the recommendation that V20

should be kept below 30%, and that MLD was recommended to remain below 20 Gy in order to

maintain symptomatic pneumonitis rates below 20% [45]. Despite these updated guidelines, nu-

merous studies reported that MLD and V20 alone were insufficient to effectively stratify toxicity

incidence because these suggested ranges are often adhered to within the clinic. In a study by

Dehnig-Oberije et al., Grade 2+ dyspnea was best predicted by combining MLD with age, World

Health Organization (WHO) performance scale, smoking status, and FEV1. While age, perfor-

mance scale and FEV1 are all factors that point to patients in worse condition having a higher

risk for toxicity, the smoking status is interesting because it actually showed that patients who

were current smokers at the time of treatment were protected from toxicity. While there has been

conflicting data regarding this result, the theory is that smokers have poorer oxygenation in their

lung parenchyma, which leads to less production of cytotoxic free radicals, and consequently, less

radiation damage [83].

Alternatively, numerous studies have reported a strong connection between pulmonary comor-

bidities and radiation-induced lung toxicity [84, 85]. Despite this known risk factor, functional-

avoidance therapies have assumed funneling dose to low functioning regions will not cause a neg-

ative reaction. However, these low functioning regions are perfusion and/or ventilation defects

that are often indicative of diseased tissue [86]. Recent studies have suggested patients with pre-

existing ILD [87, 88] or idiopathic pulmonary fibrosis [89, 90] prior to RT are disproportionately

prone to developing severe toxicity. In fact, grade 4-5 RP was reported in 57% of patients with

pre-existing interstitial pneumonitis (versus 2% in those without interstitial pneumonitis) prior to

SBRT [91]. Furthermore, not only have symptomatic and severe RP have been reported at much

higher rates in NSCLC patients with pre-existing ILD [92], but the rate of out-of-field RP has also

been shown to be significantly higher in patients with subclinical ILD, which demonstrates the

potential for the acute exacerbation of pre-existing lung disease following RT [93, 94]. There are
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also indications that underlying COPD is associated with an increased risk of RILT [95, 47], but

there have also been conflicting studies regarding this association [96, 97]. Specifically, because

emphysema is indicative of air trapping in the lung parenchyma, there may be less pulmonary tis-

sue exposed to radiation in these areas. Alternatively, given that COPD can significantly decrease

a patient’s pulmonary function, any further loss of functional lung may have a more severe impact.

Although many of these studies have suggested that lung cancer patients should be screened for

pre-existing pulmonary comorbidities, such as ILD or idiopathic pulmonary fibrosis (IPF), there

is currently no standard method or process to ensure these comorbidities are understood prior to

irradiation. A study by Castillo et al. in 2014 reported that elevated levels of fluorodeoxyglucose

(FDG)-positron emitted tomography (PET), a marker of pulmonary inflammation, prior to RT were

a risk factor for RILT [98]. Another analysis Kimura et al. sought to utilized combined SPECT

perfusion and CT-based ventilation metrics to identify patients with COPD and demonstrated an

association between toxicity incidence and a reduction in functional lung [47]. In 2018, Otsuka

et al published one of the first studies to conclude that high dose to poorly functioning regions, as

determined by 4DCT ventilation, was associated with the highest risk of toxicity [99]. And still,

more work is necessary to fully understand the impact of pre-existing pulmonary comorobidities

on patient condition following RT.

2.3.3 Geometric Characteristics

As previously described, lower lobe tumors have been shown to be more associated to the risk

of RILT, compared to upper lobe tumors [69, 70, 100]. Possible explanations include a greater

density of target cells in this region and a connected physiological reaction that has the potential to

cause more out-of-field damage. There is some evidence that tumor stage and tumor volume may

be associated with toxicity incidence, but it has also been suggested that these tumor characteristics

are confounded by other clinical risk factors. Previous radiation, previous chemotherapy, and

concurrent chemotherapy are also suggested to have an impact on the risk for toxicity [85].
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2.3.4 Biological Characteristics

While the complete pathophysiology of early- and late-stage radiation-induced lung toxicity

is still not fully understood, radiation pneumonitis is generally believed to result from alveolar

cell depletion and severe inflammation, whereas pulmonary fibrosis is thought to be the manifesta-

tion of fibroblast production, collagen accumulation, and destruction of normal lung architecture,

which ultimately leads to permanent parenchymal scarring [101]. This complex process is trig-

gered by radiation damage to parenchymal cells and is mediated by the cascade of cytokines that

infiltrate normal lung tissue following RT [102, 103]. While this influx of inflammatory infiltrates

is expected, there are a number of specific cytokines that have been identified as possible drivers

of RILT.

2.3.4.1 IL-1

Two interleukin (IL) variants, IL-1α and IL-1β , are known to be involved in acute and chronic

inflammation through the accumulation of myofibroblasts and extracellular matrix deposition. The

over-expression of IL-1β in the epithelial cells of mouse lungs has been linked with inflammation

and tissue destruction, leading to long-term production of transforming growth factor (TGF)-β

and interstitial fibrosis [104]. IL-1β has specifically been observed at elevated levels in alveolar

macrophages within the lungs of patients with IPF [105, 106], suggesting a direct link between

acute lung injury, initiated by pro-inflammatory cytokines, and the development of progressive

fibrosis. Furthermore, in vitro studies have demonstrated that irradiated alveolar macrophages

exhibit dose-dependent increases in IL-1 expression and subsequently recruit other inflammation-

related molecules [107, 108]. Specifically, elevated levels of IL-1α messanger ribonucleic acid

(mRNA) expression have been associated with radiation-induced lung toxicity [109].

2.3.4.2 IL-6

Previous studies have suggested IL-6 as the mechanism causing nearly 80% of patients with

pulmonary comorbidities to incur toxicity [87, 88, 107, 108]. While a cytokine release during and
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after radiotherapy is common in NSCLC patients receiving RT [103, 102], mechanistic studies

of IL-6 have demonstrated both anti- and pro-inflammatory properties [110, 111]. Specifically,

Moodley et al reported that signaling of IL-6 can become reversed in patients with IPF prior to

RT such that fibrotic cells resist apoptosis, and alternatively, cause a profibrotic effect [112]. This

reverse signaling has the potential to promote a global pro-fibrotic effect that can cause severe

out-of-field lung tissue damage following radiation treatment, which has been linked with severe,

systemic toxicities within the lungs [113, 114]. Furthermore, numerous studies have reported a

correlation between elevated levels of pre- and post-treatment IL-6 with radiation-induced lung

toxicity [115, 107], which may also be due to the initiation of lymphocyte alveolitis [116].

2.3.4.3 TGF-β1

Another cytokine, transforming growth factor (TGF)-β1, plays a vital role in normal lung re-

pair after irradiation, specifically by stimulating collagen production and facilitating fibrotic tissue

remodeling [117]. Dose-dependent changes in TGF-β1 have been reported in animal and human

studies, further suggesting TGF-β1 signaling can contribute to the overproduction of collagen and

fibroblasts in the lung following RT [118, 119]. Elevated expression of TGF-β1 during or after RT

has frequently been associated with the incidence of radiation-induced lung toxicity [120, 121].

Recent studies have investigated anti-TGF-β1 antibody as a potential concurrent therapeutic op-

tion to inhibit fibrosis in patients receiving RT and have reported that patients with lower levels of

TGF-β1 tend to have more favorable outcomes [122, 123].

2.3.4.4 TNF-α

Another possible mechanism causing radiosensitivity in patients with pulmonary defects could

be an increased accumulation of tumor necrosis factor alpha (TNF-α). Production of (TNF-α) can

be caused by inflammatory tissue response and may be present in reperfused areas at mid-treatment

[124]. Rübe et al. demonstrated elevated levels of (TNF-α) mRNA expression in the lung tissue

of mice starting 2-4 weeks after irradiation, which is similar to the duration between the start of
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RT and the mid-treatment timepoint [109]. Radiation-induced production of (TNF-α) is known to

be related to early cell apoptosis and could be causing increased latent functional damage [125].
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CHAPTER III

Patient Characteristics and Experimental Design

3.1 Patient Population

The patients included in this study were prospectively accrued from three separate IRB-approved

clinical trials (ClinicalTrials.gov Identifiers: NCT00603057 & NCT02492867 & NCT03121287)

performed at the University of Michigan. Written informed consent for participation in the trial

was obtained from all patients. The details of patient accrual from these two trials is shown in

Figure 3.1.

Figure 3.1: Patient data accrued from three IRB-approved clinical trials between 2007-2020.

Because this dissertation work began in 2016, the first project, i.e. longitudinal dose-response
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modeling, was performed using only the 2006.040 cohort of patients. However, as this work

progressed and new SPECT scans were accrued, the population was updated to include patients

from both the 2006.040 and 2015.035 trials because the SPECT imaging, patient characteristics,

and treatment regimens were considered to be similar. The validity of combining these cohorts is

discussed further in chapter VI.

All patients were diagnosed and staged for the presence of lung cancer and the patients involved

in the SPECT analyses, both the dose-function longitudinal (n=81 patients) modeling and toxicity

risk assessment (n=88 patients),were histologically-verified to have NSCLC. A summary of patient

characteristics for each of the cohorts with SPECT scans available is presented in Table 3.1.

3.2 SPECT Imaging

The 2006.040 patient cohort, used for the modeling of longitudinal dose-function response,

included V/Q SPECT images acquired at four separate imaging time points: (1) pre-treatment; (2)

mid-treatment; (3) three months post-treatment; and (4) one year post-treatment. The amount of

available scans at each of these four timepoints is shown in Table 3.1. Conversely, the 2015.035

cohort only included V/Q SPECT images from the pre- and mid-treatment timepoints.

SPECT imaging was performed using a dual-head SPECT/CT system (Symbia T6, Siemens

Medical Solutions, Malvern, PA) with the patient immobilized in the supine treatment position

using a standard thorax support device for reproducibility. Each patient was first scanned for pul-

monary ventilation by inhaling aerosolized 99mTc-diethylenetriaminepentaacetic acid from a 1850

megabecquerel (MBq) reservoir. Pulmonary perfusion was subsequently scanned after intravenous

injection of 185 MBq of 99mTc-labeled macroaggregated albumin particles.

SPECT scans were obtained over a non-circular orbit with a 360◦ arc in 60 projections and 128

frames (19 s/frame, 3◦ increments, 128 pixels× 128 pixels,∼3.5 mm×∼3.5 mm×∼2 mm) using

the stop-and-shoot mode. SPECT images were reconstructed by initially applying attenuation and

scatter corrections and subsequently implementing a 3-dimensional ordered subset expectation-

maximization iterative reconstruction with resolution, scatter, and attenuation corrections.
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Table 3.1: Summary of patient information in the cohorts with SPECT images available.
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3.3 SPECT Registration

Each SPECT scan was rigidly registered to the treatment planning CT through an alignment

tool embedded in the clinical, commercial treatment planning system (Eclipse, Varian Medical

Systems, Palo Alto, CA). Rigid registrations were manually reviewed for accuracy. After registra-

tion, each voxel within the normal lung tissue contained both a dose value and function value (ie,

normalized perfusion SPECT intensity). Rigid registration was performed instead of deformable

registration to avoid uncharacterized errors that may be caused by low spatial resolution and un-

matched breathing states between the SPECT/CT and planning CT images.

3.4 SPECT Normalization

To account for varying absolute intensity in SPECT scans taken across different time points and

patients, the raw intensity value in each voxel was normalized. Shown in Equation 3.1, raw SPECT

intensities ( fi) were converted to normalized SPECT intensities ( fNi ) using the average intensity in

the low-dose (≤5 Gy), functional region of the contralateral lung as the normalization constant (N).

This region was assumed to be stable against radiation-induced longitudinal functional changes,

thus facilitating intra- and inter-patient comparisons such that normalized functional intensity of

1.0 equates to the average intensity of normal-functioning lung for all patients and timepoints. Al-

though compensation effects have been hypothesized to occur following initial radiation delivery,

where healthy tissue essentially performs more functional gas exchange than normal, there is little

direct evidence to support this theory [126]. Reasons for why compensation effects may have been

detected erroneously are also discussed in chapter V.

∀ voxels in the lungs: fNi =
fi

N
where N=

Nnorm

∑
i=1

fi

Nnorm
(3.1)

where Nnorm is the number of voxels in the contralateral lung that had functional intensity greater

than 15%, i.e. functional, and received≤5 Gy, i.e. low-dose. Normalized perfusion and ventilation
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SPECT intensities were used as a direct surrogate for lung function, and therefore, normalized

intensity signal in any voxel can be considered a relative measure of local lung function compared

with the average functional value in unaffected tissue.

3.5 SPECT Artifact Cleaning

To reduce the well-documented effect of 99mTc aerosol-trapping artifacts in patients with ob-

structive airway disease [127, 128], an automated artifact cleansing strategy was developed. Ini-

tially, any voxel with an intensity value greater than 3 standard deviations above the mean intensity

in each individual lung was excluded. To more aggressively eliminate these artifacts, the strategy

was subsequently refined to exclude any voxel greater than 2 standard deviations above the mean

intensity in each individual lung. However, because the mean intensity may be skewed by the pres-

ence of artifacts and defects, an upper and lower intensity limit was implemented such that only

voxels representing the expected intensity in normal-functioning lung were included in the mean

intensity calculation. The artifact cleansing strategy is described in full detail in chapter IV.

On average, 0.3% of perfusion voxels and 2.0% of ventilation voxels were excluded from the

normal lung volume.

3.6 SPECT Functional Categorizations

Table 3.2: Voxelwise functional categorization scheme.

In the dose-function response analysis, the well-perfused and well-ventilated regions were de-

fined as any voxel >50% of the maximum intensity, but in the latter dose-function toxicity analy-

sis, the high-functioning region was defined as >70% of the maximum intensity. Three functional
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categorizations were created to represent low-function lung (LF), normal-function lung (F), and

high-function lung (HF) lung. Each voxel with normalized functional intensity ( fNi ) was assigned

a functional categorization based on the schema shown in Table 3.2, where fNmaximum is the maxi-

mum normalized intensity in the global lung structure.

3.7 CT-Based Simulation and Treatment Planning

Simulation CT scans were acquired from each patient, in the supine position, prior to treatment.

Early in the study period, patients were assessed for motion through analysis of inhale and exhale

CT scans. As the study progressed, 4DCT was incorporated for motion assessment. Patients

with extensive motion were prescribed breath-hold treatments, and all free-breathing patients were

treated with an internal target volume approach. The Eclipse Analytical Anisotropic Algorithm

(AAA) (Varian Medical Systems, Palo Alto, CA) photon dose model was used to retrospectively

calculate the delivered dose to each voxel in the CT matrix (512 pixels × 512 pixels, 0.98 mm

× 0.98 mm × 3 mm). Essentially, the AAA model employs a three-dimensional convolution of

Monte Carlo scatter kernels that are modified by the CT-based electron density matrix [129]. For

each patient, the calculated dose in each normal lung voxel was then corrected to the nominal

equivalent dose per 2 Gy fraction (EQD2) using the linear quadratic model with an α/β ratio of

2.5 Gy [130].

3.8 Lung and Tumor Contouring

All global lung and tumor structures were clinically contoured during treatment planning and

edited according to a thoracic atlas [131]. Normal lung tissue was defined as all voxels within the

normal lungs structures, excluding the gross tumor volume (GTV) or internal tumor volume (ITV)

if treated while free-breathing. The individual lung and regional lung structures were contoured

using the boolean operator process in the Eclipse treatment planning system. Regional lung struc-

tures were defined as follows: upper lung above the carina, lower lung below the inferior pul-
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monary vein, and middle lung between the upper and lower segments. In the toxicity analysis, a

4mm inner margin was applied to the global lung structure, and all subsequent structures, to reduce

the partial volume effect, which has the potential to create erroneous low-functioning regions on

the periphery of the lung structures.

3.9 Radiation Therapy

Table 3.3: Normal lung volume, tumor volume, and global lung dose statistics across the various
patient cohorts.

While more patients and images are beneficial to building stable models, patients treated with
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conventionally-fractionated RT and SBRT were analyzed separately due to the distinct patient-

specific factors, such as age, tumor size, and patient condition, that are used for the prescription

of SBRT [132]. While patient age and condition did not appear to be significantly different in the

patients that received SBRT versus conventionally-fractionated RT, the SBRT patients clearly had

smaller tumors (158 cm3 v. 15 cm3) that were typically at an early stage (78% Stage III v. 76%

Stage I), which subsequently, led to delivery of a lower mean lung dose (4.6 Gy v. 15.4 Gy) and

no concurrent chemotherapy as shown in Table 3.3.

Because the patient population was accrued from 2007 through 2019, there were some notable

shifts in the radiation treatment prescription and delivery techniques that occurred over the course

of this study. For patients treated with conventionally-fractionated RT, the RT course was generally

administered over 30 fractions with 2-2.2 Gy delivered per faction, and the prescription dose was

typically either 60-66 Gy or 70-74 Gy for cases where dose escalation was thought to be advanta-

geous, primarily based on tumor size and location. Patients enrolled in the 2006.040 study were

treated with three-dimensional conformal RT, whereas patients in the 2015.035 and 2015.006 trials

were treated with intensity-modulated radiation treatment (IMRT). All dose values were converted

to EQD2 to biologically equate the various treatment regimens. The EQD2 conversion is based on

the linear-quadratic model, which accounts for the biological effect of various fractionation regi-

mens, however, the EQD2 conversion is known to become less accurate at high dose per fractions

[133] so conventional fractionation RT and SBRT were not directly compared in most cases.

3.10 Radiation-Induced Lung Toxicity Grading

RILT was defined as grade 2+ RP and/or grade 2+ clinical pulmonary fibrosis. RP and pul-

monary fibrosis were diagnosed and graded prospectively according to a pre-specified system

[134], as shown in Figure 3.2, Using this grading scheme, which is consistent with the common

terminology criteria for adverse events (CTCAE) v4.0 [135]. The maximal RP or fibrosis grade

was reported as the RILT grade [135]. While the RP and fibrosis pathologies are often considered

distinct clinical processes, RILT was used because it encompasses the primary dose-limiting pul-
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monary complications that impact patient survival and quality of life [101]. Furthermore, there is

some evidence that suggests these toxicities may be linked [103, 101].

Figure 3.2: Radiation-induced lung toxicity grading scheme encompassing radiation pneumonitis
and clinical fibrosis.
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CHAPTER IV

Development of the Dose Function Analysis Infrastructure

Functional image information is being increasingly used in treatment planning as well as out-

comes modeling. However, the ability to compute image-based metrics and directly incorporate

them into treatment planning is limited, especially in commercial software. Our work integrates

functional image analysis directly into the treatment planning system via scripting, which allows

computation of custom metrics and the use of those metrics in other areas of treatment planning,

such as plan optimization. These capabilities bring us a step further to direct use of functional im-

age evaluation, targeting, and avoidance, within a commercial clinical system while still allowing

the flexibility of a research system.

Using the API within the Eclipse treatment planning system, a novel software program, written

in C# and named Dose-Function Analysis, was developed and implemented to process and analyze

the spatially aligned dose-function data. Because the Eclipse system does not support analysis of

functional lung images, the V/Q SPECT images had to be converted to pseudo-CT DICOM files us-

ing an in-house command-line program written by Guillaume Cazolat. Once the converted SPECT

images were uploaded to Eclipse, a consistent naming convention was instilled to ensure the code

could recognize the data properly. Two applications, a plugin user interface (UI) and standalone

batch program, were developed to view/analyze the dose-function data for a single patient or for

an entire patient cohort. The underlying methods and code structure were analogous for both ap-

plications, but the presentation of the data differed. In the following sections, each application’s
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functionality, and the shared methods used by each application, will be briefly described to provide

an understanding for the code that produced the data that was used within this dissertation.

4.1 Plugin User Interface Analysis

As part of the initial development and validation of the Dose-Function Analysis code, a plugin

script was created to visualize individual patient functional lung metrics and graphs. An overview

of the UI code structure and basic operations are shown in the diagram in Figure 4.1, where a

box=C# dialog box, rounded box=C# method, and ellipse=C# button.

Class1
• Initiates Script/UI
• Accesses ScriptContext

information
• Clears static Dictionaries 

upon new session

 CurrentPatient (Patient)
 CurrentUser (User)
 CurrentCourse (Course)

UserInterface

• Displays UI and governs 
its functionality

• Calls external classes 
based on user actions

• Displays loaded 
Dose/Image plans, their 
structures, selected 
metrics and DFH graphs

 ImageDoseList (ListView)
 ListBox1 (ListBox)
 SelectedMetric (ListViewItem)
 MetricGroup (ListViewGroup)
 ListView1 (ListView)
 Metrics (string[])
 Selected Structures (List<string>)
 LoadedPlans (int)
 RunTime (Stopwatch)
 LoadPlanTimes (Dictionary<string,double>)

“Load Image/Dose file”

SelectSPECTStudy

• Allows user to select 
the specific SPECT to 
load from dropdown 
menu

• Populates listView with 
selected study name

• If known study 
selected, matching 
series automatically 
selected

• Populates listView with 
selected series  name

SelectSPECTSeries

SelectSPECTImage
• If known series 

selected, matching 
image automatically 
selected

• Populates listView with 
selected image  name

SelectDoseCourse

• Allows user to select 
the specific dose plan 
to load from dropdown 
menu

• Populates listView with 
selected Plan name

SelectDosePlan
• If Script is run with 

Eclipse dose course 
loaded, automatically 
selects Eclipse as 
course

• Populates listView with 
selected course name

SelectRegistration
• If known image study 

selected, matching 
registration 
automatically selected

• Populates listView with 
selected registration 
name

Options

• Allows patient to select 
desired options (bio-
correct, normalization, 
etc)

• Populates listView with 
bio-correct information

LoadDosePlan

• Based on selected 
image, dose and 
options, class will 
access dose and image 
matrix data

• All data are stored in 
dictionaries  that are 
accessed through a 
string key based on 
name of image, dose 
and options selected

 NameDictionary (Dictionary<int,string>)
 StructureSets (Dictionary<string,StructureSet)
 DoseDataDictionary (Dictionary<string,double[,,]>)
 ImageDataDictionary (Dictionary<string,double[,,]>)
 DosePlans (Dictionary<int,Dose>)
 MaximumDose (Dictionary<string,double>
 GraphNameDictionary (Dictionary<int,string>)
 RegistrationDictionary (Dictionary<string,Registration>)

“Calculate”

MetricAnalysis
• Accesses data from 

LoadDosePlan
• Calculates all 

dose/intensity metrics 
for each structure in 
each loaded 
Image/Dose plan

• Calculates DFH Data for 
each structure in each 
Image/Dose plan

 NameMetricDictionary (Dictionary<string,Dictionary<string,double[]>>)
 MaxDoseLocations (Dictionary<string,List<VVector>>)
 MaxIntensityLocations (Dictionary<string,List<VVector>>)
 StructureVariables (Dictionary<string,int>)
 PlanCumulativeCounts (Dictionary<string,double[][]>)
 PlanDoseBins (Dictionary<string,int[]>)
 PlanBinNumber (Dictionary<string,int>)
 CountsUnderCurve (Dictionary<string,double[]>)

ExcelWrite
• Writes the Data into a 

.xslx file
• Also, contains method 

to open the excel file

 ExcelApp (Excel. Application)
 DataSheet (Excel.Workbook)

If MetricAnalysis data 
is null, calls 
MetricAnalysis to 
popluate metrics and 
DFH data

If MetricAnalysis data 
already populated, 
directly call 
DFHGraph

DFHGraph
• Graphs the DFH data

Figure 4.1: Plugin UI Code Structure.
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Functional imaging data is registered to a 
treatment planning CT and dose plan. The 
resulting functional dose profile is 
analyzed to produce image-based metrics 
and histograms that are displayed through 
a user interface, which allows customized 
parameter inputs and user control of 
graphical properties.

Functional SPECT Imaging Anatomical Dose Profile Functional Dose Profile

Structural Dose-Function Histogram

Structural Dose-Function Metrics

User Interface

Figure 4.2: Preliminary version of the Dose Function Analysis UI.
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4.1.1 Code Initialization

The code is initialized through the VMS.TPS namespace, and the .Net environment (class1.cs)

is populated with the various class libraries shown at the top of the code. Below these installed

libraries, accessible properties are declared, meaning the public static variables that can be called

by other classes within the domain and their values remain stored unless otherwise changed or

erased.

Specifically, the properties - CurrentUser, CurrentPatient, and CurrentCourse - are instanti-

ated to hold the values of the Eclipse user, patient ID, and dose course associated with the current

Eclipse workspace. The ScriptContext class, available through the VMS.TPS.Common.Model.API

library, is then utilized within the Execute void to actively grab the Eclipse workspace values. Once

these values are acquired, a new instance of the UserInterface windows form class, i.e. userForm,

is created at line 62. Once the method userForm.ShowDialog() is called, the code enters the User-

Interface class and a modal dialog box, i.e. the user interface, is opened, meaning the user must

interact with the modal window before returning to the shell code.

At the end of this UI initialization class, the static variables and options are cleared to preserve

the integrity of the script once the code is recalled.

4.1.2 UserInterface

Upon entering the UserInterface.cs windows form class, a user interface dialog box is displayed

to the user as shown in Figure 4.3. An early version of the Dose-Function Analysis UI is shown

in Figure 4.2, and the difference between cumulative and direct DFH is specifically shown in the

graph on the bottom-left. Many of the UI properties, i.e. listView, and variables, i.e. LoadPlan-

Times, are made to be public static structures such that they can be accessed and modified by other

classes within the code domain. The inherent UI properties developed through the window forms

designer and the initial assignments declared in the UserInterface Load method are populated at

initiation. By accessing the VMS.TPS.Script class, the sciptContext is used to access the current

Eclipse workspace. If no patient is loaded in Eclipse, an exception will be thrown. Ideally, this
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could be protected from an unhandled exception with a try/catch block.

Once the UserInterface is displayed, the code is stable, and the user is expected to load a

functional image through either button1, ”Load Image/Dose” or button 14, “Load All...”.

Figure 4.3: UserInterface window shown to user upon initiation of the code.

Essentially, these two options allow the ability to load a single functional image/dose plan pair

or utilize a load all solution that automatically loads every available functional image along with a

selected dose plan and options.

4.1.2.1 Load Individual Image/Dose Pair

As shown in the upper-right section of Figure 4.1, once button1 “Load Image/Dose File” is

selected, a series of dialog boxes are initiated to help the user select: 1) a study, series, and image

file that represents the functional image, 2) an Eclipse dose course, plan, and registration that

represents the dose matrix, and 3) options such as dose bio-correction.
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USER-FACILITATED IMAGE-DOSE LOADING SCHEME                               INITIATED FOLLOWING “LOAD IMAGE/DOSE” BUTTON 

 
Automatic selection of SPECT series and image skips Steps 2 & 3 

based on user-selected SPECT study and known downstream naming 

convention 

2. SelectSPECTSeries.cs 

3. SelectSPECTImage.cs 

1. SelectSPECTStudy.cs 

4. SelectDoseCourse.cs 

Automatically assumes the current 

Eclipse workspace dose course 

5. SelectDosePlan.cs 

7. SelectBioCorrection.cs 

8. LoadDosePlan.cs 

- Creates C# Dictionary with the 

naming identifier (SPECT Study + 

Dose Plan + Bio-Correction) for 

each loaded image - dose pair 

6. SelectRegistration.cs 

Automatically grabs registration 

with named same as SPECT study 

Figure 4.4: User-Facilitated Individual Image/Dose Loading Scheme.

71



Because this UserInterface code was used frequently to quantify dose-function metrics and

to visualize the data, an update was performed to automatically skip user-demanded selection

of the SPECT series, SPECT image , dose course, and registration by anticipating the expected

downstream naming as shown in Figure 4.4. As such, this update reduced the number of user-

demanded dialog boxes from 7 down to 3 (SPECT study, dose plan, bio-correction). Throughout

this selection process, a public ListViewItem is being modified, such that the loaded parameters

can be viewed in listView4 at the head of the UI following the return to the main code.

4.1.2.2 Load All Solution

Based on the need to quickly analyze and compare functional images at multiple timepoints,

a time-saving solution was developed to facilitate the automatic loading of all available SPECT

image files for a given dose plan and options as shown in Figure 4.5.

Figure 4.5: Load All interface window for selection of dose plan and load options.

Both the perfusion and ventilation check boxes are checked as a default. Furthermore, if there

is only one dose plan or if a plan contains ”PlanSum”, it will automatically be selected. And
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lastly, “Yes” is inherently chosen for the bio-correction option. Once button1 ”Load” is pushed,

the LoadPlan method iterates through eight functional imaging options, including four imaging

timepoints (Initial, 1Month, 3Month, and 1Year) and two functional modalities (PERF and VENT).

If an imaging study with a name matching any of these eight options is found, that SPECT study

name is combined with the dose plan name and bio-correction option in the LoadDosePlan.cs

NameDictionary, which tracks the functional image-dose plan pairs that will be analyzed. The

loaded image-dose pairs are reflected by the listView items shown at the top of Figure 4.6. In this

particular example, the load all solution was executed and six perfusion and ventilation scans were

found for the given patient ($2006040 VA004).

Figure 4.6: UserInterface window after using the Load All solution.

While the upper listView shows each loaded image/dose pair, the lower listView displays the

analytics. A C# tabControl element is used to add the numerous analysis windows that are avail-

able. In the first panel ”Selected Structures”, three lung structures - Lungs-GTV, Right Lung-

GTV, and Left Lung-GTV - are automatically loaded in preparation for analysis. Initially, more

flexibility in structure selection was allowed, however, this analysis primarily focused on SPECT
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distributions within the global lungs and each individual lung, so the three lung structures shown

are automatically assumed to be the selection. A structure can still be cleared using the “Clear

Structure” button. The α/β or a-value of each structure can also be edited using the ”Edit Struc-

ture” button as shown in Figure 4.7. Default values are set to α/β = 2.5 and a=1.

Figure 4.7: Interface window used to edit structure properties.

At this point, the rest of the analysis tabs are empty and the code is waiting for a user selection.

The “Options...” button can be used to edit the normalization strategy of the analysis as shown in

Figure 4.8.
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Figure 4.8: Interface window used to select normalization options.

Although normalization using total intensity counts or using a set structure are written in the

code, these options are unavailable to selection for simplicity. Ultimately, the user is expected to

select ”Calculate” or “View DFHs...”, either of which will initiate the DataProcess.cs method fol-

lowed by the MetricAnalysis.cs method. These two classes perform the necessary processing and

quantitative analysis required to analyze the combined dose-function data. Once the DataProcess

and MetricAnalysis methods are complete. The user is prompted with a display box showing the

total run time and is now free to explore the generated data.

4.2 Standalone Batch Analysis

Upon initiating the Dose-Function Analysis Batch code, the user is prompted with an interface,

as shown in Figure 4.9, which establishes the data, metrics, and options that will be used in the

analysis. The user is guided through a number of simple selections and can select the “Metric

Options” button to edit the properties of the gEUD/gEUfD and the Vd/fVd variables (Figure 4.9B).

As shown in Figure 4.9A, the “Run” button is disabled because a patient data file has not been

75



selected. Therefore, the user is required to load an input file through the “Select data file” button,

which opens a dialog box to navigate the computer’s various drives (Figure 4.9C). The specific

input file used in this study to access the batch patient data can be found in Appendix A. Through

this file, the patient’s dose course/plan, CT study/image, and SPECT study name are provided to

ensure the proper data is analyzed.

Figure 4.9: A) The interface prompting the user upon initiating the Dose-Function Analysis Batch
code, B) the interface to customize the analyzed metrics, and C) the dialog box to select the desired
patient input file.

The main output for the batch code includes files for the following data: 1) lookup.csv contains

the generated dose-function metrics; 2) dataVQ.csv contains the combined VQ dose-function met-

rics; 3) [lungStructure] Intensity.csv contains the average intensity within dose bins for each of the

lung structures; 4) [lungStructure] Function.csv contains the functional change and contributing

voxels within each dose bin for each of the three lung structures; 5) dose, perfusion, ventilation,

and CT values within each voxel for each patient. Files 3) and 4) also have a associated error file

that quantifies the uncertainty in each dose bin estimate. As mentioned above, the three lung struc-
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tures used in these analyses are the Lungs-GTV, Right Lung-GTV, and the Left Lung-GT clinical

contours, either with or without an applied 4mm inner margin. It should be noted that if any of the

files listed above are existing and open, an error will be thrown because these files are deleted and

a new file is initiated immediately upon initiation of the batch code.

Figure 4.10: Example of the running batch code demonstrating the loaded patient and the current
status of the analysis.

Once all the options are selected, an input file is loaded, and the “Run” button is executed,

the batch code is initiated and the provided information is passed to the Program.cs shell, which

manages the execution and memory for the iterations through each patient’s data. The patient being

currently analyzed is displayed by the “PatientLoadStatus” interface shown in Figure 4.10, which

signifies the creation of a new VMS.TPS workspace with that loaded patient’s data (similar to the

initialization process described for a single patient in subsection 4.1.1). This “PatientLoadStatus”

window stays active for 3 seconds prior to beginning analysis on the loaded patient in order to

provide the opportunity to abort the code. A window in the top left corner is provided to track the

overall progress of the batch analysis.
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At this point, the underlying process that will used for accessing, processing, and quantifying

of each patient’s dose-function data are instantiated and these methods will be described briefly

below.

4.3 Underlying Dose-Function Analysis Code Methodology

As previously mentioned, these methods are analogous for the plugin UI and standalone batch

scripts. If the following process are performed under the plugin UI, the methods are only performed

for the patient open in the Eclipse workspace, whereas when performed under the standalone batch

script, these methods are iterated through for each patient provided in the input file, assuming the

data can be properly accessed.

4.3.1 Accessing the Dose/Image Data

To begin, the Program.cs shell provides the patient’s dose course, dose name, and selected bio-

correction option to a class called LoadDosePlan.cs, with separate methods depending on whether

the plan type is a single course or a plan sum. The LoadDosePlan class is essentially a method used

to access the dose matrix, the maximum dose value, the number of fractions, and the associated

structure set. Each of these objects are stored in public variables, and the code is returned to the

Program.cs shell.

Next, a similar process is performed to access the functional imaging data through a class called

LoadAllImages.cs. A new instance of this class is created for each of the four imaging timepoints,

and within each timepoint, a string variable with the timepoint identifier (Initial, 1Month, 3Month,

and 1Year) is combined with the functional modality identifier (PERF or VENT) to search whether

a imaging study exists that matches the provided identifier. The imaging data is stored within

Eclipse with the following hierarchy: Study / Series / Images. Thus, when a matching imaging

study is found, the subsequent imaging series, image file, and associated registration are obtained

based on the known downstream naming convention, i.e. “Initial PERF” would be the name for

each of those downstream files, similar to that shown in Figure 4.4. The CT study, series, and
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image variables are also accessed based on the data provided in the input file.

Subsequently, within each unique instance of the LoadAllImages class, the dose file, image

file, dose-image registration, and the CT file are all passed to the DataProcess.cs method.

4.3.2 Dose/Image Data Processing

Although the dose and image files previously accessed are three-dimensional meshes, these

files are in their current form are not spatially aligned and each has a different voxel resolution. In

summary, the DataProcess class uses the manual rigid registration created in Eclipse and applies

it to transform the image data to the coordinates of the dose data, such that the SPECT intensities

and dose data are spatially-aligned. Both the dose data and SPECT intensities are then sampled at

the center of each dose voxel, resulting in a dose-function martix with the same resolution as the

dose data. The bio-correction, if selected, is also applied to the dose value at sampling.

Figure 4.11: The relative difference between the sampled perfusion SPECT and dose data com-
pared to the analogous values quoted in Eclipse.

Figure 4.12: The relative difference between the sampled ventilation SPECT and dose data com-
pared to the analogous values quoted in Eclipse.

The relative accuracy of the dose-function sampling method compared to the value given in

Eclipse for an example patient is shown in Figure 4.11. The volume value is directly obtained
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from the Eclipse API so the only difference are based on rounding the float. The sampled max-

imum and mean doses are shown to have <1% difference compared to the quoted Eclipse value

in the primary structures of interest. These difference arise because Eclipse performs an 8-point

sampling (one sample at each of the voxels vertices) of the calculated dose mesh, whereas the Dose

Function Analysis code only samples the value at the center of the voxel. This also causes a slight

difference at the edge of the structures where voxels may be partial within and partially outside

of the contour. In Eclipse, the vertices within the structure are included, but in this code, only

voxels with the center of the voxel within the contour are included in the calculation. For these

reasons, the standard deviation of the dose and intensity values, which are also upsampled at a finer

resolution than the original image file, present with slightly higher differences. These difference

are clearly exacerbated in structures with smaller volumes as well. Similar agreements were ob-

served for the sampled ventilation intensities shown in Figure 4.12, however, due to the presence

of saturation artifacts that cause a high intensity gradient, the max intensity and standard deviation

in the ventilation samples are increased, which is the same reason the error in the dose standard

deviation is increased in the GTV. This same high gradient causes a downstream increase in the

mean intensity error in the smaller volume strucutures, i.e. GTV, esophagus, and cord. Overall,

the agreement was deemed acceptable, especially in the lung structures.

To reduce the runtime, a box around the contour is created prior to sampling. Therefore, be-

cause the voxels are sampled based on the resolution of the dose mesh, which in turn is based

on the resolution of the treatment planning CT mesh, the sample dose-function matrices have a

size equal to the size of the box divided by the dose resolution. Furthermore, the data matrices,

including one for dose, SPECT, and CT values, are generated, within each lung contour such that a

maximum, mean, and standard deviation can be calculated within the right lung, the left lung, and

the global lung (which is a union of the right and left lung data). The voxels containing saturation

artifacts were then cleansed from these data matrices.
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Figure 4.13: Perfusion artifacts in an example patient using 2 (cyan), 2.5 (green), and 3 (magenta)
standard deviations above the mean intensity as the saturation cleansing cutoff.

4.3.2.1 Artifact Cleansing Code

Patients with abnormally high absolute intensities, due to large saturation artifacts, can cause a

problem for the high-functioning categorization given that the artifacts have not yet been removed.

Therefore, using the maximum, mean and standard deviation values that were just calculated,

voxels were cleansed based on their deviation from the expected distribution.

To begin this process, a preliminary upper bound was selected based on whichever value was
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Figure 4.14: Ventilation artifacts in an example patient using 2 (cyan), 2.5 (green), and 3 (magenta)
standard deviations above the mean intensity as the saturation cleansing cutoff.

lower: the intensity value equal to 70% of the maximum intensity or hard cutoffs of 1500 for

perfusion or 750 for ventilation. Furthermore, a preliminary lower bound of 100 was also selected.

Using these initial cutoffs, a new mean intensity and standard deviation were calculated in each

lung structure. The final saturation cutoff value was determined by excluding any voxel with an

intensity >3 standard deviations above the new calculated mean intensity. However, a minimum

bound of 350 was implemented for cases in which the ventilation cutoff intensity was calculated

to be less than this value.
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While this strategy was implemented to reduce subjectiveness, it is not perfect and may cre-

ate issues in the high intensity regions if portions of the artifact are not removed. As such, it is

possible to increase the aggressiveness of the cleansing strategy by reducing the number of stan-

dard deviations used to determine the saturation cutoff. By more aggressively cleansing the image,

the edge of the saturation artifacts can better be caught, but it may come at the cost of removing

other voxels that are not clear artifacts, which presents the question of what is truly a saturation

artifact and what is not. This trade-off is explicitly demonstrated by Figure 4.13 and Figure 4.14,

which shows the contoured artifacts using various standard deviations for perfusion and ventila-

tion cleansing, respectively. Previous studies have typically employed a manual removal of these

saturation artifacts, which may introduce a subjective bias. However, it is suggested that machine

learning techniques may be able to help implement a more consistent approach based on clinical

guidance. Either way, a robust strategy to remove saturation artifacts is a necessary and clear way

to improve the true quantification of SPECT images.

Following this process to determine the saturation cutoff, any voxels with intensity values above

the set threshold are removed from the analysis.

4.3.2.2 Intensity Normalization

Using the new cleansed data, the individual lung structure with the higher mean dose is identi-

fied as the contralateral lung. Based on the need to normalize longitudinal and interpatient inten-

sity values, a normalization value was calculated to represent the average intensity value of normal

lung. And given that the contralateral lung has less tumor burden and receives less dose, these in-

tensity values were considered relatively stable. As such, the normalization value in this study was

determined as the average intensity in the contralateral lung for voxels with normal lung function,

i.e. >15% of the maximum intensity, that received <5 Gy. While this value was generally used to

represent normal-functioning lung, this may be a limitation of functional lung quantification that

could be further improved through test-retest studies.

The longitudinal voxelwise distribution of the intensity values in this normalizer region for an
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Figure 4.15: Voxelwise perfusion intensity values within the normalizer region for an example
patient at baseline (blue), mid-treatment (green), 3-month post-treatment (purple), and 1-year post-
treatment (red).

example patient are shown Figure 4.15, which demonstrates a consistent distribution of intensity

values for this given patient. The accumulated intensity histogram and average distribution binned

by dose for the same patient are shown in Figure 4.16. These figures shown good agreement and

suggest a stable longitudinal distribution, which serves as a reference point of dose-dependent

changes and interpatient comparisons. To reiterate, the average intensity value in this region is

used as the normalization value for all other intensity points within the given image, and thus, this

normalization value is equal to a normalized intensity of 1.0.

Figure 4.16: Perfusion intensity histogram and average values binned by dose within the nor-
malizer region for an example patient at baseline (blue), mid-treatment (green), 3-month post-
treatment (purple), and 1-year post-treatment (red).
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After each voxel intensity is normalized, the rest of the DataProcess class is used to bin, store,

and export the voxelwise values. Upon completion, the data is passed to the MetricAnalysis.cs

method.

4.3.3 Metric Analysis

The MetricAnalysis class then performs the calculations to produce the dose-function metrics.

These voxelwise calculations are performed for each of the three main lung structures, as well as

in the regional (upper, middle, and lower) lung sections. The CsvWrite.cs method then exports

these metrics to the lookup.csv file for external analysis.

A separate class FunctionalChange also calculates the longitudinal average intensity and vox-

elwise change, binned by dose, and accumulates a tally of the total functional reduction. The

FunctionalWrite.cs method then exports this data to the appropriate .csv files. ErrorPropogation.cs

and ErrorWrite.cs are used to calculate and export the uncertainty in the functional change and

average intensity estimates. PerfVentAnalysis.cs and PerfVentWrite.csv calculate and export the

combined perfusion and ventilation data.

Once these processes are completed for a given functional image, the rest of the available

SPECT scans are iterated through using the same methods, and ultimately, all imaging files and all

patients are analyzed.

4.4 Conclusion

A script was written that interfaces with a commercial TPS via an API. The script executes a

program that performs dose-functional volume analyses. Written in C#, the script reads the dose

grid and correlates it with image data on a voxel-by-voxel basis through API extensions that can

access registration transforms. A user interface was designed through WinForms to input param-

eters and display results. To test the performance of this program, image- and dose-based metrics

computed from perfusion SPECT images aligned to the treatment planning CT were generated,

validated, and compared.
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The integration of image analysis information was successfully implemented as a plug-in to a

commercial TPS. Perfusion SPECT images were used to validate the calculation and display of

image-based metrics as well as dose-intensity metrics and histograms for defined structures on the

treatment planning CT. Various biological dose correction models, custom image-based metrics,

dose-intensity computations, and dose-intensity histograms were applied to analyze the image-

dose profile.

It is possible to add image analysis features to commercial TPSs through custom scripting

applications. A tool was developed to enable the evaluation of image-intensity-based metrics in

the context of functional targeting and avoidance. In addition to providing dose-intensity metrics

and histograms that can be easily extracted from a plan database and correlated with outcomes, the

system can also be extended to a plug-in optimization system, which can directly use the computed

metrics for optimization of post-treatment tumor or normal tissue response models.

The full C# code for both the plugin UI (https://github.com/rockyowen5/DoseFunctionAnalysis UI.git)

and the standalone batch (https://github.com/rockyowen5/DoseFunctionAnalysis Batch) applica-

tions are available on GitHub.
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CHAPTER V

Modeling Patient-Specific Dose-Function Response

5.1 Purpose

Functional-guided RT has the potential to limit damage to normal tissue and reduce toxicity.

And yet, while functional imaging modalities have continued to improve, a limited understanding

of the functional response to radiation and its application to personalized RT has hindered clin-

ical implementation. The purpose of this chapter was to retrospectively model the longitudinal

dose-function response in non-small cell lung cancer patients treated with RT in order to better

characterize the expected functional damage in future, unknown patients.

5.2 Introduction

Logistic models have classically been used to describe dose-effect relations for cell survival. In

1994, Boersma et al first proposed using a logistic model to describe changes in vascular subunits

within the lung [34]. Due to the observed high variation in patient-to-patient dose-response, Marks

et al. used a voxel-weighted average to determine composite perfusion loss [1]. These seminal

works provided the foundation to longitudinally quantify functional lung using V/Q SPECT/CT

images [4, 5], and the basis of these methodologies has been extensively applied to characterize

the dose-function response for various timepoints, treatments, and regions of the lung [35–40] (as

discussed in section 2.2). While the exact modeling methodologies vary amongst these studies,
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the most common approach to quantify the dose-function response has been to average functional

reduction across the population within numerous dose bins and subsequently apply a linear or

logistic fit depending on the shape of the perceived data. However, this approach has the potential

to induce inconsistencies in the reported dose-function response models.

While this work quantified the population-average dose-function response to compare to pre-

vious models and gain preliminary insights, ultimately, a patient-specific mixed-effects logistic

model was applied to each individual patient’s dose-function response. These generated patient-

specific model parameters were then averaged to create a population-level logistic dose-response

model. Using these methods a significant longitudinal decrease in lung function was observed

after RT by analyzing the voxelwise change in normalized perfusion intensity. Differential treat-

ment responses based on the functional status of the voxel at baseline suggest that initially higher-

functioning voxels are damaged at a higher rate than lower-functioning voxels. As such, the

generated population-level dose-function response models were derived from individual patient

assessment to better represent the expected voxelwise reduction in function, and the associated

uncertainty, for an unknown patient receiving conventionally fractionated RT or stereotactic body

RT. This type of patient-specific modeling approach can be applied broadly to other functional

response analyses to better capture intrapatient dependencies and characterize personalized func-

tional damage.

5.3 Study Population

A total of 81 patients with histologically verified NSCLC were enrolled in an institutional

review board-approved study and retrospectively analyzed. Written informed consent was obtained

from all patients. Patients were treated with conventionally fractionated 3-dimensional conformal

RT, with (n = 47) or without (n = 13) concurrent chemotherapy, or with SBRT (n = 21). A summary

of the patient, disease, and treatment characteristics of the cohort is presented in Table 5.1.
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Table 5.1: Patient characteristics for the 2006.040 cohort that was used in the dose-function re-
sponse modeling study.

5.4 SPECT Imaging

V/Q SPECT scans were acquired and analyzed as described in chapter III. In summary, SPECT

images were rigidly registered to the treatment planning CT and intensity values were normalized

using the average intensity in the low-dose, normal-functioning region of the contralateral lung as

shown in Equation 5.1.

fNi =
fi

N
(5.1)

where fNi is the normalized V/Q intensity in the ith voxel and N is the normalization factor (cal-

culated in Equation 3.1). Saturation artifacts were cleansed by excluding any voxel with intensity

greater than three standard deviations above the mean intensity of normal-functioning lung as de-
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scribed in chapter III.

5.5 Quantifying Lung Function and Dose-Response in Individual Patients

In this study, either normalized perfusion or ventilation intensity was applied directly as a

surrogate for local lung function. As such, perfusion and ventilation were analyzed separately,

with a primary focus on using perfusion intensity due to its enhanced stability over ventilation

intensity. To illustrate this process, an example patient (UM020) was chosen to represent the

expected functional distribution and resulting dose-function response in a “normal” patient that

did not incur Grade 2+ RILT. Alternatively, the two grade 5 RILT patients (UM025 & VA029)

will also be examined individually to demonstrate the functional distribution and dose-response in

patients with the worst outcomes, i.e. death directly related to RT. Subsequently, the results from

analyzing the total cohort functional intensities and dose-function responses will be presented.

5.5.1 Example “Normal” Patient UM020

As mentioned, example patient UM020 was chosen to represent a patient with a mostly ho-

mogeneous distribution of lung function, who ultimately did not incur Grade 2+ RILT following

treatment. For context, patient UM020 was a 56 year old Caucasian male who was a current smoker

at the time of RT. This patient was diagnosed with stage III (T stage=3; N stage=3) NSCLC with

a tumor size of 80.6 cubic centimeters and was determined to have a Karnofsky Performance Sta-

tus (KPS) of 90 prior to treatment. According to the PFT results, example patient UM020 exhibited

normal spirometry but with mild hyperinflation and a mildly decreased DLCO. This patient was

treated with conventionally-fractionated RT to a prescribed dose of 55 Gy and was also treated with

concurrent chemotherapy. The delivered dose metrics for this patient are listed in Table 5.2, which

demonstrate a relatively low global mean lung dose (10.8 Gy) and V20 (18.03%) with hot spots in

the upper left lung. Ultimately, this patient was determined to have Grade 1 clinical fibrosis at the

end of the RT course and was known to still be living 5 years after the completion of RT.
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5.5.1.1 Quantifying Perfusion for Example Patient UM020

Table 5.2: Delivered dose metrics for example patient UM020.

Figure 5.1: A qualitative example of patient UM020 demonstrating the dose-function response
during and after radiation treatment. Planned dose >30 Gy is overlaid on the pre-treatment per-
fusion scan and the red contours are included to show areas of observed perfusion reduction both
in-field and out-of-field.

The perfusion scans in the global lung at the first three imaging timepoints for patient UM020

are shown in Figure 5.1. Although these single-slice images are of limited value to understand

the true functional distribution in this patient, it can be qualitatively observed that there is a fairly

homogeneous distribution of perfusion at the pre- and mid-treatment timepoints. Whereas at the

3-months post-treatment timepoint, there are noticeable functional changes that can be observed

both in and out of the high dose field (signified by the red outlines).

To assess the distribution of functional intensity at each imaging timepoint, histograms were

plotted by binning the relative intensity, i.e. functional intensity divided by the maximum intensity,
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Figure 5.2: Perfusion intensity histograms in the global lungs at pre-treatment (blue), mid-
treatment (green), 3-months post-treatment (purple), and 1-year post-treatment (red).

using a bin width of 0.1 arbitrary intensity units. Although the resolution in these histograms is

limited, it appears that the initial perfusion scan demonstrates a fairly normal distribution with a

slight skew towards the higher-intensity values. As the RT course progresses, a shift toward the

lower-intensity values becomes evident, albeit with a slight increase in intensity value from the

3-month to 1-year timepoint, possibly suggesting a slight recovery.

Table 5.3: Quantified perfusion SPECT metrics for example patient UM020.

Quantitatively, these trends of a homogeneous distribution of lung function prior to RT and

longitudinally decreasing lung function following RT are also observed in the perfusion SPECT

metrics shown in Table 5.3. The pre-RT mean intensity for this patient in both lungs is near 1.0,

92



which is the average value of normal-functioning lung, and steadily decreases during treatment

and 3-months following RT but appears to slightly improve at the 1-year post-RT timepoint. The

functional lung categorizations metrics also appear to follow this same progression. It can also

be observed that although the upper lung initially did appear to be slightly lower in intensity, the

regional average intensities at baseline across both lungs are quite consistent.

Figure 5.3: Global lungs voxelwise, absolute perfusion intensity plotted versus the voxel’s relative
location on the z-axis for pre-treatment (blue), mid-treatment (green), 3-months post-treatment
(purple), and 1-year post-treatment (red). The z-axis represents the axial axis such that larger
values of z indicate superior portions of the lung and lower values of z indicate inferior portions of
the lung.

While the spatial component of the functional distributions can be difficult to incorporate quan-

titatively in metrics and plots, an attempt was made to visually demonstrate this dynamic in regards

to the functional intensity distribution within the upper, middle, and lower lung by plotting the each

voxel’s absolute intensity versus the voxel’s relative location on the z-axis. This plot, at each imag-

ing timepoint, for patient UM020 is shown in Figure 5.3. In these plots, the most inferior part

(lowest point on the z-axis) of the lung contour is given the value of 0, while the most superior part

(highest point on the z-axis) of the lung contour is given a value of 1. Each voxel’s location on the

z-axis is then calculated by dividing the length to the given voxel from the bottom of the lung con-
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tour by the total height of the lung contour. Although these values do not directly correlate to the

regional lung segments, which were contoured based on anatomical markers, the plots are capable

of providing some locational information. As such, it can be inferred that most of the functional

damage in this patient occurred in the upper half of the lung until the 1-year post-RT timepoint,

when a reduction in the highest intensities is observed in the inferior portion of the lungs.

Figure 5.4: Perfusion dose-function histograms in the global lungs at pre-treatment (blue), mid-
treatment (green), 3-months post-treatment (purple), and 1-year post-treatment (red).

In most previous studies analyzing the dose-function effect in the lung, a DFH has been em-

ployed to measure the interaction between functional lung and delivered dose. The basis for the

DFH plots is to demonstrate the cumulative percent of functional intensity that is receiving a given

dose value because the more functional intensity receiving a higher dose is theoretically worse

for the patient. The DFH plot is also the basis for the fV20 metric, which is equal to the y-axis

value where x-axis(Dose)=20 Gy on the DFH curve. However, because the cumulative percent

of functional lung is plotted, there is a very limited resolution regarding the interaction between

functional intensity and the delivered dose, especially when analyzing the global lung in patients

with a homogeneous distribution of intensity. The longitudinal DFHs for patient UM020 is shown

in Figure 5.4, which demonstrates only a slight change in the histograms despite a clear reduction

in lung function in the high dose area in Figure 5.1. Again, this lack of resolution is due to the fact

that the majority of functional volume received no dose or a relatively low dose, such that only a
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slight change in the overall cumulative intensity is observed in the higher dose bins.

Figure 5.5: Perfusion dose-function histograms in the ipsilateral and contralateral lungs at pre-
treatment, mid-treatment, 3-months post-treatment, and 1-year post-treatment.

However, if the DFH is separated into the ipsilateral and contralateral lung curves, a higher

resolution is available as shown in Figure 5.5. Based on these curves, it is clear the left lung (the

ipsilateral lung) received more dose to a larger fraction of the functional intensity than the right

lung (the contralateral lung). Hence, the larger fV20 as shown in Table 5.2.

An alternative approach to quantify the interaction between functional lung and delivered dose

is to plot the average normalized perfusion intensity as a function of delivered dose. To accomplish

this, a simple average of the functional intensity within each dose bin is calculated as shown in

Equation 5.2.

fNt, j,d =
∑

n j,d
i=1 fNt, j,i
n j,d

(5.2)

where fNt, j,i is the normalized intensity at timepoint t for patient j in dose bin d and ni,d is the

number of voxels in dose bin d.

As such, the perfusion intensity at each imaging timepoint, i.e. the perfusion progression, was

quantified for example patient UM020 and is shown in Figure 5.6. For reference, a normalized

functional intensity of 1.0 represents the average functional intensity within the normal lung and
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is equal to the normalization factor.

Figure 5.6: Quantitative assessment of the average perfusion intensity in the global lungs binned
by dose at each imaging timepoint: prior to RT (blue diamonds), midway through the RT course
(green asterisks), 3-months after RT completion (purple circles), and 1-year after RT completion
(red squares).

Figure 5.7: Number of voxels in the global lungs contributing within each dose bin for example
patient UM020.

A couple points to note in Figure 5.6: 1) 5 Gy dose bins were used to average the functional

intensity and the data points were plotted at the center of each dose bin; 2) The uncertainties were
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not plotted in these curves, but there are less voxels in the higher dose bins, which contributes to

the higher uncertainty and more fluctuation in those regions (the distribution of global lung voxels

within these dose bins is shown in Figure 5.7, where the slight, longitudinal variation in the number

of voxels in each dose bin is caused by either the removal of saturation artifacts that changes at

each timepoint or differences in the rigid registration that translates voxels between the 5 Gy dose

thresholds); 3) While the average functional intensity in the 0-5 Gy dose appears quite consistent,

there is a slight offset that is observed at the 3-months post-RT timepoint. As shown in Figure 5.8B,

the dose-perfusion intensity distribution exhibits good agreement in the normalizer region, which

may suggest a good normalization and registration in this region. However, it is difficult to truly

decipher whether this deviation is a true functional difference or an artifact of the normalization

and registration processes.

From this example “normal” patient, it is observed that at pre-treatment in the 0-20 Gy dose

bins there is a fairly stable functional intensity in the global lungs that approaches 1.0. However,

there is clearly more undulation in the higher dose bins, which represents a splotchy pattern of

intensity deposition. Specifically, the hot spots observed in the upper lung regions in Figure 5.1

are likely responsible for the increased average intensity in the pre-treatment curve that is centered

around the 30 Gy dose bin, especially given the increased density in the high dose intensity (∼1.5)

shown by the red square in Figure 5.9. At mid-treatment, a slight but distinct reduction in perfusion

is observed in the quantitative assessment that is not particularly noticeable through qualitative

evaluation. Finally, at both post-RT timepoints, a significant reduction in lung function is observed

across nearly all dose bins.

In order to provide a higher resolution regarding the distribution of functional intensity in

relation to the delivered dose, each individual lung, i.e. the ipsilateral and contralateral lungs,

were plotted separately as shown in Figure 5.10. Because NSCLC tumors are often primarily

located in one lung, the dose in these cases is also mainly confined to the ipsilateral lung. Due to

this potential large inequity in dose between the individual lungs, the contralateral lung plots are

plotted using dose bins of 1 Gy instead of 5 Gy that are used in the global lungs and ipsilateral lung.
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Figure 5.8: Perfusion intensity in the normalizer region for example patient UM020 including: A)
the perfusion intensity histogram and B) dose-function intensity distribution for all four imaging
timepoints.

However, there can be tumor involvement in both lungs or in the mediastinum so the difference

in delivered dose may not always be significantly different. In either case, the ipsilateral lung

was defined as the individual lung with the higher mean dose. For example patient UM020, the

primary tumor involvement was in the mediastinum, which equated to a maximum dose of 56.0

Gy vs. 49.5 Gy and mean dose of 13.3 Gy vs. 8.8 Gy in the ipsilateral lung versus contralateral

lung, respectively, as shown in Table 5.2. While the maximum dose is similar, the number of

voxels receiving between 40-50 Gy was 3250 versus 426 in the ipsilateral and contralateral lung,

respectively, which demonstrates that a much larger area received a high dose in the ipsilateral

lung.

Another method to visualize the interaction between dose and functional lung is to plot the
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Figure 5.9: Pre-treatment perfusion intensity in each voxel plotted within 1 Gy dose bins for ex-
ample patient UM020.

Figure 5.10: Average perfusion intensity binned by dose in the ipsilateral lung (left) versus the
contralateral lung (right). Dose bins of 5 Gy were used in the ipsilateral lung whereas dose bins of
1 Gy were used in the contralateral lung.

average dose within functional intensity bins, as shown in Figure 5.11 for example patient UM020.

While it is a bit more difficult to discern specific information regarding the dose-function interac-

tion from this plot on its own, based the knowledge that this patient had a homogeneous distribu-

tion of perfusion prior to RT, it seems clear that the nearly horizontal blue line represents a dose

plan that is distributed fairly evenly across the complete range of functional intensities. However,

at the post-RT timepoints, it becomes clear that the high dose is more concentrated in relatively

lower-functioning lung based on the larger peaks in these areas. This again is an indication of the

reduction in lung function following RT in the high dose regions.

While the plots of average functional intensity are informative to understand the distribution
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Figure 5.11: Average dose delivered in the global lungs within perfusion intensity bins (quantified
relative to the maximum intensity) using a bin size 0.1 for example patient UM020.

of lung function relative to delivered dose, quantifying the longitudinal change in lung function

is imperative to improve our ability to optimize radiation delivery. To characterize each patient’s

dose-function response over time, the normalized intensity in each voxel at the mid-treatment,

3-month post-treatment, and 1-year post-treatment timepoints was compared directly to the nor-

malized intensity in the same voxel at baseline. Historically, this functional change has typically

been quantified as a percentage relative to the pre-treatment function in the given voxel as shown

in Equation 5.3.

δ
relative
f ,t, j,i =

fNi,t − fNi,t=0

fNi,t=0
×100 (5.3)

where fNi,t=0 is the normalized functional intensity signal in the ith voxel at time point t = {0 =

baseline; 1 = Mid-Tx; 2 = 3Month Post-Tx; 3 = 1Year Post-Tx}.

However, the relative functional difference is inflated in patients with reduced lung function

at baseline (because the denominator is inherently reduced in these cases and will be discussed in

further detail later in this section), so the absolute difference in lung function was primarily calcu-

lated in this study as shown in Equation 5.4. Furthermore, because the lowest functional intensities

are not expected to longitudinally decrease and to reduce the effect of erroneous increases in func-

tional intensity, any voxel below 10% of the maximum intensity at baseline was excluded from the
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dose-function response analysis.

δ
absolute
f ,t, j,i = fNi,t − fNi,t=0 (5.4)

For either methodology, the voxelwise functional change relative to baseline was then tallied

within dose bins as shown in Equation 5.5.

∆ f ,t, j,d =
∑

n j,d
i=1 δ f ,t, j,i

n j,d
(5.5)

where n j,d is the number of voxels in dose bin d for patient j.

Using these techniques, the absolute and relative dose-function response in the global lungs

for example patient UM020 are shown in Figure 5.12. While the general shape of these dose-

response curves is very similar, there is a pronounced increase in the estimated response at mid-

treatment using the relative quantification, which is theorized to be due to initially low-functioning

voxels that have seen an increase in function during the course of RT. However, this increase

in functional intensity could be true reperfusion or could be an artifact of poor registration such

that the inferior or lateral portion of the lung receives functional intensity at one timepoint that was

simply absent on the baseline scan. While the absolute dose-function response curves quantified for

all voxels and for voxels >10% of the maximum intensity show a slight increase in the high dose

regions, these curves are clearly more robust to the effect of a small number of voxels seeing drastic

percentage increases. Furthermore, the absolute dose-response curves suggest that there is not a

true reperfusion effect in the high region, whereas the relative response is suggestive that the voxels

receiving a high dose actually increased in functional intensity at mid-treatment. As an example of

this flaw in the relative response quantification, if a voxel had a normalized intensity of 0.1 prior to

treatment and increased to a normalized intensity of 0.5 at mid-treatment, the absolute functional

change is only 0.4, but the relative functional change is (0.5−0.1)
0.1 x100 = 400%! Alternatively, an

increase of 0.4 for a voxel with baseline intensity of 0.8 is only an increase of 50%.

Of course, each individual patient has a unique functional response to radiation, however, ex-
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Figure 5.12: The perfusion dose-function response in the global lungs using the absolute (left) and
relative (right) methods for quantification in various subsets of voxels stratified by the baseline
maximum intensity for example patient UM020.

ample patient UM020 is representative of what is expected from a patient who presents for ra-

diation with a generally normal distributed lung function at baseline: a limited response at mid-

treatment, with a possible increase in functional lung in the high-dose, low-functioning voxels,

followed by a significant decline in lung function at the post-treatment timepoints. While the

curves in these plots are simply generated by connecting the data points with lines, the data points

shown in the absolute dose-function response curves in Figure 5.12 are representative of the data
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that will be used to generate the patient-specific dose-response models.

5.5.1.2 Quantifying Ventilation for Example Patient UM020

While all of these data previously exhibited for example patient UM020 were based on perfu-

sion intensity, the average ventilation intensity and dose-ventilation response can also be analyzed

using the images shown in Figure 5.13. The quantified ventilation SPECT metrics from these im-

ages are explicitly shown in Table 5.4. However, as depicted in the average intensity curves shown

in Figure 5.14, the trends in the average ventilation intensity estimates are typically not as clear as

those in the perfusion estimates. Part of this can be attributed to the increase in saturation artifacts

shown in Figure 5.13, which can blur the dose-response trends that were previously observed for

this patient.

Figure 5.13: Qualitative example of the ventilation SPECT images for patient UM020 that demon-
strates the dose-function response using ventilation intensity during and after radiation treatment.

The variation in functional change is especially pronounced in the dose-response curves shown

in Figure 5.15 because of the instability in the average functional intensity at baseline. As such,

although the absolute and relative dose-response curves exhibit similar shapes, the relative dose-

response shows a larger increase in ventilation is estimated in the low-dose bins. And while the

percentage change cannot be directly equated to the absolute intensity change, there is clearly a

larger integral above baseline in the relative dose-function response curve, which appears to be

an overestimation of the response due to initially low-ventilated voxels seeing a large increase in
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Table 5.4: Quantified ventilation SPECT metrics for example patient UM020.

Figure 5.14: Quantitative assessment of the average ventilation intensity in the global lungs binned
by dose at each imaging timepoint for example patient UM020.

ventilation at mid-treatment. This is partially an artifact of the poor rigid registration (especially

in the diaphragm region), which was subsequently attempted to be resolved by applying an inner

boundary to the Lungs-GTV contour, however, this correction was not applied in the dose-response

analysis. Furthermore, although a decrease in ventilation at 1-year post-treatment is observed,

the 3-month post-treatment curve appears to return to baseline in the high-dose bins, which is

theorized to be due to ineffective removal of the saturation artifacts that are depicted in Figure 5.13.
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Figure 5.15: Relative (left) and absolute (right) dose-ventilation response in the global lungs for
example patient UM020.

Therefore, while the ventilation SPECT data can be beneficial, especially in conjunction with the

perfusion SPECT data, the processing and clinical interpretation required to properly quantify the

functional intensities has proven to be challenging.

5.5.2 Grade 5 RILT Patients

As has been alluded to previously, both of these grade 5 RILT patients were judged to have

died as a direct result of the radiation treatment they received. Because this is the worst outcome

achievable, these patients will be extensively examined throughout this work in an effort to deci-

pher any potential determinants that can be identified to help avoid these severe toxicities in future

patients.

5.5.2.1 Quantifying Perfusion for Example Grade 5 RILT Patient UM025

Example grade 5 RILT patient UM025 was a 60 year-old Caucasian male, who was a former

smoker and was determined to have a KPS of 75 prior to treatment. This patient was diagnosed with

stage III (T stage=2; N stage=2) NSCLC that was located in the medial-inferior portion of the right

lung with a tumor size of 378.3 cubic centimeters. In terms of PFT results, this patient was found

to have a moderate restrictive defect and a severely decreased DLCO. Furthermore, the clinical

report states that there was evidence based on CT imaging of pervasive interstitial pulmonary

fibrosis that was also redemonstrated following RT. A planning treatment volume (PTV) dose of
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60 Gy was prescribed and included treatment with concurrent chemotherapy. The patient endured

a number of toxicities during and following RT including: grade 1 dysphagia (abnormal transit

of liquids and/or solids while swallowing) on three occasions towards the end of the RT course;

grade 2 odynophagia (painful swallowing) on one occasion towards the end of the RT course;

grade 3 pneumonitis & acute respiratory failure with hypoxia on two occasions around 3-months

post-RT completion; and ultimately, grade 5 RP/clinical fibrosis 3 months and 4 days after the

completion of RT. The clinical note regarding the death of this patient was as follows: “possibly

died of pneumonia related to IPF or possibly grade 5 radiation pneumonitis”. Therefore, while

it is unclear if it was specifically radiation pneumonitis or clinical fibrosis that ultimately killed

this patient, it is clear that a severe negative reaction to the radiation treatment induced a series of

toxicities that culminated with acute respiratory failure.

Table 5.5: Delivered dose metrics for example patient UM025.

From the dosimetric parameters listed in Table 5.5, it is apparent that this patient had less

normal lung volume than the previous example patient UM020 (2716 cc vs. 3594 cc), which is

partially due to the increased tumor size (378.3 cc vs. 80.6 cc). Furthermore, while the global

lungs MLD and V20 for this patient are not drastically greater than in patient UM020, the right

lung in this case received an excessively high amount of dose, with nearly 50% irradiated to a

dose >20 Gy. Another difference is the large accumulation of dose in the middle and lower lung

segments as opposed to the upper lung in patient UM020. Clearly, this larger dose distribution is

due to the larger tumor size and higher prescription dose and is further exacerbated by a limited
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Figure 5.16: A qualitative example of the perfusion SPECT scans for patient UM025 demon-
strating the dose-function response during and after radiation treatment. Planned dose >30 Gy
is overlaid on the pre-treatment perfusion scan and the red contour is included to show areas of
observed perfusion reduction.

ability to avoid normal tissue dose through the 3D conformal RT delivery technique.

Table 5.6: Perfusion SPECT metrics for example patient UM025.

Because this patient died shortly after 3-months following the completion of RT, only SPECT

scans from the first three imaging timepoints were available for this patient, as shown in Fig-

ure 5.16. From these slice images, it is apparent that there is a fairly homogeneous distribution of

pulmonary perfusion prior to treatment, with the exception of the complete defect in the inferior

portion of the right lung that is directly adjacent to the tumor. The mostly homogeneous perfusion

elsewhere is reflected by the nearly normal distribution of perfusion intensity shown in Figure 5.17.

But an increase in low intensity counts (on the left side of the graph) signifies the apparent defect.
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Figure 5.17: Perfusion intensity histograms in the global lungs at pre-treatment (blue), mid-
treatment (green), and 3-months post-treatment (purple) for example patient UM025.

Figure 5.18: Pre-RT perfusion intensity histograms in the global lungs (blue), ipsilateral lung (light
blue), and contralateral lung (dark blue) for example patient UM025.

This observation becomes even more clear when the perfusion histogram is plotted for each in-

dividual lung structure, as shown in Figure 5.18, which demonstrates a normal distribution in the

contralateral lung (very similar in shape to the pre-RT distribution in the previous example patient

UM020 shown in Figure 5.2). And yet, a clear uptick in the low intensities within the ipsilat-

eral lung histogram is demonstrated. Because the ipsilateral and contralateral lung histograms

intersect around 15% relative intensity, it suggests a delineation between what can be considered

low-functioning lung in the contralateral lung and the severe defect in the ipsilateral lung. As

such, this interpretation contributed to the selection of 15% as the cutoff for the low-function lung

category.
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Figure 5.19: Average perfusion intensity in the global lungs quantified within 5 Gy dose bins
at pre-treatment (blue), mid-treatment (green), and 3-months post-treatment for example patient
UM025.

Only a slight decrease in perfusion is noticeable in the right upper lung on the mid-treatment

scan, however, there is an indication of a slight reperfusion in the superior portion of the de-

fected region, which is directly reflected by the average intensity curves binned by dose shown in

Figure 5.19. From this chart, a slight increase in functional intensity in the high dose region is

observed during RT, followed by a drastic loss of perfusion intensity at the 3-month post-RT. Fur-

thermore, because this imaging timepoint was shortly before the patient’s death and based on the

qualitative observation that the ipsilateral lung function was severely decreased, it can be inferred

that an absolute functional intensity below 0.5 may be non-functional lung. Note: although this

plot is based on the global lung data, the contralateral lung received a maximum dose of 23.78 Gy

so any intensity in dose bins >25 Gy is solely representative of the ipsilateral lung function.

While Figure 5.19 plots the average perfusion intensity within 5 Gy dose bins, this same type

of plot can be generated on a voxelwise scale, such that the intensity in each voxel is plotted within

1 Gy dose bins as shown in Figure 5.20. The longitudinal trends are obviously the same, but

these plots can help to impress the similarity in the pre- and mid-treatment functional distributions,
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Figure 5.20: The voxelwise perfusion intensity distribution within 1 Gy dose bins in the global
lungs at pre-treatment (blue), mid-treatment (green), and 3-months post-treatment (purple) for
example patient UM025.

albeit with the apparent reperfusion in the high dose bins. It is also interesting to note the clear

accumulation of low intensity voxels in the high dose bins throughout the three timepoints. Finally,

the 3-month post-RT plot shows good agreement with the previous timepoints in the low-dose bins,

but as was observed previously, there is an apparent dose-dependent reduction that occurs.

From Figure 5.21, which plots the average dose binned by relative intensity within each indi-

vidual lung structure, it is clear that example grade 5 patient UM025 received a minimal amount
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Figure 5.21: Average dose delivered to the global lungs with perfusion intensity bins (quantified
relative to the maximum intensity) with bin size 0.1 for example patient UM025

of dose delivered to the contralateral lung, which was quantified to be a mean dose of 2.74 Gy.

Alternatively, an average of >20 Gy was delivered fairly uniformly to the range of perfusion inten-

sities present in the ipsilateral lung prior to RT. It can also be observed that the higher intensities

received the largest dose at mid-treatment, suggesting a potential redistribution of functional in-

tensity during treatment that was unknown to the radiation oncology treatment team. However,

because the maximum intensity is slightly lower at the mid-treatment timepoint, it is possible the

relative intensities in the 0.7-0.8 range are similar absolute intensities to the pre-treatment intensi-

ties in the 0.6-0.7 range, and thus, only a small portion of voxels receiving a high dose are skewing

that portion of the curve. Finally, as evidenced by the 3-month post-treatment curve, the areas

that received a significant portion of dose are now the relatively lowest intensity regions, again

representing the significant reduction in perfusion intensity in the high dose areas.

This large reduction in perfusion intensity at the 3-month post-RT timepoint is explicitly shown

in the dose-response curves in Figure 5.22. By directly quantifying the perfusion dose-response,

in terms of both the absolute and relative intensity change (Equation 5.3 versus Equation 5.4) in

various subsets of voxels, further information can be inferred regarding the specific dose-function

changes that occurred. As such, the largest reduction in lung function is observed in voxels that
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Figure 5.22: Perfusion dose-response at mid-treatment (green), and 3-months post-treatment (pur-
ple) relative to baseline intensity quantified for various voxel subsets.

are considered to be well-perfused, i.e. >50% of the maximum intensity. Furthermore, the dose-

response in these well-perfused voxels exhibits a rather smooth logistic curve and suggests an

undisturbed dose-effect, as was seen in example patient UM020. Alternatively, because this pa-

tient is known to have exhibited a large perfusion defect prior to RT, and hence presented with

a relatively high percentage of low-functioning lung volume (nearly 24% in the ipsilateral lung),

there are numerous voxels that initially were low-functioning but appear to improve slightly at

the 3-month post-RT timepoint, which in effect reduces the measured reduction in lung function

shown in Figure 5.22A and Figure 5.22B. There are two confounding factors that cause this effect:

1) because these voxels initially have less intensity, there is less room for a large reduction in inten-

sity (which is the premise behind calculating the relative functional change) and 2) reperfusion can

occur due to decreased tumor compression and vessel occlusion (however, reperfusion typically

occurs either at mid-treatment or in areas that did not receive a high dose). Therefore, as will be

discussed in the following sections, a decision was made to quantify the functional dose-response
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in both well-perfused regions as well as in stratified functional categories with regard to baseline

intensity.

5.5.2.2 Quantifying Ventilation for Example Grade 5 RILT Patient UM025

The ventilation SPECT scans at the first three imaging timepoints for patient UM025 are shown

in Figure 5.23. From these images, a severe ventilation defect, which matches the perfusion defect,

can be observed in the inferior portion of the right lung. It can also be observed that large saturation

artifacts are present in each scan, which are indicative of airway restriction causing turbulent flow

in the primary bronchus. In terms of the dose-response, a slight reventilation in the defected area

is observed that appears to remain to some degree at the 3-month post-RT timepoint. While there

is decreased ventilation intensity on this post-treatment scan, it is clearly not as diminished as the

perfusion reduction that was observed.

Figure 5.23: A qualitative example of the ventilation SPECT scans for patient UM025. Planned
dose >30 Gy is overlaid on the pre-treatment ventilation scan.

The quantified ventilation dose-response curves are shown in Figure 5.24. Although the well-

ventilated voxels exhibit a larger decrease in functional intensity at the 3-month post-RT timepoint,

the large deviations suggest an imperfect removal of the saturation artifacts that were observed in

Figure 5.23. A reventilation effect at the mid-treatment timepoint is also apparent in this patient

suggesting that a similar reperfusion and reventilation occurred during treatment due to a reduction

in tumor burden.
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Table 5.7: Quantified ventilation SPECT metrics for example patient UM025.

Figure 5.24: Ventilation dose-response at mid-treatment (green), and 3-months post-treatment
(purple) relative to baseline intensity.

5.5.2.3 Quantifying Perfusion for Example Grade 5 RILT Patient VA029

Example grade 5 RILT patient VA029 was a 77 year-old Caucasian male with an unknown

smoking status, who was determined to have a KPS of 90 prior to treatment. This patient was

diagnosed with stage III (T stage=4; N stage=1) NSCLC that was located in the medial-inferior

portion of the right lung extending up to the medial-middle lung region with a gross tumor volume

of 445.3 cubic centimeters. In terms of PFT results, this patient was found to have a FEV1/FVC of

87%, which was one of the highest scores in the cohort, suggesting fairly good pulmonary function

but no DLCO test was performed. However, a scheduled PFT at the mid-treatment timepoint was

not performed because the patient could not take a deep breath without coughing, suggesting a

severe decline in respiratory capability. While the clinical diagnostic reports for this patient were
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not available, the treatment planning CT demonstrates evidence of ILD throughout the lungs as

shown in Figure 5.25. A PTV dose of 64 Gy was prescribed and no concurrent chemotherapy was

given. Ultimately, this patient died from hypoxic respiratory failure just over one month following

the completion of the RT course, and it was determined retrospectively that the death was a direct

result of the delivered radiation treatment. Due to the timing of the patient’s death, SPECT scans

were only available at the pre- and mid-treatment timepoints.

Table 5.8: Delivered dose metrics for example patient VA029.

Figure 5.25: A qualitative example demonstrating the perfusion SPECT distribution prior to and
during radiation treatment for example patient VA029. Planned dose >30 Gy is overlaid on the
treatment planning CT scan.

Clearly, this patient presented with a relatively large tumor in a challenging location, however,

the dosimetrics shown in Table 5.8 demonstrate an exorbitant amount of dose was delivered to the

ipsilateral lung. While the global lung MLD and V20 were close to the clinical constraints of 20
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Gy and 30%, respectively, the ipsilateral lung received a MLD of nearly 40 Gy and a V20 over

76%! Furthermore, while 75% of the functional intensity was irradiated to a dose >20 Gy, a large

perfusion defect can be observed in the inferior portion of the ipsilateral lung, which incidentally

received a significant amount of dose as well. And although the perfusion defect is still apparent

on the mid-treatment scan, it appears as though there is slightly more perfusion that has reached

the inferior region of the ipsilateral lung, possibly suggesting a slight reduction in tumor burden.

No other noticeable changes are apparent in the perfusion image at mid-treatment. However, given

that this mid-treatment scan was taken one day after the mid-treatment PFT was failed due to

the patient’s inability to take a deep breath without coughing, it can be inferred that the patient’s

pulmonary condition had significantly declined compared to baseline.

Figure 5.26: Perfusion intensity histograms in the global lungs, ipsilateral lung, and contralateral
lung at pre-treatment and mid-treatment.

Quantitatively, the functional distribution for each lung structure is shown in Figure 5.26 and

the perfusion SPECT metrics are listed in Table 5.9. While the contralateral lung exhibits a nor-

mal distribution graphically, the ipsilateral lung demonstrates a large number of counts in the low

perfusion intensity values, which is associated with the defect observed in the inferior portion of

the right lung in Figure 5.25. These distributions directly correlate with the mean intensities in

each lung such that the left lung, the contralateral lung, is shown to have an average perfusion near

1.0 while the right lung, the ipsilateral lung, is demonstrated to have a mean intensity near 0.6.
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Table 5.9: Quantified perfusion SPECT metrics for example patient VA029.

Furthermore, the regional average intensities show a severely defected perfusion intensity (∼0.15)

in the inferior portion of the right lung. As observed, the two individual lung structures combine

to generate the global lung perfusion distribution, which only appears slightly skewed toward the

low-intensity region. This drastic difference in the ipsilateral and contralateral lung distributions

and the minimal observed abnormality in the global lung distribution demonstrates the importance

of quantifying functional metrics within the individual lung structures.

Figure 5.27: Perfusion dose-function histograms in the global lungs, ipsilateral lung, and contralat-
eral lung at pre-treatment and mid-treatment.

This is also apparent in the dose-function histogram presented in Figure 5.27. Because of the

drastic imbalance in dose delivered between the ipsilateral and contralateral lung, it is apparent that

a large portion of the ipsilateral lung function was delivered a significantly high dose. However,

117



Figure 5.28: Average delivered dose binned by perfusion intensity (quantified relative to the max-
imum intensity) with bin size of 0.1 for the global lungs, ipsilateral lung, and contralateral lung at
pre-treatment and mid-treatment.

this effect may not be overtly evident if only the global lungs DFH was presented. Furthermore,

Figure 5.28 also demonstrates that the contralateral lung received relatively minimal amounts of

dose while nearly the full range of functional intensities in the ipsilateral lung received an average

dose of >30 Gy. This graph also shows that the lowest intensities in the global lung received the

highest average dose.

Figure 5.29: Perfusion dose-response at mid-treatment within various subsets of voxels delineated
based on pre-treatment relative intensity.

Because this patient only has SPECT scans available at the pre- and mid-treatment timepoints,

it is challenging to ascertain much in regard to their dose-function response. However, the ab-
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Figure 5.30: Voxelwise perfusion dose-response calculated as a percentage change relative to the
baseline intensity for voxels that were initially categorized as well-perfused, i.e. >50% of the
maximum intensity prior to RT.

solute and relative responses in various voxel subsets are shown in Figure 5.29, which demon-

strates the similar trends observed in the previous example Grade 5 RILT patient UM025 at mid-

treatment. Specifically, it is clear that the slight reperfusion effect is drastically overestimated

using the relative quantification. This is further evidenced by the dose-response scatter plot shown

in Figure 5.30. As such, it is clear that a relatively small number of voxels with abnormally large

percentage increases are driving the average response estimates.

5.5.2.4 Quantifying Ventilation for Example Grade 5 RILT Patient VA029

Figure 5.31: Example ventilation SPECT images at pre- and mid-treatment for patient VA029.

119



Table 5.10: Quantified ventilation SPECT metrics for example patient VA029.

The ventilation SPECT scans from the first two imaging timepoints for example patient VA029

are shown in Figure 5.31. A matching defect in the inferior portion of the right lung is apparent,

which coincides with excessive saturation of the aerosol in the superior portion of the ipsilateral

lung. Consequently, 1.62% of the voxels in the lung contour were removed based on being classi-

fied as saturation artifacts. And while that may seem small given the artifacts shown in Figure 5.31,

this slice is particularly saturated compared to the rest of the lung. However, it can be inferred that

the ventilation is saturated due to the severe artifact that is caused by airway compression that

seems to be reduced on the mid-treatment scan.

Figure 5.32: Ventilation SPECT intensity histograms in the ipsilateral and contralateral lungs at
pre- and mid-treatment for patient VA029.

Similar to the perfusion metrics, the mean ventilation intensity was quantified to be near the

expected normal of 1.0 in the contralateral lung, while the ipsilateral lung mean intensity was di-

minished, especially in the lower lung. The ventilation intensity histograms for both the ipsilateral

120



and contralateral lung are shown in Figure 5.32. The longer tails in the high intensity bins are sug-

gestive that the saturation artifacts were not completely cleared. Notwithstanding that difference,

the general shapes of the distributions in each individual lung are consistent with the perfusion

distributions.

Figure 5.33: The average ventilation and perfusion at pre- and mid-treatment for example patient
VA029.

Figure 5.34: Ventilation dose-response at mid-treatment within various subsets of voxels delineated
based on pre-treatment relative intensity.

Moreover, the ventilation and perfusion average intensity curves are plotted together in Fig-

ure 5.33, which demonstrate similar shapes using both modalities. As such, it can be inferred that

this patient had matching perfusion and ventilation distributions, albeit with saturation slightly in-

creasing the average intensity in the high dose bins. This effect is again exacerbated by the relative

quantification of the dose-function response as shown in Figure 5.34.
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A high uncertainty in the ventilation dose-response can also be observed due to the difficulty

in removing the saturation artifacts.

5.6 Quantifying Lung Function and Dose-Response in the Patient Cohort

While the lung function and dose-function response in individual patients is important to char-

acterize to demonstrate specific attributes of functional lung quantification, the ultimate goal of

this thesis was to translate the knowledge gained regarding the underlying pulmonary condition

of patients presenting for RT and their response to RT such that the treatment of new, unknown

patients can be better managed to achieve superior outcomes. To accomplish this, it is imperative

to employ these quantification and modeling methods across a broad range of patients with varying

initial conditions, such that the full spectrum of potential outcomes can be understood. To this end,

the various plots and metrics demonstrated in the previous sections, with a primary focus on the

functional intensity prior to RT and its change during and after RT, will now be analyzed within

the full patient cohort that includes 60 patient treated with conventionally-fractionated RT and 21

patients treated with SBRT.

As an initial characterization of this data, a cohort average of the mean intensity and percent

functional change within each dose bin d at a given timepoint t were generated as shown in Fig-

ure 5.35. Standard error estimates are also plotted as error bars. The data points in the average

functional intensity and percent change plots were calculated using Equation 5.6 and Equation 5.7,

respectively.

FN
t,d =

∑
Nd
i=1 fNt, j,d

Nd
(5.6)

where fNt, j,d is the average normalized intensity for patient j in dose bin d and Nd is the number

of patients contributing to dose bin d. Because the prescription doses vary amongst the patients,

there are less patients contributing in the higher dose bins, whereas all patients contribute to the
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lower dose bins. There is also a decreasing number of patients contributing at the later imaging

timepoints.

∆F,t,d =
∑

Nd
i=1 δ f ,t, j,d

Nd
(5.7)

where δ f ,t, j,d is the average functional change for patient j in dose bin dand Nd is the number of

patients contributing to dose bin d. It should again be noted that all voxels with a baseline intensity

<10% of the maximum intensity were excluded from the dose-function response analysis (not

the average functional intensity quantification) because the focus was to quantify the functional

reduction, and these voxels were demonstrated to have a propensity to increase in intensity as

shown in the individual patient analyses.

Figure 5.35: Perfusion (left) and ventilation (right) average functional intensity (top) and percent
change (bottom) in the global lungs of 60 NSCLC patients treated with conventionally-fractionated
RT. Standard error values based on the number of voxels contributing for each patient are presented
as the uncertainty estimates.
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Overall, as observed from these plots, there is a strong agreement between the perfusion and

ventilation functional averages, albeit the ventilation plots are clearly presented with more variation

and uncertainty. Specifically, in the dose bins between 0-30 Gy, an average functional intensity

of ∼0.8 is observed followed by a decreasing intensity in the higher dose bins. This trend is

not surprising given the findings of Marks et al. that showed functional defects were primarily

located at or adjacent to the tumor [6], which are the areas that generally receive the highest dose.

In both the average intensity and percentage change plots, it is interesting how closely the pre-

and mid-treatment estimates are correlated while the 3-month and 1-year post-treatment plots also

are closely correlated to each other. While this is not all together surprising, the only noticeable

feature in the mid-treatment dose-response is the functional increase in the high dose bins. Based

on the observations in the individual patient dose-response curves, it is known that the relative

dose-response quantification overestimates the average change in these scenarios, but given that

the average intensities at mid-treatment in these high dose bins is also presented to be higher than

the pre-treatment estimates, it is suggestive that reperfusion and reventilation does tend to occur in

this patient population.

Figure 5.35 presents the average intensity and functional change in the global lungs, but these

plots can also be generated for the ipsilateral and contralateral lungs. However, because the ipsi-

lateral lung received the majority of the dose, the global lungs and ipsilateral lung curves are very

similar, but the contralateral lung average intensity and percent change appear drastically different

as shown in Figure 5.36. Because the contralateral lung plots are quantified within 1 Gy dose bins

instead of 5 Gy dose bins, there is a bit more uncertainty in the curves. This is explicitly observed

in the low average intensity in the 0-1 Gy dose bin, which is indicative that these voxels receiving

essentially no dose are often located on the periphery of the lung contour where there may be a

mismatch between the SPECT and CT images causing the appearance of a lower intensity. As

previously mentioned, this effect was remedied by incorporating a 4mm inner boundary on the

Lungs-GTV structure in subsequent analyses, i.e. the risk assessment. Outside of this artifact, the

functional intensity in the contralateral lung remains above 0.8, which was the high point within
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Figure 5.36: Perfusion (left) and ventilation (right) average functional intensity (top) and per-
cent change (bottom) in the contralateral lung of 60 NSCLC patients treated with conventionally-
fractionated RT. Standard error values based on the number of voxels contributing for each patient
are presented as the uncertainty estimates.

the global lungs. Furthermore, it is remarkable how stable the perfusion intensity is in terms of

longitudinal functional change. Effectively, the population-averaged dose-response does not vary

more than 10% in either direction when delivered below 15 Gy.

The average functional intensity and percent change plots, within the global lungs, can also be

generated for the 21 patients that received SBRT as shown in Figure 5.37. Based on the average

perfusion intensity plot, it can be inferred that these patients present for treatment with a better

pulmonary condition, which is not surprising given that SBRT is typically reserved for patients

with smaller tumors. However, it appears that the ventilation intensity is rather impacted relative to

the conventionally-fractionated RT patients. One reason for this reduction in ventilation intensity,

given that these scans are known to have more uncertainty, is that 5 Gy dose bins were used to

quantify this data even though the maximum EQD2 dose for these SBRT patients is much higher,
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Figure 5.37: Perfusion (left) and ventilation (right) average functional intensity (top) and percent
change (bottom) in the global lungs of 21 NSCLC patients treated with SBRT. Standard error
values based on the number of voxels contributing for each patient are presented as the uncertainty
estimates.

which results in less voxels contributing per dose bin resulting in less stability in the average

intensity estimates. In terms of the dose-response, distinct logistic shapes are apparent at both of

the post-treatment timepoints, and a slight reduction in intensity is observed at mid-treatment. It

can also be observed that the functional intensity does not tend to progressively decrease past ∼60

Gy, suggesting a asymptote at a much lower dose than suggested in the Duke or NKI dose-response

models [62].

The previous plots were generated using a simple average to calculate the dose-response for

each cohort. In Figure 5.38, the dose-response is calculated based on a weighted-average that

scales the each patient’s response by the relative number of voxels contributed in the dose bin.

Furthermore, instead of the standard error, the standard deviation was plotted as the uncertainty

estimates. Clearly, a large variation in the responses exists, which is explicitly demonstrated by the
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Figure 5.38: Conventional RT (left) and SBRT (right) perfusion dose-response calculated using a
weighted-average based on the number of voxels contributing from each patient within each dose
bin at mid-treatment (red), 3-months post-treatment (green), and 1-year post-treatment (blue). The
shaded regions represent the standard deviation for each population-averaged curve.

individual patient dose-response curves shown in Figure 5.39, where the overlaid weighted-average

curves are the same as the bolded lines in Figure 5.38.

Overall, the response curves at the post-treatment timepoints exhibit a logistic shape for the

SBRT patients with maximal functional reduction at 1-year post-RT. In the conventional RT co-

hort, the post-treatment response appears more linear when using the simple average, but the re-

sponses appear to exhibit logistic characteristics when using the weighted-average calculation. It

can also be observed that in each of the population-averaged plots, there is a increased variation in

the high dose bins due to the limited number of voxels and patients contributing in these regions.

While this effect is exacerbated in the high dose regions, it is indicative of the vulnerability asso-

ciated with this simple averaging method. Therefore, to improve the estimates of the population-

averaged response, an enhance modeling method is needed. Furthermore, because these plots

are generated to represent functional damage, which in itself is indicative of cell death, and the

individual patient responses were determined to exhibit a logistic response especially in the well-

functioning lung, a logistic model was chosen as the best fit.
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Figure 5.39: Conventional RT (left) and SBRT (right) perfusion dose-response calculated using a
weighted-average accompanied with each individual patient’s response at mid-treatment (top), 3-
months post-treatment (middle), and 1-year post-treatment (bottom). The shaded regions represent
the standard deviation for each population-averaged curve.

5.7 Patient-Specific Dose-Function Response Modeling

To account for inter-dependencies within an individual patient’s dose-function response, the

3-parameter logistic model described by Scheenstra et al [39] was expanded to allow for a patient-

specific asymptote (α j, maximum possible reduction) and midpoint (µ j; i.e. the dose at which

50% of the maximum reduction occurs). This is a common analytic approach for correlated data
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and is also called a nonlinear mixed effects model, which refers to the mixture of population- and

patient-specific parameters [136]. As such, the reduction in baseline intensity for patient j at dose

bin i is modeled as:

Patient-specific logistic model:
α j

1+ e(µ j−di)/γ
(5.8)

A non-patient-specific (i.e., population-averaged) inverse of the dose-effect slope at midpoint

(γ) was set for all patients because of instability in fitting a patient-specific slope parameter. Us-

ing Equation 5.8, each patient’s average dose-function response data points were fit to obtain the

patient-specific model parameters. Because the patient-specific effects are assumed to be centered

around global means, the population-average midpoint (µ) and maximum possible reduction (α)

were calculated by averaging the patient-specific model parameters obtained from the cohort. As

such, the population-level model takes the following form:

Population-level logistic model:
α

1+ e(µ−di)/γ
(5.9)

where di is the dose at the center of dose bin i. By allowing each patient’s dose-function response

to be represented through a logistic function, the derived population-averaged logistic model better

represents a patient’s coherent functional reduction over all dose bins.

The patient-specific logistic function was further modified to characterize dose response strati-

fied by baseline intensity, as shown:

Stratified patient-specific model:
α j +ωk

1+ e(µ j−di)/γ
(5.10)

where k={1,2,3,4} denotes one of four baseline intensity groups, and a j +ωk denotes the patient-

specific asymptote for voxels in group k. For identifiability, ω4 was set to zero. The model shown

in Equation 5.10 was used to describe the population-level response in each functional category.

Voxels were grouped with respect to baseline perfusion. Specifically, the groups included all voxels

with baseline intensity, expressed as a percent of the maximum normal-tissue intensity, in the
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following ranges:

k=1: 10% to 30% of baseline max;

k=2: 30% to 50% of baseline max;

k=3: 50% to 75% of baseline max;

k=4: 75% to 100% of baseline max;

Voxels below 10% of the maximum intensity were excluded from the analysis on the basis of

the low number of counts. The four functional categories, which roughly correspond to quartiles,

were chosen before performance of the statistical analysis. The standard deviation in the reduction

of function from baseline was allowed to vary with the number of voxels:

Standard deviation: σ(mi j)
λ

(5.11)

where mi j is the number of voxels in dose bin i for patient j, σ is a scale parameter that de-

scribes the deviation between the patient-specific parameters and their population-level means, and

λ modifies the deviation based on the number of voxels in that dose bin. Typically λ is negative,

which corresponds to a reduction in variance with an increasing number of voxels. These models

were fit using the nlme package in R [137].
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Figure 5.40: Individual patient dose-function response bin averages (colored points) and patient-
specific model fits (colored lines) overlaid with the population-level model fit (solid) for initially
well-perfused voxels. Abbreviations: 1Mo = midcourse treatment; 3Mo = 3 months post-treatment;
12Mo = 1 year post-treatment.
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Voxelwise reduction in normalized perfusion intensity was modeled using a patient-specific

logistic function. Functional reduction was measured and modeled as the decrease in normalized

perfusion intensity, meaning a d f ,t, j,i of -0.5 signifies a reduction of 0.5 normalized perfusion

intensity units in that voxel. The presented models are graphically represented accordingly. For

each patient, a normalized intensity of 1.0 signifies the average perfusion intensity of functioning

voxels in the low-dose region of the contralateral lung. The population-level model parameters and

standard deviations describing dose-perfusion response for the conventional RT and SBRT cohorts

at each imaging time point are listed in Table 5.11 and Table 5.12.

5.8 Modeling Patient-Specific Dose-Response in Well-Perfused Voxels

Only well-perfused voxels were considered for the patient-specific and population-level dose-

response curves shown in Figure 5.40. The color data points represent the average functional

change in that dose bin for each patient. Each individual patient’s data points are coherently

modeled, as shown by the color-matched, shaded lines, using the logistic function shown in Equa-

tion 5.8. The patient-specific models are used to develop the bolded population-level dose-function

response curves, as described by Equation 5.9. The population-level model fits and the associated

uncertainty are explicitly tabulated in Table 5.11 and graphically shown in Figure 5.41A. The

shaded 95% confidence intervals are a function of both the spread in the distribution of patient-

specific responses and the number of voxels contributing to the data, as shown in Equation 5.11.

A significant longitudinal increase in perfusion reduction is clearly observed, suggesting that lung

function continues to degrade up to 1 year post-treatment. The maximal possible reduction asymp-

tote ranged from approximately 30 to 60 Gy (EQD2), depending on the time point and treat-

ment type. The patient- specific population-level models were compared with the population-level

voxel-weighted average data points and non-patient-specific logistic models (i.e. simply fitting

Equation 5.9 to the population-averaged data points), as shown in Figure 5.41B.
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Figure 5.41: (A) Dose-perfusion response at mid-treatment (Mid-Tx) (green), 3 months post-
treatment (3Month Post-Tx) (red), and 1 year post-treatment (1Year Post-Tx) (purple), fit using a
patient-specific logistic model. The 95% confidence intervals are represented by the shaded region.
B) Patient-specific logistic model fits (solid lines) compared with the voxel-weighted average data
(points) and non-patient-specific logistic model fits (shaded lines). Abbreviations: Conventional =
conventional radiation therapy; SBRT = stereotactic body radiation therapy.
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Table 5.11: Population-level model parameters and standard deviations describing the expected
dose-function response in well-perfused voxels at baseline (95% confidence intervals).

5.9 Stratified Dose-Function Response Given Baseline Perfusion Intensity

The patient-specific voxelwise reduction in normalized perfusion intensity with respect to

planned dose was modeled for each stratified baseline intensity level using Equation 5.10. The

population-level models can be interpreted as a prediction for voxelwise functional reduction in

an arbitrarily selected patient given the voxel’s planned dose and functional categorization at base-

line. The numerical results are given in Table 5.12 and graphically depicted in Figure 5.42. From

these results, we observe that the population-average maximal reduction in each voxel group is

longitudinally increasing (i.e. ω1 < ω2 < ω3 < ω4 = 0), and at the 3- and 12-month post-treatment

time points, the confidence intervals for each parameter are non-overlapping. This trend between

perfusion reduction and baseline function in both cohorts suggests that higher functioning voxels

at baseline are damaged at a greater rate than lower functioning voxels.
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Figure 5.42: Stratified dose-perfusion response for voxels in each normalized baseline intensity
level: 10% to 30% (red), 30% to 50% (orange), 50% to 75% (green), and >75% (blue) of the max-
imum intensity. Abbreviations: Conventional = conventional radiation therapy; SBRT = stereotac-
tic body radiation therapy.
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Table 5.12: Population-level model parameters and standard deviations describing the expected
dose-function response stratified by functional categorization at baseline (95% confidence inter-
vals).

5.10 Discussion

This study quantified the voxelwise reduction in perfusion during and after radiation treat-

ment by measuring the longitudinal change in normalized SPECT intensity, similar to methods

in previous works. However, this analysis aimed to enhance the characterization of personalized

functional changes by applying a patient-specific modeling approach that explicitly accounts for

interdependencies within an individual patient’s dose-function response. Using this methodology,

population-averaged dose-function response curves and their uncertainties were calculated for pa-

tients with NSCLC undergoing conventional RT and SBRT.

From age to chemotherapy to comorbidities, many patient-, treatment-, and disease-related fac-

tors explicitly affect an individual’s dose-function response [138–140]. Each patient has a unique

signature that inherently creates a distinct treatment response curve. As such, the voxels and the

corresponding dose effect from one patient are more closely related to each other than to vox-

els from a different patient. Although the dose effect has classically been modeled by fitting

population-averaged data points, it is proposed that a patient-specific model can more accurately
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describe the coherent dose-function response in an individual patient.

Logistic models have classically been used to describe dose-effect relations for cell survival.

Boersma et al first proposed using the logistic model to describe changes in vascular subunits

within the lung [34]. Scheenstra et al recently showed that local functional changes in patients

undergoing SBRT were best represented through a logistic model driven by 3 parameters: (1)

maximal reduction effect (asymptote); (2) dose to obtain 50% of maximal effect (midpoint); and (3)

slope of the linear dose effect [39]. However, because a patient’s signature effects the dose-function

response over all dose bins, there is an inherent correlation among data points contributed by each

patient. As a consequence of Jensen’s inequality, averaging each dose bin across patients would

introduce bias in the resulting estimated population-average curve [141]. Therefore, a mixed-

effects nonlinear regression model was used in this analysis to allow for a patient-specific maximal

effect and midpoint dose, as shown in Equation 5.8. With this approach, each patient’s dose-

perfusion response assumed a unique form, and population-level trends were derived, as shown in

Figure 5.40. With application of a logistic function to each individual patient’s data (as opposed

to averaging each dose bin separately), the derived population-level model will better estimate the

dose-function response for a future, arbitrarily selected patient.

Only minimal reductions in the high-dose regions were observed during treatment, whereas

increasing longitudinal reductions occurred in these same areas after treatment. Furthermore, both

patients undergoing conventional RT and those receiving SBRT consistently reached an asymptote

in functional reduction near the target dose, suggesting that the maximal reduction effect occurs

at a lower dose in conventionally fractionated RT. Although nearly all patients exhibit perfusion

reduction at 3Month Post-Tx, 3 patients in both the conventional RT and SBRT cohorts exhibit

markedly better response at 1Year Post-Tx than the rest of their cohort. This suggests a recovery

pathway and illustrates the need for patient-specific modeling.

Random effects were assumed to vary around population-level global means. Standard devia-

tions were calculated to account for both the deviation from the mean and the statistical uncertainty

associated with each data point. Therefore, the 95% confidence intervals represent the bounds of
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measured dose response for the conventional RT and SBRT cohorts. Analogously, these intervals

can be interpreted as the uncertainty in predicting the voxelwise reduction in function from an

arbitrarily selected patient given the planned dose.

Previous works have mostly focused on analyzing functional response in well-perfused and

well-ventilated regions. This focus stems from the idea that limiting dose to functioning lung

can reduce toxicity by maintaining a patient’s functional reserve. However, the well-perfused re-

gions have not been consistently defined and only consist of a small portion of the lung receiving

a high dose. This study modeled the well-perfused dose response for comparison with previous

modeling techniques, as shown in Figure 5.41B. However, this is the first study to differentially

characterize dose-function response based on pre-treatment functional status across all functioning

voxels. Although deviations from the population-level models are observed, the consistent differ-

ential treatment response suggests that initially higher functioning voxels exhibit a higher rate of

perfusion loss, as shown in Figure 5.42.

Functional categorizations were chosen based on guidance from previous work [23, 36]. Fur-

thermore, the ranges were kept broad to ensure sufficient normal lung volume and limited statistical

uncertainty in each category. However, because these categorizations were arbitrarily selected to

represent functional capabilities, the bins may distinguish between regions that are not meaning-

fully different in their ability to exchange gas. Our results suggest that the voxelwise reduction in

perfusion is a nonlinear function of baseline perfusion, in addition to being a nonlinear function of

dose, which makes numerical fitting of this model substantially more difficult.

The amount of reperfusion has been shown to be directly proportional to perfusion deficiency

[36], suggesting that perfusion reduction in initially poorly functioning regions is diminished by a

reperfusion effect that is inversely proportional to baseline intensity. The response was quantified

in all functioning voxels because it is hypothesized that any portion of lung that is functioning at

baseline can consequently become damaged and contribute to the loss of functional reserve. Future

studies aim to further investigate the reperfusion effect and alternatively model the potential for

functional improvement.
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Although SPECT/CT is generally considered the gold standard for functional lung imaging,

challenges regarding limited spatial resolution and presence of artifacts have been well docu-

mented. Because each frame of the SPECT image is acquired over a time period that typically

en- compasses several cardiac and breathing cycles, physiological motion will lead to spatial blur-

ring of the signals. Although this may introduce errors in individual voxel intensities, the large

binning of voxels reduced the impact of decreased spatial resolution. Average functional change

was tallied within 5 Gy isodose volumes (i.e., dose bins) such that numerous voxels contribute

within each region. Although the use of rigid registration for functional image characterization

can result in uncertainties, especially in areas of large motion and deformation, deformable image

registration has typically not been applied to SPECT imaging because of low spatial resolution.

Future studies using SPECT images may be improved by adjusting the acquisition parameters to

better match the breathing states between the SPECT/CT and the planning CT image.

In many functional imaging modalities, such as SPECT/CT, normalization is required to quan-

titatively analyze longitudinal change. Most prior studies analyzing perfusion changes using

SPECT/CT have normalized intensities using the average value of the functioning voxels in the

low-dose region of the contralateral lung [1, 37, 38]. Although the specific definition of the

low-dose region has varied, the technique is generally well accepted because minimal functional

changes are expected in voxels receiving a low dose. We have yet to apply a patient-specific mod-

eling approach to the contralateral lung, but this assumption was supported by the finding that

the population-averaged functional change in the contralateral lung did not decrease significantly

below 15 Gy, as shown in Figure 5.36.

Because these clinical data were gathered between 2007 and 2013, patients were treated with

a conventionally-fractioned 3-dimensional conformal RT approach instead of the modern intensity

modulated RT techniques currently used in the clinic. Many of these patients who received 3-

dimensional conformal treatment would now be treated with volumetric modulated arc therapy,

which would further change the dose-volume histogram profile. In an attempt to standardize the

radiation effect between the treatment fractionation schemes, all doses were converted to EQD2
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dose values. Furthermore, although some patient falloff occurred at the 3- and 12-month time

points, we would not expect this loss of data to depend on the patient’s unobserved voxelwise

dose-response curve; therefore, it should not cause bias in our estimated regression coefficients.

By characterizing the patient-specific dose-function response in all baseline functioning vox-

els, this work provides specific population-level estimates for the expected voxelwise reduction in

perfusion at mid-treatment, 3-month post-treatment, and 1-year post-treatment. These models al-

low for enhanced prediction of personalized functional damage by developing the population-level

response through individual patient assessment and by segmenting the expected functional reduc-

tion based on a patient’s pre-treatment functional status. In theory, by applying the generated dose-

response incidence models, the cumulative functional lung damage for an arbitrarily selected pa-

tient could be predicted and used to support functional-guided RT plans by weighting voxels based

on their risk of functional damage.

5.11 Conclusion

A patient-specific modeling approach was applied to quantify the dose-function response us-

ing perfusion SPECT/CT images in patients with NSCLC undergoing conventional RT and SBRT.

By deriving functional response from patient-specific assessment, the population- level models

presented in this analysis can be used to better predict functional lung damage in an arbitrarily se-

lected patient. Differential treatment responses were observed based on the functional status of the

voxel at baseline, suggesting that the highest functioning voxels are damaged at the highest rate.

Although further refinement is required to implement personalized predictions of functional dam-

age in the clinic, this work provides a simple methodology, applicable to any functional imaging

modality, to more accurately model dose-function response.

140



CHAPTER VI

Analyzing the Dose-Function Toxicity Pathways

6.1 Summary

While dose to normal lung has commonly been linked with radiation-induced lung toxicity

(RILT) risk, it has been hypothesized that including functional lung metrics in treatment planning

may help to further optimize dose delivery and reduce RILT incidence. The purpose of this study

was to investigate the impact of dose delivered to functional lung regions by analyzing perfusion

(Q), ventilation (V), and combined VQ SPECT dose-function metrics with regard to RILT risk in

non-small cell lung cancer (NSCLC) patients that received radiation treatment (RT). Patients with

3-month post-RT SPECT scans were also analyzed to assess the amount of total functional damage

following treatment and its effect on RILT incidence. Specifically, this research integrated the post-

treatment functional damage and quantified the delivered dose to functional lung categorizations in

an attempt to identify dose-function trends that are associated with Grade 2+ radiation pneumonitis

and fibrosis incidence.

V/Q SPECT images acquired from 88 locally-advanced NSCLC patients prior to undergoing

conventionally-fractionated RT were retrospectively analyzed. A subset of 37 of these patients had

3-month post-treatment SPECT scans available. Dose was converted to equivalent dose per 2 Gy

fraction (EQD2), and regional lung segments were defined as follows: upper lung above the ca-

rina, lower lung below the inferior pulmonary vein, and middle lung between the two. Three func-

tional categorizations were defined to represent low-functioning, normal-functioning, and high-
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functioning lung. The percent of functional lung category receiving ≥20 Gy (LF20/F20/HF20

or lowVQ20/midVQ20/highVQ20 for combined VQ metrics) and average functional intensity re-

ceiving ≥20 Gy (iV20) were calculated. The damage fraction was defined as the total reduction in

functional intensity at the given timepoint relative to the total baseline intensity. RILT was defined

as Grade 2+ radiation pneumonitis and/or clinical radiation fibrosis. Univariable and multivariable

logistic regression were used to evaluate the association between dose-function metrics and the

risk of RILT.

By analyzing V/Q normalized intensities and functional distributions across the population,

a wide range in functional capability, especially in the ipsilateral lung, was observed in NSCLC

patients prior to RT. Through multivariable regression models, global lung average dose to lower

region of lung structure (ADL) was found to be significantly associated with RILT, while perfusion

and ventilation iV20 were correlated with RILT when using ipsilateral lung metrics. Through ROC

analysis, the intersection volume between low-function ventilation and low-function perfusion re-

ceiving ≥20 Gy, as a percentage of total lung structure volume (lowVQ20) in the ipsilateral lung

was found to be the best predictor (AUC=0.79) of RILT risk. Irradiation of the inferior lung ap-

pears to be a locational sensitivity for RILT risk. The multivariable correlation between ipsilateral

lung iV20 and RILT, as well as the association of lowVQ20 and RILT, suggest that irradiating low-

functioning lung, which is indicative of pulmonary dysfunction, may lead to higher toxicity rates.

Furthermore, a significant correlation was found between the amount of total functional damage

that occurred at the 3-month post-treatment and RILT incidence.

6.2 Introduction

Radiation-induced lung toxicity is a common side effect in non-small cell lung cancer patients

undergoing radiation treatment due to the high prescription doses and large volumes of normal lung

incident in the radiation field. As local failure remains a significant hazard in the management of

NSCLC, it has long been a goal to increase tumor control, while limiting RILT risk. In a secondary

analysis of the RTOG-0617 randomized trial, the use of IMRT compared with 3D conformal RT
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planning was associated with lower rates of severe radiation pneumonitis (RP), suggesting that

dose modulation can help to reduce toxicity [142]. As such, ongoing clinical trials, including

RTOG-1106, have aimed to improve local control through the use of PET adaptive RT planning to

specifically increase dose to actively growing tumor [143].

Another strategy hypothesized to improve the therapeutic ratio is to preferentially limit dose

to functional lung to reduce the risk of RILT. This has been an area of investigation since the

early 1990s, when studies from NKI [5] and Duke University [4] first investigated the use of

functional lung imaging in radiation treatment planning. Both Boersma et al. [34] and Marks et al.

[1] successfully used SPECT to quantify functional lung changes following radiation treatment,

which motivated the potential to inversely incorporate perfusion and/or ventilation metrics in RT

planning [6]. In 2002, Seppenwoolde et al. theorized that radiation treatment plans could be

optimized to maximize lung function after treatment by sparing well-perfused lung tissue [8],

which has formed the basis for functional-avoidance RT planning in lung cancer patients. However,

this recommendation was based on the inability for bullous lung (i.e. regions of poor perfusion

and ventilation) to reperfuse following RT and was not based on the study of its direct impact

to patient outcome [36]. Although functional-avoidance may play a vital role in the treatment of

some patients, an enhanced understanding for the dose-function metrics that are associated with

RILT is needed to ensure optimal patient-specific dose delivery.

Currently, most RT plans designed for NSCLC patients are developed solely to limit physical

dose metrics, such as mean lung dose (MLD) and volume of lung receiving≥ 20 Gy (V20). While

these volumetric dosimetrics treat all lung as functionally-equivalent, in practice there is wide

variation in the functional distribution both within a patient’s lungs as well as between patients.

Recently, CT-based functional imaging has gained interest as a possible tool for functional lung

mapping due to its ability to quantify ventilation-based metrics and its wide-availability in the

clinic. Vinogradskiy et al has observed extensive functional defects in stage III NSCLC patients

[19] and has also demonstrated functional-avoidance RT techniques using 4DCT ventilation maps

[27]. Based on this research [26] and various other studies [20, 13], functional-avoidance clinical
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trials are underway at numerous institutions [82, 144–146].

In theory, functional imaging allows for personalized RT planning that can minimize damage,

and ultimately, can reduce the risk of RILT. Despite this potential, there is little clinical data to

validate that it is an effective approach to reducing toxicity, and specifically that shifting dose

from high-functioning regions into low-functioning regions in patients with heterogeneous lung

function reduces the incidence or severity of RILT. The purpose of this study was to investigate

the utility of functional lung images in RT planning by analyzing the correlation between V/Q

SPECT-based dose-function metrics and the incidence of RILT. Specifically, we defined functional

lung categorizations based on perfusion, ventilation, and combined perfusion and ventilation and

quantified the delivered dose to these various functional lung regions in an attempt to identify dose-

function metrics associated with grade 2+ RILT incidence. Through this study, we aim to better

understand the implications of redistributing dose in the lung and to identify functional targets that

may be used to mitigate RILT incidence through functional-guided RT planning.

6.3 Methods

6.3.1 Patient Cohort

A total of 88 NSCLC patients treated with conventionally fractionated RT, with (n=76) and

without (n=13) concurrent chemotherapy, from two separate institutional review board (IRB)- ap-

proved studies (2006.040: n=58, treated 2007–2013; 2015.035: n=30, treated 2015–2019) were

retrospectively analyzed. The prescription dose in both cohorts was typically 60 – 74 Gy over

30 fractions. However, the latter cohort was primarily treated with volumetric modulated arc

therapy (VMAT), as opposed to 3D conformal RT, and functional-avoidance RT planning and

re-planning, i.e. adaptive RT at mid-treatment, was implemented to limit dose to above-average

V/Q SPECT functional intensity. In this study, RILT was defined as grade 2+ RP and/or grade 2+

clinical pulmonary fibrosis. RP and pulmonary fibrosis were diagnosed and graded prospectively

according to a pre-specified system [134], with a grading scale consistent with that of the common
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terminology criteria for adverse events (CTCAE) v3.0 and the maximal grade was reported [135].

While these pathologies are often considered distinct clinical processes, RILT was used because it

encompasses the primary dose-limiting pulmonary complications that impact patient survival and

quality of life and some evidence suggests these toxicities may be linked [103, 101].

6.3.2 Data Processing

V/Q SPECT/CT scans (voxel size: 3. 5 mm x 3.5 mm x 2 mm) were obtained from each pa-

tient (Symbia T6, Siemens Medical Solutions, Malvern, PA) prior to RT with the patient supine

and immobilized using a standard thorax support device. Each patient was first imaged for pul-

monary ventilation by inhaling aerosolized 99mTc-diethylenetriaminepentaacetic from an 1850

MBq reservoir and subsequently imaged for pulmonary perfusion after intravenous injection of

185 MBq of 99mTc-labeled macroaggregated albumin particles. Each SPECT scan was rigidly

registered to the treatment planning CT using an alignment tool embedded in a commercial treat-

ment planning system (Eclipse, Varian Medical Systems, Palo Alto, CA). Through the application

programming interface within this treatment planning system, a novel program (C#) was imple-

mented to process and analyze the spatially aligned dose-function data. Saturation artifacts were

cleansed from the SPECT images by removing any voxel with functional intensity greater than

three standard deviations above the mean of the normal-functioning region. Raw SPECT inten-

sities ( fi) were normalized to the average intensity in the low-dose (≤5 Gy), normal-functioning

region of the contralateral lung (N), shown in Equation 3.1, as this region was assumed to be stable

against radiation-induced longitudinal functional changes.

This normalization was performed to equalize functional values such that a normalized func-

tional intensity of 1.0 equates to the average intensity of normal-functioning lung for all patients.

Normalized perfusion and ventilation SPECT intensities were used as a direct surrogate for lung

function and dose values were converted to the nominal EQD2 to biologically correct for fraction-

ation of the RT dose (α/β=2.5 Gy) [130].

Three functional categorizations were created to represent low-function lung (LF), normal-
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function lung (F), and high-function lung (HF) lung. Each voxel with normalized functional in-

tensity fNi was assigned a functional categorization based on its intensity relative to the maximum

intensity fNmaximum the schema shown in Table 3.2. The functional categorization limits were cho-

sen based on previous guidance [36, 23] and were determined prior to any statistical modeling. An

example image of the functional categorizations is shown in Figure 6.1. For this study, patients

with < 5% LF lung were considered to have no functional defects.

Figure 6.1: Example perfusion SPECT image demonstrating the functional categorizations for
example patient UM025.

Pre-treatment dose-function metrics were calculated within the global lungs, ipsilateral lung

(i.e., individual lung structure receiving the higher mean dose), and contralateral lung using clinically-

defined lung contours, excluding the GTV and a 4mm inner boundary (∼voxel width) to reduce

the partial volume effect. Regional lung segments were defined as follows: upper lung above the

carina, lower lung below the inferior pulmonary vein, and middle lung between the upper and

146



lower segments as shown in Figure 6.2. The number of patients with primary tumor involvement

in the given lung sextant, with grade 2+ RILT cases in parentheses, were as follows: right upper

lung=33(2); right middle lung=10(2); right lower lung=8(4); left upper lung=23(4); left middle

lung=11(2); left lower lung=3(1). However, it should be noted there was significant tumor involve-

ment in the mediastinum for many of these cases.

Figure 6.2: Example of regional lung sectioning that produced the following lung segments:
RUL=Right Upper Lung (blue); RML=Right Middle Lung (green); RLL=Right Lower Lung (yel-
low); LUL=Left Upper Lung (pink); LML=Left Middle Lung (orange); LLL=Left Lower Lung
(teal).

Patient age, normal lung volume, and volumetric dosimetrics, including mean lung dose, volume

of lung receiving ≥ 5 Gy (V5), and V20, were calculated for each patient. The average dose to

each regional lung segment was quantified. Functional metrics including mean intensity, average

functional intensity receiving ≥5 Gy (iV5), iV20, and percent of functional lung category receiv-

ing ≥20 Gy (LF20/F20/HF20) were calculated. The mean intensity receiving greater than dose d

was calculated using Equation 6.1:
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iV d = i f di ≥ d =⇒
Nd

∑
i=1

fNi
Nd

(6.1)

where di is the EQD2 dose in the ith voxel and Nd is the total number of voxels receiving a dose

greater than the threshold dose d. The percent of functional lung category F receiving threshold

dose d was calculated as shown in Equation 6.2:

Fd = i f fNi 3 F & di ≥ d =⇒ NF>d

N
(6.2)

where NF>d is the number of voxels in the functional category F that received at least dose d

and N is the total number of voxels in the structure. The Fd metric was calculated in terms of

perfusion, ventilation, and perfusion combined with ventilation (VQ), i.e. meaning both perfusion

and ventilation intensities were considered for the functional categorization of each voxel. For

example, a given voxel must have both low-functioning perfusion and low-functioning ventilation

to be considered a combined VQ low-functioning voxel.

The total functional intensity loss incurred within the lungs of each patient, divided by the pa-

tient’s total functional intensity at baseline, was defined as the damage fraction and was calculated

as shown in Equation 6.3. Therefore, a positive damage fraction indicates an overall increase in

functional intensity, whereas a negative damage fraction indicates a loss of total functional inten-

sity, following RT.

Damage Fraction = (Total Intensity at 3−Months Post−T x)−(Total Intensity at Pre−T x)
Total Intensity at Pre−T x (6.3)

Only voxels in the lungs with an intensity ≥10% of the maximum intensity were included in

the damage fraction calculation.
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6.3.3 Statistical Modeling

Ventilation, perfusion, and combined ventilation/perfusion functional metrics were calculated

in 88 patients. Spearman correlation coefficients were calculated for volumetric dosimetrics and

combined VQ functional metrics as shown in Figure 6.3. The correlation between voxelwise per-

fusion and ventilation intensities in each patient were also calculated using a Spearman analysis. A

paired t-test was used to assess significant differences in metrics between patient cohorts. Patient,

dose, and functional metrics were tested for their association with the incidence of grade 2+ radi-

ation pneumonitis or pulmonary fibrosis (i.e. RILT) using the odds ratios (ORs) from univariate

and multivariable logistic regression analyses. Normal lung volume, V20, average dose to lower

region of lung structure (ADL), and iV20 were chosen for inclusion in the multivariable model,

based on univariate association, to represent patient, dose, location, and functional sensitivities

that may independently influence RILT incidence. Receiver operating characteristic curves were

generated and the area under the curve (AUC) values were calculated using the logistic regression

models. The 95% confidence intervals were calculated for purposes of measuring uncertainty and

assessing metric stability. Five-fold cross-validation was used to minimize overly optimistic bias.

For all analyses, two-sided P values of <0.05 were considered statistically significant and values

<0.1 were considered a marginal association. Analyses were performed using R (version 3.6.1)

and MATLAB (version 9.4).

6.4 Results

This study combined data from two IRB-approved clinical trials (2006.040 & 2015.035) in

which V/Q SPECT images were obtained from 88 NSCLC patients prior to undergoing RT. Pa-

tient characteristics and voxelwise metrics quantifying volumetric dose, functional lung, and dose

delivered to functional lung for both patient cohorts are summarized in Table 6.1. Similar func-

tional lung distributions were observed in each patient cohort as shown in Figure C.1. The latter

cohort was primarily treated with VMAT, as opposed to 3D conformal RT in the former cohort,
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Figure 6.3: Bivariate spearman correlation coefficients for pre-treatment patient-averaged metrics.

which is reflected by the significantly higher V5 and fV5 values caused by the larger low-dose bath

associated with modulated RT. Above-average perfusion and ventilation were used as functional-

avoidance priorities in the latter cohort, and yet, no other metrics were found to significantly differ

between the cohorts.

For the 37 NSCLC patients with SPECT scans available, the probability of RILT incidence

(n=8/37) based on a patient’s 3-month post-treatment damage fraction was calculated using a lo-

gistic regression of the form:

Pr(Tox|damage) =
1

1+ e−α−β∗damage
(6.4)

Through this analysis, a significant correlation between the damage fraction in the total lungs

at 3-month post-treatment, as measured by perfusion SPECT, and RILT incidence was found

(p=0.010). The 3Month post-treatment ventilation-based damage fraction was not found to be

associated with RILT (p=0.721). The complete model parameters are shown in Figure 6.4.
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Table 6.1: Patient characteristics and dose-function metrics for each patient cohort included in this
study.

By separating the fitted probabilities of Grade ≥2 RILT into quartiles, a comparison was made

between the expected and observed number of RILT incidences based on the measured perfusion

damage fraction as shown in Figure 6.5.

151



Figure 6.4: Logistic regression model parameters and results for the association between the per-
fusion and ventilation 3-month post-treatment damage fraction and RILT incidence (n=8).

Figure 6.5: A measure of the expected versus observed grade ≥2 RILT cases separated into equal
quartiles based on the range of observed perfusion damage fractions.

Because 20 Gy is considered to cause cellular damage, the 3-month post-treatment damage

fraction was plotted against the global lung V20 (shown in Figure 6.6) in an effort to understand

the relationship between the variables.

Individual patient and population-averaged (n=88) perfusion and ventilation functional distri-

butions prior to RT are shown in Figure 6.7. For reference, a functional intensity of 1.0 is con-

sidered the average value of normal function, and a normal distribution around 1.0 is expected for

a healthy individual. These normal distributions are largely exemplified by the 38 patients with

<5% perfusion LF as shown in Figure 6.8. As another reference, the population-average perfusion

(ventilation) low-functioning and high-functioning categorization thresholds, in absolute intensity,

were 0.32 (0.38) and 1.49 (1.76), respectively. Mean perfusion and ventilation intensities in vari-

ous regions of the lung are depicted in Figure 6.9 to demonstrate the range of functional capability
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Figure 6.6: Scatter plot demonstrating the relationship between global lung percent volume receiv-
ing ≥20 Gy (V20) and 3Month post-treatment perfusion damage fraction in patients that incurred
grade ≥2 (filled circles) and those that did not incur toxicity (open circles), with marker size rela-
tive to the pre-treatment AD2LF in the ipsilateral lung.

observed. Across the population, mean perfusion (ventilation) intensity in the global lungs, ip-

silateral lung, and contralateral lung were found to be 0.90 (0.87), 0.82 (0.81), and 0.96 (0.91),

respectively. In patients exhibiting <5% LF, the mean global perfusion (n=38) and ventilation

(n=21) intensity were 0.96 and 0.95, respectively.

On the contrary, 50 patients were found to have >5% perfusion LF and 67 patients were found

to have >5% ventilation LF, which corresponded to a global average perfusion and ventilation

of 0.86 and 0.84, respectively. In patients that incurred RILT (n=15), the average perfusion and

ventilation intensity in the ipsilateral lung was found to be 0.68 and 0.66, respectively, signifying

a large presence of functional defects in these patients. Additionally, for both perfusion and ven-

tilation, the population-averaged iV20 was less than the average functional intensity in the RILT

cohort, demonstrating that high dose was primarily funneled through below-average functioning

lung (inadvertently so in the former cohort) in the patients that incurred RILT.
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Figure 6.7: A) Perfusion SPECT and B) ventilation SPECT individual (colored) and population-
average (bold) normalized functional distributions for 88 NSCLC patients prior to RT. C) Perfusion
(red) and ventilation (blue) population-average normalized functional distributions accompanied
by the standard deviations (shaded).
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Figure 6.8: Individual patient (colored) and population-averaged (bold red) perfusion SPECT func-
tional distributions for the n=38 NSCLC patients with ¡5% low-function.

155



Figure 6.9: Mean perfusion and ventilation normalized functional intensities (and standard devia-
tions) observed for various regions of the lung and subcohorts of patients.
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Through univariable logistic regression analysis, ipsilateral lung perfusion and ventilation LF

were significantly associated with RILT incidence as shown in Table 6.2. Normal-function (F)

perfusion and ventilation were also found to be associated with RILT, but inversely correlated,

suggesting patients with less normal-functioning lung were at a higher risk. For both perfusion

and ventilation, the ipsilateral lung tended to exhibit a lower mean intensity and higher percent of

LF than the contralateral lung. Ipsilateral lung volumetric dosimetrics (including V20 and mean

dose) and dose-function metrics (including iV20 and ventilation or perfusion low-function volume

receiving ≥20 Gy, as a percent of total lung structure volume (LF20)) were also correlated with

RILT on univariate analysis. Both iV20, a continuous metric that quantifies the average functional

intensity delivered ≥20 Gy, and LF20, the percent of total volume that received ≥20 Gy to low-

functioning lung, correlations suggest that patients receiving more dose to dysfunctional lung may

be most at-risk for RILT.

The only contralateral lung metric associated with RILT was average dose to lower region of

lung structure (ADL). While 65% of patients were found to have primary tumor involvement lo-

cated in the upper lung sextants, only 11% of these patients incurred RILT. Conversely, 11 patients

exhibited primary tumor involvement in the lower lung sextants and 5 of these patients incurred

RILT. Through a multivariable logistic regression model that included normal lung volume, V20,

ADL, and ventilation or perfusion iV20, ADL was most prominently associated with RILT inci-

dence within the global lungs and contralateral lung as shown in Table 6.3. However, perfusion

and ventilation iV20 were found to be most correlated with RILT in the ipsilateral lung.

To better understand the interplay between perfusion and ventilation functional distributions

within the lung and its effect on RILT risk, combined perfusion and ventilation (VQ) metrics were

quantified and analyzed as shown in Table 6.4. For a voxel to be considered for a combined VQ cat-

egorization, it must have the same functional classification for perfusion as for ventilation. In total,

an average of 77% of voxels were found to have overlapping perfusion and ventilation functional

categorizations, with moderate dice similarity coefficient (DSC), a measure of spatial overlap, in

the low-functioning and normal- functioning regions. Poor overlap was found in the high function-
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Table 6.3: Multivariable logistic regression analysis using normal lung volume, V20, ADL, and
pre-treatment perfusion or ventilation iV20 in the global lungs, ipsilateral lung, and contralateral
lung.

ing region. Mismatched defect categorizations were also defined but did not appear to be significant

in terms of RILT incidence on univariable analysis. The DSC for low-functioning lung was statis-

tically significant in the global lung and ipsilateral lung and the DSC for normal-functioning lung

was found to be negatively correlated. Using combined VQ categorizations, both low-functioning

V/Q (lowVQ20) and normal-functioning V/Q (intersection volume between normal-function ven-

tilation and normal-function perfusion receiving ≥20 Gy, as a percentage of total lung structure
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volume (midVQ20)) were found to correlate with RILT incidence, while intersection volume be-

tween high-function ventilation and high-function perfusion receiving ≥20 Gy, as a percentage of

total lung structure volume (highVQ20) was not significantly associated. However, the midVQ20

odds ratio <1 suggests patients with less midVQ20 are at a higher risk for RILT.
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Global lung and ipsilateral lung percent of low VQ receiving ≥20 Gy (lowVQ20) were both

found to be significantly associated with RILT incidence on univariate analysis. In patients that

incurred RILT, the mean percent of lowVQ20 and lowVQ20 in ipsilateral lung was 32% and 17%,

respectively, corresponding to an average of 161cm3 of combined V/Q low-functioning lung of

which 88cm3 received ≥20 Gy. Conversely, the mean ipsilateral lowVQ20 and lowVQ20 in pa-

tients without toxicity was found to be 17% and 7%, respectively, corresponding to an average

of 164cm3 of combined V/Q low-functioning lung of which 69cm3 received ≥20 Gy. Therefore,

while the volume of low-function lung was similar, the patients that incurred RILT were delivered

20 Gy or more to an additional 19cm3 of low-functioning lung on average. In a univariable ROC

analysis, lowVQ20 was the best predictor of RILT incidence for both the global lung (AUC=0.76)

and ipsilateral lung (AUC=0.79) compared to V20, perfusion iV20, and ventilation iV20 as shown

in Table 6.5. Furthermore, all ipsilateral lung metrics had higher AUC values than their global lung

counterparts. Based on the results of the multivariable logistic regression, lowVQ20, the selected

functional metric, was combined with ADL, the representative locational metric, in a multivariate

ROC analysis, but no additional predictive power was observed.

Despite this result, the angle of the 20% RILT risk line based on lowVQ20 versus ADL in the

ipsilateral lung, as shown in Figure 6.10, demonstrates influence from both metrics, suggesting

independent vulnerabilities that lead to RILT based on dose to low-functioning lung and dose to

lower lung. By assigning limits of 20 Gy to lower lung and 15% lowVQ20 that generally represent

>20% RILT risk, there appears to be 4 RILT cases in each of the three labeled sections, demon-

strating the independent and overlapping vulnerabilities. Full results from the multivariate models

are provided in Table 6.6. Interestingly, both patients that incurred Grade 5 RILT in this cohort

presented with lower lung tumors with an adjacent combined VQ functional defect that received

a large portion of high dose, as shown in Figure 6.11. Furthermore, although the depicted treat-

ment planning CT scans are of limited diagnostic quality, both patients appear to exhibit significant

pulmonary fibrosis prior to RT.
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Table 6.5: Univariable logistic regression analysis using combined VQ metrics in the global lungs,
ipsilateral lung, and contralateral lung.

6.5 Discussion

The goal of this study was to analyze V/Q SPECT functional lung images to better understand

the interplay between dose delivery and functional lung distribution with regards to RILT incidence

in NSCLC patients treated with RT. By utilizing novel methods for quantification of absolute

functional intensity and combined VQ functional lung categorization, patient-specific functional

distributions and dose-function metrics were generated to characterize pulmonary condition and

dose delivered to various functional lung regions. These methods were applied to V/Q SPECT

scans from 88 NSCLC patients accrued in two separate clinical trial cohorts. Through this analy-

sis, a wide range in functional capability, including a large presence of functional defects primarily

located in the ipsilateral lung, was observed. While the lungs are known to act as a parallel organ,
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Figure 6.10: Scatter plot of percent of ipsilateral lung with combined VQ low-function receiving
≥20 Gy (lowVQ20) and average dose to lower ipsilateral lung (ADL) for patients with Grade 0-1
RILT (white circles) versus Grade 2-5 RILT (red diamonds). The estimated RILT risk based on
logistic regression analysis is overlaid (shaded red) and the 20% risk threshold is explicitly shown
(dotted red line). Independent functional (lowVQ20>15%) and locational (ADL≥20 Gy) radiation
sensitivities are hypothesized based on these results.

NSCLC tumors are often primarily located within one lung, which can lead to a large imbalance

in functional capacity between the ipsilateral and contralateral lungs. Previous work has suggested

that individual lung metrics may provide deeper insight into the relationship between dose, func-

tion, and toxicity [147].

Through the study of post-treatment reduction in functional intensity, a strong association be-

tween negative perfusion damage fractions and RILT incidence was found. Damage fraction mea-

sures a patient’s global functional reduction relative to their baseline functional capacity, effectively

quantifying the fractional amount of functional lung that was damaged, or recovered, following ra-

diation treatment. Therefore, this association suggests that patients who incur the most functional
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Table 6.6: ROC analysis results using a multivariable model consisting of lowVQ20 and ADL in
the global lungs, ipsilateral lung, or contralateral lung.

damage at 3 months post-treatment are at the highest risk to develop RILT and supports the the-

ory that limiting functional damage can reduce toxicity rates. While post-treatment metrics are

not necessarily valuable in terms of RT planning, the strong association between functional dam-

age and RILT incidence provides merit to the use of functional imaging in RT assessment and

can serve as motivation to enhance our understanding for the dose-function response in NSCLC

patients undergoing RT in an effort to predict functional damage and optimize dose delivery.

In terms of the pre-treatment analysis, dose-function metrics in the ipsilateral lung and average

dose to lower region of lung structure (ADL) were found to have the highest correlation with

RILT incidence. The correlation between ADL and RILT suggests a physiological radiosensitivity

in the lower lung, which is consistent with previous studies that have reported on the increased

vulnerability of the inferior lung [69, 100]. Moreover, ipsilateral lung perfusion and ventilation

mean intensity receiving ≥20 Gy (iV20) were both associated with RILT. Because the estimated

odds ratios for these associations were found to be less than unity, these results suggest that patients

receiving≥20 Gy to a lower average functional intensity are at an increased risk to incur RILT. To

further investigate this functional sensitivity, combined VQ metrics were generated by considering

both the perfusion and ventilation intensities in the voxelwise functional categorization. Similar
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Figure 6.11: Pre-treatment perfusion scans (left column), overlaid with dose ¿40 Gy (middle col-
umn), and the treatment planning CT (right column) for a non-toxicity patient (top row), Grade 5
Patient A (middle row), and Grade 5 Patient B (bottom row).

to the individual V/Q analysis, patients receiving ≥20 Gy to a large percentage of combined VQ

low-functioning lung were found to be at the highest risk for RILT.

These results were surprising based on previous literature. Various studies have reported on

the time-dependent reduction in normal lung [37, 38], in which functional damage occurs at a

higher rate in higher functioning lung [74]. Moreover, many studies have reported that dose to a

higher percent of functional intensity is associated with RILT [65]. Although normal lung doses

should clearly be kept to a minimum to reduce functional damage, measuring the fraction of perfu-

sion/ventilation intensity receiving ≥20 Gy (fV20), in theory, only significantly differs from V20

in patients with heterogeneous lung function. In these cases, where the total intensity – the de-

nominator of fV20 – is compromised relative to the rest of the cohort, the amount of functional

intensity irradiated – the nominator of fV20 – is less for a given fV20 value than in a patient with

homogeneous lung function. Thus, fV20 effectively downplays the dose-effect in low- functioning
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lung. As shown in Figure 6.12C and Figure 6.12D, many of the patients with large ipsilateral per-

fusion fV20 values were also delivered high dose to a large portion of ipsilateral low-functioning

lung.

Figure 6.12: Scatterplots of ipsilateral lung metrics (with marker size scaled by the percent of
perfusion low-function) including: A) fraction of perfusion intensity receiving ≥20 Gy (fV20)
vs. fraction of volume receiving ≥20 Gy (V20); B) mean perfusion intensity vs. mean perfusion
intensity receiving ≥20 Gy (iV20); C) perfusion fV20 vs. perfusion iV20; D) perfusion fV20 vs.
perfusion low-function receiving ≥20 Gy (LF20).

To better quantify the interplay between the dose delivery and patient-specific functional lung

distributions, the amount of each functional lung categorization delivered≥20 Gy (LF20/F20/HF20)

was calculated as a percent of the total lung structure volume. Although the amount of low-

and high-functioning perfusion in the global lung was similar, LF20 was found to be nearly 4

times higher than ventilation or perfusion high-function volume receiving ≥20 Gy, as a percent

of total lung structure volume (HF20), meaning high dose was more likely to be directed through

low-functioning perfusion than high-functioning perfusion. A higher prevalence of LF in the ip-

silateral lung also suggests low-functioning lung was primarily located near the tumor, whereas
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high-functioning lung was generally more concentrated in the contralateral lung. A recent study

suggested that dose to 4DCT highly-ventilated lung is most predictive of RP [32], however, it is

unclear how well deformation-based ventilation metrics correlate with pulmonary function. Simi-

larly, high-functioning lung can be hard to interpret physiologically. In terms of SPECT imaging,

the HF regions signify accumulated intensity that may be caused by patient geometry or saturation

artifacts. The poor DSC between perfusion and ventilation high-functioning lung found in these

patients suggest the HF regions were not well-related. Alternatively, low- and normal-functioning

lung were found to have more perfusion/ventilation spatial overlap and volume.

Combined VQ functional categorizations were quantified to improve confidence in the de-

termination of functional lung versus dysfunctional lung [148]. In this context, combined VQ

normal- and high-functioning lung represent regions of functional gas exchange, and combined

VQ low-functioning lung represents regions with matching V/Q defects. Furthermore, an aggres-

sive low-functioning lung bound (<15% of max intensity) was implemented to capture the most

significant defects. While the specific cause of the functional defect is unknown, pulmonary dys-

function in these patients is primarily attributed to either: 1) tumor burden or 2) lung disease

[58, 59]. Therefore, it is possible that irradiating these functional defects could cause 1) a large

dose to reperfused/reventilated lung or 2) an exacerbation of pulmonary comorbidities, which may

be an explanation for the increased radiosensitivity in the low-functioning lung found in this study.

Numerous studies have previously reported a strong connection between pre-existing pul-

monary comorbidities and radiation-induced lung toxicity [84, 85]. Specifically, recent studies

have suggested patients with interstitial lung disease (ILD) [88, 87] or idiopathic pulmonary fibro-

sis (IPF) [149, 89] prior to RT are disproportionately prone to developing severe toxicity. Despite

this known risk factor, low-functioning lung, which may be indicative of disease, is generally

deemed less important in the dose-function response than high-functioning lung. However, there

are indications that severe RILT is linked with a rapid progression of out-of-field radiographic

changes that may be indicative of a global lung immune response [150]. As stated by Makimoto

et al. in 1999 [151],
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Baseline impairment of pulmonary function will add to radiation damage and cause

symptoms with smaller radiation volumes than in patients with normal function [152,

153].

The two grade 5 RILT cases in this study both presented with matching V/Q functional defects

in the inferior region of the ipsilateral lung, appeared to exhibit pulmonary fibrosis on the treatment

planning CT, and ultimately, died of hypoxic respiratory failure. Therefore, while further study is

needed, this course of failure could be indicative of an immunological response [112], potentially

caused by a cascade of inflammatory cytokines [102], that is initiated due to radiation-induced

exacerbation of pulmonary disease [154]. Ideally, if the presence of IPF or ILD was clinically con-

firmed, these comorbidities would have been addressed or the patients would have been excluded

from treatment, which demonstrates the need to screen NSCLC patients for comorbidities prior

to RT. While the grade 5 RILT cases represent the most severe negative response, the pattern of

irradiating large portions of low-functioning lung is consistently observed in RILT cases from both

cohorts.

Functional-guided RT has primarily been employed to shape radiation fields to avoid functional

lung and funnel dose through low-functioning regions. A functional-avoidance technique was em-

ployed in the latter patient cohort (n=30) to protect against irradiating above- average perfusion and

ventilation. Despite these included functional priorities in treatment planning, perfusion functional

intensity receiving ≥ 5 Gy (fV5) was the only dose-function metric found to significantly differ

between the patient cohorts, suggesting the ability to significantly shift dose to spare functional

lung was limited. Out of the eight RILT cases that received lowVQ20 to greater than 15% of

the ipsilateral lung, half were from the former cohort and half from the latter cohort, suggesting

the functional sensitivity of low-functioning lung was similar in each cohort despite the use of

functional- avoidance RT in the latter cohort. Patients with compromised lung function prior to

RT are generally thought to be more prone to toxicity [118]. Increased FDG-PET uptake in the

normal lung, a marker of pulmonary inflammation, has been shown to correlate with RP incidence

[98], especially in patients also receiving a high mean lung dose [155]. Similarly, in 2018, Otsuka
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et al published a study that concluded high dose to poorly functioning regions, as determined by

4DCT ventilation, was associated with the highest risk of toxicity [99]. However, dysfunctional

lung sensitivity to RT has never been shown on V/Q SPECT imaging.

As SPECT is a direct measure of perfusion or ventilation intensity, such that combined V/Q

represents functional gas exchange, it is considered the gold standard in functional lung imaging

but is non-specific for regions of dysfunction. Alternatively, normal lung PET imaging can measure

pulmonary inflammation and CT can measure parenchymal density, which may be related to lung

disease. Consequently, these imaging modalities are often used in the context of quantifying dys-

functional lung, as opposed to SPECT which is primarily used for functional lung quantification.

As such, there has been limited investigation into the dose-effect in SPECT-based low-functioning

lung regions. And yet, because the patients who will benefit most from functional-guided RT are

those with functional defects, further work is needed to understand the underlying pathology of

these defected regions and its effect on the biological makeup in the lung prior to RT. In other

words, limiting dose to normal lung is suggested in all cases, but identifying the patients with in-

creased risk for severe RILT prior to RT should be the highest priority. Especially with concurrent

immunotherapy becoming standard of care in NSCLC patients undergoing RT, patient-specific

functional estimates are needed to identify patients with compromised lung function. Ultimately,

further research is paramount to understand the immune reaction to RT such that the individual

response can be optimized [156].

While the results of this study are suggestive that irradiating low-functioning tissue plays a

role in the onset of RILT, there are many challenges in the quantification of V/Q SPECT. A

cleansing methodology was implemented to remove saturation artifacts, but in many cases, it can

be difficult to decipher true functional intensity from an artifact. Because the resolution of SPECT

images is limited, combined VQ functional categorizations were implemented to represent regions

with high probability of pulmonary dysfunction but of unknown etiology. Similarly, regional lung

segments and individual lung structures were used to refine the area of interest, yet better functional

localization could further improve risk estimates. Functional imaging is challenging to quantify
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and even more challenging to compare due to the complexities of the lungs and the various imaging

modalities. However, by implementing three functional lung categorizations (low, normal, high)

and establishing an average normalized functional intensity of 1.0 for normal lung, this study aimed

to provide a template for standardization that can be expanded upon to improve our understanding

for the role of irradiating functional lung in the onset of RILT.

6.6 Conclusion

This study evaluated perfusion, ventilation, and combined V/Q SPECT functional metrics in

88 NSCLC patients treated with conventionally fractionated RT. Through this analysis, patients at

the highest risk for RILT were found to be those who received a high dose to lower lung or low-

functioning regions of the ipsilateral lung at baseline. This result runs counter to the hypothesis that

redistributing dose from high- to low-functioning regions of lung is a strategy likely to decrease

toxicity. Future studies are warranted to better characterize the effect of irradiating dysfunctional

lung, and to determine the appropriate role for functional imaging-guided treatment planning for

NSCLC patients with heterogeneously distributed lung function.
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CHAPTER VII

Transition to CT-Based Parametric Response Mapping

7.1 Summary

Currently, no standard protocol exists to measure pulmonary dysfunction in lung cancer pa-

tients prior to radiation treatment (RT). Parametric response mapping (PRM) of high-resolution

inhale/exhale CT is a promising solution that offers the ability to quantify and characterize pul-

monary disease – including small airway disease, emphysema, and parenchymal disease – on a

patient-specific basis. The aims of this investigation were: 1) to establish the expected PRM

metrics in lung cancer patients prior to RT and 2) to analyze PRM metrics in patients that in-

curred radiation pneumonitis. Quantitative analysis of high-resolution inhale/exhale CT scans,

through Jacobian-based deformation and PRM classification, has the potential to readily provide

functional lung and pulmonary disease metrics and should be further investigated for use in RT

treatment planning.

7.2 Introduction

Despite major paradigm shifts in radiation treatment (RT) planning and delivery over the past

decade, radiation-induced lung toxicity (RILT) continues to be a major obstacle in the successful

treatment and management of advanced lung cancer patients. Symptomatic radiation pneumonitis

(RP) requiring medical intervention (Grade 2) can occur in roughly 20-30% of lung cancer patients
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receiving RT and the prognosis significantly worsens for patients who incur severe cases (Grade

3 and above) of RP [157–160]. To address this sequela of radiotherapy, efforts are being made

to incorporate risk factors, such as patient characteristics, treatment and biological markers, in

treatment planning and assessment to improve patient outcome. Nevertheless, RILT continues to

hinder successful clinical management of lung cancer patients treated with RT.

Lung cancer patients are known to suffer from pulmonary comorbidities, such as chronic ob-

structive pulmonary disease (COPD) or interstitial lung disease (ILD), which can diminish their

ability to recover from radiation treatment [161, 162, 134]. And yet, standard practice RT treatment

planning for lung cancer patients does not include any patient-specific assessment of pulmonary

condition. Functional imaging techniques such as single-photon emission computed tomogra-

phy (SPECT), hyperpolarized xenon magnetic resonance imaging (MRI), dual-energy computed

tomography (CT), and four-dimensional computed tomography (4DCT) have been studied for use

in assessing lung function and have demonstrated the potential to incorporate functional lung in-

formation in RT planning [5, 24, 163, 164]. However, because these imaging techniques provide

measures of perfusion and ventilation, they are unable to identify pre-existing pulmonary comor-

bidities. Recent studies have found that increased uptake of fluorodeoxyglucose positron emission

tomography (FDG-PET), a marker of pulmonary inflammation, in non-cancerous lung parenchyma

was correlated with RP incidence [98]. As such, this work replicated the findings of Petit et. al,

which demonstrated a relationship between high dose to regions with increased FDG uptake prior

to RT and RILT incidence [165]. While these studies are encouraging, the authors were unable to

determine the type and extent of pulmonary abnormality using PET imaging.

Parametric response mapping (PRM) is an analytical technique based on deformable mapping

of inspiration/expiration CT scans that is capable of differentiating and displaying pulmonary ab-

normality subtypes as a spatially-resolved patient-specific map. First introduced in 2012, PRM has

since been shown to improve phenotyping of COPD [166]. Recent studies have demonstrated that

PRM-based estimates for small airways disease (SAD) are significant predictors of disease pro-

gression [167] and have been validated as a quantitative measure of SAD in COPD patients [168].
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In addition to COPD, the PRM analysis of clinical CT scans has been shown to detect infection

and pneumonitis in bone marrow transplant recipients [169, 170] and fibrosis in lung transplant

recipients [171] even in the presence of obstructive lung disease. The purpose of this chapter was

to investigate the incidence of pulmonary abnormalities, as identified by PRM analysis, in lung

cancer patients presenting for RT. Furthermore, voxel-wise PRM classifications for normal and

abnormal lung were quantified on a global and regional basis and were evaluated in patients that

incurred Grade 2 RP.

7.3 Methods

7.3.1 Patient Population

Twenty-four lung cancer patients undergoing RT were accrued as part of a single-site, IRB-

approved clinical trial to determine the feasibility of PRM for use in radiation treatment planning.

Patients with histologically-verified lung cancer scheduled for RT were eligible for enrollment. In-

formed written consent was obtained from each patient. Patients were treated with 3-dimensional

conformal RT (n=5), intensity-modulated RT (n=4), or volumetric arc therapy (n=15) based on

tumor size, location, and geometry. The prescription dose was generally 60 or 66 Gy, and seven

patients received functional-adaptive RT, i.e. dose fields were shaped to limit dose to ventila-

tion/perfusion (V/Q) SPECT-based functional lung at mid-treatment. Radiation pneumonitis (RP)

was graded using the Common Terminology Criteria for Adverse Events (CTCAE) v4.0 and RP

Grade≥2 was used as the toxicity endpoint [135]. In 24 lung cancer patients with a median follow

up of 16 months, 4 patients were graded to have incurred Grade 2 RP. Patient characteristics are

provided in Table 7.1.

7.3.2 X-Ray Computed Tomography

Inspiration and expiration CT scans were performed at total lung capacity and functional resid-

ual capacity, respectively, and were acquired prior to any treatment. CT acquisition and recon-
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Table 7.1: Patient characteristics and global lung pre-treatment PRM metrics.

struction parameters are listed in Table 7.2. Lung volumes, excluding the gross tumor volume,

were segmented using in-house software from the thoracic cavity. Segmented lungs were region-

ally divided into sextants as defined: upper lung sextants were defined above the carina, lower lung

sextants were defined below the inferior pulmonary vein, and middle lung sextants were defined

between the upper and lower sextants Figure 6.2.
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Table 7.2: High-resolution inspiration/expiration CT acquisition parameters.

7.3.3 Parametric Response Mapping

PRM was applied to all paired CT scans as previously described [166, 172]. As illustrated in

Figure 7.1A, PRM was performed by spatially aligning the inspiration CT scan to the expiration CT

scan using Elastix, an open-source, intensity-based deformable image registration (DIR) algorithm

[173, 174]. Once the paired CT scans were aligned, individual voxels were classified based on the

paired CT Hounsfield units (HU) as shown in FFigure 7.1B. The discrete thresholds that are applied

to the spatially aligned paired CT scans have been previously reported, and in some cases validated

[168, 175–177]. The percent volume of each PRM classification was calculated by normalizing the

sum of all like-classified voxels by the sum of all voxels in the lungs structure and multiplying by

100. PRM analysis was performed using in-house algorithms developed in a technical computing

language (MATLAB v. R2016a, MathWorks Inc., Natick, MA).

7.3.4 Statistical Analysis

Summary statistics of PRM metrics were generated over the whole-lung and regional lung

sextants. The average dose to each PRM classification was quantified for 23 patients – as the vox-

elwise dose was unavailable for one patient – using the Eclipse treatment planning system (Varian

Medical Systems, Palo Alto, CA). Correlations between PRM metrics and patient characteristics

were analyzed using a paired t-test. Due to minimal levels of emphysema present in this patient

population (cohort average <0.3%), only parenchymal disease (PD) and SAD were reported as
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Figure 7.1: A) The workflow used for PRM analysis data acquisition and processing. B) Illustration
of the pulmonary abnormalities identified by PRM analysis (bottom) and the classification schema
(top) based on inspiration/expiration CT lung densities accompanied with clinical interpretations
for each PRM category.

PRM abnormalities. Individual sextants for each case were stratified based on elevated levels of

SAD and PD in the volume. Based on previously published work, SAD>20% and PD>20% are

considered significantly elevated and indicate the presence of a pulmonary abnormality [169, 171].

All cases were stratified based on these criteria to determine frequency of elevated SAD and/or

PD by lung location (i.e. sextant). A paired t-test was performed to determine if elevated SAD

and/or PD occur in close proximity of the tumor (i.e. sextant where the tumor resides). Univariate

logistic regression analyses were used to test the association between PRM metrics and the inci-

dence of grade 2 radiation pneumonitis. The 95% confidence intervals were computed to quantify

uncertainty and metric stability. For all analyses, two-sided p-values of <0.05 were considered

statistically significant and p-values <0.1 were considered a marginal association.
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7.4 Results

Figure 7.2: A) Global and B) regional PRM classification metrics for normal, small airways disease
(SAD), and parenchymal disease (PD) in 23 NSCLC patients prior to receiving RT.

The distribution of pre-treatment whole-lung PRM metrics are shown in Figure 7.2A, which

corresponded to a cohort average of 63%±18% normal lung, 23%±19% PD, and 10%±9% SAD.
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When comparing PRM metrics to patient characteristics and pulmonary function tests, only a

marginal negative correlation was found between age and normal PRM (r=-0.39; p=0.06). All

PRM metrics demonstrated negligible correlations with gender, smoking status, concurrent chemother-

apy, or pre-treatment FEV1/FVC. Elevated levels of PD were found to be inversely correlated

to normal parenchyma (r=-0.87; Figure 7.3A), which was not observed for SAD (r=-0.11; Fig-

ure 7.3B).

Figure 7.3: A) Normal vs. parenchymal disease (PD); B) Normal vs. small airways disease (SAD)
relative to the average amount of PRM-classified normal lung (dashed line) for patients that in-
curred Grade 2 RP (filled circles) versus patients that incurred Grade 0-1 RP (open circles).

Analysis of PRM metrics over each regional sextant resulted in similar distributions to those

observed over the whole-lung as shown in Figure 7.2B. In the region with primary tumor involve-

ment, average PRM values were found to be 59%±26% normal, 29%±27% PD, and 9%±11%

SAD. These values were not found to be significantly different from other regions of the lungs.

Although this patient population had a high incidence of elevated levels of PD and SAD, as defined

as lung sextants with SAD and/or PD >20%, these abnormalities were not found to be correlated

to any specific lung sextant or tumor location Table 7.3.

Applying the elevated abnormality criteria of >20% over the entire lung volume, 16 patients

exhibited elevated pulmonary SAD (n=6) or PD (n=11), and all of these patients exhibited elevated

abnormalities within multiple sextants in the lungs. Of the eight patients without elevated global

disease, five patients were found to have local elevated SAD or PD, and only three patients in
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Table 7.3: Frequency of tumor involvement with elevated SAD and PD.

this cohort did not exhibit elevated disease in any of the lung regions. Nevertheless, 13 of the 24

patients (54%) exhibited either elevated SAD or PD in the region with primary tumor involvement.

Only one patient (RP Patient C; Figure 7.4) exhibited both elevated SAD (30%) and PD (22%) in

the tumor region.

As shown in Figure 7.4, all four RP cases demonstrated pulmonary abnormalities in close

proximity to the tumor, of which two had elevated PD, one had elevated SAD, and one had elevated

PD and SAD. The extent of pulmonary abnormality within the global lung was most pronounced

in RP Case A, with 85% of the entire lungs classified as PD. As observed in Figure 7.3, the four

RP cases were all estimated to have below-average amount of PRM-classified normal lung prior

to RT, where the dashed line represents the population-average for PRM-classified normal lung.

The RP cases, on average, also received a higher mean lung dose than the total cohort (Table 7.1).

While none of the tested metrics were found to significantly correlate with Grade 2 RP incidence,

normal PRM (p=0.08) and mean lung dose (p=0.08) were found to be marginally associated with

Grade 2 RP using univariate logistic regression as shown in Table 7.4.
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Figure 7.4: Single slice images for the inspiration (top row) and expiration (middle row) CT scans
and PRM classification distributions (bottom row) showing normal parenchyma (green), small
airways disease (yellow), and parenchymal disease (purple) in the four lung cancer patients that
incurred Grade 2 RP.

Table 7.4: Univariable logistic regression analysis between baseline global lung metrics and grade
2 RP incidence.
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7.5 Discussion

Patients with advanced lung cancer often present for RT with various pulmonary comorbidities,

such as COPD and idiopathic pulmonary fibrosis (IPF). In fact, studies have found that 40-70% of

patients diagnosed with lung cancer have shown a prevalence of COPD [178]. And while IPF is

generally less common (10-20%), the outlook for patients with pre-existing IPF is dismal both in

terms of survival [89] and incidence of severe toxicity [149, 94]. Furthermore, recent studies have

found that pulmonary comorbidities in lung cancer patients are often clustered due to the shared

risk factor of smoking and that patients with combined emphysema and fibrosis had the worst

prognosis [179, 180]. Despite these comorbidities being a known risk factor for the incidence of

RILT and a poor prognostic factor for overall survival, their presence and severity is often unknown

to the radiation oncology team. Given this lack of information, there have been numerous calls for a

better approach to account for comorbidities and functional condition in the treatment management

and risk assessment of lung cancer patients [181, 182].

As an established diagnostic imaging technique used to identify and quantify lung-related dis-

ease, PRM analysis of inspiration/expiration CT scans allows for improved detection and quantifi-

cation of pulmonary abnormalities that may be compromising a patient’s functional condition. In

this thesis, PRM analysis was used to generate global and regional estimates of pulmonary abnor-

malities in 24 lung cancer patients prior to RT. A large deviation in the extent of these pulmonary

abnormalities was observed, suggesting a wide variation in pulmonary condition. Toxicity Case A

in Figure 7.4 was identified as an extreme case. Given the complete bronchial obstruction to the

ipsilateral lung observed on V/Q SPECT, the excessive global PD estimate is thought to be evident

of the patient’s inability to reach complete inspiration, which caused an irregular scan. However,

based on this cohort, 21 out of 24 patients exhibited some form of local elevated pulmonary ab-

normality. As such, these findings suggest a high prevalence of pulmonary disease, that varies in

location on a patient-specific basis, is present in advanced lung cancer patients prior to RT.

While there is a high prevalence of PRM-derived lung abnormalities, these conditions do not

appear to be associated with tumor location. Yet, all 4 patients that incurred Grade 2 RP were
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estimated to have below-average values of PRM-classified normal lung, indicating an elevated

presence of pulmonary abnormalities in these cases. Upon closer examination (Figure 7.4), three

of the four RP cases had elevated PD and one had elevated SAD. While no PRM metrics were

found to be significantly associated with toxicity incidence, patients that incurred grade 2 RP

tended to have less PRM normal lung and received a higher mean lung dose. With only four RP

cases, it is difficult to draw any meaningful conclusions, however, based on known risk factors, it

is expected that patients with pre-existing pulmonary comorbidities and a higher mean lung dose

are at the highest risk for RP [84].

PRM of CT scans was used as an indicator for a subset of pulmonary comorbidities. The

strength of PRM is its ability to classify individual voxels as normal, SAD, emphysema, and PD

using high-resolution inspiratory and expiratory CT scans (Figure 7.1). In contrast to emphysema

and SAD, PRM-derived PD, which is classified based on -810 HU at full inflation, is less specific.

This quantitative index signifies a high attenuation area (HAA) initially used to account for the

presence of infection in hematopoietic stem cell transplantation recipients that develop bronchi-

olitis obliterans syndrome [169]. Subsequently, the PD classification has been applied to quantify

fibrosis and pulmonary pneumonitis [170, 171]. This interpretation of PD is similar to other previ-

ously published work using similar strategies to evaluate pulmonary inflammation using HAA on

CT scans [183].

The increased lung attenuation, i.e. PRM-derived PD, observed in this cohort can be consid-

ered to be an indirect readout of local inflammation within the lung parenchyma. This would be

consistent with two studies that attributed local inflammation to elevated levels of FDG-PET in

advanced lung cancer patients that developed RP following RT [98, 155]. While the Castillo et al

study did not find any association between CT-based lung density and RP incidence, other studies

have found baseline lung density as a determinant of radiation-induced lung damage and have pro-

posed personalizing RT to avoid high density lung as a way to improve patient outcome [184, 185].

Furthermore, numerous other studies have previously reported the presence of pulmonary comor-

bidities as a significant risk-factor in the development of radiation-induced lung toxicity following
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RT [84, 85, 88, 87]. Thus, while most functional imaging modalities have relied on quantifying

perfusion and/or ventilation as a surrogate for lung function, it is possible that utilizing PRM-

based classifications may provide an enhanced understanding regarding the patient-specific risk

for developing RP.

Figure 7.5: Lung Density Analysis (LDA) visualization provided through collaboration with Im-
bio, LLC. Quantitative estimates are shown for the global and regional lung structures (top), and
the spatial distribution is displayed across various slice orientations (bottom).

To better understand and act upon these specific abnormalities in individual patients, three-
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dimensional voxel-wise maps of PRM classifications can be generated on a patient-specific basis

and presented to the radiation oncology team as tool for both qualitative and quantitative assess-

ment of pulmonary condition. Through a collaboration with Imbio, LLC, a cloud-based solution

has been implemented at the University of Michigan to generate PRM images and metrics (Fig-

ure 7.5), which successfully demonstrates the translation of this established diagnostic technique

in therapeutic applications. It is also possible to produce volume density maps for each PRM

classification for use in PRM-guided treatment planning (Figure 7.6). The Jacobian determinant

between the inspiration and expiration scan, a measure of biomechanical deformation, can also be

quantified to provide an additional metric to assess ventilation and compare to other functioning

imaging modalities, e.g. V/Q SPECT. Although larger scale studies are needed to decipher the true

benefit of these PRM metrics in the management and risk assessment of lung cancer patients un-

dergoing RT, this chapter provides a blueprint for an exciting new approach to quantify pulmonary

abnormalities in lung cancer patients prior to, during, and following treatment.

Figure 7.6: Workflow used to process and spatially align high-resolution inhale/exhale CT scans
to the treatment planning CT and V/Q SPECT images. PRM metrics for normal and dysfunctional
lung can be visualized through voxelwise classifications (bottom) or volume density maps (top).
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Although larger scale studies are needed to decipher the true benefit of these PRM metrics in

the management and risk assessment of lung cancer patients undergoing RT, this chapter provides a

blueprint for an exciting new approach to quantify pulmonary abnormalities in lung cancer patients.

Several limitations of this imaging technique must be explicitly noted. First, the limited number

of cases included resulted in insufficient statistical power to conclusively demonstrate PRM metrics

as predictive of RILT. Nonetheless, these findings provided some indication of the potential of

PRM metrics to identify at-risk patients. In addition, the spatially retained information in PRM

provides an opportunity to incorporate this approach into radiation dose planning to avoid regions

of lung abnormalities that may, upon irradiation, stimulate RILT onset. Secondly, advanced lung

cancer patients may have difficulties in performing the required breath holds, sometimes up to

30 seconds, during CT acquisitions, required for PRM. This could result in insufficient inflation

or deflation of lungs altering the lung densities on the CT scans, which would affect the PRM

quantitative measurements. Although there is a possibility for error, the protocols used in this

method are standard for evaluating patients with chronic lung disease, such as COPD, by CT in

thoracic radiology and the feasibility of acquiring paired CT has been demonstrated in many large

clinical trials [186, 187]. Furthermore, all patients enrolled in the trial were able to complete the

breath-hold requirements.

7.6 Conclusion

High-resolution, inspiration/expiration paired-CT scans were used to quantify pulmonary ab-

normalities, through parametric response mapping (PRM), in lung cancer patients prior to un-

dergoing RT. As such, this investigation demonstrated the use of PRM analysis as an alternate

imaging modality with the potential to provide pulmonary disease information for lung cancer pa-

tients prior to RT. Ultimately, this standard imaging approach may prove useful in the radiation

oncology clinic as the basis for spatial prioritization in personalized treatment planning and risk

assessment of RP incidence, and future studies in these areas are ongoing.
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CHAPTER VIII

Conclusions and Future Work

8.1 Summary of Findings

Based on the results of this thesis, we propose three separate dose-function pathways that lead

to radiation-induced lung toxicity: 1) Excessive functional damage in the lung exceeds the capabil-

ity of the functional reserve to maintain normal respiration, 2) high dose to the lower lung region

aggravates an anatomical sensitivity, and 3) high dose to diseased regions provokes a negative

reaction due to the exacerbation of pulmonary comorbidities.

In patients with homogeneous lung function or a pronounced lack of pulmonary comorbidities,

it is clear that dose should be delivered sparingly to the normal tissue such that functional damage is

minimized, given that normal- and high-functioning lung is damaged at the highest rate. However,

it is also important to consider the delivered dose to each individual lung, not just the global lung

dose constraints, to ensure the ipsilateral lung is not overwhelmed, such that it cannot sufficiently

perform gas exchange and can no longer maintain an effective oxygen capacity.

Alternatively, understanding the effect of dose to low-functioning lung is critical in non-small

cell lung cancer patients who commonly present with comorbidities and other pulmonary defects

that change during the course of fractionated radiation treatment. In fact, we hypothesize that the

optimal radiation prescription varies on a patient-specific basis and is a delicate balance between

limiting functional damage and avoiding diseased lung, which may be hypersensitive to radiation

and cause excessive damage outside of the high dose regions. Further work in this area is required
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to understand the underlying factors that may be contributing to these various responses, and it is

suggested that imaging techniques that can combine information regarding pulmonary function, bi-

ological factors, such as cytokines and mRNAs, as well as pre-existing disease will all be crucially

important to better understand optimal patient-specific strategies for treating NSCLC patients with

radiation.

8.2 Future Work

While this type of precision discovery is elemental in understanding how patients respond to

treatment, the ultimate goal in cancer medicine are individualized treatments informed by person-

alized parameters. In their 2000 work titled “The Hallmarks of Cancer”, Hanahan and Weinberg

stated:

We forsee cancer research developing into a logical science, where the complexities

of the disease, described in the laboratory and clinic, will become understandable in

terms of a small number of underlying principles

Ultimately, this sentiment regarding the treatment of cancer can be equally applied to reduc-

ing toxicity, and as a next step in this research, I believe it is imperative to further develop and

test The Hallmarks of Toxicity, i.e. a small number of principles, or pathways, that describe the

primary factors leading to toxicity incidence. While these hallmarks could be determined for any

disease site or treatment modality, this research specifically identified three separate hallmarks of

radiation-induced lung toxicity {1) large functional damage fraction, 2) high dose to lower lung,

and 3) high dose to low-functioning lung}, and the best way to vet and further develop these find-

ings is to continue to gather data regarding these vulnerabilities. And while there are a myriad of

confounding factors that may ultimately contribute, it is necessary to make assumptions to identify

the properties that are most prominent and easy to act upon. To this end, Figure 8.1 demonstrates

a proposed mechanism, “The Data Box”, in which the principles of RILT, and the metrics that

describe them, can be gathered, applied, and adjusted through a continuous process that will allow
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for each patient’s risk to be assessed against the current hallmarks and stored for future modifica-

tion. Furthermore, the hallmarks for RILT must be weighed against the risk of tumor recurrence,

given that reducing toxicity incidence is only a piece of the cancer puzzle.

Although SPECT imaging has proven to be challenging to obtain in the Radiation Oncology

clinic, limiting the predicted functional lung damage during the treatment planning process, based

on the derived patient-specific dose-function response estimates, has the potential to reduce the

incidence of toxicity following radiotherapy. Therefore, these dose-function models should be

further refined (especially in regard to incorporating a component of reperfusion) and implemented

to model individual outcomes. It may also be possible to include a quantitative risk metric to

weight the locational sensitivity of the delivered radiation. To further examine our finding that

patients with pulmonary dysfunction were at an increased risk for toxicity incidence, we propose

further testing the potential for parametric response mapping to quantify specific phenotypes of

pulmonary disease, including SAD, fibrosis, and emphysema. Whether through SPECT or PRM

analysis, quantifying global and regional metrics within a larger patient population may help to

contribute a precision database that can characterize the expected health and homogeneity expected

for normal and abnormal patients. Based on the results of this proposed research, a functional

normal tissue complication probability risk assessment could be developed to account for patient-

specific pulmonary sensitivities and expected functional lung damage to enhance the prescription

and development of personalized radiation treatment plans for NSCLC patients.
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Figure 8.1: A theoretical approach to utilize functional lung metrics and models to enhance patient-
specific radiation treatments using a historical database that tracks successes and failures and im-
plements weighting based on the established principles of RILT.
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APPENDIX A

Dose-Function Analysis Batch Code Input File
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UN EclipseID Course Plan Type Plan Name SBRT CT Study CT Series

1 $2006040_VA001 Eclipse PlanSum AAA PLN 34 No none Series

2 $2006040_UM001 Eclipse ExternalBeam AAA PLN 3 No none Series

3 $2006040_UM002 Eclipse ExternalBeam AAA PLN 1 Yes none Series

4 $2006040_VA002 Eclipse ExternalBeam AAA PLN 1 No none Series

5 $2006040_VA004 Eclipse PlanSum Plan Sum No none Series 1607

6 $2006040_UM004 Eclipse PlanSum AAA PLN 2223 No none Series

7 $2006040_VA005 Eclipse PlanSum AAA PLN 34 No none Series

8 $2006040_UM005 Eclipse ExternalBeam AAA PLN 1 No none Series

9 $2006040_VA006 Eclipse PlanSum AAA PLN 34 No none2 Series 4743

10 $2006040_UM006 Eclipse PlanSum AAA PLN 45 No none1 Series

11 $2006040_VA007 Eclipse ExternalBeam AAA PLN 2 No none Series

12 $2006040_UM007 Eclipse PlanSum Plan Sum Yes none Series

13 $2006040_VA008 Eclipse ExternalBeam AAA PLN 2 No none Series

14 $2006040_UM008 Eclipse ExternalBeam AAA PLN 3 Yes none Series

15 $2006040_VA009 Eclipse PlanSum AAA PLN 34 No none Series

16 $2006040_UM009 Eclipse ExternalBeam AAA PLN 1 Yes none Series

17 $2006040_UM010 Eclipse PlanSum AAA PLN 12 No none Series

18 $2006040_VA011 Eclipse ExternalBeam AAA PLN 2 No none Series

19 $2006040_UM011 Eclipse ExternalBeam AAA PLN 1 No none Series

20 $2006040_UM012 Eclipse ExternalBeam AAA PLN 6 No none Series

21 $2006040_VA013 Eclipse PlanSum AAA PLN 34 No none Series

22 $2006040_UM013 Eclipse ExternalBeam AAA PLN 1 Yes none Series

23 $2006040_VA014 Eclipse PlanSum AAA PLN 34 No none Series

24 $2006040_VA015 Eclipse ExternalBeam AAA PLN 2 No none Series

25 $2006040_UM015 Eclipse ExternalBeam AAA PLN 1 No none Series

26 $2006040_VA016 Eclipse ExternalBeam AAA PLN 2 No none Series

27 $2006040_VA017 Eclipse PlanSum AAA PLN 23 No none Series

28 $2006040_VA018 Eclipse ExternalBeam AAA PLN 2 No none Series

29 $2006040_VA019 Eclipse ExternalBeam AAA PLN 2 No none Series

30 $2006040_UM019 Eclipse ExternalBeam AAA PLN 1 No none Series

31 $2006040_VA020 Eclipse ExternalBeam AAA PLN 2 No none Series

32 $2006040_UM020 Eclipse PlanSum AAA PLN 12 No none1 Series

33 $2006040_VA021 Eclipse PlanSum AAA PLN 45 No none Series

34 $2006040_UM021 Eclipse ExternalBeam AAA PLN 1 No none Series

35 $2006040_VA022 Eclipse ExternalBeam AAA PLN 2 No none Series

36 $2006040_UM023 Eclipse PlanSum AAA PLN 12 Yes none3 Series

37 $2006040_VA024 Eclipse PlanSum AAA PLN 34 No none Series

38 $2006040_UM024 Eclipse ExternalBeam AAA PLN 1 Yes none4 Series

39 $2006040_VA025 Eclipse PlanSum AAA PLN 456 No none Series

40 $2006040_UM025 Eclipse PlanSum AAA PLN 23 No none Series

41 $2006040_VA026 Eclipse PlanSum AAA PLN 34 No none Series

42 $2006040_UM026 Eclipse PlanSum AAA PLN 25 No none Series

43 $2006040_VA027 Eclipse PlanSum AAA PLN 456 No none Series

44 $2006040_UM027 Eclipse ExternalBeam AAA PLN 1 No none Series

45 $2006040_VA028 Eclipse PlanSum AAA PLN 2122 No none Series

46 $2006040_UM028 Eclipse ExternalBeam AAA PLN 1 Yes none Series

Figure A.1: Dose Function Analysis Batch Code Input File
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UN EclipseID Course Plan Type Plan Name SBRT CT Study CT Series

47 $2006040_VA029 Eclipse PlanSum AAA PLN 34 No none Series

48 $2006040_VA030 Eclipse PlanSum AAA PLN 45 No none Series

49 $2006040_UM030 Eclipse ExternalBeam AAA PLN 1 Yes none Series

50 $2006040_VA031 Eclipse ExternalBeam AAA PLN 2 No none Series

51 $2006040_UM031 Eclipse ExternalBeam AAA PLN 1 Yes none Series

52 $2006040_VA032 Eclipse ExternalBeam AAA PLN 2 No none Series

53 $2006040_UM032 Eclipse PlanSum AAA PLN 12 No none Series

54 $2006040_VA033 Eclipse ExternalBeam AAA PLN 2 No none Series

55 $2006040_UM033 Eclipse ExternalBeam AAA PLN 1 Yes none Series

56 $2006040_VA034 Eclipse PlanSum AAA PLN 34 No none Series

57 $2006040_VA035 Eclipse PlanSum Plan Sum No none Series

58 $2006040_UM035 Eclipse ExternalBeam AAA PLN 1 Yes none Series

59 $2006040_VA036 Eclipse PlanSum AAA PLN 34 No none Series

60 $2006040_UM036 Eclipse ExternalBeam AAA PLN 1 Yes none Series

61 $2006040_UM037 Eclipse ExternalBeam AAA PLN 3 No none Series

62 $2006040_VA038 Eclipse ExternalBeam AAA PLN 2 No none Series

63 $2006040_UM039 Eclipse PlanSum AAA PLN 25 No none Series

64 $2006040_VA040 Eclipse PlanSum AAA PLN 45 No none Series

65 $2006040_UM040 Eclipse ExternalBeam AAA PLN 1 No none Series

66 $2006040_VA041 Eclipse ExternalBeam AAA PLN 6 No none Series

67 $2006040_UM042 Eclipse ExternalBeam AAA PLN 1 No none Series

68 $2006040_UM043 Eclipse ExternalBeam AAA PLN 2 No none Series

69 $2006040_VA044 Eclipse ExternalBeam AAA PLN 8 No none Series 2654

70 $2006040_UM044 Eclipse PlanSum Plan Sum No none Series

71 $2006040_VA045 Eclipse ExternalBeam AAA PLN 19 Yes none Series 2659

72 $2006040_UM045 Eclipse PlanSum Plan Sum No none Series

73 $2006040_UM046 Eclipse ExternalBeam AAA PLN 1 No none Series

74 $2006040_VA047 Eclipse ExternalBeam AAA PLN 6 Yes none Series 3111

75 $2006040_UM047 Eclipse ExternalBeam AAA PLN 2 Yes none Series

76 $2006040_VA048 Eclipse ExternalBeam AAA PLN 13 Yes none Series 2360

77 $2006040_UM048 Eclipse ExternalBeam AAA PLN 1 No none Series

78 $2006040_VA049 Eclipse ExternalBeam AAA PLN 2 Yes none Series

79 $2006040_UM049 Eclipse ExternalBeam AAA PLN 3 No none Series

80 $2006040_VA050 Eclipse ExternalBeam AAA PLN 4 Yes none Series

81 $2006040_VA051 Eclipse PlanSum AAA PLN 78 Yes none Series

82 $2006040_VA054 Eclipse ExternalBeam AAA PLN 3 No none Series

83 $2006040_VA055 Eclipse ExternalBeam AAA PLN 2 Yes none Series

84 $2015035_UM001 Eclipse PlanSum Plan Sum No none Series29

85 $2015035_UM002 Eclipse PlanSum Plan Sum No none Series2

86 $2015035_UM003 Eclipse PlanSum Plan Sum No none Series11

87 $2015035_UM004 Eclipse PlanSum Plan Sum No none Series33

88 $2015035_UM005 Eclipse PlanSum Plan Sum No none Series28

89 $2015035_UM006 Eclipse PlanSum Plan Sum No none1 Series21

90 $2015035_UM007 Eclipse PlanSum Plan Sum No none Series

91 $2015035_UM008 Eclipse PlanSum Plan Sum No none6 Series

92 $2015035_UM009 Eclipse PlanSum Plan Sum No none Series6



UN EclipseID Course Plan Type Plan Name SBRT CT Study CT Series

93 $2015035_UM010 Eclipse PlanSum Plan Sum No none2 Series9

94 $2015035_UM011 Eclipse ExternalBeam Dose Plan No none Series20

95 $2015035_UM012 Eclipse PlanSum Plan Sum No none2 Series11

96 $2015035_UM013 Eclipse PlanSum Plan Sum No none3 Series

97 $2015035_UM014 Eclipse PlanSum Plan Sum No none7 Series

98 $2015035_UM015 Eclipse PlanSum Plan Sum No none1 Series

99 $2015035_UM016 Eclipse PlanSum Plan Sum No none1 Series11

100 $2015035_UM017 Eclipse PlanSum Plan Sum No none Series3

101 $2015035_UM018 Eclipse PlanSum Plan Sum No none Series10

102 $2015035_UM019 Eclipse PlanSum Plan Sum No none1 Series

103 $2015035_UM022 Eclipse PlanSum Plan Sum No none Series7

104 $2015035_UM023 Eclipse PlanSum Plan Sum No none Series7

105 $2015035_UM024 Eclipse PlanSum Plan Sum No none2 Series8

106 $2015035_UM025 Eclipse PlanSum Plan Sum No none Series21

107 $2015035_UM026 Eclipse PlanSum Plan Sum No none5 Series

108 $2015035_UM027 Eclipse PlanSum Plan Sum No none3 Series

109 $2015035_UM028 Eclipse PlanSum Plan Sum No none Series7

110 $2015035_UM029 Eclipse PlanSum Plan Sum No none6 Series

111 $2015035_UM030 Eclipse PlanSum Plan Sum No none7 Series9

112 $2015035_UM031 Eclipse PlanSum Plan Sum No none Series2

113 $2015035_UM032 Eclipse PlanSum Plan Sum No none1 Series3



UN EclipseID

1 $2006040_VA001

2 $2006040_UM001

3 $2006040_UM002

4 $2006040_VA002

5 $2006040_VA004

6 $2006040_UM004

7 $2006040_VA005

8 $2006040_UM005

9 $2006040_VA006

10 $2006040_UM006

11 $2006040_VA007

12 $2006040_UM007

13 $2006040_VA008

14 $2006040_UM008

15 $2006040_VA009

16 $2006040_UM009

17 $2006040_UM010

18 $2006040_VA011

19 $2006040_UM011

20 $2006040_UM012

21 $2006040_VA013

22 $2006040_UM013

23 $2006040_VA014

24 $2006040_VA015

25 $2006040_UM015

26 $2006040_VA016

27 $2006040_VA017

28 $2006040_VA018

29 $2006040_VA019

30 $2006040_UM019

31 $2006040_VA020

32 $2006040_UM020

33 $2006040_VA021

34 $2006040_UM021

35 $2006040_VA022

36 $2006040_UM023

37 $2006040_VA024

38 $2006040_UM024

39 $2006040_VA025

40 $2006040_UM025

41 $2006040_VA026

42 $2006040_UM026

43 $2006040_VA027

44 $2006040_UM027

45 $2006040_VA028

46 $2006040_UM028

CT Image PreTx Q SPECT Study PreTx V SPECT Study

IMAGE:CT N/A N/A

CTSIM Initial PERF Initial VENT

CTSIM Initial PERF Initial VENT

IMAGE:CT N/A N/A

IMAGE:CT Initial PERF Initial VENT

CTSIM Initial PERF Initial VENT
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CTSIM Initial PERF Initial VENT
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CTSIM Initial PERF Initial VENT



UN EclipseID

47 $2006040_VA029

48 $2006040_VA030

49 $2006040_UM030

50 $2006040_VA031

51 $2006040_UM031

52 $2006040_VA032

53 $2006040_UM032

54 $2006040_VA033

55 $2006040_UM033

56 $2006040_VA034

57 $2006040_VA035

58 $2006040_UM035

59 $2006040_VA036

60 $2006040_UM036

61 $2006040_UM037

62 $2006040_VA038

63 $2006040_UM039

64 $2006040_VA040

65 $2006040_UM040

66 $2006040_VA041

67 $2006040_UM042

68 $2006040_UM043

69 $2006040_VA044

70 $2006040_UM044

71 $2006040_VA045

72 $2006040_UM045

73 $2006040_UM046

74 $2006040_VA047

75 $2006040_UM047

76 $2006040_VA048

77 $2006040_UM048

78 $2006040_VA049

79 $2006040_UM049

80 $2006040_VA050

81 $2006040_VA051

82 $2006040_VA054

83 $2006040_VA055

84 $2015035_UM001

85 $2015035_UM002

86 $2015035_UM003

87 $2015035_UM004

88 $2015035_UM005

89 $2015035_UM006

90 $2015035_UM007

91 $2015035_UM008

92 $2015035_UM009

CT Image PreTx Q SPECT Study PreTx V SPECT Study

IMAGE:CT Initial PERF Initial VENT
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UN EclipseID

93 $2015035_UM010
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UN EclipseID

47 $2006040_VA029
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APPENDIX B

Dose-Function Modeling Supplementary Data

Figure B.1: Overlaid population-averaged data points and logistic models describing the perfusion
dose-function response for conventional RT and SBRT patients.
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Figure B.2: Perfusion dose-function response models stratified by baseline intensity with included
reperfusion allowed at mid-treatment.
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APPENDIX C

Toxicity Analysis Supplementary Data

Figure C.1: Comparison between the functional categorizations within each patient in the 2006.040
“Old SPECT” cohort and the 2015.035 “New SPECT” cohort.
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Figure C.2: Cox proportional hazard model for the time to toxicity in the 2006.040 cohort with 9
toxicity cases out of 76 total conventionally fractionated RT patients.
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Figure C.3: Scatter plot of the V20 versus fV20 values in the 2006.040 cohort.
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Figure C.4: Box plots demonstrating the longitudinal change in the fV20 metric within the global
lungs (top) and ipsilateral lung (bottom) for patients in the 2006.040 cohort.
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The gray level size zone matrix (GLSZM) features provide information on the size of homoge-

neous zones for each grey-level in 3-dimensions. and short-zone low gray-level emphasis (SZLGE)

is the distribution of the short homogeneous zones with low gray-levels as given by:

SZLGE =
1
H ∑

i
∑

j

GLSZM(i, j)
i2 j2 (C.1)

where GLSZM(i,j) corresponds to the number of homogeneous zones ofj voxels with the intensity

i and H is the total number of homogeneous zones.

The SZLGE feature increases when the texture is dominated by many short runs of low gray-

level value. On the contrary, a low value of the SZLGE feature would suggest a lack of homoge-

neous short-zone low gray-level values.

Table C.1: Spearman correlation coefficients between GSZLM radiomics features and RILT was
calculated using the treatment planning CT in 59 conventional RT patients from the 2006.040
cohort.
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