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ABSTRACT

A cycle index is a polynomial that encodes information about the orbits of a finite
group action on a finite set, which is used in combinatorics to count various objects
up to group actions. In this thesis, we give a general framework for the cycle indices
of a sequence of finite group actions on finite sets and study how certain cycle indices

can be used in algebraic geometry and number theory.

As motivating examples, we will see how the zeta series of a projective variety
over a finite field is related to the cycle indices of symmetric groups and how the
distribution of the cokernel of a Haar random matrix over the p-adic integers is related
to the cycle indices of conjugation actions of general linear groups on matrices over

the finite field ), of p elements.

vi



CHAPTER 1

Introduction

A generating function is a power series fq(u) = ag + aju + asu? + - - -, whose coef-
ficients consist of information a = (ag, ai, as, . ..) that we would like to understand.
When ag, aq, as, ... come from objects that form a particular structure, we may try
to reflect such a structure to the generating function f,(u). Then such a reflection

often helps us see a feature of ag, a1, as,... that was not obvious in the first place.

For example, let a, be the number of ways to color n points without ordering,
with the colors chosen from a finite set X, allowing repetitions. That is, we have
= |Sym"(X)|, where Sym"(X) := X™/S,, with respect to the action of S,, on X™

by permuting coordinates. One can quickly realize that

§|Sym :(1+U+u2+..,)|X:( 1 )Xl

1—wu

di ..

since a monomial of the form u u? corresponds to a coloring with [ colors on

dy,...,d; points.

When X is a compact complex manifold, it turns out that we have

i X (Sym™(X))u" = (1 i U>X(X),

n=0




a rational formula for the generating function of the Euler characteristics of the
symmetric powers of X, which is due to Macdonald in | |. This generalizes
the counting result in the previous paragraph when X is a finite set by giving it the
discrete topology. In the same paper, Macdonald also showed that we can compute
all the Betti numbers of the symmetric powers of X in a similar manner. That is,

we have
& s (1 — ) (1 — 2Ly baa (X0
Z Xt ym ) (1 _ u)bO(X) (1 _ t2du)b2d(x) )

where d is the (complex) dimension of X and

a power series' in ¢ with integral coefficients, defined for any topological space Y
with finite singular Betti numbers. This generalizes the result about the Euler char-

acteristics of (Sym"(X))nez., by taking ¢ = 1.

There is an arithmetic analogue of the rational generating functions we have dis-
cussed so far. Let X be a quasi-projective variety over a finite field F,. Then the
symmetric powers Sym"(X) are also varieties over Fy, so we can discuss their sets
Sym"(X)(F,) of F,-points. Consider the zeta series Z x(u) of X, with the following
three equivalent expressions?:

Zx(w) = T] 1= = exp<2 A ) 35 s Ol

z€| X|

'We shall call x;(Y) the Poincaré series of Y although it is more common to use the termi-
nology for x (4 (Y’), the generating function for b;(Y'). If b;(Y’) = 0 for all large enough 7, we have
x1(Y) = x(Y), the Euler characteristic of Y.

2The second expression is evidently well-defined, so we often use this as the definition of Z x (u).
The fact that the first and the second expressions are the same can be found in | , Proposition
2.7]. The fact that the first and the third expressions are the same can be found in | , Proposition
7.31]. We provide a separate proof that the second and the third expressions as the same.



where | X| now means the set of closed points of X. That is, the zeta series of X
is the generating function of the F -point counts of the symmetric powers of X. A
result of Dwork | | says that the zeta series is rational. A cohomological

version of this theorem due to Grothendieck says

o det(id g x) — Fr* v ju) - - - det(id jrzact ) — Fr* u
3 Sy () (8, = Sorimen = Py o) detidmnnipo = Myt
n=0 det(ldHO(X) - Frq,X,OU’) Tt det(lded(X) — Frq,X,Zdu)

where H'(X) is the i-th compactly supported étale cohomology group of X F, =
X x SpeC(Fq)Spec(Fq) with Q;-coefficients for some prime [ not dividing ¢ and F' = Fr, x
is the Frobenius endomorphism on X, which is the map from X to itself given by
the identity on the underlying topological space and the ¢-th power map on the

structure sheaf Oy.

The first theorem we state combines the above rationality results altogether?:

Theorem 1.1. Let X be either a compact complex manifold of dimension d or a
quasi-projective variety of dimension d over a finite field F,. Then for any endomor-

phism F on X, we have

i S m" *)un _ det(idyl(x) - Fl*tu) .. -det(ided—l(X) _ FQ*d_1t2d_1u)
n=0 y det(idHO(X) — F(;“u) .. .det(ided(X) _ FQ*dtzdu> )

where

o H'(X) is the i-th singular cohomology group of X with Q-coefficients when X

1s a compact complexr manifold,

o H'(X) is the i-th compactly supported étale cohomology group ofX/Fq = X XSpec(F,)
Spec(Fq) with Qp-coefficients when X is a quasi-projective variety over F, for

some prime l,

3Vakil discussed this in Arizona Winter School 2015 | ] when ¢ = 1. The method we
choose, a generalization of Macdonald’s method, seems different from Vakil’s.



e Sym"(F) is the endomorphism on Sym"(X) induced by F,

e ¥ is the endomorphism on H'(X) induced by F, and

7

o Li(¢) := D7 (—t)"Tr(¢}), the alternating generating function of traces of a
gwen graded linear endomorphism ¢ = (—D;io @; on a graded vector space V =

P2, Vi with finite-dimensional V; for all i € Zs.

Remark I.2. When X is a compact complex manifold of dimension d, we may
take F' = idx, the identity of X, in the singular setting of Theorem 1.1 to recover
Macdonald’s formula, which we repeat here:

o0 _
. n (1 — tu)?1 ) (1 — 2 1gy)b2a1(X)
Z_;)Xt(SYm (X)u" = (1 — w)(X) o (1 — ¢2dq)b2a(X)

When X is a quasi-projective variety over F,, we may take ' = Fr, x and ¢ = 1 in
the [-adic setting of Theorem 1.1 to recover Grothendieck’s formula, which we repeat
here:

det(id g1 (xy — Fry x qu) - - - det(id gaa-1xy — Fry x 0q 1)

Y

0
Sym™(X)(F,)|u" = : s : L
nZ]o| (X)(Fo)] det(idgo(xy — Frq,X70u) -+ det(id gaa(x) — Frq,X,Qdu)

where we used the Grothendieck-Lefschetz trace formula L, (Fr;y) = |Y(F,)| for

Y = Sym"(X) with [ { ¢, noticing that Sym"(Fry x) = Frg symn(x)-

We will see that Theorem 1.1 is a combinatorial corollary of the following:

Theorem 1.3. Assume the same hypotheses as in Theorem I.1. Let G be a subgroup

of S,, with n € Z=,* acting on X™ by permuting coordinates. Then

L((F"/G)*) = Za(Le(F™), L (F*)?), ... Len (F*)™),

4Note that Sy is the trivial group because there is a unique map from the empty set to any set.



where F"/G is the endomorphism of X" /G induced by F and

1 m m
ZG(J;) = ZG(:CD s 7'%.71) = @ Z L1 9) o .xnn(g) € Q[:Clu s 7xn]7

geG

denoting by m;(g) the number of i-cycles in the cycle decomposition of g in S,.

Remark I.4. The polynomial Zg(z1, ..., z,) in Theorem 1.3 is called the cycle in-
dex of G in S,,. This polynomial was independently introduced by Redfield | ]
and Poélya | ] (or | |) to count the number of colorings on a graph mod-
ulo symmetries (e.g., Theorem II1.1). Applying Theorem 1.3 to the case where X is

a compact complex manifold and F' = idx, we get

Xe(X"/G) = Za(xie(X), xe2(X), .., xan (X)),

which is a result of Macdonald | |. When we take X to be a quasi-projective
variety over F, and F' = Fr, x, Theorem 1.3 computes the number [(X"/G)(F,)| of

[F,-points on the quotient variety X" /G as follows:
[(X7"/G) ()| = Za(IX (Fg)|, | X (Fe2)l, -, [X (Fgn)])

by applying the Grothendieck-Lefschetz trace formula L; ((Fr},)") = |V (F4r )|, where
Y is any variety over F, and r € Z~,. Using Theorem 1.3, we can obtain an analogue
of Theorem 1.1 for alternating groups, which is available in [ ]. We do not

discuss this analogue in this thesis.

Remark I.5. Theorems I.1 and 1.3 hold in much greater generality (e.g., Theorem
I11.13 and Corollary I11.14). A sufficient set of axioms for theses statements to be

true is given in Section 3.4.



The key formula (Lemma I1.12) about the generating function of the cycle indices

of (Sn)n=0, which is used in showing that Theorem 1.3 implies Theorem 1.1, is

< e}
Z Zs, (@1, - wn)u" = H Z ng:: = exp (Z $Trur> :
n=0

r€Zl>1 MElxg r=1

A proof of this implication is provided more generally in the proof of Corollary III.10.

To get an idea about how this formula can be used, apply
[Sym™(X)(Fy)| = Zs, (IX (F)|, [X (Fe2)], .., [X (Fgn)]),
a special case of Theorem 1.3, to the above identity to get

> Sy (X)) u = exp (2 M) ,

which shows the equivalence of the two definitions of the zeta series Zx (u) of X.

The formula for the generating function of the cycle indices of symmetric groups
is an example of what we call a factorization formula in Chapter II. More specif-
ically, Lemma II.11 provides a general factorization formula for the cycle indices of
a sequence (G, G E,)n=o of finite group actions on finite sets with certain condi-
tions (to be explained in Chapter II). We will see that the cycle index of S,, can
be identified as the cycle index of its conjugation action to itself. Another use of
the factorization formula for the generating function of (Zg, (x)),>0 is a proof of the

following theorem by Lloyd and Shepp | |, as explained in | J:

Proposition 1.6 (Lloyd and Shepp). Given distinct dy, ..., d, € Z=, and not neces-

sarily distinct ky, ..., k. € Zsq, where r € Z=q, we have
‘ ma;(9) = k; e (1/d,)
Sz b -

for1<j<r j=1



which means that the number of cycles of length dy, ..., d, of a random permutation
of n letters are asymptotically given by independent Poisson random variables with

means 1/dy, ..., 1/d, when n is large.

The analogous result for matrices over I, is the following:

Theorem 1.7. Fiz any distinct monic irreducible polynomials Py (t), ..., P.(t) € F,[t]

and P -torsion Fy[t]-module H; of finite length for 1 < j <r, where r € Z=o. Then

A|P®| ~ H;
lim Prob F7] ’

n—0 AeMaty, (Fg)

r 1 o .
_ 1— —ideg(P;)
I irerenznil ) Sk B

for1<j<r i=1

where A[P}°] is the (P;)-part of the Fy[t]-module structure on F}, whose t-action is

q )
given by the multiplication by A. In particular, given any distinct aq, ..., a, € Fy, we

have

ai, ..., a. are not © A\
lim Prob = (1—-q ")) .
=1

n—0 AeMat,, (IF .
(Fa) eigenvalues of A

Remark I.8. Theorem 1.7 is proven by using the factorization formula for the cycle
indices of conjugation actions of GL,(F,) on Mat,(F,), the set of n x n matrices
over [F, for n € Z= just as Proposition 1.6 can be proven by using the factorization

formula for the cycle indices of (S,,)nez.,-

Matrices in Mat,,(IF;) can be seen as IF,[t]-modules or sheaves over Ai = Spec(F,[t]).

We will see that the next theorem generalizes Theorem 1.7 by taking X = A}Fq:



Theorem 1.9. Let X be a smooth, projective, and geometrically irreducible curve
over F, minus finitely many closed points. Given any distinct closed points py, ..., Dy

of X, let H; be a finite length module over Ox . for 1 < j <r, wherer € Z=o. Then

fijHj r 1 ®

lim  Prob = (1= g =),
n—>00 []—']EMOd;Z: fOT’ 1< ] <r }_]1: |Autﬁ’x,pj (HJ)| ﬂ

where Mod;f(n is the set of isomorphism classes [ F| of torsion coherent Ox-modules
F with 3¢ x dimz, (Fp) = n, or equivalently | @D, x Fp| = ", denoting by |X| to

mean the set of closed points of X.

The last result in this section is about Haar random matrices in Mat,,(Z,), the
group of matrices over Z,, the ring of p-adic integers. This will be seen as an

application of Theorem 1.7:

Theorem 1.10. Let Pi(t),...,P.(t) € Z,[t] be monic polynomials such that the
reduction modulo p gives distinct irreducible polynomials P (t),...,P.(t) € F,[t],
where r € Z=y. Suppose that deg(P,) = 1. Given any finite abelian p-group H, we

have

coker(P;(A)) =0

1 T o0 ) .
lim Prob fori<j<r—1 - H(l — g tdeaRy)y,

n—00 AeMaty, (Zp) |Autz(H)| J=1ie1
and coker(P,(A)) ~ H
1.1 Contributions
Theorems 1.1 and 1.3 are from | | due to the author. Theorem 1.7 is

originally due to Boreico | ], independently found later by the author and



Huang in [ |, where they proved Theorem 1.10. Theorem 1.9 is from joint

work in process by the author, Haoyang Guo, and Yifeng Huang.

1.2 Outline

In Chapter II, we give a formal definition of the cycle index of an action of a finite
group G on a finite set E. We will see that given a specific set of hypotheses, the
generating function of a family G,, G FE, of such actions index by n € Z-, admits
an interesting factorization, which is the content of Theorem II.11. Then we discuss
examples of such factorizations, which we use in deducing Theorem I.1 from Theorem

[.3 and proving Theorem 1.7 in later chapters.

In Chapter III, we provide the combinatorial origin of Theorem 1.3, called the
Pélya enumeration theorem, which is about counting the number of colorings on the
vertices of a graph modulo symmetries. We give a Hodge-theoretic analogue of this
theorem due to Cheah | | and then prove Theorem II1.13, a more general

theorem that will imply Theorems 1.3 as well as their analogues.

In Chapter IV, we prove Theorems 1.7 and 1.10, restated as Theorems IV.1 and

C. Finally, in Chapter V, we prove Theorem 1.9, restated as Theorem V.1.



CHAPTER I1

Cycle Indices and Their Factorization Formulas

In this chapter, we establish a formalism for cycle indices of finite group actions
and discuss two main examples (Examples 1.3 and I1.4) we will use later. The
most important content of this chapter is Lemma II.11, a combinatorial factorization

formula of the generating function of a sequence of cycle indices.

2.1 Cycle indices of finite group actions
Setting II.1. Suppose that we are given
e aset map d: & — Z-; with a nonempty set &;

e aset map s:Z — Z-( with a nonempty set Z;

a unique element = € Z such that s(x) = 0;

a finite group G acting on a finite set £ (on the left);

e a set injection i : F/G > Homget (22, Z) from the set E/G of G-orbits into the
set Homget (<, T) of set maps from & to Z so that each orbit Ge = [e] € E/G

corresponds to i([e]) € Homget(Z2,Z). We may write i(e), := i([e])(p) for our

10



11

convenience, which makes sense if we consider the composition £ — E/G SN
Homget (A2, Z). We define d : Homgey (P2, Z) — Z=o L {0} by

d(ip)per) = Y s(ip)d(p)

peP

and require
e d(i(E/G)) < Z=y (i.e., the image i(E/G) only takes finite d-values);

e aset map N : & x T — Zx; such that |G| =[] ., N(p,iy(e)) for any e € E,

peL

where G, is the stabilizer subgroup of the given G-action at e € F.

Remark I1.2. We recall that by the orbit-stabilizer theorem, the size of the stabilizer
subgroup is constant on any orbit. Hence, the notation |G[q| is well-defined even

though G is not.

Example I1.3 (Symmetric groups). We take G = S,, = F, and consider the conju-
gation action. Take & = Z-; and Z = Z. Define i : S,,/S,, — Homget(Z>1, Z=0)
by [e] = (myp(e))pez.,. We know ¢ is injective because the n-tuple (m4(e), ..., my(e))
determines the orbit of e € E = S, and all the other m,(e) with p > n are zeros.
We define both d : & = Z>1 — Z>y and s : T = Z-q — Z=o to be the identity
maps, and thus we get * = 0. Then d : Homge(Zs1, Zso) — Zso L {oo} is given by
d(f) = Xpez., f(p)p. Note that any element of the image i(5,/5,) takes only finite
d-values. In fact, we have d(myp(€))pez., = n for any e € £ = S,,. Moreover, we
have d~'(n) = i(S,/S,). Indeed, for any (i,)pes with d((i,)ezr) = Yipezsy P =1,

we have i, = 0 for any p > n, and thus we can choose any e € S,, with i, p-cycles
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for 1 < p < n that are disjoint to each other to have i([e]) = (i,)pez-,. This shows
that d '(n) < i(S,/S,), and the other inclusion holds as well since for any e € S,,,

we have mq(e) + 2ma(e) + - - + nmy,(e) = n.

To check the last condition, fix e € E = S,. For any g € G = S,, we have

g € (Sp)e if and only if geg™! = e. Say e = e;---e, is the cycle decomposi-

tion of e in S,. Then we have geg ' = geig 'geag ™ --ge,g7t, so g € (Sn)e
-1

if and only if g permutes ey,...,e, by conjugation because g(a; -+ ap)g~" =

(g(a1) -++ g(ap)). We claim that there are m,(e)!p™(® ways to construct the p-

cycles of g € S, that permutes ey, ..., e, the cycles of e, by conjugation. To see
this, consider the p-cycles ¢;,, ... €y ANONG €1, ..., €. There are m,(e)! ways to
assign gej, g ', . .. ,gejmp(e)g*1 to €j,, -, €, ., and then for each p-cycle (a1 -+ ay)
among €, - - -, €, s since

glag - Ofp)gfl = (g(a1) -+ g(ap)),

there are p ways to determine g(ay), ..., g(a,). This shows the claim that the number

of such g € S, is

|(Sn)e| = 1_[ mp(e>!pmp(e)’

p=1

so we may take N(p,m) = m!p™ as required.

Example I1.4 (Matrices over finite fields). We take G = GL,,(F,) and £ = Mat,,(F,),
and consider the conjugation action. Take & = |A11Fq|, the set of closed points of
Ag, = Spec(F,[t]), which we identify with the set of monic irreducible polynomi-

als of F,[t], and Z = P, the set of partitions. Define i : Mat,(F,)/GL,(F,) —
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Homset (|Ag, [, P) as follows. Given an orbit [A] € Mat,,(IF,)/GL,(F,) of a matrix A,
consider the Fy[t]-module structure A G F} on [ by defining the ¢-action to be the

multiplication by A. Since F,[¢] is a PID, we have a unique decomposition

AGF) =~ @ (#&Lw@“@ I, [1] )

A
P€|A]%‘q‘ (P(t)))\P,lA,P( )

as [Fy[t]-modules. Define the partition Ap(A) := [Ap1(A),...,Aps, »(A)]. Then we
define i([A]) := ()\P(A))P€|A1y1‘q" or more precisely as i([A]) : P — Ap(A4). We note
that ¢ is injective because the above F[t]-module structure precisely determines the
orbit of A. We define d : |A | — Zz; by d(P) := deg(P) and s : P — Zzg by
s(v) =lv| =1+ -+ y given v = [11,...,y]. It follows that » = ¢F, the empty
partition, and d : Homget (|Ag, [, P) — Zzo u {oo} is given by
d((VP)Pe|A%q|) = Z |VP| deg(P)-
Pela}, |

We claim that d~'(n) = i(Mat, (F,)/GL,(F,)). To see this, choose any (Vp)pe|AI1Fq| €
Homset (|Ag, [, P) with d((Vp)Pe‘AELq‘) = ZPEM%J |vp| deg(P) = n. Then consider the

F,[t]-module

o= &) (e e

where vp = [vpy, ..., vpi,]. The F,-dimension of this module is ZPQA%  lvp| deg(P) =
q

n, so as an [ -vector space, we may consider it as [y, and let A be the endomorphism

on this vector space by the action of ¢, which can be seen as an element of Mat,, (F,).

This gives us i([A]) = (Ap(A)) peas | = (VP)pejat |, Which shows the claim.

To check the last condition, fix A € Mat, (F,). Observe that we have

GLn(Fq)A = Auth[t](A).
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That is, the stabilizer subgroup of the conjugation action GL,(F,) G Mat,(F,) at
A is precisely the automorphism group of the Fy[t]-module A G F;. Note that
(AGT) @ Hpxpa)-
Pe|at |
The right-hand side of the above is a finite product, and the only F,[¢]-linear map
from Hp, , to Hp,, is the trivial map for distinct P, P, € |A11Fq| and any partitions
v,v'. This implies that
Autpg(A) = ] Aute,(Hpapa)
Pe|Al |
so that

GLA(F)al = [Autepy(A)] = [ ] |Aute,p(Heapca)l-

Pe|A[1Fq|
Hence, we may take N(P,v) = |Autg,(Hpy)|, where Hp,, is defined similarly as

above for any partition v = [vq,...,1].

Definition I1.5. Given Setting II.1, we define the cycle index of the action G G F

as the polynomial

Z[E/G = |G| Z Z)S

eeE

where the sequence & = (2[¢])[¢Jer/c is given by

a formal variable if d(i([e])) = d((ip(€))per) = 2 (in(e))d(p) # 0,
i i d(i([e]) = (i (Do) = Sy s(ip(e))d(p) = 0.

Using i : E/G < Homget (<2, Z) with d(i(FE/G)) € Z=o, we may instead write

Zip/c)(@ Z [ ] nince

eeE peP

93[6] =
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where the sequence & = (z,;)pe 2 ez is given by

a formal variable if s(i) # 0,
Lpi =
1 if s(i) = 0.
We note that [],c, Zpi, (e is a finite product. This is because d(i(E/G)) < Zzg so
that >, .5 s(iy(e))d(p) is finite, which implies that only finitely many p € & gives

nonzero s(i,(e)) since all d(p) > 1.

Lemma I1.6. Given Setting I1.1, we have

Ty, [ Les Tninte)
Zigey (@) = Z Zlel _ Z pe ,

[e]eE/G |Gl [e]eE/G

where G, is the stabilizer of the given G-action at e.

Proof. By the orbit-stabilizer theorem, we have |G| = |Ge||G,|, so

eeE

1
:m Z |Ge|x[e]

[e]eE/G
- Zle]
[e]leE/G G

as desired. O

Example I1.7. Assume the hypotheses in Example I1.3. Then

2 7= g7 2 L] anmeer

| n| eESy, | n| €ESy PEL>1

Z15,/51(
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— . s e 1 ml
Instead of ]_[p6221 Tpmp(e) = Tlmi(e) " * Tnmp(e), WE May Write ry

2™ because

either expression precisely encodes information about the orbit [e] = S,e, so we may

identify

with

]' mi(e
7:6”) — Z 'Tl 1( ) ...xmn(e)’

an($17... |S | n

eeSy,

which is the cycle index of S,, we defined in Remark 1.4. However, we will not

consider the cycle index of a general permutation group G < 5, as a cycle index of

a group action.

Example I1.8. Assume the hypotheses in Example I1.4. Then

1
Z[Matn(]Fq)/GLn(]Fq)] (w) = |GL (]Fq)| Z 'Z'[A]
n AeMat, (Fq)

1
T CLAE] oy ol 7

AeMatn(Fy) Pe|Af |

Note that both of Examples I1.3 and I1.4 come with family of finite group actions

parametrized by n € Z~y. This motivates the following modification of Setting II.1:

Setting I1.9. Suppose that we are given

a set map d : & — Z-, with a nonempty set &;

e a set map s:Z — Z-( with a nonempty set Z;

a unique element = € Z such that s(x) = 0;

a family of finite group actions on finite sets G,, G E,, indexed by n € Z-y;
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e a set injection i : E,/G, <> Homge (P, T) for each n € Z-,. We write
i™([e]) = (i5(€))per. We define d : Homgey (92, T) — Z=g L {0} by
d((ip)per) = s(ip)d(p)
peP

and require

o d'(n) =i"(E,/G,) for cach n € Z=. In particular, we have d(i™([e])) =

2pe 8(ip(€))d(p) = n for any e € Ey;

o aset map N : & x T — Zz; such that [(Gn)e| = [ e N(p,ip(e)) for any

neZsyand ee€ E,.

Remark I1.10. The assumption d '(n) = i(™(E,/G,) says that any (i,)pcs €
Homget (2, I) satisfies 3 ., 5(i,)d(p) = n if and only if it belongs to i"(E,/G)).
This will be a crucial condition in Lemma I1.11 for the factorization of the generating

function of cycle indices.

Note that we have already checked that Examples I1.3 and I1.4 both satisfy Setting
I1.9 by taking i = i as well as G = G,, and E = E,, in the examples. The following

lemma is the main result of this chapter, which we will apply for Examples I1.3 and

I1.4:

Lemma II.11 (Factorization). Given Setting I1.9, we have

Z [En/Gn] ( Z Z perélep(e)u"

n=0 eleEn
P

Hzxu)(.

peP i€l
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Proof. Applying Lemma I1.6, we have

l’[e] n
— U
2 [(Gh)el

[e]leEn/Gn

v}

> Zip e, (@ =

n=0

L

ﬁ
o

[Toes Tpip(e
Z PpE p( )un

[ ]EE /G |(Gn)€|

Z [lhe a:p,i,.,@ oS $(in(©)d)
EE /G Hpe@ (p7 Zp(e))

Z H xp zp(e) 1 5Cn(€))d(p)

[e]leEn/Gn peJ p’ Zp

=nzx

peEP €L

Il
MS i MS i MS

3
|

where the last step uses the condition we discussed in Remark I1.10. This finishes

the proof. O

Corollary 11.12. We have

[e] 0 Tou”
T;)an(w)un = exp <Z rr > .

r=1
Proof. Recall from Example IL7 that taking x,, = z;' gives us Zg, /s,(T) =
Zs, (). Applying Lemma I1.11 and our observations from Example I1.3, we have

& ru™P
;ZSTL(.’,C)U” = H Z m|p

pEZ>1 mEZ>0

_ 1—[ 2 (qujn/!p)

p=1m=0
o0
TpuP
=exp | )] ,
=1 P

as desired. O
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The following factorization result for the cycle indices of conjugation actions
GL,(F,) G Mat,(F,) is due to Stong (Lemma 1 in | ]), whose argument
is originally from Kung | | (Corollary I1.14 below), which was used for the
cycle indices of restricted conjugation actions GL,(F,) G GL,(F,). Now, this is im-
mediate by applying Lemma II.11 to our observations from Example 11.4. We write

[Mat,,/GL,](F,) := [Mat,(F,)/GL,(F,)] for convenience.

Corollary 11.13. We have

& & HPe\A}F | TPup(A)
Z [Mat,/GL,](E,) (T)u" = Z Z < 1 u”
n=0 n=0 AEMatn(]Fq) |GLn(Fq)|
0y .y V1 eE(P)
Pe|A} | vEP [Aute, i (Hp,)|
in Qlac][u].

For the following lemma, and throughout the rest of the thesis, we write Zqr,, () () :=

Z[GL,(F,)/GLa(F,)] () for convenience.

Corollary 1I.14 (Lemma 1 in | ). We have
HPG\Al | LPup(A)
Z ZGLn(Fq) Z Z ( . ) u"
n=0 n=0 AeGLy,(F,) |GLn (Fy)|
Oy ol des(P)
Pe|a}, |, veP |Auth (Hpy)l
P(t);ét
in Q[z][u].

Remark I1.15. Our proof of Corollary I1.13 is one step shorter than Stong’s proof. It

will be interesting to check whether all the factorization formulas about cycle indices
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in the literature (e.g., the ones from Fulman’s thesis | ]) can be obtained by
applying Lemma II.11. Moreover, all the cycle indices in the literature that we are
aware of have to do with some conjugation actions, but we speculate that there
are many examples of cycle indices of finite group actions that are not conjugation
actions, yet to be found. Utilizing Lemma II.11 in such situations may be useful to
deal with some new enumeration questions. However, these are not the main foci of

this thesis, so we will not investigate them here.



CHAPTER I11

Cycle Indices of Permutation Groups and Their
Applications to Pdolya Enumeration Theorems

The results in this chapter are from | |. The main goal of this chapter is
to prove Theorems I.1 and 1.3 and their generalizations. We start by discussing

combinatorial origin of Theorem 1.3.

3.1 Podlya enumeration in combinatorics

Consider a finite set X = {xy,...,x,} of colors. A combinatorialist may ask about
how to count the number of ways to color n vertices (which we write as 1,2,...,n)
of a graph with colors drawn from X. The graph may have symmetries, so we want
to count the colorings of n vertices modulo the action of the group G of symmetries
of the graph. This group G is a subgroup of S,,, and each coloring corresponds
to an orbit @ = [z;,,...,2;,] € X"/G = Homge(|n], X)/G under the G-action on
[n] := {1,2,...,n}. We denote by e; := e;(x) the number of x; appearing in x.
Note that ey + -+ + e, = n. Given any (ki,...,k;) € (Zso)" such that Y  k; = n,

we may write N, . ) to mean the number of & € X"/G such that e;(x) = k; for

-----

all 1 <4 < r. We note that our counting problem is equivalent to computing the

21
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following degree n homogeneous polynomial:

PX"/G(t) =Pxn/G(t1,...,t7~) = Z N(kl 77777 kr)tllﬂ'--thEZ[tl,...,tn].
(kl ,,,,, kr)E(Zzo)r,
k1+-4kr=n
A classical theorem of Redfield | |, which was also independently found by
Pélya [ ], computes the polynomial Pxn;(t) in terms of the subgroup G < S,,.

This theorem is often called the Pélya enumeration theorem:

Proposition III.1 (Pdlya enumeration). Given the notation above, we have
Pxnic(t) = Za(t, 8%, . .. 1),
where t/ ;= t + --- + ] and

1 m m
Zg(l'l, . ,l’n) = @ Z 1;1 1(9) . xnn(g)

geG

1s the cycle index of G, defined as in the introduction.

Remark III.2. Note that a special case of Proposition III.1 obtained by taking
ty =1ty =---=1t, =1 says

|wm=52wwx

geG

where m(g) := my(g) + - +my(g), the number of cycles in the cycle decomposition
of g in S,,. This can be easily obtained by applying Burnside’s lemma because
we can compute the size of the set (X™)9 of elements of X" fixed by g € G as
[(X™)9] = | X|™9). We will see that Proposition III.1 follows from Theorem I11.13, a

more general formula.
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Remark III.3. Applying the factorization formula for cyclic indices of symmetric

groups in Lemma I1.12, Proposition III.1 implies that

o (#;+---+tpx)up>

e} e}
Z Pxnys, (t)u" = Z Zs (t, 2, ... t")u" = exp QZ
n=0 n=0

—1 p
_ 3 (tiw)? S ()’ _ !
= exp ZlT>eXp<Z P >_(1—t1u)"'(1_t|XU)'

p=1

In particular, if taking ¢; = 1 for all 7, we have

© 1 |X]
31X Sul” = <1_u> |

Remark ITI.4. We note that Theorem 1.3 is an analogue of the Pélya enumeration
theorem (Proposition III.1). We will see that these are special cases to Theorem

IT1.9.

3.2 Cheah’s result on Hodge numbers

In this section, we introduce an analogue of the Pélya enumeration theorem (Propo-
sition I11.1) in complex algebraic geometry. When X is a smooth projective variety
over C of dimension d, we get a complex manifold structure on X. With respect
to its analytic topology, the variety X (or more precisely, its set X(C) of complex
points) is compact, so Macdonald’s results, introduced in Remark 1.4, are also valid

in this case. Moreover, we have the Hodge decomposition

H'(X) = @ H"(X),

prq=i

where HP(X) := HI(X,Q%), whose coefficients are in C, so it is natural to ask
if Macdonald’s results generalize to the Hodge numbers h?%(X) = dimc(H?(X)).

Indeed, Cheah | ] showed the following:
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Proposition II1.5 (Cheah). Keeping the above notation, we have

0 (—1)ihPa(X)
Sowesoe -1 ()

1=0 p+q=1

where

x:(Y,x,y) : Z Z 2Py (—t) hPI(Y).

1=0 p+qg=1

Remark III.6. We note that Sym"(X) is not necessarily smooth, but we have
H*(Sym" (X)) — H*(X"),
and it turns out that
RP4(Sym™ (X)) = dimc(H*(Sym"™ (X)) n HPI(X™)).

This equality can be taken as definition for our purpose. We can understand the

Hodge numbers of X™/G for any subgroup G' < S, in a similar manner.

Proposition II1.5 follows from applying Corollary I1.12 to the following formula
regarding any permutation group G' < S, which is another analogue of the Pdlya

enumeration theorem (Proposition I11.1):

Proposition II1.7 (Cheah). Keeping the above notation, we have

Xt(Xn/Gan>y) = ZG(Xt(XwIay))XtQ(X) $273/2)7 cee 7Xt”(X7 'In7yn))'

Cheah’s proof essentially reruns Macdonald’s proof in | |, while remem-
bering the tri-grading structure on H*(X"™). The three gradings are associated to
variables u, x, and y in the above formula. We will see that Proposition III.7 also

follows from Theorem II1.13, our general formula.
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3.3 Generalized Pélya enumeration

In this section, we prove Theorem III1.9, a generalized Pdlya enumeration theorem,
which is the main theorem of this chapter. (The following section will deal with its

applications.) Throughout this section, we work over a field k. Let V = @..,V; be

i=0
a graded vector space over k. Given n € Z, consider the n-fold tensor product V"
of V over k, where V¥ = k. We have
Ve - Ve,
r=0

where

i1+t ip =T

This makes V®" a graded vector space over k. Given any subgroup G < S,, we

consider the action of G on V®" according to the Koszul rule. That is, we define

for homogeneous vy, ..., v, € V (i.e., v; € Vieg(v,)) and g € G, where Qg(x1, ..., z,) =

ZKKK” €i;(g)xiz; € L[z, . .., x,] is defined by

1 if g(i) > g(j) and

0 if g(i) < ).

€ij(9) =

It is important to note that this action respects the grading of V®". In particular,

it can be thought of as a family of k-linear maps {G — GLj((V®"),)} ez, -

We will consider traces of linear endomorphisms, so assume that each homogeneous
piece V; of V is finite-dimensional. Let ¢ € Endg(V) be graded (with degree 0)

meaning that ¢ = @,., ¢i, where ¢; € Endi(V;). This means that if v € V is a
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homogeneous element, then ¢(v) € V' is a homogeneous element of degree deg(v) so

that ¢(v) = @aeg(w)(v). We consider the Lefschetz series

Li(@) := Y (=)' Tx(¢) € k[1]

i>0

of ¢ in u. We observe that given another graded endomorphism v = @izﬂ Y; on V

and a constant c € k, we have

Li(¢ + c¥) = Li(9) + cLu(¥).

We also get the induced endomorphism ¢®" € End,,(V®") given by

P (1@ @n) == B(v1) @+ @ B(vn)

for homogeneous vy, . .., v, € V, which hence respects the grading of V®" so that we

can write

¢®n = @(Cb@n)m

r=0

where

(¢®"), = @D ¢i1®---®¢ineEndk((V®”)r)=Endk( P Vh@---@%n).

i1 tin=r i1 =r

Given any g € G < §,, and homogeneous vy, ...,v, € V, we define

(9601 @ @un) = g(¢(v1) @+~ @ p(vn))

This extends to a k-linear endomorphism g¢®* on V", It is important to note that

we have the following commutativity although it is immediate from definitions:

Lemma I11.8. Keeping the notation above, we have

(9% (01 @+ @ vp) = 6" (9(11 @+ ® V).
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We now state the main theorem of this chapter:

Theorem III.9 (Generalized Pélya enumeration). Let ¢ = (‘Bgo ¢; be a graded
endomorphism on a graded vector space V = @,-, Vi over k, where each V; is finite-

dimensional. If the ambient field k is of characteristic that does not divide |G|, then

L6 wone) = Za(Lu(6), Le (), .., Lin(6™)).

Corollary II1.10. Keeping the notation as in Theorem II1.9, assume further that
o V, =0 fori>2d;
e the characteristic of k is 0.

Then

~ det(idy, — ¢rtu) - - det(idy,,_, — @2q- 112 w)
~ det(idy, — gou) - - - det(idy,, — d2at?u)

o8]
Z Lt((b@n | (VOn)Sn )Un
n=0

Proof. Both sides are invariant under taking any field extension of k, so we may
assume that k is algebraically closed. In particular, the field k is now infinite, so we

may assume that ¢ is an element of k. By Corollary I11.12 and Theorem II1.9, we have

D L@ vomsa)u™ = D Zs, (Li(9), Liz(6°), . ., Lin(¢™))u"
n=0

n=0
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Hence, the result follows from the fact that

det(id — uA) = exp (i M) 7

r=1 r

for any linear map A on a finite-dimensional vector space (e.g., | , Lemma 4.12]).

]

Theorem II1.9 will be deduced from the following:

Theorem III.11 (Trace formula on V). Let ¢ = D=0 @i be a graded endo-
morphism on a graded vector space V. = @,., Vi over k, where each V; is finite-

dimensional. For any g € S, we have
Li(g¢®") = Lo(@)™ D Lia (62)"2 - Lin (")) € K[t].

Proof. Since the desired identity is only regarding traces of (homogeneous parts of)
endomorphisms g¢®" and ¢, ¢?, ..., ¢", we may assume that & is algebraically closed.
Both sides of the identity are power series in k[t], so it is enough to show that for
any r € Zsg, their coefficients of " match. This lets us reduce the problem to the
case V =1@---®V, and ¢ = ¢1 P - - - D ¢, essentially because
Ve, = @ Vi®---QV,
P14 tin=r
where the right-hand side only consists of tensor products of V4, ..., V,. In particular,
we are now dealing with the case where d = dimg(V) = dimg (V) + - - - + dimg(V}) is

finite.
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Without any loss of generality, we may assume that d > 1. Considering ¢ €
End (V) = Matg(k) = A?(k), we note that the desired equality for the coefficients
of t" cuts out a closed subset in A% (k), with respect to the Zariski topology (on
the set AdQ(k) of closed points of A% over k) as we can use the Kronecker product
for the matrix form of ¢®". The matrices with distinct eigenvalues form a Zariski
open subset in Matq(k) = A% (k) because we can understand them as points of the
locus whose discriminant of the characteristic polynomial is nonzero. This open
locus is nonempty because k has at least d elements as it is infinite now that we
are in the setting where k is algebraically closed. Thus, such matrices are dense in
Matgy(k) = AT (k), as the affine space is irreducible. This means that it is enough
to show the desired statement for ¢ with d distinct eigenvalues, and this means that

each ¢; is diagonalizable.

Thus, we may find 7; € GLg, (k) = GL(V;) such that n;¢;m; ' is a diagonal matrix
whose diagonal entries are the eigenvalues of ¢;, where d; = dimy(V;). Then n;¢7"n;!
for any m € Z-, is a diagonal matrix whose diagonal entries consist of m-th powers
of the eigenvalues of ¢;. Writing n = 9 @ --- ® n, € GLg(k), we see ngn~! =

Mot ®---®n.¢.n !t is a diagonal matrix, and so is

(non™)™ = 0™y~ = meT Tt @ - @y

Note that 7 respects the grading of V' and 7®" commutes with the action of g by

Lemma IT1.8. Since (ngn1)®" = n®"¢®" (n= %" we have

(gnen %) = %" gd® (™ H)®")r = (1) (90%™) (1) ®™),.

Since

" (0 @ Quy) = (M) ® - Q) =1 ® - Ry
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for any homogeneous vy, ...,v, € V, we see that (n®"), and ((n)®"), are k-linear
endomorphisms on (V®"), that are mutual inverses. Thus, replacing ¢ with n¢n=!,
or equivalently ¢; with n;¢;n; " for each 7, will not affect the desired identity, so our

problem is reduced to the case where each ¢; is diagonal.

Let v;1,...,v;q, € Vi be homogeneous elements of V' forming an eigenbasis of V;
for ¢; as we vary ¢ € Z=o. We shall denote the corresponding eigenvalues as «; ; € k
so that ¢(v; ;) = ¢i(vi;) = o, jv; ;. To compute the coefficient of ¢ on the left-hand
side of the desired identity, fix any element

v - Qu,e(V®), = P V,® -0V,
1A tin=r
where w; = vy, 5, for some h; so that deg(w;) = i; and ¢(w;) = ¢y, (w;) = @i, n,w;.

We have

(90%" ) (w1 ® - @ wy) = ¢®(g(w1 @ - -- @ wy))
= (1) (wy 1) @ - - ® P(wg-1(m))

— (_ Qg(ilv"'vin) . . .
= (=1) Wiy g1y Wa=1 (1) © = @ iy by Wo1(m)

so the vector w; ® - -+ ® w, can possibly contribute a nonzero amount to Tr(gg¢®"),
precisely when w; = wg-1(; for all 1 < j < n. Consider the cycle decomposition of

g in S,:
g=1 - A\ +1 A+ X) M+ XN+ N+ A,

where A; + -+ + Ay = n. In this situation, saying that w; = wy-1¢; forall 1 < j <n

is equivalent to saying
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® U = W :...:U)A17
® Yo i= Wxi+1 = " = Wri+)gs
® Y = Whi+e 4 X141 = 70 = Wr 44N
while y, ...,y may or may not be distinct. This also shows that
o ¢ :=deg(yy) =iy =+ =1y,
® Co = deg(y?) = Ua+1 = 0 = g4,
o ¢ :=deg(y) = [SNEREE D VIRES il 5 PR SRy
and
® O =y py == aiklvhxl’
® Qg i= My iy hag 41 T T T My g hag a0
® Q= Qg gy g4 T T T Qg ks

Note that y; € V., and ¢(y;) = ¢., (y;) = oy;. We also note that Adje; +---+Neg =7
because (V)M ®---® (V,,)®N is a direct summand of (V®"), in the decomposition

of V" that gives the grading for the tensor product.

To compute the sign, we note that

Qor(x) = Qo(x) + Q- ()
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for any disjoint permutations o, 7 € S,, and that

Qi1 242 ) (®) = (@ag1 + Tag2 + -+ Tagr—1)Tasr

Thus, for this particular g € S,,, we have

Qg(ila “ e ,Zn) - Q(l )\1)(7;1, e ,Zn) + -+ Q(Al+"'+>\l—1+1 )‘1+"'+>\l)(i17 FRPN ,Zn)
= (il + -+ Z‘)\lfl)i)\l + -+ (i)\1+...+)\l_1+1 + -+ Z‘)\1+"~+)\z*1)i>\1+-~+>\l
= (/\1—1)61'61+"'+()\l—1)€l'61

=M\ —Def+--+ (N —1ef.
This implies that

Qqlin, - vin) = (M + Der + -+ (N + De

=r+e +---+eyp,
where the congruence is taken modulo 2. Hence, we have computed the sign:
(_1)Qg(i17...,in) = (—1)rtertte
This implies that the vector w ® - - - Q w,, = y?’\l R yl®’\l contributes
(—1)r+61+“'+6104z‘1,h1 e, = (_1)r+el+-~~+ela1\1 .. 'O‘l)\l

to Tr(g¢®"),.. We keep fixing the partition [A1,..., \;] - n, which is an equivalent
datum to the cycle decomposition of ¢ in S,,. Write B; := {v;1, ..., v;4,}, the chosen
eigenbasis for V;. So far, we have seen that

Tr(gs™), = 3 o el

Arert-tNer=r (y1,...,.y1)€Bey X+ x Be,
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We note that a; appearing in the computation above is the eigenvalue for y; € B,,,

so to remember this dependence, let us write oy, := o in the following computation.

We now compute

Li(g6®") = ) (=) Tr(g6="),
r=0
D e
r=0Xe1+--+XN\e=r (y1 ..... yz)EBe1 ><~-~><Bel
=2 X Y (FprTtaga
r20 Arer+...+A€1=r (y1,...,41)EBey X=X Be,
=2 X 2 ety
r=z0 Aer+--+Ne =7 (y1,..., yl)eBelx X Be,
:Z Z O‘yl (=t™)°
r=20 Ae1+-+Ae= Y1€Be, yZEBel
= D (@)~ T (— )
r=20 Arer+-+Xe=r
=Y () T ()
€1,enny e; =0
= | D] Tr(ed ) (—tM)" ) <Z Tr(gp!) (—t)° )
e1=0 e;=0
= ZTr((bf‘l) (—t) ZTr o) (—tM)!
i=0 =0
m1(g) ma(g)
- (gmercn) (2w<¢$><—t2>z) -
120 =0
= Li(¢)™ W Ly2(¢?)™9) - Lyn(g") ™)
as desired.

/\ltr

(=)

(—tM)e

> Te(e)(

120

We will use the following Lemma in the proof of Theorem III.9:

Azt)\161+"'+>\zez
Y

mn(g)

Lemma II1.12. Let G be any finite group k-linearly acting on a finite-dimensional
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k-vector space W, where k is a field whose characteristic does not divide |G|. For

any endomorphism 1 - W — W with (W) <« WE, we have

Tr(y oeq) = Tr(Ylwe),
where eq = |G| Y cqg: W —W.

Proof. Fix any basis wq, ..., w,, W,41,...,w, for W such that w1, ..., w, is a basis
for W¢ = eq(W). Since e = eqg, we know that the minimal polynomial P(t)
of eq divides t(t — 1). Hence, the matrix of eq is diagonalizable with all of its
eigenvalues being 0 or 1. This implies that we may find a € GL(W) such that the
matrix of aega! is of the form diag(1,1,...,1,0,0,...,0). The rank of aega ™'
is r = dimg(eg(W)) = dimp(W%) and aega (aw) = aeqw = aw for all w €

W, This implies that aega™(aw;) = 0 for r + 1 < i < n = dimg(W). Since

aa Ha(WE)) c a(WY), we have

Tr((ava™)(aega™)) = Tr((avpa™)lagre) = Te(Wlwe).

Since the left-hand side is Tr((apa ) (aega™)) = Tr(aega™) = Tr(Yeq), we are

done. 0

Proof of Theorem II1.9. Using Lemma II1.8, we have

1
d®oeq = @ Z g®" € End, (V™).
geG

Hence, to finish the proof, it is enough to show that

Ly(¢®"|venye) = L(¢®" 0 eq)
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because then we may apply Lemma III.11. To show this, it is enough to show

Tr((6%")|vome) = Tr((¢®"), o ec)

for any given r € Z-(, but we know this from Lemma III.12. This finishes the

proof. ]

3.4 Generalized Pdlya enumeration in cohomological set-
tings
Before discussing applications of Theorem II1.9, our generalized Pélya enumeration
theorem, we discuss a formal axiomatic setting where the theorem applies. Then
we show how a version of Theorem III.9 in such a setting implies Theorem 1.3,

Proposition III.1, Proposition II1.7, and so on.

Let C be a category where any finite products exist. Fix a field &k, and suppose
that we have a functor

H* : C® - GrVec,

from the opposite category C°P of C to the category GrVec; of Z-y-graded vector
spaces over k whose morphisms are k-linear graded maps (of degree 0). Given any

object X in C, we may write

where each H(X) is a vector space over k. Given any morphism F': X — Y in C, the
induced k-linear map F* : H*(Y) — H*(X) can be decomposed as F* = @}, F
with a k-linear map F* : H'(Y) — H'(X) for each i € Z~q by definition. In addition,

we assume the following axioms:
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Axiom 1. Given any object X in C, we assume that there is a cup product, namely
a k-bilinear map U : HY(X) x H/(X) — H"(X) defined for each i,j € Z~( such
that

aub=(-1)"bua

for all a € H(X) and b e HI(X).

Axiom 2. Assuming Axiom 1, given any objects X and Y in C, we assume the

Kiinneth formula: that is, we assume that the k-linear map
HY (X)® H'(Y) »> H* (X xY)

given by a ® b — pk(a) v py(b) for any homogeneous elements a € H*(X) and

be H*(Y) is an isomorphism.

Axiom 3. Given any object X in C, the k-vector space H*(X) is finite-dimensional

for i € Z~y.

The reader may immediately note that Axiom 1 is only meaningful due to Axiom 2
since otherwise one can always give trivial bilinear maps for a cup product of H*(X).

Note that these two axioms give
H(X)®" ~ H(X)

defined by

Q- Quy = pi(v1) U UL (),
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for any homogeneous vy, ...,v, € H*(X), where p1,...,p, are the projection maps
X" — X. If GG is any subgroup of S,,, then GG acts on X" by permuting coordinates.

The induced action of G on H*(X™) is precisely given by

g-(Pi(v1) U U py(n)) = Py (V1) U U Dy (Vn)-
forge G. If ¢ = P2, ¢ : H(X) - H*(X) is any k-linear graded endomorphism,
then it induces a k-linear graded map ¢xn» : H*(X") — H*(X") given by

PL01) U U)o B (6(0) U 0 B (6(en),

using Axiom 2: H*(X") ~ H*(X)®". Under this isomorphism, the map ¢xn cor-

responds to ¢®". This map is compatible with the G-action we discussed above,

so ¢ induces a k-linear graded map ¢xn|gexnyc : H*(X™)¢ — H*(X™)“ on the G-

invariant subspaces. Moreover, we note that the corresponding G-action on H*(X)®"

to the one on H*(X™) is given by

where Q4(x1,...,x,) is defined in the previous section. This is the same G-action

given by the Kozsul sign rule, so we may apply Theorem II1.9 to obtain the following:

Theorem II1.13. Keeping the notation and assuming Axioms 1, 2, and 3 above,

suppose that the characteristic of k does not divide |G|. Then

Lt(¢X7L

H'(X")G) = ZG(Lt((b)? Lt2(¢2)7 SRR Lt”((bn))‘

Corollary II1.10 implies the following:

Corollary 111.14. Keeping the same assumptions as in Theorem III.13, assume

further that
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e HY(X) =0 fori> 2d;
e the characteristic of k s 0.

Then

i Li(o Ju" = det(idy; — ¢rtu) - -~ det(idvy, |, — @oa 18" "u)
X | e (xnysn JU" = det(idy, — gou) - - - det(idy,, — poqt?u)

Continuing our discussion, if F': X — X is an endomorphism in C, then

Fn(pi(v) U -0 pi(on) = pi(F™(01)) U -+ U p (£ (vn))
= (Fop)*(vi) v--- v (Fopa)(va)
= (pro F")*(v1) U -+ U (pn o F7)*(vn)
= (F")*(pi(v1) -+ U pp(vn)),

for any homogenous vy, ...,v, € H*(X), so F§. = (F")*, where F" : X" — X" is

induced by F': X — X. Thus,

e if the quotient map X" — X"/G exists in C so that we have H*(X"/G) —

H*(X™)¢ — H*(X™), and
e if we furthermore assume that this gives an isomorphism H*(X"/G) ~ H*(X")%,

then the map (F™/G)* corresponds to (F™)*

me(xm)e, where F™/G is the induced

endomorphism on X"/G. Thus, Theorem I11.13 tells us:

Theorem II1.15. Keeping the notation and the assumptions above, if the charac-

teristic of the ambient field k does not divide |G|, then we have

Li((F™/G)*) = Za(Ly(F*), Ly (F*)2, ..., Ln (F*)").
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Corollary II1.14 implies:

Corollary II1.16. Keeping the notation and the assumptions above, assume further

that
o H(X) =0 fori>2d;
e the characteristic of k is 0.

Then

i L ((Fn/S )*)Un . det(ldHl(X) — Fl*tU) . det(idHM’l(X) — F2*d71t2d—1u)
n=0 t n det(idHO(X) — Fo*u) o 'det(ided(X) _ FQ*dtZdu)

3.5 Proofs of Theorems I.1, 1.3, and their analogues

We first prove Theorems I.1 and 1.3 in the case of compact complex manifolds.
We also prove Propositions II1.5 and I11.7 as well as Proposition II1.1. These proofs

can be taken as examples from general theorems in the previous sections.

Example III.17. Let X be a compact complex manifold of dimension d and be
H*(X) the singular cohomology of X with rational coefficients. The quotient map
X" — X"/G induces an isomorphism H*(X"/G) ~ H*(X™)¢ as proven in | -
In this case, Theorem II1.15 with C being the category of compact complex manifolds
proves the first case of Theorem 1.3. Likewise, Corollary II1.16 proves the first case
of Theorem I.1. Furthermore, if X is a complex projective variety, then taking the
cohomology for complex coefficients, Theorem I11.13 with ¢ = P

P, 4
paeZso TY 1de,q(X)
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proves Proposition III.7 and Corollary I11.14 proves Proposition III1.5. For Propo-
sition II1.1 where X is a finite set, we give it the discrete topology and the trivial
0-dimensional complex manifold structure. Since X is finite, it is compact, and ap-
plying Theorem II1.13 with ¢ = diag(t1,...,t,) G H*(X) = Qz,®- - -®Qx, recovers

Proposition III.1.

We next prove Theorems 1.1 and 1.3 in the case of quasi-projective varieties over

finite fields.

Example III1.18. Let X be a quasi-projective variety over [, of dimension d and
H*(X) be the compactly supported l-adic étale cohomology of X, given a prime
[. Standard theorems about the étale cohomology that go into the proof of the
rationality of the zeta series Zx(t) (which can be found in | |, for exam-
ple) let us use Theorem II1.13 and Corollary III1.14 with C being the category of
quasi-projective [F-varieties. If [ { |G|, then one can modify the proof of | ,
Proposition 3.2.1] to show that the quotient map X" — X™/G induces an isomor-
phism H*(X"/G) ~ H*(X™)¢, so Theorem III.15 proves the second case of Theorem

[.3. Likewise, Corollary III.16 proves the second case of Theorem I.1.

3.6 Point counting over finite fields

In this section, we discuss some concrete consequences of Theorem 1.3 for point

counting over [F,. Take

e C to be the category of quasi-projective varieties over F;
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e H*(X) the compactly supported l-adic étale cohomology for a prime [ not

dividing ¢ and |G/;
e [' = Fr, x the Frobenius endomorphism on X.

in Theorem 1.3. Then F"/G is the Frobenius endomorphism Fry x»/c on X"/G, so

Theorem 1.3 implies that
Lt(Fr;Xn/G) = Za(Li(Fry ), Ltz((Fr;X)Q), ooy L ((Frg x)™).

Now, we apply the Grothendieck-Lefschetz trace formula Li((Fr;y)") = |V (F4r)] to

see the following:

Corollary II1.19. Let X be a quasi-projective variety over F, and G a subgroup of

Sn, acting on X™ by permuting coordinates. Then

[(X"/G)(Fy)| = Za(|X(Fy)] [X(Fg2)l, - -, [X (Fgn)]).

Example IT1.20. Applying Corollary I11.19 for G = S,, for n € Z~y and Corollary

I1.12, we have

Z |Sym" (X )(F,)|u"™ = exp <Z D((LMU’) = Zx(u).

r=1

Example II1.21. In particular, when X = A', the affine line over F,, we get

|(A"/G)(Fy)| = ¢".

When ¢ is odd, we have

An/An = Spec(Fq[xl, - ,xn]An) ~ Spec (( Fg[tl’ . 7tnay] ) 7

Y2 — Ap(ty, ... 1))
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where A, is the alternating group of n letters, which acts on A™ by permuting
coordinates, and A, (ty,...,t,) is the discriminant of x™ + ;2" + -+ + ¢, 17 + t,,.
Thus, applying the result above, we see that there are precisely ¢" solutions to the
equation

y2 = An(tla cee 7tn)

over [F,. Thus, for n > 2, if we consider the set map
JAVE: IFZ - F,
given by the discriminant, then we see that
|A ! ({quadratic residues in Fy})| = |A7 ! ({quadratic non-residues in F)})],

since |A-1(0)] = ¢"!, which is given by the fact that there are precisely ¢" — ¢"*
degree n monic square-free polynomials in F,[z]. That is, if we let A to be the

left-hand side and B the right-hand side of the desired identity, we have
1-¢" +2-A+0-B = |(A"/A,)(F,)| = ¢"

so that A = (¢" = ¢"7")/2 and B = [(A"/A,)(Fy)| — [ATH(0)] = A = (¢" — ¢"71)/2.

This identity was previously found in | ] using a more explicit method.



CHAPTER IV

Cycle Indices of Conjugate Actions of General
Linear Groups on Matrices over Finite Fields and
Their Applications

The results in this chapter are based on | |, a joint paper of the author and

Yifeng Huang.

4.1 Matrices over finite fields

Given a finite field F,, consider the set Mat, (F,) of n x n matrices over F,. It
is natural to ask how many matrices A € Mat,, (F,) satisfy a certain property, or,
in other words, what the proportion of such matrices is. For instance, from an
elementary counting argument, we know that the proportion of matrices that are

invertible is

GLa(Fy)| _ (" =D(@" =q)---(¢" —¢") 4 L .
Mat, (F,)| — o =(1=¢)0=¢7) (=g,

To put it another way, this is the probability that a random matrix A in Mat, (FF,)
does not have 0 as an eigenvalue. Recall from Example I1.4 that for any A €

Mat, (F,), we can decompose its characteristic polynomial f4(¢) into a partition

43
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of powers of its irreducible factors:
A
(PP, P e ) ey

or

aer= 8 ((P(t))wﬂ oo <P<t>>h’w“>> |

Pe| A]}q

which classifies the F,[t]-module structure given by the action of matrix A on Fy.
(In particular, we have fa(t) = HPE‘A%F ‘P(t)AP*l(A)JF"'J”\PJA,p(A),) The (P)-part (or

simply P-part) of the matrix A is

o Flt] Fo[]
A= Tt @@ (s

and recall that the modules of the form on the right-hand side of the above are called
(P)*-torsion (or simply P®-torsion) modules. The proportion we computed above

is that of matrices whose t-part is trivial.

Then what is the probability that a random matrix A € Mat,(IF,) has a specified
t-part, other than the zero module? It turns out that given any t*-torsion F,[¢]-

module H (of F -dimension < n), we have

| n By
Probaevis o (Al") = H) = o [0 =07,
q =1

When n — oo, we prove a more general result, which was stated as Theorem 1.7 in

the introduction:

Theorem IV.1. Fiz any distinct monic irreducible polynomials Pi(t),..., P.(t) €

F,[t] and P{-torsion Fy[t]-module H; of finite length for 1 < j <r. Then

0

r 1 A
_ - 1—qg¢ deg(Pj) )
i gy L=

i=1

H.

J

0

A[PP]
lim Prob
n—00 AeMaty, (Fq) fO’f' 1 < j<r
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The following lemma will be used in the proof of Lemma IV.3:

Lemma IV.2 ((1.6) on p.181 in | ]). Let (R,m) be a DVR (discrete valuation

ring) with the finite residue field R/m =F,. Given a partition A\, we have

o ma(A)
|AutR( A | _ q\)\|+2n()\ 1_[ 1_[ 1_q

d=1 =1

where mg(X) is the number of parts of X with length d and

n(/\):20-)\1—1-1-/\2—1-2-/\34----—1—(l—l)-)\l.

Recall from Example 1.4 that we denote by |Ag | the set of closed points of
Ay, = Spec(F,[t]) or, equivalently, the set of monic irrducible polynomials in F,[¢].

The following is a key lemma that will be used in our proof of Theorem IV.1:

Lemma IV.3 (Proposition 19 in | ]). For any P e |Ag |, we have

| © 1
Y
ZZ |Aut]F [t](HP,V)| 1_‘[ 1-— qildeg(P)y @[[y]]’

cP q i=1
where
Hp, =T [t]/(P(t)" @ @F[t]/(P(t))"
for any given partition v = vy, ..., 1.
Proof. We use the proof presented in | ]. Using the formula for |Autg,[q(Hp,)|

from Lemma IV.2, we may reduce the problem to the case where P(t) = t. Then we

can rewrite the left-hand side of the desired identity as

Z Z |StabGLn(]Fq)(J0 ik

n=0 \l-n
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where Jy 5 is the Jordan canonical form given by the 0-Jordan blocks whose sizes are
equal to the parts of the partition A, and the action GL,(F,) G Mat,(F,) is given

by the conjugation. By the orbit-stabilizer theorem, we have

1 |GLu(F,) - Joal
|Stabar, r,)(Jo) | |GL,,(F,)|

Recall that the n xn matrices all of whose eigenvalues are 0 are precisely the nilpotent

matrices. Thus, we have

Z Z |StabGLn(Fq)(Jo ,\)| = |GLA(Fy)|

n=0 \l-n
n(nfl)yn

- q

1+Z=: ("= 1)(g" —q)--- (" —q"})
< (¢ 'y)"
Z I=gH)1-qg?)--(1-qg™)

Z(q 1y)n (Z qj1> (Z q2j2> (Z q”jn>

© o o w0 o '
= Z(g*ly)” Z Z Z g 92z
n=0 Jj1=0 j2=0 Jn=0

I+q () +q g y)?*+--)

Il
':8

1=0
1
0
_nl—q iy’

where for the second equality we used the elementary identity |GL,(F,)| = (¢" —
1)(¢"—q) - (¢"—q¢" ') and the Fine-Herstein theorem (e.g., [ , Theorem 1]),

which gives the number |Nil,(IF,)| of nilpotent matrices in Mat,(FF,):
INil, (IF,)| = ¢"" Y.

For the sixth equality, we have used the fact that the coefficient of Y™ in the product

Q0
[Ja+ XY +X5y? 4.

1=0
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is equal to

) o0
J1+2j2++nj
DIDIEED IR g

Jj1=072=0 Jn=0

where X, Y are considered to be complex numbers varying within the open unit disk
centered at 0 (i.e., | X|,|Y| < 1) so that we can take X = ¢! and Y = ¢ 'y with
ly| < ¢ in our proof for the sixth equality in the chain of equalities above. Indeed,

when we expand the given product, we have

e}
H(l T XZY + XQin 4. ) — Z X0~m0+1~m1+2-m2+--~Ym0+m1+m2+---
=0 mo,m1,ma,-=0

e¢]
_ n mi+2mo+--
=L ) X 7
n=0

mo,my,ma, =0
mo+mi+mo+-=n

so it is enough to show that

e} ee) o0
Z X 2ma e Z Z Z X 1252+ Anin
mo,my,ma,:--20 J1=0j2=0 Jn=0
mo+mi+mo+--=n
Note that we have a bijection
o . _ o .
{(mo, m1,ma,...) € ZZ, : mo+my+me+--- = n} & {(my,mo,...) € ZL,) : my+mao+---

given by (mg, my,ma,...) — (my,ma,...). Thus, it remains to show the following:

w 0
Z X 2ma e Z Z . Z X122t ngn
mi,ma,--=0 71=072=0  jn=0

mi+ma+-<n

If n = 0, both sides are 1, so let n > 1. Let A, be the set of partitions whose
number of parts counting with multiplicity (i.e., the total column length of Young
diagrams) is < n and B, the set of partitions whose parts (i.e., the row lengths
of Young diagrams) are < n. Then we have a bijection A, < B, given by taking
conjugation, so in particular, we have

Z X = Z X

)\EAn )\EBn
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Now, noting that

Z X|/\\ _ Z Xm1+2m2+~-~

AEA, mi,ma, =0
mi1+ma+--<n

and

Z X = i i i X2zt tngn,

AeB, 71=0 72=0 In=0

we finish the proof. n

4.2 Proof of Theorem IV.1

We first give some definitions that will be used in our proof. Fix any subset
X < Aj, = Spec(F,[t]), and denote by |X| the set of closed points of Ag inside X.

We define the cycle series of X (relative to A}F ) as follows:

xP u‘”‘ deg(P)

X x,u) n Z | Uth P,u)|

Pe|X| veP

where each P € |A]1Fq| simultaneously means a monic irreducible polynomial or the
maximal ideal (P(t)) of F,[t], or a closed point of A , generated by P(t). Note that

by Corollary I1.13, we have

o0
n

A]ly , T, U) Z [Matn/GLy]( Fq)(w)u .

That is, the cycle series of the affine line Alqu is the generating function for the n-th
cycle index of the conjugate action GL,(F,) G Mat,(F,) for n € Z-,. Another

important case is
Tp, lv!des(P)

Z({P} @) 2 L TAute, ()|

where P € |A111<‘q|- By definition, whenever we have finitely many Py, ..., P, € X, we

have

Z(X,z,u) = Z(X ~{P,...,P} e, ) Z{P},z,u)--- Z{P.},x,u).
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Denote by Z(X, u) what we get by taking all xzp, = 1in Z(X, @, u). Corollary I1.14

implies that
1
1—u

Z(Alqu\{(t)}aU)=1+U+u2+---:

Finally, for any P € |A11Fq|, Lemma IV.3 with y = u%&(") implies that

lv!des(P)

o)
Z({P},U) Z |Aut]Fq HPI/ = 1:[ 1— zu deg(P) "

7

We are now ready to give a proof of Theorem IV.1.

Proof of Theorem IV.1. We will use the notation given above. Taking xp, = 1 for
all P ¢ {Py,..., P}, while still denoting by x the sequence of variables after such

evaluations, we have

Z(Ah x,u) = Z(AL APy, BYLwZ({P}zu) - Z({P ), 2, u)
_ ZAL LW Z{} wWEZ({ P, @) - Z({P )z, u)
Z({Pi},u) - ({P} u)
_ ( 1 ) ZEWhwZ({P} = U) Z({P},x u)
1—u Z({P1},u) - ({P} u)

Without loss of generality, suppose that A ..., \(™ are nonempty, while A(»+D . A\ =

&, for some 0 < m < r. In the above identity, take zp, , = 0 for nonempty v not
equal to A9 while Tp, A = 1 for 1 <5 < m. We will still write & to mean the
sequence of variables after evaluations, although this is now just a sequence in {0, 1}.
We may compute the limit of the coefficient of u™ of the left-hand side as n — oo by

evaluating u = 1 without the factor (1 —u)~! on the right-hand side, and since
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we have

pp,(A) € (T, M) for 1 <j <

lim Prob aemat, (r,)
n—o0

[Py (A) =+ = pp(A) = &
_ ZA({AP1}>CC71)"'%({Pf‘}awvl)

- 1 - deg(P; zdeg (P;
) [ﬂ <1 ' IAu%(Hp,Mj)n) [ (=g ] [ [T [0 -aoe)].

j=1 i=1 j=m+1i=1
To finish the proof, we proceed by induction on m > 0. Given partitions v, ... (™)

write

pp,(A) = v for 1< j < m
P(]/(l), ceey V(m)) = llm PrObAEMatn(F ) 7

e :qu+1(A):“':H’PT(A):®

as long as the limit on the right-hand side exists. Taking m = 0, what we have

proved above implies that

T

P(@va@):nn 'LdegP))

j=1i=1
which serves the base case for the induction. For the induction hypothesis, suppose
that our statement is true when at most m — 1 > 0 partitions among A1, ... A"

are nonempty. We know that

Z PW, M)

..... p(m).

V(j)e{@7,\(j)}
for 1<j<m

m o0 T o0
_ 1+ zdeg(P . 1— —ideg(P;)
[H ( |AUth HP)\(J) ) H )] L= H( 1 )

Jj=1 i=




o1

SO
POW, LA™y = S pe )y S p )
v pm), v p(m).
v(Def{gr A9} v(@Def{gr A6}
for 1<j<m for 1<j<m,

not all () are ,\(])

m 1 0 ' r o) '
_ 1+ 1— gt deg(Pj) . 1—qg*° deg(Pj)
[H ( | Autg, [ (Hp,xﬂ)I) [0 - ) i H( E )

j=1 i=1

V(J)é:{”@’ ,\(J)}
for 1<j<m,
not all v(9) are \(4)

1 — qfideg(Pj) 7
]‘=_‘[ Aut]Fq HP,)\(J))| ’i=1( )

where we used the induction hypothesis for the last equality, which lets us see that

all the terms in the sum are canceled out. This finishes the proof. O

The following result gives some ideas about what happens when n is fixed before

tending to infinity:

Theorem IV.4. Fiz any monic irreducible polynomial P = P(t) € F,[t] and a

P*-torsion Fy[t]-module H of finite length. Write h := dimg, (H). Then

bn,h(deg(P)) Hn (1 i .
u i= q") ifn=h and
Prob (A[P*] ~ H) = | Auty, s (H)| 1

AeMaty, (Fq) 0 an < h,

where b, (d), for d € Zsq, are given by

Moreover, we have
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so that

1 x A
lim Prob sema APl ~H)= —————— 1 — g ides(P)y
ngrolo TOD Aem tn(Fq)( [ ] ) |Auth[t](H)| :J;!:( q )

Proof. In this proof, we will denote the polynomial P in the statement by F, instead.

We may assume that
H = Hpy\ = F[t]/(Po(t)" @ - @ F,[t]/(Po(t))™

for some fixed partition A = (A,...,\) € P. The case A = ¢J (i.e., H = 0) turns

out to be the most important. For this, it is enough to show that

[{A € Mat,(Fy) : pp,(A) = S}
|GLn (Fy)] '

bn(deg(Fo)) =

Let y,(Fp) be the expression on the right-hand side. Take zp,, = 0 for all nonempty

vand xp, =1 for all P # F; in Lemma II.13, which leads to

0 v| deg(P)
u
yn(PO)un =
2 Pﬂ 24 Rt )
P()£Po(t)
- Z GvldeeP) O\ 7 D u My V] dea(P)
|Aut15‘q HPO ,,)| e |AUth[t] (Ht7,,)| Pe\A%q\, e |Aut[[?q[t] (Hp7,,)|
P(t)#t
ﬁ 1— (q‘iu)deg(ﬁ))) < 1 >
e 1—qu 1—u
ﬁ 1— )deg(Po)
el 1 _ ql 1u
where we applied Lemma II.14, with the evaluations xp, = 1, which gives
9 1
Il+tut+u +---= ;
1—u

and Lemma IV.3 as well. This shows that y,,(P) = b,(deg(Fp)) by the definition of

b,(d) in the statement of Theorem IV.4.
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Now, we may assume that the partition A = (A,...,\;) is nonempty (i.e., [ > 0).
We again recall that xpg = 1 by our definition. In Lemma II.13, take zp, = 1 on
both sides for P # F, to get

- Tpy, HPO(A) o Tp, ,,u' v| deg(2X ylv!des
Z Z |GL,,(FF, (Z |AutIFq (Hp, )| ) (H Z A utp, 1 HPu)|>

n=0 AeMat, (Fq) P#£Py veP

Next, we take xp,, = 0 for all nonempty v # X and xp, » = 1. Then

Lo 3 (UACMIE i) = Ao 21

= |GL (Fy)]
|A| deg(Po) || deg(P)
= (" et n) LTS
[Aute, i (Hr)l /) \ pp, S [Aute,m(Hpy)|
-1
|\ deg(Po) V| deg(P) |v| deg(Po)
- (14 NI s >
| Aute, [ (Hp, )] Pela, | P | Aute, (g (Hpo)| |\ /5 [Aute, g (Hp,)]

q

ul” ulvldesPo)  \ T
<Z |Autp, [ (Hq, )|> <Z |Auty, [ (Hp, V)|>
_ <1 N o A dea(Po) > < 1 > (1_[ 1— (q—zu)geg(po)>
[Aute, g (Hron)[) \1—u/) \ 11 1T —¢iu :

applying Lemma II.14 (again with the evaluations xp, = 1) and Lemma IV.3. Thus,

Al deg(Fo) |v| deg(P)
- (" w11 S
|Autg, [ (Hp, )| Pltjn = [Autr, g (Hpy)|

we have

2 ({A e Mat,, (F,) : up,(A) = X or &Y\
1+;( L, (F,)] )

= (1 + cu™)(1 + byu + byu® + bgu® + -+ +)

=14 biu+byu + -+ bp_1u" ' + (b, + )u" + (b1 + cb)u" ™ + (bppo + cho)u ™ + -

where
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o ¢ = |[Auty,(Hp, )| ! = [Aute,q(H)|[ ™,
e b, =b,(deg(Fy)), and
o 1= |\ deg(F) = dimg, (H).

Thus, continuing the previous computations, since we have established that

_ [{A e Mat, () : pr,(A) = I}
|GLn (Fy)] ’

br

we have (as by = 1)

[{A € Mat,, (Fy) : pup,(A) = M|
|GLn (Fy)]

Cbyp = |Autp, [ (H)| " bp_n(deg(Py)) if n = h = |\ deg(P),
0 if n < h = |\ deg(P).

By multiplying both sides by

GL.(Fy)| _ (¢" = D" =)+ (¢" = ¢"")

|Matn (]Fq)| a qn2

=(1-q¢g"H1=¢g?)--A=qg™,

we finish the proof. n

Remark IV.5. Note that given ¢,n, and H, the conclusion of Theorem IV.4 only
depends on deg(P) rather than P itself. A special case where deg(P) = 1 is inter-
esting (i.e., P(t) = t — a for some a € F,). Since b, (1) = 1 for all n > 0, Theorem

IV.4 implies that

Ty L iz (1 —¢™") if n > dimg, (H) and

0 if n < dimg, (H).

Prob (A[(t—a)*] ~ H) =

AeMat, (Fy)
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4.3 The distribution of the cokernel of a random Z,-matrix

Although it is already interesting to deal with matrices over Z,, in this section
we work more generally with any complete DVR R with the maximal ideal m, or
simply denoted as (R, m), whose residue field R/m is finite so that we may write
R/m =T,. For any such R, saying that an R-module has finite size is equivalent to
saying that it is of finite length. Finite abelian p-groups are finite size Z,-modules, so
they are finite length Z,-modules. The following statement with R = Z, was given
as | , Proposition 1], but the proof given there works for the general R. We
use the Haar probability measure on Mat,, (R) = R™, the unique Haar measure on

the additive topological group with total measure 1.

Proposition IV.6 (Friedman-Washington). Let (R,m) be a complete DVR with

R/m =TF,. Given any finite length R-module H, we have

1 . .
T (L (U =) (I, (L =a77) ) ifn =g,
Prob (coker(A) ~ H) = |Autr(H)| ' ( j=n—ig+l )
AeMat, (R) |
0 ifn <ly,

where ly = dimg, (H/mH). In particular, we have

1 ® ,
lim Aeﬁgﬁ?R)(coker(A) ~ H) = TAatn (D] Eu —q .

We will generalize the limiting distribution (i.e., the probability when n — o0)
in Proposition IV.6 as Theorem C. We also propose a more general conjecture in
Conjecture IV.8. Given any ring R, we denote by Modz* the set of isomorphism
classes of finite size R-modules. When (R, m) is a DVR with R/m = F,, this is the
same as the set of isomorphism classes of finite length R-modules. When denoting
an isomorphism class, we will interchangeably write a representative of it to denote

the class.
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Remark IV.7. It turns out that for any DVR (R, m) with R/m = F,, the assignment
1 x .
{H} — TAutA ()] H(l —q)
defines a probability measure on the set of subsets of Modyz™ (by an application of
Lemma IV.3). We call this the Cohen-Lenstra distribution of R, although the
terminology is mostly used for the case R = Z, in the literature (e.g., see | :
Section 8]). Since R is a PID (principal ideal domain), for any finite length R-module
H, we have a unique partition A = (Ay,...,\;), with the convention \; > --- = A,
such that

H ~ R/mAl @...@R/mx\z'

In this case, we will write A(H) := A. Recall that the number |Autr(H)| only
depends on ¢ = |R/m| and A so that we may write w(g, \) = |Autr(H)| (e.g., see

Lemma IV.2). Using this and Lemma IV.3 with y = 1, one may check that

Ao (1—q")

1

1 o 6]
w(g, A) 1

7
defines a probability distribution on the set P of partitions of nonnegative integers.
We will not name this more general distribution. Fulman and Kaplan | | dis-
cussed other similar distributions defined on P that come up in various combinatorial

contexts.

4.3.1 Main conjecture and theorems

We shall introduce our main conjecture about a random matrix A € Mat,,(R),

where (R, m) is a complete DVR such that R/m = F,. We will resolve special cases
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of this conjecture as Theorems B and C by understanding interplays between random
matrices A € Mat, (R) and A € Mat,,(F,), where the latter is given by the uniform

distribution on Mat,(FF,).

Conjecture IV.8. Let (R, m) be a complete DVR such that R/m = F, and Py(t), ..., P.(t) €
R[t] are monic polynomials such that the reduction modulo m gives distinct irreducible
polynomials Py (t),..., P.(t) € F,[t], where v € Z=y. Fiz any R-modules Hy, ..., H,

of finite length. We must have

. coker(P;(A)) ~ H, o
lim ProbAeMatn(R) = 1_[ deg H 72 deg(P

n—oo .
forl1<jy<r j=1 Z=1

Note that the limiting distribution n — oo given by Proposition IV.6 is a special
case of Conjecture IV.8. More cases of Conjecture IV.8 are proven as Theorems B

and C. We now present our main theorems of this section: Theorems A, B, and C.

Theorem A. Let (R, m) be a complete DVR such that R/m = F, and P(t) € R[t] is
a monic polynomial such that the reduction modulo m gives an irreducible polynomial

P(t) e F[t]. We have

p ker(P(A)) = (1—
AeMﬁ?ﬂR)(CO er(P(A)) = 0) = by(deg(P H q"

where b, (d), for d € Z, are given by

Sty = [ [ e o

=0 i=1 q

3

Moreover, we have
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so in particular, we have

lim Prob (coker(P(A)) =0) = n(l — g tdes(P)),

n—w AeMaty (R)

Proof. By an application of Nakayama’s lemma (or taking N = 0 in Lemma V.14

which we introduce later), we have

coker(P;(A)) =0 coker(P;(A)) =0
o (P;(A)) _ b, (Pi(A))

AeMat, (R) AeMat, (Fq)

for1<j<r for1<j<r

Moreover, we note that for any A € Mat,,(F,), we have coker(P;(A)) = 0 if and only
if Pj(A) = P;(A) is invertible in Mat,,(F,). This is the same as saying A[F;O] =0,

so this finishes the proof by taking H; = --- = H, = 0 in Theorem IV .4. n

Remark IV.9. Using the proof of Theorem IV.4, we can check that b,(d) given

above are positive rational numbers explicitly given as

bn(d)

?

_ [{A € Mat, (F,) : coker(P(A)) = 0}| _ |{A € Mat, (F,) : P(A) € GL,(F,)}|
|GL, (Fy)| |GL, (Fy)|

for any degree d monic irreducible polynomial P(t) € F,[t].

Theorem B. Let (R, m) be a complete DVR such that R/m = F, and Pi(t),..., P.(t) €
R[t] are monic polynomials such that the reduction modulo m gives distinct irre-

ducible polynomials Py(t),..., P.(t) € F,[t], where r € Z~o. We have

coker(P;(A)) =0 ro© ,
lim Prob (F5(4) = nn(l — g ey,

n—o0 AEMatn(R) fOI“ 1 <] < r j:l =1
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That is, Theorem B generalizes the limiting result in Theorem A by saying that
the events, each of which says that coker(P;(A)) = 0, for 1 < i < r are asymptotically
independent as n goes to infinity. This is surprising because many events regarding
Pi(A) and P,(A) are dependent. (For example, we may take P;(t) =t and Py(t) =
t — 1 with any subset S; < Mat, (R) and Sy = {A—id: A€ S1}. Then P;(A) € 5 if

and only if P,(A) € Ss.)

The following was stated in the introduction as Theorem 1.9 for the case R = Z,:

Theorem C. Let (R, m) be a complete DVR such that R/m = F, and Pi(t),..., P.(t) €
R[t] are monic polynomials such that the reduction modulo m gives distinct irre-
ducible polynomials Py(t), ..., P.(t) € F,[t], where r € Z,. Suppose that deg(P,) =

1. Given any R-module H of finite length, we have

coker(P;(A)) = --- = coker(P._1(A)) =0 1 ro .
lim Prob ( 1( )) ( 1( )) _ (]__q*ldeg(Pj))_

n—o AeMat, (R) and coker(Pr(A)) ~H |AutR(H)|

j=1i=1

Note that Theorem C generalizes the limiting distribution given in Proposition
IV.6, a result of Friedman and Washington. Theorem C also generalizes another
result of the same authors | , (9) on p.234], which we discuss as Corollary
IV.10. Finally, Theorem C generalizes Theorem B by summing over all possible H

up to isomorphisms.

The proof of the following corollary uses Lemma IV.14, which we introduce later:
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Corollary IV.10 (Friedman and Washington). Let (R, m) be any complete DVR

with R/m =T, and H any R-module of finite length. We have

o0
lim Prob (coker(A —id) ~ H) = TAutA ()] n (1—-q"
u R icl

n—0 AeGLy(R)
Proof. Choose any N € Z, such that m"¥ H = 0. Since

QLR [GL.E)
Moty (/m¥1)] ~ PMaty(By)] ~ L1097

i=1

we have
coker(A) = 0, GL,(R/mN+1 _
_ Prob | (Ft/m N+1)| Prob  (coker(A —id)
AeMat,, (R/mN+1) Coker(Z _ ld) ~J |Mat (R/m )|A€GL (R/mN+1)
iy (coker(4 =) = T -

applying Lemma IV.14, noting that coker(A) = 0 if and only if A is an automorphism
of (R/m™+1)". Thus, Theorem C, with P;(t) =t and P(t) =t — 1 for r = 2, admits

the result by letting n — oo. O]

Remark IV.11. Our proof for Theorem C uses Lemma IV.15 due to Friedman and
Washington, which appears in the original proof of Corollary IV.10. The condition
deg(P.) = 1 in Theorem C is necessary is because it is needed in the proof of this
lemma, and for now, we are unable to drop this condition. In fact, our proof will

show more generally that given the same hypothesis as in Theorem C, we have

coker(P(A)) = -+ = coker(P,_1(A)) =0
Prob semat,, (r)
and coker(P,(A)) ~ H
_ ¢ Hiil(l —q")? coker(Pj(A)) =0for 1 <j<r—1,

PrObZeMatn(Fq) 7
|Autp(H)| dimp, (coker(P,(A)) = Iy

2]—])
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where Iy = dimg,(H/mH). By taking r = 1 and Py(¢) = ¢t and using the fact that

the number of matrices in Mat, (F,) with corank 0 <! < n is equal to

n2—[2 n —1
q : Hi:l+1(1_q )2

[0 —q7)

we can deduce Proposition IV.6 even for all n > 0, not just n — co. This is not the

proof given by Friedman and Washington | ] (as one can check Proposition 1
in their paper). However, Lemma IV.15 is from their paper, so it seems very likely

that Friedman and Washington were aware of this argument.

4.3.2 Useful lemmas

For the results that follow, we recall that given a finite length module H over a

complete DVR (R, m) with R/m = F,, there exists N € Z~q such that m™ H = 0.

Lemma IV.12. Let (R, m) be a complete DVR with R/m = F, and H a finite length
R-module. Fiz any N € Z=o such that m™H = 0. For any A € Mat,(R), we have
coker(A) ~ H if and only if coker(A) ~ H, where A € Mat,,(R/m~*1) is the image

of A modulo m™*1,

Proof. If coker(A) ~ H, then coker(A) ~ H/m¥*'H ~ H because m""1H =

mm"Y H = 0. Conversely, let coker(A) ~ H. Since R is a PID, we can write
H>~RmM®---®R/m"

for some partition A = (A,..., ;). Since mH = 0, we have 1 < \; < N for all
i. The fact that R is a PID lets us choose g1,92 € GL,(R) such that g;Ags is a
diagonal matrix (i.e., a Smith normal form of A). Since (R, m) is a DVR, choosing

a generator m of m, each diagonal entry of g;Ags is either 0 or of the form wun®,
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where u is a unit of R and e € Z~y. There should not be any 0 in the diagonal

entries modulo m"*! because coker(A) ~ H is annihilated by m"¥. (This is why our

1

conclusion is about A modulo m™*! instead of m".) Thus, the diagonal entries of

g1Ags are of the form u 7, ... u,7, where u; € R* and 0 < ¢; < N. The matrix

91Ag, € Mat,,(R/m™+1) is diagonal with nonzero entires w7, ..., u,7" € R/mV+L.
We must have (ey,...,e,) = (A1,...,A;,0,...,0) because 77,72 € GL,(R/m™¥*1) so

that

R/m“ @ @ R/m* ~ coker(g; Ag,)
~ coker(A)
~H

~ R/mM @ @ R/m™.
Therefore, we have

coker(A) ~ R/m“* @--- @ R/m*"
~ RmM@---®R/m"

~ H,

as desired. O

Remark I'V.13. The easiest case of Lemma IV.12 is when N = 0, which necessarily
means H = 0. In this case, the lemma can be proven by a direct application of
Nakayama’s lemma. This special case is all we need for Theorem A and Theorem
B, but the full version of Lemma IV.12 is needed for proving Theorem C. We will

not directly use Lemma IV.12, but it will be used to prove the following lemma,
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which we will use to prove our theorems. It describes how we may concretely think

of certain events according to the Haar measure on Mat,,(R).

Lemma IV.14. Let (R, m) be a complete DVR with R/m = F, and Hy, ..., H, finite
length R-modules, where v € Z,. Choose any N € Z=q such that mVH, = -.- =

mV H, = 0. For any monic polynomials fi(t),..., f.(t) € R[t], we have

Coker(fj(A)) ~ Hj COkel“(fj(Z)) ~ Hj
Prob semat, (R) = PTObZeMatn(R/mN +1)
for1<j<r for1<j<r

Proof. Consider the projection Mat,, (R) — Mat, (R/m"¥*1) given modulo m™*!. De-
noting this map by A — A, the Haar measure on Mat,,(R) assigns 1/|Mat,, (R/m"*1)|
to the fiber A + m¥*Mat, (R) of any A € Mat,(R/m"*1). Moreover, for any
monic polynomial f(t) € R[t], a generator 7 of m, and any B € Mat, (R), we have
f(A+ 7V TB) = f(A) + 7V *1C for some C € Mat,,(R). Thus, for any R-module H
with m¥ H = 0, we have coker(f(A)) ~ H if and only if coker(f(A + #¥*1B)) ~ H

for all B € Mat,,(R). Having this in mind, applying Lemma IV.12 lets us see that

coker(f;(A)) ~ H;
Prob semat, (R) ! !
for1<j<r

M € Mat,(R) :
= Z i | (A +mV T Mat, (R)) N
AeMaty, (R/mN+1) coker(fj(M)) ~H;for1<j<r
1 A € Mat, (R/mN*1)
- [Mat, (R/mN+1)]

coker(fj(A)) ~ H; for 1<j <r

coker(f;(A)) ~ H,
= Probzeytar, (rymv+1) ’
forl<j<r
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where 1, denotes the Haar (probability) measure on Mat,(R). This finishes the

proof. O]

Lemma IV.15 (Friedman and Washington). Let (R, m) be a complete DVR with
R/m =TF, and H a finite length R-module. Choose any N € Z=q such that m™ H = 0.

Fiz any monic polynomial P(t) € R[t] of degree 1. For any A € Mat,,(F,), the number

of lifts A € Mat, (R/m™N*1) of A such that coker(P(A)) ~ H is equal to
V| Aut g (H)| Hiil(l — ¢ )% if dimy, (coker(P(A))) = ly,
0 if dimp, (coker(P(A))) # Iy,

where ly = dimg, (H/mH).

We note that the reason that we require deg(P) = 1 is because we want the map
Mat,, (R/m™+1) — Mat,, (R/m~*1) given by A > P(A) bijective given in the proof
of Lemma IV.15 (p.236 of | ]), which we do not repeat in this thesis. This
is also why we need the condition deg(F,) = 1 in Theorem C. We will use another

lemma due to Cohen and Lenstra (Theorem 6.3 in | ] with u = 0) as follows.

Lemma IV.16 (Cohen and Lenstra). Let (R, m) be a complete DVR with R/m = F,.

For any | € Z~q, we have

—12 7% i
| | 1—
Prob (dlqu(H/mH) — l) _ q ; z=1( q )
HeMod5™ i:1(1 — q_z)z

with respect to the Cohen—Lenstra distribution on Mody™ .

We are now ready to prove Theorem C.
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Proof of Theorem C. Let Iy := dimg, (H/mH) and choose N € Zx such that mV H =

0. We first note that

dims, (coker(P,(A))) = dimg, (ker(P,(A))) = dims, (A[P>]/P,A[P7]).

By Nakayama’s lemma, we observe that the preimage of the set

A € Mat,(F,) : A € Mat,(F,) :

Z[F]—Ofor1<j r—1 coker(Pj(A)) =0for 1 <j<r—1

under the projection Mat,(R/m"¥*!) — Mat, (F,) modulo m is precisely

A € Mat,, (R/mN+1)

coker(P;(A))=0for 1 <j<r—1

Applying Lemma IV.15 implies that
{ 3

A € Mat,,(R/mN*1)
y coker(Pj(A)) =0for1<j<r—1, ¢

coker(P,.(A))

~

H
( A

A € Mat,(F,) :

Nn2412, 71lu
q n 2

(1—q")?

— =00
dimp, (Z[F:O]/RZ[F;O D =1lu
\ J
so dividing by ¢N*D"* = |Mat, (R/m"*+1)|, we have
coker(P;(A)) =0for 1 <j<r—1,
Prob gemat, (R/mN+1)
coker(P,(A)) ~ H
( A
A € Mat, (F,) :
2 TT7lE —i)2
gr [, (1—q") —
= 2 = < — ’
" | Autp(H)] A[P |]=0for1<j<r—1,
dimg, (A[P;)/P,A[P;]) = ln )
_ql?{Hiil(l_q*i)Z - Z[P |]=0for1<j<r—1,
- |Aut (H)| PrObAeMatn(IFq) ot — —
: dims, (A[P°)/P, AP = Iy
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Hence, applying Theorem IV.1 and Lemma V.16, this leads to

coker(P;(A)) =0for 1 <j<r—1,
lim PrObAeMatn(R/mN"'l)

A coker(P.(A)) ~ H
2 - _J2 —i r—1
@[ —g)? g ’HZH;'L(I —a I ﬁ(l _ giden(P))
|AUtR(H)| [TZ,(1—q7)? j=11i=1
T oo
zdeg(P
|AUtR | = ]j

noting that deg(P,) = 1. This finishes the proof.



CHAPTER V

Distributions of Torsion Sheaves on Curves over
Finite Fields

The contents of this chapter come from a joint work in progress with Haoyang Guo
and Yifeng Huang. One of the main goals of this chapter is to provide a proof of

Theorem 1.9, which will be restated as Theorem V.1.

5.1 Motivation and results

In the beginning of Chapter IV, we saw how the proportion of the n x n matrices
over [F, with finitely many specified local conditions converges to the corresponding
probability given by a Cohen-Lenstra distribution when n — co. To understand
this, we needed an easy but important observation that a matrix A € Mat,,(F,) can

be seen as an I, [¢t]-module with F,-dimension n.

Now, it is natural to ask, by considering the proportion of the IF,-matrices as
the proportion of F,[t]-modules, whether we can generalize our observation to R-
modules for a more general (commutative Noetherian) ring R, other than F [t]. In

algebraic geometry, finitely generated R-modules correspond to coherent sheaves over

67
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Ospec(r) (also known as Ogye(r)-modules). Hence, it is also natural to ask whether
we can generalize our discussion to prove that the proportion of coherent sheaves
on a scheme with finitely specified local conditions gives rise to a Cohen—Lenstra
distribution, when a certain invariant tends to infinity. We will require some nice

conditions on the scheme to make our plan work.

To figure out a valid generalization, first, we reconsider what the probability

Prob (A satsifies &)

AeMaty, (Fq)

means, where & is a property of matrices that is constant on any orbit |[A]| of the

conjugation action GL,(F,) G Mat,(F,). We have

A e Mat,(F,): A ifi
Prob (A satsifies &) = [{4 € Mat, (F,) satsifics 77}
AeMat,, (Fy) |Matn (Fq) |

> LA]l

[AleMaty, (Fq)/GLrn (Fq),
A satsifies &

>, [[ATl

[AleMatn (F)/GLn (Fy)

|GL, (Fy)|
Z |Auth [t] (A) |

[A]eMaty (F,)/GLo (F,),
A satsifies &

GLn (Fy)|
2, | Autr, 7 (A)]

[A]leMaty, (Fq)/GLrn (Fq)

Z 1
[A]eMaty, (Fy)/GLn (Fy), |Aut, 1 (A)]
A satsifies &

- 1
Z |Auth [t] (A) |

[AleMatn (Fy)/GLn (Fy)

n

Using the natural bijection from Mat,, (F,)/GL,(F,) to the set Mod;qq[t] of isomor-



69

phism classes of F,[¢]-modules with size ¢", we have

1
Z n |AUt]Fq[t] (A)|

[AleMod ¢

) Fq[ot]’

Prob (A satsifies &) = A satsifies 2
AeMat,, (Fy) Z — 1
=q" Auth[t](A)|

[A]eMoqu[t]

We note that the right-hand side is more intrinsic than the left-hand side. That is,
we do not need to use matrices to consider the F,[t]-modules. More generally, given
any category C whose objects have finite automorphism groups, for any nonempty

finite set S consisting of some isomorphism classes of objects of C, we define

1
2 |Aute(A)]

(ijes.
Prob(A satsifies ) := Asatsifies 7 7

[A]eS 1
2 TRl

where &2 is a property of objects in C that is constant on its isomorphism classes.

Hence, the above discussion gives

Prob (A satsifies &) = Prob (A satsifies &).

AeMaty, (Fq) AeMod;qq[:]

What we have shown in Theorem IV.1 can be rephrased as:

AlP] ~ H; r 1 © .
li Prob ’ :| |—H 1 _ g—ides(P)
”l_r’rolo Aer)(()fqn . - |AutF [t](H')| L ( 1 )’
Fqlt] forl<j<r j=1 q I/ G=1

where Pi(t),..., P.(t) € Fy[t] are distinct monic irreducible polynomials with P;°-
torsion F,[t]-module H; of finite length for 1 < j < r. The generalization of Theorem

IV.1 is as follows, which we stated as Theorem 1.9 in the introduction:

Theorem V.1. Let X be a smooth, projective, and geometrically irreducible curve

over F, minus finitely many closed points. Given any distinct closed points py, ..., py
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of X, let H; be a finite length module over Ox . for 1 < j <r. Then

fp. ~ [’[_7 r 1 o .
lim  Prob ’ = (1—q" deg(Pj))’
s, a1

n—00 =q" . . :
[J-']eModﬁX fO?“ 1<j<r j=1 i=1

where Mod;g: 15 the set of isomorphism classes of torsion coherent Ox-modules F

with ZPE‘X‘ dimg, (F,) = n, denoting by | X| to mean the set of closed points of X.

5.2 Classification of finite length modules

Let R be a finitely generated F,-algebra, and suppose that R is also a Dedekind
domain. We first classify finite length modules over R. (This should be well-known,
but we could not find a reasonable source.) Let M be any R-module of finite length.
Then n = dimg, (M) is finite, and thus [M| = ¢" is finite as well. Without loss
of generality, let M # 0. This implies that the annihilator ideal J of M in R is
not the unit ideal. We also note that J # 0. To see this, suppose otherwise that
J = 0. We are assuming M has ¢" elements, so write M = {my,...,ms}. Since
J = 0 and R is a domain, this implies that there exists at least one m; whose
annihilator is 0. Since R has infinitely many elements under our hypothesis, we
can take infinitely many distinct elements aq, as, as, ... to construct infinitely many
distinct elements a;m;, asm;, asm,, ... in M. We can do this since for any a; # ax,
we have (a; — ax)m; # 0. However, this contradicts the fact that M is of finite size.
Thus, we conclude that J # 0. Since R is a Dedekind domain, we have a unique

decomposition for J:
T = v

where p; are distinct maximal ideals of R and e; > 1 with » > 1. We note that M is
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also a module over the ring
R/J = R/pi" x--- x R/p".

Thus, for any maximal ideal m ¢ {py,...,p,}, the localization M, is a module defined
over (R/J)m = 0, so we have M,, = 0. On the other hand M,, is a module defined

over (R/J),, ~ R/p;" so that
A1 il
M,, =~ R/p;"' @---@®R/p;"".
Thus, we have
M ~ Mm DD Mpr ~ @(R/p;\” @---P R/pj‘”z)
i=1

Hence, we get a complete classification of R-modules of finite length (or finite
F,-dimension). For convenience, given a maximal ideal p and a partition A =
(A1, ..., Ar), we write

Hy = R/p™ @ ® R/p™,
and what we proved is that any R-module of finite length is of the form

Hy xo @@ H, o

for some maximal ideals p1, ..., p, of R and some partitions AV, ... A7)

Remark V.2. Note that given any finite length R-module, the above discussion also

implies that we have
e Suppp(M) = {p € Spec(R) : M, # 0} = {pi....,p,} and

o M ~M, ® - -®M,, given by m — (m/1,...,m/1).
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5.3 Cycle indices to count torsion coherent sheaves

Let X be as in Theorem V.1, namely a smooth, projective, and geometrically
irreducible curve over IF; minus finitely many closed points. Let F be any torsion
coherent O'x-module. Due to the discussion from the previous section, we know that
the support of F c sists of finitely many points, say p1,...,p, € X, and these points
are closed points because X is an integral curve. Given any closed point p of X and
a nonempty partition A, we consider a formal variable z, . We define z, o = 1.
For any isomorphism class [F]| of a torsion cohrent sheaf F on X, we consider its
support {pi,...,pr} and recall that we have F,, ~ H, & for some partition 9.

We define xr) := 7, \a) -+ T, xon. We define the n-th cycle index of X to be

Q?[]:]
Z(X,n,x) = g —_—
Autg, (F
[J-‘]eMod;q"| utox (F)]

By the orbit-stabilizer theorem, we observe that this generalizes the cycle index

ZIMat,/GLa](F,) () of the conjugation action GL,(F,) G Mat, (F,) as follows:
Z(Ap,, 1, ) = ZMat, /GLI(F,) (2)-

To prove Theorem V.1, we need an analogue for Corollary I1.13. For this, we need

the following lemma:
Lemma V.3. Keeping the notation above, we have a group isomorphism
AUtﬁX (‘F) = AUtﬁX,pl (‘Fpl) X X AUtﬁX,pT (Fp'r')

given by the localizations: ¢ — (Gpy, .-, Op,.)-

Moreover, given any torsion coherent Ox ,,-module M; for 1 < i < r, we have a

torsion coherent Ox-module G such that G,, = M; for 1 <i <r and G, = 0 for any

yé¢{ry, ...,z }
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Proof. Given ¢,v € Autg, (F), if ¢, = ¢, for 1 < i < r, then ¢, = 1, for all
x € X, since {z1,...,x,} is the support of F. This implies that ¢ = 1, so the map

is injective.

To show surjectivity, we will use more specific assumptions about the scheme X.
Fix ¢; € Autg,  (Fs,) for 1 < i < r. Since X is quasi-compact, we may cover it
with finitely many nonempty affine opens Uy, ..., U;. Say among py,...,p,, we have

Pijar- -5 Pij,, € U;. From the previous section, we know that

FUj) =~ Fp,  x--x Fp,

it drg
given by the localizations, and we know each U; nUj is affine because X is separated,
so these isomorphisms are compatible with taking intersections among Uy, ..., U,.
Now, if we denote by ¢y, the Ox(Uj)-linear automorphism of F(U;) corresponding

to ¢y, X -+ X qﬁi].,rj. In particular, we have (¢, ) = @i, ., S0 the maps ¢y, are com-

Pij g,
patible with taking intersections among Uy, ..., U;. Hence, we may glue them to get
an Ox-linear map ¢ : F — F. By checking the localizations at pq, ..., p., we see ¢ is

an automorphism, which shows the surjectivity of Autg, (F) — [[2, Autey, (Fp,)-

It remains to show that we can glue any given torsion coherent modules M; defined
over Oy p, for 1 <1i <1 to an Ox-module. We use the same Uy, ..., U, given above.
Define

G(U)) = M;,, x - x M

4,1 Ty
which is an Ox(U;)-module. Since any finite intersections among Uy, ..., U, are

affine, we may analogously define G(U;, n---nUj;,) and get restriction maps among

them. Hence, we may glue these modules to construct an &x-module G on X. [
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We now provide an analogue of Theorem II.13. We omit its proof as it is a direct

corollary of Lemma V.3.

Lemma V.4. Let X be as in Theorem V.1. Then

0
X F]
S Z(X,m @) Z S M
= b TRt (7))
ol des(o)

=1 2, mr

pe| X | veP

where | X | is the set of closed points of X .

5.4 Proof of Theorem 1.9 (Theorem V.1)

In this section, we use the cycle indices for X introduced in the previous section

to prove Theorem V.1. For this, we will also need a generalization of Lemma IV.3:

Lemma V.5. Let (R,p) be any DVR with the finite residue field R/p = F,. Then

0

y
Z |AUtR 1_[ 1— zdeg(p Q[[y]]

i=1

Proof. By an application of Lemma IV.2, we have

[Autr(Hy,)| = |Auts .o (),

so we are done by applying Lemma IV.3. O]

Given X as in Theorem V.1, we may write X = C' \ {x1,..., 2.}, where C' is a

smooth, projective, and geometrically irreducible curve over F, and x4, ..., z,, are
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finitely many closed points of X. (We allow the case m = 0.) By the rationality of

zeta series Zo(u) of C, we may write

fo(u)
2t = g

where fo(u) € Z[u] is of degree 2¢g, denoting by ¢ the genus of C' (e.g., see [Ras,

Theorem 2.7]). This implies that we have

(L —uh)--- (1 —u') fo(u)
(1 =u)(1 = qu) ’

where d; = deg(x;). We will use this form of Z x(u) in our proofs.

Zx(u) =1 —uh) (1 —u")Zc(u) =

Lemma V.6. Keeping the notation as above, we have

. 1 (I—g ) (=g ™) fole) . .

1 e

Jim Y  TAuto (F)] 1—q¢ ! UQ Cx (@),
[FleMody? i=

where (x(s) = Zx(q™*) is the zeta function of X. In particular, this quantity is

nonzero.

Proof. Taking x,, = 1 for all p, v in Lemma V.4 and applying Lemma V.5, we have

1 " v deg(p)
—u" = -
Z ﬂeh%d o Aty (F)] ﬂ'; |Auts,  (F)]
pe\X|z 1 Zu deg(p)
pll lpe\X| q ) des(®)
- U)dl)"'(l—(q_llL)d’”)fc(q‘lu) o
- (=g (1= [[ 2t

SO

: 1 Q=g Q=g ™) felg") »
o [J—']ﬂ\%d—q" [Autg, (F)] 1—g! [[2x@™
_ - M) (=g ) felg™) ﬁ Cx (i),

1—q¢! i=2
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as desired. The fact that this quantity is nonzero follows from the fact that every

root of fo(u) are of the size ¢~/ for some integer k. ]
We now give a proof of Theorem V.1.

Proof. Let [ be the number of nonzero modules among Hy, ..., H.. We may assume
that H; = H, \o for some partitions AV, ... A" so that [ is also the number of
nonempty partitions among them. We argue by induction on [. First, consider the
case where [ = 0. Given any coherent torsion &'x-module F and a closed point p

of X, we write p,(F) to mean the partition associated to the Oy ,-module F,. In

particular, we have u,(F) = & if and only if F, = 0.

Taking x,, = 1 for any p ¢ {p1,...,p,} and z,,, = 0 for all 1 < j < n and
nonempty v in Lemma V.4 and applying Lemma V.5 we get

e 0] 1 .
2 2 [Auto, (F)

=0 [FleMod3",
#m(]:):"':#pz (-7:)=®

- V1 dee(p) r ulvldese)  \
N HZ [Autoy, (F)| ﬂ;‘,lAutﬁx,pj(f )]

pe| X| 1/679 Autoy,( P;

T

(1= (g "u) =)

o0
H —z deg D)
iy U

S
Il

—
-
Il

—

Il
':18

<

<

(1= (g "u)*sr)

1]
(1 - (q U)dcg(p])) H H —Zu deg(p)
L7

)

mioydestoy | (L (@7 W) ) - (L= (g7 ) ™) folg™ ) 1 .
(1 = (g7 u)™=)) 0 g 0 ) EZX(

i
e T

S
Il

-
-
Il

—

<

S
Il
—
-
Il
—

I
'::]8
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Hence, we have

fp;(F) = & 1
lim  Prob »(F) Z At (F
" FleMod ! for1<j<r )(rleMody" [Autoy (F)
r ©
R 1 _ g4 e 1 _ —dm -1 )
_ (H H(l _ q—zdeg(pj)>> ( q ) 1( 7(.12 )fC(q ) H ZX(q—z)7
j=1i=1 — 4 i=2
so applying Lemma V.6, we have
/“Lp]' (F) = @ r © i d
lim  Prob = H(l —q" eg(m))_
TTEIFIEMod T\ for 1< i< | i=liml

For induction hypothesis, suppose that we know the result for [ = 0,1,...,k — 1,
and consider the case where [ = k. We may assume that A, ..., A(®) are nonempty,

while \#+1) = ... = XD = ¥ We take

o z,, =1forany pé¢ {p1,...,n},
o 7, ,=0foralll <j<kandv= 7. A9 and

® I, i) = lforalll<j<kandv # )

to get

i 2 1 u”
Autg, (F

n=0 [.F]EMOd;qn, | ﬁx( )|

.“p]-(]:)e{@%(j)} for 1<j<k,
s )=, () =2

r IA)] deg(p;) |v| deg(p
= (TT{1+ [1Y
L\ R, (0 TAuton, (5] >|

j=1 pe| X | veP

Jj=1 1=1

" GO o)) 2 oo G2 1
= 1+ (q "u)desrs)) A
H |AutﬁXp (H, H pelX n 1 — (g~ iu)des®)
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<3

A | deg(p;)

oo o0
= 1+ (1-— (q*iu)deg(pj)) —
ol |AutﬁX7pj (Hpj’,,)| ]:‘1[ gqu 1 (q 1u)deg(1’)
r IAU)| deg(p;) ®© ©
u :
_ 1+ (1 . (quu)deg(pj)) ZX(q Zu)
j=1 |Autﬁx,p]- (Hpj,lf)| ];1[ J;l[
r u|/\(j)‘ deg(pj) © ,
= 1+ (1- (qﬂu)deg(m))
j—1 |AUt/7X,pj (Hpjﬂf)| H
(1= (g w)h) - (1= (¢ "u)™) felg Mu) 1 i
. — Z x(q""u).
(1—q¢'u)(1—u) T
This implies that
lim  Prob iy (F) €12, )\(j)} ortsgsm Z 1
n—00 od=1" n Aut F
AN\ (P == (F) =2 ) presmeagr A )
r 1 0
— 1+ (1 — g?dealrs)y
<E < |AUtﬁX,pj (Hpj,V)|> E

(1—g™)---(1=qg"™) felg™) 5 i
. g1 H Zx(q")

Hence, applying Lemma V.6, we have

ip; (F) € (T, A for 1 < j < m,

lim Prob
n—o0 ° =q"™
[FleMod7 Mpm+1(]:) —_ . = Mp,-(]:) %
T 1 o0
_ 1+ 1— —ideg(p;) )
g ( Autoy, (Hpj,,,)l) ] =g

By applying induction just as in the proof of Theorem IV.1, we are done.
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