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ABSTRACT 

Innovative approaches to convert organic waste streams into biofuels and biochemicals are gaining 

attention as they provide substitutes for fossil-fuel based products, address waste management 

problems, and provide economic return. Chain elongation for medium chain carboxylic acids 

(MCCAs) production from organic waste streams using anaerobic mixed-culture microbial 

communities is one such emerging biotechnology. MCCAs are platform chemicals used as 

building blocks for several industrial and agricultural commodities. This dissertation research 

focuses on the development and optimization of anaerobic bioreactor systems for efficient MCCA 

production from complex waste streams by integrating process engineering, microbial ecology, 

and modeling tools. 

We demonstrated that pre-fermented food waste and brewery waste can be used for MCCA 

production by engineering anaerobic microbiomes. However, excessive ethanol oxidation to 

acetate, a competing reaction, led to inefficient usage of ethanol present in the brewery waste. 

Therefore, the competing reaction was suppressed by increasing hydrogen partial pressure through 

the addition of an inhibitor of hydrogen consuming methanogens, 2-bromoethanesulfonate. While 

the inhibition initially was successful, it was short-lived as a microbial community resistant to 2-

bromoethanesulfonate developed over time. Thus, controlling competing processes is challenging 

with heterogeneous waste streams and the use of mixed cultures and other strategies need to be 

developed. Furthermore, the contribution of microbial immigration from the feed to the chain 

elongation bioreactor was characterized. A significant fraction of the microbial community in the 

chain elongation bioreactor originated from the influent. However, not all immigrant populations 

remained active in the bioreactor, while other populations that were present at relatively low 

relative abundance and activity in the influent contributed significantly towards the chain 

elongation function.  
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 Given that MCCA recovery with an in-line membrane-based extraction system requires solids 

removal from the bioreactor effluent to avoid membrane fouling, a lab-scale anaerobic dynamic 

membrane bioreactor (AnDMBR) was developed. This system contained stainless steel meshes to 

support the formation of a biological cake layer termed a “dynamic membrane” that provided 

filtration. The dynamic membrane achieved efficient solid-liquid separation, resulting in higher 

than 95% suspended solids removal, despite high bioreactor solids concentration, enabling 

integration of the AnDMBR with the MCCA extraction system. Additionally, the development of 

the dynamic membrane biofilm led to the enrichment of highly active MCCA producing 

populations, thus promoting chain elongation activity.  

Finally, the environmental life cycle impacts of the production of caproic acid, a six-carbon 

MCCA, from brewery waste using chain elongation were compared with the environmental 

impacts of a conventional palm kernel oil approach for caproic acid production using a life cycle 

assessment tool. The brewery waste based system provided environmental benefits compared to 

the conventional route on all impact categories assessed. The results also showed that the 

environmental footprint of the chain elongation system can be further improved by reducing 

sodium hydroxide addition and using renewable energy sources for heating the system. 

As several cities, industries, and organizations are evaluating organic waste diversion through 

anaerobic bioprocesses, this dissertation research is highly relevant. It addressed knowledge gaps 

and technological barriers associated with MCCA production from waste streams and suggested 

strategies to guide future technology development. 
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Chapter 1  

 

Introduction 

 

1.1 Resource recovery from organic waste streams  

The current linear economy has led to unsustainable resource exploitation and vast waste 

management problems (Esposito et al., 2018). Waste generation across the world is estimated to 

increase by 22% from 2.01 to 2.59 billion tons from 2016 to 2030 (Kaza et al., 2018). The concept 

of a circular economy has been proposed as an alternative to the linear economy and is gaining 

momentum worldwide (Esposito et al., 2018; Schroeder et al., 2019). In recent years, there has 

been increased interest in developing innovative approaches to repurposing waste streams for the 

production of bio-based chemicals and fuels (Kehrein et al., 2020; Puyol et al., 2017). Several 

regulations and policies are being implemented at the local and national levels around the world 

to reduce, reuse, and recycle waste (Jones et al., 2019; Malinauskaite et al., 2017). Water and 

wastewater systems account for approximately 3-4% of the total U.S. electricity consumption, 

which results in the production of almost 45 million tons of greenhouse gases every year (U.S.EPA, 

2013). Wastewater treatment plants are also shifting towards the water resource recovery facility 

model as they are rethinking waste(water) treatment approaches to integrate recovery of resources 

(water, nutrients, energy, etc.) (Puyol et al., 2017). Integrating resource recovery could help 

wastewater treatment plants save energy and move towards achieving energy neutrality. 

Wastewater treatment plants can also generate revenue from tipping fees and earn renewable 

energy credits (depending on the government energy policies) providing additional incentives for 

adopting resource recovery approaches from waste streams (Jones et al., 2019). 
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Current fuel and chemical production methods depend heavily on non-renewable resources. 

Bioenergy and biochemicals production from organic waste streams provide an alternative to fossil 

fuel based resources with the additional benefit of providing proper waste treatment (Kehrein et 

al., 2020; Puyol et al., 2017). This has led to the development of several biotechnologies that 

harness the metabolisms of microorganisms for diverse applications in the fields of energy and 

environment, human health, and agriculture. Recent developments in genome sequencing, meta-

omics, and computational tools have improved our ability to engineer and control microbial 

communities for desired outputs (Lawson et al., 2019). Anaerobic microbiomes can be engineered 

to efficiently convert low-value organic waste streams, despite their complexity and heterogeneity, 

into high-value chemicals and fuels (Angenent et al., 2016). One of the established anaerobic 

biotechnologies is the carboxylate platform that involves converting complex feedstocks including 

waste streams to short-chain carboxylic acids (SCCAs). The SCCAs can be further converted to 

methane via anaerobic digestion or to higher value platform chemicals such as medium-chain 

carboxylic acids (MCCAs) via chain elongation (Holtzapple and Granda, 2009; Wu et al., 2019). 

1.2 Chain elongation for MCCA production 

Chain elongation technology for MCCA production is gaining attention for resource recovery from 

diverse waste streams. Chain elongation includes oxidation of an electron donor and step-wise 

elongation of the carbon chain of SCCAs to MCCAs via the reverse β oxidation pathway 

(Angenent et al., 2016; Wu et al., 2019). Reduced compounds such as ethanol provide reducing 

equivalents (NADH), carbon in the form of acetyl-CoA, and energy (ATP). The two-carbon acetyl 

CoA molecule is added to the carbon backbone of the SCCAs leading to sequential carbon chain 

elongation in two-carbon steps (i.e., acetate (C2) to n-butyrate (C4), n-butyrate to n-caproate (C6), 

and similarly for odd chain carboxylates) (Angenent et al., 2016). Besides ethanol, other suitable 

electron donors include lactate, methanol, and propanol (Chen et al., 2016; Coma et al., 2016; 

Kucek et al., 2016a; Zhu et al., 2015).  

MCCAs are carboxylic acids with chain lengths from six to twelve carbons including one carboxyl 

group (Angenent et al., 2016). MCCAs are platform chemicals with several industrial and 

agricultural applications. They can be converted into longer chain liquid fuels or used directly as 
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livestock feed additives, pathogen resistance inducer in plants, a green antimicrobial agent in the 

pharmaceutical industry,  or as a valuable commodity for the production of lubricants, fragrances, 

and dyes (Angenent et al., 2016; Desbois and Smith, 2010; Hanczakowska, 2017; Scalschi et al., 

2013; Takeuchi et al., 2008; Urban et al., 2017). The global MCCA market is expected to reach 

approximately USD 1.55 billion by 2022, growing at a compound annual growth rate of 12.3% 

between 2017 and 2022 (Zion Market Research, 2018). MCCAs are currently produced from 

petrochemical-based methods or extracted from palm kernel oil and coconut oil (Anneken et al., 

2012). Palm kernel oil and coconut oil contain a small amount of MCCAs ranging from 0.1-10% 

by weight (Anneken et al., 2012; Bagby et al., 2004), which increases their market price. 

Furthermore, the use of plant oils such as palm oil has been associated with severe environmental 

consequences including greenhouse gas emission, land use changes, and deforestation (Carlson et 

al., 2012; Petrenko et al., 2016). MCCAs can also be obtained through anaerobic fermentation of 

waste streams via chain elongation, which has the potential to address the concerns of negative 

environmental problems and waste management at the same time.   

The inputs required for chain elongation, SCCAs and ethanol (or other electron donors), can be 

present in the waste stream or produced in situ during the fermentation of organic waste. Several 

lab-scale chain elongation studies have demonstrated the use of diverse organic waste streams 

including yeast fermentation beer, organic fraction of municipal solid waste, food waste, acid 

whey, wine lees, Chinese liquor making wastewater, and thin stillage (Carvajal-Arroyo et al., 

2019; Duber et al., 2018; Ge et al., 2015; Grootscholten et al., 2014; Kucek et al., 2016b; Nzeteu 

et al., 2018; Zhu et al., 2015).  

Chain elongation can be applied for the valorization of waste generated in breweries. The number 

of breweries, particularly craft breweries, has been growing steadily in the U.S., with a 78% 

increase from the year 2010 to 2019 (Brewers Association, 2019). However, this growth has 

brought new challenges related to waste management. There are considerable opportunities to 

recover resources from the various organic-rich waste fractions generated in breweries. Waste 

beer, for example, has potential for MCCA production through chain elongation due to its high 

ethanol content. Waste beer is a waste stream produced as a result of faulty bottling, developing 
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off-flavors, improper fermentation, improper storage, or beer returned from the market because it 

is close to or beyond its expiration date (Seluy and Isla, 2014). Currently, this waste is mixed with 

brewery wastewater and treated onsite or discharged into the sewer system for treatment at a 

municipal wastewater treatment plant. Utilizing waste beer for MCCA production offers an 

alternative use for this waste stream. Additionally, a life cycle assessment identified crude ethanol 

use to have a dominant environmental impact over the life cycle (Chen et al., 2017). Therefore, 

using ethanol in brewery waste would reduce the operating cost and environmental impact by 

avoiding the use of crude ethanol in addition to treating brewery waste. 

1.3 Problem statement and research motivation 

Chain elongation is emerging as a promising biotechnology for the production of high-value 

platform chemicals such as MCCAs. Commercial-scale production of MCCAs through anaerobic 

chain elongation has just started in The Netherlands. The first full-scale plant, developed by 

ChainCraft in The Netherlands, produces caproic acid from food processing waste. A recent startup 

company called Capro-X (Ithaca, New York) is scaling up MCCA production from acid whey 

produced during Greek yogurt production. The feasibility of MCCA production from other waste 

streams has been demonstrated at the lab-scale level by several studies as indicated above. As the 

options for using waste streams for chain elongation are expanding, it is important to have a better 

understanding of how to optimize and stabilize the chain elongation process to maximize MCCA 

production. Research is needed to address several challenges associated with MCCA production 

from waste streams to successfully scale up this technology for real-world applications.  

Chain elongation is facilitated by mixed microbial communities. The efficiency and stability of 

such microbially mediated processes depend on the concerted activity of microorganisms 

belonging to different functional groups. Microbial populations are involved in hydrolysis and 

acidogenesis of the organic substrates to produce MCCA precursors such as SCCAs, ethanol, and 

lactate, while other community members convert these intermediates into MCCAs. The increased 

metabolic flexibility and robustness conferred by a diverse range of microbial populations in a 

mixed culture fermentation process make it possible to use unsterilized, complex, and 

heterogeneous waste streams. In such a system, the conditions might not be favorable for all 
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populations in anaerobic microbial communities, but identifying environmental and operational 

factors that provide ecological advantages to key chain elongating populations is important to 

enhance MCCA production. This requires understanding the impact of various environmental 

conditions on the microbial community to develop optimal conditions to steer the production 

towards MCCA production. Therefore, it is critical to study microbial communities involved in 

the chain elongation process to successfully engineer and manage microbial communities to 

maximize MCCA production.  

Microbial immigration is ubiquitous in engineered wastewater treatment systems (Mei and Liu, 

2019). As these systems are continuously fed with non-sterile waste streams, there is a continuous 

influx of microbial populations present in the influent to the bioreactor. A previous study found 

that a significant fraction of immigrant populations was inactive but was mistakenly identified as 

being important when measured with DNA based sequencing method (Kirkegaard et al., 2017). 

Excluding inactive populations from process modeling enabled the accurate linkage of process 

performance with changes in the microbial community (Mei et al., 2019). The importance of 

immigration in chain elongation has not been studied previously. Microbial populations in an 

upstream system or in an external substrate/waste stream can influence the function of the chain 

elongation system. Furthermore, considering previous findings regarding the presence of both 

active and inactive immigrant populations in the downstream system, it is important to separately 

identify active and inactive immigrants.  

One of the challenges of mixed culture fermentation using waste streams is to produce MCCAs at 

a sufficiently high titer and yield. Previous studies have shown that MCCA production from 

complex waste streams is lower than that from easily degradable synthetic substrates 

(Grootscholten et al., 2014, 2013; Kucek et al., 2016b, 2016c),. The temporal variability in the 

composition of waste streams further increases the complexity. Furthermore, diverse 

microorganisms with broad metabolic capacity are present in mixed-culture fermentation process 

such as chain elongation. As a result, competitive reactions such as methanogenesis, excessive 

ethanol oxidation to acetate (EEO), sulfate reduction to sulfide, carboxylic acid oxidation, and the 

acrylate pathway (during lactate chain elongation) can co-occur and interfere with the chain 
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elongation process (Wu et al., 2019). For example, in ethanol driven chain elongation, EEO can 

lead to inefficient ethanol usage (Roghair et al., 2018). Additionally, EEO also acidifies the system 

requiring extra base addition thus increasing the operating cost and environmental impacts. 

Consequently, we need to devise strategies to minimize competitive reactions to favor MCCAs 

production from the waste stream.  

Using waste streams for MCCA production is an attractive alternative from the environmental 

sustainability perspective compared to the currently used palm kernel oil or petrochemical-based 

routes. However, with the increasing attention received by chain elongation, it is important to 

understand the environmental cost and benefits of such new technologies. One promising tool to 

evaluate the environmental performance of emerging technologies is life cycle assessment (LCA). 

Such assessment, when used at the early design stages, can highlight areas of improvement for 

future research to maximize the environmental benefits. Thus, the application of LCA is important 

to direct chain elongation research and to drive technology development forward.  

It is understood that integrating engineering, microbial, and modeling tools will help us improve 

the chain elongation process and harness the potential of mixed communities for resource recovery 

from different organic waste streams. This dissertation research integrates bioprocess and chemical 

engineering, microbial ecology, and LCA modeling, thus taking advantage of knowledge and 

principles from diverse fields to address the challenges and research gaps discussed above and thus 

advance our understanding of the chain elongation process. 

1.4 Dissertation outline 

The overarching goal of this dissertation is to develop and optimize the chain elongation process 

for efficient MCCA production from complex organic waste, specifically focused on pre-

fermented food waste and waste beer. This was achieved by studying the role of immigration of 

microorganisms from waste streams in chain elongation, devising strategies to inhibit competitive 

reactions, developing a novel chain elongation bioreactor system, and assessing the environmental 

performance of the proposed technology.  
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Chapter 2 investigated the feasibility of using waste beer and pre-fermented food waste for MCCA 

production using an anaerobic sequencing batch reactor and studied the effect of operational 

factors such as solids retention time on the bioreactor performance. Furthermore, a combination 

of a mass balance approach to calculate the specific growth rate of microbial populations and the 

ratio of relative activity and relative abundance based on 16S rRNA and 16S rRNA gene 

sequencing (rRNA/rDNA), respectively, was used to identify active and inactive immigrants and 

thus study their role in chain elongation.  Chapter 3 presents results obtained with the same 

anaerobic sequencing batch reactor and discusses the impact of competitive reactions such as EEO 

on the chain elongation process. Specifically, this study evaluated the effect of manipulating 

hydrogen partial pressure in the bioreactor through adding a methanogenic inhibitor of hydrogen 

consuming methanogens on EEO. The effect of the methanogenic inhibitor on both the archaeal 

and bacterial community was studied using amplicon sequence variant (ASV) and operational 

taxonomic unit (OTU) based approaches. Chapter 4 focuses on the development and operation of 

an anaerobic dynamic membrane bioreactor that allowed the production of a low suspended solids 

effluent for integration with the downstream MCCA extraction unit. This chapter further compared 

the microbial community in both the suspended and biofilm biomass providing insights into the 

role of biofilm microbial community in MCCA production. In Chapter 5, the benefits and burdens 

of caproic acid production from brewery waste and palm kernel oil were compared from an 

environmental life cycle perspective. Chapter 6 provides the overall conclusions of the 

dissertation, discusses the significance of the study, and presents future research directions. 
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2.1 Abstract 

Chain elongation is an emerging biotechnology for medium chain carboxylic acids (MCCAs) 

production from diverse waste streams. Organic waste streams such as food and brewery waste 

were upgraded to MCCAs using mixed-culture microbial communities. A maximum MCCAs 

volumetric production rate of 9.1 mmole L-1 d-1 was achieved over a period of 229 days with 

caproate as the major MCCAs. MCCAs toxicity induced at acidic pH limited MCCAs production. 

Microbial populations belonging to the Clostridiales order and Pseudoramibacter genus were 

dominant and found to be positively correlated to MCCAs production. Furthermore, the impact of 

microbial immigration on the chain elongation bioreactor was investigated using time-series 16S 

rRNA gene (rDNA) and 16S rRNA sequencing data. The microbial memberships in the influent 
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and the bioreactor were similar, but the microbial community structures differed. The ratio of 

relative activity and relative abundance (rRNA/rDNA) was used to identify active immigrant 

populations. Some of the most dominant microbial populations in the influent such as Prevotella 

were present at lower activity (low rRNA/rDNA ratio) in the bioreactor. On the other hand, chain 

elongating microbial groups such as Clostridiales order and Pseudoramibacter were enriched in 

the bioreactor even though they were present at low relative abundances and activities in the 

influent. Since, the rRNA/rDNA did not provide accurate representation for all microbial 

populations, a mass balance-based approach was used to calculate specific growth rates to 

differentiate between active populations that contributed to chain elongation and the inactive 

immigrant populations. Ultimately, identifying active and inactive immigrant populations will 

enable accurate linkage of process performance with microbial community during process 

modeling.  

2.2 Introduction 

Global municipal solid waste generation is expected to increase by 22% from 2.01 to 2.59 billion 

tons per year from 2016 to 2050, with a concurrent increase in waste management costs and human 

and environmental health impacts (Kaza et al., 2018). To address this concern, several efforts to 

divert waste from landfills and reduce anthropogenic methane emissions have been and will 

continue to be implemented in different parts of the world (Jones et al., 2019; Malinauskaite et al., 

2017).  Low-cost technologies that can valorize readily available and biodegradable organic waste 

streams to recover high-value products are urgently needed. Chain elongation of short chain 

carboxylic acids (SCCAs) using mixed microbial communities for production of medium chain 

carboxylic acids (MCCAs) from waste streams provides an opportunity to contribute to this need. 

MCCAs, saturated fatty acids with chain lengths from six to twelve carbons including one carboxyl 

group, are platform chemicals that are used as livestock feed additives, antimicrobials, commodity 

chemicals for the manufacturing of pharmaceuticals, fragrances, lubricants, rubbers, and dyes, and 

liquid biofuels (Angenent et al., 2016; Urban et al., 2017). They are currently produced from plant 

based oils with considerable environmental impacts (Anneken et al., 2012; Carlson et al., 2012; 

Petrenko et al., 2016).  
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Chain elongation involves oxidation of electron donors, such as ethanol, which also serve as a 

source of carbon, reducing equivalents (NADH), and energy (ATP) in chain elongation. Ethanol 

chain elongation includes ethanol oxidation to acetyl-CoA and chain elongation of SCCAs via 

reverse  oxidation (Angenent et al., 2016; Wu et al., 2019).  SCCAs and electron donors required 

for MCCA production can be added from an exogenous source, may be present in the substrate, 

or can be produced in situ as an intermediate during fermentation. Several chain elongation studies 

have used crude ethanol to mediate chain elongation (Grootscholten et al., 2013a, 2013b, 2013c, 

2014; Kucek et al., 2016b; Roghair et al., 2018), while others have utilized waste ethanol such as 

yeast fermentation beer (Agler et al., 2012; Ge et al., 2015; Urban et al., 2017; Xu et al., 2015), 

wine lees (Kucek et al., 2016c), and syngas effluent (Gildemyn et al., 2017). Upgrading ethanol-

containing brewery waste into MCCAs may be a promising option, given that the increasing 

number of breweries (Brewers Association, 2019; The Brewers of Europe, 2017) has brought new 

challenges related to infrastructure and waste management (Brewers Association, 2017a, 2017b). 

There are considerable opportunities to diversify brewery waste treatment practices and recover 

resources from the various organic-rich waste streams generated in breweries. Deriving ethanol 

from brewery waste would not only eliminate the cost and environmental impact of using crude 

ethanol in chain elongation (Chen et al., 2017), but would also be beneficial for brewery waste 

treatment. 

The efficiency and stability of microbially-mediated processes such as chain elongation depend on 

the concerted and syntrophic activity of functionally diverse microbial populations. Most chain 

elongation studies that have used heterogeneous waste streams have focused on studying the 

bioreactor microbiome only (Andersen et al., 2017; Kucek et al., 2016c; Scarborough et al., 2018). 

However, when waste streams are used as substrate, microorganisms continuously enter the chain 

elongation bioreactor as waste streams contain their own microbial communities. Since we rely on 

optimizing bioreactor conditions to provide ecological advantages to key microorganisms and 

metabolic pathways, understanding the contributions of the waste stream microbiome is important 

to optimize process performance (Frigon and Wells, 2019; Mei et al., 2019). The effect of the 

influent microbiome on the bioreactor microbiome and its function has been studied for anaerobic 

digesters and activated sludge systems (Kirkegaard et al., 2017; Mei et al., 2019, 2017, 2016; Shin 
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et al., 2019). These studies identified that a large fraction of the microbial populations originating 

from the influent were inactive in the downstream system and removing the inactive immigrant 

populations from the data analysis enabled better prediction of operating parameters that influence 

process performance. Thus, it is important to identify the microbial immigrants that maintain 

activity and affect process performance and stability. So far, chain elongation studies have 

overlooked the impact of these feed associated microbial populations.  

Most chain elongation studies have used 16S ribosomal (rRNA) gene sequencing to gain insights 

into the microbial community governing chain elongation systems (Agler et al., 2012; Andersen 

et al., 2017, 2015; Gildemyn et al., 2017; Khor et al., 2017; Kucek et al., 2016a, 2016c, 2016b; 

Liu et al., 2017; Xu et al., 2018). However, this DNA-based technique also targets 16S rRNA 

genes associated with inactive cells as well as extracellular DNA leading to over-estimation of 

active cells (Li et al., 2017). The half-life of RNA is much shorter than that of DNA and monitoring 

the abundance of 16S rRNA of specific microbial populations can be used to infer the overall 

activity of these populations (Klappenbach et al., 2000), as long as the well-described limitations 

of this approach are acknowledged (Blazewicz et al., 2013; Poretsky et al., 2014; Větrovský and 

Baldrian, 2013). Considering the slow decay of DNA and the continuous introduction of dead and 

inactive cells, in addition to active cells, to the downstream system, it is challenging to characterize 

microbial immigration only with DNA based methods. Therefore, we used a combination of 16S 

rRNA and 16S rRNA gene sequencing in this study to compare trends over time and gain insights 

in microbial immigration.  

In this study, we demonstrated that ethanol-rich waste beer and pre-fermented food waste can be 

used for MCCAs production without exogenous ethanol addition. In addition, we characterized 

the chain elongating microbial community and investigated the effect of operating parameters on 

bioreactor performance and its microbial community. Lastly, we studied the role of microbial 

immigration during chain elongation by calculating the specific growth rate of individual 

populations to distinguish the inactive immigrant populations from the active ones. 



16 

 

2.3 Materials & Methods 

2.3.1 Inoculum and Substrate 

The bioreactor was inoculated with rumen content (17.1  1.0 volatile solids (VS) L-1) on the same 

day it was collected from the rumen of a fistulated cow from a dairy farm at Michigan State 

University (East Lansing, MI, USA). 5 L of rumen content was added to the bioreactor, which was 

allowed to degasify for 48 h before starting to feed the bioreactor. On Day 178, 2.5 L of fresh 

rumen content was added to the bioreactor after an accidental loss of biomass due to a pump error. 

The bioreactor was fed once a day with a mixture of waste beer and permeate containing high 

levels (62.1  11.0 mM) of SCCAs produced by an acidogenic bioreactor treating food waste. The 

chemical characteristics of the inoculum, waste beer, and permeate are summarized in Table A1, 

Appendix A. Waste beer is a waste stream produced as a result of faulty bottling, development of 

off-flavors, improper fermentation, improper storage, or beer returned from the market because it 

is close to or beyond its expiration date (Seluy and Isla, 2014). Three batches of waste beer were 

collected at different times from Jolly Pumpkin Brewery (Dexter, MI), which produces waste beer 

at a rate of 2 to 19% of their volumetric beer production (Doug Knox, personal communication). 

The acidogenic food waste bioreactor was inoculated with rumen content and operated to enhance 

SCCAs production. Permeate was collected once per week from the acidogenic bioreactor for 

weekly influent preparation. The SCCAs and ethanol present in permeate and waste beer were 

considered to determine the ratio of both substrates. The amount of ethanol required for chain 

elongation of SCCAs was calculated according to the chain elongation stoichiometric 

equations(Angenent et al., 2016) (4:1 for ethanol:acetate, 2.4:1 for ethanol:propionate, 1.2:1 

ethanol:butyrate, and 1.2:1 ethanol:valerate) given in Table A2, Appendix A except during the 

first three weeks when the ethanol:acetate ratio in the influent was 9:1.  

2.3.2 Experimental setup 

A 7-L semi-continuous anaerobic sequencing batch reactor (ASBR) with a working volume of 5 

L was operated on a 24-h cycle consisting of four steps: i) feeding (8-10 min), ii) continuous 

mixing and pH adjustment (22 h 40 min), iii) settling (1 h), and iv) decanting for withdrawal of 

effluent equal to the volume of the influent (8-10 min). The ASBR was controlled remotely by 
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LabVIEW (National Instruments, Austin, TX) data acquisition software. The bioreactor headspace 

was connected to a 5-L Tedlar gas bag. The bioreactor was equipped with a water jacket connected 

to a recirculating bath (Polyscience, Niles, IL, USA) for temperature control and was operated at 

40oC until Day 73 and at 37oC for the remainder of the time. The temperature was decreased to 

37oC to be closer to the optimal growth temperature of several chain elongating species, such as 

Clostridium kluyveri, Clostridium sp. BS-1, Eubacterium pyruvativorans, Eubacterium limosum, 

and Megasphaera elsdenii (Angenent et al., 2016; Jeon et al., 2010; Weimer and Stevenson, 2012). 

The bioreactor pH was maintained at slightly acidic conditions (pH 5.50.1) to minimize 

methanogenesis through automatic addition of 3 M NaOH using LabVIEW during the well-mixed 

react phase. The bioreactor was operated at a hydraulic retention time (HRT) of 2-4 days and an 

organic loading rate (OLR) of 4.5-34.6 g soluble chemical oxygen demand (sCOD) L-1 d-1 (Figure 

A.1, Appendix A). The solids retention time (SRT) was controlled from Days 20-81 by wasting 

both suspended biomass from the bioreactor (before the settling period) and effluent after the 

decant phase. Starting from Day 82, the suspended biomass was wasted only once a week to collect 

biomass samples for microbial analyses. The volatile suspended solids (VSS) concentration in both 

suspended biomass and effluent were considered for SRT calculation.  

In this study, the undissociated carboxylic acid and the corresponding dissociated carboxylate are 

together referred to as carboxylate. Furthermore, the terms MCCAs and SCCAs, respectively, refer 

to the sum of caproate (C6), enanthate (C7), and caprylate (C8) and the sum of acetate (C2), 

propionate (C3), n-butyrate (C4), and n-valerate (C5); the iso-butyrate and iso-valerate were 

excluded unless stated explicitly. The SCCAs and MCCAs results reported in this study are 

expressed on a molar basis and are net values calculated after subtracting the concentration of the 

respective compound in the influent from the gross values. The volumetric production rate (mmole 

L-1 d-1) was determined by dividing the bioreactor effluent concentrations (mmole L-1) with 

corresponding HRT (d, working volume (L) divided by effluent flow rate (L d-1)). The product 

yield was calculated by dividing soluble oxygen demand (sCOD) of MCCAs produced in the 

bioreactor by fermentable influent sCOD. The fraction of sCOD contributed by MCCAs already 

present in the influent was deducted from the fermentable influent sCOD used for the MCCAs 

yield calculation.  
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2.3.3 Chemical analyses 

We collected samples for various chemical analyses. Inoculum samples were collected at the time 

of inoculation (Day 0 and Day 178), influent and bioreactor content were sampled once a week, 

and effluent was collected two to three times a week. Total solids (TS) and VS, total suspended 

solids (TSS), and VSS analyses were determined as per the procedures outlined in Standard 

Methods (Eugene et al., 2012).  The COD (after filtration with 0.45-µm nylon membrane filters 

(TISCH Scientific, North Bend, OH, USA)) analysis was performed using LovibondTM medium-

range (0-1500 mg L-1) COD digestion vials (Tintometer, Germany). Gas volume was measured 

every day with a gas-tight glass syringe, while gas composition (H2, CO2, and CH4) was 

determined two to three times a week using a Gow-Mac Series gas chromatography (Bethlehem, 

PA, USA) equipped with a thermal conductivity detector (TCD). The temperature of the column, 

injector, and detector were set to 104oC, 80oC, and 115oC, respectively, and the current to the TCD 

was set at 120 mA. Hydrogen was used as the carrier gas to measure nitrogen and methane, while 

nitrogen was used as the carrier gas for hydrogen measurement. Standard gas samples (ShopCross, 

Greensboro NC, USA) consisting of varying mixtures of methane, carbon dioxide, and hydrogen 

were used to calibrate the instrument.  

Concentrations of carboxylic acids from C2 to C8, including iso-forms of C4 and C5, and ethanol 

were determined using an Agilent Technologies 7890B gas chromatograph (Santa Clara, CA) 

equipped with a stabilwax-DA column (Restex) and a flame ionization detector. The oven 

temperature was held at 55oC for 1 min, then increased to 205oC at 10oC min-1, and held at 205oC 

for 8 min. Injector and detector temperatures were set to 250oC and 300oC, respectively, and 

nitrogen was used as the carrier gas. Prior to injection, the samples were acidified with phosphoric 

acid, centrifuged, and filtered through 0.45-µm nylon membrane filters (TISCH Scientific, North 

Bend, OH, USA).  

2.3.4 Microbial analyses  

Biomass samples were collected from the inoculum and bad beer upon starting the bioreactor and 

from bioreactor influent and effluent periodically (see Table A3, Appendix A for specific days of 

biomass sampling). The samples were immediately pelletized by centrifuging at 10,000 x g for 10 
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min, flash-frozen on dry ice, and stored at -80oC until DNA and RNA extractions were performed. 

DNA was extracted using a CTAB method described by Porebski et al. (1997) with an additional 

bead-beating step (Mini-Beadbeater-96, BioSpec Products, Bartlesville, OK, USA) for 1.5 min 

using 0.1-mm diameter zirconium beads. Total RNA was extracted using TRIzol (Invitrogen, CA, 

USA) following the manufacturer’s instructions with some modifications. In the lysis step, 1.5 min 

bead-beating with 0.1-mm diameter zirconium beads was included for mechanical cell lysis after 

adding TRIzol reagent to the samples. The RNA precipitation step was slightly modified to include 

2.6 M sodium acetate in addition to ice-cold absolute ethanol. Glycoblue was added to visualize 

the RNA pellets and the RNA samples were stored at -20oC for 24-48 h followed by ethanol 

washing and resuspension in water. ezDNase (Thermo Scientific, MA, USA) was used to remove 

residual DNA from RNA extracts following the manufacturer’s guidelines. The efficiency of DNA 

removal was tested by quantifying the abundance of bacterial 16S rRNA genes using bacterial 

primers(Fierer et al., 2005) by qPCR. A SuperScript® IV VILO cDNA synthesis kit (Invitrogen, 

Carlsbad, CA) was used to convert RNA into single-stranded complementary DNA (cDNA) 

according to the manufacturer’s instructions. DNA and RNA quantities were determined using a 

Qubit 2.0 Fluorometer (Invitrogen, Life Technologies, CA, USA).  

cDNA and DNA samples were submitted to the Microbial Systems Molecular Biology Laboratory 

(University of Michigan, Ann Arbor, MI, USA) for 16S rRNA and 16S rRNA gene sequencing, 

respectively, on the Illumina MiSeq platform (San Diego, CA, USA). Primers F515 and 

R806(Caporaso et al., 2011) targeting the V4 region of the 16S rRNA gene were modified for 

dual-index sequencing as described by Kozich et al.(Kozich et al., 2013) A total of 1,636,675 high-

quality reads were generated.  The sequences were processed using the mothur platform (version 

1.42.0) following the MiSeq SOP.(Schloss et al., 2009) The reference SILVA database 

implemented in mothur was customized to align with the filtered sequences. UCHIME algorithm 

was used for chimera removal. The Ribosomal Database Project (Version 16) was used for 

taxonomic classification of sequences to the genus level and sequences were grouped into 

operational taxonomic units (OTUs) based on the average neighbor algorithm at 3% sequence 

divergence cutoff. Good’s coverage was estimated for each sample (Table A4, Appendix A). 

OTUs that could not be classified at the genus level were denoted as “unclassified_family name”. 
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16S rRNA gene and 16S rRNA sequencing data were used to study the total and active microbial 

community, respectively. Singletons were removed for relative abundance and relative activity 

calculations. The dominant OTUs or genera were defined as OTUs or genera present at a relative 

abundance or relative activity  1% in at least 50% of the samples. The ratios of relative 

abundances (rDNAinfluent/rDNAreactor) and relative activities (rRNAinfluent/rRNAreactor) of different 

taxa were compared at the genus level in the influent and corresponding bioreactor samples. 

Furthermore, as an indirect measure of activity, the ratios of relative activity (rRNA) and relative 

abundance (rDNA) for each genus observed in the bioreactor (rRNA/rDNAreactor) and the influent 

samples (rRNA/rDNAinfluent) were calculated. Genera with increasing rRNA/rDNA ratios are 

assumed to be active as their ribosome abundance increases more than their genome copy 

number.(Mueller et al., 2016) The ratios of [rRNA/rDNA]reactor:[rRNA/rDNA]influent were used to 

compare the activities of the different genera in the bioreactor with those in the influent.  Lastly, a 

mass balance approach similar to the one used by Mei et al. (2016) was used to calculate the 

specific growth rate () for genera observed in both influent and bioreactor samples to study 

microbial immigration (detailed calculation is given in SI). The specific growth rates were 

calculated using amount of DNA/RNA recovered from the cell (Method I) and with VSS as an 

indirect measure of cell concentration (Method II). Representative sequences obtained from 

mothur, for dominant bacterial OTUs observed in the bioreactor, were used for phylogenetic 

analysis. The closest relatives of the dominant OTUs were determined using a BLAST analysis 

and chosen as reference sequences. The 16S rRNA gene sequences of the reference sequences 

were downloaded from NCBI GenBank Database. MEGA7 (Kumar et al., 2016) was used to align 

and trim the sequences and compute the evolutionary distances using maximum likelihood 

analysis.  

2.3.5 Statistical analyses 

All statistical analyses of microbial community data were performed using R (version 3.6.1) with 

packages vegan (version 2.5-6) (Oksanen et al., 2019), phyloseq (version 1.30.0) (McMurdie and 

Holmes, 2013), dplyr (version 0.8.5) (Wickham et al., 2015), and ggplot2 (version 3.3.0) 

(Wickham et al., 2016). Statistical significance was set at   0.05. Kruskal-Wallis rank sum test 
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with Benjamini-Hochberg correction for multiple testing (non-parametric one-way ANOVA) was 

used to test the statistical significance of the difference between groups and conditions for 

bioreactor performance data. The Pearson correlation coefficient was calculated using the cor.test 

function in R. Alpha-diversity indices such as observed OTUs for richness, Shannon index, and 

Pielou’s evenness were calculated using the vegan package to compare DNA and RNA community 

profiles. Beta-diversity analyses included nonmetric multidimensional scaling (NMDS) using the 

Jaccard (using the binary=TRUE option, community membership-based) and Bray-Curtis 

(community structure-based) dissimilarity matrices. The statistical difference in microbial 

community structure and membership among and between the influent and bioreactor samples 

were tested with analysis of similarities (ANOSIM). The higher the ANOSIM R value, the more 

dissimilar the groups are. A linear regression model was fitted with MCCAs volumetric production 

rate (log transformed) as the response variable and HRT, SRT, temperature, and operational days 

as the explanatory variables. A sinusoidal term was fitted to the “operational days” term in the 

model to investigate whether the MCCAs production followed a cyclical behavior. 

2.4 Results and Discussion 

2.4.1 MCCAs recovery from brewery and pre-fermented food waste streams  

SCCAs-rich permeate derived from a food waste fermentation process and ethanol containing 

waste beer were used to produce MCCAs in a chain-elongation ASBR system operated for 229 

days. Production of MCCAs, including caproate, enanthate, and octanoate, began within a few 

days of bioreactor startup as shown in Figure 2.1.  
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Figure 2.1 Volumetric production rate of total MCCAs, caproate, enanthate, and caprylate in the 

bioreactor over time.  The MCCAs volumetric production rate varied cyclically as indicated by a 

linear regression model (R2=0.6 with significant sine term, p=8.9E-05). 

 

The MCCAs volumetric production rate was high in the first four weeks of operation with 

caprylate reaching a maximum rate of 1.05 mmole L-1 d-1 on Day 27 (Figure 2.1). The 

corresponding caprylate to caproate product ratio was 0.4 (on a carbon basis), the highest achieved 

in this study. The MCCAs volumetric production rate then decreased possibly due to inhibition by 

undissociated MCCAs and high ethanol concentration. The ethanol concentration in the influent 

was kept high (73.6  12.9% of the total sCOD) initially to promote MCCAs production since 

previous studies have shown that higher ethanol loading promotes MCCA production.(Angenent 

et al., 2016; Kucek et al., 2016b) While ethanol has been shown to be toxic to C. kluyveri when in 

excess of 200-400 mM (Angenent et al., 2016), the ethanol toxicity threshold for an adapted chain 

elongating microbiome has not been determined. An ethanol concentration in the range of 194.4-

602.2 mM was maintained in our bioreactor until Day 27. Since 30.5  7.2% of the ethanol fed 

was not consumed, the ethanol concentration in the influent was decreased (Figure A.1, Appendix 

A).  



23 

 

The average MCCAs volumetric production rate was 4.1  1.6 mmole L-1 d-1 with a maximum of 

9.1 mmole L-1 d-1 observed on Day 212 (Figure 2.1) when 27% of sCOD in the influent was 

converted to MCCAs. Caproate was the major MCCAs produced comprising on average 62.3  

9.8% of the total MCCAs, while enanthate and caprylate constituted 31.2  9.4% and 6.5  4.1% 

of the total MCCAs produced on a carbon basis, respectively. The maximum MCCAs yield and 

the MCCAs volumetric production rate (14.5-29.2 mmole L-1 d-1) achieved in our study were lower 

compared to other chain elongation studies that used complex organic waste streams containing 

ethanol, but they used in-line extraction systems to continuously remove produced MCCAs (Ge et 

al., 2015; Kucek et al., 2016c; Urban et al., 2017). Roghair et al. (2018) achieved a maximum 

caproate volumetric production rate of 47.3 mmole L-1 d-1 in a two-stage system treating food waste 

and crude ethanol and avoided MCCAs toxicity without an in-line extraction process by 

maintaining a neutral pH. Furthermore, in our study, most of the sCOD in the influent, including 

ethanol, was converted into SCCAs, particularly acetate, which was not further elongated into 

MCCAs despite the availability of sufficient ethanol. Excessive ethanol oxidation to acetate, a 

competing reaction that took place in the system, is discussed in more detail in Chapter 3.  

As indicated above, chain elongation can be a self-limiting process due to the inhibitory effect of 

MCCAs (Angenent et al., 2016; Ge et al., 2015). A pH of 5.5 was maintained in the bioreactor to 

minimize methanogenesis, but since this pH value was only slightly above the pKa values of 

MCCAs (4.8-4.9), a considerable fraction of the MCCAs were present in their undissociated forms. 

The undissociated forms are more hydrophobic than their corresponding conjugate bases and can 

diffuse through the membranes of microbial cells decreasing the intracellular pH. The MCCAs 

volumetric production rate varied cyclically (Figure 2.1). This suggests that MCCAs accumulated 

to a level inhibitory to chain elongating microorganisms, after which the production decreased, 

allowing the microbiome to recover. It was calculated that a maximum concentration of 

undissociated caprylic acid of 0.4 mM occurred on Day 27 after which the MCCAs production 

decreased drastically suggesting inhibition. Furthermore, the maximum undissociated caproic acid 

concentration occurred on Day 212 when its concentration was calculated to reach 3.2 mM. The 

literature reports higher inhibitory concentrations for undissociated caprylic acid and caproic acid. 

The undissociated caprylic acid was reported to be inhibitory at 0.6 mM at pH 5.2 (Kucek et al., 
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2016b), whereas undissociated caproic acid was shown to be inhibitory at concentrations above 

7.5 mM at pH 5.5 (Ge et al., 2015). The undissociated MCCAs concentrations in these studies 

were kept below their inhibitory levels by continuous removal of MCCAs using an in-line 

extraction unit. The inhibitory MCCA concentrations observed in our study are lower than those 

reported by other studies as the concentration at which product toxicity occurs depends on the type 

of bioreactor system (for example, continuous MCCAs removal by in-line extraction unit increases 

MCCAs production providing selective pressure to the microbiome and thus increasing the 

inhibition threshold), the undissociated concentration of other carboxylic acids, and the microbial 

community.  

2.4.2 MCCAs production correlated with Clostridiales and Pseudoramibacter activity  

Based on the 16S rRNA gene sequencing data, the dominant OTUs in the bioreactor belonged to 

Acidaminococcus, unclassified Bacteria, Bifidobacterium, unclassified Clostridiales, unclassified 

Erysipelotrichaceae, unclassified Lachnospiraceae, Megasphaera, Methanobrevibacter, 

Olsenella, Prevotella, and Succiniclasticum (Figure 2.2 andFigure A.2, Appendix A). While the 

dominant active OTUs, determined by 16S rRNA sequencing, belonged to Acidaminococcus, 

Bifidobacterium, unclassified Clostridiales, unclassified Lachnospiraceae, Megasphaera, 

Methanobrevibacter, Olsenella, Prevotella, and Pseudoramibacter (Figure 2.2 andFigure A.2, 

Appendix A). 
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Figure 2.2. Dominant OTUs observed at a relative abundance and activity greater than 1% in at 

least 50% of the samples (n=14 in DNA and n=13 in RNA group) in the bioreactor samples over 

time. 

 

The order Clostridiales averaged 24.3  8.2% and 26.8  11.9% of the total and active microbial 

community, respectively, and was comprised of 31 genera, among which Pseudoramibacter, 

unclassified Lachnospiraceae, and some unclassified Clostridiales were enriched in the bioreactor. 

Populations within the order Clostridiales, especially C. kluyveri, have frequently been identified 

in ethanol chain elongation studies (Agler et al., 2012; Esquivel-elizondo et al., 2018; Kucek et 

al., 2016c; Wu et al., 2020). Unclassified Clostridiales exhibited high relative abundance and 

relative activity of 8.3  5.1% and 8.0  6.1%, respectively. The dominant Clostridiales OTU 

(OTU 3) clustered with E. pyruvativorans (Figure A.3, Appendix A), which has been shown to 

produce valerate and caproate (Wallace et al., 2003). The relative abundance (correlation 

coefficient=0.54, p=0.05) and activity (correlation coefficient=0.71, p=0.01) of Clostridiales OTU 

3 significantly correlated with MCCAs volumetric production rate. It should be made clear that a 

positive correlation does not imply causation and is just a metric to evaluate the association.  

The volumetric production rate of even chained MCCAs (caproate and caprylate) was positively 

correlated with the relative activity (correlation coefficient=0.55, p=0.05) of Pseudoramibacter 

OTU 16 but it did not correlate significantly with the relative abundance (correlation 

coefficient=0.35, p=0.22). Pseudoramibacter genus had an average rRNA/rDNA ratio of 4.62 ± 
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3.03 (Table A5, Appendix A), indicating its higher activity in the bioreactor. OTU 16, the most 

abundant Pseudoramibacter OTU (Figure 2.2), was phylogenetically closest to Pseudoramibacter 

alactolyticus (Figure A.3, Appendix A). P. alactolyticus has been shown to produce both SCCAs 

and MCCAs as end products of glucose and sucrose fermentations (Willems and Collins, 1996). 

It has been previously associated with MCCAs production from lactate in other mixed culture 

studies (Scarborough et al., 2018; Yang et al., 2018), but its ability to use ethanol for MCCAs 

production has not been described yet.  

Pseudoramibacter was most active in the first month of operation after which its relative activity 

decreased from 5.9% on Day 31 to 0.22% on Day 66 before increasing again starting from Day 

206 (Figure 2.2 andFigure A.2, Appendix A). This decrease in relative activity aligns with the 

highest caprylate production of 1.05 mmole L-1 d-1 on Day 27. It is possible that the high caprylate 

concentration inhibited chain elongating microorganisms and the increase in relative activity 

afterwards might indicate slow adaptation and reduced product toxicity. The increase in relative 

abundance and activity of both Pseudoramibacter and unclassified Clostridiales in the later days 

also aligns with the maximum volumetric production rate of 9.1 mmole L-1 d-1 observed on Day 

212. The relative activity of Pseudoramibacter and unclassified Clostridiales increased from 3.8% 

to 7.2% and 5.5% to 24.1%, respectively, from Day 206 to 213. Besides MCCAs producers, OTUs 

belonging to Acidaminococcus (Rogosa, 1969), Lachnospiraceae (Cotta and Forster, 2006), 

Megasphaera (Weimer and Moen, 2013), Succiniclasticum (Van Gylswyk, 1995), and Prevotella 

(Emerson and Weimer, 2017), which are generally functionally associated with acidogenesis, were 

also enriched in the bioreactor (Figure 2.2 andFigure A.2, Appendix A).  

2.4.3 Effect of pH and SRT on methanogens 

Aceticlastic methanogens can compete with chain elongating microorganisms for acetate, the 

precursor for MCCAs, while hydrogenotrophic methanogens can affect hydrogen partial pressure 

and thus the thermodynamics of chain elongation or competitive pathways such as excessive 

ethanol oxidation to acetate (Wu et al., 2019). Despite maintaining the pH at 5.5 to inhibit 

methanogenesis, 21.4  5.0% of the active microbial community was comprised of Euryarchaeota, 

the phylum of archaea that contains methanogens. Specifically, hydrogenotrophic methanogens 



27 

 

such as Methanobrevibacter and Methanosphaera were abundant, while aceticlastic methanogens 

were not observed (Figure A.4, Appendix A). Thus, aceticlastic methanogens were inhibited by 

the low bioreactor pH of 5.5, whereas hydrogenotrophic methanogens were not. 

Methanobrevibacter was the most abundant and active methanogen, representing 9.4  3.2% and 

19.1  5.6% of the total and active community, respectively (Figure A.4, Appendix A). Even 

though hydrogenotrophic methanogens were active and abundant, methane levels remained low. 

On average, 7.4  2.4% of influent COD was used for methane production (Figure A.5, Appendix 

A).  

Decreasing the SRT could be an additional control strategy to suppress methanogenesis. It allows 

bioreactor operation at neutral pH and thus avoids product toxicity due to high concentrations of 

undissociated MCCAs under acidic condition. From Days 20-81, a low SRT of 9.7  5.8 days was 

maintained (Figure A.5, Appendix A), whereas a higher SRT averaging 20.1  13.9 days was 

maintained from Days 82-229 days. On the OTU level, Methanobrevibacter OTU 9 was dominant 

until Day 14 (Figure A.4, Appendix A). As the SRT was lowered, Methanobrevibacter OTU 6 

appeared, indicating that OTU 6 had a higher growth rate and was retained during operation with 

shorter SRT. Methanobrevibacter OTU 9 slowly started rising again after the SRT was increased. 

There was no significant difference in methane production at different SRTs (Figure A.5, 

Appendix A).  

Methanogens have lower growth rates than chain elongating microorganisms (Kenealy and 

Waselefsky, 1985; Pavlostathis and Gomez, 1991). The maximum growth rates for MCCAs 

producers such as C. kluyveri ATCC 8527 (Kenealy and Waselefsky, 1985) and M. elsdenii 

CECT390 (Soto-cruz et al., 2002) were determined to be 0.287 h-1 and 0.20-0.35 h-1, respectively, 

which are much higher than for aceticlastic methanogens (0.003-0.029 h-1) (Pavlostathis and 

Gomez, 1991) and slightly higher than for hydrogenotrophic methanogens (0.17 h-1) (Pavlostathis 

and Gomez, 1991). Theoretically, decreasing the SRT can benefit chain elongation by washing out 

aceticlastic methanogens. However, manipulating SRT might not control hydrogenotrophic 

methanogens as shown by our data. The microbial community data also show that the relative 

abundance and activity of MCCAs producers such as Pseudoramibacter decreased for shorter 
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SRTs. For example, the relative activity of Pseudoramibacter decreased from 5.9% on Day 31 to 

0.2% on Day 66 when the SRT decreased from 13.6 to 6.0 days. While methanogens are 

undesirable for chain elongation, MCCA producing microorganisms need to be retained in the 

system. For selective MCCA production, the bioreactor should be operated at an SRT sufficiently 

low to promote wash-out of methanogens, but sufficiently high for retention of MCCA producers. 

Our data indicate that this balance is difficult to accomplish and is made more complicated because 

of the lack of information on kinetic parameters of chain elongating microorganisms in mixed 

communities.  

2.4.4 Influent plays a greater role in shaping the bioreactor microbiome than the inoculum  

Rumen bacteria such as E. limosum (Genthner et al., 1981), E. pyruvativorans (Wallace et al., 

2003), M. elsdenii (Weimer and Moen, 2013), and co-cultures of C. kluyveri and ruminal 

cellulolytic bacteria (Weimer et al., 2015) have been reported to produce MCCAs via chain 

elongation. Moreover, rumen microbial communities exhibit high activity despite the presence of 

high concentrations of SCCAs in the rumen (Shrestha et al., 2017). Because of these reasons, we 

inoculated our bioreactor with rumen content. By Day 7 (first biomass sample point after startup), 

the bioreactor microbial community already had diverged from the inoculum (Figure 2.3,Figure 

A.7, andFigure A.8, Appendix A). The rumen inoculum was more diverse than the biomass 

observed in the bioreactor (Figure A.2, Appendix A). The dominant bacterial genera in the rumen 

inoculum were Fibrobacter, Prevotella, Ruminobacter, unclassified Bacteroidetes, unclassified 

Gammaproteobacteria, unclassified Lachnospiraceae, and Treponema. These bacterial 

populations were either present at a low relative abundance and activity in the bioreactor or 

undetected except for Lachnospiraceae and Prevotella. The NMDS analysis (Figure 2.3a and 2.3b) 

shows that the microbial community composition changed gradually during early bioreactor 

operation (Day 7 to Day 73), but that there was a substantial change on Day 81. The Day 81 

influent sample clustered with the rumen inocula samples (Figure 2.3) likely because the 

acidogenic food waste bioreactor, the permeate of which was used in this study, was re-inoculated 

with rumen content a few days before the Day 81 influent was collected. The chain elongation 

bioreactor was re-inoculated with rumen content on Day 178, but the bioreactor microbial 
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community structure on Day 193, the first sampling date after re-inoculation, did not appear to be 

greatly influenced by the rumen inoculum (Figure 2.3,Figure A.7, andFigure A.8, Appendix A).  

 

Figure 2.3. Non-metric multidimensional scaling (NMDS) ordination plot based on the Bray-

Curtis dissimilarity index of the microbial community at OTU level using 16S rRNA gene 

sequencing (a) and 16S rRNA sequencing data (b) and Jaccard index using 16S rRNA gene 

sequencing (c) and 16S rRNA sequencing data (d) in the rumen inocula, bioreactor, and influent 

samples. The numbers correspond to sampling time points. 
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Alpha diversity and beta diversity indices were determined to compare the bacterial and archaeal 

community structure in the inoculum, influent, and bioreactor samples (Figure A.6, Appendix A). 

The alpha diversity indices were statistically similar between the bioreactor and influent samples. 

NMDS ordination analysis based on Bray-Curtis dissimilarity (Figure 2.3a) showed that the 

microbial community structures (OTU memberships and abundance) in the influent and bioreactor 

samples collected over time were more similar to each other than the community structures in the 

influent and bioreactor samples collected at the same time point (ANOSIM R value=0.55, p 

=0.001, Table A.6, Appendix A). A similar observation was made when the 16S rRNA sequencing 

data were used for the Bray-Curtis dissimilarity analysis (Figure 2.3b, ANOSIM R value=0.67, p 

=0.001). The NMDS analyses based on the Jaccard index indicated that the influent and bioreactor 

microbial community compositions (OTU memberships) were similar (Figure 2.3c and 2.3d). This 

was supported by the ANOSIM analysis based on the Jaccard index (Table A.6, Appendix A), 

which showed that the R values obtained by comparing influent and bioreactor samples were small 

(0.13-0.28). These observations suggest that the influent and bioreactor samples collected at the 

same time were similar based on shared OTUs (Jaccard index), but that they differed when 

considering relative abundance and activity in addition to membership (Bray-Curtis index). 

Similar observations were made when bacterial and archaeal communities were compared 

separately using Bray-Curtis and Jaccard indices (Figure A.7 andFigure A.8, Table A.6, Appendix 

A). These results suggest that the influent had a greater role in shaping the bioreactor microbiome 

than the inoculum.  

2.4.5 Microbial immigration from influent to downstream, bioreactor microbial community 

Microbial community composition and structure in influent and bioreactor samples were compared 

to identify the immigrating microbial populations and thus study the impact of immigration on 

overall bioreactor performance. The most abundant and active bacterial phyla in the influent were 

Bacteroidetes, Firmicutes, and Proteobacteria (Figure A.9, Appendix A). On the other hand, the 

bioreactor samples were dominated by Firmicutes (48.4  6.1%), Bacteroidetes (25.1  7.8%), 

Euryarchaeota (10.4  3.3%), and Actinobacteria (7.6  3.8%) (Figure A.9a, Appendix A); the 

relative activity data were similar, except for Bacteroidetes (8.6  5.0%) (Figure A.9b, Appendix 
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A). The OTUs shared between the influent and bioreactor communities accounted for 38.9  8.9% 

and 41.3  8.2% of the total and active number of OTUs observed in the bioreactor (Table A.7, 

Appendix A). On average, 44.2  6.3% and 33.0  6.2% of total and active influent OTUs were 

observed in the bioreactor samples (Table A.7, Appendix A). This indicates that a significant 

fraction of the OTUs observed in the bioreactor originated from the influent. The presence of OTUs 

does not necessarily suggest their functional contribution as some of these immigrant OTUs might 

represent dead or inactive cells.  

Two approaches were used to distinguish active microbial populations that immigrated from the 

influent from inactive populations. One approach used the ratio of rRNA/rDNA in the bioreactor 

and influent (Figure 2.4) (Mei et al., 2016); the second approach calculated the specific growth 

rate of individual microbial immigrants (Table A.8, Appendix A) (Mei et al., 2016). Additionally, 

rDNAinfluent/rDNAreactor and rRNAinfluent/rRNAreactor were calculated to compare relative abundances 

and relative activities, respectively, between influent and bioreactor samples (Table A.9, Appendix 

A). Bacterial OTUs with a high relative abundance and relative activity in the influent (depicted 

by large values on the Y axes in Figure 2.4a and 2.4b) were found to be less active in the bioreactor 

than in the influent, i.e., the [rRNA/rDNA]reactor: [rRNA/rDNA]influent < 1. This included OTUs 

belonging to the genus Prevotella, Succiniclasticum, unclassified Bacteroidales, and 

Megasphaera.  

Prevotella, the most dominant genus in the influent (38.7  6.2%, Figure A.10, Appendix A), was 

still abundant in the bioreactor (22.4  7.8%, Figure 2.2) with rDNAinfluent/rDNAreactor 

corresponding to 1.7  0.8. However, the relative activity of Prevotella in the bioreactor was much 

lower compared to that in the influent (rRNAinfluent/rRNAreactor=4.5  3.2, Figure A.9, Appendix 

A) and its [rRNA/rDNA]reactor: [rRNA/rDNA]influent was 0.4. The genus Prevotella has been mostly 

associated with fermentation and is commonly found in the rumen (Puniya et al., 2015; Stewart et 

al., 2018). Megasphaera OTU 2, the most dominant Megasphaera OTU in the bioreactor (Figure 

2.2), was also found in the influent suggesting that it immigrated from the influent. As 

Megasphaera can produce both SCCAs and MCCAs (Scarborough et al., 2018; Weimer and 

Moen, 2013), its broad fermentative capacity might have supported its growth in both the 
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acidogenic food waste bioreactor and the chain elongation bioreactor. Other populations that were 

present at relatively low abundance or activity in the influent that became dominant in the 

bioreactor (shown by larger Y-axis values in Figure 2.4c and 2.4d) with rRNA/rDNA]reactor: 

[rRNA/rDNA]influent> 1 included Olsenella, unclassified Clostridiales, and unclassified 

Lachnospiraceae. For example, Clostridiales OTU 3 was found to be actively involved in MCCAs 

production in the bioreactor (rRNA/rDNA>1). However, it was present at low relative abundance 

(0.2  0.3%) and relative activity (0.2  0.2%) in the influent. Similarly, Pseudoramibacter OTU 

16 that positively correlated to MCCAs production, as discussed above, was enriched in the 

bioreactor but was only detected in some influent samples (rDNAinfluent/rDNAreactor=0.01  0.01% 

and rRNAinfluent/rRNAreactor=0.01   0.02%). Feeding ethanol-rich substrate and controlling the 

bioreactor conditions such as pH seemed to cause a selection for OTUs capable of MCCAs 

production, even though they were present at low relative abundance and activity in the incoming 

feed. 
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Figure 2.4. Comparison of rRNA/rDNA ratio of microbial groups in the bioreactor and influent versus relative abundance (a) and relative 

activity (b) of the corresponding genus or family in the influent samples and relative abundance (c) and relative activity (d) of the 

corresponding genus or family in the bioreactor samples. The vertical line is drawn at [rRNA/rDNA]reactor:[rRNA/rDNA]influent  = 1. The 

microbial group that falls on the left and right hand sides of the vertical line are more active in the influent 

([rRNA/rDNA]reactor:[rRNA/rDNA]influent <1) and reactor ([rRNA/rDNA]reactor:[rRNA/rDNA]influent  > 1), respectively. Genus or family 

with high relative abundance and relative activity (larger Y-axis values) are colored and labeled.  
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Comparing the archaeal microbial communities in influent and bioreactor samples, we observed 

that the rRNA/rDNA ratio of Methanobrevibacter genus was higher in the influent than in the 

bioreactor ([rRNA/rDNA]reactor: [rRNA/rDNA]influent < 1), suggesting that Methanobrevibacter 

was less active in the bioreactor compared to the influent. On the contrary, the relative abundance 

and activity of Methanobrevibacter genus were much higher in the bioreactor samples compared 

to the corresponding influent samples. Similarly, Pseudoramibacter was also shown to be less 

active in the bioreactor compared to the influent as its rRNA/rDNA]reactor:[rRNA/rDNA]influent was 

less than 1. These observations suggest that comparing rRNA/rDNA ratios in the bioreactor and 

influent is not adequate to identify all the active immigrant populations belonging to different taxa. 

The relative abundance and activity data were highly correlated to each other in the influent 

samples (correlation coefficient=0.94), but less so in the bioreactor samples (correlation 

coefficient=0.78) (Figure A.11, Appendix A). The different correlation between relative activity 

(rRNA) and relative abundance (rDNA) in the influent compared to that in the bioreactor will 

introduce bias when calculating the rRNA/rDNA ratio. Some studies have pointed out that 

sequencing depth and population with different physiologies and growth strategies can distort the 

interpretation of the rRNA/rDNA ratio (Mei et al., 2016; Steven et al., 2017). Both variable rrn 

gene copy number and sequence variability introduce biases in the relative abundance and relative 

activity calculations and diversity estimates. The rrn gene copy number varies among different 

microorganism and methanogens on average have a much lower rrn gene copy number (1-4) 

compared to bacteria (1-15) (Stoddard et al., 2015; Sun et al., 2013). Sequence abundance can be 

underestimated in taxa with low rrn gene copy numbers compared to those with high rrn gene 

copy numbers and variation in rrn sequences within the same genome increases with increasing 

copy numbers (Větrovský and Baldrian, 2013).  

A mass balance approach was used as an additional tool to identify active influent populations 

with positive specific growth rate that contributed to the downstream process. Methanobrevibacter 

had a positive specific growth rate of 0.08 d-1 using RNA based data, while using the DNA based 

data resulted in a negative specific growth rate (-0.12 d-1, Method I, Table A.8, Appendix A). 

Pseudoramibacter had positive specific growth rates of 0.07 d-1 and 0.10 d-1 based on DNA and 

RNA based data, respectively, suggesting that it was actively growing in the bioreactor. These 
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specific growth rate values were lower than those obtained by the Method II (using VSS to 

approximate cell concentration) i.e 0.32 d-1 and 0.35 d-1 for Methanobrevibacter and 

Pseudoramibacter, respectively (Method II, Table A.8, Appendix A).  As VSS measures all 

suspended organic matter in the bioreactor including live and dead microbial cells and other 

microbial components such as extracellular polymeric substance, Method II might overestimate 

cell concentration and skew the specific growth calculation.   

The impact of immigration can vary with how different the upstream and the downstream systems 

are. Some of the dominant influent OTUs were washed out, were found to be inactive or decreased 

in relative abundance and activity in the bioreactor whereas some low-abundant/low-activity 

influent OTUs played an important role in the bioreactor. The low similarity in microbial 

community structure due to the difference in the dominant and active OTUs between the influent 

and the bioreactor suggest that the community assembly in the bioreactor was dominated by 

selection. Community assembly theory predicts that immigration is important in structuring 

bioreactor communities when competitive selection is weak, and when population sizes are small, 

alpha diversity is low and environmental conditions are dynamic (Frigon and Wells, 2019). The 

similar growth (anaerobic) environments, availability of resources, and functional redundancy of 

some microorganisms between the upstream and downstream processes possibly allowed some 

immigrants to survive and flourish in the chain elongation bioreactor. For example, due to the 

broad metabolic capacity of fermenters, the fermentative bacteria present in the influent can also 

degrade the residual organics in the chain elongation bioreactor. One study reported a marginal 

impact of immigration from an upflow anaerobic sludge blanket bioreactor to a downstream 

activated sludge bioreactor due to a major change in environmental conditions (i.e., from anaerobic 

to aerobic condition) (Mei et al., 2019).  Mei et al. (2017) observed that a majority of the immigrant 

populations in full-scale anaerobic digesters treating sludge from a municipal wastewater treatment 

system consisted of inactive aerobes and facultative anaerobes. These aerobic and facultative 

anaerobic immigrants derived from the upstream activated sludge process were not directly 

involved in the downstream anaerobic metabolism. Therefore, the bioreactor conditions like 

temperature, pH, presence of oxygen, substrate pretreatment, and metabolic flexibility of the 
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microorganisms play important roles in determining the impact of the influent on the downstream 

system.  

2.5 Conclusions 

This study demonstrated that MCCAs can be produced using waste ethanol and pre-fermented 

food waste using mixed-culture microbial communities. However, the toxicity induced by 

undissociated MCCAs present at low pH negatively affected MCCAs production. Waste chain 

elongation bioreactors that are continuously seeded by the upstream microbial community are 

impacted by microbial immigration. The influent microbial community was found to play a greater 

role in shaping the chain elongation microbiome than the inoculum microbial community. While 

a significant fraction of the chain elongation microbial community originated from the influent, 

not all immigrating populations were active. Moreover, microbial OTUs that were not abundant in 

the influent such as Clostridiales and Pseudoramibacter OTUs positively correlated with MCCAs 

production and played an important role in the chain elongation function. Our study highlighted 

the application of the mass balance model to determine the specific growth rate of individual 

microbial populations coupled with the rRNA/rDNA approach in differentiating potentially active 

and inactive immigrant populations. The mass balance model relied on relative abundance and 

relative activity data to estimate the total number of cells entering and exiting the system. Future 

studies should look into using absolute abundance by quantifying cell count using flow cytometry 

or quantitative PCR.  
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3.1 Abstract 

Organic waste streams can be converted into high value platform chemicals such as medium chain 

carboxylic acids (MCCAs) using mixed microbial communities via chain elongation. However, 

the heterogeneity of waste streams and the use of complex microbial communities can lead to 

undesirable reactions thus decreasing process efficiency. Our previous work demonstrated the 

feasibility of producing MCCAs by combining pre-treated food waste with high concentrations of 

short chain carboxylic acids and brewery waste containing ethanol. However, we observed 

substantial undesirable ethanol oxidation to acetate. In the current study, we explored suppressing 

excessive ethanol oxidation to acetate (EEO) by increasing the hydrogen partial pressure (PH2) 

through inhibition of hydrogenotrophic methanogens by adding the methanogen inhibitor, 2-

bromoethylsulfonate (2-BES). While 2-BES addition initially reduced EEO, some methanogens 

(Methanobrevibacter spp.) persisted and resistant populations were selected over time. Besides 

changing the methanogenic community structure, 2-BES also changed the bacterial community 

structure mostly due to its impact on the PH2, thus affecting the bacterial populations involved in 

EEO. While we demonstrated that PH2 can be manipulated using 2-BES to control EEO, methods 
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that do not require the addition of a chemical inhibitor should be explored to maintain optimum 

PH2 for long-term suppression of EEO.  

3.2 Introduction 

Chain elongation of short chain carboxylic acids (SCCAs) is an emerging anaerobic biotechnology 

for the production of medium chain carboxylic acids (MCCAs). It involves the stepwise elongation 

of the carbon chain of SCCAs to MCCAs by two carbons via the reverse  oxidation pathway 

(Angenent et al., 2016). The two-carbon acetyl group added to SCCAs is derived from ethanol, 

lactate, or other reduced compounds. MCCAs are saturated fatty acids with chain lengths from six 

to twelve carbons and include one carboxyl group. MCCAs have many industrial and agricultural 

applications. MCCAs can be converted into longer chain liquid fuels or used directly as livestock 

feed additives, antimicrobial agents, corrosion inhibitors, and plant growth promoters, or as 

building blocks for the production of lubricants, fragrances, and dyes (Angenent et al., 2016).  

The field of waste management has been preparing for a paradigm shift involving a transitioning 

from landfill disposal and incineration to utilizing sustainable biotechnologies to recover biofuels 

and biochemicals from waste streams. The production of MCCAs from waste streams using mixed 

microbial communities via chain elongation has been demonstrated by several studies (Duber et 

al., 2018; Ge et al., 2015; Grootscholten et al., 2014; Kucek et al., 2016b; Roghair et al., 2018b; 

Xu et al., 2018). One of the challenges of mixed culture fermentation of waste streams is to control 

competing biochemical pathways that have the potential to take place due to the high diversity of 

the microbial communities, their broad metabolic capacity, and the heterogeneity of most waste 

streams. Methanogenesis, sulfate reduction to sulfide, excessive ethanol oxidation to acetate, 

carboxylic acids oxidation, and the acrylate pathway (i.e., propionate formation from lactate during 

lactate mediated chain elongation) are some of the competing pathways that can affect chain 

elongation efficiency (Kucek et al., 2016a; Roghair et al., 2018a; Wu et al., 2019). In the ethanol-

driven chain elongation process, for every six molecules of ethanol, one molecule of ethanol is 

anaerobically oxidized into acetate to harvest one ATP via substrate level phosphorylation 

(Angenent et al., 2016). Oxidation of ethanol to acetate at a proportion higher than one out of six 

molecules can occur along with the chain elongation process and has been termed excessive 
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ethanol oxidation (EEO) (Roghair et al., 2018a). It is important to suppress EEO to ensure efficient 

use of ethanol, especially if costly synthetic ethanol is used. Diversion of ethanol towards EEO 

can reduce the amount of acetyl-CoA available for chain elongation of SCCAs.  Furthermore, 

acetate produced through EEO acidifies the medium leading to higher consumption of alkalinity. 

EEO can be beneficial when the acetate produced via EEO is subsequently used in chain elongation 

and is referred to as ethanol upgrading (Roghair et al., 2018a). However, ethanol upgrading leads 

to an inefficient use of ethanol (Roghair et al., 2018a). For example, ethanol upgrading to MCCAs 

via EEO consumes three moles of ethanol for every mole of caproate produced, whereas the 

reverse  oxidation pathway requires 2.4 moles of ethanol to elongate acetate to one mole of 

caproate.  

EEO has been identified in several studies as an undesirable reaction (Grootscholten et al., 2014; 

Roghair et al., 2018a, 2018b), but an adequate control strategy has not been developed. Anaerobic 

ethanol oxidation to acetate has a positive standard Gibbs free energy of 49.6 kJ/mole reaction 

(Table B1, Eq B1, Appendix B). This reaction is energetically feasible only when the partial 

pressure of hydrogen (PH2) is low. The need for hydrogen removal results in a syntrophic 

association between the hydrogen-producing ethanol oxidizers and hydrogenotrophic 

methanogens (Table B1, Eqs B1, B2, and B3, Appendix B) or other hydrogen consumers (Kirstine 

and Galbally, 2012). Some studies have limited EEO by controlling the CO2 loading rate, a strategy 

that indirectly controls lowering of the PH2 via hydrogenotrophic methanogenesis by limiting CO2 

availability (Grootscholten et al., 2014; Roghair et al., 2018a). Another way to control EEO is to 

inhibit hydrogenotrophic methanogenesis by adding methanogenic inhibitors. The most widely 

used methanogenic inhibitor in a variety of applications is 2-bromoethanesulfonate (2-BES) (Liu 

et al., 2011), a structural analog of coenzyme M (CoM), the methyl carrier in the final step of 

methanogenesis. 2-BES and other methanogenic inhibitors have been used in previous chain 

elongation studies (Ganigué et al., 2016; Han et al., 2018; Liu et al., 2017, 2016; Lonkar et al., 

2016; Steinbusch et al., 2011; Wu et al., 2018). However, these studies focused on the effect of 

such inhibitors on the suppression of methane production from acetate, thus preventing 

consumption of this MCCA precursor and giving a competitive advantage to chain elongating 

microorganisms. As 2-BES also inhibits hydrogenotrophic methanogenesis, it can influence 
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metabolic pathways affected by the PH2. For example, a study conducted to investigate the effects 

of 2-BES and chloroform on anaerobic bacterial communities showed that the use of 2-BES 

affected the growth of syntrophic bacteria (e.g., Syntrophomonas and Syntrophobacter) and 

homoacetogenic bacteria (e.g., Moorella) due to accumulation of H2 (Xu et al., 2010b). Similarly, 

it can be expected that EEO can be altered by 2-BES addition due to its inhibition of 

hydrogenotrophic methanogens and the subsequent thermodynamic inhibition caused by high PH2.  

This study evaluated the long-term effect of 2-BES addition on inhibiting EEO during chain 

elongation with pre-treated food waste and brewery waste as the substrates in a semi-continuous 

anaerobic bioreactor. The high cost of chemical additives could most likely increase the operating 

cost of MCCAs production making the addition of methanogenic inhibitors difficult to scale up, 

however, 2-BES was primarily added to evaluate the effect of PH2 on the EEO process in this study. 

The inhibition was evaluated by monitoring methane production, PH2, ethanol consumption, and 

acetate production as well as evaluating changes in bacterial and archaeal population dynamics.  

3.3 Materials & Methods 

3.3.1 Experimental setup and operating conditions 

A 7-L lab scale bioreactor with working volume of 5 L was operated semi-continuously as an 

anaerobic sequencing batch reactor (ASBR) on a 24-h cycle for 339 days. The bioreactor was 

temperature controlled at 40  0.5 oC until Day 73 and at 37  0.5 oC for the rest of the time period. 

The bioreactor pH was controlled at 5.5  0.1 by automatic addition of 3-M NaOH (only during 

the react phase) with the help of LabVIEW. The biogas was collected in a 5-L Tedlar gas bag. 

Rumen content (17.1  1.0 g volatile solids (VS) L-1) collected from a fistulated cow from a dairy 

farm at Michigan State University (East Lansing, MI, USA) was used as an inoculum. The ASBR 

operational details are described in Chapter 2. A mixture of permeate extracted from an acidogenic 

bioreactor treating food waste (Fonoll et al., 2019) and waste beer containing ethanol was fed to 

the ASBR once a day. The influent was prepared once a week. Waste beer was obtained from Jolly 

Pumpkin Brewery (Dexter, MI), where it represents 2-19% of the total volumetric beer production 

(Doug Knox, personal communication). The sodium salt of 2-BES (Sigma Aldrich, St. Louis, MO) 
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was added to the bioreactor roughly every two weeks the first two times and every ten days 

(equivalent to three hydraulic retentions time (3 days)) after that on Days 230, 246, 259, 269, 278, 

287, 296, 305, and 314 to reach a bioreactor concentration of 10 mM immediately after each 

addition. The 2-BES dose was selected based on literature values (Webster et al., 2016; Zhang et 

al., 2013). The change in 2-BES concentration over time was estimated using the initial 

concentration added, the volume of effluent wasted per day, and the bioreactor working volume. 

Thermodynamic calculations were performed to evaluate the feasibility of different reactions 

during the period 2-BES was added (details given in Appendix B, Section B1).  

3.3.2 Chemical analyses 

Samples for various chemical analyses were collected from the influent and bioreactor content 

once a week, and from the effluent two to three times a week. Soluble chemical oxygen demand 

(sCOD, measured after filtration with 0.45-µm nylon membrane filters (TISCH Scientific, North 

Bend, OH, USA)) analyses were conducted using LovibondTM medium-range (0-1500 mg L-1) 

COD digestion vials (Tintometer, Germany). Gas volume was measured every day with a 0.1-L 

gas-tight glass syringe. Gas composition (H2, CO2, and CH4) was determined two to three times a 

week using a Gow-Mac Series gas chromatography (Bethlehem, PA, USA) equipped with a 

thermal conductivity detector. PH2 was calculated by considering the hydrogen percentages in the 

gas and assuming that the headspace in the bioreactor was at atmospheric pressure. Carboxylic 

acids (C2 to C8, including iso-forms of C4 and C5) and ethanol concentrations were determined 

by Agilent Technologies 7890B gas chromatograph (Santa Clara, CA) equipped with a stabilwax-

DA column (Restex) and a flame ionization detector (GC-FID). The samples were acidified with 

phosphoric acid, centrifuged, and filtered through the 0.45-µm nylon membrane filters before 

running them on the GC-FID. Detailed information on the gas chromatograph operating conditions 

and methods are given Chapter 2.  The concentrations of SCCAs and MCCAs are reported as the 

sum of undissociated carboxylic acids and the dissociated carboxylates, even though we refer to 

them with their dissociated carboxylate names for simplicity. The concentrations of SCCAs 

(including acetate, propionate, n-butyrate, and n-valerate) and MCCAs (including caproate, 

enanthate, and caprylate) are expressed on a molar basis. To determine net acetate concentrations, 

the influent concentrations were subtracted from the corresponding effluent concentrations.  
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3.3.3 Microbial community analyses  

Samples for biomass analyses were collected from the bioreactor effluent periodically for the 

specific days of biomass collection), pelletized, flash frozen on dry ice, and stored at -80oC until 

DNA and RNA extractions. DNA extraction was carried out by using a CTAB method following 

the procedure outlined in Porebski et al. (1997) with an additional 1.5 min bead beating step (Mini-

Beadbeater-96, BioSpec Products, Bartlesville, OK, USA) using 0.1-mm diameter zirconium 

beads. RNA extraction was done using TRIzol reagent (Invitrogen, CA, USA) following the 

manufacturer’s instructions with some modifications described in Chapter 2. RNA was converted 

to single stranded complementary DNA (cDNA) using the SuperScript® IV VILO cDNA 

synthesis kit (Invitrogen, Carlsbad, CA) according to the manufacturer’s instructions. DNA and 

RNA were quantified using a Qubit 2.0 Fluorometer (Invitrogen, Life Technologies, CA, USA). 

The samples were submitted to the Microbial Systems Molecular Biology Laboratory (University 

of Michigan, Ann Arbor, MI, USA) for amplicon sequencing of V4 hypervariable region of the 

16S rRNA gene. The PCR amplification was done using primers F515 and R806 (Caporaso et al., 

2011) with the dual-index sequencing strategy (Kozich et al., 2013). Multiplexed amplicons were 

sequenced using the MiSeq Reagent Kit V2 (500 cycles) on the Illumina MiSeq platform (San 

Diego, CA, USA).  

3.3.4 Sequencing data processing  

The 16S rRNA and 16S rRNA gene sequences were processed with DADA2 v1.16 (Callahan et 

al., 2016) in R following the online tutorial (amplicon sequence variant (ASV) approach) and with 

mothur (version 1.42.0) (Schloss et al., 2009) following the MiSeq SOP (operational taxonomic 

unit (OTU) approach). For the ASV approach, quality filtering was done by trimming the forward 

and reverse reads to 240 and 200 bp, respectively, based on the read quality profiles. A maximum 

expected error of 2 was used to remove low-quality reads by setting truncQ to 2 followed by 

generating an error model for the data. Core sample inference algorithm was applied to infer true 

biological sequences with the pool=TRUE option to increase sensitivity to distinguish between 

sequencing error and real biological variation in the amplicon sequences that may be present at 

very low read counts across multiple samples thus allowing detection of rare taxa. The paired-end 
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reads were merged and non-target length sequences were removed from the sequence table 

followed by removal of chimeras. Finally, the sequences were taxonomically classified with the 

naïve Bayesian Classifier method against the Ribosomal Database Project (RDP, Version 16) 

database. A total of 1,323,208 reads and 3,480 ASVs were generated.  

For the OTU approach, a total of 1,299,839 high quality reads and 7,229 OTUs were generated. 

The SILVA database (Release 132) was customized to align with the resulting set of sequences. 

The UCHIME algorithm was used to check for the presence of chimeras. The sequences were 

taxonomically classified to genus level using RDP database (Version 16) and clustered into OTUs 

using the average neighbor algorithm at 97% sequence similarity. The total and active microbial 

community were studied using 16S rRNA gene and 16S rRNA sequencing data, respectively. 

Singletons were removed for relative abundance and activity calculations using the OTU approach.  

For phylogenetic analyses, representative 16S rRNA gene sequences obtained from DADA2, for 

the major methanogenic ASVs observed in the bioreactor, such as Methanobrevibacter ASVs 5, 

12, 20, and 29 were used. The closest relatives of the Methanobrevibacter ASVs given by the 

BLAST query search were chosen as reference sequences. This also included 16S rRNA genes of 

methanogens previously identified to be involved in ethanol metabolism such as 

Methanobrevibacter sp. AbM4 (Weimar et al., 2017), Methanofollis ethanolicus (Imachi et al., 

2009), Methanogenium organophilum (Widdel, 1986), and Methanosphaera sp. WGK6 (Hoedt et 

al., 2016). The 16S rRNA gene sequences of the reference sequences were downloaded from NCBI 

GenBank Database. The sequences were aligned and trimmed to have equal length by removing 

the overhangs on either side using MEGA7 (Kumar et al., 2016). The evolutionary distances were 

computed in MEGA7 using a maximum likelihood analysis of the aligned sequences. Bootstrap 

testing with 1,000 replicates was used to generate the final tree. The microbial data presented 

below are based on the ASV based approach unless stated otherwise; most of the OTU based 

results are provided in the SI.  
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3.3.5 Statistical analyses 

Statistical analyses of microbial community data were performed using packages vegan (v.2.5-6) 

(Oksanen et al., 2019), phyloseq (v.1.30.0) (McMurdie and Holmes, 2013) dplyr (0.8.5) (Wickham 

et al., 2015), and ggplot2 (v.3.3.0) (Wickham et al., 2016) in R (v.3.6.1). Statistical significance 

between groups were identified using the Kruskal-Wallis test with Benjamini-Hochberg correction 

for multiple testing. The Pearson correlation coefficient was calculated to determine the correlation 

between the microbial populations and various carboxylates. DESeq2 (v.1.26.0) (Love et al., 2014) 

using the wald significance test was used to test differential abundance of ASVs between the 

bioreactor microbial community before and after 2-BES addition. Observed ASVs for richness, 

Shannon diversity index, and Pielou’s evenness were calculated as alpha-diversity estimates using 

the vegan package in R. Nonmetric multidimensional scaling (NMDS) plots were made using 

Bray-Curtis dissimilarity matrix as implemented in the vegan package. The statistical difference 

in microbial community structure before and after 2-BES addition was tested with analysis of 

similarities (ANOSIM) with 999 permutations. The contribution of individual ASVs to overall 

community dissimilarity due to 2-BES addition was determined using SIMPER as implemented 

in vegan.  

3.4 Results and Discussion  

3.4.1 2-BES temporarily suppressed excessive ethanol oxidation to acetate  

The bioreactor performance is described in detail in Chapter 2. On average, MCCAs were 

produced at a rate of 4.4  1.6 mmole L-1 d-1 with a maximum volumetric production rate of 9.1 

mmole L-1 d-1 (Figure B.1, Appendix B).  Caproate was the major MCCAs produced comprising 

62.7  8.7 % (on a carbon basis) of the total MCCAs, while enanthate and caprylate constituted on 

average 30.5  8.5 % and 6.8  3.7 % of the total MCCAs produced, respectively. Neither ethanol 

nor SCCAs were completely consumed suggesting that their concentrations were not limiting. 

Ethanol, constituting on average 75% of the total influent COD, was oxidized to acetate, which 

accumulated in the system reaching a maximum concentration of 156.6 mM on Day 9 (Figure 3.1). 

Acetate was not further elongated into MCCAs despite sufficient ethanol remaining in the system. 
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Roghair et al. (2018a) demonstrated that acetate derived from EEO can be involved in chain 

elongation, so it is unclear why acetate continued to accumulate in the current study.  

 

Figure 3.1. Effluent acetate, net acetate, and influent acetate concentrations over time. The dashed 

lines represent 2-BES additions. 

Since EEO becomes thermodynamically unfavorable at high PH2 (Grootscholten et al., 2014), 2-

BES was added in an attempt to suppress hydrogen consuming methanogens and thus inhibit 

ethanol oxidation. PH2 in the bioreactor headspace averaged 2.7E-03  2.9E-03 atm from Days 0-

229 (before 2-BES addition). This PH2  is still higher than the PH2 required for SCCAs (1.45 E-04 

atm for acetate, 6.65E-06 atm for butyrate) and MCCAs (2.52E-06 for caproate) oxidation via  

oxidation (Ge et al., 2015). The observed increase in PH2 to levels as high as 0.44 atm on Day 251 

(Figure 3.2a) after 2-BES addition suggested that hydrogen consumption by hydrogenotrophic 

methanogens was inhibited. This increase in PH2 made EEO thermodynamically unfavorable 

leading to a decrease in acetate concentrations and a decrease in the amount of ethanol consumed 

(Figure 3.2a and b). MCCAs were consistently produced and their production did not appear to be 

affected negatively by these high PH2 (Figure B.1, Appendix B). These results demonstrated that 

chain elongation still happened at a PH2 sufficiently high to suppress EEO and that maintaining a 

certain PH2 in a chain elongation system may be an effective EEO control strategy.      
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.  

Figure 3.2. Net acetate concentration and hydrogen partial pressure (PH2) (a) influent and effluent 

acetate concentrations and ethanol consumption (b), and theoretical 2-BES concentration profile 

and net acetate concentration (c) over time in the bioreactor. Ethanol consumption was calculated 

based on the concentration of ethanol initially present in the influent and that remaining in the 
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effluent. The dashed lines represent 2-BES addition (10 mM in the bioreactor) on Days 230, 246, 

259, 269, 278, 287, 296, 305, and 314. 

As 2-BES gradually washed out of the system (Figure 3.2c), the PH2 decreased and the net acetate 

concentration increased (Figure 3.2a) indicating reduced inhibition. The PH2 again increased after 

additional 2-BES was added with a corresponding reduction in the net acetate concentration. This 

trend continued until Day 268 after which the PH2 decreased despite six more 2-BES additions 

indicating that the 2-BES induced inhibition was short-lived. The PH2 significantly decreased 

(p=6.78E-05) from average values of 0.16  0.15 atm from Days 230 to 268 to 4.6E-03  2.3E-03 

atm from Days 269 to 339. The corresponding net acetate concentrations also increased averaging 

35.5  21.9 mM and 78.3  17.8 mM, respectively. While the average PH2 from Days 269 to 339 

was slightly higher than the average PH2 before 2-BES addition had started, the PH2 was not high 

enough to suppress EEO. While Grootscholten et al. (2014) reported that a PH2 above 0.03 atm was 

sufficient to suppress EEO, our experimental results suggested that a PH2 higher than 0.02 atm was 

needed to prevent EEO. Besides PH2, the thermodynamic feasibility of the EEO reaction is also 

affected by in-situ conditions such as pH and temperature. Theoretical thermodynamic calculations 

show that the higher pH of 6.5-7.0 used by Grootscholten et al. (2014), may explain the higher PH2 

required for EEO inhibition in their study, compared to our study, which used a pH of 5.5; the 

small difference in temperature between the two studies did not have an impact (Figure B.2, 

Appendix B). There is little information available on the microorganisms responsible for EEO 

during chain elongation, so further work is needed to study how metabolic triggers for EEO play 

out for different populations.  

3.4.2 Methanobrevibacter dominates despite addition of methanogenic inhibitor 

More than one fifth (22.0  5.2%) of the active microbial community was comprised of the phylum 

Euryarchaeota and was dominated by hydrogenotrophic methanogens. Aceticlastic methanogens 

were not detected indicating that they were inhibited by the low bioreactor pH of 5.5.  Other studies 

have also shown that aceticlastic methanogens are more sensitive towards lower pH than 

hydrogenotrophic methanogens and may be inhibited to a greater extent by undissociated SCCAs 

and MCCAs (Ge et al., 2015). Results from both the 16S rRNA and 16S rRNA gene sequencing 
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indicated that Methanobrevibacter was the dominant methanogenic genus at each sampling time 

point (Figure 3.3). The relative activity of methanogens was higher than their relative abundance 

for each time point. Over the period from Day 0 to Day 229, i.e., before 2-BES addition, the relative 

abundance of Methanobrevibacter spp. averaged 9.6  3.4% according to the 16S rRNA gene 

sequencing data, while their relative activity averaged 19.7  5.7% as determined by 16S rRNA 

sequencing results. We used the RNA based approach to study the short-term changes in microbial 

activity induced by 2-BES. Even though using 16S rRNA sequence data to estimate activity has 

substantial biases (Blazewicz et al., 2013), our use of both 16S rRNA and 16S rRNA gene 

sequence data and comparing trends over time has provided insights into the microbial community 

responses to 2-BES additions.  

 

Figure 3.3. Relative abundance (a) and activity (b) of methanogens identified to the genus level in 

the bioreactor samples over time using the ASV based approach. The relative abundance and 

relative activity were determined as percentages of the total number of 16S rRNA gene sequences 

and 16S rRNA sequences, respectively. The red dashed lines represent start and end of wasting 

bioreactor content on Days 20 and 82, respectively, for controlling solids retention time and the 

black dashed lines represent 2-BES additions. 
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After the first 2-BES addition on Day 230, the relative abundance of methanogens decreased from 

9.5% on Day 228 to 1.9% on Day 234 (Figure 3.3a). The decrease in relative activity was even 

more pronounced (from 21.8% on Day 228 to 4.1% on Day 234, Figure 3.3b). Similarly, the 

methane production decreased after 2-BES addition (Figure B.3, Appendix B). The average 

methane yield decreased significantly from 7.4  2.4% to 5.3  3.3% of the total sCOD fed 

(p=1.8E-03) after 2-BES addition (data not shown). The relative abundance of methanogens 

remained low for several weeks, but the relative activity of the methanogens increased 

substantially soon after the first 2-BES addition. These microbial data confirm that 2-BES was 

ineffective in inhibiting methanogens over time as suggested by the decrease in PH2 levels (Figure 

3.2). These long-term trends are further supported by the finding that there was no significant 

change in the average relative abundance (p=0.744) and relative activity (p=0.23) of methanogens 

before and after the start of 2-BES addition on Day 230. 

The archaeal diversity (both Shannon index and Pielou’s evenness) and richness (observed ASVs) 

were compared before and after the start of 2-BES addition (Figure B4, Appendix B). The mean 

number of archaeal ASVs decreased significantly (p=1.6E-06) from 23  5 to 12  3 after 2-BES 

addition and a similar decrease was observed for the active archaeal ASVs (p=1.9E-02). The mean 

Shannon index and Pielou’s evenness of the total and active archaeal community also consistently 

decreased after 2-BES addition, but the decrease was not always statistically significant. The 

archaeal community structures based on both 16S rRNA gene and 16S rRNA sequencing distinctly 

differed before and after 2-BES addition as shown by the Bray-Curtis dissimilarity analysis (Figure 

B5, Appendix B; 78% and 71% dissimilarity, respectively). High ANOSIM R values of 0.69 

(p=0.001) and 0.47 (p=0.001) also indicated significant changes in archaeal community structures 

due to 2-BES addition.   

Regardless of the effectiveness of 2-BES addition, it could be argued that inhibiting methanogens 

may not be sufficient to control the PH2 as there are other hydrogen sinks besides hydrogenotrophic 

methanogenesis in anaerobic processes. For example, hydrogen can be used by sulfate-reducing 

microorganisms or for acetate production by homoacetogens. While sulfate was not detected in 

the influent (data not reported), the sulfonate moiety of 2-BES can also serve as an electron 
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acceptor for sulfate-reducing bacteria and thus can support their growth (Lie et al., 1999). 

However, sulfate-reducing bacteria (e.g., Desulfovibrio spp.) were present at a relative abundance 

and activity of less than 0.1% both before and after 2-BES addition. Similarly, homoacetogenesis 

was not observed in the bioreactor (discussed in detail below). Since the PH2 increased with a 

simultaneous decrease in methane production (Figure B.3, Appendix B) and relative abundance 

and activity of methanogens (Figure 3.3) after the first few 2-BES additions, methanogenesis 

appeared to be the major pathway for hydrogen consumption and directly affected EEO. As 2-BES 

inhibition was short-lived, the low PH2 in the bioreactor in the later days again favored EEO. 

3.4.3 Methanogens develop tolerance towards 2-BES 

The effective inhibitory concentration of 2-BES can differ for different methanogens and 

environmental conditions (Liu et al., 2011). For example, aceticlastic methanogens are more 

susceptible to 2-BES inhibition than hydrogenotrophic methanogens (Webster et al., 2016; Xu et 

al., 2010a). Several studies have reported the presence of methanogens after the addition of 2-BES 

(Han et al., 2018; Liu et al., 2017), which may be due to differences in cell envelopes resulting in 

varying ability to uptake inhibitors as well as differences in CoM transport rates (Liu et al., 2011). 

Some methanogens can become adapted to 2-BES through a loss of cell permeability to 2-BES 

and selection of 2-BES resistant strains (Smith, 1983). 

2-BES is a structural analog of CoM, the methyl carrier in the final step of methanogenesis, which 

catalyzes the reduction of the methyl group to methane by methyl CoM reductase (Liu et al., 2011). 

Methanogens that are able to synthesize CoM do not depend on external CoM and likely are more 

resistant to 2-BES (Balch and Wolfe, 1979). Methanobrevibacter ruminantium M1 requires an 

external source of CoM for growth, while Methanobrevibacter smithii can synthesize CoM 

(Stewart et al., 1975; Ungerfeld et al., 2004). 16S rRNA gene and 16S rRNA sequencing results 

showed that Methanobrevibacter spp. represented the highest fraction of the total and active 

archaeal community throughout the period with 2-BES addition (Figure 3.3), which suggests that 

they were able to synthesize CoM making them resistant to 2-BES.  
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As discussed in Chapter 2 and shown in Figure 3.4, different Methanobrevibacter populations 

were prevalent during periods with different solids retention times (SRTs). Specifically, 

Methanobrevibacter ASV 5 became more prevalent after the SRT was reduced on Day 20, while 

the relative abundance and activity of Methanobrevibacter ASV 20 and Methanobrevibacter ASV 

12 dropped (Figure 3.4). These results suggest that ASV 5 has a higher growth rate than other 

Methanobrevibacter populations, allowing its growth and retention in the system when operated 

at a short SRT. ASV 5 was replaced by ASV 12 and ASV 20 when the SRT was increased again 

on Day 82. ASV 5 reappeared after 2-BES was added (Figure 3.4) suggesting that the higher 

growth rate of this population combined with the likely ability to synthesize CoM conferred 

resistance towards 2-BES and allowed its growth, while ASV 12 and ASV 20 were inhibited. In 

addition to ASV 5, Methanobrevibacter ASV 29 appeared to be resistant to 2-BES (Figure 3.4). 

ASV 29, which was not detected or observed at a very low relative abundance (<1%) and activity 

(<0.1%) before 2-BES addition, started appearing after Day 230 when 2-BES addition started. The 

relative abundance and activity of ASV 29 increased from 0.8  0.6% and 1.9  1.5% during Days 

234-262 to 6.9  2.8% and 4.7  1.0% during Days 270-339, respectively. This increase in relative 

abundance and activity of ASV 29 aligns with the observation that PH2 remained low despite 

frequent 2-BES additions (Figure 3.2) showing decreased inhibition of some methanogens. The 

SIMPER analysis also shows that ASVs 5, 12, 20, and 29 contributed to most of the differences 

(>63%) observed between the active archaeal community before and after 2-BES addition (Figure 

B.5b, Appendix B). Therefore, periodic addition of 2-BES likely provided a selective pressure to 

allow a 2-BES resistant strain of Methanobrevibacter to become abundant over time.  
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Figure 3.4. Relative abundance (a) and activity (b) of methanogens ASVs in the bioreactor samples 

over time. The key ASVs discussed in the paper are labeled. The relative abundance and relative 

activity were determined as percentages normalized to the total number of 16S rRNA gene 

sequences and 16S rRNA sequences, respectively. The red dashed lines represent start and end of 

bioreactor content wasting on Days 20 and 82, respectively, for controlling solids retention time 

(Chapter 2) and the black dashed lines represent 2-BES additions. 

The sequence data were also analyzed with an OTU based approach using mothur (Figure B.6 and 

Figure B.7, Appendix B). Both OTU and ASV based approaches produced similar results for 

relative abundance and relative activity (Figure 3.3 vs. Figure B.6 and Figure 3.4 vs. Figure B.7, 

Appendix B). However, the OTU method indicated that Methanobrevibacter OTU 6 was the 

primary population able to grow in the presence of 2-BES and was also dominant during the shorter 

SRT period (Days 20-81) (Figure B.7, Appendix B), in contrast to the ASV method, which 

indicated that two major Methanobrevibacter populations (ASVs 5 and 29) became dominant after 

2-BES addition. The comparison of the two methods confirms that the ASV method is better suited 

for differentiating sequence variants down to a single nucleotide difference, thus providing 

improved taxonomic resolution (Callahan et al., 2017). The OTU approach clusters 16S rRNA 
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gene sequences with 97% similarity into the same OTU and representative OTU sequences are 

compared with sequences in a reference database for taxonomic identification. The increased 

resolution provided by the ASV based approach captured changes in methanogen community in 

response to the 2-BES inhibition not picked up by the OTU based approach. At the same time, the 

ASV method has some disadvantages, including the inability to effectively discriminate between 

PCR bias or sequencing error and real biological variation. Moreover, many microorganisms 

harbor multiple rrn operons and the 16S rRNA gene sequence diversity increases with increasing 

rrn operon copy numbers (Větrovský and Baldrian, 2013). In the case of intragenomic 

heterogeneity, multiple ASVs can arise from a single population harboring multiple rRNA gene 

copies leading to more ASVs than populations present in a community (Callahan et al., 2017; Sun 

et al., 2013). Methanobrevibacter spp. have two or three 16S rRNA gene copies and intragenomic 

sequence variation could lead to multiple ASVs from the same Methanobrevibacter population 

(Klappenbach et al., 2001). So, it is possible that DADA2 assigned divergent copies of the 16S 

rRNA gene that belonged to one Methanobrevibacter population into ASV 5 and ASV 29. 

Comparing metagenomes before and after 2-BES addition would resolve this uncertainty, but this 

analysis is beyond the scope of this study.  

3.4.4 Acetate production in the bioreactor 

The high relative abundance and activity of Methanobrevibacter populations indicated that a 

favorable ecological niche was created that supported their growth and activity even at low pH and 

during exposure to 2-BES. Some studies have pointed towards the versatility of methanogens in 

substrate utilization for methanogenesis. For example, alcohols such as ethanol can be utilized for 

growth and methane production (Berk and Thauer, 1997; Metje and Frenzel, 2005; Poehlein et al., 

2018). Bryant et al. (1967) found a syntrophic association between a H2 producing ethanol oxidizer 

and a H2 utilizing microorganism, such that ethanol oxidation was coupled with interspecies 

hydrogen transfer for methane production. Some studies have reported that species of methanogens 

such as M. ethanolicus and M. organophilum can directly convert ethanol to methane and acetate 

(Imachi et al., 2009; Widdel, 1986). Two moles of ethanol were oxidized to two moles of acetate 

for every moles of methane formed (Table B.1, Eq B4, Appendix B).  
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A phylogenetic analysis showed that the dominant Methanobrevibacter populations, ASVs 5 and 

29 clustered with Methanobrevibacter wolinii strain SH, ASV 20 with Methanobrevibacter 

boviskoreani JH1, and ASV 12 with Methanobrevibacter sp. AbM4 (Figure 3.5). 

Methanobrevibacter strains such as M. wolinii strain DSM 11976T and M. boviskoreani strain 

DSM 25824T have been shown to have the genes to utilize ethanol for methanogenesis (Poehlein 

et al., 2018). ASV 12 clustered with Methanobrevibacter sp. AbM4, which has been reported to 

be capable of growth without H2 but in presence of methanol/ethanol (Weimar et al., 2017). Figure 

3.5 shows that Methanobrevibacter ASVs were also phylogenetically closely related to 

Methanosphaera sp. WGK6, ethanol oxidizers found in macropodids (Hoedt et al., 2016). While 

these results suggest involvement of methanogens in ethanol metabolism, we have no direct 

evidence to verify the role of Methanobrevibacter in EEO observed in our bioreactor. Future 

research should focus on using quantitative PCR and/or multi-omics tools to retrieve genome-level 

information to confirm the presence of specific genes involved in the EEO metabolic pathway.  
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Figure 3.5. Phylogenetic tree of 16S rRNA gene sequence of most abundant methanogenic ASVs 

(in red). Methanopyrus kandleri was used as the outgroup. The GenBank accession numbers are 

given in parentheses. The reference sequences are shown in black. Methanogens previously 

identified as ethanol oxidizers or capable of growth in the presence of ethanol are shown in blue. 

The numbers at the nodes of the branch indicate bootstrap values. The scale bar of 0.05 represents 

5% substitutions per nucleotide base pair. 

Acetogens can also carry out ethanol oxidation by using CO2 as an electron acceptor with no 

thermodynamic restriction (Table B.1, Eq B5, Appendix B). ASVs belonging to the genus 

Acetobacter were consistently present throughout bioreactor operation but at a low relative 

abundance (1.4  1.2%) and relative activity (1.4  1.4%). Acetobacter is a typical acetic acid 

bacteria characterized by its ability to convert ethanol to acetate in the presence of oxygen 

(Ghommidh et al., 1982). Acetic acid bacteria such as Acetobacter are thought to be strict aerobes, 
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however, their ability to use electron acceptors other than oxygen suggests that they may still show 

limited metabolic activity under anaerobic conditions (Jackson, 2008). Furthermore, the relative 

abundance and activity of Acetobacter was not significantly correlated to acetate production in the 

bioreactor, which further indicates the involvement of other microbial populations in EEO.   

Homoacetogens can also produce acetate from CO2 and H2 (Table B.1, Eq B6, Appendix B), 

however, methanogens generally have a higher affinity for H2 than homoacetogens making H2 

consumption by methanogenesis more competitive than reductive homoacetogeneis 

(Kotsyurbenko et al., 2001). Unclassified Eubacteriaceae ASV that shared 98% similarity with 

Eubacterium aggregans, a homoacetogenic bacterium (Mechichi et al., 1998), was observed at a 

very low relative abundance and relative activity of less than 0.01%. Other homoacetogens such 

as Acetobacterium (A. carbinolicum (Eichler and Schink, 1984)) that can combine ethanol 

oxidation to acetate with concomitant formation of acetate from carbon dioxide, were not observed 

in the bioreactor. Furthermore, the actual Gibbs free energy of hydrogenotrophic methanogenesis 

was exergonic over the bioreactor operating period, whereas homoacetogenesis was endergonic 

for part of the operating time (Figure B.8, Appendix B). Moreover, hydrogenotrophic 

methanogenesis was thermodynamically more favorable than H2 oxidation by homoacetogens for 

the complete operating period (Figure B8, Appendix B), which explains the low relative abundance 

and activity of homoacetogens. If 2-BES had favored homoacetogens, the acetate yield should 

have been improved. However, net acetate production decreased after 2-BES addition showing 

that acetate production via homoacetogenesis was not feasible under the bioreactor conditions. 

These observations confirm that syntrophic ethanol oxidation to acetate (Table B.1, Eq B3, 

Appendix B), which is suppressed when H2 is not consumed by methanogen, was the most 

favorable pathway for acetate production under the bioreactor conditions. However, identifying 

the microbial groups responsible for EEO was not possible within the scope of this study. 

3.4.5 Effect of 2-BES inhibition on the bacterial community and chain elongation 

Most of the methanogenic inhibitors are considered methanogen-specific, but some studies have 

provided evidence for bacterial community shifts during the use of inhibitors such as 2-BES 

(Webster et al., 2016; Xu et al., 2010b, 2010a). In a mixed culture system, inhibition of one group 
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can affect another metabolically associated group. The inhibition of hydrogenotrophic 

methanogens with 2-BES can lead to higher PH2. Bacteria affected by PH2, such as syntrophs, 

homoacetogens, and ethanol oxidizers, can thus indirectly be influenced by the use of 

methanogenic inhibitors. The use of 2-BES can affect the activity of syntrophs as H2 consumption, 

for example, by methanogens make syntrophic reactions energetically favorable. However, 

commonly found syntrophs such as Syntrophobacter, Syntrophomonas, Smithella were not 

observed in the bioreactor. Homoacetogens have a competitive advantage at higher hydrogen 

concentration than methanogens. Therefore, H2 accumulation due to inhibition of hydrogen 

consuming methanogen by 2-BES can favor reductive homoacetogenesis. ASVs belonging to 

unclassified Eubacteriaceae, with a functional role in homoacetogenesis started appearing after 2-

BES addition, however, its relative abundance and relative activity were lower than 0.01%.  

The total MCCAs production rate increased significantly from 4.6  1.8 mmole L-1 d-1 to 5.5  1.2 

mmole L-1 d-1 after 2-BES addition (p=5.8E-03, Figure B.1, Appendix B). Specifically, chain 

elongation of even chain SCCAs was affected with significant increases in caproate and caprylate 

production rates. In contrast, chain elongation of odd chain SCCAs was not affected and the 

enanthate production was not significantly different before and after 2-BES addition. As reported 

in Chapter 2, the relative abundance and activity of OTUs belonging to Pseudoramibacter and 

Clostridiales_unclassified correlated positively with caproate (correlation coefficient=0.50, 

p=0.01) and heptanoate production (correlation coefficient=0.49, p=0.01). The relative abundance 

and relative activity of both Pseudoramibacter (p=9.0E-04 and p=3.5E-02) and 

Clostridiales_unclassified (p=6.7E-04 and p=6.5E-03) significantly increased after 2-BES 

addition. Members belonging to order Clostridiales and Pseudoramibacter have been associated 

with MCCAs production in some ethanol- and lactate-driven chain elongation studies (Agler et 

al., 2012; Kucek et al., 2016b; Scarborough et al., 2018). The ethanol consumption decreased 

(Figure 3.2b) after the addition of 2-BES led to inhibition of EEO. As ethanol was diverted from 

EEO, the higher availability of ethanol might have favored higher MCCAs production. At the same 

time, it is also possible that the microbial community got adapted to the MCCAs toxicity leading 

to higher MCCAs production over time.  
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The observed number of ASVs in the active bacterial community were similar (p=0.93) before and 

after 2-BES addition, however, the richness in the total bacterial community decreased 

significantly (p=3.1E-03) after 2-BES addition (Figure B.4c and B.4d, Appendix B). Furthermore, 

there was no significant difference in the diversity (Shannon diversity index) and evenness 

(Pielou’s evenness) of the bacterial community due to 2-BES addition except for Pielou’s evenness 

of the total bacterial community (p=1.2E-05, Figure B.4c and B.4d, Appendix B). The NMDS 

analysis based on both 16S rRNA gene (62% dissimilarity, Figure B.5c, Appendix B) and 16S 

rRNA sequencing (64% dissimilarity, Figure B.5d, Appendix B) data shows that the samples 

collected after 2-BES addition clustered closer to each other compared with the samples before 2-

BES addition (ANOSIM R value=0.52, p=0.001 for DNA based data and ANOSIM R value=0.47, 

p=0.001 for RNA based data). The similarity of the bacterial community in terms of alpha diversity 

indicates similarity in community structure i.e similar number and abundance of taxa before and 

after 2-BES addition. The beta diversity analysis, however, shows differences in the bacterial 

community due to 2-BES addition, indicating a change in bacterial community composition. 

Differential abundance analysis using DESeq2 indicated that 139 and 76 bacterial ASVs showed 

a significant difference in relative abundance and activity (Table B.2, Appendix B), respectively, 

after 2-BES addition. Moreover, there was a distinct shift in some bacterial populations on the 

ASV level. For example, a shift to a different ASV belonging to Acidaminococcus, which is known 

to utilize amino acids forming acetate and butyrate (Rogosa, 1969), was observed after 2-BES 

addition. The relative abundance and activity of Acidaminococcus ASV 26 increased from 0.4  

1.0% and 0.7  1.8% to 2.1  1.0% and 4.3  3.9%, respectively, after 2-BES addition, replacing 

Acidaminococcus ASV 9 (relative abundance and activity decreased from 3.0  2.3% and 7.1  

5.7% to 0.2  0.2% and 0.5  0.5%, respectively). Therefore, 2-BES can have direct or indirect 

effects on the bacterial community.  

3.5 Conclusions  

While controlling competing metabolic processes such as EEO is challenging when heterogeneous 

waste streams are fed to a mixed community bioreactor, it is important to limit inefficient substrate 

usage and optimize MCCAs yield and selectivity. Hydrogenotrophic methanogenesis was the key 
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process leading to H2 consumption as other H2 sinks such as homoacetogenesis and sulfate 

reduction were limited under the bioreactor condition. The addition of the methanogenic inhibitor 

2-BES limited the activity of hydrogen consuming methanogens and minimized EEO due to 

thermodynamic inhibition caused by high PH2. We observed that EEO was limited under PH2 higher 

than 0.02 atm. However, the addition of the methanogenic inhibitor 2-BES did not provide long 

term-EEO suppression. The microbial community developed tolerance making 2-BES inhibition 

ineffective. Methanobrevibacter was dominant throughout the operational period, even under 2-

BES inhibited condition. Future studies should evaluate the role of methanogens such as 

Methanobrevibacter during chain elongation. Lastly, future research is required to identify 

microbial populations involved in EEO and study its growth characteristics to devise alternate 

operational strategies to control EEO. 
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4.1 Abstract 

Medium chain carboxylic acids (MCCAs) can be produced from waste streams via chain 

elongation in mixed-culture bioreactors. A product recovery system is needed to recover MCCAs 

from the bioreactor effluent. Membrane based liquid-liquid extraction, the most commonly used 

approach, requires suspended solids removal from the bioreactor effluent to avoid membrane 

fouling. An anaerobic dynamic membrane bioreactor (AnDMBR) was developed to evaluate 

MCCA production from ethanol-rich brewery waste and pre-fermented food waste and to produce 

a permeate with low suspended solids. The AnDMBR system employed an inexpensive stainless-

steel mesh as the support material for the development of a biological cake layer or dynamic 

membrane that accomplished solid-liquid separation. The AnDMBR produced a good permeate 

quality (mean  standard deviation of 0.12  0.06 g total suspended solids (TSS) L-1), with a TSS 

concentration as low as 0.037 g L-1. The average bioreactor TSS concentration during this period 

was two orders of magnitude higher (21.6  9.9 g L-1) than the permeate TSS. A maximum solids 
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removal efficiency of  99% was achieved and good permeate quality was sustained for over 200 

days without fouling control and cleaning the support material. The relative activity, as determined 

by 16S rRNA sequencing, of unclassified Clostridiales, which correlated with MCCA production, 

was significantly higher in the biofilm than in the suspended biomass. This was consistent with 

MCCA performance data as the MCCA concentrations in the permeate were significantly higher 

than in the suspended bioreactor samples (p=8.2E-05), suggesting that the dynamic membrane 

biofilm contributed to chain elongation. 

4.2 Introduction 

Chain elongation is gaining increased attention due to its potential to convert diverse organic waste 

streams into high value products such as medium chain carboxylic acids (MCCAs) (Andersen et 

al., 2017; Angenent et al., 2016; Ge et al., 2015; Kucek et al., 2016c; Xu et al., 2018). MCCAs are 

platform chemicals that can be used in the production of lubricants, fragrances, dyes, and fuels, or 

directly used as livestock feed additives or antimicrobial agents (Angenent et al., 2016). Chain 

elongation involves step-wise elongation of the carbon chain of short chain carboxylic acids 

(SCCAs, C1-C5) into longer chain MCCAs (C6-C12), such as caproic acid (C6), enanthic acid 

(C7), and caprylic acid (C8) (Angenent et al., 2016). While mixed-culture chain elongation can be 

used to produce MCCAs, this process often also yields unconsumed precursors such as SCCAs 

and other soluble products that need to be removed. A product recovery system is thus required to 

obtain MCCAs in a useful form. When the bioreactor is operated under acidic conditions, most of 

the MCCAs are present in the undissociated form, resulting in inhibitory conditions for 

microorganisms (Angenent et al., 2016). Therefore, extracting MCCAs also helps to alleviate 

product toxicity. Since toxicity increases with MCCA carbon-chain length, continuous MCCA 

removal provides a selective advantage for the formation of the longest possible MCCAs 

(Angenent et al., 2018). Lastly, continuous removal of acidic products like MCCAs from the 

bioreactor reduces the amount of base needed for buffering. 

Membrane-based liquid-liquid extraction (LLX, i.e., pertraction) is the most commonly used 

extraction approach in chain elongation studies (Ge et al., 2015; Kucek et al., 2016b, 2016a, 2016c; 

Urban et al., 2017; Xu et al., 2018). It is important to remove solids from the bioreactor effluent 
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prior to downstream extraction to avoid fouling of the membrane extraction system. Membrane 

fouling also increases mass transfer resistance and decreases extraction efficiency, as shown by 

Sitter et al. (2018). Most chain elongation systems use multiple external filters before the 

extraction step for solid-liquid separation (Kucek et al., 2016b, 2016a, 2016c; Urban et al., 2017; 

Xu et al., 2018). The use of external filtration steps leads to biomass loss from the chain elongation 

bioreactor and increases capital and operating costs. The use of a membrane bioreactor for MCCA 

production and simultaneous solids removal would make it possible to directly integrate MCCA 

production with downstream separation processes. Anaerobic membrane bioreactors (AnMBRs) 

using microfiltration or ultrafiltration membranes have been widely applied in wastewater 

treatment processes. However, they have several disadvantages, including low flux, high capital 

and operating costs, rapid membrane fouling, and high energy and chemical consumption for 

membrane cleaning (Ozgun et al., 2013; Smith et al., 2012). Anaerobic dynamic membrane 

bioreactors (AnDMBRs) have the potential to address some of these shortcomings. Operation of 

an AnDMBR depends on the in-situ formation of a biological cake layer, also referred to as a 

“dynamic membrane,” layer, on a support surface to provide effective filtration (Ersahin et al., 

2012; Hu et al., 2018; Zhang et al., 2014). Materials such as stainless steel meshes as well as woven 

and non-woven fabrics, with pore sizes typically ranging from 5-200 um, serve as the support for 

the development of the dynamic membrane. The dynamic membrane has a lower porosity than the 

support material, providing improved filtration (Ersahin et al., 2012; Hu et al., 2018). Low cost, 

high flux, ease of fouling control, and low energy requirements make AnDMBR a promising 

technology (Ersahin et al., 2012; Hu et al., 2018).  

The versatility of AnDMBR systems has been demonstrated previously with diverse waste 

streams, including domestic wastewater, food waste, cheese whey wastewater, and landfill 

leachate, resulting in the production of biogas, lactic acid, and SCCAs (Cayetano et al., 2019; Liu 

et al., 2016; Paçal et al., 2019; Tang et al., 2017; Xie et al., 2014). Previous studies have 

demonstrated that AnDMBRs are able to produce permeate quality with total suspended solids 

(TSS) less than 10 mg L-1 (Ersahin et al., 2014, 2016a). With such efficient solids-liquid separation, 

AnDMBRs can produce a low particulate containing permeate that can be sent directly to a 

membrane-based extraction system, thus avoiding external filtration steps. The integration of 
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AnDMBRs with downstream extraction systems is expected to reduce cost and environmental 

impacts, as well as to decrease the physical footprint of current chain elongation bioreactor 

systems. Furthermore, biomass retention has been shown to result in a high conversion rate for 

MCCA production due to high microbial density as well as high resilience towards upsets 

(Carvajal-Arroyo et al., 2019; Roghair et al., 2016; Q. Wu et al., 2020). Biomass retention in chain 

elongation systems so far has been mediated by the use of granular sludge-based processes and 

cell immobilization on carrier materials in up-flow anaerobic filters (Carvajal-Arroyo et al., 2019; 

Grootscholten et al., 2013a, 2013b; Kucek et al., 2016b; Roghair et al., 2016; Q. Wu et al., 2020). 

The potential of AnDMBR for MCCA production with simultaneous suspended solids removal 

has not yet been explored.  

A bench-scale AnDMBR equipped with flat sheet stainless steel meshes was developed to promote 

dynamic membrane formation for solids-liquid separation and for biomass retention. The 

bioreactor was operated with SCCA-rich permeate from a bioreactor treating food waste and 

ethanol-rich waste beer. The objectives of this study were to develop and evaluate the applicability 

of AnDMBR technology for MCCA production and effective solids-liquid separation. We 

evaluated the factors affecting its performance and characterized the contribution of the dynamic 

membrane biofilm in MCCA production. 

4.3 Materials and Methods 

4.3.1 Substrate and Inoculum 

The bioreactor was inoculated with 5 L of rumen content (14.0 g volatile solids (VS) L-1) collected 

from a fistulated cow at the Michigan State University dairy farm (East Lansing, MI, USA). The 

bioreactor influent was composed of waste beer and a SCCA-rich permeate collected from an 

acidogenic bioreactor treating food waste (Fonoll et al., 2019). The SCCA-rich permeate was left 

to settle overnight and the supernatant was used to prepare the influent in this study. Waste beer is 

a waste stream produced in breweries as a result of failure to meet quality standards, development 

of off flavors, improper fermentation or storage, and includes beer past its expiration date (Seluy 

and Isla, 2014). The waste beer contained 4-6% ethanol and was collected in three batches from 

the Jolly Pumpkin Brewery (Dexter, MI). In the influent, the ratio of  SCCA-rich permeate to 
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ethanol-rich waste beer was determined by using the stoichiometric equations for chain elongation 

(4:1 for ethanol:acetate, 2.4:1 for ethanol:propionate, 1.2:1 ethanol:butyrate, and 1.2:1 

ethanol:valerate) (Angenent et al., 2016). The characteristics of the inoculum, waste beer, and 

SCCA-rich permeate are provided in Table C.1, Appendix C. A mixture of 1.2 L of rumen content 

and 1.2 L of biomass (referred to as adapted chain elongation inoculum) from the chain elongation 

bioreactor operated in Chapter 2 was added on Day 175 to re-inoculate the bioreactor with the goal 

of recovering chain elongation activity. Malfunctioning of the base pump led to a high pH on Day 

179. To address this potential concern, 0.3 L of rumen content and 0.3 L of biomass from the same 

chain elongation bioreactor were added to maintain bioreactor performance.  

4.3.2 Bioreactor system and operating condition 

A 7-L AnDMBR was equipped with three submerged rectangular membrane modules. Each 

module contained two flat sheet stainless steel meshes (TWP, Berkeley, CA) with an area of 0.0163 

m2 each resulting in a total effective filtration area of 0.0978 m2. The bioreactor system included 

peristaltic pumps for feeding and permeation, which were remotely controlled using LabVIEW 

(National Instruments, Austin, TX) data acquisition software. The bioreactor was continually fed 

from a well-mixed and refrigerated influent reservoir. The bioreactor working volume was 

maintained at 4.8 L using a LabVIEW-controlled level sensor (Grainger, Lake Forest, Illinois) and 

the bioreactor contents were continuously stirred with an overhead impeller (Scilogex, Rocky Hill, 

CT). A 5-L Tedlar gas bag was connected to the bioreactor headspace for gas collection. The 

transmembrane pressure (TMP) of each membrane module was continuously recorded starting 

from Day 282 using pressure sensors (Ashcroft, Stratford, CT) and the LabVIEW data acquisition 

software. A schematic representation of the AnDMBR bioreactor is shown in Figure 4.1. 
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Figure 4.1. Schematic representation of the anaerobic dynamic membrane bioreactor integrated 

with an in-line MCCA extraction system labeled with different flows in and out of each unit 

process. 1, 2, 3, and 4 represent system boundaries for the mass balance calculation used in Eq C6 

(Appendix C). The ultrafiltration unit was implemented on Day 245 as an additional barrier during 

instances of sloughing of the dynamic membrane layer. 

The bioreactor was operated at 37oC and a pH of 5.5 was maintained by addition of 3 M NaOH 

controlled with LabVIEW. The hydraulic retention time (HRT) was maintained between 3 to 5 

days and the organic loading rate (OLR) varied from 2.7 to 18.0 g soluble chemical oxygen demand 

(sCOD) L-1 d-1 over the course of the experiment (Figure C.1, Appendix C). The solids retention 

time (SRT) was calculated by considering the amount of biomass wasted through measuring the 

volatile suspended solids (VSS) in bioreactor samples (without considering attached biomass) and 

permeate.  

The AnDMBR experimental time was divided into four phases based on operational changes 

(Table 4.1). In Phase 1 (Days 1-284), stainless steel meshes with a pore size of 25 m were used 

as the support material with no fouling control until Day 274. The filtration mode was semi-

continuous until Day 49 (Phase 1A, Days 1-49) with frequent backwashing after which it was 

switched to continuous filtration without backwashing (Phase 1B, Days 50-233). The TSS 
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concentration in the influent increased starting on Day 234 (Phase 1C, Days 234-284) due to an 

increase in the TSS concentration of the SCCAs-rich permeate. The meshes were removed from 

the bioreactor for chemical cleaning with 1 M NaOH solution on Day 274, but this did not recover 

membrane permeability indicating severe pore blockage of the meshes. Consequently, the 25-m 

meshes were replaced with a new set of meshes in Phase 2 (Days 285-334). As the AnDMBR 

permeate TSS was still high, starting on Day 313 (Phase 2B, Days 313-334), the SCCA-rich 

permeate was centrifuged (10,000 x g for 10 min) and the supernatant was used to prepare the 

AnDMBR influent. To evaluate the effect of lower influent TSS with unfouled meshes, a new set 

of 25-m meshes were used in Phase 3 (Days 335-364). In Phase 4 (Days 365-435), 5-m meshes 

were incorporated in the membrane modules to compare performance for different mesh pore 

sizes. In the later part of Phase 4 (Phase 4B, Days 394-435), non-centrifuged SCCA-rich permeate 

was mixed with the supernatant of centrifuged SCCA-rich permeate at a ratio (v:v) of 30:70 (Days 

393–421) and 15:85 (Days 422–435) to increase the TSS concentration in the influent. 

 



79 

 

 

 

 Table 4.1 Summary of AnDMBR experimental phases, operating conditions, and performance 

Phases  
Phase 1 Phase 2 

Phase 3 

  

Phase 4 

Phase 1A Phase 1B Phase 1C Phase 2A Phase 2B Phase 4A Phase 4B 

Filtration mode semi-continuous continuous continuous continuous continuous 

Mesh pore size 25 m  25 m 25 m 5 m 

Flux (L m-2 h-1) N.A. 0.47 ± 0.07 0.62 ± 0.05 0.65 ± 0.05 0.62 ± 0.08 0.65 ± 0.05 0.55 ± 0.07 0.44 ± 0.15 

Influent change 

   

solids 

concentration 

increased  

Centrifuged 

   

Centrifuged+ 

non-centrifuged 

Influent TSS (g L-1) 1.60 ± 0.51 3.08 ± 2.20 9.73 ± 2.72 10.23 ± 0.91 1.73 ± 0.86 1.50 ± 0.40 1.33 ± 0.39 3.29 ± 0.87 

Reactor TSS (g L-1) 6.22 ± 3.39 18.17 ± 7.23 35.87 ± 3.86 29.67 ± 5.14 26.78 ± 8.70 12.17 ± 2.45 11.68 ± 1.85 19.13 ± 4.65 

Permeate TSS (g L-1) 0.81 ± 0.52 0.11 ± 0.06 0.22 ± 0.15 0.41 ± 0.45 0.20 ± 0.15 0.85 ± 0.38 0.47 ± 0.14 0.17 ± 0.08 

Permeate Turbidity 

(NTU) 554.17 ± 401.25 42.34 ± 62.85 80.75 ± 95.46 275.53 ± 681.14 

36.15 ± 

13.98 1693.90 ± 981.49 953.29 ± 978.23 73.06 ± 146.00 

TSS removal (%) 55.8 ± 23.9 93.9 ± 5.7 97.8 ± 1.3 96.1 ± 4.3 85.0 ± 13.1 42.5 ± 31.7 61.8 ± 12.4 94.2 ± 2.7 

Days 
1 to 49 50-233 234-284 285-312 313-334  365-393 394-435 

1-284 285-334 335-364 365-435 

N.A. stands for not available 
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4.3.3 Pertraction system 

The pertraction system consisted of two hollow-fiber, hydrophobic membrane contactors (Liqui-

Cel EXF 2.5*8, X40) from 3M (Charlotte, NC, USA). The bioreactor permeate was passed through 

an ultrafiltration membrane (GE healthcare, PA, USA, 0.03 m pore size, 0.53 m2 membrane area), 

collected in an intermediate vessel, and recirculated through the shell side of the forward 

membrane contactor. The intermediate vessel (Figure 4.1) enabled permeate recirculation through 

the forward membrane at a higher flow rate of 140 L d-1 independent of the AnDMBR permeate 

flow rate from the AnDMBR side. A hydrophobic solvent consisting of mineral oil (Sigma 

Aldrich, St. Louis, MO, USA) and 30 g L-1 trioctylphosphine oxide (TOPO) was recirculated 

continuously through the lumen of the forward and backward membrane modules to selectively 

extract MCCAs. An alkaline stripping solution made up of sodium tetraborate and boric acid was 

used to back extract MCCAs from the hydrophobic solvent. The in-line extraction system was 

integrated with the bioreactor and operated from Days 245-270, Days 314-334, and Days 380-435 

with some interruptions due to technical difficulties. During Days 380-435 of Phase 4, the 

bioreactor permeate was recirculated continuously at a flow rate of 3.6  1.0 mL min-1 between 

the bioreactor and intermediate vessel while the permeate left the system at a flow rate of 0.8  0.1 

mL min-1 (Figure 4.1). Prior to integration with the AnDMBR system, pertraction system trials 

were run with a synthet.ic mixture of ethanol, SCCAs, and MCCAs to simulate operation with the 

real AnDMBR permeate. The trials included evaluating the extraction performance with and 

without TOPO in mineral oil (Section C1.1, Figure C.2, Table C.2, Appendix C) and the 

effectiveness of the LLX unit for MCCA recovery (Section C1.2, Figure C.3, Appendix C). 

Detailed information on the pertraction system and the trials is provided in Section C1 (Appendix 

C).  

4.3.4 Chemical analyses 

TSS, VSS, sCOD, and carboxylic acid, lactate, and ethanol concentrations were determined to 

evaluate the AnDMBR performance. The bioreactor permeate was sampled every three days and 

the bioreactor content (before filtration) and influent were sampled weekly. Inocula samples were 

collected at each inoculation event. We sampled the intermediate vessel permeate and alkaline 
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stripping solution on the same day of permeate sampling. TSS and VSS were determined according 

to Standard Methods (Eugene et al., 2012). Prior to analyses, liquid samples were pretreated with 

phosphoric acid for carboxylic acids measurements, with sodium hydroxide for lactate 

measurements, and with sulfuric acid for sCOD analysis, centrifuged, and filtered through 0.45-

µm nylon membrane filters (TISCH Scientific, North Bend, OH, USA). sCOD analysis was 

performed using LovibondTM medium-range (0-1500 mg L-1) COD digestion vials (Tintometer, 

Germany). Turbidity was measured with a turbidimeter (Hach 2100N, Loveland, CO, USA). Gas 

volume was measured daily with a gas-tight glass syringe. Gas composition was determined using 

a Gow-Mac Series gas chromatograph (Bethlehem, PA, USA) equipped with a thermal 

conductivity detector (TCD), as described in Chapter 2. Carboxylic acid concentrations from C2 

to C8 (including iso-forms of C4 and C5) and ethanol were determined using an Agilent 

Technologies 7890B gas chromatograph (Santa Clara, CA) equipped with a stabilwax-DA column 

(Restex) and a flame ionization detector (Chapter 2). Lactate concentration was measured using 

an ion chromatograph (ICS-1600, Dionex, Sunnyvale, CA) equipped with a Dionex DX 100 

conductivity detector. Carboxylic acid values are reported as total carboxylate (sum of dissociated 

carboxylate and undissociated carboxylic acids) unless stated otherwise. 

4.3.5 Microbial analyses  

Biomass samples were collected from the inoculum immediately before each inoculation event 

and from the influent, the bioreactor, and the biofilm at various points throughout the experimental 

period (Table C.3, Appendix C) for microbial analyses. Biofilm samples were taken by removing 

the membrane module from the bioreactor and scraping biofilm from the mesh surface using a 

sterile spatula. The biomass samples were centrifuged (10,000 x g for 10 min at 4oC) and the pellet 

was flash frozen using ethanol and dry ice and stored at -80oC. The cetyl trimethylammonium 

bromide (CTAB) method was used for DNA extraction as described by Porebski et al. (1997) with 

minor modifications (Chapter 2). RNA extraction was carried out using TRIzol reagent 

(Invitrogen, CA, USA) following the manufacturer’s instructions with some modifications to 

include an RNA precipitation step using sodium acetate and ethanol (Chapter 2). Extracted DNA 

and RNA concentrations were determined using a Qubit 2.0 Fluorometer (Invitrogen, Life 

Technologies, CA, USA). RNA extracts were treated with DNAse followed by cDNA synthesis 
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as described in Chapter 2. cDNA and DNA samples were submitted for 16S rRNA and 16S rRNA 

gene sequencing, respectively, to the Microbial Systems Molecular Biology Laboratory 

(University of Michigan, Ann Arbor, MI, USA). The V4 region of the 16S rRNA gene was 

amplified using the primers set F515 and R806 (Caporaso et al., 2011),  which were modified for 

dual-index sequencing as described by Kozich et al. (2013). The sequencing was performed on the 

Illumina MiSeq platform (San Diego, CA, USA) using the MiSeq Reagent Kit V2 500 cycles. The 

sequences were processed with DADA2 v1.16 (Callahan et al., 2016) in R (version 3.6.1) 

according to the online pipeline tutorial (Section C3, Appendix C3). A total of 2,741,368 high-

quality reads were generated, which were assigned to 3,064 ASVs. The dominant ASVs or genera 

were defined as those ASVs or genera that were present at a relative abundance or relative activity 

of  1% in at least 50% of the samples.  

4.3.6 Statistical analyses 

Statistical analyses of bioreactor performance and microbial community data were performed in R 

(v.3.6.1) using the vegan (v.2.5.6) (Oksanen et al., 2019), phyloseq (v.1.30.0) (McMurdie and 

Holmes, 2013), dplyr (v.0.8.5) (Wickham et al., 2015), DESeq2 (v.1.26.0) (Love et al., 2014), and 

ggplot (v.3.3.0) packages (Wickham et al., 2016). Statistically significant differences between 

conditions for bioreactor performance data were identified with the Kruskal-Wallis test with 

Benjamini-Hochberg correction. Pearson correlation coefficients were calculated to determine the 

correlation between the relative abundance/activity of different microbial ASVs and MCCAs 

production. Nonmetric multidimensional scaling (NMDS) plots were generated using Bray-Curtis 

distances as implemented in the vegan package to compare microbial community composition 

among inocula, influent, bioreactor, and biofilm samples using both DNA and RNA datasets. 

Analysis of similarities (ANOSIM) was used to determine whether the observed clusters in the 

NMDS were significantly different. An ANOSIM R-value close to 1 indicates a complete 

separation between groups and an R-value near 0 indicates no difference between groups. DESeq2 

using the Wald significance test was used to test differential abundance of ASVs read counts 

between the suspended biomass and corresponding biofilm samples and DNA and RNA microbial 

data. 
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4.4 Results and discussion 

4.4.1 The dynamic membrane produces high quality permeate despite high bioreactor solids 

content 

The permeate TSS concentration was high (0.81  0.52 g L-1, Figure 4.2) in Phase 1A when the 

AnDMBR was operated in a semi-continuous filtration mode indicating insufficient development 

of the dynamic membrane. Visual inspection on Day 41 confirmed nonuniform distribution of cake 

layer on the supporting meshes (Figure C.4). The permeate TSS decreased drastically from 0.82 g 

L-1 on Day 48 to 0.17 g L-1 on Day 51 after switching to continuous filtration mode (Phase 1B), as 

shown in Figure 4.2. The TSS removal also improved from 56.3% on Day 48 to 74.3% on Day 51 

(Figure C.5, Appendix C). Upon visual observation during biomass sampling on Day 89, the cake 

layer was uniformly distributed on the supporting meshes (Figure C.4, Appendix C). These 

observations indicate that formation of a uniform dynamic membrane resulted in effective 

filtration. The permeate TSS concentration remained below 0.12 g L-1 and averaged 0.08  0.04 g 

L-1 from Day 50 to 114 with the lowest TSS concentration of 0.04 g L-1 achieved on Day 69. 

Similarly, the permeate turbidity remained low with values as low as 7.61 NTU during Phase 1B 

(Figure C.6, Appendix C).  

The average mixed liquor suspended solids (MLSS) concentration in the bioreactor was 10.19  

2.71 g L-1 from Days 50-114, which was almost two orders of magnitude higher (Figure 4.2a) than 

the permeate TSS. Given the influent TSS concentration averaged 2.71  2.01 g TSS L-1, a high 

TSS removal efficiency averaging 91.5  8.5% was achieved despite a high TSS concentration in 

the bioreactor. The ratio of SRT to HRT was 21.0  5.2, indicating that the AnDMBR was capable 

of decoupling SRT and HRT and successfully retained biomass.  

Some studies have shown that AnDMBRs can produce permeate with TSS concentration below 

10 mg L-1 (or turbidity <20 NTU) when treating low solids feedstocks and for MLSS 

concentrations of 5-8.1 g L-1 (Ersahin et al., 2016a, 2014; Siddiqui et al., 2019). However, when 

high solids waste streams such as food waste were treated with high MLSS concentrations of 20-

45 g L-1, a much higher permeate TSS concentration (~0.8-2.8 g TSS L-1) was observed (Cayetano 



84 

 

et al., 2019; Tang et al., 2017). Therefore, careful control of operating conditions to produce 

permeate with low TSS for an extended period (e.g, Phase 1B) is necessary for the optimal 

operation of the downstream extraction unit. 

 

Figure 4.2. Comparison of total suspended solids concentration (TSS) in the permeate and 

bioreactor over time (a) comparison of TSS in the permeate and influent over time (b). The vertical 

red dashed line represents a switch to the continuous filtration mode on Day 50 and the vertical 

black dashed lines represent different experimental phases. 

4.4.2 MLSS concentration and influent solids concentration affect dynamic membrane 

formation 

A mature and stable dynamic membrane is essential to consistently achieve high quality permeate 

(Ersahin et al., 2014), but controlling the dynamic membrane thickness is important to limit 
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filtration resistance. Our AnDMBR was operated continuously without removing the dynamic 

membrane or cleaning the supporting meshes until Day 274. Over this time period, the dynamic 

membrane likely increased in thickness and compactness. Guan et al. (2018) showed that a 

compact dynamic membrane can push the biomass into the pores of the support mesh due to 

compression, leading to breakdown and dissociation of particles into the permeate. Consistent with 

this, the permeate TSS concentration started increasing slowly and stayed above 0.12 g L-1 after 

Day 114. At the same time, the bioreactor MLSS kept increasing with the MLSS concentration 

reaching a maximum of 40.00  0.35 g TSS L-1 on Day 258 (Figure 4.2a). A previous study showed 

that higher MLSS concentrations increased the rate of fouling, thus reducing filtration flux and 

subsequently decreasing the permeate quality (Saleem et al., 2017). To alleviate these concerns, 

the volume and frequency of wasting bioreactor content were increased starting from Day 138. 

Despite this change, the permeate quality did not improve. An unintentional rise in influent TSS 

concentration (Phase 1C) further increased the MLSS concentration despite frequent biomass 

wasting (Figure 4.2).  

The meshes were replaced with a new set of 25-m pore size meshes in Phase 2, but the TMP 

values continued to increase to 40-50 kPa (Figure C.7, Appendix C) indicating membrane clogging 

and the permeate TSS concentration remained high (0.35  0.38 g L-1). Because these 

modifications failed to improve the permeate quality, the influent TSS concentration was 

decreased from 10.23  0.91 g L-1 (Days 285-312) to 1.73  0.86 g L-1 (Days 313-334) (Table 4.1) 

during Phase 2B (Days 313-334). Changing the meshes again in Phase 3 to evaluate the effect of 

feeding a low TSS influent still resulted in poor permeate quality (0.85  0.38 g TSS L-1 and 

1693.90  981.49 NTU) (Table 4.1, Figure 4.2 andFigure C.6, Appendix C). Consistent with this, 

visual inspection showed that the dynamic membrane was not well-formed (Figure C.4, Appendix 

C). Centrifugation of the influent during Phase 2B likely had a negative effect on bioreactor 

performance, as centrifugation presumably removed large suspended particles and left mostly 

particles smaller than the pore size of the support mesh, which had a negative impact on dynamic 

membrane formation. Additional studies would be necessary to confirm this hypothesis and further 

determine the impact of influent particle size distribution on dynamic membrane formation. 
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Moreover, frequently wasting bioreactor content and feeding a low solids influent led to a decrease 

in MLSS concentration, with a minimum MLSS concentration of 9.8 g L-1 reached on Day 390 

(Figure 4.2a). The dynamic membrane can take a longer time to form at a lower MLSS 

concentration as shown by Siddiqui et al. (2019).  

The pore size of the support material can affect dynamic membrane formation rate, permeate 

quality, and flux (Cai et al., 2018; Ersahin et al., 2012; Paçal et al., 2019; Saleem et al., 2017). The 

decrease in mesh pore size from 25 m to 5 m during Phase 4 resulted in improved permeate 

quality compared to Phase 3. However, the permeate TSS concentration remained higher (0.47  

0.14 g L-1) than in Phases 1 and 2, indicating insufficient development of the dynamic membrane. 

Mesh pore size impacts permeate quality before the formation of the dynamic membrane and after 

the dynamic membrane is cleaned, otherwise permeate quality is primarily determined by the 

dynamic membrane (Cai et al., 2018). Salerno et al. (2017) showed that decreasing mesh pore size 

increased the rate of stable dynamic membrane formation. However, this phenomenon was not 

observed in our study, as a thick and stable dynamic membrane was not formed until Phase 4B 

(Table 4.1). The transition to higher solids containing influent in Phase 4B resulted in an increase 

in the TSS removal efficiency, and a decrease in the permeate TSS concentration and turbidity 

(Table 4.1). It should be noted that the influent TSS concentration during Phase 4B was still lower 

than that during Phases 1C and 2A when the permeate quality began to deteriorate. As influent 

solids characteristics affect MLSS concentration, both high (>9 g L-1) and low (<1.3 g L-1) influent 

solids concentration proved detrimental to the AnDMBR performance. Additionally, the MLSS 

concentration also affected the dynamic membrane formation, which suggests the need to control 

MLSS within a certain range to optimize AnDMBR performance. The role of mesh pore size was 

less evident. 

4.4.3 Re-inoculation revived chain elongation activity 

The AnDMBR system was evaluated for MCCAs production from ethanol rich brewery waste and 

SCCAs rich permeate produced by an anaerobic bioreactor treating food waste, for a total of 435 

days. The MCCAs volumetric production rate was high during the first two weeks of operation, 

with the volumetric production rate reaching up to 4.23 mmole L-1 d-1 on Day 14, however, the 
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production started decreasing thereafter and stayed low until Day 175 (Figure 4.3). The bioreactor 

was re-inoculated on Day 175, after which the MCCAs production recovered immediately as 

shown in Figure 4.3.  

 
Figure 4.3. Volumetric production rate of total MCCAs (a) caproate, enanthate, and caprylate (b) 

in the bioreactor over time. The vertical black and red dashed line represent re-inoculation with 

rumen content and adapted chain elongation biomass on Day 175 and integration of AnDMBR 

with the extraction unit with recirculation on Day 380, respectively. 

 

The microbial community in the suspended biomass was more diverse at the start of bioreactor 

operation and was dominated by a few microbial groups as bioreactor operation progressed (Figure 

C.8 and Figure C.9, Appendix C). A shift in microbial community was observed after the re-

inoculation event on Day 175. Starting from Day 181, the active microbial community was mostly 
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dominated by Methanobrevibacter, Pseudoramibacter, Lactobacillus, and 

Clostridiales_unclassified. The relative activity of Clostridiales_unclassified (correlation 

coefficient=0.54, p=0.02) and Pseudoramibacter (correlation coefficient=0.45, p=0.04) was 

significantly correlated with volumetric production rate of MCCAs in the bioreactor. The relative 

abundance and activity of Clostridiales_unclassified on Day 12 was 13.7% and 15.1%, 

respectively (Figure C.8 and Figure C.9, Appendix C), which corresponded with the high MCCAs 

production observed in the first two weeks of operation (Figure 4.3). The relative abundance and 

relative activity decreased to 0.5  0.5% and 0.3  0.3% starting from Day 27 which aligned with 

the decrease in the MCCAs production thereafter until re-inoculation. Clostridium sensu stricto 

ASV 132 shared 100% similarity with Clostridium kluyveri, a model chain elongating bacterium. 

It was active on Day 12 with a relative activity of 5.9% but it was either absent in other sampling 

time points or detected at much lower relative abundance and activity (<1%).  Similarly, 

Pseudoramibacter was also active at the beginning of bioreactor operation when the MCCAs 

production was high after which its relative activity decreased from 8.4% on Day 27 to 1.3% on 

Day 41 before increasing again after re-inoculation.  

Clostridiales and Pseudoramibacter were either undetected or detected at low relative abundance 

and activity in a few influent samples collected over the course of the bioreactor operational period. 

On the other hand, Clostridiales_unclassified was present and active in both the adapted chain 

elongation and rumen inocula, but it was observed at a higher relative abundance (10.0%) and 

activity (14.5%) in the adapted chain elongation inoculum than in the rumen inoculum (relative 

abundance and activity of 2.0% and 2.1%, respectively). Pseudoramibacter was not detected in 

the rumen inocula but was observed at a relative abundance and activity of 0.7% and 0.7%, 

respectively, in the adapted chain elongation inoculum.  

Clostridiales_unclassified ASV 7, the dominant ASV in the suspended biomass samples, was 

present and active in the adapted chain elongation inoculum but had a very low relative activity of 

0.005% in the rumen inoculum. The NCBI BLAST (Altschul et al., 1990) analysis showed that 

ASV 7 was most closely related to Eubacterium pyruvativorans (91% identity), previously known 

to be involved in chain elongation (Wallace et al., 2003). Pseudoramibacter was reported in 
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MCCAs production from lactate in other mixed culture studies (Liu et al., 2020; Scarborough et 

al., 2018). Clostridiales and Pseudoramibacter were found to be involved in MCCAs production 

in our previous study using waste beer and pre-fermented food waste (Chapter 2). Therefore, re-

inoculation helped in seeding the reactor with MCCAs producers such as Clostridiales and 

Pseudoramibacter.  

A distinct microbial community developed over time in the bioreactor independent of the rumen 

inoculum community as shown by the beta-diversity analysis (Figure 4.4 and Figure C.10, 

Appendix C). The NMDS ordination plot in Figure 4.4 (Figure C.10, Appendix C) also shows that 

the bioreactor microbiome in the suspended biomass was more similar to the adapted chain 

elongation inoculum than either of the rumen inocula. Seeding with adapted chain elongation 

inoculum appeared more important in establishing a stable and active chain elongation community 

in the AnDMBR. The inoculum was derived from an ethanol-fed chain elongation bioreactor 

which was possibly enriched with microbial community for MCCAs production. Several chain 

elongation studies have used acclimated biomass from a previously operating chain elongation 

bioreactor as an inoculum (Agler et al., 2012; Grootscholten et al., 2013a, 2013b; Kucek et al., 

2016a, 2016c; Roghair et al., 2016; Xu et al., 2018). Using inoculum from a well-functioning and 

similar system ensures faster start-up and shorter acclimation period leading to more stable 

bioreactor performance (Oz et al., 2012). It is also possible that seeding with a mixture of diverse 

inoculum sources (as was done during the re-inoculation on Day 175) led to better performance 

when compared to seeding with a single inoculum (as was done at the beginning of the study). 

Further investigation on the effect of inoculum type on chain elongation is needed to make a 

stronger conclusion. 
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Figure 4.4. Non-metric multidimensional scaling (NMDS) ordination analysis at ASV level based 

on Bray-Curtis dissimilarity index using 16S rRNA sequencing data in the rumen inoculum, chain 

elongation inoculum (CE_175), influent, suspended biomass, and biofilm samples. The numbers 

correspond to sampling time points. 

4.4.4 Integration of extraction unit with the AnDMBR system 

The LLX unit was integrated with the AnDMBR after the experimental trials showed that the LLX 

method could selectively and effectively separate MCCAs from a mixture of SCCAs and MCCAs 

(Section C1.2, Figure C.3, Appendix C). Once the LLX unit was integrated with the AnDMBR, 

the extraction efficiencies were on average 36.1  27.3% and 39.7  33.6%, from Days 245-270 

and Days 314-334, respectively, which increased to 52.0  23.2% from Days 380-435 when the 

extraction unit was operated with the recirculation mode (Figure 4.1). The extraction efficiency 

depends on the initial acid concentration in the bioreactor (Saboe et al., 2018). The extraction 

efficiencies were lower compared to the other studies probably due to the lower MCCAs 

concentration in this study (Ge et al., 2015; Kucek et al., 2016b). The AnDMBR produced low 

suspended solids permeate during Phase 1B (Figure 4.2) that could have been sent to the 

downstream LLX unit. However, when we were ready to connect the LLX unit to the AnDMBR, 

the permeate quality started deteriorating (Phase 1C). Several changes were made as discussed 

above in an attempt to achieve stable performance, but the permeate quality remained poor. 

Therefore, an ultrafiltration unit was installed between the AnDMBR and the LLX unit on Day 

245 (Figure 4.1) as an extra protection for the in-line membrane contactors.  
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The MCCAs volumetric production rate increased from average values of 6.01  1.45 mmole L-

1d-1 on Days 175-379 to 14.04  5.37 mmole L-1d-1 on Days 380-435 after extraction unit 

integration with the recirculation mode (Figure 4.3). Overall, the major MCCA produced was 

caproate, constituting 76.6  8.5 % of the total MCCAs based on mmoles of carbon produced while 

enanthate and caprylate accounted for 18.9  6.5% and 4.5  2.7%, respectively. There was a 

continuous recirculation of AnDMBR permeate between the AnDMBR and UF unit during this 

time period that allowed more time for the unconsumed MCCAs precursors like ethanol and 

acetate present in the permeate to react in the bioreactor. Furthermore, the AnDMBR system was 

operated at slightly acidic condition under which condition the inhibitory effect of MCCAs 

increases as the fraction of undissociated MCCAs, which is more toxic, increases. Therefore, the 

continuous removal of MCCAs from the bioreactor possibly decreased MCCAs toxicity on the 

microbial community hence explaining the increase in MCCAs volumetric production rate. Other 

chain elongation studies have also demonstrated increase in MCCAs production due to reduced 

inhibition after integration with in-line MCCAs extraction system (Ge et al., 2015; Kucek et al., 

2016c, 2016b). 

4.4.5 Dynamic membrane biofilm activity contributes to MCCA production 

The concentration of MCCAs was determined in both the bioreactor and permeate samples starting 

from Day 259. The MCCAs concentration in the permeate was consistently higher than in the 

bioreactor (p=1.14E-09) through Day 333 (Figure 4.5). This suggests that the dynamic membrane 

was contributing to MCCA production. Similarly, Alibardi et al. (2016) reported significant 

contribution of the dynamic membrane to COD removal during the treatment of high-strength 

municipal wastewater. In an aerobic dynamic membrane bioreactor, ammonium (NH4
+-N) 

concentrations were elevated in the permeate compared to the suspended bioreactor liquid and was 

attributed to degradation of organic nitrogen in the dynamic membrane (Wu et al., 2005).  

While the permeate MCCAs concentration was higher than the corresponding bioreactor 

concentration for a considerable amount of time, this trend was not consistent starting from Day 

334 (Figure 4.5). The difference in MCCAs concentration in the permeate and the bioreactor 

samples aligned with the changes observed in the dynamic membrane formation (Figure C.4, 
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Appendix C). The MCCAs concentrations in the bioreactor and permeate were similar from Days 

334 to 399 (p=0.91) when the dynamic membrane was not properly formed on the meshes. A 

higher MCCAs concentration in the permeate than the corresponding bioreactor samples was again 

observed starting from Day 400 (Figure 4.5) during which time a well-formed dynamic membrane 

was observed. Although there was a difference in MCCAs concentration between the permeate 

and bioreactor samples during this period, it was not statistically significant (p=0.11). 

 
Figure 4.5. Comparison of MCCAs concentration in permeate and bioreactor samples over time. 

MCCAs concentration in the bioreactor was measured starting from Day 259. The vertical dashed 

lines represent different experimental phases.   

The microbial community in the biofilm was also characterized and compared to that in the 

suspended biomass samples. A few dominant microbial groups such as Methanobrevibacter 

(56.9%), Pseudoramibacter (15.8%), and unclassified Bacteria (6.1%) represented the majority of 

the active microbial community in the biofilm on Day 41. The active microbial community 

composition of the biofilm was distinct from that in the suspended biomass on Day 41 (Figure 4.4 

andFigure 4.6), however, this was less evident from the 16S rRNA gene sequencing data (Figure 

C.11, Appendix C). There was a shift in the active microbial community on Day 89 (Figure 4.4 

andFigure 4.6) which corresponded to Phase 1B when continuous mode of filtration led to 

enhanced dynamic membrane formation. Similar to the suspended microbial community, the 

active biofilm microbial community composition again changed on Day 222 corresponding to the 

re-inoculation event on Day 175. Furthermore, Lactobacillus was active in the biofilm samples 
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throughout with varying relative abundance (0.6-11.2%) and activity (0.4-45.0%) and particularly 

made up a significant fraction of the active biofilm community (22.7-53.4%) starting from Day 

383 after changing the mesh from 25-m to 5-m. Lactobacillus produces extracellular polymeric 

substances (EPS) as a metabolic product of carbohydrate degradation (Badel et al., 2011). As EPS 

plays an important role in microbial biofilm formation by promoting cell aggregation and adhesion 

in the dynamic membrane (Czaczyk and Myszka, 2007; Ersahin et al., 2016b; Siddiqui et al., 

2019), the enrichment of Lactobacillus possibly facilitated the development of the dynamic 

membrane. 

 
Figure 4.6. Relative activity of the microbial groups active at relative activity greater than 1% in 

at least 50% of the samples (n=10 in each group) classified to the genus or family level in the 

biofilm and suspended biomass samples. 

The beta diversity results represented by the NMDS plot (Figure 4.4) showed that the active 

biofilm and suspended biomass communities were different at the beginning until Day 41. 

However, the microbial community in the suspended biomass and the biofilm samples became 

more similar to each other with time (ANOSIM R=0.11, p=0.06). Although the microbial 

community structures of the suspended and biofilm samples were similar, the relative activity of 

Clostridiales_unclassified, which was positively correlated to MCCAs production, differed greatly 

between the suspended biomass and biofilm samples, particularly during the period when permeate 

MCCAs concentration was significantly higher than the corresponding bioreactor concentration. 

Clostridiales_unclassified was found at a higher relative activity of 20.0  4.9% from Days 222-
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320 in the biofilm samples compared to 5.2  2.7% of relative activity in the suspended biomass 

samples (Figure 4.6), thus corroborating the chemical data. These observations indicate that the 

dynamic membrane biofilm formation not only improved permeate quality but also played a 

significant role in MCCAs production. Other AnDMBR studies have also reported differences in 

microbial community composition between suspended biomass and dynamic membrane (Ersahin 

et al., 2016b; Quek et al., 2017), however, these inferences were based on a single sample of the 

dynamic membrane. High spatial organization and different environmental conditions in the 

dynamic membrane can lead to niche differentiation providing favorable conditions to one 

microbial population over another. On the other hand, Zhang et al. (2011) found that the microbial 

activity in the dynamic membrane was lower than that in the suspended biomass due to the 

suppressed mass transfer in the compact fouling layer that limits substrate and nutrient availability 

in the dynamic membrane. Nevertheless, the microbial data in our study suggests that AnDMBR 

potentially contributed towards chain elongation by enriching MCCAs producing populations. 

However, further investigation is needed to confirm the underlying mechanism responsible for 

higher MCCAs production due to the dynamic membrane. 

4.5 Conclusions and Future research directions 

The dynamic membrane formation led to high solid retention resulting in low permeate TSS 

concentration for integration with the downstream LLX extraction unit. Directly integrating an 

AnDMBR with the extraction unit can decrease the environmental footprint and cost compared to 

other chain elongation systems by eliminating the use of multiple external filters. While the 

AnDMBR achieved stable performance for a considerable amount of time without cleaning the 

dynamic membrane or cleaning or replacing the supporting meshes, the meshes clogged when the 

dynamic membrane became denser. Therefore, adopting some form of cleaning to control the 

dynamic membrane thickness would be beneficial in a long-term run. Our results show that high 

(>9 g L-1) influent solids concentration, which consequently affected MLSS concentration, 

negatively influenced dynamic membrane formation. Additionally, the AnDMBR dynamic 

membrane was enriched in highly active MCCAs producing microbial populations such as 

Clostridiales. These observations were consistent with higher concentrations of MCCAs in the 
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permeate compared to the bioreactor samples and suggest that chain elongation activity was 

promoted in the dynamic membrane biofilm. The characterization of biofilm morphology and 

composition needs to be done to get a detailed understanding of the microbial interaction and its 

role in MCCAs production. Lastly, the AnDMBR was operated at low flux thus hindering the 

scale-up of this technology. Downstream extraction unit also requires constant and higher flux for 

better extraction efficiency. Therefore, the AnDMBR needs to be optimized further to operate at 

higher flux in order to expand its practical application.  

4.6 References 

Agler, M.T., Spirito, C.M., Usack, J.G., Werner, J.J., Angenent, L.T., 2012. Chain elongation with 

reactor microbiomes: upgrading dilute ethanol to medium-chain carboxylates. Energy Environ. 

Sci. 5, 8189. https://doi.org/10.1039/c2ee22101b 

Alibardi, L., Bernava, N., Cossu, R., Spagni, A., 2016. Anaerobic dynamic membrane bioreactor 

for wastewater treatment at ambient temperature. Chem. Eng. J. 284, 130–138. 

https://doi.org/10.1016/j.cej.2015.08.111 

Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J., 1990. Basic Local Alignment 

Search Tool. J. Mol. Biol. 215, 403–410. https://doi.org/10.1016/S0022-2836(05)80360-2 

Andersen, S.J., De Groof, V., Khor, W.C., Roume, H., Props, R., Coma, M., Rabaey, K., 2017. A 

Clostridium Group IV Species Dominates and Suppresses a Mixed Culture Fermentation by 

Tolerance to Medium Chain Fatty Acids Products. Front. Bioeng. Biotechnol. 5, 1–10. 

https://doi.org/10.3389/fbioe.2017.00008 

Angenent, L.T., Richter, H., Buckel, W., Spirito, C.M., Steinbusch, K.J.J., Plugge, C.M., Strik, 

D.P.B.T.B., Grootscholten, T.I.M., Buisman, C.J.N., Hamelers, H.V.M., 2016. Chain Elongation 

with Reactor Microbiomes: Open-Culture Biotechnology to Produce Biochemicals. Environ. Sci. 

Technol. 50, 2796–2810. https://doi.org/10.1021/acs.est.5b04847 

Angenent, L.T., Usack, J.G., Xu, J., Hafenbradl, D., Posmanik, R., Tester, W., 2018. Integrating 

electrochemical , biological , physical , and thermochemical process units to expand the 

applicability of anaerobic digestion. Bioresour. Technol. 247, 1085–1094. 

https://doi.org/10.1016/j.biortech.2017.09.104 

Badel, S., Bernardi, T., Michaud, P., 2011. New perspectives for Lactobacilli exopolysaccharides. 

Biotechnol. Adv. 29, 54–66. https://doi.org/10.1016/j.biotechadv.2010.08.011 

Cai, D., Huang, J., Liu, G., Li, M., Yu, Y., Meng, F., 2018. Effect of support material pore size on 

the filtration behavior of dynamic membrane bioreactor. Bioresour. Technol. 255, 359–363. 



96 

 

https://doi.org/10.1016/j.biortech.2018.02.007 

Callahan, B.J., McMurdie, P.J., Rosen, M.J., Han, A.W., Johnson, A.J.A., Holmes, S.P., 2016. 

DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–

583. https://doi.org/10.1038/nmeth.3869 

Caporaso, J.G., Lauber, C.L., Walters, W.A., Berg-Lyons, D., Lozupone, C.A., Turnbaugh, P.J., 

Fierer, N., Knight, R., 2011. Global patterns of 16S rRNA diversity at a depth of millions of 

sequences per sample. Proc. Natl. Acad. Sci. U. S. A. 108 Suppl, 4516–22. 

https://doi.org/10.1073/pnas.1000080107 

Carvajal-Arroyo, J.M., Candry, P., Andersen, S.J., Props, R., Seviour, T., Ganigué, R., Rabaey, 

K., 2019. Granular fermentation enables high rate caproic acid production from solid-free thin 

stillage. Green Chem. 21, 1330–1339. https://doi.org/10.1039/c8gc03648a 

Cayetano, R.D.A., Park, J.H., Kang, S., Kim, S.H., 2019. Food waste treatment in an anaerobic 

dynamic membrane bioreactor (AnDMBR): Performance monitoring and microbial community 

analysis. Bioresour. Technol. 280, 158–164. https://doi.org/10.1016/j.biortech.2019.02.025 

Czaczyk, K., Myszka, K., 2007. Biosynthesis of extracellular polymeric substances (EPS) and its 

role in microbial biofilm formation. Polish J. Environ. Stud. 16, 799–806. 

Ersahin, M.E., Gimenez, J.B., Ozgun, H., Tao, Y., Spanjers, H., van Lier, J.B., 2016a. Gas-lift 

anaerobic dynamic membrane bioreactors for high strength synthetic wastewater treatment: Effect 

of biogas sparging velocity and HRT on treatment performance. Chem. Eng. J. 305, 46–53. 

https://doi.org/10.1016/j.cej.2016.02.003 

Ersahin, M.E., Ozgun, H., Dereli, R.K., Ozturk, I., Roest, K., van Lier, J.B., 2012. A review on 

dynamic membrane filtration: Materials, applications and future perspectives. Bioresour. Technol. 

122, 196–206. https://doi.org/10.1016/j.biortech.2012.03.086 

Ersahin, M.E., Ozgun, H., Tao, Y., van Lier, J.B., 2014. Applicability of dynamic membrane 

technology in anaerobic membrane bioreactors. Water Res. 48, 420–429. 

https://doi.org/10.1016/j.watres.2013.09.054 

Ersahin, M.E., Tao, Y., Ozgun, H., Spanjers, H., van Lier, J.B., 2016b. Characteristics and role of 

dynamic membrane layer in anaerobic membrane bioreactors. Biotechnol. Bioeng. 113, 761–771. 

https://doi.org/10.1002/bit.25841 

Eugene, W.R., Rodger, B.B., Andrew, D.E., Lenore, S.C., 2012. Standard Methods for the 

Examination of Water and Wastewater, American Public Health Association, American Water 

Works Association, Water environment federation. 

Fonoll, X., Meuwissen, T., Aley, L., Shrestha, S., Raskin, L., 2019. The rumen membrane 

bioreactor: Transforming food waste into volatile fatty acids at the small scale, in: IWA 16th World 



97 

 

Congress on Anaerobic Digestion. 

Ge, S., Usack, J.G., Spirito, C.M., Angenent, L.T., 2015. Long-Term n -Caproic Acid Production 

from Yeast-Fermentation Beer in an Anaerobic Bioreactor with Continuous Product Extraction. 

Environ. Sci. Technol. 49, 8012–8021. https://doi.org/10.1021/acs.est.5b00238 

Grootscholten, T.I.M., Steinbusch, K.J.J., Hamelers, H.V.M., Buisman, C.J.N., 2013a. Chain 

elongation of acetate and ethanol in an upflow anaerobic filter for high rate MCFA production. 

Bioresour. Technol. 135, 440–445. https://doi.org/10.1016/j.biortech.2012.10.165 

Grootscholten, T.I.M., Steinbusch, K.J.J., Hamelers, H.V.M., Buisman, C.J.N., 2013b. High rate 

heptanoate production from propionate and ethanol using chain elongation. Bioresour. Technol. 

136, 715–718. https://doi.org/10.1016/j.biortech.2013.02.085 

Guan, D., Dai, J., Watanabe, Y., Chen, G., 2018. Changes in the physical properties of the dynamic 

layer and its correlation with permeate quality in a self-forming dynamic membrane bioreactor. 

Water Res. 140, 67–76. https://doi.org/10.1016/j.watres.2018.04.041 

Hu, Y., Wang, X.C., Ngo, H.H., Sun, Q., Yang, Y., 2018. Anaerobic dynamic membrane 

bioreactor (AnDMBR) for wastewater treatment: A review. Bioresour. Technol. 247, 1107–1118. 

https://doi.org/10.1016/j.biortech.2017.09.101 

Kozich, J.J., Westcott, S.L., Baxter, N.T., Highlander, S.K., Schloss, P.D., 2013. Development of 

a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on 

the miseq illumina sequencing platform. Appl. Environ. Microbiol. 79, 5112–5120. 

https://doi.org/10.1128/AEM.01043-13 

Kucek, L., Nguyen, M., Angenent, L.T., 2016a. Conversion of L-lactate into n-caproate by a 

continuously fed reactor microbiome. Water Res. 93, 163–171. 

https://doi.org/10.1016/j.watres.2016.02.018 

Kucek, L., Spirito, C.M., Angenent, L.T., 2016b. High n-caprylate productivities and specificities 

from dilute ethanol and acetate: Chain elongation with microbiomes to upgrade products from 

syngas fermentation. Energy Environ. Sci. 9, 3482–3494. https://doi.org/10.1039/c6ee01487a 

Kucek, L., Xu, J., Nguyen, M., Angenent, L.T., 2016c. Waste conversion into n-caprylate and n-

caproate: resource recovery from wine lees using anaerobic reactor microbiomes and in-line 

extraction. Front. Microbiol. 7, 1–14. https://doi.org/10.3389/fmicb.2016.01892 

Liu, B., Kleinsteuber, S., Centler, F., Harms, H., Sträuber, H., 2020. Competition Between 

Butyrate Fermenters and Chain-Elongating Bacteria Limits the Efficiency of Medium-Chain 

Carboxylate Production. Front. Microbiol. 11, 1–13. https://doi.org/10.3389/fmicb.2020.00336 

Liu, Hongbo, Wang, Y., Yin, B., Zhu, Y., Fu, B., Liu, He, 2016. Improving volatile fatty acid yield 

from sludge anaerobic fermentation through self-forming dynamic membrane separation. 



98 

 

Bioresour. Technol. 218, 92–100. https://doi.org/10.1016/j.biortech.2016.06.077 

Love, M.I., Huber, W., Anders, S., 2014. Moderated estimation of fold change and dispersion for 

RNA-seq data with DESeq2. Genome Biol. 15, 1–21. https://doi.org/10.1186/s13059-014-0550-8 

McMurdie, P.J., Holmes, S., 2013. Phyloseq: An R Package for Reproducible Interactive Analysis 

and Graphics of Microbiome Census Data. PLoS One 8. 

https://doi.org/10.1371/journal.pone.0061217 

Oksanen, J., Blanchet, F.G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., Minchin, P.R., 

O’Hara, R.B., Simpson, G.L., Solymos, P., Stevens, M.H.H., Szoecs, E., Wagner, H., 2019. 

Package ‘vegan’: Community Ecology Package. R Packag. version 2.5-6. 

Oz, N.A., Ince, O., Turker, G., Ince, B.K., 2012. Effect of seed sludge microbial community and 

activity on the performance of anaerobic reactors during the start-up period. World J. Microbiol. 

Biotechnol. 28, 637–647. https://doi.org/10.1007/s11274-011-0857-5 

Ozgun, H., Dereli, R.K., Ersahin, M.E., Kinaci, C., Spanjers, H., Van Lier, J.B., 2013. A review 

of anaerobic membrane bioreactors for municipal wastewater treatment: Integration options, 

limitations and expectations. Sep. Purif. Technol. 118, 89–104. 

https://doi.org/10.1016/j.seppur.2013.06.036 

Paçal, M., Semerci, N., Çallı, B., 2019. Treatment of synthetic wastewater and cheese whey by the 

anaerobic dynamic membrane bioreactor. Environ. Sci. Pollut. Res. 32942–32956. 

https://doi.org/10.1007/s11356-019-06397-z 

Porebski, S., Bailey, L.G., Baum, B.R., 1997. Modification of a CTAB DNA Extraction Protocol 

for Plants Containing High Polysaccharide and Polyphenol Components 15, 8–15. 

Quek, P.J., Yeap, T.S., Ng, H.Y., 2017. Applicability of upflow anaerobic sludge blanket and 

dynamic membrane-coupled process for the treatment of municipal wastewater. Appl. Microbiol. 

Biotechnol. 101, 6531–6540. https://doi.org/10.1007/s00253-017-8358-6 

Roghair, M., Strik, D.P.B.T.B., Steinbusch, K.J.J., Weusthuis, R.A., Bruins, M.E., Buisman, 

C.J.N., 2016. Granular sludge formation and characterization in a chain elongation process. 

Process Biochem. 51, 1594–1598. https://doi.org/10.1016/j.procbio.2016.06.012 

Saboe, P.O., Manker, L.P., Michener, W.E., Peterson, D.J., Brandner, D.G., Deutch, S.P., Kumar, 

M., Cywar, R.M., Beckham, T., Karp, E.M., 2018. In situ recovery of bio-based carboxylic acids. 

Green Chem. 20, 1791–1804. https://doi.org/10.1039/c7gc03747c 

Saleem, M., Alibardi, L., Cossu, R., Cristina, M., Spagni, A., 2017. Analysis of fouling 

development under dynamic membrane filtration operation. Chem. Eng. J. 312, 136–143. 

https://doi.org/10.1016/j.cej.2016.11.123 



99 

 

Salerno, C., Vergine, P., Berardi, G., Pollice, A., 2017. Influence of air scouring on the 

performance of a Self Forming Dynamic Membrane BioReactor ( SFD MBR ) for municipal 

wastewater treatment. Bioresour. Technol. 223, 301–306. 

https://doi.org/10.1016/j.biortech.2016.10.054 

Scarborough, M.J., Lawson, C.E., Hamilton, J.J., Donohue, T.J., Noguera, D.R., 2018. 

Metatranscriptomic and Thermodynamic Insights into Medium-Chain Fatty Acid Production 

Using an Anaerobic Microbiome. mSystems 3, 1–21. https://doi.org/10.1128/mSystems.00221-18 

Seluy, L.G., Isla, M.A., 2014. A Process To Treat High-Strength Brewery Wastewater via Ethanol 

Recovery and Vinasse Fermentation. Ind. Eng. Chem. Res. 53, 17043–17050. 

https://doi.org/10.1021/ie500438j 

Siddiqui, M.A., Dai, J., Guan, D., Chen, G., 2019. Exploration of the formation of self-forming 

dynamic membrane in an upflow anaerobic sludge blanket reactor. Sep. Purif. Technol. 212, 757–

766. https://doi.org/10.1016/j.seppur.2018.11.065 

Sitter, K. De, Garcia-gonzalez, L., Matassa, C., Bertin, L., 2018. The use of membrane based 

reactive extraction for the recovery of carboxylic acids from thin stillage. Sep. Purif. Technol. 206, 

177–185. https://doi.org/10.1016/j.seppur.2018.06.001 

Smith, A.L., Stadler, L.B., Love, N.G., Skerlos, S.J., Raskin, L., 2012. Perspectives on anaerobic 

membrane bioreactor treatment of domestic wastewater: A critical review. Bioresour. Technol. 

122, 149–159. https://doi.org/10.1016/j.biortech.2012.04.055 

Tang, J., Wang, X.C., Hu, Y., Hao, H., Li, Y., 2017. Dynamic membrane-assisted fermentation of 

food wastes for enhancing lactic acid production. Bioresour. Technol. 234, 40–47. 

https://doi.org/10.1016/j.biortech.2017.03.019 

Urban, C., Xu Jiajie, Strauber Heik, Dantas Tatiane R. dos Santos, Muhlenberg Jana, Hartig Claus, 

Angenent Largus T. and, Harnisch Falk, 2017. Production of drop-in fuels from biomass at high 

selectivity by combined microbial and electrochemical conversion. Energy Environ. Sci. 10, 2231–

2244. https://doi.org/10.1039/c7ee01303e 

Wallace, R.J., McKain, N., McEwan, N.R., Miyagawa, E., Chaudhary, L.C., King, T.P., Walker, 

N.D., Apajalahti, J.H.A., Newbold, C.J., 2003. Eubacterium pyruvativorans sp. nov., a novel non-

saccharolytic anaerobe from the rumen that ferments pyruvate and amino acids, forms caproate 

and utilizes acetate and propionate. Int. J. Syst. Evol. Microbiol. 53, 965–970. 

https://doi.org/10.1099/ijs.0.02110-0 

Wickham, H., Chang, W., Henry, L., Pedersen, T.L., Takahashi, K., Wilke, C., Woo, K., Yutani, 

H., Dunnington, D., 2016. ggplot2: Create Elegant Data Visualisations Using the Grammar of 

Graphics version 3.3.0. 

Wickham, H., Francois, R., Henry, L., Müller, K., 2015. dplyr: A Grammar of Data Manipulation 



100 

 

version 0.8.5. 

Wu, Q., Feng, X., Guo, W., Bao, X., Ren, N., 2020. Long-term medium chain carboxylic acids 

production from liquor-making wastewater: parameters optimization and toxicity mitigation. 

Chem. Eng. J. 124218. https://doi.org/10.1016/j.cej.2020.124218 

Wu, Y., Huang, X., Wen, X., Chen, F., 2005. Function of dynamic membrane in self-forming 

dynamic membrane coupled bioreactor. Water Sci. Technol. 51, 107–114. 

https://doi.org/10.2166/wst.2005.0628 

Xie, Z., Wang, Z., Wang, Q., Zhu, C., Wu, Z., 2014. An anaerobic dynamic membrane bioreactor 

(AnDMBR) for landfill leachate treatment: Performance and microbial community identification. 

Bioresour. Technol. 161, 29–39. https://doi.org/10.1016/j.biortech.2014.03.014 

Xu, J., Hao, J., Juan, J.L., Spirito, C.M., Harroff, L.A., Largus, T., Xu, J., Hao, J., Guzman, J.J.L., 

Spirito, C.M., Harroff, L.A., 2018. Temperature-Phased Conversion of Acid Whey Waste Into 

Medium-Chain Carboxylic Acids via Lactic Acid : No External e-Donor. Joule 1–16. 

https://doi.org/10.1016/j.joule.2017.11.008 

Zhang, X., Wang, Z., Wu, Z., Wei, T., Lu, F., Tong, J., Mai, S., 2011. Membrane fouling in an 

anaerobic dynamic membrane bioreactor ( AnDMBR ) for municipal wastewater treatment : 

Characteristics of membrane foulants and bulk sludge. Process Biochem. 46, 1538–1544. 

https://doi.org/10.1016/j.procbio.2011.04.002 

Zhang, Y., Zhao, Y., Chu, H., Dong, B., Zhou, X., 2014. Characteristics of dynamic membrane 

filtration: Structure, operation mechanisms, and cost analysis. Chinese Sci. Bull. 59, 247–260. 

https://doi.org/10.1007/s11434-013-0048-x 

 



101 

 

Chapter 5  

 

Environmental Life Cycle Assessment of Caproic Acid Recovery 

from Brewery Waste Streams 

Shilva Shrestha1, Muhammad Abdullah2, Lutgarde Raskin1, Steve Skerlos1,2 

 

1Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, 

Michigan 48109, USA 

2Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109, 

USA 

 

5.1 Abstract 

Bio-based production of medium chain carboxylic acids such as caproic acid from waste streams 

has the potential to replace conventional caproic acid production from plant oils such as palm 

kernel oil.  Given the growth in the number of breweries along with the waste streams they 

generate, we evaluated the environmental impacts of diverting brewery waste into caproic acid. 

An environmental life cycle assessment was conducted and critical factors affecting environmental 

footprint during the production of one kilogram caproic acid (functional unit) from brewery waste 

streams (BW-CA) were identified.  The environmental performance of BW-CA can be further 

improved by decreasing sodium hydroxide addition and using renewable energy to meet heating 

demands. Despite key areas for improvement identified for the future, BW-CA offered 

environmental benefits compared to caproic acid production from palm kernel oil (PKO-CA) in 

all impact categories. The total global warming life cycle of BW-CA was almost 21 times lower 

than PKO-CA. For the reference PKO-CA system, the use of mineral fertilizer during palm oil 
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cultivation had the highest contribution to global warming potential and other impact categories. 

Therefore, caproic acid production from brewery waste is attractive from an environmental 

perspective.  

5.2 Introduction 

Medium chain carboxylic acids (MCCAs), carboxylic acids with six to twelve carbons, are 

platform chemicals with diverse industrial and agricultural applications. MCCAs such as caproic 

acid (C6), enanthic acid (C7), and caprylic acid (C8) serve as building blocks for a variety of 

compounds. They can be used directly as livestock feed additives (Hanczakowska, 2017), 

antimicrobial agents (Desbois and Smith, 2010), plant growth promoters (Scalschi et al., 2013), 

food additives (Takeuchi et al., 2008), or as valuable commodities for production of lubricants, 

fragrances, and dyes (Angenent et al., 2016). They can also be converted into longer chain liquid 

fuels (alcohols and alkanes) and then used as drop-in fuels (Urban et al., 2017). The global 

consumption of caproic acid increased from 8.6E+06 kg in 2013 to 1.0E+07 kg in 2017 and is 

predicted to reach 1.3E+7 kg by 2024 (360 Research Reports, 2020). Due to their versatility, the 

global MCCAs market is expected to reach USD 1.25 billion by 2020, with a compound annual 

growth rate of 12.3% between 2017 and 2022 (Zion Market Research, 2018).  

Currently, MCCAs are produced through extraction from plant oils including palm kernel oil 

(PKO) and coconut oil. These oils contain small amounts of caproic acid and caprylic acid, leading 

to significant consumption of plant oil and also high prices of the final product (Anneken et al., 

2012). For example, PKO consist of 0.5% by weight of caproic acid (Anneken et al., 2012). There 

is an increasing global demand for palm oil due to an increase in demand for food, feedstock for 

chemicals, and diesel production. Indonesia and Malaysia lead the world’s production and export 

of palm oil, meeting approximately 90% of the total global demand (United States Department of 

Agriculture, 2020). However, there is growing environmental concern about the rapidly expanding 

palm oil industry. Palm oil production has been shown to have negative environmental 

consequences such as land-use changes, resource depletion, and increased air pollution (Carlson 

et al., 2012; Goodman and Mulik, 2015; Petrenko et al., 2016). The land-use change such as 

destruction of humid tropical forest, draining of peatlands, and clearing agricultural land using fire 
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for oil palm cultivation has been reported to cause wildfire affecting air quality, biodiversity loss, 

and animal habitat destruction (Carlson et al., 2012; Goodman and Mulik, 2015; Petrenko et al., 

2016). Due to the low concentration of caproic acid in PKO and the undesirable environmental 

effects associated with palm oil production, there exists an unmet environmental need to produce 

these high-value chemicals from other resources without incurring high environmental costs.  

 A shift to sustainable bio-based caproic acid production is needed to reduce our dependence on 

plant oils and address the concern of the high environmental footprint of conventional caproic acid 

production methods. Caproic acid can be produced by mixed-culture microbial communities 

during a process called chain elongation using organic rich waste streams as substrates (Angenent 

et al., 2016). The carbon backbone of short chain carboxylic acids (SCCAs) such as acetate gets 

elongated into caproic acid in two carbon step by the addition of an electron donor such as ethanol 

(Angenent et al., 2016). Caproic acid production has been studied extensively at the lab-scale with 

diverse waste streams ranging from yeast fermentation beer (Agler et al., 2012a; Ge et al., 2015), 

the organic fraction of municipal solid waste (Grootscholten et al., 2014), food waste (Nzeteu et 

al., 2018), acid whey from Greek yogurt production (Xu et al., 2018), wine lees (Kucek et al., 

2016), effluent from syngas fermenter (Vasudevan et al., 2014), lignocellulosic biomass such as 

pretreated corn fiber (Agler et al., 2012b), and waste beer (Chapters 2 and 4). There have been 

efforts to scale up this process to pilot- and full-scale in a few places (Angenent et al., 2016; 

“Capro-X”., “ChainCraft”) The first full-scale system developed by ChainCraft converts the 

organic fraction of municipal solid waste and waste from food industries into MCCAs 

(“ChainCraft”). As the feasibility of MCCA production from other waste streams has been 

demonstrated at the lab-scale, it is important to assess the environmental performance of such 

emerging technologies at an early stage to maximize environmental performance during scale-up. 

Chain elongation can be applied for the valorization of brewery waste. Waste beer, for example, 

has potential for caproic acid production through chain elongation due to its high ethanol content. 

An environmental life cycle assessment (LCA) of caproic acid production from crude ethanol and 

food waste identified ethanol addition to have a dominant environmental impact over the life cycle 

(Chen et al., 2017). Deriving ethanol needed for the chain elongation process from waste streams 
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would reduce the operating cost and environmental impact otherwise caused by the addition of an 

external electron donor. Besides ethanol, there are considerable opportunities to recover untapped 

resources from other organic rich brewery waste streams such as spent grain. The lignocellulose 

component in the spent grain can be hydrolyzed for the production of SCCAs, the precursors for 

MCCAs (Liang and Wan, 2015). The use of brewery waste for resource recovery will also address 

the increasing waste management problems due to the increase in the number of breweries 

(Brewers Association, 2019; The Brewers of Europe, 2017). While caproic acid production from 

brewery waste appears attractive, this resource recovery technology should be evaluated to avoid 

unintended environmental consequences. Moreover, as the technology is still evolving, it is 

important to identify factors that contribute the most to the environmental emissions thus 

highlighting the areas of intervention to improve the environmental performance. Thus, a proper 

assessment of the environmental consequences of caproic acid production from brewery waste is 

necessary.  

The objective of this paper was to quantify environmental life-cycle impacts of caproic acid 

production from brewery waste (BW-CA) and to identify sensitive parameters that affect 

environmental impacts, thus highlighting areas for improvement. Furthermore, this study also 

focuses on the comparative assessment of BW-CA technology relative to the life cycle 

environmental impacts of caproic acid production from PKO (PKO-CA).  

5.3 Materials and Method 

5.3.1 System Boundary and Functional Unit 

The process flow diagram and unit processes of the BW-CA and PKO-CA (reference) systems 

with all the components and flows within the scope of the LCA system boundary are shown in 

Figure 5.1. The details of the process parameters, unit processes, and material, chemical, and 

energy consumption are given in Table D.1 and sections 1-3 of the Appendix D. The functional 

unit was defined as the production of one kg of caproic acid. A gate-to-gate life cycle of material 

flows was evaluated for BW-CA. The BW-CA plant is assumed to be situated in Jolly Pumpkin 

Brewery (Dexter, MI, USA) and thus transportation of brewery waste was excluded. The BW-CA 

system begins with the digestion of brewery waste streams at the brewery and ends with the 
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recovery of caproic acid and leaving the boundary for use offsite. The caproic acid produced can 

be sold as it is or converted into other high-value products or fuels, but the end-of-life of caproic 

acid was not included within the system boundary. The route of caproic acid use can affect the 

overall sustainability of both BW-CA and PKO-CA systems. The BW-CA system boundary 

includes acidogenic and chain elongation digesters, caproic acid extraction via liquid-liquid 

extraction (LLX) and separation via distillation, digestate disposal, and wastewater treatment 

(Figure 5.1a). As waste beer and spent grain are produced independent of whether caproic acid is 

produced, the additional environmental impact of managing these brewery waste streams were 

also included in the model. The reference PKO-CA system assumes that caproic acid was extracted 

from the PKO, the byproduct of crude palm oil. A cradle-to-gate approach was used for PKO-CA. 

The system boundary included the production of palm oil seedling and palm fresh fruit bunch at 

the oil palm nursery and plantation, respectively, palm kernels production during crude palm oil 

production at the palm oil mill, PKO extraction at the kernel crushing plant, and distillation for 

caproic acid recovery (Figure 5.1b). 
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Figure 5.1. System boundary and unit processes for BW-CA (a) and PKO-CA (b) systems for 

production of one kg caproic acid (functional unit).   
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5.3.2 Life Cycle Inventory 

The life cycle inventory (LCI) for BW-CA was built with data based on lab-scale experiments, 

literature values, and communication with industrial personnel (Doug Knox, the Sustainability 

Director at Jolly Pumpkin Brewery) and vendors. The LCI input and output data are summarized 

in Table D.2, Appendix D. The two-phase digesters (acidogenic (Fonoll et al., 2019) and chain 

elongation (Chapter 5) reactors) were modeled based on the lab-scale systems operated at the 

University of Michigan. The BW-CA system used brewery spent grain as input to the acidogenic 

digester and ethanol rich waste beer (60 g L-1) in the chain elongation digester.. The lifetime of the 

system was assumed to be 10 years. It was assumed that the composition of inflows to both systems 

remains the same throughout the period of 10 years. Membrane-based LLX unit was used for 

caproic acid recovery from the chain elongation digester permeate and was modeled using both 

our lab-scale and literature data (Saboe et al., 2018). Caproic acid was extracted from the extraction 

solvent via vacuum distillation (Saboe et al., 2018) while the extraction solvent was recycled back 

to the LLX unit. The solid waste (digestate) from the digesters was disposed of using the average 

U.S. sludge disposal practice (25% landfill, 55% land application, and 20% incineration) (Beecher 

et al., 2007). The digestate was assumed to be thickened via centrifuge dewatering with polymer 

addition before disposal. Digestate transportation and diesel consumption during land application 

were accounted for within the system boundary. 

The life cycle inventory for the PKO-CA was built from a series of peer-reviewed LCA studies 

conducted by the Malaysian Palm Oil Board (MPOB, Table D.3, Appendix D) (Choo et al., 2011; 

Muhammad et al., 2010; Subramaniam et al., 2010a, 2010b; Zulkifli et al., 2010). Detailed 

description of the processes involved in the production of caproic acid from PKO is given in 

section 3 of Appendix D. The environmental impact due to import of caproic acid from Malaysia 

to the U.S., was also considered. Some of the processes produce more than one product. For 

example, palm kernel and crude palm oil are considered as co-products of the palm oil milling 

process. Mass-based allocation was used to partition emissions to different products as shown in 

Figure D.1 (Appendix D). It should be noted that the choice of allocation (energy-based or 

economic value) influence the results.  



108 

 

5.3.3 Life Cycle Impact Assessment 

The life cycle impact assessment (LCIA) data of all the materials and processes was obtained from 

Ecoinvent Database (Frischknecht et al., 2005) (v 3.3) using Umberto NXT Universal 7.1 (Table 

D.4, Appendix D)  and imported to Excel to develop a full comparative LCI. The Tools for the 

Reduction and Assessment of Chemical and Other Environmental Impacts (TRACI 2.1) developed 

by U.S. EPA was used as the impact characterization methodology (Bare et al., 2002). The 

environmental impact categories evaluated included global warming potential (GWP, kg CO2 

equivalent (eq)), eutrophication potential (kg N eq), acidification potential (moles of H+ eq), 

ecotoxicity (kg 2,4-D eq), ozone depletion (kg CFC-11 eq), smog (kg NOx eq), carcinogens (kg 

benzene eq), non-carcinogens (kg toluene eq), and respiratory effects (kg PM 2.5 eq). The impact 

values reported in this study are expressed per functional unit i.e per one kg of caproic acid 

produced.  

The environmental impact of the production of brewery waste was excluded, given that caproic 

acid production does not interfere with beer production and assumed that caproic acid is not a 

motivation for beer production. The wastewater generated from the BW-CA system was treated 

using the impact data included in the Ecoinvent Database. The biogas produced from both digesters 

was flared and the resulting CO2 was excluded as biogenic CO2 from the impact assessment. 

Previous LCA studies have shown that the construction phase environmental impacts are 

negligible compared to life cycle impacts (Ioannou-ttofa et al., 2016; Renou et al., 2008), thus only 

use-phase impacts were included in this study. Digester and LLX membranes lifetime were 

assumed to be 2.5 and 5 years, respectively. Membranes material and water and chemicals needed 

for membrane cleaning was included in the system boundary. The offset due to the substitution of 

mineral N and P fertilizers by digestate use for the land application was included. The impact data 

derived from Ecoinvent was primarily for global (GLO) geography with uses of Rest-of-World 

(RoW) for some activities if GLO data was not available (Table D.4, Appendix D). The electricity 

mix for BW-CA was based on Midwest (MRO) electricity grid. The electricity impact data for 

PKO-CA was based on Malaysia’s electricity generation [MY] data available in the Ecoinvent 

database. The impact data information on other activities in the PKO-CA such as fertilizers, 
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pesticides, chemicals, and diesel used was based on the global data [GLO] as country specific data 

was not available in the Ecoinvent database.  

5.3.4 Sensitivity Analysis 

Based on the initial results and contribution of different parameters to the overall environmental 

impacts of the BW-CA system, a sensitivity analysis was performed using the parameters listed in 

Table D.5 (Appendix D). The baseline scenario was defined as the production of one kg of caproic 

acid from spent grain and waste beer in the BW-CA system with aggregate U.S. digestate disposal 

practice (25% landfill, 55% land application, and 20% incineration), and no biogas capture. 

Several scenarios were modeled and evaluated: biogas capture for heating, 100% land application 

for digestate disposal, and alternate data for NaOH addition. Detailed descriptions of all scenarios 

are provided in section 4 of Appendix D.  

5.4 Results and Discussion 

5.4.1 Environmental impacts of caproic acid production from brewery waste 

The environmental impacts of the BW-CA system across the nine TRACI impact categories are 

shown in Table 5.1. All nine TRACI impact categories considered showed a negative 

environmental impact (Table 5.1). BW-CA achieved a positive environmental benefit from the 

eutrophication perspective only. The dominant factors causing significant environmental impact 

in all impact categories were assessed.  This led to the identification of two major contributor to 

the environmental loads; NaOH use and brewery waste treatment (Figure 5.2). These two activities 

were the primary contributors in all the impact categories assessed except for the eutrophication 

impact category, for which wastewater treatment also had a significant impact.  
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Table 5.1 Life cycle assessment results across nine TRACI impact categories calculated per functional unit for BW-CA system for the baseline scenario 

Unit Process Global 

warming 

Acidification Carcinogenics Non-

Carcinogenics 

Respiratory 

effects 

Eutrophication Ozone 

depletion 

Ecotoxicity Photochemical 

oxidation 

kg CO2-

eq 

moles of H+-

eq 

kg benzene-

eq 

kg toluene-eq kg PM2.5-eq kg N kg CFC-11-eq kg 2,4-D 

eq 

kg NOx-Eq 

Water 6.0E-02 1.7E-02 1.9E-04 3.5E-01 1.6E-04 1.0E-05 1.6E-08 2.1E-02 1.4E-03 

Electricity 1.3E-01 2.5E-02 1.2E-04 2.7E-01 5.7E-04 9.9E-06 1.7E-09 6.1E-02 1.8E-04 

NaOH 1.7 4.9E-01 6.0E-03 1.4E+01 4.3E-03 3.9E-04 9.4E-07 6.9E-01 4.1E-03 

Extraction solvent 9.7E-03 2.7E-04 6.6E-06 1.2E-02 1.4E-06 3.9E-06 6.1E-11 5.4E-04 4.4E-06 

Membrane 2.8E-01 7.5E-02 1.0E-03 2.1 5.9E-04 1.0E-04 1.1E-08 1.7E-01 6.0E-04 

Wastewater treatment 3.4E-02 1.4E-02 2.3E-04 2.4 7.4E-05 1.8E-03 1.9E-09 6.2E-01 1.2E-04 

Digestate handling 1.2E-02 -1.1E-03 -3.7E-05 -3.0E-01 2.3E-05 -8.0E-03 7.3E-10 -1.1E-04 2.3E-05 

Heating  7.0E-01  1.6E-01  3.3E-04  1.9  7.8E-04  3.4E-05  6.8E-08  4.0E-02  4.1E-04 

Brewery waste 1.5 1.7 6.1E-03 9.9E+01 1.6E-03 9.8E-03 8.3E-08 6.7 6.8E-03 

Total 4.5 2.4 1.4E-03 1.2E+02 8.1E-03 4.1E-03 1.1E-06 8.3 1.4E-02 
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Figure 5.2. Relative contribution of different unit processes to the total life cycle impact of BW-

CA (a) and PKO-CA (b) across nine TRACI impact categories during production of one kg of 

caproic acid. 

NaOH consumption created a significant impact on the environmental loads of the BW-CA 

system. It was estimated that 1.25 kg of NaOH was required per kg of caproic acid produced in 

the first and second phase digesters for pH adjustment and 0.05 kg of NaOH per kg of caproic acid 

for LLX membrane cleaning (Table D.2, Appendix D). It is important to maintain slightly acidic 

conditions to favor SCCAs and caproic acid production in the acidogenic and chain elongation 

digesters, respectively. The NaOH use is the major source of GWP and is responsible for 1.71 kg 

CO2 eq, which accounts for 38.3% of the total life-cycle GWP (Table 5.1, Figure 5.2). The 

environmental impact of NaOH production is mostly due to raw salt production and a large amount 

of electricity used during electrolysis and brine extraction (Hong et al., 2014; Thannimalay et al., 
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2013). The environmental burden of NaOH heavily depends on the method of electricity 

generation during the production process (Hong et al., 2014). Additionally, the ecotoxicity, 

carcinogenics, and non-carcinogenics impacts are associated with the release of heavy metals and 

organochlorine compounds during NaOH production.  

The environmental burden of brewery waste management i.e waste beer treatment and re-

purposing spent grain as a substrate in the first phase digester instead of animal feed was also 

considered in the BW-CA system boundary. Waste beer is often combined with other brewery 

wastewater and either treated onsite or sent to the local wastewater treatment plant for further 

treatment. As waste beer comprises a small fraction (<1%) of the total brewery wastewater 

generated, the additional environmental impact due to waste beer treatment had small contribution 

(0.7-1.7%) to the total life cycle impact of the BW-CA system except in the eutrophication (13%) 

and ecotoxicity (6.6%) impact categories. However, spent grain use was the second biggest 

contributor to the total life-cycle GWP (33.3%) after NaOH while it was the leading contributor 

to impact categories such as eutrophication (67.6%), ecotoxicity (74.1%), acidification (67.3%), 

smog (49.3%), and non-carcinogenics (80.7%). Most of the breweries, including Jolly Pumpkin 

Brewery, send their spent grain to local farms to be used as animal feed due to its high protein and 

fiber content (Mussatto et al., 2006). Using spent grain as animal feed offsets the emissions from 

the carbon-intensive process of growing grains for animal feed production (Mogensen et al., 2014), 

thus providing environmental benefits of 14.6 kg of spent grain was used per kg of caproic acid 

produced in the BW-CA system. The environmental impacts from delivering the same amount of 

animal feed from another source led to emission of 1.5 kg CO2 eq, 1.6 moles of H+ eq, 9.7E+01 

kg toluene eq, and 6.1 kg 2,4-D eq per functional unit. On the other hand, some places lack large-

sized cattle farms, which can create problems in handling the huge amount of spent grain produced 

by some breweries. Moreover, pick-up and transportation of spent grain from the brewery to farms 

might not always be straightforward in urban settings with traffic, narrow streets, and parking 

problems. In such scenarios, diverting spent grain into a biological process such as chain 

elongation for resource recovery as proposed in this study seems to be an alternative strategy. 
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Energy use (electricity, diesel used in agricultural machinery during digestate spreading, and 

natural gas) was the third leading factor contributing to the total life-cycle GWP impact of the 

BW-CA system. Electricity is primarily produced from fossil fuel sources (coal, petroleum, and 

natural gas) in the midwest region of the U.S, which leads to detrimental environmental impact 

(U.S. Department of Energy, 2016). A major fraction (93.1%) of the total energy consumed during 

the BW-CA operation was attributed to the heating needs of the digesters (66.9%) and the 

distillation step (26.2%). The use of non-renewable natural gas for heating led to GWP of 0.70 kg 

CO2-eq, contributing to 15.8% of the total life cycle GWP impact of the BW-CA system. 

Wastewater treatment, water consumption, and membrane use also led to some detrimental 

environmental consequences (Figure 5.2). The eutrophication and ecotoxicity impacts due to 

wastewater treatment are mostly associated with the remaining nutrients and other micropollutants 

in the wastewater, which are released to the water bodies after wastewater treatment. Water 

production and use had varying contribution ranging from 0.3-10.1% of the total life cycle impact 

across the nine impact categories. It was responsible for the second highest contribution (10.1%) 

to the total life cycle impact in terms of photochemical oxidation impacts, after NaOH use and 

brewery waste management. 35.6 L of water was required per functional unit (Table D.2, Appendix 

D), of which 94.2% was used for spent grain dilution in the acidogenic digester. 60.2 L wastewater 

was generated from the BW-CA system which can be used as dilution water, displacing the water 

use. Membrane material and cleaning had varying contribution in the range of 0.9-7.3% of the 

total life cycle impact in all categories.  

Digestate handling showed environmental benefit in five impact categories (acidification, 

eutrophication, ecotoxicity, carcinogenics, and non-carcinogenics, Table 5.1). The positive 

environmental impact was associated with the fraction of digestate that was diverted into land 

application as it avoids an equivalent amount of mineral fertilizer depending on the nutrient 

concentration in the digestate. However, the environmental benefits of mineral fertilizer 

substitution were not large enough to completely offset the impacts in the other four impact 

categories (GWP, respiratory effects, ozone depletion, and photochemical oxidation categories). 

Among the three digestate disposal methods (25% landfill, 55% land application, and 20% 

incineration), landfilling was the biggest contributor to the GWP emissions (57.9%) due to 
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digestate handling, even though only one-fourth of the total digestate produced was landfilled. 

Improper land application practices can lead to over-fertilization and nutrient runoff causing 

negative environmental impacts (Nkoa, 2014). 

In the Chen et al. (2017) study using crude ethanol and food waste, the total life-cycle GWP was 

in the range of 8.7-14.9 kg CO2 per kg of caproic acid produced, which was almost two times 

higher compared to our study (4.5 kg CO2-eq). They identified crude ethanol use, extraction 

solvent, and NaOH addition as the main contributors to the total life cycle impact. The addition of 

crude ethanol accounted for at least 20% of the total life-cycle impacts for all impact categories 

(Chen et al., 2017). In the BW-CA system, brewery waste served as the source of ethanol 

displacing crude ethanol use. 3.2 kg of ethanol present in the brewery waste was consumed per kg 

of caproic acid produced in the BW-CA system. If waste beer is replaced with crude ethanol in the 

BW-CA system, the environmental impacts, in particular GWP, will increase. The magnitude of 

GWP increase depends on the source of crude ethanol. For example, the highest impact was 

incurred when ethanol produced from corn was used compared to other sources of ethanol such as 

ethylene or lignocellulosic biomass, which was also pointed out by the Chen et al. (2017) study. 

There was a 206.2% (13.7 kg CO2-eq), 84.0% (8.2 kg CO2-eq), and 75.6% (7.8 kg CO2-eq) 

increase in GWP compared to the baseline scenario when corn ethanol, ethylene, and 

lignocellulosic ethanol, respectively, were used instead of brewery waste. The higher life cycle 

impact using corn ethanol is associated with intensive agricultural practices during corn cultivation 

(González-García et al., 2013). Furthermore, the Chen et al. (2017) study employed two step 

extraction (forward and backward extraction) followed by acidification with HCl and distillation 

for recovery. Backward extraction requires an additional membrane unit and more chemical use 

(NaOH, HCl, and sodium borate solution). Furthermore, this step leads to the formation of sodium 

salt of the caproic acid which requires an additional post-stripping salt-breaking step to recover 

free acid product, for example, by acidification using HCl followed by a dewatering step. The 

double distillation step (extraction solvent and caproic acid distillation) developed by Saboe et al. 

(2018) and implemented in this study directly recovers caproic acid from the extraction solvent 

after the forward extraction, avoiding the backward extraction and acidification steps. The solvent 

distillation also recovers the stripped extraction solvent for subsequent reuse in the extraction step. 
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However, the distillation can be energy-intensive depending on the number of distillation columns 

used. Further investigation is needed to compare the economics of both approaches. Finally, it 

should be noted that a direct comparison cannot be made between the two studies due to the 

difference in the system boundary and the unit processes, and the different assumptions made. 

5.4.2 Comparison of caproic acid production from brewery waste and palm kernel oil 

The environmental impacts due to caproic acid production from the palm kernel oil route (PKO-

CA) were modeled and compared with caproic acid production from brewery waste i.e BW-CA. 

The total life cycle impacts of PKO-CA system and relative contributions of various activities to 

the total life cycle impact are given in Table D.6 (Appendix D) and Figure 5.2, respectively. The 

nursery and plantation phases for the cultivation of palm oil fruit had the greatest impact on the 

life cycle of caproic acid production from palm kernel oil. This was primarily due to the use of 

mineral fertilizer (Figure 5.2). In the GWP category, fertilizer use was the main contributor 

(76.8%) followed by the consumption of electricity (11.6%), diesel for agricultural machinery 

(6.9%), transportation (2.2%), and water (2.1%). Fertilizer application was also the largest 

contributor in all other impact categories (Figure 5.2). The negative impacts of fertilizer are related 

to the energy-intensive production process and emissions during and after field application (Basosi 

et al., 2014; International Fertilizer Industry Association, 1998). The excess nutrients lost from 

fertilizer can be released to the environment via volatilization, leaching to groundwater, and 

surface runoff. Fertilizer use accounted for 99.9% of the total eutrophication impact, which is 

related to nitrogen and phosphorus emissions. Replacing mineral fertilizers with organic sources 

can possibly reduce environmental emissions of PKO-CA. Palm oil mill effluent (POME), the 

liquid waste produced during crude palm oil production, can be anaerobically digested to capture 

biogas, while the digested POME can be used as a fertilizer substitute (Aziz et al., 2020). Empty 

fruit branches, branches after stripping the fruits, or nutrient-rich slurry from the POME treatment 

ponds can also be used as a fertilizer (Chiew and Shimada, 2013).  

Consumption of diesel for agricultural machinery, water, and electricity and the transportation 

phase also attributed to the total environmental loads of the PKO-CA system. The electricity 

produced on-site in the palm oil mill displaced 89.8% of the electricity use from the grid. The 
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impact due to deriving remaining electricity (2.5 kWh per functional unit) from the grid still 

contributed 11.6%, 11.7%, 25.0%, and 8.8% of the overall life cycle in the GWP, acidification, 

respiratory effects, and ecotoxicity, respectively (Figure 5.2). The fossil fuel (natural gas, coal, and 

crude oil) dependent electricity generation in Malaysia (Samsudina et al., 2016) contributed to 

these negative environmental consequences. Alternate to the literature data from the MPOB study, 

impact data for the production of palm kernel oil and fatty acid production from vegetable oil (data 

for caproic acid was not available in Ecoinvent database) was directly taken from the Ecoinvent 

database. The LCIA results derived from the Ecoinvent data predicted much higher environmental 

impacts compared to the MPOB study. For example, the GWP was 1.7 times higher (105.4 kg CO2 

eq) compared to the MPOB study (63.1 kg CO2 eq). This difference might be due to the use of 

renewable electricity generated on-site by the MPOB study. This highlights the impact of 

renewable energy sources on the total life cycle impact of PKO-CA. 

PKO-CA showed significantly higher environmental impacts relative to BW-CA (Table D.6, 

Appendix D, Figure 5.3). PKO-CA performed much worse from the GWP perspective than the 

BW-CA, with almost 14 times higher impact in the GWP category. The net increase in GWP 

impact from the BW-CA to PKO-CA was 58.7 kg CO2 eq per kg of caproic acid produced, which 

is equivalent to avoiding CO2 emission from 29.3 kg of coal burned (US EPA, 2020). 1.0E+07 kg 

of caproic acid was consumed globally in 2017 (360 Research Reports, 2020) which translates to 

3.1E+08 kg of coal burned. Similarly, the LCIA results of PKO-CA for other impact categories 

were similar significantly higher compared to the BW-CA system (Table D.6, Appendix D, Figure 

5.3). A significant fraction (51.0-99.9% across the nine impact categories) of the total life cycle 

impacts come from the raw material i.e palm oil cultivation in the PKO-CA system versus using 

waste streams as feedstock in the BW-CA system, which is otherwise disposed of and does not 

add to the environmental burden of the system.  
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Figure 5.3. Comparison of total life cycle impact of BW-CA and PKO-CA in the Global warming, 

Acidification, and Eutrophication potential categories during production of one kg of caproic acid. 

Results for the other six impact categories are given in Table D.7 

5.4.3 Sensitivity Analysis 

A few alternative scenarios (Table D.5, Appendix D) were examined to evaluate their impact on 

the environmental footprint of the BW-CA system and identify areas for potential improvement. 

The percentage differences in total life cycle impact due to different changes compared to the 

baseline scenario are shown in Figure 5.4 and Table D.7 (Appendix D).  
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Figure 5.4. Results from the sensitivity analysis for all nine impact categories. Negative and 

positive values represent percentage reduction and increment in the total life cycle impact, 

respectively, compared to the baseline scenario. 

The use of NaOH for pH control during the operation phase of BW-CA was the leading factor 

responsible for the environmental loads of BW-CA from GWP standpoint. Excessive ethanol 

oxidation to acetate (EEO), a competitive reaction during ethanol-based chain elongation, leads to 

production of acidic products like acetic acid. Controlling EEO can thus decrease the NaOH 

addition (Roghair et al., 2018b). Previous studies have shown that manipulating hydrogen partial 

pressure (Chapter 3), controlling CO2 loading (Roghair et al., 2018a), and longer hydraulic 

retention time (Roghair et al., 2018b) can reduce EEO. Roghair et al. (2018b) reduced NaOH 

consumption from 0.67 kg NaOH per kg of caproic acid at HRT 1 day to 0.32 kg NaOH per kg of 

caproic acid at HRT of 4 days. In the current LCA model, 1.6 kg of acetic acid was produced per 

functional unit due to EEO. Acetic acid has several applications and can be used as carbon source 

for nitrogen and phosphorus removal, solvent in the production of dimethyl terephthalate and 

terephthalic acid, raw materials for several industrial products such as polymers, resins, paints, and 

adhesives (Pal and Nayak, 2017; Strazzera et al., 2018). However, the high hydrophilicity of acetic 

acid can make separation and purification difficult. The acetic acid remains in the permeate and 

was wasted, and its use was not included in this study. In the sensitivity analysis, the lower NaOH 

addition (0.32 kg NaOH per kg of caproic acid produced taken from Roghair et al. (2018b)) 

decreased the total GWP life-cycle impact by almost 28.9%, with changes of similar magnitude in 
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other impact categories (Figure 5.4, Table D.7, Appendix D). The contribution of NaOH to total 

GWP life cycle impact decreased from 38.3% (1.7 kg CO2 eq per kg of caproic acid) in the baseline 

scenario to 13.2% (0.4 kg CO2 eq per kg of caproic acid) due to lower NaOH addition, making 

brewery waste management the leading factor over NaOH. Other impact categories that were 

affected were acidification potential, carcinogenics, respiratory effects, ozone depletion, and 

photochemical oxidation, with 15.3%, 32.5%, 40.4%, 63.3%, and 22.7% impact reduction 

compared to the baseline scenario (Figure 5.4). However, operation at longer HRT as modeled in 

the alternative scenario will increase the footprint of the system and needs to be evaluated in the 

future studies. Another approach to avoid NaOH addition is to implement membrane 

electrochemical extraction. Electrolytic extraction has been applied to recover MCCAs and 

simultaneously control pH (due to OH- production) (Andersen et al., 2015; Khor et al., 2017). 

However, this approach has often been associated with high electricity consumption and 

membrane material use. Therefore, the environmental impacts of electrolytic extraction should be 

evaluated to assess whether the advantage of avoiding NaOH addition will outweigh the added 

environmental loads from the electrochemical electrolytic system. 

The environmental impact of using biogas on-site for heating, which was otherwise flared in the 

baseline scenario, was assessed in the sensitivity analysis. Both digesters were operated at slightly 

acidic condition to primarily produce carboxylic acids, as a result of which only a small fraction 

of the organics fed was used in biogas production. In total, biogas combustion produced 2.0 kWh 

per kg of caproic acid, which displaced approximately 77.9% of the total natural gas derived 

heating of the BW-CA system. Biogas leakage was ignored in this analysis. Comparing it with the 

baseline scenario, there was a 12.3% reduction in the GWP impact when substituting natural gas 

derived heating with biogas heating (Figure 5.4). Brewery wastewater temperature can affect the 

energy balance due to its impact on the heating requirement of the digesters. Studies have reported 

a wide range of brewery wastewater temperatures, from 25oC to 42oC (Chaitanyakumar et al., 

2011). Retrofitting existing biogas plants to produce both caproic acid and biogas would also open 

new possibilities. The quantity and quality of biogas generated will also determine the practicality 

of energy recovery from biogas generated in chain elongation plants. These factors must be 
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considered in future studies to determine the feasibility of biogas capture and its impact on the 

environmental sustainability and cost-effectiveness of caproic acid production.  

Digestate landfilling (25%) and incineration (20%), as proposed in the baseline scenario, were 

replaced with 100% land application in the sensitivity analysis. This resulted in a marginal 

reduction in total life cycle impact in all impact categories, except eutrophication (161.2%) and 

non-carcinogenics (1.5%), while there was a minor increase in the respiratory effects (0.7%) 

compared to the baseline scenario (Figure 5.4). This might be due to small environmental impacts 

attributed to digestate handling compared to other activities in the BW-CA system (Figure 5.2). 

The environmental benefits of the 100% land application were large enough to completely offset 

the total eutrophication life cycle impacts of BW-CA (-2.5E-03 kg N per kg of caproic acid, Table 

D.7, Appendix D).  

Thus, the digestate handling method (100% land application vs 25% landfill, 55% land application, 

and 20% incineration) made least difference in total life cycle impact except in the eutrophication 

category compared to the biogas capture and reduction in NaOH addition. The greatest differences 

in impact results were observed due to lower NaOH addition, which decreased the GWP by 28.9% 

compared to the baseline. The best-case scenario, i.e with biogas capture, lower NaOH 

consumption, and 100% digestate land application led to total life cycle impact reduction in the 

range of 6.6-47.1% across the nine impact categories. Future research should also prioritize 

improving the caproic acid yield from waste streams as it affects both the environmental 

sustainability and economics of the system.  

5.5 Conclusions 

This study identified NaOH consumption and natural gas heating as the major contributors to the 

environmental burdens within the proposed system boundary of the BW-CA system. BW-CA 

system produced 4.5 kg CO2-eq, of which 1.7 kg CO2-eq resulted from NaOH use. However, PKO-

CA approach was more detrimental than the BW-CA technology from all the TRACI impact 

categories standpoint. Assessing the environmental performance of emerging technologies such as 

chain elongation using the LCA method can be challenging due to lack of data. There is still a lot 
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of potential for improvement for BW-CA system as caproic acid production from waste streams 

gets optimized and chain elongation technology progresses towards full scale implementation. 

Particularly, if the NaOH addition can be reduced or avoided, the BW-CA system will become 

even more competitive from the environmental perspective for production of caproic acid. The 

outcome of this study can be used in decision making during the implementation, process design, 

and commercialization stages of the chain elongation technology. An economic life cycle costing 

analysis was beyond the scope of our study but would be useful to assess the economic viability 

and likelihood of market adoption and thus direct efforts to make chain elongation cost efficient.  
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Chapter 6  

 

Conclusions, Significance, and Future Research Directions 

 

6.1 Overview 

Implementing chain elongation biotechnology to recover resources from waste streams is an 

attractive option that can reduce environmental impacts through waste treatment and reduce the 

use of plant oil based medium chain carboxylic acid (MCCA) production, and provide 

opportunities for revenue generation. Wastewater treatment plants are moving beyond traditional 

treatment methods and are investing in sustainable approaches to recover water, energy, and 

nutrients. Furthermore, as the number of breweries has been increasing and municipal wastewater 

treatment infrastructure has been strained, breweries have become interested in innovative 

solutions for waste management.  Other food processing and chemical industries are also 

considering expanding on-site waste management. In this context, this dissertation research is 

highly relevant as it explores development of novel resource recovery technologies.  

In this dissertation research, the diverse metabolic capacity of anaerobic microbiomes was 

leveraged to produce MCCAs from organic waste streams such as pre-fermented food waste and 

brewery waste streams. This work advanced our fundamental knowledge about chain elongation, 

assisted in technology development, and addressed several challenges that would otherwise limit 

the application of MCCA production from waste streams. Specifically, we assessed the impact of 

microbial immigration on the chain elongation microbiome (Chapter 2), employed strategies to 

control undesirable reactions during ethanol chain elongation (Chapter 3), developed an innovative 

bioreactor system to facilitate integration with downstream MCCA extraction (Chapter 4), and 
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evaluated environmental performance of the technology with life cycle assessment modeling 

(Chapter 5). Additionally, we demonstrated that applying microbial and modeling information in 

bioprocess engineering and technology development is crucial to inform engineering decisions to 

make the chain elongation system efficient and stable. 

6.2 Major findings and significance 

6.2.1 Impact of microbial immigration 

Chapter 2 presented new insights into the role of microbial immigration in shaping the chain 

elongation microbiome. It is challenging to evaluate the contribution of microbial immigration to 

the microbial diversity and function of the bioreactor system as it can introduce both active and 

inactive microbial populations. This dissertation research combined a mass balance approach to 

calculate the specific growth rate of individual microbial populations with the ratio of relative 

activity and relative abundance based on 16S rRNA and 16S rRNA gene sequencing 

(rRNA/rDNA), respectively. This enabled us to distinguish populations actively contributing to 

the chain elongation process from the ones not or minimally influencing function. Such 

approaches, when incorporated into future studies, will avoid potential bias introduced by 

including inactive yet dominant populations in process modeling, improving our ability to identify 

environmental parameters that influence the active fraction of the microbial community and thus 

process performance. Future research should consider determining absolute abundances by using 

quantitative approaches such as flow cytometry and quantitative PCR in contrast to using relative 

abundance and activity data to calculate the specific growth rate. 

6.2.2 Controlling competitive reactions during ethanol chain elongation 

Chapter 3 focused on improving the chain elongation process by inhibiting competitive pathways. 

Excessive ethanol oxidation to acetate (EEO) was identified as one of the major competitive 

reactions during the ethanol chain elongation process. Our findings in Chapter 3 indicated that 

maintaining high hydrogen partial pressure (PH2) in the bioreactor by suppressing the activity of 

hydrogenotrophic methanogens can limit EEO. This elucidates how the metabolism of one 

population can affect the metabolic activity of another, highlighting the need to understand the 
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interaction between different functional guilds in mixed microbial communities. Furthermore, 

understanding the impact of different operational parameters, PH2 in this case, on the bioprocess of 

interest, including inhibiting competitive reactions, is important. This further highlights the fact 

that operational parameters can serve as tools to engineer anaerobic microbiomes for desired 

outputs. Hydrogenotrophic methanogenesis was inhibited by adding 2-bromoethanesulfonate (2-

BES), a methanogenic inhibitor. However, the results showed that the inhibition was short-lived 

and an environment that selected for the growth of microbial populations resistant to 2-BES was 

created. These findings further indicated that evaluating the long-term efficacy of such 

methanogenic inhibitors is important to determine their potential applications in the field. Lastly, 

using both amplicon sequence variant (ASV) and operational taxonomic unit (OTU) based 

approaches were instrumental in gaining detailed insights into the inhibitor-induced changes.  

6.2.3 Dynamic membrane biofilm development leads to efficient solids-liquid separation 

along with enhanced MCCA production 

The anaerobic dynamic membrane bioreactor (AnDMBR) developed in Chapter 4 combined the 

chain elongation bioprocess with solids-liquid separation through dynamic membrane biofilm 

development. This research suggests that developing an integrated system that directly couples the 

chain elongation bioreactor with downstream processing, avoiding multiple external filtration 

steps, is possible. In terms of cost and environmental impacts, this integrated approach is likely 

advantageous compared to other MCCA systems (Kucek et al., 2016b, 2016c, 2016a). 

Additionally, the dynamic membrane involved in efficient solids-liquid separation also played a 

significant role in MCCA production. The development of the dynamic membrane biofilm led to 

a specialized microbial community enriched in highly active MCCAs producing microorganisms, 

thus promoting chain elongation activity. The results presented in Chapter 4 open up the possibility 

to use a biofilm enhanced anaerobic system to improve MCCA production.  

6.2.4 MCCA production from brewery waste is environmentally sustainable compared to the 

conventional palm kernel oil-based method  

As demonstrated by the life cycle assessment (LCA) in Chapter 5, repurposing brewery waste 

streams into MCCA production showed great potential to address environmental concerns 
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associated with MCCA production from the traditional palm kernel oil-based route. The total life 

cycle environmental impacts of caproic acid production from brewery waste were significantly 

lower than those associated with the palm kernel oil production. The environmental LCA modeling 

highlighted activities such as sodium hydroxide use and energy consumption for heating as major 

contributors to the environmental impacts. As sodium hydroxide limited the potential 

environmental benefits, an alternate source for pH control with a smaller environmental footprint 

or strategies to reduce sodium hydroxide consumption need to be explored. Furthermore, there is 

an opportunity to reduce the energy requirement of the system by capturing biogas produced on-

site to meet the heating demand of the system. These outcomes can be used to improve the 

environmental sustainability of the technology. Recovering caproic acid from waste streams may 

also have economic benefits. An economic life cycle costing analysis was beyond the scope of our 

study but would be useful to support the further development and implementation of this 

technology. Therefore, future studies should integrate environmental LCA with economic LCA to 

identify undesirable environmental and economic consequences.  

6.3 Future research directions 

This study has raised additional research questions and opened up several possibilities for future 

work.  First, alternate strategies need to be developed for long term suppression of competing 

processes such as EEO to reduce inefficient usage of ethanol and thus increase the product 

selectivity and yield. 2-BES was added every ten days (equivalent to three hydraulic retentions 

times in this study) to control EEO. This resulted in short-term inhibition of hydrogenotrophic 

methanogens and hence the EEO pathway. It would be valuable to assess the impact of continuous 

addition of 2-BES on EEO and the response of the microbial community to inhibitor addition. This 

approach will still not address the sustainability issue related to using a chemical inhibitor but can 

be used to verify whether controlling PH2 is a reliable operational strategy to ensure long term 

inhibition of EEO. Furthermore, the microorganisms involved in EEO are still unidentified. 

Therefore, a better understanding of the ethanol oxidizers and their physiology could assist in 

developing strategies to suppress their metabolism during chain elongation.  
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The AnDMBR is a relatively new technology for waste(water) treatment. While conventional 

membrane bioreactors have been widely implemented and tested at various scales for waste(water) 

treatment, AnDMBRs need further optimization before they can be successfully deployed at full 

scale. For example, the AnDMBR developed in Chapter 4 was operated at a flux around 0.5-0.7 L 

m-2 h-1. Efficient integration of the AnDMBR with the downstream extraction unit would require 

much higher fluxes as the operating flux directly influences the extraction efficiency as shown by 

Kucek et al. (2016c). AnDMBRs for treatment of domestic wastewater, a waste stream containing 

much lower levels of organic compounds and suspended solids than the waste streams considered 

here, have been evaluated with a flux as high as 65 L m-2 h-1 (Zhang et al., 2010).  The AnDMBR 

was continuously operated without cleaning the dynamic membrane and the support material for 

more than 200 days, after which the permeate quality started deteriorating. In general, the reduced 

energy and chemical need and ease of fouling control provide a great benefit compared to the 

conventional membrane bioreactors using polymeric or ceramic membranes (Ersahin et al., 2012; 

Hu et al., 2018). However, integrating a minimal cleaning scheme into the AnDMBR operation to 

control the thickness of the dynamic membrane and to prevent fouling of the support material 

would be beneficial to ensure stable performance for an extended time and to enable operation at 

high flux. Some of the commonly used cleaning methods employed by other AnDMBRs studies 

include backwashing, biogas recirculation, intermittent operation, and relaxation (Hu et al., 2018).  

The AnDMBR system exhibited a long start-up period during which the MCCA production was 

low after inoculation with rumen content. Chain elongation activity was enhanced once the 

bioreactor was re-seeded with an adapted inoculum consisting of a mixture of rumen content and 

bioreactor biomass from a functional chain elongating bioreactor. Microbial analysis showed that 

re-inoculation with the adapted inoculum introduced key chain elongating populations. Future 

research should also explore other start-up strategies, such as a gradual increase in organic loading 

rate, to shorten the acclimation period.   

In Chapter 4, we hypothesized that the higher MCCA concentrations in the permeate samples 

compared to the bioreactor samples were due to high microbial activity in the dynamic membrane 

formed in the AnDMBR. Several studies have highlighted the role of biofilm microbial activity in 
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promoting organics removal in anaerobic systems (Alibardi et al., 2016; Smith et al., 2015). Future 

research should focus on an in-depth characterization of the biofilm morphology and composition 

including the composition of extracellular polymeric substances (EPS). Relevant methods for such 

work include scanning electron microscopy (SEM), optical coherence tomography (OCT), 

confocal laser scanning microscopy (CLSM), and fluorescence in-situ hybridization (FISH) (Guan 

et al., 2018; Lin et al., 2010). The in-situ visualization and identification of microbial populations, 

for example, using species-specific oligonucleotide probes using FISH will help to understand the 

spatial organization of different microorganisms in the biofilm providing information to help 

elucidate syntrophic or other interspecies interactions. This will assist in understanding the 

underlying mechanisms for enhanced MCCA producing activity in the dynamic membrane 

biofilm. EPS plays an important role in dynamic membrane formation and greatly contributes to 

its characteristics, thereby affecting the performance of the system (Ersahin et al., 2016; Lin et al., 

2010; Zhang et al., 2010). Furthermore, EPS has been found to protect against external stress and 

also influences surface charge and membrane fouling. Therefore, EPS characterization can shed 

light on its effect on microbial interaction and function and can also help in devising EPS control 

strategies to promote dynamic membrane formation and fouling mitigation. 

Methanobrevibacter was consistently observed at high relative abundance and activity in the chain 

elongation bioreactors operated in this dissertation, even after adding a methanogenic inhibitor 

(Chapter 3). Several studies have demonstrated that methanogens, such as Methanobrevibacter 

spp., are capable of utilizing alcohol for growth and methane production (Berk and Thauer, 1997; 

Imachi et al., 2009; Metje and Frenzel, 2005; Poehlein et al., 2018; Widdel, 1986). It remains 

unclear whether Methanobrevibacter contributed to ethanol utilization in our study.  Thus, an 

important hypothesis to test is whether Methanobrevibacter is involved in ethanol metabolism 

such as EEO during the chain elongation process. The bioreactor samples collected during this 

dissertation research during periods with high relative abundance and activity of 

Methanobrevibacter could be used for metagenomic and metatranscriptomic sequencing to study 

the metabolic potential and functional role of Methanobrevibacter spp. in chain elongation and 

specifically identify possible genes involved in ethanol metabolism. 



133 

 

There is limited information on the microorganisms capable of chain elongation. We need to 

improve our understanding of interspecies interactions and metabolic diversity required for stable 

MCCA production. It is challenging to establish the identity of microorganisms and their 

(multiple) roles in a mixed culture environmental system as complex as the one needed for chain 

elongation using diverse waste streams as substrates. The microbial data reported in this 

dissertation (Chapters 2-4) are based on partial 16S rRNA gene and 16S rRNA amplicon 

sequencing and only provide limited taxonomic information. While the rRNA gene remains the 

most commonly used marker in chain elongation studies, targeting core protein-coding genes can 

provide important insights into community composition and function not obtainable through rRNA 

based analyses. Furthermore, a stable isotope probing (SIP) approach integrated with DNA or 

RNA sequencing would allow linkage of individual taxa with their function (Coyotzi et al., 2016; 

Lueders et al., 2016). SIP experiments were conducted in our lab in serum bottles by incubating 

AnDMBR biomass with 13C-ethanol and 13C-propionate. The long-term goal of the effort initiated 

with the SIP experiments is to build a comprehensive metabolic model using the SIP-omics 

microbial data, bioreactor results, and stoichiometric, thermodynamic, and kinetic information. 

This will provide metabolic and genomic insights into chain elongating microbial communities. 

Downstream processing can be a bottleneck during the scale-up of a biochemical process as it 

typically significantly contributes to the total capital and operating costs and environmental 

impacts (Biddy et al., 2016; Chen et al., 2017). Therefore, it is necessary to develop an efficient 

and cost-effective MCCA recovery system. During the first two years of this dissertation research, 

we collaborated with TDA Research Inc., a company focused on developing chemical 

technologies, to create a novel extractant-supported hollow fiber membrane for MCCA extraction. 

In contrast to commonly used two-step, liquid-liquid extraction systems (Chapter 4), TDA 

developed a single-step membrane system. This configuration is expected to reduce capital and 

operating costs and environmental impacts due to lower energy and solvent usage and reduced 

membrane need. Future research should continue to explore strategies for optimizing the 

downstream process to make the chain elongation system more sustainable and feasible for scale-

up. 
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Taken together, this dissertation research contributed significantly to the current state of 

knowledge on chain elongation. It further provides information to guide future research and make 

strategic decisions for technology development.  

6.4 References 

Alibardi, L., Bernava, N., Cossu, R., Spagni, A., 2016. Anaerobic dynamic membrane bioreactor 

for wastewater treatment at ambient temperature. Chem. Eng. J. 284, 130–138. 

https://doi.org/10.1016/j.cej.2015.08.111 

Berk, H., Thauer, R.K., 1997. Function of coenzyme F 420 -dependent NADP reductase in 

methanogenic archaea containing an NADP-dependent alcohol dehydrogenase. Arch Microbiol 

168, 396–402. 

Biddy, M.J., Davis, R., Humbird, D., Tao, L., Dowe, N., Guarnieri, M.T., Linger, J.G., Karp, E.M., 

Salvachúa, D., Vardon, D.R., Beckham, G.T., 2016. The Techno-Economic Basis for Coproduct 

Manufacturing to Enable Hydrocarbon Fuel Production from Lignocellulosic Biomass. ACS 

Sustain. Chem. Eng. 4, 3196–3211. https://doi.org/10.1021/acssuschemeng.6b00243 

Chen, W., Strik, D.P.B.T.B., Buisman, C.J.N., Kroeze, C., 2017. Production of Caproic Acid from 

Mixed Organic Waste : An Environmental Life Cycle Perspective. Environ. Sci. Technol. 51, 

7159–7168. https://doi.org/10.1021/acs.est.6b06220 

Coyotzi, S., Pratscher, J., Murrell, J.C., Neufeld, J.D., 2016. Targeted metagenomics of active 

microbial populations with stable-isotope probing. Curr. Opin. Biotechnol. 41, 1–8. 

https://doi.org/10.1016/j.copbio.2016.02.017 

Ersahin, M.E., Ozgun, H., Dereli, R.K., Ozturk, I., Roest, K., van Lier, J.B., 2012. A review on 

dynamic membrane filtration: Materials, applications and future perspectives. Bioresour. Technol. 

122, 196–206. https://doi.org/10.1016/j.biortech.2012.03.086 

Ersahin, M.E., Tao, Y., Ozgun, H., Spanjers, H., van Lier, J.B., 2016. Characteristics and role of 

dynamic membrane layer in anaerobic membrane bioreactors. Biotechnol. Bioeng. 113, 761–771. 

https://doi.org/10.1002/bit.25841 

Guan, D., Dai, J., Watanabe, Y., Chen, G., 2018. Changes in the physical properties of the dynamic 

layer and its correlation with permeate quality in a self-forming dynamic membrane bioreactor. 

Water Res. 140, 67–76. https://doi.org/10.1016/j.watres.2018.04.041 

Hu, Y., Wang, X.C., Ngo, H.H., Sun, Q., Yang, Y., 2018. Anaerobic dynamic membrane 

bioreactor (AnDMBR) for wastewater treatment: A review. Bioresour. Technol. 247, 1107–1118. 

https://doi.org/10.1016/j.biortech.2017.09.101 

Imachi, H., Sakai, S., Nagai, H., Yamaguchi, T., Takai, K., 2009. Methanofollis ethanolicus sp. 



135 

 

nov., an ethanol- utilizing methanogen isolated from a lotus field Hiroyuki. Int. J. Syst. Evol. 

Microbiol. 800–805. https://doi.org/10.1099/ijs.0.003731-0 

Kucek, L., Nguyen, M., Angenent, L.T., 2016a. Conversion of L-lactate into n-caproate by a 

continuously fed reactor microbiome. Water Res. 93, 163–171. 

https://doi.org/10.1016/j.watres.2016.02.018 

Kucek, L., Spirito, C.M., Angenent, L.T., 2016b. High n-caprylate productivities and specificities 

from dilute ethanol and acetate: Chain elongation with microbiomes to upgrade products from 

syngas fermentation. Energy Environ. Sci. 9, 3482–3494. https://doi.org/10.1039/c6ee01487a 

Kucek, L., Xu, J., Nguyen, M., Angenent, L.T., 2016c. Waste conversion into n-caprylate and n-

caproate: resource recovery from wine lees using anaerobic reactor microbiomes and in-line 

extraction. Front. Microbiol. 7, 1–14. https://doi.org/10.3389/fmicb.2016.01892 

Lin, H.J., Xie, K., Mahendran, B., Bagley, D.M., Leung, K.T., Liss, S.N., Liao, B.Q., 2010. Factors 

affecting sludge cake formation in a submerged anaerobic membrane bioreactor. J. Memb. Sci. 

361, 126–134. https://doi.org/10.1016/j.memsci.2010.05.062 

Lueders, T., Dumont, M.G., Bradford, L., Manefield, M., 2016. RNA-stable isotope probing: From 

carbon flow within key microbiota to targeted transcriptomes. Curr. Opin. Biotechnol. 41, 83–89. 

https://doi.org/10.1016/j.copbio.2016.05.001 

Metje, M., Frenzel, P., 2005. Effect of temperature on anaerobic ethanol oxidation and 

methanogenesis in acidic peat from a Northern Wetland. Appl. Environ. Microbiol. 71, 8191–

8200. https://doi.org/10.1128/AEM.71.12.8191-8200.2005 

Poehlein, A., Schneider, D., Soh, M., Daniel, R., Seedorf, H., 2018. Comparative Genomic 

Analysis of Members of the Genera Methanosphaera and Methanobrevibacter Reveals Distinct 

Clades with Specific Potential Metabolic Functions 2018. 

Smith, M. biofilm development improves C. removal in anaerobic membrane bioreactor 

wastewater treatmentAdam L., Skerlos, S.J., Raskin, L., 2015. Membrane biofilm development 

improves COD removal in anaerobic membrane bioreactor wastewater treatment. Microb. 

Biotechnol. 8, 883–894. https://doi.org/10.1111/1751-7915.12311 

Widdel, F., 1986. Growth of methanogenic bacteria in pure culture with 2-propanol and other 

alcohols as hydrogen donors. Appl. Environ. Microbiol. 51, 1056–1062. 

https://doi.org/10.1128/aem.51.5.1056-1062.1986 

Zhang, X., Wang, Z., Wu, Z., Lu, F., Tong, J., Zang, L., 2010. Formation of dynamic membrane 

in an anaerobic membrane bioreactor for municipal wastewater treatment. Chem. Eng. J. 165, 175–

183. https://doi.org/10.1016/j.cej.2010.09.013 



136 

 

APPENDICES 

 

 



137 

 

APPENDIX A  

 

Supplemental Information for Chapter 2 

Resource Recovery of Medium Chain Carboxylic Acids from 

Brewery and Pre-Fermented Food Waste Streams: Effect of 

Microbial Immigration on Chain Elongation 

A.1 Materials and Methods 

A.1.1 Mass balance calculation: 

The following equation was used to calculate specific growth rate of microbial population x: 

Change = Influent – Effluent + Growth 

𝑑(𝑁𝑥,𝑟𝑒)

𝑑𝑡
=  𝑛𝑥,𝑖𝑛 − 𝑛𝑥,𝑜𝑢𝑡 + 𝜇𝑥 × 𝑁𝑥,𝑟𝑒  

where: 

Nx,re  is the absolute number of microorganism x in the bioreactor 

nx,in = number microorganism x in the influent entering the bioreactor per day [d-1] 

nx,out = number microorganism x in the effluent leaving the bioreactor per day [d-1] 

x = net specific growth rate of microorganism x [d-1] 
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Assuming steady state (
𝑑(𝑁𝑥,𝑟𝑒)

𝑑𝑡
=  0): 

𝜇𝑥 =  
𝑛𝑥,𝑜𝑢𝑡 − 𝑛𝑥,𝑖𝑛

𝑁𝑥,𝑟𝑒
 

nx,out and nx,in were calculated separately using both relative abundance and activity data derived 

from the 16S rRNA gene and 16S rRNA sequencing, respectively. 

nx,out was calculated by multiplying the relative abundance (or relative activity) of microorganism 

x in the effluent (rx,out) with the total number of cells leaving the bioreactor per day (nout). 

nx,in was calculated by multiplying the relative abundance (or relative activity) of microorganism 

x in the influent (rx,in) with the total number of cells entering the bioreactor per day (nin). 

Nx,re was calculated by multiplying the relative abundance (or relative activity) of microorganism 

x in the bioreactor (rx,re) with the total number of cells in the bioreactor (Nre). 

𝜇𝑥 =  
𝑟𝑥,𝑜𝑢𝑡𝑛𝑜𝑢𝑡 −  𝑟𝑥,𝑖𝑛𝑛𝑖𝑛

𝑟𝑥,𝑟𝑒𝑁𝑟𝑒
 

nout was calculated by multiplying the volume of effluent wasted per day (Qout, L d-1) with the total 

cell concentration in the effluent (Cout, cells L-1) 

nin was calculated by multiplying volume of influent fed per day (Qin, L d-1) with the total cell 

concentration in the influent (Cin, cells L-1) 

Nre was calculated by multiplying working volume of the bioreactor (Vre, L) with total cell 

concentration in the bioreactor (Cre, cells L-1) 

𝜇𝑥 =  
𝑟𝑥,𝑜𝑢𝑡 × 𝑄𝑜𝑢𝑡 × 𝐶𝑜𝑢𝑡 − 𝑟𝑥,𝑖𝑛 × 𝑄𝑖𝑛 × 𝐶𝑖𝑛

𝑟𝑥,𝑟𝑒 × 𝑉𝑟𝑒 ×  𝐶𝑟𝑒  
 

The relative abundance and relative activity of x in effluent was assumed to be equal to the relative 

abundance and relative activity of x in bioreactor (rx,out = rx,re), respectively, a reasonable 

assumption given that the bioreactor was well mixed. 
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𝜇𝑥 =  
𝑟𝑥,𝑜𝑢𝑡 × 𝑄𝑜𝑢𝑡 ×  𝐶𝑜𝑢𝑡 − 𝑟𝑥,𝑖𝑛 × 𝑄𝑖𝑛 ×  𝐶𝑖𝑛

𝑟𝑥,𝑜𝑢𝑡 × 𝑉𝑟𝑒 × 𝐶𝑟𝑒 
 

We describe below two approaches to calculate cell concentration in the bioreactor, effluent, and 

influent (Cre, Cout, and Cin).  

 

Method I: 

The first approach used was modified from Mei et al. (2016). The amount of DNA or RNA 

recovered per cell and g volatile suspended solids (VSS) equivalent to the amount of biomass used 

for extraction were used to approximate cell concentration in respective samples. Volume of 

influent (Qin) and effluent (Qout) per day were expressed in terms of gVSS fed per day [gVSSin d-

1] and gVSS wasted per day [gVSSout d-1], respectively.  

Total cell concentration in the effluent was assumed to be equal to total cell concentration in the 

bioreactor (Cout = Cre). Total cell concentration in the influent (Cin) and the effluent (bioreactor, 

Cre) were expressed as a ratio of number of cells per gVSS in the influent [cellsin gVSSin
-1] and 

number of cells per gVSS in the effluent [cellsout gVSSout
-1], respectively. gVSS refers to amount 

of VSS equivalent to the amount of biomass (g) used for DNA or RNA extraction. Extraction 

efficiency was assumed to be 100%. 

 

𝜇𝑥 =  
𝑟𝑥,𝑜𝑢𝑡 ×

gVSS𝑜𝑢𝑡

d
× 

cells𝑜𝑢𝑡
gVSS𝑜𝑢𝑡

− 𝑟𝑥,𝑖𝑛 ×
gVSS𝑖𝑛

d
×  

cells𝑖𝑛
gVSS𝑖𝑛

𝑟𝑥,𝑜𝑢𝑡 × 𝑔𝑉𝑆𝑆𝑜𝑢𝑡 ×  
cells𝑜𝑢𝑡
gVSS𝑜𝑢𝑡

 

The number of cells (cellsin and cellsout) was calculated separately for influent and effluent by 

determining the amount of DNA (or RNA, g) recovered and assuming that one cell (6 Mbp 

genome size) contains 9 fg of DNA (or 60 fg RNA) (Milo, Ron and Phillips, 2015). The amount 



140 

 

of DNA (or RNA) was determined by multiplying DNA (or RNA) concentration (g L-1) with 

the extraction elution volume (L).  

For example, 

𝑐𝑒𝑙𝑙𝑠 =
𝑎𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝐷𝑁𝐴 𝑜𝑟 𝑅𝑁𝐴 𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑑 (g)

9 𝑓𝑔 𝐷𝑁𝐴 𝑜𝑟 60 𝑓𝑔 𝑅𝑁𝐴 𝑝𝑒𝑟 𝑐𝑒𝑙𝑙 ×  10−9

=  
𝐷𝑁𝐴 𝑜𝑟 𝑅𝑁𝐴 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 (

g
L) ×   elution volume (L)

9 𝑓𝑔 𝐷𝑁𝐴 𝑜𝑟 60 𝑓𝑔 𝑅𝑁𝐴 𝑝𝑒𝑟 𝑐𝑒𝑙𝑙 ×  10−9
 

 

Method II: 

The second approach used was similar to that used by Mei et al.(Mei et al., 2016) where VSS of 

influent (VSSin), effluent (VSSout), and bioreactor (VSSre) were used to approximate cell 

concentration in respective samples.  

𝜇𝑥 =  
𝑟𝑥,𝑜𝑢𝑡 × 𝑄𝑜𝑢𝑡 × 𝑉𝑆𝑆𝑜𝑢𝑡 − 𝑟𝑥,𝑖𝑛 × 𝑄𝑖𝑛 × 𝑉𝑆𝑆𝑖𝑛

𝑟𝑥,𝑜𝑢𝑡 × 𝑉𝑟𝑒 ×  𝑉𝑆𝑆𝑟𝑒  
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A.1 Tables 

 

Table A.1. Chemical characteristics of inoculum and substrates 

Parameter Unit 
Rumen  

(Day 0) 

Rumen  

(Day 178) 

Waste beer 

(Batch 1) 

Waste beer 

(Batch 2) 
Permeate 

TS g/L 24.9 ± 1.1 19.2 ± 0.0 35.5 ± 0.2 30.0 ± 0.2 8.7 ± 1.2 

VS g/L 17.1 ± 1.0 10.7 ± 0.0 33.8 ± 0.5 27.8 ± 0.1 5.2 ± 1.0 

TSS g/L 17.2 ± 0.3 10.9 ± 0.0 0.9 ± 0.1 1.3 ± 0.1 3.1 ± 1.9 

VSS g/L 13.4 ± 0.3 8.7 ± 0.3 0.9 ± 0.1 1.2 ± 0.1 2.7 ± 1.7 

sCOD g/L 17.8 ± 0.4 N.D. 191.0 ± 1.9 130.2 ± 0.1 13.4 ± 6.6 

Ethanol mM 0.0 ± 0.0 0.0 ± 0.0 1745.5 ± 1.0 1024.2 ± 4.6 1.9 ± 2.3 

SCCAs mM 172.5 ± 0.4 83.9 ± 0.1 0.0 ± 0.0 0.0 ± 0.0 63.1 ± 10.5 

MCCAs mM 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 1.1 ± 1.0 

Lactate mM N.D. N.D. N.D. N.D. N.D. 

Values are reported as means with standard deviations of technical triplicates. Permeate values are averages with standard 

deviations over 229 days. SCCAs include n-acetate, n-propionate, n- and iso-butyrate, n- and iso-valerate. MCCAs include n-

caproate, n-enanthate, n-caprylate. Waste beer batch 1 and 2 were used from Days 1-180 and Days 181-230, respectively. N.D. 

stands for not determined. 
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Table A.2. Processes involved in chain elongation 

Process Equation 

Reverse β oxidation  

1) Ethanol oxidation for ATP generation C2H5OH + H2O → CH3COO− + H+ + 2 H2 

2) Chain elongation  

 CxH2x−1O2
− + C2H5OH → Cx+2H2x+3O2

− +  H2𝑂 

a) Acetate chain elongation CH3COO− + C2H5OH → C3H7COO− +  H2𝑂 

b) Butyrate chain elongation C3H7COO− + C2H5OH → C5H11COO− +  H2𝑂 

c) Caproate chain elongation C5H11COO− + C2H5OH → C7H15COO− +  H2𝑂 

3) Overall chain elongation by reverse β oxidation:  

5 CxH2x−1O2
− + 6 C2H5OH → 5 Cx+2H2x+3O2

− + CH3COO− +  H+ + 4 H2𝑂 +  2 H2 
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Table A.3. Biomass sampling points (days of bioreactor operation) for inoculum, influent, and bioreactor samples 

Samples 
DNA RNA 

 

Rumen inoculum 0, 178 0, 178 

Influent 
7, 14, 31, 66, 73, 81, 87, 115, 129, 157, 

193, 206, 213, 228 

7, 14, 31, 66, 73, 81, 87, 115, 129, 157, 

206, 228 

Bioreactor 
7, 14, 31, 66, 73, 81, 87, 115, 129, 157, 

193, 206, 213, 228 

7, 14, 31, 66, 73, 81, 87, 115, 129, 157, 

206, 213, 228 

           Influent biomass samples consist of mixture of waste beer and SCCAs rich permeate.  
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Table A.4. Good’s coverage values for different samples. The lowest good’s coverage value was 

97.4% indicating that dominant OTUs were recovered in most of the samples. 

Sample 

No of 

sequences Coverage Sample 

No of 

sequences Coverage 

RumenI_DNA 38651 0.987 RumenI_RNA 18648 0.976 

RumenII_DNA 25651 0.977 RumenII_RNA 19257 0.974 

InfDay7_DNA 29092 0.997 InfDay7_RNA 18634 0.995 

InfDay14_DNA 32704 0.998 InfDay14_RNA 17941 0.994 

InfDay31_DNA 31707 0.997 InfDay31_RNA 18336 0.995 

InfDay66_DNA 26867 0.997 InfDay66_RNA 24217 0.997 

InfDay73_DNA 20331 0.996 InfDay73_RNA 20906 0.997 

InfDay81_DNA 32271 0.987 InfDay81_RNA 25160 0.986 

InfDay87_DNA 25723 0.997 InfDay87_RNA 30181 0.997 

InfDay115_DNA 32666 0.998 InfDay115_RNA 30550 0.998 

InfDay129_DNA 35208 0.997 InfDay129_RNA 27545 0.998 

InfDay157_DNA 39833 0.998 InfDay157_RNA 23085 0.995 

InfDay193_DNA 34687 0.997    

InfDay206_DNA 41152 0.997 InfDay206_RNA 16743 0.994 

InfDay213_DNA 45086 0.997    

InfDay228_DNA 32885 0.997 InfDay228_RNA 17364 0.995 

MLDay7_DNA 42733 0.995 MLDay7_RNA 18002 0.990 

MLDay14_DNA 47564 0.997 MLDay14_RNA 17555 0.996 

MLDay31_DNA 33899 0.997 MLDay31_RNA 23530 0.997 

MLDay66_DNA 28345 0.997 MLDay66_RNA 26169 0.998 

MLDay73_DNA 31418 0.997 MLDay73_RNA 25564 0.998 

MLDay81_DNA 34841 0.991 MLDay81_RNA 22733 0.991 

MLDay87_DNA 34923 0.993 MLDay87_RNA 7501 0.995 

MLDay115_DNA 38289 0.998 MLDay115_RNA 12604 0.998 

MLDay129_DNA 42549 0.998 MLDay129_RNA 5071 0.994 

MLDay157_DNA 40774 0.997 MLDay157_RNA 30378 0.997 

MLDay193_DNA 32778 0.995    

MLDay206_DNA 37740 0.997 MLDay206_RNA 22115 0.996 

MLDay213_DNA 41536 0.997 MLDay213_RNA 16897 0.994 

MLDay228_DNA 29516 0.997 MLDay228_RNA 19389 0.996 

  



145 

 

 
 

Table A.5. Average ratio of rRNA and rDNA based on top 15 genera from 

each sampling point in the bioreactor 

Genus [rRNA/rDNA]reactor>1 

Acetobacter 1.23 ± 1.06 

Acidaminococcus 1.89 ± 2.37 

Bifidobacterium 1.28 ± 2.13 

Burkholderiales_unclassified 1.93 ± 1.9 

Clostridiales_unclassified 1.07 ± 1.42 

Lactobacillus 1.78 ± 1.59 

Leuconostoc 5.21 ± 3.7 

Megasphaera 1.52 ± 1.6 

Methanobrevibacter 1.85 ± 1.26 

Methanosphaera 17.17 ± 4.53 

Olsenella 1.37 ± 2.38 

Pseudoclavibacter 1.89 ± 1.3 

Pseudoramibacter 4.62 ± 3.03 

Sharpea 1.8 ± 1.8 

Snodgrassella 1.26 ± 1.24 

Thermoplasmata_unclassified 3.47 ± 2.79 

Genus [rRNA/rDNA]reactor <1 

Acetobacteraceae_unclassified 0.62 ± 0.58 

Bacteria_unclassified 0.53 ± 1.07 

Bacteroidales_unclassified 0.28 ± 0.44 

Bacteroidetes_unclassified 0.58 ± 0.96 

Betaproteobacteria_unclassified 0.93 ± 0.91 

Erysipelotrichaceae_unclassified 0.92 ± 0.73 

Lachnospiraceae_unclassified 0.94 ± 1.49 

Lactococcus 0.9 ± 0.79 

Prevotella 0.31 ± 0.55 

Pseudomonas 0.81 ± 0.88 

Succiniclasticum 0.06 ± 0.17 

*Values are reported as means with standard deviations of time series data. 
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Table A.6. Comparison of microbial community dissimilarities 

between influent and bioreactor samples collected on the same day 

based on Analysis of Similarity (ANOSIM) analysis. 

Sample 
Bray-Curtis Jaccard 

R p value R p value 

DNA_total 0.55 0.001 0.14 0.003 

RNA_total 0.67 0.001 0.28 0.001 

DNA_Bacteria 0.50 0.001 0.13 0.01 

RNA_Bacteria 0.63 0.001 0.27 0.001 

DNA_Archaea 0.86 0.001 0.20 0.002 

RNA_Archaea 0.65 0.01 0.13 0.016 
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Table A.7. Shared OTUs between influent and bioreactor samples 

Day  No of OTUs observed in the 

influent 

No of OTUs observed in the 

bioreactor 

No of shared OTUs % of influent OTUs % of bioreactor OTUs  

DNA RNA DNA RNA DNA RNA DNA RNA DNA RNA 

7 265 285 586 381 121 87 45.7 30.5 20.6 22.8 

14 280 275 346 204 130 82 46.4 29.8 37.6 40.2 

31 329 296 317 246 149 108 45.3 36.5 47.0 43.9 

66 300 256 308 201 127 97 42.3 37.9 41.2 48.3 

73 253 215 314 189 132 86 52.2 40.0 42.0 45.5 

81 1406 962 922 521 427 199 30.4 20.7 46.3 38.2 

87 271 222 625 149 121 62 44.6 27.9 19.4 41.6 

115 224 187 321 128 121 70 54.0 37.4 37.7 54.7 

129 271 159 300 129 110 40 40.6 25.2 36.7 31.0 

157 346 339 390 264 179 124 51.7 36.6 45.9 47.0 

193 384 
 

481 
 

173 
 

45.1 
 

36.0 
 

206 355 311 323 303 144 126 40.6 40.5 44.6 41.6 

213 421 
 

345 241 150 
 

35.6 
 

43.5 
 

228 339 282 323 229 149 94 44.0 33.3 46.1 41.0 

 Average: 388.8 ± 297.8 315.8 ± 210.2 421.5 ± 178.6 245 ± 108.7 159.5 ± 79.5 97.9 ± 40.2 44.2 ± 6.3 33.0 ± 6.2 38.9 ± 8.9 41.3 ± 8.2 
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Table A.8. Specific growth rate of populations observed in the chain elongation bioreactor 

 Method I Method II 

Genus DNA (d-1) RNA (d-1) DNA (d-1) RNA (d-1) 

Acetobacter -0.01 ± 0.29 0.07 ± 0.1 0.33 ± 0.12 0.3 ± 0.23 

Acetobacteraceae_unclassified 0.06 ± 0.14 0.09 ± 0.05 0.34 ± 0.12 0.34 ± 0.11 

Acidaminococcaceae_unclassified -0.48 ± 0.58   0.04 ± 0.36   

Acidaminococcus -1.47 ± 2.91 -0.4 ± 1.37 0.03 ± 0.31 -0.29 ± 1.45 

Acinetobacter -39.42 ± 94.96 -9.19 ± 14.6 -8.17 ± 13.9 -17.98 ± 16.86 

Actinomyces 0.07 ± 0.03   0.41 ± 0.19   

Actinomycetales_unclassified 0.08 ± 0.03   0.3 ± 0.04   

Aeromonas -2.9 ± 2.69   -1.29 ± 1.39   

Alcaligenaceae_unclassified -0.51 ± 1.23 0.05 ± 0.04 0 ± 0.58 0.07 ± 0.37 

Alcaligenes -0.27 ± 0.57   0.21 ± 0.08   

Allisonella -2.13 ± 5.71 0.05 ± 0.07 -0.32 ± 1.02 0.11 ± 0.41 

Alphaproteobacteria_unclassified -0.82 ± 0   -2.06 ± 0   

Altererythrobacter   0.05 ± 0   0.27 ± 0 

Anaerocella -21.34 ± 52.82 -3.36 ± 3.89 -3.14 ± 6.27 -18.8 ± 17.9 

Anaerofilum 0.08 ± 0   0.33 ± 0   

Anaerolineaceae_unclassified 0.07 ± 0.05 -0.52 ± 1.07 0.28 ± 0.22 -0.27 ± 1.26 

Anaeroplasma 0.1 ± 0 0.1 ± 0 0.54 ± 0 0.54 ± 0 

Anaerosalibacter 0.1 ± 0.01 0.1 ± 0 0.34 ± 0.02 0.35 ± 0.02 

Anaerovibrio -1.3 ± 2.67 -0.32 ± 0.47 -0.15 ± 0.48 -0.2 ± 0.53 

Aquabacterium   0.05 ± 0   0.27 ± 0 

Arcobacter -27.29 ± 50.95 -21.28 ± 

41.44 

-7.75 ± 8.15 -82.97 ± 127.17 

Asteroleplasma -0.12 ± 0.24   0.25 ± 0.03   

Azoarcus -1.03 ± 0   -0.4 ± 0   

Azospira -8.56 ± 0   -2.09 ± 0   

Bacillales_unclassified 0.11 ± 0.02 0.06 ± 0.15 0.22 ± 0.07 0.18 ± 0.16 

Bacteria_unclassified -3.62 ± 10.71 -0.26 ± 0.6 -0.07 ± 0.78 -1.31 ± 3.44 

Bacteroidales_unclassified -21.59 ± 62.81 -4.78 ± 9.25 -2.26 ± 2.31 -7.02 ± 7.79 

Bacteroides -16.72 ± 50.02 -3.95 ± 5.02 -1.63 ± 1.86 -8.1 ± 11.81 

Bacteroidetes_unclassified -15.58 ± 45.02 -0.28 ± 0.66 -1.61 ± 2.9 -0.78 ± 1.28 

Barnesiella -0.07 ± 0.19   -0.15 ± 0.59   

Betaproteobacteria_unclassified -2.45 ± 6.86 -0.22 ± 0.42 -0.05 ± 0.28 -0.58 ± 1.15 

Bifidobacteriaceae_unclassified -0.08 ± 0.31 0.08 ± 0 0.21 ± 0.19 0.33 ± 0 
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Bifidobacterium -1.15 ± 2.46 -0.08 ± 0.31 0.09 ± 0.15 0.03 ± 0.44 

Bilophila -1.43 ± 1.14 -0.1 ± 0.37 -0.38 ± 0.39 0.06 ± 0.43 

Brachybacterium   0.06 ± 0   0.36 ± 0 

Brevibacillus 0.06 ± 0   0.27 ± 0   

Brevundimonas   0.05 ± 0   0.27 ± 0 

Brucellaceae_unclassified -2.6 ± 2.63   -0.53 ± 0.15   

Bulleidia 0.08 ± 0   0.33 ± 0   

Burkholderiales_unclassified -3.4 ± 10.63 -0.21 ± 0.58 -0.01 ± 0.45 -1.67 ± 3.67 

Butyricicoccus -1.84 ± 0   -0.03 ± 0   

Butyrivibrio -13.47 ± 33.43 -0.27 ± 0 -1.59 ± 1.29 -2.62 ± 0 

Camelimonas -5 ± 0   -0.53 ± 0   

Candidatus_Endomicrobium_unclassified -0.42 ± 0.59   -0.13 ± 0.2   

Candidatus_Saccharibacteria_unclassified 0.06 ± 0   0.27 ± 0   

Catabacter   0.09 ± 0   0.36 ± 0 

Cellulomonas 0.06 ± 0.01   0.3 ± 0.05   

Cellulosilyticum -1.64 ± 0 -0.35 ± 0 -0.52 ± 0 -3.27 ± 0 

Chloroflexi_unclassified -0.97 ± 1.17   -0.23 ± 0.45   

Christensenella 0.06 ± 0   0.36 ± 0   

Chryseobacterium -0.25 ± 0.53   0.15 ± 0.25   

Cloacibacillus -16.39 ± 42.94 -0.3 ± 0.51 -0.89 ± 1.36 -0.73 ± 1.32 

Clostridia_unclassified 0.08 ± 0.1 0.13 ± 0.06 0.25 ± 0.29 0.33 ± 0.03 

Clostridiaceae_1_unclassified 0.17 ± 0   0.28 ± 0   

Clostridiales_Incertae_Sedis_XI_unclassified 0.11 ± 0   0.34 ± 0   

Clostridiales_Incertae_Sedis_XIII_unclassified -1.43 ± 2.53   -0.52 ± 1.21   

Clostridiales_unclassified -0.25 ± 0.63 0.08 ± 0.04 0.26 ± 0.12 0.31 ± 0.09 

Clostridium_IV -7.98 ± 11.44 0.06 ± 0 -2.02 ± 3.33 0.09 ± 0 

Clostridium_sensu_stricto -2.62 ± 2.96 -0.76 ± 1.7 -1.21 ± 1.84 -2.21 ± 4.63 

Clostridium_XI 0.11 ± 0   0.34 ± 0   

Clostridium_XlVa -3.87 ± 5.81 -0.67 ± 0 -1.16 ± 1.3 -6.27 ± 0 

Comamonadaceae_unclassified 0.06 ± 0.07 0.07 ± 0.02 0.33 ± 0.05 0.32 ± 0.04 

Comamonas -6.53 ± 10.15 0.03 ± 0.06 -1.57 ± 3.03 -0.07 ± 0.57 

Coprococcus 0.05 ± 0.12 0.14 ± 0.05 0.27 ± 0.11 0.31 ± 0.05 

Coriobacteriaceae_unclassified -2.21 ± 5.94 0.09 ± 0.06 0.09 ± 0.49 0.36 ± 0.12 

Corynebacterium -0.54 ± 1.23 -0.16 ± 0.41 0.04 ± 0.62 0.13 ± 0.27 

Deinococcus   0.05 ± 0   0.27 ± 0 

Denitrobacterium   0.14 ± 0   0.27 ± 0 

Desulfovibrio -3.53 ± 7.61 -1.4 ± 1.39 -0.32 ± 0.42 -3.5 ± 2.54 

Desulfovibrionaceae_unclassified 0.06 ± 0   0.27 ± 0   



150 

 

Dialister -3.34 ± 8.1 -0.07 ± 0.2 -0.14 ± 0.49 -0.17 ± 0.54 

Dietzia   0.05 ± 0   0.27 ± 0 

Dysgonomonas -0.98 ± 1.2   -0.28 ± 0.61   

Eggerthella -13.87 ± 45.33 0.08 ± 0.05 -0.79 ± 1.76 0.3 ± 0.12 

Elusimicrobium -0.94 ± 1.41   -2.24 ± 3.55   

Empedobacter -2.79 ± 3.72 -0.02 ± 0 -1.47 ± 2.45 -0.61 ± 0 

Enhydrobacter -5.06 ± 7.39 0.05 ± 0 -1.17 ± 2.05 0.27 ± 0 

Enterobacteriaceae_unclassified -2.21 ± 4.39 0.11 ± 0.06 -0.52 ± 1.11 0.28 ± 0.04 

Enterococcus -1.4 ± 1.42 0.06 ± 0.07 -0.5 ± 0.72 0.09 ± 0.28 

Erysipelotrichaceae_unclassified -1.31 ± 3.71 0.05 ± 0.05 0.1 ± 0.18 0.16 ± 0.24 

Eubacteriaceae_unclassified -1.02 ± 0.99 0.01 ± 0.11 -0.56 ± 0.58 -0.06 ± 0.49 

Eubacterium -1.55 ± 2.95 -0.1 ± 0.17 -0.1 ± 0.38 -0.3 ± 0.66 

Euryarchaeota_unclassified   0.08 ± 0   0.33 ± 0 

Faecalibacterium -0.78 ± 1.47 0.05 ± 0 0.26 ± 0.35 0.27 ± 0 

Firmicutes_unclassified -1.5 ± 3.85 -0.09 ± 0.29 0.02 ± 0.33 0.12 ± 0.36 

Flavobacteriaceae_unclassified -0.08 ± 0.24   0.19 ± 0.21   

Flavobacterium   0.05 ± 0   0.27 ± 0 

Gammaproteobacteria_unclassified -19.8 ± 61.6 -0.47 ± 1.26 -1.35 ± 2.05 -0.41 ± 1.34 

Gordonia 0.05 ± 0 0.05 ± 0 0.27 ± 0 0.27 ± 0 

Hathewaya -7.2 ± 2.73 -0.19 ± 0.34 -4.29 ± 2.1 -1.06 ± 1.46 

Herbiconiux   0.05 ± 0   0.27 ± 0 

Holdemania 0.11 ± 0.08   0.32 ± 0.06   

Hyphomicrobiaceae_unclassified   0.1 ± 0   0.54 ± 0 

Ignatzschineria 0.13 ± 0   0.27 ± 0   

Ilumatobacter   0.05 ± 0   0.27 ± 0 

Intestinimonas -14.5 ± 36.29 -0.67 ± 0.62 -2.02 ± 1.78 -2.93 ± 3.11 

Kurthia -1508.81 ± 0 -4.31 ± 0 -54.65 ± 0 -51.89 ± 0 

Lachnospira -0.17 ± 0.33   -0.39 ± 0.93   

Lachnospiraceae_unclassified -1.44 ± 3.94 -0.01 ± 0.13 0.11 ± 0.14 0.02 ± 0.32 

Lactobacillaceae_unclassified 0.19 ± 0 -0.21 ± 0.54 0.31 ± 0 -0.89 ± 2.75 

Lactobacillales_unclassified -1.01 ± 2.24 -0.11 ± 0.18 0.13 ± 0.48 -0.36 ± 0.16 

Lactobacillus -1.46 ± 1.53 -0.16 ± 0.24 -0.37 ± 0.7 -0.14 ± 0.43 

Lactococcus -1.57 ± 2.1 -0.03 ± 0.14 -0.51 ± 1.5 -0.08 ± 0.44 

Leuconostoc -5.83 ± 10.08 -0.98 ± 0.92 -1.19 ± 0.91 -1.51 ± 1.33 

Marinilabiliaceae_unclassified 0.06 ± 0   0.27 ± 0   

Massilia   0.05 ± 0   0.27 ± 0 

Megasphaera -2.13 ± 3.85 -0.71 ± 1.34 -0.34 ± 0.73 -1.13 ± 1.97 

Methanobacteriaceae_unclassified   0.07 ± 0   0.52 ± 0 
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Methanobacterium 0.06 ± 0 0.13 ± 0.1 0.36 ± 0 0.33 ± 0.04 

Methanobrevibacter -0.12 ± 0.58 0.08 ± 0.03 0.32 ± 0.09 0.32 ± 0.1 

Methanomassiliicoccus -0.44 ± 0.76 -0.19 ± 0.48 0.03 ± 0.52 0.08 ± 0.65 

Methanosphaera -0.83 ± 2.17 -0.1 ± 0.18 0.16 ± 0.12 -0.05 ± 0.33 

Methylobacterium   0.05 ± 0   0.27 ± 0 

Microbacteriaceae_unclassified -0.05 ± 0.26 -0.04 ± 0.19 0.26 ± 0.15 0 ± 0.61 

Micrococcaceae_unclassified   0.1 ± 0   0.33 ± 0 

Microvirgula -5.46 ± 9.76 -1.31 ± 0.35 -0.63 ± 1.4 -2.24 ± 1.84 

Mitsuokella -0.62 ± 0   -0.92 ± 0   

Mogibacterium -1.91 ± 3.19 -0.4 ± 0.32 -0.17 ± 0.34 -0.99 ± 0.98 

Neisseriaceae_unclassified 0.06 ± 0   0.36 ± 0   

Nitrospirillum -94.99 ± 

164.44 

-0.19 ± 0.17 -3.12 ± 5.85 -2.03 ± 2.99 

Nocardioides   0.05 ± 0   0.27 ± 0 

Nocardiopsis -0.28 ± 0.46   0.03 ± 0.34   

Oligella 0.05 ± 0   0.27 ± 0   

Oligosphaera -0.21 ± 0   -0.58 ± 0   

Olsenella -0.15 ± 0.47 0.08 ± 0.06 0.29 ± 0.09 0.31 ± 0.11 

Oribacterium 0.1 ± 0   0.33 ± 0   

Oscillibacter -3.34 ± 3.8 -0.22 ± 0.41 -1.56 ± 1.57 -2.13 ± 3.49 

Oxalobacteraceae_unclassified   0.09 ± 0   0.36 ± 0 

Paenibacillus   0.14 ± 0   0.27 ± 0 

Pandoraea -0.7 ± 0.62   -0.09 ± 0.39   

Paraprevotella -0.93 ± 1.84 -1.82 ± 2 -0.67 ± 1.6 -15.98 ± 19.46 

Pectinatus 0.09 ± 0.05 -0.02 ± 0.23 0.31 ± 0.07 -0.03 ± 0.43 

Pedobacter   0.1 ± 0.07   0.27 ± 0 

Peptoniphilus   0.06 ± 0   0.27 ± 0 

Peptostreptococcus   0.08 ± 0   0.33 ± 0 

Phascolarctobacterium   0.06 ± 0   0.36 ± 0 

Planctomycetaceae_unclassified 0.11 ± 0.06   0.29 ± 0.18   

Pleomorphomonas   0.06 ± 0   0.36 ± 0 

Porphyromonadaceae_unclassified -0.04 ± 0.24 -0.03 ± 0 0.08 ± 0.74 0.09 ± 0 

Prevotella -6.01 ± 15.28 -1.25 ± 1.96 -0.64 ± 0.67 -2.24 ± 2.08 

Prevotellaceae_unclassified -33.75 ± 100.2 -0.23 ± 0.29 -2.23 ± 3.65 -0.71 ± 1.16 

Proteiniphilum 0.09 ± 0.01 0.09 ± 0 0.35 ± 0.02 0.36 ± 0 

Proteobacteria_unclassified -7.7 ± 15.98 -0.06 ± 0.24 -0.7 ± 1.28 0.21 ± 0.47 

Proteus -0.91 ± 1.59 0.09 ± 0 -0.05 ± 0.29 0.36 ± 0 

Pseudobutyrivibrio 0.06 ± 0   0.27 ± 0   

Pseudoclavibacter -0.68 ± 2.45 0.08 ± 0.08 0.07 ± 0.7 0.17 ± 0.37 
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Pseudomonadaceae_unclassified -1.73 ± 0 0.05 ± 0 -0.57 ± 0 0.27 ± 0 

Pseudomonas -321.86 ± 0 -2.6 ± 5.85 -11.23 ± 0 -31.12 ± 70.06 

Pseudoramibacter 0.07 ± 0.07 0.1 ± 0.05 0.35 ± 0.1 0.35 ± 0.1 

Pseudoscardovia -0.52 ± 0.55 0.03 ± 0.14 -0.01 ± 0.32 -0.01 ± 0.62 

Psychrobacter   0.05 ± 0   0.27 ± 0 

Pyramidobacter -0.88 ± 1.33 -1.26 ± 1.74 -0.25 ± 0.87 -3.15 ± 5.04 

Rhizobiaceae_unclassified 0.09 ± 0.05 0.06 ± 0 0.31 ± 0.07 0.36 ± 0 

Rhodobacteraceae_unclassified -29.07 ± 71.06 0.1 ± 0.09 -1.45 ± 2.54 0.25 ± 0.07 

Rhodococcus -0.11 ± 0.35 -0.14 ± 0.27 0.27 ± 0.09 0.19 ± 0.16 

Rhodocyclaceae_unclassified -6.67 ± 9.92   -1.43 ± 1.98   

Roseburia -14.75 ± 37.47 -2.4 ± 3.33 -1.84 ± 1.71 -13 ± 17.73 

Ruminobacter -3.57 ± 5.82 -4.52 ± 0 -1.13 ± 1.3 -4.66 ± 0 

Ruminococcaceae_unclassified -9.89 ± 32.99 -0.68 ± 0.83 -0.59 ± 1.1 -1.84 ± 2.31 

Ruminococcus -32.37 ± 71.52 -6.54 ± 9.57 -5.85 ± 6.22 -18.29 ± 37.82 

Rummeliibacillus 0.09 ± 0.02 0.09 ± 0 0.35 ± 0.02 0.36 ± 0 

Saccharofermentans -0.06 ± 0.35 -0.41 ± 0 -0.09 ± 0.92 -0.31 ± 0 

Scardovia   0.09 ± 0.05   0.31 ± 0.07 

Schwartzia -1.21 ± 1.18 -0.06 ± 0.13 -0.5 ± 0.56 -0.16 ± 0.29 

Selenomonas -11.48 ± 26.18 -0.34 ± 0.54 -0.93 ± 0.7 -0.93 ± 1.14 

Sharpea -0.3 ± 0.4 -0.01 ± 0.2 0.11 ± 0.28 0.13 ± 0.29 

Snodgrassella -8.61 ± 19.36 -0.68 ± 1.09 -1.01 ± 1.66 -3.63 ± 5.82 

Sphaerobacteraceae_unclassified   0.05 ± 0   0.27 ± 0 

Sphingobacterium -0.62 ± 0   -0.13 ± 0   

Sphingobium 0.05 ± 0.09 0.02 ± 0.01 0.25 ± 0.04 0.2 ± 0.09 

Sphingomonas 0.11 ± 0.07   0.28 ± 0.01   

Spirochaetaceae_unclassified -0.02 ± 0.18 0.1 ± 0 0.06 ± 0.62 0.54 ± 0 

Spirosoma   0.05 ± 0   0.27 ± 0 

Sporanaerobacter -0.12 ± 0.47 0.09 ± 0.01 0.2 ± 0.31 0.34 ± 0.01 

SR1_unclassified -0.34 ± 0 0.1 ± 0 -0.9 ± 0 0.54 ± 0 

Staphylococcus   -0.07 ± 0.25   -0.13 ± 0.66 

Stenotrophomonas 0.1 ± 0.04 0.05 ± 0 0.3 ± 0.05 0.27 ± 0 

Streptococcus -4.66 ± 10.64 -0.15 ± 0.43 -0.17 ± 0.71 -0.13 ± 0.68 

Streptomyces   0.06 ± 0   0.36 ± 0 

Subdivision5_unclassified 0.02 ± 0.21 -0.14 ± 0.29 0.11 ± 0.58 0.01 ± 0.36 

Succiniclasticum -4.49 ± 13 -0.7 ± 1.31 -0.28 ± 0.6 -2 ± 3.32 

Succinivibrio -14 ± 35.28 -2.18 ± 2.44 -1.81 ± 2.02 -3.82 ± 6.63 

Succinivibrionaceae_unclassified -0.62 ± 0.73   -0.16 ± 0.39   

Sulfurospirillum -1.45 ± 0.96 -0.21 ± 0 -0.77 ± 0.53 -2.15 ± 0 
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Synergistaceae_unclassified -6.37 ± 15.28 -1.14 ± 1.94 -0.83 ± 0.61 -3.42 ± 5.15 

Synergistes -8.77 ± 13.95 -1.55 ± 1.51 -1.52 ± 2.55 -2.81 ± 2.91 

Thermoactinomyces 0.08 ± 0.01 0.09 ± 0.05 0.53 ± 0.02 0.3 ± 0.05 

Thermoplasmata_unclassified -3.62 ± 11.35 -0.68 ± 1.95 0.01 ± 0.63 -7.16 ± 23.42 

Thermus   0.19 ± 0   0.31 ± 0 

Tissierella 0.1 ± 0.01 0.09 ± 0.03 0.35 ± 0.02 0.31 ± 0.04 

Treponema -2.86 ± 6.4 -0.72 ± 0.56 -0.29 ± 0.73 -2.52 ± 3.15 

Veillonella -0.16 ± 0.4 0.06 ± 0.06 0.09 ± 0.22 0.19 ± 0.26 

Veillonellaceae_unclassified -1.94 ± 2.12 -0.65 ± 1.32 -0.35 ± 0.37 -0.84 ± 1.42 

Verrucomicrobia_unclassified -0.19 ± 0   -0.53 ± 0   

Victivallis -2.22 ± 2.91 0.06 ± 0 -1.13 ± 0.96 0.27 ± 0 

Weissella -2.96 ± 3.96 -0.35 ± 0.73 -0.95 ± 0.56 -0.85 ± 1.59 

Xanthobacter 0.09 ± 0.09 -0.01 ± 0 0.29 ± 0.03 0.16 ± 0 

Xanthobacteraceae_unclassified   0.06 ± 0   0.36 ± 0 

Xanthomonadaceae_unclassified -15.22 ± 48.02 -0.19 ± 0.53 -0.29 ± 1.66 -0.4 ± 1.44 

Zoogloea 0.05 ± 0   0.27 ± 0   
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Table A.9. rDNAinfluent/ rDNAreactor and rRNAinfluent/ rRNAreactor values for different genus or family observed in the bioreactor samples. 

Genus or Family 
rDNAinfluent/ 

rDNAreactor 

rRNAinfluent/ 

rRNAreactor 
Genus or Family 

rDNAinfluent/ 

rDNAreactor 

rRNAinfluent/ 

rRNAreactor 

Acetobacter 0.04 ± 0.04 0.08 ± 0.2 Lactobacillales_unclassified 1.33 ± 1.88 3.18 ± 1.51 

Acetobacteraceae_unclassified 0.02 ± 0.02 0.02 ± 0.03 Lactobacillus 1.15 ± 1.09 1.01 ± 1.22 

Acidaminococcaceae_unclassified 0.84 ± 1.72  Lactococcus 1.59 ± 1.17 0.81 ± 0.82 

Acidaminococcus 0.47 ± 0.61 0.54 ± 0.69 Leuconostoc 4.15 ± 6.56 3.43 ± 2.96 

Acinetobacter 7.04 ± 4.18 15.35 ± 7.65 Megasphaera 1.25 ± 1.65 2.21 ± 2.14 

Aeromonas 5.73 ± 5.82  Methanobrevibacter 0.06 ± 0.11 0.07 ± 0.2 

Alcaligenaceae_unclassified 1.12 ± 1.41 1.88 ± 1.89 Methanomassiliicoccus 0.63 ± 0.7 0.5 ± 0.32 

Alcaligenes 0.23 ± 0.32  Methanosphaera 0.41 ± 0.51 1.02 ± 1.61 

Allisonella 1.04 ± 1.54 1.39 ± 1.76 Microbacteriaceae_unclassified 0.11 ± 0.11 0.14 ± 0.09 

Alphaproteobacteria_unclassified 15.72 ± 15.72  Microvirgula 2.71 ± 3.85 6.62 ± 6.79 

Anaerocella 4.79 ± 4.37 192.62 ± 105.44 Mitsuokella 2.71 ± 2.71  

Anaerofilum 1.03 ± 1.03  Mogibacterium 1.31 ± 2.75 3.66 ± 3.98 

Anaerolineaceae_unclassified 1.28 ± 1.79 7.25 ± 11.86 Neisseriaceae_unclassified 2.06 ± 1.26  

Anaeroplasma 3.63 ± 3.48 0.96 ± 0.92 Nitrospirillum 2.45 ± 1.87 9.48 ± 6.07 

Anaerovibrio 1.9 ± 1.67 1.3 ± 1.29 Nocardiopsis 0.75 ± 1.09  

Arcobacter 14.19 ± 15.04 57.87 ± 37.82 Oligosphaera 5.73 ± 5.73  

Asteroleplasma 0.34 ± 0.39  Olsenella 0.12 ± 0.11 0.06 ± 0.07 

Azoarcus 10.42 ± 4.65  Oscillibacter 6.58 ± 6.86 18.22 ± 18.1 

Azospira 1.83 ± 1.83  Pandoraea 0.63 ± 0.74  

Bacillales_unclassified 0.45 ± 0.64 1.2 ± 1.68 Paraprevotella 5.18 ± 4.68 45.4 ± 41.31 
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Bacteria_unclassified 0.56 ± 1.84 1.23 ± 1.52 Pectinatus  0.82 ± 1.08 

Bacteroidales_unclassified 4.14 ± 2.58 4.86 ± 2.72 Planctomycetaceae_unclassified 0.78 ± 1.76  

Bacteroides 3.43 ± 3.09 14.67 ± 8.2 Pleomorphomonas  1.36 ± 1.31 

Bacteroidetes_unclassified 4.5 ± 5.61 1.86 ± 1.56 

Porphyromonadaceae_unclassifi

ed 4.36 ± 6.87 1.42 ± 1.26 

Barnesiella 4.03 ± 5.38  Prevotella 1.73 ± 0.79 4.52 ± 3.2 

Betaproteobacteria_unclassified 1.19 ± 1.35 2.22 ± 2.52 Prevotellaceae_unclassified 3.96 ± 4.62 3.34 ± 4.87 

Bifidobacteriaceae_unclassified 1.53 ± 1.67  Proteobacteria_unclassified 3.21 ± 5.31 2.89 ± 2.76 

Bifidobacterium 0.6 ± 0.52 0.48 ± 0.4 Proteus 0.93 ± 1.01 2.94 ± 2.09 

Bilophila 1.52 ± 1.01 1.23 ± 1.41 Pseudobutyrivibrio 123.77 ± 120.6  

Brucellaceae_unclassified 2.73 ± 2.2  Pseudoclavibacter 0.03 ± 0.03 0.02 ± 0.03 

Burkholderiales_unclassified 0.41 ± 0.51 0.38 ± 0.27 Pseudomonadaceae_unclassified 2 ± 1.37 1.26 ± 1.21 

Butyricicoccus 1.32 ± 0.97  Pseudomonas 14.04 ± 12.26 15.99 ± 24.19 

Butyrivibrio 5.54 ± 7.92 14.1 ± 5.61 Pseudoramibacter 0.01 ± 0.01 0.01 ± 0.02 

Camelimonas 2.42 ± 2.42  Pseudoscardovia 1.46 ± 1.65 0.51 ± 0.69 

Candidatus_Endomicrobium_unclassified 2.84 ± 3.08  Psychrobacter  0.83 ± 0.48 

Candidatus_Saccharibacteria_unclassified 1.09 ± 1.09  Pyramidobacter 1.69 ± 1.91 5.23 ± 4.98 

Cellulosilyticum 20.68 ± 11.19 23.46 ± 18.08 Rhizobiaceae_unclassified 0.58 ± 0.83 1.91 ± 1.83 

Chloroflexi_unclassified 1.54 ± 1.97  Rhodobacteraceae_unclassified 1.35 ± 1.9 2.01 ± 1.46 

Chryseobacterium 0.45 ± 0.52  Rhodococcus 0.16 ± 0.25 0.58 ± 0.72 

Cloacibacillus 2.16 ± 1.96 6.17 ± 4.78 Rhodocyclaceae_unclassified 3.52 ± 3.4  

Clostridia_unclassified 0.01 ± 0.02 0.52 ± 0.71 Roseburia 7.39 ± 9.96 14.73 ± 17.26 

Clostridiales_Incertae_Sedis_XIII_unclassi

fied 2.67 ± 3.58  Ruminobacter 3.85 ± 4.67 38.54 ± 34.49 

Clostridiales_unclassified 0.15 ± 0.14 0.09 ± 0.07 Ruminococcaceae_unclassified 2.18 ± 3.41 3.81 ± 6.42 

Clostridium_IV 3.92 ± 3.31 31.73 ± 18.88 Ruminococcus 6.32 ± 4.74 29.78 ± 26.87 

Clostridium_sensu_stricto 3.71 ± 5 1.22 ± 0.92 Rummeliibacillus  0.03 ± 0.03 

Clostridium_XlVa 6.46 ± 6.31 24.4 ± 10.65 Saccharofermentans 9.39 ± 11.82 4.26 ± 4.1 
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Comamonadaceae_unclassified 0.07 ± 0.11 0.04 ± 0.05 Schwartzia 1.23 ± 0.92 1.36 ± 1.48 

Comamonas 2.26 ± 2.22 20.83 ± 10.96 Selenomonas 1.66 ± 1.22 3.24 ± 2.39 

Coprococcus 0.08 ± 0.08 0.15 ± 0.12 Sharpea 0.59 ± 0.92 0.3 ± 0.33 

Coriobacteriaceae_unclassified 0.91 ± 1.66 0.08 ± 0.12 Snodgrassella 2.71 ± 2.91 7.07 ± 9.01 

Corynebacterium 0.39 ± 0.42 0.83 ± 1.06 Sphingobacterium 5.83 ± 2.76  

Desulfovibrio 1.84 ± 2.25 11.2 ± 8.69 Sphingobium 0.12 ± 0.19 0.38 ± 0.22 

Dialister 1.33 ± 3.61 0.62 ± 0.62 Spirochaetaceae_unclassified 4.68 ± 6.14 26.06 ± 25.04 

Dysgonomonas 1.46 ± 1.19  Sporanaerobacter 0.09 ± 0.15 0.13 ± 0.14 

Eggerthella 1.21 ± 1.41 0.47 ± 0.56 SR1_unclassified 7.92 ± 7.92 3.5 ± 3.36 

Elusimicrobium 18.3 ± 26.84  Staphylococcus  0.44 ± 0.24 

Empedobacter 2.97 ± 2.82 23.73 ± 15.68 Stenotrophomonas 1.19 ± 1.85  

Enhydrobacter 10.64 ± 7.51 1.17 ± 0.56 Streptococcus 2.2 ± 2.43 1.32 ± 1.63 

Enterobacteriaceae_unclassified 2.89 ± 3.26 0.05 ± 0.06 Streptomyces  1.79 ± 1.72 

Enterococcus 2.8 ± 3.04 1.48 ± 1.9 Subdivision5_unclassified 5.52 ± 7.77 3.34 ± 3.65 

Erysipelotrichaceae_unclassified 0.49 ± 0.94 0.22 ± 0.27 Succiniclasticum 0.97 ± 1.18 1.84 ± 1.64 

Eubacteriaceae_unclassified 3.56 ± 3.55 2.62 ± 3.79 Succinivibrio 3.69 ± 3.75 15.03 ± 22.46 

Eubacterium 0.65 ± 0.76 1.07 ± 1.66 Succinivibrionaceae_unclassified 1.31 ± 1.11  

Euryarchaeota_unclassified  2.47 ± 1.64 Sulfurospirillum 5.12 ± 3.42 19.27 ± 12.85 

Faecalibacterium 0.41 ± 0.77  Synergistaceae_unclassified 2.87 ± 2.76 11.07 ± 11.41 

Firmicutes_unclassified 1.84 ± 3.15 1.2 ± 2.52 Synergistes 3.09 ± 3.26 6.27 ± 4.42 

Flavobacteriaceae_unclassified 0.01 ± 0.02  Thermoplasmata_unclassified 0.13 ± 0.14 0.64 ± 0.61 

Gammaproteobacteria_unclassified 5.2 ± 7.76 11.19 ± 22.24 Treponema 2.68 ± 3.81 6.14 ± 6.96 

Gordonia 0.86 ± 0.86  Veillonella 0.75 ± 0.61 0.52 ± 0.52 

Hathewaya 14.46 ± 18.55 2.23 ± 1.92 Veillonellaceae_unclassified 1.5 ± 1.1 2.88 ± 4 

Ignatzschineria 3.26 ± 3.26  Verrucomicrobia_unclassified 7.36 ± 5.62  

Intestinimonas 5.48 ± 5.68 8.65 ± 5.63 Victivallis 3.23 ± 2.68 1.69 ± 0.8 

Kurthia 68.75 ± 57.73 80.09 ± 58.24 Weissella 2.08 ± 1.19 0.95 ± 0.76 
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Lachnospira 7.67 ± 8.94  Xanthobacter 0.05 ± 0.06 0.34 ± 0.33 

Lachnospiraceae_unclassified 0.45 ± 0.5 0.4 ± 0.46 Xanthomonadaceae_unclassified 0.29 ± 0.34 0.32 ± 0.17 

Lactobacillaceae_unclassified 6.69 ± 3.11 2 ± 2.6       

*Values are reported as means with standard deviations of time series data. 
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A.2 Figures 

 

 
Figure A.1. Hydraulic retention time (HRT) with corresponding organic loading rate (OLR) over 

time. The vertical lines represent change of HRT on Days 49 and 140. The OLR is a function of 

soluble chemical oxygen demand (sCOD) of the influent (g sCOD L-1), flow rate of the influent 

(L d-1), and working volume of the bioreactor (L). MCCAs volumetric production rate was 

significantly different (p=6.61E-09) between HRTs but there was no particular trend. The longest 

HRT of 3.7  0.1 days led to lowest average MCCAs volumetric production rate of 3.0  1.1 

mmole L-1d-1 while the MCCAs production was similar (p=0.48) between HRTs 1.8  0.0 days 

(4.7  1.5 mmole L-1d-1) and 2.9  0.22 days (5.2  1.4 mmole L-1d-1). 

  



159 

 

 

 
Figure A.2. Relative abundance and activity of 15 most abundant microbial groups classified to 

the genus or family level in rumen inocula and the bioreactor samples over time. The relative 

abundance and activity were determined as percentages normalized to the total number of 16S 

rRNA gene sequences and 16S rRNA sequences, respectively. The top 15 microbial groups 

represented 87.5-95.8% and 84.5-98.3% of the total relative abundance and relative activity, 

respectively. 
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Figure A.3. Phylogenetic tree of 16S rRNA gene sequence of the dominant bacterial OTUs (in 

red). The GenBank accession numbers are given in parentheses. The reference sequences are 

shown in black while the known chain elongating microorganisms are shown in blue. The numbers 

at the nodes of the branch indicate bootstrap values. The scale bar of 0.10 represents 10% 

substitutions per nucleotide base pair. 
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Figure A.4. Relative abundance (a) and relative activity (b) of methanogens on OTUs level in the 

bioreactor samples over time. The relative abundance and relative activity were determined as 

percentages normalized to the total number of 16S rRNA gene sequences and 16S rRNA 

sequences, respectively. The dashed lines represent start and end of wasting bioreactor content on 

Days 20 and 82, respectively, to decrease solids retention time. 
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Figure A.5. Percentage of influent soluble chemical oxygen demand (sCOD) used up in methane 

production and solids retention time (SRT) over time. 
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Figure A.6. Alpha diversity indices of the microbial community based on 16S rRNA gene 

sequencing (a) and 16S rRNA sequencing data (b) between inoculum, influent, and bioreactor 

samples. 
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Figure A.7. Non-metric multidimensional scaling (NMDS) ordination plot based on Bray-Curtis 

dissimilarity index of the bacterial community at OTU level using 16S rRNA gene sequencing (a) 

and 16S rRNA sequencing data (b) and Jaccard index using 16S rRNA gene sequencing (c) and 

16S rRNA sequencing data (d) in the rumen inocula, bioreactor, and influent samples. The 

numbers correspond to sampling time points. 

  



166 

 

  

 
Figure A.8. Non-metric multidimensional scaling (NMDS) ordination plot based on Bray-Curtis 

dissimilarity index of the archaeal community at OTU level using 16S rRNA gene sequencing (a) 

and 16S rRNA sequencing data (b) and Jaccard index using 16S rRNA gene sequencing (c) and 

16S rRNA sequencing data (d) in the rumen inocula, bioreactor, and influent samples. The 

numbers correspond to sampling time points. 
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Figure A.9. Comparison of community composition at the phylum level based on 16S rRNA gene 

sequencing (a) 16S rRNA sequencing (b) between influent and bioreactor samples. The data 

represent averages and error bars represent the standard deviations of data collected at different 

sampling time points. 
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Figure A.10. Relative abundance and activity of 15 most abundant microbial groups classified to 

the genus or family level in the influent samples over time. The top 15 microbial groups 

represented 84.5-96.2% and 86.3-98.2% of the total relative abundance and relative activity, 

respectively. 
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Figure A.11. Correlation of relative abundance and relative activity of microbial groups identified 

to the genus level observed in the bioreactor (a) and influent (b) samples. The relative abundance 

and relative activity were determined as percentages normalized to the total number of 16S rRNA 

gene sequences and 16S rRNA sequences, respectively. The average values of relative abundance 

and relative activity corresponding to all sampling time points were used. 
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APPENDIX B  

 

Supplementary Information for Chapter 3 

Effect of Methanogenic Inhibitor on Competitive Reactions During 

Ethanol Chain Elongation 

B.1 Materials and Methods 

B.1.1 Thermodynamic calculations 

The change in Gibbs free energy at standard condition (∆𝐺𝑜) of temperature 273 K and activities 

of 1 M and 1 atm (for gaseous substrate) was calculated from the standard Gibbs energies of 

formation according to equation 1. 

∆𝐺𝑜 (𝑘𝐽) =  ∑ 𝐺𝑓
𝑜𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠 − ∑ 𝐺𝑓

𝑜𝑟𝑒𝑎𝑐𝑡𝑎𝑛𝑡𝑠        (1) 

Where, 𝐺𝑓
𝑜is Gibbs free energy of formation of each reactant and product.  

The standard Gibbs free energy values were corrected for temperature using the Gibbs-Helmholz 

equation. The change in Gibbs free energy at reactor condition (∆𝐺𝑅
′ ) for different reactions was 

calculated according to the Nernst’s equations 2 and 3 using the measured concentrations of 

reactants and products in the reactor. The 𝐺𝑓
𝑜 values were taken from Kleerebezem and Loosdrecht 

(2017) and Thauer et al. (1977) 

∆𝐺𝑅
′ (𝑘𝐽) =  ∆𝐺𝑜 + 𝑅 × 𝑇 × 𝑙𝑛𝑄        (2) 

𝑄 =
{𝐶}𝑐{𝐷}𝑑

{𝐴}𝑎{𝐵}𝑏 for the reaction aA+bB=cC+dD       (3) 
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Where, R is the universal gas constant (8.314 *10-3 kJ mole-1 K-1), T is the temperature of the 

reactor in K (293+37 K in this study), Q is the reaction quotient related to the activities of products 

A and B and reactants C and D along with their stoichiometric coefficients.   
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B.2 Tables 

 

Table B.1 Standard Gibbs free energy (∆𝐺𝑜) calculated at standard conditions for competitive reactions 

for acetate production potentially involved during chain elongation. 

Eq. Reactions 
∆𝐺𝑜 (kJ mole-1 

reaction) 

B1 

Ethanol oxidation to acetate (Excessive Ethanol Oxidation, EEO) 

Ethanol + H2O = Acetate- + H+ + 2 H2 

C2H6O + H2O →  C2H3O2
− +  H+ +  2 H2 

49.6 

B2 
Hydrogenotrophic methanogenesis 

4 H2 +   CO2  →  CH4 + 2 H2O 
-130.7 

B3 

Syntrophic ethanol oxidation (EEO and hydrogenotrophic 

methanogenesis) 

2 Ethanol + CO2 = 2 Acetate- + CH4 + 2 H+
 

2 C2H6O +  CO2  →  2 C2H3O2
− +   CH4 +  2 H+ 

-31.5 

B4 

Direct EEO by a methanogen 

2 Ethanol + CO2 = 2 Acetate- + CH4 + 2 H+
 

2 C2H6O +  CO2  →  2 C2H3O2
− +   CH4 +  2 H+ 

-31.5 

B5 
Oxidation of ethanol by acetic bacteria  

2 Ethanol + 2 CO2 = 3 Acetate 

2 C2H6O +  2 CO2  →  3 𝐶2𝐻4𝑂2  
44.2 

B6 

Homoacetogenesis 

4 H2 + 2 CO2 = Acetate- + H+ + 2 H2O  

2 CO2 +  4 H2  →  C2H3O2
− +  H+ + 2 H2O             

-55.0 

B7 

Propionate oxidation 

Propionate + 2 H2O = Acetate- + 3 H2 + CO2 

C3H5O2
− +  2 H2O →  C2H3O2

− +  3 H2 +  CO2      
71.7 

B8 

Butyrate oxidation 

Butyrate + 2 H2O = 2 Acetate- + 2 H2 + H+ 

C4H7O2
− +  2 H2O →  2 C2H3O2

− +  2 H2  + H+    
88.1 
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Table B.2. ASVs with significant difference in relative activity due to 2-BES addition as observed with 

DESEq2 analysis 

Bacterial ASVs significantly lower after 2-BES addition 

ASVNumber log2FoldChange pvalue padj Genus 

ASV_173 2.88 5.43E-03 3.06E-02 Acetobacter 

ASV_221 4.14 4.07E-08 1.60E-06 Acidaminococcus 

ASV_9 4.08 1.46E-09 8.91E-08 Acidaminococcus 

ASV_119 3.79 8.03E-05 9.19E-04 Acidaminococcus 

ASV_143 3.56 1.97E-03 1.41E-02 Acidaminococcus 

ASV_315 3.53 4.70E-03 2.78E-02 Acidaminococcus 

ASV_62 5.43 2.19E-04 2.16E-03 Acinetobacter 

ASV_89 5.01 3.19E-06 5.83E-05 Acinetobacter 

ASV_190 7.09 1.33E-04 1.43E-03 Bifidobacterium 

ASV_19 3.96 1.00E-06 2.29E-05 Bifidobacterium 

ASV_95 2.24 6.15E-05 7.26E-04 Bulleidia 

ASV_144 4.63 2.97E-03 1.94E-02 Comamonas 

ASV_262 6.34 2.87E-05 4.21E-04 Escherichia/Shigella 

ASV_33 2.92 1.19E-05 1.90E-04 Holdemania 

ASV_103 3.00 5.68E-03 3.12E-02 Lachnospiraceae_unclassified 

ASV_56 2.36 4.99E-03 2.85E-02 Lachnospiraceae_unclassified 

ASV_201 7.26 3.47E-05 4.79E-04 Lactobacillus 

ASV_71 5.31 1.42E-04 1.48E-03 Lactobacillus 

ASV_18 3.69 1.03E-02 4.55E-02 Lactobacillus 

ASV_54 4.19 4.76E-09 2.49E-07 Megasphaera 

ASV_2 2.49 1.48E-03 1.13E-02 Megasphaera 

ASV_322 2.98 6.13E-03 3.25E-02 Olsenella 

ASV_217 5.28 7.66E-03 3.74E-02 Phocaeicola 

ASV_53 7.97 1.49E-06 3.22E-05 Prevotella 

ASV_7 7.24 1.05E-09 7.68E-08 Prevotella 

ASV_25 6.39 2.15E-03 1.50E-02 Prevotella 

ASV_66 6.35 2.32E-03 1.57E-02 Prevotella 

ASV_160 6.21 8.51E-04 7.42E-03 Prevotella 

ASV_32 4.85 5.94E-08 1.98E-06 Prevotella 

ASV_458 4.52 1.03E-02 4.55E-02 Prevotella 

ASV_35 3.49 4.97E-05 6.27E-04 Prevotella 

ASV_80 5.81 3.88E-03 2.43E-02 Prevotellaceae_unclassified 

ASV_229 2.16 1.10E-02 4.78E-02 Pseudoclavibacter 

ASV_164 4.16 9.62E-03 4.40E-02 Schwartzia 

ASV_60 4.34 1.44E-05 2.19E-04 Sharpea 

ASV_135 4.94 1.03E-02 4.55E-02 Succiniclasticum 

ASV_6 2.54 1.61E-04 1.63E-03 Succiniclasticum 

ASV_270 4.45 4.12E-03 2.51E-02 Synergistes 

ASV_171 6.15 2.13E-06 4.34E-05 Weissella 

Bacterial ASVs significantly higher after 2-BES addition 

ASVNumber log2FoldChange pvalue padj Genus 

ASV_234 -2.68 2.64E-03 1.76E-02 Acetobacter 

ASV_26 -2.46 5.71E-03 3.12E-02 Acidaminococcus 
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ASV_546 -2.44 6.93E-03 3.51E-02 Bifidobacterium 

ASV_72 -4.57 2.32E-06 4.47E-05 Bifidobacterium 

ASV_200 -4.90 8.08E-03 3.85E-02 Carnobacterium 

ASV_43 -3.35 1.86E-03 1.36E-02 Clostridiales_unclassified 

ASV_466 -3.88 3.28E-04 3.16E-03 Clostridium_IV 

ASV_239 -23.40 4.52E-24 8.27E-22 Clostridium_IV 

ASV_151 -23.01 2.67E-23 3.25E-21 Clostridium_sensu_stricto 

ASV_188 -2.68 7.04E-03 3.51E-02 Coprococcus 

ASV_549 -3.07 1.75E-03 1.31E-02 Coriobacteriaceae_unclassified 

ASV_298 -5.90 3.66E-07 8.93E-06 Enterococcus 

ASV_444 -3.25 4.24E-03 2.54E-02 Firmicutes_unclassified 

ASV_154 -1.56 6.40E-03 3.35E-02 Lachnospiraceae_unclassified 

ASV_146 -1.78 8.20E-03 3.85E-02 Lachnospiraceae_unclassified 

ASV_122 -2.01 1.04E-03 8.85E-03 Lachnospiraceae_unclassified 

ASV_78 -2.11 3.91E-03 2.43E-02 Lachnospiraceae_unclassified 

ASV_370 -3.63 4.26E-05 5.57E-04 Lachnospiraceae_unclassified 

ASV_352 -4.99 5.92E-03 3.19E-02 Lachnospiraceae_unclassified 

ASV_40 -2.49 3.40E-03 2.18E-02 Lactobacillus 

ASV_11 -2.69 6.68E-04 6.11E-03 Lactobacillus 

ASV_480 -4.08 1.19E-03 9.69E-03 Lactobacillus 

ASV_305 -4.18 1.49E-03 1.13E-02 Lactobacillus 

ASV_102 -8.24 2.44E-07 6.38E-06 Lactobacillus 

ASV_45 -7.73 4.37E-08 1.60E-06 Lactococcus 

ASV_16 -2.19 8.12E-06 1.41E-04 Leuconostoc 

ASV_243 -2.67 3.64E-04 3.41E-03 Leuconostoc 

ASV_536 -2.18 8.13E-03 3.85E-02 Megasphaera 

ASV_147 -2.28 1.11E-03 9.24E-03 Megasphaera 

ASV_83 -2.62 1.14E-05 1.90E-04 Megasphaera 

ASV_264 -3.13 1.07E-04 1.19E-03 Megasphaera 

ASV_251 -4.05 7.75E-09 3.55E-07 Megasphaera 

ASV_811 -4.06 8.50E-04 7.42E-03 Megasphaera 

ASV_187 -6.67 4.46E-10 4.08E-08 Olsenella 

ASV_85 -5.04 5.69E-05 6.94E-04 Prevotella 

ASV_17 -4.85 1.22E-03 9.72E-03 Pseudomonas 

ASV_216 -5.60 4.99E-03 2.85E-02 Pseudomonas 
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B.3 Figures 

 

Figure B.1. Volumetric production rate of total MCCAs, caproate, enanthate, and caprylate (a) 

acetate and butyrate (b) in the reactor over time. The dashed lines represent 2-BES addition. 

Chapter 2 reports the data in Figure 2.1a until Day 229. These data are repeated here for clarity.  

The volumetric production rates were determined by subtracting the influent concentration from 

the corresponding effluent concentration. 
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Figure B.2. Gibbs free energy of ethanol oxidation to acetate (EEO) reaction under different pH 

(H+ concentration) and temperature conditions assuming 1M of solute (reactant and product) 

concentration. *conditions used by Grootscholten et al. (2014) 
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Figure B.3. Daily production of gas showing its composition after 2-BES addition (represented by 

the dashed lines). Gas volumes were normalized to standard temperature (273K) and pressure (1 

atm) condition. 
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Figure B.4. Alpha diversity indices of the archaeal community based on 16S rRNA gene (a) and 

16S rRNA sequencing data (b) and of the bacterial community based on 16S rRNA gene (c) and 

16S rRNA sequencing data (d) before (blue) and after (red) the start of 2-BES addition on Day 

230. Significant difference is indicated by * (P<0.05), ** (P<0.01), and *** (P<0.001) based on 

the ANOVA analysis. 
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Figure B.5. Non-metric multidimensional scaling (NMDS) ordination plot based on Bray-Curtis 

dissimilarity index of the archaeal community at ASV level based on 16S rRNA gene (a) and 16S 

rRNA sequencing data (b) and of the bacterial community at ASV level based on 16S rRNA gene 

(c) and 16S rRNA sequencing data (d) before and after the start of 2-BES addition on Day 230. 
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Figure B.6. Relative abundance (a) and activity (b) of methanogens identified to the genus or 

family level in the reactor samples over time using OTU based clustering approach. The relative 

abundance and relative activity were determined as percentages normalized to the total number of 

16S rRNA gene sequences and 16S rRNA sequences, respectively. The red dashed lines represent 

start and end of wasting bioreactor content on Days 20 and 82, respectively, for controlling solids 

retention time and the black dashed lines represent 2-BES additions. 
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Figure B.7. Relative abundance (a) and activity (b) of methanogens OTUs in the reactor samples 

over time. The key OTUs discussed in the paper are labeled. The relative abundance and relative 

activity were determined as percentages normalized to the total number of 16S rRNA gene 

sequences and 16S rRNA sequences, respectively. The red dashed lines represent start and end of 

bioreactor content wasting on Days 20 and 82, respectively, for controlling solids retention time 

and the black dashed lines represent 2-BES additions. Chapter 2 report data until Day 229 in Figure 

S4. 
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Figure B.8. Gibbs free energy changes for hydrogenotrophic methanogenesis (Table B2, Eq B2) 

and homoacetogenesis (Table B2, Eq B6) reactions. The calculations were done using 

concentration of respective reactants and products in the reactor and other reactor conditions (pH 

5.5, 37oC). The vertical dashed lines represent 2-BES additions. 
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APPENDIX C  

 

Supplementary Information for Chapter 4 

Impact of Dynamic Membrane Development on Chain Elongation 

for Medium Chain Carboxylic Acid Production from Organic 

Waste Streams 

 

C.1 Pertraction system 

The pertraction system consisted of two 3M (Charlotte, NC, USA) hollow-fiber, hydrophobic 

membrane contactors containing forward and backward membranes with a pore size of 0.03 m 

and a total membrane surface area of 2.8 m2. The bioreactor permeate was recirculated through the 

shell side of the forward membrane contactor at a flow rate of 140 L d-1. A hydrophobic mineral 

oil solvent with 30 g L-1 trioctylphosphine oxide (TOPO), a commonly used extractant for 

carboxylic acids extraction (Sprakel and Schuur, 2019), was used for preferential extraction of 

longer chain hydrophobic medium chain carboxylic acids (MCCAs). The oil was recirculated 

continuously through the lumen of the forward and backward membrane modules at a flow rate of 

12 L d-1. An alkaline stripping solution was continuously recycled at 40 L d-1 through the shell 

side of the backward membrane contactor. The alkaline solution was made up of 0.3 M pH 9 buffer 

solution containing sodium tetraborate and boric acid. The pH of the stripping solution was 

maintained at pH 9 with automated addition of 1 M NaOH using a valve controlled by a pH 

controller/transmitter (Jenco ¼ DIN Panel Mount pH/ORP Controller/Transmitter 3676, JJS 

Technical Services, Schaumburg, IL). A pH gradient between the bioreactor permeate (pH 5.5) 

and the alkaline stripping solution (pH 9) maintained a concentration gradient of undissociated 

carboxylic acids creating a driving force for mass transfer of MCCAs across the membranes. In 
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the forward membrane, MCCAs were extracted into the mineral oil solvent and the undissociated 

MCCAs recovered in the solvent was transferred across the backward membrane contactor and 

finally accumulated in the alkaline extraction solution.  The shell side of both membranes was 

maintained at a higher pressure than the lumen side with the help of needle valves to maintain 

enough transmembrane pressure to prevent oil entrainment into the aqueous solutions.  

An intermediate vessel (extraction unit (EU) vessel, Figure C2) was placed between the bioreactor 

and forward membrane module to enable control of permeate recirculation through the forward 

membrane at a higher flow rate of 140 L d-1 independent of the permeate flow rate from the 

AnDMBR side. The pH of the permeate in the EU vessel was manually adjusted to 5.5. The EU 

was integrated with the AnDMBR system on Day 245 but was interrupted on Day270 due to 

difficulty in controlling constant volume in the EU vessel and was restarted again on Day 314. The 

EU operation was again stopped on Day 334 due to problems with the meshes. It was restarted on 

Day 380 with the same set-up except that the reactor permeate was recirculated between the 

AnDMBR and ultrafiltration unit continuously and a constant volume of permeate left the system 

(Figure C2).  

C.1.1  Trial I 

A comparison was done with and without TOPO (extractant) addition in the mineral oil (diluent, 

organic phase) in Trial I. A synthetic mixture containing ethanol and carboxylic acids including 

both short chain carboxylic acids (SCCAs, acetate, propionate, butyrate, and valerate at 

concentrations of 5000, 1000, 1500, and 500 mg L-1, respectively) and MCCAs (caproate, 

enanthate, and caprylate at concentrations of 2500, 100, and 300 mg L-1, respectively) simulating 

the bioreactor permeate in concentration and pH (5.5) was used as the feed solution. A 

conventional liquid-liquid extraction was carried out without membrane contactors where the 

synthetic feed solution and solvent were mixed and shaken thoroughly to reach equilibrium. 

Samples were taken every hour for a total of three hours and carboxylic acids concentrations were 

measured in the aqueous solution and the fraction of extracted acids was calculated. The 

distribution coefficients for different compounds were calculated as  

𝐾𝐷𝑖 =  
𝐶𝑖,𝑜𝑟𝑔

𝐶𝑖,𝑎𝑞∗
                      (C1) 
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Here, Ci,org and Ci,aq are the equilibrium concentration of component i in the organic phase (solvent) 

and the aqueous phase, respectively. 

Figure C3. shows that the fraction of MCCAs extracted to the organic phase is larger for the trial 

conducted with mixture of mineral oil and TOPO compared to the one without TOPO. The fraction 

of caproic acid increased from 73.1% to 96.4% due to the addition of TOPO. However, the 

difference was small for enanthic and caprylic acids. An extractant like TOPO enhances extraction 

efficiency because of stronger interaction with MCCAs due to complexation facilitated by stronger 

Van der Waals force and hydrogen bonding.(Sprakel and Schuur, 2019) The KDi values (Table 

C.2) for MCCAs are greater than 1 in the organic phase showing that they are preferentially present 

in the organic phase while SCCAs such as acetic acid and propionic acid prefer the aqueous phase 

(KDi < 1). It is also clear that the distribution coefficients increase when TOPO is added to the 

organic solvent. Higher distribution coefficients lead to a larger driving force for mass transfer of 

carboxylic acids from the aqueous to the organic phase and, therefore, improve the extraction. 

Therefore, it was decided to use a mixture of mineral oil and TOPO for MCCAs extraction. 

C.1.2  Trial II 

Trial II consisted of two sets of experiments where the first one was conducted using synthetic 

solution of SCCAs and MCCAs (similar composition as Trial I) and the second one used bioreactor 

effluent. The objective of Trial II was to examine the extraction efficiency of the LLX unit. The 

flow rates of aqueous feed solution, organic solvent, and alkaline stripping solution were set at 200 

L d-1, 20 L d-1 and 40 L d-1, respectively. The experiment was conducted semi-continuously for 78 

hours with periodic addition of MCCAs at 48 and 72 hours to mimic MCCAs production in the 

bioreactor. The concentrations of ethanol, SCCAs, and MCCAs were measured in the aqueous 

feed and stripping solutions during the experiments.  

To determine mass transfer coefficient (k), mass balance was done as shown below: 

𝑑𝑀𝑎

𝑑𝑡
=  𝑉𝑎

𝑑𝐶𝑎

𝑑𝑡
= −𝑘𝐴∆𝐶 =  −𝑘𝐴(𝐶𝑎 − 𝐶𝑎

∗)                  (C2) 

The depletion of carboxylic acids (dMa/dt [g hr-1]) from the aqueous feed solution of volume (Va 

[m3]) is equal to the mass transfer rate, which is proportional to the mass transfer coefficient k [m 
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hr-1], the membrane surface area A [m2] and the driving force, i.e., the concentration difference 

between the aqueous feed concentration Ca [g m-3] and the equilibrium concentration Ca
* [g m-3]. 

The equilibrium aqueous concentration Ca
* can be written as 

𝐶𝑎
∗ =  

𝐶𝑜

𝐾𝐷
                     (C3) 

Here, Co is the concentration in the organic phase and KD is the distribution coefficient. Mass 

balance was done as follows.  

𝑉𝑎(𝐶𝑎
𝑜 − 𝐶𝑎) = 𝑉𝑎(𝐶𝑜 − 𝐶𝑜

0)                   (C4) 

with Vo [m3] the organic phase volume and Co
0 = 0 and Ca

0 the initial concentrations in the organic 

phase and feed phase, respectively. After rearranging and integrating the equations, the equation 

for a normalized concentration function CN was plotted logarithmically. The slope of this curve 

was equal to 
𝑘𝐴

𝑉𝑎
 (𝑉 + 1) with V = 

𝑉𝑎

𝑉𝑜 𝐾𝐷
 and the value of k can be calculated. 

𝐶𝑁 =  
𝐶𝑎(𝑉+1)−𝑉𝐶𝑎

𝑜

𝐶𝑎
𝑜 = exp (−

𝑘𝐴

𝑉𝑎
(𝑉 + 1)𝑡)                  (C5) 

The concentration of SCCAs remained relatively constant in the aqueous feed solution (Figure 

C.3a) while the MCCAs increased in the stripping solution with time (Figure C.3b) showing the 

effectiveness of the LLX unit to separate MCCAs from a synthetic mixture of SCCAs and MCCAs. 

At the end of 78 hours, 52%, 60.9%, and 61.5% of total caproic, enanthic, and caprylic acids were 

recovered in the stripping solution. The mass transfer coefficients for caproic, enanthic, and 

caprylic acids were 2.46, 6.62, and 11.90 mm/d, respectively showing that the extraction rate 

increases with the carbon chain length of the carboxylic acids. The longer the hydrocarbon tail of 

the carboxylic acids, the higher is its hydrophobicity, which leads to stronger Van der Waals force 

between the MCCAs and the organic solvent. A similar experiment was conducted with a reactor 

effluent from another operational chain elongation reactor (Chapter 2) as the feed solution to 

confirm the effectiveness of LLX unit with real waste stream. 46.92%, 51.43%, and 48.36% of 

total caproate, enanthate, and caprylate were recovered in the stripping solution at the end of a 30-
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hour experiment confirming that the LLX unit could be integrated with a bioreactor system for 

MCCAs extraction. 

C.2 Calculations 

The soluble chemical oxygen demand (sCOD) of the influent (mixture of ethanol rich waste 

beer+SCCAs rich permeate, g sCOD L-1), flow rate of the influent (L d-1), and working volume of 

the bioreactor (L) were taken into account to calculate organic loading rate (g sCOD L-1 d-1). The 

volumetric production rate (mmole L-1 d-1) of MCCAs was determined as the permeate MCCAs 

concentration (mmole L-1) divided by corresponding HRT (d, working volume (L) divided by 

permeate flow rate (L d-1)). Net permeate MCCAs concentration was used for the volumetric 

production rate calculation by subtracting the concentration of the respective compound already 

present in the influent from the gross values. The product yield was calculated by dividing sCOD 

of MCCAs produced by fermentable influent sCOD (sCOD of MCCAs already present in the 

influent was subtracted from the measured sCOD in the influent).   

The volumetric production rate of MCCAs, rn (mmole L-1 d-1) after integration with the extraction 

unit (EU) was determined by using mass balance approach given below 

𝑟𝑛 =  
𝑚𝑝𝑟𝑜𝑑 1,𝑛   +𝑚𝑎𝑐𝑐 2,𝑛  +𝑚𝑎𝑐𝑐 3,𝑛  +𝑚𝑎𝑐𝑐 4,𝑛  

𝑉𝑅
                 (C6) 

𝑚𝑝𝑟𝑜𝑑 1,𝑛   =  𝐶𝑝,𝑛 × 𝑉𝑝,𝑛 + 𝐶𝑀𝐿,𝑛 × 𝑉𝑀𝐿,𝑛 − 𝐶𝑖,𝑛 × 𝑉𝑖,𝑛− 𝐶𝐸𝑈 𝑝𝑒𝑟𝑚,𝑛 × 𝑉𝑟𝑒𝑐𝑖𝑟𝑐,𝑛 

𝑚𝑎𝑐𝑐 2,𝑛  =  𝐶𝑝,𝑛 × 𝑉𝑝,𝑛−𝐶𝐸𝑈 𝑝𝑒𝑟𝑚,𝑛 × 𝑉𝑟𝑒𝑐𝑖𝑟𝑐,𝑛−𝐶𝐸𝑈 𝑝𝑒𝑟𝑚,𝑛 × 𝑉𝑜𝑢𝑡,𝑛   

𝑚𝑎𝑐𝑐 3,𝑛  = 0 

𝑚𝑎𝑐𝑐 4,𝑛  =  
𝐶𝑏,𝑛×𝑉𝑏,𝑛−𝐶𝑏,𝑚×𝑉𝑏,𝑚

𝑛−𝑚
  

Here, 

mprod 1,n = amount of MCCAs produced by AnDMBR on day n [mmole d-1] 

macc 2,n  = amount of MCCAs accumulated in the EU perm vessel on day n [mmole d-1] 
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macc 3,n  = amount of MCCAs accumulated in the solvent vessel on day n [mmole d-1] 

macc 4,n  = amount of MCCAs accumulated in the stripping buffer on day n [mmole d-1] 

Cp,n  = amount of MCCAs in AnDMBR permeate on day n [mmole d-1] 

CML,n  = amount of MCCAs in influent on day n [mmole d-1] 

Ci,n  = amount of MCCAs in AnDMBR mixed liquor on day n [mmole d-1] 

CEU perm,n = amount of MCCAs in EU permeate vessel on day n [mmole d-1] 

Vp,n  = volume of permeate leaving the system on day n [L] 

VML,n  = volume of mixed liquor wasted on day n [L] 

Vi,n  = volume of influent added to AnDMBR on day n [L] 

Vrecirc,n  = volume of permeate recirculated on day n [L] 

Vout,n  = volume of permeate leaving the EU perm vessel on day n [L] 

VR  = working volume of AnDMBR [L] 

Cb,n,Cb,m  = amount of MCCAs in stripping buffer on days n and m [mmole d-1] 

Vb,n,Vb,m = volume of stripping buffer solution on days n and m [L] 

Extraction efficiency was calculated using equation C7. The amount of MCCAs accumulated in 

the buffer solution over time with respect to the amount of MCCAs added to the EU perm vessel 

from the bioreactor was considered for the calculation.      

𝜂𝑛= 
𝑚𝑏,𝑛− 𝑚𝑏,𝑚

∑ 𝑚𝑝𝑒𝑟𝑚 𝑎𝑑𝑑𝑒𝑑,𝑖
𝑛−1
𝑖=𝑚

 ×  100                   (C7) 

𝜂𝑛= 

𝐶𝑏,𝑛 × 𝑉𝑏,𝑛 − 𝐶𝑏,𝑚 × 𝑉𝑏,𝑚

∑ 𝐶𝑝𝑒𝑟𝑚,𝑖
𝑛−1
𝑖=𝑚  × 𝑉𝑝𝑒𝑟𝑚 𝑎𝑑𝑑𝑒𝑑,𝑖

 ×  100 

Here, 
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nn  = extraction efficiency on day n [%] 

mb,n, mb,m = mass of MCCAs extracted in stripping buffer solution on day n and m 

respectively [mg]  

mperm added,I = mass of MCCAs added to EU perm vessel [mg] 

Cb,n, Cb,m = concentration of MCCAs in the stripping buffer solution on day n and m 

respectively [mg L-1]  

Vb,n, Vb,m = volume of stripping buffer solution on day n and m respectively [L] 

Cperm,i  = concentration of MCCAs in EU perm vessel on day i [mg L-1] 

Vperm added,i = volume of AnMBR permeate added into the EU perm vessel on day i [L] 

C.3 Sequencing data processing 

The sequences were processed with DADA2 v1.16 (Callahan et al., 2016) in R (version 3.6.1) 

according to the online pipeline tutorial. The forward and reverse reads were truncated at positions 

240 and 200 bp, respectively, based on the read quality profiles and the expected error rate was set 

to 2. An error model for the data was generated followed by dereplication of the sequences to 

combine all identical sequences into unique sequences. The core sample inference algorithm was 

applied to infer true biological sequences with the pool=TRUE option to increase sensitivity to 

distinguish between sequencing error and real biological variation in the amplicon sequences that 

may be present at very low read counts across multiple samples thus allowing detection of rare 

taxa. The paired-end reads were merged and non-target length sequences were removed from the 

sequence table followed by chimeras removal. Finally, taxonomy was assigned with the naïve 

Bayesian Classifier method within the DADA2 package using the Ribosomal Database Project 

(RDP, Version 16).  
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C.4 Tables 

 

Table C.1. Chemical composition of inoculum and substrate 

Parameter Unit 

Rumen 

Content 

(Day 0) 

Rumen 

Content 

(Day 175) 

Chain Elongation 

Inoculum 

(Day 175) 

Waste Beer 

(Batch 2) 

Waste Beer 

(Batch 3) 

Waste Beer 

(Batch 4) 

SCCA rich 

permeate 

TS g L-1 23.2 ± 0.1 45.2 ± 0.8  20.2 ± 0.2 30.0 ± 0.2 52.2 ± 0.1 55.1 ± 0.1 N.A. 

VS g L-1 14.0 ± 0.0 33.8 ± 0.6 12.6 ± 0.3 27.8 ± 0.1 48.6 ± 0.1 52.3 ± 0.2 N.A. 

TSS g L-1 6.0 ± 0.3 N.A. 11.3 ± 0.5 1.3 ± 0.1 1.7 ± 0.0 1.3 ± 0.0 N.A. 

VSS g L-1 4.5 ± 0.1 N.A. 9.5 ± 0.1 1.2 ± 0.1 1.6 ± 0.0 1.3 ± 0.0 N.A. 

sCOD g L-1 15.3 ± 0.1 N.A. N.A. 130.2 ± 0.1 177.0 ± 0.8 162.1 ± 9.0 N.A. 

Ethanol mM 0.0 ± 0.0 N.A. 17.4 ± 0.2 1024.2 ± 4.6 1147.5 ± 5.9 1128.5 ± 7.0 2.5 ± 3.0 

SCCAs mM 80.5 ± 0.3 N.A. 141.6 ± 0.2 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 136.3 ± 100.9 

MCCAs mM 0.0 ± 0.0 N.A. 19.8 ± 0.4 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 4.4 ± 4.9 

Lactate mM N.A. N.A. N.A. N.A. N.A. 20.2 ± 0.6  N.A. 

    Values are reported as means with standard deviations of technical or biological replicates. Permeate values are averaged over 435 days. SCCAs include  

    n-acetate, n-propionate, n- and iso-butyrate, and n- and iso-valerate. MCCAs include n-caproate, n-enanthate, and n-caprylate. Waste Beer Batch 2, 3, and  

    4 were used from Days 1- 72, Days 73-287, and Days 288-435 respectively. N.A. stands for not available. 
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Table C.2. Distribution coefficients between aqueous and organic 

phases for SCCAs and MCCAs with and without TOPO 

Compound 
Distribution coefficient (KDi) 

without TOPO with TOPO 

Acetic acid 0.02 0.06 

Propionic acid 0.04 0.32 

Butyric acid 0.18 1.36 

Valeric acid 0.64 6.28 

Caproic acid 2.71 26.58 

Enanthic acid 10.09 44.50 

Caprylic acid 25.40 91.12 
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Table C.3. Biomass sampling points (days of reactor operation) from inoculum, bad beer, influent, reactor, and 

biofilm samples 

Samples 
DNA RNA 

Days 

Rumen inoculum 0, 175 0, 175 

Chain elongation biomass 175 175 

Influent and Bioreactor 12, 27, 41, 89, 118, 145, 166, 181, 201, 

215, 222, 243, 271, 292, 320, 348, 365, 

383, 412, 435 

12, 27, 41, 89, 118, 145, 166, 181, 

201, 215, 222, 243, 271, 320, 365, 

383, 412, 435 

Biofilm 41, 89, 145, 222, 271, 320, 365, 383, 

412, 435 

41, 89, 145, 222, 271, 320, 365, 

383, 412, 435 
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C.5 Figures 

 

Figure C.1. Hydraulic retention time (HRT) with corresponding organic loading rate (OLR) over 

time. The vertical dashed lines represent changes in HRT on Days 130, 210, and 364. 
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Figure C.2. Comparison of fraction of caproate, enanthate, and caprylate extracted during liquid-

liquid extraction to the solvent (organic phase) with and without extractant TOPO. 
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Figure C.3. Concentration profiles of SCCAs (acetate, propionate, butyrate, and valerate) in the 

aqueous feed solution (a) and MCCAs (caproate, enanthate, and caprylate) in the stripping 

solution. The vertical red lines represent addition of MCCAs. 
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Figure C.4. Dynamic membrane formation over time 

  

Day 41 Day 80 Day 121 Day 222

Day 320 Day 357 Day 412 Day 435

Day 0
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Figure C.5. Total suspended solids (TSS) removal over time. The vertical red dashed line 

represents a switch to the continuous filtration mode on Day 50 and the vertical black dashed lines 

represent different experimental phases. 
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Figure C.6. Turbidity measured in the permeate samples over time. The vertical red dashed line 

represents a switch to the continuous filtration mode on Day 50 and the vertical black dashed lines 

represent different experimental phases.  
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Figure C.7 Transmembrane pressure (TMP) profiles of the three meshes, F1, F2, and F3 over time 

versus the TSS concentration in the bioreactor. The TMP dropped whenever the meshes were 

replaced or flushed with water. The vertical dashed lines represent different experimental phases. 
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Figure C.8. Relative abundance of 15 most abundant microbial groups identified to the genus or 

family level in the bioreactor samples over time. The relative abundance was determined as 

percentages normalized to the total number of 16S rRNA gene sequences. The top 15 microbial 

groups represent 74.6-97.9% of the total relative abundance. 
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Figure C.9. Relative activity of 15 most abundant microbial groups identified to the genus or 

family level in the bioreactor samples over time. The relative activity was determined as 

percentages normalized to the total number of 16S rRNA sequences. The top 15 microbial groups 

represent 76.7-99.5% of the total relative activity. 
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Figure C.10. Non-metric multidimensional scaling (NMDS) ordination analysis at ASV level 

based on Bray-Curtis dissimilarity index using 16S rRNA gene sequencing data in the rumen 

inoculum, chain elongation inoculum (CE_175), influent, suspended biomass, and biofilm 

samples. The numbers correspond to sampling time points. 
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Figure C.11. Relative abundance of the microbial groups present at relative abundance greater than 

1% in at least 50% of the samples (n=10 in each group) classified to the genus or family level in 

the biofilm and suspended biomass samples. 
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APPENDIX D  

 

Supplementary Information for Chapter 5 

Environmental Life Cycle Assessment of Caproic Acid Recovery 

from Brewery Waste Streams 

 

D.1 Detailed description of the BW-CA system 

A two-phase anaerobic digester system was modeled for caproic acid production from brewery 

waste (BW-CA) based on the two-phase lab-scale anaerobic bioreactor system, acidogenic (Fonoll 

et al., 2019) and chain elongation (Chapter 4) bioreactors operated at the University of Michigan. 

The amount of spent grain needed was determined based on the concentration of short chain 

carboxylic acids (SCCAs) produced during hydrolysis and acidogenesis of spent grain, volume of 

waste beer generated at the Jolly Pumpkin brewery (a midsize craft brewery in Dexter, MI, USA), 

and the concentration of ethanol in the waste beer. The chain elongation stoichiometric equations 

were used to determine the ratio in which ethanol and SCCAs react (Angenent et al., 2016). Jolly 

Pumpkin brewery generates around 162 L of waste beer per day (personal communication with 

Doug Knox, sustainability manager of Jolly Pumpkin brewery). The two-phase digester system 

was scaled up linearly to treat 162 L of waste beer and 37.5 kg of spent grain. The overview of 

model process parameters including the input and output for the baseline scenario is given in Table 

D.1. The major unit processes are described below. 

Acidogenic digester 

Brewery spent grain was used as input for the first phase acidogenic digester to produce SCCAs. 

The operational parameters and SCCAs concentration and yield (g chemical oxygen demand 
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(COD)SCCAs per gCODfed) was based on the lab-scale system operated at the University of 

Michigan and the study conducted by Liang and Wan (2015). The digester was operated at a 

hydraulic retention time (HRT) of 10 days, temperature 39oC, and pH of 6.3 (adjusted with NaOH 

dosing). The SCCAs rich permeate was sent to the second phase chain elongation digester for 

caproic acid production.  

Chain elongation digester 

The chain elongation digester was fed mixture of SCCAs rich permeate from the acidogenic 

digester and waste beer. Waste beer contains 4-8% of ethanol depending on the type of the beer. 

It was assumed that the waste beer contained 6% (60 g L-1) of ethanol. The digester was operated 

at an HRT of 3 days, temperature 37oC, and pH of 5.5. NaOH supplementation maintained a pH 

at 5.5 in the digester. Both the acidogenic and chain elongation digester were configured as an 

anaerobic dynamic membrane bioreactor (AnDMBR) equipped with stainless steel meshes. The 

meshes served as support structure for the development of the dynamic membrane layer, which 

was responsible for efficient filtration to produce low solids containing permeate. The biogas 

produced from both digesters was flared.  

Liquid-liquid extraction 

The liquid-liquid extraction (LLX) unit consisted of a hollow-fiber, hydrophobic membrane 

contactor (Liqui-Cel EXF 10X28 Series) from 3M (Charlotte, NC, USA). A hydrophobic mineral 

oil solvent with 30 g L-1 trioctylphosphine oxide (TOPO) was used for the preferential extraction 

of hydrophobic caproic acid. The life cycle impact data for TOPO was not available in the 

Ecoinvent database. Hence, emissions for trimethylamine, a closer derivative of tri-octylamine, a 

commonly used extractant for carboxylic acids(Sprakel and Schuur, 2019), was used instead.  

Distillation 

Caproic acid extracted into the mineral oil+TOPO solvent was sent to a distillation system to 

recover caproic acid in high purity (Saboe et al., 2018). The solvent was recycled back to the LLX 

unit after the first solvent distillation step while caproic acid was recovered in the second 

distillation column. It was assumed that 95% of the solvent was replenished while the remaining 

5% was lost and sent to the municipal wastewater treatment plant.  
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Wastewater treatment 

The wastewater generated from the BW-CA process was discharged directly to a municipal 

wastewater treatment plant and the emissions during the treatment process were calculated using 

the Ecoinvent database. Emissions can vary depending on the process undergone, influent 

characteristics, and the effluent discharge limit, however, this was outside the scope of this paper.  

Digestate handling  

The digestate disposal was modeled for 55% land application, 25% landfill, and 20% incineration. 

Centrifuge dewatering was performed to thicken the digestate with the addition of polyacrylamide 

polymer (5.5 kg per ton of dry solids) (Hospido et al., 2005). The digestate was transported and 

distributed to a local farm 10 miles away from the brewery for land application. For landfilling 

and incineration, the digestate was assumed to be transported to a landfill and an incinerator 14 

miles and 40 miles away from the brewery, respectively. The transportation distances were based 

on the closest farm, landfill, and incinerator located from the Jolly Pumpkin Brewery. The 

proximity of agricultural land, landfill, and incinerator will affect the transportation emission. The 

ash produced after incineration was disposed to the landfill. For the land application, the digestate 

was directly applied to the land as Class B biosolids without lime stabilization as it was coming 

from food grade digesters and the digesters were also operated at mesophilic temperature and long 

retention time (Pennington, 2018). Fecal coliform in the brewery digestate treated under 

mesophilic temperature (31-37oC, similar to this study) has been found to be 25 Most Probable 

Number (MPN) g-1 dry weight digestate, which is below the U.S. EPA limit of 2.0E+06 MPN g-1 

dry weight for Class B biosolids (Babel and Pecharaply, 2009; U.S EPA, 1994). Heavy metals 

released from the land application of sewage sludge have been a concern (Hospido et al., 2005); 

however, the amount of heavy metals in brewery sludge after digestion was found to be 

comparatively lower (Babel and Pecharaply, 2009), hence impacts due to digestate application 

related to heavy metals were also not considered in this study. Nutrients in the form of nitrogen 

and phosphorus present in land-applied digestate were assumed to offset mineral fertilizer use. The 

nitrogen and phosphorus concentrations in the digested brewery sludge were taken from the 

literature (Babel and Pecharaply, 2009). It was assumed that 50% of the total N as NH3-N and 70% 

of the total P present in the digestate were bioavailable for plant uptake (Lundin et al., 2000). 
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Diesel consumption during digestate land application was assumed to be 0.73 kg ton-1 of digestate 

(Hospido et al., 2005). Impact data for the use of nitrogen- and phosphorus-based synthetic 

fertilizer was obtained from the Ecoinvent database. 

D.2 Material, chemical, and energy requirement 

Chemical consumption 

NaOH consumption by both digesters was calculated using lab-based data and corroborated with 

the theoretical calculation. The Henderson Hasselbalch equation was used to calculate the number 

of moles of undissociated carboxylic acids produced under the digester pH (6.3 and 5.5) 

conditions. It was assumed that the same number of moles of NaOH (OH-) was required to 

neutralize the acid produced. This calculation did not consider the buffering capacity of the system.  

Membrane material and cleaning 

The membrane material consumption for the two-phase digesters and LLX unit and water and 

chemicals required for membrane cleaning were included in the life cycle inventory. The 

membrane material weight was calculated based on the dimension and density of the membrane 

components. Stainless steel was used to make LLX membrane housing and the support material 

for the dynamic membrane formation in the first and second phase digesters. The hollow fiber 

membrane used in the LLX unit for caproic acid extraction was made up of polypropylene. The 

membranes were cleaned with NaOH solution once a month following the manufacturer’s 

instructions. A lifetime of 5 years, as suggested by 3M, was used for the hollow fiber membrane. 

The stainless steel meshes used in the digesters were assumed to be replaced every two and a half 

years. However, the impact of membrane lifetime must be evaluated carefully and these 

assumptions should be verified once AnDMBRs are implemented on a full scale.   

Energy calculations 

Natural gas was combusted in a boiler for steam generation to heat the two-phase digesters and the 

distillation column. Brewery wastewater has temperature ranging from 25oC to 42oC 

(Chaitanyakumar et al., 2011). A temperature of 25oC was used for the baseline scenario. Heat 

requirement was estimated based on the mass of liquid to be heated, specific heat capacity of the 
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liquid, and temperature of the brewery wastewater (25oC) and the acidogenic and chain elongation 

digesters. The specific heat capacity of the mixture of acidogenic permeate and waste beer fed into 

the chain elongation digester was assumed to be similar to water (4.182 KJ kg-1 oC-1). The specific 

heat capacity of 2.207 KJ kg-1 oC-1 was used for the spent grain. The amount of natural gas needed 

was calculated based on the amount of heat required and the calorific value of natural gas (3.66E-

02 MJ L-1). The heat loss from the digesters was not considered. For the distillation column, the 

energy input of 2.6 MJ kg-1 of caproic acid produced was used based on the Saboe et al. (2018) 

study. The emission due to natural gas extraction and burning was included by deriving the impact 

data from the Ecoinvent database. Electrical energy requirement for centrifuge dewatering was 

assumed to be 49.09 kWh ton-1 of dry solids (Hospido et al., 2005). Pumping power requirement 

was calculated using equation 3.2 from Judd (2010). The mechanical mixing energy requirement 

of 8 kW/1000 m3 was used (Grady Jr et al., 2011). Energy input using average mid-west electricity 

production was used for BW-CA system.  

D.3 Caproic acid production from PKO-CA 

In the reference system (PKO-CA), caproic acid was recovered from palm kernel oil (PKO), which 

was extracted from palm kernel, a byproduct produced during crude palm oil (CPO) production. 

The life cycle inventory (Table D.3) was built from an LCA study conducted by the Malaysian 

Palm Oil Board (MPOB) (Choo et al., 2011; Muhammad et al., 2010; Subramaniam et al., 2010a, 

2010b; Zulkifli et al., 2010). During the life cycle of PKO production, palm oil seedlings were first 

grown in a nursery to minimize the immature period in the plantation field and to ensure a high 

early yield (Choo et al., 2011; Muhammad et al., 2010). The 12-15 months old seedlings were then 

cultivated in the plantations for fresh fruit branches (FFB) production. In the MPOB study, it was 

assumed that FFB was produced on land previously used for palm oil cultivation without 

displacing prior crop production to other areas, hence impacts due to land use effect were excluded 

(Zulkifli et al., 2010). FFB was transported to the palm oil mill for further processing. CPO was 

obtained from the mesocarp and PKO was obtained from the palm kernel present inside the nut of 

the FFB (Subramaniam et al., 2010a). Mass-based allocation was used to allocate the impacts of 

the seedling and plantation stages, as shown in Figure D.1. The palm kernels were transported to 

kernel crushing plants for PKO production (Subramaniam et al., 2010b). The kernel crushing plant 

was assumed to be located near the palm oil mill and used electricity generated at the palm oil 
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mill. PKO contains 0.5 % caproic acid by weight (Anneken et al., 2012). It was assumed that 100% 

of caproic acid present in the PKO was recovered. The shell after nut cracking and pressed 

mesocarp fiber left after mechanical pressing of palm fruits were used as boiler fuel to produce 

steam at the palm oil mill. The steam thus produced was used to run a turbine for electricity 

generation (Subramaniam et al., 2010a). The electricity generated on-site met almost 89% of the 

total electricity demands of the PKO-CA system while the remaining electricity was derived from 

the local grid. Diesel and electricity required for machinery, farm equipment, water consumption, 

and emissions due to fertilizer and pesticide use were considered during the life cycle impact 

assessment of PKO-CA system. The sea freight distance was calculated assuming transportation 

from Kuantan Port, Malaysia to Michigan City Harbor, U.S. Alternately, LCIA data for production 

of PKO and fatty acid production from vegetable oil was also derived from Ecoinvent database to 

compare with the results based on the MPOB study. Fatty acid and vegetable oil were used as 

substitutes for caproic acid and PKO, respectively.  

D.4 Sensitivity Analysis 

NaOH consumption 

Excessive ethanol oxidation to acetate (EEO) leads to high base consumption due to production of 

acetic acid. A previous study demonstrated that operation at longer HRT can control EEO and 

decrease NaOH consumption from 0.67 kg NaOH per kg of caproic acid at HRT 1 day to 0.32 kg 

NaOH per kg of caproic acid at HRT of 4 days (Roghair et al., 2018). Alternate data for NaOH 

consumption was derived from this study for the sensitivity analysis. Operation at longer retention 

time increases the footprint of the system; however, this was not considered in the current analysis. 

Biogas capture 

Biogas was assumed to be combusted on-site in a boiler for heat generation that offsets the use of 

natural gas to meet the heating demand. The remaining heat was generated by using natural gas. 

Calorific value of biogas i.e 0.021 MJ L-1 was used to calculate the amount of heat generated from 

the biogas combustion. The CO2 released from the biogas burning was excluded as biogenic CO2. 

100% land application 
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In this scenario, all the digestate produced in the BW-CA system was diverted towards land 

application. 
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D.5 Tables 

 

Table D.1 Key process parameters for the production of one kg of caproic acid in the BW-CA system 

Unit Process Parameters Value Unit  

Acidogenic 

digester 

Hydraulic retention time 10 days 

Temperature 39 oC 

pH 6.3  

Dilution water 2.3 L kg-1 spent grain 

NaOH consumed 6.0E-03 g NaOH gCOD-1
fed 

SCCAs yield* 0.25 gCODSCCAs gCOD-1
fed 

Biogas production 1.2E-02 L gCOD-1
fed 

Digestate produced 0.11 kg digestate kg-1 spent grain 

SCCAs rich permeate produced 0.60 kg permeate kg-1 spent grain 

Chain elongation 

digester 

Hydraulic retention time 3 days 

Temperature 37 oC 

pH 5.5  

NaOH consumed 0.149 g NaOH gCOD-1
fed 

Caproic acid yield 0.3 gCOD gCOD-1
fed 

Biogas production 2.1E-02 L gCOD-1
fed 

Digestate produced 3.0E-03 kg digestate gCOD-1
fed 

Permeate produced 8.1E-03 kg permeate gCOD-1
fed 

*SCCAs yield include C2, C3, C4, and C5     
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Table D.2. Life cycle inventory of BW-CA for one kg of caproic 

acid for the baseline scenario. 

Inputs/Outputs Unit Values 

Electricity kWh 0.2 

Water L 3.6E+01 

NaOH kg 1.3 

Trioctylphosphine oxide kg 3.5E-04 

White mineral oil  kg 9.8E-03 

Natural gas MJ 9.2 

Diesel MJ 3.1E-03 

Stainless steel (membrane) kg 2.0E-01 

Polypropylene (membrane) kg 1.2E-02 

Polyacrylamide kg 9.6E-04 

Digestate kg 2.8E+01 

Wastewater L 6.0E+01 

Transportation tkm 5.5E-03 
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Table D.3. Life cycle inventory of PKO-CA for 1 kg of caproic acid. 

The inventory data was derived from different literature studies* 

Inputs/Outputs Unit Values 

Electricity kWh 2.5 

Water L 8.0E+02 

Diesel MJ 2.2E+01 

Natural gas MJ 2.6 

Transportation tkm 2.7E+01 

Fertilizer kg 4.5 

Pesticide kg 8.7E-05 

Polyethylene kg 1.1E-03 

*(Choo et al., 2011; Muhammad et al., 2010; Subramaniam et al., 

2010a, 2010b; Zulkifli et al., 2010) 
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Table D.4. Life cycle impact data derived from Ecoinvent database for different activities used for BW-CA and PKO-CA systems 

Activity Ecoinvent item Unit 

Electricity for mixing, pumping, dewatering market for electricity, high voltage, production mix [MRO, US only] kWh 

Water consumption in the acidogenic digester 
Water, deionised, from tap water, at user {RoW}| market for | Alloc Def, 

Results 
L 

Extraction of natural gas (offset by biogas) Market for natural gas, high pressure [RoW] m3 

Heat from natural gas (offset by biogas) Heat production, natural gas, at industrial furnace >100kW [RoW] MJ 

NaOH for pH control in the digesters Sodium hydroxide to generic market for neutralising agent, [GLO]) kg 

Digester Membrane material (mesh) Market for wire drawing, steel [GLO] kg 

Digester Membrane material (housing) Market for metal working, average for steel product manufacturing [GLO] kg 

Extraction unit hollow fiber membrane material Market for polypropylene granulate [GLO] kg 

Wastewater treatment at WWTP 
Wastewater, from residence {RoW}| treatment of, capacity 1.1E10l/year | 

Alloc Def, U 
m3 

Triethyl amine (TOPO substitute) as extractant Market for triethyl amine [GLO] kg 

Mineral oil as diluent Market for WASTE mineral oil [RoW] kg 

Transportation Transport, freight, light commercial vehicle [RoW] metric ton km 

Polymer for thickening Market for polyacrylamide [GLO] kg 

Digestate application Market for diesel, burned in agricultural machinery [GLO] MJ 

N fertilizer offset Market for nitrogen fertilizer, as N [GLO] kg 

P fertilizer offset Market for Phosphate fertiliser, as P2O5 [GLO]) kg 

Landfill disposal Treatment of Municipal Solid waste, sanitary landfill [RoW] kg 

Incineration Treatment of digester sludge, municipal incineration [GLO] kg 

PKO-CA    

Electricity requirement Market for electricity, high voltage [MY] MJ 

K fertilizer application Market for potassium fertiliser, as K2O [GLO] kg 

Pesticide application Market for [thio]carbamate-compound [GLO] kg 

Pesticide application Market for pyrethroid-compound [GLO] kg 
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Pesticide application Market for organophosphorus-compound, unspecified [GLO] kg 

Pesticide application Market for pesticide, unspecified [GLO] kg 

 Market for urea, as N [GLO] kg 

Pesticide application Market for glyphosate [GLO] kg 

Polybags for plantation stage Market for polyethylene, high density, Granulate [GLO] kg 

Transportation from Malaysia to the U.S. Marker for transport, freight, sea, transoceanic ship [GLO] metric ton km 

Animal feed offset with spent grain Market for maize silage [GLO] kg 

 Ethanol production from maize [RoW] kg 

 
Market for ethanol, without water, in 99.7% solution state, from ethylene 

[GLO] 
kg 

 Ethanol production from grass [RoW] kg 
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Table D.5. Alternate scenarios modeled for sensitivity analysis  

Parameter Description Baseline 

Digestate handling 100% land application 
55% land application, 25% 

landfill, and 20% incineration 

Source of heating Biogas combustion for heat generation  Natural gas  

Lower NaOH consumption 0.32 kg NaOH per kg of caproic acid  
1.32 kg NaOH per kg of caproic 

acid 
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Table D.6. Total life cycle impacts calculated per functional unit for PKO-CA system 

Unit Process 

Global 

Warming 
Acidification Carcinogenics 

Non-

Carcinogenics 

Respiratory 

Effects 
Eutrophication 

Ozone 

Depletion 
Ecotoxicity 

Photochemical 

Oxidation 

kg CO2-eq 
moles of H+-

eq 

kg benzene-

eq 
kg toluene-eq kg PM2.5-eq kg N 

kg CFC-11-

eq 

kg 2,4-D 

eq 
kg NOx-Eq 

Electricity 7.3 1.7 7.73E-03 13.59 1.66E-02 7.64E-04 1.89E-07 1.74 1.14E-02 

Diesel 4.4 1.8 1.54E-02 33.51 9.66E-03 1.83E-03 4.58E-07 5.26 2.61E-02 

Natural gas 2.0E-01 4.6E-02 9.27E-05 5.46E-01 2.18E-04 9.62E-06 1.90E-08 1.13E-02 1.15E-04 

Water 1.4 3.8E-01 4.24E-03  7.89 3.61E-03  2.31E-04  3.55E-07  4.62E-01  3.10E-02  

Transportation 1.4 5.6E-01 4.3E-03 6.4 2.7E-03 7.2E-04 2.2E-07 3.7E-01 8.7E-03 

Fertilizer 48.5 10.5 1.36E-01 3.55E+02 3.38E-02 13.37 2.24E-06 11.91 9.09E-02 

Pesticide 6.0E-04 5.2E-04 3.55E-06  9.76E-03  2.78E-06  2.21E-06  1.23E-10  1.80E-03  1.65E-06  

Polyvinylchloride 1.9E-03 5.3E-04 1.03E-04 1.14E-01 2.83E-06 2.65E-07 1.62E-11 1.03E-04 3.81E-06 

Polyethylene bag 2.2E-03  4.1E-04  2.23E-07  4.55E-03  1.59E-06  2.31E-07  1.61E-11 4.49E-05 4.44E-06 

Total 6.3E+01 1.5E+01 1.7E-01   4.2E+02 6.7E-02  1.3E+01 3.5E-06  2.0E+01  1.7E-01  
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Table D.7. Comparison of total life cycle impacts of BW-CA including various scenarios and PKO-CA 

Impact categories Unit 
BW-CA 

PKO-CA 
(baseline*) 100% land application biogas capture, 25oC lower NaOH 

Global warming kg CO2-eq 4.5 4.4 3.9 3.2 6.3E+01 

Acidification moles of H+-eq 2.4 2.4 2.3 2.1 1.5E+01 

Carcinogenics kg benzene-eq 1.4E-02 1.4E-02 1.4E-02 9.4E-03 1.7E-01 

Non-carcinogenics kg toluene-eq 1.2E+02 1.2E+02 1.2E+02 1.1E+02 4.2E+02 

Respiratory effects kg PM2.5-eq 8.1E-03 8.2E-03 7.5E-03 4.8E-03 6.7E-02 

Eutrophication kg N 4.1E-03 -2.5E-03 4.1E-03 3.8E-03 1.3E+01 

Ozone depletion kg CFC-11-eq 1.1E-06 1.1E-06 1.1E-06 4.1E-07 3.5E-06 

Ecotoxicity kg 2,4-D eq 8.3 8.3 8.3 7.8 2.0E+01 

Photochemical oxidation kg NOx-eq 1.4E-02 1.4E-02 1.3E-02 1.1E-02 1.7E-01 
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D.6 Figures 

 

Figure D.1. Processes involved in production of one kg of caproic acid from palm kernel oil shown 

with mass-based allocation 
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