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Abstract 

 

This dissertation focuses on the synthesis of a decision-making system for Automated 

Vehicles (AVs), and then evaluates the safety and robustness of the system with an eye toward 

improving the system design.    

We begin with a synthesis of an AV’s decision-making system in a specific driving 

environment. We model the environment as a Markov Decision Process (MDP), with the goal of 

determining the optimal strategy (that is, policy) for this particular MDP. We propose a novel 

Reinforcement Learning (RL) method using model-based exploration. This method allows the 

training agent to explore the MDP state space by maximizing the notion of an agent’s surprise 

about its experiences via intrinsic motivation. The optimal strategy will be deemed to be a 

global-optimal policy by which the AV can travel more efficiently.  

We then evaluate the decision-making system in a naturalistic driving environment. We 

focus on lane change maneuvers, modeling the differences between AVs and Human-controlled 

Vehicles (HVs) using the Safety Pilot Model Deployment Program’s naturalistic driving data. 

The probability of crashes serves as the primary metric for evaluating the safety of AV systems. 

In general, testing a system in a naturalistic driving environment is time-consuming and not cost-

effective. To overcome this problem, we propose an accelerated evaluation method called Subset 

Simulation (SS), which can significantly reduce evaluation time and beat the baseline 

Importance Sampling (IS) method. This technique is not only capable of evaluating a system 

with a high-dimension state space, but also has the potential to conduct evaluations of more 

complicated systems (e.g., object detection systems).  

The SS method is limited, however, in that the “danger regions” are searched only as the 

test procedure unfolds. If the environmental statistics change, the crash rate cannot be estimated 

accurately. Therefore, we prefer to evaluate the decision-making system without including the 

environmental statistics. To this end, we propose an evaluation method based on the two-player 

Markov game. We introduce an attacker into the environment which keeps “attacking” the AV in 

a socially acceptable fashion. The attacker tries to lure the AV into AV-responsible crashes (as 



 xii 

opposed to “crazy” crashes).  Once the attacker has completed training, the AV is evaluated by 

introducing the attacker. The crash rate of the system then becomes 50 times greater in the 

environment with the attacker, which allows the system to register fatal flaws in the original 

training environment design.  

Introducing attackers capable of generating socially acceptable attacks makes the 

behavior of the surrounding vehicles more diverse. Our goal is to improve the original policy so 

as to design a safe and robust decision-making system under situations with different types of 

drivers in the environment, different traffic densities, and differing numbers of total surrounding 

vehicles. We tackle this problem by implementing the state-of-the-art Meta-Reinforcement 

Learning (MRL) method to train an agent to quickly adapt to different environments with limited 

data. The MRL-trained policy can significantly decrease the crash rate with a small amount of 

data across different environments. This technique has tremendous potential for helping the AV 

quickly adapt to varying conditions such as different locations, weather, and lighting. 

 

 



 1 

Chapter 1 Introduction 

1.1 Background and Motivation Introduction 

Automated Vehicle (AV) is a very active research area during the past decade. From 

2004 to 2013, the U.S. Department of Defense’s research arm, DARPA, sponsored the “Grand 

Challenge” and later the “Urban Challenge,” which played a key role in creating excitement and 

accelerating the development of AV technologies. In 2014, as shown in Table 1.1, the Society of 

Automobile Engineers (SAE) defined six levels of automated driving in their document J3016 

[1].  The key features of an AV are the ability to monitor the driving environment, control 

steering, brake and throttle, the capability to handle a variety of driving situations, and the need 

for a human driver as the fallback. This document was issued, in part, to speed up the delivery of 

an initial regulatory framework and a practice to guide the automotive companies in the safe 

design, development, testing, and deployment of AVs. Perhaps more importantly, this 6-level 

definition shows an evolutionary rather than a revolutionary roadmap for technology 

deployment. 

Several government documents were also published around 2014, including the U.S. 

National Highway Traffic Safety Administration level (NHTSA level) [2] and the Germany 

Federal Highway Research Institute level (BASt level) [3], which are also listed in Table 1.1. As 

further explained in [4], level 2 automation is known as a “hands off” feature where the 

automated system takes full control of the vehicle, but the driver must monitor the driving and 

serve as the fallback. Level 3 automation is known as “eyes off” where the driver can safely turn 

their attention away from the driving tasks. At level 4 automation, no driver attention is required. 

Therefore it is a “mind off” system. And at level 5 automation, no human intervention is required 

for all scenarios.  Some researchers believe Level 5 is just an aspirational goal and cannot be 

achieved. 
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Table 1.1 Summary of Levels of Automation for On-road Vehicles 
S

A
E

 l
ev

el
 

SAE name 

Execution of 
Steering and 

acceleration/ 

deceleration 

Monitoring 

of driving 
environment 

Fallback 
performance 

of dynamic 

driving task 

System 
capability 

(driving 

modes) B
A

S
t 

le
v

el
 

N
H

T
S

A
 l

ev
el

 

0 
No 

Automation 
Human Human Human n/a 

Driver 

only 
0 

1 
Driver 

Assistance 

Human and 

system 
Human Human 

Some driving 

modes 
Assisted 1 

2 
Partial 

Automation 
System Human Human 

Some driving 

modes 

Partially 

automated 
2 

3 
Conditional 

Automation 
System System Human 

Some driving 

modes 

Highly 

automated 
3 

4 
High 

Automation 
System System System 

Some driving 
modes 

Fully 
automated 

3/4 

5 
Full 

Automation 
System System System 

All driving 

modes 
n/a 

 

Automotive companies widely follow the SAE’s definition, and most took an 

evolutionary roadmap, while many “tech companies” seem to embrace the revolutionary 

approach. Zhao et al. [5] summarized the AV production plans of several major car companies 

back in 2016. Four years later, few had delivered according to their plans. Table 1.2 lists the 

original AV production plans and the status of several major car manufacturers. Most of the AVs 

on the markets today are lower level (Levels 1-2) automated vehicles with Adaptive Cruise 

Control (ACC) and sometimes lane-keeping assist. Currently, according to [4], the only vehicle 

that is generally accepted to be at level 3 automation is the Audi A8 (equipped with the Traffic 

Jam Pilot), which only works on congested highways. Tesla has blurred the lines with recent 

software updates [6]. Most researchers agree that the Tesla “Autopilot” system (which has been 

denounced by the German and South Korean authorities as confusing and misleading to the 

general public) is only at Level-2. Still, the marketing language promised that “full self-driving” 

is coming in future over-the-air updates, which seems to imply they will have Level-5 

capabilities. Technology companies like Google, Amazon, Apple, Baidu, and Intel also have 

high-level AV programs. Starting in the mid-2010s, start-ups joined the race. Here, we showed 

some of these companies in Figure 1.1. 
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Table 1.2 Automotive Companies Announced AV Plans and Status at 2020 

Manufacturer 
SAE 

level 

Original 

plan of 

launch year 

First 

Model 

Current status in 2020 

Status 
Launch 

year 

Volvo 2 2015 XC90 Level 2: Pilot Assist 2018 

Audi 2-3 2016 A8 
Level 2-31 [7]: Traffic Jam 

Pilot 
2018 

BMW 2-3 2017 5 Series 
Level 2: Active Driving 

Assistant 
2017 

Mercedes Benz 2-3 2017 
E-class 

S-class 
Level 2: Drive Pilot 2017 

Volkswagen 2 2017 Passat Level 2: Travel Assist 2017 

Ford 2-3 2017 Fusion Level 2: Co-Pilot 360 2019 

General Motors 2-3 2018 XTS Level 2: SuperCruise 2018 

Nissan 3 2020 Leaf 
Level 2-32 [8][9]: ProPilot, 

Japan market only 
2020 

Lexus 3 2020 LS 
Planned for service during 

the 2020 Olympic Games 
- 

  

 

 

Figure 1.1 Autonomous Vehicle Technology Companies [10] 

                                                
1 Audi equipped the A8 with all the components necessary to make Traffic Jam Pilot work, but it had not enabled 

the feature due to the current regulation, claimed by Audi. 
2 Different news editors from Forbes have different opinions on this level. And after reviewing both articles, we 

think the automation level of Nissan leaf is between level 2 to level 3. 
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As can be seen from Table 1.2, most of the AVs on the market today are at SAE level 2. 

The difficulties for AVs to “level up” to SAE Level 3 or above come from two perspectives. 

First, there must be a trust-worthy evaluation method for these AV systems. Type approval is 

required in some markets like in EU or China, and desired in the US to address the questions and 

concerns of public trust. We list several fatal accidents, under the control of an AV system, in 

Table 1.3. One of the goals of this research is to develop evaluation methods for the AV system 

before their wide deployments on the public road so that they are safer. 

Table 1.3 Serious Accidents involving AVs [11] 

Date 
System 

manufacturer 
Vehicle type 

SAE 

level 
Location Fatality 

20 Jan 2016 Tesla (Autopilot) Model S 2 Hebei, China 1: Driver 

7 May 2016 Tesla (Autopilot) Model S 2 Florida, U.S. 1: Driver 

18 Mar 2018 Uber Upfitted Volvo 3 Arizona, U.S. 1: Pedestrian 

23 Mar 2018 Tesla (Autopilot) Model X 2 California, U.S. 1: Driver 

1 Mar 2019 Tesla (Autopilot) Model 3 2 Florida, U.S. 1: Driver 

19 Sep 2019 Tesla (Autopilot) Model 3 2 Florida, U.S. 1: Driver 

 

Another difficulty lies in the synthesis of high-level AV systems. The main difference 

between SAE level 2 and level 3 automation is that whether the system can monitor the driving 

environment [1] reliably enough so that a human fallback is not needed. The presence of a driver 

monitoring system is not enough to trigger an uptick in the automation level. At level 3, the 

system needs to do what a driver does: keep an eye on all factors that might affect safety and 

deal with them. The driver on a level 3 AV does not need to pay attention to the road 

continuously. Level 3 AVs need a perception system and a reliable decision-making system, 

which can fulfill path planning and motion planning functions [12].  

This dissertation will focus on the efficient synthesis of the decision-making system of an 

AV.  We will present new ideas and results that contribute to both the evaluation and synthesis of 

AVs at level 2 or higher.  
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1.2 Literature Review 

The field of synthesis and evaluation of the Automated Vehicle (AV) system has a rich 

history, with early demonstrations in the 1990s [12] and continuous improvement. In this section, 

past approaches for both synthesis and evaluation problems are reviewed. 

1.2.1 Synthesis Approaches for the Decision-making of Automated Vehicles 

The autonomy system of AVs is typically organized into at least two parts: perception 

and decision-making [12]. The decision-making system usually contains several sub-systems: 

route planning, path planning, behavior selection, motion planning, and control [12]. In this 

dissertation, we focus on the behavior selection subsystem of the decision-making system.  

The behavior selection subsystem is responsible for choosing the behavior, such as lane 

selection, intersection handling, traffic light handling, etc. During the DARPA Urban Challenge 

era, the Finite State Machines (FSM), a rule-based decision-making method, was implemented 

[13] by the Stanford team (which won second place). However, that competition only includes a 

limited set of urban scenarios, much simpler than what an AV could experience in the real world. 

For a more complex lane change scenario on highways involving multiple lanes, Kesting et al. 

[14] developed a general lane-changing model (named as MOBIL) based on the Intelligent 

Driver Model (IDM) [15]. This MOBIL model analyzes the potential acceleration of the ego car 

and surrounding cars to make decisions of whether to change lanes or not. This method depends 

on the IDM model, and therefore, if the surrounding vehicle’s behavior is different from the 

embedded IDM model, the lane change decision may not work well.  

Another type of approach used in designing behavior selection is the ontology-based 

method. Ontology-based techniques studied the frameworks of knowledge representation that 

can be used to model its concepts and their relations. In [16], Zhao et al. used ontology-based 

Knowledge Base (KB) to model traffic regulations and sensor data, and the KB is constructed 

manually. This method requires an accurate world model, including road topologies and traffic 

rules. Recently, Zhao et al. [17] improved their previous work to use only a small part of the 

original KB and reduced the computation time. However, a key challenge remains: the KB is still 

being constructed manually. 

The behavior selection problem can also be solved using optimization-based methods. 

Nilsson et al. [18] formulated the decision-making problem of choosing the desired lane and 

velocity as a Model Predictive Control (MPC) problem. The dynamics are modeled as a Mixed 
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Logical Dynamical (MLD) system and are solved through MPC using a mixed-integer program. 

However, the equation to be optimized and cost functions are also designed by hand. Moreover, 

mixed-integer programming suffers from combinatorial complexity, and the required 

computational time is strongly affected by the dimension of the problem's state space. 

Recently, as more and more data is collected from human driving in the real world, 

researchers start to utilize the imitation learning method to train a model that maps perceptual 

inputs to control commands. In [19], researchers from NVIDIA trained a Convolutional Neural 

Network (CNN) to directly map raw images from a front-facing camera to steering angle 

outputs. With training data from human demonstrations, their system learns to do car following 

on local roads and highways. In [20], Codevilla et al. proposed command-conditional imitation 

learning: during training, the commands resolve ambiguities in the perceptuomotor mapping, 

thus facilitating learning; during testing, the commands serve as a communication channel that 

can be used to direct the controller. A key obstacle is that imitation learning requires big data. 

Moreover, the policy learned from human drivers’ demonstration can be at most as good as the 

human driver, while AVs promise to surpass human drivers. Finally, the policy learned from a 

database may perform poorly in unseen scenarios. Therefore, methods that do not rely on 

experts’ demonstration for supervised learning are desired.  

The Markov Decision Processes (MDP) is a framework that models the decision 

making in situations where the outcomes are also affected by exogenous inputs. The MDP can be 

solved via Dynamic Programming (DP) and Reinforcement Learning (RL). As for the Dynamic 

Programming (DP) approach, Guan et al. [21] deduced the optimal policy using the value 

iteration method. The learned policy achieves safe and efficient driving. However, using the DP 

method to solve an MDP optimization problem requires an explicit environment transition 

model, which is not always available considering the complexity of human driver behaviors. 

Moreover, the DP method is time-consuming and cannot be implemented in real-time for 

systems with more than 3-4 states plus control variables with today’s computation technology. 

The MDP can also be solved using Reinforcement Learning (RL), which does not 

require an exact mathematical model of the environment transition probability. Reinforcement 

learning does not require big data collected before training, and it focuses on collecting data from 

the environment and finding a balance between exploration (of uncharted territory) and 

exploitation (of current knowledge). RL methods have been successfully implemented in AV 
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applications. Cao et al. [22] used a Monte Carlo Tree Search (MCTS) method to design a 

highway exiting planner for autonomous vehicles. Compared to a basic rule-based exiting 

planner, the RL-training algorithm improved the successful exiting rate by around 50%. 

Mukadam et al. [23] implemented a Deep Q Network with the Q-masking method to make lane 

change decisions. By using Q-masking, they were able to incorporate prior knowledge and thus 

an interface between the higher-level planner and the lower level controller. Nageshrao et al. [24] 

use the Double Deep Q Network method to design a discretionary lane change planner for a 

three-lane highway with manually designed exploration strategies and rule-based short-horizon 

safety checks. Wen et al. [25] used the Parallel Constrained Policy Optimization (PCPO) 

reinforcement learning method for decision-making of multi-vehicles at an intersection, 

achieving a safe crossing planner. 

To train an optimal decision-making policy for AVs, three essential components are 

needed. The first is a good simulator or a training environment [26]. If the training environment 

cannot represent the real environment accurately, the trained policy likely will not work well in 

real-world driving. The second component is a good reward function. The RL method requires a 

reward function that can represent the objective of the task well. However, the reward function 

may not be readily available for realistic applications. Therefore, researchers developed an 

inverse reinforcement learning method to find the reward function from the expert 

demonstrations that could represent the expert behavior [27].  Different RL methods will be 

discussed in more detail in Chapter 2. 

In recent years, researchers started to design end-to-end systems that optimize all 

processing steps simultaneously. They argued that end-to-end systems would lead to a smaller 

system since the perception, decision-making, and motion planning functions are combined. The 

smaller system can be trained more efficiently. In [28], Kuutti et al. use the CarMaker simulator 

to train an Advantage Actor-Critic (A2C) network for longitudinal driving. The policy takes 

sensor readings from the CarMaker simulator as input and the pedal action as the output. Jaritz et 

al. [29] use the TORCS car racing game as the simulator and train a racing policy that can win 

the game. The policy takes the camera image from the game as an input and the pedal and 

steering as the outputs. In this dissertation, we will not consider this end-to-end reinforcement 

learning method since it requires a perception-built-in simulator. 
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1.2.2 Evaluation Approaches for Automated Vehicles 

The evaluation for vehicle’s passive safety (crashworthiness) has been studied for 

decades, e.g., the Federal Motor Vehicle Safety Standards (FMVSS) [30] from the U.S., the New 

Car Assessment Program (NCAP) [31] and the United Nations Economic Commission for 

Europe (UNECE) regulation [32] and China New Car Assessment Program (C-NCAP) [33]. The 

methods behind those regulation tests are a combination of worst-case scenarios and test matrix 

evaluation. The worst-case scenario evaluation method was developed to test the most 

challenging cases for a vehicle. In [34] and [35], the authors applied the worst-case evaluation 

method on rollover and jackknifing cases to evaluate the safety of the vehicle based on a 

dynamic game theory. In [36], Kou implemented the method to evaluate an integrated chassis 

control system. In general, the vehicle can be modeled mathematically, and the worst-case 

evaluation can be considered as an optimization problem to solve for a sequence of control 

inputs (e.g., a sequence of steering, braking, or pedal inputs) that maximizes a cost function [36]. 

For test matrix evaluation methods, a series of scenarios are first defined. The vehicle 

then goes through these selected scenarios, one by one. Back in 1973, Moore et al. [37] from 

General Motor started to use a test matrix evaluation method for vehicle emission systems. To 

test the safety of vehicles, the choice of scenarios is mainly based on crash databases. A series of 

research on pre-crash scenarios was conducted in [38]–[40]. As described in [5] and [41], the 

“44-crashes typology” was developed by General Motors based on the General Estimates System 

(GES) and National Motor Vehicle Crash Causation Survey (NMVCCS) databases [38]. The 

authors [41] further used the GES, NMVCCS, and Event Data Recorder (EDR) databases to 

generate the top five scenario groups: car-following, lane-change, left-turn, intersection crossing, 

and driving in the opposite direction scenarios. 

The text matrix evaluation can be combined with the worst-case evaluation method [42], 

as shown in Figure 1.2. Ungoren et al. identified a worst-case scenario with steering input that 

looks like a lane change maneuver, which results in rollover for the vehicle with different vehicle 

dynamic control setups (matrix). As mentioned at the beginning of Section 1.2.2 , the passive 

safety testing regulation is also designed based on worst-case and test matrix ideas. In Euro 

NCAP [43], the vehicle needs to go through the full-width rigid barrier crash test, offset 

deformable barrier crash test, side mobile barrier crash test, side pole crash test, Autonomous 

Emergency Braking (AEB) test, and the whiplash test to get the overall star rating for adult 
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occupant protection. The Euro NCAP [43] also designed the Safety Assist Score (SAS) for 

additional award points. The SAS is based on the electronic stability control test, seatbelt 

reminder test, speed assistance test, AEB interurban test, and the lane support test.  

  

 

Figure 1.2 Iterative Vehicle Dynamic Control Evaluation Process [42] 

 

Even though the worst-case evaluation and test matrix evaluation methods have been 

successfully implemented in traditional vehicle safety tests, there are many difficulties to 

overcome in testing the safety of AV. For worst-case evaluation methods, they did not consider 

the probability of occurrence of these worst-case scenarios. Moreover, for different AVs, the 

worst-case scenarios could be different. Therefore, the results do not offer enough information 

about the crash rate and risk level in real-world driving and could not provide a fair way to 

evaluate different vehicles from different companies. For test matrix evaluation methods, the test 

scenarios are predefined and fixed. Therefore, the control systems may be tweaked to achieve 

good scores in these tests, but the control systems' performances under broader conditions are not 

sufficiently evaluated. Moreover, the selected scenarios are usually based on a crash database, in 

which all the crashes were caused by human drivers. This may not accurately reflect the safety-

critical cases for AVs [5].  

The AV control systems can also be tested (or verified) by formal methods, which are 

mathematical approaches, to prove or disprove that the system satisfies its requirements 

(correctness) if it is defined by formal requirements. Formal methods can exhaustively consider 

uncertainties from initial states, disturbances, and sensor noise. Formal methods contain several 

different approaches, including reachability analysis, temporal logic model checking, and 
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simulation-based falsification.  Althoff et al. use reachability analysis to verify the safety of AVs 

[44]–[46]. In [47], they use the reachability analysis method to calculate a drivable area under a 

certain obstacle setup, and the drivable area can be seen as a measure of critical scenarios. 

Computing the reachability set requires both the environment dynamic model and the AV’s 

dynamic model, which are not always available. The temporal logic model checking relies on an 

exhaustive search of the state space of a finite state system [48]. Therefore, it suffers from the 

state explosion problem and hard to be implemented in industrial-size systems [49]. In [50], 

Tuncali used the simulation-based falsification approach to search for the initial condition that 

can falsify the AV system. However, the simulation-based falsification approach is a semi-

formal method, which checks the formal requirements for each simulation but does not guarantee 

that the system fulfills the requirement at all states. Therefore, it cannot prove the correctness of 

the system.  

Table 1.4 Major Naturalistic Field Operational Test Databases 

Database name 
Released 

by 
Labeling 

Labeled 

frames 
Sensor 

Waymo [51] Waymo 4 classes 2D/3D 1.2M  5 cameras, 5 lidars 

Lyft-Level-5 [52] Lyft 23 classes 3D 55k 
7 cameras (Stereos), 

GPS/IMU, 3 lidars 

nuScenes [53] Aptiv 23 classes 3D 1.4M 
6 camera (Stereos), GPS/IMU, 

1 lidar, 1 radar 

H3D [54] Honda 8 classes 3D 1.1M 
3 cameras,  

GPS/IMU, 1 lidar 

KITTI [55] KIT 8 classes 2D/3D 16k 1 lidar, 4 cameras, GPS/IMU 

 

One widely used method for “evaluating” AVs is the Naturalistic Field Operational 

Tests (N-FOTs) [56]. In an N-FOT, the testing vehicles need to be driven in naturalistic 

conditions over a long time [57]. The most famous N-FOTs project in the U.S. is the Google 

Waymo AV testing project [58]. Based on the Waymo’s Safety Report [58] published in 2018, 

Waymo’s AVs were tested on public roads in 25 cities from 6 states for over 5 million miles (by 

Jan 2020, the accumulated mileage is 20 million miles [59]). This project allows Waymo 

engineers to validate the technologies they have developed. By Jan 2018, the company’s AVs 

have encountered 36 crashes. Most of these crashes involved been rear-ended or side-swiped by 

a human-driven vehicle. Other major N-FOTs projects in the U.S. include the Safety Pilot Model 

Deployment (SPMD) program [60]–[62] and the Integrated Vehicle-Based Safety Systems 
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(IVBSS) program [63]. Recent N-FOT databases deliver raw camera and lidar data, many of 

them with human-generated labels. These data are useful for training object detection and 

tracking algorithms. Some major N-FOT databases with the raw camera and lidar data are listed 

in Table 1.4. 

The downsides of using N-FOTs for evaluation are obvious. Conducting such N-FOT 

projects to evaluate the safety of an AV is both time-consuming and expensive. Under 

naturalistic driving conditions, the probability of encountering conflict scenarios is very low. In 

2013, [64] estimated that an N-FOT project could not be conducted with less than 10 million 

USD. From a newsletter [65] in 2016, Google claimed to pay Arizona drivers 20 USD per hour 

to test self-driving cars. It was estimated that Google might have spent 2-3 million on test drivers 

alone.  The hardware of each test vehicle costs at least one million dollars. Kalra et al. [66] 

approximate that one has to test AV for 440 million km (273.4 million miles) to demonstrate that 

they are safer than human drivers with a 95% confidence level, and this is approximately 

equivalent to 12.5 years of test driving with 100 AVs. For evaluation proposes, during the N-

FOTs period, the control system design of tested AV should not change. Therefore, a more 

effective evaluation method for testing AV is necessary.   

Researchers also built stochastic models based on naturalistic driving data for Monte 

Carlo (MC) simulations to assess AVs' safety. In [67], Yang et al. evaluated collision avoidance 

systems by building an “errorable” driver model. Jurecki et al. [68] tested drivers’ behavior in 

simulated traffic. Driver reaction time was found to be a function of Time-To-Collision (TTC), 

which characterizes accident risk situations. 

A major benefit of MC simulation is that the simulated cases can be based on naturalistic 

driving statistics. Moreover, since the tests are conducted through simulations, the cost is much 

lower than N-FOTs3. However, if the MC simulation approach is used directly, the probability of 

encountering conflict scenarios is still very low.  

This is when the accelerated evaluation approach is developed. The accelerated 

evaluation concept was first introduced for AV evaluations by Zhao [5] in 2016. By skewing the 

statistics of the driver behavior of the surrounding vehicles, the evaluation can focus on higher-

                                                
3 Even though the MC simulator is built based on the naturalistic database, after designing the simulator,  different 

AVs are tested in this simulator and no new data collection is needed. 
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risk cases and thus saves time, i.e., the evaluation procedure is accelerated. The procedure of 

accelerated evaluation is shown in Figure 1.3, which includes six steps: 

1. Collect a large quantity of naturalistic driving data. 

2. Extract scenarios that have potential conflicts between an AV and surrounding 

human-controlled vehicles. 

3. Model the behavior of the surrounding vehicles as a probability distribution 𝑓(𝒙), 

where 𝒙 represents the random variables vector, which captures features of each 

scenario. 

4. Skew this distribution4 to a 𝑓∗(𝒙) to emphasize higher-risk situations. 

5. Conduct MC tests with the skewed (accelerated) distribution and get the test results.  

6. “Skew back” the results to reconstruct the performance of the AV under naturalistic 

driving conditions. 

 

 

Figure 1.3 The Procedure of the Accelerated Evaluation [69] 

 

The accelerated evaluation approach has been successfully implemented in a lot of 

studies. The math behind this approach is the Importance Sampling (IS) method. In [69], the 

authors extracted car-following scenarios from the SPMD database and applied the importance 

sampling method to evaluate the crash, injury, and conflict rates for a simulated AV. In [70], 

they extended the method to lane change scenarios. They use the cross-entropy approach to 

search for the optimal accelerated distribution’s parameters. Then the probabilities of conflicts, 

crashes, and injuries are estimated for a tested AV using that distribution, and the achieved 

                                                
4 In the original work by Ding et al. [5], they use importance sampling method to calculate an accelerated 

distribution 𝑓∗(𝒙) and replace the original 𝑓(𝒙). 
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accelerated rate is around 2000 to 20,000. Huang et al. [71] further improved the accelerated 

evaluation by using piecewise mixture distribution models instead of single parametric 

distribution models. Simulation results showed that the piecewise mixture distribution 

outperformed single parametric distribution methods in accuracy and efficiency. O’Kelly et al. 

[72] implemented the adaptive importance-sampling methods to evaluate systems that employ 

deep-learning perception and control algorithms and developed a scalable end-to-end 

autonomous vehicle testing framework.  

Although the accelerated evaluation approach is efficient and has a lot of potential in the 

field of AV testing, importance-sampling is not necessarily the best approach for “skewing” the 

distribution. First, the IS method suffers from the curse of dimensionality problem. When the 

environment model has a high dimension, extra care must be taken in the choice of model 

structure of the IS Distribution (ISD). Otherwise, the estimation may “degenerate,” giving results 

that do not reflect the true results [73]. This is a serious issue for the IS method in the AV 

evaluation. If the environment model has a small number of random variables, it can be analyzed 

directly and completely by formal methods. For problems with many random variables, the IS 

method cannot provide reliable results. This will be expounded in Chapter 3. Another issue of 

the IS method is that for evaluating the safety of AVs, a common choice for ISD is to “skew” 

toward the “danger region.” However, the “danger region” of a specific AV is not known 

beforehand. Not knowing the “danger region” means that some searching algorithms need to be 

used, and a common choice is the cross-entropy method [74]. However, a searching algorithm 

requires tests for identifying the “danger region,” which will drain the accelerating rate. 

Therefore, a more versatile and advanced method is needed.   

Recently, Feng et al. [75], [76] use a reinforcement learning-based approach to improve 

the case searching process in high-dimensional test scenarios. Feng et al. first formulated the test 

scenario library generation problem as a Markov Decision Process (MDP) in the car-following 

case. The value function of this MDP is then defined directly by the probability of failure and 

then trained with Temporal-Difference (TD) reinforcement learning (RL). Although the RL 

algorithm can help to search the “danger region” on a high-dimensional state space, the authors 

only implement this method in the car-following scenario. The reason is that in the car-following 

scenario, avoiding a crash is the rear car’s responsibility. In other scenarios, without certainty on 

the responsibility of the crash, it is not straightforward to find the “danger region.” Therefore, 
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implementing a searching algorithm without naturalistic driving data requires clarifying the 

responsibility of crashes and conflicts. This will be discussed in detail in Chapter 4. 

1.3 AV Synthesis Problem 

The objective of our work on the synthesis problem is to build an AV decision-making 

subsystem that can drive the vehicle safely and efficiently. As explained in Section 1.2.1 , the 

Reinforcement Learning (RL) method is a promising approach to find the optimal policy in a 

complicated environment. Therefore, we will focus on using the RL method for synthesis.  

To design an optimal decision-making policy, a simulator for the driving environment is 

needed. First of all, given a complicated environment, solving for the optimal policy is not easy. 

Therefore, in the first setup of assumption, we assume having a perfect simulator, and we are 

trying to find the optimal policy in that simulator. However, the simulator can be inaccurate or 

totally off the real environment. For example, the driving environment in New York is different 

with that in Alabama. Therefore, in the second setup of assumption, we assume having a 

distribution of environments. The second setup of assumption will be elaborate at the end of this 

section. 

For the first setup, we assume that:  

1. The simulator for training and testing the decision-making policy is accurate.  

2. The AV is surrounded by only Human-controlled Vehicles (HVs).  

3. We do not have a human driver behavior model.  Instead, we can only get 

information from observations from the simulations.  

4. The perception and actuation subsystems of the AV are perfect.  

Under these assumptions, the objective of the synthesis problem is to design an optimal 

decision-making subsystem using reinforcement learning. To find an optimal policy, one needs 

to tackle the exploration-exploitation trade-off of reinforcement learning. This will be elaborated 

in Chapter 2. 

No matter how carefully we design the simulator, it cannot represent the real world 

totally accurately. There are many reasons. First, the lack of data. We can collect as much data as 

we want, but it is never complete. For example, right now, all surrounding vehicles are human-

controlled vehicles (HVs). While in the future, AV may interact with both human drivers and 

other AVs. Moreover, we cannot enumerate all the environments in various locations, which will 
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also require tremendous amounts of data. Therefore, it is necessary to study the synthesis 

problem under the assumption that the environment model or the simulator is not accurate. 

Regarding the above-mentioned situation, we assume that: 

1. The simulator for training and testing the decision-making policy is not accurate.  

2. We are not training the decision-making policy using only one specific simulator. We 

are training the policy in the distribution of simulators. 

3. We do not have a model of human driver behaviors. We can only get information 

from observations and infer human driver behaviors indirectly. 

4. The perception and actuation subsystems of the AV are perfect. 

As may have already been noticed, a new assumption was added to require the 

probability distribution of these simulators, which requires more data. The objective of the 

synthesis problem under the second set of assumptions is to train a decision-making policy that 

can fast adapt to different environments. Therefore, the distribution of simulators is used to train 

the adaptation ability of the policy. So, the distribution does not need to be very accurate, just 

enough to cover a range of possibilities.  After training, we hypothesize that the policy will have 

the ability to adapt to different environments more quickly given a small quantity of data. The 

second synthesis problem is elaborated in Chapter 5. 

1.4 AV Evaluation Problem 

The objective of the evaluation problem studied in this work is to evaluate the 

performance of the AV control system. As shown in Figure 1.4, the typical hierarchical 

architecture of AVs includes the perception system (where TSD denotes Traffic Signalization 

Detection and MOT denotes Moving Objects Tracking) and the decision-making system. In this 

work, we do not discuss any perception-related problem. We assume a perfect perception system 

is available.  
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Figure 1.4 Overview of the Typical Hierarchical Architecture of AVs [12] 

 

In this dissertation proposal, we study the evaluation problem under two sets of 

assumptions. For the first setup, we assume that: 

1. The testing AV is surrounded by only Human-controlled Vehicles (HVs).  

2. We have access to a large amount of naturalistic driving data, which captures the 

behavior of human drivers.  

3. We do not have access to the control system of the testing AV, which means we 

cannot calculate the AV’s state (e.g., the position and velocity) directly from a model. 

We can only observe the state, i.e., it is black-box testing.   

4. We do not know anything about the “danger region” of the model, which means we 

cannot “skew” the distribution directly.  

The objective of the evaluation problem under the assumptions above is to estimate the 

crash rate and in general, the safety performance of an AV system accurately and efficiently. 

More specifically, the goal is to develop a new accelerated evaluation method that can overcome 

the curse of dimensionality issue and perform “black-box” testing (by searching the state space) 

with a comparable accelerated rate achieved by the state-of-the-art methods.  

Moreover, we will consider another set of assumptions when naturalistic driving data is 

not available. Usually, even when a large amount of data is collected, they are from a limited 
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region or country. The driver behaviors in different cities or countries can be very different. This 

is a common problem for any data-driven control systems that assume “data is available.”  In 

addition, there will be more and more AVs and Connected Vehicles (CVs) on the road in the 

future, and consequently, the environmental statistics will change with time. Therefore, simply 

relying on one fixed database to evaluate AVs is not good enough. Due to these reasons, we have 

a second set of assumptions: 

1. We do not have access to a large quantity of naturalistic driving data.  

2. We do not have access to the control system of the AV, and thus, we perform black-

box testing.  

3. We have access to the AV’s output and thus can conduct searching and learning. 

4. We assume this work will be performed only under computer simulations or 

hardware-in-the-loop simulations since real-world testing is too slow and expensive. 

The objective of the evaluation problem under the second set of assumptions is to find the 

“danger region” in the state space, meaning that we want to find a time-series of inputs from the 

environment which will lure the AV to a crash that is the responsibility of the AV.  

1.5 Contributions 

In this dissertation, we proposed new synthesis approaches and new evaluation 

approaches and make contributions in the following three aspects:  

• We developed a reinforcement-learning-based method to solve the synthesis 

problem and designed a discretionary lane change policy that helps the AV travel 

safely and efficiently on a highway. 

• To evaluate this discretionary lane change policy and its low-level safeguard, we 

developed two evaluation approaches.  

o  We extended the accelerated evaluation method introduced in [5] and 

developed a novel approach to accelerate the evaluation further and to test 

the low-level safeguard system in a more complex environment. 

o We developed an evaluation method that does not need environmental 

statistics. The approach can generate socially acceptable attacks that can 

lure the AV to AV-responsible crashes.  
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• Given the evaluation results and socially acceptable attacks, we use meta 

reinforcement learning to design an adaptive policy that can quickly adapt to 

different attacks from the environments. It results in a low crash rate in all 

situations.  

 

1.6 Outline of the Dissertation 

The remainder of this dissertation is organized as follows. In Chapter 2, we designed a 

discretionary lane change decision-making policy using the reinforcement learning method. In 

Chapter 3, the lower level safeguard system of the prior designed policy is evaluated with an 

advanced accelerated evaluation method named subset simulation. In Chapter 4, the whole policy 

is evaluated by designing a socially acceptable perturbation that keeps challenging the learned 

policy. In Chapter 5, we developed an adaptive lane change decision-making policy that has 

robust performance when facing attackers and other different driving conditions.  Finally, we 

discuss future research directions and conclude our work in Chapter 6.
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Chapter 2 Synthesis of the Autonomous Vehicle’s Policy Using Reinforcement Learning 

 

One of the major synthesis problems for AVs is to design a reliable decision-making 

subsystem. In this chapter, we will study this synthesis problem under the first set of assumptions 

described in Section 1.3 .where we assume a perfect simulator, and we try to solve the 

discretionary lane change decision-making problem. We use the Markov Decision Processes 

(MDP) framework to represent the randomness in the environment from other road users. We 

solve the MDP by using the Reinforcement Learning (RL) approach discussed in Section 1.2.1 . 

The RL agent needs to deal with the tradeoff between exploitation and exploration. In this 

chapter, we develop a new model-based exploration approach that guides the agent to explore 

the state space more efficiently.  

2.1 Literature Reviews on Discretionary Lane Change Decision-making Approaches 

Discretionary Lane Change (DLC) usually happens when a driver wants to drive faster, 

keep a greater following distance, have a better line of sight, maintain better ride quality, etc. The 

AV needs to solve a decision-making problem considering multiple objectives by utilizing the 

surrounding vehicles’ information for efficient and safe operation. 

Recently, the DLC decision-making problem has been researched using a variety of 

approaches. In [14], Kesting et al. developed a rule-based general lane change strategy called 

Mobil that depends on the total acceleration potential gain or loss of the ego vehicle and 

surrounding vehicles. The acceleration potential of each vehicle is calculated from the Intelligent 

Driver Model (IDM). However, this method requires a politeness parameter and a threshold 

parameter beforehand, and therefore, it depends on human experience or data to tune the 

parameters. In [77], the authors modeled the lane change behavior using the game theory under 

Vehicle-to-Vehicle (V2V) circumstance by finding the Nash equilibrium of two interacting 

vehicles. The game theory approaches are widely used in computer game applications. However, 

it needs to model multiple agents' intentions, which is not feasible under our assumptions. 



 20 

Another method for solving the DLC decision-making problem is Deep Reinforcement 

Learning (DRL). The state-of-the-art DRL techniques have been proven to be useful for 

automatically learning policies for difficult decision-making problems like winning the Go game 

[78]. Unlike traditional controller design methods, reinforcement learning can generate control 

policies without relying on explicit system dynamics. Several published papers demonstrate 

DRL's ability to solve the DLC decision-making problems [24], [79]. However, the trained 

policy still suffers from the exploration problem. Currently, the researchers are using rule-based 

exploration approaches, which correspond to the reward function [23], and this method goes 

against the assumption that the MDP is unknown. Therefore, it is necessary to develop a generic 

and versatile exploration method. 

2.2 Reinforcement Learning Fundamentals 

In this section, the background knowledge of reinforcement learning is introduced. In 

reinforcement learning, an agent tries to learn an optimal policy to maximize the future 

discounted cumulative reward by directly interacting with the environment. The problem is first 

modeled as a Markov decision process (MDP), which is defined as a 5-tuple: 𝑀 = (𝑆, 𝐴, 𝑃, 𝑟, 𝛾), 

where 𝑆 ⊆ 𝑅𝑛  is the state, 𝐴 ⊆ 𝑅𝑚 is the action, and 𝑃: 𝑆 × 𝐴 → Δ(𝑆) is the stochastic transition 

dynamics, where Δ(𝑆) is a probability distribution on 𝑆. 𝑟: 𝑆 × 𝐴 → 𝑅 is the reward function, 

while 𝛾 ∈ (0,1] is the discount factor. The discounted cumulative reward is 𝑟0:𝑡 = ∑ 𝛾𝑡𝑟𝑡
∞
𝑡=0 , 

where 𝑟𝑡 is the reward at time 𝑡. 

For each time step 𝑡, the agent is trying to learn a policy 𝜋𝛼(𝑠𝑡) = 𝑎𝑡 with parameters 𝛼, 

where 𝑠𝑡 ∈ 𝑆 is the state at time 𝑡  and 𝑎𝑡 ∈ 𝐴 is the action at time 𝑡 . The expectation of future 

discounted cumulative reward starting from state 𝑠 following policy 𝜋𝛼 can be described as:  

 𝑉(𝑠|𝜋𝛼)  =  𝐸𝜋𝛼,𝑀 [∑𝛾𝑡𝑟𝑡

∞

𝑡=0

 |𝑠0 = 𝑠] (2.1) 

 

where 𝑉 is the value function. And the action-value function Q is defined as: 

 𝑄(𝑠, 𝑎|𝜋𝛼)  =  𝐸𝜋𝛼 ,𝑀 [∑𝛾𝑡𝑟𝑡

∞

𝑡=0

 |𝑠0 = 𝑠, 𝑎0 = 𝑎] (2.2) 
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The objective of RL is to maximize the expected discounted cumulative reward, i.e.,  

𝐸𝜋,𝑀[∑ 𝛾𝑡𝑟𝑡
∞
𝑡=0 ].  For problems with discrete action space, we can get the optimal policy by 

learning an accurate Q function 𝑄∗ and thus we have 𝜋(𝑠) = 𝑎𝑟𝑔𝑚𝑎𝑥𝑎𝑄
∗(𝑠, 𝑎). 

 

2.2.1 Dynamic Programming 

The optimal policy for an MDP can be found by using Dynamic Programming (DP) when 

we know the MDP’s identities (i.e., the transition model, reward function, etc.) Given the 

complete model, we can write the Bellman optimality equations, break the problem into 

subproblems and then solve them. There are two ways of using DP to solve MDP: policy 

iteration and value iteration. 

The algorithm first starts with a random policy. The policy iteration method consists of 

two steps. The first step is the policy evaluation step, and the second step is the policy 

improvement step. During the policy evaluation step, we find the value function of that policy. 

And then, during the policy improvement step, the policy is improved based on the previously 

learned value function. In this process, each policy is proved mathematically to be a strict 

improvement over the previous one. We have summarized the policy iteration algorithm in 

Algorithm 2.1. 

Algorithm 2.1: Policy Iteration Algorithm 

Initialization: 𝑉(𝑠) ∈ 𝑅 and 𝜋(𝑠) ∈ 𝐴 are initialized arbitrarily for all 𝑠 ∈ 𝑆 

 

# Policy Evaluation: 

while 𝛥 > 𝜃 do 

Set 𝛥 = 0 

for 𝑠 ∈ 𝑆 do 

Set 𝑡𝑒𝑚𝑝 = 𝑉(𝑠) 
𝑉(𝑠) = ∑ 𝑝(𝑠′|𝑠, 𝜋(𝑠))[𝑟(𝑠, 𝑠′, 𝜋(𝑠)) + 𝛾𝑉(𝑠′)]𝑠′ , where 𝑠′ is the next state 

𝛥 =  max(𝛥, |𝑡𝑒𝑚𝑝 − 𝑉(𝑠)|) 
 

# Policy Improvement: 

Set 𝑠𝑡𝑎𝑏𝑙𝑒 = 𝑡𝑟𝑢𝑒 

for 𝑠 ∈ 𝑆 do 

Set 𝑡𝑒𝑚𝑝 = 𝜋(𝑠) 
𝜋(𝑠) = 𝑎𝑟𝑔𝑚𝑎𝑥𝑎∑ 𝑝(𝑠′|𝑠, 𝑎)[𝑟(𝑠, 𝑠′, 𝑎) + 𝛾𝑉(𝑠′)]𝑠′ , where 𝑠′ is the next state 

if 𝑡𝑒𝑚𝑝 ≠ 𝜋(𝑠): set 𝑠𝑡𝑎𝑏𝑙𝑒 = 𝑓𝑎𝑙𝑠𝑒 

if 𝑠𝑡𝑎𝑏𝑙𝑒 = 𝑡𝑟𝑢𝑒: terminate; else: go to # Policy Evaluation. 
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We start with a random policy and value function for value iteration methods, then using 

the collected data to find an improved value function iteratively until reaching the optimal value 

function. The value iteration method is the result of directly applying the optimal Bellman 

operator to the value function in a recursive manner. After finding the optimal value function, the 

optimal policy can be easily derived from it. The value iteration algorithm is summarized in 

Algorithm 2.2. 

Algorithm 2.2: Value Iteration Algorithm 

Initialization: 𝑉(𝑠) ∈ 𝑅 and 𝜋(𝑠) ∈ 𝐴 are initialized arbitrarily for all 𝑠 ∈ 𝑆 

 

# Value Iteration: 

while 𝛥 > 𝜃 do 

Set 𝛥 = 0 

for 𝑠 ∈ 𝑆 do 

Set temp = 𝑉(𝑠) 
𝑉(𝑠) = 𝑚𝑎𝑥

𝑎
∑ 𝑝(𝑠′|𝑠, 𝑎)[𝑟(𝑠, 𝑠′, 𝑎) + 𝛾𝑉(𝑠′)]𝑠′ , where 𝑠′ is the next state 

𝛥 = max(𝛥, |𝑡𝑒𝑚𝑝 − 𝑉(𝑠)|) 
 

Output: a deterministic policy 𝜋(𝑠) = 𝑎𝑟𝑔𝑚𝑎𝑥𝑎 ∑ 𝑝(𝑠′|𝑠, 𝑎)[𝑟(𝑠, 𝑠′, 𝑎) + 𝛾𝑉(𝑠′)]𝑠′  

 

Both algorithms work theoretically, and there is no significant difference between the 

policy iteration and the value iteration algorithms. The value iteration is simpler, but it is 

computationally heavy, while the policy iteration is simpler, and it is relatively computationally 

cheap. However, they require the MDP transition probability function and reward function, 

which is not feasible in our application. 

 

2.2.2 Temporal Difference Method 

Different from the DP methods, the Temporal Difference (TD) method is model-free, 

which does not require any information of the MDP.  The TD method learns the optimal policy 

by bootstrapping from the current estimation. TD method can be used to learn both the value 

function and the Q function. The simplest TD method is the State–action–reward–state–action 

(SARSA) algorithm. SARSA learns by interacting with the environment and collect the 5-tuple 

(state, action, reward, next state, next action), i.e. (𝑠, 𝑎, 𝑟, 𝑠′, 𝑎′), and then update the Q function 

based on the TD method. The SARSA algorithm is summarized in Algorithm 2.3. 
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Algorithm 2.3: SARSA Algorithm 

Initialization: 𝑄(𝑠, 𝑎) ∈ 𝑅 is initialized arbitrarily for all 𝑠 ∈ 𝑆 

 

# Iteration to estimate the Q function: 

for each episode do 

Choose the action 𝑎 given the state 𝑠 using policy derived from Q (𝜖-greedy)  

for each timestep of this episode do 

Apply the action 𝑎 and observe the reward 𝑟 and the next state 𝑠′ 
Choose the next action 𝑎′ given 𝑠′ using policy derived from Q (𝜖-greedy)  

𝑄(𝑠, 𝑎) = 𝑄(𝑠, 𝑎) + 𝛼[𝑟 + 𝛾𝑄(𝑠′, 𝑎′) − 𝑄(𝑠, 𝑎)], where 𝛼 is the learning rate 

Set 𝑠 = 𝑠′; 𝑎 = 𝑎′ 
 

Output: a deterministic policy 𝜋(𝑠) = 𝑎𝑟𝑔𝑚𝑎𝑥𝑎𝑄(𝑠, 𝑎) 

  

Different from the SARSA algorithm, Q learning updates the Q function using the 

maximum Q over all possible actions for the next step. i.e., 𝑄(𝑠, 𝑎) = 𝑄(𝑠, 𝑎) + 𝛼[𝑟 +

𝛾𝑚𝑎𝑥𝑎𝑄(𝑠′, 𝑎) − 𝑄(𝑠, 𝑎)]. Since the action used for updating the policy (𝑎 =

𝑎𝑟𝑔𝑚𝑎𝑥𝑎𝑄(𝑠′, 𝑎)) is different from the action being taken at state 𝑠′ (with 𝜖 possibility to be a 

random action), the Q learning method is an off-policy RL method. While the SARSA updates 

the policy using the action that will be taken at state 𝑠′, then the SARSA is an on-policy RL 

method. 

Algorithm 2.4: DQN Algorithm 

Initialization:  

𝑄(𝑠, 𝑎; 𝛽) ∈ 𝑅 network is initialized with random parameter 𝛽 

Target Q function 𝑄̂(𝑠, 𝑎; 𝛽−) is initialized with parameter 𝛽− = 𝛽 

Initialize replay buffer 𝐷 with capacity 𝑁 to store past experience 

 

# Iteration for estimating Q function: 

for each episode do 

Initialized the episode with a random starting state 

for each timestep of this episode do 

Choose the action 𝑎 given the state 𝑠 using policy derived from Q (𝜖-greedy)  

Apply the action 𝑎 and observe the reward 𝑟 and the next state 𝑠′ 
Store the tuple (𝑠, 𝑎, 𝑟, 𝑠′) in 𝐷 

Sample random minibatch of tuples (𝑠, 𝑎, 𝑟, 𝑠′) from 𝐷 

Set target Q value: 𝑦 = 𝑟 + 𝛾𝑚𝑎𝑥𝑎𝑄̂(𝑠′, 𝑎; 𝛽
−) 

Perform a gradient descent step on (𝑦 − 𝑄(𝑠, 𝑎; 𝛽))2 for 𝛽 

Every 𝐶 steps, reset 𝑄̂ = 𝑄, i.e. 𝛽− = 𝛽 

 

Output: a deterministic policy 𝜋(𝑠) = 𝑎𝑟𝑔𝑚𝑎𝑥𝑎𝑄(𝑠, 𝑎) 
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To solve a high dimensional or continuous state space MDP problem, a functional 

approximation (e.g., a neural network that approximates Q function) becomes necessary to 

ensure the solution's tractability. However, directly implementing the Q-learning method for 

continuous state space MPD problem with approximation could cause the Q function to diverge. 

The Deep Q-Network (DQN) method in [80] has successfully demonstrated its value function 

convergence with empirical results using techniques such as “experience replay” and 

“periodically updated target network.” The algorithm is summarized in Algorithm 2.4. 

 There are many extensions of DQN to improve the training performance, such as dueling 

DQN [81], which estimates the value function and advantage function (𝐴(𝑠, 𝑎) = 𝑄(𝑠, 𝑎) −

𝑉(𝑠)) with shared network parameters. And the Double DQN (DDQN) [82], which estimate the 

target Q value by 𝑦 = 𝑟 + 𝛾𝑄̂(𝑠′, 𝑎𝑟𝑔𝑚𝑎𝑥𝑎𝑄(𝑠′, 𝑎; 𝛽); 𝛽
−). DDQN method uses the Q network 

rather than the target Q network to choose the next step action for estimating the Q value. DDQN 

shows benefits in reducing overestimating Q value with very little computational burden.  

Here, we will also briefly introduce the Monte Carlo (MC) method that can also be used 

to solve the MDP problem. MC method does not belong to the category of TD methods. Instead 

of using the Bellman equation to estimate the value function or the Q function, MC directly 

calculates the true value for each episode and then updates the policy by 𝑉(𝑠𝑡) = 𝑉(𝑠𝑡) +

𝛼(𝐺(𝑠𝑡) − 𝑉(𝑠𝑡)), where 𝐺(𝑠𝑡) = ∑ 𝛾𝑘−𝑡𝑟𝑘−𝑡
𝑇
𝑘=𝑡  is called the empirical return, which is 

calculated from a complete episode. The difference between DP, MC, and TD methods are 

summarized in Figure 2.1. 

 

 

Figure 2.1 Comparison of the backup diagrams of Monte-Carlo, Temporal-Difference learning, 

and Dynamic Programming for state value functions [83] 
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2.2.3 Policy Gradient Methods 

Most methods mentioned above aim to learn the value function or Q function first, and 

then the select actions. The Policy Gradient (PG) methods learn the policy directly with a 

parameterized function with respect to 𝜃, i.e., 𝜋(𝑠; 𝜃) ∈ 𝐴. The policy is updated by gradient 

ascend with respect to the objective function: 

 𝐽(𝛽) =∑𝑑𝜋(𝑠)

𝑠∈𝑆

∑𝜋𝜃(𝑠)𝑄
𝜋(𝑠, 𝑎)

𝑎∈𝐴

 (2.3) 

where the 𝑑𝜋(𝑠) is the stationary distribution of this MDP under the policy 𝜋𝜃(𝑠). To maximize 

the objective method, researchers have developed a variety of algorithms. Here we will not 

expand them into details. The simplest policy gradient method is the REINFORCE algorithm, 

which relies on an estimated return by Monte Carlo methods using episode samples (i.e., the 

𝐺(𝑠)) to update the policy parameter 𝜃 via gradient ascent [84]. However, the vanilla 

REINFORCE algorithm suffers from noisy gradients and high variance problems [85], which 

contribute to the instability and slow convergence of the REINFORCE method.  

To improve the policy gradient method, researchers use other estimation of the 

cumulative return instead of the sampled episodes. In Figure 2.2, we summarize the classic 

variants of policy gradient methods. Except for the REINFORCE algorithm, in other methods 

shown in Figure 2.2, researchers introduced some type of the “value function” in addition to the 

policy, which is proven to be useful in reducing the instability of the gradient [86]. That will 

result in having two networks, one for the policy (which is called the Actor) and one for the 

“value function” (which is called the Critic). Therefore, these methods are also called Actor-

Critic (AC) methods. Specifically, researchers use the Q function [87] (Q Actor-Critic), 

advantage function [87](Advantage Actor-Critic) and TD function [87] (TD Actor-Critic) as 

objective function.  

 

Figure 2.2 Different Types of Objective Functions for the Policy Gradient Methods [86] 
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It is natural to expect the policy gradient-based methods are more useful in continuous 

action space. Because there is an infinite number of actions to estimate the values for and hence 

the value-based approaches are way too expensive computationally. However, for discrete action 

space, using two networks (the actor network and the critic network) is not necessarily better 

than the TD methods (e.g., DQN and DDQN). Moreover, policy gradient methods require more 

training loops and generally less data-efficient than the TD methods. Therefore, if the action 

space of the MDP is discrete, TD methods will perform better. Since our application has a 

discrete action space, the backbone RL method we implement is the DDQN method.  

 

2.2.4 Exploration-exploitation Trade-off and Current Methods 

Exploration-exploitation trade-off is a critical topic in reinforcement learning. We want 

the RL agent to learn the best policy as fast as possible. However, the agent has no data to play 

with at the beginning. It needs to explore the state space (i.e., the environment) and collect data 

to update the policy. If the collected data are bad experiences, it could lead to local minima or 

total failure. The deep RL algorithms use a neural network that optimizes for the best returns can 

achieve exploitation quite efficiently, while exploration remains an open topic. 

When solving the DLC decision-making problem, studies [24], [88] mainly focus on 

building the environment simulator and then use a simple ε-greedy exploration strategy. 

However, these papers' backbone RL methods still struggled with the exploration-exploitation 

challenge and provided only heuristic exploration approaches. In [24], the authors stated that the 

standard DRL approach might require a lot of samples before learning the situations when action 

would lead to a collision, thus leading to learning inefficiency. Therefore, they implemented 

human-designed short-horizon safety checks to guide the exploration by eliminating unsafe 

actions in certain conditions. Similarly, in [88], the authors developed a DRL method with rule-

based constraints. These exploration methods are heavily guided by human design, which is 

contradictory to the spirit of deep learning (to learn without the human-designed feature), or full 

exploration (without presumptions or crutches).  Therefore, an advanced exploration method is 

needed.  

Previous methods are reviewed here first to find a systematic exploration technique for 

the DLC decision-making application. From the beginning of reinforcement learning history, 

researchers started to realize the importance of exploration. Thrun [89] and Kaelbling [90] 

https://lilianweng.github.io/lil-log/2018/02/19/a-long-peek-into-reinforcement-learning.html
https://lilianweng.github.io/lil-log/2018/04/08/policy-gradient-algorithms.html
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developed an exploration strategy for the agent to choose its action based on some fixed 

distributions randomly. These methods are now known as the undirected exploration strategy. 

However, undirected exploration strategies are not efficient. Therefore Thrun developed a 

counter-based and a recency-based method that the agent can explore based on how many times 

it has visited different states [91]. Kolter extended the idea by setting the initial reward of all 

states to a high value, which will decrease during exploration in [92]. In [93], Brafman 

introduced the R-max method, where the transition environment model is built and updated by 

counter-based results. These methods are now known as the directed exploration strategy. 

However, for high-dimensional environments, it is inefficient to explore the whole state space, 

and it is hard to implement these methods in continuous state environments. Motivated to 

overcome these problems, Achiam introduced surprise-based intrinsic reward in [94], where the 

agent is excited to see outcomes that run contrary to its understanding of the world. Also, in [95], 

the authors first map states to feature space and then define the difference between the estimated 

feature and the true feature as the curiosity intrinsic reward. In [96], the authors use variational 

auto-encoder (VAE) to build the environment model and help with exploration. These methods 

are known as model-based exploration because they all explore based on environment model. 

However, in these papers, the authors did not focus on how to build the environment model. 

Instead they focus on how to construct the intrinsic reward. Therefore, in this chapter, we will 

develop a better exploration method that can help finding the optimal policy. 

2.3 Model-based Exploration of Reinforcement Learning 

The objective of this section is to develop a method to learn and use the environmental 

model to guide the exploration of the agent to “unfamiliar” states. The agent would form a 

concept of “the world” around it and intrinsically seek outcomes that run contrary to, or 

deviating from, its understanding of the world. Therefore, we propose a model-based exploration 

method as shown in Figure 2.3. Four key components are needed for our implementation task. 

First, the reinforcement learning backbone Double Deep Q Network (DDQN); second, building 

an environment model; third, define intrinsic reward for exploration based on the model; and 

finally, the model updating and policy learning strategy.   
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Figure 2.3 Model-based Exploration 

 

2.3.1 Simulator and Reward Function 

In this section, the state space and the action space of the discretionary lane change 

decision-making problem, the objective related original reward (without the intrinsic reward 

modification), and the simulation environment are introduced. For benchmark purposes, the 

problem definition and the simulation environment are the same as the one used in [24]. 

 

 

Figure 2.4  Three Lane Highway Simulator.  

 

The simulator used in this work is a three-lane highway simulator based on [24]. The host 

vehicle is driving with the information of the surrounding six nearest vehicles (three vehicles in 

front, three vehicles behind) as shown in Figure 2.4. The blue box is the host vehicle, and the six 

red boxes are the nearest surrounding vehicles whose states are observed. The remaining boxes 

are environment vehicles whose states are not observed. The surrounding vehicles’ driving 

strategy is also described in [24]. 

The state-space 𝑆 ⊆ 𝑅𝑛 of the learning agent (host vehicle) includes the host vehicle's 

lateral position 𝑦, host vehicle's longitudinal velocity 𝑣𝑥 and the relative longitudinal position of 

the 𝑖th surrounding vehicle Δ𝑥𝑖, and the relative lateral position of the 𝑖th surrounding vehicle 
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Δ𝑦𝑖 and the relative longitudinal velocity of the 𝑖th surrounding vehicle Δ𝑣𝑥
𝑖 . Therefore, in total, 

we have a continuous state space of 2 + 3 × 6(cars) = 20 dimensions, i.e., 𝑆 ⊆ 𝑅20. 

The actions of both the host vehicle and surrounding vehicles are discrete. As defined in 

[24], we consider four action choices along the longitudinal direction 𝑎𝑥, namely, maintain 

speed, accelerate, brake, and hard brake. Whereas for lateral direction actions 𝑎𝑦, we assume 

three choices, lane keep, change lane to right, and change lane to left. In total, we define 12 

different discrete actions 𝑎 = [𝑎𝑥 , 𝑎𝑦].  

The original reward from the environment 𝑟𝑒  (not considering intrinsic reward) is defined 

as in [24]. It is formulated as a function of (𝑑𝑥, 𝑦, 𝑣𝑥), where 𝑑𝑥 is the distance between the host 

vehicle and its lead vehicle, 𝑦 is the lateral position of the host vehicle and 𝑣𝑥 is the longitudinal 

velocity of the host vehicle. The reward is defined as follows. 

 𝑟𝑥 = {
exp (−

(𝑑𝑥 − 𝑑𝑥𝑠𝑎𝑓𝑒)
2

10𝑑𝑥𝑠𝑎𝑓𝑒
) − 1 if 𝑑𝑥 < 𝑑𝑥𝑠𝑎𝑓𝑒

0 otherwise

 (2.4) 

 𝑟𝑦 = exp (−
(𝑦 − 𝑦𝑑𝑒𝑠)

2

𝑦𝑛𝑜𝑟𝑚
) − 1 (2.5) 

 𝑟𝑣 = exp (−
(𝑣𝑥 − 𝑣𝑑𝑒𝑠)

2

𝑣𝑛𝑜𝑟𝑚
) − 1 (2.6) 

where the 𝑑𝑥𝑠𝑎𝑓𝑒, 𝑦𝑑𝑒𝑠  and 𝑣𝑑𝑒𝑠 are the safe longitudinal distance to the lead vehicle, the target 

lane position, and desired speed, respectively. These three rewards are normalized by 10𝑑𝑥𝑠𝑎𝑓𝑒, 

𝑦𝑛𝑜𝑟𝑚 and 𝑣𝑛𝑜𝑟𝑚, respectively, so that no reward dominates the total reward. Then we have 𝑟𝑒 =

1

3
(𝑟𝑥 + 𝑟𝑦 + 𝑟𝑣) with no collision and 𝑟𝑒 = −2 if there is a collision. 

 

2.3.2 Environment model 

In this section, we developed an environment model that will be used for deriving 

intrinsic reward (Section 2.3.3 ). As defined in Section, we have a 20-dimension state-space 𝑆. 

To take advantage of general application domain background knowledge (vehicle kinematics), 

the model of environmental vehicles is factorized into two parts, the deterministic vehicle 
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kinematics model and the statistical human behavior model. Given the action 𝑎𝑖 = [𝑎𝑥
𝑖 , 𝑎𝑦

𝑖 ] of 

the 𝑖th surrounding vehicle, the action 𝑎 = [𝑎𝑥 , 𝑎𝑦] of the host vehicle and the current state 𝑠, the 

next state 𝑠′ is deterministically derived from the vehicle kinematics model: 

 Host car: {
𝑦′ = 𝑦 + 𝑎𝑦Δ𝑡

𝑣𝑥
′ = 𝑣𝑥 + 𝑎𝑥Δ𝑡

 (2.7) 

 𝑖th car: 

{
 
 

 
 (Δ𝑥𝑖)

′
= Δ𝑥𝑖 + Δ𝑣𝑥

𝑖Δ𝑡 +
1

2
(𝑎𝑥

𝑖 − 𝑎𝑥)Δ𝑡
2

(Δ𝑦𝑖)
′
= Δ𝑦𝑖 + (𝑎𝑦

𝑖 − 𝑎𝑦)Δ𝑡

(Δ𝑣𝑥
𝑖)
′
= Δ𝑣𝑥

𝑖 + (𝑎𝑥
𝑖 − 𝑎𝑥)Δ𝑡

 (2.8) 

The question now is how to infer the ai from the human behavior model. Traditional 

human driver models usually have fixed structures based on various assumptions and do not best 

represent driver behavior when the scenario varies [14], [97]. In our application, it is best to learn 

a model that can infer a wide range of feasible actions with their corresponding probabilities. 

Therefore, in this work, we choose the Variational Auto-Encoder (VAE) to represent human 

behavior.  

The VAE is typically used for learning latent representation 𝑧 in an unsupervised manner. 

Because of the fact that any distribution can be generated by mapping a normal distribution 

through a sufficiently complicated function, the distribution of 𝑧 is asserted to be standard 

normal distribution 𝑁(0, 𝐼). An auto-encoder network is actually a pair of two connected 

networks, an encoder 𝑞, and a decoder 𝑝. An encoder network 𝑞 takes in an input and converts it 

into a smaller, dense representation, which the decoder network 𝑝 can convert it back to the 

original input. VAEs have already shown promise in representing many kinds of complicated 

data, as in [98]. In our application, we take the current state 𝑠 and the action 𝑎 of the host vehicle 

as an input of the model and predict the next state 𝑠′, therefore we build the VAE to condition on 

[𝑠, 𝑎], which is called Conditional Variational Auto-Encoder (CVAE) [99]. 

The whole model structure is shown in Figure 2.5. Given the current state 𝑠 and the host 

vehicle's action 𝑎, the predicted action of the 𝑖th environment vehicle 𝑎𝑖̂ is estimated from the 

decoder of CVAE. Then both 𝑎𝑖̂ and [𝑠, 𝑎] is given to the vehicle kinematics model, and the next 

state 𝑠 ′̂ is estimated. The CVAE is trained with the next state 𝑠′ as the target value. If the 

observed surrounding vehicles change in one time-step, there will a sudden jump in 
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corresponding dimensions of the next state 𝑠′. To solve this problem, we remap these id-changed 

surrounding vehicles' corresponding state to correct position according to the expected action 𝑎̂ 

and set newcomer or disappeared vehicles' state to the default value. 

 

 

Figure 2.5 Conditional variational auto-encoder model with the vehicle kinematics model 

 

 The loss function for training a CVAE is derived from the objective function that aims to 

guess the next state best. Formally speaking, the objective function is to maximize the 

conditional log-likelihood log𝑝θ (𝑠
′|𝑠, 𝑎) with parameter θ. As shown in [99], this objective 

function is normally intractable, so the authors apply the stochastic gradient variational Bayes 

(SGVB) framework to train a statistical aggregated model. Therefore, the variational lower 

bound (also called Evidence Lower BOund, i.e., ELBO) of the log-likelihood is used as the 

objective function. In our application, conditional log-likelihood is written as: 

 

 log 𝑝𝜃(𝑠′|𝑠, 𝑎)

= 𝐾𝐿(𝑞𝜙(𝑧|𝑠′, 𝑠, 𝑎)||𝑝𝜃(𝑧|𝑠′, 𝑠, 𝑎))

+ 𝐸𝑞𝜙(𝑧|𝑠′,𝑠,𝑎)[− 𝑙𝑜𝑔 𝑞𝜙(𝑧|𝑠′, 𝑠, 𝑎)  +   𝑙𝑜𝑔 𝑝𝜃(𝑧, 𝑠′, 𝑠, 𝑎)] 

(2.9) 

where 𝑝θ is the decoder with parameter θ, 𝑞ϕ is the encoder with parameter ϕ and 𝐾𝐿(⋅ || ⋅) is 

the KL-divergence function. And the evidence lower bound (ELBO) can be derived as: 
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  log 𝑝𝜃(𝑠′|𝑠, 𝑎) ≥ −𝐾𝐿(𝑞𝜙(𝑧|𝑠′, , 𝑎)||𝑝𝜃(𝑧|𝑠, 𝑎))  + 𝐸𝑞𝜙(𝑧|𝑠′,𝑠,𝑎)[ log 𝑝𝜃(𝑠′|𝑧, 𝑠, 𝑎)] (2.10) 

Recall that 𝑝θ(𝑧|𝑠, 𝑎) ~ 𝑁(0, 𝐼) and 𝑞ϕ(𝑧|𝑠
′, 𝑠, 𝑎) ~ 𝑁(μ(𝑠′, 𝑠, 𝑎), Σ(𝑠′, 𝑠, 𝑎)) denoted as 

𝑁(μ, Σ), the first term on the right-hand side of Equation (2.10) can be computed in closed form. 

For the second term, using the reparameterization trick described in [100], we can have the 

empirical lower bound as: 

 𝐿𝐶𝑉𝐴𝐸̂ ≔ −
1

2
(tr(Σ) + μ𝑇μ − 𝑘 − logdet(Σ)) +

1

𝐿
∑log𝑝𝜃 (𝑠

′|𝑧𝑙 , 𝑠, 𝑎)

𝐿

𝑙=1

 (2.11) 

where 𝑘 is the dimension of the distribution, 𝑧𝑙 is a sample from 𝑞ϕ(𝑧|𝑠
′, 𝑠, 𝑎) and 𝐿 is the total 

number of samples. In our application, the predicted next states are continuous. Therefore the 

𝑝θ(𝑠
′|𝑧, 𝑠, 𝑎) is modeled by an i.i.d. Gaussian distribution, i.e. 𝑝θ(𝑠

′|𝑧, 𝑠, 𝑎)~𝑁(𝑓(𝑧, 𝑠, 𝑎), σ2𝐼), 

where 𝑓(𝑧, 𝑠, 𝑎) is the output of the decoder and σ is a hyperparameter controlling how precise 

the model is. In more detail, from [98], log𝑝θ (𝑠
′|𝑧𝑙 , 𝑠, 𝑎) = −

𝑛

2
log 2πσ2 −

1

2
‖𝑠′ −

𝑓(𝑧𝑙, 𝑠, 𝑎)‖2/σ2. We could sample 𝑧𝑙  ~ 𝑞ϕ(𝑧|𝑠
′, 𝑠, 𝑎) to estimate it, but getting a good estimate 

would require passing many samples of 𝑧𝑙 through 𝑓(𝑧𝑙, 𝑠, 𝑎), which would be inefficient. 

Therefore, as is standard in stochastic gradient descent, we take one sample of 𝑧 ~ 𝑞ϕ(𝑧|𝑠
′, 𝑠, 𝑎) 

to approximate 
1

𝐿
∑ log𝑝𝜃 (𝑠

′|𝑧𝑙 , 𝑠, 𝑎)𝐿
𝑙=1 . In summary, we have: 

 log𝑝θ (𝑠
′|𝑠, 𝑎) ≥ ELBO ≈ 𝐿𝐶𝑉𝐴𝐸̂ (2.12) 

2.3.3 Intrinsic reward 

In this section, we derive the surprise-based intrinsic reward from the CVAE model 

shown in Section 2.3.2  to help the agent explore states that run contrary to its understanding of 

the world. As defined in [94], the exploration incentive is: 

 η 𝐸𝑠,𝑎~𝜋 [𝐾𝐿(𝑝(𝑠′|𝑠, 𝑎)||𝑝𝜃(𝑠′|𝑠, 𝑎))]   (2.13) 

where η is a weighting factor, and 𝑝 represents the ground truth environment model. It is the on-

policy average KL-divergence of 𝑝θ from 𝑝 and is intended to measure the host vehicle's surprise 

about the observation 𝑠′. The model 𝑝θ, corresponding to the decoder in the CVAE model (with 

vehicle kinematics model), should only be close to 𝑝 in regions of the state space that the host 
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vehicle has already observed and captured the transition rule. Therefore, the KL-divergence of 

𝑝θ and 𝑝 will be higher in unfamiliar places. Essentially, this encourages the agent to go where it 

has not been modeled correctly, which in term implies the places it is unfamiliar. As derived in 

[94], adding the surprise exploration incentive in Equation (2.13) gives the net effect of 

performing a reward shaping of the form: 

 𝑟′(𝑠′, 𝑠, 𝑎) = 𝑟𝑒 + η(log𝑝 (𝑠′|𝑠, 𝑎) − log𝑝θ (𝑠
′|𝑠, 𝑎)) (2.14) 

where 𝑟′ is the new reward, 𝑟𝑒  is the original environment reward defined in Section 2.3.1 . 

Practically, the ground truth environment transition model 𝑝 is unknown. Therefore, they use the 

cross-entropy approximation of the 𝐾𝐿(𝑝||𝑝𝜃)[𝑠, 𝑎] instead: 

 𝐾𝐿(𝑝||𝑝𝜃)[𝑠, 𝑎] =  𝐻(𝑝, 𝑝𝜃)[𝑠, 𝑎]  −  𝐻(𝑝)[𝑠, 𝑎]  ≈ 𝐻(𝑝, 𝑝𝜃)[𝑠, 𝑎] (2.15) 

where 𝐻(𝑝, 𝑝𝜃)[𝑠, 𝑎] ≔ 𝐸𝑠′~𝑝[− log𝑝𝜃 (𝑠
′|𝑠, 𝑎)] is the cross-entropy for distributions 𝑝 and 𝑝θ. 

For a detailed explanation, please refer to [94]. Then, this approximation results in a reward 

shaping of the form: 

 𝑟′(𝑠′, 𝑠, 𝑎) = 𝑟𝑒 − η log𝑝θ (𝑠
′|𝑠, 𝑎) (2.16) 

From Equation (2.12), we have derived the lower boundary of conditional log-likelihood 

log𝑝θ (𝑠
′|𝑠, 𝑎). Therefore, the upper boundary of the second term in Equation (2.16) is 

−η𝐿𝐶𝑉𝐴𝐸̂ . Also, as shown in [98], the difference between  𝐿𝐶𝑉𝐴𝐸̂  and log𝑝θ (𝑠
′|𝑠, 𝑎) will 

vanished as the model becomes more and more accurate. Therefore, we use the upper boundary 

as the surprise-based intrinsic reward denoted as 𝑟𝑠𝑝, i.e.: 

 𝑟𝑠𝑝 ≔ −η𝐿𝐶𝑉𝐴𝐸̂  (2.17) 

 𝑟′(𝑠′, 𝑠, 𝑎) = 𝑟𝑒 + 𝑟𝑠𝑝 (2.18) 

 

Similar to [94], we keep the average intrinsic reward 𝑟𝑠𝑝 upper-bounded by adjusting η at each 

iteration: 

 
η =

η0

max (1,
1
|𝐵|

∑ 𝑟𝑠𝑝(𝑠,𝑎,𝑠′)∈𝐵 )
 

(2.19) 
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where 𝐵 is the batch of data used for the policy update step. For every batch of tuple data 

(𝑠𝑡, 𝑎, 𝑠𝑡+1, 𝑟
𝑒), the 𝑟𝑡

𝑠𝑝
 is calculated from the current CVAE model, as shown in Figure 2.6. 

 

Figure 2.6 Intrinsic Reward 

 

2.3.4 Model and policy update strategy 

The final algorithm is summarized in Figure 2.7. Same as traditional DDQN algorithm, 

after initialization, samples (𝑠, 𝑎, 𝑠′ , 𝑟𝑒) from the environment are collected by the agent 

following its current policy and stored in the replay buffer. During training the DDQN, a batch of 

samples is sent to CVAE to calculate 𝑟𝑠𝑝, then used for updating the DDQN policy network. 

Also, we update the CVAE model every 100 episodes with samples (𝑠, 𝑎, 𝑠′) from the replay 

buffer. The expected outcome is that the CVAE model becomes more and more accurate, and we 

have a well-explored DDQN policy. Finally, at the end of the training, the intrinsic reward 

should vanish, and the learned policy should be optimized corresponding to environment reward 

𝑟𝑒  only. 
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Figure 2.7 Training procedure for CVAE and DDQN 

 

2.3.5 Baseline Exploration Method 

The proposed model-based exploration method is compared with annealing 𝜀-greedy 

exploration and rule-based safety check exploration. In the annealing 𝜀-greedy exploration, in 

which the agent chooses an action based on: 

 𝜋(𝑎|𝑠) = {
1 − 𝜀, if 𝑎 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑎𝑄(𝑠, 𝑎)

𝜀, random action
 (2.20) 

where the 𝜀 is a small probability on which the agent will choose random action. It decreases 

with the training process as 𝜀 = max(𝑒−𝑖𝐶 , 𝜀0), where 𝑖 is the training episode, and 𝐶 is the 

annealing factor. 

Meanwhile, the short-horizon safety check baseline method will replace dangerous action 

before applying it. If the action chosen by the DDQN is unsafe, it will be replaced by Intelligent 

Driver Model (IDM) and Advanced Emergency Braking (AEB) system based action. The key 

safety check includes:  

For longitudinal actions without changing lane:  

• Check the safe distance and time to collision (TTC) with the leading vehicle. If 

the action violates the safety check, it will be replaced by a safe longitudinal 

action. 

For lane change action: 

• If the ego vehicle is in the left-most lane, change to the left is not valid, similar for 

the right lane. 
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• The safe distance and TTC to the target lane vehicle are continuously monitored. 

If it is violated, the lane change action will be either not initiated or aborted.  

• If the ego vehicle is on the lane marker, the next lateral action will choose from 

change lane to right and change lane to the left, which means the ego vehicle 

would not stay on the lane marker.  

 

2.3.6 Training Setups 

The experiments are conducted with hyperparameters listed in Table 2.1. All three 

exploration methods are learning policies with the same deep network structure. 

Table 2.1 Implementation Hyperparameters 

 Description Value 

𝑧 The dimension of the CVAE latent variable 𝑧 6 

𝜎2 Hyperparameter for CVAE decoder 1 2𝜋⁄  

𝜂0 Weight factor in Equation (2.19) for 𝑟𝑠𝑝 1.0 

𝐸 Number of evaluation episodes 10 

𝛾 Discount factor 0.9 

Δ𝑡 Sampling time 0.1 sec 

𝜌 Learning rate 1 × 10−6 

𝜀0 Starting value for 𝜀-greedy exploration 0.2 

𝐶 Annealing factor for 𝜀-greedy exploration 2 × 10−6 

 

2.4 Training Results 

In this section, we compare our proposed CVAE model-based exploration strategy with 

two baseline exploration methods described in Section 2.3.5 . 
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Figure 2.8 Average reward from evaluation roll-outs confidence bound 

 

Figure 2.9 Average reward of last 50 episodes with the confidence bound 

 

Figure 2.10 Average intrinsic reward and the CVAE training loss over training iterations 
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During training, the updated policy is tested by random rollouts using the environment 

reward 𝑟𝑒  only. Figure 2.8 reports the average reward per action for ten evaluation rollouts. The 

training curve obtained by rule-based safety check exploration has very narrow confidence 

intervals and converges fast. The rule-based safety check helps the agent collecting smart data, 

and the reinforcement learning part is more or less like a fitting process. Meanwhile, the training 

curve of ε-greedy shows that by only randomly choosing an action, the agent is learning slowly. 

While for our proposed CVAE model-based exploration method, the result shows that its 

performance is as good as our target rule-based safety check exploration method, and during the 

early stage, it is trying to explore unfamiliar states, which leads to sudden drops in the average 

reward curve. Also, in Figure 2.9, the average reward of the last 50 episodes are reported. Our 

method performs twice as well as the ε-greedy baseline. In the end, the ε-greedy method 

converges to a suboptimal policy that learns to stay in one lane without any intention of a lane 

change. And if the agent learns to perform good lane following, the average reward would be 

around −0.2. 

The intrinsic reward from CVAE and the CVAE training loss is also reported in Figure 

2.10. During training, the CVAE becomes more and more accurate while the intrinsic reward 

vanishes at the end of the training. Therefore, the agent is eventually learning a good policy 

corresponding to the environment reward. 

These experiments confirm that the work presented in this chapter outperforms the 

baseline ε-greedy method and converge almost as fast as the oracle method exploration. As 

shown in Figure 2.11, the AV agent trained by the baseline ε-greedy method will converge to a 

no-lane change policy. Even if cars in the adjacent lane travel faster, the AV agent will not 

change lanes to achieve a higher speed. This is due to the poor exploration during learning, 

which leads the AV agent to a local optimal no-lane change policy. While for the AV agent 

trained by the model-based exploration method, as shown in Figure 2.12, it can change lane to 

the adjacent lane where cars travel faster. These results show that the model-based exploration 

method can find the global-optimal policy (i.e., the oracle policy trained by rule-based safety 

check exploration), while when using the baseline ε-greedy method, the AV agent will easily be 

stuck in a local-optimal policy.  

 



 39 

 

Figure 2.11 Animation result of ε-greedy method 

 

 

Figure 2.12 Animation result of model-based exploration method 

 

2.5 Summary 

In this work, we proposed a type of model-based exploration method via intrinsic reward. 

In particular, an environment transition model structured as a CVAE model with vehicle 

kinematics is learned during network training. In parallel, this model is encoded in a surprise-

based intrinsic reward exploration for the policy training. The experiments we conduct show that 

the model-based exploration method we proposed leads to a faster convergence solution (i.e., 

better data efficiency) than the baseline ε-greedy approach and as good as the oracle rule-based 

safety check exploration method. 

As shown in the simulation results, the policy learned by the baseline ε-greedy method 

will converge to a local-optimal policy that the AV agent will stay in one lane even when the 

cars in the adjacent lane travel faster. The model-based exploration method we developed can 

help the agent explore the state that runs contrary to their understanding of the environment and 

thus result in a thorough exploration. And as shown in the simulation result, the AV agent learns 

to change lane to travel both safer and faster. 

The method we developed shows both theoretical and practical advantages in solving the 

discretionary lane change problem. The AEB used in short-horizon safety check will be 

evaluated in Chapter 3, and the trained policy will be evaluated in Chapter 4. 
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Chapter 3 Evaluation of the Autonomous Vehicle’s Policy Using Subset Simulation 

 

In this chapter, we evaluate the Advanced Emergency Braking (AEB) system 

implemented as the lower level safeguard controller in the short horizon safety check in Section 

2.3.5. The evaluation problem under the first setup of assumptions (described in Section 1.4) is 

studied. Given the naturalistic driving data from the SPMD database, environment stochastic 

models were built. The approach developed in this chapter is based on the Subset Simulation 

(SS) method. The SS approach is demonstrated in the lane change scenario with two 

environment stochastic models. The crash rate and accelerated rate are calculated and compared 

to the baseline Importance Sampling (IS) method. 

3.1 Literature Reviews on Evaluation Approaches and Their Limitations 

As briefly mentioned in Section 1.2.2, variation reduction techniques have been proposed 

as a solution to the limitations of N-FOTs and other approaches [5]. Here we expound on 

variation reduction techniques used in past studies and their limitations. 

In general, Monte Carlo simulations were very inefficient since much real-world driving 

consists of non-safety-critical interactions between the host vehicle and its surrounding vehicles. 

To address this limitation, Zhao et al. [5], [69], [70] applied the IS method to estimate the 

probability of rare events and use that to achieve significantly faster AV evaluations than the 

conventional Monte Carlo approach. Instead of relying upon the initial distribution of naturalistic 

driving data, the IS estimator samples according to the Importance Sampling Distribution (ISD). 

This distribution is the result of a bijective transformation, and therefore testing under this 

framework can focus on safety-critical scenarios while retaining the probability of such 

scenarios. Consequently, results under IS can be interpreted in the context of the original 

distribution, and thus the probability of rare events can be accurately estimated much more 

quickly. This technique has been used for testing AEB in lane changing scenarios in [70] and 

was found to accelerate testing by around 50 times compared with the Crude Monte Carlo 

method. 
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3.1.1 Importance Sampling Method 

To introduce the importance sampling method, let us first formulate the problem under 

the language of mathematics. The objective of using the IS method is to accurately and 

efficiently approximate rare events probability (failure probability 𝑃𝐹 in our application) 

 𝑃𝐹 = ℙ(𝜀), 𝜀 ⊂ Ω (3.1) 

where Ω denotes the variable space of all possible events, and 𝜀 denotes the set of rare events. 

The indicator function of the event 𝜀 is defined as 

 𝐼𝜀(𝒙) = {
1, if 𝒙 ∈ 𝜀
0, otherwise

 (3.2) 

where 𝒙 denotes the vector of random variables that describes the surrounding vehicles. Let 𝑓(𝒙) 

denote the joint Probability Density Function (PDF) of the environment distribution, then the 

failure probability 𝑃𝐹 can be written as 

 𝑃𝐹 = 𝔼𝑓[𝐼𝜀(𝒙)] = ∫ 𝐼𝜀(𝒙)𝑓(𝒙)dx
𝒙∈𝜀

 (3.3) 

where 𝔼𝑓[𝐼𝜀(𝒙)] means the expectation of 𝐼𝜀(𝒙) and 𝒙~𝑓(𝒙).  𝑃𝐹 can be estimated by the Crude 

Monte Carlo (CMC) simulation as 

 𝑃̂𝐹
𝐶𝑀𝐶 =

1

𝑁
∑𝐼𝜀(𝑥𝑖)

𝑁

𝑖=1

,     𝑥𝑖~𝑓(𝒙) (3.4) 

where 𝑁 is the total number of samples used to estimate the 𝑃𝐹, and 𝑥𝑖 is the 𝑖𝑡ℎ independent and 

identically distributed (i.i.d.) sample from the environment distribution 𝑓(𝒙). The CMC 

estimation 𝑃̂𝐹
𝐶𝑀𝐶  is an unbiased estimator [101] of 𝑃𝐹 with mean 𝔼[𝑃̂𝐹

𝐶𝑀𝐶] and variance 𝕍[𝑃̂𝐹
𝐶𝑀𝐶] 

easily being derived as 

 𝔼[𝑃̂𝐹
𝐶𝑀𝐶] = 𝑃𝐹 ,  and 𝕍[𝑃̂𝐹

𝐶𝑀𝐶] =
𝑃𝐹(1 − 𝑃𝐹)

𝑁
 . (3.5) 

In reliability analysis, the standard measure of the accuracy of an unbiased estimator 𝑃̂𝐹 is its 

coefficient of variation (c.o.v.) [101], defined as 𝛿(𝑃̂𝐹) = √𝕍[𝑃̂𝐹] 𝔼[𝑃̂𝐹]⁄ . Therefore, we can 

calculate the c.o.v. expression for CMC estimator: 
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 𝛿(𝑃̂𝐹
𝐶𝑀𝐶) = √𝕍[𝑃̂𝐹

𝐶𝑀𝐶] 𝔼[𝑃̂𝐹
𝐶𝑀𝐶]⁄ = √

1 − 𝑃𝐹
𝑁𝑃𝐹

 . (3.6) 

The idea of c.o.v. will permeate this chapter as a standard measure. It is obvious that the c.o.v. of 

the CMC estimator is related to the failure probability 𝑃𝐹 and the total number of samples 𝑁. 

Considering estimating the probability of rare events, i.e. 𝑃𝐹 ≪ 1, then 𝛿(𝑃̂𝐹
𝐶𝑀𝐶) ≈ 1 √𝑁𝑃𝐹⁄ . 

For example, if 𝑃𝐹 = 10−7 (which is the magnitude of human driver crash rate), and if the c.o.v. 

𝛿(𝑃̂𝐹
𝐶𝑀𝐶) = 10% is desirable, then 𝑁 = 109 samples are required. That is the reason we 

introduce the Importance Sampling (IS) technique.  

The IS technique [102] aims to increase the estimation accuracy by constructing some 

Importance Sampling Distribution (ISD). The basic idea of the IS method is to take advantage of 

the information about the rare event to generate samples that lie more frequently in the important 

region, or in our application, the “danger region.” We denote this ISD as 𝑓∗(𝒙), and we can redo 

the analysis as in CMC. The failure probability 𝑃𝐹 can be derived as 

 𝑃𝐹 = ∫ 𝐼𝜀(𝒙)𝑓(𝒙)𝑑𝒙
𝒙∈𝜀

= ∫
𝐼𝜀(𝒙)𝑓(𝒙)

𝑓∗(𝒙)
𝑓∗(𝒙)𝑑𝒙

𝒙∈𝜀

= 𝔼𝑓∗ [
𝐼𝜀(𝒙)𝑓(𝒙)

𝑓∗(𝒙)
] . (3.7) 

Now the IS estimator can be constructed similarly as 

 𝑃̂𝐹
𝐼𝑆 =

1

𝑁
∑

𝐼𝜀(𝑥𝑖)𝑓(𝑥𝑖)

𝑓∗(𝑥𝑖)
=
1

𝑁
∑𝐼𝜀(𝑥𝑖)

𝑁

𝑖=1

𝐿(𝑥𝑖)

𝑁

𝑖=1

,     𝑥𝑖~𝑓
∗(𝒙) (3.8) 

where 𝑥𝑖 is the 𝑖𝑡ℎ i.i.d. sample from the ISD 𝑓∗(𝒙), and 𝐿(𝑥𝑖) = 𝑓(𝑥𝑖) 𝑓
∗(𝑥𝑖)⁄  is the importance 

weight of the sample 𝑥𝑖. The IS estimator converge to 𝑃𝐹 as 𝑁 → ∞ by the strong law of large 

numbers, if and only if the support of 𝑓∗(𝒙), i.e., the domain where 𝑓∗(𝒙) > 0, contain the 

support of 𝐼𝜀(𝑥𝑖)𝑓(𝑥𝑖). By choosing the ISD appropriately, the IS method can obtain an 

estimator with a smaller variance. The variance of the IS method can be derived as 

 

𝕍[𝑃̂𝐹
𝐼𝑆] =

1

𝑁2
∑𝕍𝑓∗[𝐼𝜀(𝒙)𝐿(𝒙)]

𝑁

𝑖=1

=
1

𝑁
(𝔼𝑓∗[𝐼𝜀(𝒙)𝐿

2(𝒙)] − 𝑃𝐹
2)

 . (3.9) 
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It is straightforward to derive that the optimal choice of ISD which minimize the variance of IS 

estimator in Equation (3.6)  

 𝑓𝑜𝑝𝑡
∗ =

𝐼𝜀(𝒙)𝑓(𝒙)

𝑃𝐹
= 𝑓(𝒙|𝑥 ∈ 𝜀) (3.10) 

which is simply the original PDF 𝑓(𝒙) conditional on the rare event domain. The 𝑓𝑜𝑝𝑡
∗  is called 

the zero-variance distribution, which zeroes the variance of the IS estimator. Therefore, with 

zero-variance distribution as the ISD, the IS estimator can accurately approximate 𝑃𝐹 at 100% 

confidence level with only 1 sample. This is the big promise of the IS method.  

 

3.1.2 Limitations and Motivations 

However, zero-variance distribution is just a theoretical result. Finding this distribution 

for the IS estimator is not easy. It requires knowledge of the AV’s algorithm, which is not 

available under our assumptions, nor is it a practical requirement in general. If we treat the AV 

as a black-box system, some Adaptive Importance Sampling (AIS) technique is needed. The 

Cross-Entropy (CE) method [103] is a normal choice of AIS techniques, which use the Monte 

Carlo method to minimize the CE between the optimal ISD (i.e., zero-variance distribution) and 

the proposed ISD 

 𝐻 (𝑓𝑜𝑝𝑡
∗ (𝒙), 𝑓∗(𝒙)) = −∫𝑓𝑜𝑝𝑡

∗ (𝒙) log(𝑓∗(𝒙))𝑑𝒙
Ω

 (3.11) 

where 𝐻 (𝑓𝑜𝑝𝑡
∗ (𝒙), 𝑓∗(𝒙)) denotes the CE. And substituting Equation (3.10) into Equation (3.11), 

we have 

 𝐻 (𝑓𝑜𝑝𝑡
∗ (𝒙), 𝑓∗(𝒙)) = −∫

𝐼𝜀(𝒙)𝑓(𝒙)

𝑃𝐹
log(𝑓∗(𝒙))𝑑𝒙

Ω

 . (3.12) 

Therefore, minimizing the CE is to maximize ∫
𝐼𝜀(𝒙)𝑓(𝒙)

𝑃𝐹
log(𝑓∗(𝒙))𝑑𝒙

Ω
 which is proportional to 

∫ 𝐼𝜀(𝒙)𝑓(𝒙)log(𝑓
∗(𝒙))𝑑𝒙

Ω
. Furthermore, we assume that the 𝑓∗(𝒙) can be determined by 

parameter 𝜃, and thus the objective function of the CE method can be rewritten as 

 max
θ
∫𝐼𝜀(𝒙)𝑓(𝒙)log(𝑓

∗(𝒙; 𝜃)) 𝑑𝒙 . (3.13) 
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This can be solved recursively by MC sampling method, and as derived in [104], the 𝑘𝑡ℎ step 

update equation for 𝜃 is  

 𝜃𝑘 = argmax
 𝜃

1

𝑁
∑𝐼𝜀(𝑥𝑖)

𝑓(𝑥𝑖)

𝑓∗(𝑥𝑖; 𝜃𝑘−1)
log𝑓∗(𝑥𝑖; 𝜃)

𝑁

𝑖=1

,   𝑥𝑖~𝑓
∗(𝒙; 𝜃𝑘−1) (3.14) 

where the 𝑥𝑖 is the 𝑖𝑡ℎ i.i.d. sample from the 𝑘 − 1 step ISD 𝑓∗(𝒙; 𝜃𝑘−1) and 𝑁 is the total 

number of samples for 𝑘𝑡ℎ step. However, it requires a lot of additional samples before the 

testing procedure, which will drain the accelerated rate. This is the first motivation for the 

research in this chapter.  

Furthermore, the IS method suffers from the high dimension degeneration problem [105], 

or the curse of dimension problem. A geometric explanation as to why IS is often inefficient in 

high dimensions is given in [106], and the theoretical analysis of this problem is addressed in 

Section 2.6.6.1 in [73]. Since the illustration of the problem will take too much effort, here we 

just give the conclusion and simple explanations. The conclusion is that the failure probability 𝑃𝐹 

is found to be severely underestimated in high dimension environment from their numerical 

experiments [106], the underestimation becoming worse as the dimension increases. A simple 

explanation is that even if the ISD 𝑓∗(𝒙) is close to the optimal ISD 𝑓𝑜𝑝𝑡
∗ (𝒙), it still has some 

possibility that the support of 𝑓∗(𝒙) does not cover the support of 𝑓𝑜𝑝𝑡
∗ (𝒙) in some dimension, 

which will lead to underestimation of the 𝑃𝐹. And the higher the problem dimension, the worse 

IS underestimates.  

To solve the curse of dimensionality problem, Sequential Importance Sampling (SIS) 

techniques can be used. In the SIS methods [107], the ISD is iteratively refined to represent rare 

events. However, fitting ISD requires predefining the model or structure of this ISD. Knowing 

nothing about the “danger region” of the testing AV leaves no clue for the structure of this ISD. 

For example, if we choose the Gaussian Mixture Model (GMM) as the structure for this ISD, 

what should be the component number of this GMM? How can we be sure this GMM is the “best 

model” and will not overfit? We cannot ensure this GMM is the best model without further 

Akaike Information Criterion (AIC) or Bayesian Information Criterion (BIC) testing. Moreover, 

we do not need the posterior distribution. We only need the failure probability 𝑃𝐹. This is another 

motivation for the following research.  
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3.2 Variance Reduction Techniques: Subset Simulation 

The above-mentioned limitations of the IS method lead us to study another sampling 

method, the Subset Simulation (SS), to address the black-box and high-dimensionality problems. 

SS is an advanced stochastic simulation method for estimating the low failure probability of a 

system based on the Markov Chain Monte Carlo method [73], [108], [109]. It has been used to 

estimate the structural reliability of civil, aerospace, and nuclear systems. Moreover, SS has 

proven useful in other applications such as sensitivity analysis, design optimization, and 

uncertainty quantification [73].  

 

3.2.1 Subset Simulation Algorithm 

The basic idea behind the Subset Simulation (SS) method is to represent a very small 

probability (the failure probability in our application) 𝑃𝐹 as a product of relative larger 

probabilities of “more-frequent” events. Then the larger probabilities are estimated separately. 

To construct a sequence of sets of events, let us consider a potentially non-explicit function 𝑌(𝑥) 

to indicate the performance of the system. The rare event set 𝜀 in Equation (3.1) can be rewritten 

as 

 𝜀 = {𝒙: 𝑌(𝒙) < 𝑏} (3.15) 

where 𝑏 is the threshold of the performance for the rare event set. Then we can construct a 

sequence of sets of events as 

 Ω ≡ 𝜀0 ⊃ 𝜀1 ⊃ 𝜀2… ⊃ 𝜀𝑀 ≡ 𝜀 (3.16) 

where 𝑀 is the total number of levels in the simulation and 𝜀𝑚 = {𝒙: 𝑌(𝒙) < 𝑏𝑚} is the subset at 

the level 𝑚 simulation. Then we have 𝑏 = 𝑏𝑀 < 𝑏𝑀−1 < ⋯ < 𝑏1 and 𝜀 = ⋂ 𝜀𝑚
𝑀
𝑚=0 . Therefore, 

as far as we can construct such a sequence of nested subsets, the failure probability 𝑃𝐹 can be 

calculated as a product of conditional probabilities 

 𝑃𝐹 = ℙ(𝜀) = ℙ(⋂ 𝜀𝑚

𝑀

𝑚=0

) =∏ℙ(𝜀𝑚|𝜀𝑚−1)

𝑀

𝑚=1

=∏𝑃𝑚

𝑀

𝑚=1

 (3.17) 

where 𝑃𝑚 ≡ ℙ(𝜀𝑚|𝜀𝑚−1) is the conditional probability at the 𝑚𝑡ℎ level and ℙ(𝜀1|𝜀0)  =  ℙ(𝜀1). 

In this way, the original problem of estimating a small failure probability 𝑃𝐹 becomes 𝑀 



 46 

intermediate problems corresponding to larger conditional probabilities. In the implementation of 

SS, the total number of subsets (or levels) 𝑀 and the values of intermediate thresholds {𝑏𝑚} are 

chosen adaptively. 

The next question is to estimate these conditional probabilities. First, we can further 

define the indicator function for each level 

 𝐼𝜀𝑚(𝒙) = {
1, if 𝒙 ∈ 𝜀𝑚 , i.e., 𝑌(𝒙) < 𝑏𝑚
0, otherwise

 (3.18) 

and the PDF of the conditional distribution of each level can be derived as  

 𝑝𝑚(𝒙) ≡ 𝑓(𝒙|𝜀𝑚−1) =
𝐼𝜀−1(𝒙)𝑓(𝒙)

ℙ(𝜀𝑚−1)
 (3.19) 

Since ℙ(𝜀0) = 1, the first probability can be estimated by the CMC method. Estimating the 

remaining probability is more challenging and need to sample from the conditional distribution 

in Equation (3.19). This seems to be a trivial task, noticing that a sample from 𝑝𝑚(𝒙) is just one 

drawn from 𝑓(𝒙) that lies in 𝜀𝑚−1. However, it is not efficient to draw a sample from 𝑓(𝒙) and 

abandon it if it is not lies in 𝜀𝑚−1. Instead, in standard SS, samples from the conditional 

distribution 𝑝𝑚(𝒙) are generated by the Modified Metropolis Algorithm (MMA) [108], which 

belongs to the family of MCMC. Details of MMA will be elaborated in the next Section 3.2.2 .  

The splitting strategy for each simulation level (𝑚) is introduced here first and 

summarized as follows:  

1. The estimation of first level (𝑚 = 1) conditional probability is conducted by CMC, 

which directly draw 𝑁 samples 𝑥1
(1)
, . . . , 𝑥𝑁

(1)
 from the original environment 

distribution 𝑓(𝒙). 

2. The performance function 𝑌(𝒙) is used to characterize failures; 𝑌(𝑥𝑖
(1)
) is evaluated  

for  each 𝑥𝑖
(1)

, which  is  the 𝑖𝑡ℎ sample from the CMC sampling; all 𝑌(𝑥𝑖
(1)
) are then 

sorted in ascending order to get the list {𝑦1
(1)
≤. . . ≤ 𝑦𝑁

(1)
}. 

3. Set the 𝑃1 (defined in Equation (3.17)) percentile of the list {𝑦1
(1)
≤. . . ≤ 𝑦𝑁

(1)
}, 

denoted as 𝑏1, to be the threshold for the 2nd subset level. This means that 𝜀1 =

{𝒙: 𝑌(𝒙) < 𝑏1}; those samples inside the 𝜀1 are “seeds” for the 2nd level. We denote 

seeds using {𝜃𝑗
(1)
}. 
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4. In the 2nd level, we sample from the conditional distribution 𝑝1(𝒙).  It is inefficient to 

use CMC; thus, we choose the MMA sampling method for this task. 

5. After collecting samples 𝑥1
(2)
, . . . , 𝑥𝑁

(2)
, repeat step 2 and obtain 𝑏2 and 𝜀2 =

{𝒙: 𝑌(𝒙) < 𝑏2}.  Once again, those samples inside 𝜀2 are seeds for the 3rd level and 

denoted as {𝜃𝑗
(2)
}.  

6. Repeat step 3 to 5 for samples of the next level until 𝑏𝑚 ≤ 𝑏 or 𝑚 + 1 > 𝑀. 

This process is illustrated in a two-dimension variable space in Figure 3.1. In Figure 3.1 

(a), the hollow dots (circles) are the samples from the original distribution 𝑓(𝒙). They are then 

tested by the performance function 𝑌(𝒙) and the testing results are sorted in ascending order. 

The red crosses (are also sampled from the 𝑓(𝒙)) in Figure 3.1 (a) are the top 𝑃1 percent results 

and thus become the seeds for level 1. In the subset 𝜀1, level 1 samples (the black dots in Figure 

3.1 (a)) are drawn from the seeds by MMA. Then level 1 samples are also tested by performance 

function 𝑌(𝒙) and the testing level 1 results are also sorted in ascending order. The blue crosses 

in Figure 3.1 (b) are the top 𝑃2 percent of the level 1 results, and thus become the seeds for level 

2. Repeat these steps until the terminal condition reached.  

 

  

(a) Level 0 – Level 1 (b) Level 0 – Level 2 

Figure 3.1 Subset Simulation Process 

 

3.2.2 Modified Metropolis Algorithm 

In the procedure outlined in Section 3.2.1 , the critical problem is the efficient sampling 

at each level from the conditional probability distribution 𝑝𝑚(𝒙) ≡ 𝑓(𝒙|𝜀𝑚−1), i.e. to estimate 
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 𝑃𝑚 = ∫ 𝑝𝑚(𝒙)𝑑𝒙
𝒙∈𝜀

= ∫
𝐼𝜀−1(𝒙)𝑓(𝒙)

ℙ(𝜀𝑚−1)
𝑑𝒙 .

𝒙∈𝜀

 (3.20) 

To approach this issue, we consider Markov Chain Monte Carlo (MCMC), which is a class of 

sampling methods for distributions that cannot be directly sampled efficiently. The basic idea of 

this method is to construct a Markov Chain whose stationary distribution is the one of interest. 

By drawing from the Markov Chain, the samples will, in the end, be distributed with the 

conditional probability distribution 𝑝𝑚(𝒙). The MCMC used in SS is the Modified Metropolis 

Algorithm (MMA).  

The MMA algorithm is a component-wise version of the original Metropolis algorithm 

[110]. It is specifically tailored for sampling from high-dimensional conditional distributions. 

This approach uses the seeds as described before and evolves according to the proposal 

distribution 𝑞𝑘(⋅ | ⋅), 𝑘 = 1, … ,𝐾, which corresponds to the 𝑘𝑡ℎ dimension of the original 

distribution 𝑓(𝒙). For level 𝑚, we have 𝑁 × 𝑃𝑚−1 seeds, where 𝑁 is the number of samples from 

the previous level, and 𝑃𝑚−1 is the level probability. The MMA process at each level is described 

in Algorithm 3.1 and illustrated in Figure 3.2 (in two-dimension variable space). 

 

 

Figure 3.2 Schematic Diagram of Modified Metropolis Algorithm 
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Algorithm 3.1: Modified Metropolis Algorithm for each seed 𝜃𝑗
(𝑚−1)

 in level 𝑚 

Input:  

Initial state: 𝜃𝑗
(𝑚−1)

, which is denoted as 𝑥0 for each Markov Chain. 

Total number of states of the Markov Chain: 𝑁𝑐. 
Original distribution: 𝑓𝑘(⋅) for dimension 𝑘. 

Proposal distribution: 𝑞𝑘(⋅ | ⋅) for dimension 𝑘. 

for 𝑖 = 1,… , 𝑁𝑐 do 

# Generate candidate state 𝜉 

for 𝑘 = 1,… ,𝐾 do 

Sample 𝜉𝑘~𝑞𝑘(⋅ |𝑥𝑖−1
(𝑘)
) 

Calculate the acceptance ratio for MCMC 

 𝑟 =
𝑓𝑘(𝜉𝑘) ⋅ 𝑞𝑘(𝑥𝑖−1

(𝑘)
|𝜉𝑘) 

𝑓𝑘(𝑥𝑖−1
(𝑘)
) ⋅ 𝑞𝑘(𝜉𝑘|𝑥𝑖−1

(𝑘)
)
 (3.21) 

Accept or reject 𝜉𝑘: 

 𝜉𝑘 = {
𝜉𝑘 , with probability min(𝑟, 1)

𝑥𝑖−1
(𝑘)
, with probability 1 − min(𝑟, 1)

 (3.22) 

Obtain 𝜉 = [𝜉1, … , 𝜉𝐾]
𝑇 

Check whether 𝜉 ∈ 𝜀𝑚−1 by testing. Accept or reject 𝜉: 

 𝑥𝑖 = {
𝜉, if 𝜉 ∈ 𝜀𝑚−1
𝑥𝑖−1, otherwise

 (3.23) 

Output: Samples 𝑥0, … , 𝑥𝑁𝑐−1, 𝑁𝑐 states of a Markov Chain for each seed 𝜃𝑗
(𝑚−1)

 in level 𝑚. 

 

By applying the MMA algorithm, the resulting stationary distribution will be the 

conditional distribution 𝑝𝑚(𝒙). Here we observe that the total number of samples in level 𝑚 is 

𝑁 × 𝑃𝑚−1 ×𝑁𝑐. For convenience, if we set 𝑁𝑐 = 𝑃𝑚−1
−1 , then at each level, we will have the same 

number of total samples. The MCMC method is known to handle high-dimensional stochastic 

models efficiently, which is an important consideration because the stochastic model for a 

realistic environment of an AV can be complicated.  

One important assumption of this MMA algorithm is that the 𝐾 dimension random 

variables are independent. This assumption is not a limitation since, in simulation, one always 

starts from independent variables to generate correlated excitation histories. The modification of 

the original distribution 𝑓(𝒙) for MMA will be elaborated in Section 3.3.3 . Other parameter 

selection will be elaborated in Section 3.4.2 . 
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 It is derived in [73], [108] that, given the failure probability 𝑃𝐹, 𝑃𝑚, and the total number 

of samples 𝑁, the c.o.v. of the SS estimator can be derived as 

 𝛿2(𝑃̂𝐹
𝑆𝑆|𝑃𝐹 , 𝑃𝑚 , 𝑁) =

(1 + 𝛾)(1 − 𝑃𝑚)

𝑁𝑃𝑚(ln𝑃𝑚−1)𝑟
(ln𝑃𝐹

−1)𝑟 (3.24) 

where 2 ≤ 𝑟 ≤ 3 and 𝛾 is approximately a constant that depends on the state correlation of the 

Markov chain at each level. Numerical experiments show that 𝑟 = 2 gives a good approximation 

to the c.o.v. and that 𝛾 ≈ 3 if the variance of the proposal distribution is chosen appropriately 

[73], [108], [111]. This will be elaborated in Section 3.4.2 . As shown in Equation (3.6), the 

c.o.v. of CMC is 𝛿2(𝑃̂𝐹
𝐶𝑀𝐶) ∝ 𝑃𝐹

−1, while for SS, 𝛿2(𝑃̂𝐹
𝑆𝑆) ∝ (ln𝑃𝐹

−1)𝑟. This is the reason why 

SS can dramatically improve the efficiency of CMC in rare event simulation. 

3.3 Naturalistic Driving Data and Environment Model 

3.3.1 Naturalistic Driving Data 

The lane change scenario is used as a case study to show the evaluation results and the 

advantages of SS over CMC and IS techniques. In the lane change scenarios, two vehicles are 

involved, which are the following vehicle and the lane change vehicle (as shown in Figure 3.3).  

In the US, around 4 ~ 10% of all freeway crashes are related to lane change [112], i.e., around 

240,000 to 610,000 reported lane-change crashes every year [113]. Therefore, we aim to develop 

an advanced evaluation procedure for AV systems under lane change scenarios. 

 

 

Figure 3.3 Lane Change Scenario Features 
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To test the AV system under the lane-change scenario, we first need to analyze the 

human drivers’ behaviors. Early studies focus mainly on the gap acceptance [114] and other 

driver models [115] with short horizons and limited control settings. As more and more 

naturalistic driving data were collected, researchers started to analyze the lane change behavior 

in depth. Zhao et al. [116] analyzed the safety-critical features in mandatory and discretionary 

lane changes for heavy trucks. Fitch et al. [117] studied 100 cars to analyze the lane change 

events and crashes. In [5], Zhao built a lane change statistical model from the Safety Pilot Model 

Deployment (SPMD) project and demonstrated its usefulness for evaluating the safety of an 

Advanced Emergency Braking (AEB) system. The model contains only three variables, which 

are the lane change vehicle’s velocity at a lane change 𝑣𝐿(𝑡𝐿𝐶), the range at lane change 𝑅𝐿(𝑡𝐿𝑐) 

and the Time-To-Collision (TTC) at lane change time which is defined as 

 𝑇𝑇𝐶𝐿 = −
𝑅𝐿

𝑅̇𝐿
 (3.25) 

where 𝑅̇𝐿 is the derivative of 𝑅𝐿. Moreover, these three parameters are modeled as independent 

random variables and are generated for the testing separately. During the lane change, Zhao 

further assumed that the lane change vehicle’s velocity would not change. This is also not very 

realistic. Therefore, in this work, we build another stochastic model that can capture lane change 

behaviors more comprehensively.  

First, we queried the lane change scenarios from the SPMD database [61], [62]. As 

shown in Figure 3.4, instead of just focusing on the information at the lane change initiation, we 

record the entire lane change trajectory of the two cars. Following the process, we queried more 

than 400,000 lane change cases. One lane change case can be represented by three sets of time 

series data, which are the longitudinal velocity curve of the lane change vehicle and the 

following vehicle and the lateral position curve of the lane change vehicle, together with the 

initial range. To further simplify the model, we fit the two velocity curves with a 2nd order 

polynomial (examples are shown in Figure 3.5). And the lateral position curve is fitted by a half-

sine function [118], which can be further reduced to only one parameter, i.e., the lane change 

duration. Together with the initial range, the lane change cases can be represented by eight 

variables (as listed in Table 3.1).  
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Figure 3.4 Data Processing for Querying the Lane Change Data 

 

  

(a) Lane change from right to left (b) Lane change from left to right 

Figure 3.5 2nd Order Polynomial Fitting Examples 

 

Table 3.1 Lane Change Model Features 

𝑥1~𝑥3 𝑥4~𝑥6 𝑥7 𝑥8 

Following vehicle’s speed Lane change vehicle’s speed Lane change duration Initial range 

Parameters of 2nd order 

polynomial: 

(𝑣𝐹
(2))

2

𝑡2 + 𝑣𝐹
(1)𝑡 + 𝑣𝐹

(0)
 

Parameters of 2nd order 

polynomial: 

(𝑣𝐿
(2))

2

𝑡2 + 𝑣𝐿
(1)𝑡 + 𝑣𝐿

(0)
 

𝑇 𝑅0 
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Table 3.2 Correlation Matrix of the 8 Variables 

 𝑣𝐹
(0)

 𝑣𝐹
(1)

 𝑣𝐹
(2)

 𝑣𝐿
(0)

 𝑣𝐿
(1)

 𝑣𝐿
(2)

 
Duration 

𝑇 

Initial 

range 𝑅0 

𝑣𝐹
(0)

 1 −0.81 10−5 0.20 -0.13 0.01 -0.02 -0.02 

𝑣𝐹
(1)

 - 1 0.21 -0.26 0.27 0.28 0.18 0.26 

𝑣𝐹
(2)

 - - 1 -0.07 0.13 0.94 0.71 0.87 

𝑣𝐿
(0)

 - - - 1 -0.88 -0.06 -0.05 -0.09 

𝑣𝐿
(1)

 - - - - 1 0.09 0.09 0.14 

𝑣𝐿
(2)

 - - - - - 1 0.68 0.88 

𝑇 - - - - - - 1 0.64 

𝑅0 - - - - - - - 1 

 

To select the right stochastic model for these eight variables, we first calculate the 

correlations between every pair of random variables. The correlation coefficient between two 

random variables 𝑋 and 𝑌 is defined as 

 𝑐𝑜𝑟𝑟(𝑋, 𝑌) =
𝔼[(𝑋 − 𝜇𝑋)(𝑌 − 𝜇𝑌)]

𝜎𝑋𝜎𝑌
 (3.26) 

where 𝜇𝑋  and 𝜇𝑌 are the expectations of random variables 𝑋 and 𝑌, while 𝜎𝑋 and 𝜎𝑌 are the 

standard deviations of 𝑋 and 𝑌. And the correlation coefficient is symmetric, i.e., 𝑐𝑜𝑟𝑟(𝑋, 𝑌) =

𝑐𝑜𝑟𝑟(𝑌, 𝑋). The value of a correlation coefficient ranges between −1 and +1. The correlation 

coefficient is +1 in the case of a perfect direct (increasing) linear relationship (correlation), −1 

in the case of a perfect decreasing (inverse) linear relationship (anticorrelation) [119]. The 

correlation coefficient of each pair of the abovementioned eight variables is listed in Table 3.2 

In Table 3.2. The eight variables are correlated, which means they are not independent. 

Some of these pairs have strong correlations (in red) or anticorrelations (in blue). Therefore, 

rather than using the model developed in [5], which has three independent variables, we choose 

the multivariate Gaussian Mixture Model (GMM), which can characterize the correlation.  
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3.3.2 Environment Model 

In this work, we focused on capturing the entire lane change trajectory instead of just gap 

acceptance [77], [116], [120]. Recently, as more and more data became available, researchers 

start to use more complex models to represent human driver behavior. Angkititrakul et al. [121], 

[122] use a Gaussian Mixture Model (GMM) to characterize the driver behavior. Huang et al. 

[123] use GMM to develop a measure of robot driver etiquette in the car-following scenario. 

Below we provide a simple introduction to the Gaussian Mixture Model (GMM) [124]. A 

GMM is a stochastic model that assumes all the data points are generated from a mixture of a 

finite number of Gaussian distributions. For a given distribution, we use several Gaussian 

functions to fit it (as shown in Figure 3.6 (a)). The PDF for each component of the GMM is 

defined as 

 𝜙𝑗(𝒙) =
𝜋𝑗

√2𝜋 ⋅ det(𝛴𝑗)
exp (−

1

2
(𝑥 − 𝜇𝑗)

𝑇
𝛴𝑗
−1(𝑥 − 𝜇𝑗)) (3.27) 

where 𝜇𝑗 is the mean value vector of the 𝑗𝑡ℎ  component, Σ𝑗 is the covariance matrix of the 𝑗𝑡ℎ  

component, and 𝜋𝑗 is the weight for the 𝑗𝑡ℎ  component.  

Some data cannot be fitted by combinations of Gaussian distributions. Therefore 

researchers introduced another distribution called Generalized Gaussian Mixture Model 

(GGMM) [125], [126] and added a parameter 𝜆 to control the shape of different peak. The PDF 

of each component of GGMM is given by 

 𝑇𝑗(𝒙) = 𝜋𝑗𝐴(𝜆𝑗) exp (−𝐵(𝜆𝑗) |(𝑥 − 𝜇𝑗)
𝑇
𝛴𝑗
−1(𝑥 − 𝜇𝑗)|

𝜆𝑗/2

) (3.28) 

where the 𝐴(𝜆𝑗) and 𝐵(𝜆𝑗) are functions controlling the shape of each Gaussian distribution 

[126] and are defined as 

 𝐴(𝜆𝑗) =
𝜆𝑗√Γ(3/𝜆𝑗)

2 det(Σ𝑗) Γ(1/𝜆𝑗)√Γ(1/𝜆𝑗)
 (3.29) 

 𝐵(𝜆𝑗) = (
Γ(3/𝜆𝑗)

Γ(1/𝜆𝑗)
)

𝜆𝑗/2

  (3.30) 

In Equation (3.30), the Γ(⋅) denotes the gamma function. Each 𝜆𝑗 ≥ 0 controls the shape of each 

GGMM component.  



 55 

One drawback of GMM and GGMM is that their distributions are unbounded with a 

support region of (−∞,+∞), while real data has boundaries. Therefore, Nguyen et al. [126] 

further introduced the Bounded Generalized Gaussian Mixture Model (BGGMM), which simply 

normalized the GGMM to the bounded support region while getting significant improvement. 

The PDF of each component of BGGMM is defined as 

 𝛹𝑗(𝒙) =
𝑇𝑗(𝒙)𝐻(𝒙)

∫ 𝑇𝑗(𝒙)
 (3.31) 

where 𝐻(𝒙) is the bounded support region indicator which is equal to 1 within the bounded 

support region and 0 in other regions. The GMM, GGMM, and BGGMM fitting examples in  

[126] are reproduced and shown in Figure 3.6 (b), where the SMM is the Student's-t mixture 

model (SMM) that has similar performance as GGMM. The BGGMM fits the data the best.  

 

 

 

(a) Schematic diagram of the GMM 
(b) Examples for the fitting of GMM, SMM, 

GGMM and BGGMM [126] 

Figure 3.6 Schematic Diagram for the GMM, GGMM, and BGGMM 

 

We choose the Bounded Generalized Gaussian Mixture Model (BGGMM) as the 

stochastic model for the lane change scenarios since the eight variables, which represent the lane 

change scenario, have physical bounds. The BGGMM model is fitted by the standard 

Expectation Maximization (EM) algorithm [127]. However, we still need to select the 

component number for the BGGMM model. To quantify the model selection results, two 

information criteria are introduced, which are the Akaike Information Criterion (AIC) and the 

Bayesian Information Criterion (BIC).  The AIC and BIC values are criteria for model selection 
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among a finite set of models. The model with the lowest AIC or BIC is preferred. They are 

based, in part, on the likelihood function [128]. The AIC value of a model is defined as  

 𝐴𝐼𝐶 = 2𝑘 − 2 ln 𝐿̂ (3.32) 

where 𝑘 is the number of total parameters that need to be estimated, and 𝐿̂ is maximum value of 

the likelihood function for the model. The AIC value rewards goodness of fit , but it also 

includes a penalty on model complexity. The BIC value is highly related to the AIC value and 

defined as 

 𝐵𝐼𝐶 = ln(𝑛) ⋅ 𝑘 − 2 ln 𝐿̂ (3.33) 

where 𝑛 is the total number of data samples. For the same number of data samples, there is no 

big difference between AIC and BIC values.  

 

 

Figure 3.7 AIC and BIC Value of the BGGMM with Component Number from 3 to 20 

 

The AIC and BIC values are calculated for GMM, GGMM, and BGGMM with 

increasing component numbers from 3 to 20, and the results are shown in Figure 3.7. We choose 

the BGGMM with ten components as the stochastic lane change model. And the GMM, GGMM, 

and BGGMM with ten components fitting results are shown as the marginal distribution of each 

of the eight variables in Figure 3.8. Accurately capturing the distribution of the features of lane 

change will help estimate the crash rate of a specific system. In Section 3.4 , this BGGMM 

model will be used to sample test cases for the AEB system (details will be introduced in Section 

3.4.1 ).  

https://en.wikipedia.org/wiki/Likelihood_function
https://en.wikipedia.org/wiki/Goodness_of_fit
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(a) Marginal distribution of 𝑣𝐹
(2)

 (b) Marginal distribution of 𝑣𝐹
(1)

 

  

(c) Marginal distribution of 𝑣𝐹
(0)

 (d) Marginal distribution of duration 𝑇 

  

(e) Marginal distribution of 𝑣𝐿
(2)

 (f) Marginal distribution of 𝑣𝐿
(1)
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(g) Marginal distribution of 𝑣𝐿
(0)

 (h) Marginal distribution of initial range 𝑅0 

Figure 3.8 BGGMM Fitting Results (Marginal Distribution PDF) for 8 Variables 

 

3.3.3 Rosenblatt Transformation 

The BGGMM is used to model the dependent lane change variables. As shown in Section 

3.2.2 , one requirement for implementing MMA is that the distribution model has independent 

random variables. To address this issue, we introduce the Rosenblatt transformation method 

[129]. The Rosenblatt transformation is an isoprobabilistic transformation, which can transfer 

dependent random variables space 𝑋 to a space 𝑈 consisting of independent standard normal 

random variables by one-to-one mapping 𝑇: 𝑋 → 𝑈. The transformation is conduct as follows.  

 

𝑇1: 𝑋 → 𝑌 =

(

 
 

𝐹1(𝑥1)
……
𝐹𝑘|1,…,𝑘−1(𝑥𝑘|𝑥1, … , 𝑥𝑘−1)
……
𝐹𝐾|1,…,𝐾−1(𝑥𝐾|𝑥1, … , 𝑥𝐾−1))

 
 

 

𝑇2: 𝑌 → 𝑈 = (
Φ1(𝑦1)
……

Φ𝐾(𝑦𝐾)
)   

𝑇 = 𝑇1𝑇2: 𝑋 → 𝑈 

(3.34) 

where 𝐹𝑘|1,…,𝑘−1(⋅) is the Cumulative Distribution Function (CDF) of the conditional random 

variable 𝑥𝑘|𝑥1, … , 𝑥𝑘−1, Φ𝑘  is the CDF of the standard normal distribution, and the random 

variable vector 𝒙 is in 𝐾-dimension. After the transformation, random variables in space 𝑈 are 

independent and thus are ready for MMA. Moreover, the transformation is a one-to-one function, 
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and the inverse Rosenblatt transformation can be derived [130]. Therefore, even the MMA is 

conducted in the random variable space 𝑈, the results can be analysis in the original random 

variable space 𝑋.   

3.4 Simulation and Results 

3.4.1 Advanced Emergency Braking System under Test 

To conduct the SS method for AV safety evaluation and compare it with the IS method, 

we test the ACC+AEB system previously studied in [5]. This model is also used as the lower 

level safeguard controller in the short horizon safety check in Chapter 2. In this evaluation, the 

lane change vehicle is controlled by a human driver (HV) who attempts to change lanes in front 

of the AV, while the following vehicle is the AV under test. The AV's AEB system is a black-

box and unknown to the SS procedure and is taken from [5]. This AEB system is extracted from 

a production vehicle: 2011 Volvo V60.   

As shown in Figure 3.9, the AV is controlled by the Adaptive Cruise Control (ACC) 

algorithm when the situation is normal and safe. The AEB algorithms become active when a 

threat is detected. If the AEB fails to prevent the crash, the simulation terminates. Otherwise, the 

control is returned to the ACC, and the test terminates as the lane change finishes. The ACC is 

approximated by a discrete Proportional-Integral controller, and the AEB is activated based on a 

threshold value 𝑇𝑇𝐶𝐴𝐸𝐵 of “Time-To-Collision” defined in Equation (3.25). For the details of the 

ACC and AEB controller, please refer to [5]. 

 

 

Figure 3.9 Layout of the AV Control System [5] 
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The ACC+AEB system is not a sophisticated AV system. It is selected as an example to 

demonstrate the difference between the SS evaluation method and the IS evaluation method. 

 

3.4.2 Simulation Setups 

In this section, we evaluate the AEB system with two different setups. In [5], Zhao 

evaluates the Volvo AEB system using a three-dimension independent random variable model. 

The variables are the lane change vehicle’s velocity at the lane change initiation 𝑣𝐿0, the range at 

the lane change initiation 𝑅0 and the Time-To-Collision (TTC) at lane change time 𝑇𝑇𝐶0. In the 

following, the SS is used to evaluate the AEB system using these three independent random 

variable model in order to compare with the results using the IS method [5]. The AEB system is 

also tested under the 8-variable BGGMM introduced in Section 3.3.2 . For easy differentiation, 

the baseline three independent random variables model is denoted as 𝑓𝐵𝐿(𝑣𝐿0, 𝑇𝑇𝐶0, 𝑅0) =

𝑓1(𝑣𝐿0)𝑓2(𝑇𝑇𝐶0)𝑓3(𝑅0) and the 8-variable BGGMM is denoted as 𝑓𝐵𝐺𝐺𝑀𝑀(𝒗𝑭, 𝒗𝑳 , 𝑅0, 𝑇), where 

𝒗𝑭 = [𝑣𝐹
(0), 𝑣𝐹

(1), 𝑣𝐹
(2) ] is the random variable vector for the parameters of the following vehicle’s 

velocity, and 𝒗𝑳 = [𝑣𝐿
(0), 𝑣𝐿

(1), 𝑣𝐿
(2) ] is the random variable vector for the parameters of lane 

change vehicle’s velocity.  

Before testing under this BGGMM, preprocessing is needed. When sampling for test 

cases, we can only sample the initial speed of the AV (i.e., the following vehicle) and have no 

control of its subsequent speed. Therefore, we need to calculate the marginal distribution of the 

AV’s speed parameters other than the initial speed parameter (𝑣𝐹
(0)

). Thus, we sample from 

 𝑓𝐵𝐺𝐺𝑀𝑀(𝑣𝐹
(0), 𝒗𝑳, 𝑅0, 𝑇) = ∬ 𝑓𝐵𝐺𝐺𝑀𝑀(𝒗𝑭, 𝒗𝑳, 𝑅0, 𝑇)𝑑𝑣𝐹

(1)

𝑣𝐹
(1)
,𝑣𝐹
(2)

𝑑𝑣𝐹
(2)

 (3.35) 

Then we transform these dependent random variables to a space 𝑈 consisting of independent 

standard normal random variables by the Rosenblatt transformation introduced in Section 3.3.3 . 

Using the Rosenblatt transformation, the SS can explore the space of 𝑈 and inverse map to space 

𝑋 to test the AV. If variables of the 𝑓𝐵𝐿(𝑣𝐿0, 𝑇𝑇𝐶0, 𝑅0) model are independent, then no 

Rosenblatt transformation is needed.  

In the lane change scenario, the performance function 𝑌(𝒙) is the minimum range during 

the entire lane change. Therefore, the set of actual crash events is 𝜀 = {𝒙: 𝑌(𝒙) < 0}. Using this 
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performance function, we can also define “crash events” to have a minimum range smaller than 

𝑏𝑀−1 > 0, i.e., 𝜀𝑀−1 = {𝒙: 𝑌(𝒙) < 𝑏𝑀−1}. Following this procedure, a sequence of sets is 

constructed: 𝜀𝑀 ≡ 𝜀 ⊂ 𝜀𝑀−1 ⊂ ⋯ ⊂ 𝜀1 ⊂ 𝜀0 = Ω, and the corresponding performance criteria 

are𝑏𝑀  ≡ 𝑏 = 0 < 𝑏𝑀−1 < ⋯ < 𝑏1 < 𝑏0 = +∞.  

Implementation details of SS, in particular, the choice of level probability 𝑝𝑚 defined in 

Equation (3.19) and proposal distributions 𝑞𝑘(⋅ | ⋅) for each dimension, are discussed in [111]. It 

has been confirmed that 𝑃𝑚 = 0.1 proposed in the original paper [108], is nearly optimal. While 

the choice of the proposal distribution 𝑞𝑘(⋅ | ⋅) in MMA is more delicate. Any one-dimensional 

distribution centered at the seed could suffice, but the shape of the distribution may affect the 

efficiency of the MMA in a non-trivial way: proposal 𝑞𝑘(⋅ | ⋅)  with both small and large 

variance tend to increase the correlation between successive samples, making statistical 

estimation of the conditional probability (level probability) 𝑃𝑚 = ℙ(𝜀𝑚|𝜀𝑚−1) in Equation (3.17) 

less efficient. The most well-studied candidate distribution is the normal distribution, i.e. 

𝑞𝑘(· |𝑥𝑖)  = 𝑁(𝑥𝑖, 𝜎𝑘),  where 𝑥𝑖 is  the mean value and 𝜎𝑘 is the standard deviation. In [73], 

[108], [111], the optimal standard deviation was found to be related to the “roughness” 𝐼 of a 

PDF 𝑓, defined as 

 𝐼 = 𝔼𝑓[((log𝑓)
′)2] = ∫

(𝑓′(𝑥))
2

𝑓(𝑥)
𝑑𝑥

+∞

−∞

 (3.36) 

which is given by 𝜎𝑘 ≈ 2.4/√𝐾𝐼𝑘  in [111], where 𝐾 is the dimension of original distribution and 

𝐼𝑘  is the “roughness” of the 𝑘𝑡ℎ dimension PDF. 

The SS parameters used in our simulations are summarized in Table 3.3. The variance of 

each proposal distribution is calculated accordingly. The total number of samples for each level 

is 5000, and the total number of states for each MCMC chain is 10. The simulation terminates 

when the performance criterion for the next level is smaller than 0 or the iteration level reaches 

10. Our termination conditions mean that either the crash cases are found or the crash rate of the 

testing AV is as low as 10−10.  
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Table 3.3 Parameters for the Subset Simulation 

 3-variable Stochastic Model BGGMM 

Original distribution 

𝑓(𝒙) 
𝑓𝐵𝐿(𝑣𝐿0, 𝑇𝑇𝐶0, 𝑅0)
= 𝑓1(𝑣𝐿0)𝑓2(𝑇𝑇𝐶0)𝑓3(𝑅0) 

𝑓𝐵𝐺𝐺𝑀𝑀(𝑣𝐹
(0), 𝒗𝑳, 𝑅0, 𝑇) 

Proposal distribution 

𝑞𝑘(⋅ | ⋅) 

𝑁(𝑥𝑖|𝜎), where 

𝜎 = {

1,   𝑥𝑖~𝑓1(𝑣𝐿0)

0.11,   𝑥𝑖~𝑓2(𝑇𝑇𝐶0)

0.003,   𝑥𝑖~𝑓3(𝑅0)
 

In space 𝑈 (Equation (3.34)): 

𝑁(𝑢𝑖|𝜎), 𝜎 ≈ 1.07 

Performance function 

𝑌(𝒙) 
min𝑅 during the entire lane change 

Level probability 𝑃𝑚 0.1 for each level 𝑚 

Total samples for 

each level 𝑁 
5000 

Number of seeds for 

each level 𝑁 × 𝑃𝑚−1 
5000 × 0.1 = 500 

Total state for each 

Markov Chain 𝑁𝑐 
𝑁𝑐 = 𝑝𝑚

−1 = 10 

Stop criteria 𝑚 + 1 > 10 or 𝑏𝑚+1 < 0 

 

3.4.3 Evaluation Results 

The ACC+AEB system is tested by the initial condition sampled from the baseline 3-

variable stochastic model. The three variables are the initial range, initial lane change vehicle's 

speed, and initial TTC. The samples tested using SS are shown in Figure 3.10, with the x-axis 

being the initial range, the y-axis being the initial lane change vehicle speed and the z-axis being 

the initial TTC. Only the first four levels are shown. The failure probability 𝑃𝐹  =  3.1 × 10−7 is 

calculated by Equation (3.17) using only 32,000 test results from SS. This is less than half of the 

74,100 cases needed by the IS technique [5], with the same c.o.v. value. 
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(a) Level 0 samples (b) Level 1 samples (c) Level 2 samples (d) Level 3 samples 

Figure 3.10 Samples Expended by SS using the Baseline 3-variable Model 

 

As shown in Figure 3.10, the test cases continue to converge to lower TTC values from 

level to level. The lower the TTC, the shorter time for the ACC+AEB to react to. The results also 

show that three clusters of risky cases emerge: (1) low initial range with various initial lane 

change vehicle's speed from 2m/s to 35m/s; (2) low initial lane change vehicle's speed with a 

range from 2m to 75m; (3) high initial TTC (around 2600s) with short initial range and high 

initial lane change vehicle's speed. Seeds in level 4 give dangerous cases that would happen with 

probability  10−4. 

The ACC+AEB system is tested using the environment model BGGMM. The samples 

tested at each level using SS are shown in Figure 3.11, with the x-axis being the initial range, the 

y-axis being the initial lead vehicle speed and the z-axis being the average acceleration of the 

lead vehicle during a lane change. The red points are those chosen to be the seeds for the next 

level. In total, 18,500 cases are tested, and in level 5, 𝑏5 <  0, thus the simulation is terminated. 

Calculating from Equation (3.17), the failure probability is 𝑃𝐹  =  3.45 × 10
−4. It is much higher 

than using the baseline 3-variable stochastic model, which is 𝑃𝐹  =  3.1 × 10
−7. This is because 

during the lane change, the BGGMM enables the lane change vehicle to decelerate, which will 

endanger the following AV. The evaluation results are summarized in Table 3.4.  
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(a) Level 0 samples (b) Level 1 samples (c) Level 2 samples (d) Level 3 samples 

Figure 3.11 Samples Expended by SS using the 8-variable BGGMM Model 

 

Table 3.4 Evaluation Results Summary 

 

3-variable Stochastic Model 8-variable BGGMM 

Subset 

Simulation 

Importance 

Sampling 

Subset 

Simulation 

Importance 

Sampling 

Crash Rate 3.1 × 10−7 2.1 × 10−7 3.45 × 10−4 - 

Total Tests 32,000 74,100 18,500 - 

 

As can be seen in Figure 3.11 (d), the ACC+AEB performs poorly when the lead vehicle 

decelerates during a lane change and when the initial range is short. However, we do not see 

obvious clusters like in the baseline 3-variable stochastic model. The reason is that the SS only 

selects the top 10% of most dangerous cases at each level and when the lane change vehicle can 

decelerate, cases with lower initial range are more dangerous than other cases at the same 

probability level. Also, when the lane change vehicle's speed is between 20m/s (45mph) to 40m/s 

(89mph), it is more likely to decelerate during a lane change. Another factor to note is that  

Figure 3.11 only shows three dimensions.  

3.5 Summary 

In this chapter, we proposed the Subset Simulation (SS) as an adaptive sampling method 

for the accelerated evaluation of automated vehicles. The SS has two main advantages. First, SS 

can deal with black-box systems, i.e., no information about the AV control algorithm is needed. 

Moreover, as described in Section 3.2.2 , the Markov Chain Monte Carlo (MCMC) method is 
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used in SS (particularly MMA) to extend inside the variable space. This property enables SS to 

deal with high dimension stochastic models. These two advantages are very important when 

assessing AV's safety. We demonstrate the ability of SS to accelerate the evaluation in Section 

3.4.3 . In general, SS is a variance reduction technique aiming to use fewer tests to estimate the 

performance and have better-accelerating performance than the importance sampling method 

(twice data-efficient than the importance sampling method).  

In this chapter, an 8-variable BGGMM stochastic model is developed to describe the 

vehicle motions during lane changes. This model allows the leading vehicle to accelerate or 

decelerate during lane changes and is more comprehensive than the baseline 3-vairable stochastic 

model used in the literature. 

The limitation of the SS method is that it cannot calculate the c.o.v. during the evaluation, 

thus not able to fix the number of testing. Moreover, the “danger regions” are searched as the test 

procedure unfolds. If the environmental statistics change, the crash rate cannot be estimated 

accurately. 
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Chapter 4 Evaluation of the Autonomous Vehicle’s Policy Using Learning-Based Approach 

 

The evaluation method proposed in the previous Chapter requires the knowledge of the 

environment statistics. However, environmental statistics information is not always available and 

may not be time-invariant. For instance, variations can be due to normal hours vs. rush hours, 

weather conditions, etc. In this chapter, we study the evaluation problem using another set of 

assumptions (the 2nd set of assumptions listed in Section 1.4 ) that we do not have access to the 

environmental statistics. Moreover, the prior developed subset simulation method cannot be 

used to test an active control system or a decision-making system. It lacks the ability to trigger 

the active motion. Therefore, in this chapter, we develop a learning-based evaluation method that 

can trigger the active lane change of the AV we designed in Chapter 2 and generate reasonable 

perturbation without the environment statistics.  

4.1 Motivations 

4.1.1 Difficulties of implementing IS and SS with different environments 

 It is necessary to clarify the difficulties of implanting IS and SS methods when the 

environmental statistics are changing with time. If the IS or SS can be implemented across 

different environments, there is no need to develop approaches assuming not having access to 

environmental statistics.   

For the IS method, assuming a black-box AV system, we need to search for the ideal 

ISD, i.e., the zero-variance distribution derived in Equation (3.10). However, the ideal ISD 

highly depends on the original environment distribution. Even if we managed to find the zero-

variance distribution in one environment, its convergence performance is unknown in other 

environments. Searching for zero-variance distribution for a new environment is time-consuming 

and laborious, and convergence is not guaranteed if we are evaluating under several 

environments. This difficulty increases exponentially if the environment model is in high 

dimensions, which means it is necessary to implement sequential IS or sequential MCMC 
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(e.g., SS) method. To elaborate this problem, a schematic diagram is used. As illustrated in 

Figure 4.1, the system has two danger regions, A and B, and we assume not knowing any of 

them. Imaging, we first evaluate the system (using SS or other technique) in environment I 

(Figure 4.1 (A)), danger region A is revealed, and the crash rate is estimated to be 1 − 99.9% =

%0.1. Then we want to evaluate the system in environment II (Figure 4.1 (B)), and we know the 

distribution of environment II. If we estimate the crash rate use danger region A, without redoing 

the sequential search, the crash rate is calculated as 1 − 99.9999% = 0.0001%. However, the 

true crash rate under environment II should be 1 − 99.9% = 0.1%, since another danger region 

B should be revealed and dominate the result in environment II. Therefore, sequential IS or 

sequential MCMC need to be redone from the beginning, which makes it very time consuming if 

we are evaluating under several environments.  

 

  

(a) Environment I (b) Environment II 

Figure 4.1 Sequential Search of Danger Regions 

 

Inspired by these reasons, we aim to find the set of failure cases 𝜀 directly. And then, 

given a specific environment, we can calculate the crash rate from the probability of the set of 

failure cases 𝑃(𝜀) without additional tests.  

 

4.1.2 Decision-making System Evaluation 

As may have been noticed, the evaluation method we developed in Chapter 3 was applied 

to a level 2 AV control feature, i.e., the ACC+AEB system. It is easy to evaluate a passive or 

reactive control algorithm since, in this case, and the environment produces a disturbance, and 
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the system under testing reacts to the disturbance. However, when evaluating a decision-making 

system, we need to design tests to trigger the active motion of the AV and evaluate the 

consequence.   

There are papers reporting the work on evaluating AV features other than ACC and AEB. 

In [50], [131], Tuncali et al. developed a simulation-based falsification method to generate the 

worst cases for a side collision avoidance system and a rear collision avoidance system. In [132], 

Tuncali et al. extended the method to evaluate an AV system with object detection components 

and tested it in a left-turn scenario. Formally verifying an AV algorithm’s “correctness” requires 

that the “dangerous situations” are caused by other drivers. Moreover, it is hard to address the 

evaluation of deep learning-based systems, which makes formal verification methods intractable.  

In [72], O’Kelly et al. trained a Deep Neural Network (DNN) environment model using 

the Generative Adversarial Imitation Learning (GAIL) method with highway driving data 

collected on I-80, California. For testing AV, an adaptive IS method is used to find the optimal 

ISD, and the test procedure is accelerated. Even though the DNN-based environment model can 

test high automation level features, it derives from a naturalistic driving database and thus run 

contrary to our assumption. Therefore, a more advanced method is needed.  

4.2 Literature Reviews on Attacking Deep Neural Networks 

The objective of the study in this chapter is to evaluate the decision-making system we 

developed in Chapter 2 without environmental statistics. Since the decision-making system we 

developed is trained by Deep Reinforcement Learning (DRL) and the policy is represented via a 

Deep Neural Network (DNN), the robustness analysis method for the traditional control system 

is not applicable. To develop an evaluation method that can test the DRL policy (trained in 

Chapter 2), we first did a thorough literature review on how to attack the DNN and DRL policy. 

4.2.1 Attacks on Deep Neural Network 

Over the past two decades, deep learning algorithms and deep natural networks (DNN) 

have been widely used in fields including image recognition and classification [133], speech 

recognition [134], and natural language processing [135]. Recent research shows that DNNs may 

be vulnerable to adversarial perturbations and attacks. In [136], the authors found that adversarial 

image patches can lead white-box DNNs to erroneous classification results. Papernot et al. in 
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[137] further developed an attack using synthetic data generation to craft adversarial image 

examples misclassified by black-box DNNs. In [138], the authors successfully fooled the 

YOLOv2 algorithm by sticking specially designed pattens to the human body; an example is 

shown in Figure 4.2. A more comprehensive overview of the adversarial attack on DNN can be 

found in [139]. 

 

Figure 4.2 Generating Adversarial Patches against YOLOv2 [138] 

 

4.2.2 Attacks on Deep Reinforcement Learning 

DNNs have also been introduced in the field of deep reinforcement learning (DRL), 

where the goal is to train an agent to maximize the expected return. DNN works as an actor net 

or a critic function either to provide the optimal policy or to estimate the expected future return. 

Not surprisingly, the DRL policies are also vulnerable to adversarial perturbations. In [140], the 

authors characterize different types of attacks on DRL, as shown in Figure 4.3. DRL policies can 

be attacked by adding perturbation to observations, actions, or environment transition 

probabilities. To perturb observations, researchers first followed the same ideas as attacking 

DNN, which leads the DRL policy to use a different action [141], [142], or the observation can 

be modified directly or indirectly. For attacks applied to the action space, in [140] the author 

claimed that the action outputs could be modified by installing some hardware virus in the 

actuator executing the action. In [140], the environment transition model is also perturbed. 

However, as pointed out by the authors, these attacks are useful only under very specific 

conditions.  
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In the field of autonomous vehicles (AV), researchers also tried to attack existing AV 

systems for the purpose of evaluation or faster synthesis. In a recent report [143], Tencent’s 

Keen Security Lab showed how they were able to bamboozle a Tesla Model S into switching 

lanes to drive directly into the oncoming traffic by manipulating the input video. This attack is in 

the category of observation attack. To our best knowledge, there is little study on attacking by 

varying the environment transition model, which is the focus of this chapter. 

   

 

Figure 4.3 Attacks on Deep Reinforcement Learning 

 

4.3 Methodology  

As described before, the objective is to evaluate the decision-making system we 

developed in Chapter 2 without environmental statistics. To address this problem, we developed 

a simulation-based falsification method. We name the AV under testing the victim and model 

the victim as playing against an opponent (the attacker) in a two-player Markov game [144]. 

Our threat model assumes the attacker cannot directly control the victim.  

As described in the literature reviews in Section 4.2.2 , DRL policy can be attacked by 

adding perturbations to observations, actions, or environment transition probabilities. As we 

assume our decision-making system has perfect observation and perfect actuator, we will focus 

on perturbing the environment transition probabilities to attack and evaluate the policy.  

In this work, we model the victim training an attacker agent who will ‘set up” the victim 

into crashes that are the victim’s responsibility. The simulation-based falsification method we 

developed is based on a two-player Markov game [144].  
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4.3.1 Markov Game 

A two-player Markov game can be denoted as 𝑀 = ((𝑆𝛼, 𝑆𝜈), (𝐴𝛼, 𝐴𝜈), 𝑃, (𝑟𝛼, 𝑟𝜈), 𝛾), 

where we denote the attacker and victim by subscript 𝛼 and 𝜈 respectively. It consists of the state 

set 𝑆𝛼  and 𝑆𝜈 , action set 𝐴𝛼 and  𝐴𝜈, and a joint state transition function 𝑃: 𝑆𝛼 × 𝑆𝜈 × 𝐴𝛼 × 𝐴𝜈 →

Δ(𝑆)  where Δ(𝑆) is a probability distribution on 𝑆. The reward function 𝑟𝑖: 𝑆𝛼 × 𝑆𝜈 × 𝐴𝛼 ×

𝐴𝜈 → 𝑅  for player 𝑖 ∈  {𝛼, 𝜈} depends on the current state, next state, and both player’s actions. 

And 𝛾 is the discounted factor. Each player wishes to maximize their (discounted) sum of 

rewards. 

The attacker is allowed unlimited black-box access to actions sampled from the victim’s 

policy 𝜋𝑣, but is not given any white-box information such as weights of its DNN function. We 

further assume the victim follows a fixed stochastic policy 𝜋𝑣, corresponding to the common 

case of a pre-trained model deployed with static weights. Safety-critical systems are particularly 

likely to use a fixed or infrequently updated model due to the considerable expense of real-world 

testing. 

Since the victim policy 𝜋𝑣 is held fixed, the two-player Markov game 𝑀 reduces to a 

single-player MDP 𝑀𝛼  =  (𝑆𝛼 , 𝐴𝛼 , 𝑃𝛼 , 𝑟𝛼, 𝛾) that the attacker must solve. The state space and 

action space of the attacker are the same as in 𝑀, while the transition and reward function has the 

victim policy 𝜋𝑣 embedded: 𝑃𝛼  (𝑠, 𝑎𝛼)  =  𝑃 (𝑠, 𝑎𝛼 , 𝑎𝜈) and 𝑟′𝛼(𝑠, 𝑎𝛼)  =  𝑟𝛼(𝑠, 𝑎𝛼, 𝑎𝜈), where 

the victim’s action is sampled from the stochastic policy 𝑎𝜈  ∼  𝜋𝜈(·  | 𝑠). The goal of the 

attacker is to find an adversarial policy 𝜋𝛼 maximizing the sum of discounted rewards: 

 ∑ 𝛾 𝑟𝛼(𝑠
(𝑡), 𝑎𝛼

(𝑡)
, 𝑠(𝑡+1))∞

𝑡=0 , where 𝑠(𝑡+1) ∼ 𝑃𝛼  (𝑠, 𝑎𝛼) and 𝑎𝛼 ∼ 𝜋𝜈(·  | 𝑠) (4.1) 

Note the MDP’s dynamics 𝑃𝛼 will be unknown even if the Markov game’s dynamics 𝑃 

are known since the victim policy 𝜋𝜈 is a black-box policy. Consequently, the attacker must 

solve an RL problem. 

In our application, the 𝜋𝜈 is what we learned in Chapter 2 and thus the 𝑃𝛼  (𝑠, 𝑎𝛼)  =

 𝑃 (𝑠, 𝑎𝛼, 𝑎𝜈) can be acquired by sampling 𝑎𝜈 ∼ 𝜋𝜈. And we can train the attacker to see the 

learned policy as part of the attacker’s environment. Thus, the next question would be how we 

should define the reward function for the attacker? In the next section, we will first describe the 

attacker’s training environment’s state space and action space. And then, in the following 

sections, we will describe the reward function design for the attacker. 
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4.3.2 Attacker’s Training Environment 

To train the attacker, we first define the state space and the action space. The state-space 

includes information from up to 6 surrounding vehicles and the victim AV. As defined in 

Chapter 2, the information of each vehicle includes its relative longitudinal position, relative 

lateral position, and relative speed. In addition, we also include the victim AV's state and action 

in the attacker's state space. Therefore, in total, we have a 2 (the attacker’s state) + 3 

(surrounding vehicle’s state) × 7  (cars) + 1 (the victim’s action) = 24-dimension state space, 

i.e. 𝑆 ⊆ ℝ24. The states are scaled for efficient neural network training. The action space of the 

attacker is the same as the victim, which is described in Section 2.3.1 .  

At initialization, the attacker is located near the victim AV. As shown in Figure 4.4, the 

attacker (the red box) can be observed by the victim AV (the blue box). Although the attacker 

can observe the state variable values, the attacker does not have direct access to the victim AV's 

policy. Moreover, the victim AV does not explicitly know which car is the attacker. Therefore, 

we are performing a black-box attack. The green boxes represent the surrounding vehicle that the 

attacker can observe.  

 

 

Figure 4.4 Attacker's Training Environment 

 

4.3.3 Socially Acceptable Attacks 

Before discussing the reward function design for the attacker, we would like to illustrate 

what is going on from the victim’s perspective. In Chapter 2, we trained the victim policy, i.e., 

the discretionary lane change policy, using the reinforcement learning method. It results in 

giving us an optimal policy in a certain MDP environment. If now we add an attacker to the 

environment, the transition probability will be different, and the trained policy will no longer be 

optimal. Therefore, adding an attacker to the environment and perturbing the transition 

probability will definitely fail the victim. However, we may end up getting a “crazy” attacker 
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and getting useless results. Therefore, we need to constrain the perturbation by additional 

requirements.  

A reasonable additional requirement is related to who is responsible for the crash. It is 

easy to deliberately ram into a victim AV by designing a “crazy” attacker, but coming up with 

reckless or unavoidable crash scenarios does not help to design a better AV. On the other hand, if 

the victim AV is lured into a situation and subsequent actions of the attacker result in a crash that 

is the responsibility of the victim AV according to common traffic rules, such an attack is useful 

for a subsequent redesign of the AV. We call this kind of attack the “socially acceptable attack.”   

The objective of this study is to design an attacker to generate “socially acceptable 

attacks” to the victim AV. In the rest of this chapter, the policy trained in Chapter 2 is under test 

and denoted by “the victim AV,” while the training agent is “the attacker.” 

 

4.3.4 Reward Considering Socially Acceptable Attack 

The key component for training an attacker to generate Socially Acceptable Attacks 

(SAAs) is the reward. The attacker is rewarded if it causes a collision between the victim AV and 

one of the surrounding cars (not necessarily be the attacker), in which the victim AV is at fault. 

In this work, we use the ideas from Responsibility-Sensitive Safety (RSS) [145] model and 

encode the traffic rules through associated rewards to train the attacker. First, we recall the 5 

“common sense” rules followed by RSS: 

1. Do not hit someone from behind. 

2. Do not cut-in recklessly. 

3. Right-of-way is given, not taken. 

4. Be careful of areas with limited visibility. 

5. If you can avoid an accident without causing another one, you must do it. 

The first three “common sense” principles above are related to traffic rules and can be 

implemented through associating rewards with the pre-crash state. The fourth is not applicable in 

our application since we assume perfect perception. To implement the fifth, we refer to another 

related paper from Shashua et al. [146]. They implemented the RSS model on NHTSA pre-crash 

scenarios, where they define “proper response” to dangerous situations (related to the fifth rule) 

as using Minimal Evasive Effort (MEE). MEE deals with cases in which extra caution is applied 

to prevent potential situations in which responsibility might be shared. Here we develop a similar 
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concept, the Best Evasive Effort (BEE), to the responsible vehicle, which defines the best action 

the responsible vehicle can take to avoid the crash. To explain, let us assume the victim AV is 

the responsible vehicle, and we find an SAA resulting in the victim AV crashing into its front 

vehicle without doing the BEE (i.e., hard brake). Then, this SAA should be reward more since it 

finds a fatal case of the victim AV.  

In reinforcement learning, the reward function is 𝑟(𝑠, 𝑎), where the 𝑠 is the state and 𝑎 is 

the attacker's action at state 𝑠. To clearly define the responsibility of a crash, we predict the 

situation at the next time-step with the victim AV's action and the attacker's action at the current 

time-step, getting the next state 𝑠′. Since the simulator is deterministic, the reward function can 

be further extended to 𝑟(𝑠, 𝑎, 𝑠′). If at the next state 𝑠′ the victim AV crash, then the 𝑠 is the pre-

crash state.  

In this work, instead of implementing the whole RSS model [145], which considers an 

entire pre-crash scenario, we only consider one pre-crash state. Therefore, no blame time concept 

as in [146] is implemented in this application. In the future, if one wants to implement the RSS 

model considering the entire scenario, we recommend modeling the attacker's policy with a 

recurrent neural network and design the reward function accordingly. 

The BEE is implemented in the reward corresponding to each pre-crash situation. As only 

one timestep is being considered and the action space is discrete, we define the right choice of 

action as BEE for each pre-crash state. In this work, we only define the BEE for the responsible 

car for simplicity, but the BEE for the irresponsible car can also be defined similarly. In the 

future, if one wants to implement the BEE concept in the environment with continuous action 

space, the BEE should be calculated according to the RSS model, as conducted in [146]. The 

pre-crash state can be categorized as 1) no car is on the lane marker; 2) only one car is on the 

lane marker; 3) both cars are on the lane marker. For each pre-crash state, we separate the 

responsibility and define the choice of BEE, then assign reward accordingly. 

As shown in Figure 4.5, when no car is on the lane marker, the rear car (the blue one) is 

always responsible when a crash happens between these two vehicles. And the right choice of 

action as BEE for the rear car in this pre-crash state is the hard brake. If the rear car is the 

victim AV and the action of it is not the BEE (i.e., hard brake), then the reward for the attacker is 

1, since the attacker triggered a fatal failure of the victim. If the rear car is the victim AV and the 

action of it is the BEE (i.e., hard brake), then the reward for the attacker is 0.5. While if the rear 
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car is not the victim AV, the attacker will be punished. The reward for no car is on the lane 

marker case is summarized in the first row of Table 4.1. 

 

 

 

Figure 4.5 No Car on the Lane Marker 

 

In the second type of pre-crash state, where there is only one car on the lane marker, 

the crash can happen between the lane change car and the car in the original lane or between the 

lane change car and the car in the target lane. When the car on the lane marker crashes with the 

car in the original lane, the reward is designed similar to the situation when no car is on the lane 

marker (as described above). Figure 4.6 shows the other situation, in which only one car is on the 

lane marker, and it crashes with the car in the target lane. In this case, the lane change car (the 

blue one) is responsible if a crash happens. Then the BEE of the responsible car should be 

abandoning the lane change. If the lane change car is the victim AV and the action of it is not 

the BEE (i.e., abandoning the lane change), then the reward for the attacker is 1, since the 

attacker triggered a fatal failure of the victim. If the lane change car is the victim AV and the 

action of it is the BEE (i.e., abandoning the lane change), then the reward for the attacker is 0.5. 

While if the lane change car is not the victim AV, the attacker will be punished. The reward for 

only one car is on the lane marker case is summarized in the second and third row of Table 4.1. 

 

 

Figure 4.6 Only One Car on the Lane Marker and Crash with the Car in the Target Lane 

 

In the third type of pre-crash state, where both cars are on the lane marker, they can on 

the same lane marker or on different lane markers. When both cars are on the same lane marker, 
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the reward is designed as analogous to the situation when no car is on the lane marker. When 

cars are on different lane markers, as shown in Figure 4.7, according to multiple traffic laws 

[147]–[149], both cars are at fault. According to the Chinese traffic law [147], the vehicle from 

the left lane should yield to the vehicle from the right lane. While in the Texas traffic law [148], 

the vehicle from the right lane should yield. And the right-of-way is not clarified in the New 

York traffic law [149]. Here we take the Chinese traffic law as an example, i.e., the left car (blue 

car) is mainly responsible for the collision and is expected to abort the lane change to avoid a 

crash. Therefore, the BEE of the main responsible car should be abandoning the lane change. If 

the mainly responsible car is the victim AV and the action of it is not the BEE (i.e., abandoning 

the lane change), then the reward for the attacker is 0.8. If the mainly responsible car is the 

victim AV and the action of it is the BEE (i.e., abandoning the lane change), then the reward for 

the attacker is 0.2. While if the mainly responsible car is not the victim AV, the attacker will be 

punished. The reward for the case when both cars are on the lane marker is summarized in the 4th 

and 5th row of Table 4.1. 

 

 

Figure 4.7 Both Cars are on the Different Lane Markers 

 

The attacker also has a time cost of −0.05 per step, which encourages the attacker to 

cause the victim AV to collide as soon as possible. An episode is terminated if either of the 

following happens: 

1. The victim AV crashes with another car, and the reward is given to the attacker 

according to the pre-crash state of the victim AV (as in Table 4.1).  

2. The attacker crashes with a car other than the victim AV, and the reward for the 

attacker is −1. 
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3. The AV leaves the neighborhood of the attacker, i.e., not being one of the six 

surrounding cars of the attacker, and the reward is −1. 

We also record the Failure Code (FC) for each episode, as shown in Table 4.1. The 

definition of each code is described as follows: 

0: The other car is responsible for the crash, and the action of it is not the BEE.  

1: The other car is responsible for the crash, and the action of it is the BEE. 

2: The AV crashes into the front vehicle without a hard brake (BEE in this case). 

3: The AV crashes into the front vehicle with a hard brake (BEE in this case). 

4: The AV changes lanes and crashes with the target lane vehicle without BEE. 

5: The AV changes lanes and crashes with the target lane vehicle with BEE. 

6: The AV changes lanes from the left to the middle lane and crashes with the car 

changing lane from the right to the middle lane, and its action is not BEE. 

7: The victim changes the lane from the left to the middle lane and crashes with the car 

changing lane from the right to the middle lane, and its action is BEE. 

Table 4.1 Reward Design for Responsibility-sensitive Attack 

Pre-crash situation 
Responsible 

car 

Best Evasive Effort 

(BEE) 
Attacker’s reward 

FC 
Responsible 

car 

The 

other car 
Fault BEE Reward 

No car is on the 

lane marker 
The rear car Hard brake - 

Not the 

Victim 

No -1 0 

Yes -0.5 1 

Victim 

AV 

No 1 2 

Yes 0.5 3 

Only one car is on the lane marker and crashes with the car in the original lane: Same as no car 

is on the lane marker 

Only one car is on 

the lane marker:  

crash with the car 

in the target lane 

The lane 

change car 

Abandon 

the lane 

change 

- 

Not the 

Victim 

No -1 0 

Yes -0.5 1 

Victim 

AV 

No 1 4 

Yes 0.5 5 

Both cars are on the same lane marker: Same as no car is on the lane marker 

Both cars are on 

the lane marker:  

different lane 

markers 

Shared fault: 

but the left 

car is of the 

principal 

fault 

Abandon 

the lane 

change 

- 

Not the 

Victim 

No -0.8 0 

Yes -0.3 1 

Victim 

AV 

No 0.8 6 

Yes 0.2 7 



 78 

As shown inTable 4.1, the AV-responsible crashes, in which the action of the victim AV 

is not BEE, are valued most by the attacker (i.e., Failure Code: 2, 4, and 6). This kind of crash is 

the most deadly crash. Moreover, the action chosen by the victim AV's policy before these 

crashes deserves a closer look and may require revision. In summary, instead of finding a crazy 

attacker, we trained an attacker to generate “socially acceptable attacks,” which explores the 

weakness of the victim AV and helps to improve its policy. 

 

4.4 Training Setups 

4.4.1 The Victim AV under test 

We study a discretionary lane change decision-making problem in this chapter. The state 

space, action space, the victim training reward, and the simulation environment are introduced in 

Chapter 2. We evaluate exactly the same lane change decision-making policy that we trained in 

Chapter 2 for comparison. This victim AV agent will be evaluated by both the SAPs and in the 

original environment in this chapter. 

 

 

Figure 4.8 Three lane highway simulator. The blue box: the AV; red boxes: 6 nearest 

surrounding vehicles; empty boxes: unobserved surrounding vehicles 

 

Here is a brief refresher of the original victim AV policy. The driving environment used 

to train the victim AV in this work is a three-lane highway simulator. The AV is driving with up 

to six surrounding vehicles (three vehicles in front, three vehicles behind), as shown in Figure 

4.8. The blue box is the AV, and the six red boxes are the six surrounding vehicles whose states 

are observed. The remaining boxes are environment vehicles whose states are not observed by 

the victim AV. The surrounding vehicles’ driving strategy is also described in Chapter 2. 

Additional to the policy, we also implement the short-horizon safety check we described 

in Section 2.3.5  The short-horizon safety check method will replace dangerous action before 
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applying it. If the action chosen by the victim AV is unsafe, it will be replaced by IDM and AEB 

system-based action. However, as will be shown in Section 4.4.2 , this safety check cannot cover 

all the situations. The attacker can still find a way to fail the victim AV with an AV-responsible 

crash.  

 

4.4.2 Training Setups for the Attacker 

In this section, the simulation setup for training the attacker is described. The 

reinforcement learning algorithm we use is DDQN. The hyper-parameters used during training is 

shown in Table 4.2. To accelerate the training and achieve better exploration, we use two replay 

buffers, one for storing trajectories without any crash or with AV-irresponsible crash and the 

other for storing AV-responsible crash cases, while implementing the model-based exploration 

method described previously in Chapter 2. The reward for socially acceptable attacks and the 

failure code is a way to prioritize the collected samples. The use of two replay buffers is a 

simpler version of prioritized experience replay as discussed in [150], which has been 

implemented in [24]. The model-based exploration method presented in Chapter 2 can help the 

attacker to explore the weakness of the victim AV based on its understanding of the victim AV’s 

policy. 

Table 4.2 Hyperparameters for Training the Attacker 

 Description Value 

𝛾 Discount factor 0.9 

Δ𝑡 Sampling time 0.1 sec 

𝜌 Learning rate 1 × 10−6 

𝜀0 Starting value for 𝜀-greedy exploration 0.2 

𝐶 Annealing factor for 𝜀-greedy exploration 2 × 10−6 

𝑇 Steps for each episode 200 

𝐸 Total training episode 1 × 105 

 

After training the attacker, the victim AV is evaluated in the original environment 

(without the attacker) and then the same environment with only one attacker. The AV is 

evaluated in both environments, with the total number of cars being 10, 15, and 20. The AV is 
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evaluated for 1 × 106 episodes, and each episode lasts for 200 steps unless terminated early due 

to a crash. 

4.5 Attacker’s Training Results and The Victim AV Evaluation Results 

In this section, both the training curve of the attacker and the evaluation results of the 

victim AV in different environments are reported. Then, the attacker and the evaluation results 

will be used to improve the policy design of the original victim AV in Chapter 5. 

As shown in Figure 4.9, the attacker is trained for 1 × 105 episode and evaluated by ten 

roll-outs every 100 episodes to be sure the attacker’s policy is trained properly. We train the 

attacker ten times, starting with random initial DNN parameters and average the total rewards of 

the evaluation rollouts (shaded area represents mean ± standard error). As can be seen from 

Figure 4.9, the attacker's policy start to converge after 4 × 104 training episodes, which means 

the attacker is ready to generate socially acceptable attacks to the victim AV.   

 

 

Figure 4.9 Training Curve of the Attacker 

 

The victim AV is then evaluated in the original environment and the environment with 

this trained attacker. The detailed crash results are shown in Table 4.3. We have summarized the 

number of crash cases with different Failure Code (FC), respectively. The definition of FC is 

described in Section 4.3.4 . And here, we only focus on the victim AV's responsible crashes (FC 

1 to 7). In each environment (with or without the attacker), we evaluate the victim AV with 

different numbers of total environment vehicles for a more comprehensive evaluation. In the 

bottom rows of Table 4.3, we report both the number of crashes between the attacker and the 
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victim AV (the first number), and the total number of crashes of the victim AV (the second 

number). 

Table 4.3 Number of Crashes during Evaluation 

# of env. cars 
Failure Code 

Crash rate 
1 2 3 4 5 6 7 

w/o. 

attacker 

10 0 0 5 0 46 0 0 5.1 × 10−5 

15 0 0 14 0 55 0 0 6.9 × 10−5 

20 0 0 12 0 33 0 0 4.5 × 10−5 

w. 

attacker 

10 656/657 239/239 180/186 43/78 101/156 504/504 9/9 1.8 × 10−3 

15 447/448 172/172 163/164 26/45 63/88 283/283 3/3 1.2 × 10−3 

20 419/598 168/168 137/139 20/32 59/64 237/273 1/1 1.1 × 10−3 

 

As can be seen from Table 4.3, there are many more crashes when one attacker is 

introduced. For crashes with Failure Code (FC) 2, 4, and 6, where the victim is liable, and the 

result crashes are fatal, the number of crashes jumps from 0 to hundreds. The total crash rates 

also increased around 50 times when including one attacker in the environment. This is a solid 

indication that our proposed method can generate Socially Acceptable Attacks (SAAs) by 

training an attacker, which provides useful insight into how the AV policy can be further 

improved.  

 

 

Figure 4.10  An example of the AV-responsible crash. 

 

In Figure 4.10, we show one example of the AV-responsible crash. The victim AV (blue 

car), instead of braking and crashed by the following attacker (red car), changed lane and crashed 

into the target lane front car result in an AV-responsible crash. There are many similar crashes, 

and these crashes indicate the flaws in the original victim AV reward design described in Section 

2.3.1 . The original victim AV will be punished −200 if there is a crash, no matter whose 

responsibility is the crash. Therefore, the trained victim AV from Chapter 2 does not learn to 
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separate responsibility. Moreover, as can be seen from the animation results, the victim AV does 

not know how to drive around the attacker. The victim AV sometimes will stop changing lanes 

in the middle of a lane change when the surrounding attacker also changes lanes. This indicates 

the original victim AV training environment does not contain enough diverse surrounding drivers 

and the trained DNN policy is not robust to SAAs. In the next chapter, we will solve the 

robustness problem of the trained DNN policy using the attacker we developed in this chapter.  

4.6 Summary 

In this chapter, we show that the AV policy learned by deep reinforcement learning (in 

Chapter 2) can be fragile, i.e., can still result in collisions even when the vehicles around it 

behave in a socially acceptable fashion. 

We first design an attacker under the two-player Markov game framework to challenge 

the AV. The attacker can perceive the AV’s behavior only through observations, and thus it tries 

to attack a black-box system. The attacker is trained to generate socially acceptable attacks by 

well designing the reward function that considers the accident's responsibility. The responsibility 

is separated by the pre-crash scenario, and if the attacker can lure the victim AV end up into an 

AV-responsible crash, it will be rewarded more. After the attacker’s policy is trained to 

converge, the victim AV is evaluated in the environment with one attacker.  

The evaluation results show that the attacker can lure the AV into many AV-responsible 

crashes, and the average crash rate increases 50 times more than the crash rate in the original 

training environment. The attacker will be further used to improve the robustness of the AV 

policy in Chapter 5. 
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Chapter 5 Meta Reinforcement Learning for Synthesis Adaptive Decision-making Policy 

 

In Chapter 4, the trained AV policy is tested in both the original environment and the 

environment with one attacker. The results show that the AV policy is not robust towards the 

perturbation in the environment transition probabilities. In this chapter, we will focus on design a 

robust DLC policy for a wide range of MDPs with different transition probabilities. The trained 

policy will perform safely and efficiently not only in the original environment and the 

environment with one attacker but also perform safely and efficiently in unseen environments 

after adapting with limited data. 

5.1 Motivation and Objective 

In the previous Chapters, we first designed an AV agent using the state-of-the-art RL 

method, which can travel in the designed highway environment safely and efficiently. However, 

when it is driving in an environment with a different transition probability function, the crash 

rate soars. We have shown that, on the one hand, the Reinforcement Learning (RL) methods are 

powerful. It can solve the Markov Decision Process (MDP) problems with high-dimension state 

space. While on the other hand, it seems like the RL methods are useless to real-world 

applications.  

The reason behind such observation is that the DNN is fragile, and DRL use DNN to 

represent its policy. Although DRL can find the optimal policy with respect to one MDP, it can 

fail in a similar MDP. Researchers have developed approaches to analyze the robustness of a 

DNN. In [151], the authors evaluate the robustness of a DNN with respect to input with 

geometric transformations in a worst-case regime and propose a new adversarial training scheme 

to improve the invariance properties of DNNs. And in [152], Liu et al. explicitly analyze the 

datapaths of the noise to improve the robustness of the DNN under noise. There are also some 

studies related to improving the robustness of DRL policy. In [153], [154], the authors try to 

adversarially perturb the simulation by choosing parameters that determine a simulation's 

dynamics, such as mass, the center of gravity, or friction during training. This method is called 
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the domain randomization method. The learned policies are more robust to a distribution shift in 

the underlying physics from simulation to real-world [153], [154]. However, the studies only 

consider the situations which have perturbations on the underlying physics models. And they are 

model-based methods. Another kind of approach is the verification method based on a formal 

method that finds theoretically proven bounds on the maximum output deviation, given a 

bounded input perturbation [155]–[157]. The difficulties in this approach are from the non-liner 

activation functions in the DNN. Also, it is computationally inefficient and can be inapplicable to 

some complicated problems. Therefore, a more efficient and generic approach is necessary.  

Moreover, in our application, we are dealing with multi-MDPs environments with respect 

to the transition probabilities. Drivers in different locations [123], at a different time [158], or in 

different weather conditions [158] behave differently. It is necessary to solve this large 

variability in driving behavior by designing an adaptive system that can recognize the condition 

(implicitly) and adapt its policy accordingly.  

By these motivations, we derive our objectives. The objective of this chapter is to 

develop the training and adapting approach that can teach the policy to adapt to different unseen 

environments with limited data quickly. The environments are different with respect to the 

transition probabilities. And we assume having the distribution of the environments. 

5.2 Literature Review and Meta Reinforcement Learning Preliminary 

5.2.1 Mathematical Formulation 

First, we give the mathematical formulation of the previously described problem. In 

Chapter 2, we were trying to solve a single MDP problem, and the target is to solve for: 

 𝛼 = 𝑎𝑟𝑔𝑚𝑎𝑥𝛼𝐸𝜋𝛼 ,𝑀 [∑𝛾𝑡𝑟𝑡

∞

𝑡=0

 ] = 𝑓𝑅𝐿(𝑀) (5.1) 

where the 𝛼 is the parameter vector of policy π, 𝑟 is the reward function, and  𝛾 is the discount 

factor. It can be written as a function of the MDP 𝑀, i.e. 𝑓𝑅𝐿(𝑀). To solve such a problem, we 

have introduced some algorithm in Section 2.2 . 

Now, instead of solving a single MDP problem, we are trying to solve the multi-MDPs 

adaptation problem in the form: 
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 𝜃 = 𝑎𝑟𝑔𝑚𝑎𝑥𝜃∑𝐸𝜋𝜙𝑖 ,𝑀𝑖
[∑𝛾𝑡𝑟𝑡

∞

𝑡=0

 ]

𝑁

𝑖=1

 (5.2) 

 𝜙𝑖 = 𝑓𝜃(𝑀𝑖) (5.3) 

 

where the 𝜃 is the parameter of the adaptation function 𝑓𝜃(𝑀𝑖), and 𝑀𝑖 is the 𝑖th MDP 

environment  𝑀𝑖 = (𝑆𝑖 , 𝐴𝑖 , 𝑃𝑖 , 𝑟𝑖, 𝛾𝑖). From Equation (5.2), we are learning an agent that after the 

adaptation, it can perform well in a set of environments (in total 𝑁 environments).  

The terms used in the multi-MDPs adaptation problem for numerically solving Equation 

(5.2) and (5.3) are the Outer loop/meta optimization and the Inner loop/adaptation. In [159], the 

authors provide a good schematic of them. As shown in Figure 5.1, the outer loop trains the 

parameter weights 𝜃, which determine the policy of the inner-loop agent (part of its parameters 

or its parameters initialization). The inner loop agent interacts with a given environment for 

some episodes. For every iteration of the outer loop, a new environment is sampled from a 

distribution of environments, which share some common structure.  

 

 

Figure 5.1 Illustrating the Inner and Outer Loops of Training [159] 

 

5.2.2 Literature Review  

Approaches for solving the multi-MDPs adaptation problem can be categorized by its 

meta optimization and adaptation steps. In the first kind of approach, the agent can learn to 

identify the environment by training an identifier using supervised learning. And then, for each 

model, the MPC or the DP method can be used to learn the policy. While during adaptation, we 



 86 

can identify the model and switch to the corresponding controller. For instance, in [160], 

Nagabandi et al. use meta learning to train a dynamics model prior. And this prior can be rapidly 

adapted to the local context when combined with recent data. And the controller is extracted 

using model predictive path integral control. However, we need to enumerate the model with its 

structure, limiting the agent’s generalization ability. 

In other studies, researchers use behavior cloning to make the adaptation. For example, in 

[161], [162] Yu et al. present Domain-Adaptive Meta-Learning, a system that allows robots to 

learn from a single video of a human via prior meta-training data collected from related tasks. 

During training, the agent is provided with demonstration data. And we teach the agent how to 

infer a policy from one demonstration. And during testing, we provide an expert demo, and the 

agent runs behavior cloning. However, we don’t assume to have a demonstration for the behavior 

cloning step.  

There are also some model-free Meta Reinforcement Learning (MRL) that can solve the 

adaptation problem. In [163]–[165] the authors use a Recurrent Neural Network (RNN) to 

encode the MDP’s information as the hidden memory of the RNN. And the policy contains that 

information in its weight to adapt to the different environments. However, there is no 

mathematical convergence proof for the RNN-based MRL policies. We cannot guarantee that the 

RNN-based MRL methods converge to a good adaptation function or even converge at all. 

Therefore, a more consistent MRL method is needed.  

Another class of MRL methods uses the policy gradient approach for both the meta 

training and adaptation step [166]–[168]. In [166], Finn et al. developed the famous Model 

Agnostic Meta-Learning (MAML) method. The idea is that the agent is trying to find the 

parameter 𝜃, such that when the agent takes a few gradient steps on that 𝜃, it will get to a 𝜃∗ 

which is optimal for a given MDP. However, policy gradient method suffers in sparse reward 

environments. The agent cannot update its policy using trajectories with no reward.  

Moreover, both the RNN-based and gradient-based approaches use on-policy RL 

methods (introduced in Section 2.2.2 ) for both the meta training and adaptation step and thus are 

data inefficient. The adaptation step is inherently on-policy learning since, given a new 

environment, the agent needs to collect new data using the current policy. However, the meta 

training step is not necessarily being on-policy learning. Therefore, Rakelly et al. [169] 

developed an off-policy meta training step based on the Soft Actor-Critic (SAC) [170] RL 
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approach and the stochastic encoder as the adaptor. The developed method is called the 

Probabilistic Embeddings for Actor-critic RL (PEARL). The PEARL MRL method is consistent, 

data-efficient, and has an advanced exploration strategy, being the state-of-the-art MRL 

approach. Therefore, we implemented this method in our application. In the next section, the 

details of PEARL will be expounded.  

 

5.3 Efficient Off-policy Meta Reinforcement Learning Method 

Solving the multi-MDPs adaptation problem can also be viewed as solving a Partially 

Observed Markov Decision Processes (POMDPs) problem. In a POMDP, the agent’s decision 

processed is modeled assuming the system dynamics are an MDP, but the agent cannot directly 

observe the underlying state. Suppose each environment or task is modeled as an MDP, then an 

agent is trying to find the optimal policy without fully observe the hidden state (ℎ𝑡 in Figure 5.2). 

 

 

Figure 5.2 Multi-MDPs adaptation problem as a POMDP problem 

 

 To solve a POMDP problem, we can either directly solve the policy or explicitly estimate 

the hidden state. The PEARL [169] MLR method build on the second way. The agent learns 

from the experience collected in past environments to approximate its belief on a given 

environment. And to adapt, the agent will condition its policy on that belief. To capture 

uncertainty in the belief over the task, the agent learns a probabilistic latent representation of 

prior experience. Moreover, to achieve better data efficiency during meta-trading, the off-policy 

RL is implemented. In Section 5.3.1 , the model of the probabilistic latent representation of prior 
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experience is introduced. And then, in Section 5.3.2 , the detail of the adaptation step is 

elaborated. Finally, in Section 5.3.3 , we will explain the off-policy MRL method for the meta-

training step. 

 

5.3.1 Learning and Modeling Latent Contexts 

First of all, the environments’ information should be encoded by the latent context 𝑧 to 

enable fast adaptation. In PEARL [169], a variational inference approach is implemented. The 

latent belief 𝑧 is inferred by an inference netwok 𝑞𝜙(𝑧|𝑐) given the context 𝑐 (set of collected 

data), parameterized by 𝜙 which estimate the true posterior distribution 𝑝(𝑧|𝑐). Typically, the 

objective is to optimize 𝑞𝜙(𝑧|𝑐) to reconstruct the environment by learning the reward and 

transition function of the MDP. However, this is a model-based approach, and here we do not 

assume knowing the structure of the MDP reward and transition function. In a model-free 

manner, 𝑞𝜙(𝑧|𝑐)  can be optimized the maximize returns through the policy over the distribution 

of tasks. Therefore, the variational lower bound of the objective function is: 

 E𝑇~𝑓(𝑇) [E𝑧~𝑞𝜙(𝑧|𝑐
𝑇
)
[𝑅(𝑇, 𝑧) + 𝛽 × 𝐾𝐿 (𝑞𝜙(𝑧|𝑐

𝑇)||𝑝(𝑧))]] (5.4) 

where the 𝑇 is the current task or environment, 𝑓(𝑇) is the distribution that each task sampled 

from, 𝑝(𝑧) is a standard normal distribution 𝑁(0, 𝐼) over 𝑧 and the 𝑅(𝑇, 𝑧) can be a variety of 

objectives in task 𝑇 at timestep 𝑡. We can understand the KL divergence term as a variational 

approximation to an information bottleneck that constrains the mutual information between 𝑧 and 

context 𝑐. Intuitively, this bottleneck constrains 𝑧 to contain only information from the context 

that is necessary to adapt to the task at hand, mitigating overfitting to training tasks [169]. This 

technique is also implemented in Section 2.3.3 The parameter 𝜙 will be learned though meta-

learning, and during adaptation, the inference network will be used to infer the belief 𝑧 from 

collected trajectories. 

The inference network architecture design should be expressive enough to capture 

sufficient statistics of task-relevant information without modeling irrelevant information. Recall 

that encoding of a fully observed MDP should be permutation invariant. If we want to infer what 

the task is or identify the MDP model, it is enough to have access to a collection of transitions 

(𝑠, 𝑎, 𝑠′, 𝑟) without regard for the order in which these transitions were observed. Therefore, in 
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PEARL, the 𝑞𝜑(𝑧|𝑐1:𝑁) network is modeled as permutation-invariant representation, i.e., as a 

product of independent factors: 

 𝑞𝜑(𝑧|𝑐1:𝑁) ∝∏ Ψ𝜙(𝑧|𝑐𝑛)
𝑁

𝑛=1
 (5.5) 

where the Ψ𝜙(𝑧|𝑐𝑛) = 𝑁(𝑓𝜙
𝜇(𝑐𝑛), 𝑓𝜙

σ(𝑐𝑛)), which results in a Gaussian posterior so that the 

method is tractable. The 𝑓𝜙  represent a DNN that predicts the mean 𝜇 and variance σ.  

 

5.3.2 Advanced Exploration via Posterior Sampling 

Modeling the latent context as probabilistic allows the agent to use the posterior sampling 

method for efficient exploration at adaptation time. In PEARL [169], the agent directly infers a 

posterior 𝑞𝜙(𝑧|𝑐) over the latent context 𝑐 (e.g., set of transitions (𝑠, 𝑎, 𝑠′, 𝑟)), which encode a 

specific MDP’s information. We choose to encode the value function in our application since the 

backbone RL method we use is based on the value function. The meta-training procedure 

leverages training MDPs to learn a prior over 𝑧 (𝑞𝜙(𝑧)) that captures the distribution over MDPs 

and learns how to use the experience to guide exploration. At adaptation time, the belief 𝑧 is 

sampled from the prior (𝑞𝜙(𝑧)) first and the adapted policy is executed give the sampled 𝑧 for an 

episode, thus exploring in a temporally extended and diverse manner. The agent can then use the 

collected experience to update our posterior and continue exploring coherently in a manner that 

acts more and more optimally as our belief narrows, akin to posterior sampling. 

 

 

Figure 5.3 Collected experience can then be used to update the belief during adaptation [169] 
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5.3.3 Off-Policy Meta-Reinforcement Learning 

In this section, we explain the meta-training procedure. The inefficiency of the meta-

training process is largely elaborated in prior works [166]–[168], which is because of using 

stabel but relatively inefficient on-policy algorithms. However, implementing the off-policy RL 

method in meta-RL algorithms is non-trivial. During adaptation, the agent needs to collect new 

data in the new environment using the current policy, which is inherently on-policy data. And 

since at adaptation time, on-policy data will be used to adapt, on-policy data should be used 

during meta-training to train the encoder.  

To solve this problem, we separate the data used to train the encoder from the data used 

to train the policy. The policy can treat the context 𝑧 as part of the state in an off-policy RL loop, 

while the uncertainty in the encoder provides the stochasticity of the exploration process 

𝑞𝜙(𝑧|𝑐). The actor and critic are always trained with off-policy data sampled from the entire 

replay buffer B. We define a sampler 𝑆𝑐 to sample on-policy context batches for training the 

encoder. By doing so, we have a separate off-policy meta-training and an on-policy adaptation 

step. The meta-training process of the PEARL algorithm is summarized in Algorithm 5.1.  

Algorithm 5.1: PEARL Meta Training Algorithm 

Initialization:  

Batch of training tasks {𝑇𝑖} from task distribution 𝑓(𝑇) 
Replay buffers: 𝐵𝑖 for each training task 

for each training episode do 

for each 𝑇𝑖 do 

Initialized context 𝑐𝑖 = {} 
for 𝑘 = 1……𝐾 do 

Sample belief 𝑧 from inference network 𝑞𝜙(𝑧|𝑐𝑖) 

Gather data using current policy 𝜋𝜃(𝑎|𝑠, 𝑧) and add to 𝐵𝑖 
Update 𝑐𝑖 = {(𝑠𝑗 , 𝑎𝑗 , 𝑠𝑗+1, 𝑟𝑗)}𝑗:1,…,𝑁~𝐵𝑖 

for step in training steps do 

for each 𝑇𝑖  do 

Sample context using on-policy sampler, i.e. 𝑐𝑖~𝑆𝑐(𝐵𝑖) 
Sample RL off-policy training data 𝑏𝑖~𝐵𝑖 
Sample 𝑧~𝑞𝜙(𝑧|𝑐𝑖) 

Calculate loss function for the actor network 𝐿𝑎𝑐𝑡𝑜𝑟
𝑖 , critic network 

𝐿𝑐𝑟𝑖𝑡𝑖𝑐
𝑖 and the stochastic encoder network 𝐿𝑆𝐸

𝑖  

Update actor network, critic network and stochastic encoder network using the 

corresponding cumulative loss ∑ 𝐿𝑖𝑖  

Output: Stochastic encoder network, actor network and critic network 
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During the adaptation step (shown in Algorithm 5.2), the parameters of all the networks 

will not be updated. The agent will first sample the belief 𝑧 from the prior and then collected data 

using 𝜋𝜃(𝑎|𝑠, 𝑧) given sampled 𝑧. Then the collected data will be used to update the belief, and 

thus, the agent can adapt to different environments. The backbone used to do the meta training is 

the standard state-of-the-art off-policy RL algorithm, i.e., SAC. For more details of the SAC, 

please refer to [170].  

Algorithm 5.2: PEARL Meta Testing 

Initialization:  

Test task 𝑇 from the distribution 𝑓(𝑇) 
Initialized context 𝑐𝑇 = {} and reply buffer 𝐵𝑇 = {} 

for 𝑘 = 1……𝐾 do 

Sample belief 𝑧 from inference network 𝑞𝜙(𝑧|𝑐𝑇) 

Gather data using policy 𝜋𝜃(𝑎|𝑠, 𝑧) given sampled 𝑧 and add to reply buffer 𝐵𝑇 

Update 𝑐𝑇 = 𝑐𝑇 ∪ 𝐵𝑇 

Output: The adapted actor network and critic network 

 

5.4 Discretionary Lane Change Environment Distribution 

In this section, the discretionary lane change environment distribution will be introduced. 

The previously introduced approaches will be used to train an agent that can adapt to that 

distribution of environments. As a continuity work from Chapter 4, we want to tackle the 

environments with a various number of trained attackers and decrease the overall crash rate by 

on-line adaptation. For a more realistic application, we also implement the PEARL in the 

distribution of environments with a broader range of driver behavior, which uses the IDM and 

Mobil model.  

 

5.4.1 Environments with Attackers 

In Chapter 4, we showed that the trained attacker could find failure cases that are the AV 

agent’s fault, thus increase the crash rate. In this chapter, we want to show that by implementing 

MRL, the trained AV agent can adapt to different environments and thus lower the crash rate 

again. Therefore, as shown in Equation (5.6), we developed the distribution of environments 

with three variables: 1) the traffic density variable 𝛼𝑑𝑒𝑛 , which is a scale of average distance 

between vehicles; 2) the number of total vehicles 𝑛𝑐𝑎𝑟, which can be sampled from 10 to 30; and 
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3) the number of attackers 𝑛𝑎𝑡𝑡, which indicate how many attackers are put around the AV, is 

sampled from 0 to 3. The attackers will be put around the AV randomly.  

 𝑀𝑖 = {𝛼𝑑𝑒𝑛 ,  𝑛𝑐𝑎𝑟 ,  𝑛𝑎𝑡𝑡},   𝛼𝑑𝑒𝑛~𝑈(0.5, 1.5), 𝑛𝑐𝑎𝑟~𝑈{10, 30},   𝑛𝑎𝑡𝑡~𝑈{0,3}   (5.6) 

Those variables are uniformly sampled and will decide the initial condition of one environment. 

The 𝛼𝑑𝑒𝑛  can continuously sample from 0.5 to 1.5, which means at the beginning, the 

longitudinal distance between two cars in the same lane can sample from 9 meters to 240 meters. 

While the 𝑛𝑐𝑎𝑟 and 𝑛𝑎𝑡𝑡 can only be sampled from integers within the boundaries. After 

sampling these three variables, we will have a variety of environments, as shown in Figure 5.4. 

The reward functions for different environments keep the same as in Section 2.3.1 . 

 

Figure 5.4 Examples of environments with different numbers of attackers (red boxes) 

 

5.4.2 IDM-Mobil Driver Model Environments 

We also implement the PEARL algorithm in another distribution of environments. In this 

experiment, we build the distribution of environments based on the highway-env [171] 

environment.  

 

 

Figure 5.5 The highway-env environment [171] 
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The state-space 𝑆 ⊆ 𝑅𝑛 of the learning agent (the green box in Figure 5.5) includes the 

host vehicle's lateral position 𝑦, host vehicle's longitudinal velocity 𝑣𝑥 and the relative 

longitudinal position of the 𝑖th surrounding vehicle Δ𝑥𝑖, and the relative lateral position of the 𝑖th 

surrounding vehicle Δ𝑦𝑖 and the relative longitudinal velocity of the 𝑖th surrounding vehicle Δ𝑣𝑥
𝑖 . 

Therefore, in total, we have a continuous state space of 2 + 3 × 6(cars) = 20 dimensions, i.e., 

𝑆 ⊆ 𝑅20. The actions of the learning agent are the steering angle and acceleration, which are 

both continuous. The steering angle’s range is [−𝜋 4⁄ , 𝜋 4⁄ ], and the acceleration’s range is 

[−6 𝑚/𝑠2, 6 𝑚/𝑠2]. 

In the highway-env environment, the lane change policy for the surrounding vehicles is 

the IDM-Mobil model, and the vehicle will change lane when: 

 𝑎̃𝑐 − 𝑎𝑐 + 𝑝[(𝑎̃𝑛 − 𝑎𝑛) + (𝑎̃𝑜 − 𝑎𝑜)] > Δ𝑎𝑡ℎ (5.7) 

 𝑎̃𝑛 > −𝑏𝑠𝑎𝑓𝑒  (5.8) 

where the 𝑎𝑐 is the ego vehicle’s acceleration in the current lane and 𝑎̃𝑐 is the potential ego 

vehicle’s acceleration if it changes lane. New and old successors are denoted as 𝑛 and 𝑜, the 

corresponding 𝑎 is the current acceleration and the 𝑎̃ is the potential if the ego vehicle changes 

lane. The 𝑝 is the politeness factor and the Δ𝑎𝑡ℎ is the switching threshold. Therefore, the 

aggressiveness of the surrounding vehicle can be represented by the parameter 𝑝 and Δ𝑎𝑡ℎ. And 

Equation (5.8) is the safety criterion guarantees that after the lane change, the deceleration of the 

successor in the target lane does not exceed a given safe limit 𝑏𝑠𝑎𝑓𝑒 . Since the politeness factor 

and the switching threshold are correlated for one kind of driver behavior, we do not sample 

them separately. Instead, we designed three different kinds of driver behavior: the aggressive 

driver, the normal driver, and the conservative driver.  The corresponding parameters are listed 

in Table 5.1. From the table, we can see that the aggressive driver will not consider other 

surrounding vehicles and will change lanes with a small acceleration gain, while the conservative 

driver will consider other surrounding vehicles and will change lanes when there is a big 

acceleration gain. The normal driver is just in between. 
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Table 5.1 Mobil parameters for different driver behaviors 

Parameters Aggressive driver Normal driver Conservative driver 

𝑝 0 0.3 0.5 

Δ𝑎𝑡ℎ 0.8 𝑚/𝑠2 1 𝑚/𝑠2 1.2 𝑚/𝑠2 

𝑏𝑠𝑎𝑓𝑒  2 𝑚/𝑠2 1 𝑚/𝑠2 0.5 𝑚/𝑠2 

 

Then one environment is decided by the following variables: the traffic density variable 

𝛼𝑑𝑒𝑛 , which is a scale of the average distance between vehicles; the total number of vehicles 𝑛 

which is the sum of the number of aggressive drivers 𝑛𝑎𝑔𝑔, the number of normal drivers 𝑛𝑛𝑜𝑟 

and the number of conservative drivers 𝑛𝑐𝑜𝑛. To sample an environment, we first uniformly 

sample the traffic density variable 𝛼𝑑𝑒𝑛  from 0.5 to 1.5 and the total number of vehicles 𝑛 from 

10 to 30. Then the numbers of different driver behaviors (i.e. 𝑛𝑎𝑔𝑔, 𝑛𝑛𝑜𝑟 and 𝑛𝑐𝑜𝑛) are sampled 

from the multinomial distribution 𝑀𝑢𝑙𝑡𝑖(𝑛, 𝑘), where 𝑛 is the total number of vehicle and 𝑘 =
1

3
. 

By sampling from 𝑀𝑢𝑙𝑡𝑖(𝑛, 𝑘), we will have 𝑛𝑎𝑔𝑔 + 𝑛𝑛𝑜𝑟 + 𝑛𝑐𝑜𝑛 = 𝑛 and the probability of 

sampling from each category is the same. The reward functions [171] for different environments 

are the same and is composed of a velocity term and collision term: 

 𝑅(𝑠, 𝑎) = 𝛼 (
𝑣−𝑣𝑚𝑖𝑛  

𝑣𝑚𝑎𝑥−𝑣𝑚𝑖𝑛
) − 𝛽𝑟𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛    (5.9) 

where 𝑣, 𝑣𝑚𝑖𝑛, and 𝑣𝑚𝑎𝑥 are the current, minimum, and maximum speed of the agent, 

respectively, and 𝛼, 𝛽 are two coefficients. For the details of the reward design, please refer to 

[171]. 

5.5 Training Setup 

5.5.1 Baselines for the Meta Training and Adaptation 

To show the PEARL approach's data efficiency, we compare its meta training process 

with the gradient-based MRL method MAML’s [166] meta training process. The results are 

compared with the x-axis being the total collected data. And the retunes of each algorithm are 

averaged across five random runs. Both the hyperparameters of the PEARL and MAML are 

tuned carefully (PEARL: manually; MAML: by the optuna [172] package), which is an open-

source hyperparameter optimization framework to automate hyperparameter search. 
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For the adaptation step, we compare the PEARL adaptation step with the MAML 

adaptation step and a fine-tune method based on the Trust Region Policy Optimization (TRPO) 

[173] method with safety check implemented (from Section 2.3.5 ). The fine-tune method will 

just keep updating the initial policy in a new environment. The adaptation results will be 

compared with the x-axis being the data collected in the new environment. We will sample 104 

different environments and evaluate all three adaptation approaches. To evaluate the safety of the 

trained policy, we also calculate each trained agent's crash rate.  

 

5.5.2 Training Hyperparameters 

In this section, the hyperparameters used for PEARL are listed in Table 5.2. The 

hyperparameters are tuned using the Optuna [172] package. As shown in Table 5.2, the agent 

will be meta trained in 8 environments, and at each episode, it will be meta tested in 2 unseen 

environments.  

Table 5.2 Implementation Hyperparameters for PEARL 

 Description Value 

𝑛𝑡𝑟𝑎𝑖𝑛 Number of tasks used for meta training 8 

𝑛𝑡𝑒𝑠𝑡 Number of unseen tasks used for meta testing 2 

𝑛𝑒𝑣𝑎𝑙 
After the meta training, the agent will be evaluated in 𝑛𝑒𝑣𝑎𝑙  
numbers of randomly sampled tasks 

104 

𝐸 Number of episodes for each task in meta testing 2 

Δ𝑡 Sampling time 0.1 sec 

𝛾 Discount factor 0.9 

𝑛𝑝𝑟𝑖𝑜𝑟 Number of transitions collected per task with 𝑧~𝑞𝜙(𝑧|𝑐𝑖) 200 

𝐾 Number of SAC iterations in each episode 1000 

𝜂 Reward scale for the backbone SAC method [170] 100 

𝜌 Learning rate for the SAC method  [170] 3 × 10−4 

𝑏𝑚𝑒𝑡𝑎 Number of tasks to average the gradient across 8 

𝑏𝑅𝐿  Number of transitions in the SAC batch  [170] 256 
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5.6 Results 

5.6.1 Training Results 

This section shows the meta testing returns of the PEARL method and MAML method 

during the meta training. Results for the attacker environment described in Section 5.4.1  are 

shown in Figure 5.6. In Figure 5.6 (a), we show the before and after adaptation of PEARL and 

MAML in the logarithmic axis. The x-axis is the total environment steps representing how much 

data they use for training. As can be seen from the figure, the PEARL method converges after 

collecting 105 data points, meanwhile the MAML converge after collecting 107 data points. 

PEARL is one hundred times more data-efficient than MAML. Moreover, if we look at the 

before and after adaptation curve of each approach, we can see that the agent trained by the 

PEARL method shows good adaptation. While for the MAML method, there is almost no 

adaptation. 

 If we zoom in on the last ten iterations of MAML and PEARL and put them together, we 

can have this Figure 5.6 (b). The red dashed line is the crash line. The average reward below this 

line indicates there are crashes in that iteration. And you can see, the MAML not only shows no 

adaptation, but there are also still many crashes at the end of the training. While for PEARL, we 

can see that there is no crash after adaptation.  

 

  

(a) Total environment steps (b) Last 10 iterations 

Figure 5.6 Meta Testing Average Returns during Meta Training in Attacker Environments 
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(a) Total environment steps (b) Last 10 iterations 

Figure 5.7 Meta Testing Average Returns during Meta Training in IDM-Mobil Environments 

 

Results for the IDM-Mobil environment described in Section 5.4.2 are shown in Figure 

5.7. In Figure 5.7 (a), we show the before and after adaptation of PEARL and MAML in the 

logarithmic axis, and in Figure 5.7 (b), we offer the last ten iterations of the MAML and PEAR 

training curve. We can have a similar conclusion that the PEARL method is much more data-

efficient than the MAML method. Moreover, let us look at the before and after adaptation curve 

of each approach. We can see that the PEARL agent shows good adaptation that the after 

adaptation reward is much higher than the before adaptation reward. Since the reward design of 

the IDM-Mobil is different from the attacker’s environment, there is no intuitive crash line. 

Therefore, we only summarize the crash rate in Table 5.4 in Section 5.6.2 . 

 

5.6.2 Evaluation Results 

In this section, we evaluate the trained agent with 104 random tasks sampled from each 

distribution of environments. We compared the PEARL approach with the MAML and the fine-

tune approach in which we keep training the policy in a new environment. The x-axis is how 

much data we provide for the adaptation step after training. As you can see, after collecting two 

trajectories of data (400 data points), the PEARL can adapt to new environments well in both 

distributions of environments. However, the MAML and fine-tune methods do not show 
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improvement even with ten trajectories of data. This is because that the collected data in the new 

environment are not useful for the MAML agent and fine-tune agent to update its policies. 

 

  

(a) Attackers Environment (b) IDM-Mobil Environment 

Figure 5.8 Evaluation Average Returns  

 

Next, we report the different agents’ crash rates during evaluation in Table 5.3 and Table 

5.4 for the attacker environments and IDM-Mobil environments, respectively. All the methods 

are evaluated in 104 random environments. On the leftmost column, we have the benchmark 

policy from Chapter 2. The crash rate of the trained agent in the original environment is very 

low. However, when we test it in random environments, the crash rate increases significantly in 

both setups. For the fine-tune approach, the result shows that the agent cannot adapt to new 

environments with limited data, so the crash rate in new environments is around the same level 

for both setups.  

In the attacker environments, the MAML keeps getting worse and worse, give the data. 

This due to insufficient exploration during the adaptation. Meanwhile, the PEARL can adapt to a 

new environment quickly with limited data. The crash rate of the PEARL agent reaches a very 

small number, which can compare to the benchmark's crash rate in the original environment.  
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Table 5.3 Crash Rate with Different Numbers of Data in the Attacker Environments 

Crash Rate 
Benchmark  

(Safety Check) 

Fine Tune 

(Safety Check) 

MAML  

(No Safety Check) 

PEARL  

(No Safety Check) 

In orig. task ~10−3% ~10−3% - - 

Before adapting 

17.8% 

13.2% 19.4% 59.1% 

1 trajectory 13.4% 22.5% 7.3% 

2 trajectories 14.1% 24.9% 0.099% 

3 trajectories 13.3% 27.3% 0.077% 

5 trajectories 13.7% 31.4% 0.015% 

10 trajectories 13.8% 36.9% 0.0062% 

 

Table 5.4 Crash Rate with Different Numbers of Data in the IDM-Mobil Environments 

Crash Rate Benchmark  Fine Tune  MAML  PEARL  

In orig. task ~4% ~4% - - 

Before adapting 

50.3% 

52.6% 50.4% 60.3% 

1 trajectory 51.9% 32.6% 26.7% 

2 trajectories 49.5% 36.7% 18.1% 

3 trajectories 49.8% 34.5% 12.7% 

5 trajectories 48.2% 32.2% 10.5% 

10 trajectories 47.6% 31.8% 5.2% 

 

In IDM-Mobil environments, the MAML agent has better crash rates with more and more 

given data. However, the improvement still not significant enough compared to the PEARL 

agent. As can be seen from Table 5.4, the PEARL can adapt to a new environment quickly with 

limited data. The crash rate of the PEARL is comparable to the benchmark's crash rate in the 

original environment. Since in the IDM-Mobil environments, there is no short-horizon safety 

check, the benchmark crash rate is higher than the attacker environment. Moreover, in the IDM-

Mobil environments, the agent controls the steering angle and the acceleration directly without 

any robust lower level controller. This causes a higher crash rate compared to the attacker 

environment. The crash rate results show that the PEARL trained agent can achieve the 

benchmark level crash rate with only ten trajectories of data in both setups.  
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5.7 Summary 

In this chapter, we showed that it is necessary to solve the multi-MDPs problem in 

designing the DLC policy. At a different time of the day or in different weather conditions, 

drivers can behave differently. And from Chapter 4 we know that the DNN-based policy will fail 

with perturbations. 

To solve the multi-MDPs problem and design a robust DLC policy, we can try to encode 

the knowledge from previously experienced environments and utilize it in some unseen 

environments. This chapter implements the state-of-the-art method meta reinforcement learning 

(MRL) method PEARL to encode the knowledge into a stochastic encoder.  

Two distributions of environments are designed in this chapter, i.e., the environments 

with attackers and the IDM-Mobil environments in Section 5.4 . From the results, we can see 

that, in both distributions of environments, the trained policy can adapt to unseen environments 

with limited data. While the baseline fine-tune method cannot adapt to unseen environments with 

the same amount of data. Moreover, we also calculate the crash rate of the trained agent. As 

shown in the results, the crash rate of the trained agent decreases dramatically after the 

adaptation. With only ten trajectories, the crash rate can drop significantly to the crash rate of the 

benchmark policy trained in the original environment. From the results, we can see that the MRL 

method has huge potentials in solving the AV decision-making problem and can provide a robust 

policy concerning the MDP transition probability. 
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Chapter 6 Conclusions and Future Works 

6.1 Conclusions 

To develop an automated vehicle with higher automation levels, designing the 

discretionary lane change (DLC) policy is critical. However, the DLC policy is hard to design 

using the conventional method since it needs to consider complicated environment information 

and different conditions. Therefore, in Chapter 2, we first proposed a novel RL method that uses 

the model-based exploration method via intrinsic reward to synthesize the DLC policy. In 

particular, an environment transition model is trained as a notion of an agent’s surprise about its 

experiences guide the exploration. The agent thus can explore the state space thoroughly and 

result in an optimal global policy. The experiments we conduct show that the model-based 

exploration method we proposed leads to a faster convergence solution and designed a DLC 

policy that can travel more efficiently. The model-based exploration method we developed offers 

both theoretical and practical advantages in solving the DLC problem.  

After designing a decision-making system, the policy must be evaluated thoroughly 

before its release and deployment. In Chapter 3, we evaluated the policy designed in Chapter 2. 

To assess the policy efficiently in a high dimensional state space, we implemented the Subset 

Simulation (SS) as an adaptive sampling method for accelerated evaluation. We demonstrated 

the ability of SS to accelerate the evaluation in Chapter 3. The SS method is proved to have 

better-accelerating performance than the Importance Sampling (IS) method, and it can evaluate 

the system in the environment with a high dimension while the IS method cannot.  

The limitation of the SS method is that the “danger regions” are searched as the test 

procedure unfolds. If the environmental statistics change, the crash rate cannot be estimated 

accurately. Therefore, we developed a novel evaluation method in Chapter 4 that does not need 

environmental statistics. In Chapter 4, we first design an attacker under the two-player Markov 

game framework to challenge the AV. The attacker is trained to generate socially acceptable 

attacks by well designing the reward function that considers the accident's responsibility. The 

attacker’s objective is to lure the AV to end up in AV-responsible crashes. After the attacker’s 
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policy is trained to converge, the AV is evaluated in the environment with one attacker.  The 

evaluation results show that the attacker can lure the AV into many AV-responsible crashes, and 

the average crash rate increases 50 times. 

Introducing attackers that can generate socially acceptable attacks makes the behavior of 

the surrounding vehicles more diverse. The trained policy from Chapter 2 failed in such varied 

environments. This problem can be viewed as designing a robust policy with respect to multiple 

MDPs. In Chapter 5, we solved this multi-MDPs problem. In detail, we encode the knowledge 

from previously experienced environments and utilize it in some unseen environments. We 

implemented the state-of-the-art method meta reinforcement learning (MRL) method PEARL to 

encode the knowledge into a stochastic encoder. Two distributions of environments are designed 

in this chapter, i.e., the environments with attackers and IDM-Mobil environments. From the 

results, we can see that the trained policy can adapt to unseen environments with only two 

trajectories of data in both distributions of environments. Moreover, the crash rate of the trained 

agent decreases dramatically after the adaptation to the crash rate of the benchmark policy 

trained in the original environment. From the results, we can see that the MRL method has huge 

potentials in solving the AV decision-making problem. 

This dissertation discussed the design procedure (as shown in Figure 6.1) of the DLC 

policy, from the designing stage to the evaluating stage and, finally, using the evaluation results 

to further improve the policy. The developed evaluation methods and MRL method have great 

potentials to solve for robust policies concerning a wide range of conditions in different 

applications. 

 

Figure 6.1 Procedure for developing an AV’s decision-making system 
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6.2 Future Works 

The developed designing and evaluation methods proposed in this dissertation can be 

used in solving more decision-making problems. While we successfully applied them in solving 

the DLC problem, more can be done to extend the methods to other scenarios. A few research 

directions that can be exploited in future research are discussed as follows. 

 

6.2.1 Designing Robust Decision-making Systems of Other AV Scenarios 

New training approaches need to be developed for more application, considering different 

weather conditions, road topology, and a more comprehensive range of human behaviors. More 

works are also required to design a decision-making system for the AV in other scenarios, i.e., 

the highway merging and exiting problem, roundabout entering problem, etc.  

Moreover, to implement the learned policy in the real-world application, it is necessary to 

calibrate the distribution of the simulators. This requires collecting vast amounts of real-world 

data to ensure that the built simulators cover the range of behavior and conditions in the real 

world.  

Finally, to implement the learned policy in an AV system in practice, we also need to 

consider integrating the decision-making system with other systems. Challenges can come from 

sensing, perception/detection, motion planning, and control systems. These integration problems 

should also be studied carefully to get a safe and robust AV product.  

 

6.2.2 Online Monitoring Environment Changes 

The MRL method we implement can only start to adapt to the new environment when 

noticed manually. However, the fully automated vehicle needs to decide when to adapt by itself. 

Therefore, online MRL methods also need to be developed. Online MRL considers a setting 

where either the agent monitors the environment changes and adapts when necessary, or just 

keeps adapting. There are some potential methods [174], but more works are needed to 

implement them to the AV applications.  
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6.2.3 Extrapolate rather than Interpolate 

One of the assumptions under the MRL is that the training environments and the testing 

environments are sampled from the same distribution. This means the adaptation step is basically 

running some “interpolation.” Current MRL approaches are either not able to extrapolate well or 

can do so at the expense of requiring vast amounts of online collecting data. Solving the 

extrapolation problem is an open question. It requires the implementation of some structure that 

represents common knowledge or reasoning inside the policy. This is the next big step towards 

human-level intelligence.  
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