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4.20 Unified ASP strategy SU predicted by a singular neural network NU . 71
4.21 Ground truth ASP (best) planner selection histograms over the vali-

dation dataset for individual cost metrics. . . . . . . . . . . . . . . . 74
4.22 Unified network NU training performance over 300 epochs on Keras. 75

ix



LIST OF TABLES

Table

2.1 Alternative fail-safe multicopter planning protocol selection as a func-
tion of available (X) versus unavailable (-) information. . . . . . . . 12

2.2 Raw geospatial tax lot data supplied by PLUTO and MapPLUTO. 13
3.1 Classical algorithm properties relevant to motion planning. . . . . . 22
3.2 Motion planning ASP metrics classified by type. . . . . . . . . . . . 24
3.3 DOP Value Rating [4]. . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.4 Dynamic population estimates in millions for Manhattan in 2010. [5]. 29
3.5 Manhattan districts with their important neighborhoods’ labeled type. 33
3.6 Work weekday and nighttime population estimates in millions. . . . 38
4.1 Planner success rates with respect to map data resolution. . . . . . 56
4.2 Cost-based tree decisions. . . . . . . . . . . . . . . . . . . . . . . . . 67
4.3 Cost-based tree state. . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.4 Success-based tree decisions. . . . . . . . . . . . . . . . . . . . . . . 67
4.5 Success-based tree state. . . . . . . . . . . . . . . . . . . . . . . . . 67
4.6 Ground truth motion planning ASP selection for validation data.

Each of the four altitudes has 7500 validation cases. . . . . . . . . . 72
4.7 Number of planner failures over all Monte Carlo studies. Each of the

four altitudes has 15000 total cases. . . . . . . . . . . . . . . . . . . 73
4.8 Individual cost and success network performance benchmarks. . . . 75
4.9 Comparison of decision tree and neural network accuracies. . . . . . 76
5.1 Common risks encountered by small UAS. . . . . . . . . . . . . . . 80

x



LIST OF APPENDICES

Appendix

A. Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

B. Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

xi



LIST OF ABBREVIATIONS

2D Two Dimensional

3D Three Dimensional

AABB Axis Aligned Bounding Box

ACC Accuracy

AGL Above Ground Level

AIT Adaptively Informed Trees

AR Anytime Repairing

ASP Algorithm Selection Problem

ATC Air Traffic Control

BEST Best Linear Unbiased Estimator

BIT Batched Informed Trees

BVLOS Beyond Visual Line-of-Sight

CRS Coordinate Reference System

DOD Department of Defense

DOT Department of Transportation

FAA Federal Aviation Administration

FMT Fast Marching Trees

GDAL Geospatial Data Abstraction Library

GDOP Geometric Dilution of Precision

GIS Geographic Information System

xii



GNSS Global Navigation Satellite System

GNC Guidance, Navigation, and Control

GPS Global Positioning System

IQR Interquartile Range

LIDAR Light Detection and Ranging

LP Lifelong Planning

MAE Mean Absolute Error

NYC New York City

OSM OpenStreetMap

PDOP Position Dilution of Precision

PRM Probabilistic Roadmap

PTP Point to Point

RC Radio Control

RRT Rapidly-exploring Random Trees

SAT Satisfiability

SLAM Simultaneous Localization and Mapping

SSP Sensor Selection Problem

STC Spanning Tree Coverage

STD Standard Deviation

UAS Unmanned Aircraft Systems

UAM Urban Air Mobility

UERE User Equivalent Range Error

UTM Universal Transverse Mercator

TDOP Time Dilution of Precision

xiii



LIST OF SYMBOLS

x, y, z aircraft position (intertial frame)

A algorithm portfolio

P problem instance set

P̂ problem instance subset

a algorithm

p problem instance

D date-time information

I aircraft information

L total bounding box

W weighting vector

wdist distance metric weight

wgps GPS metric weight

wlidar Lidar metric weight

wpop population metric weight

wrisk risk metric weight

H metric/cost map

Htotal total cost map

Hnorm min-max normalized map

δview sensor field of view/range

δres map resolution

δb bounding box buffer distance

mp path-based metrics

mm map-based metrics

xiv



ms software-based metrics

mgps, cgps GPS pseudorange uncertainty metric/cost

mlidar, clidar Lidar-based visibility metric/cost

mobs, cobs obstacle occupancy metric/cost

mpop, cpop overflown population density metric/cost

mrisk, crisk obstacle proximity metric/cost

mdist, cdist distance traveled metric/cost

mtime, ctime algorithm execution time metric/cost

mmem, cmem algorithm memory usage metric/cost

c speed of light

ρrc GPS receiver range

trc GPS receiver clock

tsat GPS satellite clock

εUERE UERE catch-all error term

xrc, yrc, zrc GPS receiver position (inertial frame)

xsat, ysat, zsat GPS satellite position (inertial frame)

Nsats number of visible satellites

Ggps GPS pseudorange linear system

χgps GPS pseudorange state vector

Σgps GPS pseudorange system covariance

GDOPthresh GDOP threshold

bO Lidar beams’ origin

blidar number of Lidar beams

flidar number of Lidar scanning positions

nlidar maximum Lidar returns per revolution

Ωobs obstacle set

rlidar Lidar visible range

slidar number of Lidar scan returns

β Lidar beam elevation angle

Cfree obstacle-free configuration space

xv



Cobs obstacle configuration space

Ctot total configuration space

popcensus census population count

ˆpopnorm maximum population count

Γ daytime population modifier

Γcomm commercial area population modifier

Γresi commercial area population modifier

B operating bounding box

B̂ buffered operating bounding box

dclose distance to closest obstacle surface

dthresh proximity risk distance threshold

t0, tf flight initial and final time

v vehicle velocity

ζ flight plan/path

ta,0, ta,f algorithm initial and final execution times

Π memory usage supervisor

Hobs obsacle occurpancy map

Hgps GPS uncertainty map

Hlidar Lidar visibility map

Hpop population density map

Hrisk proximity risk map

δz mapping alititude

δr mapping resolution

S ASP selection function

A∗ ranked algorithm porfolio

a∗ selected algorithm

QS start vehicle state

QG goal vehicle state

idx, idy, idz state indices

deuc Eucledian distance

xvi



doct octile distance

f total path cost estimate

g cost-so-far function

h cost-to-go heursitic function

hdist Eucledian distance heuristic

hplus weighted multi-objective heuristic

G search graph

T search tree

V search nodes

E search edges

sr success rate

Q1, Q3 first and third data quartiles

rmin, rmax aircraft range bounds

Tcost normalized mean planning set cost

Tsuccess normalized mean planning set success rate

TC , TS cost and success-based ASP decision trees

D tree decision node

Xtrain, Ytrain training inputs and labels

Z latent map set

η latent map respresentation

E latent encoder function

xin formatted network input

yin formatted network output

NC cost estimator neural network

NS success predictor neural network

NH , NU hybrid and unified ASP neural networks

SH ,SU hybrid and unified ASP selections
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ABSTRACT

A diverse suite of manned and unmanned aircraft will occupy future urban airspace.

Flight plans must accommodate specific aircraft characteristics, including physical

volume with safety zone clearance, landing/takeoff procedures, kinodynamics, and a

wide range of flight environments. No single motion planner is applicable across all

possible aircraft configurations and operating conditions. This dissertation proposes

the first motion planning algorithm selection capability with application to small Un-

manned Aircraft System (UAS) multicopters operating in and over a complex urban

landscape.

Alternative data-driven fail-safe protocols are presented to improve on contempo-

rary “fly-home” or automatic landing protocols, focusing on rooftops as safe urban

landing sites. In a fail-safe direct strategy, the multicopter identifies, generates, and

follows a flight plan to the closest available rooftop suitable for landing. In a fail-

safe supervisory strategy, the multicopter examines rooftops en route to a planned

landing site, diverting to a closer, clear landing site when possible. In a fail-safe cov-

erage strategy, the multicopter cannot preplan a safe landing site due to missing data.

The multicopter executes a coverage path to explore the area and evaluate overflown

rooftops to find a safe landing site. These three fail-safe algorithms integrate map

generation, flight planning, and area coverage capabilities.

The motion planning algorithm selection problem (ASP) requires qualitative and

quantitative metrics to inform the ASP of user/agent, algorithm, and configuration

space preferences and constraints. Urban flight map-based, path-based, and software-

based cost metrics are defined to provide insights into the urban canyon properties

xviii



needed to construct safe and efficient flight plans. Map-based metrics describe the

operating environment by constructing a collection of GPS/Lidar navigation per-

formance, population density, and obstacle risk exposure metric maps. Path-based

metrics account for a vehicle’s energy consumption and distance traveled. Software-

based metrics measure memory consumption and execution time of an algorithm.

The proposed metrics provide pre-flight insights typically ignored by obstacle-only

planning environment definitions.

An algorithm portfolio consisting of geometric point-to-point (PTP), graph-based

(A∗dist, A∗plus), and sampling-based (BIT∗dist, BIT∗plus) motion planners was considered.

Path cost, execution time, and success rate benchmarks were investigated using Monte

Carlo problem instances with A∗plus producing the lowest cost paths, PTP having the

fastest execution times, and A∗dist having the best overall success rates. BIT∗ paths

typically had higher cost, but their success rate increased relative to altitude. Problem

instances and metric maps informed two new machine learning solutions for urban

small UAS motion planning ASP. ASP decision trees were simple to construct but

unable to capture both complex cost metrics and algorithm execution properties.

Neural network-based ASP formulations produced promising results, with a hybrid

two-stage selection scheme having the best algorithm selection accuracy. Solving the

motion planning ASP allows for data-driven motion planner execution cognizant of

available resources and environment properties that may change in space and time.

The most significant innovation of this dissertation is motion planning ASP for

UAS. Non-traditional open-source databases also advance the field of data-driven

flight planning, contributing to fail-safe UAS operations as well as ASP. Path planning

algorithms integrated a new suite of diverse cost metrics accompanied by a novel

multi-objective admissible heuristic function. Neural network and decision tree ASP

options were presented and evaluated as a first-case practical approach to solving the

motion planning ASP for small UAS urban flight.
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CHAPTER I

Introduction

The proliferation of small unmanned aircraft systems (UAS) has fueled the need

for safe, efficient, and cost-effective flight hardware-software systems certified for au-

tonomous operations. The US Department of Transportation (DOT) forecasts the

deployment of 14000 UAS by the Department of Defense (DOD), 70000 UAS by

local and state governments, and 175000 UAS in the commercial marketplace by

2035 [6]. As early as 2016, autonomous beyond visual line-of-sight (BVLOS) small

UAS test flights in rural and suburban areas had been conducted by commercial

entities [7]. As these technologies mature and become mainstream, rigorous hard-

ware, software, and systems certification standards are required to enable routine

BVLOS autonomous UAS deployment, especially over populated urban centers, and

autonomous passenger-carrying Urban Air Mobility (UAM) operations [8].

UAS platforms expected to populate the urban airspace include (un)manned fixed-

wing, rotorcraft, multicopter (drone), air taxis, and other hybrid aircraft. Different

aerial vehicle configurations impose different landing site constraints [9, 10, 11]. Flight

plans must accommodate specific UAS characteristics, including physical volume with

safety zone clearance, landing/takeoff procedures, kinodynamics, and a wide range

of flight environments. All autonomous UAS require a trusted motion planning ca-

pability, yet no single tactical/motion planner is applicable across all possible UAS

1
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Figure 1.1: Overview of metalevel framework for a general robotic system.

configurations and operating conditions. Decoupling [12, 13, 14] and multi-stage

approaches [15, 16, 17] to motion planning have been employed when no single algo-

rithm will suffice. Such approaches provide insight into the practical need for multiple

algorithms to solve different motion planning problems. However, the available mo-

tion planning literature does not yet offer a general algorithm selection methodology.

This dissertation proposes the first motion planning algorithm selection capability

with application to small UAS operating in and over a complex urban landscape.

A baseline autonomous system must be capable of sensing its environment, plan-

ning a course of action, and executing that plan. Under dynamic, uncertain con-

ditions, learning and decision making typically performed by a human supervisor

require autonomy with metalevel reasoning as shown in Fig. 1.1. This dissertation is

concerned with metalevel “decision making” for motion planning algorithm selection.

In particular, algorithm selection is a metalevel decision scheme governing motion

planning “options” executed at the base level.

In computer science, SATzilla [18] was an early algorithm selection application to

satisfiability (SAT) using empirical hardness models for automated algorithm port-

folio construction. The success of SATzilla in the 2007 SAT Competition [19] gave
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rise to follow-on algorithm selection work utilizing latent class models [20], k-nearest

neighbors [21], and hierarchical clustering [22]. Complementary work in algorithm

configuration [23] and scheduling [24] selection has also been motivated by success in

the SAT community.

Beyond SAT, the value of algorithm selection has also been recognized for au-

tomated task planning applications. Learning strategies have exploited learned al-

gorithm performance models [25] and planning domain macro encodings [26, 27] to

inform the portfolio configuration and scheduling process. Online approaches [28, 29]

have used regression-based strategies to use new data instances to improve their se-

lection strategy periodically. This thesis addresses the urban flight planning problem

[30] for small UAS with a focus on motion planning algorithm selection [31].

1.1 Problem Statement

The diversity of small UAS missions, aircraft, and overflight landscapes motivates

the motion planning problem studied in this dissertation: Given all available infor-

mation, e.g., environment maps, mission constraints, and aircraft specifications, what

is the most suitable flight planning strategy?

This algorithm selection problem (ASP) [32] describes the notion of selecting

the best performing or most suitable algorithm for a particular problem instance.

Rule-based [33] and data-driven [34] ASP techniques have been developed. Rule-

based approaches offer a simple structured framework but are limited by rigidity and

can exhibit inherent bias [35, 36]. Data-driven or meta-learning approaches [37] can

identify features of interest to construct decision-making models with regression and

unsupervised clustering techniques. To our knowledge, this dissertation is the first

work to develop and evaluate an algorithm selection capability for motion planning

using a data-driven (meta-learning) approach.

A motion planner sequences viable motion primitives to reach a target destination
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Figure 1.2: Algorithm selection problem (ASP) as defined in [1].

or accomplish a desired task, e.g., search & rescue [38, 39], reconnaissance [40, 41],

sense & avoid [42, 43], navigating uncertain environments [44, 45, 46]. Motion plan-

ners exploit real-time sensing to manage risk [11], resolve conflicts [47], and offer

fail-safe solutions [48].

Motion planners offer different benefits [49, 50, 51, 52, 53]. Geometric planners

are usually fast but may not avoid obstacles or minimize desired costs. Graph-based

planners minimize cost but are computationally complex, an issue addressed in part

with sampling-based planners. Sampling-based planners efficiently navigate sparse

obstacle environments, but graph-based planners tend to outperform in cluttered

spaces. Optimal control solvers assure physical constraints are satisfied but are com-

plex and experience local minima issues [31]. This dissertation defines and addresses

the motion planning ASP for small UAS UAM.

Let A be a portfolio of motion planning algorithms available to solve a set of

flight planning problem instances P for an autonomous small UAS (sUAS). For each

problem instance p ∈ P , there exists an algorithm a ∈ A most suitable for solving

the given problem instance. This dissertation proposes an algorithm selection ranking

function S : P 7→ A∗ to create a planner preference ranking A∗ for each planning

instance p without the need to run all algorithms in A at run-time. S orders all

planners expected to meet specified time and memory constraints in A∗ to determine

such a∗, the motion planner expected to perform best for problem instance p as

depicted in Fig. 1.2 [1].
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A problem instance p ∈ P is defined over the septuple < B,QS,QG,D,H, I,W >,

where B is a designated operating bounding box, QS & QG are the start and goal con-

figurations, D are date and time details, H is an environment model or map, I is the

aircraft information (type and properties), and W is a set of cost metric weightings.

S relies on three classes of cost and constraint metrics: path-based mp, map-based

mm, and software execution-based ms, to inform the selection of an algorithm.

1.2 Approach

To develop a capable motion planning ASP solution for sUAS, three related prob-

lems are explored: (1) Fail-safe UAS emergency landing planning scenarios to mo-

tivate and understand key costs and constraints (Chapter 2), (2) Map-based metric

definitions to inform UAS ASP and motion planners (Chapter 3), and (3) Decision

tree and neural network-based ASP solvers trained and evaluated on real-world map

data (Chapter 4). To explore fail-safe planning, a Manhattan (New York) map is

translated to obstacle and cost maps used by a UAS to define safe landing plans. A

suite of vehicle (path-based) and environment (map-based) cost metrics are defined

to guide motion planning. Vehicle energy consumption (fuel or battery), distance

traveled, and risk exposure are to be minimized. Map-based metrics describe navi-

gation, population, building, and terrain costs. Software-based metrics (memory and

computation time) evaluate real-time (in situ) planning potential. Given the diverse

nature of vehicular platforms and environment-specific characteristics, a plethora of

motion planning algorithms and data sources can be used as illustrated in Figs. 1.3a

and 1.3b.

The algorithm portfolio A selected for this work covers the following motion plan-

ning categories: geometric, discrete/graph-based, and iterative/sampling-based. Ge-

ometric flight planning is a staple of aerial motion planning. Dubins curves [54] for

fixed-wing aircraft and point-to-point (PTP) flight plans for multicopters are com-
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Figure 1.3: Categorization of metalevel planning data sources and motion planners.

mon geometric planners used in obstacle-free environments. Of the many discrete

search planners, A* [55] is recognized for its efficient search combining cost with an

admissible heuristic to generate an optimal path. Similarly, BIT* [3], inspired by

rapidly-exploring random tree algorithms RRT* [56] and Informed RRT [57], effi-

ciently returns an optimal solution by iteratively reducing the search space. To the

author’s best knowledge and at the time of this work, the presented motion planning

algorithms are competitive in their respective categories.

We define two decision trees and two neural network architectures for urban ASP.

Each decision tree uses a total cost-based or success-based likelihood metric to select

the best planning algorithm. Each neural network uses encoded map feature vec-

tors and a cost weight vector W to predict expected performance for each planner

given each overflight region. In the first scenario, a neural network is defined for

each planner in the algorithm portfolio to estimate that planner’s expected perfor-

mance. Planner options are then ranked based on expected plan cost and computation

overhead estimates. The second neural network architecture outputs a single “best”
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algorithm choice based on path, map, weight, and problem instance network inputs.

Planning instances are randomly generated over a 20 km x 10 km Manhattan

(New York) region L for a multicopter small UAS. Start/goal configurations and cost

weight vectors are randomly sampled. For each algorithm a ∈ A, a weighted path

cost is calculated, if path construction is feasible, subject to Wk,Hk, and software

execution metrics ms,k are recorded for training purposes. Decision tree and neural

network results are evaluated against truth data and each other for algorithm selection

accuracy.

1.3 Contributions and Innovations

Contributions of this dissertation are:

• Fail-safe UAS urgent landing planning options for urban flight.

• Non-traditional open-source database use for data-driven flight planning.

• Path planning algorithm adaptation to diverse cost metrics.

• Monte Carlo simulations to generate training and test data.

• Benchmark evaluation of neural network and decision tree ASP options.

Innovations of this dissertation are:

• A fail-safe planner that exploits map and real-time sensor inputs to guide small

UAS urgent landing in a complex urban setting.

• Definition of novel metalevel planning metrics to guide ASP as well as flight

planning.

• Definition of a novel multi-objective heuristic function for search-based and

sampling-based path planners.

• Definition of diverse decision trees as simple rule-based options for motion plan-

ning selection.

• Adaptation of neural network designs to rapidly solve the motion planning ASP.
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1.4 Outline

The remainder of the document is structured as follows. Chap. II introduces

the use of non-traditional databases for data-driven flight planning. With a focus

on urban emergency landings, this chapter investigates three alternatives informed

failsafe protocols against the “return-to-home” protocol available by default on most

consumer unmanned aviation platforms. Chap. III follows this work and expands

the use of databases to the general global urban flight planning problem. A set

of map-based, path-based, and software-based metrics is defined to inform a flight

planner’s selection beyond traditional motion planning metrics. Chap. IV analyzes

the motion planning ASP in detail and examines rule-based and data-driven selection

approaches. Using the metrics defined in Chap. III, a pair of neural network-based

selection schemes are presented to select the most suitable flight planner trading

off map-based and path-based metrics while abiding by software-based constraints.

Chap. V presents conclusions from this work and proposes future work avenues left

to mature and transition data-driven urban flight planning with algorithm selection

to practical implementation.
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CHAPTER II

Data-driven Failsafe Protocols

2.1 Introduction

Small Unmanned Aircraft Systems (sUAS) are expected to fly over populated ur-

ban centers and isolated rural test ranges once they are sufficiently safe. Triple redun-

dancy is likely not feasible, so sensor-data fusion and fail-safe contingency response

are critical for developing, certifying, and deploying across the emerging sUAS fleet.

Subject to real-time and situational awareness decision-making constraints, a remote

operator/dispatcher’s supervisory reactions may be inadequate for UAS contingency

response. Instead, UAS autonomy must be able to assess a hazardous situation and

react quickly. Current air traffic control (ATC) procedures do not address UAS fail-

ure events, particularly since sUAS are expected to operate with a minimal altitude

recovery margin. In addition, UAS rely on datalink-based communication for remote

pilot commands to even be received. In the event of a lost data signal, neither ATC

nor the remote pilot can command the sUAS, further motivating the use of onboard

fail-safe protocols [58].

Current fail-safe protocols in hobby-class multicopter systems respond to prepro-

grammed behaviors to prevent the crash of an sUAS in response to a recognized

anomaly or system failure. Existing fail-safe protocols include returning to a desig-

nated home point when the radio control (RC) or datalink signal has been lost or
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Figure 2.1: Contemporary fail-safe protocols on existing sUAS platforms trigger au-
tomatic landing or a return-to-home action.

when the multicopter battery dips below a fixed threshold. If the multicopter loses

a navigation (e.g., GPS) signal or detects a critically low battery level, the multi-

copter will typically initiate an automatic landing protocol [59] as shown in Fig. 2.1.

Electronic geofencing has also been proposed to prevent fly-away [60, 61] but to-date

has relied on user data entry or a sparse database of restricted sites, e.g., the White

House.

The concept of map-based fail-safe sUAS flight planning was first introduced by

[2], which used map-based elements to guide a UAS experiencing low energy levels

when flying above Manhattan, New York in an emergency landing. Ref. [2] utilized

public building, terrain, and population databases to create a cost map explored by

an A∗ search algorithm to generate an emergency flight plan. Initially, database map

features can augment the search space typically limited by sensor range and field of

view. On final approach, a sensor-based planner can be used to define an obstacle-free

landing path as described in 2.2.

Fail-safe
Triggered
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Is	local
area	safe?

Sufficient
energy	to	travel	to	safe

location?

Database
Planner

Execute
Plan

Sensor-based
Planner Land

No
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Figure 2.2: Emergency sensor-database planner as adapted from [2].
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This chapter investigates three data-driven fail-safe protocols that enable a multi-

copter UAS experiencing an anomaly to land in a complex urban environment safely.

Map features are defined from geospatial databases to make an informed decision

regarding where to land, focusing on building rooftops as safe urban landing sites.

PLUTO and MapPLUTO land use and geographic databases of Manhattan’s tax lots

[62] are processed for path planning. While rooftops are not the only emergency land-

ing option, they are perhaps the most unlikely areas to be occupied, thus presenting

a relatively low risk of harm to people.

In the first fail-safe strategy, the multicopter identifies nearby buildings designated

as potential landing sites, then generates and follows a flight plan to the closest avail-

able rooftop suitable for landing. Given no nearby flat open rooftops, the multicopter

can fly to a surface landing site, e.g., the nearest open park. In a second “hybrid”

fail-safe strategy, the multicopter examines rooftops en route to a planned landing

site using onboard imagers and diverts to a closer, clear landing site when possible.

In the third fail-safe strategy, the multicopter cannot preplan a safe landing site due

to missing data, no confidence in site safety, or both. In this case, the multicopter

executes a coverage path to explore the area and evaluate each overflown area to find

a safe landing site. These three fail-safe algorithms integrate map generation, flight

planning, and area coverage capabilities. Simulations demonstrate proposed proto-

cols against “low battery” anomalies that might be encountered during low-altitude

urban multicopter missions.

The remainder of the chapter is organized as follows. Sec. 2.2 summarizes the

fail-safe landing problem and the three alternative protocols proposed in this disser-

tation. Sec. 2.3 describes the PLUTO and MapPLUTO databases and summarizes

the processing required to prepare map data for simulation. Sec. 2.4 provides a more

detailed description of the planning algorithms used for the three fail-safe protocols.

Sec. 2.5 presents results from simulation case studies in which each of the three
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protocols is applied to a multicopter experiencing a fail-safe trigger while flying over

Midtown Manhattan. Finally, conclusions and future work are discussed in Sec. 2.6.

2.2 Problem Statement

Three alternative fail-safe protocols are examined in this dissertation for urban

multicopter flight. The decision regarding which protocol to execute depends on the

amount of information available when the fail-safe protocol is invoked. This work

assumes the UAS can localize and navigate safely, despite its anomaly. Table 2.1

summarizes protocol selection as a function of available information.

Protocol Cleared-to-Land Land Use Building: Location Shape Height
1 X N/A X X X
2 - X X X X
3 - - X X X

Table 2.1: Alternative fail-safe multicopter planning protocol selection as a function
of available (X) versus unavailable (-) information.

In the first protocol, the multicopter determines the closest rooftop flagged Cleared-

to-Land. A flagged rooftop is assumed free of all obstacles and people; this flag is

only set when the roof has a geometry that supports a safe multicopter landing. A∗

motion planning is used to generate a flight plan to the selected rooftop.

In the second protocol, the multicopter first finds a reachable landing site using

the Land Use categories available for each tax lot. As the multicopter travels along

its trajectory, it observes overflown rooftops for landing site alternatives. If the mul-

ticopter discovers a viable landing rooftop en route, the multicopter will execute an

immediate landing protocol to eliminate the risk posed by continuing the flight to the

more distant site. A∗ motion planning is again applied.

In the third protocol, the UAS does not have sufficient information to select a

landing site beyond the onboard sensors’ field of view. The multicopter generates
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a spanning tree coverage (STC) [63] flight plan in search of a viable rooftop for a

fail-safe landing as a last resort. Each protocol is further defined in detail in Sec. 2.4.

2.3 UAS Planner Database Generation

New York City (NYC) maintains the PLUTO and MapPLUTO public databases

as part of their Open Data initiative [62]. These databases contain tax lot, land use,

and geographic data for the five boroughs of NYC. We consider only Manhattan in this

dissertation. Table 2.2 describes the relevant content in PLUTO and MapPLUTO.

Feature Description Source

ShapeX X-coordinates of tax lot polygon. MapPLUTO
ShapeY Y-coordinates of tax lot polygon. MapPLUTO
Block Tax block number in which the tax lot resides. PLUTO
Lot Tax lot number unique within each tax block. PLUTO
BldgClass Primary use of structures, facilities, and tax lot area. PLUTO
NumFloors Number of stories of the tallest tax lot building. PLUTO

Table 2.2: Raw geospatial tax lot data supplied by PLUTO and MapPLUTO.

For our database, each tax lot was assigned a unique identifier consisting of a block

number followed by a lot number, Block -Lot. Buildings in a tax lot were approximated

by extruding a single building per tax lot with the building’s geometry consistent

with that of the tax lot itself, ShapeX and ShapeY. The number of building floors,

NumFloors, at 10 feet per floor was used to estimate building height. Lastly, land

use data was derived from BldgClass and condensed into two main categories:

• Buildings: Residences, commerical spaces, factories, hotels, stores, offices, etc.

• Outdoor Spaces: Parks, playgrounds, gardens, recreational facilites, etc.

In this chapter, no distinction was made for restricted sites, e.g., government

facilities, churches, public monuments, and schools. Fig. 2.3 shows 2D and 3D repre-

sentations of all buildings mapped in this chapter. All position data were converted to
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a local UTM 18N (EPSG:32618) coordinate reference system (CRS). The Universal

Transverse Mercator (UTM) coordinate projection allows metric calculations directly

defining axes (easting, northing) in meters.

(a) 3D PLUTO and MapPLUTO map. (b) 2D heat map of building heights.

Figure 2.3: Building extrusion/height maps of the Manhattan borough of New York
City derived from PLUTO and MapPLUTO databases used for UAS planning and
simulation.

2.4 Flight Planning Protocols

Flight planning prescribes a trajectory or waypoint sequence from an initial state

to a final destination. Battery or fuel level and local map information are influential.

In-flight replanning must occur with minimal delay to support urgent landings given

an emergency or anomaly. Three urgent landing protocols are summarized below.

2.4.1 Protocol 1: Cleared to Land

The Cleared-to-Land Manhattan map in Fig. 2.4 highlights buildings with rooftops

that can support urgent multicopter landings. It assumed that if a building rooftop
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has been flagged, its geometry guarantees a safe landing and there exist no obstacles

to circumvent. In this study, each building was randomly assigned a Cleared-to-Land

flag prior to simulation.

Figure 2.4: Unobstructed safe multicopter landing sites depicted in yellow.

The planner searches for the nearest Cleared-to-Land building with a height shorter

than the multicopter’s initial altitude by at least two meters using A∗ over a 2m x

2m Manhattan grid. A 10 m radius linear decaying repulsive field is wrapped around

building perimeters to ensure path clearance from each building for planning. A dis-

tance cost function is assumed along with a Euclidean distance admissible heuristic.

2.4.2 Protocol 2: Observation Tube

The second fail-safe protocol determines a path to a tentative landing site per

Protocol 1 but also seeks opportunities to land sooner. The multicopter references

land use information to designate an initial landing site, likely an open area within

range (i.e., within the multicopter’s landing footprint). While following the tentative
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landing plan, imagery collected en route generates an observation “tube” of data

searched for closer (flat rooftop) alternate landing sites per Fig. 2.5.

The multicopter must fly sufficiently near the building to characterize rooftop

geometry and determine whether a building is suitable for landing. To account for

different roof types, each building is assigned a “Rooftop Landing Probability” in

the simulated city map over a uniform distribution. If the examined rooftop meets a

predetermined probability threshold based on safety/confidence, the multicopter will

divert to land on the closer safe rooftop.

(a) Imager observation tube along a tenta-
tive landing path.

(b) Multicopter scanning nearby rooftops to
find an alternative landing site.

Figure 2.5: Observation tube opportunistic alternate landing site protocol.

2.4.3 Protocol 3: Spanning Tree Coverage

In this final case study, the multicopter does not assume knowledge of clear, flat

rooftop sites but instead follows a spanning tree coverage (STC) [63] path assuming

known building location/height data that allows an onboard imager to identify a

nearby landing site. With STC, the search area is gridded with cells of side length

2δview; the value of δview depends on sensors’ field of view or range. A graph with

unobstructed adjacent cell edges is used to construct a spanning tree from the start

grid without cycles using Prim’s algorithm [64] per Fig. 2.6. All grid cell centers are
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treated as nodes of an undirected graph with edges formed between adjacent cells in

obstacle-free areas, where buildings are shorter than UAS altitude during planning.

(a) Imager observation tube along a tenta-
tive landing path.

(b) Multicopter scanning nearby rooftops to
find an alternative landing site.

Figure 2.6: Observation tube opportunistic alternate landing site protocol.

A coverage flight path circumnavigates the spanning-tree counterclockwise (or

clockwise), returning to the start node if the multicopter’s energy level allows. Travers-

ing the STC path does not guarantee the multicopter will identify a safe rooftop land-

ing site, so Protocol 3 would only be preferred if known safe sites were not reachable.

2.5 Results

Case studies consider a small “media drone” with abnormal battery behavior,

e.g., unexpected low energy, triggering a fail-safe protocol. The multicopter does not

have sufficient energy to return to its designated home point when given a densely

populated overflight area, and it must select an alternative landing site beyond the

onboard sensor field of view. Results from each fail-safe protocol are presented below

for a case in which the multicopter is initially at an above ground level (AGL) height

of 100m over the center of a densely-occupied Times Square.
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2.5.1 Case Study 1: Cleared to Land

In this case, available rooftop landing sites are mapped. The UAS selects a nearby

retail store’s rooftop flagged as Cleared-to-Land. A flight plan generated with A∗, as

detailed in Sec. 2.4, is followed to the selected rooftop per Fig. 2.7.
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(a) 3D landing flight path from Times
Square to a nearby rooftop.

(b) Overhead of landing path; yellow sites
are Cleared-to-Land rooftops.

Figure 2.7: Multicopter traveling to the nearest rooftop designated Cleared-to-Land.

2.5.2 Case Study 2: Observation Tube

In this case, the multicopter does not have access to Cleared-to-Land sites but

uses map data to plan a tentative landing, e.g., to the nearest park, using map-based

A∗. For this case simulation, Bryant Park in Midtown Manhattan was selected as a

tentative landing site.

During flight, observed rooftops and open ground can be marked safe for landing,

given a confidence level greater than a threshold. If the threshold is high, the multi-

copter may pass potential landing sites. With a high probability measure (0.95), Fig.

2.8 shows the multicopter flying to Bryant Park. In contrast, Fig. 2.9 shows diver-

sion to an alternative landing site with a lower threshold (0.85). For this case, the

multicopter discovers a viable landing rooftop en route, a nearby parking structure

with an unoccupied roof. This case study illustrates how real-time fusion of map and
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sensor data can better inform urgent landing.
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(a) 3D view of multicopter traveling to the
planned Bryant Park landing site.
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(b) Overhead view of the multicopter trav-
eling to Bryant Park.

Figure 2.8: Multicopter urgent landing plan to Bryant Park using Protocol 2.
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(a) 3D view of rooftop landing path.
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(b) Overhead of rooftop landing path.

Figure 2.9: Landing path for a multicopter diverting to a safe rooftop landing site
discovered along its Observation Tube (Protocol 2) flight to Bryant Park.

2.5.3 Case Study 3: STC

For this last case study, the multicopter has no landing site database. The mul-

ticopter uses STC to define a coverage path over a specified search radius, 100m for

this study. Typically, the search radius would be related to the expected remaining

UAS range. Fig. 2.10 shows the generated spanning tree and STC plan. While

19



no ideal rooftop might be detected, the acceptability threshold can be adjusted over

time to select either the first fully viable rooftop or the best rooftop observed within

a prescribed energy margin constraint or deadline.

(a) Spanning tree (Prim’s algorithm)
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(b) STC flight plan

Figure 2.10: STC constant altitude flight over 100m radius search near Times Square.

2.6 Conclusion

The above case studies illustrate how the three complementary urgent landing

protocols would locally guide a small UAS to a safe landing given different local

landing site data sets. For this work, we adopted specific existing flight planning al-

gorithms relevant for the immediate and cluttered area around Times Square, but that

would face computational overhead challenges given a much larger multicopter range

to landing. This result motivated additional research in motion planning algorithm

selection as described in subsequent chapters.

In the future, this work can be extended to account for localization uncertainty,

given the inaccuracies of GPS in an urban canyon by using state estimation tech-

niques. Simultaneous localization and mapping (SLAM) techniques and online STC-

based flight planning could be used when flying in unfamiliar urban areas, motivating

online versions of the proposed protocols. Finally, given access to real-time data
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sources such as cell-phone call detail reports [10], proposed methods could be ex-

tended to include viable ground landing sites in areas with low population densities

or data-based occupancy estimates.
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CHAPTER III

Algorithm Selection Maps and Metrics

3.1 Introduction

The algorithm selection problem (ASP) requires qualitative and quantitative met-

rics to inform the ASP of user/agent, algorithm, and configuration space preferences

and constraints. Algorithm metrics can be defined from learned performance mod-

els [65, 66], statistical measures [67], abstract features [68], and classical definitions

[69]. Additional metrics account for application-specific considerations. Table 3.1

summarizes classical algorithm properties relevant when selecting a motion planner.

Property Description

Completeness A solution is returned if one exists; otherwise, failure is returned.
Soundness If a solution is returned, it is feasible.
Complexity Memory usage and/or execution time measured with theoretical

upper bounds and/or large-scale Monte Carlo simulation.
Kinodynamics Planning solutions are consistent with UAS kinematics and dy-

namics properties and constraints.
Dynamic Env. Handling of environment (env.) properties change over time.
Uncertainty Planner accounts for uncertainty in robot or environment states.
Optimality A best solution is returned with respect to a given metric or

combination of metrics.

Table 3.1: Classical algorithm properties relevant to motion planning.

For aerospace applications, completeness, soundness, and manageable computa-

tional complexities are desired to support safe real-time decisions. Kinodynamics,
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environment properties, and state uncertainties are typically managed through plan-

ner costs and constraints. Fixed-wing aircraft optimize flight altitude (atmospheric

density), velocity, climb rate, lift/drag ratio [70], range or endurance [71], and haz-

ardous weather avoidance [72]. Multicopter UAS operating at specified low altitudes

optimize over separation from obstacles, energy, and mission time [2]. Communication

[73] and navigation [74] metrics are key considerations where line-of-sight signals may

be blocked. A Pareto front analysis offers insight into balancing competing metrics

[75, 76, 77].

This chapter explores motion planning metrics targeted for urban multicopter

flight. We define a set of map-based mm, path-based mp, and software execution-

based metrics ms to inform algorithm selection. Map-based metrics mm describe

the operating environment by constructing a collection of GPS/Lidar navigation per-

formance, population density, and obstacle risk exposure metric maps. Path-based

metrics mp account for a vehicle’s energy consumption and distance traveled along a

path under construction. Software-based metrics ms measure memory consumption

and execution time of an algorithm. This chapter focuses on a detailed analysis of

map-based metrics with path-based and software-based metrics utilized in the Monte

Carlo and ASP studies described in Ch. IV.

Map-based metrics are derived offline from open-source geospatial, satellite, and

census databases. Using cloud computing, each database is processed and transformed

to generate a collection of discretized metric maps representative of the borough of

Manhattan in New York City. Small UAS maps were generated for low, medium,

high, and flight ceiling altitudes over daytime and nighttime periods to examine the

different metric effects across the urban canyon. GPS navigation, lidar visibility, and

risk exposure were most affected by flight altitude, with population cost metric set

as a function of commercial and residential regions plus time-of-day.

The remainder of the chapter is organized as follows. Sec. 3.2 summarizes pro-
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posed planning metrics and their use. Sec. 3.3 defines map-based, path-based, and

sotware-based metrics in detail followed by a description of map-based metric specifi-

cations as discretized feature maps in Sec. 3.4. Map-based metric results are presented

in Sec. 3.5 followed by conclusions and future work in Sec. 3.6.

3.2 Problem Statement

We define map-based metrics mm, path-based metrics mp, and software execution-

based metrics ms to inform sUAS flight planners and the algorithm selection problem

(ASP) per Table 3.2. All metrics are subsequently defined with an in depth analysis

of all map-based metrics. Path-based and software-based metrics are presented in

Chap. IV when solving the ASP.

Table 3.2: Motion planning ASP metrics classified by type.

Metric Description Type

mgps GPS pseudorange position uncertainty map
mlidar Lidar-based local map uncertainty map
mobs Obstacle occurpancy map
mpop Overflown population estimate map
mrisk Proximity to obstacles enroute map
mdist Distance traveled along a path path
mtime Algorithm execution time software
mmem Algorithm memory usage software

For a given operating bounding box L, a collection of metric maps H is generated

describing all mm. H is generated by explicitly calculating each metric at every point

characterized by a Cartesian grid over L with resolution δres. Building outlines are

extracted from OpenStreetMap [78] and city database building height information

to estimate lidar visiblity and obstacles/risk exposure in the area. CelesTrak [79]

and Skyfield [80] simulate GPS operational satellites above L to estimate GPS-based

positioning accuracy. Census data [81] is used to estimate population patterns accross

L. In combination with online path-based metric mp a weighted cost optimization is
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performed to compute an obstacle-free path to a targeted landing site as shown in

Fig. 3.1.

Weighted
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Figure 3.1: Data flow for map-based metric generation in data-driven multicopter
flight planning.

3.3 Metric Definitions

3.3.1 GPS Uncertainty

GPS receivers communicate with a global navigation satellite system (GNSS) to

estimate their geographical location using trilateration. Given receiver/satellite pair,

a pseudorange measurement is estimated as [82]:

ρ̂rc,sat = ρrc + c(tsat − trc) + ε (3.1)

where ρrc is receiver range, c is the speed of light, tsat and trc are the satellite/receiver

clock readings, and εUERE captures any User Equivalent Range Errors (UEREs), e.g.,

atmospheric, clock, signal, and multipath errors.

Geometric dilution of precision (GDOP ) describes error propagation from satellite

geometry: dispersed satellites reduce uncertainty while clustered satellites increase it
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[83]. GDOP can be expressed as:

GDOP (x, y, z, t) =
√
PDOP (x, y, z)2 + TDOP (t)2 (3.2)

where PDOP and TDOP are position/time dilutions of precision, respectively. DOP

values between 1 to 20 [4] quantify GPS reliability as summarized in Table 3.3.

DOP Rating Description

1 Ideal Highest precision possible.
1− 4 Excellent Measurements are considered accurate except for the

most sensitive applications.
4− 6 Good Represents the minimum acceptable loss in accuracy.
6− 8 Moderate May still be used but only recommended in obstacle free

environments.
8− 20 Fair Readings should be dismissed or only serve to compute a

rough estimate.
> 20 Poor Unreliable and should not be used.

Table 3.3: DOP Value Rating [4].

For n visible satellites, pseudo ranges offer a fast approximation of PDOP . Ap-

plying a first-order Taylor expansion to the true range, pseudorange to the ith satellite

is computed as:

ρ̂rc,i =
xrc − xsat,i

ri
xrc +

yrc − ysat,i
ri

yrc +
zrc − zsat,i

ri
zrc + c(tsat,i − trc) (3.3)

where xrc, yrc, zrc, trc and xsat,i, ysat,i, zsat,i, tsat,i are the positions/clock readings

of the receiver and ith satellite respectively. This information can be expressed as a
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linear system Ggps and state vector χgps:

Ggps =



x−x1
r1

y−y1
r1

z−z1
r1

−1

x−x2
r2

y−y2
r2

z−z2
r2

−1

...
...

...
...

x−xn
rn

y−yn
rn

z−zn
rn

−1


χgps =



x

y

z

c · trc


(3.4)

with a best linear unbiased estimator (BEST), covariance Σgps =
(
GT
gpsGgps

)−1
and

dilutions of precision defined per: [84]:

PDOP =
√

Σ2
11,gps + Σ2

22,gps + Σ2
33,gps, TDOP =

√
Σ2

44,gps (3.5)

Accounting for visible satelllites, we define a motion planning GPS map-based

uncertainty metric mgps or cost cgps as:

mgps(x, y, z, t) =
GDOPthresh −min(GDOP (x, y, z, t), GDOPcut)

GDOPthresh − 1
(3.6)

cgps(x, y, z) = 1−mgps(x, y, z) (3.7)

where GDOPthresh is a worst-case cutoff value for safe flight.

3.3.2 Lidar Visibility

Lidar provides a local obstacle point cloud to assure safe navigation through com-

plex spaces and support local-area mapping. In GPS-denied areas, Lidar [85] can be

used for inertial navigation by tracking mapped buildings and other landmarks. Lidar

uses a laser’s reflection time to estimate distances to objects. Lidar can be configured

as a dome or cylindrical puck for local and longer-range applications.

The puck configuration modeled in this work uses blidar equiangular beams that

revolve to scan at flidar equiangular positions capturing nlidar = blidar · flidar points
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per revolution. Because flidar >> 1, nlidar is impractical for metric normalization,

so we propose number of returned scan readings (where an obstacle is within lidar

range) as a lidar metric. A scan reading is recorded if any beam of the jth scan,

j = 1, 2, · · · , flidar, intersects an obstacle in Ωobs within range rlidar from the sUAS:

scan(j) =


1, if ∃i s.t.

←−→
bObi,j ∩ Ωobs 6= ∅

0, otherwise

(3.8)

where i ∈ {1, 2, . . . , blidar}, bO is the origin point of all beams, and bi,j is the ith lidar

beam point for the jth scan a distance rlidar away with an elevation angle βi.

A count of total scan returns slidar(x, y, z, rlidar) =
∑flidar

1 scan(j) is then com-

pared to the total number of possible scan returns in the following lidar metric mlidar

or cost clidar:

mlidar(x, y, z, rlidar) =
slidar(x, y, z, rlidar)

flidar
(3.9)

clidar(x, y, z, rlidar) = 1−mlidar(x, y, z, rlidar) (3.10)

3.3.3 Obstacle Occupancy

Obstacle maps allow motion planners to define free Cfree and obstacle Cobs config-

uration spaces. We define an obstacle occupancy metric mobs to penalize flight paths

with points that intersect obstacles such that:

mobs(x, y, z) = cobs(x, y, z) =


0, if (x, y, z) ∩ Cobs = ∅

1, otherwise

(3.11)
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3.3.4 Population Density

Flying low imposes a nontrivial risk to the overflown population. Population met-

ric mpop estimates expected normalized population density for each weekday. Popu-

lation can be estimated from census data or dynamic sources such as mobile phone

activity [10]. For Manhattan, turnstile and taxi data have also been used to esti-

mate population [86]. Similar information is not available across multiple cities, so

we propose extrapolating population estimates directly from census data.

Manhattan’s overall population has been estimated as follows [5]:

Table 3.4: Dynamic population estimates in millions for Manhattan in 2010. [5].

Work Week Weekend

Daytime 3.94 2.90
Nighttime 2.05 2.05

A city’s population varies throughout the day. Due to typical work hours, e.g.,

9-to-5, population estimates in commercial areas are higher during the day. As peo-

ple return home after work residential areas become densely populated during the

evening. To estimate occupancy for each census map grid, we assume census data

popcensus for nighttime population and scale daytime population by a factor Γ deter-

mined based on area zoning (commercial or residential) such that:

ˆpop(k, l,Γ) =


Γ · popcensus[k] if l = day

popcensus[k] if l = night

(3.12)

where l denotes time of day and k is the census grid index.

The following population density metric is then defined:

mpop(x, y, l,Γ) =
ˆpop(k(x, y), l,Γ)

ˆpopnorm(B, l) cpop(x, y) = mpop (3.13)
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where ˆpopnorm(·) is maximum daytime or nighttime population density over bounding

region B and k(·) is an indexing function relating census index to world coordinates.

3.3.5 Risk Proximity Metric

Numerous safety risks can be defined, but in this work, we focus on one particular

risk: proximity to nearby buildings or terrain defined as threshold-based rectifier

function. The building map is used to compute the distance to the closest obstacle

surface, dclose(x, y, z), for each map grid or point in space. For a specified distance

threshold, dthresh, a proximity risk is defined as:

mrisk(x, y, z) = min

(
dclose
dthresh

, 1

)
crisk(x, y, z) = 1−mrisk(x, y, z) (3.14)

3.3.6 Distance Path Metric

The expected distance traversed is given by:

mdist(t0, tf ) =

tf∫
t0

|v(t)|dt (3.15)

where t0 and tf are initial and final planned flight times and v(·) is velocity magnitude.

This function can also be written as a summation of N segment lengths of path ζ:

mdist(ζ,N) =
N∑
i=1

√
(ζx,i − ζx,i−1)2 + (ζy,i − ζy,i−1)2 + (ζz,i − ζz,i−1)2 (3.16)

3.3.7 Software-based Metrics

Execution time mtime and memory usage mmem metrics are given by:

mtime = ta,f − ta,0 mmem = max(Π(a, ta,0, ta,f )) (3.17)
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where ta,0 and ta,f denote start and end times for executing algorithm a and Π(·)

records the computer memory usage throughout the algorithm execution.

3.4 Map Generation Overview

Each Cartesian metric map of specified resolution defines a metric value for each

grid. For this investigation, metric maps cover an area L with a width 10km and

height of 20km centered in Manhattan per Fig. 3.2. Maps with 2m, 5m, and 10m

Figure 3.2: Planning configuration space area L for Manhattan case studies.

resolution were defined. The 2m value coincides with current small UAS positioning

and obstacle avoidance capabilities. Height-dependent metrics were computed for

UAS altitudes of 20m, 60m, 122m (FAA maximum altitude for sUAS), and 600m

AGL (above ground level), capturing low, medium, high, and ceiling-altitude flight.

3.4.1 Obstacle Maps

OpenStreetMap (OSM) [78] data was processed to extract a building-based obsta-

cle mapHobs from ways and relations using attribute labels. OSM data was translated

from its WGS84 CRS to UTM 18N as in Chap. II. Extracted polygons Ωobs were ras-

terized per map resolution. The height of the kth extracted polygon zk located at
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grid point (x, y) was compared to a given altitude z such that:

Hobs(x, y, z) =


1 if zk ≥ z

0 otherwise

(3.18)

3.4.2 GPS Maps

GPS metric maps Hgps describe expected GPS accuracy for the Manhattan urban

canyon. For a given grid point (x, y, z) and date/time information D, positions of

overhead satellites are predicted using CelesTrak [79] and Skyfield [80]. Rays are cast

to above-horizon satellites and checked for collisions against extruded buildings in

Ωobs. With less than four visible satellites (Nsats < 4), mgps is set to zero; otherwise

the GPS pseudorange and covariance matrices are used to calculate mgps:

Hgps(x, y, z) =


mgps(x, y, z) if Nsats ≥ 4

0 otherwise

(3.19)

3.4.3 Lidar Maps

Lidar metric maps Hlidar estimate metric mlidar, the expected percentage of lidar

range returns. It is assumed that the vehicle is equipped with a b-beam lidar config-

ured in a parallel configuration, i.e., the aircraft’s zbody and lidar’s rotation axis are

colinear. The beams share an equiangular spread along the elevation angular range

of [−β, β]. In this configuration, only the b
2

beams in the range [−β,− β
b/2

] are eligible

for calculating scan(·) as the remainder are blocked by the vehicle. Hence, the ratio

of scan returns per revolution at each grid point (x, y, z):

Hlidar(x, y, z, rlidar) = mlidar(x, y, z, rlidar) (3.20)
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3.4.4 Population Maps

Population metric maps Hpop are computed based on zoning and census data

compiled into the normalized population metric mpop. Census values are adjusted

by Γcomm or Γresi during the day (l = day) for commercial and residential areas to

account for commuting patterns.

Manhattan is divided into twelve districts, starting at its southernmost neigh-

borhood, i.e., the Financial District, to its northernmost neighborhood, i.e., Harlem,

as shown in Fig. 3.3. The lower districts (1-6) are composed of businesses, govern-

ment buildings, and tourist attractions. In contrast, the upper districts (7-12) consist

mostly of single and family residences. Defined by NYC Department of City Planning

[87], in this investigation, the twelve districts are labeled as shown on Table 3.5.

Table 3.5: Manhattan districts with their important neighborhoods’ labeled type.

Number Neighborhoods Type

01 Financial District, Civic Center Commercial
02 West Village, Greenwich Village, Soho Commericial
03 Chinatown, East Village, Noho Commericial
04 Chelsea, Clinton, Hell’s Kitchen Commericial
05 Union Square, Madison Square, Times Square Commericial
06 Gramercy, Murray Hill, Turtle Bay Commericial
07 Lincoln Square, Upper West Side, Manhattan Valley Residential
08 Lenox Hill, Upper East Side, Yorkville Residential
09 Morningside Heights, Hamilton Heights Residential
10 Central Harlem Residential
11 East Harlem Residential
12 Inwood, Washington Heights Residential

Population data is derived from the 2010 United States Census [81]. The WGS84

census block polygons represent the smallest geographic unit used by the US Cen-

sus Bureau to estimate the number of residents in a block. Each census block entry

includes a cumulative population count for that block and is assigned a district num-

ber 1-12 if the census block and district outline fully intersect. Any census block
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overlapping multiple outlines is assigned the district polygon’s label with the largest

intersection by area. Any census block within L but not in Manhattan, i.e., the Bronx

or Queens, is given a district label of 13 and labeled as residential. All data geospatial

data is converted to UTM 18N for consistency.

1

2

3

4 5
6

7

8

9
10

11

12

(a) Figure of manhttan districts (b) Figure of mahattan census polygons.

Figure 3.3: Manhattan community districts and census blocks.

Two metric population maps are created for daytime and nighttime hours per

altitude, resolution pair. For daytime hours, blocks in commercial areas are scaled

by a Γcomm modifier and Γresi for residential blocks to meet the daytime population

constraint of approximately 4 million [5]. No modifiers are applied for nighttime

operations.

Accounting for block type and time-of-day l, the population map Hpop,l has the

following form:

Hpop,l(x, y) =


mpop(x, y, l,Γcomm) if label[k] = commericial

mpop(x, y, l,Γresi) if label[k] = residential

(3.21)

where k = k(x, y) returns census block index k containing grid point (x, y).
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3.4.5 Risk Maps

The final metric map set Hrisk quantifies building obstacle risks in the urban

canyon as a function of the proximity risk metric mrisk:

Hrisk(x, y, z) = mrisk(x, y, z) (3.22)

Note that cost map equivalents for each metric map can be computed by following

the metric-to-cost conversions presented in Sec. 3.3.

3.5 Manhattan Metric Map Results

Metric maps over Manhattan region L at three different resolutions (2m, 5m, and

10m) were generated for four small UAS AGL flight altitudes: 20m (low-altitude),

60m (medium-altitude), 122m (high-altitude), and 600m (ceiling-altitude). These are

our labelings that offer sUAS flight paths that range from deep inside the NYC urban

canyon (low-altitude) to above all buildings (ceiling-altitude). Specific altitude ranges

defining UAS low-altitude, medium-altitude, and high-altitude flight vary across the

literature.

Fig. 3.4 shows GPS maps for low, medium, and high-altitude flight. GPS metric

scores are normalized between 0 and 1, where mgps = 1 indicates the highest accuracy.

As expected, GPS accuracy is highest in building-free areas, i.e., the Hudson River

or Central Park, or small-building areas, i.e., New Jersey. GPS accuracy decreases in

low-altitude urban canyon regions with skyscrapers and other tall buildings.

For medium-altitude flight, the effects of urban canyon flight lessen. Upper Man-

hattan and Brooklyn (lower right) are now areas with high GPS accuracy. Similarly,

high GPS accuracy areas now appear in Lower Manhattan but to a lesser extent. The

Financial District (bottom left) and Midtown Manhattan (below Central Park) still
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(b) GPS 2m res map at 60m.
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(c) GPS 2m res map at 122m.

Figure 3.4: GPS metric maps for low, medium, and high-altitude urban flight.

include low GPS accuracy regions. This is to be expected as these areas are known

for their tall buildings, e.g., One World Trade Center and Central Park Tower. The

UAS primarily operates above the urban canyon at high and ceiling flight altitudes

with near-perfect GPS accuracy.

Fig. 3.5 shows expected Lidar performance for low-altitude and medium-altitude

flight. In contrast to GPS, Lidar performance is better at lower altitudes since the

urban canyon offers in-range point cloud data and better visibility of its surroundings.

In low-altitude flight, Lidar performance is highest in the East Side, West Side, Mid-

town, and Downtown Manhattan areas densely packed with commercial and tourist

high-rises. Weak Lidar returns can be found in Uptown Manhattan, New Jersey,

Brooklyn, and Queens, areas with mostly low-rise and residential buildings.

Medium-altitude Lidar analysis shows a significant drop in performance. Of the

four predominant high mlidar regions from the low-altitude analysis, only Midtown

Manhattan remains. A pattern emerges at this altitude that suggests the potential

for GPS to complement Lidar, and vice-versa. Areas of low mgps due to the urban

canyon coexist with high mlidar areas, and low mlidar due to the absence of nearby

obstacles results in high mgps areas without satellite obstruction. This effect becomes
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(c) Lidar 2m res map at 122m.

Figure 3.5: Lidar metric maps for low, medium, and high-altitude urban flight.

more apparent at high-altitude flight and above.

Day and night population metric maps, shown in Fig. 3.6, are independent of flight

altitude. The following daytime population scaling factors were used: Γcomm = 3.0

and Γresi = 0.5. These values are biased toward a net population influx into Man-

hattan for the workday as show in Table 3.6. The population map results validate

the expected residence-to-work and work-to-residence commuting patterns and con-

straints discussed in Sec. 3.4.4.
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Figure 3.6: Population metric maps over Manhattan for day and night hours.
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Table 3.6: Work weekday and nighttime population estimates in millions.

Residential Commericial

Daytime 0.48 3.96
Nighttime 0.97 1.32

Proximity risk maps identify obstacle-free map grid points with decaying risk

value over a distance dthresh around buildings, the risk is one at the building, linearly

decreasing to 0 at dthresh. High proximity risk areas are mostly in the Manhattan

borough, as shown in Fig. 3.7. For low altitude-flight, except for the Hudson River,

New Jersey, and Central Park, a building can be found within 10m in most grids.

Large portions of the Bronx, Queens, Brooklyn, and Uptown Manhattan become

risk-free zones at medium-altitude flight. Only Downtown and Midtown Manhattan

remain at high-altitude flight due to the congestion of tall buildings, as discussed

earlier.
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Figure 3.7: Proximity risk metric maps for low-altitude and medium-altitude flight.
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3.6 Conclusion

This chapter has defined a set of map-based, path-based, and software-based met-

rics for sUAS urban flight planning. Map-based metrics were investigated in detail

with metric maps generated over Manhattan at three different resolutions for four

sUAS AGL flight altitudes. Results demonstrate the complementary nature of GPS

and Lidar accuracy in an urban canyon as a function of altitude. By generating these

metric maps a priori, an sUAS can predict risk and sensor value before a flight, i.e.,

GPS will provide valid position data if mgps > mlidar; Lidar will offer better data

otherwise.

Population metric maps support residence-to-work and work-to-residence com-

muting patterns using as simplified as work-week daytime and nighttime models. In

the future, this model should be extended to weekends with a time-based population

function offering more resolution over 24-hour population patterns. When deep in

the urban canyon, proximity-based risk is high, but it quickly decreases at higher

altitudes due to fewer obstacles. For path planning, if risk is the primary cost, data

indicate that flying to a higher altitude is preferable. Additional research is needed to

incorporate risk metrics for urban flight planning, such as system, actuator, sensor,

and weather-related risks, to extend current fixed-altitude maps to full 3D cost maps

to support full 3D flight planning.
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CHAPTER IV

Algorithm Selection for UAS Motion Planning

This chapter formulates and proposes two machine learning-based solutions to

the algorithm selection problem (ASP) for small UAS motion planning with a focus

on low-altitude flight above a complex urban landscape. For this investigation, we

assume atmospheric conditions have no negative impact on flight, geospatial data

is available and accurate, no onboard failures occur, no other aircraft are in the

area, and all motion planner implementations execute consistently with algorithm

specifications.

Path planners generate a solution ζ over a sequence of configurations ζi, . . . , ζn

(positions and orientations) from initial to goal configuration [88]. Surveys [89, 90]

examine techniques and analyze their relative performance. Geometric-based plan-

ners rapidly construct paths using points, lines, and arcs [55, 91]. Dubins [54] and

Reeds [92] paths account for systems with turning constraints. Assumptions such as

an obstacle-free environment may be required. Graph-based planners use roadmaps

to define obstacle-free routes with discrete search over route segment sequences. A∗

[93] and its variants (Dijkstra [94], LPA∗ [95], ARA∗ [96], D∗ Lite [97], Field D*

[98], Theta∗ [99]) are commonly applied. Graph-based planners are optimal but

computationally-intensive. Sampling-based planners such as probabilistic roadmaps

[100] and rapidly exploring random trees (RRTs) [101, 102] offer improved convergence
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with asymptotically optimal variants (PRM∗, RRT∗ [56]) and improved convergence

rates using FMT∗ [103] and BIT∗ [3]. Sampling algorithms are probabilistically com-

plete but may not find solutions through narrow passages. Control-centric solvers

assure dynamics constraint satisfaction [104]. Optimal control [105] minimizes time,

energy, and obstacle avoidance costs over smooth paths but with high computational

complexity. Model predictive control [106, 107, 108] limits analysis to a finite horizon

and can use lookup tables. Both may encounter local minima.

The algorithm selection problem (ASP) was first defined in [32]. Automated al-

gorithm selection has been studied for propositional satisfiability [109], combinatorial

search [1], and continuous optimization [110]. To our knowledge, this thesis is first to

address autonomous ASP for UAS motion planning.

4.1 Motion Planning ASP Definition

Let A be a portfolio of motion planners available to solve problem instances P .

For each p ∈ P , there exists a most suitable algorithm a ∈ A. An algorithm selection

ranking function S : P 7→ A∗ specifies a planner preference ranking A∗ for each p

without the need to run all algorithms in A to find the best solution. S orders all

planners expected to meet specified time and memory constraints in A∗ to determine

a∗, the motion planner expected to perform best for problem instance p. p ∈ P

is defined over the septuple < B,QS,QG,D,H, I,W >, where B is a designated

operating bounding box, QS & QG are start and goal configurations, respectively, D

are current date and time,H is an environment model or map, I is aircraft information

(type and properties), and W is a set of cost metric weightings. S relies on the three

classes of cost and constraint metrics, path-based mp, map-based mm, and software

execution-based ms, defined in the previous chapter.

Algorithm portfolioA considered in this work considers example geometric, graph-

based, and sampling-based motion planners. Control-based planning options are be-
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yond the scope of this dissertation. Geometric flight planning is a staple of aerial

motion planning. Dubins curves [54] for fixed-wing aircraft and point-to-point flight

plans for multicopters are the candidate geometric planner options. A* [55] with

an admissible heuristic is the candidate graph search option. BIT* [3] inspired by

RRT* [56] is the candidate sampling-based planning option. All these planners are

well-established focusing innovations of this work on ASP definition and solution.

Each motion or flight planning problem instance p ∈ P is defined by:

• B: Bounding box defining area of interest as a function of QS and QG. [tuple]

• QS, QG : Start and goal state planning configurations. [tuple, tuple]

• D: Date and time to estimate GPS satellite positioning and population density.

• H: Generated metric maps over B, discussed in Chap. III. [2d arrays]

• I: Aircraft information, e.g., mass, turning radius, max climb angle. [tuple]

• W : Cost weighting vector used for planning. [tuple]

Specifics of the three ASP candidate motion planner types (geometric PTP, A∗

graph search, BIT∗ sampling-based) are detailed in the next section.

4.2 Planning Algorithms

4.2.1 Point-to-Point: PTP

The simplest path a multicopter can take is a direct path to its destination, i.e.

point-to-point (PTP). Λ defines all relevant parameters for multicopter PTP flight:

• Parameters : Λ = (L,QS,QG,Hδr ,W , δz, δr)
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for a flight at constant above-ground altitude δz with map data resolution δr. Given

PTP’s geometric and no-obstacle assumptions, there exists no search space for this

algorithm.

As detailed in Chap. III, the operating environment is described by a collection

of metric maps, H. Each map is a rasterized metric quantification generated for a

given height and resolution pair, (δz, δr), within the bounds of map search space L.

Using the start and goal positions, or states, the path’s lth waypoint map indices

(Qk,idx,Qk,idy) with an origin (Lx,min,Ly,min) are calculated as:

Ql,idx =

⌊
Q′k,x − Lx,min

δr

⌋
Q′l,x(αk,x) = QS,x + αl,x (4.1)

Ql,idy =

⌊
Q′k,y − Ly,min

δr

⌋
Q′l,y(αk,y) = QS,y + αl,y (4.2)

where αk,x and αk,y are component-wise steps from QS to QG for l = 0, 1, . . . d λ
δr
e:

αl,x =


λ cos(θ) if l = d λ

δr
e

lδr cos(θ) otherwise

αk,x =


λ sin(θ) if l = d λ

δr
e

lδr sin(θ) otherwise

(4.3)

where θ = atan2(QG,y−QS,y,QG,x−QS,x) and λ =
√

(QG,y −QS,y)2 + (QG,y −QS,y)2.

Since altitude is on a number line, the z-component Ql,z and index Ql,idz for the

lth state are:

Ql,z = δzQl,idz = bδzc (4.4)

defined with respect to unit resolution.

To test path validity, the path is masked onto the obstacle map Hobs,δr . If any

masked index has a non-zero value, i.e., Hobs,δr(Ql,idx,Ql,idy,Ql,idz) > 0, the path ζ is
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invalid; otherwise its cost is calculated. Total path cost is defined by:

f(ζ) =
∑

(Qi−1,Qi)∈ζ

c(Qi−1,Qi) (4.5)

where c(·) is the transition cost between two states, assuming a transition is possible,

and the path ζ is a sequence of states (QS,Q1, . . . ,QG).

When using grid-based maps, the cost of moving between grids is described by a

collection of k cost maps Hδr with the same dimensions as the total search space L at

an altitude δz with resolution δr. Given a state’s indices, e.g, (idx, idy, idz), one can

calculate the k map-based costs for entering said state. Supplied with a weighting

scheme W , the map-based costs can be combined using a weighted sum model.

The transition costs between two neighboring states Qa to Qb is:

c(Qa,Qb) = w0deuc(Qa,Qb) +
k∑
j=1

wjHj(Qb,idx,Qb,idy,Qb,idz) (4.6)

where d(·) is the Eucledian distance between states, w0 is the distance weight, and

wk for j = 1, . . . , k are the map cost weights such that
∑k

j=0wj = 1 and wj ∈ W | ∀j.

4.2.2 Graph-based Planning: A∗

A∗ [93] is a discrete graph-based informed search algorithm popular for its com-

pleteness, optimality, and spatial efficiency. A∗ searches a graph G, composed of

nodes N and edges E, to find a sequence of edge transitions that optimally navigates

G from a start node QS to a goal node QS. In motion planning, this sequence of edge

transitions is equivalent to the desired path ζ.

The A∗ motion planning problem is defined by:

• Parameters : Λ = (L,QS,Hδr ,QG,W , δz, δr, δc)

• Search Graph: G = (V (·), E(·))
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• Cost Function: f(·) = g(·) + h(·)

where δc is the connection logic used to create the search graph G, (V,E) are the nodes

and edges forming G, g(·) is the cost function from the start node to the current search

node, and h(·) is a heuristic function estimating cost from the current search node to

the goal node.

Node vertices V are defined by discretizing L with resolution δr. In an obstacle-

free environment a total of
LdxLdy
δ2r

are realizable, assuming the remainders of Ldx/δr =

Ldy/δr = 0. Under these contraints, the total potential configuration space Ctot is:

Ctot =

{
Ql | ∀i, j ∧Ql,x = i

Ldx
δr
∧Ql,y = j

Ldy
δr

}
(4.7)

where i = 1, 2, . . . ,Ldx/δr and j = 1, 2, . . . ,Ldy/δr such that l = (i− 1)Ldy/δr + j.

However, in the presence of obstacles some nodes may be invalid. Nodes with

obstacle conflicts given by Cobs ⊆ Ctot is defined as:

Cobs = {Q | Q ∈ Ctot ∧Hobs,δr(Qidx,Qidy,Qidz) = 1} (4.8)

Having calculated Ctot and Cobs, the graph nodes can be defined as:

V = Ctot \ Cobs ≡ Cfree (4.9)

where Cfree is the configuration space of obstacle-free nodes.

Graph edges can be created for all neighboring nodes as defined by the connection

logic δc. For an 8-connected logic, any node v0 has potential neighbors v1, v2, . . . , v8

as shown in Fig. 4.1a, with non-diagonal (odd) and diagonal (even) edges. Due to

obstacles, not all neighbors might be reachable, as shown in Fig. 4.1b where we

assume v2, v5 ∈ Cobs for demonstration purposes.
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(a) Fully connected graph.
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(b) Partially connected graph.

Figure 4.1: Graph nodes, edges, and costs with 8-connected logic.

Accounting for obstacles, all feasible graph edges can be computed as follows:

E =

{
em,n = (Qm,Qn) ∈

(
V

2

)}
(4.10)

where i and j serve as node identifiers or IDs.

Having defined the graph G = (V,E), the start and goal nodes need to be appended

and labeled. In this investigation, we do the latter by finding the nodes in G closest

to QS and QG and labels are assigned appropriately. An optimal path can now be

constructed using A∗ search on G.

To optimize path construction, A∗ uses the total cost f(Qn) = g(Qn) + h(Qn)

where g(Qn) is the cumulative cost cost-sor-far from QS to Qn, and h(Qn) is a

heuristic function estimating the cost-to-go from Qn to QG. The cost-so-far is a

cummulative cost analysis of node transtions as up to Qn such that:

g(Qn) = g(Qm) + c(Qm,Qn) (4.11)

where Qm the parent node of Qn Eq. 4.6 is used to calculate the function c(·).

Built on the underlying optimalty of Dijkstra’s algorithm [94], the A∗ heuristic

function h(·) maintains optimality and improves search efficiency so long as:

• h(·) is admissible, i.e., it never overestimates the true cost-to-go.
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• h(·) is consistent, i.e., for any successor configuration n, h(m) ≤ c(m,n)+h(n),

where c(·) is the true cost to travel from m to n.

Under these conditions, we propose the following heuristic:

hplus(Qi) = w0d̂(Qi,QG) +
k∑
j=1

wj ŝj(Qi) (4.12)

where d̂(·) approximates the remaining distance to the goal and ŝj(Qi) conservatively

estimates the cummulative k map-based costs described in Sec. III for the final path.

The distance function d̂(·) is chosen to be admissable by default. For an 8-

connected uniform grid, octile distance gives the minimum distance between any

node pair. Octile distance doct extends Manhattan distance by allowing for diagonal

transitions. The octile distance between two nodes, m,n can be computed as:

doct(m,n) = Dstan(dx+ dy) + (Ddiag − 2Dstan) min(dx, dy) (4.13)

where dx = abs(nx −mx) and dy = abs(ny −my) represent the maximum number of

horizontal dx and vertical dy transitions required to reach node n from m.

Next, using the information encoded by each map H ∈ Hδr we estimate the

minimum map-based costs for any path heading to QG. Assuming current node is Qi
an axis-aligned bounding box (AABB) B is constructed such that:

B =



min(Qi,x,QG,x)

min(Qi,y,QG,y)

max(Qi,x,QG,x)

max(Qi,y,QG,y)


=



Bx,min
By,min
Bx,max
By,max


(4.14)

with nr = abs(By,max − By,min)/δr rows and nc = abs(Bx,max − Bx,min)/δr columns.
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The column and row index mappings between B and L are computed as follows:

Bl,idx =

⌊By,min + iδr − Ly,min
δr

⌋
Bl,idy =

⌊Bx,min + jδr − Lx,min
δr

⌋
(4.15)

for i = 0, 1, . . . , nc and j = 0, 1, . . . nr.

Using the index bounds for rows (B0,idy,Bnr,idy) and columns (B0,idx,Bnc,idx) the

ith row or jth column used by the heuristic can be expressed as:

Ck,j = {Hk(B0,idy,Bj,idx),Hk(B1,idy,Bj,idx), . . . ,Hk(Bnr,idy,Bj,idx)} (4.16)

Rk,i = {Hk(Bi,idy,B0,idx),Hk(Bi,idy,B1,idx), . . . ,Hk(Bi,idy,Bnc,idx)} (4.17)

for the kth type of cost map Hk ∈Hδr .

The minimum cost for the kth map-based metric is computed as follows:

sk(n) = max

(
dx∑
i=1

min(Ck,i),
dy∑
i=1

min(Rk,i)

)
(4.18)

By construction, this portion of the heuristic is consistent, hence admissable. Since

both portions of the heuristic are admissible, then the overall presented heuristic

is admissible as well, guaranteeing optimality. To test the novel heuristic, two A∗

variants are studied in this dissertation. A∗dist uses a traditional Euclidean distance-

to-goal heuristic hdist while A∗plus applies the novel hplus defined in Eq. 4.12.

4.2.3 Sampling-based Planning: BIT∗

Batch Informed Trees (BIT∗) [3] is a sampling-based search algorithm that im-

proves scalability relative to classical graph-based techniques. Extending on previous

work [57], BIT∗ utilizes an iterative search graph G informed by previous solutions.

When a solution is found, BIT∗ reduces its search space Cfree, prunes and reuses its

search graph, generates a new set of samples in the new Cfree, and restarts its search.
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BIT∗ terminates when a cost threshold has been met or all δb batches are complete.

For this investigation, the BIT∗ motion planning problem is defined by:

• Parameters : Λ = (L,QS,QG,Hδr ,W , δz, δr, δb, δs)

• Search Tree: Ti = BIT∗ (Ti−1,Hobs,δr , δs) for i = 1, 2, . . . , δb

• Total Cost Function: f(·) = g(·) + h(·)

where BIT∗(·) returns a graph, and path if found, updated with δs samples per batch.

Similar to A∗, BIT∗ uses a cost-so-far function g(·) and cost-to-go heuristic h(·) to

search a series of increasingly dense implicit rapidly-exploring random graphs (RRGs)

efficiently as illustrated in Fig. 4.2. When initializing the ith batch, the search

for a solution expands outward from the minimum cost solution, adding feasible

connections from Cfree,i to a growing tree Ti with nodes and edges (Vi, Ei). If a

solution is found, the batch ends and the search space Cfree,i+1 is redefined so new

samples can only improve the current solution. The previous tree is pruned of any

nodes and edges outside of Cfree,i+1 such that:

Vi+1 = Vi ∩ Cfree,i+1 Ei+1 = {em,n | em,n ∈ Ei ∧Qm,Qn ∈ Vi+1} (4.19)

A new set of δs nodes are sampled in Cfree,i+1 and the search restarts for the next

batch. BIT∗ terminates when all δb batches are complete, or the latest solution meets

some cost-ending criteria, e.g., a percent change or total cost threshold.

During the first batch, T1 is initiated such that V = {QS} and E = ∅. Nodes are

added to the closest node in the current tree if a collision-free edge is feasible and they

improve the best solution so far ζ̂. The costs of of adding a new node Qn with an edge

em,n are computed using Eq. 4.11 for g(Qn) and Eq. 4.6 for c(Qm,Qn), respectively.

Similar to the A∗ variants, BIT∗dist uses hdist as its heuristic while BIT∗plus applies the

novel hplus defined in Eq. 4.12.
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(a) For each batch,
the search expands
out from the mini-
mum solution.

(b) When a solution is
found, the batch fin-
ishes and a new search
space is defined.

(c) A new batch of
samples is added to a
newly reduced search
space and restarts.

(d) The process re-
peats to find a better
solution every batch.

Figure 4.2: BIT∗ batch process as adapted from [3].

4.3 Monte Carlo Planning Results Summary

4.3.1 Simulation Procedure

All map generation and planning simulations were performed using the Google

Cloud: Compute Engine (CE). The Google Cloud CE hosts general-purpose, compu-

tation optimized, and memory-intensive high-end virtual machines depending on the

user’s demands. In this study, all maps and Monte Carlo planning simulations were

generated using ten n1-standard-16 virtual machines (VMs). Each VM consists of 16

vCPUs with an underlying architecture of Intel(R) Xeon(R) CPU @ 2.30GHz with

60GB memory. A rate of 0.031611 USD per vCPU hour is charged per VM.

Two geospatial datasets were used for all simulations: (1) OSM and (2) TIGER.

OSM data was downloaded from PlanetOSM† as 50+ GB PBF file. TIGER 2010

US Census data was downloaded directly from the US Census Bureau as a 180+ MB

shapefile. The Geospatial Data Abstraction Library (GDAL) was used to uncompress

and extract all Manhattan-specific data within L. Processing all raw data for metric

map generation required 460+ GB for the 200km2 area. The workload was distributed

uniformly across all VMs, requiring a week’s worth of runtime.

†https://planet.openstreetmap.org/
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Start QS and goal QG configurations were uniformly sampled across L to capture

all relevant subdomains, e.g., flying over water, suburban, and highrise areas. 5000

configuration pairs were sampled for each altitude and resolution combination for a

total of 60000 pairs. Fig. 4.3 showcases the triangularly distributed ranges of the

sampled configurations, with a peak range of 7500m due to the dimensions of L.

Consistent with sUAS ranges, pair ranges were capped between 1km and 20km.
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Figure 4.3: Range distribution of sampled start and goal configurations.

Weighting vectors W were semi-randomly generated for all problem instances.

First, a weight of 0.5 was assigned to all wdist for all problem instances. Second,

the remaining half was distributed among wgps, wlidar, wpop, wrisk using one of three

distinct techniques: (1) uniform sampling [50%], (2) random selection [25%], (3) equal

weighting [25%], with frequency in brackets. These three techniques were chosen to

best showcase all possible weightings of interest. 5000 weighting vectors were sampled

for each altitude and resolution combination, for a total of 60000 cases.

Each motion planning algorithm in A was implemented as discussed in Sec. 4.2

in Cython, Python’s optimized statically compiled variant. Cython takes advantage

of Python’s high-level, easily readable syntax while providing speeds comparable to

C/C++ on execution. All problem instances in P were equally distributed among all

VMs and ran against each planner. Planner execution results were transferred and

51



processed locally, as discussed in the following section.

4.3.2 Cost and Execution Time Results

Three benchmarks are considered to analyze planner performance: (1) Expected

cost cost(a, pi), (2) Execution time time(a, pi), and (3) Success rate sr(a,P). Ex-

pected cost cost(a, pi) is calculated for path ζ(a, pi) returned by planner a on problem

instance pi using Eq. 4.5 to compute total path cost f(ζ). Planner execution time is

recorded for all cases as t(a, pi). Success rate sr(a,P) is the likelihood of a particu-

lar planner finding a feasible path at or before the planning deadline. All successful

planner executions were compiled and statistically analyzed for their expected cost

and execution time benchmarks as defined below:

cost(a, pi) =


f(ζ) if ζ 6= ∅

cmax otherwise

(4.20)

time(a, pi) =


t(a, pi) if ζ 6= ∅

tmax otherwise

(4.21)

where cmax and tmax are the maximum recorded cost and times over all (a, pi) pairs.

Successful planner executions are tallied by data resolution in this section. Box-

plots were created for each planner with minima/maxima within [Q1−1.5 ·IQR, Q3+

1.5 · IQR] to eliminate outliers, where Q1 and Q3 are the first and third data quar-

tiles with an interquartile range (IQR) distance measurement between Q1 and Q3.

Costs have been normalized with respect to the largest cost measured for any planner

at that same map resolution. Execution times ranged from a few milliseconds to a

predefined cutoff deadline of 180 seconds (3 minutes) for all planners.

Cost and time benchmarks are summarized in Fig. 4.4 as functions of altitude

52



for 2m map resolution. A∗plus yields the lowest planning costs with median cost and

range increasing at higher altitudes. A similar pattern is observed for PTP since

longer feasible paths exist above buildings. The remaining planners do not exhibit

noteworthy altitude-related differences. In contrast, BIT∗dist, A∗dist, and PTP had the

fastest execution times. As expected, PTP was the quickest followed by A∗dist (2 sec

median) and BIT∗dist (20 sec median) using geometry and distance-only cost functions.

A∗plus (90 sec median) was 33 percent faster than BIT∗plus (120 sec median) when a

feasible path was found.

20 60 122 600
Altitude [m]

0.00

0.05

0.10

0.15

0.20

C
os

t

A∗dist A∗plus BIT ∗dist BIT ∗plus PTP

(a) Planner costs.
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(b) Planner execution times.

Figure 4.4: Cost and time analysis for all planners with 2m resolution data.

Successful paths for 5m medium resolution map data in Fig. 4.5 showed similar

benchmark patterns to their 2m counterparts. A∗plus produced the lowest median cost

paths. One noticeable distinction was the overall increase in median path costs for

all planners relative to 2m resolution results. The lower 5m resolution reduces the

likelihood of finding the lowest-cost path since map-based costs are now averaged over

a larger area per grid. Median time benchmarks did not significantly changes except

for speed-up in A∗ variants since larger cells reduce search tree depth.

The medium resolution planner benchmarks are magnified for 10m resolution data
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(b) Planner execution times.

Figure 4.5: Cost and time analysis for all planners with 5m resolution data.

as shown in Fig. 4.6. Median path costs for all planners have increased, but differences

in median costs between planners have decreased. While still existent, the A∗plus

minimum cost advantage is no longer as significant. Time benchmarks have once again

decreased overall. A∗dist is now close to being on par with PTP, and median A∗plus times

range between 35-40 seconds, about half of the execution time values recorded at 2m

resolution. This data illustrates the tradeoff between cost and execution time with

respect to data resolution. While higher resolution data minimizes path costs and

lower resolution data minimizes cost, this effect is most pronounced in search-based

motion planners with complex cost maps.

4.3.3 Success Likelihood Results

Success rate sr is the likelihood of a planner finding a feasible path before the

planning deadline. In any trial for which the planner cannot find a path or goes

overtime, the algorithm-instance pair (a ∈ A, p ∈ P) is labeled as a failure; it is

labeled a success otherwise. Success rate sr of an algorithm a is defined as the ratio
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Figure 4.6: Cost and time analysis for all planners with 10m resolution data.

of successfully found paths Si for a subset of problem instances P̂ ∈ P :

sr(a, P̂) =
card({Si(a, pi) = success | ∀pi ∈ P̂})

card(P̂)
(4.22)

where card(·) is the set cardinality operator. The binary-valued function Si(a, pi) is

defined by:

Si(a, pi) =


success if ζ(a, pi) exists

failure otherwise

(4.23)

where ζ(a, pi) was previously defined as the solution (path plan) returned from exe-

cuting planner a on problem instance pi.

Success rates were primarily influenced by planning problem instance altitude and

range deuc(Qs,QG). Data resolution, as shown in Table 4.1, had little to no effect on

motion planner success rate except for the A∗ variants that show improved success

rate benchmarks as resolution decreased due to reduced search tree depth.

Focusing on range, Fig. 4.7 shows the tabular result for the A∗ variants. Most
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Table 4.1: Planner success rates with respect to map data resolution.

Resolution A∗dist A∗plus BIT∗dist BIT∗plus PTP

2 m 0.93 0.09 0.81 0.81 0.54
5 m 0.95 0.31 0.80 0.80 0.54
10 m 0.98 0.63 0.80 0.80 0.53

prominent for A∗plus is a steep success rate decay at three ranges: 3500m (2m resolu-

tion), 4500 (5m resolution), and 8500m (10m resolution). High and medium resolution

data should be used for short-range flight, while low resolution data may suffice for

mid-range flight, i.e., no more than 7500m range.
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(a) Success rates for A∗dist.
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(b) Success rates for A∗plus.

Figure 4.7: A∗ planner success rates over all planning problem instances partitioned
by map resolutions of 2m, 5m, and 10m.

For a given altitude z∗ and range x acting as an independent variable, Fig. 4.8

shows planner success rates sr for low and mid-altitude flight with P̂(z∗, x) = {p ∈

P | z∗ = 20, x} and P̂(z∗, x) = {p ∈ P | z∗ = 60, x} respectively. For low altitude

(20m) flight, we observe that A∗dist has the highest success rate of all planners in any

scenario. In direct contrast, PTP has the worst. A∗plus initially has a higher success

rate than the BIT∗ variants and keeps a five percent margin of difference between

3000m and 6000m ranges. With greater range, all planners are less likely to find a
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path due to planning time constraints and obstacles, i.e., buildings.

Mid-altitude (60m) flight showcased a similar trend for A∗dist as it most efficiently

navigates dense obstacle areas. However, this time around, the BIT∗ variants showed

a drastic improvement with a worst-case success rate of about 75 percent. A∗plus and

PTP demonstrated similar success rate patterns, varying no more than 10 percent

between each other. A∗plus initially dominated PTP’s success rate until about 5000m,

after which PTP was more likely to find a path. With fewer obstacles at this altitude

PTP more frequently returned a feasible solution.
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(a) Success rates at 20m altitude.
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(b) Success rates at 60m altitude.

Figure 4.8: Planner success rates for low and medium altitude flight.

Fig. 4.8 shows planner success rates for high and ceiling-altitude flight where

P̂ = {p ∈ P | z∗ = 122, x} and P̂ = {p ∈ P | z∗ = 600, x} respectively. For

high altitude (122m) flight, BIT∗ outperforms A∗dist. In the presense of few to no

obstacles, sampling-based planners have a near perfect success rate because there are

fewer collisions to manage. PTP has now surpassed A∗plus for all ranges. However,

it still underperforms the BIT∗ variants as PTP cannot circumvent the small num-

ber of obstacles still present. Above all obstacles, at 600m AGL, PTP now always

finds a solution with BIT∗ variants a close second, occasionally failing due to path
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connectivity issues at the largest ranges.
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(a) Observed success rates given altitude over
start to goal range at 122m altitude.
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(b) Observed success rates given altitude over
start to goal range at 600m altitude.

Figure 4.9: Planner success rates for high and ceiling altitude flight.

Fig. 4.10 highlights the better success rates of A∗dist over A∗plus. The A∗dist success

rate is above 80 percent for all cases, while A∗plus only achieves high success rates at

the lowest ranges. A∗dist performs worst at 600m AGL due to a larger search space

resulting in more overtime runs given high map resolution. In contrast, A∗plus performs

better at higher altitudes. With fewer obstacles to circumvent, its search tree breadth

is reduced, arriving at a solution sooner. This is most apparent for mid-range flight

(8500m ± 4000m) with negative altitude-range correlation for A∗plus.

Fig. 4.11 shows success rate trends for BIT∗dist and PTP at different altitudes.

Note that BIT∗dist and BIT∗plus have near identical trends so only one plot is shown.

Overall, both BIT∗ and PTP perform better as altitude increases due to the associated

reduction in obstacles. BIT∗ shows a dramatic improvement for mid-altitude flight

with a worst-case 80 percent success rate. This rapid success rate increase is due to

BIT∗’s ability to efficiently traverse a sparse obstacle set. In comparison, PTP success

trends improve gradually, achieving 100 percent success at 600m when no obstacles
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(a) Success rates for A∗dist.
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(b) Success rates for A∗plus.

Figure 4.10: Planner success rates for A∗ variants for all altitudes.

are present. If distance is a vehicle’s only cost metric, e.g., for high-altitude cruise

flight, geometric planners such as PTP are ideal with sampling planners as reasonable

alternatives.

4.4 Path Analysis

This section analyzes solution path properties from Monte Carlo simulations. Case

studies are selected for each altitude z∗ ∈ {20m, 60m, 122m, 600m} AGL. Motion

planning solutions generated within the alloted time (three minutes) are shown rel-

ative to the total unweighted cost map Htotal referenced during planning. Total cost

maps Htotal(z
∗) are defined by:

Htotal(z
∗) = Hgps(z

∗) +Hlidar(z
∗) +Hpop(z

∗) +Hrisk(z
∗) (4.24)
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(a) Success rates for BIT∗dist.
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(b) Success rates for PTP.

Figure 4.11: Planner success rates for BIT∗dist and PTP over all altitudes.

and normalized using min-max normalization:

Hshift(z
∗) = Htotal(z

∗)−min(Htotal(z
∗))J (4.25)

Hnorm(z∗) =
1

max(Hshift(z∗))
Hshift(z

∗) (4.26)

where J is a matrix of ones with the same dimensions as Htotal. To compare, we

focus on daytime population for {20m, 60m} AGL flight and nighttime population

for {122m, 600m} flight. Motion planners that found a solution are labeled on the

top-left corner of each map.

For low-altitude flight (20m AGL) obstacle-related costs are prominent in Hnorm,

where Hnorm = 0 is depicted in black with a gradient to white for Hnorm = 1 in Fig.

4.12. Manhattan, the Bronx, and portions of Queens/Brooklyn display high cost

values attributed to tall buildings and urban canyon effects. At such a low altitude,

a motion planner requires efficient obstacle-avoidance to find a feasible solution. As

shown in Fig. 4.12a, for a long-range flight traversing through Manhattan only A∗dist

was able to find a solution. In contrast, for short-range flights over New Jersey, all
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planners were able to generate a feasible flight path as shown in Fig. 4.12b. Fig.

4.12c shows a mid-range flight with some obstacles present over parts of Queens and

Manhattan. The modest number of obstacles allowed three out of the five motion

planners to terminate but with different path traits. As described below, A∗dist followed

a grid-based path that is minimum distance only with respect to that grid, while the

BIT∗ variants took another option that is more direct because BIT∗ does not rely on

the 5m resolution map grid apart from estimates of cost.

(a) (b) (c)

A∗dist � A∗plus � BIT∗dist � BIT∗plus � PTP �

Figure 4.12: Example solution paths at 20m AGL, 5m resolution maps in New York
City.

For mid-altitude flight (60m AGL), similar path and Hnorm characteristics are

observed in the Fig. 4.13 example paths. At this height, obstacles are only present

in the Financial District (lower left) and Midtown Manhattan. Population now plays

a more significant role in low-rise areas, especially the neighboring boroughs. Fig.

4.13a depicts a path attempting to traverse Midtown Manhattan. Motion planners

circumvented the dense group of tall buildings with BIT∗dist taking “shortcuts” to
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minimize distance while BIT∗plus navigates through lower population and risk areas.

Fig. 4.13b investigates paths generated over the Hudson River. With no population or

obstacle-related costs, all motion planners are capable of constructing feasible paths.

BIT∗ variants and PTP take a direct approach from QS to QG. The A∗ variants

follow eight-connected grids. With the 5m resolution case study map, each A∗ step

is either 5m along a primary compass direction or 7.07m along a 45 degree diagonal.

This grid-based routing process leads to longer thus higher cost paths compared with

direct routes, e.g., a distance cost of 5625m for PTP versus 6092m for A∗dist in the

example from Fig. 4.13b. This phenomenon is also observed in Fig. 4.13c.

(a) (b) (c)

A∗dist � A∗plus � BIT∗dist � BIT∗plus � PTP �

Figure 4.13: Example solution paths at 60m AGL, 5m resolution maps in New York
City.

For high-altitude flight (122m AGL), tall buildings only remain in highly concen-

trated areas of the Financial District and Midtown Manhattan. Fig. 4.14a and Fig.

4.14b illustrate the success of motion planners when flying in these areas for short

and long-range flight. In the first case, paths are generated from New Jersey, across

62



the Hudson, and into Midtown Manhattan. Given the long range and abundance of

obstacles upon approach, only A∗dist and the BIT∗ variants successfully terminated.

However, with a reduced distance between QS and QG, A∗plus now terminates and

takes a safer path than the rest. Furthermore, range can also be an issue for BIT∗plus.

As shown in Fig. 4.14c, BIT∗dist and BIT∗plus generate noticeably different paths.

Given BIT∗plus had to search more nodes to minimize non-distance costs, it had fewer

batches, or iterations, to return its best-cost solution by the planning deadline.

(a) (b) (c)

A∗dist � A∗plus � BIT∗dist � BIT∗plus � PTP �

Figure 4.14: Example solution paths at 122m AGL, 5m resolution maps in New York
City.

Above all buildings at 600m AGL, only distance and population remain as non-

trivial costs. As shown in Fig. 4.15a, lack of obstacles and short travel distance

is ideal for all planners. However, this may not be the case as range increases per

Figs. 4.15c and 4.15c. Along the Hudson River, distance is the only cost to opti-

mize, making PTP the best motion planner in this example. However, upon entering

Manhattan, BIT∗plus becomes more suitable as it selects a route over lower population
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areas. The distance-population tradeoff demonstrates the benefits of geometric versus

sampling-based planners. Collectively, these case studies illustrate the pros and cons

of each planner thus motivate motion planning algorithm selection.

(a) (b) (c)

A∗dist � A∗plus � BIT∗dist � BIT∗plus � PTP �

Figure 4.15: Example solution paths at 600m AGL, 5m resolution maps in New York
City.

4.5 Decision Trees for Motion Planning ASP

Data-driven ASP decision trees were generated for two selection criteria: (1) Total

cost and (2) Planner success. For each altitude, planning instance ranges were divided

into nine intervals. The 36 (altitude, range) pairs were applied to planning instances

as follows:

P̂z,rmin,rmax = {p ∈ P | QS,z = z, rmin < deuc(QS,QG) ≤ rmax} (4.27)
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where z is aircraft AGL altitude and [rmin,rmax] describes the range interval for that

bin. Each planner result is matched to a bin P̂z,rmin,rmax , and normalized mean cost

and success rate were calculated as follows:

Tcost(a, z, rmin, rmax) = mean

({
cost(a, p)

cmax

∣∣∣∣ p ∈ P̂z,rmin,rmax

})
(4.28)

Tsuccess(a, z, rmin, rmax) = sr(a, P̂z,rmin,rmax) (4.29)

where cost(·) returns the Monte Carlo weighted cost for the algorithm as in Eq. 4.21,

planning instance pair (a, p) and cmax = max({cost(a, p) | a ∈ A, p ∈ P̂z,rmin,rmax}).

Each decision tree branch selects the planner with the minimum cost or maximum

success rate such that:

TC,i,j = argmin({Tcost(a, z, rmin, rmax) | a ∈ A}) (4.30)

TS,i,j = argmax({Tsuccess(a, z, rmin, rmax) | a ∈ A}) (4.31)

where TC,i,j and TS,i,j represent cost and success based selections for the ith altitude

and jth range bin, respectively. Fig. 4.16 and Fig. 4.17 show these results as

heatmaps.
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Figure 4.16: Cost decision tree heat map.

Decision trees were formulated for each heatmap as shown in Fig. 4.18. Excluding

the root node, cost-based decision tree TC contained seven decision nodes with six leaf
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Figure 4.17: Success decision tree heat map.

states as labeled in Tables 4.2 and 4.3, respectively. Success-based decision tree TS

contained ten decision nodes and eight leaf states per Tables 4.4 and 4.5, respectively.

Decision nodes indicate the altitude or range condition met by child states; leaf states

represent the final algorithm selection, color-coded for readability.
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(a) Cost-based decision tree TC .
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(b) Success-based decition tree TS .

Figure 4.18: Algorithm selection decision trees generated using cost and success rate
planning benchmarks derived from Monte Carlo simulations.

For both decision trees, altitude had the most significant effect. An altitude in

{20m, 60m, 122m} for TC resulted in A∗plus being the most effective planner due to

its cost-optimizing behavior. At ceiling altitude 600m AGL, A∗dist and BIT∗dist had a

more prominent role since only mdist and mpop are relevant. As cost terms diminish,

the benefit of cost-optimal planners is reduced.

In contrast, for TS altitudes of 20m or 60m indicate A∗dist as the planner most
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Table 4.2: Cost-based tree decisions.

Label Type Definition
D11 Decision alt ∈ {20, 60, 122}
D12 Decision alt ∈ {600}
D21 Decision range ∈ [1000, 5000]
D22 Decision range ∈ (5000, 7000]
D23 Decision range ∈ (7000, 9000]
D24 Decision range ∈ (9000, 18000]
D25 Decision range ∈ (18000, 20000]

Table 4.3: Cost-based tree state.

Label Type Definition
TS0 State Root
TS1 State A∗plus
TS2 State A∗plus
TS3 State BIT∗dist
TS4 State A∗dist
TS5 State A∗plus
TS6 State A∗dist

Table 4.4: Success-based tree decisions.

Label Type Definition
D11 Decision alt ∈ {20, 60}
D12 Decision alt ∈ {122, 600}
D21 Decision alt = 122
D22 Decision alt = 600
D31 Decision range ∈ [1000, 3000]
D32 Decision range ∈ (3000, 5000]
D33 Decision range ∈ (5000, 9000]
D34 Decision range ∈ (9000, 12000]
D35 Decision range ∈ 12000, 16000]
D36 Decision range ∈ (16000, 20000]

Table 4.5: Success-based tree state.

Label Type Definition
TS0 State Root
TS1 State A∗dist
TS2 State BIT∗plus
TS3 State BIT∗dist
TS4 State BIT∗plus
TS5 State BIT∗dist
TS6 State BIT∗plus
TS7 State BIT∗dist
TS8 State PTP

likely to find a solution since it navigates obstacles efficiently. At high-altitude 122m

AGL flight, BIT∗dist and BIT∗plus become interchangeable. Their sampling-based path

construction allows them to find paths more often without being impacted by map res-

olution as much as their grid-based counterparts. Above all buildings, the geometric-

based planner PTP always finds a solution thus is preferred.

4.6 Neural Networks for Motion Planning ASP

This section describes a neural network approach to the motion planning ASP.

Training and test data are generated by executing all motion planners in A for all

problem instances. Problem instances P are randomly generated over a prescribed re-

gion described by maps H with start state QS and goal state QG. For each algorithm-

problem instance pair (a, p), a score is assigned from cost weighting schemeW applied
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over metrics mp and mm, defined in Ch. III, summed over the generated path. Each

ASP selection output S is computed from network inputs xin composed from plan-

ning problem values {QS,QG,W , η}. η, defined below, is a latent representation of

all feature maps in H constructed by an encoding function E .

4.6.1 Metric Encoding

Raw cost map data are not practical as direct ASP network inputs because the

remaining input data, e.g., QS,QG, and W , is comparably important but smaller in

quantity. We therefore convert each cost map into a lower-dimensional latent space

comparable in size to remaining network inputs. Using QS,QG ∈ p an axis-aligned

bounding box (AABB) B̂ submap is generated for each planning instance p such that:

B̂ =



min(QS,x, QG,x)− δb

min(QS,y, QG,y)− δb

max(QS,x, QG,x) + δb

max(QS,y, QG,y) + δb


(4.32)

where QS,x, QS,y, QG,x, and, QG,y are the x, y coordinates of the start and goal config-

urations in the inertial frame, respectively, and δb is added or subtracted to enlarge

the bounding box by a specified distance buffer.

Latent space representation η of a given map H is constructed from descriptive

statistics. Recall from Ch. III that we have defined five maps: obstacle Hobs, GPS

Hgps, Lidar Hlidar, population Hpop, and risk Hrisk. min (minimum), max (maxi-

mum), and med (median) capture the range of values each metric takes. mean and

std quantify the metric’s average value and standard deviation, respectively. skew

(skewness) and kurt (kurtosis) [111] summarize the metric’s statistical symmetry or

lack thereof. Latent space representation η for an obstacle or metric map H is thus
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defined by:

η(H) =

(
min(H),max(H),med(H),mean(H), std(H), skew(H), kurt(H)

)
(4.33)

4.6.2 Neural Network Designs

Two types of motion planning ASP neural networks were constructed: (1) Cost

and success networks for each individual planner a ∈ A later used in a hybrid seletion

NH scheme as shown in 4.19, and (2) A single unified network NU predicting the best

candidate motion planner a∗ ∈ A directly.

Problem Instance: P = B,QS ,QG,D,H

Encoded Input: xin

NC,1, NS,1 NC,2, NS,2 NC,k, NS,kNC,k−1, NS,k−1

Cost Scoring: ĉ = (ĉ1, ĉ2, · · · , ĉk)

Hybrid Selection: SH = argmin(ĉ)

• • •

xin xin xin xin

ŷout,1 ŷout,2 ŷout,k−1 ŷout,k

Figure 4.19: ASP over networks Ni estimate motion planner i scores ĉi.

To construct network input matrix xin, maps H in p are encoded into η such that

η = {ηH | ∀H ∈ H}, where each η(H) is a row of network inputs. Matching weight

vector w ∈ W is appended to η in a new column. Two additional columns input UAS

above-ground height z∗ and map resolution r∗ as values pertinent to all cost maps.

Hence, network input is a matrix of size (k, d + 3) for k maps and d latent statistical
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features:

xin =



η1 w(1) z∗ r∗

...
...

...
...

ηk−1 w(k−1) z∗ r∗

ηk w(k) z∗ r∗


(4.34)

For our networks, k = 5 maps and d = 7 latent statistics. Each network output is

then concatenated as follows:

ŷout,i =

ŷC,i
ŷS,i

 (4.35)

where ŷC,i is the estimated cost of the ith planner output by cost network NC,i, and

ŷS,i is a binary prediction of ith planner success output by success network NS,i.

Network output ŷS,i is binary to match our defined success function Si in Eq. 4.23.

Overall planner i score ĉi is then computed from network outputs ŷout:

ĉi =


ŷC,i if ŷS,i = success

1 otherwise

(4.36)

The final ASP output SH has the lowest predicted cost ĉi ∈ ĉ.

A “unified” network with final ASP output SU was also developed. As depicted

in Fig. 4.20, a single neural network NU identifies the best algorithm a∗ ∈ A for a

planning instance using the same encoded input matrix xin. Encoder network NU
outputs an ordered categorical probability distribution indicating each of k planning

algorithms’ selection likelihood ρ̂ = (ρ̂1, ρ̂2, · · · , ρ̂k). The final selection is made by

choosing the algorithm with the highest selection likelihood per Fig. 4.20.

Neural networks were implemented using the Keras† deep learning API on an i9-

†https://keras.io/
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Input: P = B,Qs,Qg,D,H

Encoded Input: xin

Unified Network: NU (xin)

Selection Likelihood: ρ̂ = (ρ̂1, ρ̂2, · · · , ρ̂k)

Unified Selection: SU (ρ̂) = arg max(ρ̂)

Figure 4.20: Unified ASP strategy SU predicted by a singular neural network NU .

9900K CPU @ 3.60GHz with a GeForce RTX 2080 Ti GPU for training. Monte Carlo

simulations were separated at random for training and validation using a 50-50 split,

30000 each, beyond which more training data was unnecessary. Individual networks

NS,i and a unified NU categorical network were each composed of three layers (input,

hidden, output) with activation functions relu, relu, and softmax respectively, where

relu is a rectified linear unit. Similarly, regression cost estimators NC,i were con-

structed as three layer networks with relu activation at all layers. All networks were

fully-connected with the following number of nodes or units in their (input, hidden,

output) layers: NS,i: (8, 1, 2), NC,i: (24, 8, 1), NU : (16, 8, 6). Unit counts were

selected to avoid overfitting while offering sufficient complexity to capture selection

model differences.

4.7 ASP Results

This section presents results for decision tree and neural network ASP strategies.

First, a ground truth analysis is conducted over the Monte Carlo simulations used

for ASP validation. Each problem instance is matched to a “best” planner based on

ground truth data, and a sensitivity analysis for map-based metrics defined in Ch.

III is presented. Cost and success rate performance benchmarks are presented for
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the individual planner neural networks used in hybrid strategy NH . ASP results are

examined for the cost-based TC and success-based TS decision trees and compared

with hybrid NH and unified NU neural network ASP results.

4.7.1 Ground Truth

Table 4.6 summarizes results from the validation dataset. At the lowest altitude,

the A∗ variants are most likely to be selected. This coincides with previous evidence

of their better performance in obstacle-dense environments. As altitude increases,

BIT∗ variants and PTP are selected more often, thriving in the ence of tall build-

ings.This trend continues up to ceiling-altitude flight, where PTP becomes the best

performing planner since flight occurs above all buildings. For 254 of the 30000 vali-

dation examples (less than 1 percent) all planners failed to find a solution, hence, so

answer (N/A) is tallied. The majority of N/A cases occur at 20m AGL where either

QS or QG might be randomly sampled in an enclosed space, for example. At higher

altitudes, long-range paths through tall buildings in Midtown Manhattan made it

difficult for planners to find a solution due to collisions (BIT∗dist, BIT∗plus, PTP) or

insufficient time for search (A∗dist, A∗plus).

Table 4.6: Ground truth motion planning ASP selection for validation data. Each of
the four altitudes has 7500 validation cases.

Altitude A∗dist A∗plus BIT∗dist BIT∗plus PTP N/A

20 4215 1070 1218 355 436 217
60 1806 626 3005 720 1290 34
122 959 378 3114 624 2458 3
600 188 190 2903 457 3734 0

Total 7168 2264 10240 2156 7918 254

Table 4.7 summarizes the failure frequency for each planner at each altitude. By

construction, the A∗ variants never define paths with obstacle conflict. Hence, A∗

failures are attributed to search spaces too large to navigate within the allotted time
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frame (three minutes). A∗plus was impacted most at lower altitudes while A∗dist was

affected uniformly. Likely, this is a result of non-distance metrics exhibiting greater

variance at lower altitudes with less direct paths chosen. In contrast, BIT∗ and PTP

failures are mainly the result of obstacle collisions. To generate paths, BIT∗ and PTP

attempt to create collision-free lines between two given waypoints. For BIT∗ this is

completed iteratively using random samples while PTP attempts to connect QS and

QG directly. In dense obstacle areas, hence, at lower altitudes, these planners are

more likely to fail as shown in Table 4.7. Above all buildings, PTP is guaranteed to

find a solution.

Table 4.7: Number of planner failures over all Monte Carlo studies. Each of the four
altitudes has 15000 total cases.

Altitude A∗dist A∗plus BIT∗dist BIT∗plus PTP

20 619 11068 9841 9862 13175
60 704 10253 1590 1601 9725
122 780 9432 250 218 4973
600 818 8558 34 38 0

Sensitivity analysis for each map-based metric was performed on the ground truth

validation dataset. The validation set was scraped to extract all planning instances

where only a single map-based metric weight was non-zero. For low-altitude (20m

AGL) and high-altitude (122m AGL) flight, selection frequency was tallied for each

planner per metric type as shown in Fig. 4.21. For low-altitude flight, gps, pop, and

risk have the least influence on algorithm selection, where the A∗ variants dominate.

In contrast, for lidar there exists higher uncertainty in making a final selection as

shown in Fig. 4.21a. At higher altitude flight, all map-based metrics become less

relevant as they become uniform outside the urban canyon. This is depicted in Fig.

4.21b where PTP becomes the preferred motion planning candidate.
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(a) Low-altitude (20m) selection frequency.
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(b) High-altitude (122m) selection frequency.

Figure 4.21: Ground truth ASP (best) planner selection histograms over the valida-
tion dataset for individual cost metrics.

4.7.2 Selection Results

Individual planner networks and the unified selection network architecture were

each trained using the generated Monte Carlo cases, half used for training (30,000)

and the rest (30,000) for validation. To avoid overtraining, with a batch size of 100,

each network was terminated after 300 epochs. Overfitting was mitigated by using

simple network architectures. As a demonstration, training accuracy and loss for

the unified ASP network NU are shown in Fig. 4.22. Training and validation both

displayed smooth converging patterns expected of a good fit. Similar patterns were

exhibited for all other trained networks.

Perfomance of the individual cost NC and success NS networks is summarized by

Table 4.8. Cost-wise A∗plus, BIT∗dist, BIT∗plus, and PTP had a mean absolute error

(MAE) normalized average of 0.12 with standard deviation (STD) of 0.17 while A∗dist

performed significantly better with MAE and STD of 0.02 and 0.06, respectively. The

underperformance of NC,A∗plus
and NC,PTP can likely be attributed to fewer successful

(i.e., ζ 6= ∅) training examples as indicated by the last table column showing success
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(a) Unified network NU training accuracy.
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(b) Unified network training loss.

Figure 4.22: Unified network NU training performance over 300 epochs on Keras.

count out of 30000 total training examples. In contrast, the BIT∗ cost networks

had sufficient successful training examples but their sampling-induced errors were

appreciable. The A∗dist cost network had the best performance as it did not suffer

from the aforementioned issues.

Table 4.8: Individual cost and success network performance benchmarks.

Planner NC MAE NC STD NS ACC Count

A∗dist 0.02 0.06 0.99 28527
A∗plus 0.13 0.17 0.89 10315
BIT∗dist 0.10 0.16 0.93 24120
BIT∗plus 0.11 0.17 0.93 24159
PTP 0.13 0.18 0.89 16048

Success networks NS demonstrate good accuracies (ACC) regardless of the plan-

ner. Similar to the previous analysis, NS,A∗dist
had the highest likelihood of predicting

the success of its planner with 99 percent accuracy. Despite NS,A∗plus
and NS,PTP

having the worst success prediction accuracies at 89 percent, the success networks

performed reasonably. Cost networks NC alone may not reliably select the best per-

forming planner due to their substantial errors, but augmentation with improved NS
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achieves promising results.

Overall performance of the decision trees from Sec. 4.5 and neural networks from

Sec. 4.6 is summarized in Table 4.9. The rightmost column indicates the number

of validation set cases for which the planner in that row is best per Table 4.6. The

cost TC and success TS decision trees were the worst performing ASP candidates with

average algorithm selection accuracies of 9 and 23 percent, respectively. Both decision

trees performed poorly with the BIT∗ variants as well as PTP. TC performs well with

A∗plus, but the decision trees’ overall performance indicates a more sophisticated ASP

scheme is needed.

Table 4.9: Comparison of decision tree and neural network accuracies.

Planner TC TS NU NH Count

A∗dist 0.01 0.49 0.67 0.83 7168
A∗plus 0.90 0.00 0.49 0.72 2264
BIT∗dist 0.05 0.10 0.82 0.79 10240
BIT∗plus 0.00 0.15 0.00 0.74 2156
PTP 0.00 0.26 0.70 0.68 7918

Weighted Accuracy 0.09 0.23 0.67 0.76 29746

The second-best ASP technique was unified neural network NU . Significant im-

provements were made for all planning algorithms except the plus variants. A∗plus was

selected with less than 50 percent accuracy and BIT∗plus was never selected. BIT∗dist

selection performed best with 83 percent accuracy, while A∗dist and PTP selection had

satisfactory results with 67 percent and 70 percent accuracy, respectively. Combin-

ing these results, the unified ASP NN technique had a 2.5x improvement over the

decision trees with an overall accuracy of 67 percent. This result demonstrates the

learning advantages of using a more-informed neural network over a simpler decision

tree classifier.

The hybrid ASP technique NH had the best performance with an overall accuracy

of 77 percent, a 3x improvement over decision tree TC and TS selection accuracy. A∗dist

76



and A∗plus selection accuracy improved by 16 and 23 points respectively with BIT∗plus

having the most significant jump at 74 points. While BIT∗plus and PTP selection

accuracies were not as high, overall performance was satisfactory for this first work in

learning an ASP function for motion planning. These results show neural networks,

particularly a hybrid formulation, are a promising approach to the motion planning

algorithm selection problem.

4.8 Conclusion

This chapter has presented an in-depth analysis of small UAS urban flight plan-

ning and ASP over geometric (PTP), graph-based (A∗dist, A∗plus), and sampling-based

(BIT∗dist, BIT∗plus) motion planners, along with a novel heuristic hplus. Path cost,

execution time, and success rate benchmarks were calculated using Monte Carlo sim-

ulations. PTP was the fastest algorithm for all planning instances and had the highest

success rate when with flight paths strictly above buildings. A∗dist improved upon this

result with comparable execution times and the best overall success rate. However,

its distance-only cost function failed to capture the diversity of the proposed multi-

objective cost map. In contrast, metric map based A∗plus produced the lowest cost

paths but often took too long to complete within our three-minute planning time

constraint. The BIT∗ variants shared similar path costs; BIT∗dist had significantly

lower execution times, making less superfluous metric checks than BIT∗plus.

Future work can expand these benchmarks to consider additional motion planners

as well as different computing platforms. Dubins curves [54] can extend the presented

work to fixed-wing aircraft and steered ground robots. Less grid-stringent planners

such as Theta∗ [99] or multi-resolution motion planners may improve the success

rate of A∗plus when planning on high resolution maps. Work on adaptively informed

trees (AIT∗) [112], the successor to BIT∗, was published during the writing of this

dissertation. The addition of AIT∗ to the algorithm portfolio would maintain BIT∗’s

77



optimality while likely improving time-to-convergence.

The second half of this chapter addressed motion planning ASP. Rule-based and

neural network selection frameworks were presented and analyzed. Rule-based deci-

sion trees constructed from Monte Carlo simulations were unable to reliably select

the best algorithm, resulting in less than 25 percent selection accuracy. Alternative

hybrid and unified neural network-based approaches achieved 2.5x and 3x accuracy

improvements over decision tree results, respectively. The neural networks were able

to capture more information than in our simple decision tree rules. For greater detail,

raw map data can serve as selection inputs and may improve accuracy. However, this

dissertation’s latent map representations can be applied directly to multiple urban

environments in future work.
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CHAPTER V

Conclusion and Future Work

This dissertation investigates small UAS real-time motion planning. Fail-safe

strategies for urgent landing planning enable a UAS to safely land despite anomalies

or failures. To avoid rigidity, the motion planning algorithm selection problem (ASP)

is defined for small UAS applications. Emphasis in this research is placed on com-

prehensive ASP metric definition cutting across a variety of aerial ASP applications.

Machine learning approaches to ASP are investigated for small multicopter urban

flight over a variety of flight altitudes and environmental complexities.

Fail-safe studies served as a precursor for defining the motion planning algorithm

selection problem (ASP). Improving on contemporary “fly-home” or automatic land-

ing protocols, three alternative data-driven fail-safe protocols were presented. How-

ever, these strategies alone were insufficient due to their reliance on specific user-

selected motion planning algorithms. While suitable for short-range case studies, the

selected algorithms would face a computational burden for longer flights. To elim-

inate user selection bias and investigate a representative pool of motion planners,

additional work followed to formulate a better solution for the motion planning ASP.

Metric maps were constructed to provide insights into the diversity of the ur-

ban canyon needed to construct safe and efficient flight plans. GPS and Lidar maps

demonstrated the complementary nature of these navigation sensors in contrasting
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obstacle densities. Computed a priori, these maps can predict each sensor’s value sub-

ject to geolocation and flight altitude. A daytime vs. nighttime work-week population

model was presented; future work should extend this model to higher-resolution 24-

hour data to reduce risk to overflown population at all times. Besides proximity risk,

additional research is needed to model system, actuator, sensor, and weather-related

risks encountered by small UAS, as summarized in Table 5.1, for robust guidance,

navigation, and control (GNC). Analogous analysis in other major cities and exten-

sions of presented metrics to full 3D cost maps are next steps towards modeling a

more realistic urban flight planning environment.

Table 5.1: Common risks encountered by small UAS.

Type Description Examples

System A hardware or software failure re-
sulting in a system freeze, coding er-
ror, reboot, component failure, or a
complete shutdown.

Deadlock [113, 114], over-
heating [115], electrical shorts
[116], software risks [117]

Actuators Control surfaces are irresponsive or
fail to reach a target configuration
given a threshold.

Shaft failures [118], PWM
relay errors [119], pneu-
matic/hydraulic faults [120]

Sensors Onboard sensing tools provide inac-
curate representations of the world
around them.

Faulty sensors, obstructed
view, drifting sensor readings,
urban canyon effects

Weather Hazardous climate conditions influ-
encing system sensing and/or per-
formance.

Cold impact on batteries
[121], poor visibility, snow/ice
buildup, turbulent winds [122]

To the author’s best knowledge, the motion planning ASP was first addressed

in this dissertation. Rule-based and neural network selection frameworks were pre-

sented and analyzed. Rule-based decision trees were simple to construct but unable

to capture both complex cost metrics and algorithm execution properties. The two in-

vestigated neural network based ASP formulations produced promising results, with a

hybrid two-stage selection scheme having the best performance with an overall 75 per-

cent selection accuracy. Although this work provides a baseline, additional work will
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likely improve this accuracy figure by exploring altered metrics, network inputs, and

architectures. Using raw map data in convolutional neural network (CNN) modules

may identify patterns lost in latent feature conversions. If deployed in a real-world

platform, a comparison of online algorithm selection and concurrent motion planning

will be required to analyze a configurable hardware-software suite’s execution trade-

offs. While this work focused on motion planning, a similar investigation may be

performed to tackle the sensor selection problem (SSP) and other GNC algorithms,

e.g., controllers, state estimators, and signal filters.
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APPENDIX A

Datasets

The following appendix describes the online datasets used in this dissertation.

PLUTO: The Primary Land Use Tax Lot Output (PLUTO) data file contains ex-

tensive land use and geographic data for New York city. The PLUTO dataset is

created by the NYC Department of City Planning as part of its Open Data Initia-

tive. Data is available to download as an ASCII Comma-delimited File (CSV) with

over seventy fields/attritutes for each NYC tax lot.

Relevant Fields:

• BOROUGH: The borough in which the tax lot is located.

• TAX BLOCK: Number of tax block in which tax lot is located.

• TAX LOT: Unique number designation within a tax block.

• LAND USE: Used to identify tax lots with buildings.

• NUM FLOORS: Number of stories for tallest building on tax lot.

Link: https://www1.nyc.gov/site/planning/data-maps/open-data/dwn-pluto-

mappluto.page

MapPLUTO: MapPLUTO is a complementary database to be used in tandem

with PLUTO. MapPLUTO matches tax lot geographic features dervied from the

NYC Depart of Finance’s Digital Tax Map (DTM). Tax lot polygons are available
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with shorelines clipped or water included. Polygon outines are provided as latitude

and longitude using the WGS84 CRS. Data can be downloaded as a File Geodatabse

(FGDB, proprietary) or Shapefile (SHP).

Link: https://www1.nyc.gov/site/planning/data-maps/open-data/dwn-pluto-

mappluto.page

OpenStreetMap: OpenStreetMap (OSM) is an opensource project founded by

Steve Coast in 2004. Similar to Wikipedia, worldwide users aggregate and vet data

from manual surveys, GPS devices, aerial photography, and other GIS sources along

with their local knowledge of an area. All crowsourced data is free to share, modify,

and use under the Open Database License (ODbL). OSM WGS84 data can be down-

loaded as an Extensible Markup Language File (XML) for a given bounding box or

the entire OSM database is available from Planet OSM.

OSM attributed-tagged data falls into one of three categories:

• Nodes: Points representing features without a size. Standalone nodes can in-

clude park benches or traffic signals.

• Ways: Lists of nodes forming polylines or polygons if they form a closed loop.

Typical open ways include rivers and roads. Closed ways, or polygons, are used

to define important physical areas, especially buildings.

• Relations: Collections of nodes, ways, and other relations. Most often used to

group multiple ways part of a common collection, such as a university.

Link: https://www.openstreetmap.org/

TIGER: Topologically Integrated Geographic Encoding and Referencing (TIGER)

is a format used by the United States Census Bureau to define land-based features

across the nation. A special population-specific TIGER database is accessible at the

start of every decade for all fifty states and the District of Columbia. At this time

data is not available for Puerto Rico or the Island areas. Population and housing unit

count estimates are provided for each census block as defined by the Census Bureau.

Data after 2007 is available to download as SHP files and CSV files before that.

Link: https://www.census.gov/geographies/mapping-files.html
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CelesTrak: CelesTrak is a repository used to keep track of all human-made objects,

or satellites, in Earth’s orbit. The Two-Line Element (TLE) format is used to identify

all satellites added by the North American Aerospace Defense Command (NORAD).

In the 1980s, the United States Department of Defense released the equations and

source code used to predict satellite orbits. Changes made to the original code were

not released, however, independent efforts, technical papers, and source code have

kept a non-proprietary version up-to-date.

Link: https://celestrak.com/
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APPENDIX B

Software

Skyfield: Skyfield is a Python module used to compute positions of stars, planets,

and satellites in orbit around the Earth. Using loaded TLE data, objects of interest

are run through the SGP4 satellite propagation routine with Python’s NumPy nu-

merical library as its only binary dependency, used for computational efficiency.

Link: https://rhodesmill.org/skyfield/

Scikit-learn: Scikit-learn is a Python machine learning module simple predictive

analysis. Built on top of Python’s numerical and scientific libraries NumPy and SciPy,

Scikit-learn features various classification, regression and clustering algorithms under

the open source, commercially usable Berkeley Software Distribution (BSD) license.

Link: https://scikit-learn.org/stable/index.html

Keras: Keras is a Python deep learning API which runs on top of TensorFlow, an

open source numerical computation machine learning library created by the Google

Brain Team. Keras is built with fast deployment in mind, using prebuilt adaptive

machine learning models and optimizers parameterized by the end user.

Link: https://keras.io/
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