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Abstract 

 

Preterm birth is a significant public health concern as a leading cause of infant mortality; it also 

contributes substantially to childhood and adult morbidity. Other adverse birth outcomes including 

low birthweight are associated with later comorbidities. There is growing evidence that the 

underlying contributors to adverse birth outcomes may include environmental contaminants (like 

metals), but these factors are understudied. Puerto Rico has one of the highest preterm birth rates 

of all U.S. states and territories. Moreover, the population in Puerto Rico is exposed to higher 

levels of many environmental chemicals because of heavily contaminated hazardous industrial 

sites. Even though prenatal exposure to heavy metals has been well investigated, our knowledge 

of the threats to the fetus at low levels of exposure remains rather limited. From animal studies, 

few data are available on the effects of excessive exposure from essential trace elements on adverse 

pregnancy outcomes. As humans are continuously exposed to a mixture of environmental 

toxicants, and typically not to single agents in isolation, there is a pressing need to study the 

relationship of exposures both individually and as mixtures. This dissertation investigates the 

predictors of environmental metal exposures among pregnant women, and the potential of metal 

exposures measured in different media to increase the risk of adverse birth outcomes. The 

interactions between psychosocial stress and the exposure biomarkers on adverse birth outcomes 

are also explored.  

  

The four aims of this dissertation examine a subset of participants from the “Puerto Rico Testsite 

for Exploring Contamination Threats (PROTECT)” cohort. Aim 1 of this dissertation identifies 

levels, trend, and predictors of prenatal exposure for 14 metals. Aim 2 investigates the individual 

and collective effects of metals on adverse birth outcomes. Of all the metals assessed, blood lead 

at low levels, and potentially below current reference levels, was the most strongly associated with 

increased risk of preterm birth and decreased gestational length. Findings in Aim 2 also showed 

that lead, zinc, and manganese may contribute to adverse birth outcomes. Aim 3 explores the 

modifying effect of maternal psychosocial stress on the association between the metal exposure 
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biomarkers and adverse birth outcomes. Presence of “poor” psychosocial status strengthened the 

adverse associations between Mn and preterm birth, indicating that prenatal psychosocial stress 

may modify vulnerability to metal exposure. Finally, Aim 4 examines the mixture predictive 

performance of urine and blood metal biomarkers, and integrated multimedia biomarkers 

incorporating both matrices, in association with preterm birth. Metal mixtures measured in urine 

(specific gravity corrected), blood, and integrated biomarkers had comparable performance in 

associations with preterm birth, indicating that using urine or blood may be an equally good 

approach to evaluate the metals as a mixture, but only when urine measurements of metal account 

for urinary dilution. 

  

Overall, these results broaden our understanding of the effects of metal mixtures on birth 

outcomes. We identify dietary and behavioral predictors of metal exposures which could inform 

exposure reduction strategies, and potentially result in an eventual reduction in preterm birth rates. 

Furthermore, our novel study design underscores the importance of considering the performance 

of exposure biomarkers measured in different media, and modifying effects of non-chemical 

exposures, when evaluating the relationship between chemical exposures and birth outcomes. 

Further studies are needed to substantiate these findings to advance our knowledge on the impact 

of environmental chemicals on pregnancy. 
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Chapter I  

Introduction 
 

Adverse birth outcomes and environmental exposures in Puerto Rico 

Preterm birth (prematurity) is defined as delivery <37 completed weeks of gestation and is the 

leading cause of newborn death [1, 2]. Survivors are at risk for many adverse health consequences, 

including neuro-developmental delays, disability, chronic respiratory, vision impairment, and 

hearing impairment [1, 3, 4]. In addition to the health consequences of preterm birth, the emotional 

and economic impact of preterm birth on families are high. Therefore, preterm birth and its 

consequences constitute a major public health problem in the United States and worldwide [5]. 

The Institute of Medicine estimates the annual societal economic burden (medical, educational, 

and lost productivity) associated with preterm birth in the United States to be at least $26.2 billion 

in 2005 [5]. Other important adverse birth outcomes including low birthweight (<2500g) and being 

small for gestational age (SGA) may result directly from preterm labor and/or growth restriction 

and also contribute substantially to childhood and adult morbidity [6-8]. 

 

Thus, there is a need to identify risk factors to adverse birth outcomes and find ways to prevent 

preterm birth and low birthweight. This is especially important in a region like Puerto Rico, which 

has one of the highest incidences of preterm births among all US jurisdictions. In addition, Puerto 

Rico has higher rates of childhood obesity and asthma [9-11] as well as adult obesity, metabolic 

syndrome, and diabetes [12, 13] compared to the rest of the U.S., all of which have been associated 

with adverse birth outcomes. Moreover, the traditional risk factors, such as mother’s age and use 

of tobacco and alcohol, do little to explain this high rate of preterm birth and associated 

consequences [14]. Even though there is growing evidence that environmental factors may play a 

key role, these factors remain understudied and underappreciated.  

 

Puerto Rico, a self-governing dependent territory of the United States, has a long-standing history 

of contamination with environmental chemicals, as there are sixteen active Superfund sites and 
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200+ hazardous waste sites [15]. Many of these sites lie on unlined landfills that overlie Karst 

aquifers, which creates pathways for toxic substances to contaminate groundwater. Therefore, the 

risk of human exposure to contamination is high. For example, previous research within this area 

suggests that pregnant women in Puerto Rico may have higher exposure to certain phenols [16, 

17] and phthalates [18], compared to women of reproductive age in the U.S. general population. 

Our preliminary analysis on metals also showed a higher level of exposure among Puerto Rican 

pregnant women compared to the general U.S female population.  

 

The Puerto Rico Testsite for Exploring Contamination Threats (PROTECT) study was launched 

in 2010 with funding from the NIEHS Superfund Research Program and is conducted in Puerto 

Rico because of its high preterm birth rate and the extent of hazardous waste contamination [16, 

17]. A prospective cohort of more than 2000 pregnant women has been recruited since 2010 and 

followed until delivery. PROTECT aims to explore environmental, clinical, demographic, 

behavioral factors contributing to preterm birth risk in Puerto Rico. The project also provides 

information on the predictors and sources of exposure among pregnant women as well as the 

potential mechanistic pathways involved in preterm birth. Particular attention is paid to chemicals 

commonly found at Superfund sites, including phthalates, phenols, and metals, suspected to be 

associated with high preterm birth rates [19-21]. 

 

Exposures to metals 

Metals occur naturally in the environment and enter the human body through ingestion of food, 

supplements, and water, and through inhalation and skin contact of metal-containing products [22, 

23]. In the United States, reports from the National Health and Nutrition Examination Survey 

(NHANES) showed that children and adults have detectable concentrations of a range of metals 

in their bodies [24], including pregnant women and their fetuses because of the trans-placental 

metal transfer [25-27]. 

 

Some of these metals are essential for human health and required for fetal growth, such as cobalt 

(Co), copper (Cu), iron (Fe), magnesium (Mg), manganese (Mn), molybdenum (Mo), selenium 

(Se) and zinc (Zn). At the same time, excess or insufficient exposure poses risks to pregnancy. 

Others can be toxic even at low concentrations [22]; some are reproductive toxicants and 
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neurotoxicants, such as lead (Pb) and mercury (Hg), while others are known as human carcinogens, 

including cadmium (Cd) and arsenic (As). The toxic metals have been shown to induce oxidative 

stress, which plays an important role in the development of many adverse health outcomes, 

including cardiovascular, metabolic, and renal disease [28, 29]. Several metals are also suspected 

endocrine disruptors [30-33].  

 

Prenatal metal exposure and adverse birth outcomes 

Adverse birth outcomes, including pregnancy and fetal growth outcomes, encompass overall and 

spontaneous preterm birth, low birth weight, and small and large for gestational age, etc. [34].  

Pregnant women and developing fetuses have increased vulnerability to the toxicological 

consequences of environmental exposures to metals. Prenatal exposures to metals have been 

suspected risk factors for adverse pregnancy outcomes, including the following: 

 

(1) Pregnancy outcomes (gestational length, preterm and spontaneous preterm birth): Although 

exposure to several metals is highly prevalent [35], with the exception of some heavy metals (Pb, 

Cd, Hg, and As) human studies of exposure and pregnancy outcomes are quite limited: 

 

Pb: Pb is generally present in water, food, air, soil, and dust. Pb is a neurotoxicant [36] and is 

harmful to reproductive health [37]. Pb readily crosses the placenta by passive diffusion, and 

therefore easily enters the fetus from the mother. From studies conducted in the US, Mexico, 

Japan, Indian, China, there is strong evidence for an association between high-level lead 

exposure during pregnancy and significant decreases in gestational length and increased risk 

of preterm birth [38-41]. In addition, limited studies have found evidence of the effect of low 

Pb exposure on pregnancy outcome [42, 43], and one study conducted in upstate New York 

with more than 43,288 mother-infant pairs, with an average blood Pb concentration of 2.1 

μg/dL, found no association of maternal blood Pb with preterm birth but did find a relationship 

between Pb exposure and decreased birth weight [44]. As for the mechanism, Pb may induce 

oxidative stress by producing reactive oxygen species (ROS) that alters the placental functions 

possibly leading to preterm birth [45, 46]. Numerous experimental studies have also indicated 

that Pb increases the parameters of oxidative stress in the placenta [47, 48]. 
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Cd: Cd is a well-known environmental toxic pollutant, and it is accumulated in food, air, and 

water. Once absorbed into the body, Cd can diffuse through the blood to the placenta and pose 

reproductive and fetal toxicity. In early studies, the reports on associations of Cd and preterm 

birth were mixed. Fagher et al. reported associations with higher blood Cd levels and preterm 

delivery among a small cohort of Polish and Swedish women (n=30) [49], while another small 

cohort of women in China (n=44) and an ecologic study conducted among women (n=38,718) 

in southern Sweden both found no association [50, 51]. However, caution must be taken since 

those studies either were ecologic studies or had a small sample size. Recently, large cohort 

studies from China [52, 53] and Japan [54] have reported that maternal serum/urine levels 

of Cd during pregnancy are positively associated with higher risk of preterm births. Studies 

have indicated that Cd can disturb normal fetus growth and pregnancy outcomes by altering 

placental functions, such as the transfer of essential metals (calcium and zinc), and by reducing 

blood flow in the placental tissue [52, 53, 55-57]. 

 

Hg: Hg is a non-essential and toxic metal in the human body. Inorganic Hg does not readily 

cross the placental barrier to enter the fetus; however, elemental and organic Hg are lipid 

soluble and therefore can cross the placenta and cause developmental toxicity to the fetus. 

Among two studies that evaluated the effects of Hg exposure measured in maternal blood on 

birth outcomes, one showed that higher maternal blood Hg was associated with higher risk of 

preterm birth and low birth weight [25], while the other observed a null association [58]. One 

study conducted in Michigan found a positive association between maternal Hg levels in hair 

and risk of very preterm (between 28 to 32 weeks) delivery [59]. 

 

As: As is identified as a human carcinogen by the International Agency for Research on Cancer 

[60]. Among the various routes of As exposure, drinking water and food, especially 

contaminated rice, are the largest sources of As. Both inorganic and methylated organic forms 

of As (the inorganic form is more toxic but also rarer) can easily cross the placenta [55]. A 

number of epidemiological studies have reported that As exposure from drinking water is 

associated with spontaneous abortion, stillbirth, and preterm birth [61-63]. In contrast, a study 

conducted in Taiwan suggested a null association between As levels in well-water in the 

residence and preterm delivery [64]. Animal studies and in vitro studies have proposed that the 
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mechanism of action for As and Hg is similar to Pb. Those metals may activate the oxidative 

perceptive signaling pathways by either forming free radicals or inhibiting anti-oxidative 

enzyme processes, which in turn damage the placental cell and eventually cause preterm 

delivery [65-67] 

 

To date, existing research has focused primarily on the reproductive effects of heavy metals, with 

most reports involving high doses not commonly encountered by pregnant women and fetuses 

[68]. More recently, a growing body of evidence is suggesting that certain essential trace metals, 

including Cu [69, 70] and Ni [71], are associated with an increased risk of preterm delivery.  

However, most of the studies investigating the association between metals and preterm birth were 

cross-sectional. Given the recent evidence, it is imperative to study how both essential and non-

essential metals are affecting pregnancy, at low doses found in everyday environments.   

 

(2) Fetal growth outcomes (birthweight, small or large for gestational age): Low birth weight may 

result directly from preterm labor or growth restriction due to detrimental factors occurring during 

pregnancy, such as lack of nutrition, maternal infection, and exposure to environmental toxicants 

[72]. Small for gestational age (SGA), a manifestation of intrauterine growth restriction (IUGR), 

results when fetuses fail to reach their full genetic growth potential relative to their gestational age 

[73]. Low birth weight and small for gestational age (SGA) correlates with infant mortality, but 

also increased risk of chronic disease and cancer later in life [6-8]. Newborn babies that weigh 

more than usual relative to their gestational age are termed large for gestational age (LGA) and are 

at higher risk of long-term health consequences [74]. Accumulation of toxic metals in the placenta 

may result in altered growth patterns and adverse fetal growth outcomes [57, 75, 76].  As stated 

previously, many human and animal studies have elucidated the effects associated with heavy 

metals (Pb, Cd, Hg, and As) on fetal growth outcomes, mainly on low birth weight and SGA. The 

reports are inconsistent, as described below: 

 

Pb: Pb in maternal blood [44, 77, 78], cord blood [79, 80], and the placenta [55, 81] has 

been significantly negatively correlated with birth weight. While additional evidence of the 

effects of Pb on SGA births were reported [82-84], a few other studies showed lack of 

association between maternal exposure to Pb and SGA [85-88]. 
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Cd: Reports on associations of Cd and fetal growth outcomes have been mixed. One study 

from an e-waste recycling town in China reported no significant correlations between 

placental Cd and birth weight [89]. Urinary Cd was negatively associated with birthweight 

among pregnant women in Tokyo [87] and Toyama [90], Japan, while a similar inverse 

association was found with cord blood Cd in Mexico [91] and Italy [92], and placenta Cd 

in Chile [55]. A different study from Bangladesh found significant inverse associations 

between maternal Cd exposure and birth weight only in girls but not in boys [93]. 

 

Hg: A few studies have suggested a negative correlation between maternal blood Hg levels 

and newborn birth weight [58, 59, 94, 95] while several other studies reported a null 

association between elevated Hg levels and birth weight [96-98].  A Canadian birth cohort 

with 1835 pregnant women reported a small increase in risk for SGA in infants born to 

women with higher exposure to Hg and As. [85] 

 

As: There is considerable evidence for associations between maternal As exposure and low 

birth weight [55, 64, 99, 100] and increased risk of SGA. A causal pathway analysis in a  

Bangladesh population suggested that the toxicological effect of As on fetal growth was 

the result of As exposure decreasing gestational length and maternal weight gain during 

pregnancy [101]. 

 

Recent studies on metals and fetal growth outcomes have also paid more attention to essential trace 

metals; a few studies reported inverted U-shaped dose-response curves for the associations 

between birth weight and maternal metal exposures, including cobalt (Co) [81] and manganese 

(Mn) [102, 103]. These results indicate that both too low and too high metal concentrations may 

affect mechanisms underlying fetal growth. However, other studies found no evidence of 

nonlinearity between trace metals and birth weight [104, 105]. Reports of other metal 

concentrations in relation to birth weight are none to very limited. In addition, most previous 

reports on the effects of metals on pregnancy are from studies usually involving high doses (e.g., 

studies on Pd before the elimination of Pb in paint and gasoline), that are not commonly 

encountered by pregnant women today [38, 68]. However, due to the widespread exposure of 
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humans and known toxicity of these metals, concern is growing that low-level exposure may also 

adversely affect birth outcomes, and several birth cohorts have evaluated the health effects of low-

level exposure to metals during pregnancy [103, 106-110]. Therefore, there is a pressing need to 

study the effects of excessive exposure to essential trace elements on adverse pregnancy outcomes. 

 

In summary, caution must be taken while comparing studies evaluating metals in relation with 

adverse birth outcomes as there were potentially important differences between the studies: 1) 

Study populations and study designs vary across those studies; and 2) Metal concentrations were 

measured in various media (blood, urine, cord blood etc.). In addition, most studies were cross-

sectional and included biological samples from a single time point during pregnancy.  

 

Interaction between metals and psychosocial status during pregnancy 

There is a growing interest in the combined effect of chemical and non-chemical exposures in the 

environment on human health, among which evaluating the interactions and cumulative effects of 

chemicals and stress has been identified as a key research need [111, 112]. Prenatal maternal 

psychosocial status has been found to be associated with an increased risk of adverse pregnancy 

outcomes—psychological distress, perceived stress, anxiety, depression symptoms, and low social 

support among pregnant women were associated with an increased risk of pre-eclampsia [113], 

preterm birth [114-119], and low birth weight [114, 118]. The majority of epidemiologic studies 

in this area to date have evaluated the impact of individual chemical and non-chemical exposures. 

However, pregnant women are exposed to both environmental chemical and psychosocial 

stressors, and psychosocial factors may influence how a particular environmental chemical is 

experienced or what the physical response to it may be. Recently, there has been a general 

acknowledgment that there is likely to be joint effects of environmental chemicals (e.g. phthalates, 

black carbon, lead [Pb]) and psychosocial stress exposure on pregnancy and child development 

outcomes [112, 120-127]. Similarly, when looking at the effect of metals on maternal and children 

health, psychosocial factors are important to consider in deepening our understanding on how the 

environment impacts humans. Ultimately, the identification of modifiable psychosocial factors 

may lead to interventions during pregnancy to reduce the harmful effects of metals on birth 

outcomes.   
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Studying metals as mixtures 

We have summarized inconsistent results from studies assessing the deleterious effect of 

individual metals on adverse birth outcomes. This discrepancy in the literature may be due, in part, 

to the fact that humans are exposed to hundreds of metals and other chemicals simultaneously. 

Moreover, human biomonitoring data have shown the presence of a mixture of metals in the 

prenatal environment [24-26]. Given that variety, we need to characterize associations between 

metals and adverse birth outcomes, not only individually, but also collectively. A few studies 

published recently have specifically focused on the general impact of collective metal exposure 

effects in health outcomes [69, 128-136], and a few have explored metal mixtures in relation to 

adverse birth outcomes [69, 133-136]. PROTECT has one of the largest numbers of toxic and 

essential trace metal analytes measured to date, which enables us to investigate the effects of 

metal(loid)s on adverse birth outcomes both individually and as mixtures. 

 

Challenges in metal mixture exposure assessment 

Epidemiologic studies aiming to determine the effects of environmental chemical mixtures on 

human health are growing rapidly. Due to limiting factors such as the financial cost and 

methodologic challenges, mixture studies based on biomarkers typically use a unified human 

specimen, such as blood or urine to determine exposure to various chemicals [23, 47, 137-139]. 

Although this approach applies well to chemicals with similar structure and pharmacokinetics, it 

is challenging to accurately describe metal mixtures using one unified medium. Each metal 

exhibits unique physiochemical properties and toxicokinetics, such as half-life, storage, or 

elimination rate from the body. As such, the preference for either blood or urine concentration as 

a better indicator is different across metals. For example, urinary concentration of As has often 

been used as an indicator of recent exposure because urine is the main route of excretion of most 

arsenic species [140, 141]. In contrast, blood is the preferred specimen for Pb as blood Pb has a 

longer half-life and subsequently lower variability in the body compared to urine [142]. As for 

other metals such as Mn, Cu, and Cr, there is a lack of consensus in the literature as to which 

biomarker is the most consistent and valid. Previous mixture studies on prenatal metal exposures 

and birth outcomes measured metals in different media including urine [143-146], whole blood 

[135, 147], cord blood [148], toenails [133], and teeth [149]. As mentioned above, each medium 

biomarker depicts levels in a particular body compartment that may have differential biological 
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relevance and may not fully represent the best measure of internal dose for all the metals. 

Therefore, it is imperative that we understand how the choice of different media can impact the 

performance of analyzing chemical mixtures in relation to a certain health outcome. 

 

In conclusion, pregnancy and birth are time periods when the health of women and children is 

most vulnerable to the exposure to chemicals, including metals. While many human and animal 

studies have elucidated the effects associated with non-essential metals and have reported mixed 

effects, less attention has been given to other metals. Moreover, as humans are continuously 

exposed to a mixture of environmental toxicants, which are often correlated, there is a pressing 

need to study the relationship of exposures both individually and as mixtures. We also have a 

limited understanding of how metals interact with psychosocial stress during pregnancy. 

Investigating the sources, predictors, and effects of metal mixtures, their interaction with stress, 

and identifying the specific metal(s) that is/are most critical to adverse pregnancy outcomes are 

paramount for understanding how environmental chemicals impact preterm birth. Characterizing 

modifiable factors, including sources and psychosocial modifiers of metal exposure, could have 

huge public health impact as it potentially leads to contaminant remediation strategies and 

eventually a reduction in preterm birth rates.  

 

Specific Aims 

This dissertation advances our understanding of the effects of metal mixtures on birth outcomes 

by exploring the potential of metal exposures measured in different media to increase the risk of 

adverse birth outcomes. A conceptual diagram outlining the specific aims of this dissertation is 

illustrated in Figure I.1. This dissertation draws upon a prospective birth cohort, The Puerto Rico 

Testsite for Exploring Contamination Threats (PROTECT) study. PROTECT launched in 2010 

with funding from the Superfund Research Program and conducted in Puerto Rico because of its 

high preterm birth rate and the extent of hazardous waste contamination. PROTECT aims to 

explore environmental, clinical, demographic, behavioral factors contributing to preterm birth risk 

in Puerto Rico. The center also aims to provide information on the predictors and sources of 

exposure among pregnant women as well as the potential mechanistic pathways involved in 
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preterm birth. Particular attention is paid to chemicals commonly found at Superfund sites, 

including phthalates and metals, suspected to be associated with high preterm birth rates. 

 

Specific Aim 1: I characterized metal exposures among pregnant women and to identify predictors 

of prenatal metal exposure. Specifically, I analyzed the repeated measurements from up to three 

study visits of urine and blood levels of metals for their distributions, trends, and correlations 

within and between urine and blood biomarkers. I then explored the associations between metal 

concentrations and potential predictors (demographic variables, personal care products, food, and 

water usage) using linear mixed models (LLM) with random intercepts.  

Hypothesis 1: The blood and urine concentrations of metals will be correlated to the different 

degrees for different metals, and the levels of urine, blood metals, and urine/blood ratio are 

comparable to similar cohorts (NHANES) and reports from recent literature. 

 Hypothesis #2: Reported demographics/household characteristics and use of certain personal care 

products will be predictive of concentrations of urinary and blood metals. 

Specific Aim 2: I investigated the associations between blood concentrations of metals and birth 

outcomes (preterm and spontaneous preterm birth, gestational age, birthweight, small for 

gestational age, and large for gestational age). First, I applied multivariate linear and logistic 

regression analyses to assess single pollutant associations between average exposure and each birth 

outcome. Differences in associations between study visits and infant sex were also tested. Upon 

evaluating the results, I utilized two distinct mixtures analysis methods, environmental risk score 

and Bayesian Kernel Machine Regressions (BKMR), to determine the cumulative effect of 

multiple metals and identify the most predictive metals. 

Hypothesis #3:  Increased metal concentrations in blood will be associated with birth outcomes 

and the collective effect of metal mixtures will have greater association with the adverse birth 

outcomes compared to individual metals.  

Specific Aim 3: I examined the extent to which maternal psychosocial status modifies the 

associations between the metal biomarkers and adverse birth outcomes. Using K-means clustering, 

I categorized pregnant women into one of two groups: “good” and “poor” psychosocial status, 

based on overall psychosocial well-being characterized by depression, perceived stress, social 

support, and life events. I then evaluated whether the effect of blood metals (geometric average) 

on adverse birth outcomes varies between two clusters of women. 
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Hypothesis #4:  The associations between metal exposure biomarkers and adverse birth outcomes 

will be stronger in the presence of “poor” psychosocial status. 

Specific Aim 4: I assessed the mixture predictive performance of urine and blood metal 

biomarkers, and integrated multi-media biomarkers, in association with preterm birth. For each 

metal, I integrated exposure estimates from paired urine and blood biomarkers into multi-media 

biomarker (MMB). I then built Environmental risk scores (ERSs) of the metal mixtures to evaluate 

the performance of urine, blood, and multi-media biomarkers by examining the association 

between ERSs and preterm birth, using logistic regressions. 

Hypothesis #5: The use of urine, blood, and the integrated metal mixtures will demonstrate 

different performance when modeling adverse birth outcomes. 
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Chapter II  

Predictors of Urinary and Blood Metal(loid) Concentrations Among Pregnant 

Women in Northern Puerto Rico 

 

Abstract 

Background: Given the potential adverse health effects related to toxic trace metal exposure and 

insufficient or excessive levels of essential trace metals in pregnant women and their fetuses, the 

present study characterizes biomarkers of metal and metalloid exposure at repeated time points 

during pregnancy among women in Puerto Rico. Methods: We recruited 1,040 pregnant women 

from prenatal clinics and collected urine, blood, and questionnaire data on demographics, product 

use, food consumption, and water usage at up to three visits. All samples were analyzed for 16 

metal(loid)s: arsenic (As), barium (Ba), beryllium (Be), cadmium (Cd), cobalt (Co), chromium 

(Cr), cesium (Cs), copper (Cu), mercury (Hg), manganese (Mn), nickel (Ni), lead (Pb), titanium 

(Ti), uranium (U), vanadium (V), and zinc (Zn). Urine samples were additionally analyzed for 

molybdenum (Mo), platinum (Pt), antimony (Sb), tin (Sn), and tungsten (W). Results: Mean 

concentrations of most metal(loid)s were higher among participants compared to the general US 

female population. We found weak to moderate correlations for inter-matrix comparisons, and 

moderate to strong correlations between several metal(loid)s measured within each biological 

matrix. Blood concentrations of Cu, Zn, Mn, Hg, and Pb, and urinary concentrations of As, Ni, 

and Co, were shown to reflect reliable biomarkers of exposure. For other metals, repeated samples 

are recommended for exposure assessment in epidemiology studies. Predictors of metal(loid) 

biomarkers included fish and rice consumption (urinary As), fish and canned food (blood Hg), 

drinking public water (blood Pb), smoking (blood Cd), and iron/folic acid supplement use (urinary 

Cs, Mo, and Sb). Conclusions: Characterization of metal(loid) biomarker variation over time and 

between matrices, and identification of important exposure sources, may inform future 

epidemiology studies and exposure reduction strategies. 
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1. Introduction 

Metals and metalloids occur naturally in the environment and enter the human body through 

ingestion of food, water, and supplements, and the use of metal-containing products via inhalation, 

dermal absorption, and incidental ingestion [1-5]. In the United States, reports from the National 

Health and Nutrition Examination Survey (NHANES) show that children and adults have 

detectable concentrations of a range of metal(loid)s in their bodies [6], including pregnant women 

and their fetuses because of trans-placental metal(loid) transfer [7-9]. Some of these metals are 

essential for human health and required for fetal growth [10, 11], such as cobalt (Co), copper (Cu), 

iron (Fe), magnesium (Mg), manganese (Mn), molybdenum (Mo), nickel (Ni), selenium (Se) and 

zinc (Zn). Excess or insufficient levels of these metals may pose risks to pregnancy [11, 12]. Other 

metal(loid)s do not play an essential physiologic role and can be toxic if present even at low 

concentrations [1, 13, 14]; some, including lead (Pb) and mercury (Hg), are reproductive toxicants 

and neurotoxicants, while others, such as cadmium (Cd) and arsenic (As), are known human 

carcinogens. Several metal(loid)s (Pb, Hg, Cd, As, Mn, Zn) are also suspected endocrine disruptors 

[15-18].  

 

Puerto Rico has a long-standing history of contamination with environmental chemicals, with 

200+ hazardous waste sites and 16 active Superfund sites (the hazardous waste lands identified by 

the EPA as a site for cleanup because it poses a risk to human health and/or the environment) [19]. 

Many contaminated sites are above unlined landfills that overlie Karst aquifers, creating pathways 

for contamination of groundwater and potential drinking water sources. Therefore, the risk of 

human exposure to metal(loid) contamination is high. However, little is known regarding the 

extent and specific sources of human metal(loid) exposure on the island. This is the first study to 

examine distributions, time trends, and predictors of urinary and blood metal(loid) biomarkers 

measured at multiple times during pregnancy among women living in Northern Puerto Rico. 

Characterizing relationships of metal(loid) biomarkers over time and between matrices, and 

identifying important exposure sources to metal(loid)s, may inform risk evaluations in 

epidemiology and targeted approaches to reduce metal(loid) exposure.  

 

2. Methods 

2.1 Study population  
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This study was conducted among pregnant women participating in the Puerto Rico Testsite for 

Exploring Contamination Threats (PROTECT) project [20-23], an ongoing prospective birth 

cohort in the Northern Karst Region of Puerto Rico that began in 2010. PROTECT aims to explore 

environmental toxicants and other factors contributing to preterm birth risk and other adverse birth 

outcomes in Puerto Rico.   

 

Study participants were recruited at approximately 14 ± 2 weeks of gestation at seven prenatal 

clinics and hospitals throughout Northern Puerto Rico and followed until delivery. The present 

analysis reflects 1,040 women recruited into the study thus far at 18 to 40 years of age. Details on 

the recruitment and inclusion criteria have been described previously [20, 21]. Spot urine samples 

were collected from women at three separate study visits (18 ± 2 weeks, 22 ± 2 weeks, and 26 ± 2 

weeks of gestation) and blood samples were collected during the first and third visits. During the 

initial visit, questionnaires collecting demographic information were administered to participants. 

Information on housing characteristics, employment status, and family situation were collected 

during a second, in-home visit using a nurse-administered questionnaire. Household product, 

personal care product use, and water source and usage information were collected at each visit.  

 

The research protocol was approved by the Ethics and Research Committees of the University of 

Puerto Rico and participating clinics, the University of Michigan, and Northeastern University. 

The study was described in detail to all participants, and informed consent was obtained prior to 

study enrollment. 

 

2.2 Measurement of metal(loid)s 

Spot urine was collected in sterile polypropylene cups and aliquoted within one hour after 

collection, while blood samples were collected in metal-free whole blood tubes. All samples were 

frozen and stored at -80°C and shipped on dry ice to NSF International (Ann Arbor, MI, USA) for 

analysis. Concentrations of 16 metals and metalloids (As) were measured in both urine and blood: 

As, barium (Ba), beryllium (Be), Cd, Co, chromium (Cr), cesium (Cs), Cu, Hg, Mn, Ni, Pb, 

titanium (Ti), uranium (U), vanadium (V), and Zn; an additional 5 metals and metalloids 

(antimony) were measured in urine only: Mo, platinum (Pt), antimony (Sb), tin (Sn), and tungsten 

(W). Metal(loid) concentrations were measured using inductively coupled plasma mass 
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spectrometry (ICPMS) as described previously [24]. Considering that biological samples have 

high levels of carbon and chloride in the matrix, the laboratory selected the appropriate isotopes 

for the requested elements to best avoid interferences where possible. The ICPMS was calibrated 

with a blank and a minimum of 4 standards for each element of interest. An R2 value of >0.995 

was the minimum criteria for an acceptable calibration curve. The calibration curves were verified 

by initial checks at three calibration points within the curve. Continuing calibration checks and 

blanks after every 10 samples were also utilized throughout the analytical run to ensure the ICPMS 

system was maintaining acceptable performance. Urinary specific gravity (SG) was measured at 

the University of Puerto Rico Medical Sciences Campus using a hand-held digital refractometer 

(Atago Co., Ltd., Tokyo, Japan) as an indicator of urine dilution.  

 

2.3. Questionnaire 

The product use questionnaire was adapted from questionnaires used in other studies of adults to 

capture information on potential exposure sources with which the pregnant women may have been 

in contact [20, 21]. At each visit, the questionnaire was administered by a study nurse to collect 

data on product and water use. The household/personal care product use section contained yes/no 

questions about the use of different products in the 48-h period preceding biological sample 

collection: bar soap, cologne/perfume, colored cosmetics, conditioner, deodorant, fingernail 

polish, hair cream, hairspray/ hair gel, laundry products, liquid soap, lotion, mouthwash, other hair 

products, shampoo, and shaving cream. In the water use section, participants were asked about the 

type of water utilized for drinking and cooking (municipal water, private well water, 

bottled/delivered water) as well as water storage behaviors (use of water cistern, filtration). In the 

second visit, participants also completed a food frequency questionnaire on the consumption of 

milk, cheese, fish, rice, yogurt, and other foods (never, <1 per month, 1 per month, 2–3 per month, 

1 per week, 2 per week, 3–4 per week, 5-6 per week, 1 per day and 2 or more per day) as well as 

yes/no questions regarding supplement use (iron, folic acid, multivitamin, etc.). 

 

2.4 Data pre-processing for statistical analyses 

To account for urinary dilution, metal(loid) concentrations in urine were corrected for SG using 

the equation: Pc = P[(SGp – 1)/(SGi – 1)]; where Pc is the SG corrected biomarker concentration 

(ng/mL), P is the measured biomarker concentration, SGp is the median urinary specific gravity in 
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this population (1.019), and SGi is the individual’s urinary specific gravity. Biomarker 

concentrations below the limit of detection (LOD) were replaced by LOD/√2. For statistical 

analysis, we included metal(loid)s with at least 50% of samples having concentrations above the 

LOD [25-27].  

 

2.5 Descriptive statistics and comparison to NHANES 

Descriptive statistics [geometric means (GM), geometric standard deviation (GSD), select 

percentiles] of urine and blood concentrations were calculated to describe distributions of 

metal(loid) concentrations among study participants and for comparison with previous reports. 

Using GM and selected percentiles, we compared concentrations measured in the present study 

with those measured in NHANES (2009-2010, 2011-2012, 2013-2014, 2015-2016), including 

women aged between 18 and 40 years (N for urine=1604, N for blood=3585).  

 

2.6 Correlations between and within blood and urine concentrations 

Spearman correlation coefficients and p values were calculated between blood and urine 

concentrations for 10 metal(loid)s (As, Cd, Co, Cs, Cu, Hg, Mn, Ni, Pb, and Zn) that were 

measured in both matrices and detected in >50% of samples; correlations were calculated using 

all samples that have measurements in both matrices. The ratio of urine concentration to blood 

concentration was constructed for each metal(loid) to further evaluate the relationship between the 

two biomarkers. Spearman rank correlations and p values were also calculated to assess 

relationships between different metal(loid)s within the same matrix; two sets of correlations were 

calculated using samples collected at each visit and using GM of metal(loid) concentrations over 

study visits. 

 

2.7 Change in biomarkers across pregnancy (ICCs) and over time 

To test for significant changes in biomarker concentrations across pregnancy (i.e., time points in 

gestation), linear mixed models (LMM) were used to account for repeated measurements from 

individuals. We also assessed the proportion of variance attributed to between-person variability 

across the three time points in pregnancy, using intra-class correlation coefficients (ICCs) and their 

95% confidence intervals [28]. Ranging between 0 (no reproducibility) and 1 (perfect 

reproducibility), ICCs reflect a poor degree of reliability when below 0.40, a moderate to good 
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reliability when between 0.40 and 0.75, and an excellent reliability when above 0.75 [29]. Next, 

to examine the changes in urinary and blood metal(loid) concentrations over time (2011-2017), 

tests of linear trends across study period were conducted by modeling the GM for each individual’s 

repeated measurements, including the year of visit as a continuous variable, and assessing 

statistical significance using the Wald test.  

 

2.8 Predictor selection 

Two approaches were taken to identify potential predictors of metal(loid) concentrations in urine 

and blood. Covariates (predictors) of interest (n=61) included demographic characteristics, 48-h 

recall of product use, dietary supplement intake, food consumption, and water use and sources. In 

the first approach, we regressed each covariate of interest against each measured biomarker, using 

linear mixed effects models (LMMs) with random intercepts. LMM accounts for the intra-

individual correlation and variation of repeated measures over time and lead to smaller and more 

precise standard errors around means. With LMMs, we assessed log-transformed metal(loid) 

concentrations individually as continuous dependent variables; for urinary metal(loid)s, log-

transformed concentrations were further corrected for SG. Potential predictors were modeled 

individually as independent variables. With the purpose of determining a subset of important 

predictor variables for each metal(loid), in the second approach, we fit multivariable LMMs with 

LASSO (least absolute shrinkage and selection operator) regularization (LMMLasso). LASSO 

regularization shrinks estimated regression coefficients corresponding to “weakly associated” 

covariates to zero, thereby embedding variable selection into the estimation procedure [30]. An 

optimal choice of the coefficient for the LASSO regularization (λ), corresponding with the lowest 

Bayesian Information Criterion (BIC), maximizes the probability of selecting the best model. In 

our analysis, for each metal, all predictor variables were entered in the LMMLasso models at the 

same time. The λ was identified using the R package glmmLasso version 1.3.3.  

 

Furthermore, we analyzed associations between log-transformed metal(loid)s concentrations and 

food frequency questionnaire information collected at the second visit, using linear regression. To 

use the same/close time period for biomarkers and supplement use to assess these relationships, 

urine metal(loid) concentrations measured at the second visit and blood metal(loid) concentrations 
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measured at the third visit were used, as blood samples were not collected during the second visit. 

Data were analyzed using R version 3.2.2 and SAS 9.4 (SAS Institute Inc., Cary, NC) 

 

3. Results 

3.1 Descriptive statistics 

A total of 1,285 urine samples and 1,183 blood samples from 1,040 women with measured 

metal(loid) concentrations in either blood and/or urine samples were included in this analysis. 

Among those 1040 women, 660 and 824 women provided urine and blood samples, respectively. 

Demographic characteristics of those women were described previously [23, 31] and are 

summarized in Table II.1. Most women in our study had private insurance, had an education above 

high school, were employed, and were married or in a domestic partnership. Nearly half of them 

had household incomes below $30,000/year. More than 80% of women never smoked while less 

than 2% smoked during pregnancy and 6% reported second-hand smoking exposure (>1 hour per 

day). Nearly all women reported no consumption of alcohol within the last few months. 

Demographic characteristics do not differ between women who provided urine samples (660 

women) and blood samples (842 women).  

 

Descriptive statistics (GM, GSD, select percentiles) are presented in Table II.2.  Nearly all of the 

samples had detectable concentrations for most of the metals (98-100% > LOD), while a majority 

had detectable Cd (74.5% > LOD), Pb (72.1% > LOD), and Sb (90% > LOD) in urine and half 

had detected As (49% > LOD) and Cd (61% > LOD) in blood. 14 urinary metal(loid)s (As, Ba, 

Cd, Co, Cs, Cu, Hg, Mn, Mo, Ni, Pb, Sb, Sn, and Zn) and 10 blood metal(loid)s (As, Cd, Co, Cs, 

Cu, Hg, Mn, Ni, Pb, and Zn) with at least 50% of samples having concentrations higher than LOD 

levels were included in the statistical analysis.  

 

The comparisons with distributions among women 18 to 40 years old from NHANES 2009-10, 

2011-12, 2013-14 and 2015-16 were included in Table II.3 and Table II.4. In the NHANES 

cohort, some metals (Cu, Ni, and Zn) were not measured in urine samples and only Cd, Hg, Mn, 

and Pb were measured in blood samples. When comparing uncorrected urinary metal(loid) 

distributions with women of childbearing age enrolled in NHANES, women in our study had 

higher GM concentrations of all urinary metal(loid)s except for Cd, which were lower among 
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PROTECT women, and Pb, which were similar in the two cohorts. Median concentrations of As, 

Ba, Co, Hg, Mo, and Sb were 2-fold greater among women in this study compared to NHANES. 

PROTECT women had a median concentration of Mn and Sn that were 13 and 5 times greater than 

NHANES, respectively. For blood samples, PROTECT women had higher concentrations of Hg 

and Mn compared to NHANES while NHANES women had Cd and Pb concentrations (GM) that 

were twice as high as PROTECT women. Among women of childbearing age enrolled in 

NHANES, a small portion was pregnant (85 and 185 women in the urine and blood analysis, 

respectively) and the metal concentrations measured among these pregnant women were similar 

to the levels measured among other women included in our NHANES comparison.  

 

3.2 Correlations between and within blood and urine concentrations 

Spearman correlations between metal(loid)s within the same matrix did not differ when we 

calculated using GM of metal(loid) concentrations over study visit or using samples collected at 

each visit. Therefore, we presented the correlations between GM concentrations in Figure II.1. 

When looking across metal(loid)s measured in urine, there were some moderate to strong 

correlations [r=0.47 (Pb and Ba), 0.55 (Cd and Pb), 0.55 (Ni and Co), 0.59 (Ni and Ba)]. There 

were also weak to moderate (r = 0.30 to 0.45) but statistically significant (p< 0.05) correlations 

between several metal(loid)s. The correlations between metal(loid)s in blood were generally 

weaker compared to urinary metal(loid)s with only a few pairs being moderately correlated (Mn 

and Co, r=0.36; Cd and Co, r=0.33; As and Hg, r=0.32).  

 

Spearman correlation coefficients for the same metal(loid)s across urine and blood matrices are 

presented in the last column of Table II.2. Most of the metal concentration in two matrices were 

significantly correlated, with Co (r=0.51) and Cs (r=0.43) having the highest coefficient followed 

by Hg (r=0.33) and As (r=0.27). Mn, Ni, Zn concentrations measured in urine and blood were not 

correlated.  

 

3.3 Ratio 

Distribution of urine/blood ratios for 10 metals are presented in Figure II.2. GM and median of 

urine/blood ratios were <1 for Cu, Zn, Pb, Mn, and Hg, indicating generally higher concentration 

measured in blood vs urine. Inversely, GM and median of urine/blood ratios were >1 for As, Ni, 
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Cs, and Co, indicating higher concentrations measured in urine vs blood. Cd concentrations were 

similar in two matrices (median urine/blood ratio of 1).  

 

3.4 Change in biomarkers across pregnancy (ICCs) and over time 

Figure II.3 and II.4 show comparisons of urinary and blood concentration distributions for each 

biomarker between study visits. SG-corrected urinary concentrations of metal(loid)s were not 

significantly different between the three visits except for Co, Cs, Cu, Mo, and Zn (p<0.05 for all). 

First visit concentrations were higher compared to later visits for Cs, Mo, and Zn, while Co and 

Cu were higher at the third visit. Blood concentrations of Cs were higher at the first visit, while 

blood concentrations of Cd, Co, Cu, Mn, and Zn were lower, compared to the third visit.  

 

ICCs for urine and blood metal(loid) concentrations and the urine/blood ratio are presented in 

Table II.5. Metals with a urine/blood ratio <1 (Cu, Zn, Pb, Mn, Hg) presented good to excellent 

reliability in blood with ICCs ranging from 0.54-0.78. Among the four metals with only urine 

measurements available, Sn had moderate reproducibility (ICC=0.55), whereas Mo, Sb, and Ba 

had weak reproducibility (ranging from 0.15 to 0.19). Reproducibility varied widely for the 

urine/blood ratio for each metal(loid), with ICCs ranging from 0.07 to 0.48.   

 

Distributions of urinary and blood biomarker concentrations stratified by year are shown in SI 

Figure II.5 and II.6. Results from linear trend tests indicated that the distributions of some 

biomarkers changed slightly over the course of our study period. For example, median levels of 

urine Ba, Cd, Cr, Cs, and blood Cs increased by 20-50% (P for trend<0.05) when comparing earlier 

and later years in the study period; while urinary Mn, Pb, Sb, Sn, and blood Ni and Pb were 

characterized by smaller, 20-30% decreases (P for trend<0.05). 

 

3.5 Predictor selection 

Variable selection analysis revealed several important predictors of urine and blood metal(loid) 

levels. Considering the concentrations of metal(loid)s measured in two matrices and 

reproducibility of different metal(loid)s in our analysis, we presented results for urinary 

concentrations of As, Co, Cs, Mo, and Sb (urine/blood ratio>1) and blood concentrations of Cu, 

Hg, Mn, Pb, and Zn (urine/blood ratio <1). Results from both urinary and blood concentrations of 
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Cd were included as the average urine/blood ratio was 1.  No significant predictors were found for 

either blood or urine Ba, Ni, Sn (data not shown). Here we describe predictors identified by both 

univariable LMMs and multivariable LMMLasso, while Figure II.7 shows all the variables 

selected through either approach. The two statistical approaches gave very similar effect estimates, 

therefore, Figure II.7 presents effect estimates () and confidence intervals (CIs) obtained from 

the univariable LMMs. GM of urinary and blood metal(loid) concentrations in relation to different 

categories of demographic variables, self-reported product use, dietary supplement intake, food 

consumption, and water use are also shown in Table II.6 and Table II.7. 

 

3.5.1 Urine metals  

As: Consuming fish 48 h prior to sample collection had the strongest relationship to urinary As 

concentration, while “other hair product” use, perfume use, and pesticide storage were negatively 

associated with As. Cd: We found strong positive associations between using a metal cistern to 

store water and urine Cd concentration, there was a 0.04 ng/ml difference on Cd concentration 

between women reporting the use of metal cistern and those who used plastic cistern or did not 

use cistern. Weak but significant positive associations were identified between urinary Cd 

concentration with age, parity, pre-pregnancy BMI, and use of perfume. Co: Smoking and 

consuming milk was associated with significantly higher urinary Co; self-reported use of other 

hair product was negatively associated with Co. Cs: Consumption of milk, spinach, folic acid 

supplement and drinking bottled water (vs public water) were positive predictors of higher Cs 

levels in urine. Mo: We found positive associations between self-reported folic acid, iron 

supplement, and peanut butter consumption and urine Mo concentration, while fish consumption 

and drinking filtered water were negatively associated with Mo concentration. Sb: Use of hair 

spray and consumption of folic acid were associated with higher Sb levels, while education and 

use of cosmetics were associated with lower Sb levels. 

 

3.5.1 Blood metals  

Cd: For Cd, smoking (ever, current vs never) was significantly associated with blood levels among 

pregnant women in the study, and the GM concentration difference between current smoker vs 

never smoker (0.13 ng/mL) was stronger than ever smoker vs never smoker (0.02 ng/mL). Cd 

concentrations were higher for women who consumed meat, tomatoes, or collards, and lower for 
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women who consumed multi-vitamins, compared to women who did not consume these items. 

Cu: Self-reported use of shaving cream and other hair product were important predictors of lower 

Cu levels; There was a trend for increasing concentration of Cu with increasing pre-pregnancy 

categories of BMI. Hg: Consuming fish, canned foods (e.g. canned tuna) and tomatoes were the 

strongest predictors of blood Hg levels. Hg concentrations were also higher among women 

with >12 years of education. Mn: Mn concentrations were associated with parity, where 

concentrations among women who had one or more children were significantly higher compared 

to women who had not yet had children. Blood Mn concentrations were lower among women who 

reported using shampoo and other hair products. Water treatment was also negatively associated 

with Mn concentration. Pb: Using bottled water as main drinking source was identified as the most 

significant predictor of lower Pb levels- participants who reported using bottled water as their main 

drinking source had significantly lower concentrations of Pb (0.30 µg/dL) compared to participants 

who drink public supply water (0.36 µg/dL). There were decreasing Pb concentrations associated 

with higher education levels. Zn: Pre-pregnancy BMI and using other hair products were 

negatively associated with blood Zn concentration.  

 

3.6 Findings from the food frequency analysis 

Our analysis of food frequency questionnaire information and metal(loid) concentrations found a 

trend for increasing concentrations of urinary As with increasing rice consumption frequency 

(p<0.05) (Table II.8). The geometric mean concentration of As was 2 fold higher among women 

who consumed rice once per day or more compared to women who consumed rice 2-3 times per 

month or less. Fish consumption frequency was negatively associated with urinary Cd and Pb 

concentrations (Table II.8). A similar trend was also observed for yogurt consumption frequency 

and urinary Sb concentration. In line with the results from the main predictor analysis above, there 

were positive linear trend relationships between meat consumption frequency and blood Cd, and 

fish consumption frequency and blood As and Hg levels (Table II.9). Blood Cs levels also 

increased with increased fish consumption.    

 

4. Discussion 

Our study provided much needed information on exposures to metal(loid)s among pregnant 

women in Northern Puerto Rico. We quantified levels of toxic and essential metal(loid)s in 
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maternal urine and blood, characterized variability of levels across pregnancy, and correlation 

between different metal(loid)s and matrices to better inform the use of metal(loid) biomarkers in 

epidemiology studies. We also identified important predictors of each metal(loid) in blood and 

urine which may suggest possible strategies and considerations for reducing exposure.  

 

4.1 Comparison with other studies  

Table II.10 provides an overview of reported metal(loid) concentrations in other studies of 

pregnant women. Urinary and blood concentrations of some essential metals such as Co, Cu, and 

Zn were within the range of what was reported in previous studies [32-37]. The concentrations of 

Cs in urine and blood were lower in this study compared with other studies of pregnant women in 

Australia and Spain [35, 38]. Urinary Mn concentrations (GM=1.2 ng/mL) in this study exceeded 

those seen in Australia [32] and Mexico [33], while blood Mn concentrations (GM=11.3 ng/mL) 

were comparable with those detected in other studies where the GM or median concentrations 

ranged from 6.5 to 16.1 ng/mL [32, 35, 37, 39].  

 

Ba was only measured in urine and concentrations (GM=2.5 ng/mL) were lower in this study 

compared with Mexican pregnant women (GM=4.0 ng/mL) [33].The levels of Mo and Ni present 

in the urine samples from Puerto Rican pregnant women were similar to the levels reported in 

other studies [32-35]. Studies of Sb and Sn among pregnant women have been much more limited 

in number compared with other essential metals. The concentrations of urine Sb in our study, 

GM=0.1 ng/mL, were lower than the levels reported among Spanish pregnant women [35]. Sn 

levels measured in urine (GM=2.1 ng/mL) were one order of magnitude higher than the Japan 

study [34], where the GM was 0.2 ng/mL; however, this comparison needs to be interpreted 

cautiously given that Sn was only detected among 53% of the samples in the Japan study [34]. 

 

The urinary As concentration reported in our study was comparable to other studies of pregnant 

women while blood As concentrations were lower. The discrepancy between two matrices may be 

attributable to the fact that As in blood is more susceptible to variation as the half-life of inorganic 

As in blood is a few hours compared with a few days in urine [40]. Our study found that the GM 

blood Hg value among Puerto Rican pregnant women was 1.2 ng/mL with 3 participants having 

levels exceeding 5.8 µg/L, U.S. EPA’s current reference dose for blood mercury [41]. 
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Pregnant women in this study had lower urine and blood concentrations of Cd and Pb, compared 

to previous studies mentioned above. This is particularly significant where blood Pb concentrations 

among this population, with GM of 0.33 µg/dL, is the lowest when compared to women in 

NHANES (GM=0.64 µg/dL), and pregnant women in Australia (median= 0.37 µg/dL) [42], Japan 

(GM=0.64 µg/dL) [39], Ohio, US (GM=0.7 µg/dL) [43], Norway (two studies: median=2.5 µg/dL 

and GM=0.75 µg/dL) [37, 44], and South Africa (two studies: median=1.4 µg/dL and median= 2.3 

µg/dL) [36, 45]. In epidemiological studies, higher Pb exposure may mask the effects of other 

exposures [46], therefore, having lower concentrations of Pb, this population may provide an 

opportunity to study the health effects of other metal(loid)s/exposures independent of Pb.  

 

None of the blood samples in our study had Pb concentrations that exceeded the level of concern 

set by CDC, a blood level of 5 µg/dL for pregnant women [47]. However, concerns have been 

raised that even at low levels, prenatal Pb exposure may pose a toxic effect on fetal development 

[48-54].  

 

These differences in metal(loid) concentrations among pregnant women could be mainly due to 

population differences, including different geographical and demographic environment, life style 

and dietary behaviors. The impact of demographic, dietary, and product use patterns during 

pregnancy on the variation of levels for metal(loid)s will be further discussed in this paper.  

 

4.2 Variability of metal(loid) exposures 

Limited studies have measured and/or compared metal(loid) concentrations at different times 

during pregnancy and mainly compared just a few metal(loid)s measured in blood or serum. As 

mentioned above, urinary concentrations of Co, Cs, Cu, Mo, and Zn among pregnant women in 

our study were statistically different between three visits. These different trends in concentration 

may due to an actual increase/decrease of metal(loid) concentrations in the body influenced by the 

change in fetal demand and maternal nutrient supply [55]. Metabolic changes during pregnancy, 

such as the change in glomerular filtration rate [56, 57] and plasma volume expansion [58] may 

also result in different filtration of metal(loid)s from blood into urine throughout pregnancy.  
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Our study reported a significant increase in blood Cd, Co, Cu, Mn, and Zn as gestation progresses. 

Similar increasing trends have been observed in previous studies considering concentrations of 

Co, Cu, and Mn in blood or serum [59-65]. The increasing levels of these metal(loid)s during 

pregnancy may be attributed to the increased intake and/or release of essential nutrients [66, 67]. 

For Cs, lower concentrations in the blood were observed during the third visit which may be 

explained by increasing plasma volume during pregnancy [58]. However, we would expect to see 

similar trends for all metals if the difference is due to metabolic changes during pregnancy.  

 

We also found that urine/blood ratio remained constant for most of the metal over the course of 

pregnancy, except for Cd and Mn where the ratio was higher at the first visit and for Cu which had 

a higher ratio at the third visit (Figure II.8). These trends may reflect the absolute concentration 

changes of the metals in either matrix (the results are consistent with the single matrix results 

described above) and/or the different adjustments of toxicokinetics (distribution, excretion) of 

those metals throughout pregnancy.   

 

Moderate to strong correlations were observed between urinary Pb and Ba (r=0.47) and Ni and Ba 

(r=0.59) (Figure II.1). Lewis et al also reported a strong correlation between urinary Pb and Ba 

(r=0.57) among Mexican pregnant women [33]. There were also a few blood metal(loid)s pairs 

that were moderately correlated (Mn and Co, r=0.36; As and Hg, r=0.32; Cd and Co, r=0.33) in 

our study (Figure II.1). Similar correlations between maternal blood Mn and Co, and As and Hg 

were reported among Norwegian pregnant women [37]. The correlation between As and Hg 

reflects the common source of exposures, seafood, which is consistent with results from our 

predictor analysis, whereas the pattern of correlations we observed between Pb and Ba, Ni and Ba, 

and Mn and Co concentrations could be due to combined use in products, demographic factors, 

and personal behaviors. 

 

Urine and blood are commonly used to measure metal(loid)s in humans [68-70]. For most 

metal(loid)s examined in our study, weak to moderate correlations were observed between 

concentrations measured in both matrices. Most studies use a single human specimen (blood or 

urine) to determine exposure to various metal(loid)s. However, each metal(loid) exhibits unique 

physiochemical properties and toxicokinetics, such as half-life, storage, or elimination rate from 
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the body. As such, the preference for either blood or urine concentration as a better indicator for 

exposure to a given metal(loid) must be coordinated with the predicted toxicokinetics of the 

metal(loid) involved, the time between exposure and specimen collection, and the goals for a 

particular study (e.g. health outcome). For example, since As is excreted relatively rapidly via 

urine, urinary concentration of As is used as an indicator of recent exposure [71, 72]. In 

contrast, blood is the preferred specimen for Pb because Pb has a long biological half-life, resulting 

in less variability of blood concentrations over time [73]. Blood is also the preferred specimen to 

identify exposure to methyl-mercury, the most toxic form of Hg, whereas urine excretion 

represents inorganic Hg exposure [74-76]. For Cd, both urine and blood are useful for detecting 

exposures, as blood Cd primarily reflects recent exposure and urine Cd represents long-term 

exposure [46, 76].  

 

Repeated measures of metal(loid) concentrations in both blood and urine samples enabled us to 

characterize metal(loid) exposures in different biological matrices, their interrelation, and 

variability during pregnancy, and select a better exposure indicator with higher reproducibility and 

abundance for each metal for application in epidemiology studies of pregnancy outcomes. 

Distributions of the ratio of urine/blood for non-essential metal(loid)s and ICCs for two matrices 

are consistent with previous knowledge; 1) the absolute concentrations of Pb and Hg were 

generally higher in blood than in urine (urine/ blood ratios<1 for most samples) and blood samples 

had good to excellent reproducibility (ICC for Pb=0.78, ICC for Hg=0.62); 2) concentrations of 

As were higher in urine (urine/blood ratio >1 for most samples); 3) concentrations of Cd were 

similar in both matrices (mean urine/blood ratio = 1). The concepts presented here for these non-

essential metals can be applied to other metals with similar ratio and reproducibility. It is evident 

from Figure II.2 that, metals with mean urine/blood ratio <1 (Cu, Zn, Mn, Hg, Pb) presented good 

to excellent reliability for blood measurements with ICC ranging from 0.54-0.78, this is consistent 

with studies indicating that blood Mn and Zn concentrations serve as a reasonable indicator of 

exposure [77-79]. The findings also indicate that repeated measurement of essential and non-

essential metal(loid)s during pregnancy was necessary, particularly for most urinary biomarkers.  

 

4.3 Predictors 
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Our predictor analysis revealed that some demographics, dietary factors, product use/water use 

behaviors can affect the distribution of various metal(loid)s. Smoking was the most significant 

predictor of blood Cd. We also found that the consumption of several food items (meat, tomato, 

collard) were additional predictors of Cd exposure. These results were somewhat expected given 

that diet and smoking are known sources of human Cd exposure [80]. In this population, we 

identified the consumption of fish as a significant predictor of As levels; rice consumption 

frequency was also positively associated with As levels. These findings are consistent with studies 

reporting increased exposure and possible health hazards associated with consuming As 

contaminated rice [81-85]. The forms of As found in rice are mostly inorganic and far more toxic 

than the organic form found in the environment and food like fish [86]. Fish was also one of the 

main predictors of blood Hg levels along with canned food and tomatoes. Fish and canned food 

(especially canned tuna) are food groups known to be potentially high in Hg [87-89]. However, 

our finding on tomato consumption and blood Hg are contrary to what was reported in previous 

studies where the consumption of tomato products and tropical fruits were associated with 

lower blood Hg [90-92]. The reported use of supplements during pregnancy, including folic acid 

and iron supplements, were significant and positive predictors of urinary Cs, Mo, and Sb 

concentrations. Cs and Mo are often in multi-vitamin and multi-mineral dietary supplements [93, 

94]. It is also plausible that other specific supplementation that wasn’t included in our 

questionnaires may contain those essential metal(loid)s and women in our study may be consuming 

those supplementations along with folic acid and iron supplements. Prenatal multi-vitamin use 

significantly decreased both blood and urine levels of Cd among this population, and this 

observation is supported by findings on the protective effect of vitamin E on heavy metal(loid)s 

absorption among animals [95, 96].  

 

For blood concentrations of metal(loid)s, self-reported use of shaving cream and/or shampoo 

and/or other hair products were important predictors of lower Cu, Hg, Mn, and Zn levels. This 

inverse association may due to a higher frequency of washing behaviors (showering, face washing) 

which could help remove metals from the skin and reduce continued exposure.  

 

While Pb concentrations in the study population were relatively low overall, we found that those 

whose drink AAA public water have higher levels of blood Pb compared to those who mostly 
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drink from bottled water. According to a report published in 2017 by the Natural Resources 

Defense Council, drinking water violations in Puerto Rico had the highest rate among all the U.S. 

jurisdictions with the presence of Pb and other pollutants in the water coming out of the taps during 

2005-2015 [97]. Water treatment was inversely associated with blood Mn levels (among the 

questionnaire answers from women in our study, most treatments are referring to filtration). A 

study that assessed heavy metal(loid) concentrations in urban rivers of Puerto Rico found that Mn 

was the only metal found to exceed maximum contaminant levels established by the EPA for 

drinking water (US EPA: 5 μg/l) [98]. It is plausible that treatment of drinking water in homes 

may help reduce the levels of Mn in the water, therefore reducing exposure. Participants in our 

study who reported using metal cisterns to store water had elevated levels of urinary Cd. Various 

studies have found significantly higher levels of Cd in collected tank water and suggested that the 

main source of Cd in the tank water may be the corrosion of rooftop material since Cd is a common 

impurity in the Zn coating [99-101]. These findings suggest that proper and careful attention 

should be given to modifying household environments and water treatment behaviors when 

developing metal(loid) exposure remediation strategies.   

 

4.4 Strengths and Limitations 

To our knowledge, this is the first study to assess exposure to multiple metal(loid)s among 

pregnant women in Puerto Rico. PROTECT, a large prospective longitudinal cohort study in 

Puerto Rico, provides a unique opportunity to characterize metal(loid) exposure in this population. 

The study design allows for repeated collection of biological samples and questionnaire data to 

account for the varying levels of exposures during pregnancy, and LMM incorporated this full 

richness and structure of the data across pregnancy [21]. We measured a large panel of metal(loid)s 

in two biological matrices, urine and blood, which helps to inform future epidemiological analyses 

because different matrices may be more appropriate for assessing exposure to different 

metal(loid)s [35]. The study does have several limitations. We did not collect detailed information 

regarding the amount of personal product use, and the collection of maternal supplement use is not 

detailed as to specific ingredients and amount ingested. This may have caused non-differential 

misclassification and attenuated our results toward the null in the linear mixed models. Though 

our findings are possibly generalizable to the general pregnant population in Puerto Rico, they may 

not be generalizable to other pregnant women populations, considering that race/ethnicity, 
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personal care product use, dietary patterns, and toxicokinetics may be quite different compared to 

pregnant women in Puerto Rico. 

 

5. Conclusion 

In conclusion, we reported metal(loid)s exposure levels for 14 toxic and essential trace 

metal(loid)s in urine and blood samples from 1,040 pregnant women in Northern Puerto Rico. 

Exposure to many toxic and essential metal(loid)s are high among these women compared to 

women of reproductive age from the general US population. Blood concentrations of Cu, Zn, Mn, 

Hg, and Pb, and urinary concentrations of As, Ni, and Co, were shown to reflect reliable 

biomarkers of exposure. For other metal(loid)s, repeated samples are recommended for exposure 

assessment in epidemiology studies. We further examined a variety of predictors of prenatal 

metal(loid) exposure and found significant associations between potential predictors and 

biomarkers, including fish and rice consumption (urinary As), fish and canned food (blood Hg), 

drinking public water (blood Pb), smoking (blood Cd), and iron/folic acid supplement use (urinary 

Cs, Mo, and Sb). Improved understanding of biomarkers, sources, and pathways of metal(loid)s 

exposure can inform strategies to reduce exposure among Puerto Rico’s residents. 
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Table II.1 Demographic characteristics of n = 1,040 pregnant women from Puerto Rico (2011− 2017) 

Variable Mean (SD) 

Maternal Age 26.7 (5.5) 

Parity (# Live Births) 0.7 (0.8) 

Characteristic Category Count (Percent) 

Insurance Type 

Private 607 (58.4%) 

Public (mi salud) 351 (33.8%) 

Missing 82 (7.9%) 

Maternal Education 

<=High school/GED 214 (22.5%) 

Some college or technical school 359 (37.8%) 

College degree 312 (32.8%) 

Master’s degree or higher 36 (3.8%) 

Missing 29 (3.1%) 

Household Income 

<$10,000  266 (25.6%) 

≥$10,000 to <$30,000  287 (27.6%) 

≥$30,000 to <$50,000  207 (19.9%) 

≥$50,000  117 (11.3%) 

Missing 163 (15.7%) 

Marital Status 

Single  206 (19.8%) 

Married or living together 801 (77%) 

Missing 33 (3.2%) 

Gravidity (# Pregnancies) 

0 415 (39.9%) 

1 363 (34.9%) 

>1 229 (22%) 

Missing 33 (3.2%) 

Pre-pregnancy BMI (kg/m2) 

≤25 535 (51.4%) 

>25 to ≤30 309 (29.7%) 

>30 166 (16%) 

Missing 30 (2.9%) 

Smoke During Pregnancy 
Yes 9 (1.1%) 

No 787 (98.6%) 

Employment Status 

Unemployed 626 (62.6%) 

Employed 337 (33.7%) 

Missing 37 (3.7%) 

Smoking 

Never 852 (81.9%) 

Ever 144 (13.8%) 

Current 12 (1.2%) 

Missing 32 (3.1%) 

Exposure to Second-hand Smoking 

None 860 (82.7%) 

Up to 1 hour 43(4.1%) 

More than 1 hour 66(6.3%) 

Missing 71(6.8%) 

Alcohol Consumption 

None 511(49.1%) 

Before pregnancy 434(41.7%) 

Within the last few months 59(5.7%) 

Missing 36(3.5%) 
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Table II.2 Urinary and blood concentration of metal(loid)s (ng/ml) in 1,040 pregnant women from Puerto Rico in 2011–2017 

Metal Specimen N (Sample) LOD % >LOD GM GSD 25% 50% 75% 95% rc 

As Urinea 1285 0.3 100 10.9 2.5 6.1 10.8 19.0 46.4 0.27** 
 

Bloodb 1183 0.3 48.9 0.34 1.8 0.21 0.21 0.48 0.99  

Ba Urinea 1285 0.1 99.3 2.5 2.9 1.3 2.5 5.0 12.9  
 

Bloodb 
         

 

Cd Urinea 1285 0.06 74.5 0.12 2.3 0.06 0.12 0.20 0.58 0.25** 
 

Bloodb 1183 0.1 60.9 0.12 1.7 0.07 0.12 0.16 0.27  

Co Urinea 1285 0.05 100 1.0 1.9 0.70 1.0 1.5 2.8 0.51** 
 

Bloodb 1183 0.2 98.2 0.34 1.4 0.28 0.34 0.41 0.57  

Cs Urinea 1285 0.01 100 4.9 1.7 3.7 5.3 7.1 10.7 0.43** 
 

Bloodb 1183 0.04 99.9 1.1 1.4 0.94 1.2 1.4 1.9  

Cu Urinea 1285 2.5 99.3 14.0 1.8 10.0 14.2 19.5 34.5 0.21** 
 

Bloodb 1183 9 99.9 1552 1.3 1393 1562 1740 2096  

Hg Urinea 1285 0.05 98.6 0.60 2.9 0.30 0.59 1.2 3.6 0.33** 
 

Bloodb 1183 0.2 99.9 1.2 1.7 0.85 1.2 1.7 3.0  

Mn Urinea 1285 0.08 100 1.2 1.6 0.95 1.2 1.6 2.3 0.01 
 

Bloodb 1183 2 99.9 11.3 1.4 9.0 11.3 14.0 19.4  

Mo Urinea 1285 0.3 100 58.9 2.0 38.9 62.9 92.2 166  
 

Bloodb 
         

 

Ni Urinea 1285 0.8 98.9 5.4 2.0 3.5 5.5 8.5 15.5 0.06 
 

Bloodb 1183 0.5 96.4 1.0 1.6 0.81 1.0 1.3 2.2  

Pb Urinea 1285 0.1 72.1 0.25 2.7 <LOD 0.27 0.51 1.2 0.17** 
 

Bloodb 1183 0.02 99.9 3.3 1.6 2.5 3.3 4.3 6.4  

Sb Urinea 1285 0.04 90 0.09 1.9 0.06 0.08 0.12 0.22  
 

Bloodb 
         

 

Sn Urinea 1285 0.1 100 2.1 3.0 1.0 1.9 4.0 14.0  
 

Bloodb 
         

 

Zn Urinea 1285 2 100 266 2.5 155 300 498 947 0.07 

 Bloodb 1183 24 99.9 4682 1.3 4248 4752 5252 6055  

Abbreviations: arsenic (As); barium (Ba); cadmium (Cd); cobalt (Co); cesium (Cs); copper (Cu); mercury (Hg); manganese 

(Mn); molybdenum (Mo); nickel (Ni); lead (Pb); antimony (Sb); tin (Sn); zinc (Zn); limit of detection (LOD); geometric mean 

(GM); geometric standard deviation (GSD). 
a Includes uncorrected urinary metal concentrations for up to 3 repeated samples per woman (n = 1285 samples) 
b Includes blood metal concentrations for up to 2 repeated samples per woman (n = 1183 samples) 
c Spearman correlation coefficient calculated for blood and urine metal concentrations; **P value for the Spearman test <0.01 
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Table II.3 Uncorrected urinary biomarker concentrations (ng/ml) in n = 660 pregnant women from Puerto Ricoa in 2011− 2017 

and comparison with U.S. population-based samples of women ages 18− 40 from NHANESb 

 Cohort N (Sample) LOD 
% 

>LOD 
GM GSD 25% 50% 75% 95% P valuec 

As PROTECT 1285 0.3 100 10.9 2.5 6.1 10.8 19.0 46.4 <0.01** 

 NHANES 1562 0.26-1.25 97.6 7.3 3.2 3.3 6.4 13.3 62.3  

Ba PROTECT 1285 0.1 99.3 2.5 2.9 1.3 2.5 5.0 12.9 <0.01** 

 NHANES 1561 0.06-0.12 99.5 1.1 2.8 0.58 1.1 2.3 5.6  

Cd PROTECT 1285 0.06 74.5 0.12 2.3 0.06 0.12 0.20 0.58 <0.01** 

 NHANES 1561 0.036-0.056 85.7 0.14 2.8 0.06 0.15 0.28 0.75  

Co PROTECT 1285 0.05 100 1.0 1.9 0.70 1.0 1.5 2.8 <0.01** 

 NHANES 1561 0.023-0.048 99.6 0.44 2.5 0.25 0.41 0.81 1.8  

Cs PROTECT 1285 0.01 100 4.9 1.7 3.7 5.3 7.1 10.7 <0.01** 

 NHANES 1561 0.066-0.12 100 3.8 2.1 2.3 4.1 6.4 11.4  

Cu PROTECT 1285 2.5 99.3 14.0 1.8 10.0 14.2 19.5 34.5  

 NHANES           

Hg PROTECT 1285 0.05 98.6 0.60 2.9 0.30 0.59 1.2 3.6 <0.01** 

 NHANES 1565 0.05-0.13 69.7 0.28 2.9 <LOD 0.25 0.55 1.8  

Mn PROTECT 1285 0.08 100 1.2 1.6 0.95 1.2 1.6 2.3 <0.01** 

 NHANES 1131 0.08-0.13 42.8 0.12 1.8 <LOD <LOD 0.16 0.34  

Mo PROTECT 1285 0.3 100 58.9 2.0 38.9 62.9 92.2 166 <0.01** 

 NHANES 1560 0.8-0.99 100 36.1 2.5 19.6 39.4 69.8 139  

Ni PROTECT 1285 0.8 98.9 5.4 2.0 3.5 5.5 8.5 15.5  

 NHANES           

Pb PROTECT 1285 0.1 72.1 0.25 2.7 <LOD 0.27 0.51 1.2 0.11 

 NHANES 1561 0.03-0.10 96.2 0.27 2.5 0.15 0.27 0.48 1.2  

Sb PROTECT 1285 0.04 90 0.09 1.9 0.06 0.08 0.12 0.22 <0.01** 

 NHANES 1561 0.022-0.041 69.4 0.05 2.3 <LOD 0.05 0.08 0.21  

Sn PROTECT 1285 0.1 100.0 2.1 3.0 1.0 1.9 4.0 14.0 <0.01** 

 NHANES 1130 0.09-0.22 86.2 0.43 3.2 0.18 0.38 0.88 3.3  

Zn PROTECT 1285 2 100 266 2.5 155 300 498 947  

 NHANES           

Abbreviations: National Health and Nutrition Examination Survey (NHANES); arsenic (As); barium (Ba); cadmium (Cd); cobalt 

(Co); cesium (Cs); copper (Cu); mercury (Hg); manganese (Mn); molybdenum (Mo); nickel (Ni); lead (Pb); antimony (Sb); tin 

(Sn); zinc (Zn); limit of detection (LOD); geometric mean (GM); geometric standard deviation (GSD). 
a Includes biomarker concentrations for up to 3 repeated samples per woman (n = 1,285 samples) 
b Females 18−40 years of age; n = 1,604 for biomarkers measured in 2009-2010, 2011-2012, 2013-2014, and 2015-2016 NHANES 
c P value for two sample t-test comparing geometric mean of chemical concentration in two cohorts; **P <0.01 
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Table II.4 Blood biomarker concentrations (ng/ml) in n = 842 pregnant women from Puerto Ricoa in 2011− 2017 and 

comparison with U.S. population-based samples of women ages 18− 40 from NHANESb 

 Cohort N (Sample) LOD 
% 

>LOD 
GM GSD 25% 50% 75% 95% P valuec 

As PROTECT 1183 0.3 48.9 0.34 1.8 0.21 0.21 0.48 1.0  

 NHANES           

Cd PROTECT 1183 0.1 60.9 0.12 1.7 0.07 0.12 0.16 0.27 <0.01** 

 NHANES 3393 0.1-0.16 83.0 0.31 2.2 0.17 0.28 0.48 1.4  

Co PROTECT 1183 0.2 98.2 0.34 1.4 0.28 0.34 0.41 0.57  

 NHANES           

Cs PROTECT 1183 0.04 99.9 1.1 1.4 0.94 1.2 1.4 1.9  

 NHANES           

Cu PROTECT 1183 9 99.9 1552 1.3 1393 1562 1740 2096  

 NHANES           

Hg PROTECT 1183 0.2 99.9 1.2 1.7 0.85 1.2 1.7 3.0 <0.01** 

 NHANES 3393 0.16-0.28 87.9 0.74 2.5 0.37 0.67 1.4 4.0  

Mn PROTECT 1183 2 99.9 11.3 1.4 9.0 11.3 14.0 19.4 <0.01** 

 NHANES 2174 0.99-1.06 100.0 10.7 1.4 8.4 10.6 13.6 19.2  

Ni PROTECT 1183 0.5 96.4 1.0 1.6 0.81 1.0 1.3 2.2  

 NHANES           

Pb PROTECT 1183 0.02 99.9 3.3 1.6 2.5 3.3 4.3 6.4 <0.01** 

 NHANES 3393 0.7-2.5 98.8 6.4 1.8 4.4 6.1 9.0 16.9  

Zn PROTECT 1183 24 99.9 4682 1.3 4248 4752 5252 6055  

 NHANES           

Abbreviations: National Health and Nutrition Examination Survey (NHANES); arsenic (As); cadmium (Cd); cobalt (Co); cesium 

(Cs); copper (Cu); mercury (Hg); manganese (Mn); nickel (Ni); lead (Pb); zinc (Zn); limit of detection (LOD); geometric mean 

(GM); geometric standard deviation (GSD). 
a Includes biomarker concentrations for up to 2 repeated samples per woman (n = 1,183 samples) 
b Females 18−40 years of age; n = 3,585 for biomarkers measured in 2009-2010, 2011-2012, 2013-2014, and 2015-2016 NHANES 
c P value for two sample t-test comparing geometric mean of chemical concentration in two cohorts; **P <0.01 
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Figure II.1 Heat map of pairwise correlations between urine and blood GM concentrations among pregnant women in the 

PROTECT studyab 

   

                                               Urine                                                                                                Blood 
 

Abbreviations: arsenic (As); barium (Ba); cadmium (Cd); cobalt (Co); cesium (Cs); copper (Cu); mercury (Hg); manganese 

(Mn); molybdenum (Mo); nickel (Ni); lead (Pb); antimony (Sb); tin (Sn); zinc (Zn). 
a The correlation heat map was created using natural log-transformed urinary or blood metal(loid) concentrations 
b All urinary concentrations were SG-corrected
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Figure II.2 Ratio of metal(loid) concentrations in urine and blood samples (n=509)a 

 
Abbreviations: arsenic (As); cadmium (Cd); cobalt (Co); cesium (Cs); copper (Cu); mercury (Hg); manganese (Mn); nickel (Ni); 

lead (Pb); zinc (Zn). 
a All the urinary concentrations were SG-corrected 
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Figure II.3 SG-corrected urinary concentrations (ng/mL) of metal(loid)s by study visit (n=1285)a  

 

Abbreviations: arsenic (As); barium (Ba); cadmium (Cd); cobalt (Co); cesium (Cs); copper (Cu); mercury (Hg); manganese 

(Mn); molybdenum (Mo); nickel (Ni); lead (Pb); antimony (Sb); tin (Sn); zinc (Zn). 
a Number of participants in each visit were 500, 449, and 336 respectively 
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Figure II.4 Blood concentrations(ng/mL) of metal(loid)s by study visit (n=1183)a  

 
Abbreviations: arsenic (As); cadmium (Cd); cobalt (Co); cesium (Cs); copper (Cu); mercury (Hg); manganese (Mn); nickel (Ni); 

lead (Pb); zinc (Zn). 
a Number of participants in 1st and 3rd visits were 678 and 505, respectively 
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Table II.5 Intraclass correlation coefficients (ICCs) and 95% confidence for natural log-transformed urinary and blood 

concentrations of biomarkers and ratio of urine and blood concentrations 

 Urineab Bloodc 
Urine/Blood 

Ratiode 

    

biomarker ICC (95% CI) ICC (95% CI) ICC (95% CI) 

As 0.21 (0.15,0.29) 0.25 (0.17,0.36) 0.20 (0.08,0.42) 

Ba 0.19 (0.13,0.28) - - 

Cd 0.18 (0.12,0.26) 0.48 (0.41,0.56) 0.18 (0.07,0.39) 

Co 0.27 (0.21,0.36) 0.16 (0.07,0.3) 0.07 (0.00,0.53) 

Cs 0.31 (0.25,0.38) 0.77 (0.72,0.8) 0.40 (0.25,0.56) 

Cu 0.21 (0.15,0.3) 0.68 (0.62,0.74) 0.22 (0.06,0.56) 

Hg 0.51 (0.46,0.57) 0.62 (0.56,0.68) 0.43 (0.29,0.59) 

Mn 0.13 (0.07,0.21) 0.54 (0.44,0.6) 0.31 (0.15,0.53) 

Mo 0.15 (0.09,0.23) - - 

Ni 0.13 (0.07,0.23) 0.13 (0.05,0.27) 0.22 (0.08,0.48) 

Pb 0.08 (0.03,0.2) 0.78 (0.73,0.81) 0.22 (0.07,0.48) 

Sb 0.17 (0.11,0.26) - - 

Sn 0.55 (0.49,0.61) - - 

Zn 0.39 (0.33,0.46) 0.75 (0.7,0.79) 0.48 (0.35,0.62) 

Abbreviations: arsenic (As); barium (Ba); cadmium (Cd); cobalt (Co); cesium (Cs); copper (Cu); mercury (Hg); manganese 

(Mn); molybdenum (Mo); nickel (Ni); lead (Pb); antimony (Sb); tin (Sn); zinc (Zn). 
a Among 660 women who had urine samples available, 184 had data from all three visits, 257 had data from two visits, and 219 

had data from one visit 
b specific gravity corrected concentration 
c Among 842 women who had blood samples available, 341 had data from both visits, and 501 had data from one visit 
d Among 403 women who had both urine and blood samples available, 106 had data from both visits, and 297 had data from one 

visit 
e specific gravity corrected urinary concentration was used to calculate the ratio 
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Figure II.5 Distribution of urinary biomarker concentrations (ng/mL) among 660 pregnant women in Puerto Rico over study 

years (2011–2017)ab 

 

Abbreviations: arsenic (As); barium (Ba); cadmium (Cd); cobalt (Co); cesium (Cs); copper (Cu); mercury (Hg); manganese 

(Mn); molybdenum (Mo); nickel (Ni); lead (Pb); antimony (Sb); tin (Sn); zinc (Zn). 
a 2011 and 2012, 2015 and 2016 are combined to have even numbers of samples in each box 
b Number of participants in each year during 2011–2012, 2013, 2014, 2015-2016 were 302, 273, 196, and 434, respectively 
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Figure II.6 Distribution of blood biomarker concentrations (ng/mL) among 842 pregnant women in Puerto Rico over study years 

(2011–2017)ab 

 
Abbreviations: arsenic (As); cadmium (Cd); cobalt (Co); cesium (Cs); copper (Cu); mercury (Hg); manganese (Mn); nickel (Ni); 

lead (Pb); zinc (Zn). 
a 2011 and 2012, 2016 and 2017 are combined to obtain a balanced number of samples in each box 
b Number of participants in each year during 2011–2012, 2013, 2014, 2015, and 2016-2017 were 212, 148, 147, 249, and 274, 

respectively 



 
 
 
 
 
 

60 

Figure II.7 Beta and confidence intervals extracted from individual linear mixed models for metal(loid) concentrations and potential predictorsab 
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Abbreviations: arsenic (As); barium (Ba); cadmium (Cd); cobalt (Co); cesium (Cs); copper (Cu); mercury (Hg); manganese (Mn); molybdenum (Mo); nickel (Ni); lead (Pb); 

antimony (Sb); tin (Sn); zinc (Zn). 

△ Variables also selected as predictors of metal(loid) exposure from multivariable LMMLasso models 
a In this figure, covariates that were not associated with any metal(loid) concentrations in the univariable and multivariable analysis were not included in the y-axis 
b Drinking water source: bottle water (1) vs AAA public water (0)  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 
 
 
 
 

62 

Table II.6 Geometric means of urinary (SG-corrected) and blood concentrations of metal(loid)s according to demographic, and maternal factorsab 

 Urinary metal(loid)s Blood metal(loid)s 

Variable As Cd Co Cs Mo Sb Cd Cu Hg Mn Pb Zn 

overall 10.9 0.12 1.0 4.9 1.2 0.09 0.12 1552 1.2 11.3 3.3 4682 

maternal age (years)             

<25  0.11  5.0  0.10 0.11  1.1    

25-30  0.13  5.4  0.09 0.11  1.3    

>30  0.17  5.8  0.09 0.13  1.3    

p value  <0.001**  <0.001**  <0.001** 0.02**  <0.001**    

maternal education              

<=high school/ged    4.8  0.10   1.1 11.7 4.05  

some college or  

technical school 
   5.3  0.10   1.2 11.4 3.20  

college degree    5.6  0.08   1.3 10.9 2.99  

master’s degree or higher    5.7  0.08   1.5 11.0 3.28  

p value    <0.001**  <0.001**   <0.001** 0.01** <0.001**  

parity (# pregnancies)             

0  0.12     0.11 1516  10.8 3.09  

1  0.13     0.11 1589  11.3 3.34  

>1  0.14     0.13 1560  12.2 3.75  

p value  0.003**     0.01** 0.03**  <0.001** <0.001**  

prepregnancy BMI  

(kg /m2) 
            

≤25  0.12     0.12 1477  10.9  4585 

>25 to ≤30  0.14     0.12 1603  11.7  4759 

>30  0.14     0.10 1684  11.6  4825 

p value  0.004**     <0.001** <0.001**  0.01**  0.005** 

smoking             

never   1.1    0.11    3.23  

ever   1.2    0.13    3.75  

current   0.9    0.25    4.21  

p value (ever vs never)   <0.001**    <0.001**    0.001**  

p value (current vs never)       <0.001**      

Abbreviations: arsenic (As); cadmium (Cd); cobalt (Co); cesium (Cs); copper (Cu); mercury (Hg); manganese (Mn); molybdenum (Mo); lead (Pb); antimony (Sb); zinc (Zn). 
a Results shown for food items with association detected 
b p-values from linear mixed effects models accounting for within-person correlations; *P from 0.1 to 0.05, **P <0.05 
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Table II.7 Frequencies of product use, dietary supplement intake, food consumption, and water use and sources in the 48-h recall questionnaire and geometric mean urinary (SG-

corrected) and blood concentrations of metal(loid)s (ng/mL) associated with self-reported use or non-useab 

 

  Urinary metal(loid)s Blood metal(loid)s 

Variable Use n=660 
N= 

1285 
As Cd Co Cs Mo Sb 

n= 

842 

N= 

1183 
Cd Cu Hg Mn Pb Zn 

Products                  

cosmetic yes 435 845      0.09 568 787  1531 1.3 11.0 3.2  

 no 146 308      0.10 185 259  1604 1.1 11.7 3.6  

p value         0.01**    0.01** 0.02** 0.01** 0.01**  

perfume yes 484 965 11.5 0.13 1.1  62.7  628 868       

 no 97 188 13.1 0.12 1.2  69.9  124 176       

p value    0.05* 0.05* 0.04**  0.02**          

shaving cream yes 48 94   1.1 5.5   67 90  1471 1.2    

 no 533 1060   1.1 5.4   687 957  1556 1.2    

p value      0.77 0.93      0.16 0.23    

shampoo yes 409 815       541 743    11.0   

 no 172 338       213 302    11.6   

p value               0.10   

hairspray yes 196 395      0.10 243 337       

 no 384 759      0.09 507 705       

p value         0.12         

other hair 

product 
yes 81 81 10.2  1.0    109 112  1457  10.1 3.1 4366 

 no 499 1073 11.9  1.1    645 934  1560  11.3 3.3 4716 

p value    0.21  0.06*       0.01**  <0.001** 0.01** 0.002** 

store pesticide yes 342 668 11.1      467 643    10.9 3.1  

 no 238 483 12.7      285 401    11.5 3.6  

p value    0.01**           0.004** <0.001**  
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Table II.7 continued 

 

  Urinary metal(loid)s Blood metal(loid)s 

Variable Use n=660 
N= 

1285 
As Cd Co Cs Mo Sb 

n= 

842 

N= 

1183 
Cd Cu Hg Mn Pb Zn 

Food items                  

milk yes 485 979   1.1 5.5   622 873       

 no 96 174   1.0 4.7   133 175       

p value      0.02** <0.001**           

meat yes 360 729       470 654 0.12      

 no 221 424       285 394 0.11      

p value            0.01**      

fish yes 106 211 14.99    59.3  144 182  1485 1.5    

 no 475 942 11.11    64.8  611 866  1563 1.2    

p value    <0.001**    0.03**     0.03** <0.001**    

cold cuts yes 360 719 11.2 0.13     476 663    11.2   

 no 221 433 12.7 0.14     279 385    11.0   

p value    0.04** 0.05*          0.46   

peanut butter  yes 45 101   1.2  69.1  64 90       

 no 535 1051   1.1  63.3  690 957       

p value      0.04**  0.10          

can foods yes 303 601       393 557   1.3    

 no 277 551       362 491   1.1    

p value              <0.001**    

spinach yes 35 69    6.1   46 57       

 no 545 1083    5.3   709 991       

p value       0.01**           

tomatoes yes 218 442       293 409 0.12  1.3    

 no 362 710       462 639 0.11  1.2    

p value            0.02**  0.01**    

collard 
yes 42 72       31 40 0.14      

no 538 1080       724 1008 0.12      

p value            0.01**      
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Table II.7 continued 

 

  Urinary metal(loid)s Blood metal(loid)s 

Variable Use n=660 
N= 

1285 
As Cd Co Cs Mo Sb 

n= 

842 

N= 

1183 
Cd Cu Hg Mn Pb Zn 

Supplements 
                 

folic acid 
yes 172 344   1.2 5.7 67.4 0.10 213 298       

no 434 864   1.1 5.2 62.3 0.09 606 856       

p value      0.05* <0.001** 0.03** 0.001**         

multi-vitamin 
yes 570 1145  0.13     775 1089 0.12      

no 38 68  0.15     45 66 0.13      

p value     0.27       0.19      

iron supplement 
yes 36 64     73.07  36 48       

no 569 1142     63.19  779 1101       

p value        0.06*          
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Table II.7 continued 

 

  Urinary metal(loid)s Blood metal(loid)s 

Variable Use n=660 
N= 

1285 
As Cd Co Cs Mo Sb 

n= 

842 

N= 

1183 
Cd Cu Hg Mn Pb Zn 

Water usage 
                 

water source  

for drinking a 

bottled  236 479    5.7   361 507     3.0  

public  382 742    5.2   446 629     3.6  

p value 
      0.001**         <0.001**  

water treatment  
yes 147 299       162 231    10.7   

no 471 923       650 913    11.3   

p value 
              0.04**   

water filtration  

frequency b 

~ never 235 469     65.7  289 398       

~ 1/4 of the time 51 97     61.2  60 86       

~ 1/2 of the time 51 93     60.3  66 99       

~ 3/4 of the time 22 42     63.3  59 80       

always 247 496     62.6  327 465       

p value (yes/no) 
       0.13          

cistern material  

plastic 193 370  0.12     211 307       

metal 10 18  0.16     12 18       

other 13 32  0.13     14 21       

p value  
   0.02**             

Abbreviations: number of participants (n); number of samples (N); arsenic (As); cadmium (Cd); cobalt (Co); cesium (Cs); copper (Cu); mercury (Hg); manganese (Mn); 

molybdenum (Mo); lead (Pb); antimony (Sb); zinc (Zn). 
a Results shown for food items with association detected 
b p-values are from linear mixed effects models accounting for within-person correlations: *P from 0.1 to 0.05, **P <0.05 
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Table II.8 Frequencies of selected food type consumption reported in second visit and sg-corrected urinary geometric mean concentrations of metal(loid) biomarkers (ng/ml) 

associated with self-reported frequencya 

Food Item Frequency category nc As Ba Cd Co Cs Cu Hg Mn Mo Ni Pb Sb Sn Zn 

fish 

Never 22 11.3 2.9 0.22 1.3 5.2 14.8 0.63 1.2 76.9 5.9 0.34 0.10 2.0 349 

<1 per month 46 11.7 2.8 0.13 1.1 5.5 14.7 0.66 1.4 73.0 6.5 0.29 0.09 2.5 272 

1 per month 44 10.5 3.0 0.14 1.3 5.6 15.2 0.60 1.3 65.9 6.6 0.25 0.09 2.6 236 

2–3 per month 55 11.6 2.5 0.12 1.1 5.2 13.5 0.59 1.3 57.4 5.9 0.26 0.09 1.9 245 

1 per week 12 12.3 3.0 0.08 1.1 5.7 18.8 0.94 1.3 67.5 8.8 0.18 0.08 4.3 248 

3–4 per week and more 13 16.6 2.5 0.1 1.0 5.4 14.6 0.44 1.2 76.2 5.4 0.20 0.09 1.9 400 

P valueb     0.20 0.61 0.02** 0.06* 0.96 0.95 0.51 0.62 0.37 0.90 0.04** 0.52 0.89 0.90 

rice 

2–3 per month or less 19 8.7 2.9 0.12 1.1 4.9 13.9 0.72 1.4 60.6 5.6 0.29 0.09 2.1 257 

1 per week 11 10.5 2.2 0.08 1.1 5.3 12.0 0.49 1.3 57.3 5.4 0.23 0.09 1.9 185 

2 per week 25 11.2 3.3 0.23 1.3 5.7 14.6 0.73 1.2 67.3 6.2 0.20 0.07 2.0 240 

3–4 per week 65 10.5 2.6 0.12 1.2 5.9 15.7 0.52 1.4 65.4 7.4 0.23 0.10 2.5 288 

5-6 per week 30 15.2 2.7 0.14 1.0 5.4 15.0 0.80 1.3 74.1 5.6 0.30 0.09 2.6 253 

1 per day and more 37 13.4 3.5 0.15 1.2 4.8 14.5 0.58 1.2 69.3 6.4 0.37 0.10 2.6 332 

P valueb   0.02** 0.50 0.55 0.77 0.65 0.51 0.83 0.35 0.25 0.57 0.09* 0.20 0.27 0.09* 

Abbreviations: arsenic (As); barium (Ba); cadmium (Cd); cobalt (Co); cesium (Cs); copper (Cu); mercury (Hg); manganese (Mn); molybdenum (Mo); nickel (Ni); lead (Pb); 

antimony (Sb); tin (Sn); zinc (Zn). 
a Results shown for food items with association detected 
b p-values are from linear mixed effects models accounting for within-person correlations: *P from 0.1 to 0.05, **P <0.05 
c n=449 for total number of participants in second visit 
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Table II.9 Frequencies of selected food type consumption reported in second visit and blood geometric mean concentrations of metal(loid) biomarkers (ng/ml) measured in third 

visit associated with self-reported frequencya 

Food item Frequency category nc As Cd Co Cs Cu Hg Mn Ni Pb Zn 

Meat 

<1 per month 40 0.40 0.11 0.38 1.0 1614 1.3 12.3 1.1 3.3 4638 

1 per month 41 0.31 0.12 0.36 1.1 1623 1.2 12.6 1.1 3.2 4815 

2–3 per month 89 0.31 0.11 0.39 1.1 1613 1.1 12.7 1.0 3.4 4776 

1 per week 32 0.32 0.14 0.36 1.1 1489 1.2 11.5 0.94 3.3 4698 

2 per week 29 0.31 0.13 0.38 1.2 1571 1.2 11.6 1.0 3.3 4681 

3–4 per week and more 26 0.31 0.14 0.43 1.0 1669 1.1 11.9 1.2 3.2 4628 

P valueb     0.16 0.02** 0.27 0.35 0.78 0.26 0.26 0.80 0.76 0.69 

fish 

Never 51 0.29 0.11 0.40 1.0 1635 0.9 12.5 1.0 3.3 4856 

<1 per month 46 0.35 0.12 0.38 1.0 1596 1.1 12.3 1.1 3.4 4726 

1 per month 62 0.30 0.13 0.38 1.1 1667 1.2 12.7 1.0 3.3 4780 

2–3 per month 69 0.32 0.12 0.36 1.1 1547 1.3 11.6 1.0 3.1 4561 

1 per week 14 0.43 0.12 0.35 1.2 1525 1.3 12.6 1.0 3.4 4717 

3–4 per week and more 18 0.43 0.11 0.45 1.4 1514 1.4 13.5 0.94 3.8 4925 

P valueb   0.02** 0.54 0.71 <0.01** 0.06 <0.01** 0.91 0.20 0.73 0.60 

Abbreviations: arsenic (As); cadmium (Cd); cobalt (Co); cesium (Cs); copper (Cu); mercury (Hg); manganese (Mn); nickel (Ni); lead (Pb); zinc (Zn). 
a Results shown for food items with association detected 
b p-values are from linear mixed effects models accounting for within-person correlations: **P <0.05 
c n=505 for total number of participants in third visit 
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Table II.10 Urinary and blood metal(loid) concentrations among pregnant women in PROTECT and previous studiesa 

Urinary Metal(loid)s Summary 

Reference 
Country/Regi

on 
Year n As 

B

a 
Cd Co 

C

s 
Cu Hg 

M

n 
Mo Ni Pb Sb Sn Zn 

Corr 

Ectio

nb 

GM 

/Media

n 

Unit 

Present study Puerto Rico 
2011-

2017 

128

5 

10.

9 

2.

5 

0.1

2 
1.0 

4.

9 

14.

0 
0.60 1.2 

58.

9 

5.

4 

0.2

5 

0.0

9 
2.1 

26

6 
SG GM 

ng/m

L 

Kalloo et al, 2018 Ohio, US 
2003-

2006 
389 5.3 - 

0.2

0 
- - - 0.60 - - - 

0.7

0 
- - - - GM 

ng/m

L 

Lewis et al 2018 Mexico 
1997-

2004 
212 

13.

8 

4.

0 

0.1

8 
1.2 - - - 

0.8

2 

17.

3 

9.

5 
2.9 - - 

28

8 
- GM 

ng/m

L 

Callan et al. 2013 Australia 
2008-

2011 
157 

13.

2 
- - 1.2 - 

10.

4 
- 

0.5

3 
- 

2.

3 
- - - 

39

6 
Crt 

Media

n 
µg/g 

Hinwood et al, 

2013 
Australia 

2008-

2011 
157 - - 

0.7

8 
- - - 

<0.4

0 
- - - 

0.7

0 
- - - Crt 

Media

n 
µg/g 

Hinwood et al, 

2015 
Australia 

2008-

2011 
157 - - - - 

8.

3 
- - - - - - - - - Crt 

Media

n 
µg/g 

Birgisdottir et al, 

2013 
Norway 2003 184 

79.

6 
- 

0.1

6 
- - - 1.2 - - - - - - - Crt 

Media

n 
µg/g 

Fort et al, 2014 
Spain (1st 

trim) 

2004-

2006 
489 

32.

0 
- 

0.6

1 

0.4

5 

8.

0 

12.

0 
- - - 

3.

9 
3.8 

0.3

6 
- 

25

6 
Crt 

Media

n 
µg/g 

 Spain (3rd 

trim) 

2004-

2006 
489 

35.

0 
- 

0.5

4 
1.3 

6.

8 

15.

0 
- - - 

3.

9 
3.9 

0.2

8 
- 

29

0 
Crt 

Media

n 
µg/g 

Shirai et al, 2010 Japan 
2007-

2008 
78 

76.

9 
- 

0.7

7 
- - 

12.

8 
- - 

79.

0 
- 

0.4

8 
- 

0.2

3 

39

3 
Crt GM µg/g 
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Table II.10 Continued 

 

Blood Metal(loid)s Summary 

Reference 
Country/Regi

on 
Year n As 

B

a 
Cd Co 

C

s 
Cu Hg Mn 

M

o 
Ni Pbc 

S

b 

S

n 
Zn 

Corr 

Ectio

nb 

GM 

/Media

n 

Unit 

Present study Puerto Rico 
2011-

2017 
1183 

0.3

4 
 

0.1

2 

0.3

4 

1.

1 

155

2 
1.2 

11.

3 
 1.0 

0.3

3 
  

468

2 
- GM 

ng/m

L 

Kalloo et al, 2018 Ohio, US 
2003-

2006 
389 -  - - - - - -   

0.7

0 
  - - GM 

ng/m

L 

Callan et al. 2013 Australia 
2008-

2011 
172 1.3  - 

0.2

8 
- 

125

2 
- 6.5  

<2.

0 
-   

233

0 
- Median 

ng/m

L 

Hinwood et al, 

2013 
Australia 

2008-

2011 
172 -  

0.3

8 
- - - 

0.4

6 
-  - 

0.3

7 
  - - Median 

ng/m

L 

Hinwood et al, 

2015 
Australia 

2008-

2011 
172 -  - - 

1.

9 
- - -  - -   - - Median 

ng/m

L 

Birgisdottir et al 

2013 
Norway 2003 184 5.9  

0.4

5 
- - - 4.0 -  - 2.5   - - Median 

ng/m

L 

Hansen et al, 2011 Norway 
2007-

2009 
211 1.4  

0.1

5 

0.1

0 
- 

165

0 
1.2 

10.

7 
 - 

0.7

5 
  

511

0 
- GM 

ng/m

L 

Mathee et al, 2014 South Africa 2010 307 8.0  
0.2

0 
- - - 

0.6

0 
-  - 1.4   - - Median 

ng/m

L 

Rudge et al. 2009 South Africa nr 62 
0.5

7 
 

0.1

5 

0.6

0 
- 

173

0 

0.6

5 

16.

8 
 - 2.3   

629

0 
- Median 

ng/m

L 

Nakayama et al, 

2019 
Japan 

2011-

2014 

1799

7 
-  

0.7

1 
- - - 3.8 

16.

1 
 - 

0.6

4 
  - - GM 

ng/m

L 

Abbreviations: sample size (n); arsenic (As); barium (Ba); cadmium (Cd); cobalt (Co); cesium (Cs); copper (Cu); mercury (Hg); manganese (Mn); molybdenum (Mo); nickel (Ni); 

lead (Pb); antimony (Sb); tin (Sn); zinc (Zn); geometric mean (GM); trimester (trim); not reported (nr). 
a To allow for comparison on same scale, the urine concentrations were converted to ng/mL for unadjusted urine, µg/g for creatinine adjusted urine, and blood concentrations were 

converted to ng/mL 
b - No correction applied, SG corrected for specific gravity Crt corrected for creatinine 
c the unit for blood Pb concentration is µg/dL 
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Figure II.8 Urine/blood ratio distribution by study visit (n=509)a 

 

Abbreviations: arsenic (As); barium (Ba); cadmium (Cd); cobalt (Co); cesium (Cs); copper (Cu); mercury (Hg); manganese 

(Mn); molybdenum (Mo); nickel (Ni); lead (Pb); antimony (Sb); tin (Sn); zinc (Zn). 
a Number of participants in 1st and 3rd visits were 309 and 200, respectively 
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Chapter III  

Maternal Blood Metal and Metalloid Concentrations in Association with Birth 

Outcomes in Northern Puerto Rico 

 
Abstract 

 

Background: In previous studies, exposures to heavy metals such as Pb and Cd have been 

associated with adverse birth outcomes; however, knowledge on effects at low levels of exposure 

and of other elements remain limited. Method: We examined individual and mixture effects of 

metals and metalloids on birth outcomes among 812 pregnant women in the Puerto Rico Testsite 

for Exploring Contamination Threats (PROTECT) cohort. We measured 16 essential and non-

essential metal(loid)s in maternal blood collected at 16–20 and 24–28 weeks gestation. We used 

linear and logistic regression to independently examine associations between geometric mean 

(GM) concentrations of each metal across visits and gestational age, birthweight z-scores, preterm 

birth, small for gestational age (SGA), and large for gestational age (LGA). We evaluated effect 

modification with infant sex*metal interaction terms. To identify critical windows of 

susceptibility, birth outcomes were regressed on visit-specific metal concentrations. Furthermore, 

average metal concentrations were divided into tertiles to examine the potential for non-linear 

relationships. We used elastic net (ENET) regularization to construct Environmental Risk Score 

(ERS) as a metal risk score and Bayesian Kernel Machine Regression (BKMR) to identify 

individual metals most critical to each outcome, accounting for correlated exposures. Results: In 

adjusted models, an interquartile range (IQR) increase in GM lead (Pb) was associated with 1.63 

higher odds of preterm birth (95%CI=1.17, 2.28) and 2 days shorter gestational age (95% CI=-3.1, 

-0.5). Manganese (Mn) and zinc (Zn) were also associated with higher odds of preterm birth and 

shorter gestational age; the associations were strongest among the highest tertile for Mn and among 

females for Zn. Mercury (Hg) was associated with higher risk of preterm birth at the later window 
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of pregnancy. Ni measured later in pregnancy was associated with lower odds of SGA. ENET and 

BKMR models selected similar metals as “important” predictors of birth outcomes. The 

association between ERS and preterm birth was assessed and the third tertile of ERS was 

significantly associated with an elevated odds ratio of 2.13 (95% CI= 1.12, 5.49) for preterm birth 

compared to the first tertile. Conclusion: As the PROTECT cohort has lower Pb concentrations 

(GM=0.33 μg/dL) compared to the mainland US, our findings suggest that low-level prenatal lead 

exposure, as well as elevated Mn and Zn exposure, may adversely affect birth outcomes. Improved 

understanding on environmental factors contributing to preterm birth, together with sustainable 

technologies to remove contamination, will have a direct impact in Puerto Rico and elsewhere. 

 

1. Introduction 

Preterm birth (<37 completed weeks of gestation) is a significant public health concern as it is the 

leading cause of infant mortality [1-4]. Other important adverse birth outcomes including low 

birthweight (<2500g) and being small for gestational age (SGA), which may result directly from 

preterm labor and/or growth restriction due to detrimental factors occurring during pregnancy, also 

contribute substantially to childhood and adult morbidity [5-7]. 

 

Puerto Rico has one of the highest incidences of adverse birth outcomes among all US 

jurisdictions. In 2016, there were 3,248 preterm births in Puerto Rico, representing 11.5% of live 

births, compared to the national US average of 9.8% [8]. In addition, Puerto Rico has higher rates 

of childhood obesity and asthma [9-11] as well as obesity, metabolic syndrome, and diabetes in 

adults [12, 13] compared to the rest of the U.S., all of which have been associated with higher rates 

of preterm birth and/or low birthweight. Moreover, traditional risk factors do not explain this high 

rate of adverse birth outcomes and associated consequences in Puerto Rico. Even though there is 

growing epidemiological [14-17] and toxicological [18-21] evidence that environmental factors 

may play a key role, these factors remain understudied and underappreciated. Therefore, it is 

important to understand the role of environmental chemicals in adverse health outcomes and to 

develop new methods for reducing harmful exposures in Puerto Rico and beyond.  
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Ubiquitous in the environment, metals and metalloids have been widely detected among the U.S. 

population [22], including pregnant women and their fetuses because of the trans-placental metal 

transfer [23-25]. While many human and animal studies have focused on elucidating the effects 

associated with heavy metals cadmium (Cd), mercury (Hg), arsenic (As), and lead (Pb), less 

attention has been given to the other metals. However, a growing body of evidence suggests 

that certain essential or trace metals, including copper (Cu) [26] and Nickel (Ni) [27], may be 

associated with an increased risk of preterm delivery. A few other studies also reported inverted 

U-shaped dose-response curves for the associations between birth weight and maternal metal 

exposures, including cobalt (Co) [28] and manganese (Mn) [29, 30]. Therefore, there is a pressing 

need to study the effects of excessive exposure to essential trace elements on adverse pregnancy 

outcomes. In addition, most previous reports on the effects of metals on pregnancy are from studies 

usually involving high doses (e.g., studies on Pd before the elimination in paint and gas), not 

commonly encountered by pregnant women and fetus [31, 32]. Due to the widespread exposure of 

humans and known toxicity of these metals, concern is growing that low-level exposure may also 

adversely affect birth outcomes and several birth cohorts have evaluated the health effects of low-

level exposure to metals during pregnancy [30, 33-37].  

 

As humans are continuously exposed to a mixture of environmental toxicants, there is a pressing 

need to study the relationship of exposures both individually and as mixtures [38]. While most 

studies on metals have assessed metal exposures individually rather than in combination, a few 

have explored metal mixtures in relation to adverse birth outcomes [26, 39-42]. Compared to these 

earlier studies, our study has one of the largest numbers of toxic and trace metal analytes. 

Therefore, we investigated the effects of metal(loid)s on adverse birth outcomes both individually 

and as mixtures. Identifying modifiable environmental risk factors for adverse birth outcomes 

could have a positive public health impact if future exposures can be reduced through contaminant 

remediation or other exposure reduction strategies in an effort to reduce rates of preterm birth and 

other adverse health effects. 

 

2. Methods 
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2.1 Study population   

This study used data collected from 812 pregnant women participating in the ongoing prospective 

cohort project “the Puerto Rico Testsite for Exploring Contamination Threats (PROTECT)” [43-

46]. The PROTECT study launched in 2010 with funding from the NIEHS Superfund Research 

Program and conducted in Puerto Rico because of its high preterm birth rate and the extent of 

hazardous waste contamination on the island. PROTECT aims to explore environmental toxicants 

and other factors contributing to preterm birth risk and other adverse birth outcomes in Puerto 

Rico.   

 

Study participants were recruited at approximately 14 ± 2 weeks of gestation at seven prenatal 

clinics and hospitals throughout Northern Puerto Rico and followed until birth. [43, 44]. Inclusion 

criteria for this study were: maternal age between 18 to 40 years; residence inside of the Northern 

Karst aquifer region; disuse of oral contraceptives within the three months prior to pregnancy; 

disuse of in vitro fertilization to become pregnant; and free of any major medical or obstetrical 

complications, including pre-existing diabetes. Each woman participated in a total of up to three 

study visits (18 ± 2 weeks, 22 ± 2 weeks, and 26 ± 2 weeks of gestation). Detailed information on 

medical and pregnancy history were collected at the initial visit. During an in-home visit (second 

visit), nurse-administered questionnaires were used to gather information on housing 

characteristics, employment status, and family situation. Blood samples were collected from 

women at the first and third visits. The present analysis reflects 812 women who delivered live 

singleton births in PROTECT and had metal biomarker measurements available. 

 

The research protocol was approved by the Ethics and Research Committees of the University of 

Puerto Rico and participating clinics, the University of Michigan, Northeastern University, and the 

University of Georgia. The study was described in detail to all participants, and informed consent 

was obtained prior to study enrollment. 

 

2.2 Measurement of Metals 
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Blood samples were collected in metal-free whole blood tubes and frozen at −80°C, and shipped 

on dry ice to NSF International (Ann Arbor, MI, USA) for analysis. Concentrations of 16 metals 

and metalloids: As, barium (Ba), beryllium (Be), Cd, Co, chromium (Cr), cesium (Cs), Cu, Hg, 

Mn, Ni, Pb, titanium (Ti), uranium (U), vanadium (V), and zinc (Zn) were measured in blood 

samples, using a Thermo Fisher (Waltham, MA, USA) ICAPRQ inductively coupled plasma mass 

spectrometry (ICPMS) and CETAC ASX-520 autosampler, as described previously [26]. 

Standards of known purity and identity were used during the preparation of the calibration, quality 

control, and internal standards. The ICPMS was calibrated with a blank and a minimum of 4 

standards for each element of interest. The calibration curve response versus concentration was 

evaluated for goodness of fit. All validated analyte correlation coefficients (R) were ≥ 0.995.  

 

2.3 Gestational Age and Preterm Birth Calculation 

All the birth outcome data were extracted from medical records. The American Congress of 

Gynecologists (ACOG) recommendations for best obstetrical estimate to calculate the gestational 

age for complete pregnancies [47] were used in our study to as previously described [48, 49]. Per 

common practice, preterm birth (premature labor) was defined as delivery < 37 completed weeks 

of gestation. Based on the presentation of preterm delivery, preterm birth was further classified as 

spontaneous preterm birth (presentation of premature rupture of the membranes, spontaneous 

preterm labor, or both) and non-spontaneous preterm birth (preterm births with preeclampsia or 

with both artificial membrane rupture and induced labor). We included overall and spontaneous 

preterm birth as two of the birth outcomes in our analysis.  

 

2.4 Birthweight calculations 

Birthweight z-scores (defined as the number of standard deviations by which a birthweight is 

above or below the mean) are commonly used to compare individual birthweights with the cohort 

[50, 51]. Gestational age- and sex- specific birthweight z-score were constructed according to the 

INTERGROWTH-21st standards [52]. Small for gestational age (SGA) births were defined as 

below the 10th percentile of birthweight z-scores. Large for gestational age (LGA) births were 

defined as above the 90th percentile of birthweight z-scores. 
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2.5 Data pre-processing for statistical analyses 

Biomarker concentrations below the limit of detection (LOD) were replaced by LOD/√2 (LOD). 

For statistical analysis, we included metal(loid)s with at least 70% of samples having 

concentrations above the LOD as continuous variables, and metal(loid)s with less than 70% of 

samples above the LOD (As and Cd) as binary variables (above vs below LOD). Metals with low 

detection rate (<30%) were excluded from the analyses. Descriptive statistics were calculated for 

all exposure and outcome variables. Log-transformed t-test was performed to compare the 

maternal metal concentrations between preterm and term births. 

 

2.6 Single-Pollutant Models 

Logistic regression models were used to examine the associations between metal exposure and 

binary adverse birth outcomes, including preterm birth (overall and spontaneous preterm birth), 

SGA, and LGA. As SGA and LGA may have similar complications, SGA models excluded LGA 

births, and LGA models excluded SGA births. Multiple linear regression was used to model metal 

exposures with continuous outcomes, gestational age and birthweight z-score. All outcomes are 

regressed on the geometric averages of participant concentrations across the two visits (when 

missing concentrations at one visit, the “average” concentration was equal to the single available 

concentration), with separate models for each exposure biomarker. Metal concentrations were 

natural log-transformed as they had right skewed distributions. 

 

The crude models only included the geometric average blood metal concentration. The final set of 

covariates were selected in a stepwise procedure if they altered the beta coefficient of metal 

exposure by 10% or more. The covariates considered were maternal age, insurance type, maternal 

education level (an indicator of socioeconomic status), marital status, employment status, 

gravidity, pre-pregnancy BMI, smoking, exposure to second-hand smoking and alcohol 

consumption. The final models were controlled for maternal age, maternal education level, pre-

pregnancy BMI, and exposure to second-hand smoking.  
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To assess potential windows of vulnerability in pregnancy, we fit separate multiple linear 

regression models for each visit using visit-specific metal concentrations. In another analysis, we 

divided average metal concentrations into tertiles to examine the potential for non-linear 

relationships. For non-essential metals, effect estimates were calculated for each of the top two 

tertiles in comparison to the lowest tertiles of exposure. For essential metals, effect estimates were 

calculated for the highest and lowest tertiles in comparison to the middle tertile of exposure [26]. 

Finally, to understand whether the effect estimates for metals on birth outcomes differed according 

to infant sex, all previously mentioned single-pollutant models were refitted with the addition of 

an interaction term between infant sex and metal concentration, and the interaction term coefficient 

was tested for significance. 

 

The results were presented as change in days of gestational age and birthweight z-score (95% 

confidence intervals), and odds ratio of preterm birth, SGA and LGA (95% confidence intervals), 

per interquartile range (IQR) increase in metal concentrations. The alpha level was set at 0.05. We 

also considered significance after adjusting for multiple testing using the Benjamini-Hochberg 

method [53]. Since birth outcomes were correlated, we calculated q values (adjusted p values) 

treating each outcome as a family of tests (10 tests per outcome). A cutoff of 0.1 for q value was 

used to further interpret main results with greater confidence.  

 

2.7 Mixture Analysis 

In addition to analyzing each metal separately, we explored the effect of the metal mixture on birth 

outcomes with two approaches. 

 

2.7.1 Elastic Net (ENET) and Metal Risk Score 

In the first method, we constructed a metal risk score --Environmental Risk Score (ERS). An ERS 

is conceptualized as a weighted summary measure of the effects of multiple exposures where the 

weights are regression coefficients derived from a model of the association between chemical 

mixtures and the outcome of interest. We utilized elastic net (ENET) to identify the important 

metals that were driving the association with birth outcomes and to construct the ERS [54]. ENET 
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is a regularized regression method that combines the penalties of the least absolute shrinkage and 

selection operator (LASSO)  and ridge regression [55]. The objective function for a continuous 

outcome can be expressed as: 

�̂�𝐸𝑁𝐸𝑇 = arg min
(𝛽0 ,𝛽)∈ℝ𝑝+1

1

2𝑛
∑(𝑦𝑖 − 𝛽0 − 𝑥𝑖

𝑇𝛽)2 + 𝜆 (
(1 − 𝛼)

2
‖𝛽‖2

2 + 𝛼‖𝛽‖1)

𝑛

𝑖=1

 

where 𝑖 = 1, … , 𝑛 indexes the subjects, 𝑥𝑖
𝑇 ∈ ℝ𝑝 is the vector of 𝑝 covariates for the 𝑖-th subject, 

and 𝑦𝑖 is the continuous health outcome for the 𝑖-th subject. ENET utilizes two tuning parameters 

(𝜆, 𝛼). Intuitively, 𝜆 ∈ [0, ∞) controls the overall strength of the shrinkage while 𝛼 ∈ [0,1] 

controls the tradeoff between automatic variable selection (L1 penalty) and stabilization of the 

solution path in the presence of collinear exposures (L2 penalty) [56]. Therefore, ENET is 

generally considered a useful penalized regression approach for variable selection in the presence 

of highly collinear predictor variables [54]. 

 

We fit ENET on all the metals (IQR standardized) in relation to each birth outcome of interest 

adjusted for the same covariates from the single-pollutant analysis (retained in the model, not 

subject to shrinkage). Tuning parameters were selected using 10-fold cross-validation. ERS was 

computed as a weighted sum of the selected non-zero predictor coefficients from each model. We 

further categorized ERS by tertiles and refit the regression models to examine the associations 

between categorical ERS and birth outcomes and compared results to those from individual tertile 

models.  

 

2.7.2 Bayesian kernel machine regression (BKMR) 

The second approach for conducting mixture analysis was Bayesian kernel machine regression 

(BKMR) [57], which enabled us to evaluate the joint effect of multiple metals, interactions 

between metals, and potential non-linear relationships between metals and outcomes of interest 

[58]. Because exposures in our study are correlated, we implemented BKMR with hierarchical 

variable selection (10,000 iterations by a Markov Chain Monte Carlo (MCMC) algorithm). This 

approach requires grouping of exposures based on correlations between exposures and similar 
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potential mechanisms of action (e.g. toxic metals vs essential metals). Therefore, we grouped As, 

Cd, Hg, and Pb into group 1 (toxic metals), Co and Mn into group 2 (correlated essential metals), 

and Cs, Cu, Ni, and Zn (essential metals) into group 3. Posterior inclusion probabilities (PIP) were 

extracted from each BKMR model, which provides a measure of variable importance for each 

exposure group (groupPIP) and how each exposure in that group is driving that group-outcome 

association (condPIP). To determine the importance of each group/exposure for each study 

outcome a threshold of PIP>0.5 was used [59, 60]. Data were analyzed using R version 3.6.2 and 

SAS 9.4 (SAS Institute Inc., Cary, NC) 

 

3. Results 

3.1 Descriptive statistics 

Demographic characteristics of 812 women in our analysis were described previously [46, 48] and 

summarized in Table III.1. The mean age of participants was 26.7 and nearly half of the women 

had a BMI less than 25kg/m2 prior to pregnancy. Approximately two-thirds of the women in our 

study had private insurance providers and were employed. 30% had reported graduating from 

college or higher. Nearly half of them had annual household incomes less than $30,000. 80% of 

the women never smoked while very few (6.8%) reported consumption of alcohol within the last 

few months. Mean gestational age was 38.8 (SD=2.1) weeks for 812 singleton births included in 

this analysis, among which 80 (10%) were preterm and 48 (6%) were spontaneous preterm; the 

rates of SGA and LGA were both 9%.  

 

Descriptive statistics and Spearman correlations between different metals were previously reported 

elsewhere [61]. Briefly, 1) all metals were detected in the majority of samples, with the exception 

of As (49% > LOD) and Cd (61% > LOD) and Ba, Be, Cr, Ti, U, and V, which were detected in 

very few samples (<30%) (Table III.2); 2) mean concentrations of Cu, Mn, Pb, and Zn were higher 

for preterm birth cases compared to other births. 3) there were weak to moderate correlations 

between different blood metal concentrations (Mn and Co, r=0.36; As and Hg, r=0.32; Cd and Co, 

r=0.33, SI Figure S1); 4) the first visit had lower concentrations of Cd, Co, Cu, Mn, and Zn, and 

higher concentrations for Cs, when comparing to the third visit; and 5) Cu, Zn, Pb, Mn, and Hg 
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presented good to excellent reliability in repeated blood samples with intraclass correlation 

coefficients (ICCs) ranging from 0.54-0.78. 

 

3.2 Single-pollutant Metal Analyses 

The full models included 731 women who had complete data on the four demographic covariates 

(age, maternal education, pre-pregnancy BMI, and second-hand smoking). Table III.3 presents 

the associations between average metal concentrations and birth outcomes, while Figure III.1 and 

Table III.4 show the visit specific associations. 

 

Average Pb concentration was strongly associated with gestational age, for which an IQR increase 

was associated with 2 days (95% CI=-3.1, -0.5; q value=0.09) shorter gestational age; the effect 

estimates did not differ by study visit. Average Zn was also suggestively associated with decreased 

gestational age (△/IQR= -0.7, 95% CI= -1.5, 0.2) and the association with third visit Zn remained 

significant, after stratification of the results by study visit (Figure III.1 and Table III.4). No 

significant relationships were observed between birthweight z-score and average metal 

concentrations (data not shown). However, as shown in Figure 1, when stratified on study visit, 

third visit Co, Cs, Ni concentrations were significantly positively associated with birthweight z-

score, with an increase of 0.14 (95% CI=0.03, 0.25), 0.14 (95% CI= 0.00, 0.28), and 0.11 (95% 

CI= 0.01, 0.21) in birthweight z-score per IQR increase in the metal concentrations, respectively 

(Table III.4).  

 

In line with results from gestational age analysis, average Pb, Mn, and Zn concentrations were 

associated with elevated odds of preterm birth (both overall and spontaneous), with OR ranging 

from 1.32 to 1.83 per IQR increase in metal concentration (Table III.3). In the stratified analysis, 

Pb and Zn were associated with increased odds of spontaneous preterm birth at only visit 1 (Pb: 

OR/IQR= 1.75, 95% CI: 1.12, 2.73; Zn: OR/IQR= 2.04, 95% CI= 1.23, 3.39). In a sensitivity 

analysis where metal concentrations were entered in models as tertiles, the change in gestational 

age and odds of having a preterm birth was only significant among the highest tertile for Pb and 

Mn (Figure III.2 and Table III.5).  
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Though geometric mean average models for Hg did not find any association with birth outcomes, 

Hg was associated with 1.5- and 2.3-fold increased odds of overall and spontaneous preterm birth 

at visit 3 (overall: OR/IQR= 1.46, 95% CI= 0.97, 2.19; spontaneous: OR/IQR= 2.30, 95% CI= 

1.32, 4.02), respectively (Figure III.1); interestingly, this association appeared stronger when 

comparing women in lower two tertiles of exposure rather than higher two tertiles (Figure III.2 

and Table III.5). For SGA, Ni concentration was associated with decreased OR, although only 

significant when comparing the highest tertile to the middle tertile (OR/IQR= 0. 33, 95% CI= 0.16, 

0.66). Visit specific analysis also revealed that higher Mn concentration at the third visit was 

associated with decreased odds of SGA (OR/IQR= 0.62, 95% CI= 0.42, 0.93). No metal 

concentrations were associated with LGA in average and visit stratified models (Table III.4).  

 

After correcting for multiple testing, the associations of both average and first visit Pb and Zn with 

overall preterm birth, third visit Hg with spontaneous preterm birth, as well as the association of 

average Ni with SGA had q-values < 0.1 (Table III.3, Figure III.1), providing greater confidence 

in these associations.  

 

3.3 Mixture analyses 

Table III.6 shows the variable selection results from ENET models. The estimated weights 

(regression coefficients) presented in Table III.6 are from models where metal concentrations 

were log transformed and IQR standardized. Preterm birth (overall) models had more than one 

metal with non-zero weights; Pb (β = 0.057, OR=1.06) and Zn (β = 0.011, OR=1.01) were selected 

as important predictors and all other metals were shrunk to zero. Therefore, we constructed ERS 

using estimated weights for Pb and Zn and regressed preterm birth by this score. The OR for 

preterm birth comparing the highest vs. the lowest tertiles of ERS was 2.13 (95% CI= 1.12, 5.49, 

p=0.02) (Figure III.2). In the BKMR hierarchical variable selection models for preterm birth, all 

three metal groups had posterior inclusion probabilities higher than 0.5 and the important metals 

selected from the groups included Zn (condPIP=0.83), Pb (condPIP=0.68), and Mn 

(condPIP=0.60) (Table III.7). In a secondary analysis, we ran BKMR models regressing preterm 
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birth while only including Mn, Zn, Pb to explore the potential non-linearity and interaction 

between the predictors. The single metal-response curves in Figure III.3 A show that 1) Pb and 

Zn had a positive linear relationship with preterm birth at higher levels (the confidence intervals 

at lower distributions are wide due to sparse data); 2) the overall trend for Mn was also positive 

and generally linear. Further, the associations between each metal and preterm birth did not differ 

by varying quantiles of the other two metals, indicating a lack of interaction between different 

metals (Figure III.3 B). 

 

3.4 Sex interaction 

When interactions between infant sex and metal concentrations were added to single-pollutant 

models, the interaction terms were not statistically significant, except for the associations between 

Zn and gestational age (p value=0.01), and Cu and LGA (p value=0.03). Stratified analysis by 

infant sex showed that the effect of Zn on gestational age was only significant among female 

infants (p value=0.006) but not male infants (p value=0.62); one IQR increase in Zn was associated 

with 3 days (95% CI= -5.2, -0.9) shorter gestational age among women who delivered female 

infants. Figure III.4 shows the interaction effect of infant sex on the association between the 

average Zn concentration and gestational age. The impact of Cu on LGA also varied by infant sex, 

where odds of LGA were reduced among female infants (OR/IQR= 0.62, 95% CI= 0.39, 0.99, p 

value=0.04). However, differences in associations between metals and birth outcomes by sex were 

not observed when we conducted the mixture analyses stratified by infant sex. Only Pb was 

identified as the important predictor of preterm birth/gestational age from ENET and BKMR 

models, among both female and male infants. The results from tertile analyses stratified by infant 

sex and study visit were similar to the main tertile analyses results we reported; sex-specific 

interactions were not observed. 

 

4. Discussion 

In this study, we evaluated the individual effects of prenatal essential and non-essential metal(loid) 

exposure on adverse birth outcomes among a Puerto Rico population. Our analyses demonstrated 

that maternal blood concentrations of Pb, Zn, Mn, and Hg were associated with shorter gestational 
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age and higher odds of preterm birth, while Ni was associated with higher birthweight and lower 

odds of SGA. Some associations were observed only when considering exposure at specific 

prenatal timepoints, which may reflect windows of exposure vulnerability. Additionally, we 

estimated the cumulative effect of metal mixtures using ENET and BKMR. ENET identified Pb 

and Zn as the most important predictors of preterm birth, while BMKR selected Pb, Zn, and Mn 

as most predictive of preterm birth. Findings from our study highlight that several metals are 

associated with adverse birth outcomes and stress the importance of assessing the effects of 

chemical mixtures on health outcomes, using multiple statistical methods and in comparison with 

single-pollutant models.  

 

A few studies previously reported associations between prenatal metal mixtures and birth 

outcomes. Signes-Pastor et al. reported that Pb, Mn, and As combined were associated with 

reduced head circumference, weight, and length of newborns [39], Lee et al. found that the joint 

effects of Pb and Hg were related to birthweight reduction [42], and Luo et al. confirmed a negative 

association between Cd and As and birthweight [41]. In our study, negative effects were 

consistently observed for Pb in combination with other metals. Pregnant women in this Puerto 

Rico cohort had particularly low blood Pb concentrations (GM=0.33 μg/dL) when comparing 

across other studies of pregnant women, including studies conducted in Australia (median= 0.37 

μg/dL)[62], Japan (GM=0.64 μg/dL) [63], Ohio, US (GM=0.7 μg/dL) [64], Norway (two studies: 

median=2.5 μg/dL and GM=0.75 μg/dL) [65, 66], South Africa (two studies: median=1.4 μg/dL 

and median= 2.3 μg/dL) [67, 68] and China (median=3.2 μg/dL) [69]. In addition, all blood 

samples in our study had Pb concentration lower than the level of concern set by CDC for pregnant 

women (5 μg/dL) [70]. However, our analysis revealed that maternal blood Pb, even at very low-

levels, was the most strongly associated with increased risk of preterm birth and shorter gestational 

age of all the metals assessed. In recent years, concerns have also been raised that even at low 

levels, prenatal Pb exposure may pose toxic effects on fetal development [35-37, 71-75]. Our 

results are consistent with these studies and provide further evidence that blood Pb at low levels, 

and potentially below current reference levels, may be associated with preterm birth. However, we 

did not find an association between Pb and birthweight, whereas several previous studies reported 
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an inverse association with Pb and infant size when explored individually and in combination with 

other metals [40-42]. 

 

Zn was also a key exposure associated with birth outcomes in this study. Blood concentrations of 

Zn (GM=4682.4 ng/mL) were similar to levels reported in previous studies of pregnant women 

[66, 68, 76]. We found that associations between Zn and birth outcomes varied by infant sex, such 

that blood Zn was negatively associated with gestational age among female infants, whereas the 

association was not significant for male infants. It is unclear whether the infant sex-specific 

association we observed with Zn and gestational age could be indicative of vulnerability for 

women carrying a female fetus. The comparatively rapid growth of male fetuses may require more 

Zn compared to females, thus increased Zn may be less likely to produce adverse effects among 

males. Elevated blood Zn levels may also reflect the state of various processes in the body, 

including inflammation, oxidative stress and other key functions [77-79] that can play a role in 

gestation length. 

 

Our negative findings with increased Zn are contrary to animal studies, observational and 

randomized trials on humans where maternal Zn deficiency is often associated with adverse birth 

outcomes, including preterm birth [80, 81]. Because one of many important biological functions 

of Zn is in the development and function of cells involved in the immune system, it is hypothesized 

that Zn deficiency may contribute to maternal or intrauterine infection and therefore affect 

premature birth [82]. Some reviews on the topic have suggested that the association observed 

between Zn deficiency and adverse birth outcomes could result from poor nutrition [82-85]. 

 

Mn is also an essential nutrient that plays a vital role in the body but can be toxic at excessive 

levels. In this population, Mn concentrations in blood (GM=11.3 ng/mL) were higher than those 

seen in Australian (GM=6.5 ng/mL) [76] and Norwegian pregnant women (GM=10.7ng/mL) [66]. 

We found that average Mn concentrations across pregnancy were associated with elevated odds of 

preterm birth and shorter gestational age; the association was significant for higher levels of blood 

Mn in the tertile analysis, indicating a potential threshold effect. BKMR graphs (Figure 3A) also 
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showed a generally linear relationship between Mn and preterm birth at higher levels. These 

findings are supported by reports on high dose Mn-related maternal and fetal toxicities [86-89] 

and the U-shaped Mn dose-response curve [29, 33] observed in animal studies and epidemiologic 

studies.  

 

Mechanistically, the group of metals explored in our study likely impact various biological 

pathways associated with preterm delivery and fetal development. One leading hypothesis of the 

mechanism of action is through inducing oxidative stress, defined as the homeostatic imbalance 

between reactive oxygen species (ROS) formation and antioxidants [90]. Several in vivo and in 

vitro studies have linked metal toxicity to the formation of ROS [91, 92]. The excessive free radical 

species can induce oxidative stress and cause damage to lipids, proteins and DNA in the placental 

tissue that eventually lead to pregnancy complications [90, 93, 94]. Reproductive hormones also 

play an important role in maintaining pregnancy; in turn, disruption of the complex interplay 

between hormones may lead to adverse effects during gestation. A number of metals are 

reproductive toxicants and suspected endocrine disruptors [95-98]. Evidence suggests that metals 

can influence reproductive hormone levels through several pathways, including hormone 

synthesis, regulation, transport and metabolism, and/or interference with receptors [99-106], with 

potential implications for pregnancy outcomes. 

 

Our approaches for analyzing the effects of combined metal exposures provide evidence that Pb, 

Zn, and Mn are likely key exposures during pregnancy contributing to adverse birth outcomes. 

The weak correlations between the three metals are not likely to reflect common sources of 

exposure. Although BKMR analysis did not suggest interaction between the three metals, future 

studies constructing mechanistically based exposure mixtures are needed. 

 

Our study is the first to assess the impact of metals on birth outcomes among pregnant women in 

Puerto Rico. The PROTECT study, a large prospective longitudinal cohort study in Puerto Rico, 

provided an opportunity to study the relationships between environmental pollutants and adverse 

birth outcomes in an at-risk population. The innovative study design allows for repeated capture 
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of biological samples to account for the varying levels of exposures during pregnancy. Few 

epidemiology studies have evaluated metal exposures collectively in relation to birth outcomes, 

giving the proposed study a unique opportunity to test the impact of more realistic exposure 

profiles on birth outcomes.  

 

The present study does have some limitations. The metal levels measured in blood depict 

circulating levels, which may not reflect levels in the uterine and fetal compartments that may be 

more biologically relevant. However, blood biomarkers may be indicative at least in part of the 

activity at the maternal-fetal interface, and collection of blood is much more feasible than placenta 

tissue or fluid samples from the uterus during pregnancy. We used the same data to calculate ERS 

and then to fit ERS models which has the potential for overfitting. Metal risk score needs to be 

validated in an independent cohort before being used as a prognostic tool by other studies. Another 

challenge with constructing ERS is that the ENET models assume a linear relationship between 

metals and the birth outcomes, and does not capture potential non-linear relationships and 

interactions between metals which maybe important when considering essential metals that may 

be toxic at high levels of exposure. However, BKMR analysis does allow for the possibility of 

nonlinearity and interactions between metals. There are also other statistical strategies for 

incorporating nonlinearity and interactions into constructing ERS that should be explored in future 

applications of this method [54, 107-109]. 

 

5. Conclusion 

We considered different statistical methods to examine the effect of 10 toxic and essential trace 

metal(loid)s and metal risk score on various birth outcomes among pregnant women in Northern 

Puerto Rico. Although the PROTECT cohort has lower Pb concentrations (GM=0.33 μg/dL) 

compared to the mainland US and other studies of pregnant women in different countries, our 

findings suggest that low-level prenatal Pb exposure, as well as elevated Mn and Zn exposure, may 

adversely affect birth outcomes. These findings provide further support for the need to reduce Pb 

exposure as much as possible among pregnant women. Improved understanding of environmental 

and other factors that contribute to preterm birth, together with developing sustainable 
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technologies to remove contamination, will have a direct public health impact in Puerto Rico.  
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Table III.1  Demographic characteristics of n = 812 pregnant women from Puerto Rico (2011− 2017) 

Variable Mean (SD) 

Maternal Age 26.7 (5.7) 

Characteristic Category Count (Percent) 

Insurance Type 

Private 478 (58.9%) 

Public (mi salud) 304 (37.4%) 

Missing 30 (3.7%) 

Maternal Education 

<=High school/GED 175 (21.6%) 

Some college or technical school 284 (35%) 

College degree 246 (30.3%) 

Master’s degree or higher 95 (11.7%) 

Missing 12 (1.5%) 

Household Income 

<$10,000  226 (27.8%) 

≥$10,000 to <$30,000  230 (28.3%) 

≥$30,000 to <$50,000  156 (19.2%) 

≥$50,000  93 (11.5%) 

Missing 107 (13.2%) 

Marital Status 

Single  162 (20%) 

Married or living together 641 (78.9%) 

Missing 9 (1.1%) 

Gravidity (# Pregnancies) 

0 296 (36.5%) 

1 307 (37.8%) 

>1 98 (12.1%) 

Missing 111 (13.7%) 

Pre-pregnancy BMI (kg/m2) 

≤25 413 (50.9%) 

>25 to ≤30 211 (26%) 

>30 145 (17.9%) 

Missing 43 (5.3%) 

Infant Gender 

Female 382 (47%) 

Male 426 (52.5%) 

Missing 4 (0.5%) 

Employment Status 

Unemployed 489 (60.2%) 

Employed 310 (38.2%) 

Missing 13 (1.6%) 

Smoking 

Never 678 (83.5%) 

Ever 115 (14.2%) 

Current 11 (1.4%) 

Missing 8 (1%) 

Exposure to Second-hand Smoking 

None 696 (85.7%) 

Up to 1 hour 25 (3.1%) 

More than 1 hour 51 (6.3%) 

Missing 40 (4.9%) 

Alcohol Consumption 

None 388 (47.8%) 

Before pregnancy 355 (43.7%) 

Within the last few months 57 (7%) 

Missing 12 (1.5%) 
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Table III.2 Blood biomarker concentrations (µg/L) in N = 812 pregnant women from Puerto Ricoa in 2010− 2017 (stratified by 

preterm birth status) and comparison with U.S. population-based samples of women ages 18− 40 from NHANESb 

Metals LOD %>LOD 
Preterm Birth (n=112) Term Birth (n=1034) NHANES 

GM GSD Median GM GSD Median GM GSD Median 

Co 0.2 
98.3 0.35 1.4 0.34 0.34 1.4 0.34    

Cs 0.04 
99.9 1.2 1.4 1.2 1.1 1.4 1.2    

Cu* 9 
99.9 1623 1.2 1620 1544 1.3 1556    

Mn* 2 
99.9 11.9 1.4 12.0 11.2 1.4 11.2 10.7 1.4 10.6 

Ni 0.5 
96.4 1.0 1.7 1.0 1.0 1.6 1.0    

Zn* 24 
99.9 5004 1.1 5030 4641 1.3 4712    

As 0.3 
49.3 0.32 1.70 0.21 0.34 1.82 0.21    

Cd 0.1 60.8 0.11 1.61 0.11 0.12 1.66 0.12 0.31 2.2 0.28 

Hg 0.2 99.9 1.3 1.7 1.3 1.2 1.7 1.2 0.74 2.5 0.67 

Pbc* 0.02 99.9 0.39 1.6 0.36 0.32 1.5 0.32 0.64 1.8 0.61 

Abbreviations: National Health and Nutrition Examination Survey (NHANES); cobalt (Co); cesium (Cs); copper (Cu); 

manganese (Mn); nickel (Ni); zinc (Zn); arsenic (As); cadmium (Cd); mercury (Hg); lead (Pb); limit of detection (LOD); 

geometric mean (GM); geometric standard deviation (GSD). 
a Includes biomarker concentrations for up to 2 repeated samples per woman (n = 1,146 samples) 
b Females 18−40 years of age; n = 3,585 for biomarkers measured in 2009-2010, 2011-2012, 2013-2014, and 2015-2016 

NHANES 
c concentration unit for blood Pb is µg/dL 

* metals with significantly higher concentration among women in the preterm birth subgroup compared to the term birth 

subgroup (log-transformed t-test was performed).  
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Table III.3 Change in gestational age, preterm birth, and SGA associated with average exposure biomarker concentration across 

two time points during pregnancy. Effect estimates presented as changes or odds ratio (OR) for IQR increase in exposure 

biomarker concentration. Models were adjusted for maternal age, maternal education, pre-pregnancy BMI, and exposure to 

secondhand smoking 

 

Metals 
Gestational age (N=731) 

Preterm Birth  

(overall, N=731) 

Preterm Birth 

(spontaneous, N=700) 
SGA (N=637) 

 Change in days 

p 

value OR (95% CI) 

p 

value OR (95% CI) 

p 

value OR (95% CI) 

p 

value 

Co -1.1 (-2.3, 0.1) 0.06 1.21 (0.93, 1.56) 0.16 1.33 (0.96, 1.84) 0.09 0.90 (0.68, 1.21) 0.49 

Cs -0.3 (-1.6, 1.1) 0.69 1.19 (0.84, 1.68) 0.33 1.10 (0.72, 1.69) 0.66 0.82 (0.62, 1.08) 0.15 

Cu -0.4 (-1.2, 0.4) 0.36 1.32 (0.98, 1.78) 0.07 1.20 (0.82, 1.76) 0.34 0.99 (0.83, 1.19) 0.94 

Mn -1.1 (-2.4, 0.3) 0.12 1.32 (0.96, 1.80) 0.08 1.45 (0.98, 2.15) 0.07 0.85 (0.62, 1.16) 0.30 

Ni 0.8 (-0.3, 1.9) 0.15 0.85 (0.65, 1.11) 0.24 0.85 (0.60, 1.21) 0.36 0.67 (0.49, 0.90) 0.01* 

Zn -0.7 (-1.5, 0.2) 0.11 1.83 (1.28, 2.60) 0.001* 1.53 (0.99, 2.38) 0.06 1.00 (0.82, 1.21) 1.00 

Asa 1.8 (-0.4, 3.9) 0.10 0.72 (0.44, 1.18) 0.19 0.65 (0.34, 1.24) 0.19 0.75 (0.45, 1.25) 0.28 

Cda -1.3 (-3.5, 0.9) 0.26 1.00 (0.60, 1.65) 0.99 1.24 (0.63, 2.43) 0.53 0.76 (0.45, 1.27) 0.29 

Hg 0.8 (-0.6, 2.2) 0.27 1.05 (0.75, 1.48) 0.76 1.27 (0.82, 1.95) 0.28 0.86 (0.62, 1.21) 0.40 

Pb -1.8 (-3.1, -0.5) 0.009* 1.63 (1.17, 2.28) 0.004* 1.53 (1.00, 2.35) 0.05 0.91 (0.69, 1.20) 0.51 

 

Abbreviations: cobalt (Co); cesium (Cs); copper (Cu); manganese (Mn); nickel (Ni); zinc (Zn); arsenic (As); cadmium (Cd); 

mercury (Hg); lead (Pb); Odds ratio (OR); confidence interval (CI); interquartile range (IQR); small for gestation age (SGA). 
a As, Cd were compared between two categories of above LOD and below LOD  

*q value (false discovery rate) <0.1 
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Figure III.1 Change in birth outcomes associated with visit specific exposure biomarker concentration. Effect estimates 

presented as changes or odds ratio (OR) for IQR increase in exposure biomarker concentrationa. Models were adjusted for 

maternal age, maternal education, pre-pregnancy BMI, and exposure to secondhand smoking 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Abbreviations: cobalt (Co); cesium (Cs); copper (Cu); manganese (Mn); nickel (Ni); zinc (Zn); arsenic (As); cadmium (Cd); 

mercury (Hg); lead (Pb); Odds ratio (OR); confidence interval (CI); interquartile range (IQR); small for gestation age (SGA); 

large for gestational age (LGA). 
a As, Cd were compared between two categories of above LOD and below LOD  

*q value (false discovery rate) <0.1 
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Table III.4 Change in birth outcomes associated with exposure biomarker concentration at each visit during pregnancy. Effect 

estimates presented as changes or odds ratio (OR) for IQR increase in exposure biomarker concentration. Models were adjusted 

for maternal age, maternal education, pre-pregnancy BMI, and exposure to secondhand smoking 
 

Metals Gestational age  Birthweight z-score  

 Visit 1 (n=583)  Visit 3 (n=453)  Visit 1 (n=566)  Visit 3 (n=442)  

 Change in days 
p 

value 
Change in days 

p 

value 
Change in z-score 

p 

value 
Change in z-score 

p 

value 
  (95% CI)   (95% CI)  (95% CI) (95% CI)  

Co -0.7 (-2.0, 0.6) 0.32 -0.8 (-2.1, 0.6) 0.28 0.02 (-0.08, 0.11) 0.75 0.14 (0.03, 0.25) 0.01 

Cs 0.2 (-1.4, 1.7) 0.84 -1.5 (-3.2, 0.3) 0.10 0.01 (-0.11, 0.12) 0.92 0.14 (0.00, 0.28) 0.05 

Cu -0.3 (-1.3, 0.7) 0.54 -0.3 (-1.7, 1.1) 0.66 0.00 (-0.06, 0.07) 0.91 0.08 (-0.03, 0.19) 0.14 

Mn -0.8 (-2.4, 0.8) 0.31 -0.9 (-2.5, 0.8) 0.29 0.03 (-0.08, 0.15) 0.57 0.12 (-0.01, 0.25) 0.08 

Ni 0.2 (-1.0, 1.5) 0.72 0.4 (-0.9, 1.7) 0.53 0.01 (-0.07, 0.10) 0.74 0.11 (0.01, 0.21) 0.03 

Zn -0.7 (-1.7, 0.2) 0.13 -1.4 (-2.9, 0.0) 0.05 0.01 (-0.06, 0.07) 0.79 -0.03 (-0.14, 0.09) 0.62 

Asa 2.5 (0.1, 5.0) 0.04 0.0 (-2.4, 2.5) 0.98 0.08 (-0.09, 0.26) 0.35 -0.05 (-0.25, 0.15) 0.61 

Cda -1.9 (-4.4, 0.6) 0.14 0.2 (-2.4, 2.7) 0.91 -0.04 (-0.21, 0.14) 0.70 0.08 (-0.13, 0.29) 0.45 

Hg 0.7 (-0.9, 2.4) 0.38 -0.5 (-2.1, 1.1) 0.54 0.02 (-0.10, 0.14) 0.72 0.09 (-0.03, 0.21) 0.16 

Pb -1.8 (-3.3, -0.4) 0.01 -1.7 (-3.4, -0.1) 0.04 0.05 (-0.06, 0.15) 0.40 0.06 (-0.07, 0.20) 0.36 

 Preterm birth (overall) Preterm birth (spontaneous) 
 Visit 1 (n=583)  Visit 3 (n=453)  Visit 1 (n=561)  Visit 3 (n=431)  

 OR (95% CI) 
p 

value 
OR (95% CI) 

p 

value 
OR (95% CI) 

p 

value 
OR (95% CI) 

p 

value 

Co 1.10 (0.83, 1.47) 0.50 1.05 (0.74, 1.50) 0.77 1.25 (0.89, 1.76) 0.20 1.20 (0.75, 1.91) 0.46 

Cs 1.11 (0.76, 1.63) 0.59 1.50 (0.94, 2.40) 0.09 1.01 (0.65, 1.58) 0.96 1.29 (0.70, 2.36) 0.41 

Cu 1.21 (0.85, 1.73) 0.30 1.22 (0.85, 1.76) 0.28 1.15 (0.74, 1.79) 0.52 1.04 (0.65, 1.69) 0.86 

Mn 1.22 (0.86, 1.74) 0.26 1.17 (0.77, 1.77) 0.46 1.35 (0.89, 2.06) 0.16 1.17 (0.67, 2.02) 0.58 

Ni 0.93 (0.70, 1.23) 0.59 0.98 (0.70, 1.38) 0.91 0.95 (0.67, 1.34) 0.77 1.01 (0.65, 1.58) 0.95 

Zn 2.01 (1.34, 3.00) 0.001* 1.6 0(1.06, 2.41) 0.02 2.04 (1.23, 3.39) 0.01* 1.23 (0.73, 2.08) 0.44 

Asa 0.64 (0.37, 1.13) 0.12 1.10 (0.59, 2.07) 0.76 0.72 (0.35, 1.44) 0.35 0.97 (0.41, 2.30) 0.95 

Cda 1.26 (0.71, 2.25) 0.43 0.68 (0.36, 1.30) 0.25 1.75 (0.81, 3.77) 0.15 0.72 (0.30, 1.72) 0.45 

Hg 1.06 (0.72, 1.54) 0.78 1.46 (0.97, 2.19) 0.07 1.19 (0.75, 1.89) 0.47 2.3 0(1.32, 4.02) 0.003* 

Pb 1.73 (1.20, 2.50) 0.004* 1.54 (1.03, 2.32) 0.04 1.75 (1.12, 2.73) 0.01* 1.32 (0.75, 2.31) 0.33 

 SGA LGA 
 Visit 1 (n=505)  Visit 3 (n=403)  Visit 1 (n=517)  Visit 3 (n=394)  

 OR (95% CI) 
p 

value 
OR (95% CI) 

p 

value 
OR (95% CI) 

p 

value 
OR (95% CI) 

p 

value 

Co 0.98 (0.71, 1.34) 0.88 0.76 (0.53, 1.10) 0.15 0.98 (0.73, 1.31) 0.90 1.29 (0.92, 1.81) 0.15 

Cs 0.92 (0.66, 1.29) 0.62 0.73 (0.48, 1.10) 0.13 1.03 (0.73, 1.47) 0.85 1.46 (0.89, 2.39) 0.13 

Cu 0.99 (0.81, 1.21) 0.92 0.97 (0.70, 1.33) 0.84 0.96 (0.82, 1.13) 0.61 1.25 (0.85, 1.84) 0.25 

Mn 0.88 (0.60, 1.28) 0.49 0.62 (0.42, 0.93) 0.02 1.04 (0.73, 1.47) 0.85 1.13 (0.73, 1.76) 0.58 

Ni 0.72 (0.51, 1.00) 0.05 0.64 (0.46, 0.90) 0.01 0.86 (0.65, 1.14) 0.29 1.18 (0.86, 1.63) 0.31 

Zn 1.02 (0.79, 1.32) 0.88 1.10 (0.76, 1.60) 0.60 1.07 (0.80, 1.44) 0.65 0.96 (0.65, 1.41) 0.84 

Asa 0.63 (0.35, 1.15) 0.14 0.96 (0.52, 1.77) 0.90 1.19 (0.68, 2.05) 0.54 0.69 (0.35, 1.37) 0.29 

Cda 0.73 (0.40, 1.34) 0.31 0.58 (0.31, 1.09) 0.09 0.61 (0.36, 1.06) 0.08 0.98 (0.49, 1.98) 0.96 

Hg 0.93 (0.62, 1.39) 0.71 0.74 (0.50, 1.11) 0.14 1.13 (0.79, 1.62) 0.51 1.24 (0.82, 1.89) 0.31 

Pb 0.92 (0.67, 1.27) 0.62 0.82 (0.53, 1.25) 0.35 0.98 (0.71, 1.34) 0.89 0.79 (0.50, 1.25) 0.32 

Abbreviations: cobalt (Co); cesium (Cs); copper (Cu); manganese (Mn); nickel (Ni); zinc (Zn); arsenic (As); cadmium (Cd); 

mercury (Hg); lead (Pb); Odds ratio (OR); confidence interval (CI); interquartile range (IQR); small for gestation age (SGA); 

large for gestational age (LGA). 
a As, Cd were compared between two categories of above LOD and below LOD  

*q value (false discovery rate) <0.1 
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Figure III.2 Preterm birth (overall) odds ratio (95% confidence interval) associated with tertiles of geometric average exposureab 

Models were adjusted for maternal age, maternal education, pre-pregnancy BMI, and exposure to secondhand smoking 

 

 
Abbreviations: copper (Cu); manganese (Mn); zinc (Zn); mercury (Hg); lead (Pb); environmental risk score (ERS). 
a Referent levels were set at tertile 2 for essential metals (Cu, Mn, Zn) 
b Referent levels were set at tertile 1 for non-essential metals (Hg, Pb), and ERS 

△ Individual metals that were selected from elastic net models to compose ERS 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 

104 

Table III.5 Change in birth outcomes associated with tertiles of average exposureabc. Effect estimates presented as changes or odds ratio (OR) for IQR increase in exposure 

biomarker concentration. Models were adjusted for maternal age, maternal education, pre-pregnancy BMI, and exposure to secondhand smoking 

Metals 

Gestational age (N=731) Birthweight z-score (N=710) 

Change in days 
p value 

Change in days 
p value 

Change in z-score 
p value 

Change in z-score 
p value 

(95% CI) (95% CI) (95% CI) (95% CI) 

Essential metals Tertile 1 vs 2 Tertile 3 vs 2 Tertile 1 vs 2 Tertile 3 vs 2 

Coa -1 (-3.6, 1.6) 0.46 -1.7 (-4.3, 0.9) 0.20 -0.04 (-0.24, 0.15) 0.66 0.03 (-0.17, 0.22) 0.79 

Csb -0.7 (-3.3, 1.9) 0.61 -0.9 (-3.5, 1.8) 0.52 -0.04 (-0.23, 0.16) 0.72 0.08 (-0.12, 0.27) 0.45 

Cua -1.6 (-4.2, 1.1) 0.24 -2.2 (-4.9, 0.5) 0.11 -0.21 (-0.4, -0.01) 0.04 -0.23 (-0.43, -0.03) 0.02 

Mna -1.6 (-4.2, 1) 0.22 -2.7 (-5.4, -0.1) 0.04 0.07 (-0.13, 0.27) 0.49 0.22 (0.02, 0.41) 0.03 

Nia 0.9 (-1.8, 3.5) 0.51 2.2 (-0.4, 4.8) 0.10 -0.03 (-0.23, 0.16) 0.74 0.02 (-0.17, 0.21) 0.84 

Zna 1 (-1.6, 3.6) 0.47 -1.1 (-3.8, 1.5) 0.39 -0.01 (-0.2, 0.19) 0.94 -0.05 (-0.24, 0.15) 0.64 

Non-essential metals Tertile 2 vs 1 Tertile 3 vs 1 Tertile 2 vs 1 Tertile 3 vs 1 

Hgc -1.2 (-3.8, 1.4) 0.38 1.4 (-1.3, 4) 0.31 0.17 (-0.02, 0.37) 0.08 0.06 (-0.14, 0.25) 0.58 

Pbc -0.2 (-2.9, 2.4) 0.86 -2.9 (-5.5, -0.2) 0.03 -0.12 (-0.32, 0.07) 0.23 0.09 (-0.11, 0.29) 0.38 

Metals 
Preterm birth (overall, N=731) Preterm birth (spontaneous, N=700) 

OR (95% CI) p value OR (95% CI) p value OR (95% CI) p value OR (95% CI) p value 

Essential metals Tertile 1 vs 2 Tertile 3 vs 2 Tertile 1 vs 2 Tertile 3 vs 2 

Coa 0.81 (0.44, 1.51) 0.51 1.18 (0.65, 2.12) 0.59 0.59 (0.25, 1.41) 0.24 1.35 (0.65, 2.81) 0.42 

Csb 1.06 (0.58, 1.97) 0.84 1.25 (0.67, 2.3) 0.48 1.22 (0.55, 2.7) 0.62 1.19 (0.53, 2.65) 0.68 

Cua 1.03 (0.53, 2.02) 0.92 1.66 (0.9, 3.05) 0.11 1.12 (0.48, 2.62) 0.79 1.63 (0.74, 3.59) 0.23 

Mna 1.33 (0.69, 2.55) 0.40 1.87 (1.01, 3.45) 0.05 2.85 (1.07, 7.59) 0.04 3.91 (1.52, 10.03) 0.005* 

Nia 0.89 (0.5, 1.57) 0.69 0.49 (0.26, 0.93) 0.03 0.96 (0.47, 1.97) 0.91 0.4 (0.17, 0.95) 0.04 

Zna 0.52 (0.26, 1.04) 0.06 1.38 (0.79, 2.4) 0.26 0.55 (0.24, 1.28) 0.17 1.02 (0.49, 2.11) 0.95 

Non-essential metals Tertile 2 vs 1 Tertile 3 vs 1 Tertile 2 vs 1 Tertile 3 vs 1 

Hgc 1.86 (1.02, 3.4) 0.04 1.2 (0.62, 2.32) 0.60 3.23 (1.34, 7.78) 0.009* 1.9 (0.73, 4.92) 0.19 

Pbc 1.27 (0.65, 2.47) 0.49 1.93 (1.02, 3.62) 0.04 0.69 (0.29, 1.66) 0.41 1.5 (0.71, 3.18) 0.28 
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Table III.5 Continued 

Metals 
SGA (N=637) LGA (N=642) 

OR (95% CI) p value OR (95% CI) p value OR (95% CI) P value OR (95% CI) p value 

Essential metals Tertile 1 vs 2 Tertile 3 vs 2 Tertile 1 vs 2 Tertile 3 vs 2 

Coa 1.35 (0.72, 2.54) 0.34 1.15 (0.61, 2.19) 0.67 0.69 (0.38, 1.27) 0.23 0.79 (0.44, 1.42) 0.43 

Csb 1.5 (0.82, 2.75) 0.18 0.85 (0.44, 1.66) 0.63 1.08 (0.57, 2.03) 0.82 1.31 (0.72, 2.38) 0.37 

Cua 2.13 (1.09, 4.18) 0.03 1.83 (0.91, 3.69) 0.09 1.28 (0.71, 2.32) 0.41 0.81 (0.43, 1.54) 0.53 

Mna 0.85 (0.47, 1.54) 0.60 0.56 (0.29, 1.08) 0.08 0.92 (0.5, 1.72) 0.80 1.12 (0.62, 2.02) 0.71 

Nia 0.79 (0.45, 1.39) 0.41 0.33 (0.16, 0.66) 0.002* 0.65 (0.35, 1.21) 0.18 0.72 (0.4, 1.28) 0.26 

Zna 1.08 (0.58, 2.02) 0.80 1.05 (0.56, 1.97) 0.88 0.72 (0.4, 1.3) 0.28 0.63 (0.34, 1.14) 0.13 

Non-essential metals Tertile 2 vs 1 Tertile 3 vs 1 Tertile 2 vs 1 Tertile 3 vs 1 

Hgc 0.63 (0.33, 1.2) 0.16 0.87 (0.48, 1.58) 0.64 1.59 (0.86, 2.93) 0.14 1.2 (0.63, 2.29) 0.58 

Pbc 1.58 (0.88, 2.83) 0.12 0.62 (0.3, 1.26) 0.18 1.13 (0.63, 2.03) 0.67 0.74 (0.4, 1.4) 0.36 

Abbreviations: cobalt (Co); cesium (Cs); copper (Cu); manganese (Mn); nickel (Ni); zinc (Zn); arsenic (As); cadmium (Cd); mercury (Hg); lead (Pb); Odds ratio (OR); confidence 

interval (CI); interquartile range (IQR); small for gestation age (SGA); large for gestational age (LGA). 
a Referent levels were set at tertile 2 for essential metals (Co, Cu, Mn, Ni, Zn). 
b Cs is not regarded as essential to the health of plants or animals, nor does it present a hazard to them. For this analysis, Cs was considered as essential metal, therefore, referent 

levels were set at tertile 2. 
c Referent levels were set at tertile 1 for non-essential metals (Hg, Pb). 

*q value (false discovery rate) <0.1 
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Table III.6 Estimated environmental risk score (ERS) weights (regression coefficient) for metals selected for each birth outcome. Models were adjusted for maternal age, maternal 

education, pre-pregnancy BMI, and exposure to secondhand smoking 

 Weights 

Metal Gestational Age Birthweight z-score Preterm birth (overall) Preterm birth (spontaneous) SGA LGA 

Co       

Cs       

Cu       

Mn       

Ni       

Zn   0.011    

As 
  

    

Cd 
  

    

Hg 
  

    

Pb -0.056 
 

0.057 0.102   

Abbreviations: cobalt (Co); cesium (Cs); copper (Cu); manganese (Mn); nickel (Ni); zinc (Zn); arsenic (As); cadmium (Cd); mercury (Hg); lead (Pb); small for gestation age 

(SGA); large for gestational age (LGA). 
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Table III.7 Posterior inclusion probabilities (PIPs) for group inclusion and conditional inclusion into birth outcome models, using Bayesian kernel machine regression (BKMR) 

model. Models were adjusted for maternal age, maternal education, pre-pregnancy BMI, and exposure to secondhand smoking 

Metal Group 
Gestational Age 

Birthweight  

z-score 

Preterm Birth 

(overall) 

Preterm Birth 

(spontaneous) 
SGA LGA 

groupPIPa condPIPb groupPIPa condPIPb groupPIPa condPIPb groupPIPa condPIPb groupPIPa condPIPb groupPIPa condPIPb 

As 1 0.64 0.01 0.44 0.24 0.64 0.19 0.57 0.14 0.50 0.29 0.36 0.25 

Cd 1 0.64 0.17 0.44 0.23 0.64 0.06 0.57 0.12 0.50 0.30 0.36 0.35 

Hg 1 0.64 0.04 0.44 0.27 0.64 0.07 0.57 0.18 0.50 0.16 0.36 0.19 

Pb 1 0.64 0.78 0.44 0.26 0.64 0.68 0.57 0.56 0.50 0.25 0.36 0.21 

Co 2 0.37 0.79 0.57 0.63 0.56 0.40 0.68 0.42 0.49 0.51 0.47 0.58 

Mn 2 0.37 0.21 0.57 0.37 0.56 0.60 0.68 0.58 0.49 0.49 0.47 0.42 

Cs 3 0.13 0.01 0.46 0.31 0.94 0.02 0.64 0.14 0.78 0.09 0.43 0.24 

Cu 3 0.13 0.06 0.46 0.20 0.94 0.08 0.64 0.13 0.78 0.08 0.43 0.28 

Ni 3 0.13 0.70 0.46 0.24 0.94 0.07 0.64 0.27 0.78 0.76 0.43 0.22 

Zn 3 0.13 0.23 0.46 0.25 0.94 0.83 0.64 0.46 0.78 0.07 0.43 0.26 

 

Abbreviations: cobalt (Co); cesium (Cs); copper (Cu); manganese (Mn); nickel (Ni); zinc (Zn); arsenic (As); cadmium (Cd); mercury (Hg); lead (Pb); small for gestation age 

(SGA); large for gestational age (LGA); Posterior Inclusion Probabilities (PIPs). 
a GroupPIP provides group importance scores for pre-defined mutually-exclusive groups of variables 
b CondPIP (conditional PIPs) estimates the importance of a metal given that the group that contains that metal is important. 
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Figure III.3 Univariate and bivariate predictor-response function for the effect of metal mixture (Mn, Pb, Zn) on preterm birth estimated by Bayesian Kernal Machine Regression 

(BKMR)a. Models were adjusted for maternal age, maternal education, pre-pregnancy BMI, and exposure to secondhand smoking 

 

A                                                                                                                                                    B 

Abbreviations: manganese (Mn); zinc (Zn); lead (Pb); 
a estimate* may be interpreted as a latent continuous marker of the binary outcome-overall preterm birth  

A Univariate exposure–response functions and 95%confidence for each metal with the other pollutants fixed at the median 

B   Bivariate exposure–response functions for: Mn when Pb is fixed at either the 10th, 50th, or 90th percentile and Zn is fixed at the median (middle left panel); Mn when Zn is fixed 

at either the 10th, 50th, or 90th percentile and Pb is fixed at the median (bottom left panel); Pb when Mn is fixed at either the 10th, 50th, or 90th percentile and Zn is fixed at the 

median (top middle panel); Pb when Zn is fixed at either the 10th, 50th, or 90th percentile and Mn is fixed at the median (bottom middle panel); Zn when Mn is fixed at either the 

10th, 50th, or 90th percentile and Pb is fixed at the median (top right panel); Zn when Pb is fixed at either the 10th, 50th, or 90th percentile and Mn is fixed at the median (middle right 

panel); 
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Figure III.4 Interaction effect of infant sex on the association between the average zinc (Zn) blood concentration and gestational 

age. Models were adjusted for maternal age, maternal education, pre-pregnancy BMI, and exposure to secondhand smoking 
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Chapter IV  

Psychosocial Status Modifies the Effect of Maternal Blood Metal and 

Metalloid Concentrations on Birth Outcomes 

 
Abstract 

Background: Metal exposure and psychosocial stress in pregnancy have each been associated 

with adverse birth outcomes, including preterm birth and low birth weight, but no study has 

examined the potential interaction between them. Objective: We examined the modifying effect 

of psychosocial stress on the association between metals and birth outcomes among pregnant 

women in Puerto Rico Testsite for Exploring Contamination Threats (PROTECT) birth cohort 

study. Methods: In our analysis of 682 women from the PROTECT study, we measured 16 

essential and non-essential metals in blood samples at two time points. We administered 

questionnaires to collect information on depression, perceived stress, social support, and life 

experience during pregnancy. Using K-means clustering, we categorized pregnant women into one 

of two groups: “good” and “poor” psychosocial status. We then evaluated whether the effect of 

blood metals (geometric average) on adverse birth outcomes (gestational age, preterm birth 

[overall and spontaneous], birth weight z-score, small for gestation [SGA], large for gestation 

[LGA]) vary between two clusters of women, adjusting for maternal age, maternal education, pre-

pregnancy body mass index (BMI), and second-hand smoke exposure. Results: Blood manganese 

(Mn) was associated with an increased odds ratio (OR) of overall preterm birth (OR/interquartile 

range [IQR] = 2.76, 95% confidence interval [CI] = 1.25, 6.12) and spontaneous preterm birth 

(OR/IQR: 3.68, 95% CI: 1.20, 6.57) only among women with “poor” psychosocial status. The 

association between copper (Cu) and SGA was also statistically significant only among women 

having “poor” psychosocial status (OR/IQR: 2.81, 95% CI: 1.20, 6.57). We also observed 

associations between nickel (Ni) and preterm birth and SGA that were modified by psychosocial 

status during pregnancy. Conclusions: Presence of “poor” psychosocial status intensified the 

adverse associations between Mn and preterm birth, Cu and SGA, and protective effects of Ni on 
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preterm. This provides evidence that prenatal psychosocial stress may modify vulnerability to 

metal exposure. 

 

1. Introduction 

Metals are ubiquitous in the environment, and they can enter the human body through ingestion of 

food and water, dietary supplement intake, contact with contaminated environments, and use of 

metal-containing products through inhalation, skin contact, and/or inadvertent ingestion [1-6]. 

Exposure to metals impacts various biological pathways that contribute to adverse birth outcome, 

including preterm delivery and low birthweight [1, 7-20]. Our recent analysis in the Puerto Rico 

Testsite for Exploring Contamination Threats (PROTECT) cohort study also suggested 

associations between elevated levels of maternal essential and non-essential metals and various 

birth outcomes [21]. We found a decrease in gestational length and increased odds of preterm birth 

in association with higher maternal blood lead (Pb) concentration; increased odds of preterm birth 

in association with blood copper (Cu), manganese (Mn), and zinc (Zn) concentrations; and that 

blood nickel (Ni) was associated with lower odds of small for gestational age (SGA). Prenatal 

psychosocial stress has also been found to be associated with an increased risk of adverse 

pregnancy outcomes—psychological distress, perceived stress, anxiety, depression symptoms, and 

low social support among pregnant women were associated with an increased risk of pre-eclampsia 

[22], preterm birth [23-28], and low birth weight [23, 27].  

 

The majority of epidemiologic studies evaluate the impact of individual chemical and non-

chemical exposures. However, pregnant women are exposed to both environmental chemicals and 

psychosocial stress, and psychosocial factors may influence how a particular environmental 

chemical is experienced or what the physical response to it may be. Recently, there has been a 

general acknowledgment that there is likely to be joint effects of environmental chemicals (e.g. 

phthalates, black carbon, lead [Pb]) and psychosocial stress exposure on pregnancy and child 

development outcomes [29-37]. The identification of modifiable psychosocial factors may lead to 

interventions during pregnancy to reduce the harmful effects of metals on birth outcomes. 

Therefore, the current study aimed to examine whether the psychosocial status of the mothers 

during pregnancy modifies the effects of metals on gestational length/preterm delivery and 

birthweight among pregnant women in Puerto Rico. We hypothesized that there would be stronger 
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associations between metal exposure and adverse birth outcomes in pregnant women with poorer 

psychosocial status compared to mothers with better psychosocial status.  

 

2. Methods 

2.1 Study population  

This study used data collected from 682 pregnant women participating in the PROTECT study, an 

ongoing, prospective birth cohort [38-41]. The PROTECT study was launched in 2010 with 

funding from the National Institute of Environmental Health Sciences (NIEHS) Superfund 

Research Program to investigate Puerto Rico’s high preterm birth rate and the extent of hazardous 

waste contamination on the island. PROTECT aims to explore environmental exposures and other 

factors contributing to preterm birth risk and other adverse birth outcomes in Puerto Rico.   

 

Study participants were recruited at approximately 14 ± 2 weeks of gestation at seven prenatal 

clinics and hospitals throughout Northern Puerto Rico and followed until delivery. [38, 39]. 

Inclusion criteria for this study were: maternal age between 18 to 40 years; residence inside of the 

Northern Karst aquifer region; planning to deliver in the collaborating hospitals. Exclusion of 

participants included the use of oral contraceptives within the three months prior to pregnancy; use 

of in vitro fertilization to become pregnant; or any major medical or obstetrical complications, 

including pre-existing diabetes. Each woman participated in a total of up to three study visits (18 

± 2 weeks, 22 ± 2 weeks, and 26 ± 2 weeks of gestation). Detailed information on medical and 

pregnancy history was collected at the initial visit. During an in-home visit (second visit), nurse-

administered questionnaires were used to gather information on housing characteristics, 

employment status, and family situation. Questionnaires assessing the psychosocial status of study 

participants were administered at the second and third visits. Blood samples were collected during 

the first and third visits. The present analysis reflects 682 women who delivered a live singleton 

birth with measured metal(loid) concentrations in maternal blood and information on 

demographics and psychosocial variables available (Figure IV.1).  

 

The research protocol was approved by the Ethics and Research Committees of the University of 

Puerto Rico and participating clinics, the University of Michigan, Northeastern University, and the 
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University of Georgia. The study was described in detail to all participants, and informed consent 

was obtained prior to study enrollment. 

 

2.2 Measurement of metals 

Blood samples were collected in metal-free whole blood tubes. Whole blood samples were frozen 

and stored at -80°C and shipped on dry ice. The analysis was performed at NSF International (Ann 

Arbor, MI, USA), where concentrations of 16 metals and metalloids were measured in blood: 

arsenic (As), barium (Ba), beryllium (Be), cadmium (Cd), cobalt (Co), chromium (Cr), cesium 

(Cs), copper (Cu), mercury (Hg), manganese (Mn), nickel (Ni), Pb, titanium (Ti), uranium (U), 

vanadium (V), and zinc (Zn). Metal(loid) concentrations were measured using inductively coupled 

plasma mass spectrometry (ICPMS) as described previously [11]. Considering that biological 

samples have high levels of carbon and chloride in the matrix, the laboratory selected the 

appropriate isotopes for the requested elements to best avoid interferences where possible. The 

ICPMS was calibrated with a blank and a minimum of four standards for each element of interest. 

An R2 value of >0.995 was the minimum criteria for an acceptable calibration curve. The 

calibration curves were verified by initial checks at three calibration points within the curve. 

Continuing calibration checks and blanks after every 10 samples were also utilized throughout the 

analytical run to ensure the ICPMS system was maintaining acceptable performance.  

 

2.3 Birth outcomes   

All birth outcome data were extracted from medical records. The American Congress of 

Gynecologists (ACOG) recommendations for gestational age at birth calculations [42] were used 

in our study as previously described [43, 44]. As per common practice, preterm birth was defined 

as delivery < 37 completed weeks of gestation. Based on the clinical presentation of preterm 

delivery, preterm birth was further classified as spontaneous preterm birth (presentation of 

premature rupture of the membranes, spontaneous preterm labor, or both) and non-spontaneous 

preterm birth (preterm births with preeclampsia, or with both artificial membrane rupture and 

induced labor). We included overall and spontaneous preterm birth as two of the birth outcomes 

in our analysis.  

Birthweight z-scores (defined as the number of standard deviations by which a birthweight is 

above or below the mean) are commonly used to compare individual birthweights with the cohort 
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[45, 46]. Gestational age- and sex-specific birthweight z-score were constructed according to the 

INTERGROWTH-21st standards [47]. Small for gestational age (SGA) births were defined as 

below the 10th percentile of birthweight z-scores. Large for gestational age (LGA) births were 

defined as above the 90th percentile of birthweight z-scores. 

 

2.4 Psychosocial variables and life events 

Four questionnaires were administered in PROTECT to assess the psychosocial status of study 

participants [48-50]. They include (1) Center for Epidemiological Studies-Depression (CES-D), a 

20-item score that measures depression symptoms according to the Diagnostic Statistical Manual-

IV[51]; (2) Perceived Stress Scale (PSS) [52], a 10-item score that aims to determine the 

participants’ perceived stress levels within the last month; (3) Enhancing Recovery in Coronary 

Heart Disease Patients (ENRICHD) Social Support Instrument (ESSI), a 7-item score measuring 

functional social support [53, 54]; (4) Life Experiences Survey (LES) a 39-item score which 

provides information on positive and negative life events that the participants experienced since 

becoming pregnant [55]. The CES-D, PSS, and ESSI surveys were administered at the third visit 

in the clinic and the LES questionnaires were completed at the second visit at home; All 

questionnaires were translated and administered in Spanish. Previous studies among large and 

diverse samples of Hispanics/Latinos have evaluated the reliability and validity of the scales and 

recommended their use in Spanish among Hispanics/Latinos [56-58]. 

 

Responses from the four questionnaires were summed to create separate continuous measures of 

the four scales, depression (CES-D: range 0–48), perceived stress (PSS: range 0–40), social 

support (ESSI: range 0–34), and life events (LES: range -39 to 39). If the response to any individual 

question within a questionnaire was missing, the corresponding scale was coded as missing for 

that individual. The higher scores for CES-D and PSS corresponded to higher depression and stress 

level for all scales, whereas lower ESSI indicated low social support (i.e., high stress). A positive 

LES score represented the occurrence of relatively more positive events and vice versa. 

 

2.5 Data pre-processing for statistical analyses 

Metal concentrations below the limit of detection (LOD) were replaced by LOD/√2. For statistical 

analysis, we included metal(loid)s with at least 70% of samples having concentrations above the 
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LOD as continuous variables, and metal(loid)s with less than 70% of samples above the LOD (As 

and Cd) as binary variables (above vs below LOD). Metals with low detection rate (<30%), Ba, 

Be, Cr, Ti, U, and V were excluded from the analyses. Descriptive statistics were calculated for 

all exposure, modifier, and outcome variables. Distributions of all metals measured in blood were 

right-skewed and thus, were natural log-transformed for all analyses. 

 

2.6 K-means Clustering 

The four psychosocial scales we measured are correlated [48] and yet each reflects a unique aspect 

of the psychosocial well-being and together collectively represents a mothers’ overall well-being. 

Therefore, in our main analysis, instead of assessing the modifying effect of each scale separately, 

we evaluated them simultaneously by grouping women based on their overall psychosocial well-

being attributable to each scale. We used K-means clustering with the input of scores from the four 

psychosocial scales to identify subgroups of PROTECT participants with different overall 

measurements of psychosocial well-being. K-means clustering is one of the most commonly used 

unsupervised machine learning algorithms which allow us to split the dataset into k groups such 

that the observations in the same cluster are more similar than observations from different clusters 

[59]. Each cluster is represented by its center which corresponds to the mean of points assigned to 

the cluster. All four scales were standardized to make variables comparable. The number of 

optimal clusters (k) was determined based on (1) Elbow method [60] (2) average silhouette method 

[61], and (3) gap statistics method [62]. 

 

2.7 Main Analysis 

In our previous work, we examined the associations between each birth outcome and each average 

metal exposure biomarker [21]. Logistic regression models were used to examine the associations 

between metal exposure and binary adverse birth outcomes, including preterm birth (overall and 

spontaneous preterm birth), SGA, and LGA, whereas multiple linear regression was used to model 

metal exposures with the continuous outcomes gestational age and birthweight z-score. In this 

analysis, we constructed separate regression models (n=k) for each association with an interaction 

term of (exposure biomarker* cluster indicator variable) to determine the effects of metal exposure 

on birth outcomes. We considered interaction p <0.1 as statistically significant. All outcomes were 

regressed on the geometric averages of participant concentrations across the two visits (when 
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missing concentrations at one visit, the “average” concentration was equal to the single available 

concentration), with separate models for each exposure biomarker. In the interaction models, the 

effect estimates of the covariates are still assessed using the whole dataset when a metal’s effect is 

estimated within each cluster. The covariate selection process was described previously [21]. 

Briefly, a pool of potential confounders was selected based on a priori knowledge and the final set 

of covariates were selected in a stepwise procedure if their inclusion appreciably changed the beta 

coefficient of metal exposure. The final models were controlled for maternal age, maternal 

education level, pre-pregnancy BMI, and exposure to second-hand smoking.  

 

In an effort to detect potential non-linear relationships between metals and birth outcomes within 

different clusters, we used generalized additive models (GAM) to graphically depict the metal and 

birth outcome associations within each cluster, adjusting for the same covariates.  

 

2.8 Sensitivity Analysis 

We ran additional linear models including income categories as an indicator of socio-economic 

status (SES) instead of maternal education categories. Another analysis was performed excluding 

women with reported maternal complications, preeclampsia (n=22) and gestational diabetes 

(n=14). To test whether the interactions between metal biomarkers and psychosocial clusters 

varied by study visits, we utilized indicator variables for study visits and included a three-way 

interaction term of (exposure biomarker* cluster indicator*study visit indicator) in the main 

models substituting the original two-way interaction. The interaction terms were tested for 

significance and the visit-cluster-specific metal effect estimates were also abstracted from the 

models. Finally, to further explore the contributions of individual psychosocial scales on effect 

modification, each of the psychosocial scale variables was evaluated separately as potential 

modifiers of the associations between metals and birth outcomes. For this analysis, binary 

psychosocial scale variables were created for CES-D, PSS, and ESSI score using cutoffs based on 

a priori knowledge and considering cluster balance. A score of 16 was used for CES-D as a cutoff 

(>=16 vs <16) as it is typically used to determine depression [63]. As there is no established cut-

off for PSS, we set the cut-off for PSS at the 75th percentile (score of 18, maximum score= 39) 

[48]. Participants with scores >=18 were considered to have high perceived stress. Similarly, a cut 

off of 31 (25th percentile) allowed us to differentiate women with higher social support (>=31) 
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from women with lower social support (<31). The total LES score was categorized into three 

groups (labeled ‘‘negative”, ‘‘neutral” and ‘‘positive”) to consider the overall negative and 

positive scores. The cut-off points were below -1, between -1 and 1, and above 1 [48]. 

 

All results were presented as changes in birth outcomes (95% confidence intervals per interquartile 

range (IQR) increase in metal concentrations. We also considered significance after adjusting for 

multiple testing. In order to be able to identify as many significant comparisons as possible while 

still maintaining a low false positive rate, False Discovery Rate (FDR) and its analog the q value 

are utilized implementing the Benjamini-Hochberg method [64]. Q value (adjusted p value) is the 

expected proportion of false positives among all features as or more extreme than the observed 

one. Since birth outcomes were correlated, we calculated q values treating each outcome as a 

family of tests. A cutoff of 0.1 for q value was used to further interpret the main results with greater 

confidence. Data were analyzed using R version 3.6.2 [65] and the clustering calculation was 

performed by using the R package “cluster” [66]. 

 

3. Results 

3.1 Descriptive statistics 

The demographic characteristics of 682 women in this analysis are summarized in Table IV.1 and 

were described previously [41, 67]. Participants had a mean age of 27 years with approximately 

half of the women having a BMI less than 25kg/m2 prior to pregnancy. The majority of women 

(62%) had private medical insurance and were employed (61%). Nearly half of them had annual 

household incomes less than $30,000 while 88% reported graduating from college or higher. The 

prevalence of current smokers was very low (1%). Very few (7%) of the women reported 

consumption of alcohol within the last few months. Mean gestational age was 38.9 (standard 

deviation=1.9) weeks for 682 singleton births included in this analysis, among which 61 (9%) were 

preterm and 36 (5%) were spontaneous preterm; the rates of SGA and LGA were both 10%.  

 

Descriptive statistics (geometric mean [GM], geometric standard deviation [GSD], select 

percentiles) of blood metals were summarized in Table IV.2 and were previously described in 

detail [6]. Levels of most metals in pregnant Puerto Rican women were higher than levels observed 

in nonpregnant women aged 18–40 years in the general U.S. population, except for Hg and Pb 
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[6]. There were weak to moderate correlations between different blood metal concentrations (Mn 

and Co, r=0.36; As and Hg, r=0.32; Cd and Co, r=0.33). Distributions of the ESSI, PSS, CES-D, 

and LES scales across demographic characteristics were included in Table IV.2 and were 

described in detail previously [50]. Overall, most psychosocial variables were associated with 

lower SES indicators, such as unemployment, lower income, and lower education. 

 

3.2 Clustering 

The optimal number of clusters was two (k=2) for the k- means clustering analysis based on the 

elbow method, average silhouette method, and gap statistics method. Therefore, women in this 

study were divided into two groups, labeled as having “good” psychosocial status (N=526) and 

“poor” psychosocial status (N=156). Figure IV.2 shows the mean of each standardized log-

transformed score of depression (CES-D), perceived stress (PSS), social support (ESSI), and life 

events (LES). Note that women in the “good” psychosocial status cluster had a lower standardized 

mean score (<0) for depression and perceived stress and higher mean score (>0) for social support 

and life events, whereas women in the “poor” psychosocial status cluster had a higher mean score 

(>0) for depression and perceived stress and lower mean score (<0) for social support and life 

events.  

 

We also calculated the geometric mean and geometric standard deviation of blood metal (loid) 

concentrations (ng/ml) among women within “good” and “poor” psychosocial status clusters and 

tested whether the metal concentrations vary between the two clusters (Table IV.3). There were 

no differences, except for Pb, where the concentrations were statistically higher in the “poor” 

psychosocial cluster compared to the “good” psychosocial cluster (p <0.001). 

 

3.3 Main Analysis 

Figure IV.3 presents the associations between blood metal concentrations and birth outcomes 

within “good” and “poor” psychosocial status clusters. The effect estimates, confidence intervals, 

and p values are also given in Table IV.4. Co was associated with shorter gestational age among 

both clusters of mothers having “good” and “poor” psychosocial status and the effect estimates 

did not vary between the two clusters (p for interaction =0.17). We found a statistically significant 

interaction between maternal blood Mn concentration and psychosocial status on gestational age 
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(p for interaction=0.01). Within the “poor” psychosocial status cluster, an interquartile range (IQR) 

increase in blood Mn concentration was associated with 5 days shorter gestational age (95% CI: -

7.2, -1.9, p<0.001) whereas the association was not significant among mothers with “good” 

psychosocial status. After correcting for multiple testing, the associations between blood Mn and 

gestational age among “poor” psychosocial status cluster, as well as the interaction had q-values 

< 0.1 (Figure IV.3, Table IV.4), providing greater confidence in these associations. Similar 

interactions were observed for overall (p for interaction=0.05) and spontaneous preterm birth (p 

for interaction=0.09); there were strong associations between blood Mn and significantly increased 

odds of overall preterm birth (OR/IQR= 2.76, 95%CI: 1.25, 6.12, p=0.01, q=0.06) and spontaneous 

preterm birth (OR/IQR= 3.68, 95%CI: 1.17, 11.61, p=0.03, q>0.1) only among mothers classified 

with “poor” psychosocial status. Ni was associated with 0.43 and 0.33 times lower odds of preterm 

birth (95%CI=0.22, 0.81, p=0.01, q=0.06) and spontaneous preterm birth (95%CI=0.13, 0.83, 

p=0.02, q>0.1) among mothers with “poor” psychosocial status which was statistically different 

(p for interaction=0.01 and 0.02, respectively) compared to the null associations among mothers 

classified in the “good” psychosocial status cluster.  

 

Although associations between blood Pb and blood Zn and preterm birth/gestational age were 

statistically significant among mothers having “good” psychosocial status but not significant 

within the “poor” psychosocial status cluster, the interaction terms for the differences were not 

statistically significant. Cu was significantly associated with higher odds of SGA (OR/IQR= 2.81, 

95%CI=1.20, 6.57, p=0.02) among mothers classified in the “poor” psychosocial status cluster; 

however, the association was not found among mothers having “good” psychosocial status and 

this difference was statistically significant (p for interaction =0.01). An IQR increase in Ni was 

associated with 0.55 times lower odds of SGA only among mothers with “good” psychosocial 

status (p<0.001, q=0.02) and this protective effect was significantly different from the null effect 

observed within the “poor” psychosocial status cluster (p for interaction =0.04). Associations 

between the metal biomarkers and birthweight z-score and LGA were not statistically significant 

within either cluster. Results from GAM including metal concentrations as splines and the GAM 

output graphics showed that when the smoothing estimator is significant the observed associations 

within two clusters are linear (estimated degree of freedom=1), after adjusting for covariates (e.g. 
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Figure IV.4: Relationship between blood Mn concentration and preterm birth within “good” and 

“poor” psychosocial status clusters.) 

 

3.4 Sensitivity Analysis 

The results from additional analysis including income as a covariate were similar to the main 

analysis results we reported (Table IV.5). Excluding women with conditions such as preeclampsia 

and gestational diabetes also yielded similar results (data not shown). The binary birth outcome 

(preterm birth, SGA, LGA) models including interactions between metal concentrations, 

psychosocial cluster, and study visit failed to converge due to small sample size in each stratum. 

The results of models evaluating associations between metal concentrations and gestational age 

(continuous) by study visit and psychosocial clusters are presented in Table IV.6 (Birthweight z-

score models did not yield significant results, data not shown). The direction of the cluster-specific 

associations within each study visit remained the same. The interactions between metal 

concentrations and psychosocial cluster did not statistically vary between two study visits (three-

way interaction p values>0.1). Results from additional analyses evaluating individual psychosocial 

scales as potential effect modifiers were included in Table IV.7, IV.8, IV.9, and IV.10. There 

were inverse interactions between Mn and depression score (p for interaction [gestational age] 

=0.05), perceived stress (p for interaction [overall preterm] =0.09) social support (p for interaction 

[gestational age, overall and spontaneous preterm birth] =0.09, 0.01, and 0.03). Mn concentration 

was associated with shortened gestation and higher odds of preterm birth only among women who 

had higher perceived stress and higher depression score, and lower social support.  

 

4. Discussion 

This study uses data collected in the PROTECT birth cohort to examine the modifying effect of 

overall psychosocial status on the relationships between blood concentrations of essential and non-

essential metals and birth outcomes. We found increased odds of preterm birth (overall and 

spontaneous) associated with higher blood Mn concentration only among women with “poor” 

psychosocial status. Higher prenatal Cu was associated with increased odds of SGA among women 

concurrently at “poor” psychosocial status. Conversely, higher Ni was found to be associated with 

lower odds of preterm birth among women with “poor” psychosocial status, but lower odds of 

SGA among women having “good” psychosocial status.  
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Previous studies have suggested that elevated levels of essential metals Mn, Cu, and Ni may be 

associated with increased risk of intrauterine growth restriction [68], preterm delivery [11, 12, 69], 

and low birthweight [13, 14]. It is also well established that maternal psychosocial stress during 

pregnancy is associated with adverse birth outcomes [22-28]. Moreover, a growing body of recent 

epidemiological studies has reported the modifying effect of prenatal psychosocial stress on the 

associations between environmental chemical exposure, including metals (Pb, Cd, Mn, and 

Chromium [Cr]), and pregnancy outcomes [48, 70-75], and childhood developmental outcomes 

[32, 76-81].  

 

Psychosocial stress scales were not associated with any birth outcomes in this cohort [48] or a 

prospective cohort of US women (TIDES study) that used similar psychosocial scales [82]. 

Therefore, it is unlikely that the modifying effects are attributable to mediation through 

psychosocial stress. However, it is possible that double hits could lead to a joint effect; a form of 

“double jeopardy” has been used to describe this potential interaction of environmental chemicals 

and stress [83, 84]. Chemical and psychosocial exposure may both interfere with complex 

mechanisms that impair individual resistance and capability to recover when there is more than 

one “hit” and eventually lead to exacerbation of physiological response to the cumulative “hits” 

[84-86].  

 

Several important biological pathways have also been hypothesized for the interaction between 

environmental chemicals and psychosocial stress on the association with pregnancy outcomes. 

Oxidative stress and inflammation, two interrelated biological pathways, have generated attention 

as they are impacted by both prenatal metal exposure and the psychosocial status of the mother. 

One important finding we showed here in PROTECT is that associations between Mn and preterm 

birth were statistically significant and greater in magnitude among women with “poor” 

psychosocial status (OR/IQR=2.76, 95%CI=1.25, 6.12, p=0.01) but not among women with 

“good” psychosocial status (OR/IQR=1.12, 95%CI=0.75, 1.68, p=0.57, p for interaction=0.01). 

Cu was also associated with higher odds of SGA only among women with “poor” psychosocial 

status (OR/IQR= 2.81, 95%CI=1.20, 6.57, p=0.02, p for interaction=0.01). Although both Mn and 

Cu play an important role in many aspects of human physiology [87, 88], animal and human studies 
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found a relationship between elevated Mn and Cu levels and biomarkers of oxidative stress and 

inflammation [89-99]. Being at a “poor” psychosocial status during pregnancy may induce similar 

oxidative stress and inflammatory immune reactions to that of exposure to metals [100]. It is 

possible that oxidative stress induced by psychosocial factors can result in vulnerability at the 

mother fetus interface to metals, such as Mn and Cu. However, psychosocial variables have not 

been significantly associated with increased markers of oxidative stress in this cohort [49] but have 

in other cohorts [86]. 

 

The interactive effect of metal and psychosocial stress on birth outcomes may also be working 

through modulating fetal hypothalamic–pituitary–adrenal (HPA) activities [101]. A previous study 

on this cohort examining the relationship between maternal metal and hormone concentrations 

reported a strong positive association between Mn and corticotropin-releasing hormone (CRH) 

[102]. CRH is produced by the hypothalamus and placenta and has an important role in setting the 

biological clock of pregnancy duration. CRH is also produced by the hypothalamus in response to 

maternal stress to stimulate the production of cortisol, which plays a fundamental role during 

pregnancy and fetal development. Thus, it may be possible that the combined effect of an increase 

in CRH via Mn as well as an increase in cortisol via psychosocial stress caused an increase in 

allostatic load, leading to a significant decrease in gestational length. This hypothesis for metals 

in general is also supported by evidence from animal and human studies showing changes in 

glucocorticoid hormones (i.e., cortisol) by metals [103, 104] and psychosocial stress [105, 106], 

or both in unison [107, 108]. Several epigenome-wide association studies have linked neurotoxic 

metals, including Mn, to increased placental glucocorticoid receptors (majority on NR3C1) 

methylation [109-111]. Likewise, prenatal stress has been reported to contribute to the epigenetic 

alteration of the same receptors, both independently [112-114] as well as when combined with 

metal exposure [115, 116]. Taken together, epigenetic mechanisms may explain the interaction 

between metal and psychosocial stress on the disruption of fetal HPA axis functioning, which may 

result in adverse birth outcomes. Nevertheless, our results suggest that the prenatal mechanisms 

by which changes in gestational age and fetal growth are impacted by the co-exposure to metals 

and psychosocial stress need to be further explored. 
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It is worth noting that, contrary to our hypothesis, we observed protective modifying effects of 

being classified as having “poor” psychosocial status on the association between maternal blood 

Ni and preterm birth. The mechanism underlying this result is unclear as the health effects 

associated with prenatal Ni are sparsely investigated in the literature. While higher levels of blood 

Ni are generally reflective of women’s exposure to Ni in air, water, or food [117], women can be 

occupationally exposed to Ni from certain workplaces/occupations, such as manufacturing of 

jewelry, medical devices, and stainless steel [118]. Although our previous research within 

PROTECT did not find significant and specific predictors or sources of the Ni exposure in this 

population [6], it is possible that there are unmeasured confounders and/or sources of Ni exposure 

among this population that were driving the results. Our findings on Ni may also be a chance 

finding warranting the need for future research to either support or refute this observation. 

 

Blood Pb levels were significantly higher among women within the “poor” psychosocial status 

cluster compared to the “good” psychosocial status cluster. It is possible that Pb levels may 

influence the association of other metals in this study. Metals like Pb and Mn share transporters 

and targets in the body [119] and there are multiple mechanisms and pathways through which Pb 

and Mn may interact [120]. Therefore, the differential impacts of Mn in the two psychosocial 

clusters observed in this study may be attributed in part to possible additive interaction and effect 

modification between the Pb and Mn on gestational length. Our sample sizes were limited to detect 

such interactions, future studies are needed to consider the framework of metal dyshomeostasis 

and look for patterns in metal fluctuations across studies.  

 

Perceived stress, life events, social support, and depression are highly interlinked in many 

populations [121, 122] including PROTECT [50]. Studies have reported an increase in the rate of 

depression with higher levels of perceived stress and stressful events [123, 124], and others have 

reported a protective effect of social support on depression [125, 126]. However, potential 

bidirectional pairwise associations are likely among these four psychosocial variables. For 

example, whereas some studies examined social support as a mediator between stress and maternal 

depression [127], others examined the mediating effect of stress on social support and maternal 

depression [128]. The first study reported a mediating and moderating effect of social support on 

stressful events and postpartum depressive symptoms in a Hong Kong study of 2,365 women 
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[127]. The second study reported a mediating effect of perceived stress in a longitudinal study on 

1,316 U.S. women, such that lower levels of social support led to higher levels of perceived stress 

and higher rates of postpartum depression. Additional well-designed studies are needed to 

disentangle these relationships and the causal framework involved. 

 

In this study, we had data on a total of four psychosocial scales that allowed us to capture different 

aspects of psychosocial well-being. We utilized a clustering method on the four psychosocial 

scales to divide women into two groups of having “poor” and “good” psychosocial status during 

pregnancy. Using a novel example of dimension reduction on the effect of modifier space, we then 

evaluated the modifying effect of this overall psychosocial status on the association between 

metals and pregnancy instead of examining each scale separately. This study is also highlighted 

by the quantification of interaction between metal exposure and psychosocial stress and an 

extensive panel of blood metal biomarkers that assessed essential metals, such as Cu, which have 

not been studied with non-chemical exposures in detail to date. 

 

While our study is among the first to explore the interaction between prenatal metal exposure and 

psychosocial stress during pregnancy, there were a few limitations. Measurements in this study, 

including metal biomarkers, psychosocial variable scores, and covariates (i.e. pre-pregnancy BMI) 

may be affected by measurement error. Considering the potential for non-differential measurement 

error in exposures, covariates, and outcome variables, the effects were likely to be attenuated 

towards the null. Nonetheless, the repeated collection of blood samples enabled us to examine 

metal biomarkers at two time points across pregnancy to more fully characterize prenatal metals 

exposure. Repeated exposure measurements help reduce measurement error and provide greater 

statistical power, relative to studies with single time point measurements. Although we adjusted 

for a variety of covariates, possible residual or additional unmeasured confounders of metal 

exposure and/or psychosocial variables may be unaccounted for in our analysis. In addition, the 

small sample size in the “poor” psychosocial status cluster limited the assessment power of effects 

estimates in the cluster, therefore, future studies are needed to validate our findings. While this 

work studied the effects of multiple metals, other metals that are not explored in this study such as 

iron (Fe) may also interact with these metals because Fe-deficiency increases divalent metal 

transporters 1 (DMT1) that is responsible for the transport of Pb, Mn, and Cu [129]. Similarly, 
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other environmental exposures, including phthalates and PAHs, were not explored. Future work 

to investigate the interaction between a more extensive range of metals and multiple chemical 

mixtures and psychosocial stress is needed. Finally, as psychosocial variable distributions are 

bound to material and social factors in the countries/regions being studied, they may vary from 

this cohort to others. Therefore, our results may not be generalizable to the overall U.S. pregnant 

population or pregnant women populations in other countries.  

 

5. Conclusion 

We examined the interaction between environmental metals and maternal psychosocial status on 

birth outcomes among pregnant women in Northern Puerto Rico. We observed associations 

between Mn and increased odds of preterm birth (overall and spontaneous), Ni and decreased odds 

of preterm birth, and Cu and increased odds SGA, that were modified by whether a mother was at 

a “poor” psychosocial status during pregnancy. Our findings provide evidence for the modifying 

role of psychosocial status on the effect of prenatal metal exposure among pregnant women and 

further suggest prenatal stress and social support could be modifiable psychosocial assets that may 

help mitigate risk. This study also highlights the need for future research in this area to examine 

the effects of co-exposure to both environmental and psychosocial conditions, particularly during 

sensitive developmental stages. 
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Figure IV.1 PROTECT cohort study design and sample size 
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Table IV.1 Demographic characteristics of n = 682 pregnant women from Puerto Rico 

Variable Mean (SD) 

Maternal Age 26.8 (5.6) 

Characteristic Category Count (Percent) 

Insurance Type 

Private 425 (62.3%) 

Public (mi salud) 238 (34.9%) 

Missing 19 (2.8%) 

Maternal Education 

<=High school/GED 143 (21.0%) 

Some college or technical school 238 (34.9%) 

College degree 214 (31.4%) 

Master’s degree or higher 87 (12.8%) 

Missing 0 (0.0%) 

Household Income 

<$10,000  185 (27.1%) 

≥$10,000 to <$30,000  191 (28.0%) 

≥$30,000 to <$50,000  141 (20.7%) 

≥$50,000  85 (12.5%) 

Missing 80 (11.7%) 

Marital Status 

Single  136 (19.9%) 

Married or living together 544 (79.8%) 

Missing 2 (0.3%) 

Gravidity (# Pregnancies) 

0 289 (42.4%) 

1 249 (36.5%) 

>1 143 (21.0%) 

Missing 1 (0.1%) 

Pre-pregnancy BMI (kg/m2) 

≤25 372 (54.5%) 

>25 to ≤30 183 (26.8%) 

>30 127 (18.6%) 

Missing 0 (0.0%) 

Infant Gender 

Female 328 (48.1%) 

Male 352 (51.6%) 

Missing 2 (0.3%) 

Employment Status 

Unemployed 417 (61.1%) 

Employed 259 (38.0%) 

Missing 0 (0.0%) 

Smoking 

Never 581 (85.2%) 

Ever 93 (13.6%) 

Current 8 (1.2%) 

Missing 0 (0.0%) 

Exposure to Second-hand Smoking 

None 623 (91.3%) 

Up to 1 hour 18 (2.6%) 

More than 1 hour 41 (6.0%) 

Missing 0 (0.0%) 

Alcohol Consumption 

None 331(48.5%) 

Before pregnancy 299 (43.8%) 

Within the last few months 48 (7.0%) 

Missing 4 (0.6%) 
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Table IV.2 Blood concentrations of metal(loid)s (ng/ml) and psychosocial variables in 682 pregnant women from Puerto Rico 

 

Metal 
LOD % >LOD GM GSD 25% 50% 75% 95% Max 

(loid)a 

Co 0.2 98.2 0.35 1.3 0.29 0.34 0.41 0.55 1.3 

Cs 0.04 99.9 1.1 1.3 0.9 1.1 1.4 1.9 2.9 

Cu 9 99.9 1592 1.2 1428 1616 1779 2133 3798 

Mn 2 99.9 11.2 1.4 9.0 11.2 13.9 19.0 34.9 

Ni 0.5 96.4 1.0 1.6 0.77 1.0 1.3 2.2 16.7 

Zn 24 99.9 4736 1.2 4248 4780 5314 6269 8043 

As 0.3 48.9 0.32 1.7 <LOD <LOD 0.45 1.0 3.0 

Cd 0.1 60.9 0.12 1.6 <LOD 0.11 0.16 0.27 0.9 

Hg 0.2 99.9 1.2 1.7 0.85 1.2 1.7 3.1 5.4 

Pbb 0.02 99.9 3.1 1.5 2.3 3.1 4.1 6.5 15.1 

Psychosocial stress  Range Mean Min 25% 50% 75%  Max 
scales 

CESD    0-48 11 0 5 9 15  48 

PSS  0-40 14 0 8 13 18  39 

ESSI  0-34 32 8 31 33 34  34 

LES    -39-39 0 -35 -2 0 2  19 

Abbreviations: cobalt (Co); cesium (Cs); copper (Cu); manganese (Mn); nickel (Ni); zinc (Zn); arsenic (As); cadmium (Cd); 

mercury (Hg); lead (Pb); limit of detection (LOD); geometric mean (GM); geometric standard deviation (GSD); Center for 

Epidemiological Studies-Depression (CESD); Perceived Stress Scale (PSS); Enhancing Recovery in Coronary Heart Disease 

Patients (ENRICHD) Social Support Instrument (ESSI); Life Experience Survey (LES). 
a Includes blood metal concentrations for up to 2 repeated samples per woman (n = 1035 samples); 
b Pb concentration unit is µg/dL 
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Figure IV.2 Cluster means of the four standardized psychosocial variable scales using k-means in the PROTECT dataab 

 
 

Abbreviations: Center for Epidemiological Studies-Depression (CESD); Perceived Stress Scale (PSS); Enhancing Recovery in 

Coronary Heart Disease Patients (ENRICHD) Social Support Instrument (ESSI); Life Experience Survey (LES). 
a Y-axis (cluster means) represents the mean standardized psychosocial variable scale 
b Cluster 1: “good” overall psychosocial status pattern with low depression score and perceived stress and high social support and 

overall positive life events; cluster 2: “poor” overall psychosocial status pattern with high depression score and perceived stress 

and low social support and overall negative life events 
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Table IV.3 Geometric mean and geometric standard deviation of blood metal (loid) concentrations (ng/ml) among women within 

“good” and “poor” psychosocial status clusters  

 

 Cluster 1: “good” psychosocial status Cluster 2: “poor” psychosocial status  

Metal ((loid) GM GSD GM GSD P valueb 

Co 0.36 1.4 0.37 1.3 0.14 

Cs 1.2 1.4 1.2 1.3 0.31 

Cu 1554 1.3 1614 1.2 0.14 

Mn 11.0 1.4 11.6 1.4 0.16 

Ni 1.1 1.8 1.1 1.7 0.36 

Zn 4780 1.3 4760 1.2 0.82 

As 0.37 1.8 0.38 1.7 0.25 

Cd 0.12 1.6 0.13 1.8 0.11 

Hg 1.1 1.9 1.1 1.8 0.68 

Pba 3.0 15.9 3.5 15.0 <0.001** 

Abbreviations: cobalt (Co); cesium (Cs); copper (Cu); manganese (Mn); nickel (Ni); zinc (Zn); arsenic (As); cadmium (Cd); 

mercury (Hg); lead (Pb); geometric mean (GM); geometric standard deviation (GSD). 
a Pb concentration unit is µg/dL 
b Two sample t-test to test for differences in log-transformed metal concentrations between the two clusters, ** indicates P value 

<0.05 
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Figure IV.3 Change in birth outcomes associated with geometric mean exposure biomarker concentration within two psychosocial status clusters. Effect estimates presented as 

changes in gestation or odds ratio (OR) for IQR increase in exposure biomarker concentrationa. Models were adjusted for maternal age, maternal education, pre-pregnancy BMI, 

and exposure to secondhand smoking 

 
Abbreviations: cobalt (Co); cesium (Cs); copper (Cu); manganese (Mn); nickel (Ni); zinc (Zn); arsenic (As); cadmium (Cd); mercury (Hg); lead (Pb). 
aAs, Cd were compared between two categories of above LOD and below LOD.  

*indicates p for interaction <0.1 considered significant for interaction metal*psychosocial status, ** indicates p for interaction <0.1 & q for interaction <0.1    
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Table IV.4 Change in birth outcomes associated with geometric mean exposure biomarker concentration within two psychosocial status clusters. Effect estimates presented as 

changes or odds ratio (OR) for IQR increase in exposure biomarker concentrationa. Models were adjusted for maternal age, maternal education, pre-pregnancy BMI, and exposure 

to secondhand smoking  

 

Metals Gestational age  Birthweight z-score  

 

Cluster 1  

(“good” psychosocial status) 

Cluster 2  

(“poor” psychosocial status)  

Cluster 1  

(“good” psychosocial status) 

Cluster 2  

(“poor” psychosocial status)  
 Change in days p value Change in days p value Int p Change in z-score p value Change in z-score p value Int p 

  (95% CI)   (95% CI)  
 (95% CI) (95% CI)  

 
Co -1.2 (-2.4, 0.0) 0.05* -3 (-5.3, -0.7) 0.01** 0.17 0.1 (0.0, 0.2) 0.16 0.0 (-0.2, 0.2) 0.76 0.71 

Cs -0.2 (-1.6, 1.1) 0.72 0.2 (-2.7, 3.2) 0.87 0.77 0.1 (0.0, 0.2) 0.08 -0.1 (-0.4, 0.1) 0.37 0.12 

Cu -0.3 (-1.0, 0.5) 0.47 -1.7 (-4.3, 0.9) 0.20 0.30 0.0 (0.0, 0.1) 0.54 -0.1 (-0.3, 0.1) 0.26 0.21 

Mn -0.4 (-1.9, 1.0) 0.54 -4.6 (-7.2, -1.9) <0.001** 0.01** 0.0 (-0.1, 0.2) 0.41 0.0 (-0.2, 0.3) 0.74 0.94 

Ni 0.3 (-0.8, 1.4) 0.61 1.5 (-0.8, 3.8) 0.19 0.34 0.1 (0.0, 0.2) 0.08 0.0 (-0.2, 0.1) 0.65 0.24 

Zn -0.8 (-1.5, 0.0) 0.06 -0.8 (-3.3, 1.6) 0.51 0.96 0.0 (-0.1, 0.1) 0.89 0.0 (-0.2, 0.2) 0.88 0.92 

Asa 0.6 (-1.2, 2.4) 0.50 1.8 (-1.2, 4.9) 0.24 0.50 0.1 (-0.1, 0.3) 0.35 -0.1 (-0.4, 0.3) 0.62 0.38 

Cda -0.3 (-2.5, 2.0) 0.82 -4.0 (-8.1, 0.2) 0.06 0.12 -0.1 (-0.3, 0.1) 0.39 0.3 (-0.1, 0.6) 0.12 0.17 

Hg 0.5 (-0.9, 1.9) 0.51 1.5 (-1.7, 4.7) 0.35 0.56 0.0 (-0.1, 0.2) 0.45 0.1 (-0.2, 0.4) 0.43 0.68 

Pb -1.9 (-3.2, -0.6) 0.004** -1.3 (-4.0, 1.5) 0.38 0.67 0.1 (0.0, 0.2) 0.11 -0.1 (-0.3, 0.2) 0.47 0.18 

     
 

    
 

Metals Preterm birth (overall) Preterm birth (spontaneous) 

 Cluster 1  

(“good psychosocial status”) 

Cluster 2  

(“poor psychosocial status”)  

Cluster 1  

(“good” psychosocial status) 

Cluster 2  

(“poor” psychosocial status)  
 OR (95% CI) p value OR (95% CI) p value Int p OR (95% CI) p value OR (95% CI) p value Int p 

Co 1.22 (0.89, 1.68) 0.21 1.65 (0.90, 3.03) 0.11 0.39 1.29 (0.87, 1.91) 0.20 2.52 (1.02, 6.27) 0.05* 0.18 

Cs 1.19 (0.78, 1.81) 0.42 1.03 (0.48, 2.23) 0.93 0.75 1.13 (0.69, 1.88) 0.62 1.30 (0.44, 3.88) 0.63 0.82 

Cu 1.20 (0.84, 1.71) 0.32 1.61 (0.78, 3.31) 0.19 0.46 1.16 (0.75, 1.78) 0.51 1.18 (0.46, 3.03) 0.73 0.97 

Mn 1.12 (0.75, 1.68) 0.57 2.76 (1.25, 6.12) 0.01** 0.04* 1.29 (0.80, 2.09) 0.29 3.68 (1.17, 11.61) 0.03* 0.09* 

Ni 1.07 (0.79, 1.46) 0.65 0.43 (0.22, 0.81) 0.01** 0.01* 1.13 (0.78, 1.63) 0.53 0.33 (0.13, 0.83) 0.02* 0.02* 

Zn 1.98 (1.24, 3.14) 0.004** 1.40 (0.70, 2.78) 0.34 0.41 1.77 (1.02, 3.08) 0.04* 0.86 (0.37, 2.03) 0.74 0.17 

Asa 0.71 (0.38, 1.34) 0.30 0.58 (0.19, 1.72) 0.32 0.74 0.66 (0.30, 1.45) 0.30 0.47 (0.10, 2.22) 0.34 0.70 

Cda 0.87 (0.46, 1.63) 0.66 1.06 (0.35, 3.21) 0.92 0.76 0.85 (0.39, 1.87) 0.69 1.80 (0.63, 5.12) 0.27 0.18 

Hg 1.11 (0.74, 1.66) 0.63 0.99 (0.42, 2.33) 0.98 0.81 1.47 (0.90, 2.41) 0.13 0.74 (0.22, 2.47) 0.63 0.30 

Pb 1.72 (1.14, 2.58) 0.01** 1.43 (0.69, 2.97) 0.34 0.66 1.56 (0.93, 2.6) 0.09 1.22 (0.42, 3.56) 0.71 0.69 
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Table IV.4 Continued 

 

Metals SGA LGA 

 Cluster 1  

(“good” psychosocial status) 

Cluster 2  

(“poor” psychosocial status)  

Cluster 1  

(“good” psychosocial status) 

Cluster 2  

(“poor” psychosocial status)  
 OR (95% CI) p value OR (95% CI) p value Int p OR (95% CI) p value OR (95% CI) p value Int p 

Co 0.84 (0.61, 1.17) 0.30 1.18 (0.61, 2.28) 0.62 0.37 1.13 (0.81, 1.57) 0.48 0.94 (0.57, 1.56) 0.81 0.56 

Cs 0.76 (0.57, 1.02) 0.07 1.25 (0.53, 2.93) 0.61 0.28 1.13 (0.74, 1.70) 0.57 1.01 (0.52, 1.94) 0.98 0.77 

Cu 0.96 (0.83, 1.10) 0.54 2.81 (1.20, 6.57) 0.02* 0.01* 1.01 (0.80, 1.27) 0.93 0.97 (0.56, 1.66) 0.90 0.88 

Mn 0.81 (0.57, 1.15) 0.24 1.03 (0.49, 2.16) 0.94 0.57 0.94 (0.63, 1.40) 0.75 1.58 (0.85, 2.94) 0.14 0.16 

Ni 0.55 (0.38, 0.78) <0.001** 1.25 (0.62, 2.49) 0.54 0.04* 1.01 (0.73, 1.40) 0.95 0.93 (0.57, 1.52) 0.77 0.78 

Zn 0.99 (0.82, 1.19) 0.90 1.02 (0.52, 2.01) 0.95 0.93 1.05 (0.77, 1.44) 0.76 1.01 (0.60, 1.69) 0.97 0.90 

Asa 0.68 (0.38, 1.22) 0.20 1.19 (0.36, 3.89) 0.77 0.41 0.91 (0.48, 1.72) 0.78 1.16 (0.46, 2.93) 0.75 0.67 

Cda 0.79 (0.44, 1.40) 0.42 0.59 (0.18, 1.90) 0.38 0.66 0.72 (0.38, 1.37) 0.32 1.16 (0.46, 2.92) 0.75 0.40 

Hg 0.88 (0.61, 1.28) 0.51 0.87 (0.35, 2.17) 0.77 0.98 1.06 (0.71, 1.59) 0.78 1.49 (0.72, 3.10) 0.29 0.42 

Pb 0.86 (0.65, 1.14) 0.30 1.49 (0.67, 3.33) 0.33 0.21 0.89 (0.64, 1.23) 0.49 1.10 (0.57, 2.10) 0.78 0.57 

Abbreviations: cobalt (Co); cesium (Cs); copper (Cu); manganese (Mn); nickel (Ni); zinc (Zn); arsenic (As); cadmium (Cd); mercury (Hg); lead (Pb); small for gestational age 

(SGA); large for gestational age (LGA). 
a As, Cd were compared between two categories of above LOD and below LOD  

*p value <0.05 considered significant for effect estimates, **indicate q value <0.1& p value <0.05 

*int p (interaction p value) <0.1 considered significant for interaction metal*psychosocial status, **indicate q value <0.1& Int p <0.1 
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Figure IV.4 Relationship between blood manganese (Mn) concentration and preterm birth among women within “good” and “poor” psychosocial status clusters, generated from 

generalized additive model of log-Mn concentration and preterm birth 
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Table IV.5 Change in birth outcomes associated with geometric mean exposure biomarker concentration within two psychosocial status clusters. Effect estimates presented as 

changes or odds ratio (OR) for IQR increase in exposure biomarker concentrationa. Models were adjusted for maternal age, maternal income, pre-pregnancy BMI, and exposure to 

secondhand smoking 

Metals Gestational age  Birthweight z-score  

 

Cluster 1  

(“good” psychosocial status) 

Cluster 2  

(“poor” psychosocial status)  

Cluster 1  

(“good” psychosocial status) 

Cluster 2  

(“poor” psychosocial status)  
 Change in days p value Change in days p value Int p Change in z-score p value Change in z-score p value Int p 
  (95% CI)   (95% CI)  

 (95% CI) (95% CI)  
 

Co -0.1 (-1.4, 1.3) 0.93 -2.9 (-5.4, -0.5) 0.02* 0.04* 0.0 (-0.1, 0.1) 0.51 0.0 (-0.2, 0.2) 0.89 0.85 

Cs -0.4 (-1.8, 1.0) 0.60 -0.2 (-3.6, 3.2) 0.92 0.92 0.1 (0.0, 0.2) 0.11 -0.1 (-0.4, 0.2) 0.49 0.21 

Cu -0.3 (-1.1, 0.5) 0.47 -2.4 (-5.2, 0.4) 0.09 0.15 0.0 (0.0, 0.1) 0.58 -0.2 (-0.4, 0.1) 0.21 0.17 

Mn -0.2 (-1.7, 1.3) 0.79 -5.1 (-8.0, -2.3) <0.001** 0.003** 0.0 (-0.1, 0.2) 0.64 0.0 (-0.3, 0.2) 0.92 0.77 

Ni 0.3 (-0.9, 1.6) 0.59 2.3 (-0.2, 4.7) 0.07 0.17 0.1 (0.0, 0.2) 0.02 0.0 (-0.2, 0.2) 0.84 0.22 

Zn -0.7 (-1.6, 0.1) 0.07 -0.6 (-3.3, 2.0) 0.64 0.94 0.0 (-0.1, 0.1) 0.98 0.0 (-0.2, 0.3) 0.70 0.72 

Asa 0.9 (-1.5, 3.2) 0.48 4.2 (-0.3, 8.7) 0.07 0.20 0.1 (-0.1, 0.3) 0.35 -0.1 (-0.5, 0.3) 0.55 0.33 

Cda -0.3 (-2.8, 2.1) 0.80 -3.4 (-8.0, 1.1) 0.14 0.23 -0.1 (-0.3, 0.1) 0.43 0.3 (-0.1, 0.7) 0.15 0.10 

Hg 0.5 (-1.1, 2.0) 0.57 1.8 (-1.7, 5.2) 0.32 0.50 0.0 (-0.1, 0.2) 0.60 0.1 (-0.2, 0.4) 0.50 0.69 

Pb -1.9 (-3.3, -0.6) 0.01** -1.6 (-4.5, 1.3) 0.28 0.83 0.1 (0.0, 0.2) 0.20 -0.1 (-0.3, 0.2) 0.59 0.30 
     

 
    

 

Metals Preterm birth (overall) Preterm birth (spontaneous) 

 Cluster 1  

(“good” psychosocial status) 

Cluster 2  

(“poor” psychosocial status)  

Cluster 1  

(good psychosocial status) 

Cluster 2  

(“poor” psychosocial status)  
 OR (95% CI) p value OR (95% CI) p value Int p OR (95% CI) p value OR (95% CI) p value Int p 

Co 1.02 (0.72, 1.44) 0.93 1.56 (0.85, 2.88) 0.15 0.23 1.18 (0.78, 1.78) 0.43 2.32 (0.93, 5.75) 0.07 0.18 

Cs 1.24 (0.80, 1.93) 0.33 0.96 (0.42, 2.16) 0.91 0.57 1.14 (0.69, 1.91) 0.61 1.27 (0.41, 3.97) 0.68 0.87 

Cu 1.24 (0.86, 1.79) 0.24 1.63 (0.79, 3.34) 0.18 0.50 1.21 (0.78, 1.89) 0.39 1.20 (0.47, 3.09) 0.70 0.99 

Mn 1.11 (0.74, 1.66) 0.62 3.13 (1.35, 7.27) 0.01** 0.03* 1.29 (0.80, 2.08) 0.30 4.16 (1.22, 14.15) 0.02* 0.08* 

Ni 1.12 (0.81, 1.56) 0.49 0.42 (0.22, 0.81) 0.01** 0.01* 1.19 (0.80, 1.75) 0.39 0.33 (0.13, 0.84) 0.02* 0.01* 

Zn 2.04 (1.26, 3.31) 0.004** 1.36 (0.67, 2.77) 0.39 0.36 1.86 (1.05, 3.28) 0.03 0.85 (0.36, 2.00) 0.71 0.14 

Asa 0.74 (0.38, 1.42) 0.36 0.58 (0.19, 1.76) 0.34 0.72 0.71 (0.32, 1.59) 0.41 0.48 (0.10, 2.27) 0.35 0.65 

Cda 0.89 (0.46, 1.71) 0.73 0.95 (0.31, 2.92) 0.93 0.92 0.96 (0.43, 2.16) 0.93 3.57 (0.41, 31.12) 0.25 0.26 

Hg 1.23 (0.80, 1.91) 0.35 1.10 (0.46, 2.64) 0.83 0.82 1.65 (0.97, 2.82) 0.07 0.82 (0.24, 2.78) 0.75 0.30 

Pb 1.75 (1.17, 2.64) 0.01** 1.35 (0.66, 2.78) 0.41 0.54 1.56 (0.94, 2.60) 0.08 1.16 (0.41, 3.29) 0.78 0.61 
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Table IV.5 Continued 

 

Metals SGA LGA 

 Cluster 1  

(“good” psychosocial status) 

Cluster 2  

(“poor” psychosocial status)  

Cluster 1  

(“good” psychosocial status) 

Cluster 2  

(“poor” psychosocial status)  
 OR (95% CI) p value OR (95% CI) p value Int p OR (95% CI) p value OR (95% CI) p value Int p 

Co 0.80 (0.57, 1.13) 0.21 1.08 (0.56, 2.09) 0.81 0.43 1.07 (0.74, 1.54) 0.72 0.85 (0.49, 1.47) 0.57 0.50 

Cs 0.78 (0.58, 1.05) 0.10 1.26 (0.53, 3.01) 0.60 0.30 1.23 (0.79, 1.93) 0.36 1.09 (0.51, 2.31) 0.83 0.77 

Cu 0.96 (0.83, 1.12) 0.63 2.81 (1.20, 6.57) 0.02* 0.01* 1.07 (0.77, 1.48) 0.68 0.96 (0.53, 1.73) 0.89 0.75 

Mn 0.82 (0.57, 1.17) 0.27 1.09 (0.52, 2.30) 0.82 0.50 0.95 (0.63, 1.45) 0.82 1.41 (0.73, 2.73) 0.31 0.33 

Ni 0.54 (0.38, 0.78) 0.001** 1.31 (0.64, 2.67) 0.46 0.03* 1.06 (0.75, 1.49) 0.75 1.00 (0.58, 1.70) 0.99 0.86 

Zn 1.02 (0.81, 1.30) 0.85 1.03 (0.51, 2.07) 0.93 0.99 1.10 (0.74, 1.63) 0.64 1.16 (0.64, 2.10) 0.63 0.89 

Asa 0.59 (0.32, 1.08) 0.09 1.15 (0.35, 3.80) 0.82 0.32 0.95 (0.49, 1.85) 0.89 0.80 (0.30, 2.15) 0.66 0.78 

Cda 0.72 (0.40, 1.31) 0.28 0.51 (0.16, 1.66) 0.26 0.61 0.71 (0.37, 1.38) 0.32 0.90 (0.33, 2.45) 0.84 0.70 

Hg 0.81 (0.55, 1.20) 0.29 0.96 (0.38, 2.46) 0.94 0.74 1.03 (0.67, 1.59) 0.88 1.61 (0.71, 3.65) 0.25 0.34 

Pb 0.87 (0.65, 1.16) 0.35 1.43 (0.65, 3.16) 0.38 0.25 0.91 (0.65, 1.29) 0.61 1.19 (0.59, 2.38) 0.63 0.51 

Abbreviations: cobalt (Co); cesium (Cs); copper (Cu); manganese (Mn); nickel (Ni); zinc (Zn); arsenic (As); cadmium (Cd); mercury (Hg); lead (Pb); small for gestational age 

(SGA); large for gestational age (LGA). 
a As, Cd were compared between two categories of above LOD and below LOD  

*p value <0.05 considered significant for effect estimates, **indicate q value <0.1& p value <0.05 

*int p (interaction p value) <0.10 considered significant for interaction metal*psychosocial status, **indicate q value <0.1& Int p <0.1 
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Table IV.6 Change in gestational age (days) associated with geometric mean exposure biomarker concentration within two psychosocial status clusters stratified by study visits. 

Effect estimates presented as changes for IQR increase in exposure biomarker concentrationa. Models were adjusted for maternal age, maternal education, pre-pregnancy BMI, and 

exposure to secondhand smoking 

 
Gestational age  

Cluster 1 (“good” psychosocial status) Cluster 2 (“poor” psychosocial status) 
 

 
Visit 1 Visit 3 

 
Visit 1 Visit 3 

  

Metal

s 

Change in days p 

value 

Change in days p 

value 

Int p 

(metal*visit) 

Change in days p 

value 

Change in days p 

value 

Int p 

(metal*visit) 

Int p 

(metal*visit*cluster)  
 (95% CI) 

 
 (95% CI) 

  
(95% CI)  (95% CI) 

   

Co -0.8 (-2.3, 0.7) 0.28 -0.5 (-2.2, 1.2) 0.57 0.80 -2 (-4.8, 0.7) 0.15 -2 (-5.2, 1.3) 0.23 0.98 0.47 

Cs -0.4 (-1.8, 1.1) 0.63 -1 (-2.8, 0.8) 0.27 0.58 -0.1 (-3.3, 3.1) 0.95 0.7 (-3, 4.4) 0.69 0.73 0.92 

Cu 0 (-0.9, 0.8) 0.94 0 (-1.6, 1.6) 0.98 0.95 -3 (-6, 0) 0.05* -1 (-4, 2.1) 0.53 0.34 0.21 

Mn -0.5 (-2.1, 1) 0.50 0.2 (-1.8, 2.2) 0.86 0.58 -2.7 (-5.7, 0.3) 0.08 -4.9 (-8.6, -1.3) 0.01* 0.35 0.59 

Ni -0.3 (-1.5, 0.9) 0.66 0.5 (-0.9, 1.9) 0.46 0.40 0.7 (-1.7, 3.2) 0.56 0.3 (-2.6, 3.2) 0.82 0.84 0.17 

Zn -0.7 (-1.5, 0.1) 0.08 -1.8 (-3.6, 0) 0.05* 0.28 -1.2 (-4.1, 1.7) 0.41 -0.6 (-3.4, 2.2) 0.69 0.76 0.40 

Asa 1.1 (-1.3, 3.6) 0.37 -0.1 (-2.9, 2.7) 0.92 0.51 3 (-1.7, 7.8) 0.21 3.2 (-1.8, 8.3) 0.21 0.95 0.71 

Cda -0.5 (-3, 2) 0.70 0.3 (-2.6, 3.1) 0.85 0.69 -5.9 (-10.5, -1.2) 0.01* 0.1 (-5.3, 5.4) 0.98 0.10 0.21 

Hg 0.3 (-1.2, 1.8) 0.73 -0.6 (-2.4, 1.2) 0.54 0.48 1.7 (-1.7, 5.1) 0.34 1.2 (-2.6, 4.9) 0.54 0.85 0.11 

Pb -1.8 (-3.2, -0.4) 0.01* -1.7 (-3.6, 0.2) 0.08 0.96 -1.1 (-4.4, 2.2) 0.51 -1 (-4.3, 2.4) 0.57 0.95 0.59 

Abbreviations: cobalt (Co); cesium (Cs); copper (Cu); manganese (Mn); nickel (Ni); zinc (Zn); arsenic (As); cadmium (Cd); mercury (Hg); lead (Pb). 
a As, Cd were compared between two categories of above LOD and below LOD  

*p value <0.05 considered significant for effect estimates 

*int p (interaction p value) <0.10 considered significant for interaction 
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Table IV.7 Change in birth outcomes associated with geometric mean exposure biomarker concentration within two groups of high and low Depression score (CES-D). Effect 

estimates presented as changes or odds ratio (OR) for IQR increase in exposure biomarker concentrationa. Models were adjusted for maternal age, maternal education, pre-

pregnancy BMI, and exposure to secondhand smoking 

Metals Gestational age  Birthweight z-score  

 CES-D Depression Score (<16) CES-D Depression Score (>=16 )  CES-D Depression Score (<16) CES-D Depression Score (>=16 )  
 Change in days p value Change in days p value Int p Change in z-score p value Change in z-score p value Int p 
  (95% CI)   (95% CI)  

 (95% CI) (95% CI)  
 

Co -1.4 (-2.5, -0.2) 0.02* -2.3 (-4.7, 0.2) 0.07 0.69 0.0 (-0.1, 0.1) 0.36 0.1 (-0.1, 0.4) 0.17 0.47 

Cs -0.2 (-1.5, 1.1) 0.77 0.1 (-3, 3.2) 0.94 0.85 0.1 (0.0, 0.2) 0.12 -0.1 (-0.4, 0.1) 0.33 0.12 

Cu -0.4 (-1.2, 0.4) 0.32 -0.6 (-2.8, 1.5) 0.56 0.79 0.0 (0.0, 0.1) 0.44 -0.1 (-0.3, 0.1) 0.17 0.12 

Mn -0.8 (-2.2, 0.5) 0.23 -4.3 (-7.1, -1.4) 0.004** 0.05* 0.1 (-0.1, 0.2) 0.30 0.0 (-0.2, 0.2) 0.99 0.62 

Ni 0.3 (-0.8, 1.4) 0.61 1.7 (-0.8, 4.2) 0.18 0.35 0.1 (0.0, 0.2) 0.13 0.0 (-0.2, 0.2) 0.90 0.40 

Zn -0.7 (-1.5, 0.1) 0.08 -1.3 (-3.4, 0.8) 0.23 0.58 0.0 (-0.1, 0.1) 0.82 0.0 (-0.2, 0.2) 0.97 0.91 

Asa 0.1 (-2.1, 2.3) 0.93 5.7 (1.6, 9.7) 0.01** 0.02* 0.0 (-0.2, 0.2) 0.80 0.0 (-0.3, 0.4) 0.82 0.94 

Cda -0.4 (-2.6, 1.9) 0.76 -2.9 (-7, 1.1) 0.16 0.27 -0.1 (-0.3, 0.1) 0.52 0.2 (-0.1, 0.6) 0.18 0.13 

Hg 0.3 (-1.2, 1.8) 0.73 1.4 (-1.1, 3.9) 0.29 0.44 0.0 (-0.1, 0.2) 0.47 0.1 (-0.1, 0.3) 0.38 0.66 

Pb -2.0 (-3.3, -0.6) 0.004** -0.9 (-3.6, 1.8) 0.50 0.50 0.1 (-0.1, 0.2) 0.29 0.0 (-0.2, 0.3) 0.79 0.82 
     

 
    

 
Metals Preterm birth (overall) Preterm birth (spontaneous) 

 CES-D Depression Score (<16) CES-D Depression Score (>=16 )  CES-D Depression Score (<16) CES-D Depression Score (>=16 )  
 OR (95% CI) p value OR (95% CI) p value Int p OR (95% CI) p value OR (95% CI) p value Int p 

Co 1.25 (0.92, 1.70) 0.16 1.54 (0.84, 2.82) 0.17 0.67 1.34 (0.91, 1.98) 0.14 1.83 (0.93, 3.60) 0.08 0.36 

Cs 1.21 (0.80, 1.82) 0.37 0.91 (0.40, 2.09) 0.83 0.54 1.13 (0.69, 1.84) 0.62 0.88 (0.25, 3.03) 0.84 0.70 

Cu 1.24 (0.86, 1.79) 0.24 1.48 (0.79, 2.77) 0.22 0.53 1.25 (0.79, 1.99) 0.34 1.15 (0.48, 2.77) 0.75 0.93 

Mn 1.21 (0.83, 1.75) 0.33 2.85 (1.14, 7.10) 0.02* 0.11 1.41 (0.90, 2.21) 0.13 3.12 (0.94, 10.39) 0.06 0.22 

Ni 1.02 (0.76, 1.37) 0.91 0.50 (0.25, 1.00) 0.05* 0.07* 1.03 (0.71, 1.50) 0.86 0.49 (0.21, 1.17) 0.11 0.10 

Zn 1.95 (1.24, 3.05) 0.004** 1.51 (0.78, 2.94) 0.22 0.61 1.77 (1.03, 3.02) 0.04* 0.90 (0.40, 2.05) 0.80 0.18 

Asa 0.77 (0.42, 1.42) 0.40 0.50 (0.16, 1.54) 0.23 0.51 0.66 (0.31, 1.41) 0.28 0.31 (0.05, 1.77) 0.19 0.44 

Cda 0.95 (0.52, 1.76) 0.88 0.69 (0.23, 2.13) 0.52 0.62 1.02 (0.47, 2.20) 0.97 1.29 (0.22, 7.44) 0.77 0.80 

Hg 1.13 (0.74, 1.71) 0.57 1.02 (0.50, 2.11) 0.95 0.84 1.48 (0.92, 2.36) 0.10 0.80 (0.25, 2.58) 0.71 0.31 

Pb 1.65 (1.10, 2.50) 0.02* 1.53 (0.72, 3.27) 0.27 0.88 1.46 (0.87, 2.44) 0.15 1.34 (0.44, 4.08) 0.60 0.92 
          

 
Metals SGA LGA 

 CES-D Depression Score (<16) CES-D Depression Score (>=16 )  CES-D Depression Score (<16) CES-D Depression Score (>=16 )  
 OR (95% CI) p value OR (95% CI) p value Int p OR (95% CI) p value OR (95% CI) p value Int p 

Co 0.85 (0.62, 1.18) 0.35 1.07 (0.56, 2.04) 0.83 0.51 1.08 (0.78, 1.48) 0.66 1.08 (0.60, 1.93) 0.80 0.97 

Cs 0.79 (0.59, 1.05) 0.11 1.15 (0.44, 3.00) 0.77 0.43 1.17 (0.81, 1.71) 0.40 0.81 (0.34, 1.91) 0.62 0.40 

Cu 0.97 (0.83, 1.12) 0.66 2.09 (0.90, 4.85) 0.09 0.08* 1.02 (0.82, 1.26) 0.88 0.86 (0.52, 1.40) 0.54 0.53 

Mn 0.80 (0.57, 1.11) 0.18 1.24 (0.58, 2.63) 0.58 0.28 0.93 (0.65, 1.34) 0.70 1.96 (1.02, 3.78) 0.04* 0.05* 

Ni 0.61 (0.43, 0.86) 0.004** 0.89 (0.47, 1.68) 0.72 0.28 1.04 (0.76, 1.41) 0.82 0.87 (0.53, 1.42) 0.58 0.55 

Zn 0.99 (0.83, 1.18) 0.92 1.06 (0.53, 2.13) 0.87 0.86 1.04 (0.79, 1.38) 0.78 1.05 (0.62, 1.76) 0.87 0.98 

Asa 0.71 (0.40, 1.25) 0.23 1.30 (0.40, 4.21) 0.67 0.36 0.74 (0.41, 1.36) 0.34 1.80 (0.64, 5.03) 0.26 0.15 

Cda 0.80 (0.45, 1.41) 0.43 0.64 (0.20, 2.03) 0.45 0.74 0.71 (0.39, 1.29) 0.26 1.40 (0.52, 3.79) 0.51 0.25 

Hg 0.87 (0.59, 1.27) 0.47 0.95 (0.44, 2.04) 0.89 0.85 1.01 (0.69, 1.47) 0.95 1.73 (0.85, 3.52) 0.13 0.20 

Pb 0.87 (0.64, 1.18) 0.36 1.30 (0.63, 2.67) 0.48 0.33 0.86 (0.63, 1.16) 0.33 1.28 (0.65, 2.55) 0.48 0.29 
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Abbreviations: cobalt (Co); cesium (Cs); copper (Cu); manganese (Mn); nickel (Ni); zinc (Zn); arsenic (As); cadmium (Cd); mercury (Hg); lead (Pb); small for gestational age 

(SGA); large for gestational age (LGA). 
a As, Cd were compared between two categories of above LOD and below LOD  

*p value <0.05 considered significant for effect estimates, **indicate q value <0.1& p value <0.05 

*int p (interaction p value) <0.10 considered significant for interaction metal*depression score, **indicate q value <0.1& Int p <0.1 
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Table IV.8 Change in birth outcomes associated with geometric mean exposure biomarker concentration within two groups of high and low perceived stress score (PSS). Effect 

estimates presented as changes or odds ratio (OR) for IQR increase in exposure biomarker concentrationa. Models were adjusted for maternal age, maternal education, pre-

pregnancy BMI, and exposure to secondhand smoking 

Metals Gestational age  Birthweight z-score  

 PSS-Perceived Stress (<75th) PSS-Perceived Stress (>=75th )  PSS-Perceived Stress (<75th) PSS-Perceived Stress (>=75th )  
 Change in days p value Change in days p value Int p Change in z-score p value Change in z-score p value Int p 
  (95% CI)   (95% CI)  

 (95% CI) (95% CI)  
 

Co -1.4 (-2.6, -0.3) 0.02** -1.9 (-4.2, 0.4) 0.10 0.78 0.1 (0.0, 0.2) 0.18 0.1 (-0.1, 0.3) 0.42 0.95 

Cs -0.3 (-1.7, 1.0) 0.64 0.5 (-2.1, 3.1) 0.70 0.57 0.1 (0.0, 0.2) 0.06 -0.2 (-0.4, 0.1) 0.15 0.03* 

Cu -0.3 (-1.1, 0.5) 0.43 -1.3 (-3.4, 0.8) 0.22 0.37 0.0 (0.0, 0.1) 0.56 0.0 (-0.2, 0.1) 0.68 0.55 

Mn -0.8 (-2.2, 0.5) 0.24 -3.3 (-5.9, -0.8) 0.01** 0.12 0.1 (0.0, 0.2) 0.26 0.0 (-0.2, 0.2) 0.78 0.73 

Ni 0.4 (-0.7, 1.5) 0.53 1.0 (-1.1, 3.1) 0.36 0.66 0.0 (0.0, 0.1) 0.32 0.1 (-0.1, 0.2) 0.42 0.88 

Zn -0.8 (-1.6, -0.1) 0.04* -0.4 (-2.8, 1.9) 0.73 0.70 0.0 (0.0, 0.1) 0.58 -0.1 (-0.3, 0.1) 0.37 0.30 

Asa 0.8 (-1.5, 3.1) 0.49 2.9 (-0.8, 6.7) 0.13 0.35 0.0 (-0.1, 0.2) 0.63 0.0 (-0.3, 0.3) 0.93 0.86 

Cda 0.6 (-1.7, 2.9) 0.61 -4.7 (-8.5, -0.8) 0.02** 0.02* -0.1 (-0.3, 0.1) 0.18 0.4 (0.1, 0.8) 0.01* 0.003** 

Hg 0.3 (-1.3, 1.8) 0.75 1.2 (-1.0, 3.5) 0.27 0.43 0.1 (-0.1, 0.2) 0.44 0.1 (-0.1, 0.2) 0.56 0.91 

Pb -2.0 (-3.4, -0.7) 0.003** -0.4 (-3, 2.2) 0.77 0.27 0.0 (-0.1, 0.2) 0.47 0.1 (-0.1, 0.4) 0.21 0.43 
     

 
    

 
Metals Preterm birth (overall) Preterm birth (spontaneous) 

 PSS-Perceived Stress (<75th) PSS-Perceived Stress (>=75th )  PSS-Perceived Stress (<75th) PSS-Perceived Stress (>=75th )  
 OR (95% CI) p value OR (95% CI) p value Int p OR (95% CI) p value OR (95% CI) p value Int p 

Co 1.18 (0.88, 1.60) 0.27 1.92 (1.03, 3.58) 0.04* 0.18 1.27 (0.84, 1.91) 0.25 2.75 (1.25, 6.06) 0.01* 0.07* 

Cs 1.15 (0.76, 1.74) 0.52 1.09 (0.54, 2.19) 0.80 0.92 1.13 (0.67, 1.89) 0.64 0.91 (0.36, 2.31) 0.85 0.70 

Cu 1.15 (0.80, 1.66) 0.45 1.83 (0.99, 3.38) 0.06 0.18 1.16 (0.73, 1.84) 0.53 1.49 (0.66, 3.33) 0.33 0.56 

Mn 1.17 (0.80, 1.72) 0.41 2.50 (1.15, 5.44) 0.02* 0.09* 1.32 (0.82, 2.14) 0.25 3.19 (1.16, 8.79) 0.02* 0.12 

Ni 0.96 (0.70, 1.30) 0.78 0.70 (0.39, 1.27) 0.24 0.40 1.04 (0.70, 1.54) 0.84 0.55 (0.26, 1.15) 0.11 0.13 

Zn 2.16 (1.37, 3.42) <0.001** 1.31 (0.67, 2.56) 0.43 0.17 2.06 (1.17, 3.62) 0.01* 0.78 (0.38, 1.62) 0.51 0.04* 

Asa 0.68 (0.36, 1.28) 0.23 0.72 (0.26, 1.98) 0.52 0.93 0.61 (0.28, 1.35) 0.23 0.44 (0.10, 1.91) 0.27 0.69 

Cda 0.70 (0.37, 1.30) 0.26 1.74 (0.57, 5.30) 0.33 0.16 0.78 (0.35, 1.71) 0.53 4.42 (0.52, 37.34) 0.17 0.13 

Hg 1.18 (0.77, 1.82) 0.45 0.90 (0.48, 1.69) 0.74 0.51 1.60 (0.96, 2.67) 0.07 0.75 (0.29, 1.91) 0.55 0.17 

Pb 1.73 (1.14, 2.61) 0.01** 1.28 (0.63, 2.61) 0.50 0.47 1.68 (1.00, 2.83) 0.05* 0.74 (0.28, 1.96) 0.54 0.15 
          

 
Metals SGA LGA 

 PSS-Perceived Stress (<75th) PSS-Perceived Stress (>=75th )  PSS-Perceived Stress (<75th) PSS-Perceived Stress (>=75th )  
 OR (95% CI) p value OR (95% CI) p value Int p OR (95% CI) p value OR (95% CI) p value Int p 

Co 0.85 (0.60, 1.19) 0.34 1.02 (0.60, 1.74) 0.95 0.58 1.15 (0.84, 1.57) 0.38 0.88 (0.51, 1.54) 0.66 0.40 

Cs 0.75 (0.55, 1.01) 0.06 1.31 (0.61, 2.82) 0.49 0.16 1.24 (0.83, 1.85) 0.29 0.76 (0.39, 1.49) 0.42 0.21 

Cu 0.95 (0.82, 1.10) 0.49 1.81 (0.97, 3.36) 0.06 0.05* 1.00 (0.82, 1.22) 1.00 0.99 (0.66, 1.49) 0.97 0.97 

Mn 0.83 (0.58, 1.18) 0.29 0.97 (0.56, 1.69) 0.91 0.64 1.00 (0.69, 1.45) 0.99 1.51 (0.83, 2.72) 0.17 0.26 

Ni 0.57 (0.39, 0.83) 0.003** 0.85 (0.51, 1.40) 0.52 0.19 0.98 (0.70, 1.36) 0.89 1.00 (0.66, 1.52) 1.00 0.94 

Zn 1.00 (0.81, 1.23) 0.99 0.98 (0.58, 1.66) 0.93 0.93 1.16 (0.78, 1.73) 0.47 0.82 (0.50, 1.36) 0.45 0.29 

Asa 0.68 (0.37, 1.25) 0.21 1.09 (0.42, 2.82) 0.85 0.40 0.85 (0.46, 1.57) 0.60 1.20 (0.49, 2.94) 0.68 0.52 

Cda 0.84 (0.46, 1.55) 0.58 0.58 (0.22, 1.51) 0.26 0.52 0.60 (0.32, 1.13) 0.11 1.70 (0.65, 4.44) 0.28 0.07* 

Hg 0.87 (0.58, 1.31) 0.50 0.91 (0.50, 1.69) 0.78 0.91 1.10 (0.73, 1.66) 0.65 1.24 (0.72, 2.12) 0.44 0.69 

Pb 0.95 (0.68, 1.33) 0.76 0.74 (0.39, 1.39) 0.35 0.48 0.84 (0.61, 1.14) 0.26 1.27 (0.68, 2.40) 0.45 0.24 
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Abbreviations: cobalt (Co); cesium (Cs); copper (Cu); manganese (Mn); nickel (Ni); zinc (Zn); arsenic (As); cadmium (Cd); mercury (Hg); lead (Pb); small for gestational age 

(SGA); large for gestational age (LGA). 
a As, Cd were compared between two categories of above LOD and below LOD  

*p value <0.05 considered significant for effect estimates, **indicate q value <0.1& p value <0.05 

*int p (interaction p value) <0.10 considered significant for interaction metal*perceived stress, **indicate q value <0.1& Int p <0.1 
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Table IV.9 Change in birth outcomes associated with geometric mean exposure biomarker concentration within two groups of high and low social support (ESSI). Effect estimates 

presented as changes or odds ratio (OR) for IQR increase in exposure biomarker concentrationa. Models were adjusted for maternal age, maternal education, pre-pregnancy BMI, 

and exposure to secondhand smoking 

Metals Gestational age  Birthweight z-score  

 SS-Social Support (>25th) SS-Social Support (<=25th )  SS-Social Support (>25th) SS-Social Support (<=25th )  
 Change in days p value Change in days p value Int p Change in z-score p value Change in z-score p value Int p 
  (95% CI)   (95% CI)  

 (95% CI) (95% CI)  
 

Co -1.4 (-2.6, -0.2) 0.02* -2.3 (-4.3, -0.2) 0.03* 0.52 0.1 (0.0, 0.2) 0.16 0.1 (-0.1, 0.2) 0.45 0.92 

Cs -0.2 (-1.5, 1.2) 0.80 -0.4 (-3, 2.1.0) 0.76 0.87 0.1 (0.0, 0.2) 0.21 0.0 (-0.2, 0.3) 0.73 0.76 

Cu -0.5 (-1.3, 0.3) 0.24 -0.2 (-2.3, 1.9) 0.85 0.84 0.0 (0.0, 0.1) 0.48 -0.1 (-0.3, 0.1) 0.36 0.27 

Mn -0.8 (-2.2, 0.6) 0.27 -3.3 (-5.7, -0.9) 0.01** 0.09* 0.0 (-0.1, 0.2) 0.41 0.1 (-0.1, 0.3) 0.42 0.79 

Ni 0.0 (-1.1, 1.1) 0.98 1.9 (-0.1, 3.9) 0.06 0.11 0.0 (-0.1, 0.1) 0.41 0.1 (-0.1, 0.3) 0.32 0.65 

Zn -0.8 (-1.6, 0.0) 0.05 -0.4 (-2.7, 1.9) 0.72 0.76 0.0 (-0.1, 0.1) 0.91 0.1 (-0.1, 0.3) 0.54 0.59 

Asa 1.2 (-1.0, 3.5) 0.28 1.5 (-2.2, 5.2) 0.42 0.91 0.1 (-0.1, 0.3) 0.40 0.0 (-0.3, 0.3) 0.82 0.52 

Cda -0.5 (-2.8, 1.8) 0.67 -3.4 (-7.2, 0.4) 0.08 0.20 -0.2 (-0.3, 0.0) 0.12 0.5 (0.1, 0.8) 0.01 0.00 

Hg 0.9 (-0.6, 2.3) 0.24 -0.5 (-3, 2.1) 0.71 0.37 0.0 (-0.1, 0.2) 0.46 0.1 (-0.1, 0.3) 0.52 0.83 

Pb -1.8 (-3.0, -0.5) 0.01** -2.2 (-4.9, 0.6) 0.13 0.89 0.1 (0.0, 0.2) 0.17 0.0 (-0.2, 0.2) 0.96 0.56 
     

 
    

 
Metals Preterm birth (overall) Preterm birth (spontaneous) 

 SS-Social Support (>25th) SS-Social Support (<=25th )  SS-Social Support (>25th) SS-Social Support (<=25th )  
 OR (95% CI) p value OR (95% CI) p value Int p OR (95% CI) p value OR (95% CI) p value Int p 

Co 1.26 (0.92, 1.74) 0.15 1.56 (0.89, 2.75) 0.12 0.55 1.36 (0.90, 2.04) 0.14 1.94 (0.96, 3.92) 0.07 0.46 

Cs 1.04 (0.71, 1.52) 0.83 1.74 (0.79, 3.86) 0.17 0.25 0.93 (0.60, 1.45) 0.76 2.61 (0.98, 6.96) 0.06 0.06* 

Cu 1.35 (0.94, 1.93) 0.10 1.05 (0.54, 2.03) 0.89 0.54 1.27 (0.79, 2.06) 0.33 1.03 (0.50, 2.12) 0.94 0.67 

Mn 1.11 (0.75, 1.63) 0.60 3.73 (1.54, 9.06) 0.003** 0.01** 1.17 (0.72, 1.89) 0.52 5.2 (1.62, 16.68) 0.01* 0.03* 

Ni 1.10 (0.82, 1.46) 0.52 0.33 (0.16, 0.67) 0.002** 0.002** 1.14 (0.79, 1.64) 0.50 0.37 (0.16, 0.82) 0.01* 0.01* 

Zn 1.93 (1.25, 2.99) 0.003** 1.30 (0.61, 2.77) 0.50 0.36 1.54 (0.89, 2.68) 0.12 1.23 (0.54, 2.79) 0.63 0.67 

Asa 0.77 (0.42, 1.43) 0.41 0.47 (0.15, 1.52) 0.21 0.46 0.61 (0.27, 1.38) 0.23 0.55 (0.14, 2.15) 0.39 0.90 

Cda 0.81 (0.44, 1.50) 0.50 2.00 (0.52, 7.76) 0.32 0.23 0.72 (0.32, 1.61) 0.42 0.66 (0.23, 1.87) 0.98 0.98 

Hg 1.06 (0.71, 1.57) 0.78 1.25 (0.56, 2.79) 0.59 0.71 1.43 (0.84, 2.45) 0.19 1.04 (0.44, 2.46) 0.93 0.60 

Pb 1.53 (1.03, 2.27) 0.03* 2.33 (0.99, 5.49) 0.05 0.43 1.27 (0.74, 2.18) 0.38 2.50 (0.88, 7.06) 0.08 0.27 
          

 
Metals SGA LGA 

 SS-Social Support (>25th) SS-Social Support (<=25th )  SS-Social Support (>25th) SS-Social Support (<=25th )  
 OR (95% CI) p value OR (95% CI) p value Int p OR (95% CI) p value OR (95% CI) p value Int p 

Co 0.89 (0.63, 1.25) 0.49 0.91 (0.48, 1.72) 0.78 0.93 1.08 (0.76, 1.55) 0.66 1.09 (0.73, 1.62) 0.67 0.90 

Cs 0.78 (0.58, 1.03) 0.08 1.11 (0.49, 2.54) 0.80 0.37 1.02 (0.70, 1.50) 0.91 1.27 (0.69, 2.35) 0.44 0.54 

Cu 0.96 (0.83, 1.11) 0.61 2.16 (1.01, 4.63) 0.05* 0.04* 1.03 (0.81, 1.31) 0.81 0.84 (0.52, 1.34) 0.46 0.44 

Mn 0.79 (0.55, 1.12) 0.19 1.13 (0.60, 2.13) 0.70 0.36 0.90 (0.63, 1.30) 0.58 2.16 (1.07, 4.34) 0.03* 0.03* 

Ni 0.67 (0.48, 0.93) 0.02* 0.65 (0.32, 1.32) 0.23 0.89 0.94 (0.69, 1.28) 0.69 1.18 (0.69, 2.00) 0.55 0.47 

Zn 1.00 (0.83, 1.20) 0.96 0.98 (0.49, 1.98) 0.96 0.97 1.00 (0.82, 1.23) 0.97 1.32 (0.69, 2.53) 0.40 0.43 

Asa 0.93 (0.52, 1.66) 0.80 0.41 (0.13, 1.30) 0.13 0.22 1.19 (0.65, 2.18) 0.58 0.70 (0.27, 1.81) 0.46 0.36 

Cda 0.91 (0.51, 1.64) 0.76 0.41 (0.13, 1.28) 0.13 0.22 0.65 (0.36, 1.20) 0.17 1.67 (0.56, 4.96) 0.36 0.14 

Hg 0.90 (0.61, 1.33) 0.60 0.85 (0.39, 1.85) 0.67 0.86 1.11 (0.77, 1.61) 0.58 1.32 (0.66, 2.62) 0.43 0.67 

Pb 0.91 (0.67, 1.25) 0.57 0.98 (0.45, 2.13) 0.97 0.87 1.02 (0.71, 1.46) 0.93 0.75 (0.37, 1.53) 0.43 0.45 
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Abbreviations: cobalt (Co); cesium (Cs); copper (Cu); manganese (Mn); nickel (Ni); zinc (Zn); arsenic (As); cadmium (Cd); mercury (Hg); lead (Pb); small for gestational age 

(SGA); large for gestational age (LGA). 
a As, Cd were compared between two categories of above LOD and below LOD  

*p value <0.05 considered significant for effect estimates, **indicate q value <0.1& p value <0.05 

*int p (interaction p value) <0.10 considered significant for interaction metal*psychosocial status, **indicate q value <0.1& Int p <0.1 
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Table IV.10 Change in birth outcomes associated with geometric mean exposure biomarker concentration within three groups of overall negative, neutral, and positive life events 

(LES). Effect estimates presented as changes or odds ratio (OR) for IQR increase in exposure biomarker concentrationa. Models were adjusted for maternal age, maternal 

education, pre-pregnancy BMI, and exposure to secondhand smoking 

 
 Gestational age  

Metals LES-Life Events (negative) LES-Life Events (neutral) LES-Life Events (positive) 
 Change in days p value int pa Change in days p value Int pb Change in days p value Int pc 
  (95% CI)  

  (95% CI)  
  (95% CI)  

 
Co 0.2 (-1.8, 2.3) 0.83 0.51 -2.0 (-3.7, -0.3) 0.02* 0.12 -0.8 (-2.9, 1.3) 0.47 0.38 

Cs 0.9 (-1.8, 3.7) 0.51 0.16 0.5 (-1.8, 2.8) 0.67 0.79 -1.4 (-3.3, 0.4) 0.13 0.18 

Cu -0.3 (-2.5, 1.8) 0.77 0.96 -0.9 (-2.7, 1.0) 0.35 0.78 -0.5 (-1.4, 0.5) 0.35 0.71 

Mn -1.0 (-3.4, 1.4) 0.42 0.97 -0.9 (-3.1, 1.4) 0.46 0.89 -0.9 (-3.0, 1.1) 0.38 0.86 

Ni 1.3 (-1.0, 3.6) 0.27 0.30 1.6 (-0.1, 3.3) 0.06 0.73 -0.2 (-2.0, 1.5) 0.79 0.13 

Zn -0.6 (-2.8, 1.6) 0.60 0.98 -1.6 (-3.9, 0.7) 0.17 0.63 -0.6 (-1.5, 0.3) 0.20 0.48 

Asd 3.6 (-0.4, 7.6) 0.08 0.46 0.7 (-2.6, 3.9) 0.69 0.27 1.5 (-2.1, 5.1) 0.41 0.73 

Cdd -2.1 (-6.2, 1.9) 0.30 0.70 0.1 (-3.2, 3.4) 0.95 0.40 -1.1 (-4.8, 2.7) 0.58 0.64 

Hg 0.5 (-2.4, 3.3) 0.76 0.90 1.0 (-1.0, 3.0) 0.31 0.72 0.2 (-2.3, 2.7) 0.86 0.60 

Pb -2.2 (-4.9, 0.4) 0.10 0.38 -2.5 (-4.7, -0.3) 0.03* 0.75 -0.7 (-2.7, 1.3) 0.47 0.21 

  
 Birthweight z-score  

 LES-Life Events (negative) LES-Life Events (neutral) LES-Life Events (positive) 
 Change in z-score p value int pa Change in z-score p value Int pb Change in z-score p value Int pc 
 (95% CI)  (95% CI)  

 (95% CI)  
 

Co 0.0 (-0.2, 0.2) 0.94 0.70 0.1 (0.0, 0.2) 0.09 0.28 0.0 (-0.1, 0.2) 0.63 0.50 

Cs 0.1 (-0.2, 0.3) 0.60 0.84 0.1 (-0.1, 0.3) 0.22 0.73 0.0 (-0.1, 0.2) 0.68 0.52 

Cu 0.0 (-0.2, 0.2) 0.97 0.99 0.1 (-0.1, 0.2) 0.44 0.64 0.0 (-0.1, 0.1) 0.95 0.48 

Mn 0.1 (-0.1, 0.2) 0.59 0.47 0.1 (-0.1, 0.3) 0.20 0.67 0.0 (-0.2, 0.1) 0.63 0.22 

Ni -0.1 (-0.3, 0.1) 0.47 0.12 0.1 (-0.1, 0.2) 0.29 0.22 0.1 (0.0, 0.2) 0.12 0.72 

Zn 0.0 (-0.2, 0.1) 0.81 0.82 0.0 (-0.1, 0.2) 0.60 0.61 0.0 (-0.1, 0.1) 0.98 0.64 

Asd -0.1 (-0.4, 0.2) 0.42 0.15 0.0 (-0.2, 0.3) 0.82 0.44 0.2 (-0.1, 0.5) 0.20 0.43 

Cdd 0.1 (-0.2, 0.5) 0.36 0.76 -0.1 (-0.4, 0.1) 0.40 0.21 0.1 (-0.2, 0.4) 0.59 0.33 

Hg -0.1 (-0.3, 0.2) 0.63 0.07* 0.0 (-0.1, 0.2) 0.95 0.67 0.2 (0.0, 0.4) 0.03* 0.11 

Pb 0.1 (-0.1, 0.3) 0.31 0.45 0.1 (-0.1, 0.2) 0.46 0.81 0.0 (-0.1, 0.2) 0.92 0.61 
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Table IV.10 Continued 

 

 Preterm birth (overall) 

Metals LES-Life Events (negative) LES-Life Events (neutral) LES-Life Events (positive) 
 OR (95% CI) p value int pa OR (95% CI) p value Int pb OR (95% CI) p value Int pc 

Co 1.44 (0.92, 2.24) 0.11 0.14 1.26 (0.86, 1.83) 0.24 0.59 0.87 (0.52, 1.46) 0.60 0.26 

Cs 1.21 (0.63, 2.35) 0.57 0.76 1.08 (0.61, 1.90) 0.79 0.77 1.39 (0.77, 2.49) 0.27 0.51 

Cu 1.13 (0.68, 1.87) 0.64 0.44 1.40 (0.88, 2.23) 0.15 0.65 1.60 (0.92, 2.77) 0.09 0.68 

Mn 1.59 (0.95, 2.64) 0.08 0.54 1.10 (0.64, 1.90) 0.73 0.30 1.20 (0.70, 2.06) 0.51 0.77 

Ni 0.86 (0.48, 1.55) 0.62 0.37 0.56 (0.36, 0.88) 0.01* 0.20 1.19 (0.80, 1.75) 0.39 0.01* 

Zn 1.40 (0.81, 2.42) 0.22 0.22 1.90 (1.03, 3.49) 0.04* 0.64 2.46 (1.28, 4.72) 0.01* 0.38 

Asd 0.92 (0.35, 2.42) 0.86 0.35 0.89 (0.41, 1.93) 0.76 0.95 0.49 (0.20, 1.21) 0.12 0.33 

Cdd 1.52 (0.55, 4.23) 0.42 0.15 1.11 (0.50, 2.45) 0.79 0.63 0.56 (0.23, 1.36) 0.20 0.26 

Hg 1.45 (0.74, 2.83) 0.28 0.46 0.96 (0.59, 1.57) 0.88 0.35 1.04 (0.56, 1.91) 0.91 0.85 

Pb 1.79 (0.98, 3.27) 0.06 0.31 2.02 (1.18, 3.44) 0.01* 0.62 1.15 (0.65, 2.06) 0.63 0.13 

  

 Preterm birth (spontaneous) 

 LES-Life Events (negative) LES-Life Events (neutral) LES-Life Events (positive) 

 OR (95% CI) p value int pa OR (95% CI) p value Int pb OR (95% CI) p value Int pc 

Co 1.67 (1.04, 2.69) 0.03* 0.26 1.15 (0.67, 1.96) 0.61 0.29 1.11 (0.53, 2.30) 0.78 0.90 

Cs 1.38 (0.63, 3.04) 0.42 0.89 0.80 (0.37, 1.74) 0.57 0.32 1.25 (0.64, 2.43) 0.52 0.38 

Cu 1.35 (0.69, 2.64) 0.37 0.93 1.25 (0.68, 2.32) 0.48 0.81 1.31 (0.66, 2.60) 0.44 0.89 

Mn 1.94 (1.07, 3.50) 0.03* 0.29 1.08 (0.56, 2.10) 0.81 0.24 1.12 (0.50, 2.50) 0.79 0.97 

Ni 0.74 (0.42, 1.31) 0.30 0.07 0.34 (0.17, 0.70) 0.003** 0.15 1.45 (0.94, 2.25) 0.09 <0.001** 

Zn 1.05 (0.57, 1.92) 0.88 0.13 1.59 (0.75, 3.38) 0.22 0.43 2.60 (1.04, 6.51) 0.04* 0.44 

Asd 0.57 (0.19, 1.77) 0.33 0.94 0.78 (0.26, 2.33) 0.66 0.70 0.54 (0.17, 1.72) 0.30 0.65 

Cdd 1.66 (0.49, 5.57) 0.41 0.31 1.54 (0.49, 4.83) 0.45 0.93 0.70 (0.22, 2.18) 0.54 0.33 

Hg 1.47 (0.70, 3.10) 0.31 0.84 0.92 (0.46, 1.84) 0.82 0.36 1.64 (0.79, 3.42) 0.19 0.26 

Pb 1.47 (0.76, 2.87) 0.26 0.66 1.90 (0.88, 4.13) 0.10 0.63 1.17 (0.57, 2.40) 0.67 0.38 
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Table IV.10 Continued 

 

 SGA 

Metals LES-Life Events (negative) LES-Life Events (neutral) LES-Life Events (positive) 
 OR (95% CI) p value int pa OR (95% CI) p value Int pb OR (95% CI) p value Int pc 

Co 1.27 (0.84, 1.91) 0.91 0.67 1.27 (0.84, 1.91) 0.15 0.42 1.27 (0.84, 1.91) 0.63 0.21 

Cs 1.13 (0.67, 1.89) 0.98 0.48 1.13 (0.67, 1.89) 0.37 0.56 1.13 (0.67, 1.89) 0.16 0.93 

Cu 1.16 (0.73, 1.84) 0.40 0.29 1.16 (0.73, 1.84) 0.49 0.74 1.16 (0.73, 1.84) 0.54 0.36 

Mn 1.32 (0.82, 2.14) 0.13 0.01* 1.32 (0.82, 2.14) 0.06 0.90 1.32 (0.82, 2.14) 0.04* 0.01* 

Ni 1.04 (0.70, 1.54) 0.76 0.08 1.04 (0.70, 1.54) 0.05* 0.03* 1.04 (0.70, 1.54) 0.04* 0.83 

Zn 2.06 (1.17, 3.62) 0.94 0.87 2.06 (1.17, 3.62) 0.43 0.59 2.06 (1.17, 3.62) 0.73 0.43 

Asd 0.61 (0.28, 1.35) 0.72 0.25 0.61 (0.28, 1.35) 0.52 0.50 0.61 (0.28, 1.35) 0.21 0.56 

Cdd 0.78 (0.35, 1.71) 0.77 0.64 0.78 (0.35, 1.71) 0.55 0.88 0.78 (0.35, 1.71) 0.34 0.71 

Hg 1.60 (0.96, 2.67) 0.76 0.77 1.60 (0.96, 2.67) 0.78 0.93 1.60 (0.96, 2.67) 0.44 0.67 

Pb 1.68 (1.00, 2.83) 0.07 0.07 1.68 (1.00, 2.83) 0.47 0.37 1.68 (1.00, 2.83) 0.44 0.29 

  

 LGA 

 LES-Life Events (negative) LES-Life Events (neutral) LES-Life Events (positive) 

 OR (95% CI) p value int pa OR (95% CI) p value Int pb OR (95% CI) p value Int pc 

Co 1.18 (0.88, 1.60) 0.69 0.24 1.18 (0.88, 1.60) 0.81 0.64 1.18 (0.88, 1.60) 0.23 0.39 

Cs 1.15 (0.76, 1.74) 0.38 0.48 1.15 (0.76, 1.74) 0.67 0.67 1.15 (0.76, 1.74) 0.99 0.75 

Cu 1.15 (0.80, 1.66) 0.19 0.22 1.15 (0.80, 1.66) 0.72 0.20 1.15 (0.80, 1.66) 0.95 0.79 

Mn 1.17 (0.80, 1.72) 0.86 0.37 1.17 (0.80, 1.72) 0.74 0.72 1.17 (0.80, 1.72) 0.32 0.53 

Ni 0.96 (0.70, 1.30) 0.57 0.82 0.96 (0.70, 1.30) 0.13 0.14 0.96 (0.70, 1.30) 0.33 0.08* 

Zn 2.16 (1.37, 3.42) 0.75 0.81 2.16 (1.37, 3.42) 0.91 0.87 2.16 (1.37, 3.42) 0.92 0.96 

Asd 0.68 (0.36, 1.28) 0.93 1.00 0.68 (0.36, 1.28) 0.92 0.90 0.68 (0.36, 1.28) 0.93 0.89 

Cdd 0.70 (0.37, 1.30) 0.32 0.20 0.70 (0.37, 1.30) 0.28 0.15 0.70 (0.37, 1.30) 0.41 0.98 

Hg 1.18 (0.77, 1.82) 0.47 0.27 1.18 (0.77, 1.82) 0.17 0.16 1.18 (0.77, 1.82) 0.40 0.86 

Pb 1.73 (1.14, 2.61) 0.97 0.52 1.73 (1.14, 2.61) 0.06 0.16 1.73 (1.14, 2.61) 0.39 0.06* 

Abbreviations: cobalt (Co); cesium (Cs); copper (Cu); manganese (Mn); nickel (Ni); zinc (Zn); arsenic (As); cadmium (Cd); mercury (Hg); lead (Pb); small for gestational age 

(SGA); large for gestational age (LGA). 
a interaction between negative and positive categories 
b interaction between neutral and negative categories 
c interaction between positive and neutral categories 
d As, Cd were compared between two categories of above LOD and below LOD  

*p value <0.05 considered significant for effect estimates, **indicate q value <0.1& p value <0.05 

*int p (interaction p value) <0.10 considered significant for interaction metal*life events categories, **indicate q value <0.1& Int p <0.1 
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Chapter V  

Performance of Urine, Blood, and Integrated Metal Biomarkers in Relation to 

Birth Outcomes in a Mixture Setting 

 
Abstract 

Background: Studies on the health effects of metal mixtures typically utilize biomarkers measured 

in a single biological medium, such as blood or urine. However, the ability to evaluate mixture 

effects are limited by the uncertainty whether a unified medium can fully capture exposure for 

each metal. Therefore, it is important to compare and assess metal mixtures measured in different 

media in epidemiology studies. Objective: The aim of this study was to examine the mixture 

predictive performance of urine and blood metal biomarkers and integrated multi-media 

biomarkers in association with preterm birth. Methods: In our analysis of 847 women from the 

Puerto Rico Testsite for Exploring Contamination Threats (PROTECT) study, we measured 10 

essential and non-essential metals in repeated and paired samples of urine and blood during 

pregnancy. For each metal, we integrated exposure estimates from paired urine and blood 

biomarkers into multi-media biomarkers (MMBs), using intraclass-correlation coefficient (ICC) 

and weighted quantile sum (WQS) approaches. Using Ridge regressions, four separate 

Environmental risk scores (ERSs) for metals in urine, blood, MMBICC, and MMBWQS were 

computed as a weighted sum of the 10 metal concentrations. We then examined associations 

between urine, blood, and multi-media biomarker ERSs and preterm birth using logistic 

regressions, adjusting for maternal age, maternal education, pre-pregnancy body mass index 

(BMI), and second-hand smoke exposure. The performance of each ERS was evaluated with 

continuous and tertile estimates and 95% confidence intervals of the odds ratio of preterm birth 

using area under the curve (AUC). Results: Pb was the most important contributor of blood ERS 

as well as the two integrated multi-media biomarker ERSs. Individuals with high ERS (3rd tertile) 

showed increased odds of preterm birth compared to individuals with low ERS (1st tertile), with 

2.8-fold (95% CI, 1.49 to 5.40) for urine (specific gravity corrected); 3.2- fold (95% CI, 1.68 to 

6.25) for blood; 3.9-fold (95% CI, 1.72 to 8.66) for the multi-media biomarkers composed using 
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ICC; and 5.2-fold (95% CI, 2.34 to 11.42) for multi-media biomarkers composed using WQS. The 

four ERSs had comparable predictive performances (AUC ranging from 0.64 to 0.68) when urine 

is examined with specific gravity corrected concentrations; the performances were also 

significantly better than the performance of urine ERS without accounting for specific gravity.  

Conclusions: Within a practical metal panel, measuring metals in either urine or blood may be an 

equally good approach to evaluate the metals as a mixture, but only when the urine measurements 

are corrected for urinary dilution. Applications in practical study design require validation of these 

methods with other cohorts, larger panels of metals and also within the context of other adverse 

health effects of interest.  

 

 

1. Introduction 

Exposure biomonitoring, which estimates human exposure by measuring chemical or other agents 

of interest or their metabolic products in different biologic media, such as blood and urine [1], has 

become a fundamental approach used in exposure assessment and environmental epidemiology 

[2]. With growing interest in the realistic scenario of studying the collective effects of 

environmental chemicals on humans, including metals [3-11], biomonitoring has become 

indispensable in studies of mixtures. Due to limiting factors such as financial cost and 

methodologic challenges, mixture studies based on biomarkers typically use a unified human 

specimen (i.e. blood, urine, etc.) to determine exposure to various chemicals [12-17]. While this 

approach may capture overall exposure to a class of chemicals with similar structure and 

pharmacokinetic properties, such as urinary phthalates and blood perfluorinated compounds 

(PFCs), it is more challenging to evaluate chemical classes such as metals.  Because each metal 

possesses different pharmacokinetic properties, utilizing one medium for measuring metal 

mixtures may not represent exposure for each metal or accurately reflect overall human exposure.  

Moreover, for different metals, each medium may also represent a different window of exposure 

that provides important information in relation to the health outcome of interest. 

 

A set of biomarkers reflecting integrated metal mixture information from multiple media not only 

reduces the error in the exposure estimation, but also captures different exposure sources and 

pathways. Thus, it may be appropriate to combine exposure from different media to assess human 

exposure to both single metal and metal mixtures. Previous studies have proposed different 
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techniques to integrate biomarkers of exposure to single chemicals, including confirmatory factor 

analysis [18, 19], structural equation models [19-21], and the derivation of multi-media biomarkers 

(MMBs) through mixture methods: non-negative matrix factorization (NMF), independent 

component analysis (ICA) and weighted quantile sum (WQS) regression [22]. A few studies have 

modeled metal mixtures measured in multiple matrices simultaneously and demonstrated that a 

combination of different metal biomarker factors may improve the prediction of health outcomes 

[23, 24]. Those studies have validated techniques to select the most important biomarker for each 

exposure individually, which has provided useful information for recommending a more suitable 

biomarker for a single metal. However, to our knowledge, no epidemiological study has evaluated 

the overall performance of metal mixtures measured in different media in association with health 

outcomes. Therefore, our goals were to assess whether data on metal mixture exposures measured 

using different media can be integrated and compare the performances of different matrices when 

measuring metal mixtures.  

 

To achieve this goal, we conducted the following study. First, we proposed ways to integrate multi-

media exposure information from biomarkers measured in different media. Second, we assessed 

the performance of metal mixtures measured in different media and the combined multi-media 

exposure as related to health outcomes. We chose adverse birth outcomes as our outcome of 

interest because exposure to metals impacts various biological pathways that contribute to adverse 

birth outcomes, including preterm delivery and low birthweight [4, 12, 25-37]. Limited mixture 

studies on this topic have mostly focused on metals measured in either urine or blood [4-8]. In the 

Puerto Rico Testsite for Exploring Contamination Threats (PROTECT) study, we measured a wide 

range of metals in paired urine and blood samples, which enabled us to compare the associations 

between adverse birth outcomes and urinary or blood metal mixtures, as well as integrated metal 

mixtures utilizing both matrices. We hypothesized that the use of urine, blood, and the integrated 

metal mixtures would demonstrate differing performance when modeling adverse birth outcomes, 

informing more efficient study designs for exposure assessment. 

 

2. Methods 

2.1 Study population  
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This study used data collected from 847 pregnant women participating in the PROTECT study, an 

ongoing, prospective birth cohort [38-41]. The PROTECT study was launched in 2010 with 

funding from the National Institute of Environmental Health Sciences (NIEHS) Superfund 

Research Program to investigate Puerto Rico’s high preterm birth rate and the extent of hazardous 

waste contamination on the island. PROTECT aims to explore environmental exposures and other 

factors contributing to preterm birth risk and other adverse birth outcomes in Puerto Rico.  

 

Study participants were recruited at approximately 14 ± 2 weeks of gestation at seven prenatal 

clinics and hospitals throughout Northern Puerto Rico and followed until delivery. [38, 39]. 

Pregnant women included in the study were aged between 18 to 40 years, resided inside of the 

Northern Karst aquifer region, and were planning to deliver in the participating hospitals. 

Exclusion criteria have been described elsewhere [42]. Each woman participated in a total of up 

to three study visits during 18 ± 2 weeks, 22 ± 2 weeks, and 26 ± 2 weeks of gestation. At the 

initial visit, detailed information on medical and pregnancy history was collected. Nurse-

administered questionnaires were used to gather information on housing characteristics, 

employment status, and family situation at an in-home visit (22 ± 2 weeks). Spot urine samples 

were collected from women at up to three visits and blood samples were collected during the first 

and third visits. A total of 847 women who delivered a live singleton birth had available data on 

10 paired urine and blood metal biomarkers (collected at the same time point) as well as 

information on covariates (Figure V.1).  

 

The research protocol was approved by the Ethics and Research Committees of the University of 

Puerto Rico and participating clinics, the University of Michigan, Northeastern University, and the 

University of Georgia. The study was described in detail to all participants, and informed consent 

was obtained prior to study enrollment. 

 

2.2 Measurement of metals 

Spot urine was collected in sterile polypropylene cups and aliquoted within one hour after 

collection, while blood samples were collected in metal-free whole blood tubes. All samples were 

frozen and stored at -80°C and shipped on dry ice. Analysis was performed at NSF International 

(Ann Arbor, MI, USA), where concentrations of 16 metals and metalloids were measured in both 
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urine and blood: arsenic (As), barium (Ba), beryllium (Be), cadmium (Cd), cobalt (Co), chromium 

(Cr), cesium (Cs), copper (Cu), mercury (Hg), manganese (Mn), nickel (Ni), lead (Pb), titanium 

(Ti), uranium (U), vanadium (V), and zinc (Zn); an additional 5 metals and metalloids were 

measured in urine only: molybdenum (Mo), platinum (Pt), antimony (Sb), tin (Sn), and tungsten 

(W). Metal(loid) concentrations were measured using inductively coupled plasma mass 

spectrometry (ICPMS) as described previously [4]. The laboratory selected the appropriate 

isotopes for the requested elements to best avoid interferences from high levels of carbon and 

chloride in the biological sample matrix. The ICPMS was calibrated with a blank and a minimum 

of 4 standards for each element of interest. An R2 value of >0.995 was the minimum criterion for 

an acceptable calibration curve. The calibration curves were verified by initial checks at three 

calibration points within the curve. Continuing calibration checks and blanks after every 10 

samples were also utilized throughout the analytical run to ensure the ICPMS system was 

maintaining acceptable performance. Urinary specific gravity (SG) was measured at the University 

of Puerto Rico Medical Sciences Campus using a hand-held digital refractometer (Atago Co., Ltd., 

Tokyo, Japan) as an indicator of urine dilution.  

 

2.3 Preterm birth and auxiliary birth outcomes   

All birth outcome data were extracted from medical records. We used the American Congress of 

Gynecologists (ACOG) recommendations to calculate gestational age at birth [43], as previously 

described in detail [44, 45]. In this study, preterm birth was defined as delivery < 37 completed 

weeks of gestation, as per common practice. Preterm birth can be classed into two groups, based 

on the clinical presentation of preterm delivery: medically indicated preterm birth (preterm births 

with preeclampsia, or with both artificial membrane rupture and induced labor) and spontaneous 

preterm birth (presentation of premature rupture of the membranes, spontaneous preterm labor, or 

both). In our analysis, the outcome of interest was overall and spontaneous preterm birth. 

 

Other birth outcomes, including gestational age, and fetal growth outcomes [birthweight z-score, 

small for gestational age (SGA), and large for gestational age (LGA)], were also included in our 

analysis as auxiliary outcomes. INTERGROWTH-21st standard gestational age- and sex-specific 

birthweight z-scores were constructed and used in the analysis [46]. SGA and LGA births were 
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defined as below the 10th percentile and above the 90th percentile of birthweight z-scores, 

respectively.  

 

2.4 Data pre-processing for statistical analyses 

To account for urinary dilution, metal(loid) concentrations in urine were corrected for SG using 

the equation: Pc = P[(SGp – 1)/(SGi – 1)]; where Pc is the SG corrected biomarker concentration 

(ng/mL), P is the measured biomarker concentration, SGp is the median urinary specific gravity in 

this population (1.019), and SGi is the individual's urinary specific gravity. Metal concentrations 

below the limit of detection (LOD) were replaced by LOD/√2. Metals that were measured in paired 

media (urine and blood) and had at least 50% of samples with concentrations above the LOD in 

both matrices were included in statistical analysis.  

 

Descriptive statistics were calculated for all exposures and outcome variables. We applied natural 

logarithmic transformation to all urinary and blood metals because the distributions were right-

skewed prior to transformation. The geometric averages of participant concentrations across the 

visits were calculated for each urinary and blood metal. Spearman's rank correlations (rs) were 

used for the analysis of the relationships between paired urinary and blood metal concentrations. 

Data were analyzed using R version 3.6.2. A schematic representation of the data accumulation 

and analytic procedure is also presented in Figure 1.  

 

2.5 MMB composition 

2.5.1 Integrating multi-media biomarker (MMB) using intraclass correlation coefficient (ICC) 

Characterizing the within- and between-individual variation of measurements with parameters 

such as intraclass correlation coefficient (ICC) gives information on the reliability of the different 

media biomarkers. ICC is defined as the proportion of the total variance that is attributed to 

between-individual variability:  

 

[1] ICC= 
σ𝑏2

σ𝑏2+σ𝑤2
 

 

In epidemiological studies with repeated measurements, the ICC metric, ranging from 0 to 1, 

indicates reliability among multiple measurements of a quantity; when close to 0, ICC reflects 
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large variations between repeated measures, a.k.a. poor ability to distinguish between individuals 

with high and low exposure levels; when close to 1, the repeated measures are close to each other 

which reflects a good ability to discriminate between individuals with high and low exposure 

levels. In this unsupervised machine learning approach, we utilized the ICCs calculated from 

repeated measurements of urinary and blood metals [17] as weighting parameters to construct an 

integrated multi-media biomarker (MMB) separately for each metal using equations [2], [3]: 

 

[2] 𝑤𝑢𝑟𝑖𝑛𝑒[𝐼𝐶𝐶]= 
ICC𝑢𝑟𝑖𝑛𝑒

ICC𝑢𝑟𝑖𝑛𝑒+ICC𝑏𝑙𝑜𝑜𝑑
   ; 

 

[3] MMB𝐼𝐶𝐶=𝑤𝑢𝑟𝑖𝑛𝑒[𝐼𝐶𝐶]C𝑢𝑟𝑖𝑛𝑒 + (1 − 𝑤𝑢𝑟𝑖𝑛𝑒[𝐼𝐶𝐶])C𝑏𝑙𝑜𝑜𝑑 , 

 

where 𝓌 is the weight of a medium and C is the metal concentration.  

 

2.5.2 Integrating multi-media biomarker (MMB) using weighted quantile sum regression (WQS) 

In addition to the unsupervised learning method, the amount of exposure information each 

biomarker carries can be quantified simultaneously based on the relationship of the exposure 

measured in a certain medium and health effect--a supervised approach. Therefore, the second 

approach for integrating urinary and blood biomarkers was weighted quantile sum regression 

(WQS), which models the body burden of quantiles of exposure. WQS estimates a set of weights, 

such that the linear combinations of the weights * quantile biomarkers have the highest association 

with the outcome [47] (equation [4]). Details of the WQS equation and annotations are previously 

described [48]. In our analysis, 𝑤𝑖  is the unknown weight for the ith medium (1=urine, 2=blood, 

c=2), z represents a vector of adjusted covariates, and ϕ is a vector of regression coefficients for 

those covariates. By placing the constraints of the weight (𝑤𝑖) estimates to be non-negative and 

sum to 1, the comparative values of urine and blood metals to multi-media biomarkers and the 

joint effect can be determined. The weights can then be used to quantify the contribution of each 

medium to the multi-media biomarker. In this supervised learning approach, we used WQS (100 

bootstraps) to determine the association between each birth outcome and urinary and blood 

biomarkers of each metal, separately. Then we combined the weights to generate multi-media 

biomarkers using equation [5]. 

[4] g(μ)=β0+β1(∑ 𝑤𝑖𝑞𝑖
𝑐
𝑖=1 )+z′ϕ   (0≤w𝑖≤1, ∑ 𝑤𝑖

𝑐
𝑖=1 =1); 
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[5] MMB𝑊𝑄𝑆=𝑤𝑢𝑟𝑖𝑛𝑒[𝑊𝑄𝑆]  C𝑢𝑟𝑖𝑛𝑒 + 𝑤𝑏𝑙𝑜𝑜𝑑[𝑊𝑄𝑆]C𝑏𝑙𝑜𝑜𝑑 . 

 

2.6 Single-pollutant Analysis 

Generalized linear models (GLM) were used to examine the associations between four types of 

metal biomarkers measured and composed (urinary, blood, MMBICC, and MMBWQS) and birth 

outcomes. Separate models were used for each metal biomarker and outcome. The full models 

included the tertiles of metal biomarker concentrations and a final set of covariates that were 

selected based on a priori knowledge and whether their inclusion appreciably changed the effect 

estimates of metal exposure [49]. These covariates were maternal age, maternal education level, 

pre-pregnancy BMI, and exposure to second-hand smoking. Effect estimates and 95% confidence 

intervals were calculated for the highest versus the lowest tertiles of exposure to measure the risk 

stratification properties of individual metals and compare them to the collective effects of metal 

mixtures as described below.  

 

2.7 Mixture Analysis 

2.7.1 Construction of Environmental Risk Scores (ERSs) using Ridge regression 

We constructed Environmental Risk Scores (ERSs) as weighted summary measures of the effects 

of metals where the weights were regression coefficients derived from models of the association 

between metal mixtures and the outcome of interest. We utilized Ridge regression to guide the 

weight of each metal in relation to preterm birth. Ridge regression is a regularized regression 

technique and it is one of the commonly used supervised machine learning solutions. Ridge is used 

to constrain the size of the estimated coefficients, and the objective function for a continuous 

outcome can be expressed as: 

 

[6]  �̂�𝑅𝑖𝑑𝑔𝑒 = arg min
(𝛽0 ,𝛽)∈ℝ𝑝+1

∑ (𝑦𝑖 − 𝛽0 − 𝑥𝑖
𝑇𝛽)2 + 𝜆‖𝛽‖2

2𝑛
𝑖=1  , 

 

where 𝑖 = 1, … , 𝑛 indexes the subjects, 𝑥𝑖
𝑇 ∈ ℝ𝑝 is the vector of 𝑝 covariates for the 𝑖th subject, 

and 𝑦𝑖 is the continuous health outcome for the 𝑖th subject. Ridge regression utilizes the 

regularization penalty parameter 𝜆 (𝜆 ∈ [0, ∞)) to solve the multicollinearity problem and control 
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the shrinkage of the L2 penalty. Ridge regression decreases the complexity of the models and 

enforces the β coefficients to be lower without forcing them to be zero. This was ideal as our 

analytic purpose was to evaluate the same full set of metals as mixtures across different media and 

integrated biomarkers. Using Ridge regression with an underlying model including biomarkers of 

10 metals and covariates, we performed 10-fold cross-validation and selected the value that 

minimized the cross-validated sum of squared residuals. Four separate ERSs for metals in urine, 

blood, MMBICC, and MMBWQS were computed as a weighted sum of the 10 metal concentrations 

(𝐶): 

 

[7] ERS=∑ 𝛽𝑖
10
𝑖=1 𝐶𝑖   . 

2.7.2 ERS models and evaluations 

We further categorized ERSs by tertiles and refit the regression models with both continuous and 

categorical ERSs to examine its associations with preterm birth as well as the auxiliary birth 

outcomes. We conceptualized the ERSs as a weighted sum of metal exposure measured in urine, 

blood, and multi-media biomarkers composed by WQS and ICC methods, namely, ERSurine, 

ERSblood, ERSMMB-WQS, and ERSMMB-ICC. ROC (Receiver Operating Characteristics) curves were 

used to evaluate the preterm, spontaneous preterm birth, SGA, and LGA classification model 

performances of four ERSs. Specifically, the area under curve (AUC) of ROC were computed for 

quantifying and visualizing the biomarkers’ classification accuracy for the above-mentioned 

binary outcomes. We used a bootstrap resampling (2000 iterations) to compute 95% confidence 

intervals of AUCs for different models [50] and to test the difference between AUCs (the ci.auc() 

and roc.test() functions in the pROC package in R [51]). For binary outcome models with ERS 

tertiles, we also computed the odds ratio (OR) for the highest tertile versus the lowest tertile to 

measure the risk stratification properties of ERS. 

 

3. Results 

3.1 Descriptive statistics 

Demographic characteristics of the 847 women in this analysis are summarized in Table V.1 and 

were described previously [41, 52]. Briefly, the cohort included women in their late 20s (median 

=27 years) and half of them had a BMI less than 25 kg/m2 prior to pregnancy. The majority of 

women (57%) had private medical insurance, were non-smokers (86%) and very few (6%) 
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reported alcohol consumption within the last few months. More than half reported an annual 

household income of less than $30,000, while 44% had reported graduating from college or higher. 

Table V.2 displays descriptive statistics, including geometric mean, geometric standard deviation, 

and selected percentiles, of 10 metal concentrations measured in the paired urine and blood 

samples, as well as Spearman correlation coefficients between two media for each metal. Most of 

the paired metal concentrations in the two matrices had a low but significant correlation, with 

Spearman correlation coefficient ranging from 0.07 to 0.43, while Mn, Ni, and Zn concentrations 

measured in urine and blood were not correlated. All the following results on urinary metals are 

presented for SG-corrected concentrations unless described otherwise.  

 

3.2 MMB composition 

The weights of urinary and blood metals in the composition of MMBs from ICC and WQS 

approaches are depicted in Figure V.2. As the ICC approach is based on an unsupervised learning 

method, the metal biomarker weights are the same across the birth outcomes. In contrast, the WQS 

approach is a supervised learning method, therefore, the weights constructed for each of the metal 

biomarkers were different for the respective birth outcomes. The corresponding urinary and blood 

weights (WQS) for each birth outcome are presented in Table V.3, while Figure V.2 focuses on 

weights constructed from WQS models regressing preterm birth. For the majority of metals, blood 

was the main contributor to the MMBs from both ICC and WQS approaches. The blood weights 

for those metals were higher from the WQS approach than the ICC approach, except for Mn and 

Pb where the blood weights were higher from the ICC approach (60% and 88%) than the WQS 

approach (56% and 72%). In contrast, MMB for As was mostly attributed to urine from the WQS 

approach (95%).  

 

3.2 ERSs 

ERS weights derived from Ridge models regressing preterm and spontaneous preterm birth on 

metal mixtures are shown in Figure V.3. The values of the weights for all the outcomes are 

provided in Table V.4. The largest contributors to preterm birth ERS from urine mixture were Cd 

(-0.01), Ni (-0.008), and As (-0.006). For preterm birth ERSs constructed from the blood, MMBICC, 

and MMBWQS mixtures, Pb and Mn were the largest positive weight contributors for all three. A 

similar weight distribution was observed for spontaneous preterm birth. The preterm birth ERSs 
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from each biomarker mixture were normally distributed and ranged from −0.06 to 0.04 for urine; 

−0.13 to 0.88 for blood; −0.001 to 0.11 for MMBICC; and 0.08 to 0.48 for MMBWQS. For preterm 

birth ERSs, pairwise correlations among urine ERS and other ERSs were weak (r<0.2), whereas 

blood ERS had relatively higher correlations with the ERSs for MMBICC (r=0.88) and MMBWQS 

(r=0.53). The weight distribution for spontaneous preterm birth ERSs were similar to overall 

preterm birth ERS weights.  

 

3.3 Continuous ERSs and birth outcomes 

The result from our primary analyses of continuous ERSs and preterm birth are presented in Figure 

V.4. To illustrate the difference in the urine biomarker performance between disregarding versus 

accounting for urine dilution, we reported the odds ratio associated with both uncorrected and SG-

corrected urine ERSs. Therefore, the performance was compared between metal mixtures 

measured in uncorrected urine, SG-corrected urine, blood, MMBICC, and MMBWQS. As shown in 

Figure V.4, all the ERSs were significantly associated with increased odds of preterm birth except 

for uncorrected urine metal ERS. Although not significant, the odds of preterm birth was 1.3 times 

higher for a subject in the 75th percentile of exposure, as determined via ERS for uncorrected urine 

metals, compared with a subject in the 25th percentile of exposure (95% CI: 0.94 to 1.86). The 

odds ratios for other ERS associations were greater than the odds ratio of uncorrected urine metal 

ERS, ranging from 1.81 (95% CI: 1.27 to 2.59) to 2.00 (95% CI: 1.45 to 2.75). Changes in auxiliary 

birth outcomes associated with ERSs are shown in Table V.5. When spontaneous preterm birth is 

regressed on the four ERSs, odds ratios were generally higher compared to the overall preterm 

birth models, ranging from 2.34 (95% CI: 1.53, 3.56) to 2.56 (95% CI: 1.58, 4.14). For fetal growth 

outcomes, all ERSs were significantly associated with lower birthweight z-scores; the associations 

between ERSs and SGA were stronger (OR: 1.54 to 1.99) than the associations between ERSs and 

LGA (OR: 1.32 to 1.51) (Table V.5). 

 

The p values in Figure V.4 represent the significance of the test results for comparing the 

predictive performances (preterm birth) of different ERSs using AUC. While the consistent 

performance of SG-corrected urine, blood, and MMB biomarkers were observed, the uncorrected 

urine ERS showed lower prediction performance than SG-corrected urine (p=0.04), blood ERS 

(p=0.02), MMBICC ERS (p=0.003), and MMBWQS ERS (p=0.07). This is visualized by the AUC 
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plots depicting the performance of different ERSs and preterm birth models (Figure V.5). Figure 

V.5 (a) shows that the area under the uncorrected urine ERS curve (AUC = 0.61; 95%CI = 0.54–

0.68) is smaller than the blood ERS (AUC = 0.68; 95%CI = 0.62–0.74), MMBICC ERS (AUC = 

0.67; 95%CI = 0.61–0.73), and MMBWQS (AUC = 0.68; 95%CI = 0.62–0.74). Figure V.5 (b) 

shows that there are no obvious differences in the AUC between SG-corrected urine, blood, and 

two MMB ERSs. Predictive performances of ERS on other binary outcomes followed similar 

patterns; performances of SG-corrected urine, blood, and MMB biomarkers were comparable, with 

AUC ranging from 0.66 to 0.69 for spontaneous preterm birth, from 0.60 to 0.65 for SGA, and 

from 0.60 to 0.62 for LGA; uncorrected urine ERS showed substantially lower prediction 

performance for spontaneous preterm birth, but not SGA and LGA. 

 

Because Pb was the most important contributor of preterm birth blood ERS as well as the two 

MMB ERSs, we conducted additional analyses excluding Pb from Ridge models while 

constructing and evaluating the performance of the ERSs. The effect estimates from this analysis 

for all four (urine, blood, MMBICC, MMBWQS) ERS were attenuated compared to the primary 

analyses (Table V.6). Continuous blood ERS was no longer significantly associated with preterm 

birth (OR/IQR=1.03, 95% CI 0.77 to 1.37, p=0.83). The effect estimates for urine ERS was 1.73 

(95% CI 1.22 to 2.43, p=0.002), MMBICC was 1.83 (95% CI 1.23 to 2.54, p<0.001), and MMBWQS 

was 1.76 (95% CI 1.29 to 2.41, p<0.001). The AUCs for these ERSs without Pb are shown in 

Figure 5(c). Although the performance of SG corrected urine (blue line) and blood ERSs (red line) 

are comparable, the area is significantly smaller for the blood ERS model compared to the MMBICC 

(p=0.01) and MMBWQS models (p=0.02). 

  

3.4 Tertile metals, ERSs, and birth outcomes 

ORs of preterm birth comparing the highest versus the lowest tertiles of individual metal 

biomarkers and ERSs are shown in Figure V.6. After adjusting for covariates, individual 

associations for Mn (MMBs), Ni (urine), Zn (blood, MMBs), Cd (urine), Pb (blood, MMBs), and 

odds of preterm were significant. Ni and Cd biomarkers were associated with lower odds of 

preterm birth while Mn, Zn, and Pb were associated with higher odds of preterm birth. For 

example, a subject in Ni tertile 3 had 0.76 times lower odds of preterm birth (95% CI, 0.57 to 1) 

compared with a subject in Ni tertile 1. In contrast, a subject in Pb tertile 3 had 1.53 times higher 
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odds of preterm birth (95% CI 1.14 to 2.06) compared with a subject in Pb tertile 1. As for ERS 

models, ORs of preterm birth ranged from 2.83 (95% CI, 1.49 to 5.40) for urine; 3.24 (95% CI, 

1.68 to 6.25) for blood; 3.86 (95% CI, 1.72 to 8.66) for MMBICC; and 5.17 (95% CI, 2.34 to 11.42) 

for MMBWQS, after controlling for the same set of covariates. These ORs from the mixture analysis 

were considerably stronger than those for individual metals. Both individual and mixture analysis 

results for spontaneous preterm birth and auxiliary outcomes can be found in Tables V.5 and V.7. 

  

4. Discussion 

Epidemiologic studies aiming to determine the effects of environmental chemical mixtures on 

human health are growing rapidly. Due to limiting factors such as the financial cost and 

methodologic challenges, mixture studies based on biomarkers typically use a unified human 

specimen, such as blood or urine to determine exposure to various chemicals [12-17]. Although 

this approach applies well to chemicals with similar structure and pharmacokinetics, it is 

challenging to accurately describe metal mixtures using one unified medium. Each metal exhibits 

unique physiochemical properties and toxicokinetics, such as half-life, storage, or elimination rate 

from the body. As such, the preference for either blood or urine concentration as a better indicator 

is different across metals, often determined by the half-life of each metal and cost of measurement. 

For example, urinary concentration of As has often been used as an indicator of recent exposure 

because urine is the main route of excretion of most arsenic species [53, 54]. In contrast, blood is 

the preferred specimen for Pb, as blood Pb has a longer half-life and subsequently lower variability 

in the body compared to urine [55]. As for other metals such as Mn, Cu, and Cr, there is a lack of 

consensus in the literature as to which biomarker is the most consistent and valid. Previous mixture 

studies on prenatal metal exposures and birth outcomes measured metals in different media 

including urine [4, 56-58], whole blood [7, 59], cord blood [60], toenails [5], and teeth [61]. As 

mentioned above, each medium depicts biomarker levels in a particular body compartment that 

may have differential biological relevance and may not fully represent the best measure of internal 

dose for all the metals. Therefore, it is imperative that we understand how the choice of different 

media can impact the performance of analyzing chemical mixtures in relation to a specific health 

outcome. In this paper, we evaluated metals measured in urine and blood, as well as two integrated 

multi-media biomarker indices, in relation to birth outcomes among pregnant women.  
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We first applied supervised and unsupervised approaches to combine exposure information from 

multi-media (urine and blood) metal biomarkers. For each individual metal, the weights for urine 

and blood from both approaches were generally similar with a few exceptions, most notably with 

As. When applying the supervised approach with WQS where the relationship of urine and blood 

biomarkers with the health outcome (preterm birth) is considered, approximately 95% of the As 

association was driven by urinary As. This result indicates that urinary As is the more important 

predictor than the blood As in modeling preterm birth. However, the weight for urinary As from 

the ICC approach was much lower (42%). This difference is mainly due to a lower ICC (0.21) for 

the repeated measurements of urinary As in this study [17]. To our knowledge, only one previous 

study on pregnant women reported an ICC (0.16) for urinary As during pregnancy, which is similar 

to the ICC calculated in the present study [62]. These ICCs indicate weak reliability of urinary As 

during pregnancy, while reports on the general population demonstrated fair reliability of urinary 

As (ICC ranging from 0.45 to 0.49) over a longer period of time (1-2 years) [63, 64]. The 

discrepancy was possibly due to the physiological changes related to the pregnancy (i.e. metabolic 

changes, plasma volume expansion) [65-68], and unique environmental and behavioral factors 

such as dietary habits unique to this population. 

 

Once we constructed MMBs, we used Ridge models to guide the weights of each metal biomarker 

in constructing the ERSs. Examining uncorrected metal mixture concentrations resulted in a 

significantly lower performance in urine ERS compared to the other ERSs (SG-corrected urine, 

blood, and the integrated MMBs) that had comparable level of performances amongst themselves. 

These results indicate that consideration of measuring metal mixtures in either urine or blood may 

be an equally good approach when correcting urinary metals for SG. Although the optimal urine 

concentration adjustment approach for metals remains uncertain [69-71], our findings underline 

the importance of considering urinary dilution when evaluating the health effects of a metal 

mixture measured in urine. This conclusion is supported by previous literature validating the 

improved robustness and reliability of physiological measures for correcting variation in urinary 

output [72-76].  

 

In Ridge models using blood, MMBICC, and MMBWQS, Pb was most strongly associated with 

preterm birth. This is consistent with our previous finding within this population where 
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concentrations of blood Pb among pregnant women in Puerto Rico (average=0.33 μg/dL) were 

well below the level of concern set by CDC, a blood level of 5 μg/dL for pregnant women [77]. 

Yet Pb was the most significant predictor of preterm birth [49]. Therefore, when we conducted the 

same analysis for all the biomarker mixtures excluding Pb, the association between blood ERS and 

preterm birth were no longer significant. The performance of blood ERS was also significantly 

lower than the MMBICC (p=0.01) and MMBWQS (p=0.02) models. However, the performance of 

urine and blood ERSs was still comparable in that the addition of urine biomarker information 

significantly improved the performance of blood biomarkers but not vice versa. These findings 

shed light on the importance of studying Pb in metal mixtures, especially blood biomarkers, as the 

performance of blood ERS was mainly driven by the strong effect of Pb. The findings also warrant 

further studies of different metal panels in regard to mixture performance. 

 

After analyzing individual and ERS tertiles with preterm birth, we observed a few significant but 

overall smaller effects corresponding to individual metals and stronger effects corresponding to 

the four combined ERSs, indicating the cumulative impact of the individual metals (Figure 6). 

This is consistent with previous literature where stronger cumulative effects of metals and 

environmental chemicals were reported when analyzed as mixtures [6, 78, 79]. After adjusting for 

covariates, the odds ratio of preterm birth comparing a subject in the higher end of overall metals 

exposure (ERS tertile 3) with a subject in the lower end (ERS tertile 1) were 2.8 for urine (95% 

CI, 1.49 to 5.40), 3.2 for blood (95% CI, 1.68 to 6.25), 3.9 for MMBICC (95% CI, 1.72 to 8.66), 

and 5.2 for MMBWQS (95% CI, 2.34 to 11.42). Assuming these odds ratios quantify the potential 

for risk stratification of preterm birth, the integrated multi-media biomarker models resulted in a 

higher risk of preterm birth associated with overall metal exposure. From a risk stratification 

perspective, integration of urine and blood biomarkers that were derived from both ICC and WQS 

approaches improved the model performance in the mixture models compared to the sole urine or 

blood biomarker models. Although the confidence intervals for these odds ratio estimates were 

wider, the MMB integration, especially using the WQS approach, resulted in substantially higher 

effect estimate. This finding supports that while multiple measurements of the exposure mixture 

may measure metal body burden differentially, there may still be room for improvement for 

exposure measurement error structure and effect estimate when incorporating urinary and blood 

biomarker information. 
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Specific strengths of our study include its longitudinal design in which repeated urinary and blood 

biomarkers provided more accurate exposure information during pregnancy. This allowed us to 

quantify the temporal reliability of the two media measurements (ICCs), which were further used 

as weights to integrate the multi-media measure of exposure. Secondly, this study utilized data-

driven machine learning approaches to 1) inform the composition of multi-media metal biomarkers 

measured in different media and 2) guide the construction of environmental risk scores for each 

medium reflecting the overall exposure to the metal mixture. Finally, this study evaluated the 

health effects of multiple metals simultaneously and compared the performance of different media 

biomarkers and integrated biomarkers in relation to adverse birth outcomes in the context of a 

mixture. The results lay the groundwork for future epidemiological studies on biomarker selection 

when examining the mixture effects of metals. 

  

However, our study has several limitations. The relatively small sample size did not allow cross-

validation within this population on ERS, which may have caused overfitting of ERS. Future 

studies with a larger sample size should implement training and test datasets to cross-validate 

ERSs. Studies with larger sample sizes are also needed to address potential improvement of models 

by including non-linear terms and interactions between metals and covariates that were not 

accounted for in the current analysis. Depending on the pharmacokinetics of each chemical within 

a family, mixture studies, in general, are challenged by the complications of combining chemical 

biomarkers where each may be representing a unique window of exposure. While our ERS 

estimates also suffered from this limitation, by combining multi-media exposure using both urine 

and blood biomarkers, we were able to reduce the measurement error in the mixture analysis to an 

extent. In addition, while we evaluated a mixture of 10 essential and non-essential metals, it is 

possible that other metals that were not assessed in our study affect the performance of urine or 

blood biomarkers. Future work is needed to expand the mixture evaluation to include more metals 

and other biospecimens including hair and saliva, as well as other adverse health outcomes because 

our results may not be generalizable to other outcomes of interest. Finally, while the mixture of 

metals in this study is representative of exposures experienced by Puerto Rican populations, it may 

not accurately reflect exposure profiles for other populations.  
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5. Conclusion 

Our study used innovative methodology to provide new detailed insights into the individual and 

integrated associations of urinary and blood mixture biomarkers of metal exposure with birth 

outcomes. Our investigation demonstrates, within practical metal analytical panels, that measuring 

metals in either urine or blood may be an equally good approach to evaluate the metals as a 

mixture, but only when the urine measurements are corrected for urinary dilution. The results of 

our study elucidate the importance of considering the overall mixture performance of a certain 

medium. Future studies are needed to expand to evaluate the performance with different metal 

panels, media, health outcomes of interest, and methods to integrate exposure information, to 

further address how to most effectively study the health impacts of exposure to mixtures. 
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Figure V.1 Schematic plot of study design, sample size, and statistical methods for constructing and evaluating multi-media 

biomarker (MMB) and Environmental Risk Score (ERS) 

 

Abbreviations: intraclass correlation coefficient (ICC); weighted quantile sum regression (WQS); area under the curve (AUC); 

odds ratio (OR). 
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Table V.1 Demographic characteristics of study participants from the Puerto Rico Testsite for Exploring Contamination Threats 

(PROTECT) cohort (n=847) 

Variable Mean (SD) 

Maternal age at enrollment (years) 26.9 (5.6) 

gravidity (# pregnancies) 2 (1) 
  

Insurance type N (%) 

Private 480 (57%) 

Public (Mi Salud) 281 (33%) 

Missing 86 (10%) 

Maternal education (years)  

High school/GED 185 (22%) 

Some College or technical school 293 (35%) 

College degree 268 (32%) 

Masters degree or higher 101 (12%) 

Missing 0 (0%) 

Income status (US $)  

<$10,000 260 (31%) 

≥$10,000 to <$30,000 212 (25%) 

≥$30,000 to <$50,000 176 (21%) 

≥$50,000 104 (12%) 

Missing 95 (11%) 

Marital status  

Single 163 (19%) 

Married or living together 680 (80%) 

Missing 4 (0%) 

Gravidity (# pregnancies)  

0 361 (43%) 

1 304 (36%) 

>1 181 (21%) 

Missing 1 (0%) 

Pre-pregnancy BMI (kg/m2)  

≤25 447 (53%) 

>25 to ≤30 230 (27%) 

>30 170 (20%) 

Missing 0 (0%) 

Smoking Status  

Never 726 (86%) 

Ever  109 (13%) 

Current 12 (1%) 

Missing 0 (0%) 

Exposure to second hand smoking   

None 772 (91%) 

Up to 1 hour/day 30 (4%) 

More than 1 hour/day 45 (5%) 

Missing 0 (0%) 

Alcohol consumption  

None 438 (52%) 

Before pregnancy 354 (42%) 

Within the last few months 50 (6%) 

Missing 5 (1%) 

Infant Sex  

Female 406 (48%) 

Male 437 (52%) 

Missing 4 (0%) 
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Table V.2 Distribution of 10 metal(loid)s in urine and blood (ng/ml) in 847 pregnant women from Puerto Rico in 2011–2017 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Abbreviations: cobalt (Co); cesium (Cs); copper (Cu); manganese (Mn); nickel (Ni); zinc (Zn); arsenic (As); cadmium (Cd); 

mercury (Hg); lead (Pb); limit of detection (LOD); geometric mean (GM); geometric standard deviation (GSD). 

a Includes SG-corrected urinary metal concentrations for up to 3 repeated samples per woman (n = 1601 samples) 
b Includes blood metal concentrations for up to 2 repeated samples per woman (n = 1217 samples) 
c Blood Pb concentration unit is µg/dL 
d Spearman correlation coefficient calculated for blood and urine metal concentrations; **P value for the Spearman test<0.01 

 

 

 

 

 

 

 

 

 

 
 

 

 
 

Metal 

(loid) 
Specimen N %>LOD GM GSD 25% 50% 75% 95% Max rd 

Co Urinea 632 100 1.1 1.6 0.80 1.1 1.5 2.8 16.4 
0.30** 

  Bloodb 948 98.2 0.35 1.4 0.29 0.34 0.41 0.57 1.6 

Cs Urinea 632 100 5.5 1.4 4.4 5.6 6.9 9.8 18.4 
0.43** 

  Bloodb 948 99.9 1.1 1.4 0.9 1.2 1.4 1.9 2.9 

Cu Urinea 632 99.3 15.2 1.5 11.5 14.8 19.3 32.1 109 
0.23** 

  Bloodb 948 99.9 1568 1.3 1408 1583 1756 2103 3798 

Mn Urinea 632 100 1.0 2.4 0.83 1.2 1.6 2.6 6.7 
-0.01 

  Bloodb 948 99.9 11.2 1.4 9.0 11.3 13.9 19.1 90.7 

Ni Urinea 632 98.9 5.4 1.8 3.8 5.4 7.9 13.4 127 
-0.06 

  Bloodb 948 96.4 1.0 1.6 0.79 1.0 1.3 2.3 22.8 

Zn Urinea 632 100 309 2.1 204 330 521 878 2136 
0.07* 

  Bloodb 948 99.9 4720 1.3 4288 4793 5322 6102 8043 

As Urinea 632 100 11.3 2.2 6.6 11.0 18.3 41.4 281 
0.26** 

  Bloodb 948 48.9 0.33 1.8 <LOD <LOD 0.47 1.0 7.9 

Cd Urinea 632 74.5 0.13 2.0 0.08 0.12 0.20 0.48 1.8 
0.18** 

  Bloodb 947 60.9 0.12 1.6 <LOD 0.11 0.16 0.27 1.3 

Hg Urinea 628 98.6 0.72 2.7 0.37 0.73 1.3 3.5 64.9 
0.36** 

  Bloodb 948 99.9 1.2 1.7 0.85 1.2 1.7 3.0 10.6 

Pbc Urinea 632 72.1 0.25 2.4 <LOD 0.26 0.44 1.1 4.6 
0.28** 

  Bloodb 948 99.9 3.3 1.6 2.5 3.3 4.3 6.4 21.8 
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Figure V.2 Bar graph of estimated urinary and blood biomarker weights for the MMBs using ICC approach and the WQS models 

of overall preterm birth. Larger weights indicate greater contributions of the original biomarkers to the MMBs 

 

 

Abbreviations: multi-media biomarkers (MMBs); intraclass correlation coefficient (ICC); weighted quantile sum regression 

(WQS); cobalt (Co); cesium (Cs); copper (Cu); manganese (Mn); nickel (Ni); zinc (Zn); arsenic (As); cadmium (Cd); mercury 

(Hg); lead (Pb). 
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Table V.3 Estimated biomarker weights for the MMBs using WQS approach regressing birth outcomes on urinary and blood 

biomarkers 

 Gestational age Preterm birth Spontaneous preterm birth 

Metals urine blood urine blood urine blood 

Co 0.15 0.85 0.03 0.97 0.32 0.68 

Cs 0.13 0.87 0.14 0.86 0.89 0.11 

Cu 0.16 0.84 0.21 0.79 0.76 0.24 

Mn 0.36 0.64 0.44 0.56 0.00 1.00 

Ni 0.21 0.79 0.08 0.92 0.29 0.71 

Zn 0.08 0.92 0.25 0.75 0.72 0.28 

As 0.94 0.06 0.95 0.05 0.05 0.95 

Cd 0.90 0.10 0.14 0.86 0.64 0.36 

Hg 0.18 0.82 0.01 0.99 1.00 0.00 

Pb 0.36 0.64 0.28 0.72 0.01 0.99 

 Birthweight z-score SGA LGA 

Metals urine blood urine blood urine blood 

Co 0.13 0.87 0.00 1.00 0.97 0.03 

Cs 0.83 0.17 0.54 0.46 0.10 0.90 

Cu 0.78 0.22 0.70 0.30 0.16 0.84 

Mn 0.34 0.66 0.55 0.45 0.30 0.70 

Ni 0.51 0.49 0.29 0.71 0.60 0.40 

Zn 0.92 0.08 0.94 0.06 0.08 0.92 

As 0.98 0.02 0.69 0.31 0.58 0.42 

Cd 0.33 0.67 0.92 0.08 0.99 0.01 

Hg 0.53 0.47 0.42 0.58 0.77 0.23 

Pb 0.29 0.71 0.21 0.79 0.21 0.79 

Abbreviations: multi-media biomarkers (MMBs); weighted quantile sum regression (WQS); cobalt (Co); cesium (Cs); copper 

(Cu); manganese (Mn); nickel (Ni); zinc (Zn); arsenic (As); cadmium (Cd); mercury (Hg); lead (Pb); small for gestational age 

(SGA); large for gestational age (LGA). 
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Figure V.3 Heat map of weights for each individual metal biomarker extracted by the Ridge regression models regressing birth 

outcomes on urinary, blood, and two integrated multi-media biomarkers (MMB)  

 

Abbreviations: multi-media biomarkers (MMBs); cobalt (Co); cesium (Cs); copper (Cu); manganese (Mn); nickel (Ni); zinc (Zn); 

arsenic (As); cadmium (Cd); mercury (Hg); lead (Pb); intraclass correlation coefficient (ICC); weighted quantile sum regression 

(WQS). 
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Table V.4 Estimated environmental risk score (ERS) weights (regression coefficient) for metals from each birth outcome Ridge models. Models were adjusted for maternal age, 

maternal education, pre-pregnancy BMI, and exposure to secondhand smoking 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Abbreviations: cobalt (Co); cesium (Cs); copper (Cu); manganese (Mn); nickel (Ni); zinc (Zn); arsenic (As); cadmium (Cd); mercury (Hg); lead (Pb); small for gestational age 

(SGA); large for gestational age (LGA); multi-media biomarker (MMB); intraclass correlation coefficient (ICC); weighted quantile sum regression (WQS). 

 

 

 
Gestational age Preterm birth Spontaneous preterm birth 

Metals urine blood MMBICC MMBWQS urine blood MMBICC MMBWQS urine blood MMBICC MMBWQS 

Co 0.40 -0.12 0.062 -0.266 -0.006 0.009 0.000 0.006 -0.001 0.000 -0.002 -0.001 

Cs 0.17 0.04 0.117 0.143 -0.002 0.005 0.000 0.003 -0.006 0.000 -0.003 -0.001 

Cu -0.64 -0.03 -0.134 -0.081 0.002 0.004 0.001 0.003 0.003 0.000 0.002 0.002 

Mn -0.31 -0.18 -0.528 -0.646 0.004 0.012 0.003 0.012 0.006 0.001 0.013 0.013 

Ni 0.40 0.09 0.329 0.338 -0.008 0.002 -0.001 0.000 -0.009 0.000 -0.009 -0.003 

Zn -0.06 -0.09 -0.167 -0.201 -0.003 0.012 0.002 0.009 -0.003 0.001 0.003 0.004 

As -0.74 0.31 -0.103 -0.636 0.005 -0.013 0.000 0.006 0.007 -0.002 -0.003 0.007 

Cd 1.12 0.04 0.457 0.525 -0.010 -0.015 -0.003 -0.013 -0.013 -0.001 -0.011 -0.007 

Hg 0.76 0.10 0.465 0.405 -0.001 0.003 0.000 0.002 -0.006 0.001 0.000 0.006 

Pb -0.59 -0.37 -0.596 -0.827 0.003 0.023 0.003 0.017 -0.002 0.002 0.010 0.010 

 Birthweight z-score SGA LGA 

Metals urine blood MMBICC MMBWQS urine blood MMBICC MMBWQS urine blood MMBICC MMBWQS 

Co 0.004 0.030 0.027 0.029 -0.175 0.001 -0.018 -0.001 -0.003 0.006 0.002 0.006 

Cs 0.002 0.023 0.017 0.013 -0.112 -0.005 -0.022 -0.009 0.001 0.003 0.003 0.002 

Cu 0.000 0.001 0.002 0.002 0.074 0.001 0.007 0.003 0.000 0.001 0.001 0.001 

Mn 0.001 -0.010 -0.001 -0.003 -0.067 0.003 -0.001 0.000 0.001 0.003 0.003 0.004 

Ni 0.003 0.012 0.019 0.026 -0.053 -0.002 -0.019 -0.009 0.002 0.001 0.003 0.004 

Zn -0.002 -0.002 -0.003 -0.013 0.035 0.001 0.005 0.001 -0.007 0.001 0.000 -0.009 

As -0.002 0.028 0.007 -0.008 0.063 -0.001 0.004 0.003 0.001 0.008 0.006 0.001 

Cd 0.001 0.022 0.017 0.021 0.102 -0.007 -0.012 -0.004 0.003 0.002 0.004 0.005 

Hg -0.003 -0.014 -0.016 -0.020 0.022 0.000 0.004 0.002 -0.002 0.004 0.000 0.000 

Pb 0.001 -0.006 -0.004 -0.003 -0.093 0.003 0.007 0.002 0.000 -0.005 -0.004 -0.005 
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Figure V.4 Odds ratio (OR) of preterm birth associated with Environmental Risk Scores (ERSs) constructed for uncorrected urine, 

SG-corrected urine, blood, and two integrated multi-media biomarkers (MMB) as well as including both SG-corrected urine and 

blood ERS. Effect estimates presented as OR for IQR increase in average exposure biomarker concentration. Models were adjusted 

for maternal age, maternal education, pre-pregnancy BMI, and exposure to secondhand smoking. P values are from tests comparing 

the area under the curves (AUCs), using a bootstrap method 

 

 

 

Abbreviations: specific gravity (SG); intraclass correlation coefficient (ICC); weighted quantile sum regression (WQS). 
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Table V.5 Change in birth outcomes associated with Environmental Risk Score (ERS) constructed for uncorrected urine, SG-

corrected urine, blood, and two integrated multi-media biomarkers (MMBs). Effect estimates presented as changes or odds ratio 

(OR) for IQR increase in exposure biomarker concentration. Models were adjusted for maternal age, maternal education, pre-

pregnancy BMI, and exposure to secondhand smoking 

 

Abbreviations: specific gravity (SG); intraclass correlation coefficient (ICC); weighted quantile sum regression (WQS); small for 

gestational age (SGA); large for gestational age (LGA). 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Gestational age Preterm birth Spontaneous preterm birth 

ERSs Change in days (95% CI) p value OR (95% CI) p value OR (95% CI) p value 

Urineuncorrected -3.0 (-4.2, -1.8) <0.001*** 1.32 (0.94, 1.86) 0.11 1.64 (1.04, 2.57) 0.03** 

UrineSG -3.1 (-4.4, -1.9) <0.001*** 1.83 (1.29, 2.61) <0.001*** 2.53 (1.58, 4.03) <0.001*** 

Blood -1.8 (-2.9, -0.8) <0.001*** 1.89 (1.40, 2.54) <0.001*** 2.34 (1.53, 3.56) <0.001*** 

MMBICC -2.2 (-3.3, -1.2) <0.001*** 2.00 (1.45, 2.75) <0.001*** 2.44 (1.55, 3.85) <0.001*** 

MMBWQS -3.2 (-4.4, -2.0) <0.001*** 1.92 (1.36, 2.70) <0.001*** 2.56 (1.58, 4.14) <0.001*** 

 Birthweight z-score SGA LGA 

ERSs Change in z-score (95% CI) p value OR (95% CI) p value OR (95% CI) p value 

Urineuncorrected -0.12 (-0.21, -0.02) 0.02** 1.84 (1.32, 2.57) <0.001*** 1.50 (1.10, 2.05) 0.01** 

UrineSG -0.13 (-0.22, -0.03) 0.01** 1.99 (1.41, 2.81) <0.001*** 1.51 (1.11, 2.03) 0.01** 

Blood -0.15 (-0.24, -0.06) 0.001*** 1.54 (1.10, 2.15) 0.01** 1.40 (1.05, 1.87) 0.02** 

MMBICC -0.16 (-0.26, -0.07) <0.001*** 1.64 (1.16, 2.30) 0.005*** 1.32 (0.98, 1.79) 0.07* 

MMBWQS -0.14 (-0.24, -0.05) 0.004*** 1.70 (1.23, 2.36) <0.001*** 1.53 (1.11, 2.10) 0.01** 
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Figure V.5 Area under the curves (AUCs) for preterm birth according to environmental risk score (ERS) constructed for urinary, 

blood, and two integrated multi-media biomarkers (MMB) 

 
 

Abbreviations: specific gravity (SG); intraclass correlation coefficient (ICC); weighted quantile sum regression (WQS). 
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Table V.6 Change in birth outcomes associated with Environmental Risk Score (ERS) constructed for SG-corrected urine, blood, 

and two integrated multi-media biomarkers (MMBs), excluding Pb in Ridge models. Effect estimates presented as changes or odds 

ratio (OR) for IQR increase in exposure biomarker concentration. Models were adjusted for maternal age, maternal education, pre-

pregnancy BMI, and exposure to secondhand smoking 

 

Abbreviations: specific gravity (SG); intraclass correlation coefficient (ICC); weighted quantile sum regression (WQS); small for 

gestational age (SGA); large for gestational age (LGA). 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Gestational age Preterm birth Spontaneous preterm birth 

ERSs 
Change in days (95% 

CI) 
p value OR (95% CI) p value OR (95% CI) p value 

UrineSG -3.0 (-4.3, -1.7) <0.001*** 1.73 (1.22, 2.43) 0.002*** 2.65 (1.64, 4.28) <0.001*** 

Blood -1.4 (-2.4, -0.4) 0.01** 1.03 (0.77, 1.37) 0.83 2.19 (1.40, 3.42) <0.001*** 

MMBICC -1.9 (-3.0, -0.8) <0.001*** 1.83 (1.32, 2.54) <0.001*** 2.13 (1.35, 3.35) 0.001*** 

MMBWQS -2.2 (-3.4, -1.0) <0.001*** 1.76 (1.29, 2.41) <0.001*** 1.93 (1.25, 2.97) 0.002*** 

 Birthweight z-score SGA LGA 

ERSs 
Change in z-score 

(95% CI) 
p value OR (95% CI) p value OR (95% CI) p value 

UrineSG -0.13 (-0.22, -0.03) 0.01** 1.94 (1.36, 2.77) <0.001*** 1.52 (1.13, 2.06) 0.01** 

Blood -0.11 (-0.20, -0.02) 0.02** 1.52 (1.09, 2.12) 0.01** 0.97 (0.72, 1.31) 0.86 

MMBICC -0.16 (-0.26, -0.07) <0.001*** 1.58 (1.13, 2.21) 0.01** 1.23 (0.90, 1.69) 0.20 

MMBWQS -0.16 (-0.25, -0.07) <0.001*** 1.59 (1.12, 2.25) 0.01** 1.45 (1.06, 1.97) 0.02** 
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Figure V.6 Odds ratio (OR) comparing the highest versus the lowest tertiles of individual metals and environmental risk scores 

(ERSs) constructed for urine, blood, and two integrated multi-media biomarkers (MMB) mixtures. Models were adjusted for 

maternal age, maternal education, pre-pregnancy BMI, and exposure to secondhand smoking 

 

 

Abbreviations: intraclass correlation coefficient (ICC); weighted quantile sum regression (WQS); cobalt (Co); cesium (Cs); 

copper (Cu); manganese (Mn); nickel (Ni); zinc (Zn); arsenic (As); cadmium (Cd); mercury (Hg); lead (Pb). 
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Table V.7 Odds ratio (OR) comparing the highest vs. the lowest tertiles of individual metals and environmental risk scores (ERSs) 

constructed for urine, blood, and two integrated multi-media biomarkers (MMB) mixtures. Models were adjusted for maternal age, 

maternal education, pre-pregnancy BMI, and exposure to secondhand smoking 

 
  Gestational age Preterm birth Spontaneous preterm birth 

Metals Biomarkers 
Change in days 

(95% CI) 
p value OR (95% CI) p value OR (95% CI) p value 

Co 

UrineSG 0.6 (-0.6, 1.8) 0.30 0.82 (0.60, 1.11) 0.20 0.95 (0.63, 1.43) 0.81 

Blood -0.6 (-1.6, 0.5) 0.31 1.18 (0.90, 1.54) 0.24 0.95 (0.65, 1.37) 0.77 

MMBICC 0.0 (-1.2, 1.3) 0.97 0.99 (0.72, 1.35) 0.93 0.93 (0.61, 1.42) 0.74 

MMBWQS -0.5 (-1.6, 0.6) 0.34 1.17 (0.89, 1.53) 0.26 0.94 (0.65, 1.38) 0.76 

Cs 

UrineSG 0.3 (-0.9, 1.4) 0.67 0.93 (0.69, 1.26) 0.66 0.77 (0.52, 1.15) 0.20 

Blood 0.0 (-1.2, 1.2) 0.95 1.11 (0.80, 1.55) 0.52 1.00 (0.66, 1.52) 0.99 

MMBICC 0.2 (-1.1, 1.4) 0.80 1.06 (0.76, 1.47) 0.72 0.90 (0.59, 1.37) 0.62 

MMBWQS 0.1 (-1.1, 1.3) 0.86 1.09 (0.78, 1.52) 0.60 0.96 (0.63, 1.45) 0.83 

Cu 

UrineSG -0.7 (-1.7, 0.4) 0.20 1.05 (0.81, 1.35) 0.73 1.10 (0.79, 1.53) 0.56 

Blood -0.3 (-1.0, 0.5) 0.48 1.16 (0.86, 1.55) 0.34 1.10 (0.76, 1.60) 0.62 

MMBICC -0.5 (-1.4, 0.4) 0.27 1.17 (0.85, 1.60) 0.34 1.15 (0.76, 1.75) 0.51 

MMBWQS -0.4 (-1.3, 0.4) 0.34 1.17 (0.85, 1.60) 0.33 1.14 (0.75, 1.72) 0.54 

Mn 

UrineSG -0.6 (-1.6, 0.3) 0.17 1.15 (0.88, 1.49) 0.30 1.30 (0.90, 1.87) 0.16 

Blood -1.0 (-2.1, 0.2) 0.11 1.24 (0.93, 1.67) 0.15 1.35 (0.93, 1.98) 0.12 

MMBICC -1.2 (-2.3, -0.1) 0.04** 1.31 (0.98, 1.76) 0.07* 1.52 (1.04, 2.24) 0.03** 

MMBWQS -1.1 (-2.2, -0.1) 0.04** 1.30 (0.97, 1.74) 0.07* 1.52 (1.04, 2.23) 0.03** 

Ni 

UrineSG 0.4 (-0.7, 1.5) 0.46 0.76 (0.57, 1.00) 0.05* 0.70 (0.48, 1.01) 0.06* 

Blood 0.3 (-0.7, 1.2) 0.59 1.04 (0.81, 1.32) 0.77 0.92 (0.66, 1.29) 0.64 

MMBICC 0.5 (-0.6, 1.6) 0.36 0.89 (0.66, 1.18) 0.41 0.74 (0.50, 1.10) 0.14 

MMBWQS 0.3 (-0.6, 1.3) 0.53 1.02 (0.80, 1.30) 0.89 0.90 (0.64, 1.26) 0.53 

Zn 

UrineSG -0.1 (-1.4, 1.2) 0.88 0.91 (0.66, 1.24) 0.54 0.89 (0.58, 1.35) 0.57 

Blood -0.5 (-1.3, 0.2) 0.17 1.66 (1.19, 2.30) 0.003*** 1.35 (0.88, 2.08) 0.16 

MMBICC -0.5 (-1.4, 0.3) 0.21 1.45 (1.05, 2.00) 0.02** 1.22 (0.80, 1.86) 0.36 

MMBWQS -0.5 (-1.3, 0.3) 0.20 1.55 (1.12, 2.15) 0.01** 1.28 (0.84, 1.97) 0.25 

As 

UrineSG -1.2 (-2.3, -0.1) 0.03** 1.17 (0.89, 1.53) 0.27 1.30 (0.92, 1.85) 0.14 

Blood 1.1 (-0.4, 2.5) 0.16 0.78 (0.51, 1.19) 0.24 0.49 (0.26, 0.93) 0.03** 

MMBICC 0.7 (-0.6, 2.1) 0.75 1.00 (0.74, 1.33) 0.98 0.92 (0.62, 1.36) 0.67 

MMBWQS 0.4 (-1.1, 1.9) 0.04** 1.16 (0.88, 1.53) 0.29 1.28 (0.90, 1.84) 0.17 

Cd 

UrineSG 1.5 (0.2, 2.7) 0.02** 0.71 (0.51, 1.00) 0.05 0.54 (0.34, 0.88) 0.01** 

Blood 0.1 (-1.5, 1.8) 0.87 0.77 (0.49, 1.20) 0.25 0.86 (0.48, 1.55) 0.62 

MMBICC 0.0 (-1.2, 1.3) 0.30 0.71 (0.49, 1.03) 0.07* 0.69 (0.42, 1.14) 0.15 

MMBWQS -0.5 (-1.6, 0.6) 0.59 0.74 (0.49, 1.10) 0.14 0.77 (0.45, 1.31) 0.34 

Hg 

UrineSG 1.1 (-0.1, 2.2) 0.07* 0.97 (0.73, 1.29) 0.84 0.80 (0.54, 1.18) 0.27 

Blood 0.4 (-0.8, 1.6) 0.48 1.05 (0.77, 1.43) 0.76 1.32 (0.87, 2.01) 0.20 

MMBICC 0.9 (-0.3, 2.1) 0.13 1.01 (0.74, 1.36) 0.97 1.00 (0.67, 1.51) 0.99 

MMBWQS 0.4 (-0.8, 1.6) 0.53 1.05 (0.77, 1.43) 0.76 1.31 (0.87, 1.99) 0.20 

Pb 

UrineSG -0.4 (-1.7, 0.8) 0.50 1.09 (0.80, 1.48) 0.59 0.92 (0.60, 1.39) 0.68 

Blood -1.6 (-2.8, -0.5) 0.01** 1.53 (1.14, 2.06) 0.01** 1.57 (1.07, 2.29) 0.02** 

MMBICC -1.5 (-2.6, -0.4) 0.01** 1.50 (1.12, 1.99) 0.01** 1.51 (1.04, 2.19) 0.03** 

MMBWQS -1.5 (-2.6, -0.4) 0.01** 1.46 (1.10, 1.95) 0.01** 1.43 (0.98, 2.10) 0.06* 

ERS 

UrineSG -3 (-4.3, -1.7) <0.001*** 1.73 (1.22, 2.43) 0.002*** 2.65 (1.64, 4.28) <0.001*** 

Blood -1.4 (-2.4, -0.4) 0.01** 1.03 (0.77, 1.37) 0.83 2.19 (1.4, 3.42) <0.001*** 

MMBICC -1.9 (-3, -0.8) <0.001*** 1.83 (1.32, 2.54) <0.001*** 2.13 (1.35, 3.35) 0.001*** 

MMBWQS -2.2 (-3.4, -1) <0.001*** 1.76 (1.29, 2.41) <0.001*** 1.93 (1.25, 2.97) 0.002*** 
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Table V.7 Continued 

 

  Birthweight z-score SGA LGA 

Metals Biomarkers 
Change in z-score 

(95% CI) 
p value OR (95% CI) p value OR (95% CI) p value 

Co 

UrineSG 0.07 (-0.02, 0.17) 0.13 0.66 (0.47, 0.93) 0.02 0.89 (0.65, 1.20) 0.44 

Blood 0.10 (0.02, 0.19) 0.02 1.02 (0.77, 1.36) 0.87 1.23 (0.94, 1.60) 0.13 

MMBICC 0.12 (0.02, 0.22) 0.02 0.80 (0.57, 1.10) 0.17 0.98 (0.74, 1.29) 0.87 

MMBWQS 0.11 (0.02, 0.20) 0.01 0.98 (0.73, 1.30) 0.88 1.19 (0.92, 1.55) 0.18 

Cs 

UrineSG 0.04 (-0.05, 0.14) 0.39 0.77 (0.56, 1.05) 0.10 1.03 (0.77, 1.38) 0.83 

Blood 0.08 (-0.02, 0.17) 0.12 0.83 (0.63, 1.09) 0.17 1.10 (0.81, 1.50) 0.55 

MMBICC 0.08 (-0.02, 0.18) 0.11 0.77 (0.57, 1.04) 0.08 1.17 (0.87, 1.56) 0.30 

MMBWQS 0.05 (-0.04, 0.15) 0.28 0.75 (0.54, 1.03) 0.07 1.05 (0.78, 1.41) 0.76 

Cu 

UrineSG 0.01 (-0.08, 0.09) 0.88 1.07 (0.83, 1.40) 0.60 1.01 (0.79, 1.29) 0.93 

Blood 0.01 (-0.05, 0.07) 0.68 1.09 (0.83, 1.44) 0.54 1.04 (0.83, 1.29) 0.75 

MMBICC 0.02 (-0.06, 0.09) 0.67 1.13 (0.82, 1.54) 0.46 1.05 (0.83, 1.33) 0.68 

MMBWQS 0.01 (-0.08, 0.10) 0.78 1.11 (0.83, 1.48) 0.49 1.02 (0.79, 1.33) 0.86 

Mn 

UrineSG 0.02 (-0.06, 0.09) 0.68 0.89 (0.72, 1.10) 0.30 1.03 (0.82, 1.30) 0.78 

Blood -0.01 (-0.11, 0.08) 0.79 1.13 (0.84, 1.52) 0.43 1.09 (0.81, 1.46) 0.59 

MMBICC 0.00 (-0.09, 0.09) 0.94 0.99 (0.74, 1.31) 0.93 1.00 (0.78, 1.28) 0.98 

MMBWQS 0.00 (-0.09, 0.09) 0.99 1.01 (0.75, 1.36) 0.94 1.09 (0.82, 1.46) 0.54 

Ni 

UrineSG 0.05 (-0.04, 0.13) 0.28 0.82 (0.62, 1.09) 0.17 1.08 (0.82, 1.42) 0.58 

Blood 0.05 (-0.03, 0.13) 0.19 0.92 (0.72, 1.18) 0.50 1.04 (0.82, 1.31) 0.76 

MMBICC 0.08 (-0.01, 0.17) 0.08 0.81 (0.60, 1.09) 0.17 1.11 (0.86, 1.43) 0.44 

MMBWQS 0.09 (-0.01, 0.18) 0.08 0.78 (0.56, 1.08) 0.13 1.10 (0.82, 1.49) 0.52 

Zn 

UrineSG -0.04 (-0.14, 0.06) 0.45 1.02 (0.73, 1.43) 0.89 0.77 (0.58, 1.04) 0.09 

Blood 0.00 (-0.06, 0.07) 0.90 1.07 (0.81, 1.40) 0.64 1.07 (0.82, 1.38) 0.63 

MMBICC 0.00 (-0.07, 0.06) 0.90 1.07 (0.81, 1.41) 0.64 1.00 (0.83, 1.21) 0.99 

MMBWQS -0.04 (-0.14, 0.06) 0.46 1.03 (0.74, 1.45) 0.84 0.78 (0.58, 1.05) 0.11 

As 

UrineSG -0.03 (-0.12, 0.06) 0.48 1.09 (0.82, 1.45) 0.57 1.04 (0.79, 1.36) 0.79 

Blood 0.10 (-0.02, 0.22) 0.11 0.97 (0.66, 1.43) 0.87 1.25 (0.88, 1.79) 0.21 

MMBICC 0.03 (-0.07, 0.12) 0.56 1.04 (0.77, 1.40) 0.81 1.11 (0.86, 1.43) 0.43 

MMBWQS -0.03 (-0.12, 0.06) 0.50 1.09 (0.81, 1.47) 0.57 1.04 (0.79, 1.37) 0.77 

Cd 

UrineSG 0.02 (-0.08, 0.12) 0.69 1.18 (0.85, 1.63) 0.33 1.14 (0.84, 1.54) 0.40 

Blood 0.09 (-0.04, 0.23) 0.18 0.73 (0.45, 1.17) 0.19 1.06 (0.70, 1.61) 0.79 

MMBICC 0.07 (-0.04, 0.18) 0.20 0.88 (0.60, 1.27) 0.49 1.04 (0.76, 1.42) 0.80 

MMBWQS 0.07 (-0.04, 0.18) 0.22 0.91 (0.63, 1.31) 0.61 1.11 (0.80, 1.55) 0.52 

Hg 

UrineSG -0.06 (-0.15, 0.03) 0.20 1.06 (0.79, 1.42) 0.71 0.92 (0.69, 1.22) 0.54 

Blood -0.05 (-0.15, 0.05) 0.34 1.02 (0.75, 1.40) 0.90 1.13 (0.84, 1.52) 0.42 

MMBICC -0.07 (-0.16, 0.03) 0.17 1.05 (0.77, 1.44) 0.76 1.10 (0.83, 1.45) 0.52 

MMBWQS -0.07 (-0.16, 0.03) 0.17 1.05 (0.77, 1.43) 0.75 1.01 (0.75, 1.36) 0.96 

Pb 

UrineSG 0.02 (-0.08, 0.12) 0.69 0.83 (0.59, 1.15) 0.26 1.02 (0.75, 1.37) 0.92 

Blood -0.01 (-0.1, 0.08) 0.82 1.13 (0.83, 1.54) 0.44 0.88 (0.67, 1.14) 0.33 

MMBICC -0.01 (-0.1, 0.08) 0.87 1.10 (0.81, 1.48) 0.54 0.87 (0.68, 1.10) 0.25 

MMBWQS 0 (-0.09, 0.09) 0.96 1.05 (0.78, 1.41) 0.76 0.89 (0.68, 1.17) 0.40 

ERS 

UrineSG -0.13 (-0.22, -0.03) 0.01** 1.94 (1.36, 2.77) <0.001*** 1.52 (1.13, 2.06) 0.01** 

Blood -0.11 (-0.2, -0.02) 0.02** 1.52 (1.09, 2.12) 0.01** 0.97 (0.72, 1.31) 0.86 

MMBICC -0.16 (-0.26, -0.07) <0.001*** 1.58 (1.13, 2.21) 0.01** 1.23 (0.90, 1.69) 0.20 

MMBWQS -0.16 (-0.25, -0.07) <0.001*** 1.59 (1.12, 2.25) 0.01** 1.45 (1.06, 1.97) 0.02** 

Abbreviations: cobalt (Co); cesium (Cs); copper (Cu); manganese (Mn); nickel (Ni); zinc (Zn); arsenic (As); cadmium (Cd); 

mercury (Hg); lead (Pb); intraclass correlation coefficient (ICC); weighted quantile sum regression (WQS); small for gestational 

age (SGA); large for gestational age (LGA). 
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Chapter VI  

Conclusions 
 

Summary of findings 

This dissertation presents findings from four studies investigating the relationships between metal 

exposures and adverse birth outcomes. Figure VI.1 illustrates the main findings and significance 

of this dissertation. Using novel study designs, I evaluated the predictors of metal profiles 

measured in different media and their association with adverse birth outcomes, as well as the 

interactions between metals and maternal psychosocial status. The results provide strong evidence 

for the relationship between environmental metal exposure during pregnancy and increased risk of 

adverse pregnancy and fetal growth outcomes, and also suggest a possible role of psychosocial 

status in modifying these relationships. While additional epidemiological investigations are 

required, the present dissertation work has potential implications for public health policies and 

infrastructure design changes aimed at reducing the rates of adverse birth outcomes and their social 

and economic burdens.  

 

Predictors of maternal metal exposure. The investigation in Aim 1 characterized the metal(loid) 

biomarker variation over time and between matrices and explored important exposure sources and 

predictors among 1040 study participants from the PROTECT cohort. Distributions, trends, 

correlations, predictors of urinary and blood metal(loid) concentrations were assessed. Levels of 

blood Pb in pregnant Puerto Rican women were particularly low (GM=0.33 μg/dL) when 

comparing across other studies of pregnant women and all blood samples in our study had Pb 

concentration lower than the level of concern set by CDC for pregnant women (5 μg/dL) [1, 2]. 

Correlations for urine:blood metal pairs were weak to moderate. This is consistent with our 

knowledge that the circulating level and excreted level may not be correlated and often are 

representing different windows of exposure. Urinary concentrations of metal(loid)s were 

significantly different between the three visits for Co, Cs, Cu, Mo, and Zn. Reported use of shaving 

cream, shampoo, and other hair products among women was associated with lowered Cu, Hg, Mn, 
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and Zn concentrations while fish and rice consumption were associated with an increase in urinary 

As and blood Hg concentrations. Iron and folic supplement intake was associated with elevated 

urinary Cs, Mo, and Sb concentrations. 

 

Maternal blood metal exposure and adverse pregnancy outcomes. Aim 2 assessed the individual 

and collective effects of maternal blood metal(loid)s on adverse birth outcomes in 812 pregnant 

women in the PROTECT cohort. The analysis revealed that maternal blood Pb, even at very low 

levels, was most strongly associated with increased risk of preterm birth and shorter gestational 

age. When analyzed as a mixture, odds ratios were greater in magnitude and more precise 

compared to the odds ratio estimates from the single pollutant models. Mixture analysis also 

provided evidence that Pb, Zn, and Mn are likely key exposures during pregnancy contributing to 

adverse birth outcomes. The stratified analysis by study visits of sample collection revealed 

potential windows of susceptibility for adverse birth outcomes, especially for overall and 

spontaneous preterm birth. In samples collected at median 22 weeks of gestation, increases in 

blood Pb and Zn were associated with a twofold increase in the odds of overall and spontaneous 

preterm birth, while an association with similar magnitude was observed between Hg and the odds 

of spontaneous birth at median 26 weeks of gestation. Additionally, an infant sex-specific 

interaction was noted for Zn and gestational age, which could be indicative of vulnerability for 

women carrying a female fetus. We did not detect any significant associations for birthweight or 

large for gestational age. 

 

Interaction between psychosocial status and metal exposure. Aim 3 examined the extent to which 

overall psychosocial status, characterized by depression, perceived stress, social support, and life 

events, modified the association between metal exposure and adverse pregnancy outcome in 682 

women from the PROTECT study.  The examination of two clusters of women being in “good” 

and “poor” psychosocial status reported significant and strengthened associations in the presence 

of “poor” psychosocial status. Specifically, women with “poor” psychosocial status had stronger 

associations between blood Mn concentration and gestational age and preterm birth. The 

association between Cu and small for gestational age was also statistically significant only among 

women having “poor” psychosocial status. 
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Evaluating the performance of urine, blood, multimedia metal mixtures. For Aim 4, we focused 

on a subset of 847 PROTECT participants with paired urine and blood measurements of 10 metals. 

First, integrated exposure estimates, multi-media biomarkers (MMBs), were composed from 

paired urine and blood biomarkers. Then, the mixture predictive performance of urine and blood 

metal biomarkers, and integrated multi-media biomarkers, were evaluated using associations 

between environmental risk scores (ERSs) and preterm birth. The ERSs constructed for urine 

biomarkers correcting for urinary dilution, blood biomarkers, and multi-media biomarkers had 

comparable predictive performances, and they all substantially outperformed urine ERS when 

using uncorrected urine metal concentrations, which do not account for urinary dilution.  

 

Integration of findings 

Together, the results from the four aims of this dissertation research showed significant evidence 

of associations between metal exposure and adverse birth outcomes, some of which are modified 

by maternal psychosocial stress. Some of the essential and non-essential metals presented 

consistent associations that were supported by results from limited previous studies, while some 

associations were less understood in the previous literature. Nonetheless, several overarching 

themes emerged from this dissertation: 

 

Pb exposure is crucial in metal mixtures, even at low levels. Findings from all four aims 

strongly suggest that Pb was the most important metal for the determination of true impact 

of metal mixtures on pregnancy. All of the women in the PROTECT cohort had blood Pb 

levels well below the level of concern set by CDC, a blood level of 5 µg/dL for pregnant 

women [1, 2]. Moreover, the average blood Pb concentration among Puerto Rican women 

(3.3 µg/dL) was particularly low compared to the levels reported in other existing literature 

on pregnant women. And yet, mixtures analyses (Aim 2 and Aim 4) revealed that blood Pb 

level was the most important predictor of increased risk of preterm birth, when accounting 

for the effect of other metals. Excluding Pb from metal mixtures in the analysis 

significantly lowered the impact of mixture on preterm birth, suggesting that the mixture 

effect was driven mainly by the strong effect of Pb. Aim 3 shed light on another notable 

finding on Pb. Even though the effect of Pb on birth outcomes did not differ by overall 

psychosocial well-being of the mothers, Pb was the only metal that was significantly higher 
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among women within the “poor” psychosocial status group compared to the “good” 

psychosocial status group. It is possible that this is due to unmeasured common cause(s) of 

high Pb exposure and “poor” psychosocial status and/or the potential of Pb exposure 

impacting psychosocial health. Together, these findings suggest that not only Pb exposure 

has its own dominant contribution to the effect of metal mixtures, but it may also influence 

the association of other metals. Therefore, in the case of Pb, this dissertation highlights the 

importance of considering Pb and the framework of metal dyshomeostasis in metal mixture 

studies. Furthermore, this dissertation provide evidence for the need to reduce Pb exposure 

as much as possible for all pregnant women.  

 

Considering both predictors and modifiers of metal exposure for mitigation strategies. Aim 

1 and Aim 3 results suggest that interventions through predictors and modifiers of metal 

exposure should be put in place to alleviate the effects of metals on pregnant women. Aim 

1 identified that diet, water sources, and smoking were predictors and sources of metal 

exposures, which suggests that reduction of exposure may be achieved by modifying 

consumer behaviors and the household environment. Identified sources of exposure can 

also inform techniques and tools for reducing the actual exposure, including infrastructure 

designs.  In Aim 3, the strengthened effects of metals on adverse birth outcomes among 

women with poor overall psychosocial health give insights to modifiable psychosocial 

assets that may help mitigate risk. Knowledge on psychosocial modifiers can help us 

integrate useful mental health resources to provide for expecting mothers. From a chemical 

and psychosocial stress interaction perspective, by identifying pregnant women who are at 

higher risk (who are at “poor” psychosocial status) at early visits, care providers can 

provide mental health resources for them. This identification can also help target groups to 

focus more attention on reducing actual chemical exposure through primary sources of 

different metal exposure. These suggestions are especially relevant today as the island is 

still recovering from the catastrophic damages caused by Hurricane Maria, a Category 5 

Hurricane, hitting Puerto Rico in late 2017. While the hurricane spared no one, leaving 

residents homeless and short of electricity, water, and food supply, the unique 

vulnerabilities of particular groups, including pregnant women, were exposed. 

Environmental contamination conditions exacerbated by the flooding and the destruction 
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of buildings, combined with the elevated levels of stress as a result of Hurricane Maria 

created an especially vulnerable state for pregnant women. Psychosocial scale data used in 

this dissertation were collected prior to Hurricane Maria and therefore do not reflect the 

difference between pre- and post-hurricane. Nonetheless, findings from this dissertation 

suggest that interventions should be initiated to alleviate the effects of chemical and 

psychosocial stressors on pregnant women, in addition to the continuing recovery efforts 

on the island.  

 

Importance of considering windows of vulnerability and effect modification by fetal sex. 

Limited studies have measured and/or compared metal(loid) concentrations at different 

times during pregnancy and explored window specific or sex-specific association among 

existing cohorts assessing the impact of environmental chemicals and adverse birth 

outcomes among pregnant women [3-7]. The PROTECT study design enables the 

assessment of the differences in associations by study visit and fetal sex. In this 

dissertation, we provided evidence that the association between study visits and fetal sex, 

manifested differential associations between metals and birth outcomes. Firstly, in Aim 1, 

we studied the variability of metal(loid)s across pregnancy and reported that the 

concentrations of some metals varied across three visits, which may due to various factors 

including a metal’s unique physiochemical properties and toxicokinetics, the changes in 

fetal and maternal nutrient supply [8], and the metabolic changes such as variation in 

glomerular filtration rate [9, 10] and plasma volume expansion [11]. In Aim 2 and Aim 3, 

we explored whether the associations of metals with birth outcomes differed between study 

visits. Aim 2 revealed positive and robust associations between the metals such as Pb and 

Zn that are mainly driven by associations in an earlier visit. In contrast, Aim 3 showed that 

the interaction of metals and psychosocial status on birth outcomes did not statistically vary 

by visits. The inconsistent findings from Aim 2 and Aim 3 were likely due to the small 

sample size in the “poor” psychosocial status cluster in Aim 3, limiting the assessment 

power of effects estimates. Therefore, we suggest that elevated levels at particular 

gestational ages may play a critical role in the association between metal(loid)s and adverse 

birth outcomes. In Aim 2, we also provided evidence for a heightened vulnerability to metal 

exposure for female fetuses compared with male fetuses; one of the main predictors of 
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preterm birth, Zn, showed a significant association with increased odds of preterm birth 

among women carrying female fetuses, while the association were null among women 

carrying male fetuses. In order to fully test the hypothesis of window specific vulnerability 

and effect modification of fetal sex, larger longitudinal cohorts with repeated 

measurements are needed. 

Urine and blood biomarkers highlight different prediction performances. In the PROTECT 

study, repeated measures of metal(loid) concentrations in both blood and urine samples 

enabled us to characterize the reliability and predictive performance of metal exposures 

measured in different biological matrices. Results from Aim 1 and Aim 4 provide useful 

information on metal biomarker selection to future epidemiology studies of birth outcomes. 

More specifically, Aim 1 concluded that blood measurements of metals such as Cu, Zn, 

Mn, Hg, and Pb presents higher reliability and abundance compared to urine 

measurements. This conclusion can inform single-pollutant studies on recommending a 

more suitable biomarker for a single metal. Aim 4 examined the predictive performance of 

metal exposures measured in different biological matrices in a mixture setting because 

there is growing interest in the realistic scenario of studying the collective effects of 

environmental chemicals on humans, including metals [4, 12-19]. Our investigation in Aim 

4 demonstrates, within practical metal analytical panels, that measuring metals in either 

urine or blood may be an equally good approach to evaluate the metals as a mixture, but 

only when the urine measurements are corrected for urinary dilution. These findings 

provide evidence that exposure assessment in urine and blood may inform us of different 

biological relationships under single metal and metal mixture scenarios. However, future 

expanded studies are needed to evaluate the performance with different metal panels, 

media, health outcomes of interest, and methods to integrate exposure information, to 

further address how to most effectively study the health impacts of exposure to metals. 

Future research questions 

Employing an innovative study design and novel statistical methodologies, this dissertation adds 

to the growing evidence on the risk of metals exposure on adverse birth outcomes. However, future 

studies are required to build on results reported here in several areas: 
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Mechanisms of action and mediation analysis. As this study suggests that metal exposures 

may be a contributor to adverse birth outcomes, additional research is necessary to explore 

the mechanisms and pathways through which metals are impacting pregnancy. Exposure 

to metals impacts various biological pathways associated with adverse birth outcomes: (1) 

one of the leading proposed mechanisms for metal toxicity is oxidative stress, defined as 

the homeostatic imbalance between cellular oxidants and availability of antioxidants to 

favor oxidation [20, 21]. Oxidative stress plays an important role in the development of 

many adverse birth outcomes, including preeclampsia, preterm birth, and intrauterine 

growth restriction [22-26]. The levels of oxidative stress biomarkers, such as 8-iso-

prostaglandin F2α (8-iso-PGF2α), increase during pregnancy and peak at delivery [27], 

suggesting that this mechanism plays an important role in normal childbirth. Previous 

human studies have shown positive associations between higher levels of oxidative stress 

biomarkers (8-iso-PGF2α) and preterm birth [28-32]. A recent analysis in the PROTECT 

study also suggested that elevated levels of 8-iso-PGF2α and its metabolite are associated 

with higher odds of overall preterm birth, and particularly spontaneous preterm birth [33]. 

Several in vivo and in vitro studies have linked metal exposure with increased formation 

of reactive oxygen species (ROS) [34, 35]. The excessive ROS can induce oxidative stress 

and cause damage to cells, leading to the release of lipid peroxidation products into 

circulation [20]. Elevated biomarkers of oxidative stress in association with exposure to 

heavy metals, including lead (Pb), arsenic (As), and cadmium (Cd), have been reported 

[36-40]. (2) Reproductive hormones also play an important role in maintaining pregnancy; 

in turn, disruption of the complex interplay between hormones may lead to adverse effects 

during gestation. A number of metals, including Cd, Hg, As, and Pb, are reproductive 

toxicants and suspected endocrine disruptors [41-44]. Evidence suggests that metals can 

influence reproductive hormone levels through several pathways, including hormone 

synthesis, regulation, transport and metabolism, and/or interference with receptors [45-52]. 

These results suggest that the mechanism of action for metals affecting pregnancy may also 

be through disrupting reproductive hormones. (3) Epigenetic changes could also play a role 

in this pathway as well [53, 54].  
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Longitudinal studies such as PROTECT with data on molecular markers of these potential 

mediators provide an opportunity to explore the biological mechanisms and pathways through 

which prenatal exposure metals are influencing the length of gestation and fetal growth. The 

role of these potential underlying mechanisms should be investigated more closely as 

mediation analysis will provide an additional step towards establishing a causal pathway. 

 

Comprehensive evaluation of metal and psychological stressor interactions. Our research 

findings also provide motivation for future work investigating other adverse health effects 

resulting from the interaction between metal and psychosocial stressors. While this 

dissertation demonstrates that the effects of metals on adverse birth outcomes vary by 

maternal psychosocial status, the interaction between metal and psychosocial status may 

also contribute to other known outcomes associated with metals, including reproduction, 

neurodevelopmental outcomes, and sexual development. Future research is required to 

elucidate more comprehensive interactive relationships between metals and psychosocial 

factors on reproductive and child health. 

  

Expanding mixture analysis. Considering the prevalence and daily exposure of 

environmental contaminants in the island, an important next step is to assess the collective 

effect of different chemical mixtures in relation to adverse birth outcomes. The mixture 

approaches and models established in the present work using metal biomarkers may serve 

as a useful tool for a larger mixture analysis including additional chemical families, such 

as phenols, phthalates, metals, and particulate matter altogether.   

 

Public health impact and innovation 

The rate of preterm births in the U.S. has been increasing over the last few decades and is 

associated with many chronic health conditions and developmental disabilities. Over the decades, 

Puerto Rico has been experiencing an unusually high rate of preterm birth, as well as 

environmental and financial burdens. PROTECT, a large prospective longitudinal cohort study in 

Puerto Rico, is exploring how environmental exposures during pregnancy are potentially 

associated with preterm birth. With repeated longitudinal data on chemical panels, PROTECT 

provided a unique opportunity to study the causal relationships between environmental pollutants 
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and preterm birth in this at-risk population, and to test more realistic exposure profiles’ impact on 

preterm birth. 

 

This work produced important insights into the levels of prenatal exposure of Puerto Rican 

pregnant women to metals, as well as helping to fill knowledge gaps about the individual and 

collective effects of prenatal metals exposure on adverse birth outcomes and the interaction 

between chemical and psychosocial stressors. Evaluation of chemical mixtures measured in 

different media will inform more efficient study designs for exposure assessment. Improved 

understanding of environmental and other factors that contribute to preterm birth, together with 

developing sustainable technologies to remove contamination, will have a direct impact in Puerto 

Rico. The metal exposures targeted for this analysis are ubiquitous in the U.S. and elsewhere 

around the world, making the findings of this study broadly applicable to pregnant women and 

newborns worldwide. 

 

Overall Conclusion 

The present dissertation utilized innovative approaches to provide important evidence on the 

impact of a class of chemicals, metals, on adverse birth outcomes. The dissertation includes the 

first study to characterize the profile, trends, and predictors of metal exposure among pregnant 

women in Puerto Rico. Incorporating the full richness and structure of the repeated data across 

pregnancy, important predictors and sources of a large panel of metals were identified which can 

provide potential guidelines for food choice and behavioral changes during pregnancy and also 

inform engineering designs that may help reduce metal exposure. In this dissertation, more realistic 

exposure profiles were analyzed both individually and collectively as a mixture which provided 

evidence that selected metals including Pb, Zn, Mn are associated with adverse birth outcomes. A 

novel example of dimension reduction on the effect of modifier space with clustering revealed that 

the presence of “poor” psychosocial status is strengthening the negative effect of some metals, 

especially manganese, on gestational length. This finding complements current research regarding 

how environmental and psychosocial stressors interact in their contribution to birth outcomes. 

Together with knowledge on the predictor and sources of metal exposures, the findings also help 

identify the appropriate mitigation strategies and interventions necessary to reduce the burden of 

metal-related adverse pregnancy outcomes. Data-driven, unsupervised and supervised machine 
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learning approaches were also utilized to integrate exposure to metals measured in different media 

and evaluate the performance of different metal mixture biomarkers; the findings demonstrate, 

within practical metal analytical panels, that measuring metals in either urine or blood may be an 

equally good approach to evaluate the metals as a mixture, but only when the urine measurements 

are corrected for urinary dilution. Future expanded studies are needed to evaluate the performance 

with different metal panels, media, health outcomes of interest, and methods to integrate exposure 

information, to further address how to most effectively study the health impacts of exposure to 

metals. A significant overall finding from all the aims in this dissertation is that even though Pb 

level among this population is particularly low Pb exposure measured in blood was the most 

important predictor of preterm birth among all the metals we examined. Our study supports the 

recent suggestion from the scientific community on lowering guideline levels for Pb to protect 

pregnant women and their children. Altogether, this dissertation advances our understanding of 

the impact of metal exposure on adverse pregnancy and fetal growth outcomes. 
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Figure VI.1 Overview of Research Aims and Main Findings 
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