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Abstract

The main subjects of this dissertation are indices of the N = 4 SU(N) Super-Yang-

Mills (SYM) theory, namely the topologically twisted index and the superconformal index.

These indices have received a lot of attention since they provide microscopic understanding

of AdS5 black strings and black holes respectively through the AdS/CFT correspondence.

In this dissertation, we focus on the field theory side and investigate these indices with a

goal of improving the current microscopic understanding of AdS5 black strings and black

holes. As a result, we unveil interesting physics of the 4d indices such as modular properties

and a relation to the S3 partition function of effective Chern-Simons theory, and also make

suggestions in the gravity side based on the structure of indices through the AdS/CFT

correspondence.

First, we study the topologically twisted index of the N = 4 SU(N) SYM theory on

T 2×S2. We introduce the Bethe Ansatz (BA) formula that gives the twisted index as a sum

over solutions to the Bethe Ansatz Equations (BAE) and categorize various solutions into two

groups: standard ones that compose the SL(2,Z) family and non-standard ones that denote

all the other BAE solutions including continuous families. Focusing on the contribution from

standard BAE solutions, we confirm that it behaves as an elliptic genus with certain modular

properties and further investigate its asymptotic behaviors in the Cardy-like limit. Lastly,

we review how the twisted index counts the microstates associated with the dual AdS5 black

string entropy in the Cardy-like limit, and discuss missing steps that should be taken care

of to validate the microstate counting.

Next, we study the superconformal index of the N = 4 SU(N) SYM theory. We compute

the superconformal index first by saddle point evaluation and then by the BA formula. In

due process, we establish a direct relation between the 4d superconformal index and the

S3 partition function of Chern-Simons theory. Then we investigate the phase structure of

the superconformal index in the large-N after the Cardy-like limit, which contains partially-

deconfined phases distinguished from the previously well-known fully-deconfined/confined

vii



phases. Finally, we discuss implications of a partially-deconfined phase, based on the count-

ing of microstates associated with the dual AdS5 black hole entropy by the superconformal

index.
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Chapter 1

Introduction

1.1 Microscopic understanding of black hole thermo-

dynamics

During the last few decades, quantum field theory (QFT) has been one of the most successful

frameworks through which we understand our nature. It is a theoretical foundation of the

Standard Model that decribes various quarks, leptons and their interactions consistently.

Beyond theoretical consistency, its validity has also been strongly supported by numerous

experiments.

QFT does not fully account for our nature, however, particularly when the longest known

fundamental interaction of particles – gravity – comes into the picture. We may try to

quantize gravity following a systematic formulation of perturbative quantum field theories

that have successfully described other types of fundamental interactions such as strong, weak,

and electromagnetic forces. Non-renormalizability of gravity, however, does not allow for a

verifiable quantum field theory of gravity.

In typical laboratory conditions, we can circumvent the issue of lack of a consistent

quantum theory of gravity by treating gravity classically. This is allowed since gravity

is fairly suppressed compared to the other fundamental interactions. The aforementioned

success of QFT and the Standard Model is also valid in this weak gravity regime. This

limitation of QFT still implies, however, that QFT is not enough to describe our nature

completely.

String theory has received a lot of attention since it provides a possible explanation of

the quantum nature of gravity. Furthermore, due to its theoretical sophistication, string

theory has been considered as one of the leading candidates for a consistent quantum theory

of gravity so far. It is still unclear, however, if the theoretical validity of string theory as a
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quantum theory of gravity can be supported by experiments.

This situation has motivated research on black holes. First of all, a black hole is a

perfect background to test if a given candidate is a valid quantum theory of gravity since

conventional QFT does not work around black holes due to strong gravity; we need a quan-

tum description of gravity to address quantum properties of black holes. If string theory

successfully describes such properties, it could provide solid evidence for accepting string

theory as a quantum theory of gravity. Furthermore, black holes are not just made out of

our theoretical imagination, but are actual celestial objects that have been observed in our

real world. This opens up a possibility that quantum theoretical explanation for black hole

physics based on string theory could be tested by experiments in the future. Hence both

theoretical and experimental understanding of black holes hold the key towards establishing

a consistent quantum theory of gravity.

In this context, black hole thermodynamics has received particular interest among other

properties of black holes. The microscopic origin of thermodynamic quantities of black

holes, in particular, requires a quantum theoretical explanation and therefore becomes an

important subject of a quantum theory of gravity. To be specific, since Bekenstein and

Hawking introduced the macroscopic entropy of a black hole [11, 64] as

SBH =
A

4G
(1.1)

in terms of the horizon area A and the Newton’s constant G, the quantum origin of mi-

crostates associated with the black hole entropy (1.1) has been considered one of the most

important questions in high energy theory.

For a certain class of supersymmetric (or BPS from Bogomolny-Prasad-Sommerfield)

black holes in asymptotically flat backgrounds, Strominger and Vafa successfully resolved

this problem by reproducing the black hole entropy as the logarithm of the number of BPS

states in string theory [107]. To be specific, they have focused on asymptotically flat 1
4
-BPS

black holes in 5d N = 4 supergravity which arising in the low energy regime of type IIB

string theory compactified on K3× S1. The number of corresponding BPS states was then

counted by investigating the relevant D-brane world volume theory in the small K3 limit.

The logarithm of this number of BPS states was then matched with the black hole entropy.

Applying the same technique to slightly different near-BPS black holes was also successful

[33].

Even though the first successes of black hole microstate counting were made in asymp-

totically flat backgrounds, more systematic understanding of the microscopic origin of black

hole entropy has been initiated in asymptotically Anti-de Sitter (AdS) backgrounds through
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the AdS/CFT correspondence. The AdS/CFT correspondence, which was first suggested

by Maldacena in [86], tells us that a gravity theory in AdS is dual to a non-gravitational

conformal field theory (CFT) on the conformal boundary of AdS. According to this duality,

an asymptotically AdS solution of a gravity theory corresponds to an ensemble of quantum

states of the dual CFT. Applying this relation to asymptotically AdS black hole solutions

(AdS black holes), we can provide a quantum theoretical explanation of microstates associ-

ated with the AdS black hole entropy. Based on this idea, Strominger successfully accounted

for the entropy of AdS3 black holes [106].

However, generalization to higher dimensional AdS black holes seemed non-trivial. In

[106], the authors computed the entropy of a 3-dimensional Banados-Teitelboim-Zanelli

(BTZ) black hole [9] with locally AdS3 near horizon geometry in terms of the central charge

of a dual CFT2 using the Brown-Henneaux central charge relation [26]. The resulting entropy

was then matched with the logarithm of the number of dual quantum states computed by

the Cardy formula [34]. Compared to this AdS3 black hole case equipped with the Brown-

Henneaux central charge relation and the Cardy formula, there is no apparent tool that we

can use to count the number of quantum states dual to AdSd+1 black holes with d ≥ 3.

Hence AdS black hole microstate counting in higher dimensions had remained as an open

question for a while.

While microscopic understanding of AdSd+1 (d ≥ 3) black holes has remained unresolved,

there have been important developments in supersymmetry. First, the idea of supersymmet-

ric localization introduced in [97] has allowed for exact calculation of important physical

quantities of various supersymmetric field theories such as partition functions and Witten

indices. Based on this achievement, it is now possible to compute various exact quantities

of superconformal field theories (SCFT) even in the strong coupling limit and to compare

the results with their holographic duals in the supergravity limit through the AdS/CFT

correspondence. Meanwhile, rigid supersymmetry has allowed for systematic construction

of supersymmetric field theories on curved manifolds [53]. It has been done by fixing the

metric to a curved background in the corresponding supergravity theory with appropriate

topological twists to keep supersymmetry. Combining these two achievements, numerous

exact results for supersymmetric field theories on various backgrounds have been obtained

in the literature.

Based on these recent developments in supersymmetry, the microscopic origin of higher

dimensional AdS black holes has been recently addressed for a supersymmetric magnetic

AdS4 black hole in 4d N = 2 gauged supergravity coupled to vector multiplets [16]. First,

the authors computed the partition function of 3d Aharony-Bergman-Jafferis-Maldacena

(ABJM) theory [2] on S2×S1 with topological twist over S2 as a function of magnetic charges
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and chemical potentials associated with flavor symmetries. It is called the topologically

twisted index [21]1. The logarithm of the twisted index was then successfully matched with

the AdS4 black hole entropy upon extremization with respect to chemical potentials, which

was dubbed as I-extremization [16]. Since then, numerous following works have been done in

similar directions and have improved our microscopic understanding of AdSd+1 (d ≥ 3) black

holes. For other examples in AdS4/CFT3, refer to the following references: generalization to

dyonic cases [17]; indices on general 3-dimensional manifolds [29, 22, 39, 41, 40, 42]; AdS4

black holes and their near-horizon geometries uplifted to 11-dimensional supergravity along

with 7-dimensional Sasaki-Einstein internal manifolds and their dual indices [75, 72, 44,

56, 57, 76, 68]; AdS4 black holes uplifted to Type IIA supergravity and their dual indices

[18, 70]; a universal behavior of various examples [8]. Also refer to [74, 54, 108, 109, 46, 45]

for examples in AdS6/CFT5.

In this dissertation, we are particularly interested in microscopic understanding of super-

symmetric, magnetically charged AdS5 black strings and supersymmetric, rotating, electri-

cally charged AdS5 black holes in 5d N = 2 gauged supergravity. Since these AdS5 black

strings and black holes are dual to the corresponding ensembles of BPS states of the N = 4

SU(N) Super-Yang-Mills (SYM) theory, the main subjects would be appropriate indices

that count such BPS states. They are the topologically twisted index [43, 21, 66, 40] and the

superconformal index [83, 101, 40] of the N = 4 SU(N) SYM theory associated with AdS5

black strings and black holes respectively. Compared to the topologically twisted index of

ABJM theory on S2×S1, these 4d indices have richer structures such as modular properties

and interesting physics related to lower-dimensional effective theories. On the other hand,

compared to 5d indices of various SCFTs, we have more control of 4d indices and therefore

may investigate their physics more precisely. These features partially explain our partic-

ular interest in the microstate counting in AdS5/CFT4 among other examples in different

dimensions.

Hence, in this dissertation, we explore the aforementioned indices of the N = 4 SU(N)

SYM theory in the context of microstate counting of dual AdS5 black string/hole entropy.

This work is based on

• Ref. [67]: Junho Hong, James T. Liu, The topologically twisted index of N = 4 super

Yang-Mills on T 2×S2 and the elliptic genus, JHEP 07 (2018) 018, [arXiv:1804.04592],

• Ref. [5]: Arash Arabi Ardehali, Junho Hong, James T. Liu, Asymptotic growth

of the 4d N = 4 index and partially deconfined phases, JHEP 07 (2020) 073,

1The topologically twisted index of N = 2 supersymmetric gauge theories was in fact studied in [96] first
based on the Bethe/gauge correspondence [93, 94, 95]. The authors of [21] used supersymmetric localization
instead.
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[arXiv:1912.04169],

• Ref. [58]: Alfredo González Lezcano, Junho Hong, James T. Liu, Leopoldo A. Pando

Zayas, Sub-leading Structures in Superconformal Indices: Subdominant Saddles and

Logarithmic Contributions, JHEP 01 (2021) 001, [arXiv:2007.12604].

Before providing details of these indices, however, first we review recent developments in

supersymmetry that have formed a foundation of this line of research in section 1.2 and the

N = 2 gauged supergravity theory that contains AdS5 black strings and black holes of our

interest in section 1.3. In section 1.4, we summarize the main part of this dissertation.

1.2 Developments in supersymmetry

As briefly mentioned in the previous section 1.1, recent progress in the exact calculation

of indices of various superconformal field theories are due in large part to two main devel-

opments in supersymmetry: rigid supersymmetry and supersymmetric localization. In this

section we review these techniques schematically.

1.2.1 Supersymmetric field theory on a curved space

Supersymmetry is a very powerful tool which allows us to have more control of a given field

theory. For example, based on supersymmetry, we can explore protected physical quantities

such as the Witten index that gives information about ground states of the theory. In the

dual gravity side, we can find numerous solutions of supergravity theories with the help

of supersymmetry that reduces the 2nd order equations of motion to the 1st order BPS

equations.

Hence it is natural to ask if we can construct supersymmetric field theories in general

backgrounds beyond Minkowski space. This question has been answered by various works

in different backgrounds. For example, the N = 4 SYM theory was constructed on S4 in

[97, 98], and [79, 80, 81] studied the partition function of some N = 2 theories on S3. A

systematic construction of supersymmetric field theories on curved backgrounds was then

established in [53, 52]. Here we review this systematic procedure schematically.

First, based on a given supersymmetric field theory, one introduces a supergravity mul-

tiplet that contains metric gµν and auxiliary fields. Along with the original supermultiplets

including chiral/vector multiplets, this gives a off-shell supergravity. If necessary, we may

also add background vector multiplets. The next step is to fix the metric to a curved space

where we want to construct a given supersymmetric field theory. Other auxiliary fields within
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the supergravity multiplets should also be frozen under supersymmetry transformation since

we want a supersymmetric field theory on a curved background, and not a supergravity

theory. In short, we impose

δsusygµν = δsusy(auxiliary fields) = 0. (1.2)

To satisfy the condition (1.2), we need to turn off a gravitino field Ψµ, which necessarily

means

δsusyΨµ = (∇µ + · · · )ζ = 0. (1.3)

These constraints are called the Killing spinor equations. For some degree of supersymmetry

to survive, the Killing spinor equations (1.3) must allow for a non-trivial Killing spinor ζ,

which imposes certain constraints on fixed values of auxiliary fields hidden in “· · · ” of (1.3).

In a flat space, the Killing spinor equations (1.3) would be automatically satisfied with zero

auxiliary fields and a constant Killing spinor ζ. In a curved space, however, they typically

assign particular values to auxiliary fields for the theory to remain supersymmetric.

For concreteness, we repeat the above procedure in a specific example of interest, namely

the construction of N = 1 theory on T 2 × S2 following [52, 66]. We start with N = 1

chiral/vector multiplets:

chiral multiplet: (φ, ψ, F ), vector multiplet: (Aµ, λ,D). (1.4)

These superfields make up N = 1 theories. To define the theory on T 2 × S2, one introduces

a new minimal off-shell supergravity multiplet [104, 103]

supergravity multiplet : (gµν ,Ψµ,Aµ, Bµν), (1.5)

with auxiliary fields Aµ and Bµν . Then, following the logic introduced above, one must

impose the Killing spinor equations

δsusyΨµ = −2(∇µ − iAµ)ζ − 2iVµ − 2iVµζ − 2iV νσµνζ = 0,

δsusyΨ̃µ = −2(∇µ + iAµ)ζ̃ − 2iVµ + 2iVµζ̃ + 2iV ν σ̃µν ζ̃ = 0,
(1.6)

with non-trivial Killing spinors (ζ, ζ̃), for the N = 1 theory to remain supersymmetric on

T 2×S2. Here Vµ is defined in terms of the field strength of Bµν as V µ ≡ 1
2
εµνρλ∂νBρλ. Since

∇µ = ∂µ on a flat space, it is obvious that the Killing spinor equations (1.6) allow for constant

Killing spinors (ζ, ζ̃) with zero auxiliary fields. On a curved space where ∇µ = ∂µ + 1
4
ωabµ γab,

however, one must investigate the Killing spinor equations (1.6) to figure out particular
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values of auxiliary fields Aµ, Vµ that allow for non-trivial Killing spinors (ζ, ζ̃). On T 2 × S2

whose metric is given explicitly as

ds2 = dωdω̄ +

(
2

1 + zz̄

)2

dzdz̄, (1.7)

the auxiliary fields that allow for non-trivial Killing spinors (ζ, ζ̃) are determined as

A = − i
2

z̄dz − zdz̄
1 + zz̄

, V = 0. (1.8)

The non-trivial Killing spinors that satisfy the Killing spinor equations (1.6) along with

auxiliary fields (1.8) are then given as

ζ ∼

(
0

1

)
, ζ̃ ∼

(
1

0

)
, (1.9)

up to multiplicative constants. Note that the background A field in (1.8) gives a non-trivial

magnetic flux on S2, which is called a topological twist on S2. This is a quite general feature

of supersymmetric field theories on curved backgrounds, and we call them topologically

twisted theories. The topologically twisted index of N = 4 SU(N) SYM theory on T 2 × S2,

which is of our interest in chapter 2, is basically the partition function of the topologcially

twisted N = 4 SU(N) SYM theory on T 2 × S2 with a topological twist on S2. In this

example, there are additional background gauge fields associated with flavor symmetries so

the fixed values of auxiliary fields would be more involved than (1.8). However, they are

determined by the same logic we have reviewed above; refer to [66] for more details about

the topologcially twisted N = 4 SU(N) SYM theory on T 2 × S2. In chapter 2, we focus on

the calculation of the topologically twisted index.

1.2.2 Supersymmetric localization

The AdS/CFT correspondence [86] was first introduced as a strong-weak duality, which

connects string theories on AdS backgrounds in the small curvature limit (the radius of

curvature is much larger than the string length) and conformal field theories in the large

’t-Hooft coupling limit. It had not been easy to test this duality explicitly, however, since

the large ’t-Hooft coupling limit does not allow for a perturbative calculation in the field

theory side.

Supersymmetric localization, which was first introduced in [97], provides a way to over-

come this issue for certain supersymmetric conformal field theories (SCFT). It allows for
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exact calculation of various physical quantities of SCFTs regardless of the size of the ’t-

Hooft coupling, so we can compare field theory results with gravity results in the small

curvature limit (or equivalently in the supergravity limit). Here we review the mechanism

of supersymmetric localization schematically.

Interesting physical quantities of SCFTs such as partition functions and supersymmetric

indices can be written as a path integral as

Z =

∫
Dφ exp[−S[φ]], (1.10)

where φ denotes a set of fields in a given SCFT and S[φ] is the action. By assumption, the

action is invariant under a supersymmetry transformation Q as QS[φ] = 0.

Now we introduce a potential V [φ] that satisfies Q2V [φ] = 0 and a deformed quantity

Z(t) as

Z(t) =

∫
Dφ exp[−S[φ] + tQV [φ]]. (1.11)

Note that the physical quantity of interest (1.10) is equivalent to Z = Z(0). In fact, provided

the path integration measure Dφ is invariant under a supersymmetry transformation Q, we

can conclude Z = Z(t) for an arbitrary value of t since

Z ′(t) =

∫
Dφ (QV [φ]) exp[−S[φ] + tQV [φ]] =

∫
DφQ

(
exp[−S[φ] + tQV [φ]]

)
= 0. (1.12)

In the 2nd equation we have used QS[φ] = Q2V [φ] = 0 and in the 3rd equation we have

used that the integral of a total derivative vanishes.

Next we find a localization locus φ0 where the deformation term QV [φ] satisfies

QV [φ0] = 0,
δ(QV )

δφ(x)
[φ0] = 0,

δ2(QV )

δφ(x)δφ(y)
[φ0] ∼ δd(x− y). (1.13)

Substituting the Taylor expansion around this locus, namely φ = φ0 + 1√
t
φ1, into Z = Z(t)

(1.11) then gives

Z = Z(t) =

∫
dφ0Dφ1 exp

[
−S[φ0] +

1

2

∫
ddx

(
δ2(QV )

δφ(x)2
[φ0]

)
φ1(x)2 +O(t−

1
2 )

]
. (1.14)

Note that the φ0-integral is over the localization locus and not a path integral anymore.
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Finally, taking the limit t→∞, we obtain the physical quantity of our interest (1.14) as

Z = Z(∞) =

∫
dφ0 exp[−S[φ0]]︸ ︷︷ ︸

Zclassical

[
det

(
δ2(QV )

δφ(x)2
[φ0]

)]#

︸ ︷︷ ︸
Z1-loop

, (1.15)

where # = −1
2

for bosonic fields and # = 1 for fermionic fields. In the final formula (1.15),

the original path integral expression (1.10) reduces to an ordinary integral of the classical

contribution Zclassical multiplied by 1-loop determinants Z1-loop over the localization locus φ0.

It is remarkable that the above procedure is independent of the size of coupling con-

stants and therefore valid even in the strong coupling limit. Since the work of Pestun [97],

other physical quantities of various SCFTs have been computed exactly following the above

procedure. The S3 partition function of Chern-Simons-Matter theory is a typical example

[79]. Indices of N = 4 SU(N) SYM theory of our interest have also been studied by super-

symmetric localization: see [43, 21, 66] for the topologically twised index and [27] for the

superconformal index2. In the main part of this dissertation, we will focus on the results of

supersymmetric localization and investigate various properties of those indices.

1.3 5-dimensional N = 2 gauged STU model

In this section, we turn to the gravity side and investigate AdS5 black strings/holes dual

to N = 4 SU(N) SYM theory of our interest: to be specific, supersymmetric, magnetically

charged AdS5 black strings and supersymmetric, rotating, electrically charged AdS5 black

holes. They are solutions of the 5d N = 2 gauged supergravity coupled to two vector

multiplets, so we start from there.

Five-dimensional N = 2 gauged supergravity coupled to vector multiplets was con-

structed in [59, 60]. The supergravity multiplet consists of a graviton gµν , a gravitino ψαµ ,

and a graviphoton Aµ. The vector multiplet consists of a real scalar φx, a dilatino λxα, and a

gauge field Axµ where x take values in x = 1, · · · , nV with nV the number of vector multiplets.

All the fermionic fields ψαµ and λxα are symplectic-Majorana spinors with the corresponding

SU(2) index α ∈ {1, 2}.
We are particularly interested in the case with two vector multiplets (nV = 2), namely

the STU model. The 5d N = 2 gauged STU model was known as a consistent truncation

2In chapter 3, we formulate the superconformal index following the Hamiltonian approach [83, 101]
instead. The result is slightly different from the one from supersymmetric localization [27] by the factor
of supersymmetric Casimir energy, which we will not discuss in this dissertation. Refer to [6, 23] for more
details about the supersymmetric Casimir energy.
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of 10d Type IIB supergravity on AdS5 × S5 [47], where the three abelian gauge fields of the

STU model including a graviphoton originate from the U(1)3 Cartan subalgebra of the full

gauge group SO(6) acting on the internal manifold S5. This means that the equations of

motion of the truncated Type IIB supergravity are equivalent to those of the N = 2 gauged

STU model. Then, through the duality between the Type IIB supergravity on AdS5 × S5

and the N = 4 SYM theory on the Minkowski space through the AdS/CFT correspondence

[86], we can understand various solutions of the 5d N = 2 gauged STU model as holographic

duals of the ensemble of quantum states in the N = 4 SYM theory. Based on this overall

picture, first we study supersymmetric (or BPS) AdS black string/hole solutions of the 5d

N = 2 gauged STU model in this section. We will then move on to the indices of the N = 4

SYM theory that count the number of BPS states dual to these black string/hole solutions

in the main part of this dissertation.

To find a supersymmetric AdS black string/hole solution of the 5d N = 2 gauged STU

model, first we need its bosonic action. Fermions will not matter since we can turn them

off with appropriate consistency conditions called the BPS equations that will be specified

later. Following the convention of [47, 87], the bosonic action is given as

S =
1

16πG(5)

∫
d5x
√
g

[
R + 4g2

3∑
i=1

1

X i
− 1

2

2∑
x=1

∂µφ
x∂µφx − 1

4

3∑
i=1

(X i)−2F i
µνF

iµν

+
1

24
|εijk|εµνρσλF i

µνF
j
ρσA

k
λ

]
,

(1.16)

where x and i, j, k take values in x ∈ {1, 2} and i, j, k ∈ {1, 2, 3} respectively and the

convention of the Levi-Civita symbol is given as

εµνρσλ =

−|g|−1/2 (even permutation)

+|g|−1/2 (odd permutation)
. (1.17)

The physical scalars φx are parametrized by X i as

X1 = e
− 1√

6
φ1− 1√

2
φ2

, X2 = e
− 1√

6
φ1+ 1√

2
φ2

, X3 = e
2√
6
φ1

. (1.18)
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From the bosonic action (1.16), the Einstein equations are given as

Rµν −
1

2
gµν(R + 4g2

3∑
i=1

(X i)−1) =
1

2

2∑
x=1

∂µφ
x∂νφ

x − 1

4
gµν

2∑
x=1

∂ρφ
x∂ρφx

+
1

2

3∑
i=1

(X i)−2F i
µρF

i
ν
ρ − 1

8
gµν

3∑
i=1

(X i)−2F i
ρσF

iρσ.

(1.19)

The scalar equations of motion are given as

0 = ∇µ∇µφx − 1

4

3∑
i=1

∂φx(X
i)−2F i

µνF
iµν + 4g2

3∑
i=1

∂φx(X
i)−1. (1.20)

The Bianchi identity and the vector equations of motion are given as

0 = ∂[ρFλσ], (1.21a)

0 = ∇µ((X i)−2F iµν) +
1

4

√
g|εijk|εµλρσνF j

µλF
k
ρσ. (1.21b)

For a supersymmetric bosonic solution, the supersymmetry transformations of fermionic

fields δψαµ and δλxα must vanish. This condition gives the aforementioned BPS equations

0 =

[
∂µ +

1

4
ωabµ γab +

i

24
(γµ

νρ − 4δνµγ
ρ)

3∑
i=1

(X i)−1F i
νρ +

g

6

3∑
i=1

X iγµ −
ig

2

3∑
i=1

Aiµ

]
ε, (1.22a)

0 =

[
− i

4
∂µφ

xγµ +
1

8

3∑
i=1

(∂φx(X
i)−1)F i

µνγ
µν +

ig

2

3∑
i=1

∂φxX
i

]
ε. (1.22b)

To find a supersymmetric solution of the N = 2 gauged STU model from the bosonic ac-

tion (1.16), we must find a field configuration that satisfies all the above equations (1.19),

(1.20), (1.21), and (1.22). In [55, 61], however, it has been found that the BPS equations

(1.22) and the following integrability condition are in fact sufficient to find a supersymmetric

solution with a time-like Killing vector. In the following subsections, based on this observa-

tion, we discuss supersymmetric AdS5 black string/hole solutions that have been found by

investigating the BPS equations (1.22).

1.3.1 AdS5 black strings

In this subsection, we review a supersymmetric, magnetically charged AdS5 black string and

its entropy in 5d N = 2 gauged STU model. First, a supersymmetric, magnetically charged

AdS5 black string solution of the BPS equations (1.22) with identical vector fields has been

11



found [84]:

ds2 = r
1
2

(
r − 1

3r

) 3
2

(−dt2 + dz2) +

(
r − 1

3r

)−2

dr2 + r2(dθ2 + sinh2 θdφ2), (1.23a)

Ai = −1

3
cosh θdφ, (1.23b)

X i = 1. (1.23c)

Note that we identify magnetic charges pi in (30,31) of [84] as pi = 1
3g

to restore a pure AdS5

solution with vanishing physical scalar fields, namely φx → 0 or X i → 1, in the asymptotic

region r → ∞. Note pi = qthere
I . Then we set g = 1 which fixes the AdS5 radius. In the

near-horizon limit r → 1√
3
, the geometry becomes AdS3 × H2. A magnetic string solution

similar to (1.23) was found for the case with S2 instead of H2 but it has a naked singularity

[35].

Since the work of [35, 84], there have been numerous works that try to generalize the AdS5

black string solution (1.23) to one with general magnetic charges. In [32, 7], for example,

the authors reduced the BPS equations (1.22) for a magnetic AdS5 black string ansatz to a

system of SO(2,1) spinning top equations. Then the AdS5 black string solution (1.23) was

partially generalized to the case with different configurations of magnetic charges. Despite

the effort, an analytic AdS5 black string solution with fully general magnetic charges has not

yet been constructed.

We are mainly interested in the entropy of an AdS5 black string, however, and therefore

we do not need a full analytic solution. It suffices to know the near-horizon limit to compute

the entropy. Fortunately, the near-horizon limit of an AdS5 black string that satisfies the

BPS equations (1.22) has been found for general magnetic charges. It is given as [12]

ds2 =

(
8p1p2p3Π

Θ3

) 2
3

(
1

4

(
−r2dt2 +

dr2

r2

)
+ ρ2

(
dx5 +

r

2ρ
dt

)2
)

(1.24a)

+

(
(p1p2p3)2

Π

) 1
3

e2hΣg (x,y)(dx2 + dy2), (1.24b)

Ai = −piωΣg , (1.24c)

X i =
pi(p1 + p2 + p3 − 2pi)

(p1p2p3Π)
1
3

, (1.24d)

−κ = p1 + p2 + p3, (1.24e)

where we have introduced a function hΣg and a one-form ωΣg that characterize the Riemann
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surface Σg of genus g as (κ = 1, κ = 0, and κ = −1 for g = 0, g = 1, and g > 1 respectively)

ehΣg (x,y) =


2

1+x2+y2 (g = 0)
√

2π (g = 1)

1
y

(g > 1)

, ωΣg =


2(−ydx+xdy)

1+x2+y2 (g = 0)

π(−ydx+ xdy) (g = 1)

dx
y

(g > 1)

. (1.25)

The constants Π and Θ are given in terms of magnetic charges as

Π = (p1 + p2 − p3)(p1 − p2 + p3)(−p1 + p2 + p3), (1.26a)

Θ = −(p1)2 − (p2)2 − (p3)2 + 2(p1p2 + p2p3 + p3p1). (1.26b)

In the metric (1.24b), we have replaced the Poincaré AdS3 part in [12] with the extremal BTZ

metric following [77]. Since they are locally equivalent, we still dub (1.24) as an AdS3 × Σg

near-horizon solution for simplicity. It is remarkable that an AdS3 × Σg solution (1.24) of

the BPS equations (1.22) is truly a near-horizon limit of an AdS5 black string with general

magnetic charges, which was confirmed by constructing numerical black string solutions

whose near-horizon limits correspond to (1.24) [12].

Now the entropy of an AdS5 black string whose near-horizon limit corresponds to (1.24)

is given from the Bekenstein-Hawking entropy formula [11, 64] as

S =
A(3)

4G(5)

=
vol[Σg]

2G(5)

p1p2p3ρ

Θ
∆x5 , (1.27)

where A(3) denotes the volume of a 3-dimensional time-slice at the horizon r → 0 and ∆x5

is the period of the x5 coordinate. G(5) is a 5-dimensional Newton’s constant.

Corresponding 4D black holes

Following the AdS/CFT picture described in section 1.1, we would like to relate the black

string entropy (1.27) to the index of a dual superconformal field theory. For that purpose,

first we should clarify the physical meaning of a free parameter ρ in the entropy formula

(1.27) and then find out its dual in the field theory side. This is because we need an exact

dictionary between parameters in both sides of the AdS/CFT correspondence to match the

entropy and the index precisely. In the 5d N = 2 gauged STU model, however, the physical

meaning of a free parameter ρ is unclear.

This issue has been overcome in [77] by relating the near-horizon limit of an AdS5 black

string (1.24) to the near-horizon limit of a 4-dimensional black hole in the 4d N = 2 STU

model [31]. To elaborate this relation, we briefly introduce the 4d N = 2 gauged STU model
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and the map that connects the 5d theory to the 4d theory.

The 4d N = 2 gauged STU model has a supergravity multiplet, which contains a graviton

gµν , a gravitino ψαµ , and a graviphoton A0
µ, and three vector multiplets, each of which contains

a complex scalar zi, a gauigino λiα, and a gauge field Aiµ. Here i take values in i ∈ {1, 2, 3}
and α is the SU(2) index α ∈ {1, 2}. The bosonic action of the 4d N = 2 gauged STU model

is then given as

S =
1

16πG(4)

∫
d4x
√
−g

[
R + 4ig2

3∑
i=1

1

zi − z̄i
+ 2g2

3∑
i=1

∂µz
i∂µz̄i

(zi − z̄i)2

+
1

2
IIJF I

µνF
Jµν − 1

4
εµνρσRIJF

I
µνF

Jµν

]
,

(1.28)

where I, J take values in I, J ∈ {0, 1, 2, 3}. The coefficients IIJ and RIJ are given in terms

of the symplectic language as

RIJ + iIIJ = F̄IJ + 2i
(ImFIK)XK(ImFJL)X L

(ImFKL)XKX L
, (1.29)

where FIJ ≡ ∂X I∂XJF and the prepotential F for the STU model is given as

F = −X
1X 2X 3

X 0
. (1.30)

Here X I parametrizes physical scalars zi’s, and we use a particular parametrization

zi =
X i

X 0
. (1.31)

In this parametrization, the coefficients IIJ and RIJ introduced in (1.29) are written explic-
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itly as

RIJ =


− (z1+z̄1)(z2+z̄2)(z3+z̄3)

4
(z2+z̄2)(z3+z̄3)

4
(z3+z̄3)(z1+z̄1)

4
(z1+z̄1)(z2+z̄2)

4
(z2+z̄2)(z3+z̄3)

4
0 − z3+z̄3

2
− z2+z̄2

2
(z3+z̄3)(z1+z̄1)

4
− z3+z̄3

2
0 − z1+z̄1

2
(z1+z̄1)(z2+z̄2)

4
− z2+z̄2

2
− z1+z̄1

2
0

 ,

I00 =
(z1 − z̄1)(z2 − z̄2)(z3 − z̄3)

8i

(
1−

3∑
i=1

(zi + z̄i)2

(zi − z̄i)2

)
,

I0i = Ii0 =
(zi + z̄i)(z1 − z̄2)(z2 − z̄2)(z3 − z̄3)

4i(zα − z̄α)2
,

Iij = diag

(
i(z2 − z̄2)(z2 − z̄3)

2(z1 − z̄1)
,
i(z3 − z̄3)(z1 − z̄1)

2(z2 − z̄2)
,
i(z1 − z̄1)(z2 − z̄3)

2(z3 − z̄3)

)
.

(1.32)

Lastly, the 4d electromagnetic charges are given as

pI =
1

vol[Σg]

∫
Σg

F I ,

qI =
1

vol[Σg]

∫
Σg

(−IIJ ∗4 F
J +RIJF

J).

(1.33)

It is straightforward to show that the 5d bosonic action (1.16) reduces to the 4d bosonic

action (1.28) under the Kaluza-Klein (KK) reduction

ds2
(5) = e−ϕds2

(4) + e2ϕ(dx5 +
1

2
A0

(4))
2,

Ai(5) = −Ai(4) + (zi + z̄i)(dx5 +
1

2
A0

(4)),

X i = −ie−ϕ(zi − z̄i),

e3ϕ = i(z1 − z̄1)(z2 − z̄2)(z3 − z̄3),

(1.34)

where we have distinguished metric and gauge fields in different dimensions using the corre-

sponding subscripts. In particular, the KK reduction (1.34) maps the near-horizon limit of

a supersymmetric, magnetic AdS5 black string (1.24) to the near-horizon limit of a 4d black
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hole, namely

ds2
(4) =

2p1p2p3ρΠ

Θ3

(
−r2dt2 +

dr2

r2
+

Θ2

Π
e2hΣg (x,y)(dx2 + dy2)

)
, (1.35a)

A0
(4) =

r

ρ
dt, (1.35b)

Ai(4) = piωΣg , (1.35c)

zi =
iρpi(p1 + p2 + p3 − 2pi)

Θ
, (1.35d)

−κ = p1 + p2 + p3. (1.35e)

Note that this is not the near-horizon limit of an AdS4 black hole [31]. The entropy of

a 4d black hole whose near-horizon limit corresponds to (1.35) can be computed by the

Bekenstein-Hawking formula [11, 64] as

S =
A(2)

4G(4)

=
vol[Σg]

2G(4)

p1p2p3ρ

Θ
, (1.36)

where A(2) denotes the area of a 2-dimensional time-slice at the horizon r → 0. G(4) is a

4-dimensional Newton’s constant. This black hole entropy (1.36) is exactly the same as the

original black string entropy (1.27) under the identification

G(5) = ∆x5G(4), (1.37)

which is justified by the relations

1

16πG(5)

∫
d5x
√
g(5)R(5) =

1

16πG(5)

∫
dx5d4x

√
g(4)

[
R(4) + · · ·

]
=

1

16πG(4)

∫
d4x
√
g(4)

[
R(4) + · · ·

] (1.38)

for the KK reduction (1.34).

Finally, we discuss the physical menaing of a free parameter ρ in the context of the

4d N = 2 gauged STU model. Substituting (1.35) into (1.33) along with (1.32) gives an
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expression for ρ in terms of 4d electromagnetic charges as

q0 =
1

vol[Σg]

∫
Σg

(
ρ3p1p2p3Π

Θ3
∗4 F

0

)
=

1

vol[Σg]

∫
Σg

(
ρ3p1p2p3Π

Θ3

Θ2

ρΠ
e2hΣg (x,y)dx ∧ dy

)
,

→ ρ =

√
q0Θ

p1p2p3

(1.39)

Hence the degree of freedom in ρ is directly related to the Kaluza-Klein electric charge asso-

ciated to the 4d graviphoton A0. The AdS5 black string entropy (1.27), or equivalently the

corresponding 4d black hole entropy (1.36), now can be rewritten in terms of 4d electromag-

netic charges as

S =
vol[Σg]

2G(4)

√
q0p1p2p3

Θ
. (1.40)

We will discuss the microscopic origin of this black string entropy using the topologically

twisted index of dual N = 4 SU(N) SYM theory in Chapter 2.

1.3.2 AdS5 black holes

In this subsection, we review a supersymmetric, rotating, electrically charged AdS5 black hole

and its entropy in 5d N = 2 gauged STU model. The first example of a supersymmetric,

rotating, electrically charged AdS5 black hole in 5d N = 2 minimal gauged supergravity

was found in [62]. It is then generalized to the theory coupled to vector multiplets [61].

Generalization to non-extremal black holes with two independent angular momenta has been

done in [37, 38]. Here we focus on the most general supersymmetric, rotating, electrically

charged AdS5 black hole in 5d N = 2 gauged STU model [85] that incorporates all the

aforementioned black holes as its special case.

The supersymmetric, rotating, electrically charged AdS5 black hole solution to the BPS

equations (1.22) is given as [85]

ds2 = −(H1H2H3)−
2
3 (dt+ ωφdφ+ ωψdψ)2 + (H1H2H3)

1
3hmndx

mdxn, (1.41a)

Ai = H−1
i (dt+ ωφdφ+ ωψdψ) + U i

φdφ+ U i
ψdψ, (1.41b)

X i = H−1
i (H1H2H3)

1
3 . (1.41c)

Here we have used the (t, r, θ, φ, ψ) coordinate, where (θ, φ, ψ) is a typical S3 coordinate with

0 ≤ θ ≤ π
2
, φ ∼ φ + 2π, and ψ ∼ ψ + 2π. The 4d base metric hmndx

mdxn in (1.41) is given
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as

hmndx
mdxn =

r2

∆r

dr2 +
r2

∆θ

dθ2 +
r2 sin2 θ

Ξ2
a

[
Ξa + sin2 θ(ρ2g2 + 2(1 + ag)(a+ b)g)

]
dφ2

+
r2 cos2 θ

Ξ2
b

[
Ξb + cos2 θ(ρ2g2 + 2(1 + bg)(a+ b)g)

]
dψ2

+
2r2 sin2 θ cos2 θ

ΞaΞb

[
ρ2g2 + 2(a+ b)g + (a+ b)2g2

]
dφdψ,

(1.42)

and the other functions in (1.41) are given as

Hi = 1 +

√
ΞaΞb(1 + g2µi)− Ξa cos2 θ − Ξb sin2 θ

g2r2
, (1.43a)

ωφ = −g sin2 θ

r2Ξa

[
ρ4 + (2r2

m + a2)ρ2 +
1

2
(β2 − a2b2 − g−2(a2 − b2))

]
, (1.43b)

ωψ = −g cos2 θ

r2Ξb

[
ρ4 + (2r2

m + b2)ρ2 +
1

2
(β2 − a2b2 + g−2(a2 − b2))

]
, (1.43c)

U i
φ =

g sin2 θ

Ξa

[
ρ2 + 2r2

m + a2 −
√

ΞaΞbµi + g−2(1−
√

ΞaΞb)
]
, (1.43d)

U i
ψ =

g cos2 θ

Ξb

[
ρ2 + 2r2

m + b2 −
√

ΞaΞbµi + g−2(1−
√

ΞaΞb)
]
, (1.43e)

where we have used the following definitions:

∆r = r2(g2r2 + (1 + ag + bg)2),

∆θ = 1− a2g2 cos2 θ − b2g2 sin2 θ,

Ξa = 1− a2g2,

Ξb = 1− b2g2,

ρ2 = r2 + a2 cos2 θ + b2 sin2 θ,

r2
m = g−1(a+ b) + ab,

β2 = ΞaΞb(µ1µ2 + µ2µ3 + µ3µ1)− 2g−2
√

ΞaΞb(1−
√

ΞaΞb)(µ1 + µ2 + µ3)

+ 3g−4(1−
√

ΞaΞb)
2.

(1.44)

The five parameters µi, a, b (i = 1, 2, 3) used above to describe the black hole solution are in

fact constrained by

µ1 + µ2 + µ3 =
1√

ΞaΞb

[
2r2

m + 3g−2(1−
√

ΞaΞb)
]
. (1.45)
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They are also supposed to satisfy

0 ≤ a, b < g−1, 0 ≤
√

Ξb/Ξa − 1 < g2µi, (1.46)

where the last one is from the regularity of scalar fields X i, for the case with a ≥ b without

loss of generality.

The Bekenstein-Hawking entropy of a black hole (1.41) is then given as

S =
A(3)

4G(5)

=
π2
√

[1 + g2(µ1 + µ2 + µ3)]µ1µ2µ3 − 1
4
g2(µ1µ2 + µ2µ3 + µ3µ1)2 + (

√
Ξa−
√

Ξb)2

g6
√

ΞaΞb
J

2G(5)

,

(1.47)

where we have defined J as

J = (1 + g2µ1)(1 + g2µ2)(1 + g2µ3). (1.48)

In terms of electric charges and angular momenta following the convention of [20, 82],

Qi =
π

4G(5)

[
µi
g

+
g

2
(µ1µ2 + µ2µ3 + µ3µ1 − 2

µ1µ2µ3

µi
)

]
, (1.49a)

Jφ =
π

4G(5)

[g
2

(µ1µ2 + µ2µ3 + µ3µ1) + g3µ1µ2µ3 + g−3J (
√

Ξb/Ξa − 1)
]
, (1.49b)

Jψ =
π

4G(5)

[g
2

(µ1µ2 + µ2µ3 + µ3µ1) + g3µ1µ2µ3 + g−3J (
√

Ξa/Ξb − 1)
]
, (1.49c)

we can rewrite the black hole entropy (1.47) as

S = 2π

√
Q1Q2 +Q2Q3 +Q3Q1 −

π(Jφ + Jψ)

4G(5)g3
. (1.50)

We will discuss microscopic origin of this black hole entropy using the superconformal index

of dual N = 4 SU(N) SYM theory in Chapter 3.

1.4 Overview of this dissertation

As explained in section 1.1, this dissertation focuses on appropriate indices of the N = 4

SU(N) SYM theory that count microstates associated with the AdS5 black string entropy

(1.27) and the AdS5 black hole entropy (1.50) respectively. Here we summarize what we
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discuss about those indices in the next two chapters with more details.

In Chapter 2, we study the topologically twisted index that counts microstates associated

with the AdS5 black string entropy (1.27). First, we introduce the topologically twisted

index of N = 4 SU(N) SYM theory on T 2 × S2 [21] and show how to compute it through

the Bethe Ansatz (BA) formula [73]. Then we show how the previous calculation in the

Cardy-like limit [73] can be improved and obtain exact expressions of the SL(2,Z) family

of contributions to the twisted index through the BA formula. This SL(2,Z) family of

contributions turns out to behave as an elliptic genus of 2d SCFT and also have interesting

Cardy-like asymptotics that plays an important role in the microstate counting. We will also

discuss other contributions to the twisted index, which have been ignored in the conventional

BA formula. Finally we revisit the relation between the twisted index and the black string

entropy (1.27) through the I-extremization [73]. In this last step, we will emphasize subtle

issues in the microstate counting by the topologically twisted index. This chapter is based

on joint work in collaboration with Arash Arabi Ardehali and James T. Liu, previously

published as [67, 5].

In Chapter 3, we investigate the superconformal index that counts microstates associ-

ated with the AdS5 black hole entropy (1.50). First, we introduce the superconformal index

of N = 4 SU(N) SYM theory through the Hamiltonian formalism3 and derive the elliptic

hypergeometric integral representation. Then we explain how to compute it in two different

ways [36, 20]: saddle-point evaluation and the BA formula.4 To be specific, we improve the

previous saddle-point evaluation in the Cardy-like limit and obtain an all-order result up to

exponentially suppressed terms using the 3d effective Chern-Simons theory. The result is

then confirmed by the BA formula. Next we investigate the phase structure of the super-

conformal index in the large-N after the Cardy-like limit. As a result, we find a ‘partially

deconfined’ phase of the superconformal index, which is distinguished from previously well-

known fully-deconfined/confined phases in the large-N limit. Finally we discuss the relation

between the superconformal index and the black hole entropy (1.50). Here we will see how

recent developments in the superconformal index, especially a ‘partially deconfined’ phase

of the superconformal index, implies the existence of missing gravity dual solutions different

from the known AdS5 black hole in subsection 1.3.2. This chapter is based on joint work

in collaboration with Arash Arabi Ardehali, Alfredo González Lezcano, James T. Liu, and

Leopoldo A. Pando Zayas, previously published as [5, 58].

3You may use the superymmetric localization instead. See [27] for example.
4There is another approach using elliptic extension [28, 30] but we will not discuss this method in this

dissertation.
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Chapter 2

The Topologically Twisted Index

2.1 Introduction

In this section, we introduce the partition function of N = 4 SU(N) SYM theory on T 2 ×
S2 with a partial topological twist on S2, which is introduced to preserve supersymmetry

following the procedure in 1.2.1. It is also called the topologically twisted index based on its

alternative interpretation as a supersymmetric index, namely [21, 73, 43, 66]

Z(τ,∆a, na) = TrS1×S2

[
(−1)F qP

3∏
a=1

yJaa

]
, (2.1)

where yq = e2πi∆a are fugacities associated with flavor symmetry charges Ja and q = e2πiτ

is given in terms of τ , the modular parameter of T 2. P is the momentum along the spatial

direction of T 2 and na are magnetic fluxes associated with flavor symmetries. Note that

angular momenta and corresponding fugacities are omitted in (2.1). A general rotating case

has also been considered in [71], but here we focus on the case without angular momenta.

The topologically twisted index (2.1) has been computed using supersymmetric localiza-

tion described in subsection 1.2.2. Here we review the procedure schematically based on

[14, 15, 21, 66]. The starting point is the path integral representation of the twisted index

(2.1), namely

Z(τ,∆a, na) =

∫
Dφ exp[−S[φ]] =

∫
Dφ exp[−SFI[φ]− Schiral[φ]− Svector[φ]]. (2.2)

Here φ denotes a set of fields that compose the N = 4 SU(N) SYM theory on T 2 × S2.

Since the action from chiral/vector multiplets are exact with respect to supersymmetry
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transformation [66], one can treat Schiral and Svector as deformation terms QV [φ] in 1.2.21.

The result is given as

Z(τ,∆a, na) = lim
tc,tv→∞

∫
Dφ exp[−SFI[φ]− tcSchiral[φ]− tvSvector[φ]]. (2.3)

Then [21, 66] have determined localization locus φ0 that extremizes the deformation terms

Schiral and Svector. The resulting localization locus φ0 is parametrized by the holonomy of the

gauge field Aµ along the two cycles of the torus T 2 with the modular parameter τ

u = 2π

∮
A-cycle

A− 2πτ

∮
B-cycle

A, (2.4)

and integer gauge magnetic fluxes {mi}. Refer to [21, 73] for more details about the local-

ization locus. The path integral expresssion (2.3) then reduces to a saddle point evaluation

around the localization locus φ0, which gives the integrand in terms of a classical action and

1-loop determinants as

Z(τ,∆a, na) =

∫
dφ0 Zclassical[φ0]Zchiral

1-loop[φ0]Zvector
1-loop [φ0]. (2.5)

Here the classical action can be computed by evaluating the on-shell action at the localization

locus and 1-loop determinants can be computed by Gaussian integrals around it. It is

remarkable that they are equivalent to the contributions from chiral/vector multiplets to the

elliptic genera of 2d N = (0, 2) supersymmetric gauge theories [14, 15].

The result of supersymmetric localization (2.5) now contains an ordinary integral, which

is much simpler than the original path integral in (2.2). It still has a subtle issue, however,

that the 1-loop determinant from chiral multiplets Zchiral
1-loop[φ0] is a meromorphic function of

φ0 with singularities and therefore the naive expression (2.5) does not converge. This issue

has been treated carefully in [14, 15] for 2d elliptic genera and the same technique has been

applied to the 4d case of our interest in [21, 66]. To be precise, the naive expression (2.5)

should be written as a sum over a specific set of poles of Zchiral
1-loop[φ0], namely the sum of Jeffrey-

Kirwan (JK) residues [78]. Then one can rewrite the sum of JK residues as appropriate

contour integrals. Refer to [21, 66] for more details. The final integral representation of the

topologically twisted index of N = 4 SU(N) SYM theory on T 2×S2 (2.1) is given as a sum

over gauge magnetic fluxes {mi} along with integrals over complex holonomies ui’s, namely

1In fact, [21] and [66] have used slightly different deformation terms but the final results are consistent
with each other as expected. See [66] for detailed explanation.
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[73]

Z(τ,∆a, na) =
A
N !

∑
i mi=0∑

{mi}∈ZN

∫
C
(
N−1∏
i=1

dzi
2πizi

)
N∏

i,j=1 (i 6=j)

[
θ1(uij; τ)

iη(τ)

3∏
a=1

(
iη(τ)

θ1(uij + ∆a; τ)

)mij−na+1
]
.

(2.6)

Here zi = e2πiui , uij ≡ ui − uj, mij ≡ mi −mj, and we have defined the prefactor A as

A = η(τ)2(N−1)

3∏
a=1

(
iη(τ)

θ1(∆a; τ)

)(N−1)(1−na)

. (2.7)

Special functions η(·) and θ1(·; ·) are defined in Appendix A. For the twisted index (2.6) to

be well-defined, we impose the inequality |q| < 1 or equivalently 0 < arg τ < π. The SU(N)

constraint is given as
N∑
i=1

ui ∈ Z. (2.8)

Chemical potentials ∆a and flavor magnetic fluxes na are constrained as

3∑
a=1

∆a ∈ Z,
3∑

a=1

na = 2, (2.9)

from the invariance of superpotential under flavor symmetries and supersymmetry respec-

tively.

2.2 The Bethe Ansatz formula

In this section, we explain how to compute the integral representation of the topologically

twisted index (2.6) using the Bethe Ansatz (BA) formula. First, using the trick introduced

in [21, 16, 73], we can take the sum over gauge magnetic fluxes {mi} before evaluating the

integral. The result is given as

Z(τ,∆a, na) =
A
N !

∫
B

dw

2πiw

∫
C
(
N−1∏
i=1

dzi
2πizi

)(
N∏
i=1

QM
i

Qi − 1
)

×
N∏

i,j=1 (i 6=j)

[
θ1(uij; τ)

iη(τ)

3∏
a=1

(
iη(τ)

θ1(uij + ∆a; τ)

)1−na
] (2.10)
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with a large positive integer M and the integration contour B that encloses the origin w = 0.

Here the Bethe Ansatz (BA) operator Qi is defined as

Qi({uj}; τ,∆a) = e2πiλ

N∏
j=1

3∏
a=1

θ1(uji + ∆a; τ)

θ1(uij + ∆a; τ)
(2.11)

where we have introduced λ as w = e2πiλ. Now we can evaluate the integral (2.10) by picking

residues of the integrand determined by the Bethe Ansatz Equations (BAE), namely

Qi({uj}; τ,∆a) = 1. (2.12)

The topologically twisted index (2.10) then reduces to a sum over BAE solutions as

Z(τ,∆a, na) =
∑

{ui}∈BAE

A
H({uj}; τ,∆a)

N∏
i,j=1 (i 6=j)

3∏
a=1

(
θ1(uij; τ)

θ1(uij + ∆a; τ)

)1−na
(2.13)

where we have used the constraint on the flavor magnetic fluxes (2.9) and introduced a

Jacobian determinant

H({uj}; τ,∆a) = det[H({uj}; τ,∆a)] = det

[
1

2πi

∂(Q1, · · ·QN)

∂(u1, · · · , uN−1, λ)

]
. (2.14)

We call (2.13) the Bethe Ansatz (BA) formula of the toplogically twisted index of N = 4

SU(N) SYM theory on T 2 × S2. Note that the factor of N ! in the denominator of (2.10) is

canceled by treating BAE solutions related by rearranging holonomies {ui} as equivalent.

The BA formula (2.13) is not completely rigorous, however, since it implicitly assumes

that all the solutions of the BAE (2.12) are isolated. Only under this assumption, we can

apply the Cauchy’s integral formula to pick residues in (2.10) and derive the BA formula

(2.13). If there are continuous family of solutions to the BAE (2.12), we should therefore

modify the BA formula (2.13) accordingly. Schematically we may write it as

Z(τ,∆a, na) =
∑

{ui}∈BAE

A
H({uj}; τ,∆a)

N∏
i,j=1 (i 6=j)

3∏
a=1

(
θ1(uij; τ)

θ1(uij + ∆a; τ)

)1−na

+ (contribution from continuous family of BAE solutions).

(2.15)

Another issue is the contour C in (2.10), which is introduced to capture the JK residues.

To compute the contribution from isolated BAE solutions correctly through the BA formula

(2.15) derived from (2.10), one should sum over BAE solutions within the contour C only.
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This has not yet been investigated thoroughly in the literature [73, 67]. We leave it for future

research.

2.2.1 Solutions of the BAE

To compute the topologically twisted index through the BA formula (2.13) or the modified

one (2.15), the first step is to solve the BAE (2.12) and find its most general solutions. Since

the BAE is a system of highly involved non-linear algebraic equations, however, it is difficult

to find the most general solutions. Hence an asymptotic solution of the BAE (2.12) in the

Cardy-like limit, namely |τ | → 0 with fixed 0 < arg τ < π, was found first in [73]:

ui =

(
N + 1

2N
− i

N

)
τ (i = 1, · · · , N), λ =

N + 1

2
. (2.16)

In [67], it has been observed that (2.16) in fact satisfies the BAE (2.12) for any τ in the upper

half plane. Furthermore, a large class of BAE solutions that includes (2.16) as its special

case was reported in the same reference. We study these BAE solutions in the following

subsection 2.2.1 in detail. Later in [5], new BAE solutions including a continuous family

have been found. We investigate these new BAE solutions and their implications in the next

subsection 2.2.1.

Standard BAE solutions

The ‘basic’ BAE solution (2.16) is obtained by distributing N holonomies {ui} along the

thermal circle of the torus T 2 with the modular parameter τ . This particular distribution

of holonomies defines the torus T 2/ZN with modular parameter τ̃ = τ/N . Based on this

observation and from the modular property of the twisted index that we will discuss in

subsection 2.3.1, [67] proved that any set of holonomies {ui} evenly distributed over the

torus satisfy the BAE (2.12). In this case the set of holonomies {ui} defines a freely acting

orbifold T 2/Zm × Zn where m takes all positive divisors of N with N = mn. This BAE

solution can be written explicitly as

uĵk̂ = ū+
ĵ

m
+
k̂

n
(τ +

r

m
) = ū+

ĵ + k̂τ̃

m
(2.17)

with τ̃ = mτ+r
n

, where we have introduced a double index notation (uN = u0)

unĵ+k̂ → uĵk̂ (ĵ = 0, 1, · · · ,m− 1, k̂ = 0, 1, · · · , n− 1). (2.18)
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The constant ū in (2.17) is chosen to enforce the SU(N) constraint (2.8). We call the BAE

solutions (2.17) standard ones.

Here we prove that (2.17) truly satisfies the BAE (2.12) following [67]. Substituting

(2.17) into (2.12), we can write the BAE explicitly as

e2πiλ !
=

3∏
a=1

m−1∏
ĵ=0

n−1∏
k̂=0

θ1(∆a − (ĵ−ĵ0)+(k̂−k̂0)τ̃
m

; τ)

θ1(∆a + (ĵ−ĵ0)+(k̂−k̂0)τ̃
m

; τ)
. (2.19)

To prove this equation, it suffices to show that the RHS of (2.19) is independent of the

double index (ĵ0, k̂0). With this goal in mind, we derive the following identity using the

double-periodicity of the elliptic theta function θ1(u; τ) (A.7b):

m−ĵ0−1∏
ĵ=−ĵ0

n−k̂0−1∏
k̂=−k̂0

θ1(∆a ±
ĵ + k̂τ̃

m
; τ)

= (−1)nĵ0+(r−1)k̂0e±2πik̂0(m∆a± 2n−k̂0−1
2

τ̃)e−iπmk̂0τ

m−1∏
ĵ=0

n−1∏
k̂=0

θ1(∆a ±
ĵ + k̂τ̃

m
; τ).

(2.20)

Substituting (2.20) into (2.19) and using the constraint
∑3

a=1 ∆a ∈ Z from (2.9) then gives

e2πiλ !
=

3∏
a=1

m−1∏
ĵ=0

n−1∏
k̂=0

θ1(∆a − ĵ+k̂τ̃
m

; τ)

θ1(∆a + ĵ+k̂τ̃
m

; τ)
. (2.21)

Now the RHS of (2.21) is manifestly independent of (ĵ0, k̂0), which demonstrates that the

BAE reduces to a single algebraic equation that can be satisfied for some parameter λ. This

proves that (2.17) truly satisfies the BAE (2.12).

While the proof has already been completed, we can determine the parameter λ explicitly

by simplifying the RHS of (2.21) further. First, choosing (ĵ0, k̂0) = (m− 1, n− 1) in (2.20)

with the upper sign, we obtain

m−1∏
ĵ=0

n−1∏
k̂=0

θ1(∆a − ĵ+k̂τ̃
m

; τ)

θ1(∆a + ĵ+k̂τ̃
m

; τ)
= e2πi(N+1

2
+(n−1)m∆a). (2.22)

Substituting this identity (2.22) back into (2.21) then gives

λ =
N + 1

2
. (2.23)

Note that this is consistent with the basic solution (2.16). The above calculation shows that
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this value of λ (2.23) is in fact valid for all standard BAE solutions (2.17).

In summary, we have found multiple BAE solutions to (2.12), namely (2.17), denoted by

three integers {m,n, r} where m,n are positive divisors of N such that N = mn and r take

values in r ∈ {0, 1, · · · , n− 1}. Recall that we call them standard BAE solutions.

Non-standard BAE solutions

In the last subsection, we found a large set solutions of the BAE (2.12) dubbed as standard

BAE solutions (2.17). It is important that they are not the most general solutions to the BAE

(2.12). Since the BA formula of the topologically twisted index (2.15) requires a complete

set of BAE solutions, we cannot compute the twisted index through the BA formula (2.15)

relying solely on standard BAE solutions. In this subsection, following [5], we will therefore

investigate other BAE solutions that we call non-standard ones. For simplicity, here we

assume real chemical potentials ∆a ∈ R. Then, since the BAE (2.12) is invariant under the

integer shift ∆a → ∆ + Z and the flip (λ,∆a)→ (−λ,−∆a), we can set

0 < ∆a < 1,
3∑

a=1

∆a = 1 (2.24)

without loss of generality for real chemical potentials. Note that we exclude a pathological

case with integer chemical potentials.

N = 2 case

Since the BAE (2.12) is difficult to solve in general, we start with the simplest case with

N = 2. For N = 2, the BAE (2.12) reduces to a single algebraic equation as

±1 = e−2πiλ =
3∏

a=1

θ1(∆a + u21; τ)

θ1(∆a − u21; τ)
. (2.25)

Due to the double periodicity (A.7b), for any given solution u21 of the N = 2 BAE (2.25),

u21 + Z + Zτ will also be BAE solutions. Then, since an elliptic function takes all complex

values once within the fundamental domain, the N = 2 BAE (2.25) will have 3 solutions in

the fundamental domain up to identification u21 ∼ u21+Z+Zτ for each choice of e−2πiλ = ±1.

To be explicit, we found [5]

e−2πiλ = −1 : u21 ∈
{

1

2
,
τ

2
,
1 + τ

2

}
, (2.26a)

e−2πiλ = 1 : u21 ∈ {0, u∆,−u∆} . (2.26b)
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The first three BAE solutions (2.26a) correspond to the standard solutions denoted by three

integers {2, 1, 0}, {1, 2, 0}, and {1, 2, 1} respectively, which we have already encountered in

the previous subsection 2.2.1. Here we are interested in non-standard BAE solutions listed

in (2.26b). The first one is a trivial solution and therefore we are interested in the last two

BAE solutions in (2.26b), namely u21 ∈ {±u∆}. The subscript “∆” represents that they are

functions of chemical potentials ∆a in general, which distinguishes these solutions from the

standard ones. Even though the explicit form of u∆ has not yet been known for a general τ ,

their asymptotic behaviors have been studied in [5] and here we review them briefly.

In the ‘low-temperature’ limit (|τ | → ∞ with fixed 0 < arg τ < π), we can approximate

the N = 2 BAE (2.25) using the product form (A.3b) as

±1 = e−2πiλ =
3∏

a=1

1− e2πi(u21−∆a)

1− e2πi(u21+∆a)

1− e2πi(τ−u21+∆a)

1− e2πi(τ−u21−∆a)

(
1 +O(e−2π|τ | sin(arg τ))

)
, (2.27)

where we locate u21 within the fundamental domain without loss of generality. Solving (2.27)

for e−2πiλ = 1 then gives a trivial solution and the low-temperature asymptotic forms of the

other two non-standard solutions u21 ∈ {±u∆}, namely

lim
|τ |→∞

u∆ =
1

2πi
log

−1−
∑

a cos 2π∆a

2
+

√(
1−

∑
a cos 2π∆a

2

)2

− 1

 . (2.28)

In the Cardy-like limit (|τ | → 0 with fixed 0 < arg τ < π), we can approximate the

N = 2 BAE (2.25) using the asymptotic form (A.23) as

±1 = e−2πiλ =
3∏

a=1

e
πi
τ

[{∆a+u21}τ (1−{∆a+u21}τ )−{∆a−u21}τ (1−{∆a−u21}τ )]+πi(b∆a+ũ21c−b∆a−ũ21c)

× (1− e− 2πi
τ

(1−{∆a+u21}τ ))(1− e− 2πi
τ
{∆a+u21}τ )

(1− e− 2πi
τ

(1−{∆a−u21}τ ))(1− e− 2πi
τ
{∆a−u21}τ )

(
1 +O(e−

2π sin(arg τ)
|τ | )

)
.

(2.29)

Solving (2.29) for e−2πiλ = 1 then gives a trivial solution and the Cardy-like asymptotic

forms of the other two non-standard solutions u21 ∈ {±u∆}. First, when max[∆a] <
1
2
, we

found

lim
|τ |→0

u∆ =
1

2
+
τ

4
(max[∆a] <

1

2
). (2.30)
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Figure 2.1: Numerical plots of the non-standard N = 2 solution u21 = u∆ with arg τ = π/4.
The figure on the left corresponds to the case with max[∆a] < 1/2 while that on the right
corresponds to the case with max[∆a] ≥ 1/2. Note that the vertical axis is given in units of
τ .

Otherwise, namely when max[∆a] ≥ 1
2
, we found

lim
|τ |→0

u∆ = 1−max[∆a] + i
log 2

2π
τ (max[∆a] ≥

1

2
). (2.31)

In [5], we have also found numerical BAE solutions that connect the low-temperature

asymptotic solutions (2.28) to the Cardy-like asymptotic ones (2.30) and (2.31) precisely.

See Figure 2.1. This confirms the existence of non-standard BAE solutions with a generic

τ .

N = 3 case

For N = 3, the BAE (2.12) reduces to a couple of algebraic equations as

{1, w, w2} 3 e−2πiλ =
3∏

a=1

θ1(∆a + u21; τ)θ1(∆a + u31; τ)

θ1(∆a − u21; τ)θ1(∆a − u31; τ)

=
3∏

a=1

θ1(∆a − u21; τ)θ1(∆a + u31 − u21; τ)

θ1(∆a + u21; τ)θ1(∆a − u31 + u21; τ)
,

(2.32)

where w = e2πi/3 is a primitive cube root of unity. Even though it is the next simplest case,

the N = 3 BAE (2.32) is much more complicated to solve compared to the N = 2 one (2.25)

because there are more than one holonomy pairs, namely (u21, u31), we should solve for. In

particular, this makes it difficult to classify the most general solutions to the N = 3 BAE

(2.32) within the fundamental domain.

Even though a full classification of solutions to the N = 3 BAE (2.32) is highly involved

and has not yet been done, [5] did find some non-standard solutions to the N = 3 BAE (2.32).
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As we did in the N = 2 case, we investigated BAE solutions in both asymptotic regions first

and confirmed that they are at least numerically connected for a generic τ . It is particularly

interesting that it is a complex 1-dimensional continuous family of BAE solutions. To be

specific, the N = 3 BAE (2.32) imposes only one constraint on the holonomy pair (u21, u31)

in this case and therefore the resulting BAE solution has a complex 1-dimensional degree of

freedom. Its asymptotic forms can be found in [5] and here we focus on the exact solution

within this continuous family of solution, namely

(u21, u31) =

(
1

2
,
τ

2

)
. (2.33)

It is straightforward to check that (2.33) indeed satsifies the N = 3 BAE (2.32) using the

double periodicity (A.7b) and the inversion (A.8b).

The BAE solution (2.33) is independent of chemical potentials ∆a, but distinguished

from standard BAE solutions (2.17) in that it is a part of the continuous family and not

isolated. Here we prove it by showing that the Jacobian matrix H({uj}; τ,∆a) in (2.14) has

at least one zero eigenvalue at the BAE solution (2.33). To begin with, applying the relation

(2.48), which we will derive in the next section, to the present N = 3 case, we find

(2πi)3H({uj}; τ,∆a)
∣∣
(u21,u31)=( 1

2
, τ
2

)
= 36

4∑
I=2

∏4
J=2

∑3
a=1 θ

′
J(∆a; τ)/θJ(∆a; τ)∑3

a=1 θ
′
I(∆a; τ)/θI(∆a; τ)

. (2.34)

Here θ2,3,4 are the Jacobi theta functions given explicitly in (B.3). Next we prove the following

lemma in Appendix B.1:

Lemma 1. For any τ in the upper half plane and any complex ∆a subject to the constraint∑3
a=1 ∆a ∈ Z, we have

4∑
I=2

1∑3
a=1 θ

′
I(∆a; τ)/θI(∆a; τ)

= 0. (2.35)

Finally, substituting Lemma 1 into (2.34), we have

H({uj}; τ,∆a)
∣∣
(u21,u31)=( 1

2
, τ
2

)
= 0. (2.36)

This establishes that the Jacobian matrix H({uj}; τ,∆a) in (2.14) indeed has a vanishing

eigenvalue at the BAE solution (2.33) and thereby proves that (2.33) is within a continuous

family of BAE solutions.
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N > 3 case

Investigating continuous family of solutions to the BAE (2.12) for N > 3 is highly involved

and it has not yet been studied analytically so far. The authors of [5] observed an interesting

pattern, however, in continuous families of BAE solutions for N = 4, 5, 6, 7, 8, 9, 10 through

numerical analysis. First, we found numerical BAE solutions where the Jacobian matrix

H({uj}; τ,∆a) (2.14) has a single vanishing eigenvalue for N = 4, 5. Then for N = 6, 7, 8, 9,

we found new BAE solutions where the Jacobian matrix has two zero eigenvalues. Lastly

for N = 10, numerical analysis shows that there is a BAE solution where the Jacobian

matrix has three zero eigenvalues. This implies that the maximum complex dimension of

a continuous family of BAE solutions increases as N increases with a certain pattern. The

exact pattern in the dimensionality of the space of continuous family of BAE solutions has

been conjectured in [5] as

Conjecture 1. For N ≥ (l+1)(l+2)
2

, the BAE of N = 4 SU(N) SYM theory (2.12) has

l-complex dimensional continua of solutions at most.

This conjecture is based on a duality between the space of BAE solutions ofN = 4 SU(N)

SYM theory and the vacua of N = 1∗ theory proposed in [5]. To be specific, the authors

of [5] related the standard BAE solutions (2.17) to the massive vacua of the N = 1∗ theory

studied in [50] and the continuous family of non-standard BAE solutions to the Coulomb

vacua of the N = 1∗ theory studied in [51]. Then, based on the analysis of the Coulomb

vacua of the N = 1∗ theory with SU(N) gauge group in [99], we have conjectured the

maximum dimension of continuous family of BAE solutions as 1. As we have confirmed

above numerically, the conjecture 1 works well at least for small rank of the gauge group

N = 2, 3, · · · , 10. Furthermore, the exact non-standard BAE solution within a continuous

family for the SU(3) case (2.33) turns out to have its explicit counterpart in dual N = 1∗

theory [51]. Both observations strongly support the proposed duality [5] even though the

exact dictionary has not yet been established.

Even though a full classification of non-standard BAE solutions beyond the conjecture 1

has not yet been done, there are particularly interesting class of such solutions. Note that

the structure of standard BAE solutions (2.17) depends heavily on the factorization of the

rank of a gauge group N . For example, if N is a prime number, there are only N +1 number

of standard BAE solutions denoted by {N, 1, 0} and {1, N, r} (r = 0, · · · , N − 1). On the

contrary, if N has many positive divisors, there are much more standard BAE solutions

denoted by {m,n, r}. This brings the following question. Consider a large, odd number N

for example. Then for the case with the gauge group SU(N − 1), the BAE (2.12) has a

standard solution (2.17) denoted by {2, N−1
2
, 0}. But if you slightly change the rank of the
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gauge group by N−1→ N , a similar standard solution like {2, N
2
, 0} does not exist anymore

since 2 does not divide N . Since the change N − 1→ N should be ignorable in the large-N

limit, such a drastic outcome must be explained somehow. This naturally suggests that

there is a non-standard BAE solution for an odd N , which looks similar to the {2, N−1
2
, 0}

standard BAE solution.

We did find such a non-standard solution, analytically in the Cardy-like limit and nu-

merically for a generic τ . First we discuss the asymptotic analysis following [5]. In the

Cardy-like limit, the BAE (2.12) reduces to

e−2πiλ =
3∏

a=1

N∏
j=1

e
πi
τ

[{∆a+uji}τ (1−{∆a+uji}τ )−{∆a−uji}τ (1−{∆a−uji}τ )]+πi(b∆a+ũjic−b∆a−ũjic)

× (1− e− 2πi
τ

(1−{∆a+uji}τ ))(1− e− 2πi
τ
{∆a+uji}τ )

(1− e− 2πi
τ

(1−{∆a−uji}τ ))(1− e− 2πi
τ
{∆a−uji}τ )

(
1 +O(e−

2π sin(arg τ)
|τ | )

) (2.37)

from the asymptotic expansion (A.23). Then we find asymptotic solutions to (2.37) for the

two different cases, namely max[∆a] ≥ 1
2

and max[∆a] <
1
2
. They are given explicitly as

CASE 1. max[∆a] ≥ 1
2

{uj} =

{
j

(N + 1)/2
τ
∣∣∣ j = 0, · · · , N − 1

2

}
∪
{

1

2
+

j − 1/2

(N − 1)/2
τ
∣∣∣ j = 1, · · · , N − 1

2

}
. (2.38)

CASE 2. max[∆a] <
1
2

{uj} =

{
±min[∆a]− ε

2

}
∪
{

j

(N − 3)/2
τ
∣∣∣ j = 0, · · · , N − 5

2

}
∪
{

1

2
+

j − 1/2

(N − 1)/2
τ
∣∣∣ j = 1, · · · , N − 1

2

}
,

ε =
τ

2πi
exp

[
−πi
τ

(
−N − 1

2
−min[∆a] + (N − 1)(1−max[∆a])

)]
.

(2.39)

Here, for notational convenience, we omitted a universal additive constant ū that should

be added to all holonomies uj’s to satisfy the SU(N) constraint
∑N

i=1 ui ∈ Z (2.8) as in

(2.17). Although (2.38) and (2.39) are BAE solutions valid only in the Cardy-like limit, we

confirmed numerically that there are indeed exact BAE solutions corresponding to them.

Furthermore, we checked that they can be continuously deformed to satisfy the BAE (2.12)

for a generic τ . See Figure 2.2.

While we have focused on non-standard solutions whose holonomies are packed into

two groups, numerical investigations confirm that similar non-standard solutions whose

holonomies are divided into more than two nearly equal packs do exist, at least for N
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Figure 2.2: Numerical solutions to the BAE (2.12) with N = 11 and τ = 1+23i
230

. Here (a)
corresponds (2.38) with (∆1,∆2) = (105

517
, 75

287
) and (b) corresponds to (2.39) with (∆1,∆2) =

( 75
287
, 152

517
).

sufficiently large. These non-standard solutions are similar to the above discussed solutions

(2.38) and (2.39) in that their explicit forms are sensitive to the configuration of chemical

potentials ∆a. The simplest asymptotic BAE solution, corresponding to CASE 1 above,

occurrs only when max[∆a] ≥ 1− 1/C where C denotes the number of packs that we divide

holonomies into. In this case, the non-standard solution in the Cardy-like limit is given by

{uj} =

{
J

C
+

j

(N + C −D)/C
τ
∣∣∣ J = 0, · · · , D − 1, j = 0, · · · , N −D

C

}
∪
{
J

C
+

j − 1/2

(N −D)/2
τ
∣∣∣ J = D, · · · , C − 1, j = 1, · · · , N −D

C

}
,

(2.40)

where N = CbN/Cc+D (D = 1, · · · , C − 1). This solution (2.40) satisfies the BAE in the

Cardy-like limit (2.37) up to exponentially suppressed terms.

Although this extension of the CASE 1 solution (2.38) to arbitrary values of C only holds

for sufficiently large max[∆a], we expect that generalizations of the CASE 2 solution (2.38),

whose pairs of holonomies may be pulled away from the main packs, exist for other values

of the chemical potentials. We thus conjecture that solutions to the BAE (2.12) exist for all

values of C and N with d ≤ N/C < d + 1. Here, d corresponds to the minimum number

of holonomies in a single pack that allows the solution to be categorized as a set of packs

instead of individually distributed holonomies. When C divides N , the solution is standard

but otherwise it is non-standard.

2.2.2 The topologically twisted index from the BA formula

In the previous subsection 2.2.1, we investigate various solutions to the BAE (2.12). Standard

BAE solutions (2.17) were obtained explicitly and we have also found various non-standard
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BAE solutions, which simply denote all the BAE solutions except standard ones. Non-

standard BAE solutions, however, have not yet been classified completely. Hence, even

though the existence of non-standard BAE solutions is clear from various examples, it is

still difficult to compute the topologically twisted index through the (modified) BA formula

(2.15).

There is a part that we can compute explicitly, however, namely the standard contribution

from the standard BAE solutions (2.17) to the twisted index through the BA formula (2.15).

To be more explicit, first we rewrite the BA formula (2.15) as

Z(τ,∆a, na) = Zstandard(τ,∆a, na) + Znon-standard(τ,∆a, na), (2.41)

where we have defined the standard contribution Zstandard as

Zstandard(τ,∆a, na) =
N∑

n=1 (n|N)

n−1∑
r=0

Z{m,n,r}(τ,∆a, na),

Z{m,n,r}(τ,∆a, na) =
A

H{m,n,r}

3∏
a=1

∏
(ĵ1,k̂1)6=(ĵ2,k̂2)

(
θ1( (ĵ1−ĵ2)+(k̂1−k̂2)τ̃

m
; τ)

θ1(∆a + (ĵ1−ĵ2)+(k̂1−k̂2)τ̃
m

; τ)

)1−na

=
A

H{m,n,r}

3∏
a=1

m−1∏
ĵ2=0

n−1∏
k̂2=0

m−ĵ2−1∏
ĵ1=−ĵ2

′
n−k̂2−1∏
k̂1=−k̂2

′

(
θ1( ĵ1+k̂1τ̃

m
; τ)

θ1(∆a + ĵ1+k̂1τ̃
m

; τ)

)1−na

.

(2.42)

Here H{m,n,r}(τ,∆a) denotes the Jacobian determinant H({ui}; τ,∆a) (2.14) evaluated at

the standard BAE solution (2.17). The primed sums in (2.42) indicate that (ĵ1, k̂1) = (0, 0)

is to be omitted from the double product. It is striaghtforward to see that the standard con-

tribution Zstandard (2.42) is obtained by summing over all contributions from the standard

BAE solutions (2.17) to the twisted index through the BA formula (2.15). The non-standard

contribution Znon-standard is the remaining contribution which has not yet been known explic-

itly.

Here we focus on simplifying the standard contribution Zstandard (2.42). To begin with,

we shift the product over ĵ1, k̂1 in (2.42) using (2.20) as

m−ĵ2−1∏′

ĵ1=−ĵ2

n−k̂2−1∏′

k̂1=−k̂2

θ1( ĵ1+k̂1τ̃
m

; τ)

θ1(∆a + ĵ1+k̂1τ̃
m

; τ)
= e−2πimk̂2∆a

m−1∏
ĵ1=0

′
n−1∏
k̂1=0

′ θ1( ĵ1+k̂1τ̃
m

; τ)

θ1(∆a + ĵ1+k̂1τ̃
m

; τ)
. (2.43)
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Then Z{m,n,r} in (2.42) reads

Z{m,n,r} =
A

H{m,n,r}

3∏
a=1

e−πim(n−1)∆a

m−1∏
ĵ1=0

′
n−1∏
k̂1=0

′ θ1( ĵ1+k̂1τ̃
m

; τ)

θ1(∆a + ĵ1+k̂1τ̃
m

; τ)

N(1−na)

. (2.44)

Substituting the identity (A.4) and the prefactor (2.7) into (2.44) then gives

Z{m,n,r} =
iN−1

H{m,n,r}

3∏
a=1

[(
θ1(∆a; τ)

η(τ)3

)(
mη(τ̃)3

θ1(m∆a; τ̃)

)N]1−na

. (2.45)

To simplify the Jacobian determinant H{m,n,r} in (2.45), first note that the element of

the N ×N Jacobian matrix H is given from (2.14) as

Hµ,ν =
1

2πi

∂Qµ

∂uν
= δµν

N∑
j=1

g(uµj; τ,∆a)− g(uµν ; τ,∆a) + g(uµN ; τ,∆a), (2.46a)

HN,ν =
1

2πi

∂QN

∂uν
= −

N∑
j=1

g(uNj; τ,∆a)− g(uNν ; τ,∆a) + g(0; τ,∆a), (2.46b)

Hµ,N =
1

2πi

∂Qµ

∂λ
= 1, (2.46c)

HN,N =
1

2πi

∂QN

∂λ
= 1, (2.46d)

where µ, ν ∈ {1, 2, . . . , N − 1} and we have defined

g(u; τ,∆a) ≡
i

2π

3∑
a=1

∂

∂∆a

log
[
θ1(∆a + u; τ)θ1(∆a − u; τ)

]
. (2.47)

From (2.46), we can derive

H = detH = N det

[
1

2πi

∂(Q1, · · · , QN−1)

∂(u1, · · · , uN−1)

]
. (2.48)

Hence, to determine the Jacobian determinant H or our interest, it suffices to study the

determinant of the (N − 1)× (N − 1) square matrix whose elements are given as (2.46a).

Since we are particularly interested in H{m,n,r}, namely the Jacobian determinant (2.14)

of a standard BAE solution (2.17), we turn to a double index notation as (2.18). We also
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introduce the G-function as

G{m,n,r}(ĵ, k̂; τ,∆a) ≡
i

2π

3∑
a=1

∂

∂∆a

log

[
θ1(∆a +

ĵ + k̂τ̃

m
; τ)θ1(∆a −

ĵ + k̂τ̃

m
; τ)

]
, (2.49)

which is related to the g-function (2.47) as

G{m,n,r}(ĵ − ĵ0, k̂ − k̂0; τ,∆a) = g(uĵk̂ − uĵ0k̂0
; τ,∆a). (2.50)

Then the matrix element (2.46a) can be rewritten in terms of a double index notation as

[H{m,n,r}]µ,ν = δµν

m−1∑
ĵ=0

n−1∑
k̂=0

G{m,n,r}(ĵ − ĵµ, k̂ − k̂µ; τ,∆a) + G{m,n,r}(ĵµ, k̂ν ; τ,∆a)

− G{m,n,r}(ĵµ − ĵν , k̂µ − k̂ν ; τ,∆a)

(2.51)

where (µ, ν) = (nĵµ + k̂µ, nĵν + k̂ν) following (2.18). The sum in (2.51) can be simplified as

m−1∑
ĵ=0

n−1∑
k̂=0

G{m,n,r}(ĵ − ĵµ, k̂ − k̂µ; τ,∆a) =
m−1∑
ĵ=0

n−1∑
k̂=0

G{m,n,r}(ĵ, k̂; τ,∆a)

=
i

π

3∑
a=1

∂

∂∆a

log θ1(m∆a; τ̃),

(2.52)

where we have used (2.20) and (A.4) in the first and in the second equations respectively.

Substituting (2.52) back into (2.51) then gives

[H{m,n,r}]µ,ν =

(
i

π

3∑
a=1

∂

∂∆a

log θ1(m∆a; τ̃)

)[
IN−1 + H̃{m,n,r}

]
µ,ν
,

[H̃{m,n,r}]µ,ν ≡
G{m,n,r}(ĵµ, k̂µ; τ,∆a)− G{m,n,r}(ĵµ − ĵν , k̂µ − k̂ν ; τ,∆a)

i
π

∑3
a=1

∂
∂∆a

log θ1(m∆a; τ̃)
.

(2.53)

The Jacobian determinant H{m,n,r} is then given from (2.48) and (2.53) as

H{m,n,r} = detH{m,n,r} = N

(
i

π

3∑
a=1

∂

∂∆a

log θ1(m∆a; τ̃)

)N−1

det
(

1 + H̃{m,n,r}

)
. (2.54)

Finally, the contribution from the standard BAE solution (2.17) denoted by three integers
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{m,n, r} is given by substituting (2.54) into (2.45) as

Z{m,n,r}(τ,∆a, na) =

∏3
a=1

[(
θ1(∆a;τ)
η(τ)3

)(
mη(τ̃)3

θ1(m∆a;τ̃)

)N]1−na

N det
(

1 + H̃{m,n,r}

) [
1
π

∑3
a=1

∂
∂∆a

log θ1 (m∆a; τ̃)
]N−1

. (2.55)

The standard contribution Zstandard then naturally follows from (2.42).

2.3 Standard contribution to the topologically twisted

index

In this section we investigate the standard contribution Zstandard to the topologically twisted

index based on (2.42) and (2.55). Even though this is not enough to get the full topologically

twisted index due to the non-standard contribution Znon-standard in (2.41), we will see that the

standard contribution itself has an interesting transformation property and an asymptotic

behavior in the Cardy-like limit.

2.3.1 The index as an elliptic genus

In [43, 66], it has been observed that the partition function of a theory on T 2 × S2 with

N = 1 chiral/vector multiplets is equivalent to an elliptic genus of certain N = (0, 2)

theory on T 2. Since the topologically twisted index of N = 4 SU(N) SYM theory means

the partition function of a supersymmetric gauge theory on T 2 × S2 that consists of three

N = 1 chiral multiplets and one N = 1 vector multiplet, we should be able to interpret the

twisted index of our interest as an elliptic genus too. A direct evidence for this would be

that the topologically twisted index of N = 4 SU(N) SYM theory has the same periodicity

and modular property with an elliptic genus. To be specific, to show that the twisted index

becomes an elliptic genus, we must prove that the twisted index transforms as a weak Jacobi

form of weight zero as an elliptic genus does. Here it is worth recalling that, for a single

chemical potential, a Jacobi form of weight k and index m transforms according to

φ(u+ λτ + µ; τ) = (−1)2m(λ+µ)q−mλ
2

e−4πimλuφ(τ, u), (2.56a)

φ

(
u

cτ + d
;
aτ + b

cτ + d

)
= (cτ + d)ke

2πimcu2

cτ+d φ(τ, u), (2.56b)

for a, b, c, d, λ, µ ∈ Z with ad − bc = 1. It is then straightforward to generalize this to the

case of three chemical potentials ∆a (a = 1, 2, 3) of our interest.
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We do not have an explicit expression for the full twisted index, however, since the non-

standard contribution Znon-standard in (2.41) is unknown. Hence it is difficult to show that

the full twisted index Z = Zstandard +Znon-standard transforms as a weak Jacobi form of weight

zero. We therefore focus on the standard contribution Zstandard and show that it transforms

as an elliptic genus. More explicitly, we verify that the standard contribution Zstandard from

(2.42) and (2.55) transforms as a weak Jacobi form of weight zero and indices

ma = −N
2 − 1

2
(1− na), (2.57)

under the constraint
∑

a ∆a = 0. To do so, in subsection 2.3.1, we first consider the periodic

shifts ∆a → ∆a + 1 and ∆a → ∆a + τ to confirm (2.56a). Then in the next subsection

2.3.1, we consider the modular transformations T : τ → τ + 1 and S : τ → −1/τ to confirm

(2.56b). Note that the index ma is a half-integer when both N and na are even, and an

integer otherwise.

Periodic shifts of chemical potentials

We first consider the shift ∆â → ∆â + 1 for a single ∆â. From (A.7b), we find that Z{m,n,r}

(2.45) transforms under this shift as

Z{m,n,r} → (−1)(1−mN)(1−nâ)Z{m,n,r} = (−1)2mâ(−1)N(N−m)(1−nâ)Z{m,n,r}

= (−1)2mâZ{m,n,r},
(2.58)

where we substituted in the index mâ from (2.57). In the last equation we have used that

N(N −m) = m2n(n− 1) is an even integer. The result (2.58) is in agreement with (2.56a).

Note that this result is valid even if we only shift a single ∆â.

For the shift ∆â → ∆â + τ , we first consider how the numerator in Z{m,n,r} (2.55)

transforms. Using (A.7b), we find

θ1(∆â + τ ; τ) = −q−1/2e−2πi∆âθ1(∆â; τ), (2.59a)

θ1(m(∆â + τ); τ̃) = (−1)n+r(n+1)q−N/2e−2πNi∆âθ1(m∆â; τ̃). (2.59b)

This demonstrates that the numerator picks up an overall factor as

Znumer
{m,n,r} →

[
(−1)1−N(n+r(n+1))q(N2−1)/2yN

2−1
â

]1−nâ
Znumer
{m,n,r} (2.60)
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under the shift ∆â → ∆â + τ . As above, the sign factor can be rewritten as

1−N(n+ r(n+ 1)) = −(N2 − 1) +N(n(m− 1)− r(n+ 1))

= −(N2 − 1) + n2m(m− 1)− rmn(n+ 1). (2.61)

Since the last two terms in the final expression are even, they do not contribute to the overall

sign, and we are left with

Znumer
{m,n,r} → (−1)2mâq−mâe−4πimâ∆âZnumer

{m,n,r}, (2.62)

where we have substituted in the index mâ from (2.57). Since the numerator by itself

transforms properly under the shift ∆â → ∆â + τ as a weak Jacobi form of index mâ (2.57)

following (2.56a), we see that the denominator must be invariant under this shift. This is

not entirely obvious, however, as the logarithmic derivatives of θ1 transform as

∂∆â
log θ1(∆â + τ, τ) = ∂∆â

log θ1(∆â, τ)− 2πi,

∂∆â
log θ1(m(∆â + τ), τ̃) = ∂∆â

log θ1(m∆â, τ̃)− 2πNi, (2.63)

as can be seen directly from (2.59a) and (2.59b). The sum of logarithmic derivatives, however,

is invariant so long as we simultaneously shift another chemical potential, say ∆b̂, by −τ ,

since then these additional factors will cancel. Therefore the denominator is invariant under

this combined shift, and hence (2.62) leads to

Z{m,n,r} → (−1)2mâq−mâe−4πimâ∆âZ{m,n,r}, (2.64)

which is in agreement with (2.56a). Note that this simultaneous shift is in fact required to

maintain the constraint
∑3

a=1 ∆a ∈ Z (2.9).

Finally, since the standard contribution Zstandard is a sum of all Z{m,n,r} (2.42) and each

Z{m,n,r} transforms under periodic shifts of chemical potentials as (2.58) and (2.64) consis-

tent with (2.56a), we conclude that Zstandard transforms under periodic shifts of chemical

potentials as a weak Jacobi form of weight zero and indices ma (2.57).

Modular transformations

This time we check the properties of the standard contribution Zstandard (2.42) under modular

transformations (2.56b). Since a general transformation can be generated by a combination
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of T and S transformations, it is sufficient for us to demonstrate the following properties:

T : Zstandard(τ + 1,∆a, na) = Zstandard(τ,∆a, na), (2.65a)

S : Zstandard(−1/τ,∆a/τ, na) = e
2πi
τ

∑3
a=1 ma∆2

aZstandard(τ,∆a, na). (2.65b)

These follow from the modular transformation of a weak Jacobi form of weight zero and

indices ma (2.57) with chemical potentials ∆a based on (2.56b).

T -transformation

We begin with the T -transformation T : τ → τ+1. Under this transformation, an individual

contribution Z{m,n,r} will get permuted even though their sum Zstandard will be invariant. We

thus work each contribution at a time, namely the T -transformation of Z{m,n,r}.

To proceed, we consider the expression (2.45), and observe that the numerator is built

from the combination

ψ(u; τ) ≡ θ1(u; τ)

η(τ)3
, (2.66)

which transforms as a weak Jacobi form of weight −1 and index 1/2, as can be seen from

(A.12). For ψ(∆a; τ), we have simply

ψ(∆a; τ + 1) = ψ(∆a; τ). (2.67)

However, the transformation is not as direct for ψ(m∆a; τ̃), since T : τ̃ → τ̃ +m/n is not a

SL(2,Z) transformation on τ̃ . In this case, it is more useful to note that

T :
mτ + r

n
→ mτ + (r +m)

n
=
mτ + r′

n
+

⌊
r +m

n

⌋
, (2.68)

where r′ = r + m (mod n). Since ψ (2.66) is invariant under integer shifts of the modular

parameter, we end up with

ψ(m∆a;
m(τ + 1) + r

n
) = ψ(m′∆a;

m′τ + r′

n′
), (2.69)

where

τ̃ ′ ≡ m′τ + r′

n′
, {m′, n′, r′} = {m,n, r +m (mod n)}. (2.70)

Substituting (2.67) and (2.69) into the numerator of (2.45) then gives a simple transformation

Znumer
{m,n,r}(τ + 1,∆a, na) = Znumer

{m′,n′,r′}(τ,∆a, na), (2.71)
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where {m′, n′, r′} is from (2.70).

To be complete, we must also investigate the T -transformation on the denominator of

(2.45), namely the Jacobian determinant H{m,n,r} (2.54). Here we use the double periodicity

(A.7b) and the modular property (A.11), to obtain the map

G{m,n,r}(ĵ, k̂; τ,∆a + 1) = G{m′,n′,r′}(ĵ′, k̂′; τ,∆a), (2.72)

with {m′, n′, r′} from (2.70) and

ĵ′ = ĵ + k̂

⌊
r +m

n

⌋
(mod m), k̂′ = k̂. (2.73)

Then since the above (ĵ, k̂)→ (ĵ′, k̂′) is a bijective map from Zm × Zn to Zm′ × Zn′ , we get

(see Appendix B.3)

H{m,n,r}(τ + 1,∆a) = H{m′,n′,r′}(τ,∆a), (2.74)

and hence the denominator transforms in the expected manner as well.

Substituting (2.71) and (2.74) into (2.45) then gives

Z{m,n,r}(τ + 1,∆a, na) = Z{m′,n′,r′}(τ,∆a, na) (2.75)

where {m′, n′, r′} is from (2.70). Finally, since {m,n, r} → {m′, n′, r′} in (2.70) is bijec-

tive, it is clear that the standard contribution Zstandard (2.42) is indeed invariant under

T -transformation as (2.65a).

S-transformation

We now turn to the S-transformation, which takes ∆a → ∆a/τ along with τ → −1/τ . Once

again, we start with the numerator. Since ψ(u; τ) defined in (2.66) is a weak Jacobi form of

weight −1 and index 1/2, we immediately have

ψ(∆a/τ ;−1/τ) =
1

τ
e
πi∆2

a
τ ψ(∆a, τ) (2.76)

from (2.56b). For ψ(m∆a; τ̃), it is important to realize that S does not simply take τ̃ to

−1/τ̃ . Instead, we want to map τ̃ into a new τ̃ ′, at least up to a SL(2,Z) transformation. In

particular, we demand

S :
mτ + r

n
→ rτ −m

nτ
=
aτ̃ ′ + b

cτ̃ ′ + d
, (2.77)
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where τ̃ ′ = (m′τ + r′)/n′. The resulting SL(2,Z) transformation is given by

a =
r

g
, c =

n

g
, ad− bc = 1, g ≡ gcd(n, r), (2.78)

and τ̃ ′ takes the form

τ̃ ′ =
m′τ + r′

n′
, {m′, n′, r′} = {g,N/g,−dm}. (2.79)

Here b and d are uniquely determined as the solution to (2.78) is under the constraint for r′,

0 ≤ r′ < n′. Also note that we can make use of the simple relation cτ̃ ′ + d = m′τ/m, which

can be derived without explicit knowledge of b and d. From (2.77) and (2.56b), we then find

ψ

(
m∆a

τ
;
rτ −m
nτ

)
= ψ

(
m′∆a

cτ̃ ′ + d
;
aτ̃ ′ + b

cτ̃ ′ + d

)
=

m

m′τ
e
iN∆2

a
4πτ ψ(m′∆a, τ̃

′). (2.80)

Substituting this expression along with (2.76) into the numerator of (2.45) then gives

Znumer
{m,n,r}(−1/τ,∆a/τ, na) = τN−1e

2πi
τ

∑
ama∆2

aZnumer
{m′,n′,r′}(τ,∆a, na), (2.81)

where ma is from (2.57) and {m′, n′, r′} is from (2.79).

The extra factor of τN−1 is expected to be canceled by a similar factor arising from the

denominator of (2.45), namely the Jacobian determinant H{m,n,r}. For this determinant,

we use the double periodicity (A.7b) and the modular property (A.11), along with the

requirement
∑

a ∆a = 0 to obtain the map

G{m,n,r}(ĵ, k̂;−1/τ,∆a/τ) = τG{m′,n′,r′}(ĵ′, k̂′; τ,∆a) (2.82)

with {m′, n′, r′} from (2.79) and

ĵ′ = −g
n

(k̂ + dk̂′) mod g, (2.83a)

k̂′ =
n

g
ĵ +

r

g
k̂ mod

N

g
. (2.83b)

In Appendix B.2, we show that the above (ĵ, k̂) → (ĵ′, k̂′) is a bijective map from Zm × Zn
to Zm′ × Zn′ . Then from Appendix B.3 we get

H{m,n,r}(−1/τ,∆a/τ) = τN−1 detH{m′,n′,r′}(−1/τ,∆a/τ), (2.84)

which will cancel the extra factor of τN−1 from the transformation of the numerator (2.81).
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Substituting (2.81) and (2.84) into (2.45) then gives

Z{m,n,r}(−1/τ,∆a/τ, na) = e
2πi
τ

∑
ama∆2

aZ{m′,n′,r′}(τ,∆a, na) (2.85)

where {m′, n′, r′} is from (2.79). Finally, since {m,n, r} → {m′, n′, r′} in (2.79) is self-inverse

and therefore bijective, it is clear that the standard contribution Zstandard (2.42) transforms

under the S-transformation as (2.65b).

Here we wish to explain why the chemical potentials must sum to zero in order for the

standard contribution Zstandard (2.42) to be a proper modular form, in particular under the S-

transformation. Since S-transformation takes ∆a to ∆a/τ , we must demand the simultaneous

conditions
3∑

a=1

∆a ∈ Z and
3∑

a=1

∆a ∈ τZ (2.86)

to satisfy the constraint given in (2.9) for both Z(τ,∆a, na) and Z(−1/τ,∆a/τ, na). This

leads to
∑3

a=1 ∆a = 0. Of course, we can always shift chemical potentials by integers as

∆a → ∆a +Z to set
∑3

a=1 ∆a = 0, so this is not a physically sensible restriction on chemical

potentials.

2.3.2 Cardy-like asymptotics

In this subsection we investigate the Cardy-like limit of the standard contribution Zstandard

given from (2.42) and (2.55) that we repeat here for convenience

Zstandard(τ,∆a, na) =
N∑

n=1 (n|N)

n−1∑
r=0

Z{m,n,r}(τ,∆a, na), (2.87a)

Z{m,n,r}(τ,∆a, na) =

∏3
a=1

[
ψ(∆a; τ)ψ(m∆a; τ̃)−N

]1−na
n det

(
1 + H̃{m,n,r}

) [
1
π

∑3
a=1

ψ′(m∆a;τ̃)
ψ(m∆a;τ̃)

]N−1
. (2.87b)

Note that we simplify (2.55) in terms of the ψ-function (2.66) to get (2.87b). Here the

Cardy-like limit means

|τ | → 0 + with fixed 0 < arg τ < π. (2.88)

The Cardy-like limit of the twisted index has been first investigated in [73]. It was restricted

to the Cardy-like limit of Z{1,N,0}, however, and here we extends a similar analysis to generic

Z{m,n,r} and therefore the total standard contribution Zstandard following [67], but with generic

complex parameters τ and ∆a.
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To begin with, using the Cardy-like asymptotics of elliptic functions (A.16) and (A.23),

we derive

logψ(∆a; τ) =
πi

τ
{∆a}τ (1− {∆a}τ ) + log τ − πi

2
+ paπi

+O(e−
2π sin(arg τ)

|τ | min({∆̃a},1−{∆̃a})),

(2.89)

where we have defined an integer pa as

pa ≡ bRe ∆a − cot(arg τ) Im ∆ac. (2.90)

See (A.17) and (A.19) for the definitions of the τ -modded value {·}τ and the ‘tilde’ compo-

ment of chemical potentials ∆̃a. Next, for ψ(m∆a; τ̃), first we take the SL(2,Z) transforma-

tion with

c =
n

g
, d = −r

g
, ad− bc = 1, g ≡ gcd(n, r), (2.91)

in (A.12). The result is given as

ψ(m∆a; τ̃) = ψ(m∆a;
mτ + r

n
) =

mτ

g
e−

Nπi
τ

∆2
aψ(

g∆a

τ
;− g2

Nτ
+
a

c
). (2.92)

Applying the product forms (A.2) and (A.3b) to the RHS of (2.92) then gives

logψ(m∆a; τ̃) =
g2πi

Nτ
{N∆a

g
}τ (1− {

N∆a

g
}τ ) + log

(
mτ

ig

)
+ qaπi

(
1 + (qa + 1)

a

c

)
+O(e−

2π sin(arg τ)
|τ | min({N

g
∆̃a},1−{Ng ∆̃a})),

(2.93)

where we have defined an integer qa as

qa ≡
⌊

Re
N∆a

g
− cot(arg τ) Im

N∆a

g

⌋
. (2.94)

Lastly, the diagonal term from the Jacobian matrix in the denominator of (2.87b) can be

expanded using (2.93) as

1

π

3∑
a=1

ψ′(m∆a; τ̃)

ψ(m∆a; τ̃)
= − ig

mτ
ηN/g, (2.95)

where we have assumed C∆̃a /∈ Z and introduced ηC ∈ {±1} for a positive integer C as

3∑
a=1

{C∆̃a} =
3 + ηC

2
. (2.96)
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Here we have used the constraint
∑3

a=1 ∆a ∈ Z (2.9) too.

Finally, substituting (2.89), (2.93), and (2.95) into (2.87b) gives

logZ{m,n,r}(τ,∆a, na)

=
πi

τ

3∑
a=1

(1− na)

[
{∆a}τ (1− {∆a}τ )− g2{N∆a

g
}τ (1− {

N

g
∆a}τ )

]
− log

N

g

+ πi
3∑

a=1

(1− na)
[
pa −Nqa(1 + (qa + 1)

a

c
)
]

+
(1 + ηN/g)(N − 1)πi

2

− log det
(

1 + H̃{m,n,r}

)
+O(e−

2π sin(arg τ)
|τ | min({N

g
∆̃a},1−{Ng ∆̃a},{∆̃a},1−{∆̃a})).

(2.97)

Note that the 2nd line is pure imaginary, which is meaningful up to 2πiZ only. Substituting

the asymptotic expansion of each sector (2.97) into the sum (2.87a) then determines the

Cardy-like limit of the standard contribution Zstandard, where the contribution from the

determinant in the last line of (2.97) is left implicit.

Since the contribution from determinant, namely− log det(1+H̃{m,n,r}) in (2.97), is rather

intricate, its Cardy-like limit has not yet been known explicitly except for some special cases.

Here we summarize the key observations of [67] but in a slightly different way with general

complex τ and ∆a. First, recall that elements of an (N−1)× (N−1) square matrix H̃{m,n,r}

are given from (2.52) and (2.53) as

[H̃{m,n,r}]µ,ν =
G{m,n,r}(ĵµ, k̂ν ; τ,∆a)− G{m,n,r}(ĵµ − ĵν , k̂µ − k̂ν ; τ,∆a)∑m−1

ĵ=0

∑n−1

k̂=0
G{m,n,r}(ĵ, k̂; τ,∆a)

, (2.98)

where (µ, ν) = (nĵµ + k̂µ, nk̂ν + k̂ν) ∈ Zm × Zn \ {(0, 0)} following (2.18). To compute

the determinant of the matrix with elements (2.98) in the Cardy-like limit, first we need

to expand the G-function in the Cardy-like limit. By substituting the Cardy-like expansion

(A.23) into the definition (2.49), we obtain

G{m,n,r}(ĵ, k̂; τ,∆a) =
1

τ

3∑
a=1

(
B1({∆a +

nĵ + rk̂

N
}τ ) +B1({∆a −

nĵ + rk̂

N
}τ )

)

+
1

τ

3∑
a=1

∑
σ=±

(
e−

2πi
τ

(1−{∆a+σ ĵ+k̂τ̃
m
}τ )

1− e− 2πi
τ

(1−{∆a+σ ĵ+k̂τ̃
m
}τ )
− e−

2πi
τ
{∆a+σ ĵ+k̂τ̃

m
}τ

1− e− 2πi
τ
{∆a+σ ĵ+k̂τ̃

m
}τ

)
+O(e−

2π sin(arg τ)
|τ | ),

(2.99)

where Bn(x) denotes the n-th Bernoulli polynomial.
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In the simplest case with {m,n, r} = {1, N, 0}, (2.99) shows that the G-function becomes

independent of an entry (ĵ, k̂) in the Cardy-like limit as

G{1,N,0}(ĵ, k̂; τ,∆a) ∼
2

τ

3∑
a=1

B1({∆a}τ ), (2.100)

where “∼” means that an equation is valid up to exponentially suppressed terms. Substi-

tuting (2.100) back into (2.98) then gives

[H̃{1,N,0}]µ,ν ∼ 0 → log det
(

1 + H̃{1,N,0}

)
∼ 1. (2.101)

Substituting (2.101) into (2.97) then gives the Cardy-like asymptotics of Z{1,N,0} explicitly

as

logZ{1,N,0}(τ,∆a, na) = −(N2 − 1)πi

τ

3∑
a=1

(1− na){∆a}τ (1− {∆a}τ )

− (N − 1)πi
3∑

a=1

(1− na)pa +
(1 + η1)(N − 1)πi

2

+O(e−
2π sin(arg τ)

|τ | min({∆̃a},1−{∆̃a})).

(2.102)

Note that the 2nd line is pure imaginary which is physically meaningful up to 2πiZ only.

The problem is, as observed in [67], the determinant may vanish in general sectors

{m,n, r} 6= {1, N, 0} for some chemical potentials up to exponentially suppressed terms,

namely

det
(

1 + H̃{m,n,r}

)
∼ 0 (for some ∆a). (2.103)

This is not always the case, and the determinant may yield a finite non-zero value for other

configurations of chemical potentials. In that case, the determinant contribution in (2.97)

is of order O(|τ |0) so can be ignored compared to the leading O(|τ |−1) order. When the

determinant vanishes as (2.103), however, we must keep track of the first exponentially

suppressed terms of the G-function, namely the 2nd line of (2.99), to improve the estimate

of the determinant contribution in (2.97) as

− log det
(

1 + H̃{m,n,r}

)
=∞ improve→ − log det

(
1 + H̃{m,n,r}

)
= O(|τ |−1). (2.104)

This makes the evaluation of the determinant contribution highly involved, which cannot

be ignored since it affects the 1
|τ | -leading order in the Cardy-like limit. Refer to [67] for

this calculation with N = 2, 3. We leave a systematic understanding of the determinant
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contribution in (2.97) for future research, which is required to evaluate the Cardy-like limit

of the standard contribution Zstandard (2.87a) completely.

2.4 Microscopic understanding of an AdS5 black string

In this section, we come back to the original motivation of studying the topologically twisted

index of N = 4 SU(N) SYM theory on T 2 × S2. First we review how the twisted index has

been used to count the microstates associated with the AdS5 black string entropy (1.27) [73,

77, 69, 111, 71]. Then we discuss how recent developments in the twisted index summarized

in sections 2.2 and 2.3 affects the previous microstate counting.

2.4.1 Microstate counting by the topologically twisted index

In [73], the authors related the topologically twisted index to the central charge associated

with the AdS3 geometry in the near-horizon limit of an AdS5 black string (1.24) in the

Cardy-like limit. To be precise, they claimed

lim
|τ |→0

logZ(τ,∆?
a, na) =

πi

12τ
cr(na) + o(N2) (2.105)

where ∆?
a stands for an extremum of the twisted index and the right-moving central charge

cr(na) is computed by applying the Brown-Henneaux central charge formula ([26]) to the

AdS3 part of (1.24) as

c(na) =
3RAdS3

2G(3)

= 3

(
8p1p2p3Π

Θ3

) 1
3

× 1

2

(
2N2

π4
4π

(
(p1p2p3)2

Π

) 1
3

π3

)
= 3N2 n1n2n3

1− (n1n2 + n2n3 + n3n1)
.

(2.106)

Here we have identified pa = −1
2
na and used

1

G(3)

=
vol7
G(10)

=
2N2

π4
vol7,

vol7 = 4π|g− 1|
(

(p1p2p3)2

Π

) 1
3

× π3,

(2.107)
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where g = 0 is for Σg = S2 in (1.24) and π3 is for the volume of an internal manifold S5

with unit radius. The result is not surprising since (2.105) is the expected behavior in the

Cardy-like limit of the SCFT.

Since we want to understand the microscopic origin of the AdS5 black string entropy

(1.27) using the topologically twisted index, however, we take a different route. Following

[77, 69, 111, 71] instead, we will match the twisted index directly to the AdS5 black string

entropy (1.27) upon appropriate extremization.

It is also important to note that the aforementioned literature [73, 77, 69, 111, 71] have

investigated the topologically twisted index implicitly assuming

Z(τ,∆?
a, na) ∼ Z{1,N,0}(τ,∆

?
a, na) (2.108)

in the Cardy-like limit. Given (2.41) and (2.42), this is not a trivial statement and we will

discuss this issue in the following subsection 2.4.2. For now, we assume (2.108) and how the

resulting twisted index counts the microstates of a dual AdS5 black string entropy (1.27).

To begin with, recall that a partition function can be written schematically as

Z(µ) =
∑
Q

Ω(Q)e2πiµQ, (2.109)

where Q denotes a set of charges that specify microstates of degeneracy d(Q) and µ is a set

of chemical potentials associated with Q. The number of microstates d(Q) is then obtained

by the Cauchy’s integral formula as

Ω(Q) =

∫ 1

0

dµZ(µ)e−2πiµQ =

∫ 1

0

dµ eS(µ;Q). (2.110)

where we have introduced

S(µ;Q) ≡ logZ(µ)− 2πiµQ. (2.111)

If Re[S(µ;Q)] becomes a large positive number around a saddle point, we can compute the

integral (2.110) using a saddle point approximation as

log Ω(Q) ∼ S(µ?;Q), (2.112)

where µ? is an extremum of S(µ;Q).

Following the above picture, we can count the number of BPS states of N = 4 SU(N)

SYM theory on T 2 × S2 specified by electric charges qa (a = 1, 2, 3) and a Kaluza-Klein
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momentum along the spatial direction of T 2, namely q, as [111, 71]

Ω(qa, q, na) =

∫ 1

0

d∆1d∆2dτ Z(τ,∆a, na)e
−2πi

∑
a ∆aqa−2πiτq

∣∣∣∑3
a=1 ∆a∈Z

(2.113)

from the relation

Z(τ,∆a, na) =
∑
qa,q

Ω(qa, q, na) e
2πi

∑
a ∆aqa+2πiτq. (2.114)

Then the saddle point approximation (2.112) simplifies (2.113)

log Ω(qa, q, na) ∼ logZ(τ ?,∆?
a, na)− 2πi

3∑
a=1

∆?
aqa − 2πiτ ?q, (2.115)

where an extremum (τ ?,∆?
a) is determined by the saddle point equations

0 = ∂∆a logZ(τ,∆a, na)− 2πiqa − 2πiλ, (2.116a)

0 = ∂τ logZ(τ,∆a, na)− 2πiq. (2.116b)

The parameter λ in (2.116a) is a Lagrange muliplier for the constraint
∑3

a=1 ∆a ∈ Z.

The saddle point approximation (2.115) is of course valid only if Re[logZ(τ,∆a, na)]

becomes a large positive number around a saddle point. Assuming (2.108), we will check

this in the large-N after the Cardy-like limit posteriori. Before that, we solve the saddle

point equations (2.116b) by substituting (2.102) and (2.108) and therefore making them

explicit in the Cardy-like limit as

0 ∼ ∂∆a logZ{1,N,0}(τ,∆a, na)− 2πiqa − 2πiλ, (2.117a)

0 ∼ ∂τ logZ{1,N,0}(τ,∆a, na)− 2πiq, (2.117b)

where (iϕ is a phase independent of τ,∆a)

logZ{1,N,0}(τ,∆a, na) ∼ −
(N2 − 1)πi

τ

3∑
a=1

(1− na){∆a}τ (1− {∆a}τ ) + iϕ. (2.118)

Now we solve the saddle point equations in the Cardy-like limit (2.117). To begin with,

the first saddle point equation (2.117a) with qa = 0 (the case of our interest) gives

0 ∼ −(N2 − 1)πi

τ ?
(1− na)(1− 2{∆?

a}τ?)− 2πiλ. (2.119)

assuming ∆̃a 6∈ Z around a saddle point ∆a = ∆?
a. Summing (2.119) over a = 1, 2, 3, we
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have

λ =
πi(N2−1)

τ?
η1

2πi
∑3

a=1
1

1−na

. (2.120)

where ηC is defined in (2.96) for C ∈ Z. Substituting this λ back into (2.119) then gives an

extremum

{∆?
a}τ? =

1

2

(
1 +

η1

1−na∑3
b=1

1
1−nb

)
=

1

2

(
1 + η1

(
1− na(na − 1)

1− n1n2 − n2n3 − n3n1

))
(2.121)

under the constraint
∑3

a=1 na = 2 from (2.9). Note that ∆?
a ∈ R from (2.121). The cor-

responding value of log Ω(0, q, na) is obtained by substituting the extremum (2.121) into

(2.118) and then into (2.115) under the assumption (2.108). The result is given for qa = 0

as

log Ω(0, q, na) ∼
πi(N2 − 1)

4τ ?
n1n2n3

1− n1n2 − n2n3 − n3n1

− 2πiτ ?q + iϕ. (2.122)

Next, the 2nd saddle point equation (2.117b) gives

0 =
(N2 − 1)πi

τ ?2

3∑
a=1

(1− na){∆?
a}τ?(1− {∆?

a}τ?)− 2πiq

= −(N2 − 1)πi

4τ ?2

n1n2n3

1− n1n2 − n2n3 − n3n1

− 2πiq

→ τ ? = i

√
N2 − 1

8q

n1n2n3

1− n1n2 − n2n3 − n3n1

,

(2.123)

where we have assumed ∆̃a 6∈ Z around a saddle point ∆a = ∆?
a again and used the above

result (2.121). Substituting the value of τ ? from (2.123) into (2.122) then gives

log Ω(0, q, na) ∼ π

√
2(N2 − 1)qn1n2n3

1− n1n2 − n2n3 − n3n1

+ iϕ. (2.124)

The real part of (2.124) is a large positive number in the large-N limit, if the two of na’s are

negative. This condition on flavor magnetic charges is in fact required for the 2d N = (0, 2)

SCFT arising from the KK compactification of 4d N = 4 SU(N) SYM theory over S2 to

have a positive central charge (2.106) [12, 73]. Therefore the saddle point approximation

(2.115) is indeed valid in the large-N after the Cardy-like limit.

Now we want to relate the field theory result (2.124) to the dual black string entropy
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(1.27). Under the AdS/CFT dictionary (see (5.12) of [71] for example)

na = −2pa, q =
∆x5

G(5)

q0 =
1

G(4)

q0, N2 =
∆x5

4G(5)

=
1

4G(4)

, (2.125)

the logarithm of the number of BPS states (2.124) can be rewritten as

log Ω(0, q, na) ∼
2π

G(4)

√
−q0p1p2p3

1− 4(p1p2 + p2p3 + p3p1)
+ o(N2)

=
2π

G(4)

√
q0p1p2p3

−(p1)2 − (p2)2 − (p3)2 + 2(p1p2 + p2p3 + p3p1)
+ o(N2).

(2.126)

Here we have also used the constraint
∑3

a=1 na = 2 from (2.9) or equivalently
∑3

a=1 p
a =

−1. This result (2.126) matches the AdS5 black string entropy (1.27), or equivalently the

corresponding AdS4 black hole entropy (1.40), in the large-N limit where we set the Riemann

surface Σg = S2. Hence we conclude that the ensemble of BPS states of N = 4 SU(N) SYM

theory on T 2 × S2 counted by the topologically twisted index provides quantum origin of

microstates associated with the dual AdS5 black string entropy (1.27).

2.4.2 Implication of new BAE solutions

The conclusion made at the very end of the last subsection is of course valid only if the

assumption (2.108) is true in the Cardy-like limit. Here we discuss its validity. To check

(2.108) based on (2.41) and (2.42), we must show

Re[logZ{1,N,0}(τ,∆a, na)] > Re[logZ{m,n,r}(τ,∆a, na)] ({m,n, r} 6= {1, N, 0}), (2.127a)

Re[logZ{1,N,0}(τ,∆a, na)] > Re[logZnon-standard(τ,∆a, na)], (2.127b)

in the Cardy-like limit, around a saddle point (τ ?,∆?
a) given by (2.121) and (2.123). These

conditions (2.127) have been implicitly assumed in the literature. Since we do not have

explicit expression for the non-standard contribution Znon-standard, however, we leave (2.127b)

for future research.

To prove (2.127a), we substitute (2.97) and (2.102) into (2.127a). Then the inequality
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(2.127a) reduces to

Re

[
N2πi

τ ?

3∑
a=1

(1− na)

(
{N∆?

a

g
}τ?(1− {N∆?

a

g
}τ?)

N2/g2
− {∆?

a}τ?(1− {∆?
a}τ?)

)

+ log det
(

1 + H̃{m,n,r}(τ
?,∆?

a)
)]

> 0

(2.128)

for any positive integer g = gcd(n, r) that divides N , where a saddle point (τ ?,∆?
a) is given by

(2.121) and (2.123). As we have discussed in subsection 2.3.2, the determinant contribution in

(2.128) is difficult to analyze in general. In particular, when det(1+H̃{m,n,r}(τ
?,∆?

a)) vanishes

in the Cardy-like limit, we must keep track of the leading exponentially suppressed terms

of the form O(e−1/|τ |). The determinant contribution in (2.128) then becomes a negative

number of order O(|τ |−1), which makes the proof of the inequality (2.128) more complicated.

Hence we focus on the case where det(1 + H̃{m,n,r}(τ
?,∆?

a)) does not vanish in the Cardy-

like limit. The determinant contribution in (2.128) then becomes a finite number of order

O(|τ |0), which is sub-leading to the 1st line of (2.128). The inequality then reduces to

Re

[
i

τ ?

3∑
a=1

(1− na)

(
{N∆?

a

g
}τ?(1− {N∆?

a

g
}τ?)

N2/g2
− {∆?

a}τ?(1− {∆?
a}τ?)

)]
> 0. (2.129)

Since chemical potentials at the saddle point ∆?
a given in (2.121) are real and arg τ ? = π

2

from (2.123), we can simplify the inequality (2.129) further as

3∑
a=1

(1− na)

(
{N∆?

a

g
}(1− {N∆?

a

g
})

N2/g2
− {∆?

a}(1− {∆?
a})

)
> 0. (2.130)

Note that {∆?
a}τ? = {∆?

a} since ∆?
a is real from (2.121). Here the curly bracket {·} denotes

a normal modded value on the real line as (A.20).

Now we review the proof of the reduced claim (2.130) in [67] for flavor magnetic charges na

satisfying the constraint
∑2

a=1 na = 2 with two of them being negative. See the explanation

following (2.124) for why. To begin with, note that the saddle point (2.121) is in fact an

invertible map between

{na |
∑
a

na = 2, two of them are negative}

↔
{
{∆?

a} | (1 +
η1

2
− {∆?

1} − {∆?
2})2 > ({∆?

1}+
1 + η1

2
)({∆?

2}+
1 + η1

2
)

}
,

(2.131)
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where the inverse is given as

na =
2{∆?

a}(2{∆?
a} − 1)

1− 4({∆?
1}{∆?

2}+ {∆?
2}{∆?

3}+ {∆?
3}{∆?

1})
. (2.132)

Recall η1 ∈ {±1} from (2.96). From here on, we take η1 = −1 and the other case can be

studied in a similar way. Then, using

(1− na)(1− 2{∆?
a}) = −(1− n1)(1− n2)(1− n3)

1− n1n2 − n2n3 − n3n1

> 0 (2.133)

derived from (2.121) and the constraint
∑2

a=1 na = 2 with two of them being negative, the

inequality (2.130) can be rewritten equivalently as

f(d1, d2) ≡
3∑

a=1

1

1− 2{∆?
a}

(
{n′∆?

a}(1− {n′∆?
a})

n′2
− {∆?

a}(1− {∆?
a})
)
> 0, (2.134)

for any {∆?
a} within the domain (2.131) and a positive integer n′. Here we define a function

f(d1, d2) as the LHS of the above inequality where we have introduced abbreviations

da ≡ {∆?
a}, xa ≡ {n′∆?

a} = {n′da}. (2.135)

Then within the subdomain of fixed integers bn′∆?
ac, where ∂daf is well defined, we can

consider an extremum of f under the constraint
∑3

a=1 da = 1 which satisfies

∂d1f = ∂d2f = 0

⇒ 2

(1− da)2

(
xa(1− xa)

n′2
− da(1− da)

)
+

1

1− 2da

(
1− 2xa
n′

− (1− 2da)

)
= k,

(2.136)

where k is some constant independent of an index a = 1, 2, 3. At this extremum, the

determinant of the Hessian is given by∣∣∣∣∣ ∂2
d1
f ∂d1∂d2f

∂d2∂d1f ∂2
d2
f

∣∣∣∣∣ =
16k2

(1− 2d1)(1− 2d2)(1− 2d3)
< 0, (2.137)

where the last inequality is valid within the domain (2.131) with η1 = −1. So the extremum

is in fact a saddle point, not a minimum or maximum. This implies that the minimum

of f within the subdomain of fixed integers bn′∆?
ac must stays on its boundary. If one

investigates the values of f on the boundary, it is straightforward though tedious to check
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that f is minimized under

x1 → 0+, x2 → 0+, x3 → 1− for
3∑

a=1

bn′∆?
ac = n′ − 1, (2.138)

x1 → 0+, x2 → 1−, x3 → 1− for
3∑

a=1

bn′∆?
ac = n′ − 2, (2.139)

where we have ordered da as d1 ≤ d2 < 1/2 < d3 without loss of generality (recall we set

η1 = −1 so
∑

a da = 1). For both cases, we have

f(d1, d2)→ −
3∑

a=1

da(1− da)
1− 2da

= − n1n2n3

4(1− n1)(1− n2)(1− n3)
> 0. (2.140)

This means that the LHS of (2.134) has a positive minimum value in every subdomain of

fixed integers bn′∆?
ac, and thereby proves the claim (2.134) for any {∆?

a} within the domain

(2.131) and a positive integer n′.

Hence we conclude that the inequality (2.127a) is valid in the Cardy-like limit, provided

the determinant contribution in (2.128) is of order O(|τ |0). This partially supports the

validity of the microstate counting by the topologically twisted index in subsection 2.4.1

based on the assumption (2.108). It is still incomplete, however, and to fully justify the

statement of 2.4.1 we must figure out how to investigate both inequalities in (2.127). We

leave it for future research.

2.5 Concluding remarks

In this section, we summarize the main results of this chapter about the topologically twisted

index of N = 4 SU(N) SYM theory on T 2 × S2 and discuss future directions.

First, in section 2.2, we have reviewed the Bethe Ansatz (BA) formula that gives the

topologically twisted index of N = 4 SU(N) SYM theory on T 2×S2 as a sum over solutions

to the Bethe Ansatz Equations (BAE). We have also investigated various BAE solutions

including the SL(2,Z) family of standard ones and the other non-standard ones. Compared

to standard BAE solutions, however, a full classification of all possible non-standard BAE

solutions has not yet been known. Since the BA formula gives the exact twisted index

only if the most general solutions to the BAE are known, more systematic understanding

of non-standard BAE solutions would be the first step towards a complete understanding

of the twisted index. Furthermore, the existence of continuous family of non-standard BAE

solutions requires the conventional BA formula to be modified since it has been derived
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assuming all BAE solutions are isolated. This motivates an improvement of the BA formula

that takes the contribution from generic BAE solutions to the twisted index into account.

Second, in section 2.3, we have focused on the contribution from standard BAE solutions

to the twisted index through the BA formula and investigated its properties. To be specific,

we confirm that it behaves as an elliptic genus of 2d N = (0, 2) SCFT and then explore

the Cardy-like asymptotics. First of all, it is surprising that the standard contribution itself

satisfies periodicites and modular properties of an elliptic genus, considering that it is not

exactly the twisted index due to the non-standard contribution. This implies that the total

non-standard contribution must vanish or at least satisfy the properties of an elliptic genus by

itself. For a complete understanding of the twisted index, this would be the first and foremost

statement we need to check in the future. When it comes to the Cardy-like asymptotics,

even the standard contribution has not yet been fully digested. This is mainly because of

a complicated structure of the Jacobian in the BA formula, a systematic understanding of

which may lead to an interesting future work.

Lastly, in section 2.4, we have reviewed how the twisted index counts the microstates

associated with the dual AdS5 black string entropy in the large-N after the Cardy-like limit.

Then we clarified a hidden assumption for the microstate counting. The proof of this hidden

assumption, however, is not complete mainly because the Cardy-like asymptotics of various

contributions to the twisted index through the BA formula have not been computed explicitly.

The first step towards a complete microstate counting of AdS5 black holes would therefore

be figuring out the Cardy-like asymptotics of such contributions. Taking one step further,

since the AdS/CFT correspondence does not require the Cardy-like limit, we may even try

to compute the twisted index in the pure large-N limit (without the Cardy-like limit) and

count the dual microstates based on the resulting twisted index. Then we can count the

microstates associated with holographic dual solutions by the large-N twisted index that

preserves a certain modular property, which was broken in the Cardy-like limit. This could

be a very interesting future direction that possibly unravels new holographic dual solutions

different from the AdS5 black string discussed in this dissertation.
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Chapter 3

The Superconformal Index

3.1 Introduction

The Witten index of a 4-dimensional superconformal field theory (SCFT) that contains infor-

mation about protected short multiplets, the ones that cannot pair up into long multiplets,

has been introduced in [83, 101]. By construction, this superconformal index (SCI) remains

the same under continuous deformations of the theory. Upon a radial quantization where

the spacetime now reads S3 × R, the SCI can be understood as an index that receives con-

tributions only from the BPS states that do not combine into long representations. In this

chapter, we are particularly interested in the SCI of N = 4 SU(N) SYM theory over 1
16

-BPS

states.

In this section, we provide a trace formula for the SCI of our interest and then derive

an elliptic hypergeometric integral formula from it for further calculation in the next section

3.2. To begin with, the SCI of N = 4 SYM theory on S3 × R for 1
16

-BPS states can be

written as a trace formula from (3.1), (3.3), (3.4), (4.2) of [83] as

I(t, y, v, w) = Tr[(−1)F e−2β{Q,Q†}t2(H+Jz1 )y2Jz2 vR2wR3 ] (3.1)

where 2{Q,Q†} ≡ ∆ = H−2Jz1− 1
2
(3R1+2R2+R3). Here H is Hamiltonian, Jz1,2 are angular

momenta associated with SU(2)L×SU(2)R ∼=SO(4) acting on S3 respectively, Ra (a = 1, 2, 3)

are Cartan generators of the SU(4) R-symmetry. Out of these charges, H + Jz1 , Jz2 , R2,

R3 are the conserved charges that commute with the supercharges Q,Q† and t, y, v, w are

fugacities associated with them respectively.

Here we introduce a symmetric form of the SCI (3.1). First we introduce new fugacities
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p, q, ya following (5) of [105] as

y1 = t2v, y2 = t2w−1, y3 = t2wv−1, p = t3y, q = t2y−1. (3.2)

Note that they are constrained as pq = y1y2y3 by construction, so there are still 4 independent

fugacities. Then we take the change of basis for R-charges given in Appendix C of [83] as

Q1 =
R1

2
+R2 +

R3

2
, Q2 =

R1 −R3

2
, Q3 =

R1 +R3

2
, (3.3)

where Qa’s are Cartan generators of the SO(6)∼=SU(4). Substituting (3.2) and (3.3) into the

SCI (3.1) then gives a symmetric representation

I(t, y, v, w) = I(p, q, ya) = Tr
[
(−1)F e−2β{Q,Q†}t2∆pJ

z
1 +Jz2 qJ

z
1−Jz2 yQ1

1 yQ2

2 yQ3

3

]
= Tr∆=0[(−1)FpJ

z
1 +Jz2 qJ

z
1−Jz2 yQ1

1 yQ2

2 yQ3

3 ].
(3.4)

In the second line we have used that the SCI (3.1) receives contributions from the 1
16

-BPS

states satisfying the constraint ∆ = 0 only.

Now we review the derivation of an elliptic hypergeometric integral formula of the SCI

of N = 4 SU(N) SYM theory [49, 105], which is a foundation for explicit calculation in the

next section 3.2. To begin with, we rewrite the SCI in terms of a path integral as

I(p, q, ya) =

∫
DU exp

[
∞∑
m=1

1

m
f(tm, ym, vm, wm) TrUm TrU †m

]
, (3.5)

where the single particle index f(t, y, v, w) is given as [83]

f(t, y, v, w) =
t2(v + 1

w
+ w

v
)− t3(y + 1

y
)− t4(w + 1

v
+ v

w
) + 2t6

(1− t3y)(1− t3

y
)

. (3.6)

In terms of symmetric fugacities p, q, ya given in (3.2), the single particle index (3.6) can be

rewritten as

f(t, y, v, w) = f̃(p, q, ya) =

∑3
a=1 ya − pq

∑3
a=1

1
ya
− p− q + 2pq

(1− p)(1− q)
. (3.7)

This can also be derived from single particle indices for a chiral multiplet and a vector

multiplet given in [102], using that the N = 4 SYM theory consists of three chiral multiplets

and a vector multiplet. Thanks to the identity f̃(tm, ym, vm, wm) = f(pm, qm, yma ), the path
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integral form of the SCI (3.5) now reads

I(p, q, ya) =

∫
DU exp

[
∞∑
m=1

1

m
f̃(pm, qm, yma ) TrUm TrU †m

]
. (3.8)

Let us first consider the case where the gauge group is U(N). In this case we have

U = diag(z1, · · · , zN) with z∗i = z−1
i and the integration measure of (3.8) is given as

DU =
1

N !

N∏
i=1

dzi
2πizi

N∏
i<j

|zi − zj|2. (3.9)

Substituting (3.9), (A.27), and (A.28) into (3.8) then gives the SCI of N = 4 U(N) SYM

theory as

I(p, q, ya) =
((p; p)∞(q; q)∞)N

N !

3∏
a=1

Γ(ya; p, q)
N

∮ N−1∏
j=1

dzj
2πizj

i 6=j∏
1≤i,j≤N

∏3
a=1 Γ(ya

zi
zj

; p, q)

Γ( zi
zj

; p, q)
,

(3.10)

where the contour integral is over a unit circle at the origin. Refer to (A.1) and (A.5a) for

the definitions of a pochhammer symbol and an ellptic gamma function respectively. The

SCI of N = 4 SU(N) SYM theory can be obtained just by replacing the trace of unitary

matrices in (3.8) as [3]

TrUm TrU †m → TrUm TrU †m − 1. (3.11)

From (A.27), it is straightforward to show that the replacement (3.11) simply changes the

prefactor in (3.10) as(
(p; p)∞(q; q)∞

3∏
a=1

Γ(ya; p, q)

)N

→

(
(p; p)∞(q; q)∞

3∏
a=1

Γ(ya; p, q)

)N−1

. (3.12)

Finally, the elliptic hypergeometric integral formula of the SCI of N = 4 SU(N) SYM theory

is given by applying (3.12) to (3.10) as

I(p, q, ya) =
((p; p)∞(q; q)∞)N−1

N !

3∏
a=1

Γ(ya; p, q)
N−1

∮ N−1∏
j=1

dzj
2πizj

i 6=j∏
1≤i,j≤N

∏3
a=1 Γ(ya

zi
zj

; p, q)

Γ( zi
zj

; p, q)
.

(3.13)

For later purpose, we introduce holonomies ui’s as zi = e2πiui and chemical potentials σ, τ,∆a

as p = e2πiσ, q = e2πiτ , and ya = e2πi∆a . The SU(N) constraint and the constraint for
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chemical potentials are given as

N∑
i=1

ui ∈ Z, (3.14)

3∑
a=1

∆a − τ − σ ∈ Z, (3.15)

respectively. Note that ∆a satisfy a constraint (3.15), which is different from the one in (2.9)

we encountered when computing the topologically twisted index.

3.2 The calculation of the superconformal index

In this section, we compute the SCI (3.13) in two different ways: a saddle point evaluation

and the Bethe Ansatz (BA) approach. For simplicity, we identify p = q (σ = τ) in (3.13)

and replace the argument of the SCI (3.13) with chemical potentials as

I(p, q, ya) → I(τ,∆). (3.16)

For a saddle point evaluation in subsection 3.2.1, we take the Cardy-like limit (|τ | → 0 with

fixed 0 < arg τ < π) following [36, 27, 65, 4], but keep track of terms up to exponentially

suppressed ones of the form O(e−1/|τ |). For the BA approach in subsection 3.2.2, we take

the large-N limit but keep track of terms up to O(N0). We will also take the Cardy-limit in

the BA approach and confirms that the result is consistent with the one from a saddle point

evaluation.

3.2.1 The saddle point evaluation

When you compute a complicated matrix integral, a saddle point evaluation is one of the most

straightforward approach. To apply this technique to the elliptic hypergeometric integral

formula, first we rewrite (3.13) with p = q = e2πiτ as

I(τ,∆) =
1

N !

∫ 1− 1
2N

− 1
2N

N−1∏
µ=1

duµ exp
[
N2Seff({ui}; τ,∆)

]
, (3.17)
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where the integration range was chosen for later convenience and we have introduced an

effective action Seff as

N2Seff({ui}; τ,∆) =
∑
i 6=j

(
3∑

a=1

log Γ̃(uij + ∆a; τ) + log θ0(uij; τ)

)

+ (N − 1)
3∑

a=1

log Γ̃(∆a; τ) + 2(N − 1) log(q; q)∞.

(3.18)

Refer to (A.5b) for the definition of ‘tilde’ elliptic gamma function and {ui} is a shorthand

notation for a set of holonomies {ui | i = 1, · · · , N}. To obtain the expression (3.17), we have

also replaced −
∑

i 6=j log Γ̃(uij; τ) with
∑

i 6=j log θ0(uij; τ), using the quasi-double-periodicity

(A.7a), (A.9) and the inversion formula (A.8a), (A.10) of elliptic functions.

Given the effective action (3.18) and the integral form of the index (3.17), we can now

apply the saddle-point approach. First, we find solutions {ui} = {u?i } to the saddle point

equations

0 =
∂

∂uµ
Seff({ui}; τ,∆)

∣∣∣∣
{ui}={u?i }

(µ = 1, · · · , N − 1). (3.19)

Then the index (3.17) can be approximated around these saddle points as

I(τ,∆) ∼
∑
{u?i }∈C′

1

N !

∫
D{u?

i
}

N−1∏
µ=1

duµ exp
[
N2Seff({ui}; τ,∆)

]
, (3.20)

where the integration is along the steepest descent contour C ′ passing through one or more

saddle points. For each saddle point {ui} = {u?i }, D{u?i } is a neighborhood of the corre-

sponding saddle point solution {u?i }. If all the saddle points {u?i } that contribute to the SCI

through (3.20) are real and on the original contour C of (3.17), namely

C =
N−1⋃
µ=1

[− 1

2N
, 1− 1

2N
], (3.21)

we have C ′ = C and

{u?i } ∈ D{u?i } ⊆ C. (3.22)

However, in general, we may expect some saddle points to be complex, in which case the

original contour C has to be deformed to C ′ (6= C) passing through those complex saddle

points. Here we assume this to be the case, and comment on the contour deformation

further in subsection 3.2.1.

Note that (assuming contour deformation is possible) if we did not restrict the integral
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in (3.20) to the neighborhoods of the saddle points and kept the full integration contour

C ′, we would still have an exact expression for the index. The approximation comes from

integrating only near the saddle points, and this needs to be controlled by a large parameter.

Such a parameter would naturally be N2 in the ’t Hooft expansion. But in the Cardy-like

limit, we will see that 1/|τ | can also play the role of a large parameter. In either case, the

saddle point evaluation (3.20) is valid up to exponentially suppressed terms with respect

to the large parameter. From here on, we take the Cardy-like limit (|τ | → 0 with fixed

0 < arg τ < π) and use 1/|τ | as a large control parameter.

In subsection 3.2.1, we revisit the leading term in the Cardy-like limit |τ | → 0 [36, 27,

65, 4]. In subsection 3.2.1, we keep track of sub-leading corrections in the finite Cardy-like

expansion with |τ | � 1. In both sections, our goal is to obtain an explicit expression for the

SCI using the saddle point evaluation (3.20).

Leading term in the Cardy-like limit

In the Cardy-like limit, |τ | → 0, we substitute the asymptotic expansions (A.15), (A.21),

and (A.25) into the effective action (3.18). The leading order terms then reads

N2Seff({ui}; τ,∆) = − πi

3τ 2

3∑
a=1

(∑
i 6=j

B3({uij + ∆a}τ ) + (N − 1)B3({∆a}τ )

)
+O(|τ |−1),

(3.23)

where Bn(x) is the n-th Bernoulli polynomial. Refer to (A.17) for the definition of a τ -

modded value {·}τ . Here we assumed

ũij + ∆̃a 6→ Z (3.24)

for any ui’s and ∆a’s, to use the asymptotic expansion of an elliptic gamma function (A.25).

The ‘tilde’ values ũi and ∆̃a are defined following (A.19) and the curly bracket {·} stands

for a modded value of a real number as (A.20).

The saddle point equation (3.19) is then given from the effective action (3.23) as

0 = −πi
τ 2

3∑
a=1

N∑
j=1

(
B2({uµj + ∆a}τ )−B2({uNj + ∆a}τ )

−B2({−uµj + ∆a}τ ) +B2({−uNj + ∆a}τ )
)

+O(|τ |−1),

(3.25)

under the assumption (3.24). The leading order saddle point equation (3.25) has a rich set

of solutions and we expect that one or a handful of solutions yields a dominant contribution
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to the SCI through the saddle point approximation (3.20). One of the most well known

solutions is the one with all identical holonomies, namely ui = uj for all i, j ∈ {1, · · · , N}
[36, 65, 4]. The effective action at this saddle point successfully counted the dual AdS5 black

hole microstates [36] as we will review in subsection 3.4.1. Here we focus on the case where

this particular saddle point with identical holonomies is dominant over the other saddle

points and therefore this black hole microstate counting is valid. We put off the discussion

on other saddle points, in particular the ones dubbed as C-center saddles1 in [5], to Appendix

C.1.

On the integration contour (3.22), there are N distinct sets of identical holonomies sat-

isfying the SU(N) constraint
∑N

i=1 ui ∈ Z, namely

{u(m)
j } =

{
u

(m)
j =

m

N

∣∣∣ j = 1, · · · , N
}

(m = 0, 1, · · · , N − 1). (3.26)

We can compute the effective action (3.23) at this saddle point (3.26) as

N2Seff({u(m)
i }; τ,∆) = −πi(N

2 − 1)

τ 2

3∏
a=1

(
{∆̃a} −

1 + η1

2

)
+O(|τ |−1), (3.27)

where η1 ∈ {±1} is defined from

3∑
a=1

{C∆a}τ = 2Cτ +
3 + ηC

2
⇔

3∑
a=1

{C∆̃a} =
3 + ηC

2
(3.28)

under the assumption

C∆̃a 6∈ Z. (3.29)

Refer to (A.19) for the definition of a ‘tilde’ component of chemical potentials. The SCI is

then given by substituting (3.27) into the saddle point evaluation (3.20) as

I(τ,∆) = N exp

[
−πi(N

2 − 1)

τ 2

3∏
a=1

(
{∆̃a} −

1 + η1

2

)
+ o

(
|τ |−2

)]
+ (contribution from other saddles).

(3.30)

This reproduces the result of [36, 27, 65, 4] provided that the other contributions are sub-

dominant. The factor of N ! in the denominator of (3.20) is removed by the degeneracy from

permuting N holonomies within the saddle point (3.26). The prefactor N in (3.20) comes

from the number of distinct sets of identical holonomies on the contour (3.22).

1The C-center solution is related to the {C,N/C, 0} BAE solution in [67] and the (C,N/C) saddle in
[30].
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Sub-leading terms in the Cardy-like expansion

The fact that the |τ |−2-leading term in the Cardy-like limit (3.30) also captures the N2-

leading term in the large-N limit is not clear a priori, since (3.30) could have terms of order

N2 but sub-leading in the Cardy-like expansion such as O(N2|τ |−1). In this subsection we

clarify that such a correction does not show up in fact and therefore (3.30) captures the

N2-leading term in the large-N limit correctly except the ones of the form O(N2e−1/|τ |),

by keeping track of all the sub-leading terms up to exponentially suppressed ones in the

Cardy-like expansion.

To go beyond the leading term in the Cardy-like limit, we have to expand various elliptic

functions to higher order. In particular, we substitute the asymptotic expansions (A.15),

(A.21), and (A.25) into (3.18) and keep track of sub-leading terms in the finite Cardy-like

expansion |τ | � 1. The result is given in terms of Bernoulli polynomials as

N2Seff({ui}; τ,∆)

= − πi

3τ 2

3∑
a=1

(∑
i 6=j

B3({uij + ∆a}τ ) + (N − 1)B3({∆a}τ )

)

+
πi

τ

(
3∑

a=1

∑
i 6=j

B2({uij + ∆a}τ ) + (N − 1)
3∑

a=1

B2({∆a}τ ) +
∑
i 6=j

{uij}τ (1− {uij}τ )

)

− 5πi

6

3∑
a=1

(∑
i 6=j

B1({uij + ∆a}τ ) + (N − 1)B1({∆a}τ )

)

+ πi
∑
i 6=j

{uij}τ +
πi(2τ 2 − 3τ − 1)N2

6τ
+ πiN − πi(2τ 2 + 3τ − 1)

6τ

− (N − 1) log τ +
∑
i 6=j

log
(

1− e−
2πi
τ

(1−{uij}τ )
)(

1− e−
2πi
τ
{uij}τ

)
+O

(
|τ |−1e−

2π sin(arg τ)
|τ | X

)
,

(3.31)

where the first line above is just the leading order term (3.23). As in the previous subsection,

we follow the conventions in (A.17), (A.19), (A.20) and the assumption (3.24). The higher

order terms are of order O(|τ |−1e−
2π sin(arg τ)

|τ | X) where X is defined as

X = min({ũij + ∆̃a}, 1− {ũij + ∆̃a} : a = 1, 2, 3, i, j = 1, · · · , N). (3.32)

This is exponentially suppressed under the assumption (3.24). Thus, we are treating the SCI

in all powers of τ up to exponentially suppressed terms.
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Using this finite Cardy-like expansion of the effective action (3.31), we would like to

evaluate sub-leading corrections to the leading order saddle point solution (3.26) and the

SCI (3.30) obtained in the infinite Cardy-like limit. For that purpose, it suffices to focus on

the effective action (3.31) near the leading order saddle point solution (3.26). To be specific,

we make an ansatz for a saddle point solution in the finite Cardy-like expansion,

{u(m)
j } =

{
u

(m)
j =

m

N
+ vjτ

∣∣∣ vj ∼ O(|τ |0),
N∑
j=1

vj = 0

}
(m = 0, 1, · · · , N − 1), (3.33)

and investigate the effective action (3.31) around this ansatz. This ansatz (3.33) is natural

as it is equivalent to the leading order solution (3.26) up to sub-leading corrections. We call

this ansatz a ‘basic’ ansatz, and the corresponding solution a ‘basic’ saddle point. Note that∑N
j=1 vj = 0 is required to satisfy the SU(N) constraint.

The effective action (3.31) near the basic ansatz (3.33) can be simplified using

{uij + ∆a}τ = uij + {∆a}τ ,

{uij}τ =

uij (ũi ≥ ũj)

1 + uij (ũi < ũj).

(3.34)

Here (3.34) was derived by factoring out uij from modded values carefully based on that

uij = vijτ is at most of order O(|τ |). The resulting simplified effective action is given as

N2Seff({ui}; τ,∆) = −ηπi
τ 2

N
N∑
j=1

(
uj −

∑N
k=1 uk
N

)2

+
∑
j 6=k

log
(

2 sin
πujk
τ

)
− πi

τ 2
(N2 − 1)

3∏
a=1

(
{∆a}τ −

1 + η1

2

)
+
πi(6− 5η1)(N2 − 1)

12

− πiN(N − 1)

2
− (N − 1) log τ +O(|τ |−1e−

2π sin(arg τ)
|τ | X),

(3.35)

in terms of η1 ∈ {±1} introduced in (3.28).

The saddle point equation (3.19) is then given from the effective action (3.35) and the

basic ansatz (3.33) as

iη vj =
1

N

N∑
k=1 ( 6=j)

cot πvjk (i = 1, · · · , N), (3.36)

which is valid up to exponentially suppressed terms. Note that the system of equations is
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Figure 3.1: Numerical leading saddle points (blue dots) discussed in Appendix C.2.3 with

N = 30 and τ = ieπi/6

π
. There must be N = 30 distinct sets of holonomies in the above

figure but here only 5 copies of them are shown for presentation. Orange crosses denote
±τ + m

N
(m = 2, 8, 14, 20, 26) and therefore it is straightforward to see that each set of

holonomies collapses to m
N

as |τ | → 0.

τ -independent, thus justifying our assumption vj ∼ O(|τ |0) in the basic ansatz (3.33). In

addition, the log term in the first line of (3.35) leads to a repulsion between pairs of eigen-

values. It is this term that shows up away from the strict Cardy-like limit that pushes the

eigenvalues apart and modifies the leading order saddle point, (3.26), of condensed eigenval-

ues. In fact, as will be highlighted below, this set of equations closely resemble those of an

SU(N) Chern-Simons model.

The steepest descent contour. At leading order in the Cardy-like limit, we found N

distinct real saddle points (3.26). However, at sub-leading order, while there are still N

distinct basic saddle points, each one is now complex, as the solutions to (3.36) are complex.

As a result, we seek to deform the original contour (3.22) to a new contour C ′ that passes

through these N basic saddle points.

To be more specific, we show a typical complex basic saddle points in Figure 3.1. The

original contour integrates all eigenvalues along the real line, as shown by the red path. The

first step is then to deform the contour so that the integration path of each holonomy uµ

passes through the corresponding saddle point as indicated by the green path in the figure

(the one in Figure 3.1 is particularly for the second holonomy u2 from the above). Since

the contributions from the left and the right ends of green contours cancel each other, the

deformed contour can be written simply as

C ′ =
N−1⋃
µ=1

(vµτ −
1

2N
, vµτ + 1− 1

2N
], (3.37)
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where {vj | j = 1, · · · , N} is a solution to the saddle point equation (3.36) under the SU(N)

constraint
∑N

j=1 vj = 0. Note that we are implicitly assuming that the effective action is

analytic in this region so that the deformation is valid.

The saddle-point evaluation of the SCI (3.20) around basic saddle points {u(m)
i }, obtained

from the ansatz (3.33) satisfying the saddle point equation (3.36), is then given from the

effective action (3.35) as

I(τ,∆) ∼
N−1∑
m=0

A
N !

∫
D
{u(m)
i
}

N−1∏
µ=1

duµ exp

[
−η1πi

τ 2
N

N∑
j=1

(
uj −

∑N
k=1 uk
N

)2

+
∑
j 6=k

log
(

2 sin
πujk
τ

)]

+ (contribution from other saddles)

(3.38)

up to exponentially suppressed terms. Here D{u(m)
i } denote small neighborhoods of basic

saddle points {u(m)
i } on the deformed contour (3.37), namely

D{u(m)
i } =

N−1⋃
µ=1

(vµτ +
m

N
− ε, vµτ +

m

N
+ ε] ⊆ C ′ (3.39)

for some small positive number ε. The prefactor A in (3.38) is defined as

A = exp

[
−πi
τ 2

(N2 − 1)
3∏

a=1

(
{∆a}τ −

1 + η1

2

)
+
πi(6− 5η1)(N2 − 1)

12

−πiN(N − 1)

2
− (N − 1) log τ +O(|τ |−1e−

2π sin(arg τ)
|τ | X)

]
.

(3.40)

It is convenient to introduce new integration variables λj with the constraint
∑N

j=1 λj = 0

as

uj = u
(m)
j − (iλj + vj)τ =

m

N
− iλjτ. (3.41)

This allows us to rewrite (3.38) as

I(τ,∆) ∼ NτN−1e−
πi(N2−1)

2
A
N !

∫
D{λi}

N−1∏
µ=1

dλµ exp

[
η1πiN

N∑
j=1

λ2
j +

∑
j 6=k

log(2 sinh πλjk)

]
+ (contribution from other saddles),

(3.42)

where the integration contour D{λi} is given from the original one (3.39) and the change of
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variables (3.41) as

D{λi} =
N−1⋃
µ=1

(ivµ −
iε

τ
, ivµ +

iε

τ
]. (3.43)

Remarkably, the steepest descent integral in (3.42) is identical to that used to evaluate

the S3 partition function of supersymmetric SU(N)k Chern-Simons theory

ZCS
SU(N)k

=
1

N !

∫ ∞
−∞

N−1∏
µ=1

dλµ exp

[
−πik

N∑
j=1

λ2
j +

∑
j 6=k

log(2 sinh πλjk)

]
, (3.44)

provided we make the identification k = −ηN . This does depend on the ability to deform the

contour of the Chern-Simons theory in (3.44) to pass through the D{λi} contour in (3.42),

which we assume to be the case. We briefly comment on this issue in the beginning of

Appendix C.2. The SCI (3.42) then reads in terms of the S3 partition function (3.44) as

I(τ,∆) ∼ NτN−1e−
πi(N2−1)

2 AZCS
SU(N)k=−ηN

+ (contribution from other saddles).
(3.45)

We have computed this SU(N) partition function in Appendix C.3 based on the U(N)

partition function from [79]. Substituting the result (C.60) into (3.45), we get

I(τ,∆) ∼ N exp

[
−πi(N

2 − 1)

τ 2

3∏
a=1

(
{∆a}τ −

1 + η1

2

)
+O(e−1/|τ |)

]
+ (contribution from other saddles).

(3.46)

Here (3.46) shows that there are in fact no sub-leading corrections besides exponentially

suppressed ones. We also obtain a logN contribution to the logarithm of the SCI, which

comes directly from the degeneracy of N different saddle points contributing equally to the

SCI. This is in fact an important lesson we learn, and the universality of the logarithmic

correction has been confirmed for a large class of N = 1 4d SCFT’s in [58].

3.2.2 The Bethe Ansatz formula

In this section, we compute the SCI (3.13) using the Bethe Ansatz (BA) approach first in

the large-N limit and then in the Cardy-like limit. The BA approach was first applied to

the SCI of a generic 4d N = 1 quiver gauge theories in [19] and then specialized to that of

N = 4 SU(N) SYM theory with p = q in [20]. The latter is then generalized to the case

where (p, q) = (ha, hb) with a, b ∈ N (gcd(a, b) = 1) in [13]. Since we are interested in the
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SCI of N = 4 SU(N) SYM theory with p = q, we mainly follow [20] but go beyond the

leading order.

According to the BA formula [19], the elliptic hypergeometric integral formula of the SCI

of N = 4 SU(N) SYM theory (3.13) can be rewritten in terms of a sum over Bethe vacua as

I(τ,∆) = κN
∑

{ui}∈MBAE

Z({ui}; τ,∆)H({ui}; τ,∆)−1, (3.47)

where the building blocks are given as

κN =
1

N !

(
(q; q)2

∞

3∏
a=1

Γ̃(∆a; τ)

)N−1

(3.48a)

Z ({ui}; τ,∆) =
N∏
i 6=j

∏3
a=1 Γ̃(uij + ∆a; τ)

Γ̃ (uij; τ)
(3.48b)

H ({ui}; τ,∆) = det

[
1

2πi

∂ (Q1, · · · , QN)

∂ (u1, · · · , uN−1, λ)

]
. (3.48c)

Here the BA operator Qi({ui}; τ,∆) is defined as

Qi({ui}; τ,∆) ≡ e2πiλ
∏
∆

N∏
j=1

θ1(uji + ∆; τ)

θ1(uij + ∆; τ)
, (3.49)

where ∆ take values in ∆ ∈ {∆1,∆2,−∆1 −∆2}. Note a notational difference from the one

we used to compute the topologically twisted index (2.11) due to different constraints for

chemical potentials, (2.9) and (3.15): we must use −∆1 −∆2 instead of ∆3 in (3.49). The

Bethe Ansatz Equations (BAE) are then given as

Qi({ui}; τ,∆) = 1, (3.50)

which have the same form as (2.12). The sum over Bethe vacua in the BA formula (3.47)

must be taken for solutions to the BAE (3.50) whose first N − 1 holonomies are within a

particular domain, namely

{ui} ∈ MBAE iff

i) Qi({ui}; τ,∆) = 1 (i = 1, · · · , N),

ii) ui = xi + yiτ with − 1 ≤ yi < 0 (i = 1, · · · , N − 1).
(3.51)
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The BA operator (3.49) has a double-periodicity, namely

Qi({ui}; τ,∆) = Qi({ui +mi + niτ}; τ,∆) (mi, ni ∈ Z). (3.52)

Hence, if we find one solution {ui} to the BAEs (3.50), we can generate countably many

solutions {ui + mi + niτ} with different sets of integers mi’s and ni’s. To compare the

contributions of these BAE solutions through the BA formula (3.47), we need to understand

how the building blocks H({ui}; τ,∆) and Z({ui}; τ,∆) transform under the shifting {ui} →
{ui +mi + niτ}. First, it is straightforward to show

H({ui +mi + niτ}; τ,∆) = H({ui}; τ,∆) (3.53)

from (3.49) and (A.7b). The other building block Z({ui}; τ,∆) transforms as

Z({ui +mi}; τ,∆) = Z({ui}; τ,∆), (3.54a)

Z({ui − δikτ}; τ,∆) = (−1)N−1e−2πiλQk({ui}; τ,∆)Z({ui}; τ,∆) (3.54b)

which are derived from (3.49) and (A.9). This implies that for a standard BAE solution (2.17)

satisfying (3.50) with λ = N+1
2

(2.23), both building blocks H({ui}; τ,∆) and Z({ui}; τ,∆)

are invariant under {ui} → {ui +mi + niτ} from (3.53) and (3.54). The contributions from

standard BAE solutions to the SCI through the BA formula (3.47) are therefore invariant

under shiting holonomies as {ui} → {ui + mi + niτ}. Note that this argument is not valid

for non-standard BAE solutions in general since λ may take different values. In any case, we

don’t have to consider countably many contributions in the BA formula (3.47) due to the

holonomy shifting {ui} → {ui +mi +niτ} in fact, since the sum over Bethe vacua in the BA

formula (3.47) is taken only for BAE solutions satisfying the 2nd constraint in (3.51).

One of the simplest solution to the BAE (3.50) is a so-called ‘basic’ standard solution,

namely

{ui}basic =

{
ui = ū+

i

N
τ
∣∣∣ i = 1, 2, · · · , N − 1

}
∪ {uN = ū} (3.55)

where ū is supposed to satisfy the SU(N) constraint
∑N

i=1 ui ∈ Z (3.14). Following the

notation of [67], this is a {1, N, 0} BAE solution. Due to the double-periodicity of the BA

operator (3.52), there are countably many basic solutions as

{ui}basic =

{
ui = ū+

i

N
τ +mi + niτ

∣∣∣ i = 1, 2, · · · , N − 1

}
∪ {uN = ū+mN + nNτ}

(3.56)

with arbitrary integers mi’s and ni’s. Note that mi’s are redundant since ui’s are introduced
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modulo integers in the first place. As we mentioned above, only some of the basic BAE

solutions (3.56) that satisfy the 2nd constraint in (3.51), will contribute to the SCI through

the BA formula (3.47). From here on, we will compute the contribution from such basic

BAE solutions to the SCI through the BA formula (3.47) in the large-N limit and then in

the Cardy-like limit.

Degeneracy

To determine the contribution from basic BAE solutions (3.56) to the SCI through the BA

formula (3.47), first we must figure out how many of them satisfy the 2nd constraint in (3.51)

and therefore contribute to the SCI. In short, we need the relevant degeneracy of basic BAE

solutions. To begin with, we classify all possible basic BAE solutions (3.56) satisfying the

2nd constraint in (3.51) into two cases.

Case 1:

{ui}basic =

{
ui = ū+

i

N
τ
∣∣∣ i = 1, 2, · · · , N − 1

}
∪ {uN = ū+ nNτ} . (3.57)

In this case, the value of ū is determined by the SU(N) constraint
∑N

i=1 ui ∈ Z (3.14) and

the 2nd constraint in (3.51) as

ū ∈

{
i

N
−

N−1
2

+ nN

N
τ
∣∣∣ i = 0, 1, · · · , N − 1, nN = bN + 1

2
c, bN + 3

2
c

}
. (3.58)

Hence the degeneracy of CASE 1 is 2N × (N − 1)!, where (N − 1)! is from permuting

{u1, · · · , uN−1}.
Case 2:

{ui}basic =

{
ui = ū+

i

N
τ
∣∣∣ i = 0, · · · , j − 1, j + 1, · · · , N − 1

}
∪
{
uN = ū+

j

N
τ + nNτ

}
.

(3.59)

Here j ∈ {1, · · · , N−2}. As in Case 1, the value of ū is determined by the SU(N) constraint∑N
i=1 ui ∈ Z (3.14) and the 2nd constraint in (3.51) as

ū ∈

{
i

N
−

N−1
2

+ nN

N
τ
∣∣∣ i = 0, 1, · · · , N − 1, nN = bN + 1

2
c

}
. (3.60)

Hence the degeneracy of Case 2 is (N − 2)×N × (N − 1)!, where (N − 2) is from choosing
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different j ∈ {1, · · · , N − 2} and (N − 1)! is from permuting {u1, · · · , uN−1}.
The total relevant degeneracy for the basic BAE solutions (3.56) is obtained by summing

over degeneracies of the above two cases, which yields N×N !. Consequently, the BA formula

of the SCI (3.47) now reads

I(τ,∆) = N ×N !× κNZ({ui}basic; τ,∆)H({ui}basic; τ,∆)−1

+ (from other BAE solutions).
(3.61)

Focusing on the logarithm of the basic contribution, namely the first line of (3.61), we get

log I(τ,∆)
∣∣
basic

= logN ! + logN + log κN

+ logZ({ui}basic; τ,∆)− logH({ui}basic; τ,∆).
(3.62)

The contribution log κN can be written explicitly from the definition (3.48a) as

log κN = − logN ! + (N − 1)

(
3∑

a=1

log Γ̃(∆a; τ) + 2 log(q; q)∞

)
. (3.63)

In the remaining part of this subsection, we compute the remaining two contributions in

the second line of (3.62) in order mainly following the results of [20], but kepp track of

sub-leading corrections. We omit the subscript ‘basic’ of {ui}basic for notational convenience

from here on.

The contribution from logZ({ui}; τ,∆)

The contribution logZ({ui}; τ,∆) to the SCI (3.62) can be written explicitly as

logZ({ui}; τ,∆) =
N∑
i 6=j

(
3∑

a=1

log Γ̃(
i− j
N

τ + ∆a; τ)− log Γ̃(
i− j
N

τ ; τ)

)
. (3.64)
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To simplify the expression (3.64) further, recall that section 4 of [20] yields

N∑
i 6=j

log Γ̃(
i− j
N

τ + ∆a; τ) = 2πi
N∑
i 6=j

Q(
i− j
N

τ + {∆a}τ ; τ)−N log
θ0(N({∆a}τ−1)

τ
;−N

τ
)

θ0({∆a}τ−1
τ

;− 1
τ
)

+
∞∑
k=0

(
log

ψ(N(k+{∆a}τ )
τ

)

ψ(N(k+1−{∆a}τ )
τ

)
−N log

ψ(k+{∆a}τ
τ

)

ψ(k+1−{∆a}τ
τ

)

)
, (3.65a)

N∑
i 6=j

log Γ̃(
i− j
N

τ ; τ) = 2πi
N∑
i 6=j

Q(
i− j
N

τ + 1; τ)−N logN

− 2N log
(q̃N ; q̃N)∞

(q̃; q̃)∞
+
πi

12
(N − 1), (3.65b)

where we have followed conventions in Appendix A. We have also defined q̃ ≡ e−
2πi
τ and

Q(u; τ) ≡ −B3(u)

6τ 2
+
B2(u)

2τ
− 5

12
B1(u) +

τ

12
(3.66)

in terms of the n-th Bernoulli polynomials Bn(x). Then, using the asymptotic expansions

in Appendix A, we can show that some of the contributions in (3.65) are exponentially

suppressed in the large-N limit as

log
(
q̃N ; q̃N

)
∞ = O(e−

2πN sin(arg τ)
|τ | ), (3.67a)

θ0(
N({∆a}τ − 1)

τ
;−N

τ
) = O(e−

2πN sin(arg τ)
|τ | min({∆̃a},1−{∆̃a})), (3.67b)

∞∑
k=0

logψ(
N(k + 1− {∆a}τ )

τ
) = O(Ne−

2πN sin(arg τ)
|τ | (1−{∆̃a})), (3.67c)

∞∑
k=0

logψ(
N(k + {∆a}τ )

τ
) = O(Ne−

2πN sin(arg τ)
|τ | {∆̃a}), (3.67d)

where we have assumed

∆̃a 6→ Z. (3.68)
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Ignoring the above exponentially suppressed terms and using the identity (A.13), we can

simplify (3.65) as

N∑
i 6=j

log Γ̃(
i− j
N

τ + ∆a; τ) = −
πiN2({∆a}τ − τ)({∆a}τ − τ − 1

2
)({∆a}τ − τ − 1)

3τ 2

+
πi({∆a}τ − τ − 1

2
)

6
−N log Γ̃(∆a; τ)

+O(Ne−
2πN sin(arg τ)

|τ | min({∆̃a},1−{∆̃a})), (3.69a)

N∑
i 6=j

log Γ̃(
i− j
N

τ ; τ) =
πiN2(τ − 1

2
)(τ − 1)

3τ
− πiN(τ 2 − 3τ + 1)

6τ
− πiτ

6

−N logN + 2N log(q̃; q̃)∞ +O(e−
2πN sin(arg τ)

|τ | ). (3.69b)

Finally, substituting (3.69) into (3.64) and introducing η1 ∈ {±1} as (3.28), we obtain

logZ({ui}; τ,∆) = −πiN
2

τ 2

3∏
a=1

(
{∆a}τ −

1 + η1

2

)
+

(1− η1)πi

2
N2 +

η1πi

12

+N logN −N
3∑

a=1

log Γ̃(∆a; τ ; τ)− 2N log(q̃; q̃)∞

+
πiN(τ 2 − 3τ + 1)

6τ
+O(Ne−

2πN sin(arg τ)
|τ | min({∆̃a},1−{∆̃a})).

(3.70)

The contribution from − logH({ui}; τ,∆)

Next we consider the Jacobian contribution (3.48c) to the SCI (3.47), which has been already

introduced in (2.14) and studied in subsection 2.2.2. The result (2.54) for the basic BAE

solution {m,n, r} = {1, N, 0} reads

− logH({ui}; τ,∆) = − logN − (N − 1) log

(
i

π

∑
∆

∂∆ log θ1(∆;
τ

N
)

)
+ log det

(
IN−1 + H̃({ui}; τ,∆)

)
,

(3.71)
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where ∆ take values in {∆1,∆2,−∆1−∆2} and we have slightly redefined an (N−1)×(N−1)

square matrix H̃ (2.53) for the basic BAE solution as

[
H̃({ui}; τ,∆)

]
µ,ν
≡ g(µ; τ,∆)− g(µ− ν; τ,∆)∑N

k=1 g(k; τ,∆)
, (3.72a)

g(j; τ,∆) ≡ i

2π

∑
∆

∂∆ log

[
θ1(

j

N
τ + ∆; τ)θ1(− j

N
τ + ∆; τ)

]
. (3.72b)

The second term of (3.71) can be computed explicitly in the large-N limit using the asymp-

totic expansion (A.23) as

i

π

∑
∆

∂∆ log θ1(∆;
τ

N
) = η1

N

τ
+O(e−

2πN sin(arg τ)
|τ | min({∆̃a},1−{∆̃a})) (3.73)

in terms of η1 ∈ {±1} in (3.28) and under the assumption (3.68). Substituting (3.73) into

(3.71) then gives

− logH({ui}; τ,∆) = −N logN + (N − 1) log
τ

η
− log det

(
IN−1 + H̃({ui}; τ,∆)

)
+O(e−

2πN sin(arg τ)
|τ | min({∆̃a},1−{∆̃a})).

(3.74)

The final step would be therefore estimating − log det(IN−1 + H̃).

Since it is difficult to estimate − log det(IN−1 + H̃) in general, first we take the Cardy-

like limit |τ | � 1. Using the asymptotic expansion (A.23), we can obtain the Cardy-like

expansion of the g-function (3.72b) under the assumption (3.68) as

g(j; τ,∆) =
η1

τ
+O(e−

2π sin(arg τ)
|τ | min({∆̃a},1−{∆̃a})). (3.75)

Substituting (3.75) back into [H̃({ui}; τ,∆)]µ,ν (3.72a) then gives

[H̃]µ,ν = O(N−1e−
2π sin(arg τ)

|τ | min({∆̃a},1−{∆̃a})). (3.76)

The Jacobian contribution (3.74) is then simplified as

− logH({ui}; τ,∆) = −N logN + (N − 1) log
τ

η
+O(e−

2π sin(arg τ)
|τ | min({∆̃a},1−{∆̃a})) (3.77)

in the Cardy-like limit.

We want to estimate − log det(IN−1 +H̃) in the large-N limit, however, not in the Cardy-

like limit. To do that, we use the Gershgorin Circle Theorem: every eigenvalue of H̃ lies
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within at least one of the N − 1 Gershgorin discs (µ = 1, 2, · · · , N − 1)

D([H̃]µ,µ,
N−1∑

ν=1 ( 6=µ)

|[H̃]µ,ν |), (3.78)

where the first and the second argument of D(·, ·) denotes the center and the radius of a

disk respectively. Due to (3.76), every Gershgorin disc can be located within the unit disk

at the origin for a small enough but finite |τ |, and therefore every eigenvalue of the matrix

H̃ has modulus less than 1 in that regime. Hence we can estimate − log det(IN−1 + H̃) for

a small enough |τ | as

− log det(IN−1 + H̃) = − tr log(IN−1 + H̃) = tr
( ∞∑
n=1

1

n
(−H̃)n

)
= O(N0). (3.79)

Here we have used that every eigenvalue of [H̃]µ,ν has modulus less than 1 for the taylor

expansion of a logarithm in the 2nd equation. The Jacobian contribution (3.74) is then

estimated as

− logH({ui}; τ,∆) = −N logN + (N − 1) log
τ

η
+O(N0). (3.80)

for a small enough but finite |τ |.
We have not been able to estimate − log det(IN−1 + H̃) analytically for a generic finite

τ , where some eigenvalues of H̃ can be be greater than equal to 1. Hence we move on to a

numerical analysis. We investigated − log det(IN−1 +H̃) with (∆1,∆2) = ( 1
π
, 1
e
) and τ = 2+i

for N = 30, 35, · · · , 200 numerically. In this case the corresponding matrix H̃ (3.72a) does

have eigenvalues greater than 1 so we cannot rely on the analytic argument (3.79). As in

Figure 3.2, however, − log det(IN−1 + H̃) still seems to be of order O(N0). We obtained

similar results with other chemical potentials ∆a’s and τ . Based on these numerical results,

we believe that (3.79) and (3.80) are valid for a generic finite τ in fact.
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Figure 3.2: In the left hand side, blue dots represent numerical values of the real part of
the Jacobian contribution Re logH({ui}; τ,∆) and an orange line shows the first two leading
terms in (3.74), namely N logN − (N − 1) log |τ |. The figure in the right hand side shows

numerical values of Re log (IN−1 + H̃), obtained by subtracting an orange line from blue dots
in the left hand side. It converges to a certain finite value and therefore we can conclude it
is of order O(N0).

The sum of all contributions

Substituting (3.63), (3.70), (3.74) into (3.62) and using the identity (A.11a), we have

log I(τ,∆)
∣∣
basic

= −πiN
2

τ 2

3∏
a=1

(
{∆a}τ −

1 + η1

2

)
+ logN −

3∑
a=1

log Γ̃(∆a; τ)

− 2 log(q; q)∞ +
(1− η1)πiN(N − 1)

2
+
πi(6− 5η1)

12

− log τ − log det(IN−1 + H̃({ui}; τ,∆))

+O(e−
2πN sin(arg τ)

|τ | min({∆̃a},1−{∆̃a})).

(3.81)

Recall that log det(IN−1 + H̃) is of order O(N0) as (3.80) so (3.81) can be simplified as

log I(τ,∆)
∣∣
basic

= −πiN
2

τ 2

3∏
a=1

(
{∆a}τ −

1 + η1

2

)
+ logN +O(N0) (3.82)

in the large-N limit. Note that the pure imaginary term (1−η1)πiN(N−1)
2

∈ 2πiZ is removed

due to η1 ∈ {±1}.
Even though (3.81) has been derived in the large-N limit, the result is also valid in the

Cardy-like limit up to exponentially suppressed terms in the last line. Furthermore, we can

simplify (3.81) further using the Jacobian contribution in the Cardy-like limit (3.77), the
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asymptotic expansion of a Pochhammer symbol (A.15), and the following expansion

3∑
a=1

log Γ̃(∆a; τ) = −πi
τ 2

3∏
a=1

(
{∆a}τ −

1 + η1

2

)
+
πi(τ − 2η1)(2τ − η1)

12τ

+O(e−
2π sin(arg τ)

|τ | min({∆̃a},1−{∆̃a}))

(3.83)

derived from (A.25). The result is given as

log I(τ,∆)
∣∣
basic

= −πi(N
2 − 1)

τ 2

3∏
a=1

(
{∆a}τ −

1 + η1

2

)
+ logN

+O(e−
2π sin(arg τ)

|τ | min({∆̃a},1−{∆̃a})),

(3.84)

which matches the result from a saddle point evaluation (3.46) precisely. In the BA approach,

the origin of the logN term can be found in the relevant degeneracy of the basic BAE

solutions (3.56) and a similar result has been confirmed for more generic N = 1 SCFT’s in

[58].

3.3 The phase structure of the superconformal index

In this section, based on the results from the previous section 3.2 and the Appendix C.1,

we investigate the phase structure of the SCI of N = 4 SU(N) SYM theory. As a final

result, following [5], we will conjecture the leading asymptotics of the SCI in the large-N

after the Cardy-like limit. In due process, we will show that the leading asymptotics dis-

plays “infinite temperature” Roberge-Weiss-type first order phase transitions [100] between

the fully-deconfined phase and confined or partially deconfined phases under a variation of

chemical potentials.

In (C.13) that generalizes (3.46), we computed contributions from C-center saddles to

the SCI of N = 4 SU(N) SYM theory through the saddle point evaluation (3.20) in the

Cardy-like limit. The leading order from (C.13) reads

I(τ,∆) =

C|N∑
C=1

exp

[
− πi

6τ 2

3∑
a=1

(
N2

C3
κ(C∆̃a)− κ(∆̃a)

)
+ o(|τ |−2)

]
+ (contribution from other saddles).

(3.85)

Here we have introduced the κ-function as

κ(x) ≡ {x}(1− {x})(1− 2{x}), (3.86)
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which satisfies the following identity under the constraint (3.28):

3∑
a=1

κ(C∆̃a) = 6
3∏

a=1

(
{C∆̃a} −

1 + ηC
2

)
. (3.87)

The Cardy-like asymptotics (3.85) is consistent with the results from the BA approach given

in (C.18) that generalizes (3.84).

Since contributions from other saddles (or BAE solutions in the BA approach) in the

second line of (3.85) may affect the SCI, we can only provide the lower-bound for the Cardy-

like asymptotics of the SCI from (3.85) as

lim
|τ |→0

I(τ,∆) ≥ exp

[
− πi

6τ 2

3∑
a=1

(
N2

C3
m

κ(Cm∆̃a)− κ(∆̃a)

)]
. (3.88)

Here Cm is a positive divisor of N that maximizes

Re

[
− πi

6τ 2

3∑
a=1

(
N2

C3
m

κ(Cm∆̃a)− κ(∆̃a)

)]
. (3.89)

The authors of [5] have investigated numerically if the lower-bound (3.88) is optimal for

small values N . For N = 3, 4, it has been observed that the lower-bound for the Cardy-like

asymptotics of the SCI (3.88) is indeed optimal. That means, the inequality in (3.88) turns

out to hold as an exact equation in this case. For N = 5, 6, however, some configurations of

chemical potentials satisfied (3.88) as a strict inequality only. For N = 6 the lower-bound

(3.88) is almost optimal though, which is not surprising since 6 has more positive divisors

{1, 2, 3, 6} than 5 does {1, 5}. In any case, this situation motivates an improvement of the

lower-bound of the Cardy-like asymptotics of the SCI (3.88).

A conceptually straightforward way to improve the lower-bound of the Cardy-like asymp-

totics of the SCI (3.88) is to consider contributions from different saddles in the 2nd line of

(3.85). Recall that we have only considered C-center saddles where N holonomies are evenly

distributed into C packs, which are then evenly spaced along the domain [0, 1) with 0 and 1

being identified. See (C.1) for their explicit configurations. It is remarkable that the number

of different C-center saddles considered in (3.88) heavily depends on the factorization of

the rank of the gauge group N . For example, if N is a prime number, there are not many

C-center saddles even though N is large. As a result, it is unlikely for the lower-bound (3.88)

to be optimal for a prime N . To improve the lower-bound (3.88), this issue needs to be taken

care of.

In [5], we therefore considered new saddles where the packs are nearly uniform by first
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distributing bN/Cc holonomies into each of the C packs. This leaves N mod C holonomies

left over, which can then be distributed in some prescribed manner in the C packs. Note

that such saddles are closely related to the non-standard BAE solutions discussed at the end

of subsection 2.2.1. We can take these almost C-center saddles into account regardless of the

factorization of the rank of the gauge group N , and consequently improve the lower-bound

(3.88). However, the resulting lower-bound would be sensitive to the particular distribution

of the left over N mod C holonomies, and can no longer be expressed as compact as (3.88).

This problem can be treated by taking the large-N limit (after the Cardy-like limit we

have already taken). To be specific, although the refined lower-bound that is obtained by

splitting the holonomies into C packs for all integers C does not admit a simple expression

for finite N , it nevertheless simplifies in the large-N limit, at least for the leading order of the

SCI. The idea here is that, instead of taking all C = 1, 2, . . . , N , we cut off the set of almost

C-center saddles that we will consider to improve the lower-bound (3.88) at some large but

finite Cmax that is independent of N . Then, for a given C, we start with C packs of bN/Cc
holonomies and compute Seff (3.31) for this subset of CbN/Cc holonomies. This is of course

incomplete, but the missing contributions turns out to be of order O(N) at most. Hence

the contribution from almost C-center saddles to the SCI is equivalent to the contribution

from ‘exact’ C-center saddles in (3.85) up to O(N) order in the large-N after the Cardy-like

limit.

As a result, the lower-bound for the SCI in the large-N after the Cardy-like limit is

improved from (3.88) as

lim
N→∞

lim
|τ |→0

I(τ,∆) ≥ exp

[
− πiN2

6C3
mτ

2

3∑
a=1

κ(Cm∆̃a) + o(N2|τ |−2)

]
, (3.90)

where Cm ≤ Cmax is a natural number that maximizes

Re

[
− i

C3
mτ

2

3∑
a=1

κ(Cm∆̃a)

]
. (3.91)

Here, because the lower-bound applies for any finite Cmax ∈ N in the large-N limit, we can

in fact remove the cutoff Cmax and instead choose Cm from any natural number. Note that

the improved large-N lower-bound (3.90) confirms that the finite N lower-bound (3.88) is

not optimal in general, and therefore explains why the lower-bound (3.88) is not optimal for

N = 5, 6 as we mentioned above.

Now we are ready to discuss the phase structure of the SCI in the large-N after the

Cardy-like limit. As long as the RHS of (3.90) has a positive real part, the SCI will exhibit
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O(N2) growth in the large-N after the Cardy-like limit. This corresponds to either a full

deconfinement when Cm = 1, or a partial deconfinement when Cm 6= 1. In the M -wing

where

M -wing: Re

[
− i

τ 2

3∑
a=1

κ(∆̃a)

]
> 0, (3.92)

we always have Cm = 1 in (3.90) even at finite N [5] and therefore the SCI is fully deconfined.

On the other hand, the situation is more elaborate in the W -wing where

W -wing: Re

[
− i

τ 2

3∑
a=1

κ(∆̃a)

]
< 0, (3.93)

and therefore Cm 6= 1 in (3.90). In the W -wing, the question therefore becomes whether for

any given chemical potentials we can find an integer C > 1 such that

Re

[
− i

C3τ 2

3∑
a=1

κ(C∆̃a)

]
> 0. (3.94)

If this is the case, we can conclude that the asymptotics of the SCI in the large-N after the

Cardy-like limit does have a partially deconfined phase in the W -wing.

Following [5], here we prove the existence of such C ∈ N. Let us fix 0 < arg τ < π
2

for

concreteness. Then the W -wing (3.93) consists of all ∆̃1,2 subject to 0 < {∆̃1}, {∆̃2}, 1 −
{∆̃1} − {∆̃2} < 1. Hence it suffices to show that for any such {∆̃1,2} we can find an integer

C > 1 satisfying the condition (3.94). Since (3.94) is periodic under ∆̃1,2 → ∆̃1,2 + 1/C,

we can simply focus on the square 0 < ∆̃1,2 < 1/C. Now, it follows from the scal-

ing ∆̃a → ∆̃a/C that on this square the sign of
∑

a κ(C∆̃a) is positive (resp. nega-

tive) if the representatives {C∆̃1,2}/C of ∆̃1,2 on the square 0 < ∆̃1,2 < 1/C lie on the

lower triangle with vertices (0, 0), (0, 1/C), (1/C, 0) (resp. the upper triangle with ver-

tices (0, 1/C), (1/C, 0), (1/C, 1/C)). Hence the question boils down to whether we can

find a natural number C such that the representatives are on the upper triangle where

{C∆̃1}/C + {C∆̃2}/C > 1/C. The following Lemma answers this question in the posi-

tive. An elementary proof can be found in Appendix C.4.2

Lemma 2. For every pair of real numbers x, y subject to 0 < x, y, 1−x− y < 1, there exists

a natural number C > 1 such that {Cx}+ {Cy} > 1.

Similar arguments apply when π
2
< arg τ < π. We thus conclude that for all chemical

potentials strictly inside the W -wing (3.93), there exists an integer C > 1 that satisfies the

condition (3.94). Hence the SCI is partially deconfined in the W -wing.

2We learned the proof from David E Speyer, a mathematician at University of Michigan.
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A “non-deconfined” behavior (i.e. o(N2)/τσ growth for log I as N → ∞ after the

Cardy-like limit) might appear in non-generic situations where arg τ = π
2

(c.f. section 3 of

[4]), or ∆̃a ∈ Z. In such cases, subdominant terms of O(N) or smaller may be important in

order to fully pin down the behavior of the SCI. As a special example of such non-deconfined

behaviors, recall that the SCI will show a confined behavior of orderO(N0) for real fugacities,

or equivalently for pure imaginary chemical potentials arg τ = arg ∆a = π
2
. [83].

Finally, with some optimism, we conjecture that the improved lower-bound (3.90) with

the cut-off Cmax removed gives not just a lower-bound but the actual leading asymptotics of

the SCI [5]. This is formally written in the following conjecture.

Conjecture 2. The leading asymptotics of the SCI of the 4d N = 4 SU(N) SYM theory in

the large-N after the Cardy-like limit is given as

lim
N→∞

lim
|τ |→0

I(τ,∆) ∼ exp

(
− iπN2

6C3
mτ

2

3∑
a=1

κ(Cm∆̃a)

)
, (3.95)

with the error such that logarithms of the two sides differ by o(N2|τ |−2). Here Cm is a natural

number that maximizes

Re

[
− i

C3
mτ

2

3∑
a=1

κ(Cm∆̃a)

]
. (3.96)

Recall that Lemma 2 guarantees that (3.96) is positive.

This conjecture is motivated in part by the following two observations: i) in the N → ∞
limit, (3.95) takes infinitely many almost C-center saddles into account and hence increases

chance of their sufficiency; ii) already forN as small as 6, as witnessed by Figure 4 of [5], exact

C-center saddles considered in (3.88) provide a good estimate for Cardy-like asymptotics of

the SCI.

3.4 Microscopic understanding of an AdS5 black hol

In this section, we discuss how the SCI of N = 4 SU(N) SYM theory counts the microstates

associated with the dual AdS5 black hole entropy (1.50). First we review the literature

that have succefully counted the microstates using the SCI. Then we consider a further

development in the SCI studied in previous sections 3.2 and 3.3 and its implication to the

previous black hole microstate counting.
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3.4.1 Microstate counting by the superconformal index

In [83], the SCI of N = 4 SU(N) SYM theory (3.13) was computed for real fugacities p, q, ya.

It does not show the O(N2) order deconfined behavior in the large-N limit though, and they

explained it as a large cancelation between bosonic and fermionic BPS states. Since then

the dual black hole microstates counting had remained unresolved for a while.

Recently, by three different groups [36, 27, 20], it has been shown that the SCI can be

used to count the dual black hole microstates by allowing for complex fugacities, which is

natural in Euclidean theory. Even though they computed the SCI in different ways, final

results turned out to be consistent with each other. Hence the microstates counting steps

are almost identical in all three references. In this subsection, we review that process.

Before getting into details, it is important to note that the aforementioned literature have

investigated the SCI implicitly assuming

I(τ,∆) ∼ exp

[
−πi(N

2 − 1)

τ 2

3∏
a=1

(
{∆̃a} −

1 + η1

2

)
+O(|τ |−1)

]

∼ exp

[
−πiN

2

τ 2

3∏
a=1

(
{∆a}τ −

1 + η1

2

)
+O(N)

] (3.97)

in the Cardy-like limit [36, 27] or in the large-N limit [20]. Note that (3.97) is consistent

with the result from a saddle point evaluation (3.46) and that from the BA approach (3.82)

only if the ‘basic’ contribution dominates the other. Recall that we have already shown in

the previous section 3.3 that this is not always the case: C-center contribution with C 6= 1

dominates the ‘basic’ one in (3.95) where chemical potentials are within the W -wing (3.93).

We will discuss how this affects the microstate counting in the next subsection 3.4.2. For now,

we consider the case where the assumption (3.97) is valid, or equivalently where chemical

potentials are within the M -wing (3.92).

Following the subsection 2.4.1, we can count the number of 1
16

-BPS states of N = 4

SU(N) SYM theory specified by electric charges Qa (a = 1, 2, 3) and identical angular

momenta J = J1 = J2 as3

Ω(Qa, J) =

∫ 1

0

d∆1d∆2dσdτ I(τ,∆)e−2πi(2τJ+
∑
a ∆aQa)

∣∣∣∑3
a=1 ∆a∈Z

. (3.98)

Substituting the large-N asymptotics in (3.97) and using the saddle point approximation

3To be precise, the number of bosonic BPS states minus the fermionic ones.
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then gives

log Ω(Qa, J) ∼ −πiN
2

τ ?2

3∏
a=1

(
{∆?

a}τ? −
1 + η1

2

)
− 2πi(2τ ?J +

∑
a

({∆?
a}τ? −

1 + η1

2
)Qa),

(3.99)

where we have replaced ∆aQa with ({∆?
a}τ? −

1+η1

2
)Qa in the exponent of (3.98) assuming

integer electric charges Qa ∈ Z. From here on we take the large-N limit and use N as a large

control parameter for the saddle point approximation [20], but you may use the Cardy-like

limit and use 1/|τ | instead [36, 27]. The saddle points (τ ?,∆?
a) are determined by solving

the saddle point equations

0 ∼ −πiN
2

τ ?2

∏3
a=1

(
{∆?

a}τ? −
1+η1

2

)
{∆?

b}τ? −
1+η1

2

− 2πi(Qb + Λ) (b = 1, 2, 3), (3.100a)

0 ∼ 2πiN2

τ ?3

3∏
a=1

(
{∆?

a}τ? −
1 + η1

2

)
− 4πi(J − Λ), (3.100b)

derived by taking partial derivatives of (3.99). Here Λ is a Lagrange multiplier for the

constraint
3∑

a=1

(
{∆?

a}τ? −
1 + η1

2

)
− 2τ ∈ Z, (3.101)

which is from (3.15). Solving the saddle point equations (3.100) for Λ gives three solutions

but only one of them yields a real, positive value for log Ω (3.99) that physically makes sense.

Refer to [27, 20] for details. The corresponding positive log Ω is given as

log Ω(Qa, J) = 2π
√
Q1Q2 +Q2Q3 +Q3Q1 −N2J. (3.102)

This matches the AdS5 black hole entropy (1.50) exactly under the AdS/CFT dictionary

N2 =
π

2G(5)g3
. (3.103)

Hence we conclude that the ensemble of BPS states of N = 4 SU(N) SYM theory counted

by the SCI provides quantum origin of microstates associated with the dual AdS5 black hole

entropy (1.50).

3.4.2 Implication in the gravitational side

We have clarified that the conclusion made at the very end of the last subsection is valid

only under the assumption (3.97). In the previous section 3.3, we have found that (3.97) is
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true only within the M -wing where chemical potentials satisfy the condition (3.92). Hence

in the W -wing where chemical potentials satisfy the opposite condition (3.93), the SCI will

have a different dominant contribution. According to the conjecture 2, such a dominant

contribution will take the following form

I(τ,∆) ∼ exp

[
−πiN

2

C3τ 2

3∏
a=1

(
{C∆a}τ −

1 + ηC
2

)
+ o(N2|τ |−2)

]
(3.104)

in the large-N after the Cardy-like limit, with some natural number C > 1. In this subsec-

tion, we discuss what entropy the leading asymptotics (3.104) in the W -wing bears.

The number of BPS states of our interest can be computed from the same formula (3.98).

Substituting the leading asymptotics (3.104) instead of (3.97) into (3.98) and using the saddle

point approximation then gives

C log Ω(Qa, J) ∼ − πiN2

(Cτ ?)2

3∏
a=1

(
{C∆?

a}τ? −
1 + ηC

2

)
− 4πi(Cτ ?)J

− 2πi
3∑

a=1

({C∆?
a}τ? −

1 + ηC
2

)Qa,

(3.105)

where we have replaced ∆aQa with 1
C

({C∆?
a}τ? −

1+ηC
2

)Qa assuming Qa ∈ CZ. Since we

take the large-N after the Cardy-like limit, we can use any of N and 1/|τ | as a large control

parameter for the saddle point approximation. The saddle points (τ ?,∆?
a) are determined

by solving the saddle point equations

0 ∼ − πiN2

(Cτ ?)2

∏3
a=1

(
{C∆?

a}τ? −
1+ηC

2

)
{C∆?

b}τ? −
1+ηC

2

− 2πi(Qb + Λ) (b = 1, 2, 3), (3.106a)

0 ∼ 2πiN2

(Cτ ?)3

3∏
a=1

(
{C∆?

a}τ? −
1 + ηC

2

)
− 4πi(J − Λ), (3.106b)

derived by taking partial derivatives of (3.105). Here Λ is a Lagrange multiplier for the

constraint
3∑

a=1

(
{C∆?

a}τ? −
1 + ηC

2

)
− 2Cτ ∈ Z, (3.107)

which is from (3.15). Since (3.99) and (3.100) are equivalent to (3.105) and (3.106) respec-
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tively under simple replacements

{∆?
a}τ? −

1 + η1

2
→ {C∆?

a}τ? −
1 + ηC

2
,

τ ? → Cτ ?,
(3.108)

we do not need to solve the saddle point equations (3.106) to compute log Ω through (3.105)

this time: once you find a saddle point solution of (3.100) that yields (3.102), the map

(3.108) will gives you the corresponding solution of (3.106). Substituting that solution back

into (3.105) will then gives the corresponding entropy as

log Ω(Qa, J) =
2π

C

√
Q1Q2 +Q2Q3 +Q3Q1 −N2J. (3.109)

Note the the entropy is different from (3.102) that matches the AdS5 black hole entropy by a

factor of 1/C with some natural number C > 1. This strongly implies that there is a missing

gravity dual solution whose entropy is supposed to match (3.109).

3.5 Concluding remarks

In this section, we summarize the main results of this chapter about the SCI of N = 4

SU(N) SYM theory and discuss future directions.

First, in section 3.2 and Appendix C.1, we computed contributions from C-center saddles

(C.1) (resp. BAE solutions (C.14)) to the SCI through the saddle point approximation (3.20)

(resp. BA formula (3.47)) in the Cardy-like limit (resp. large-N limit) beyond the leading

order. The results are given in (3.46) and (C.13) (resp. (3.81) and (C.17)). In these results,

sub-leading corrections are more involved in C-center contributions with C > 1. For a

complete description of the SCI, it would be important to improve these results by figuring

out the full sub-leading corrections up to exponentially suppressed terms in both limits. The

next question would then be understanding sub-leading corrections in the holographic side,

particularly the universal logN correction we’ve found.

Second, in section 3.3, we conjectured the leading asymptotics of the SCI in the large-N

after the Cardy-like asymptotics in Conjecture 2 based on the results from section 3.2. In

due process, we also confirmed that the SCI has not only a fully deconfined phase of order

O(N2) and a confined phase of order O(N0), but also a partially deconfined phase of order

O(N2) but distinguished from the fully deconfined one. Proving the Conjecture 2 would

be an important direction for future research. In the context of BA approach, this will

include understanding the contribution from non-standard BAE solutions and comparing
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them with the C-center contributions. Looking for Euclidean holographic duals of partially

deconfined phases in grand canonical ensemble where chemical potentials are not extremized

could be another direction to explore. Recent discovery of new Euclidean black saddles in

AdS4 background [24] implies that the same scenario may work in AdS5 background, and

furthermore a duality between Euclidean AdS5 black saddles and partially deconfined phases.

Research in this direction will improve our holographic understanding of the SCI.

Lastly, in section 3.4, based on the Conjecture 2, we have shown that partially deconfined

phases of the SCI implies the existence of gravity dual solutions whose entropies are different

from the AdS5 black hole entropy by multiplicative factors of 1/C with natural numbers

C > 1. The fact that the entropy (3.109) has a multiplicative factor of 1/C is reminiscent of

the exponentially suppressed contributions from black hole farey tails computed explicitly in

[92, 10], whose concepts are first introduced in [88, 48]. Based on this observation, it would

be very interesting to construct missing gravity dual solutions explicitly and to investigate

the relation between those solutions and the black hole farey tails.
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Appendix A

Elliptic Functions

Here we gather definitions and useful identities of elliptic functions.

A.1 Definitions

The Pochhammer symbol is defined as

(z; q)∞ =
∞∏
k=0

(1− zqk). (A.1)

The Dedekind eta function is then defined as

η(τ) = q
1
24 (q; q)∞ (A.2)

where q = e2πiτ . The elliptic theta functions used in this dissertation have the following

product forms:

θ0(u; τ) =
∞∏
k=0

(1− e2πi(u+kτ))(1− e2πi(−u+(k+1)τ)), (A.3a)

θ1(u; τ) = −ie
πiτ
4 (eπiu − e−πiu)

∞∏
k=1

(1− e2πikτ )(1− e2πi(kτ+u))(1− e2πi(kτ−u))

= −i(−1)me
πiτ
4 eπi[(2m+1)u+m(m+1)τ ]

∞∏
k=1

(1− e2πikτ )(1− e2πi((k+m)τ+u))(1− e2πi((k−m−1)τ−u))

= ie
πiτ
4 e−πiuθ0(u; τ)

∞∏
k=1

(1− e2πikτ ). (A.3b)
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From the product form of θ1(u; τ) (A.3b), we can derive a useful identity

m−1∏
ĵ=0

′
n−1∏
k̂=0

′ θ1(u+ ĵ+k̂τ̃
m

; τ)

η(τ)
= ei

n−1
2
πe−

iπnr
6 e−πim(n−1)uq̃−

(n−1)(n−1/2)
6

η(τ)

θ1(u; τ)

θ1(mu; τ̃)

η(τ̃)
,

m−1∏
ĵ=0

′
n−1∏
k̂=0

′ θ1( ĵ+k̂τ̃
m

; τ)

η(τ)
= ei

n−1
2
πe−

iπnr
6 q̃−

(n−1)(n−1/2)
6

mη(τ̃)2

η(τ)2
,

(A.4)

with q̃ = e2πiτ̃ and τ̃ = mτ+r
n

. The elliptic gamma function and the ‘tilde’ elliptic gamma

function are defined as

Γ(z; p, q) =
∞∏

j,k=0

1− pj+1qk+1z−1

1− pjqkz
, (A.5a)

Γ̃(u;σ, τ) =
∞∏

j,k=0

1− e2πi[(j+1)σ+(k+1)τ−u]

1− e2πi[jσ+kτ+u]
. (A.5b)

In this paper, we are mainly interested in the case with σ = τ and abbreviate Γ(z; q, q) and

Γ̃(u; τ, τ) as Γ(z, q) and Γ̃(u; τ) respectively. We also define a special function ψ(u) as

ψ(u) ≡ exp

[
u log

(
1− e−2πiu

)
− 1

2πi
Li2(e−2πiu)

]
. (A.6)

A.2 Basic properties

The elliptic theta functions have quasi-double-periodicity, namely

θ0(u+m+ nτ ; τ) = (−1)ne−2πinue−πin(n−1)τθ0(u; τ), (A.7a)

θ1(u+m+ nτ ; τ) = (−1)m+ne−2πinue−πin
2τθ1(u; τ), (A.7b)

for m,n ∈ Z. The inversion formula of θ0(u; τ) can be written simply as

θ0(−u; τ) = −e−2πiuθ0(u; τ), (A.8a)

θ1(−u; τ) = −θ1(u; τ). (A.8b)

The elliptic gamma function also has quasi-double-periodicity, namely

Γ̃(u;σ, τ) = Γ̃(u+ 1;σ, τ) = θ0(u; τ)−1Γ̃(u+ σ;σ, τ) = θ0(u;σ)−1Γ̃(u+ τ ;σ, τ). (A.9)
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It also satisfies the inversion formula

Γ̃(u;σ, τ) = Γ̃(σ + τ − u;σ, τ)−1. (A.10)

The Pochhammer symbol, the Dedekind eta function, and the elliptic theta functions

are transformed under the modular transformations T : τ → τ + 1 and S : τ → −1/τ as

(q = e2πiτ , q̃ = e−
2πi
τ )

(q̃; q̃)∞ = (−iτ)
1
2 e

πi
12

(τ+ 1
τ

)(q; q)∞, (A.11a)

η(τ + 1) = e
πi
12η(τ), (A.11b)

η(−1/τ) = (−iτ)
1
2η(τ), (A.11c)

θ0(u/τ ;−1/τ) = e
πi
τ

(u2+u+ 1
6

)−πi(u+ 1
2

)+πiτ
6 θ0(u; τ), (A.11d)

θ1(u; τ + 1) = e
πi
4 θ1(u; τ), (A.11e)

θ1(u/τ ;−1/τ) = −i(−iτ)
1
2 e

πiu2

τ θ1(u; τ). (A.11f)

These modular properties can be extended to general SL(2,Z) transformations as (see [25]

for example)

η

(
aτ + b

cτ + d

)
= ξ
√
cτ + dη(τ),

θ1

(
u

cτ + d
;
aτ + b

cτ + d

)
= ξ3
√
cτ + de

πicu2

cτ+d θ1(u; τ),

(A.12)

where ξ is a 24-th root of unity and a, b, c, d ∈ Z with ad − bc = 1. The SL(2,Z) transfor-

mations of the Pochhammer symbol and θ0 can be derived similarly. The elliptic gamma

function can be written in terms of these S-transformed elliptic theta functions and the

ψ-function (A.6) as (see [4] for example)

Γ̃(∆a; τ) =
e2πiQ({∆a}τ ;τ)

θ0({∆a}τ−1
τ

;− 1
τ
)

∞∏
k=0

ψ(k+{∆a}τ
τ

)

ψ(k+1−{∆a}τ
τ

)
, (A.13)

where Q(·; ·) is defined as (3.66) that we repeat here for convenience:

Q(u; τ) ≡ −B3(u)

6τ 2
+
B2(u)

2τ
− 5

12
B1(u) +

τ

12
. (A.14)
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A.3 Asymptotic behaviors

For a small |τ | with fixed 0 < arg τ < π, the Pochhammer symbol can be approximated as

log(q; q)∞ = −πi
12

(τ +
1

τ
)− 1

2
log(−iτ) +O(e−

2π sin(arg τ)
|τ | ). (A.15)

The Dedekind eta function in the same limit is then given as

log η(τ) = − πi

12τ
− 1

2
log(−iτ) +O(e−

2π sin(arg τ)
|τ | ). (A.16)

To study asymptotic behaviors of elliptic functions, first we introduce a τ -modded value

of a complex number u, namely {u}τ , as

{u}τ ≡ u− bReu− cot(arg τ) Imuc (u ∈ C). (A.17)

By definition, the τ -modded value satisfies

{u}τ = {ũ}τ + ǔτ, {−u}τ =

1− {u}τ (ũ /∈ Z)

−{u}τ (ũ ∈ Z),
(A.18)

where we have defined ũ, ǔ ∈ R as

u = ũ+ ǔτ. (A.19)

Note that, for a real number x, a τ -modded value {x}τ reduces to a normal modded value

{x} defined as

{x} ≡ x− bxc (x ∈ R). (A.20)

Now, the elliptic theta function θ0(u; τ) can be approximated for a small |τ | with fixed

0 < arg τ < π as

log θ0(u; τ) =
πi

τ
{u}τ (1− {u}τ ) + πi{u}τ −

πi

6τ
(1 + 3τ + τ 2)

+ log
(

1− e−
2πi
τ

(1−{u}τ )
)(

1− e−
2πi
τ
{u}τ
)

+O(e−
2π sin(arg τ)

|τ | ),
(A.21)

based on an alternative product form of θ0(u; τ) (m ∈ Z):

θ0(u; τ) = −ie−
πi
6

(τ+ 1
τ

)e
πi
τ

(u−m)(1−u+m)eπi(u−m)

×
∞∏
k=1

(1− e−
2πi
τ

(k−u+m))(1− e−
2πi
τ

(k−1+u−m)).
(A.22)
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This product form can be derived by combining (A.3a) with the S-transformation (A.11d).

Similarly, the elliptic theta function θ1(u; τ) is approximated for a small |τ | with fixed

0 < arg τ < π as

log θ1(u; τ) =
πi

τ
{u}τ (1− {u}τ )−

πi

4τ
(1− τ) + πibReu− cot(arg τ) Imuc − 1

2
log τ

+ log
(

1− e−
2πi
τ

(1−{u}τ )
)(

1− e−
2πi
τ
{u}τ
)

+O(e−
2π sin(arg τ)

|τ | ),
(A.23)

based on an alternative product form of θ1(u; τ) (m ∈ Z):

θ1(u; τ) = (−iτ)−
1
2 e−

πi
4τ emπie

πi
τ

(u−m)(1−u+m)

×
∞∏
k=1

(1− e−
2πi
τ
k)(1− e−

2πi
τ

(k−u+m))(1− e−
2πi
τ

(k−1+u−m)).
(A.24)

This product form can be derived by combining (A.3b) with the S-transformation (A.11f).

For a small |τ | with fixed 0 < arg τ < π, the elliptic gamma function can be approximated

as

log Γ̃(u; τ) = 2πiQ({u}τ ; τ) +O(|τ |−1e−
2π sin(arg τ)

|τ | min({ũ},1−{ũ})), (A.25)

provided ũ 6→ Z (see [4] for example). See (A.14) for the definition of Q(·; ·).

A.4 Plethystic expansions

The Pochhammer symbol (A.1) and the elliptic gamma function (A.5a) have plethystic

expansions:

(p; p)∞ = exp

[
∞∑
m=1

1

m

−pm

1− pm

]
, (A.26a)

Γ(y; p, q) = exp

[
∞∑
m=1

1

m

ym − pmqmy−m

(1− pm)(1− qm)

]
. (A.26b)
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In terms of (A.26), we can derive useful identities

exp

[
3∑

a=1

N∑
i,j=1

∞∑
m=1

1

m

yma − pmqmy−ma
(1− pm)(1− qm)

(zi/zj)
m

]
=

3∏
a=1

N∏
i,j=1

Γ(yazi/zj; p, q), (A.27a)

exp

[
∞∑
m=1

1

m

2pmqm − pm − qm

(1− pm)(1− qm)

]
= (p; p)∞(q; q)∞, (A.27b)

and

exp

[
N∑
i<j

∞∑
m=1

1

m

2pmqm − pm − qm

(1− pm)(1− qm)
((zi/zj)

m + (zj/zi)
m)

]

= exp

[
N∑
i<j

∞∑
m=1

1

m

pmqm − 1

(1− pm)(1− qm)
((zi/zj)

m + (zj/zi)
m) +

N∑
i<j

∞∑
m=1

1

m
((zi/zj)

m + (zj/zi)
m)

]

=
N∏
i<j

1

(1− zi/zj)(1− zj/zi)Γ(zi/zj; p, q)Γ(zj/zi; p, q)

=
N∏
i<j

1

|zi − zj|2
i 6=j∏

1≤i,j≤N

1

Γ(zi/zj; p, q)
.

(A.28)

Here we have used (1− zi/zj)(1− zj/zi) = |zi − zj|2 from z−1
i = z∗i . These identities will be

used to derive the elliptic hypergeometric integral formula of the SCI (3.13).
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Appendix B

The Topologically Twisted Index

B.1 Proof of Lemma 1

Here we prove Lemma 1 in the main text.1 Using the identity

θ′1(n; τ) = θ2(n; τ)θ3(n; τ)θ4(n; τ) (B.1)

for an arbitrary integer n ∈ Z, we can generalize Theorem 2.1 of [90] as

3∑
a=1

θ′I(∆a; τ)

θI(∆a; τ)
=

+
θ′1(n;τ)

θI(n;τ)

∏3
a=1

θ1(∆a;τ)
θI(∆a;τ)

(I = 3);

− θ′1(n;τ)

θI(n;τ)

∏3
a=1

θ1(∆a;τ)
θI(∆a;τ)

(I = 2, 4),
(B.2)

where
∑

a ∆a = n ∈ Z. Here θ2,3,4 are related to θ1(u; τ) defined in (A.3b) via

θ2(u; τ) = θ1(u+ 1/2; τ), (B.3a)

θ3(u; τ) = e
πiτ
4 eπiuθ1(u+ (1 + τ)/2; τ), (B.3b)

θ4(u; τ) = −ie
πiτ
4 eπiuθ1(u+ τ/2; τ). (B.3c)

These theta functions are basically obtained from θ1(u; τ) by shifting the first argument u by

three different half-periods 1
2
, 1+τ

2
, τ

2
respectively. They satisfy the so-called Jacobi’s formula

together with θ1(u; τ), namely [110]

2θ1(u0, u1, u2, u3; τ) = θ1(u′0, u
′
1, u
′
2, u
′
3; τ) + θ2(u′0, u

′
1, u
′
2, u
′
3; τ)

− θ3(u′0, u
′
1, u
′
2, u
′
3; τ) + θ4(u′0, u

′
1, u
′
2, u
′
3; τ), (B.4)

1We are indebted to Hjalmar Rosengren, a mathematician at Chalmers University, for an instrumental
correspondence regarding the proof.
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where 2u′α =
∑3

β=0 uβ − 2uα (α = 0, 1, 2, 3), and we have used the abbreviations

θI(u0, u1, u2, u3; τ) ≡
3∏

α=0

θI(uα; τ). (B.5)

Since θ1(n; τ) = 0 for an arbitrary integer n ∈ Z, the following special case of Jacobi’s

formula (B.4) is valid for
∑

a ∆a = n ∈ Z:

0 = θ2(n,∆1, ∆̃2, ∆̃3; τ)− θ3(n, ∆̃1, ∆̃2, ∆̃3; τ) + θ4(n, ∆̃1, ∆̃2, ∆̃3; τ). (B.6)

Combining (B.6) and (B.2) establishes the Lemma 1.

B.2 Proof that the map (2.83) is bijective

First we prove that (2.83) is one-to-one, i.e.

ĵ′1 = ĵ′2 & k̂′1 = k̂′2 ⇒ ĵ1 = ĵ2 & k̂1 = k̂2. (B.7)

To begin with, note that (2.83a) implies

ĵ′1 = ĵ′2 & k̂′1 = k̂′2 ⇒ k̂1 = k̂2 (mod n), (B.8)

which means k̂1 = k̂2 in fact. Combined with this fact, (2.83b) implies

ĵ′1 = ĵ′2 & k̂′1 = k̂′2 ⇒ ĵ1 = ĵ2 (mod m), (B.9)

and therefore we have ĵ1 = ĵ2. Hence (2.83) is one-to one.

Next we prove that (2.83) is onto, i.e. there exists (ĵ, k̂) ∈ Zm × Zn satisfying (2.83) for

any given (ĵ′, k̂′) ∈ Zm′×Zn′ where m′ = g and n′ = N/g with g ≡ gcd(n, r). To begin with,

recall that we have
n

g
(−b) +

r

g
(d) = 1 (B.10)

from (2.78). Then for any given (ĵ′, k̂′) ∈ Zm′ × Zn′ , we have

n

g

(
−bk̂′ + r

g
ĵ′
)

+
r

g

(
dk̂′ − n

g
ĵ′
)

= k̂′. (B.11)

94



This can be solved for k̂′ as

k̂′ =

{
n

g

{
−bk̂′ + r

g
ĵ′ + r

⌊
dk̂′ − n

g
ĵ′

n

⌋
,m

}
+
r

g

{
dk̂′ − n

g
ĵ′, n

}
,
N

g

}
, (B.12)

where {A,B} denotes A mod B (0 ≤ A < B). Now it is straightforward to check that

ĵ =

{
−bk̂′ + r

g
ĵ′ + r

⌊
dk̂′ − n

g
ĵ′

n

⌋
,m

}
∈ Zm, (B.13a)

k̂ =

{
dk̂′ − n

g
ĵ′, n

}
∈ Zn, (B.13b)

indeed satisfy (2.83), so (2.83) is onto.

B.3 Invariance of the Jacobian determinant under mod-

ular transformations

Here we demonstrate that H{m,n,r} transforms according to (2.74) and (2.84) under T and

S transformations, respectively. We first note that the holonomies for the BAE solution

denoted by {m,n, r} are canonically ordered according to (2.18). The key step here is then

to order the holonomies for the BAE solution denoted by {m′, n′, r′} differently, according

to

{m,n, r} sector : unĵ+k̂ → uĵk̂, (B.14a)

{m′, n′, r′} sector : unĵ+k̂ → uĵ′k̂′ . (B.14b)

Note that (ĵ, k̂) → (ĵ′, k̂′) is a bijective map from Zm × Zn to Zm′ × Zn′ for both T and S

transformations, namely (2.73) and (2.83), so the above ordering for the {m′, n′, r′} sector

is valid. Furthermore, it does not affect the value of H{m′,n′,r′} as the determinant does not

depend on the ordering of holonomies.

Now, with respect to the above ordering, we prove

H{m,n,r}(τ + 1,∆a) = H{m′,n′,r′}(τ,∆a), (B.15a)

H{m,n,r}(−1/τ,∆a/τ) = τN−1H{m′,n′,r′}(τ,∆a). (B.15b)

at a matrix level, which then yields (2.74) and (2.84) automatically. Note that {m′, n′, r′}
are different for T and S cases as (2.73) and (2.83) respectively. From (2.46), the (j,N)
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entries of the LHS and the RHS are the same as unity for j ∈ {1, · · · , N}. To prove that

the other matrix elements also match, it suffices to show

G{m,n,r}(ĵ − ĵ0, k̂ − k̂0; ∆a, τ + 1) = G{m′,n′,r′}(ĵ′ − ĵ′0, k̂′ − k̂′0; ∆a, τ), (B.16a)

G{m,n,r}(ĵ − ĵ0, k̂ − k̂0; ∆a/τ,−1/τ) = τG{m′,n′,r′}(ĵ′ − ĵ′0, k̂′ − k̂′0; ∆a, τ), (B.16b)

for any ĵ, ĵ0 ∈ Zm and k̂, k̂0 ∈ Zn and the primed indices given from (2.73) and (2.83) for

(B.16a) and (B.16b) respectively. See (2.49) for the definition of the G-function. Note that

these are not trivial from (2.72) and (2.82) but can be proved based on those relations and

the following properties of the G-function:

G{m,n,r}(ĵ +m, k̂; τ,∆a) = G{m,n,r}(ĵ, k̂; τ,∆a), (B.17a)

G{m,n,r}(ĵ, k̂ + n; τ,∆a) = G{m,n,r}(ĵ + r, k̂; τ,∆a). (B.17b)

Proof of (B.16a)

LHS = G{m,n,r}

({
ĵ − ĵ0 + r

⌊
k̂ − k̂0

n

⌋
,m

}
, {k̂ − k̂0, n}; ∆a, τ + 1

)

= G{m′,n′,r′}

({
ĵ − ĵ0 + r

⌊
k̂ − k̂0

n

⌋
+ {k̂ − k̂0, n}

⌊
m+ r

n

⌋
,m

}
, {k̂ − k̂0, n}; ∆a, τ

)

= G{m′,n′,r′}
({

ĵ + k̂

⌊
m+ r

n

⌋
,m

}
−
{
ĵ0 + k̂0

⌊
m+ r

n

⌋
,m

}
, k̂ − k̂0; ∆a, τ

)
= RHS.

(B.18)

Here {A,B} denotes A mod B (0 ≤ A < B). Note that (B.17) has been used in the 1st and

the 3rd lines. The 2nd line comes from (2.72).
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Proof of (B.16b)

LHS = G{m,n,r}

({
ĵ − ĵ0 + r

⌊
k̂ − k̂0

n

⌋
,m

}
, {k̂ − k̂0, n};

∆a

τ
,−1

τ

)

= τG{m′,n′,r′}

({
−g
n

(
(k̂ − k̂0) + d

{
n

g
(ĵ − ĵ0) +

r

g
(k̂ − k̂0),

N

g

})
, g

}
,

{
n

g
(ĵ − ĵ0) +

r

g
(k̂ − k̂0),

N

g

}
; ∆a, τ

)

= τG{m′,n′,r′}

({
−g
n

(
k̂ + d

{
n

g
ĵ +

r

g
k̂,
N

g

})
, g

}
−
{
−g
n

(
k̂0 + d

{
n

g
ĵ0 +

r

g
k̂0,

N

g

})
, g

}
,{

n

g
ĵ +

r

g
k̂,
N

g

}
−
{
n

g
ĵ0 +

r

g
k̂0,

N

g

}
; ∆a, τ

)
= RHS.

(B.19)

Note that (B.17) has been used in the 1st and the 4th lines. The 2nd line comes from (2.72)

followed by the identity M{A,B} = {MA,MB}.
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Appendix C

The Superconformal Index

C.1 Contribution from C-center solutions

In this Appendix we repeat the same procedures in 3.2.1 and 3.2.2 for a more general class

of saddle point solutions and the BA solutions respectively. Both solutions are denoted by

a finite, positive divisor of N , namely C, and the solution with C = 1 corresponds to what

we have discussed in the main text. We will call them C-center saddles and C-center BAE

solutions respectively.

The final results of this Appendix, namely (C.13) and (C.18), are consistent with each

other for the first three terms. The remaining pure imaginary or order O(N0) terms do

not match apparently: more detailed analysis on contour deformations in the saddle point

approach and on the Jacobian contribution in the BA approach would be required for a

perfect match and we leave it for future research.

Another important implication of this Appendix is that 3D SU(N) Chern-Simons theory

arises from N = 4 SU(N) SYM on S1 × S3 in the Cardy-like limit independently of saddle

point solutions. In the main text we have observed it for a basic saddle point (3.33). The

following subsection C.1.1 will generalize this result to C-center saddles (C.1).

Lastly, it is worth highlighting the robustness of the universal logN term. We will

demonstrate that these C-center saddles or BAE solutions, which can be dominant in certain

domain of chemical potentials ∆a as we discussed in 3.3, still contribute log
(
N
C

)
to the SCI.

This is compatible with the result for C = 1 in the main text.

C.1.1 Saddle point approach

In 3.2.1, we have investigated the contribution from a basic saddle point ansatz (3.33) to the

SCI through the saddle point approximation (3.20). Here we repeat the same procedure but
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with a more general ansatz for C-center saddles [5], namely

{uj}(C,m) =

{
u

(C,m)
j =

m

N
+
b j−1
N/C
c − C−1

2

C
+ vjτ

∣∣∣∣ vj ∼ O(|τ |0),
N∑
j=1

vj = 0

}
(C.1)

with m ∈ {0, 1, · · · , N
C
− 1}. The range of m is determined from the integration contour

deformed from (3.22) as

N−1⋃
µ=1

(vµτ −
1

2N
− C − 1

2C
, vµτ + 1− 1

2N
− C − 1

2C
], (C.2)

which passes through the above C-center saddle {uj}(C,m). The C-center ansatz (C.1) and

the corresponding deformed contour (C.2) reduce to the ones in the main text (3.33) and

(3.37) respectively for C = 1.

In the strict Cardy-like limit |τ | → 0, the C-center ansatz (C.1) reduces to C groups

of holonomies, where each group has equal number (N/C) of condensed holonomies and is

separated from adjacent groups by 1/C along the domain (0, 1] with 0 identified with 1. The

name ‘C-center’ comes from its symmetry breaking pattern ZN → ZC [5].

Following 3.2.1 and using the following identity of Bernoulli polynomials

C−1∑
J=0

Bn({ J
C

+ u}τ ) =
1

Cn−1
Bn({Cu}τ ) (u ∈ C), (C.3)

we simplify the effective action (3.31) near the C-center ansatz (C.1) up to exponentially

suppressed terms as

N2Seff({ui}; τ,∆) ∼
C−1∑
I=0

−πiηCN
Cτ 2

N/C∑
i=1

(uI,i − ūI)2 +

N/C∑
i 6=j

log

(
2 sin

π(uI,i − uI,j)
τ

)
− πi

2τ 2

N2

C2

C−1∑
I,J=0

ξI−J(ūIJ)2 − πiN2

C3τ 2

3∏
a=1

(
{C∆a}τ −

1 + ηC
2

)

+
πi

τ 2

3∏
a=1

(
{∆a}τ −

1 + η1

2

)
− 5πiηCN

2

12C
+
πiN

2
− πi(6− 5η1)

12

− (N − 1) log τ,

(C.4)
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where we have introduced uI,i and ūI as

ui =
m

N
+
I − C−1

2

C
+ uI,i−(N/C)I (I =

⌊
i− 1

N/C

⌋
, i = 1, · · · , N),

ūI =
1

N/C

N/C∑
i=1

uI,i.

(C.5)

Note that
∑C−1

I=0 ūI = 0 from the SU(N) constraint (3.14). We have also defined ξJ as

3∑
a=1

{ J
C

+ ∆a}τ = 2τ +
3 + ξJ

2
, (C.6)

which is related to ηC defined in (3.28) as ηC =
∑C−1

J=0 ξJ ∈ {±1} under the assumption

C∆̃a 6∈ Z (3.29).

Substituting the effective action (C.4) into the saddle point evaluation (3.20) gives the

SCI as

I(τ,∆) ∼
N/C−1∑
m=0

A
((N/C)!)C

∫
D{ui}(C,m)

N−1∏
µ=1

duµ e
N2Seff,u-dept({ui};∆a,τ)

+ (contribution from the other saddles),

(C.7)

where D{ui}(C,m) denotes a small neighborhood of a C-center saddle {ui}(C,m) (C.1) on the

contour (C.2), namely

D{ui}(C,m) =
N−1⋃
µ=1

(vµτ +
m

N
+
b µ−1
N/C
c − C−1

2

C
− ε, vµτ +

m

N
+
b µ−1
N/C
c − C−1

2

C
+ ε], (C.8)

with some small positive number ε. The u-dependent part of the effective action, namely

N2Seff,u-dept({ui}; τ,∆), denotes the first three terms of (C.4) and the prefactor A is related

to the remaining u-independent part of (C.4) as

A = exp

[
−πiN

2

C3τ 2

3∏
a=1

(
{C∆a}τ −

1 + ηC
2

)
+
πi

τ 2

3∏
a=1

(
{∆a}τ −

1 + η1

2

)
−5πiηCN

2

12C
+
πiN

2
− πi(6− 5η1)

12
− (N − 1) log τ

]
.

(C.9)

Note that we have ((N/C)!)C instead of the original N ! in the denominator of (C.7) taking an

extra factor of N !
((N/C)!)C

into account, which corresponds to the number of evenly distributing
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N holonomies into C groups as (C.5).

Introducing new integration variables λI,i and λ̄I as

−iλI,iτ = uI,i − ūI (I = 0, · · · , C − 1 and i = 1, · · · , N/C − 1),

−iλ̄Iτ = ūI (I = 0, · · · , C − 2),
(C.10)

whose Jacobian is given as∣∣∣∣ ∂(u1, · · · , uN−1)

∂(λ0,1, · · · , λ0,N/C−1, λ̄0, λ1,1, · · · , λC−1,N/C−1)

∣∣∣∣ = e−
πi(N−1)

2

(
N

C

)C−1

τN−1, (C.11)

the SCI (C.7) can be rewritten as

I(τ,∆) =
N

C
τN−1A e−

πi(N2/C−1)
2

(
ZCS

SU(N/C)

)C ∫ C−2∏
I=0

dλ̄I e
πi
2

∑C−1
I,J=0 ξI−J (λ̄IJ )2

+ (contribution from other saddles).

(C.12)

Here we have assumed smooth deformations of contours as we have done from (3.43) to real

lines in the main text. Note that the original SU(N) group breaks down into C copies of

SU(N/C) groups and the remaining C − 1 copies of U(1) groups. As a result, we obtained

C copies of the SU(N/C) Chern-Simons partition function together with an extra (C −
1)-dimensional integral for U(1) terms. We denote the latter simply as ZU(1)’s. Finally,

substituting the partition function of SU(N) CS theory (C.60) with N → N/C into (C.12)

gives

I(τ,∆) =
N

C
exp

[
−πiN

2

C3τ 2

3∏
a=1

(
{C∆a}τ −

1 + ηC
2

)
+
πi

τ 2

3∏
a=1

(
{∆a}τ −

1 + η1

2

)
+

5πi(η1 − CηC)

12

]
× ZU(1)’s

+ (contribution from other saddles).

(C.13)

C.1.2 Bethe Ansatz approach

In 3.2.2, we have investigated the contribution from basic solutions (3.56) to the SCI through

the Bethe Ansatz formula (3.47). Here we generalize it with a larger set of BAE solutions

denoted by a positive divisor of N , namely C, as

{ui}C =

{
ui = ū+

I

C
+
i− (N/C)I

N/C
τ +mi + niτ

∣∣∣ I =

⌊
i

N/C

⌋
, i = 1, · · · , N

}
(C.14)
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with arbitrary integers mi’s and ni’s. We call them C-center BAE solutions. Note that

this solution is equivalent to the {C,N/C, 0} solution in [67] and the (C,N/C) saddle in

[30]. Since the calculation is parallel to the one in the main text, we summarize the key

intermediate results only.

First, the degeneracy gives logN ! + logN by the same token we discussed in the begin-

ning of 3.2.2. The prefactor contribution also remains the same as (3.63). Calculating the

contribution from logZ({ui}C ; τ,∆) is more involved but does not require extra techniques

other than using (3.69) and (C.3). The result is given as

logZ({ui}C ; τ,∆) = C
C−1∑
J=0

N/C−1∑
i,j=0

3∑
a=1

log Γ̃(
i− j
N/C

τ +
J

C
+ ∆a; τ)−N

3∑
a=1

log Γ̃(∆a; τ)

− C
C−1∑
J=1

N/C−1∑
i,j=0

log Γ̃(
i− j
N/C

τ +
J

C
; τ)− C

N/C−1∑
i,j=0 (i 6=j)

log Γ̃(
i− j
N/C

τ ; τ)

= −πiN
2

C3τ 2

3∏
a=1

(
{C∆a}τ −

1 + ηC
2

)
+
πi(1− ηC)N2

2C
+
πi(1− 3τ + τ 2)N

6τ

+
πiηCC

12
−N

3∑
a=1

log Γ̃(∆a; τ) +N log
N

C
− 2N log(q̃; q̃)∞

+O(Ne−
2πN sin(arg τ)

|τ | min({ J
C

+∆̃a},1−{ JC+∆̃a}| J=0,1,··· ,C−1)),

(C.15)

where ηC is defined as (3.28). The Jacobian contribution − logH({ui}C ; τ,∆) can also be

obtained by following 3.2.2 and 2.2.2 as

− logH({ui}C ; τ,∆) = − logN − (N − 1) log

(
i

π

∑
∆

∂∆ log θ1(C∆;
τ

N/C2
)

)
− log det

(
IN−1 + H̃

)
= −N logN + (N − 1) log

Cτ

ηC
− log det

(
IN−1 + H̃

)
+O(e−

2πN sin(arg τ)
|τ | min({ J

C
+∆̃a},1−{ JC+∆̃a}| J=0,1,··· ,C−1)).

(C.16)

Substituting all the contributions to the BA formula of the SCI (3.47) and using (A.11a),

finally we obtain the contribution from C-center BAE solutions (C.14) in the large-N limit
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as

log I(τ,∆)
∣∣
C-center

= −πiN
2

C3τ 2

3∏
a=1

(
{C∆a}τ −

1 + ηC
2

)
+ log

N

C
+
πi(1− ηC)N2

2C

+
πiηCC

12
− πi(1− ηC)(N − 1)

2

−
3∑

a=1

log Γ̃(∆a; τ)− 2 log(q; q)∞ − log τ − log det
(
IN−1 + H̃

)
+O(Ne−

2πN sin(arg τ)
|τ | min({ J

C
+∆̃a},1−{ JC+∆̃a}| J=0,1,··· ,C−1)).

(C.17)

In the Cardy-like limit that imposes |τ | � 1, this reads

log I(τ,∆)
∣∣
C-center

∼ −πiN
2

C3τ 2

3∏
a=1

(
{C∆a}τ −

1 + ηC
2

)
+
πi

τ 2

3∏
a=1

(
{∆a}τ −

1 + η1

2

)
+ log

N

C
+
πi(1− ηC)N2

2C
− πi(1− ηC)(N − 1)

2
+
πiηCC

12

− πi(6− 5η1)

12
− log det

(
IN−1 + H̃

)
(C.18)

up to exponentially suppressed terms. Based on the comments below (2.103), we may sim-

plify this further as

log I(τ,∆)
∣∣
C-center

∼ −πiN
2

C3τ 2

3∏
a=1

(
{C∆a}τ −

1 + ηC
2

)
+
πi

τ 2

3∏
a=1

(
{∆a}τ −

1 + η1

2

)
+O(|τ |−1).

(C.19)

C.2 Saddle point solutions of 3D Chern-Simons theory

In this Appendix, we investigate the saddle point equation (3.36) from the effective action

of the N = 4 SU(N) SYM theory in the Cardy-like expansion (3.35), namely

iη1 vj =
1

N

N∑
k=1 ( 6=j)

cotπvjk (i = 1, · · · , N). (C.20)

This equation is in fact equivalent to the saddle point equation of 3D Chern-Simons theory

with a ’t Hooft coupling t [1, 63],

1

t
uj =

1

N

N∑
k=1 ( 6=j)

coth
ujk
2
, (C.21)
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under vj → iuj/2π and t = 2πi/η1. We solve this saddle point equation in the planar limit,

or equivalently in the large-N limit.

The partition function of 3D Chern-Simons theory on S3 can be written as [1, 63]

Z =
1

N !

∫ ∏
i

dui
∏
i<j

(
2 sinh

uij
2

)2

exp

(
− 1

2gs

∑
i

u2
i

)
, (C.22)

where gs = 2πi/k̂ and k̂ is the effective Chern-Simons level. As we have seen in (3.35), the

fluctuations around the dominant saddle point of the N = 4 SYM theory are described by

such a Chern-Simons theory, provide we make the identification t = 2πi/η1 where t = gsN

is the ‘t Hooft coupling. Although this partition function can be evaluated directly [79] as

detailed in Appendix C.3, it is important to note that our starting point is a saddle point

evaluation of the N = 4 SYM index. Hence, in principle, we should seek a saddle point

evaluation of the 3D Chern-Simons partition function. As we demonstrate in this Appendix,

the saddle point result coincides with the exact partition function in the large-N limit, so

in practice this distinction is immaterial. However, we highlight an interesting observation

that there are, in fact, multiple saddle point solutions to the Chern-Simons model and that

it is important to properly identify the dominant saddle in order to find agreement.

C.2.1 The dominant saddle point

The saddle point equation obtained by varying the action in (C.22) takes the form

1

t
uj =

1

N

N∑
k=1 ( 6=j)

coth
ujk
2
. (C.23)

As in [89], it is convenient to introduce the exponentiated eigenvalues Xj = euj , so that the

saddle point equation becomes

logXj =
t

N

N∑
k=1 ( 6=j)

(
−1 +

2Xj

Xj −Xk

)
. (C.24)

As usual, in the large-N limit, we assume the eigenvalues condense along a single cut,

x ∈ [a, b] on the real axis, provided the ’t Hooft parameter t is real. (Later on we will

analytically continue to complex t.) We then introduce the density of eigenvalues ρ(x) such

that ∑
i

f(xi) −→ N

∫ b

a

dx ρ(x)f(x). (C.25)
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The important properties of the matrix partition function are now encoded in the eigen-

value density. In order to determine ρ(x), we introduce the resolvent

ω(X) ≡ −t+ 2t

∫ b

a

dy ρ(y)
X

X − Y
(X ∈ C \ C). (C.26)

This function is analytic in the complex X plane except for a cut C from [ea, eb] on the

positive real axis. By studying ω(X) on both sides of the cut, we can reproduce the saddle

point equation

logX =
1

2
[ω+(X) + ω−(X)] (X ∈ C), (C.27)

and also recover the eigenvalue density

ρ(x) = − 1

4πit
[ω+(X)− ω−(X)] (X ∈ C). (C.28)

Here we have defined

ω±(X) = ω(ex±iε) = ω(X ± iε) (X ∈ C). (C.29)

Following [89], we can use the following trick to derive the resolvent ω(X). Recall that

ω(X) is analytic on X ∈ C \ C. Then it is straightforward to check that the function g(X)

defined as

g(X) ≡ eω(X)/2 +Xe−ω(X)/2 (X ∈ C \ C) (C.30)

can be analytically continued to the entire complex plane including C since

g+(X) = eω+(X)/2 +Xe−ω+(X) = Xe−ω−(X) + eω−(X) = g−(X) (X ∈ C), (C.31)

where the equality in the middle corresponds to the saddle point equation (C.27). Further-

more, using the asymptotic behavior of (C.26)

lim
X→0

ω(X) = −t, lim
|X|→∞

ω(X) = t, (C.32)

we deduce the form of g(X) as

g(X) = e−t/2(X + 1) (X ∈ C). (C.33)
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Substituting this into (C.30) then gives

eω(X)/2 =
1

2

(
g(X)±

√
g(X)2 − 4X

)
. (C.34)

Consistency of this solution demands that the branch cut of the square root is along C. In

particular, note that the branch points of the square root are given by

X± = 2et − 1± 2(e2t − et)
1
2 , (C.35)

with the product X+X− = 1.

The solution for t > 0

Although we have assumed that the eigenvalues condense along the real line, the endpoints

X± are only real for real t > 0. Assuming this to be the case, the resolvent (C.34) can be

written as

eω(X)/2 =
1

2

(
e−t/2(X + 1)− e−t/2(X −X+)

1
2 (X −X−)

1
2

)
, (C.36)

where the principal branch is taken for both square roots. The eigenvalue density can then

be recovered from the discontinuity across the cut using (C.28), with the result [89]

ρ(x) =
1

πt
tan−1

√
et − cosh2 x

2

cosh x
2

(x ∈ [a, b]), (C.37)

where the endpoints are given by −a = b = 2 cosh−1(et/2).

Substituting this eigenvalue density into the saddle point action is non-trivial, but can

be shown to give the genus-zero free energy (see e.g. Appendix A of [63])

logZ = N2

(
ζ(3)− Li3(e−t)

t2
+
t

6
− π2

6t

)
+ o(N2). (C.38)

This has a simple expansion in the large-t limit

logZ/N2 ∼ t

6
− π2

6t
+
ζ(3)

t2
+O(e−t) (t� 1), (C.39)

but remains valid for real t > 0. For small t, it has an expansion

logZ/N2 =
1

2
log t− 3

4
+

t

12
+

t2

288
+ · · · (t→ 0+), (C.40)
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Figure C.1: Orange (red) crosses are branch points and green (blue) lines are branch cuts of
h+(x) and h−(x), respectively. Here we chose ε = 1/10 for presentation.

which diverges logarithmically as t→ 0.

The solution for t = 2πi/η with η1 = ±1

While we have worked with real t above, in order to connect to N = 4 SYM, we want to

analytically continue to a purely imaginary value t = 2πi/η1 where η1 = ±1. However, this

continuation is subtle, since η1 = ±1 turns out to be the endpoints of a singular region of

the Chern-Simons matrix model. In particular, there is a divergence for t = 2πi/η1 with

−1 < η < 1 [91]. This subtlety can also be seen by noting that the endpoints of the cut, X±

in (C.35), collapse to X± = 1 when η1 = ±1.

To avoid this singularity issue for η1 = ±1, we take t = 2πi/η1 + ε2 where ε is a small

positive number. Although we have assumed real t above, it was not strictly needed in

order to obtain the resolvent (C.34). We thus start from there and analytically continue to

imaginary eigenvalues, x → ix. In particular, we take X = eix, in which case the resolvent

takes the form

eω(X)/2 =
1

2

(
e−t/2(eix + 1) + (e−t/2(eix + 1) + 2eix/2)

1
2 (e−t/2(eix + 1)− 2eix/2)

1
2

)
. (C.41)

For t = ±2πi+ ε2, the square root factors have the following branch cuts:

h+(x) ≡ (e−t/2(eix + 1) + 2eix/2)
1
2 :

⋃
n∈Z

[(4n+ 2)π − x∗, (4n+ 2)π + x∗],

h−(x) ≡ (e−t/2(eix + 1)− 2eix/2)
1
2 :

⋃
n∈Z

[4nπ − x∗, 4nπ + x∗],
(C.42)
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where x∗ = 2π − 2iε+O(ε2) (see Figure C.1). Using1

h±(x) = (−(1∓ eix/2)2)
1
2 +O(ε2), (C.43)

we can write down h±(x) more explicitly with the above specified branch cuts as

h+(x) =

±i(1− eix/2) +O(ε2) (above the cuts of h+(x))

∓i(1− eix/2) +O(ε2) (below the cuts of h+(x)),
(C.44a)

h−(x) =

±i(1 + eix/2) +O(ε2) (above the cuts of h−(x))

∓i(1 + eix/2) +O(ε2) (below the cuts of h−(x)).
(C.44b)

We now rewrite the resolvent (C.41) using (C.44) within the strip Re x ∈ (−2π, 2π)

explicitly as

eω(X)/2 =


−1 +O(ε2) (above the cuts of h±(x))

−eix +O(ε2) (between the cuts of h±(x))

−1 +O(ε2) (below the cuts of h±(x)),

(C.45a)

→ ω(X) =



−2πi
η

+O(ε2) (above the cuts of h±(x))

−2πi
η

(1− x
π
) +O(ε2) (between the cuts of h±(x), Rex ∈ [0, 2π))

2πi
η

(1 + x
π
) +O(ε2) (between the cuts of h±(x), Rex ∈ (−2π, 0))

2πi
η

+O(ε2) (below the cuts of h±(x)).

(C.45b)

Since (C.45a) determines ω(X) only up to 4πiZ, we have used the asymptotic conditions from

(C.32) along with continuity outside of the branch cuts to fix ω(X). Finally, the eigenvalue

density can be obtained by substituting (C.45b) into (C.28)

ρ(x) =

 1
2π

(
1− x

2π

)
+O(ε2) x ∈ [0, x∗)

1
2π

(
1 + x

2π

)
+O(ε2) x ∈ (−x∗, 0).

(C.46)

1This Taylor expansion becomes subtle as x→ 2πZ where the leading order vanishes. So we focus on the
bulk and ignore this subtle issue near the endpoints x = 2πZ.

108



Taking the limit ε→ 0 then gives the simple expression

ρ(x) =
1

2π

(
1− |x|

2π

)
x ∈ (−2π, 2π), (C.47)

which satisfies the normalization condition
∫ 2π

−2π
dx ρ(x) = 1 as expected. Recall that, since

we have analytically continued, the actual eigenvalues u = ix are now distributed between

±2πi along the imaginary axis.

The genus-zero free energy can be obtained by evaluating the saddle point action

Seff/N
2 =

[
− 1

2t

∫
dxρ(x)u2 +

1

2

∫
ρ(x)ρ(x̃)dx dx̃ log

(
4 sinh2 u− ũ

2

)2
]
u=ix, ũ=ix̃

(C.48)

on the solution given by (C.46). Here some care must be taken in keeping the ε regulator

while integrating the log term because of branch issues. The result is simply

logZ/N2
∣∣
t=±2πi

=
5πi

12
η1, (C.49)

which is purely imaginary. This result can also be obtained directly by analytic continuation,

namely by inserting t = 2πi/η1 into (C.38) but our careful analysis provides some direct

insight into the structure of eigenvalues.

C.2.2 The sub-leading saddle point

In deriving the resolvent (C.34), we assumed a one-cut solution with the cut extending along

[X−, X+]. The function g(X) defined in (C.30) is then argued to be analytic in the complex

plane. For t > 0, this picture is evident as the cut is on the positive real axis in the X plane.

However, for t = ±2πi, the cut starts at 1− 2ε, wraps twice around the unit circle, and ends

at 1 + 2ε, where ε prevents the cut from overlapping with itself.

This picture of a cut wrapping twice around the unit circle in the X plane suggests the

possibility of another solution where the cut extends only once around the circle. We have

in fact identified such a solution where the cut starts at X = −1, goes around the circle,

and ends again at X = −1. What is special about this solution is that the double endpoint

X = −1 may be singular, and this allows for g(X) defined in (C.30) to have a pole at

X = −1. In particular, we find that

g(X) = e−t/2(X + 1) + et/2
X

X + 1
(X ∈ C \ {−1}), (C.50)
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Figure C.2: The numerically determined eigenvalue density, ρ(x), for N = 50 and t = 5 (red
dots) along with the large-N analytic solution (blue line), (C.52). The numerical density is
obtained by finite differencing.

is consistent with analyticity except for a pole at X = −1. The regular (first) term is

identical to that of the standard solution, (C.33), while the pole (second) term is new but

does not modify the asymptotic conditions (C.32).

The solution for t > 0

For t > 0, we choose the cut to lie along the unit circle, starting and ending at the singular

point X = −1. Using (C.34), we obtain the resolvent

ω(X) =

−t+ 2 log(1 +X) (|X| < 1)

t− 2 log(1 + 1/X) (|X| > 1),
(C.51)

where the principal branch is taken for the log. Here the ‘inside’ and ‘outside’ solutions are

chosen to satisfy the asymptotic conditions (C.32). In this case, the matrix eigenvalues are

imaginary and lie in the interval (−iπ, iπ). The eigenvalue density is obtained from (C.28),

and is given by

ρ(x) =
1

2π

(
1− 1

t
log
(

4 cos2 x

2

))
(x ∈ (−π, π)), (C.52)

and the eigenvalues themselves are u = ix. Although the ’t Hooft coupling multiplies the log

term, it averages to zero over the interval (−π, π), so the normalization condition is satisfied

with an average eigenvalue density of 1/2π. This sub-leading solution is somewhat unusual

as ρ(x) diverges logarithmically at the endpoints, as highlighted in Figure C.2.

The genus-zero free energy can be obtained by using the above eigenvalue density in
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Figure C.3: The numerically determined eigenvalues, −iuj for N = 50. The family of
solutions correspond to t = 5 (red), t = 5 + πi/2 (orange), t = 5 + 2πi (yellow), t = 3 +
2πi (green), and t = 2πi (blue), respectively.

(C.48), with the result

logZ/N2 =
ζ(3)

t2
+
π2

6t
+ (t-independent imaginary term), (C.53)

where we have not been careful enough to keep track of the log branch issues that go into

computing the imaginary term. Note that, even though here we have taken real t > 0, the

saddle point free energy is complex since this sub-leading saddle itself is complex.

The solution for t = 2πi/η with η1 = ±1

For connection to the N = 4 SYM saddle, we are interested in analytically continuing to

t = 2πi/η1 with η1 = ±1. While in the previous cases the eigenvalues either lie entirely

on the real or imaginary axis, this is no longer the case for the sub-leading saddle with

t = 2πi/η1. Instead, from numerical observations, the eigenvalues lie along a curve connecting

u ∈ (−iπ, iπ). We have been unable to obtain an analytic form of this curve. However, it can

be examined numerically, as shown in Figure C.3, where the ’t Hooft coupling is analytically

continued from t = 5 to t = 2πi.

The genus-zero free energy for the sub-leading saddle with t = ±2πi may be obtained by

analytic continuation of (C.53)

logZ/N2
∣∣
t=±2πi

= −ζ(3)

4π2
+ (imaginary). (C.54)

Since this has a negative real part, it is always sub-dominant to the leading saddle whose

free energy (C.49) which has vanishing real part.
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C.2.3 Saddle point solutions of N = 4 SYM from direct numerical

evaluation

We now return to the original problem at hand, namely the saddle point evaluation of the

N = 4 SYM index in the Cardy-like limit. As we have shown in (3.42), the effective action

reduces to that of 3D SU(N) Chern-Simons theory. As a result, we may simply apply the

saddle point solution of the latter theory to the N = 4 SYM index. However, it is instructive

to see how this works in practice. To do so, we have numerically solved the saddle point

equation arising from the effective action in (3.18). This was performed using FindRoot in

Mathematica, where the elliptic gamma function was approximated by truncating its product

representation (A.5a).

We find that numerical solutions to the saddle point equation for the N = 4 SYM

index are sensitive to the initial trial configuration for the eigenvalues. Based on large-N

investigations of the SCI that suggest the eigenvalues are distributed along the ‘thermal’

circle [30, 5], it is natural to start with an initial configuration distributed uniformly along

the interval (−τ/2, τ/2). This starting point, however, converges to the sub-leading saddle

point solution discussed in section C.2.2. To find the dominant saddle point studied in

section C.2.1, we have to instead start with an initial configuration mirroring (C.47) of the

3D Chern-Simons theory. Here the initial eigenvalues wraps twice around the ‘thermal’

circle, and are distributed non-uniformly in the interval (−τ, τ).

As an example, we compare the numerical solution to the N = 4 SYM saddle point

equations with those from the 3D Chern-Simons theory in Figure C.4 for the leading saddle

and Figure C.5 for the sub-dominant saddle. For N = 4 SYM, we take τ = ieiπ/6 and

chemical potentials such that η1 = 1, so that t = 2πi in the Chern-Simons theory. Since

|τ | = 1, the numerical results are not taken in the Cardy-like limit. Nevertheless, the

similarity of the full SYM solution with that of the corresponding Chern-Simons theory is

apparent. We have observed numerically that the sub-leading saddle point solution becomes

indistinguishable from that of the Chern-Simons theory in the Cardy-like limit. However,

the leading order saddle is more sensitive to 1/N effects arising from the repulsion between

eigenvalues on the inner and outer circles of Figure C.4. In any case, the distinction between

N = 4 SYM and 3D Chern-Simons solutions is small compared to the difference between

the dominant and sub-leading saddles, which is clearly evident when comparing Figure C.4

with Figure C.5.
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Figure C.4: Comparison between the N = 4 SYM (blue dots) and 3D Chern-Simons (orange
diamonds) solutions for the dominant saddle point. Here we have taken N = 100 along with
τ = ieiπ/6 and ∆a = (2/3, 2/3, 2/3+2τ), which maps to t = 2πi in the Chern-Simons theory.
As seen in the figure on the right, the exponentiated eigenvalues wrap twice around the
circle. The 3D Chern-Simons eigenvalues ui are given as in (C.22), while the N = 4 SYM
eigenvalues ũi are mapped according to ui = 2πiũi/τ .

C.3 The S3 partition function of SU(N) Chern-Simons

theory

Here we compute the S3 partition function of SU(N) Chern-Simons theory, namely

ZCS
SU(N) =

1

N !

∫ ∞
−∞

(
N−1∏
j=1

dλj) e
−ikπ

∑N
j=1 λ

2
j

∏
i 6=j

2 sinhπλij (C.55)

with the constraint
∑N

j=1 λj = 0, where k = −ηN (η1 = ±1).

Recall that the S3 partition function of U(N) Chern-Simons theory is given in Appendix

B of [79] as

ZCS
U(N) =

1

N !

∫ ∞
−∞

(
N∏
j=1

dλj) e
−ikπ

∑N
j=1 λ

2
j

∏
i 6=j

2 sinhπλij

=
(−1)

N(N−1)
2 e−

πiN(N−1)
4 e−

πi
6k
N(N2−1)

(ik)N/2

N−1∏
m=1

(
2 sin

πm

k

)N−m
.

(C.56)

Under the change of variables λµ → λµ +
∑N

j=1 λj (µ = 1, · · · , N − 1), whose Jacobian is
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Figure C.5: Comparison between the N = 4 SYM (blue dots) and 3D Chern-Simons (orange
diamonds) solutions for the sub-leading saddle point. The parameters are the same as in
Figure C.4, but for the sub-leading saddle the exponentiated eigenvalues go only once around
the (distorted) circle.

given as
N∏
j=1

dλj → N
N∏
j=1

dλj, (C.57)

the U(N) partition function (C.56) can be rewritten as

ZCS
U(N) =

1

(N − 1)!

∫ ∞
−∞

(
N∏
j=1

dλj) e
−ikπ

∑N−1
µ=1 (λµ+

∑N
j=1 λj)

2−ikπλ2
N

N−1∏
µ6=ν

2 sinhπλµν

×
N−1∏
µ=1

2 sinhπ(λµ + Σjλj − λN)2 sinhπ(λN − λµ − Σjλj)

=
1

(N − 1)!

∫ ∞
−∞

(
N−1∏
µ=1

dλµ)
N∏
i 6=j

2 sinhπλij

∣∣∣
λN=−

∑N−1
µ=1 λµ

×
∫ ∞
−∞

dλN e
−ikπN(λN+

∑N−1
µ=1 λµ)2

e−ikπ(
∑N−1
µ=1 λ2

µ+(
∑N−1
µ=1 λµ)2)

=

(
N

ik

) 1
2

ZCS
SU(N).

(C.58)

For k = −ηN with η1 = ±1, substituting the identity

N−1∏
m=1

(
2 sin

πm

N

)N−m
= NN/2 (C.59)
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into the U(N) partition function (C.56) and using the relation (C.58), we have

ZCS
SU(N) = e−

πiη
4
e
πiN(N−1)

2 e−
πiN(N−1)

4 e
πiη
6

(N2−1)

e−
πiηN

4

e
πi(1+η)N(N−1)

4

= exp

[
πiN(N − 1)

2
+

5πiη(N2 − 1)

12

]
.

(C.60)

C.4 Proof of Lemma 2

Cover the torus R2/Z2 with balls of radius ε/2. By the pigeonhole principle, there are

two integers A < B such that ({Ax}, {Ay}) and ({Bx}, {By}) are in the same ball. Then

({(B − A)x}, {(B − A)y}) is in the ball of radius ε around 0 (mod Z2).

Now, if {(B − A)x}+ {(B − A)y} > 1, we are done by taking C = B − A.

If on the other hand {(B − A)x}+ {(B − A)y} < 1, then the relation

{α− β} =

{α} − {β}, {α} ≥ {β};

{α} − {β}+ 1, {α} < {β},
(C.61)

guarantees that for ε small enough we have ({(B − A− 1)x}+ {(B − A− 1)y}) > 1, so we

are done by taking C = B − A− 1. Q.E.D.

Let us see how things work in an example. Take x = y = 1/3. The two values B = 6 and

A = 3 are acceptable. Now, since {(B − A)x} + {(B − A)y} = {1} + {1} = 0 < 1, we can

take C = B − A− 1 = 2. Indeed {2 · 1
3
}+ {2 · 1

3
} = 4

3
> 1 as desired. This implies that for

0 < arg τ < π
2
, at the point ({∆̃1}, {∆̃2}) = (1/3, 1/3), C = 2 satisfies the condition (3.94).
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