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Abstract

Driving the state of dynamical systems to a desired point or set is a problem of crucial prac-
tical importance. Various constraints are present in real-world applications due to structural
and operational requirements. Spatial constraints, i.e., constraints requiring the system tra-
jectories to evolve in some safe set, while visiting some goal set(s), are typical in safety-
critical applications. Furthermore, temporal constraints, i.e., constraints pertaining to the
time of convergence, appear in time-critical applications, for instance, when a task must
complete within a fixed time due to an internal or an external deadline. Moreover, imper-
fect knowledge of the operational environment and/or system dynamics, and the presence
of external disturbances render offline control policies impractical and make it essential
to develop methods for online control synthesis. Thus, from the implementation point-of-
view, it is desired to design fast optimization algorithms so that an optimal control input,
e.g., min-norm control input, can be computed online. As compared to exponential stabil-
ity, the notion of fixed-time stability is stronger, with the time of convergence being finite
and is bounded for all initial conditions. This dissertation studies the theory of fixed-time
stability with applications in multi-agent control design under spatiotemporal and input
constraints, and in the field of continuous-time optimization.

First, multi-agent control design problems under spatiotemporal constraints are studied.
A vector-field-based controller is presented for distributed control of multi-agent systems
for a class of agents modeled under double-integrator dynamics. A finite-time controller
that utilizes the state estimates obtained from a finite-time state observer is designed to
guarantee that each agent reaches its goal location within a finite time while maintaining
safety with respect to other agents as well as dynamic obstacles.

Next, new conditions for fixed-time stability are developed to use fixed-time stability
along with input constraints. It is shown that these new conditions capture the relationship
between the time of convergence, the domain of attraction, and the input constraints for
fixed-time stability. Additionally, the new conditions establish the robustness of fixed-time
stable systems with respect to a class of vanishing and non-vanishing additive disturbances.
Utilizing these new fixed-time stability results, a control design method using convex opti-
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mization is presented for a general class of systems having nonlinear, control-affine dynam-
ics. Control barrier and control Lyapunov function conditions are used as linear constraints
in the optimization problem for set-invariance and goal-reachability requirements. Various
practical issues, such as input constraints, additive disturbance, and state-estimation error,
are considered.

Next, new results on finite-time stability for a class of hybrid and switched systems
are proposed using a multiple-Lyapunov-functions framework. The presented framework
allows the system to have unstable modes. Finally, novel continuous-time optimization
methods are studied with guarantees for fixed-time convergence to an optimal point. Fixed-
time stable gradient flows are developed for unconstrained convex optimization problems
under conditions such as strict convexity and gradient dominance of the objective function,
which is a relaxation of strong convexity. Furthermore, min-max problems are considered
and modifications of saddle-point dynamics are proposed with fixed-time stability guaran-
tees under various conditions on the objective function.
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CHAPTER 1

Introduction

This dissertation studies finite- and fixed-time stability of dynamical systems with appli-
cations in multi-agent control synthesis and convex optimization problems. This chapter
provides the motivation for this research and a brief literature review for each of the topics
studied in the dissertation, the contributions of the dissertation, the relevant publications
that provide the base for it, and its outline.

1.1 Motivation

The stability of the equilibrium points or sets of dynamical systems is an essential property
since they typically are designed to capture desired specifications and performance require-
ments of the system response. The traditional notions of stability for dynamical systems
with Lipschitz or locally Lipschitz dynamics have been studied extensively in the literature.
In contrast to asymptotic stability (AS) or exponential stability (ES), which pertains to the
convergence of system trajectories as time tends to infinity, finite-time stability (FTS) 1 is
a concept that guarantees convergence in a finite time. A stronger notion, termed as fixed-
time stability (FxTS), requires that this finite time of convergence is uniformly bounded for
all initial conditions, thus requiring the system trajectories to reach an equilibrium point
or set within a fixed time independent of the initial conditions. Hence, for specifications
involving temporal constraints and time-critical systems, the theory of finite- and fixed-
time stability can be leveraged in the control design to guarantee that such specifications
are met. It has been shown that a faster rate of convergence generally implies that the
closed-loop system has better disturbance rejection properties; in particular, under the ef-
fect of added vanishing disturbance, finite-time convergence is preserved and under the
effect of non-vanishing, bounded disturbance, the ultimate bound on the state-error is of

1With a slight abuse of notation, the acronyms FTS (similarly, FxTS) is used to denote both finite-time
stability and finite-time stable, depending on the context.
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a lower magnitude (see e.g., [1, 2]). This further motivates the study of finite- and fixed-
time stability in this dissertation for time-critical motion planning problems as well as for
gradient flows to solve convex optimization problems. However, achieving fixed-time sta-
bility under input constraints is a challenging problem since in this case it is not possible
to guarantee convergence within a fixed time for arbitrary initial conditions. There is no
prior work on incorporating input constraints while characterizing a domain of attraction
from which fixed-time convergence can be guaranteed. This motivates the study of new
fixed-time stability conditions that incorporate input constraints and characterize a domain
of attraction of fixed-time stability.

With the advent of fast computational tools, online control synthesis through solving an
optimization problem has attracted much attention, particularly in the fields of robot mo-
tion planning and safety- and time-critical control. In particular, computation of minimum
norm control input via a quadratic program (QP), satisfying certain conditions on forward
invariance of a safe set and convergence to a required goal set, has become very popular
since QPs, being convex optimization problem, can be solved very efficiently. Here, safety
and convergence requirements can be formulated as linear inequalities using the notion of
control barrier function (CBF) and control Lyapunov function (CLF), respectively. CBF is
used to ensure that system trajectories do not leave a zero sub-level set of a barrier func-
tion, rendering this set forward invariant. Furthermore, input constraints, that are inevitable
in real-world problems, can be incorporated in a QP formulation via linear inequalities,
leading to realizable control synthesis. The notion of CLF requires the system trajecto-
ries to reach a zero sub-level set of a Lyapunov function asymptotically, thus, naturally
motivating the concept of fixed-time CLF (FxT-CLF), requiring that the same is achieved
within a fixed amount of time. Combining FxT-CLF and CBF in a QP results in an effec-
tive control synthesis technique guaranteeing both safety and fixed-time convergence under
input constraints. This, along with the fact that QPs can be solved very efficiently for real-
time implementation, motivates the study of QP based control synthesis techniques in this
dissertation.

There is a variety of practical examples where certain stability properties cannot be
achieved using a continuous feedback controller; for instance, the authors in [3] make their
case for the well-studied pendulum on a cart problem. Many control-theoretic examples
have been proposed where switched controller systems can provide stability and perfor-
mance guarantees; see e.g. [4–6]. Thus, the design and analysis of hybrid controllers,
leading to hybrid closed-loop dynamics, become essential. In addition, hybrid systems are
capable of modeling a large class of complex dynamical systems, e.g. walking bipedal
robots [7, 8] and gear-shift in automated vehicles [9]. Leveraging a common Lyapunov
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function, restrictive conditions for FTS have been studied in past, requiring, in part, that
each of the subsystems of the hybrid system is FTS in itself. A multiple Lyapunov functions
based approach lifts this restriction and allows the system to have unstable subsystems, and
thus, such an approach is very important from a practical point of view, where unstable
subsystems arising from various reasons, e.g. presence of an unobservable or an uncontrol-
lable subsystem, are inevitable. Motivated from this, this dissertation studies the notion of
FTS in the context of hybrid and switched dynamical systems.

Finally, exploring connections and applications of the theory of FTS and FxTS to other
domains can give new insights on just how useful these stability notions are from a practical
point of view. Continuous-time optimization is currently an active field of research in opti-
mization theory; prior work in this area has yielded useful insights and elegant methods for
proving stability and convergence properties of the optimization algorithms. Development
of FxTS schemes for convex optimization problems can lead to the fast computation of
the optimal solutions, advancing the field of optimization-based control synthesis one step
further in the direction of real-time implementability. This motivates the study of FxTS
gradient flows in this dissertation to solve a class of convex optimization problems.

Though the theory presented in this dissertation treats continuous-time dynamics, the
discrete-time implementation manifests the applicability of the proposed methods in prac-
tice. The study of discretization methods that preserve the finite- and fixed-time conver-
gence behavior of the continuous-time dynamical systems upon discretization is an ac-
tive field of research. In particular, whether there exists a discretization scheme for FTS
and FxTS dynamical systems such that the resulting discrete dynamical system has a fi-
nite and fixed number of steps convergence, respectively, thus preserving the convergence
rate, is an open problem. Recent work on rate-preserving schemes [10, 11] and consistent-

discretization schemes [12, 13] for finite or fixed-time stable dynamical systems motivates
the future work of studying discretization schemes for the proposed methods, which would
guarantee convergence of the solutions in a finite or fixed number of steps for all initial
conditions (see also, discussion in Sections 4.5 and 6.4).

1.2 Literature review

1.2.1 Robust multi-agent control design with finite-time stability

In recent years, the usability of unmanned aerial vehicles (UAVs) has increased due to
availability and technology maturity; examples of applications include package transporta-
tion [14] and distributed sensing [15]. Large-scale problems make centralized algorithms
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intractable with the number of agents, motivating the research in the field of distributed co-
ordination and control. The problem of decentralized multi-agent motion planning, which
mainly focuses on generating collision-free trajectories for multiple agents (e.g., UAVs)
so that they reach preassigned goal locations under limited sensing, communication, and
interaction capabilities has been studied by many researchers [16–18].

Numerous methodologies on distributed motion planning of multi-agent systems have
appeared in recent years, with the most popular being (i) optimization-based techniques
[19–21]; (ii) Lyapunov-based methods [22, 23]; (iii) Voronoi-based methods [24, 25]; (iv)
graph search methods, e.g., A∗ planning [26], and sampling-based methods (e.g., rapidly-
exploring random tree (RRT)) [27,28]. The main issue with sampling-based or graph-based
methods is scalability with the number of agents. The scalability issues can be circum-
vented by using Lyapunov-based methods, such as navigation fields or vector fields.

From a practical and robustness point of view, sensing uncertainties along with the case
when only partial state measurements are available should be considered. In particular,
while the state vector of a 6 degree-of-freedom UAV or an underwater vehicle consists of
the pose (position and orientation) and the velocity vector, certain common localization
sensors, e.g. GPS, Sonar, LiDAR, only measure a few of the states of the vehicle. Fur-
thermore, these sensors are noisy, something that needs to be taken into account during the
control design, and thus, the problem of designing an observer-based controller for robust
full-state feedback arises. Another important aspect in multi-agent control design is the
limited capabilities of the considered vehicles, in terms of limited sensing and communi-
cation radii. From the safety perspective, the agents must be able to avoid collisions with
each other and with obstacles under these limitations. In [29], the authors consider a lim-
ited sensing radius for a pair of nonholonomic vehicles for cooperative and non-cooperative
collision avoidance. In [30], the authors used potential functions for formation control and
obstacle avoidance under limited sensing. In [31] (see also [32]), the authors design a cen-
tralized supervisor for collision avoidance in the presence of disturbances and uncontrolled
vehicles. However, the work in [29–32] assumes complete knowledge of the states of the
agents and no sensing uncertainties.

Ensuring certain levels of robustness against modeling uncertainties and external dis-
turbances is of primary concern for real-world applications. Much work is done in the
case of matched disturbances, i.e. when the control input and the disturbance enter the
plant via the same channel. In [33], a stable uncertainty is assumed to be bounded in
H∞-norm by a prior given desired tolerance, and an observer-based controller is designed
by using the algebraic Riccati equation. Related work considering bounded deterministic
disturbances can be found in the design of finite-time consensus algorithms with matched
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disturbances [34–36], mismatched disturbances [37], and the rotating consensus control
with mixed model uncertainties and external disturbances [38].

Wind, modeled as a state disturbance, affects the position dynamics of the aerial vehi-
cles. For most of the practical systems, such as fixed-wing (or rotary-wing) aircraft, the
control inputs are the deflection of control surfaces and thrust (or the rotor speed), which
take effect in the velocity dynamics of the vehicle. Hence, the study of systems with un-
matched disturbance becomes significantly important. Nevertheless, there is only a little
work in this field for the case of multi-agent systems: in [39], the authors assumed that
the dynamics of the unmatched disturbance are known, and leverage this knowledge to
design a disturbance observer. In [40], the authors show input-to-state stability via full-
state feedback for the cases when 1) the disturbance is matched and is uniformly bounded,
and 2) the disturbance is unmatched, is uniformly bounded as well as integral-bounded.
In [41] and [42], the authors assumed that the disturbance is at least twice continuously
differentiable for a second-order system and that all the derivatives of the disturbance are
bounded with known bounds. While under these strong assumptions, the aforementioned
work showed that the effect of the disturbance can be nullified, it is worth noting that one
cannot always assume such smoothness or vanishing properties for wind disturbances. In
this dissertation, a distributed robust observer-based controller is developed that addresses
most of these drawbacks by considering a limited and erroneous sensing model, partial
erroneous state measurements, wind disturbances, and dynamical obstacles.

It is generally desired that the agents achieve their tasks of reaching given locations in
a finite time. For example, a UAV tasked with a package delivery must reach its destination
within the desired time. In contrast to AS, which pertains to convergence as time goes
to infinity, FTS is a concept that requires the convergence of solutions in finite time. In
the seminal work [2], the authors introduce necessary and sufficient conditions in terms
of a Lyapunov function for the equilibrium of a continuous-time, autonomous system to
exhibit FTS. Finite-time controllers have been used for applications such as consensus
or formation control in [43–45], but without consideration of safety or collision avoid-
ance. There is a large body of literature on collision avoidance schemes along with finite-
time convergence, e.g. [46–50]. The work in [46–48] considers finite-time consensus with
inter-agent collision avoidance, whereas [49] incorporates collision avoidance in finite-
time flocking of Cucker-Smale agents. [50] considers the problem of parallel formation
(or, velocity alignment) in a finite time in a stationary-obstacle environment. Although the
aforementioned work considers inter-agent collision avoidance or obstacle avoidance, none
of them considers external disturbances or uncertainties in the state measurements. [51]
considers bounded, matched disturbance, and presents a method of achieving robust finite-
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time consensus for multi-agent systems. The work in [35, 36] consider bounded, matched
disturbances, whereas [52] considers unknown nonlinearities in the dynamics, and design
protocols to achieve consensus in a fixed time. However, [35, 36, 51, 52] do not consider
collision avoidance. The work in this dissertation addresses the problem of finite-time con-
vergence in distributed multi-agent control while guaranteeing inter-agent safety as well as
collision avoidance with dynamic obstacles under the presence of state disturbances and
measurement uncertainties.

1.2.2 Control synthesis via quadratic programming

Forward invariance of a safe set in addition to convergence to a desired set (or point) can
be achieved via a combination of CLF and CBF [53–55]. In recent years, online optimiza-
tion, particularly, QP based approaches have gained popularity for control synthesis since
the convergence requirements encoded via CLFs and safety requirements via CBFs can be
incorporated together in a QP formulation; see [53, 56–58]. Other notions such as expo-
nential CBFs (see [59, 60] and zeroing control barrier function (ZCBF)s (see [53, 54]) can
also be used in a QP formulation for forward invariance. These methods are suitable for
real-time implementation as QPs can be solved efficiently [23, 57, 61].

Input constraints, such as actuator saturation, are inevitable in practice. Since a limited
control input can affect the region of convergence, addressing spatiotemporal and input
constraints simultaneously is a challenging control problem. Most of the aforementioned
contributions address control design that achieves convergence to the desired goal set (or
point), but without explicitly considering control input constraints. Such constraints are
considered in [53], where performance and safety objectives are represented using CLFs
and CBFs, respectively, along with control input constraints in a QP. More recently, the
authors in [57] address the issue of sampling effects and additive bounded disturbances in
guaranteeing safety using robust control barrier functions; more specifically, they formulate
a QP to design a zero-order hold control input for a mechanical system in the presence of
component-wise input constraints.

Most of the aforementioned work imposes asymptotic or exponential convergence re-
quirements through a CLF. The authors of [62] formulate a QP for finite-time convergence
to the desired set, yet without considering input constraints. This limitation is removed
in [63], where the authors consider a QP formulation incorporating input constraints as
well, in addition to the safety and convergence constraints. The authors in [64] use CBFs
to encode signal-temporal logic (STL) based specifications, involving reaching a goal set
within a finite time, and formulate a QP to compute the control input. While FTS leads
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to convergence within a finite time, this time of convergence can grow unbounded as the
initial conditions go farther away from the equilibrium point. In order to meet temporal
requirements, it is required that convergence is achieved within a user-defined time. A
stronger notion termed as FxTS, introduced in [65] where the time of convergence does not
depend upon the initial conditions, can be used to address such temporal constraints. The
concept of FxTS has been studied widely in the past decade; the authors in [66,67] discuss
necessary and sufficient conditions for FxTS; [68, 69] present FxTS results from a sliding-
mode perspective (see also [70–72] for certain examples of applications of FxTS theory
in control and estimation problems). The work in this dissertation combines the notion
of CLF and FxTS to introduce a class of functions termed as FxT-CLF, thus guaranteeing
convergence within a fixed time.

Encoding safety in the presence of disturbances can be done using robust CBFs [57,
58, 73]. While the work in [57, 58, 73] considers bounded additive disturbance in the sys-
tem dynamics, it is generally assumed that the system states are available without errors.
In their majority, earlier work in the literature on multi-agent collision avoidance using
CBFs [21, 23, 29, 30] assumes perfect knowledge of the states of the agents and no sens-
ing uncertainties. The work in this dissertation uses a combination of robust CBFs and
robust FxT-CLFs in a QP to compute a controller that guarantees robust safety and fixed-
time convergence in the presence of additive disturbance, state-estimation error, and input
constraints.

1.2.3 Finite-time stabilization of hybrid systems

The stability of the equilibrium point or equilibrium set of hybrid systems has been stud-
ied extensively in the literature; for an overview of the theory of hybrid systems, i.e., on
solution concepts and the notion of stability, the interested readers are referred to [74, 75].
Switched systems are a special class of hybrid systems, where only the system dynamics
are allowed to switch without discrete jumps in the system states. Stability of switched sys-
tems is typically studied using either a common Lyapunov function, or multiple Lyapunov
functions. In [76], the author introduces the concept of multiple Lyapunov functions to
analyze the stability of switched systems; since then, a lot of work has been done on the
stability of switched systems using multiple Lyapunov functions, see e.g., [77,78]. In [77],
the authors relax the non-increasing condition on the Lyapunov functions used in [76], by
introducing the notion of generalized Lyapunov functions. They present necessary and
sufficient conditions for Lyapunov and AS of switched systems under arbitrary switching.

Inspired by the results in [76,77], this dissertation studies conditions for FTS of a class
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of hybrid systems, using multiple generalized Lyapunov functions. FTS of switched and
hybrid systems have gained popularity in the last few years. The authors in [79] consider
the problem of designing a controller for a linear switched system under delay and exter-
nal disturbance with finite-time convergence. In [80], the authors design a hybrid observer
and show finite-time convergence in the presence of unknown, constant bias. In [81], the
authors study FTS of nonlinear impulsive dynamical systems, and present sufficient con-
ditions to guarantee FTS. The work in [80, 81] considers discrete jumps in the states of
a continuous dynamical system, i.e., in a system one model for the continuous dynamics,
and one model for the discrete dynamics. The authors in [82] present conditions in terms
of a common Lyapunov function for FTS of hybrid systems. They require the value of the
Lyapunov function to be decreasing during the continuous flow and non-increasing at the
discrete jumps. The authors in [83] design an FTS state-observer for switched systems via
a sliding-mode technique under the assumption that each subsystem is observable on a do-
main. More recently, the authors in [84] study FTS of homogeneous switched systems by
introducing the concept of hybrid homogeneous degree and relating negative homogeneity
with FTS. They consider switched systems with an assumption that each subsystem pos-
sesses a homogeneous Lyapunov function, and that the switching-intervals are constant.
In [85], the authors consider systems in the strict-feedback form with positive powers and
design a controller as well as a switching law so that the closed-loop system is FTS. In [86],
the authors design an FTS observer for switched systems with unknown inputs. They as-
sume that each linear subsystem is strongly observable and that the first switching occurs
after an a priori known time. In contrast, the work in this dissertation does not assume that
the subsystems are homogeneous or in the strict feedback form, and studies conditions in
terms of multiple Lyapunov functions for FTS of the origin for a general class of hybrid
and switched systems.

1.2.4 Continuous-time optimization

The study of continuous-time optimization methods has been a very important part of the
optimization theory from very early days [87]. Research in this area continues to this
day intending to develop and study differential equations that model the commonly used
discrete-time optimization algorithms [10, 88]. Establishing connections between ordi-
nary differential equations (ODEs) and optimization has been an active topic of interest,
see [88–90] and the references therein. The theory of ODEs offers useful insights into opti-
mization theory and the corresponding techniques [88]. As noted by the authors in [91], the
continuous-time perspective of optimization problems provides simple and elegant proofs
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for the convergence of solutions to the equilibrium points using Lyapunov stability theory.
It is well known that the strict minima of a locally convex function f : Rn → R are sta-

ble equilibria of the gradient flow (GF) dynamics ẋ = −∇f(x), and that, if the sub-level
sets of f are compact, then the trajectories converge asymptotically to the set of critical
points of f . In recent years, GFs have been employed in a wide range of applications,
including image processing [92] and motion planning [93]. There is a plethora of work on
asymptotic convergence analysis of GF, for an overview, see [10]. Recent work, for exam-
ple, [88], has focused on exponential stability of the GF based methods. The strong or strict

convexity of the objective function is a standard assumption for exponential stability. As
shown in [94], the condition can be relaxed by assuming that the objective function satisfies
the Polyak-Łojasiewicz (PL) inequality, i.e., the objective function is gradient dominated.
In [95], the authors develop cubic regularization of Newton’s method with super-linear
convergence rate. Another set of problems where GF is used is the saddle-point dynamics

for min-max problems, where a multivariate function needs to be minimized over one set
of variables and maximized over another set of variables. Saddle-point dynamics and its
variations have been used extensively in the design and analysis of distributed feedback
controllers [96] and optimization algorithms in several domains, including active power
loss minimization [97], network optimization [98], and zero-sum games [99] (see [100]
for a detailed presentation on various applications where saddle-point dynamics naturally
arise).

It is worth noticing that while there is a lot of work on continuous-time optimization,
most of it addresses asymptotic or exponential convergence of the solutions to the optimal
point, i.e., convergence as time tends to infinity. In [93], the authors introduce normalized
gradient flows to show finite-time convergence of the solutions to the optimal point. The
authors in [101] consider convex optimization problems with equality constraints under
strong convexity of the objective function and design discontinuous dynamics that con-
verge to the optimal solution in finite time. Finite-time distributed optimization is studied
in [102, 103], where the authors assume very specific initial conditions, such that the sum
of the gradient of the objective functions is zero. In [68], the authors design a sliding-
mode-based technique for distributed optimization with fixed-time convergence guarantees
assuming that the objective functions are strongly convex. In [104], a method of finding
the optimal solution of a linear program in a fixed time is proposed. In [105] and [106], the
authors design finite-time converging schemes for distributed optimization where the ob-
jective function is a sum of quadratic functions and strictly convex functions, respectively.

In this dissertation, modified GF schemes are designed for unconstrained and con-
strained convex optimization problems, as well as for min-max problems, with fixed-time
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convergence guarantees. In [102,103], the authors assume that the Hessian of the objective
function is Lipschitz continuous. This assumption as well as the strong-convexity assump-
tion in [68, 101] are relaxed in this work, and it is shown that fixed-time convergence can
be guaranteed for a larger class of problems where the objective function satisfies the PL
inequality. In contrast to [93, 104], the work in this dissertation studies convex optimiza-
tion problems with linear equality constraints and proposes a novel method to obtain the
optimal point in fixed time under certain conditions on the smoothness and convexity of
the objective function.

1.3 Contributions and outline

This dissertation advances the theoretical results in the field of finite- and fixed-time sta-
bility with applications in provably safe control synthesis for multi-task problems under
input constraints and convex optimization problems. The following is a summary of the
contributions of this research:

• Chapter 2 presents a framework for multi-agent motion planning with finite-time
stability guarantees under additive disturbances and partial state information. In
this chapter, agents modeled via double-integrators are considered and a finite-time
observer-based robust controller is designed with provable safety with respect to
other agents and dynamic obstacles. It is also shown that under the effect of the
carefully designed vector field, there is no deadlock. The results in this chapter are
based on the work in [107].

• Under the notion of FTS as studied in Chapter 2, the time of convergence can grow
unbounded. For the satisfaction of temporal constraints, the notion of FxTS can be
used in control synthesis. However, it is not possible to guarantee FxTS in the pres-
ence of input constraints. Chapter 3 presents two new results on FxTS of dynamical
systems relaxing the prior conditions so that the modified conditions can be used
to guarantee FxTS for control systems with input constraints. The relationship be-
tween the time of convergence, the domain of attraction, and the input bounds are
established. The proposed results also establish the robustness of FxTS dynamical
systems with respect to a class of additive disturbances. The results in this chapter
are partly based on the work in [108, 109].

• In contrast to Chapter 2 where systems modeled under double-integrator dynamics
are studied, Chapter 4 studies the problem of control synthesis for a general class of
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nonlinear control affine systems and presents a general control synthesis framework
for safety-critical systems. Leveraging the new FxTS conditions from Chapter 3,
a QP is proposed with guaranteed feasibility such that the control input defined as
a solution of the QP solves a multi-task problem involving safety and fixed-time
convergence under input constraints. A framework for handling a class of additive
disturbances and measurement errors is proposed using the notion of robust CLFs and
robust CBFs. The results in this chapter are partly based on the work in [110–112].

• Chapter 5 presents novel multiple-Lyapunov function based FTS conditions for a
class of hybrid and switched systems. Utilizing the proposed conditions, an FTS
switching law design procedure is proposed and an FTS observer-based controller
is designed for a class of switched linear systems with only one controllable and
observable mode. The results in this chapter are based on the work in [113, 114].

• Chapter 6 presents novel FxTS gradient flows for a class of convex optimization
problems including constrained and unconstrained optimization problems as well as
min-max problems. Assumptions on strong convexity are relaxed and novel FxTS
gradient flows are proposed such that the resulting system trajectories reach the opti-
mal point of the underlying optimization problem within a fixed amount of time. The
results in this chapter are partly based on the work in [115].

Finally, Chapter 7 presents the conclusions of the dissertation and directions for future
research, and lists of the other related work by the author which are not discussed in detail
in the dissertation.
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CHAPTER 2

Finite-time Multi-Agent Control Design

In this chapter, the problem of safe trajectory generation for multi-rotor type UAVs is con-
sidered. Specifically, the considered problem seeks to generate safe trajectories from all
initial conditions to a goal location for double integrator vehicles with limited, erroneous
sensing capabilities, in the presence of unknown wind disturbance and moving obstacles.

First, a full-state feedback controller using attractive and repulsive vector fields is de-
signed in Section 2.1. The agents are modeled using double integrator dynamics for 2-D
(or planar) motion of multi-rotor aircraft. This is motivated by the problem of safe trajec-
tory generation of multi-rotor aircraft flying in a low-altitude urban airfield with restrictions
on the airspace available for such operations, particularly in terms of altitude restrictions.
With the anticipated increase in the number of vehicles in the airspace, it might be desired
to have altitude bands designated to different classes of UAVs depending upon their ca-
pabilities. Thus, it is of interest to design safe trajectories of aircraft with fixed altitude
constraints. The problem of avoiding a form of deadlocks is also addressed by properly
defining the direction of motion for the agents when the vector field vanishes so that global

convergence is guaranteed. Furthermore, the theory of FTS is utilized so that the agents
accomplish the assigned tasks of reaching their respective goal locations in a finite time.

Then, a general class of unmatched state disturbances is considered in the agents’ dy-
namics to account for wind disturbances in Section 2.2. It is also assumed that only position
measurements are available. An FTS state-feedback control law is designed that uses state
estimates derived from an FTS state-estimator. A limited sensing model is assumed that
is erroneous, i.e., the agents can sense the position and the velocity of their neighboring
agents within a bounded error.

Finally, Section 2.3 studies the motion of class-A or controlled agents is considered
in a dynamic obstacle environment induced by class-B or uncontrolled agents (or sim-
ply, dynamic obstacles), as defined in [116]. The dynamic obstacles do not cooperate to
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avoid collisions. A robust controller is designed that guarantees inter-agent safety and con-
vergence of each agent to their respective goal locations within a finite time even in the
presence of dynamic obstacles. Two simulation case studies are presented in Section 2.4,
demonstrating the efficacy of the proposed method. The results in this chapter are based
on [107].

The following notation is frequently used in this chapter:

ri Position of the agent i
ui Velocity of agent i
ai Acceleration of agent i
rgi Desired goal location of agent i
w Wind disturbance
wav Mean value of the wind disturbance
δav Variation of the wind disturbance from the mean value
dij Distance between agent i and j
dm Minimum safety distance
Rc Sensing radius of each agent
δe Estimation error
rijs Position of the agent j as sensed by agent i
uijs Velocity of agent j as sensed by agent i
εs Sensing error
Fi Nominal vector field for agent i
γi Desired direction of motion for agent i
uid Desired speed for agent i
r̂i Estimated position of the agent i
ûi Estimated velocity of agent i
ûid Desired estimated velocity for the estimated agent i
d̂ij Distance between agent i and j as estimated by agent i
R Set of reals
R+ Set of non-negative reals
‖ · ‖ Euclidean norm (2-norm) of (·)
∠(x) Orientation of the vector x
0 Zero vector
∅ Empty set
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2.1 Modeling and problem statement

Consider N identical agents i ∈ {1, . . . , N}, that are assigned to move to goal locations of

position coordinates rgi =
[
xgi ygi

]T
while avoiding collisions, i.e., for all agents i 6= j,

‖ri(t)−rj(t)‖ ≥ dm for all t ≥ 0, where dm is a user-defined safety distance. Each agent i
is assumed to be a multi-rotor aircraft whose equations of motion for 2-D planar motion are
approximated via double integrator dynamics. The following dynamics model the motion
of the agents:

ṙi(t) = ui(t) + w(ri(t), t), (2.1a)

u̇i(t) = ai(t), (2.1b)

yi(t) = ri(t), (2.1c)

where ri(t) =
[
xi(t) yi(t)

]T
is the position vector of agent i, yi(t) is the output map of

the system consisting of the position of agent i, ui(t) =
[
uix(t) uiy(t)

]T
is the velocity

vector comprising the linear velocities of the agent i and ai(t) =
[
aix(t) aiy(t)

]T
is

the acceleration input to agent i. The position ri, the velocity ui and the acceleration
ui, all are measured with respect to (w.r.t.) a global reference frame. The term w(ri, t) :

R2×R+ → R2 is the unknown wind disturbance, which can vary in space and time. As can
be seen from (2.1), the disturbance w(ri, t) is unmatched. The arguments t, r are dropped
whenever clear from the context. The following assumption is made about the disturbance
w.

Assumption 2.1 (Boundedness of wind disturbance). The norm of the wind disturbance

is bounded as

‖w(r, t)−wav‖ ≤ δw ∀(r, t) ∈ D ⊆ R2 × R+ (2.2)

where wav is the average or mean value of the disturbance over the domain D, with

‖wav‖ < ∞ and δw < ∞ is the maximum deviation of the disturbance from the mean

value. Furthermore, the parameters wav and δw are known.

Remark 2.1. It is assumed that the disturbance is bounded with a known bound and known

mean value. This assumption on unmatched disturbance w(r, t) is much less restrictive as

compared to the following literature: (i) in [39], the authors assume that the dynamics

of the disturbance are known; (ii) in [40], the authors assume that the disturbance is an
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element of L∞; (iii) in [41], the authors assumed that the disturbance satisfies a stronger

regularity assumption, i.e., it should be at least twice differentiable for double-integrator

systems.

The main problem statement considered in this chapter is given as follows:

Problem 2.1. For each agent i ∈ {1, 2, . . . , N}, design an output feedback ui = ui(yi)

such that the closed-loop trajectories of (2.1) satisfy ‖ri(t) − rj(t)‖ ≥ dm for all t ≥ 0

and limt→Ti ri(t) = rgi where Ti <∞.

Figure 2.1: An example scenario consisting of 4 agents.

Each agent i is assumed to be a circular disk of radius dm
2

centered at ri =
[
xi yi

]T
(so that the inter-agent safety is ensured when ‖ri − rj‖ ≥ dm), and has a circular sensing
region Ci of radius Rc, denoted as Ci := {r ∈ R2 | ‖ri − r‖ ≤ Rc} (see Figure 2.1).
Denote by Ni := {j | rj ∈ Ci} the set of agents that are in the sensing region of agent
i, and call them neighbors of agent i. Agent i can sense the position and velocity of a
neighbor j ∈ Ni. To this end, the following assumption is made on the sensing error for
each agent i.

Assumption 2.2 (Sensing model). Agent i can sense the position (denoted as rijs) and

velocity (denoted as uijs) of an agent j ∈ Ni within a bounded error εs, i.e., ‖rj(t) −
rijs(t)‖ ≤ εs and ‖uj(t)− uijs(t)‖ ≤ εs.

The following assumption is made on the initial and goal location of the agents, and the
sensing radius, Rc to ensure safety and convergence.
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Assumption 2.3 (Initial and goal locations). For each pair (i, j) such that i 6= j, ‖ri(0)−
rj(0)‖ > ds and ‖rgi − rgj‖ ≥ 3Rc, where ds is the modified safety distance as defined in

Theorem 2.5. Furthermore, the sensing radius satisfies Rc > 2ds.

2.1.1 Overview of finite-time stability

First, the required definitions and results on the notion of FTS are reviewed. Consider the
system:

ẋ(t) = f(x(t)), (2.3)

where x ∈ Rn, f : D → Rn is continuous on an open neighborhood D ⊆ Rn of the
origin and f(0) = 0. Assume that the solution of (2.3) exists and is unique for all initial
conditions x(0) ∈ Rn. The following definition is adapted from [2].

Definition 2.1 (FTS). The origin is an FTS equilibrium of (2.3) if it is Lyapunov stable and

there exists a neighborhoodN of the origin such that for all x(0) ∈ N \{0}, limt→T x(t) =

0, where T = T (x(0)) <∞. The origin is a globally FTS equilibrium if N = Rn.

Here, T is termed as the settling-time function. The authors also presented Lyapunov con-
ditions for FTS. The following result is adapted from [2]:

Theorem 2.1 (Lyapunov conditions for FTS). Suppose there exist a continuously differ-

entiable, positive definite function V : D → R for (2.3), real numbers α > 0 and γ ∈ (0, 1),

and an open neighborhood V ⊆ D ⊂ Rn of the origin such that its time derivative V̇ (x)

satisfies

V̇ (x) ≤ −α V (x)γ, ∀x ∈ V \ {0}. (2.4)

Then the origin is an FTS equilibrium. Furthermore, the settling-time function T satisfies

T (x(0)) ≤ V (x(0))1−γ

α(1− γ)
,∀x(0) ∈ Rn. (2.5)

Next the notion of homogeneity and its relation to FTS is reviewed from [117].

Definition 2.2 (Homogeneity). A function f : Rn → Rn is called a homogeneous function

with degree d w.r.t. a dilation function ∆ε(x) := (εr1x1, ε
r2x2, . . . , ε

rnxn) where ri > 0 and
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x =
[
x1 x2 . . . xn

]T
, if it holds that

fi(ε
r1x1, ε

r2x2, . . . , ε
rnxn) = εd+rifi(x1, x2, . . . , xn)

for each i = {1, 2, . . . , n} and for all ε > 0.

Theorem 2.2 (Homogeneity and FTS). Suppose the vector field f is homogeneous with

degree d. Then, the origin of the system (2.3) is FTS if and only if it is asymptotically stable

and d < 0.

Theorem 2.3 ([118]). The origin of the system ẋ(t) = −kx‖x‖α−1 is globally FTS for all

k > 0 and 0 < α < 1.

2.1.2 Vector field design

For each agent i, a vector-field-based feedback controller is designed. First, a vector field
is defined that can steer the agents towards their goal locations while maintaining safe
inter-agent distances. Then, a feedback law to follow this vector field is designed. Two
categories of vector fields are sought to achieve the objectives of safety and convergence.

Attractive vector field: A radially attractive vector field that navigates agent i towards
its goal location rgi is defined as:

Fgi :=

−
(ri−rgi)
‖ri−rgi‖ ; ri 6= rgi,

0; ri = rgi.
(2.6)

Vector field (2.6) is globally attractive towards rgi, which ensures that whenever agent i is
conflict-free, i.e., Ni = ∅, it moves towards its goal location. Note that at ri = rgi, the
vector field Fgi is defined to be 0, so that it is defined everywhere on R2.

Repulsive vector field: In order to maintain a safe distance from agent j ∈ Ni, agent i
operates under a radially-repulsive field Fij given by:

Fij :=


ri−rj
‖ri−rj‖ ; ri 6= rj,

0; ri = rj.
(2.7)

This is a radially repulsive field from the point rj , which makes agent i move away from
all agents j ∈ Ni.
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2.1.3 Blending attractive and repulsive vector fields

Let dij = ‖ri−rj‖ be the inter-agent distance between agent i and j. Since limited sensing
radius Rc is assumed for agent i and it is required for the agent i to maintain a minimum
separation dm from all the other agents, the following bump-function σij(·) : R+ → [0, 1]

is defined to blend the attractive and repulsive fields [116]:

σij(dij) :=


1, dm ≤ dij < dr;

a dij
3 + b dij

2 + c dij + d, dr ≤ dij ≤ Rc;

0, dij > Rc;

(2.8)

where dr is a positive constant that satisfies dm < dr < Rc. The coefficients a, b, c, d have
been computed as:

a = − 2

(dr −Rc)3
, b =

3(dr +Rc)

(dr −Rc)3
, c = − 6 drRc

(dr −Rc)3
, d =

Rc
2(3dr −Rc)

(dr −Rc)3
,

so that the bump function σij given as per (2.8) is a C1 function. One may now define the
vector field for each agent i as:

Fi :=
∑
j∈Ni

σijFij +
∏
j

(1− σij)Fgi. (2.9)

The blending of the vector fields according to (2.9) means that whenever agent i is far away
from all the other agents, i.e., dij > Rc for all j, then only the globally attractive vector field
is active, whereas if there are other agents in its vicinity, the net vector field is a weighted
average of the attractive field Fgi and the repulsive field Fij , and, in the case when there is
an agent j very close to the agent i, i.e., dij < dr, then only the repulsive vector field Fij is
active.

The controller objective is to design the control inputs ai for each agent i, so that the
motion of each agent i is along the vector field Fi. To this end, a backstepping approach is
used where first, a desired velocity uid to be tracked is designed, and then, the controller ai
is designed so that the desired velocity can be tracked. The direction ∠uid along (2.9) and
magnitude ‖uid‖ of the desired velocity uid are designed separately. The desired direction
of motion of agent i is set to be:

γi :=

{
tan−1

(
Fiy
Fix

)
, ‖Fi‖ > 0;

γ0
i , ‖Fi‖ = 0,

(2.10)
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where γ0
i = tan−1

(
xi−xgi
−(yi−ygi)

)
. Note that tan−1

(
xi−xgi
−(yi−ygi)

)
is the orientation of the vector

perpendicular to the vector ri − rgi pointing to the direction at an angle of −pi
2

from the
vector ri − rgi. This desired direction for the case when ‖Fi‖ = 0 is defined in such a
manner so that there is no deadlock, as showed in the following lemma.

Lemma 2.1 (Deadlock resolution). If the direction of the motion of each agent i is along

γi given by (2.10), then the agents resolve their deadlocks, i.e., the agents do not stay

indefinitely at a location other than their goal location rgi for all times.

The proof is provided in Appendix A.1. Thus, it is shown that the agents do not converge
in a deadlock while moving along their respective vector fields. Next, a desired velocity

command with magnitude uid and direction uidn =
[
cos γi sin γi

]T
is designed for each

agent i, which tracks the vector field (2.9), so that the trajectories of the agent i are collision-
free and reach the goal location rgi. Then, the error between the actual velocity ui and the
desired linear velocity uid of agent i is considered in designing an acceleration controller
ai that drives this error to zero in finite-time. It is ensured that the safety is maintained by
enlarging the safety distance dm by the maximum transient error induced by the velocity
error ui − uid.

2.1.4 State feedback design

In order to design the desired velocity command uid that generates collision-free position
trajectories for the kinematic subsystem (2.1a) of each agent i, the control design in [22]
is used. In [119], the desired velocity vector is defined as uid = uiduidn where uidn =[
cos γi sin γi

]T
and uid of agent i is defined as:

uid :=


1
µ

log

( ∑
j∈Ni|Ji<0

e−µ ui|j

)−1

+ 1

 , dm ≤ dij ≤ Rc;

uic, dij > Rc;

(2.11)

where ui|j denotes the velocity adjustment mechanism of agent i w.r.t. agent j, defined as:

ui|j := uic
dij − dm
Rc − dm

+ εiuis|j
Rc − dij
Rc − dm

, (2.12)
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with the terms in (2.12) defined as:

uic(ri) :=

{
ki1 tanh (‖ri − rgi‖) , ‖ri − rgi‖ > R1;

ki2‖ri − rgi‖αr , ‖ri − rgi‖ ≤ R1;
, (2.13a)

uis|j := ujd
rji

Tujdn
rjiTuidn

, Ji := rji
Tuidn, rji := ri − rj, (2.13b)

where 0 < αr, εi < 1 and µ � 1 is a large positive number. Note that the term uic

given in (2.13a) is defined differently from [116, 119], so that finite-time convergence can
be guaranteed unlike the prior work where asymptotic convergence is guaranteed. Gains
ki1, ki2 and parameter R1 are chosen such that uic is continuously differentiable for all ri.
Hence, enforcing continuity of uic and its derivative when ‖ri − rgi‖ = R1, it holds that:

ki1 tanhR1 = ki2R
αr
1 and ki1(1− tanh2R1) = αrki2R

αr−1
1 . (2.14)

From the above equations, R1 can be obtained as the solution of

(1− tanh2R1) = αr
tanh(R1)

R1

. (2.15)

The above expression has a unique positive solution R1 for all 0 < αr < 1. For a given
positive gain ki1 > 0, ki2 is given as ki2 = ki1

tanhR1

Rαr1
. The term ‖ri − rgi‖αr ensures finite-

time convergence (Theorem 2.6). The definition of uic is (2.13a) ensures that the magnitude
of the desired speed uic is bounded for all ri.

Remark 2.2. The expression given in (2.11) is a smooth approximation of the following

function

max

{
0, min

k∈Ni|Jk<0
ui|k

}
.

The min function is approximated by

g(a) := − 1

µ
log(

∑
i

e−µai),

with µ� 1 where a =
[
a1 a2 · · · al

]
. Using the smooth approximation for max function

h(b) :=
1

µ
log(

∑
i

eµbi),

for b =
[
g(a) 0

]
, it follows that h(b) = 1

µ
log(eµg(a) + 1). Using the fact that eµg(a) =
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e
− log(

∑
i
e−µai )

= (
∑
i

e−µai)−1, the expression as (2.11) can be obtained.

Remark 2.3. Note that the desired velocity in (2.11) assumes that agent i has perfect

knowledge of its neighbor j’s position and velocity. This assumption is relaxed in the

robust control design in Section 2.2. Also, the protocol defined in (2.11) is not used directly

but is used as a base to design for the robust controller design. The equation (2.11) is

included here, taken directly from [116], for the sake of completeness.

With this desired velocity in hand, the acceleration command is chosen to be

ai := u̇id − λi(ui − uid)‖ui − uid‖α−1, (2.16)

where λi > 0, 0 < α < 1 so that the velocity error ui − uid converges to 0 in finite time
1. Since in this work, it is assumed that only the position of agent i is measured, first, a
state-estimator is designed in order to implement a full-state feedback. Then, the desired
velocity command (denoted as ûid) is redesigned for the estimator dynamics so that it is
robust w.r.t. the state-disturbance w(r, t) and sensing uncertainties.

2.2 Robust Control Design

2.2.1 Finite-time stable state-estimator

The feedback control law (2.16) requires full-state information. Since only partial state is
available via the system output, an FTS state-estimator inspired from [120] is used, given
by:

˙̂ri = ûi + ki3(yi − ŷi)‖yi − ŷi‖α1−1 + wav (2.17a)
˙̂ui = ai + ki4(yi − ŷi)‖yi − ŷi‖α2−1, (2.17b)

where ŷi = r̂i is the estimated output, 0 < α1, α2 < 1, and ki3, ki4 > 0. Define the error
terms rie := ri − r̂i = yi − ŷi and uie := ui − ûi, so that from (2.1) and (2.17), it follows
that:

ṙie = uie − ki3rie‖rie‖α1−1 + w(ri, t)−wav (2.18a)

u̇ie = −ki4rie‖rie‖α2−1. (2.18b)

1This can be verified using x = ui − uid in Theorem 2.3.
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In order to show the finite-time convergence of the estimation error, the following results
are needed:

Lemma 2.2 (AS of error dynamics). If w(ri, t) ≡ 0 , the origin is an asymptotically

stable equilibrium of the system (2.18).

Proof. Note that w(ri, t) ≡ 0 implies that there is no external disturbance and the system
(2.18) is autonomous. Choose the candidate Lyapunov function

V (rie,uie) :=
ki4

1 + α2

‖rie‖1+α2 +
1

2
‖uie‖2,

which is a positive definite function. Taking its time derivative along the trajectories of
(2.18), it follows that:

V̇ (rie,uie) = ki4‖rie‖α2−1rTie(uie − ki3rie‖rie‖α1−1) + uTie(−ki4rie‖rie‖α2−1)

= −ki3ki4‖rie‖α1+α2 ≤ 0.

Now, since α1 + α2 > 0, V̇ (rie,uie) = 0 at rie ≡ 0 for all uie ∈ R2. Using LaSalle’s
invariance principle, it holds that the origin is the only point where the trajectories of the
system (2.18) can identically stay. Hence, the origin is an asymptotically stable equilibrium
of the system (2.18) when w(ri, t) = 0.

Lemma 2.3 (Homogeneity of error dynamics). For w(ri, t) ≡ 0 and α1 = α, α2 =

2α − 1, where 1
2
< α < 1, the error dynamics (2.18) is homogeneous with degree of

homogeneity d = α− 1 < 0.

Proof. Let r1 = 1 and r2 = α, with 1
2
< α < 1. With these parameters, define the dilation

function ∆ε(r,u) = (εr, εαu). Define the right hand side of (2.18) as f err(rie,uie) =[
f err1 (rie,uie) f err2 (rie,uie)

]T
. Now, for w(ri, t) = 0, define d := α − 1 so that for all

ε > 0 it follows that:

f err1 (εr1rie, ε
r2uie) = εr2ue − ki3εr1α1rie‖rie‖α1−1 = εd+r1f err1 (εr1rie, ε

r2uie),

f err2 (εr1rie, ε
r2uie) = −ki4εr1α2re‖rie‖α2−1 = εd+r2f err2 (εr1rie, ε

r2uie).

Thus, from Definition 2.2, the error dynamics is homogeneous with degree d = α − 1 <

0.
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From [117, Theorem 7.1], it holds that the origin is a finite-time stable equilibrium for
(2.18) if w(ri, t) = 0, i.e. in the absence of the disturbance. Now, it is shown that in the
presence of the disturbance w(ri, t), the estimation error remains bounded:

Theorem 2.4 (Estimation error bound). With α1, α2 as per Lemma 2.3, the norm of the

state estimation error is bounded as∥∥∥ [rie(t)T uie(t)
T
]T ∥∥∥ ≤ δie(t)

for all t ≥ 0, where δie(t) is defined as

δie(t) :=

{
‖uie(0)‖, 0 ≤ t ≤ T esti ;

liδ
ci
w , t > T esti ;

(2.19)

where li = (2(1− β))
1−β
β ‖uie(0)‖ > 0, ci = 1−β

β
> 1, 0 < β < 1

2
, and 0 ≤ T esti <∞ is a

finite constant.

Proof. Define z(t) :=
[
rie(t)

T uie(t)
T
]T

. First, note that the nominal error dynamics,
i.e. when the disturbance w(ri, t) = 0, the origin is finite-time stable for the system
(2.18). Using [117, Theorems 4.1, 6.2], it holds that there exists a function T (rie,uie) that
is continuous at origin. Now, using this function as the settling time, from [2, Theorem
4.3], it holds that there exists a continuous Lyapunov function V (rie,uie) satisfying the
condition V̇ (rie,uie) + c(V (rie,uie))

β ≤ 0, where c > 0 and 0 < β < 1 (namely,
V (rie,uie) = (T (rie,uie))

1
1−β ). Let β satisfy β ∈ (0, 1

2
). Since ‖w(ri, t) − wav‖ ≤ δw,

using [2, Theorem 5.2 ], it follows that with z(0) ∈ U , where U is an open neighborhood
of origin, z(t) ∈ U for all time t ≥ 0. Define U := {z | ‖z‖ ≤ ‖z(0)‖} so that z(0) ∈ U .
Since one can choose r̂i(0) = ri(0), it holds that ‖z(t)‖ ≤ ‖z(0)‖ = ‖uie(0)‖. From this,
it holds that ‖z(t)‖ ≤ ‖uie(0)‖ for all time t ≥ 0. Furthermore, again as per [2, Theorem
5.2 ], there exists a finite time T esti such that for all t ≥ T esti

‖z(t)‖ ≤ liδ
ci
w , (2.20)

where li = ((2(1− β))
1−β
β ‖uie(0)‖ > 0, ci = 1−β

β
> 1. Hence, with choice of δie(t) as per

(2.19), it follows that ‖z(t)‖ ≤ δie(t) for all t ≥ 0.

Remark 2.4. The reason for using a finite-time state-estimator instead of a Luenberger

observer is that, as shown in [2], the bound on the state (in this case, state-estimation
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error) δie in Theorem 2.4 is of a higher order than the bound on the disturbance δw (ci > 1),

leading to improved rejection of low-level persistent disturbances.

Next, a robust controller using the estimated states r̂i, ûi is designed.

2.2.2 Observer-based robust controller

First, the desired velocity is redesigned using the estimated states as follows:

ûid := ûidûidn − ki3rie‖rie‖α1−1 −wav, (2.21a)

ûidn :=
[
cos γ̂i sin γ̂i

]T
, (2.21b)

where γ̂i := γi(r̂i). Note that in the absence of actual state measurements, the vector field
Fi, γ̂i and the bump function σ = σ(d̂ij), where d̂ij is given by (2.25), are functions of the
estimated/sensed positions. Define the set Ii as

Ii := {j ∈ Ni|Ĵi < 0, ds ≤ d̂ij ≤ Rc}, (2.22)

as the set of agents who are in the sensing range of agent i such that the agent i is moving
towards them, i.e., Ĵi := r̂Tjiûidn < 0. The new desired speed ûid for agent i is set as:

ûid :=



1
µ

log

( ∑
j∈Ni|d̂ij≤ds

e−µ ûis|j

)−1

+ 1

 , Ii = ∅ & d̂ij ≤ ds;

uic, Ii = ∅ & d̂ij > ds;

1
µ

log

(∑
j∈Ii

e−µ ûi|j

)−1

+ 1

 , Ii 6= ∅;

(2.23)

where ûi|j is defined as:

ûi|j := uic
d̂ij − ds
Rc − ds

+ ûis|j
Rc − d̂ij
Rc − ds

, (2.24)

where ds is defined as per Theorem 2.5, uic = uic(r̂i) is as per (2.13a) and rest of the terms
in (2.24) are given as:

ûis|j := εi
r̂Tjiu

i
js

r̂Tjiûidn
+ (1− εi)

ueds
r̂Tjiûidn

, 0 < εi < 1, (2.25)

Ĵj := r̂Tjiûidn, r̂ji := r̂i − rijs, d̂ij := ‖r̂ji‖, (2.26)
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where uijs and rijs are the position and velocity of agent j ∈ Ni as sensed by agent i and
ue is defined later as per (A.8). Consider the dynamics (2.17) with an objective of tracking
the velocity command ûid given as per (2.21). The acceleration controller is designed as
follows:

ai = ˙̂uid − λiuide‖uide‖β2−1 − ki4rie‖rie‖α2−1, (2.27a)

uide = ûi − ûid, (2.27b)

where λi > 0, 0 < β2 < 1 and uide is the velocity error between the desired velocity
ûid and the velocity of the observer ûi. In the next sections, it is shown that the system
(2.1) converges to a small neighborhood of the desired goal location rgi, while maintaining
safety.

2.2.3 Safety analysis

First, define the estimation error parameter δe as

δe := max
i,t

δie(t) = max
i
{uie(0), liδ

ci
w}, (2.28)

so that ‖ri(t)− r̂i(t)‖ ≤ δe and ‖ui(t)− ûi(t)‖ ≤ δe for all agents i and for all time t ≥ 0.

Theorem 2.5 (Safety w.r.t. other agents). AssumeN agents i ∈ {1, 2, . . . , N} are moving

under the effect of acceleration controller (2.27). If the safe separation of each agent i is

taken as ds = dm+re+ δe+ εs, with re being the maximum overshoot of the position error

in the transient period of the closed-loop system (2.17) given as re := max
i
‖rieMax‖ where

rieMax = uide(0)‖uide(0)‖1−β2
λi(2−β2)

with uide(0) = ûi(0) − ûid(0), and δe is defined as in (2.28),
then the motion of all agents is collision free, i.e. ‖ri(t) − rj(t)‖ ≥ dm for all i 6= j and

for all t ≥ 0.

The proof is provided in Appendix A.2.

2.2.4 Convergence analysis

Now it is shown that under the effect of the designed control law (2.27), the closed-loop
trajectories of agent i reach the δie−neighborhood around the goal location rgi in a finite
time. The following intermediate result is presented before proceeding with the main result.
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Lemma 2.4. Consider the system ẋ(t) = −kx(t) tanh(‖x(t)‖)
‖x(t)‖ where k > 0. Assume that

x(0) 6= 0. Then, for all ε > 0, there exists a time Tε < ∞ such that ‖x(t)‖ ≤ ε for all

t ≥ Tε.

Proof. Let V (x) := 1
2
‖x(t)‖2 be the candidate Lyapunov function. Taking the time deriva-

tive of V (x) along the system trajectories, it follows that

V̇ (x) = x(t)T (−kx(t)
tanh ‖x(t)‖
‖x(t)‖

) = −k‖x(t)‖ tanh(‖x(t)‖).

This shows that V̇ (x(t)) < 0 for all x(t) 6= 0. Hence, it holds that V (x(t)) ≤ V (x(0))

or ‖x(t)‖ ≤ ‖x(0)‖ for all t ≥ 0. Define x0 := ‖x(0)‖ so that it holds that ‖x(t)‖ ≤
x0 and since x(0) 6= 0, x0 > 0. It is easy to check that the system trajectories satisfy
tanh(‖x(t)‖) ≥ tanh(x0)

x0
‖x(t)‖ for all t ≥ 0, i.e., the graph of tanh(‖x(t)‖) lies above the

straight line y = c‖x(t)‖ with slope c = tanh(x0)
x0

for all ‖x(t)‖ ≤ x0. Hence, it holds that
V̇ (x) = −k‖x(t)‖ tanh(‖x(t)‖) ≤ −k tanh(x0)

x0
‖x(t)‖2 = −cV (x) where c = 2k tanh(x0)

x0
.

From the Comparison Lemma [121, Section 5.2], it follows that V (x(t)) ≤ e−ctV (x(0)).
For a given ε > 0, define Tε = −1

c
log( ε2

2V (x(0))
), so that it holds that V (x(Tε)) ≤

e−cTεV (x(0)) = 1
2
ε2. Now, since V (x(t)) ≤ V (x(Tε)) for all t ≥ Tε, it follows that

V (x(t)) ≤ 1
2
ε2 or ‖x(t)‖ ≤ ε for all t ≥ Tε. Also, since ‖x0‖ 6= 0, it holds that Tε <

∞.

Now the main result for finite-time convergence can be stated.

Theorem 2.6 (Convergence). Under the effect of control law (2.27), the closed-loop tra-

jectories of (2.1) for each agent i reach a δie-neighborhood around the goal location rgi in

finite time, i.e., ∃ Ti <∞, such that ‖ri(t)− rgi‖ ≤ liδ
ci
w for all time t ≥ Ti.

Proof. The agents follow the vector field (2.9) under the desired direction of motion given
by (2.10), which takes each agent i away from the other agents and towards its goal location,
i.e., each class-A agent resolves the conflict with all other agents. From Lemma 2.1, there
is no deadlock so that the agents are always attracted to their desired goal locations. Thus,
there exists a finite time T cri ≥ 0 in which, the agent i resolves all the conflicts and starts
moving towards its goal location. Also, from Assumption 2.3, once all agents reach their
respective goal locations, they are out of each others’ sensing region. Hence, once all the
agents reached their respective goal locations, they stay there.

Now, it can be shown that once agent i resolves all its conflicts with the other agents,
it would reach its goal location in finite time. Consider the error dynamics for ûide which,
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as per (A.10), reads ˙̂uide = −λi(uide)‖uide‖β2−1. From Theorem 2.3, it holds that the
origin of the system (A.10) is FTS, which implies that there exists a time ti such that for
all t ≥ ti, ûi(t) = uid(t). Note that from (2.21) and (2.17), it follows that ˙̂ri(t) = ûidûidn

for all t ≥ ti. Now, in the absence of neighbors, from (2.21), it holds that ûid = ûic and the
direction of vector field ûidn is along Fi(r̂i) = Fgi(r̂i), i.e., along −(r̂i − rgi). Hence, the
dynamics of the desired trajectory r̂id reads

˙̂ri = −ûic
(r̂i − rgi)

‖r̂i − rgi‖
. (2.29)

Now, if at the instant when the error ûide(t) becomes 0, the value of the norm ‖r̂i−rgi‖ ≤
R1, then ûic in (2.29) directly takes the form ûic = ki2‖r̂i − rgi‖αr . If this is not the case,
then by Lemma 2.4, there exits a finite time t̃i, after which ‖r̂i− rgi‖ is less than R1. Now,
after this point, the value ûic as per (2.13a) reads ûic = ki2‖r̂i − rgi‖αr . Hence, it follows
that

˙̂ri = −ki2‖r̂i − rgi‖αr
(r̂i − rgi)

‖r̂i − rgi‖
= −ki2(r̂i − rgi)‖r̂i − rgi‖αr−1. (2.30)

From Theorem 2.3, rgi is a finite-time stable equilibrium for (2.30). Hence, there exists a
finite-time T ∗i such that, for all t ≥ T ∗i , it holds that r̂i(t) = rgi. Now, from Theorem 2.4,
‖ri(t)− r̂i(t)‖ ≤ liδ

ci
w for all t ≥ T esti . Define Ti := T esti + T ∗i + T cri <∞, so that for all

t ≥ Ti, ‖ri(t)− r̂i(t)‖ = ‖ri(t)− rgi‖ ≤ liδ
ci
w , which completes the proof.

Theorem 2.6, in light of Theorem 2.5, guarantees that within a finite time, all the agents
reach a small neighborhood of their respective goal locations, which depends upon δw,
while maintaining inter-agent safety at all times. This also implies that in the absence of
the wind disturbance, or the case when w ≡ wav, the agents reach exactly their respective
goal locations. Note that the time T cri required by each agent i to resolve all the conflicts,
though finite, depends on the number, the initial and the goal locations of all the agents,
and cannot be estimated beforehand without further assumptions on these parameters.

2.3 Dynamic obstacle environment

Let us now consider the case when the agents, termed as class-A agents subsequently,
have to navigate in an obstacle environment. Consider M dynamic obstacles o ∈ NB =

{N + 1, . . . , N + M} that are moving with upper-bounded linear velocity ‖uo‖ ≥ 0.
These can model agents of higher priority, adversarial agents that are non-cooperative to
the motion of the class-A agents, or failed class-A agents whose motion is uncontrollable.
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In what follows, this class of dynamic obstacles is referred to as class-B agents [116].
The following assumptions are made in order to guarantee the safety of the system in the
presence of dynamic obstacles.

Assumption 2.4 (Class-B agents). The class-B agents are assumed to have a circular

shape of the same size. The velocity of the class-B agents are bounded as ‖uo‖ ≤ uo with

0 ≤ uo <∞.

Assumption 2.5 (Inter-agent distance). For two class-B agents o1, o2, the inter-agent

distance is ‖ro1(t) − ro2(t)‖ > 2ds for almost all t ≥ 0. Furthermore, for all class-B

agents o and for all i ∈ {1, · · · , N}, ‖ro(t)− rgi‖ ≥ Rc + δe for almost all t ≥ 0.

Remark 2.5. Assumption 2.5 is needed to guarantee that no class-A agent can become

permanently occluded by a group of class-B agents and that they are not in conflict with

class-B agents at their goal locations. Note that this is a sufficient condition to eliminate

this situation. It might happen that even if the class-B agents are very close to each other,

the class-A agents can skip through and reach their goal location

Note that unlike [116], an active communication between agents is not considered in
this work. The class-A agents do not even need to know whether their neighboring agents
are class-A or class-B. The coordination protocol for the multi-agent system in the presence
of dynamic obstacles can now be presented.

2.3.1 Safe velocity design

The desired linear velocity ûid of each agent i is defined as per (2.21) where the modified
ûid is

ûid :=



− 1
µ

log

( ∑
j∈Ni|d̂ij≤ds

e−µ û
1
is|j

)
d̂ij ≤ ds,

− 1
µ

log

( ∑
j∈Ni

e−µ û
1
i|j

)
, ds ≤ d̂ij ≤ Rc,

uic, d̂ij > Rc;

, (2.31)
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where

û1
i|j := ûic

d̂ij − ds
Rc − ds

+ û1
is|j
Rc − d̂ij
Rc − ds

, (2.32)

û1
is|j :=

 (1 + εi)
r̂Tjiu

i
js

r̂Tjiûidn
, Ĵj > 0,

εi
r̂Tjiu

i
js

r̂Tjiûidn
, Ĵj ≤ 0;

, (2.33)

with Ĵj := r̂Tjiû
i
js, and rest of the terms such as εi, d̂ij are given as in (2.25).

Remark 2.6. Note that the expression in (2.31) is different from (2.23) since, in the latter

case, the desired ûid is restricted to be always positive. In (2.31), the (+1) term is removed

in the argument of the logarithm, allowing ûid to take negative values as well.

2.3.2 Safety analysis

With this definition of the desired velocity ûid with ûid given by (2.31), the following result
can be stated:

Theorem 2.7 (Safety w.r.t. class-B agents). Consider N class-A agents i ∈ {1, . . . , N}
assigned to move to goal locations rgi, and M class-B agents o ∈ {N + 1, . . . , N + M}
serving as dynamic obstacles satisfying Assumption 2.4-2.5. Then, with ds given as per

Theorem 2.5, under the coordination protocol (2.27) with desired velocity defined as in

(2.21) and ûid given as per (2.31), each class-A agent maintains safe distance dm with

other agents.

Proof. As per the analysis in the proof of Theorem 2.5, it follows that for all j ∈ Ni,
d̂ij = ‖r̂i − r̂j‖ ≥ ds =⇒ ‖ri − rj‖ ≥ dm. So, it is sufficient to prove that d̂ij ≥ ds

for all time t and for all i 6= j, i in class A, or equivalently, to prove that at d̂ij = ds, the
time derivative ˙̂

dij ≥ 0. According to the control law (2.31), the agent i adjusts its linear
velocity ui so that it avoids colliding with the neighbor j ∈ Ni whose motion maximizes
the rate of change of relative distance dij . Consider that Ĵj = r̂Tjiû

i
js > 0, i.e., the class-

B agent o is moving towards the agent i. The time derivative of the inter-agent distance,
evaluated at d̂ij = ds, given by (A.6) under the closed-loop protocol (2.31) reads

˙̂
dij =

ûid r̂
T
jiûidn − r̂Tjiû

i
js

d̂ij
=

(1 + εi)r̂
T
jiu

i
js − r̂Tjiû

i
js

d̂ij
=
εir̂

T
jiu

i
os

d̂ij
≥ 0.
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Similarly, when Ĵj = r̂Tjiû
i
js ≤ 0, i.e. the agent j is moving away from the agent i, the

time derivative of the inter-agent distance at d̂ij = ds reads

˙̂
dij =

ûid r̂
T
jiûidn − r̂Tjiû

i
js

d̂ij
=
εir̂

T
jiujs − r̂Tjiû

i
js

d̂ij
=

(εi − 1)r̂Tjiu
i
js

d̂ij
≥ 0.

Note that the last inequality is true since 0 < εi < 1. Hence, every agent i maintains a safe
distance from its class-B neighbors. This shows that in all possible scenarios, each class-A
agent maintains a safe distance from all the other agents.

2.3.3 Convergence analysis

Theorem 2.8 (Convergence). Under the effect of coordination protocol (2.27) with desired

velocity ûid defined as in (2.21) and ûid given as per (2.31), the closed-loop trajectories

(2.1) of each class-A agent i reach a δie-neighborhood around the goal location rgi in finite

time, i.e., ∃ Ti <∞, such that ‖ri(t)− rgi‖ ≤ δie(t) for all time t ≥ Ti.

Proof. According to the Assumption 2.5, there are no two class-B agents whose distance
is less than 2ds for all times, which implies that there will always be space between the two
obstacles from where the class-A agent can pass through. The rest of the proof directly
follows from Theorem 2.6. Also, since the class-B agents are not always near the goal
locations rgi (Assumption 2.5), once the class-A agent i reaches its goal location, it can
stay there.

Remark 2.7. While as per Lemma 1, there would be no deadlocks in the motion of the

agents, it is still possible that there are livelocks. Livelock occurs when periodic motions

are executed by the agents, which may be induced by a periodic motion of class-B agents

or under certain control gains, the direction of the wind, and the set of initial and goal

locations for the class-A agents. Although in the presence of external disturbances that

vary both in space and time, it is difficult for the class-B agents to plan their motion in

order to induce a livelock for the class-A agents, it is still possible. Excluding the livelocks

is a rather difficult problem, is out of the scope of the current work, and is left as a problem

for future investigation.

Hence, it is shown that in the presence of moving obstacles, or class-B agents, the class-
A agents would be able to reach very close to the desired goal location while maintaining
safety. Next, a few simulation results showing the efficacy of the proposed control design
are presented.
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2.4 Simulations

Two scenarios involve N = 46 agents out of which 20 are class-B agents and 26 are
class-A agents are presented (interested reader is referred to [107] for more simulation case
studies2). In Figure 2.3, class-A agents are colored blue and the class-B agents are colored
red. The goal locations are selected sufficiently far apart so that the agents’ sensing regions
do not overlap when agents lie on their goal locations (i.e., ‖rgi − rgj‖ > Rc for i 6= j).
The simulation parameters are listed below:

• dm = 4m, εs = 5, δe = 15 , ds = 29 m and Rc = 3.5ds. Define ∆e = maxi{liδciw},
so that from Theorem 2.8, we have ‖rie‖ ≤ ∆e for all times t ≥ maxi Ti. In this
case, ∆e = 0.8824 m.

• wav = [5.86, 2.96]T m/sec and δw = 1.92 m/sec

• εi = 0.01, ki1 = 5, ki3 = 0.8538, ki4 = 0.3149, αr = 0.9, R1 = 0.4017m,α1 = 0.9

and α2 = 0.8.

Figure 2.2 shows the spatial variation of the wind speed used as the external disturbance
in the simulations. The the wind speed at each x− y location is plotted. The figure shows
the variation of the wind speed in the x− y plane in the domain [−100, 100]× [−100, 100].
The following formulation is used to scale up the domain of the disturbance:

w(x± 200, y ± 200, t) = w(x, y, t) (2.34)

Figure 2.2: The wind profile used as external disturbance.

2Simulation videos are available online at https://tinyurl.com/y7syd8la
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The goal locations are chosen such that they form the characters UM for the aesthetic
appeal of the simulations. In Figure 2.3, the initial positions of the agents are marked by
diamonds: blue diamonds are the initial positions of class-A agents and red diamonds are
those of class-B agents. In the first scenario, class-B agents are moving outwards and class-
A agents are moving inwards. The black ellipse is used to denote the agents that are moving
in the same direction with arrows representing their direction of motion. In Scenario 2, the
class-B agents (red-diamonds) start in V-formation as represented by the black-lines.
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Figure 2.3: Initial configuration of Scenario 1 and 2.

The motion of the class-B agents is such that the Assumption 2.5 is satisfied while in
scenario 3, the motion of class-B agents is chosen such that Assumption 2.5 is not satisfied.
In brief:

• In the first scenario, the class-B agents start in-between the class-A agents and move
outwards, while class-A agents move inwards. The set of initial locations, target
locations, and initial directions of movement is given in Figure 2.3. This scenario
shows how effectively class-A agents can avoid collisions with class-B agents. Fur-
thermore, we assume that the wind disturbance in this case varies only with r and is
constant in t, i.e. w = w(r).

• In the second scenario, the class-B agents come as a swarm in the V-formation to-
wards the class-A agents. This scenario shows how class-A agents can avoid colli-
sions with other class-A agents as well as class-B agents. In this case, we allow the
wind disturbance to vary both in space and time, i.e. w = w(r, t). We discuss the
difference in the results in the first two scenarios arising because of the difference in
assumptions on the wind disturbance.

Figures 2.4 and 2.6 show the performance of the presented protocol both in terms of
safety and convergence. In all the figures, it can be seen that class-A agents are able to
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maintain the safe distance, dm with all the other agents (both class-A and class-B agents).
Also, it can be seen that the class-A agents reach a much smaller neighborhood of their
desired goal locations (i.e. their final distance from their goal location ‖ri − rgi‖) than the
theoretical (conservative) bound given as per Theorem 2.8.
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Figure 2.4: Scenario 1: minimum inter-agent distance and final distance from the goal.
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Figure 2.5: Scenario 1: Final position error ‖rie‖, velocity estimation error ‖uie‖ and
‖w(rgi, t)−wav‖

Note that for the observer dynamics (2.18), the equilibrium point is r∗ie(t) = 0 and
u∗ie(t) = −(w(ri, t)−wav). Since this equilibrium point varies both in space and time and
the time derivative of the disturbance w(ri, t) is assumed to be unknown, one cannot prove
that the system (2.18) would actually stay at this time varying equilibrium. As can be seen
in the Figures 2.5, the error ‖rie‖ is close to 0 while ‖uie(t)‖ is close to ‖w(rgi, t)−wav‖
under the assumption that w(ri, t) does not vary with time. In the case when the wind is
indeed a function of time, it can be seen from Figure 2.7 that while the final estimation
error is still very small, the velocity error does not converge to the actual wind error.

Figure 2.8 shows the norm of the accelerations and the velocities of one of the class-A
agents. Once the class-A agent reaches its goal location, its velocity becomes constant,
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Figure 2.6: Scenario 2: minimum inter-agent distance and final distance from the goal.
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Figure 2.7: Scenario 2: Final position error ‖rie‖, velocity estimation error ‖uie‖ and the
error term ‖w(rgi, t)−wav‖

equal and the opposite of the wind disturbance at the location and the acceleration becomes
zero. The commanded acceleration and the velocity are noisy because of the disturbance
w and the sensing uncertainties.
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Figure 2.8: Scenario 2: magnitude of velocity and acceleration of a class-A agent.
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2.5 Discussion

As demonstrated via various simulation scenarios, the proposed protocol can de-conflict a
large number of agents while maintaining safety and guaranteed convergence to the neigh-
borhood of the desired goal location in the presence of unknown state-disturbances. The
main strength of the proposed approach is the scalability with the number of agents and the
ability to counteract a class of state-disturbance and sensing uncertainties. One of the main
drawbacks of the presented work is the assumption on the motion of the dynamic obstacles.
It is important to note that Assumption 2.5 is a sufficient condition to avoid the herding of
the class-A agents by a formation of class-B agents. Furthermore, it is required that the
class-B agents do not hover around the goal location of the class-A agents so that there is
no conflict once the class-A agents reach their respective goal locations. As demonstrated
in Scenario 3, even if this condition fails to hold, the class-A agents can still reach their goal
locations. This outcome is because the external disturbance w and the sensing uncertainty
in the positions of the neighboring agents can result in a vector field taking the class-A
agents through the narrow gap between the class-B agents while maintaining safety.

One of the directions for future work is the identification of the non-cooperative neigh-
bors. Once a class-A agent identifies a dynamic obstacle, it can use the knowledge of the
upper bound on the velocity of the obstacle to avoid herding.

2.6 Conclusion

A robust distributed estimation and control scheme is presented to generate collision-free
trajectories for multiple agents in the presence of dynamic obstacles, and unmatched state
disturbances standing for wind effects. It is shown that under the adopted disturbance
(dynamic obstacle and wind) modeling and assumptions, the safety and convergence of
the system can be guaranteed. A finite-time observer and a finite-time feedback controller
are designed and it is shown that the closed-trajectories of each agent converge to a δ-
neighborhood of their respective goal locations in a finite time, where δ depends upon
the external disturbances acting on the system. The proposed method, being completely
distributed with analytical expressions for the observer and control laws, is scalable with
the number of agents.
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CHAPTER 3

New Results on Fixed-time Stability

In contrast to FTS studied in Chapter 2, the notion of FxTS requires that the time of con-
vergence is uniformly bounded for all initial conditions. This stronger notion can be used
in time-critical problems where a system objective is required to be completed within a
user-defined time, irrespective of the system’s initial conditions. However, faster conver-
gence also requires higher control input requirements. For a real-world control system,
FxTS from arbitrary initial conditions presumes unbounded control authority. To address
the problem of FxTS in the presence of input constraints, new Lyapunov conditions for
FxTS are presented in this chapter.

First new Lyapunov conditions on FxTS are presented in Section 3.2 by introducing
a (possibly positive) a linear term in the upper bound of the derivative of the Lyapunov
function in addition to the two negative terms introduced in [65]. It is shown that FxTS is
guaranteed from a domain of attraction that depends upon the ratio of the coefficients of the
(possibly positive) new and the older, negative, terms in the bound of the time derivative
of the Lyapunov function. An upper-bound on the time of convergence to the equilibrium
is computed, which is also a function of this ratio. The new Lyapunov conditions, when
used in a QP, introduce a slack term, resulting in feasibility guarantees even with input
constraints. The relation between the domain of attraction for fixed-time stability, the input
bounds, and the time of convergence is established for a 1-D control affine system. Finally,
it is shown that the proposed results on FxTS also characterizes the robustness of FxTS
systems under additive vanishing disturbances. The results in this section are partly based
on [108].

Second new Lyapunov conditions with a (possibly positive) constant term in the time
derivative of the Lyapunov function is studied in Section 3.3 to model bounded, non-
vanishing disturbances in the system dynamics. In the presence of non-vanishing distur-
bances, typically only boundedness of the trajectories in a neighborhood of the equilibrium
point (or set) can be guaranteed (see, e.g., [122, Section 9.2]). The neighborhood to which
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the system trajectories converge, as well the time of convergence to this neighborhood, are
characterized in terms of the positive and negative terms that appear in the time derivative
of the Lyapunov function. The results in this section are partly based on [109]. The author
wishes to acknowledge his co-author Mitchell Black for contributions in the development
of some of the results presented in this section.

The following notation is frequently used in this chapter:

R the set of real numbers
R+ Set of non-negative reals
‖ · ‖ Euclidean norm (2-norm) of (·)
Ck k−times continuously differentiable functions
LfV (x) Lie derivative of V ∈ C1 along f defined as ∂V

∂x
f(x)

x? Optimal value of the variable x
∂S Boundary of a closed set S

3.1 Preliminaries

In this section, the notion of FTS and FxTS and the related prior results are reviewed.
Consider the autonomous dynamical system:

ẋ(t) = f(x(t)), (3.1)

where x ∈ Rn, f : D → Rn is continuous on an open neighborhood D ⊆ Rn of the
origin and f(0) = 0. The arguments t, x are dropped whenever clear from the context. In
this work, the results are presented under the assumption that the solution of (3.1) exists
and is unique for all x(0) ∈ Rn. For results on FTS and FxTS for systems with non-
unique solutions, the interested reader is referred to [82, 123–126]. First, various notions
of stability for autonomous systems are reviewed.

Definition 3.1 (Stability). The origin of (3.1) is said to be:

(i) Lyapunov stable (LS) or simply, stable, if for every ε > 0, there exists δ(ε) > 0 such

that if ‖x(0)‖ < δ, then ‖x(t)‖ < ε for all t ≥ 0.

(ii) Asymptotic stable (AS) (respectively, globally AS), if it is stable, and there exists

c > 0 such that for all ‖x(0)‖ < c (respectively, for all x(0) ∈ Rn), the solution of

(3.1) satisfies limt→∞ x(t) = 0.
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(iii) Exponentially stable (ES) (respectively, globally ES), if there exist c, a, γ > 0 such

that

‖x(t)‖ ≤ ae−γ t‖x(0)‖,

for all ‖x(0)‖ < c (respectively, for all x(0) ∈ Rn), and t ≥ 0.

(iv) Finite-time stable (FTS), if it is stable and there exists an open neighborhoodN of the

origin such that for all x(0) ∈ N \ {0}, limt→T x(t) = 0, where T = T (x(0)) <∞.

The origin is a globally FTS equilibrium if N = Rn.

For the sake of completeness, the Lyapunov conditions for FTS, adapted from [2], are
repeated here:

Theorem 3.1 (Lyapunov conditions for FTS). Suppose there exist a continuously differ-

entiable, positive definite function V : D → R for (3.1), real numbers α > 0 and γ ∈ (0, 1),

and an open neighborhood V ⊆ D ⊂ Rn of the origin such that the time derivative V̇ (x)

satisfies

V̇ (x) ≤ −α V (x)γ, ∀x ∈ V \ {0}. (3.2)

Then the origin is an FTS equilibrium. Furthermore, the settling-time function T satisfies

T (x(0)) ≤ V (x(0))1−γ

α(1− γ)
. (3.3)

Note that under the notion of FTS, the upper-bound on the settling-time function T as
given in Theorem 3.1, though finite, depends upon the initial condition x(0) and grows
unbounded as ‖x(0)‖ increases. The notion of FxTS, as defined below, allows the settling
time to remain uniformly bounded for all initial conditions. The following definition of
FxTS and the corresponding Lyapunov conditions are adapted from [65].

Definition 3.2 (FxTS). The origin is said to be an FxTS equilibrium of (3.1) if it is glob-

ally FTS and the settling time function is uniformly bounded for all x(0) ∈ Rn, i.e.,

sup
x(0)∈Rn

T (x(0)) <∞.

Theorem 3.2 (Old Lyapunov conditions for FxTS). Suppose there exists a continuously

differentiable, positive definite, radially unbounded function V : Rn → R such that

V̇ (x) ≤ −α1V (x)γ1 − α2V (x)γ2 , (3.4)
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holds for all x ∈ Rn \ {0}, with α1, α2 > 0, γ1 > 1 and 0 < γ2 < 1. Then, the origin of

(3.1) is FxTS with continuous settling-time function T that satisfies:

T ≤ 1

α1(γ1 − 1)
+

1

α2(1− γ2)
. (3.5)

Note that the upper-bound on the time of convergence in the case of FxTS is fixed, i.e.,
independent of the initial conditions. In the case when γ1 = 1 + 1

µ
, γ2 = 1− 1

µ
with µ > 1,

the authors in [127, Lemma 2] proposed a tighter upper-bound on the time of convergence
given as

T ≤ µπ

2
√
α1α2

. (3.6)

Remark 3.1. Intuitively, for V (x) > 1, it holds that V (x)γ1 > V (x) and so, the first term in

(3.4) leads to convergence of the system trajectories to the set {x | V (x) ≤ 1}within a fixed

amount of time given by the first term in (3.5). For V (x) ≤ 1, it holds that V (x)γ2 > V (x)

and so, the second term in (3.4) leads to convergence of the system trajectories from the

set {x | V (x) ≤ 1} to the origin within a fixed amount of time given by the second term

in (3.5). Since the FTS condition in (2.4) contains only the second term, which dominates

when V is small, the time of convergence, though finite, grows as the initial distance from

the equilibrium point increases.

3.2 New Lyapunov conditions for fixed-time stability: first
result

3.2.1 Motivating example

The inspiration for the new FxTS result comes from the problem of control synthesis for
fixed-time convergence under input constraints. Consider a 1-dimensional control affine
system

ẋ = f(x) + g(x)u, (3.7)

where f, g : R→ R are continuous functions. Suppose that the control objective is to drive
the closed-loop trajectories of (3.7) to a set SG := {x | V (x) ≤ 0} within a user-defined

39



time Tud > 0 where V : R → R is a continuously differentiable function. Additionally,
consider the input constraints um ≤ u ≤ uM where um < uM .

As pointed out in [63], QPs can be solved very efficiently and can be used for real-time
implementation. To this end, following the work in [53,59] and using the FxTS conditions
from Theorem 3.2, a QP can be formulated as follows :

min
u

1

2
u2 (3.8a)

s.t.

[
1

−1

]
u ≤

[
uM

−um

]
, (3.8b)

LfV (x) + LgV (x)u ≤− α1V (x)γ1 − α2V (x)γ2 , (3.8c)

for x /∈ SG, where c > 0, and α1, α2, γ1, γ2 are chosen as α1 = α2 = µπ
2Tud

, γ1 = 1 + 1
µ

and γ2 = 1 − 1
µ

with µ > 1. Existence of the solution of (3.8) implies existence of a
control input under the effect of which, the closed-loop trajectories of (3.7) reach the set
SG within a fixed time T , which, per (3.6), satisfies T ≤ µπ

2
√
α1α2

, and with the choice of
α1 = α2 = µπ

2Tud
, further satisfies T ≤ Tud. The issue with the QP in (3.8) is that it might

not be feasible for all initial conditions due to the presence of input constraints. The authors
in [53] introduce a slack variable in the CLF constraint in order to guarantee feasibility of
the QP when additional constraints are present. Inspired from that, a slack term in the
constraint (3.8c) can be introduced. In order to guarantee FxTS in the presence of such a
slack term, a new FxTS result is presented next.

3.2.2 Lyapunov conditions

Previously, conditions of the form (3.4) are considered by various authors, where the time
derivative of the Lyapunov candidate is upper bounded by two negative terms. The result in
this section relaxes these conditions by allowing a linear term to appear in the upper bound
of the time derivative. In particular, the following Lyapunov condition is considered for a
positive definite, continuously differentiable V : Rn → R:

V̇ (x) ≤ −α1V (x)γ1 − α2V (x)γ2 + δ1V (x), (3.9)

with α1, α2 > 0, δ1 ∈ R, γ1 = 1 + 1
µ

, γ2 = 1 − 1
µ

where µ > 1, which introduces δ1V (x)

as the additional linear term in the time derivative of V (x) as compared to (3.4). Before
presenting the main result, the following lemma is needed, which gives the expressions for
the upper-bounds on time when (3.9) is integrated, for various relative values of δ1 and
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2
√
α1α2.

Lemma 3.1 (Bounds on convergence time). Let V0, Ṽ , α1, α2 > 0, δ1 ∈ R, γ1 = 1 + 1
µ

and γ2 = 1− 1
µ

, where µ > 1. Define

I1 :=

∫ 0

V0

dV

−α1V γ1 − α2V γ2 + δ1V
, (3.10)

I2 :=

∫ Ṽ

V0

dV

−α1V γ1 − α2V γ2 + δ1V
. (3.11)

Then, the following holds:

(i) If 0 ≤ δ1
2
√
α1α2

< 1, it holds that for all V0 ≥ 0

I1 ≤
µ

α1k1

(π
2
− tan−1 k2

)
, (3.12)

where k1 =
√

4α1α2−δ21
4α2

1
and k2 = − δ1√

4α1α2−δ21
;

(ii) If δ1
2
√
α1α2
≥ 1 and 0 ≤ V0 ≤ kµ

(
δ1−
√
δ21−4α1α2

2α1

)µ
with 0 < k < 1, it holds that

I1 ≤
µ

α1(b− a)

(
log

(
b− ka
a(1− k)

)
− log

(
b

a

))
, (3.13)

where a ≤ b are the roots of γ(z) := α1z
2 − δ1z + α2 = 0;

(iii) If δ1
2
√
α1α2
≥ 1 and V0 ≥ Ṽ := k̃µ

(
δ1+
√
δ21−4α1α2

2α1

)µ
with k̃ > 1, it holds that

I2 ≤
µ

α1(b− a)
log

(
k̃b− a
k̃b− b

)
. (3.14)

The proof is provided in Appendix B.1. The first new FxTS condition can now be stated.

Theorem 3.3 (New Lyapunov conditions for FxTS). Let V : Rn → R be a continuously

differentiable, positive definite, radially unbounded function, satisfying

V̇ (x) ≤ −α1V (x)γ1 − α2V (x)γ2 + δ1V (x), (3.15)

for all x ∈ Rn \ {0} along the trajectories of (3.1) with α1, α2 > 0, δ1 ∈ R, γ1 = 1 + 1
µ

,

γ2 = 1− 1
µ

and µ > 1. Then, there exists a neighborhood D ⊆ Rn of the origin such that
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for all x(0) ∈ D, the closed-trajectories of (3.1) reach the origin within a fixed time T ,

where

D =


Rn; δ1

2
√
α1α2

< 1,{
x | V (x) ≤ kµ

(
δ1−
√
δ21−4α1α2

2α1

)µ}
; δ1

2
√
α1α2
≥ 1,

, (3.16)

T ≤


µπ

2
√
α1α2

; δ1
2
√
α1α2
≤ 0,

µ
α1k1

(
π
2
− tan−1 k2

)
; 0 ≤ δ1

2
√
α1α2

< 1,

µ
α1(b−a)

(
log
(

b−ka
a(1−k)

)
− log

(
b
a

))
; δ1

2
√
α1α2
≥ 1,

, (3.17)

where 0 < k < 1, a < b are the solutions of γ(z) := α1z
2− δ1z+α2 = 0, k1 =

√
4α1α2−δ21

4α2
1

and k2 = − δ1√
4α1α2−δ21

.

Proof. Note that the domain of attraction D and the time of convergence T are functions
of the ratio r := δ1

2
√
α1α2

. The three cases, namely, r ≤ 0, 0 ≥ r < 1 and r ≥ 1 are studied
separately.

For r ≤ 0, one can recover the right-hand side of (3.4) from (3.15), and it follows from
Theorem 3.2 that D = Rn, and from part (3.6), it follows that T ≤ µπ

2
√
α1α2

.
Next, consider the case when 0 ≤ r < 1. First it is shown that there exists D ⊆ Rn

containing the origin such that V̇ (x) < 0 for all x ∈ D \ {0}, so that all sub-level sets of
the function V contained in D are forward invariant. The right-hand side of (3.15) can be
re-arranged so that (3.15) reads

V̇ (x) ≤ V (x)
(
−α1V (x)γ1−1 − α2V (x)γ2−1 + δ1

)
.

Note that V (x) > 0 for all x 6= 0. Thus, for V̇ (x) to take negative values for all x 6= 0, it is
needed that

min
x 6=0

(
−α1V (x)γ1−1 − α2V (x)γ2−1 + δ1

)
< 0 ⇐⇒ δ1 < min

x6=0

(
α1V (x)γ1−1 + α2V (x)γ2−1

)
⇐⇒ δ1 < min

x 6=0

(
α1V (x)

1
µ + α2V (x)−

1
µ

)
.

Substitute s = V (x)
1
µ to denote α1V (x)

1
µ + α2V (x)−

1
µ as α1s + α2

s
. Then, the function

p : R+ → R defined as
p(s) := α1s+

α2

s

is a strictly convex function since d2p
ds2

= 2α2

s3
> 0 for all k > 0 and therefore, p has a
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unique minimizer in R+ (see Figure 3.1). The derivative of p reads dp
ds

= α1 − α2

s2
, which

has a unique root in R+ at s =
√

α2

α1
.1 Thus the function p attains its minimum value

at s =
(
α2

α1

) 1
2
, or equivalently, α1V (x)

1
µ + α2V (x)−

1
µ attains its minimum value when

V (x) =
(
α2

α1

)µ
2
. Define

V ? :=

(
α2

α1

)µ
2

, δ? := α1(V ?)
1
µ + α2(V ?)−

1
µ = 2

√
α1α2,

so that α1V (x)
1
µ +α2V (x)−

1
µ ≥ δ? for all x ∈ Rn. Thus, for r < 1, it holds that δ1 < δ? ≤

α1V (x)
1
µ + α2V (x)−

1
µ for all x, and so, V̇ (x) < 0 for all x ∈ Rn \ {0}. Thus, it holds that

D = Rn in the case when 0 ≤ r < 1.

Figure 3.1: Qualitative variation of h(V ) = α1V
1
µ + α2V

− 1
µ with V , for µ > 1.

Now, for the case when r ≥ 1, it holds that δ1 = α1V (x)
1
µ + α2V (x)−

1
µ for all x such

that V (x)
1
µ = V1 or V (x)

1
µ = V2, where V1 and V2 are given as

V1 :=
δ1 −

√
δ2

1 − 4α1α2

2α1

, V2 :=
δ1 +

√
δ2

1 − 4α1α2

2α1

,

(see Figure 3.1). It can be easily verified that if r ≥ 1, then for all x such that V1 ≤
V (x)

1
µ ≤ V2, the expression −α1V (x)γ1 −α2V (x)γ2 + δ1V (x) evaluates to a non-negative

value. Also, for all x such that V (x)
1
µ < V1, it holds that δ1V (x) < α1V (x)γ1 +α2V (x)γ2 .

1Only the non-negative root is of interest, since s = V (x)
1
µ ≥ 0.
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Thus, V̇ (x) < 0 for all x ∈ D \ {0} where

D = {x | V (x) ≤ (kV1)µ} =

{
x | V (x) ≤ kµ

(
δ1 −

√
δ2

1 − 4α1α2

2α1

)µ}
,

for all 0 < k < 1.
So far, the domain of attraction D is computed such that starting from x(0) ∈ D, the

system trajectories reach the origin since V̇ (x) < 0 for all x ∈ D \ {0}. Next, it is shown
that in all the aforementioned cases, the system trajectories reach the origin within a fixed
time for all x(0) ∈ D.

Let x(0) ∈ D, so that V̇ (x(t)) ≤ 0 for all t ≥ 0 per the analysis above. In what follows,
the argument x(t) might be omitted for the function V for the sake of brevity. From (3.15),
it follows that

1

−α1V γ1 − α2V γ2 + δ1V

dV

dt
≥ 1,

=⇒
∫ T

0

1

−α1V γ1 − α2V γ2 + δ1V

dV

dt
dt =

∫ T

0

dt,

=⇒
∫ V (x(T ))

V (x(0))

dV

−α1V γ1 − α2V γ2 + δ1V
≥
∫ T

0

dt

=⇒
∫ 0

V0

dV

−α1V γ1 − α2V γ2 + δ1V
≥ T,

where V0 = V (x(0)) and T is the time instant when the trajectories reach the origin, and
thus, V (x(T )) = 0. The left-hand side of last inequality above is defined as I1 in Lemma
3.1, and thus, it holds that T ≤ I1. The cases when 0 ≤ r < 1 and r ≥ 1 are considered
separately.

First, let 0 ≤ r < 1. Using part (i) in Lemma 3.1, it holds that

T ≤ I1

(3.12)
≤ µ

α1k1

(π
2
− tan−1 k2

)
, (3.18)

where k1 =
√

4α1α2−δ21
4α2

1
and k2 = −

√
δ1√

4α1α2−δ21
. Hence, if δ1 < 2

√
α1α2, it holds that

V̇ (x(t)) < 0 for all t ≥ 0 and V (x(t)) = 0 for all t ≥ T , for all x(0) ∈ Rn \ {0}, where
T ≤ µ

α1k1

(
π
2
− tan−1 k2

)
. Since V is radially unbounded, the origin is globally FxTS.

Now, for r ≥ 1, using part (ii) in Lemma 3.1, it holds that

T ≤ I1

(3.13)
≤ µ

α1(b− a)

(
log

(
b− ka
a(1− k)

)
− log

(
b

a

))
, (3.19)
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where a, b are the roots of γ(z) := α1z
2 − δ1z + α2 = 0. The bounds on T in (3.18) and

(3.19) are independent of the initial condition x(0). Thus, for all x(0) ∈ D \{0}, the origin
is FxTS.

A couple of remarks are given on the above result.

Remark 3.2. Theorem 3.3 implies that satisfaction of (3.15) guarantees FxTS of the origin

within a fixed time T for a domain of attraction D. Here the domain of attraction D

in (3.16) and the time of convergence T in (3.17) are functions of the ratio δ1
2
√
α1α2

. In

particular, if δ1
2
√
α1α2

< 1, then per (3.16), the domain of attraction is the entire Rn, and for

a given α1, α2, as δ1 increases, the domain of attraction becomes smaller.

Remark 3.3. For the case when δ1
2
√
α1α2

> 1, it holds that V̇ (x) ≤ 0 for all x such that

V (x)
1
µ = V1, and therefore, it might not be possible for the system trajectories to reach

the origin starting from x(0) such that V (x(0))
1
µ = V1. Thus, the domain D in (3.16)

for the case when δ1
2
√
α1α2

≥ 1 is defined using the parameter k in such a manner that it

excludes the boundary {x | V (x)
1
µ = V1} for all 0 < k < 1. Note that while limk→1D =

{x | V (x)
1
µ ≤ V1}, it also holds that limk→1 T̄ = ∞ where T̄ is the upper-bound on T in

(3.17), verifying that it might not be possible for the system trajectories to reach the origin

starting from this boundary.

Figure 3.2: Illustration of domains S1, S2 and S3 for the case when δ1
2
√
α1α2

> 1.

The reason that the domain of attraction D 6= Rn when δ1
2
√
α1α2

≥ 1 is because in this
case, there exists a domain where the upper-bound of the time derivative of V (x) takes
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positive values. For δ1
2
√
α1α2

≥ 1, the state space gets divided into three disjoint domains,

namely S1 := {x | V (x)
1
µ < V1}, S2 := {x | V1 ≤ V (x)

1
µ ≤ V2} and S3 := {x | V (x)

1
µ >

V2} satisfying S1 ∪ S2 ∪ S3 = Rn and Si ∩ Sj = ∅ for all i 6= j ∈ {1, 2, 3}, such that
V̇ (x) < 0 for all x ∈ S1 \ {0} as well as for all x ∈ S3, but V̇ (x) might take positive
values for x ∈ S2 (see Figure 3.2). Since {0} ∈ S1 and S1 ∩ S3 = ∅, it is not possible
for the system trajectories to reach the origin when x(0) ∈ S3. However, since V̇ (x) < 0

for all x ∈ S3 and S1 ∪ S2 ⊂ Rn \ S3, it follows that starting from x(0) ∈ S3, the system
trajectories reach an open neighborhood of the set S1 ∪ S2 within a fixed time, as shown
below.

Theorem 3.4. Let V : Rn → R satisfies the assumptions of Theorem 3.3. If δ1
2
√
α1α2

> 1,

then the trajectories of (3.1) reach the set D2 within a fixed time T2 for all x(0) ∈ Rn \D2,

where

D2 =

{
x | V (x) ≤ k̃µ

(
δ1 +

√
δ2

1 − 4α1α2

2α1

)µ}
, (3.20)

T2 ≤
µ

α1(b− a)
log

(
k̃b− a
k̃b− b

)
, (3.21)

with k̃ > 1.

Proof. If δ1
2
√
α1α2

≥ 1, it holds that for all x such that V (x) > V2 = Ṽ , the right-hand
side of (3.15) is negative (see Figure 3.1). Thus, from part (iii) in Lemma 3.1 that the for
all V0 ≥ Ṽ , the time T2 required to reach the level set {V (x) ≤ k̃µṼ µ} from all x(0)

satisfies T2 ≤ I2 ≤ µ
α1(b−a)

log
(
k̃b−a
k̃b−b

)
. Thus, the system trajectories starting outside the

set D2 = {x | V (x) ≤ k̃µṼ µ} with k̃ > 1 reach the set D2 within a fixed time T2 where
where

T2 ≤
∫ Ṽ

V0

dV

−α1V γ1 − α2V γ2 + δ1V
,

with Ṽ = kµV µ
2 . From part (iii) in Lemma 3.1, it follows that T2 ≤ I2 ≤ µ

α1(b−a)
log
(
k̃b−a
k̃b−b

)
.

In conclusion, when δ1
2
√
α1α2

> 1, there exits a neighborhood D of the origin, satisfying
D ⊂ S1, such that for all x(0) ∈ D, the system trajectories reach the origin within a fixed
time, and there exists a neighborhood D2 of the set S1 ∪ S2, satisfying Rn \D2 ⊂ S3, such
that for all x(0) ∈ Rn \D2, the system trajectories reach the domain D2 within a fixed time
(see Figure 3.2 for the geometry of the sets S1, S2 and S3).
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3.2.3 Fixed-time stability under input constraints

To see how the condition (3.15) can be used to guarantee FxTS in the presence of control
input constraints, consider the same example as in Section 3.2.1. Now, utilizing the new
FxTS result from Theorem 3.3, a new QP can be formulated as follows:

min
u,δ1

1

2
u2 +

1

2
δ2

1 + cδ1 (3.22a)

s.t.

[
1

−1

]
u ≤

[
uM

−um

]
, (3.22b)

LfV (x) + LgV (x)u ≤ δ1V (x)− α1V (x)γ1 − α2V (x)γ2 , (3.22c)

for x /∈ SG, where c > 0, and α1, α2, γ1, γ2 are chosen as α1 = α2 = µπ
2Tud

, γ1 = 1 + 1
µ

and
γ2 = 1− 1

µ
with µ > 1. It is desired that δ1 takes negative values, since per (3.17), δ1 ≤ 0

implies that the bound on time of convergence satisfies T ≤ µπ
2
√
α1α2

, which in turn implies
that T ≤ Tud, and so, convergence within the user-defined time Tud can be achieved. Thus,
the linear term cδ1 is introduced in the cost function with c > 0 in order to penalize non-
positive values of δ1. Here, the term δ1V (x) in (3.22c) can be thought of as a slack term,
allowing for satisfaction of the constraint (3.22c) even in the presence of input constraints
as shown below.

Lemma 3.2 (Feasibility of QP). For each x /∈ SG, there exist u(x) ∈ R, δ1(x) ∈ R
satisfying (3.22b)-(3.22c), i.e., the QP (3.22) is feasible for all x /∈ SG.

Proof. Choose ū(x) ∈ [um, uM ] so that ū(x) satisfies the input constraints. Since x /∈ SG,
it holds that V (x) > 0 and so,

δ̄1(x) :=
LfV (x) + LgV (x)ū(x) + α1V (x)γ1 + α2V (x)γ2

V (x)
,

is well-defined for all x /∈ SG. Note that with u = ū(x), δ1 = δ̄1(x), (3.22c) is satisfied
with equality. Thus, the pair (ū(x), δ̄1(x)) satisfy (3.22b)-(3.22c) for all x /∈ SG, and thus,
the QP (3.22) is feasible for all x /∈ SG.

As mentioned above, the slack term δ1 is used to guarantee feasibility of the underlying
QP. Now, the relation of this slack term with domain of attraction, input constraints and
time of convergence is explored. Let us hypothesize that the slack term corresponding to
δ1 in the QP (3.22) characterizes the trade-off between the domain of attraction and time of
convergence for given control input bounds, and between the domain of attraction and the
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input bounds for a given time of convergence. Intuitively, for given control input bounds, a
larger value of Tud (which results into smaller values of α1, α2), i.e., relaxation of time of
convergence, should result in satisfaction of (3.22c) with smaller value of δ1. Conversely,
for a given Tud (and thus, for a given pair α1, α2), a larger control authority should result
into satisfaction of (3.22c) with smaller δ1. In order to verify this intuition, one can compute
the closed-form solution of (3.22) for the case when the control input constraint is active,
and see how the parameters Tud, um, uM affect the optimal value of δ1. To this end, consider
the Lagrangian of the QP in (3.22):

L(u, δ1, λ1, λ2, λ3) :=
1

2
u2 +

1

2
δ2

1 + cδ1 + λ2(u− uM) + λ3(um − u)

+ λ1(LfV (x) + LgV (x)u− δ1V (x) + α1V (x)γ1 + α2V (x)γ2).

(3.23)

Now, in order to see the effect of how input constraints affect δ1, the case when the
constraint u = uM is active is studied under the assumption that uM > 0. Lemma 3.2
guarantees feasibility of the QP in (3.22) for all x /∈ SG. Thus, the Slater’s condition
holds and the Karush-Kuhn-Tucker (KKT) conditions are both necessary and sufficient
for optimality (see e.g., [128, Chapter 5]). Using the KKT conditions, it follows that the
optimal solution (u?, δ?1, λ

?
1, λ

?
2, λ

?
3) satisfies

δ?1(x) = −c+ λ?1(x)V (x), u?(x) = −λ?2(x) + λ?3(x)− λ?1(x)LgV (x),

λ?1(x) ≥ 0, λ?2(x) ≥ 0, λ?3(x) ≥ 0,

for all x /∈ SG. The following result establishes the optimal value of δ?1 for the case when
the upper-bound input constraint is active.

Theorem 3.5 (Slack variable under control saturation). Consider the QP (3.22) and let

a(x) := LfV (x) + LgV (x)uM + cV + α1V (x)γ1 + α2V (x)γ2 . Then, for x ∈ SM where

SM := {x | a(x)LgV (x) + uMV (x)2 < 0, a(x) > 0},

the optimal value of u is given u?(x) = uM and that of δ1 is given as

δ?1 =
LfV (x) + LgV (x)uM

V (x)
+ α1V (x)γ1−1 + α2V (x)γ2−1. (3.24)

Proof. For u?(x) = uM , it is required that λ?2(x) > 0. Since u?(x) = uM and um < uM , it
follows that u?(x) > um (i.e., the lower-bound constraint is inactive) and so λ?3(x) = 0. It
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follows that λ?2(x) = −uM−λ?1(x)LgV (x). In the case when u = uM , it is not possible that
(3.22c) is inactive as it requires λ?1(x) = 0, which implies that λ?2(x) = −uM < 0, which
violates the optimality condition λ?2(x) ≥ 0. Thus, it is required that λ?1(x) > 0, which in
turn implies that the constraint (3.22c) is active and it follows that the optimal value of δ1

is given as:

δ?1 =
LfV (x) + LgV (x)uM + α1V (x)γ1 + α2V (x)γ2

V (x)

=
LfV (x) + LgV (x)uM

V (x)
+ α1V (x)γ1−1 + α2V (x)γ2−1.

It follows that

λ?1(x) =
LfV (x) + LgV (x)uM + cV (x) + α1V (x)γ1 + α2V (x)γ2

V (x)2

λ?2(x) = −uM − LgV (x)
LfV (x) + LgV (x)uM + cV (x) + α1V (x)γ1 + α2V (x)γ2

V (x)2
.

Using the definition of function a(x), it follows that

λ?1(x) =
a(x)

V (x)2
, λ?2(x) = −um − LgV (x)

a(x)

V (x)2
.

Now, for x ∈ SM , it holds that λ?1(x) > 0 and λ?2(x) > 0 and thus, the optimal value of δ1

is given by (3.24) and that of u as u? = uM holds when x ∈ SM .2

The expression for the optimal value of δ1 in (3.24) is a function of Tud, the required
time of convergence and uM , the upper-bound on the control input. Recall that the QP
(3.22) is defined for x /∈ SG and for x ∈ SM \ SG, LgV (x) < 0 and V (x) > 0. Define
r? :=

δ?1
2
√
α1α2

so that

r?(x) =

(
LfV (x) + LgV (x)uM

V (x)

)
Tud
µπ

+
1

2
V (x)γ1−1 +

1

2
V (x)γ2−1. (3.25)

Since the region of interest is the one from where the closed-loop trajectories converge to
the set SG, consider (3.25) for the case when x ∈ S := SM ∩{x | LfV (x) +LgV (x)uM <

0}. For the restricted domain S, it is clear that r? decreases as the control authority in-
creases (i.e., as uM increases), or the time of convergence requirement relaxes (i.e., as Tud
increases). The case when u = um < 0 can be dealt with using similar arguments.

2If the set SM = ∅, it implies that there does not exist x such that u?(x) = uM , or in other words, the
control input never saturates with the upper bound.
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Now, in the particular case when α1 = α2, let us examine how the domain of attraction
D in (3.16) is affected by the ratio r?. Define rM = supx∈S r

?(x). For rM < 1, it holds
that D = Rn, which is the largest possible domain of attraction. For rM ≥ 1, it holds that

D =

{
x | V (x) ≤ inf

z∈S
kµ

(
δ?1(z)−

√
(δ?1(z))2 − 4α1α2

2α1

)µ}

=

{
x | V (x) ≤ inf

z∈S
kµ
(
r?(z)−

√
(r?(z))2 − 1

)µ}
.

Let Dr :=
{
x | V (x) ≤ kµ

(
r −
√
r2 − 1

)µ}
so that D = Dr for all r ≥ 1. It can be

readily verified that
(
r −
√
r2 − 1

)
is a monotonically decreasing function for r ≥ 1, i.e.,

(r1 −
√
r2

1 − 1) < (r2 −
√
r2

2 − 1) and thus, Dr1 ⊂ Dr2 for r1 > r2. Thus, the set Dr

shrinks as r increases and therefore, it holds that

D =

{
x | V (x) ≤ kµ

(
rM −

√
r2
M − 1

)µ}
.

Figure 3.3: Domain of attraction D for k = 0.95 and µ = 2.

Figure 3.3 plots the domain of attraction D for V (x) = 1
2
‖x‖2. It can be seen that the

domain D shrinks rapidly as rM increases. So, it is desired that rM takes smaller values for
the domain of attraction D to be large. Using this and the discussion below (3.25), it can be
concluded that for a given input bound, relaxing Tud results in a larger domain of attraction
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D, and conversely, for a given Tud, increasing the input bounds results into a larger domain
of attraction. Thus, the hypothesis that the parameter for fixed α1, α2, the parameter δ1

characterizes the trade-off between the domain of attraction, time of convergence, and the
input bounds is verified.

3.2.4 Robustness perspective

In comparison to Theorem 3.2, Theorem 3.3 allows a linear term δ1V in the upper bound
of the time derivative of the Lyapunov function. This property can also capture robustness
against a class of Lipschitz continuous, or vanishing, additive disturbance in the system
dynamics, as shown in the following result.

Corollary 3.1 (Robustness w.r.t. vanishing disturbances). Consider the perturbed dy-

namical system

ẋ = f(x) + ψ(x), (3.26)

where f, ψ : Rn → Rn, f(0) = 0 and there exists lψ > 0 such that for all x ∈ Rn,

‖ψ(x)‖ ≤ lψ‖x‖. Assume that the origin of the nominal system ẋ = f(x) is fixed-time

stable, and that there exists a Lyapunov function V satisfying conditions of Theorem 3.2

with α1, α2 > 0, γ1 > 1 and 0 < γ2 < 1. Additionally, assume that there exist k, L > 0

such that V (x) ≥ k‖x‖2 and
∥∥∂V
∂x

∥∥ ≤ L‖x‖ for all x ∈ Rn. Then, the origin of the

perturbed system (3.26) is also FxTS.

Proof. The time derivative of V along the system trajectories of (3.26) reads

V̇ =
∂V

∂x
f(x) +

∂V

∂x
ψ(x) ≤− α1V

γ1 − α2V
γ2 + Llψ‖x‖2

≤− α1V
γ1 − α2V

γ2 +
Llψ
k
V.

Hence, using Theorem 3.3, it holds that the origin of (3.26) is FxTS for all x(0) ∈ D,
where D is a neighborhood of the origin. As per the conditions of Theorem 3.3, D ⊂ Rn

or D = Rn, depending upon the parameters α1, α2, γ1, γ2, k, L and lψ.

Thus, the new FxTS conditions in Theorem 3.3 can also be used to guarantee FxTS of
the origin in the presence of a class of vanishing disturbances. In particular, Corollary 3.1
shows that FxTS is preserved under the effect of a class of additive, vanishing disturbances.
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3.3 New Lyapunov conditions for fixed-time stability: sec-
ond result

3.3.1 Lyapunov conditions

Inspired from results in the previous section, this section explores the possibility of in-
troducing a constant term, as opposed to a linear term, in the upper-bound of the time
derivative of the Lyapunov function. In particular, the following Lyapunov condition is
considered for a positive definite, proper, continuously differentiable V : Rn → R:

V̇ (x) ≤ −α1V (x)γ1 − α2V (x)γ2 + δ̄1, (3.27)

with α1, α2 > 0, δ̄1 ∈ R, γ1 = 1+ 1
µ

, γ2 = 1− 1
µ

and µ > 1, introducing δ̄1 as the additional
constant term in the time derivative of V (x) as compared to (3.4). Before presenting the
main result, the following lemma is needed, which gives the expressions for the integration
of (3.27) for various relative values of δ̄1 and 2

√
α1α2. The following lemma is needed to

prove the second main result of this chapter.

Lemma 3.3 (Bounds on convergence time). Let V0, α1, α2 > 0, γ1 = 1+ 1
µ

and γ2 = 1− 1
µ

,

where µ > 1. Define

I :=

∫ V̄

V0

dV

−α1V γ1 − α2V γ2 + δ̄1

. (3.28)

Then, the following holds:

(i) If 0 ≤ δ̄1 < 2
√
α1α2, it holds that for all V0 ≥ V̄ = 1

I ≤ µ

α1k1

(π
2
− tan−1 k2

)
, (3.29)

where k1 =
√

4α1α2−δ̄21
4α2

1
and k2 = 2α1−δ̄1√

4α1α2−δ̄21
;

(ii) If δ̄1 ≥ 2
√
α1α2 and V0 ≥ V̄ = kµ

(
δ̄1+
√
δ̄21−4α1α2

2α1

)µ
with k > 1, it holds that for all

V0 ≥ V̄

I ≤ µ

α1(b− a)
log

(
kb− a
kb− b

)
,

where a, b are the roots of γ(z) := α1z
2 − δ̄1z + α2 = 0;
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The proof is provided in Appendix B.2. The second new result on FxTS can now be
stated.

Theorem 3.6 (New Lyapunov conditions for FxTS). Let V : Rn → R be a continuously

differentiable, positive definite, radially unbounded function, satisfying

V̇ (x) ≤ −α1V (x)γ1 − α2V (x)γ2 + δ̄1, (3.30)

for all x ∈ Rn with α1, α2 > 0, δ̄1 ∈ R, a1 = 1 + 1
µ

, a2 = 1 − 1
µ

and µ > 1, along the

trajectories of (3.1). Then, there exists a neighborhood D̄ of the origin such that for all

x(0) ∈ Rn \ D̄, the trajectories of (3.1) reach D̄ in a fixed time T̄ , where

D̄ =


{0}, δ̄1

2
√
α1α2
≤ 0,

{x | V (x) ≤ δ̄1
2
√
α1α2
}, 0 < δ̄1

2
√
α1α2

< 1,

{x | V (x) ≤ kµ
(
δ̄1+
√
δ̄21−4α1α2

2α1

)µ
}; δ̄1

2
√
α1α2
≥ 1,

, (3.31)

T̄ ≤


µπ

2
√
α1α2

, δ̄1
2
√
α1α2
≤ 0,

µ
α1k1

(
π
2
− tan−1 k2

)
, 0 < δ̄1

2
√
α1α2

< 1,

µ
α1(b−a)

log
(
kb−b
kb−a

)
; δ̄1

2
√
α1α2
≥ 1,

, (3.32)

where k > 1, a, b are the solutions of γ(z) = α1z
2 − δ1z + α2 = 0, k1 =

√
4α1α2−δ̄21

4α2
1

, and

k2 = − δ̄1√
4α1α2−δ21

.

Proof. Note that for δ̄1 ≤ 0, the inequality (3.4) can be obtained from (3.30), and so FxTS
of the origin is guaranteed for all x ∈ Rn, and thus, D̄ = {0}. Thus, the case when δ̄1 > 0

is considered, for which sufficiently small values of V (x) cause the right hand side of (3.30)
to become positive. The proof follows from Lemma 3.3. Consider (3.30) and let x(0) be
such that δ̄1 < α1V (x(0))γ1 + α2V (x(0))γ2 . Integrate V̇ (x) to obtain:∫ V (x(T ))

V0

1

−α1V γ1 − α2V γ2 + δ̄1

dV ≥
∫ T

0

dt = T, (3.33)

where V0 := V (x(0)) and T is the time when the system trajectories first reach the domain
D̄. It is easy to show that for each of the cases listed in the theorem statement, α1V (x)γ1 +

α2V (x)γ2 > δ̄1 for all x ∈ Rn \ D̄ and thus the right-hand side of (3.30) is negative for all
x /∈ D̄ for the corresponding D̄. Now, to show that the system trajectories converge to D̄
within a fixed time, the upper bounds on T̄ are computed.
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For the case when δ̄1 < 2
√
α1α2, part (i) in Lemma 3.3 provides an upper bound on

the left-hand side of (3.33) for x /∈ D̄ = {x | V (x) ≤ δ̄1
2
√
α1α2
}. Similarly, for the case

δ̄1 ≥ 2
√
α1α2, part (ii) of Lemma 3.3 provides upper bounds on the left-hand side of (3.33).

Thus, the domains D̄ and the bounds on convergence times T̄ for the various cases can be
obtained directly from Lemma 3.3. Since for all three cases, T̄ <∞ and is independent of
the initial conditions, it follows that the system trajectories reach the set D̄ within a fixed
time T̄ .

Note the difference between the results in Theorem 3.3 and Theorem 3.6. The first
part of Theorem 3.3 guarantees that there exists a domain D such that for all x(0) ∈ D,
the system trajectories converge to the origin within a fixed time T , i.e., the trajectories
starting in the domain D reach the origin within a fixed time. On the other hand, analogues
to the second part in Theorem 3.3 with δ1

2
√
α2α2

, Theorem 3.6 guarantees that there exists a
domain D̄ such that for all x(0) ∈ Rn \ D̄, the system trajectories converge to the set D̄
within a fixed time T̄ , i.e., the trajectories starting outside the set D̄ reach this set within a
fixed time.

3.3.2 Relation to input constraints

Similar as in Section 3.2.3, in order to see how the condition (3.30) can be used to guaran-
tee FxTS to a domain D in the presence of control input constraints, consider the system
(3.7) with the objective of driving the closed-loop trajectories of (3.7) to the set SG =

{x | V (x) ≤ 0} where V : R→ R is a continuously differentiable function with the input
constraints um ≤ u ≤ uM where um < uM . Consider the QP :

min
ū,δ̄1

1

2
ū2 +

1

2
δ̄2

1 + cδ̄1 (3.34a)

s.t. um ≤ ū, (3.34b)

ū ≤ uM , (3.34c)

LfV (x) + LgV (x)ū ≤ δ̄1 − α1V (x)γ1 − α2V (x)γ2 , (3.34d)

for x /∈ SG, where c > 0, and α1, α2, γ1, γ2 are chosen as α1 = α2 = µπ
2Tud

, γ1 = 1 + 1
µ

and
γ2 = 1− 1

µ
with µ > 1 for a user-defined time Tud > 0.

Let us again hypothesize that the slack term corresponding to δ̄1 in the QP (3.34) char-
acterizes the trade-off between the domain of convergence and time of convergence for
given control input bounds, and between the domain of convergence and the input bounds
for a given time of convergence. Intuitively, for given control bounds, a larger value of Tud
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(which results into smaller values of α1, α2), i.e., relaxation of time of convergence, should
result in satisfaction of (3.34d) with smaller value of δ̄1. Conversely, for a given Tud (and
thus, for a given pair α1, α2), a larger control authority should result into satisfaction of
(3.34d) with smaller δ̄1. In order to verify this intuition, one can compute the closed-form
solution of (3.34) for the case when the control input constraint is active, and see how the
parameters Tud, um, uM affect the optimal value of δ̄1. To this end, consider the Lagrangian
of the QP in (3.34):

L̄(ū, δ̄1, λ̄1, λ̄2, λ̄3) :=
1

2
u2 +

1

2
δ̄2

1 + cδ̄1 + λ̄2(u− uM) + λ̄3(um − u)

+ λ̄1(LfV (x) + LgV (x)u− δ̄1 + α1V
γ1 + α2V

γ2).
(3.35)

Now, in order to see the effect of how input constraints affect δ̄1, assume that the constraint
u = uM is active and that uM > 0. Following the analysis in Section 3.2.3, it can be shown
that the optimal value of the ratio r̄ := δ̄1

2
√
α1α2

and u are given as:

r̄?(x) = (LfV (x) + LgV (x)uM)
Tud
µπ

+
1

2
V (x)γ1 +

1

2
V (x)γ2 , (3.36)

ū?(x) = uM , (3.37)

for x ∈ S̄M \ SG where S̄M := {x | ā(x)LgV (x) + uM < 0, ā(x) > 0} with ā(x) :=

LfV (x) + LgV (x)uM + c + α1V (x)γ1 + α2V (x)γ2 . Since the region of interest is the
one from where the closed-loop trajectories converge to the neighborhood D̄ of the set SG,
consider (3.36) for the case when x ∈ S̄ := S̄M ∩ {x | LfV (x) + LgV (x)uM ≤ 0}.
For this restricted domain, it is clear that r̄? in (3.36) decreases as the control authority
increases (i.e., as uM increases), or the time of convergence requirement relaxes (i.e., as
Tud increases).

Again, in the particular case when α1 = α2, let us examine how the domain of conver-
gence D in (3.31) is affected by the ratio r̄. Unlike domain of attraction D in Section 3.2.3,
it is desired that the domain of convergence D̄ in this case is as small as possible, so that
the closed-loop trajectories reach closer to the goal set. Define r̄M = supx∈S̄ r̄

? so that for
r̄M ≤ 0, it holds that D̄ = {x | V (x) ≤ 0} = SG, which is the smallest possible domain of
convergence. For 0 < r̄M < 1, it holds that D = {x | V (x) ≤ rM}. For r̄M ≥ 1, it holds
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that

D̄ =

{
x | V (x) ≤ kµ sup

z∈S̄

(
δ̄?1(z) +

√
(δ̄1(z)?)2 − 4α1α2

2α1

)µ}

=

{
x | V (x) ≤ sup

z∈S̄
kµ
(
r̄?(z) +

√
(r̄(z)?)2 − 1

)µ}
.

Let D̄r :=
{
x | V (x) ≤ kµ

(
r +
√
r2 − 1

)µ}
so that D̄ = D̄r for all r ≥ 1. It can be

readily verified that
(
r +
√
r2 − 1

)
is a monotonically increasing function for r ≥ 1, i.e.,

(r1 +
√
r2

1 − 1) > (r2 +
√
r2

2 − 1) and thus, D̄r2 ⊂ D̄r1 for r1 > r2. Thus, it holds that

D̄ =

{
x | V (x) ≤ kµ

(
r̄M +

√
r̄2
M − 1

)µ}
.

It is desired that r̄M takes smaller values for the domain of convergence D̄ to be small.
Using this and the discussion above, it can be concluded that for a given input bound,
relaxing T̄ud results into a smaller domain of convergence D̄, and conversely, for a given
T̄ud, increasing the input bounds results into a smaller domain of convergence. Thus, the
hypothesis that the parameter for fixed α1, α2, the parameter δ̄1 characterizes the trade-off
between the domain of convergence, time of convergence, and the input bounds is verified.

3.3.3 Robustness perspective

Theorem 3.6 can be used to show the robustness of a FxTS origin against a class of non-
vanishing, bounded, additive disturbance in the system dynamics, as shown next.

Corollary 3.2 (Robustness w.r.t. non-vanishing disturbances). Consider the perturbed
dynamical system

ẋ = f(x) + φ(x), (3.38)

where f, ψ : Rn → Rn, f(0) = 0 and there exists lφ > 0 and a neighborhood Dφ ⊂ Rn

of the origin such that ‖φ(x)‖ ≤ lφ for all x ∈ Dφ. Assume that the origin of the nominal
system ẋ = f(x) is fixed-time stable, and that there exists a Lyapunov function V satisfying

conditions of Theorem 3.2 where α1, α2 > 0, γ1 > 1 and 0 < γ2 < 1. Additionally, assume

that there exists L > 0 such that
∥∥∂V
∂x

(x)
∥∥ ≤ L for all x ∈ Dφ. Then, there exists D̄ ⊂ Dφ

such that for all x(0) ∈ Rn \ D̄, the trajectories of (3.38) reach the set D̄ within a fixed

time T̄ <∞.
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Proof. The time derivative of V (x) along the system trajectories of (3.38) reads

V̇ (x) =
∂V

∂x
(f(x) + φ(x)) =

∂V

∂x
f(x) +

∂V

∂x
φ(x) ≤− α1V

γ1 − α2V
γ2 +

∂V

∂x
φ(x)

≤− α1V
γ1 − α2V

γ2 + Llφ.

Hence, using Theorem 3.6, it follows that there exists D̄ ⊂ Dφ such that all solutions
starting outside D̄ reach the set D̄ in a fixed time T̄ , where the set D̄ and the convergence
time T̄ are functions of α1, α2, γ1, γ2, L and lφ.

Note that in the presence of non-vanishing disturbances, it is not possible to guarantee
that the system trajectories converge to the equilibrium point. Instead, (3.31) characterizes
an estimate, D̄, of a neighborhood of the equilibrium to where system trajectories are guar-
anteed to converge within a fixed-time, T̄ , and (3.32) provides an upper bound independent
of x(0) on T̄ .

3.4 Simulations

In this section, one numerical case study is presented on an academic example to demon-
strate the relationship between the input constraints, time of convergence and the slack
variable δ. Consider the following system:

ẋ1 = x2 + x1(x2
1 + x2

2 − 1) + x1u,

ẋ2 = −x1 + ζ(x2)(x2
1 + x2

2 − 1) + x2u,

where x = [x1, x2]T ∈ R2, u ∈ R, ζ(z) = (0.8+0.2e−100|z|) tanh(z) and SG = {x | ‖x‖ ≤
1}. Note that in the absence of the control input, the trajectories diverge away from SG,
i.e., the set SG is unstable for the open-loop system. Define hG(x) = ‖x‖2 − 1 and let the
control input bounds be of the form ‖u‖ ≤ umax, where umax > 0. The initial conditions
are chosen as x(0) = [3.33, 1.33]T .

The simulations are performed with µ = 2. First, the effect of the control input bound
on the maximum value of δ1 is studied by fixing Tud = 1, and varying umax. Figure 3.4
plots the maximum value of maxx δ1(x) for various values of umax ∈ [16 , 25].3 It can be
observed that δ1 decreases as the control authority umax of the system increases.

Figure 3.5 plots the control input u(t) with time for various values of umax. The value of
umax increases from 16 to 25 from blue to red. Note that the input saturates in the beginning

3Since the open-loop system is unstable, for given set of initial conditions, it is observed that the closed-
loop trajectories diverge for umax ≤ 16.
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Figure 3.4: Variation of max δ1 for various control input bounds umax.
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Figure 3.5: Control input u(t) for various control input bounds umax.

by umax for umax ≤ 24 (the lower-bound input constraint is shown for the case when
umax = 20 with dashed line). It can be observed that in every case, the system trajectories
do utilize the maximum available control authority at the beginning of the simulation, while
the control input decreases to zero as the system trajectories approach the goal set.

Figure 3.6 plots the energy utilized by the system in terms of the integral
∫ T

0
‖u(t)‖2dt

for various values of umax. The total energy decreases by about 8% as the maximum
control authority increases from 16 to 25. This is also evident from Figure 3.7, which plots
the different paths traced by the system from various values of umax. It can be observed
that as the control authority increases, the path length decreases, which results in a decrease
in the utilized energy.
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Figure 3.6: Energy
∫ T

0
‖u(t)‖2dt for various control input bounds umax.
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Figure 3.7: Closed-loop trajectories for various control input bounds umax.

Next, control authority is kept fixed with umax = 16 and the required time of conver-
gence T is varied between 1 and 10. Figure 3.8 shows the variation of maxx δ1(x) as a
function of the convergence time T . As T increases (or equivalently, α1, α2 decrease), the
maximum value of δ1(·) decreases. This implies that for a larger time of convergence, there
is a larger domain of attraction starting from which convergence can be achieved in the
given time.

These (numerical) relations indicate that for a required domain of attraction D, one can
choose the parameters umax and T so that FxTS can be guaranteed for all initial conditions
in D. Conversely, for a given input bound and required time of convergence, it is possible
to find the largest domain of attraction by computing the maximum value of δ1.
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Figure 3.8: Variation of max δ1 for various user-defined convergence time T .

3.5 Conclusions

In this chapter, two new results on FxTS are presented by allowing a possibly positive lin-
ear or constant term to appear in the time derivative of the Lyapunov function. In the first
case, the domain of attraction, as well as the upper bound on the time of convergence for
fixed-time stability, are characterized as functions of the coefficients of the positive and the
negative terms in the upper bound of the time derivative of the Lyapunov function. The re-
lationship between control authority, time of convergence, and the domain of attraction are
discussed. In the second case, the estimate of the neighborhood of the equilibrium point, as
well as the upper bound on the time of convergence to this neighborhood are characterized
as functions of the ratio of the new constant and the coefficients of the negative terms in the
upper bound of the time derivative of the Lyapunov function.

The proposed Lyapunov conditions can be used for control synthesis with FxTS guar-
antees. In the next chapter, problems involving both safety and convergence requirements
are studied in the presence of input constraints, and a control synthesis framework based
on quadratic programming is developed.
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CHAPTER 4

Control Synthesis via Quadratic Programming

In this chapter, the problem of designing control inputs so that system trajectories remain
in a safe set while converging to a goal set within a user-defined time is considered. Figure
4.1 shows a scenario of a motivating problem requiring a quadrotor to remain in a domain
(acting as a safe set) that consists of the region bounded by the green boundary and excludes
the regions marked in red. Furthermore, the blue regions denote the goal sets, which the
quadrotor is required to visit in a given time sequence.

Figure 4.1: Motivating example scenario for a motion planning problem governed by spa-
tiotemporal constraints.

In contrast to Chapter 2 where double-integrator systems are considered, this chapter
studies the problem of control synthesis for systems modeled via a general class of non-
linear, control-affine dynamics. Furthermore, while the focus of Chapter 2 is on designing
FTS controllers, in this chapter, the stronger notion of FxTS is considered to guarantee
convergence within a user-defined time.

First, the nominal case without disturbances and with perfect state knowledge is con-
sidered in Section 4.2. Utilizing the new FxTS results from Chapter 3, this section studies a
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QP-based formulation to compute the control input that renders a safe set forward invariant
and drives the closed-loop trajectories to a goal set within a user-defined time. It is shown
that the proposed QP is feasible, that the solution of the QP is a continuous function of the
state variables, and the cases when the solution of the QP solves the considered problem
of control design are discussed. The results in this section are based on [111]. The author
wishes to acknowledge his co-author Dr. Ehsan Arabi for contributions in the development
of some of the results presented in this section.

Then, the case with an additive disturbance in the system dynamics and imperfect state
estimation is considered in Section 4.3. The notion of robust CBF is utilized to guarantee
forward invariance of the safe set while incorporating both the disturbance in the system dy-
namics as well as the state estimation error. Besides, the novel concept of robust FxT-CLF
is utilized to guarantee convergence to the goal set within the user-defined time. Finally,
the robust FxT-CLF and the robust CBF conditions are utilized in a QP formulation, and
it is shown that the proposed QP is feasible and that the control input defined as the so-
lution of the QP solves the underlying constrained control design problem under certain
assumptions. The results in this section are based on [112]. Two numerical case studies
are presented in Section 4.4 corroborating the efficacy of the proposed method in control
design for multi-task multi-agent problems.

The following notation is frequently used in this chapter:

R the set of real numbers
R+ Set of non-negative reals
‖ · ‖p p-norm of (·)
‖ · ‖ Euclidean norm of (·)
Ck k-times continuously differentiable functions
LfV (x) Lie derivative of V ∈ C1 along f defined as ∂V

∂x
f(x)

U Input-constraint set
SS Safe set
SG Goal set
Tud User-defined convergence time
∂S Boundary of the closed set S
int(S) Interior of the closed set S
|x|S Distance x from the set S defined as infy∈S ‖x− y‖
x ≤ y Element-wise inequalities xi ≤ yi, i = 1, 2, . . . , n

∅ Empty set
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4.1 Mathematical preliminaries

4.1.1 Problem formulation

Consider the control affine dynamical system:

ẋ(t) = f(x(t)) + g(x(t))u, x(0) = x0, (4.1)

where x ∈ Rn is the state vector, f : Rn → Rn and g : Rn → Rn×m are system vector
fields, continuous in their arguments, and u ∈ Rm is the control input vector. In addition,
define a safe set SS := {x | hS(x) ≤ 0}, and consider a goal set to be reached in a user-
defined time Tud > 0 defined as SG := {x | hG(x) ≤ 0}, where hS, hG : Rn → R are
user-defined functions. The arguments t, x are dropped whenever clear from the context.
A few special classes of functions are required in this chapter as defined below.

Definition 4.1. A function α : R+ → R+ is called

• Class-K function: if it is continuous, increasing, i.e., for all x > y ≥ 0, α(x) > α(y)

with α(0) = 0;

• Class-K∞ function: if it is a class-K function, and limr→∞ α(r) =∞;

Definition 4.2. (Class-KL function): A function κ : R+ × R+ → R+ is a class-KL
function if

1) for all t ≥ 0, the map κ(r, t) belongs to class-K and

2) for all r ≥ 0, the map κ(r, t) is decreasing in t with κ(r, t)→ 0 as t→∞.

The notion of positive-definiteness w.r.t. a set is defined below:

Definition 4.3 (Positive definite). A function V : Rn → R is positive definite w.r.t. a

compact set S if V (x) = 0 for all x ∈ ∂S and V (x) > 0 for all x /∈ S.

Similarly, the notion of radial-unboundedness can be defined w.r.t. a compact set:

Definition 4.4 (Radially unbounded). A function V : Rn → R is radially unbounded

w.r.t. a compact set S if there exits α ∈ K∞ such that V (x) ≥ α(|x|S) for all x /∈ S.

Note that the traditional notions of positive definiteness and radial-unboundedness follows
from the above definitions by setting S = {0}. The following standing assumption is made.

Assumption 4.1 (Safe and goal sets). The functions hS(x), hG(x) ∈ C1 , SG
⋂
SS 6= ∅,

the set SG is compact, and the sets SS and SG have non-empty interiors. Furthermore, the

function hG is radially unbounded w.r.t. SG.
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4.1.2 Forward invariance

Since the system trajectories are required to stay in the set SS at all times, the set SS can be
thought of as a safe set, or its complement set Rn \ SS , an unsafe set. Forward-invariance
of a set is defined as:

Definition 4.5 (Forward invariance). The set S is forward-invariant for the system (4.1)
under the effect of a control input u if x(0) ∈ S implies that x(t) ∈ S for all t ≥ 0.

The following result, known as the Nagumo’s theorem, is adapted from [129] for the
forward-invariance of the set SS for the control system (4.1):

Lemma 4.1 (Nagumo’s theorem). Let u(x) ∈ U be a continuous control input such that

the resulting closed-loop trajectories of (4.1) are uniquely determined in the forward time.

Then, the set SS is forward invariant for the closed-loop system (4.1) if and only if the

following holds:

LfhS(x) + LghS(x)u(x) ≤ 0 ∀x ∈ ∂SS. (4.2)

Thus, the following assumption is made to guarantee that the safe set SS can be rendered
forward invariant for (4.1).

Assumption 4.2 (Viability assumption). For all x ∈ ∂SS , there exists a control input

u ∈ U such that the following condition holds:

LfhS(x) + LghS(x)u ≤ 0. (4.3)

Similar assumptions have been used in literature, either explicitly (see e.g. [55]) or implic-
itly (see e.g. [53]). A function that satisfies (4.3) is called a valid CBF by the authors in [64].
In this chapter, the conditions of ZCBF are used to ensure safety or forward invariance of
the safe set SS . The notion of ZCBF is defined by the authors in [53] as following.

Definition 4.6 (ZCBF). For the dynamical system (4.1), a continuously differentiable func-

tion B : Rn → R is called a ZCBF for the set SS if B(x) < 0 for x ∈ int(SS), B(x) = 0

for x ∈ ∂SS , and there exists α ∈ K, such that

inf
u∈U
{LfB(x) + LgB(x)u} ≤ α(−B(x)), ∀x ∈ SS. (4.4)
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It is easy to see that if hS is a ZCBF for (4.1), then it also satisfies (4.3). One special case
of (4.4) is

inf
u∈U
{LfB(x) + LgB(x)u} ≤ −δB(x), (4.5)

with δ ≥ 0, as discussed in [53, Remark 6]. In this work, the particular form of ZCBF
condition in (4.5) is employed where δ is held as a free variable of optimization in a QP
formulation. This condition helps guarantee the feasibility of the underlying QP while not
jeopardizing forward invariance of the safe set.

Next, conditions for forward invariance of a time-varying set are reviewed. Define
S(t) = {x | h(t, x) ≤ 0} where h : R+ × Rn → R is continuously differentiable. The
following assumption is made to guarantee that the safe set S(t) can be rendered forward
invariant for (4.1).

Assumption 4.3. For all x ∈ ∂S(t), t ≥ 0, there exists a control input u ∈ U such that the

following condition holds:

Lfh(t, x(t)) + Lgh(t, x(t))u+
∂h

∂t
(t, x(t)) ≤ 0. (4.6)

The following Lemma is also required to prove the main results later in the chapter.

Lemma 4.2 (Invariance of the interior). Consider the following inequality

Lfh(t, x(t)) + Lgh(t, x(t))u+
∂h

∂t
(t, x(t)) ≤ α(−h(t, x(t))) (4.7)

where α is a locally Lipschitz class-K function. Then, under the effect of a continuous

control input u ∈ U satisfying (4.7) and for all initial conditions satisfying h(0, x(0)) < 0,

it holds that the closed-loop trajectories satisfy h(t, x(t)) < 0 for all 0 ≤ t ≤ T where

T ∈ R+, and h(t, x(t)) ≤ 0 for all t ≥ 0.

The proof can be completed using [122, Lemma 3.4] and [122, Lemma 4.4].

4.1.3 Fixed-time Convergence

First, the notion of CLF is reviewed. The following definition is adapted from [130].

Definition 4.7 (CLF-S). : A continuously differentiable function V : Rn → R is called a

CLF-S for (4.1), if it is positive definite and radially unbounded w.r.t. a compact set S and
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the following holds:

inf
u∈U
{LfV (x) + LgV (x)u} < 0, ∀x /∈ S. (4.8)

Note that [130] defines CLF with U = Rm. Since this work deals with input constraints, the
notion CLF is modified in Definition 4.7 so that it accounts for input constraints. Inspired
from [66], a class of CLF, termed as FxT-CLF, is defined with a user-defined fixed-time
convergence guarantees:

Definition 4.8 (FxT-CLF-S). : A continuously differentiable function V : Rn → R is

called FxT-CLF-S for (4.1) with parameters α1, α2 > 0, γ1 > 1, 0 < γ2 < 1, if it is

positive definite and radially unbounded w.r.t. a compact set S and the following holds:

inf
u∈U
{LfV (x) + LgV (x)u} ≤ −α1V (x)γ1 − α2V (x)γ2 , ∀x /∈ S, (4.9)

and the time of convergence T satisfies T ≤ Tud, where Tud > 0 is a user-defined fixed

time.

Definition 4.8 defines the notion of FxT-CLF that guarantees convergence of the solutions
to the set S within user-defined time Tud. Note that the traditional notions of CLF [63] as
defined in Definition 4.7 and exponential CLF [60] (defined with α2 = 0 and γ1 = 1 in
(4.9)) only guarantee asymptotic and exponential convergence, respectively.

Based on [66], the following sufficient conditions for existence of a control input u that
renders the closed-loop trajectories reach the set goal SG in the fixed time Tud are presented
in [110].

Theorem 4.1 (Convergence within Tud). If there exist constants α1, α2 > 0, γ1 > 1 and

0 < γ2 < 1, satisfying

1

α1(γ1 − 1)
+

1

α2(1− γ2)
≤ Tud, (4.10)

such that hG is fixed-time (FxT) CLF-SG with parameters α1, α2, γ1, γ2 for all x /∈ int(SG),

then there exists u(t) ∈ U , such that the closed-loop trajectories of (4.1) reach the set SG
within fixed time Tud for all initial conditions x(0) /∈ SG.

Another way to formulate the FxT-CLF-SG condition is to require that

inf
u∈U
{LfhG(x) + LghG(x)u} ≤ − α1 max{0, hG(x)}γ1 − α2 max{0, hG(x)}γ2 , (4.11)
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holds for all x. The condition (4.11) guarantees that the closed-loop trajectories reach the
set SG within fixed time Tud and stay there for all future times, as shown below.

Corollary 4.1 (Forward invariance of goal set). Assume that there exist u ∈ U , and

constants α1, α2 > 0, γ1 > 1 and 0 < γ2 < 1 satisfying (4.10), such that the following

holds:

LfhG(x) + LghG(x)u ≤− α1 max{0, hG(x)}γ1 − α2 max{0, hG(x)}γ2 , (4.12)

for all x ∈ Rn. Then, the closed-loop trajectories of (4.1) reach the set SG within fixed

time Tud <∞ for all initial conditions x(0) ∈ Rn, and stay there for all future times.

Proof. For x /∈ SG, satisfaction of the inequality (4.12) implies that the function hG is a
FxT-CLF-SG. Thus, using Theorem 4.1, it follows under the affect of a control input u that
satisfies (4.12), the closed-loop trajectories of (4.1) reach the set SG within a fixed time.

Once the closed-loop trajectories of (4.1) hit the boundary of the set SG, it holds that
hG(x) = 0. From (4.12), it follows that ḣG(x) ≤ 0 for all x such that hG(x) = 0. Further-
more, compactness of the set SG along with satisfaction of (4.12) for a continuous control
input guarantees that the closed-loop solution of (4.1) exists and is uniquely determined
for all t ≥ 0 (see Theorem 4.3 for a detailed proof on existence and uniqueness). Thus,
using Lemma 4.1, the set SG is forward invariant under a continuous control input u ∈ U
satisfying (4.12).

4.2 Quadratic program formulation: nominal case

4.2.1 Problem setup

First, the main control synthesis problem studied in this section is discussed. The problem
formulation is given as follows:

Problem 4.1. Design a control input u(t) ∈ U := {v ∈ Rm | umin ≤ v ≤ umax}, so that

the closed-loop trajectories x(t) of (4.1) reach the set SG = {x | hG(x) ≤ 0} in a fixed

time Tud > 0 and satisfy x(t) ∈ SS = {x | hS(x) ≤ 0} for all t ≥ 0 and x0 ∈ SS .

Here, umin :=
[
umin1 . . . uminm

]T
and umax :=

[
umax1 . . . umaxm

]T
where umini <

umaxi are the lower and upper bounds on the individual input ui for i = 1, 2, . . . ,m, re-
spectively. Input constraints of this form are very commonly considered in the literature

67



[53, 57, 60]. This constraint set can be written in a compact form as U = {v | Auv ≤ bu},
where

Au =

[
Im

−Im

]
, bu =

[
umax

−umin

]
,

where Im ∈ Rm×m is an identity matrix. Problem 4.1 can be readily translated into a
temporal logic formula for the form of specifications that are encountered, for instance,
in mission planning problems, The signal temporal logic (STL) specifications, given by
formula φ include the following semantics:

1. (x, t) |= φ ⇐⇒ h(x(t)) ≤ 0;

2. (x, t) |= ¬φ ⇐⇒ h(x(t)) > 0;

3. (x, t) |= φ1 ∧ φ2 ⇐⇒ (x, t) |= φ1 ∧ (x, t) |= φ2;

4. (x, t) |= G[a,b]φ ⇐⇒ h(x(t)) ≤ 0,∀t ∈ [a, b];

5. (x, t) |= F[a,b]φ ⇐⇒ ∃t ∈ [a, b] such that h(x(t)) ≤ 0,

where φ = true if h(x) ≤ 0 and φ = false if h(x) > 0 (see [64] for more details). The
temporal functions G[a,b]φ and F[a,b]φ stand for satisfaction of the formula φ always in the
interval [a, b], i.e., for all t ∈ [a, b] and eventually in the interval [a, b], i.e., for a t ∈ [a, b],
respectively. Problem 4.1 given in the form of spatiotemporal requirements can be written
in the STL semantics as follows.

Problem 4.2. Design control input u ∈ U so that the closed-loop trajectories satisfy

(x, t) |=G[0,T ]φS ∧ F[0,T ]φG, (4.13)

where φS (respectively, φG) = true if hS(x) (respectively, hG(x)) ≤ 0, and false otherwise.

Note that the requirements involving more complex STL formulae, for examples, re-
quirements of the form

(x, 0) |=G[t0,tN ]φS ∧G[t0,t1]φ1 ∧ F[t0,t1]φ1 ∧G[t1,t2]φ2

∧ F[t1,t2]φ2 ∧ · · · ∧G[tN−1,tN ]φN−1 ∧ F[tN−1,tN ]φN , (4.14)

can also be considered in the proposed framework. Here [t0, t1], [t1, t2], . . . , [tN−1, tN ] are
intervals such that ti+1 − ti ≥ Tud where 0 < Tud < ∞, for all 0 ≤ i ≤ N − 1, and φi is
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true if hGi(x) ≤ 0. The requirements (4.14) translate to the problem of designing control
input u such that the closed-loop trajectories satisfy

x(t) ∈ SS, ∀ t ≥ t0, (4.15a)

x(t) ∈ SGi , ∀ t ∈ [ti−1, ti], (4.15b)

where SGi = {x | hGi(x) ≤ 0}, i.e., the closed-loop trajectories should stay in the set S
at all times, and visit the sets SGi in the given time sequence, can also be considered in the
proposed framework (Figure 4.2 illustrates the problem setting for one such scenario).

Figure 4.2: Illustration of a problem scenario with sequential tasks.

The requirements of the form (4.15) can be satisfied by solving Problem 4.1 sequen-
tially with safe set defined as S̄ = SS

⋂
SGi and goal set as S̄G = SS

⋂
SGi+1

for the time
interval [ti−1, ti] with ti − ti−1 ≥ Tud > 0, and requiring the time of convergence to satisfy
T ≤ Tud. It is needed that SGi

⋂
SGi+1

6= ∅ for the problem to be well-posed (Section 4.4
presents an instance of such an example of a two-robot motion planning case).

4.2.2 QP formulation

In this section, a QP is presented to address Problem 4.1 in the nominal case without dis-
turbances and uncertainties. First, a QP is designed with guaranteed feasibility, then it is
shown that the solution of the QP is a continuous function of x, and finally, the conditions
under which the control input defined as the optimal solution of the proposed QP solves
Problem 4.1 are discussed. In what follows, unless specified otherwise, all the results are

presented under Assumptions 4.1-4.2. Define z =
[
vT δ1 δ2

]T
∈ Rm+2, and consider
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the following QP:

min
v,δ1,δ2

1

2
zTHz + F T z (4.16a)

s.t. Auv ≤ bu, (4.16b)

LfhG(x) + LghG(x)v ≤ δ1hG(x)− α1 max{0, hG(x)}γ1 − α2 max{0, hG(x)}γ2 (4.16c)

LfhS(x) + LghS(x)v ≤− δ2hS(x), (4.16d)

whereH = diag{wu1 , . . . , wum , w1, w2} is a diagonal matrix consisting of positive weights
wui , wi > 0, F =

[
0Tm q1 0

]
with q1 > 0 and 0m ∈ Rm a column vector consisting of

zeros. The parameters α1, α2, γ1, γ2 are fixed, and are chosen as α1 = α2 = µπ
2Tud

, γ1 = 1+ 1
µ

and γ2 = 1 − 1
µ

with µ > 1. The choice of these parameters does not affect the feasibility
of the QP, as discussed below. The linear term F T z = q1δ1 in the objective function of
(4.16) penalizes the positive values of δ1 (see Theorem 4.4 for details on why δ1 being non-
positive could be useful). Constraint (4.16b) guarantees that the control input satisfies the
control input constraints. Per Theorem 3.3, the constraint (4.16c) guarantees convergence
and the constraint (4.16d) ensures safety.

The slack terms corresponding to δ1, δ2 allow the upper bounds of the time derivatives
of hS(x) and hG(x), respectively, to have a positive term for x such that hS(x) < 0 and
hG(x) > 0. This ensures the feasibility of the QP (4.16) for all x, as demonstrated below.

Lemma 4.3 (Feasibility of QP). Under Assumptions 4.1-4.2, for each x ∈ SS \ SG, there

exist v(x) ∈ Rm, δ1(x) ∈ R, δ2(x) ∈ R satisfying (4.16b)-(4.16d), i.e., the QP (4.16) is

feasible for all x ∈ SS \ SG.

Proof. Since x /∈ SG, it holds that hG(x) > 0. Consider the following two cases separately:
hS(x) = 0 and hS(x) < 0.

First, consider the case when hS(x) < 0, i.e., x ∈ int(SS). Now, since U is non-empty,
there exists v = v̄ in U such that (4.16b) is satisfied. Choose δ̄2 :=

LfhS(x)+LghS(x)v̄

−hS(x)
, so that

(4.16d) is satisfied with equality. Also, for x ∈ int(SS)\SG, it holds that hG(x) > 0. Define
δ̄1 :=

LfhG(x)+LghG(x)v̄+α1hG(x)γ1+α2hG(x)γ2

hG(x)
, so that (4.16c) holds with equality. Thus, for

the case when hS(x) < 0, there exists (v̄, δ̄1, δ̄2) such that (4.16b)-(4.16d) holds.
Next, consider the case when hS(x) = 0, i.e., x ∈ ∂SS . Per Assumption 4.2, it holds

that that there exists v = ṽ ∈ U such that (4.16d) holds. Since hS(x) = 0, all values of
δ2 ∈ R are feasible, and hence, one can choose δ2 = 0. Hence, the choice of (v, δ1, δ2) =

(ṽ, δ̄1, 0) satisfies (4.16b)-(4.16d). Thus, the QP (4.16) is always feasible.
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Remark 4.1. In comparison to [53], where conditions such as ∂hS
∂x
6= 0 or LghS 6= 0 are

imposed to guarantee feasibility of the QP, here, the slack terms corresponding to δ1, δ2

are used. Furthermore, in contrast to the prior work, where the feasibility is guaranteed

only under the safety constraint (4.16d) and under a convergence constraint similar to

(4.16c), the presented formulation is guaranteed to have a feasible solution under the ad-

ditional consideration of control input constraints (4.16b). Furthermore, in contrast to

the exponential convergence guarantees of the resulting closed-loop trajectories in [53],

or, finite-time convergence guarantees without control input bounds in [62], the proposed

formulation guarantees fixed-time convergence in the presence of control input constraints.

4.2.3 Continuity of the solution of the QP

For guaranteeing forward invariance of the safe set SS , Lemma 4.1 is utilized which re-
quires the uniqueness of the system solutions. Traditionally, Lipschitz continuity of the
right-hand side of (4.1) is utilized in order to guarantee existence and uniqueness of the so-
lutions of (4.1), see e.g., [53, 58, 64]. When the right-hand side of (4.1) is only continuous,
existence and uniqueness of the solutions can be established using the results in [131, Sec-
tion 3.15-3.18] (see Theorem 4.3). Next, it is shown that the control input u(x) as a solu-
tion of the QP (4.16) is continuous in its arguments. Define A : Rn → R(2m+2)×(m+2) and
b : Rn → R(2m+2) as

A(x) :=

 Au 02m 02m

LghG(x) −hG(x) 0

LghS(x) 0 hS(x)



b(x) :=

 bu

−LfhG(x)− α1 max{0, hG(x)}γ1 − α2 max{0, hG(x)}γ2

−LfhS(x)


where 02m ∈ R2m is a column vector consisting of zeros. Also, define the functions
Gi(x, z) := Ai(x)z − bi(x) where Ai ∈ R1×(m+2) is the i-th row of the matrix A, and
bi ∈ R the i-th element of b, so that the constraints (4.16b)-(4.16d) can be written as
Gi(x, z) ≤ 0 for i ∈ 1, 2, . . . , 2m+ 2. Let z? and λ? ∈ R2m+2

+ denote the optimal solution
of (4.16), and the corresponding optimal Lagrange multiplier, respectively. The following
assumption is made to prove the main results of this section.

Assumption 4.4 (Strict complementary slackness). The strict complementary slackness

holds for (4.16) for all x ∈ int(SS) \ SG, i.e., for each i ∈ {1, 2, . . . , 2m+ 2}, it holds that
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either λ?i > 0 or Gi(x, z
?) < 0 for all x ∈ int(SS) \ SG.

Complimentary slackness, i.e., λ?iGi(x, z
?) = 0, for all i = 1, . . . , 2m + 2, is a both

necessary and sufficient condition for optimality of the solution for QPs [128, Chapter 5].
Note that this condition permits existence of i such that both λ?i = 0 and Gi(x, z

?) = 0.
Strict complimentary slackness rules out this possibility, and require that for each i, either
λ?i or Gi(x, z

?) is non-zero.

Theorem 4.2 (Continuity of solution of QP). Under Assumptions 4.1 and 4.4, the solution

z∗ : Rn → Rm+2 of (4.16) is continuous on int(SS) \ SG.

Proof. The proof is based on [132, Theorem 2.1]. Denote by I(x), the indices of rows of
matrix A(x) corresponding to the active constraints, i.e., j ∈ I(x) implies Aj(x)z?(x) =

bj(x), where Aj ∈ R1×m+2 is the j-th row of the matrix A and bj ∈ R the j-th ele-
ment of b. Define matrix Aac and bac by collecting Aj(x), and of bj , respectively, so that
Aac(x)z?(x) = bac(x). Since at most one of the input constraints ui ≤ uMi

or umi ≤ ui can
be active at a time, the matrix Aac(x) has k rows from

[
Au 02m 02m

]
, where k ≤ m,

which are linearly independent. Furthermore, it has p rows from

[
LghG −hG 0

LghS 0 hS

]
,

where p ≤ 2. Since hG, hS 6= 0 for x ∈ int(SS) \ SG, these k + p rows are linearly inde-
pendent. Thus, the matrix Aac is full row-rank, i.e., the gradients of the active constraints
{Aaci(x)}, where Aaci(x) is the i−th row of matrix Aac(x), are linearly independent.

The second derivative∇zzL of the Lagrangian defined as

L(z, x, λ) :=
1

2
zTHz + F T z + λT (A(x)z − b(x)),

with respect to z is H , which is a positive definite matrix. Using this, and the fact that
the QP (4.16) is feasible, it holds that the second-order sufficient conditions for optimality
hold (see e.g. [132, Section 2.3]). Note that [132, Theorem 2.1] requires that the objective
function and the functionsGi(x, u) have the second derivatives jointly continuous in (x, u).
Since the objective function 1

2
zTHz+F T z is independent of x, and the constraint functions

Gi(x, u) are linear in u, the second derivative of these functions are independent of x, and
thus, satisfy this condition trivially. Finally, the strict complementary slackness condition
is satisfied per Assumption 4.4. Thus, all the conditions of [132, Theorem 2.1] are satisfied.
Therefore, for every x ∈ int(SS)\SG, there exists an open neighborhood X ⊂ int(SS)\SG
of x such that the solution z?(x) is continuous for all x ∈ X . Since this holds for all
x ∈ int(SS)\SG, it follows that the solution z?(x) is continuous for all x ∈ int(SS)\SG.
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Note that the above result guarantees that the control input defined as u(x) = v?(x)

is continuous on int(SS) \ SG. Under Assumption 4.4, the authors in [133] show that the
solution is continuously differentiable if the objective function and the constraints functions
are twice continuously differentiable. The authors in [53] assume that the functions f, g
and the Lie derivatives LfhS, LfhG, LghS, LghG are locally Lipschitz continuous to show
Lipschitz continuity of the solution of QP in the absence of control input constraints. Under
similar assumptions, the authors in [23] show that the solution of QP is guaranteed to
be Lipschitz continuous (in the absence of input constraints) if the CBF constraints are
inactive, i.e., the constraints are satisfied with strict inequality at the optimal solution z?,
which is same as Assumption 4.4. The authors extend these results in [61] by utilizing the
theory of non-smooth analysis, and strong forward invariance of sets even if the control
input is not continuous. Under similar assumptions, the results in [134] utilize the concept
of Clarke tangent cones to guarantee strong forward invariance when the control input is
only Lebesgue measurable. Note that in the presented formulation, the only requirement is
that the functions f, g are continuous, and hS, hG continuously differentiable in x, which is
a relaxation of the prior assumptions.

Next, it is shown that closed-loop trajectories of (4.1) under u = v? exist and are unique.

Theorem 4.3 (Uniqueness of closed-loop trajectory). Let Assumptions 4.1-4.4 hold. If

the solution of (4.16), given as z? = [v?(·)T δ?1(·) δ?2(·)]T , satisfies d1 := sup
int(SS)\SG

δ?1(x) <

∞, then there exists a neighborhood D of the set SG ∩ int(SS) such that the closed-loop

trajectory under u(·) = v?(·) exists and is unique for all t ≥ 0 and for all x(0) ∈ D.

Furthermore, if d1 ≤ 0, then the result holds with D = int(SS).

Proof. The proof is based on [131, Theorem 3.18.1]. Using [131, Theorem 3.15.1] and
choosing a Lyapunov candidate v = 1

2
|y|2, it can be shown that y ≡ 0 is the unique

solution of ẏ = 0 for y(0) = 0. Theorem 4.2 guarantees that the solution of the QP (4.16)
is continuous on int(SS), which implies continuity of the closed-loop system dynamics
(4.1) when u(x) := v?(x). Note that hG(x) = 0 for x ∈ ∂SG and hG(x) > 0 for x /∈ SG,
i.e., the function hG is positive definite with respect to the set SG. Define φ(y) := d1y −
α1 sign(y)|y|γ1−α2 sign(y)|y|γ2 . Per Theorem 3.3, it holds that there exists a neighborhood
Dy ⊂ R of the origin such that for all y ∈ Dy, φ(y) ≤ 0. Thus, there exists a function
g defined as g(t, V ) = 0 that satisfies condition (i) of [131, Theorem 3.18.1], the closed-
loop dynamics of (4.1) satisfies the condition (ii), and there exists a function V defined as
V (x) = hG(x) that satisfies the condition (iii). Thus, using [131, Theorem 3.18.1], there
exists τ > 0 such that the solution of the closed-loop system (4.1) exists and is unique for
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all x(0) ∈ D = {x | V (x) ∈ Dy} and all t ∈ [0, τ). Since the closed-loop solution x(t) is
bounded in the compact set D, the solution is complete (see [135, Ch2., Theorem 1]), and
thus, τ =∞.

Finally, in the case when d1 ≤ 0, it holds that the Dy = R, and thus, the result holds
with D = int(SS).

4.2.4 Safety and fixed-time convergence

Finally, it is shown that under certain conditions, solution of (4.16) solves Problem 4.1.

Theorem 4.4 (Closed-loop properties). Let Assumptions 4.1-4.4 hold. If the solution of

(4.16), given as z? = [v?(·)T δ?1(·) δ?2(·)]T , satisfies δ?1(x) ≤ 0 for all x ∈ int(SS), then,

u(·) = v?(·) solves Problem 4.1 for all x(0) ∈ int(SS).

Proof. First, the convergence of the closed-loop trajectories x(t) to the set SG within the
user-defined time Tud is shown. Since δ?1(x) ≤ 0, per Theorem 3.3, it holds that the closed-
loop trajectories of (4.1) with u(x) := v?(x) reach the set SG within fixed time T ≤

µπ

2(α1α2)
1
2

= Tud, i.e., within the user-defined time Tud for all x(0) ∈ int(SS).

Next, it is shown that the closed-loop trajectories of (4.1) satisfy x(t) ∈ int(SS) for all
t ≥ 0 under u(x) := v?(x). From Theorem 4.3, it holds that the closed-loop solution of
(4.1) exists and is unique under u = v? for all t ≥ 0 and for all x(0) ∈ int(SS). Thus,
Nagumo’s theorem can be applied to guarantee forward invariance of int(SS), i.e., that
x(t) ∈ int(SS) for all t ≥ 0. Therefore, the control input u(x) := v?(x) solves Problem 4.1
for all x(0) ∈ int(SS).

Utilizing the notion of FxT-CLF-SG, it can be shown that if hG(x) is a FxT CLF-SG, then
there exists a control input u ∈ U such that the closed-loop trajectories of (4.1) reach the
set SG within fixed time T .

Corollary 4.2. Let Assumptions 4.1-4.4 hold. If hG is an FxT CLF-SG for (4.1) with

parameters α1, α2, γ1, γ2 as defined in (4.16), then the QP (4.16) with δ1 = 0 is feasible for

all x ∈ int(SS) \ SG, i.e., the solution (v?(x), δ?2(x)) of the QP (4.16) after fixing δ1 = 0

exists for all x ∈ int(SS)\SG. Furthermore, if the solution (v?(x), δ?2(x)) is continuous for

all x ∈ int(SS) \SG with d2 := sup
int(SS)\SG

|δ?2(x)| <∞, then the control input u(x) := v?(x)

solves Problem 4.1 for all x(0) ∈ int(SS).
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Proof. Since hG is FxT CLF-SG, there exists v(x) ∈ U such that (4.16c) is satisfied with
δ1 = 0. Given that x ∈ int(SS), i.e., hS(x) < 0, one can let δ2(x) :=

LfhS(x)+LghS(x)v(x)

−hS(x)

so that (4.16d) is satisfied. Thus, the QP (4.16) is feasible with δ1 = 0 for all x ∈ int(SS).
From Theorem 4.2, it follows that the control input u = v? is continuous. Theorem 4.3 can
be used to show existence and uniqueness of the solution x(t) of the closed-loop system
(4.1) for t ≥ 0 and for all x(0) ∈ int(SS). Thus, the control input u(x) := v?(x) renders
the set int(SS) forward invariant. Next, it is shown that the closed-loop trajectories remain
in the interior of the safe set, i.e., x(t) ∈ int(SS) for all 0 ≤ t ≤ Tud. For d2 <∞, and for
all t ≤ Tud, it holds that (4.16d) yields:

ḣS(x(t)) ≤ −d2hS(x(t)) = ψ(−hS(x(t))),

where ψ(r) := d2 r is a Lipschitz continuous class-K function. Thus, using the Comparison
Lemma ( [122, Lemma 3.4]) and [122, Lemma 4.4], it follows that there exists a class-KL
function κ such that hS(x(t)) ≤ −κ (−hS(x(0)), t). To see this, consider ẏ = ψ(−y) with
y(0) = hS(x(0)), and define z := −y to obtain ż = −ψ(z). Then, using [122, Lemma
4.4], it follows that z(t) = κ(z(0), t), or equivalently, y(t) = −κ(−y(0), t). Further-
more, using the Comparison Lemma, it follows that hS(x(t)) ≤ y(t), i.e., hS(x(t)) ≤
−κ(−hS(x(0)), t). Since κ (−hS(x(0)), t) > 0 for all t ≤ Tud < ∞, it follows that
hS(x(t)) ≤ −κ (−hS(x(0)), t) < 0 for all t ≤ Tud, i.e., x(t) ∈ int(SS) for all t ≤ Tud.
Finally, under the assumption that δ1 = 0, Theorem 4.4 ensures the convergence of the
closed-loop trajectories x(t) to the set SG within a fixed time Tud; therefore, it follows that
u(x) := v?(x) solves Problem 4.1 for all x(0) ∈ int(SS).

Remark 4.2. Corollary 4.2 gives one sufficient condition under which the solution of QP

(4.16) solves Problem 4.1. As pointed out in [53], the conflict between safety and the

convergence constraint require a non-zero slack term for satisfaction of (4.16c)-(4.16d)
together. With this observation and keeping in mind the discussion in Section 3.2.3, one

can readily conclude that if the control input constraints set or the user-defined time Tud is

sufficiently large, and the goal set is in the interior of safe set, i.e., SG ⊂ int(SS), then it

is possible to satisfy (4.16c) with δ1 ≤ 0. The authors in [58] argue that in the absence of

such a conflict, a larger weight w1 on δ1 in (4.16) results in solution of the QP with δ1 ≈ 0.

Next, the cases are discussed when the solution of QP (4.16) might not solve Problem
4.1 with the specified time constraint, and from all initial conditions, but it still renders the
closed-loop trajectories safe, and convergent to the set SG within a fixed time.
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Theorem 4.5. Let Assumptions 4.1-4.4 hold. If the solution of (4.16), given as z?(x) =

[v?(x)T δ?1(x) δ?2(x)]T , satisfies

d1 := sup
x∈SS\SG

δ∗1(x) < 2
√
α1α2, (4.17)

then, for all x(0) ∈ int(SS), the closed-loop trajectories x(t) of (4.1) under u(x) := v∗(x)

reach the set SG in a fixed time, while satisfying x(t) ∈ int(SS) for all t ≥ 0. If (4.17) does

not hold, then for all x(0) ∈ DS , the closed-loop trajectories satisfy x(t) ∈ int(SS) for all

t ≥ 0 and reach the goal set SG within a fixed time, where DS is the largest sub-level set of

the function hG in the set D ∩ int(SS), with D =
{
x | hG(x) ≤ kµ

(
d1−
√
d1−4α1α2

2α1

)µ}
.

Figure 4.3: Illustration of the safe set SS (shown in green), the goal set SG (shown in light
blue), FxT DoA D (shown in dark blue) and the domain DS (shown in brown).

Proof. In both cases, following the proof of Theorem 4.4, it holds that the closed-loop
trajectories satisfy x(t) ∈ int(SS) for all t ≥ 0. When (4.17) holds, using Theorem 3.3, it
follows that there exists T1 satisfying

T1 ≤
µ

α1k1

(π
2
− tan−1 k2

)
,

where k1 :=
√

4α1α2−d1
4α2

1
and k2 := − d1√

4α1α2−d1
, such that the closed-loop trajectories x(t)

reach the set SG within fixed time T1. Also, per (4.17), it holds that k1 > 0 and so, T1 <∞,
i.e., the closed-loop trajectories x(t) of (4.1) under u(x) := v?(x) reach the set SG in fixed
time T1.

For the case when (4.17) does not hold, using Theorem 3.3, it holds that there exists

76



D := {x | hG(x) ≤ kµ
(

d1−
√
d1−4α1α2

2α1

)µ
} and a fixed time T2 such that

T2 ≤
µ

α1(b− a)

(
log

(
b− ka
a(1− k)

)
− log

(
b

a

))
,

where a, b are defined as in Theorem 3.3 with δ1 = d1, and 0 < k < 1, such that for all
x(0) ∈ D, the closed-loop trajectories reach the set SG within time T2. Since it is also
required that x(0) ∈ int(SS), define DS as the largest sub-level set of the function hG in
the set D ∩ int(SS), so that DS is forward invariant (see Figure 4.3). Therefore, for all
x(0) ∈ DS , the closed-loop trajectories of (4.1) reach the set SG within the fixed time T2,
while maintaining safety at all times.

In brief, the solution of the QP (4.16) always exists, is a continuous function of x, and
renders the interior of the safe set int(SS) forward invariant, i.e., guarantees safety. Fur-
thermore, the control input is guaranteed to lead fixed-time convergence of the closed-loop
trajectories to the goal set SG. In the case when δ1 ≤ 0, the convergence is guaranteed for
all x(0) ∈ int(SS), and within the user-defined fixed time Tud. If δ1 satisfies (4.17), then
also, fixed-time convergence is guaranteed for all x(0) ∈ int(SS), but the time of conver-
gence T may exceed the time Tud. Finally, if (4.17) does not hold, fixed-time convergence
is guaranteed for all x(0) ∈ DS ⊂ int(SS), however, the time of convergence T may exceed
the time Tud.

4.3 Quadratic program formulation: perturbed case

4.3.1 Problem setup

Building upon the results in 4.2, a robust control design based on QP formulation is pre-
sented in this section. Consider a perturbed dynamical system:

ẋ(t) = f(x(t)) + g(x(t))u+ d(t, x), (4.18)

where x ∈ Rn, u ∈ U ⊂ Rm are the state and the control input vectors, respectively, with U
the control input constraint set, f : Rn → Rn and g : Rn → Rn×m are continuous functions
and d : R+ × Rn → Rn is an unknown additive disturbance. The following assumption is
made.

Assumption 4.5 (Disturbance bound). There exists γ > 0 such that for all t ≥ 0 and

x ∈ D ⊂ Rn, ‖d(t, x)‖ ≤ γ, where D is a compact domain.
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Assumption 4.5 implies that the disturbance d is uniformly bounded in the domain D.
This is a standard model to account for modeling uncertainties, environmental noises, and
external disturbances (see, e.g. [57]). It is assumed that under the effect of the additive
disturbance d, the solutions of system (4.18) are well-defined. Furthermore, it is assumed
that the state x is not perfectly known, to account for sensor noises and uncertainties. More
specifically, consider that only an estimate of the system state, denoted as x̂, is available,
that satisfies:

˙̂x = f(x̂) + g(x̂)u. (4.19)

The following assumption is made on the state-estimation error ‖x− x̂‖.

Assumption 4.6 (Estimation error bound). There exists an ε > 0 such that ‖x̂(t) −
x(t)‖ ≤ ε, for all t ≥ 0.

The notations and functions necessary to state the main problem are defined now. Let
hS : Rn → R be a continuously differentiable function defining the static safe set SS :=

{x | hS(x) ≤ 0}, as in the nominal case in Section 4.2. To encode safety with respect to
a general time-varying safe sets, let hT : R+ × Rn → R be a continuously differentiable
function defining the time-varying safe set ST (t) = {x | hT (t, x) ≤ 0}. Finally, let hG :

Rn → R a continuously differentiable function defining the goal set SG = {x | hG(x) ≤
0}.

Remark 4.3. The set ST (t) encodes a dynamically-changing safe set arising, for instance,

due to the presence of moving obstacles or other agents in a multi-agent scenario. In such

a case, a centralized collision avoidance scheme might require each agent i to be in a

safe set defined as {xi(t) | h(xi(t), xj(t)) ≤ 0} for all j 6= i, where xi, xj ∈ Rn are

the states of the agents i and j. In this case, one can use a smooth approximation for the

max function, e.g., hT := log(
∑
j

ehij), so that the resulting function hT is continuously

differentiable (see [64]). The interested reader is also referred to [61] for a discussion on

how to compose multiple safety constraints.

Similar to Problem 4.1, the problem formulation can be stated as follows.

Problem 4.3. Find a control input u(t) ∈ U = {v ∈ Rm | uj,min ≤ v ≤ uj,max, j =

1, 2, . . . ,m}, t ≥ 0, and a set D ⊂ SS ∩ ST (0), such that for all x(0), the closed-loop

trajectories of (4.18) satisfy

(i) x(Tud) ∈ SG for a user-defined Tud > 0;
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(ii) x(t) ∈ SS for all t ≥ 0;

(iii) x(t) ∈ ST for all t ≥ 0.

First, conditions for robust CBFs are presented so that the safety requirements (ii) and
(iii) in Problem 4.3 can be satisfied in the presence of the disturbance d and state-estimation
error ε. The following is assumed.

Assumption 4.7 (Lipschitz continuity). There exist lS, lG, lT > 0 such that∥∥∥∥∂hS∂x (x)

∥∥∥∥ ≤ lS,

∥∥∥∥∂hG∂x (x)

∥∥∥∥ ≤ lG,

∥∥∥∥∂hT∂x (t, x)

∥∥∥∥ ≤ lT ,

for all x ∈ D ⊂ Rn, and all t ≥ 0.

Since the functions hS, hT are continuously differentiable, Assumption 4.7 holds on com-
pact domains.

4.3.2 Robust CBF and robust FxT-CLF

Corresponding to the set S(t) = {x | h(t, x) ≤ 0}where h : R+×Rn → R is continuously
differentiable, define Ŝε(t) = {x̂ | h(t, x̂) ≤ −lε}, where l = sup ‖∂h(t,x)

∂x
‖ is the Lipschitz

constant of the function h. Inspired from [58], the notion of a robust CBF is defined as
follows.

Definition 4.9 (Robust CBF). A continuously differentiable function h : R+ ×Rn → R is

called a robust CBF for (4.18) with respect to a disturbance d satisfying Assumption 4.5 if

there exists a locally Lipschitz class-K function α such that the following condition holds

inf
u∈U

{
Lfh(t, x(t)) + Lgh(t, x(t))u+

∂h

∂t
(t, x(t))

}
≤ α(−h(t, x(t)))− lγ, (4.20)

for all x(t) ∈ S(t) and t ≥ 0.

Note that the worst-case bound lγ of the term ‖Ldh(t, x)‖ is used to define the robust
CBF. This condition can be relaxed if more information than just the upper bound of the
disturbance is known, or can be adapted online to reduce the conservatism. The following
lemma can be stated now that relates the robust CBF condition with the forward invariance
of the set S(t) in the presence of disturbance d.
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Lemma 4.4 (Robust forward invariance). Assume that the function b(t, x̂) := h(t, x̂)+ lε

is a robust CBF for (4.18), i.e., there exists α ∈ K and a control input u ∈ U such that

Lfb(t, x̂(t)) + Lgb(t, x̂(t))u+
∂b

∂t
(t, x̂(t)) ≤ α(−b(t, x̂(t)))− lγ, (4.21)

holds for all x̂(t) ∈ Ŝε(t). If the resulting closed-solution x(t) of (4.18) exists and is unique

in forward time, then, the set S(t) forward invariant for all x̂(0) ∈ Ŝε(0).

Proof. The time derivative of the function b along the trajectories of (4.18) satisfies

ḃ(t, x̂) = Lfb(t, x̂) + Lgb(t, x̂)u+ Ldb(t, x̂) +
∂b

∂t
(t, x̂)

= Lfh(t, x̂) + Lgh(t, x̂)u+ Ldh(t, x̂) +
∂h

∂t
(t, x̂)

≤ Lfh(t, x̂) + Lgh(t, x̂)u+

∥∥∥∥∂h∂xd(t, x̂)

∥∥∥∥+
∂h

∂t
(t, x̂)

≤ Lfh(t, x̂) + Lgh(t, x̂)u+
∂h

∂t
(t, x̂) + lγ

(4.20)
≤ α(−h(t, x̂)− lε) = α(−b(t, x̂)),

for all t ≥ 0. Thus, it follows that b(t, x̂(t)) ≤ 0 (or, h(t, x̂(t)) ≤ −lε) for all t ≥ 0. Using
the mean value theorem, there exists z ∈ Rn such that

h(t, x) = h(t, x̂+ (x− x̂)) = h(t, x̂) +
∂h

∂x
(t, z)(x− x̂)

≤ h(t, x̂) +

∥∥∥∥∂h∂x(t, z)

∥∥∥∥ ‖(x− x̂)‖ ≤ h(t, x̂) + lε.

Thus, h(t, x̂) ≤ −lε implies that h(t, x) ≤ 0, and it follows that h(t, x) ≤ 0 for all t ≥ 0,
implying forward invariance of set S(t) for all x̂(0) ∈ Ŝε(0).

Thus, the condition (4.20) can be used to satisfy the safety requirements (ii)-(iii) in Problem
4.3. Intuitively, Lemma 4.4 guarantees that if x̂(t) ∈ Sε(t), then x(t) ∈ S(t) for all t ≥ 0.

Remark 4.4. Note that for the robust CBF condition, if the set Ŝε(0) is empty, then there

exists no initial condition for which forward invariance of the set S can be guaranteed

based on Lemma 4.4. Thus, for forward invariance of SS and ST , it is assumed that the sets

ŜS,ε, ŜT,ε(0), defined as SS,ε := {x̂ | hS(x̂) ≤ −lSε}, ST,ε(0) := {x̂ | hS(0, x̂) ≤ −lT ε},
are non-empty.
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Next, a robust FxT-CLF condition is presented to guarantee FxTS of the closed-loop
trajectories to the goal set. Consider a continuously differentiable function V : Rn → R
with Lipschitz constant lV .

Definition 4.10 (Robust FxT-CLF-S). A continuously differentiable function V : Rn →
R is called a robust FxT-CLF-S for a set S with respect to a disturbance d satisfying

Assumption 4.5 if V is positive definite and radially unbounded w.r.t. the set S, V (x) < 0

for x ∈ int(S), and satisfies

inf
u∈U
{LfV (x) + LgV (x)u} ≤ −α1V (x)γ1 − α2V (x)γ2 + δ1V (x)− lV γ, (4.22)

with α1, α2 > 0, δ1 ∈ R, γ1 = 1+ 1
µ

, γ2 = 1− 1
µ

for µ > 1, along the trajectories of (4.18).

Using the mean value theorem, the following inequality can be obtained:

V (x) ≤ V (x̂) + lV ε, (4.23)

which implies that if V (x̂) ≤ −lV ε, then V (x) ≤ 0. Based on this, the following result can
be stated.

Lemma 4.5 (Robust fixed-time convergence). Let V̂ : Rn → R defined as V̂ (x̂) =

V (x̂) + lV ε be a robust FxT-CLF-SG. Then, there exists u ∈ U , and a neighborhood D of

the set SG such that for all x̂(0) ∈ D, the closed-loop trajectories of (4.18) reach the goal

set SG within a fixed time T <∞.

Proof. Note that (4.22) implies that there exists u ∈ U such that

˙̂
V (x̂) = Lf V̂ (x̂) + LgV̂ (x̂)u+ LdV̂ (x̂)

= LfV (x̂) + LgV (x̂)u+ LdV (x̂)

≤ LfV (x̂) + LgV (x̂)u+ lV γ

≤ −α1V̂ (x̂)γ1 − α2V̂ (x̂)γ2 + δ1V̂ (x̂).

Thus, from Theorem 3.3, it follows that there exists a domainD and fixed time T <∞ such
that V̂ (x̂(T )) = 0 for all x̂(0) ∈ D. Thus, it holds that V (x̂(T )) ≤ −lV ε, which, in light of
(4.23), implies that V (x(T )) = 0 for all x̂(0) ∈ D. Since V (x) ≥ α(‖x‖SG), V (x(T )) ≤ 0

implies that α(‖x(T )‖SG) ≤ 0, i.e., x(T ) ∈ SG, which completes the proof.

The robust FxT-CLF condition guarantees that if the state estimate x̂ reaches a certain level
set in the interior of the set SG, quantitatively given as {x | V (x̂) ≤ −lV ε}, then the actual
state x reaches the zero sub-level set of the function V , and thus, reaches the set SG.
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Remark 4.5. For Lemma 4.5, it is required that the set {x̂ | hG(x̂) ≤ −lGε} 6= ∅. Other-

wise, if the minimum value of the function hG exceeds −lGε, i.e., hG,min := min
x∈SG

hG(x) >

−lGε, so that {x̂ | hG(x̂) ≤ −lGε} = ∅, it is not possible for ĥG(x̂) to take non-

positive values. In such cases, the condition (4.22) implies that the closed-loop trajec-

tories only reach the set {x | hG(x) ≤ hG,min + lGε} and not the zero sub-level set

of the function hG. One such example is the case when the goal set is a singleton, i.e.,

SG = {x | ‖x − xG‖ ≤ 0} = {xG} where xG ∈ Rn; in this case int(SG) is empty and

min
x∈SG

hG(x) = 0, and thus, condition (4.22) only guarantees that the closed-loop trajecto-

ries reach the set {x | ‖x− xG‖ ≤ lGε}.

4.3.3 QP formulation

With robust CBF and robust FxT-CLF conditions at hand, it can be determined whether
a given control input can render a safe set forward invariant, and drive the closed-loop
trajectories to the desired goal set in the presence of disturbances and state-estimation error.
Next, the problem of computing such a control input that satisfies the robust CBF and robust
FxT-CLF condition simultaneously, along with the input constraints is addressed. To this
end, the QP-based method similar to the ideal case as in Section 4.2 is utilized. The result
in Lemma 4.4 is used to formulate robust CBF constraints for the sets SS and ST , and that
in Lemma 4.5, to formulate the robust FxT-CLF-SG constraint for the goal set SG. Define

z =
[
uT δ1 δ2 δ3

]T
∈ Rm+3, and consider the following optimization problem

min
z∈Rm+3

1

2
zTHz + F T z (4.24a)

s.t. Auu ≤ bu, (4.24b)

Lf ĥG(x̂) + LgĥG(x̂)u ≤ δ1ĥG(x̂)− α1ĥG(x̂)γ1 − α2ĥG(x̂)γ2 − lGγ (4.24c)

Lf ĥS(x̂) + LgĥS(x̂)u ≤− δ2ĥS(x̂)− lSγ, (4.24d)

Lf ĥT (t, x̂) + LgĥT (t, x̂)u ≤− δ3ĥT (t, x̂)− ∂ĥT
∂t

(t, x̂)− lTγ, (4.24e)

where H = diag{{wul}, w1, w2, w3} is a diagonal matrix consisting of positive weights

wul , w1, w2, w3 > 0 for l = 1, 2, . . . ,m, F =
[
0Tm q 0 0

]T
with q > 0 and functions
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ĥG, ĥS (respectively, ĥT ) are functions of x̂ (respectively, (t, x̂)) defined as

ĥG(x̂) = hG(x̂) + lGε,

ĥS(x̂) = hS(x̂) + lSε,

ĥT (t, x̂) = hT (t, x̂) + lT ε.

The parameters α1, α2, γ1, γ2 are fixed, and are chosen as α1 = α2 = µπ/(2Tud), γ1 =

1 + 1
µ

and γ2 = 1 − 1
µ

with µ > 1 and Tud the user-defined time in Problem 4.3. Define
ŜG = {x̂ | hG(x̂) ≤ −lGε} so that x̂ ∈ ŜG =⇒ x ∈ SG.

Let the solution of (4.24) be denoted as z?(·) =
[
v?(·)T δ?1(·) δ?2(·) δ?3(·)

]T
. The fol-

lowing result can be stated now.

Theorem 4.6 (Closed-loop properties). The following holds:

(i) The QP (4.24) is feasible for all x̂(t) ∈ D
⋂(

int
(
ŜS

)
∩ int

(
ŜT (t)

))
\ ŜG for all

t ≥ 0;

(ii) If the solution z? is continuous in its arguments and max
0≤τ≤Tud

δ1(x̂(τ)) ≤ 0, then the

control input defined as u = v? guarantees convergence of the closed-loop trajecto-

ries to the goal set SG within time Tud, i.e., the control input u = v? solves Problem

4.3 for all x̂(0) ∈
(
D ∩ int(ŜS) ∩ int(ŜT (0))

)
.

Proof. Part (i): For t ≥ 0 such that x̂(t) ∈ D
⋂

(int(ŜS ∩ int(ŜT (t))) \ SG, it holds that
ĥS(x̂), ĥT (t, x̂), ĥG(x̂) 6= 0. Choose v = v̄ ∈ U and define

δ1 =
Lf ĥG + LgĥGv̄ + α1ĥ

γ1
G + α2ĥ

γ2
G + lV γ

ĥG
,

which is well-defined for all x̂ /∈ ŜG, so that (4.24c) is satisfied with equality. Similarly,
define δ̄2, δ̄3 so that (4.24d)-(4.24e) are satisfied with equality. Thus, there exists z̄ =[
v̄T δ̄1 δ̄2 δ̄3

]T
such that all the constraints of QP (4.24) are satisfied.

Part (ii): The condition (4.24c) implies that the time derivative of ĥG(x̂(t)) satisfies
(3.15) for all x̂(t) ∈ D ∩ int(ŜS)∩ int(ŜT (t)). Thus, using Lemma 4.5 and Theorem 3.3, it
follows that ĥG(x̂(t)) ≤ 0 for t ≥ Tud, which implies that hG(x̂(t)) ≤ −LGε, which in turn
implies hG(x(t)) ≤ 0 for t ≥ Tud for all x̂(0) ∈ D ∩ int(ŜS) ∩ int(ŜT (0)). Furthermore,
conditions (4.24d) and (4.24e) imply that the functions hS and hT are robust CBFs for
(4.18), and thus, the set SS ∩ST is forward invariant. Thus, the control input u = v? solves
Problem 4.3 for all x̂(0) ∈ D = D ∩ int(ŜS) ∩ int(ŜT (0)).
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It is worth noting that the constraints in the QP (4.24) are a function of the state estimate x̂,
and not the actual state x, which is unknown. Thus, the resulting control input u = v?(x̂)

is realizable. A couple of remarks on the main result of this section are provided now.

Remark 4.6. Theorem 4.6 guarantees that starting from the intersection of the interiors

of the safe sets, the closed-loop trajectories remain inside the interior of these sets, which,

with the help of slack variables in (4.24d)-(4.24e), guarantees recursive feasibility of the

QP. The case when the initial conditions lie on the intersection of the boundaries of the safe

sets requires strong viability assumptions such as the existence of u such that (4.3) holds

for both hS and hT for all x ∈ ∂SS ∩ ∂ST . Under this condition, the result in Theorem 4.6

can be extended to the set D = D ∩ (ŜS) ∩ (ŜT (t)).

Remark 4.7. Note that the result in part (iii) of Theorem 4.6 requires δ1 ≤ 0 so that the

control input u solves the convergence requirement of Problem 4.3. When this condition

does not hold, the closed-loop trajectories, while still satisfying safety requirements, may

not converge to the goal set within the required time Tud, or from an arbitrary initial con-

dition x(0) /∈ SG.

4.4 Simulations

Two case studies are presented to illustrate the efficacy of the proposed method. In the
numerical case studies, Euler discretization is used to discretize the continuous-time dy-
namics, and the MATLAB function quadprog to solve the QP at each discrete time step.

4.4.1 Nominal case: 2 agents case study

Consider a two-agent motion planning problem under spatiotemporal specifications, where
the objectives for the agents are to visit goal regions in a given time sequence while re-
maining in a safe set at all times, and maintaining a safe distance from each other. For the
sake of simplicity, the agent dynamics are modeled via single integrators as:

ẋi = ui,

where xi, ui ∈ R2 for i = 1, 2. The closed-loop trajectories for the respective agents,
starting from x1(0) ∈ C1 and x2(0) ∈ C3, are required to satisfy the following STL speci-
fications
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Figure 4.4: Problem setting for the 2 agent scenario.

(x1, t) |=G[0,T4]φs ∧ F[0,T1]φ2 ∧ F[T1,T2]φ3 ∧ F[T2,T3]φ4 ∧ F[T3,T4]φ1,

(x2, t) |=G[0,T4]φs ∧ F[0,T1]φ2 ∧ F[T1,T2]φ1 ∧ F[T2,T3]φ4 ∧ F[T3,T4]φ3

which is explained in details below (see Figure 4.4):

• x1(t), x2(t) ∈ SS = {x | ‖x‖1 ≤ 2, ‖x‖2 ≥ 1.5} for all t ≥ 0, i.e., the closed-loop
trajectories of the two agents should stay inside the solid-blue square and outside the
red-dotted circle, and maintain a minimum separation dm at all times;

• On or before a given T1 satisfying 0 < T1 < ∞, agent 1 and 2 should reach the
square C2;

• On or before a given T2 satisfying T1 < T2 <∞, agent 1 should reach the square C3

and agent 2 should reach the square C1;

• On or before a given T3 satisfying T2 < T3 < ∞, agent 1 and 2 should reach the
square C4;

• On or before a given T4 satisfying T3 < T4 <∞, agent 1 should reach the square C1

and agent 2 should reach the square C3;
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This problem is an extended version of the case study considered in [110, 136]. Note
that the sets Ci are not overlapping with each other, and the corresponding functions
hi(x) are not continuously differentiable. Now, in order to be able to use QP-based for-
mulation (4.16), Assumption 4.1 needs to hold, i.e., the sets S̄i should be constructed
such that S̄i

⋂
S̄i+1 6= ∅. In order to address this problem, construct auxiliary sets S̄i,

i ∈ {1, 2, · · · , 8} as shown in Figure 4.5.

-3 -2 -1 0 1 2 3
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-2

-1

0

1

2

3

Figure 4.5: Construction of sets S̄, S̄1, · · · , S̄8.

The set S̄ = {x | ‖x‖2 ≤ 1.5} and sets S̄i are defined as follows:

S̄1 = {x | ‖(x− [−1.5 1.5]T )‖ ≤ 0.5}, S̄2 = {x | ‖(x− [0 1.5]T )‖P1 ≤ 1},

S̄3 = {x | ‖(x− [1.5 1.5]T )‖ ≤ 0.5}, S̄4 = {x | ‖(x− [1.5 0]T )‖P2 ≤ 1},

S̄5 = {x | ‖(x− [1.5 − 1.5]T )‖ ≤ 0.5}, S̄6 = {x | ‖(x− [0 − 1.5]T )‖P1 ≤ 1},

S̄7 = {x | ‖(x− [−1.5 − 1.5]T )‖ ≤ 0.5}, S̄8 = {x | ‖(x− [−1.5 0]T )‖P2 ≤ 1}.

where ‖z‖P1
:=

√
z21

1.22
+

z22
0.52

and ‖z‖P2
:=

√
z21

0.52
+

z22
1.22

where z = [z1 z2]T ∈ R2. Now,
in order to visit square C2, agent 1 can go to set S̄2 \ S̄ within a time 0 < t0 < T1 and
then to S̄3 before t = T1. Hence, for agent 1, for time interval [0, t0], the safe set is defined
by function hS = max{hs1, hs2, hs3, hs4}, where hs1 = ‖x‖1 − 2, hs2 = 1.5 − ‖x‖, hs3 =

dm − ‖x− x2‖ and hs4 = ‖x− [−1.5 1.5]T‖ − 0.5, and the goal set is defined by function
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hG = ‖x − [0 1.5]T‖P1 − 1. For time interval [t0, T1], the functions hs4 and hG change,
while other things remain same. With these new sets, the problem can be re-formulated for
agent 1 to design a control input u1(t) such that for x1(0) ∈ S̄1,

• For a given t0 satisfying 0 < t0 < T1, x1(t0) ∈ S̄2 \ S̄ and x2(t0) ∈ S̄4 \ S̄;

• For a given t1 satisfying t0 < t1 ≤ T1, x1(t1) ∈ S̄3 and x2(t1) ∈ S̄3;

• For a given t2 satisfying T1 < t2 < T2, x1(t2) ∈ S̄4 \ S̄ and x2(t2) ∈ S̄2 \ S̄;

• For a given t3 satisfying t2 < t3 ≤ T2, x1(t3) ∈ S̄5 and x2(t3) ∈ S̄1;

• For a given t4 satisfying T2 < t4 < T3, x1(t4) ∈ S̄6 \ S̄ and x2(t4) ∈ S̄8 \ S̄;

• For a given t5 satisfying t4 < t5 ≤ T3, x1(t5) ∈ S̄7 and x2(t5) ∈ S̄7;

• For a given t6 satisfying T3 < t6 < T4, x1(t6) ∈ S̄8 \ S̄ and x2(t6) ∈ S̄6 \ S̄;

• For a given t7 satisfying t6 < t7 ≤ T4, x1(t7) ∈ S̄1 and x2(t7) ∈ S̄5,

• For all t ≥ 0, x1(t), x2(t) ∈ SS and ‖x1(t)− x2(t)‖ ≥ dm.

One can readily write the requirements for agent 2 in the similar manner. The formulation
(4.16) can now be used to compute the control input by solving (4.16) sequentially, i.e.,
for agent 1, for t ∈ [0, t0), SG = S̄2, then for t ∈ [t0, T1), SG = S̄3, and so on. The
input constraints are chooses as |ui| ≤ 10 for i = 1, 2. In order to translate the input

constraint in the form of (4.16b), defineAu =


1 0

−1 0

0 1

0 −1

 and bu =
[
7 7 7 7

]T
, so that

u1x, u1y, u2x, u2y ∈ [−7, 7]. The time constraints are chosen as Ti = 2 for i ∈ {1, 2, 3, 4}
and tj = 1 for j ∈ {t0, t1, · · · , t7}, and µ = 5, so that γ1 = 1.2 and γ2 = 0.8. The safety
distance is chosen as dm = 0.1.

Figure 4.6 shows the control inputs for the two robots, and their inter-agent distance
with time. The control input constraint ‖ui(t)‖ ≤ 10 is satisfied for both i = 1, 2 at all
times. Red-dotted line shows the minimum required inter-agent distance dm = 0.1 for
safety. It is clear that the control input and safety constraints are satisfied at all times.

Figures 4.7 and 4.8 shows the closed-loop trajectories of the two robots. The safe

region SS
⋂

(
8⋃
i=1

S̄i) is highlighted in grey color. Purple and green lines plot the paths taken

by agent 1 and 2, respectively. The agents visit all the required sets, while maintaining safe
distance from each other when they meet in the sets S̄3 and S̄7. The figure shows snapshots
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Figure 4.6: Norm of the control inputs ‖u1(t)‖, ‖u2(t)‖ and inter-agent distance ‖x1(t) −
x2(t)‖ between the agents.

Figure 4.7: Closed-loop trajectories of the two robots: snapshot at t = 1, 2, 3 and 4 sec.

at the instants when the agents reach the next goal set in the sequence, i.e., first snapshot
at t = 1 is taken when agent 1 reaches the set S̄2, i.e., x1(t) ∈ S̄2 and agent 2 reaches the
set S̄4, i.e., x2(t) ∈ S̄4. Snapshots at various time instants illustrate that the closed-loop
trajectories satisfy the temporal constraints as well.
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Figure 4.8: Closed-loop trajectories of the two robots: snapshot at t = 5, 6, 7 and 8 sec.

4.4.2 Robust control: 4 agents case study
Consider a numerical case-study involving underactuated underwater autonomous vehicles
with state Xi ∈ R6, modeled as

ẋi

ẏi

φ̇i

m11u̇i

m22v̇i

m33ṙi


=



ui cosφi − vi sinφi

ui sinφi + vi cosφi

ri

m22viri +Xuui +Xu|u||ui|ui
−m11uiri + Yvvi + Yv|v||vi|vi

(m11 −m22)uivi +Nrri +Nr|r||ri|ri


+



0

0

0

τu,i

0

τr,i


+



Vw cos(θw)

Vw sin(θw)

0

0

0

0


(4.25)

where zi = [xi, yi, φi]
T is the configuration vector of the i-th agent, [ui, vi, ri]

T are the
velocities (linear and angular) w.r.t the body-fixed frame, τi = [τu,i, τr,i]

T is the control
input vector where τr,i are the control input along the surge (x-axis) and yaw degree of
freedom, respectively, Xu, Yv, Nr are the linear drag terms, and Xu|u|, Yv|v|, Nr|r| are the
non-linear drag terms (see [137] for more details). The parameters used in the case study
are given in Table 4.1:

The additive disturbance d =

[
Vw(Xi, t) cos(θw(Xi, t))

Vw(Xi, t) sin(θw(Xi, t))

]
with |Vw(Xi, t)| ≤ γ models

the effect of an unknown, time-varying water current acting on the system dynamics of
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Table 4.1: Dynamic parameters as taken from [137].

m11 5.5404 Xu -2.3015 Xu|u| -8.2845
m22 9.6572 Yv -8.0149 Yv|v| -23.689
m22 1536 Nr -0.0048 Nr|r| -0.0089

each agent. Errors in the state estimates are also considered as stated in Assumption 4.6.
Note that the system dynamics is under-actuated since there is no control input in the sway
degree of freedom (y-axis). The multi-task problem considered for the case study consists
of the following objective: find a control input τi ∈ Ui = [−τu,m, τu,m] × [−τr,m, τr,m],
τu,m, τr,m > 0, such that each agent

(i) Reaches an assigned goal region around a point gi ∈ R2 within a user-defined time

T , i.e.,
[
xi(t) yi(t)

]T
→ gi as t→ T ;

(ii) Keeps their respective point-of-interest pi ∈ R2 in their field of view (given as a

sector of radius R > 0 and angle α > 0), i.e., zi(t) ∈ F = {z ∈ R3 | ‖
[
xi yi

]T
−

pi‖ ≤ R, |∠
(
pi −

[
xi yi

]T)
− φi| ≤ α} for all t ≥ 0 (see Figure 4.9);

(iii) Maintains a safe distance ds with respect to other agents, i.e., ‖
[
xi(t) yi(t)

]T
−[

xj(t) yj(t)
]T
‖ ≥ ds for all t ≥ 0, i 6= j,

where ∠(·) is the angle of the vector (·) with respect to the x-axis of the global frame.
Note that (ii) requires safety with respect to a static safe set, while requires (iii) safety with
respect to a time-varying safe set.

First, the CLF and CBFs to guarantee convergence to the desired location, and in-
variance of the required safe sets, respectively are constructed. Consider the function

hij = d2
s −

∥∥∥∥[xi(t) yi(t)
]T
−
[
xj(t) yj(t)

]T∥∥∥∥2

, defined for i 6= j, so that hij ≤ 0

implies that the agents maintain the safe distance ds. Since the function hij is relative de-
gree two function with respect to the dynamics (4.25), the second order safety condition
discussed in [138] is used. Similarly, for keeping the point-of-interest in the field of view,
two separate CBFs are used, defined as

hφ =

∣∣∣∣∠(pi − [xi yi

]T)
− φi

∣∣∣∣2−α2, hR =

∥∥∥∥[xi yi

]T
− pi

∥∥∥∥2

−R2, so that hφ(zi) ≤

0, hR(zi) ≤ 0 implies that zi ∈ F . For hφ, hR, a different relative degree 2 condition is
used as discussed next. Following the results in [59], it can be shown that satisfaction of
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Figure 4.9: Problem setting for the two-agent case.

the inequality

L2
fhS(x) + LgLfhS(x)u+ 2LfhS(x) + hS(x) ≤ α(−LfhS(x)− hS(x)), (4.26)

for all x ∈ S̄S := {x | LfhS(x) + hS(x) ≤ 0}, with α ∈ K, implies that the set S̄S is
forward-invariant. In this case, one can define h̄S = LfhS + hS so that (4.26) reads

Lf h̄S(x) + Lgh̄S(x)u ≤ α(−h̄S(x)), (4.27)

which is the same as (4.7), thus guaranteeing forward invariance of the set S̄S . Note that
the inequality LfhS(x) +hS(x) ≤ 0 can also be written as ḣS(x) +hS(x) ≤ 0, satisfaction
of which, using Nagumo’s theorem, implies forward invariance of the set SS , and thus, it
holds that S̄S ⊂ SS .

Finally, the CLF is chosen as V = 1
2
(Xi−Xdi)

T (Xi−Xdi), where Xi ∈ R6 is the state
vector of the i-th agent, and Xdi ∈ R6 its desired state, defined as

Xdi =



gi

θg

c1

∥∥∥∥gi − [xi yi

]T∥∥∥∥ cos(θg − φi)

c1

∥∥∥∥gi − [xi yi

]T∥∥∥∥ sin(θg − φi)

c2(θg − φi)



where θg = ∠

(
gi −

[
xi yi

]T)
and c1, c2 > 0 are constants.
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Figure 4.10: Closed-loop paths traced by agents.

Four agents are considered for the numerical experiments, and the bounds on the ad-
ditive disturbance d and the state-estimation errors are chosen as γ = 0.5 and ε = 0.5,
respectively. The simulations are performed for 3 scenarios: the case without disturbances,
shown in solid lines, with only state estimation error (SEE), shown in dashed lines, and
with both SEE and additive disturbance (AD), shown in dotted lines. Figure 4.10 shows
the path traced by 4 agents. The solid circular region represents the goal set defined as
{X | V (X) ≤ 0.1}, and the square boxes denote the point of interests pi for each agent i.1

Figure 4.11 plots VM = maxi{Vi} showing the convergence of the agents to their
respective goal sets, while satisfying all the safety constraints, as can be seen from Figure
4.12, which plots hM = max{hij, hR, hφ} showing that all the CBFs are non-positive at all
times for all the three cases.

4.5 Discussion

The QP based formulation for control synthesis proposed in this chapter assumes that the
underlying optimization problem is solved for each x which is continuously evolving in
time, which requires that the QP is solved instantly for each x. However, as argued in [57],
such methods are not directly implementable for mechanical systems, which are typically
controlled digitally, in which sensors are used to take measurements, the required input is
computed, and the computed control is implemented over a sampling period. The authors
in [57] address the issue of sampling effects in the implementation of QP-based controllers.

1A video of the simulation is available at https://tinyurl.com/y32oa4p4.
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Figure 4.11: Point-wise maximum of Lyapunov functions VM(t) = maxi{Vi(t)} with time
for the three cases.
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Figure 4.12: Point-wise maximum of CBFs hij, hR, hφ, showing satisfaction of all the
safety constraints for the three cases.

They consider safety constraints for discretized continuous-time systems in the presence of
additive disturbances. More specifically, they discuss how to modify the CBF in the QP
to guarantee forward invariance of a set so that satisfaction of the safety constraints at the
discrete-time steps via robust CBF results in safety at all times. In the numerical case
studies presented at the end of this chapter, Euler discretization is used to implement the
proposed method. Although a discrete implementation of the presented method without
accounting for discretization errors might lead to a safety violation, one can adopt a robust
CLF method as discussed in [57] to guarantee that safety is preserved. Other relevant work
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on sampled-data controller design in the context of safety includes [139–143]. A thorough
analysis of safety and fixed-time convergence for the discrete-time approximation of QP-
based methods is out of the scope of this dissertation, and is left for future work.

4.6 Conclusions

The problem of satisfying spatiotemporal constraints requiring that the closed-loop trajec-
tories of a class of nonlinear, control-affine systems remain in a safe set at all times, and
reach a goal set within a fixed time in the presence of control input constraints is consid-
ered in this chapter. A novel QP formulation is proposed and it is shown that under the
assumption of the existence of a control input that renders the safe set forward invariant, it
is feasible and that the solution of the proposed QP is a continuous function of state vari-
able under certain conditions. Various cases under which the solution of the QP solves the
considered problem are discussed.

Then, additive disturbances in the system dynamics and bounded error in the available
state estimation are considered. The notion of robust CBFs are utilized to guarantee safety,
and that of robust FxT-CLF, to guarantee fixed-time reachability to the given goal set.
Finally, a QP is formulated, incorporating safety and convergence constraints using slack
variables so that its feasibility is guaranteed. It is shown that under certain conditions, the
control input defined as the solution of the proposed QP solves the underlying constrained
control problem in the presence of the considered disturbances and input constraints.
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CHAPTER 5

Finite-time Stability of Switched and Hybrid
Systems

Up to now, results were presented for dynamical systems having continuous right-hand
side. As discussed in Chapter 1, there are plenty of design and analysis problems that re-
quire the study of hybrid dynamical systems. In this chapter, results on finite-time stability
of switched and hybrid systems are presented. Inspired by classical stability results for the
aforementioned systems using multiple-Lyapunov functions, their extension to finite-time
stability is investigated. A new notion of FTS for hybrid systems is introduced so that it
does not restrict each mode of the hybrid system to be FTS in itself. Then, sufficient con-
ditions for FTS of the origin of a class of hybrid systems in terms of multiple Lyapunov
functions are developed in Section 5.2. The requirements in [77, 82] that the Lyapunov
function is non-increasing at the discrete jumps, and strictly decreasing during the contin-
uous flow are relaxed; instead, the Lyapunov functions are allowed to increase both during
the continuous flow and at the discrete jumps, as long as these increments are bounded. In
this respect, the hybrid system is allowed to have unstable modes while still guaranteeing
FTS. The main result is that if the origin is stable under arbitrary switching, and if there
exists an FTS mode that is active for a sufficient cumulative time, then the origin of the
resulting hybrid system is FTS. The results in this section are based on [113].

Then, FTS of a class of switched systems using multiple Lyapunov functions is studied
in Section 5.3. The proposed framework is utilized in designing a switching signal so
that the origin of the resulting switched system is FTS. As an application, the problem
of stabilizing the origin of a switched linear system using output feedback is studied for
the case when only one of the subsystems (or modes) is controllable and observable. The
results in this section are based on [114].

The following notation is frequently used in this chapter:

R Set of real numbers
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R+ Set of non-negative reals
R− Set of non-positive reals
‖ · ‖ Euclidean norm of (·)
| · | Absolute value if (·) is scalar and the length if (·) is a time interval
int(S) Interior of the set S
t− Time just before the time instant t
t+ Time just after the time instant t
Σf Set of indices of continuous modes
σf Switching signal
tik Time instant when the i−th mode becomes active for k−th time
tik+1 Time instant when the i−th mode becomes de-active for k−th time
Tik Interval [tik , tik+1) in which i−th mode is active for the k−th time
tmd Time instant when the m−th discrete jump takes place
Ji Set of discrete jumps for the i−th mode
T̄ik Largest connected subset [t̄ik , t̄ik+1) of Tik without a discrete jump
V̄Fi Value of VF at the time instant t̄Fi

5.1 Preliminaries

Consider the class of hybrid systemsH = {C,F , D,G} described as

ẋ(t) = fσf (t,x)(x(t)), x(t) ∈ C,

x(t+) = g(x(t−)), x(t−) ∈ D,
(5.1)

where x ∈ Rn is the state vector with x(t0) = x0, fi ∈ F , {fk : Rn → Rn} for
k ∈ Σf , {1, 2, . . . , Nf} is the continuous flow (called thereafter, continuous-time mode,
or simply, mode) allowed on the subset of the state space C ⊂ Rn, and G = {g} where
g : Rn → Rn defines the discrete behavior (called thereafter discrete-jump dynamics),
which is allowed on the subset D ⊂ Rn.

At a jump instant t ∈ R+, the state x(t) is characterized by multiple values, namely the
value just before the jump at time t, which is denoted as x(t−), and the value just after the
jump at time t, which is denoted as x(t+) (satisfying x(t+) = g(x(t−))). The reason for
using the t−, t+ notation is to highlight the “pre”-jump and the “post”-jump values of the
state in the Lyapunov conditions of the main theorems. The switching signal σf : R+ ×
Rn → Σf can depend on both t and x, and is assumed to be piecewise continuous (from the
right) in time and continuous in x. The arguments (t, x) from σf are omitted for the sake
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of brevity. Systems of the form (5.1) have been studied in [76], while [77] considers the
form (5.1) without the discrete-jump dynamics. Denote by Tik = [tik , tik+1) ⊂ R+, with
tik+1 ≥ tik ≥ t0, the interval in which the flow fi is active for the k−th time for i ∈ Σf and
k ∈ N, and t = tdm the time when discrete jump x(t+) = g(x(t−)) takes place for them−th
time, m ∈ N. Define Ji = {tdm | tdm ∈ Tik ,m ∈ N} as the set of all time instances when a
discrete jump takes place when the continuous flow fi is active, and J =

⋃
i∈Σf

Ji as the set

of all times when the state of (5.1) undergoes a discrete jump. Without loss of generality,
assume that the switching signal σf is minimal, i.e., for all i ∈ Σf , tik+1

6= tik+1 for all
k ∈ N, and that there are no two discrete jumps at the same time instant. The following
assumptions is also required.

Assumption 5.1. The functions fi are continuous for all i ∈ Σf and the origin is the only

equilibrium point of (5.1).

The case when there exists a closed set D̄ 6= {0} such that g(x) = 0 for all x ∈ D̄ ⊂ D can
be treated by studying stability of closed sets; see [82,144]. To study the stability properties
of hybrid dynamical systems, a special class of functions is defined below.

Definition 5.1. A continuous function α : R+ → R+ is called

• Class-K function: if it is increasing, i.e., for all x > y ≥ 0, α(x) > α(y);

• Class-K∞ function: if it is a class-K function, and limr→∞ α(r) =∞.

The solution of the hybrid system (5.1) can be defined as follows: a function x : R+ →
Rn is a solution of (5.1) if

• it is absolutely continuous between two consecutive jump instants and satisfies ẋ(t) =

fk(t, x) for almost all t ∈ R+ \ J such that x(t) ∈ C, where k = σ(t, x) ;

• it satisfies x(t+) = g(x(t)), for all t ∈ J such that x(t) ∈ D.

The interested reader is referred to [74, Chapter 2] for a detailed presentation on the solution
notion of hybrid systems.
Before presenting the main result, the following assumption on the solution of (5.1) is
stated.

Assumption 5.2 (Existence of solution). The solution of (5.1) exists for all t ≥ 0, and is

non-Zeno.
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Similar assumptions have been used in literature (e.g., [77, 82, 145]) in order to analyze
stability properties of the origin of hybrid systems.

Next, the notion of FTS for hybrid systems is defined. Note that a mode F ∈ Σf is
called an FTS subsystem or FTS mode if the origin of ẏ = fF (y) is FTS. The standard no-
tion of stability under arbitrary switching, as employed in [75–77, 85, 146], is restrictive in
the following sense. The conditions therein require every single mode of the system (5.1) to
be LS, AS or FTS for the origin of the system (5.1) to be LS, AS or FTS, respectively. This
restriction can be overcome by defining the corresponding notions of stability for hybrid
system (inspired in part, from [147, Theorem 1]) as following. Let Π ⊂ PWC(R+×Rn,Σf )

denote the set of all possible switching signals, where PWC is the set of all piecewise con-
stant functions mapping from R+ × Rn to Σf .

Definition 5.2 (FTS of hybrid systems). The origin of the hybrid system (5.1) is called LS,

AS or FTS, if there exists an open neighborhood X ⊂ Rn such that for all y , x(0) ∈ X ,

there exists a subset of switching signals Πy ⊂ Π such that the origin of the system (5.1) is

LS, AS or FTS, respectively, with respect to all σf ∈ Πy. The origin is called globally AS

or FTS if X = Rn.

The following Lemma is presented before proceeding to the main results.

Lemma 5.1. Let ai ≥ bi ≥ 0 for all i ∈ {1, 2, . . . , K} where K ∈ N. Then, for all

0 < r < 1, we have

K∑
i=1

(ari − bri ) ≤
K∑
i=1

(ai − bi)r. (5.2)

Proof. Lemma 3.3 [51] establish the following inequality for zi ≥ 0 and 0 < r ≤ 1,(
M∑
i=1

zi

)r

≤
M∑
i=1

zri . (5.3)

Hence, it holds that for a ≥ b ≥ 0 and 0 < r ≤ 1, ar = (b+ (a− b))r ≤ br + (a− b)r, or
equivalently,

ar − br ≤ (a− b)r. (5.4)
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Hence, for all 0 < r ≤ 1, the following holds:

k∑
i=1

(ari − bri ) ≤
∑
i∈I1

(ari − bri ) ≤
∑
i∈I1

(ai − bi)r.

5.2 Finite-time stability of hybrid systems

Before presenting the main results, the necessary notation is defined. For each interval Tik ,
define the largest connected sub-interval T̄ik ⊂ Tik , such that there is no discrete jump
in T̄ik , i.e., int(T̄ik)

⋂
Ji = ∅. For example, if Ti1 = [0, 1) and Ji = {0.2, 0.4, 0.75},

then T̄i1 = [0.4, 0.75). Let T̄Fk = [t̄Fk , t̄Fk+1) with t̄Fk+1 − t̄Fk ≥ td where td > 0, and
{V̄F1 , V̄F2 , . . . , V̄Fp} and {V̄F1+1, V̄F2+1, . . . , V̄Fp+1} be the sequence of the values of the
Lyapunov function VF at the beginning and at end of the intervals T̄ik for k = {1, 2, . . . , p},
respectively, i.e., V̄Fk , VF (x(t̄Fk)) and V̄Fk+1 , VF (x(t̄Fk+1)). Let {i0, i1, . . . , il, . . .} ∈
Σf be the sequence of modes that are active during the intervals [t0, t1), [t1, t2), . . . , respec-
tively, where tk denotes the time instant when the continuous-time dynamics switch from
fik to fik+1 . The main result on FTS of hybrid systems can now be stated.

Theorem 5.1 (Lyapunov conditions for FTS). If there exist Lyapunov functions Vi for

each i ∈ Σf , and a switching signal σf ∈ Π such that the following hold:

(i) There exists α1 ∈ K, such that

p∑
k=0

(
Vik+1(x(t+k+1))−Vik(x(t+k+1))

)
≤ α1(‖x0‖), ∀p ∈ Z+; (5.5)

(ii) There exists α2 ∈ K such that

p∑
k=0

(
Vik(x(t−k+1))−Vik(x(t+k ))

)
≤ α2(‖x0‖), ∀p ∈ Z+; (5.6)

(iii) There exists α3 ∈ K such that∑
tk+1∈Jik+1

(
Vik(x(t+k+1))− Vik(x(t−k+1))

)
≤ α3(‖x0‖), ∀k ∈ Z+, (5.7)
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(iv) There exist an FTS mode F ∈ Σf , a positive definite, continuously differentiable

Lyapunov function VF and constants c > 0, 0 < β < 1 such that

V̇F (x(t)) ≤ −c(VF (x(t)))β, ∀t ∈
⋃
k

[tFk , tFk+1) \ JF ; (5.8)

(v) The accumulated duration |T̄F | ,
∑

k |T̄Fk | corresponding to the period of time

during which the mode F is active without discrete jumps, satisfies

|T̄F | = γ(‖x0‖) ,
(α(‖x0‖))1−β

c(1− β)
+
M−β(ᾱ(‖x0‖))1−β

c(1− β)
,

where α = α0 +α1 +α2 +Nfα3, ᾱ = 2Mα and α0 ∈ K, andM ∈ Z+ is the number

of times the mode F is activated,

then, the origin of (5.1) is FTS with respect to the switching signal σf . Moreover, if all

the conditions hold globally, the functions Vi are radially unbounded for all i ∈ Σf , and

α1, α2, α3, α4 ∈ K∞, then the origin of (5.1) is globally FTS.

Figure 5.1: Conditions (i), (ii) and (iii) of Theorem 5.1.

Before presenting the proof, an intuitive explanation of the conditions of Theorem 5.1 is
provided. Figure C.1 shows the allowable changes in the values of the Lyapunov functions.
The increments shown by blue, red and black double-arrows pertain to condition (i), (ii)
and (iii), respectively, as explained below:

• Condition (i) means that the cumulative value of the differences between the con-
secutive Lyapunov functions at the switching instants of the dynamics of continuous
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flows (i.e., at switches of the signal σf ) is bounded by a class-K function. The func-
tions are evaluated at the post-jump value of the state to include the case when a
discrete-jump happens to occur at t = tk+1. If there is no discrete-jump at t = tk+1,
then simply Vik+1(x(t+k+1))− Vik(x(t+k+1)) = Vik+1(x(tk+1))− Vik(x(tk+1)).

• Condition (ii) means that the cumulative increment in the values of the individual
Lyapunov functions when the respective modes are active (evaluated before and after
a discrete-jump at tk+1 and tk, respectively) is bounded by a class-K function. A
few authors use the time derivative condition, i.e., V̇i ≤ λVi with λ > 0, in place of
condition (ii), to allow growth of Vi, hence, requiring the function to be continuously
differentiable (see, e.g., [148]). The condition (ii) allows the use of non-differentiable
Lyapunov functions. Note that x(t−k+1) = x(tk+1) if tk+1 /∈

⋃
i Ji and x(t+k ) = x(tk)

if tk /∈
⋃
i Ji.

• Condition (iii) means that the cumulative increment in the value of the Lyapunov
function Vi is bounded by a class-K function at the discrete jumps occurring at the
switching instants, i.e., tk+1 ∈ Ji. Condition (5.6) inherently accommodates discrete
jumps occurring in the interior of the time interval [tk, tk+1), i.e., in between two
switching instants, for all modes i 6= F . Thus, only the discrete jumps occurring at
the boundaries of these intervals through (5.7) are needed to be accounted for. This
condition is going to be useful in proving LS of the origin.

• Condition (iv) means that there exists an FTS mode F ∈ Σ and a Lyapunov function
VF satisfying (2.4) for ẋ(t) = fF (x(t)) on [tFk , tFk+1) \ JF for all k ∈ Z+.

• Condition (v) means that the FTS mode F is active for a sufficiently long cumulative
time γ(‖x0‖) without a discrete jump occurring in that cumulative period.

The proof of Theorem 5.1 is provided in Appendix C.1.

Remark 5.1. Theorem 5.1 essentially says that a set of sufficient conditions for FTS of the

origin of (5.1) is that the origin is stable under a given switching signal σf ∈ Π and the

FTS mode F is active for a sufficient amount of cumulative time without a discrete jump.

This is formally stated in the following corollary.

Corollary 5.1. Suppose that the origin of (5.1) is LS for σf ∈ Π, and that there exists

an FTS mode F ∈ Σf and a corresponding positive definite function VF satisfying (5.8).
Then, the origin is FTS if |T̄F | = γ̄(‖x0‖), i.e., the FTS mode F is active for a cumulative

time without a discrete jump, where γ̄ ∈ K.
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Proof. Since the origin is stable, it follows that there exist α4 ∈ K and a constant c > 0

such that

‖x(t)‖ ≤ α4(‖x0‖), (5.9)

for all t ≥ 0 and all ‖x0‖ < c ( [122, Lemma 4.5]). Now, since the function VF is positive
definite, it holds that there exists α5 ∈ K such that ( [122, Lemma 4.3])

VF (x(t)) ≤ α5(‖x(t)‖)
(5.9)
≤ α5(α4(‖x0‖)) = α(‖x0‖),

where α = α5 ◦ α4 ∈ K. Using this, T̄F can be bounded as follows:

T̄F =
M∑
k=1

|T̄Fk | ≤
M∑
k=1

( V̄ 1−β
Fk

c(1− β)
−

V̄ 1−β
Fk+1

c(1− β)

)
≤

M∑
k=1

V̄ 1−β
Fk

c(1− β)
≤

M∑
k=1

(α(‖x0‖))1−β

c(1− β)
.

Define γ̄ =
M∑
k=1

α1−β

c((1−β)
∈ K to complete the proof.

In light of this observation, Theorem 5.1 can be further interpreted as follows: If
the stability of the origin can be established for all switching signals σf ∈ Π, then the
presence of an FTS mode such that the latter is active for a sufficient amount of time
|T̄F (‖x0‖)| = γ̄(‖x0‖) without a discrete jump guarantees FTS of the origin. Depending
upon the application at hand, and available authority on the design of the switching signal,
the FTS mode can be made active for the required cumulative duration in one activation
period, or multiple activation periods. The motivation of studying FTS using multiple Lya-
punov functions comes from applications where the switching law is not under the user’s
control authority, or where keeping the FTS mode active for a long period leads to unde-
sirable behavior. As an example, consider a spacecraft that tracks the desired trajectory,
with the on-board communication and the controller module requiring a certain minimum
energy threshold to function. The charge-level of the spacecraft battery can be modeled as
a hybrid system, where being in the path of sunlight would be an FTS mode, leading to an
increase in the charging level, and tracking the desired trajectory in an unstable mode since
it depletes the charge. Now, keeping the FTS mode active for a long duration might lead to
the spacecraft losing track of its desired trajectory, and thus, the switching signal between
the two modes cannot be designed arbitrarily. At the same time, FTS is desired so that
the spacecraft can activate its communication module for crucial communications with the
ground station and/or the control module to compute inputs for the next part of the journey.
Thus, for the applications where the FTS mode cannot be kept active at all times, or the
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switching signal is not under the user’s control, it is essential to study FTS under switching
laws that allow the FTS mode to become inactive, and unstable modes to become active.

Comparison with earlier results: Compared to [82, 144], the presented results are
less conservative in the sense that the Lyapunov functions are allowed to increase during
the continuous flows (per (5.6)), as well as at the discrete jumps (per (5.7)). In other
words, Theorem 5.1 allows unstable modes to be present in the hybrid system while still
guaranteeing FTS of the origin under certain switching signals. Also, during the continuous
flows, the Lyapunov functions are allowed to grow when switching from one continuous
flow to another (per (5.5)), whereas the aforementioned work imposes that the common
Lyapunov function is always non-increasing. In contrast to the previous work e.g., [82, 84,
148, 149], except for VF we do not require the Lyapunov functions to be differentiable.

5.3 Finite-time stability result for switched systems

In this section, it is illustrated how the case of switched systems, i.e., of systems without
discrete jumps in their states, is a special case of the results derived in the previous section.
In summary, in the case of a switched system, Theorem 5.1 guarantees FTS of the origin
under conditions (i), (ii), (iv) and (v); condition (iii) is obsolete since there are no discrete
jumps. As a side note, if in addition to D = ∅, one has that Nf = 1, i.e., if the system
(5.1) reduces to a continuous-time dynamical system, Theorem 5.1 reduces to Theorem 2.1.
Thus, the seminal result on FTS of continuous-time systems is a special case of Theorem
5.1.

Consider a switched system given as

ẋ(t) = fσ(t,x)(x(t)), x(t0) = x0, (5.10)

where x ∈ Rn is the system state, σf : R+ × Rn → Σ is the switching signal that can
depend on both t and x, and is assumed to be piecewise continuous (from the right) in
time and continuous in x, with Σ , {1, 2, . . . , N} with N < ∞, and fσ(·,·) : Rn → Rn

is the system vector field describing the active subsystem (called thereafter mode) under
σ(·, ·). Note that (5.10) is a special case of (5.1) with D = ∅. Thus, the solution of (5.10) is
defined as follows: an absolutely continuous function x : R+ → Rn is a solution of (5.10)
if it satisfies ẋ(t) = fk(t, x) for almost all t ∈ R+ where k = σ(t, x). Similarly, FTS of the
origin of (5.10) is defined per Definition 5.2 with Π ⊂ PWC(R+ × Rn,Σ). The following
assumption for (5.10) is made.

Assumption 5.3. The solution of (5.10) exists and satisfies Assumption 5.2.
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Based on Theorem 5.1, the following result proposing sufficient conditions for FTS of
the origin for (5.10) can be stated.

Corollary 5.2. If there exist Lyapunov functions Vi for each i ∈ Σ ∈ Π, and a switching

signal σ such that the following hold:

(i) There exists α1 ∈ K, such that

p∑
k=0

(
Vik+1(x(tk+1))−Vik(x(tk+1))

)
≤ α1(‖x0‖), ∀p ∈ Z+; (5.11)

(ii) There exists α2 ∈ K such that

p∑
k=0

(
Vik(x(tk+1))−Vik(x(tk))

)
≤ α2(‖x0‖), ∀p ∈ Z+; (5.12)

(iii) There exist an FTS mode F ∈ Σ, a positive definite, continuously differentiable

Lyapunov function VF and constants c > 0, 0 < β < 1 such that

V̇F (x(t)) ≤ −c(VF (x(t)))β, ∀t ∈
⋃
k

[tFk , tFk+1); (5.13)

(iv) The accumulated duration |TF | ,
∑

k |TFk | corresponding to the period of time

during which the mode F is active, satisfies

|TF | = γ(‖x0‖) ,
(α(‖x0‖))1−β

c(1− β)
+
M−β(ᾱ(‖x0‖))1−β

c(1− β)
,

where α = α0 + α1 + α2, ᾱ = M(α1 + α2) and α0 ∈ K, where M ∈ Z+ is the

number of times the mode F is activated,

then, the origin of (5.10) is FTS with respect to the switching signal σ. Moreover, if all

the conditions hold globally, the functions Vi are radially unbounded for all i ∈ Σ, and

α1, α2 ∈ K∞, then the origin of (5.10) is globally FTS.

5.3.1 Finite-time stabilizing switching signal

In this section, based on Corollary 5.2, a method of designing a switching signal is pre-
sented so that the origin of the switched system is FTS. The approach is inspired from [77]
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where a method of designing an asymptotically stabilizing switching signal is presented.
Suppose there exist continuous functions µij : Rn → R satisfying:

µij(0) = 0,

µii(x) = 0 ∀ x ∈ Rn,

µij(x) + µjk(x) ≤ min{0, µik(x)}, ∀x ∈ Rn,

(5.14)

for all i, j, k ∈ Σ. Define the following sets:

Ωi = {x | Vi(x)− Vj(x) + µij(x) ≤ 0, j ∈ Σ},

Ωij = {x | Vi(x)− Vj(x) + µij(x) = 0, i 6= j},
(5.15)

where Vi is a Lyapunov function for each i ∈ Σ. Let σ(t0, x(t0)) = i and i, j ∈ Σ be
arbitrary modes. For all times t ≥ t0, define the finite-time stabilizing switching signal as:

σ(t, x) =

{
i, σ(t−, x(t−)) = i, x(t−) ∈ int(Ωi);

j, σ(t−, x(t−)) = i, x(t−) ∈ Ωij;
. (5.16)

The following result can be stated now.

Theorem 5.2 (Finite-time stabilizing switching law). Assume that the solution of (5.10)
under σ in (5.16) satisfy Assumption 5.3. Let Vi are Lyapunov functions for i = 1, 2, . . . , N ,

and µij satisfy (5.14). Assume that the following hold:

(I) There exists continuous functions βij : Rn → R− for i, j ∈ Σ such that

∂Vi
∂x

fi(x) +

Nf∑
j=1

βij(x)(Vi(x)− Vj(x) + µij(x)) ≤ 0, ∀i ∈ Σ,∀x ∈ Rn; (5.17)

(II) There exists a finite-time stable mode F ∈ Σ satisfying condition (iii) and (iv) of

Corollary 5.2;

(III) The functions µij are continuously differentiable and satisfy

∂µij
∂x

fi ≤ 0, i, j = 1, 2, . . . , N. (5.18)

(IV) No sliding mode occurs at all switching surface.

Then, the origin of (5.10) under σ in (5.16) is FTS.
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Proof. The strategy of the proof is to show that all the conditions of Corollary 5.2 and
Assumption 5.3 are satisfied to establish FTS of the origin for (5.10), when the switching
signal is defined as per (5.16). As per the analysis in [77, Theorem 3.18], it follows that the
conditions (i)-(ii) of Corollary 5.2 are satisfied with

α1(r) = max
‖x‖≤r, i,j∈Σf

|µij(x)|, (5.19)

α2(r) = 0, (5.20)

for all r ≥ 0. From (II), we obtain that conditions (iii) and (iv) of Corollary 5.2 hold as
well. Thus, all the conditions of the Corollary 5.2 and Assumption 5.3 are satisfied. Hence,
it follows that the origin of (5.10) with switching signal defined as per (5.16) is FTS.

Remark 5.2. Note that an arbitrary switching signal σ may not satisfy the conditions of

Corollary 5.2, particularly condition (v), where the mode F is required to be active for

TF (x0) time duration. For all initial conditions x0, the switching signal can be defined as

per (5.16) to render the origin of (5.10) FTS. Definition 5.2 allows to choose the switching

signal σ as per (5.16) so that the switched system (5.10) satisfies the conditions of Corollary

5.2. Note that there is no difference in the switching signal defined in (5.16) and the one

in [77]. This observation re-emphasizes the fact that a system whose origin is uniformly

stable can be made FTS by ensuring that the cumulative activation time requirement is

satisfied for an FTS mode.

A note on construction of functions µij, Vi: For a class of switched systems consisting
of N − 1 linear modes and one FTS mode F , one can follow a design procedure similar
to [77, Remark 3.21] to construct the functions µij , as well as the Lyapunov functions Vi,
for all i 6= F . The design procedure includes choosing quadratic functions µij = xTPijx

and Vi = xTRix with Ri as positive definite matrices, and using the conditions (5.14) and
(5.18) along with the conditions of Corollary 5.2, to formulate a linear matrix inequality
(LMI) based optimization problem. For system consisting of polynomial dynamics fi, one
can formulate a sum-of-square (SOS) problem to find polynomial functions Vi, µij and
βij by posing (5.14), (5.17) and (5.18) inequalities as SOS constraints (see [150] for an
overview of SOS programming and [151] for methods of solving SOS problems). The
“min-switching” law as described in [152], can be defined by setting the functions µij = 0,
which would imply that the Lyapunov functions should be non-increasing at the switching
instants. The conditions in Theorem 5.2, on the lines of the generalization of min-switching
law as presented in [77], overcome this limitation and allow the Lyapunov functions to
increase at the switching instants.
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5.3.2 Finite-time stable output-feedback for switched systems

In this section, a switched linear system with N modes is considered such that only one
mode is both observable and controllable, and an output-feedback is designed to stabilize
the system trajectories at the origin in a finite time. Consider the linear switched system:

ẋ = Aσ(t,x)x+Bσ(t,x)u,

y = Cσ(t,x)x,
(5.21)

where x ∈ Rn, u ∈ R, y ∈ R are the system states, and input and output of the system,
respectively, with Ai ∈ Rn×n, Bi ∈ Rn×1 and Ci ∈ R1×n. The switching signal σ :

R+ × Rn → Σ , {1, 2, . . . , N} is a piecewise constant, right-continuous function. The
following assumption is made.

Assumption 5.4. There exists a mode σ0 ∈ Σ such that (Aσ0 , Bσ0) is controllable and

(Aσ0 , Cσ0) is observable.

Without loss of generality, one can assume that the pair (Aσ0 , Cσ0) is in the control-
lable canonical form and (Aσ0 , Cσ0) is in the observable canonical form, i.e., Aσ0 =[

0n

[
In−1

0Tn−1

]]
, Bσ0 =

[
0 0 0 · · · 0 1

]T
and Cσ0 =

[
1 0 0 · · · 0 0

]
, where

In−1 ∈ Rn−1×n−1 is an identity matrix and 0k =
[
0 0 · · · 0 0

]T
∈ Rk×1. It is also

assumed that the switching signal σ(t, x) is known at all times even if the state x is not
known. The objective is to design an output feedback for (5.21) so that the closed loop
trajectories x(·) reach the origin in a finite time. To this end, an FTS observer is designed
and the estimated states x̂ are used to design the control input u. The form of the observer
is:

˙̂x = Aσx̂+ gσ(Cσx− Cσx̂) +Bσu. (5.22)

Following [153, Theorem 10], define the function g : R→ Rn as:

g(y) =


l1 sign(y)|y|α1

...
ln sign(y)|y|αn

 (5.23)
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where li are chosen so that the matrix Ā defined as

Ā :=

[
−l̄

[
In−1

0n−1

]]
,

with l̄ =
[
l1 l2 · · · ln

]T
is Hurwitz, and the exponents αi are chosen as αi = iα−(i−1)

for 1 < i ≤ n, where 1− n−1
n
< α < 1. Define the function gσ as:

gσ(y) =

{
g(y), σ(t) = σ0;

0, σ(t) 6= σ0;
(5.24)

Let the observation error be e = x − x̂, with ei = xi − x̂i for i = 1, 2, . . . , N . Its time
derivative reads:

ė = Aσe− gσ(Cσe). (5.25)

Next, a feedback u = u(x̂) is designed so that the origin is FTS for the closed-loop
trajectories of (5.21). Inspired from control input defined in [117, Proposition 8.1], define
the control input as

u =

{
−
∑n

i=1 ki sign(x̂i)|x̂i|βi , σ = σ0;

0, σ) 6= σ0;
, (5.26)

where βj−1 =
βjβj+1

2βj+1−βj with βn+1 = 1 and 0 < βn = β < 1, and ki are such that the
polynomial sn + kns

n−1 + · · · + k2s + k1 is Hurwitz. The following result can now be
stated.

Theorem 5.3 (Closed-loop properties). Let the switching signal σ for (5.21) be given by

(5.16) with F = σ0. Assume that there exist functions µij as defined in (5.14), and that the

conditions (i)-(iii) of Theorem 5.2 are satisfied. Then, the origin of the closed-loop system

(5.21) under the effect of control input (5.26) is an FTS equilibrium.

Proof. First, it is shown that there exists T1 < ∞ such that for all t ≥ T1, x̂(t) = x(t).
Note that the origin is the only equilibrium of (5.25). From the analysis in Theorem 5.2, it
follows that the conditions (i) and (ii) of Corollary 5.2 are satisfied. The observation-error
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dynamics for mode σ0 reads:

ė =



e2 − l1sign(e1)|e1|α1

e3 − l2sign(e1)|e1|α2

...
en − ln−1sign(e1)|e1|αn−1

−lnsign(e1)|e1|αn


. (5.27)

Now, using [153, Theorem 10], it follows that the origin is an FTS equilibrium for (5.27),
i.e., for mode σ0 of (5.25). From [153, Lemma 8], it follows that (5.27) is homogeneous
with degree of homogeneity d = α− 1 < 0. Hence, using [117, Theorem 7.2], it holds that
there exists a Lyapunov function Vo satisfying V̇o ≤ −cV β

o where c > 0 and 0 < β < 1.
Hence, condition (iii) of Corollary 5.2 is also satisfied. From the proof of Theorem 5.2,
it follows that the condition (iv) of Corollary 5.2 and Assumption 5.3 are also satisfied.
Hence, it holds that the origin of (5.25) is an FTS equilibrium. Thus, there exists T1 < ∞
such that for all t ≥ T , x̂(t) = x(t). So, for t ≥ T1, the control input satisfies u = u(x̂) =

u(x). Again, it is easy to verify that the origin is the only equilibrium for (5.21) under the
effect of control input (5.26). The closed-loop trajectories take the following form for the
mode σ = σ0

ẋ =



x2

x3

...
xn−1

xn −
∑n

i=1 kisign(xi)|xi|βi


. (5.28)

From [117, Proposition 8.1], it follows that the origin of the closed-loop trajectories for
mode σ = σ0 is FTS. Hence, repeating same set of arguments as above, it holds that
there exists T2 <∞ such that the closed-loop trajectories of (5.21) satisfy x(t) = 0 for all
t ≥ T1 + T2.

5.4 Simulations

Two numerical examples are presented to demonstrate the efficacy of the proposed meth-
ods. The first example considers an instance of the hybrid system (5.1) with five modes,
where one mode is FTS, one is AS, and three are unstable. It is demonstrated that if the
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conditions of Theorem 5.1 are satisfied, then the trajectories of the considered system reach
the origin in finite time even in the presence of unstable modes.

The second example considers a switched linear control system with five modes such
that only one mode is both controllable and observable. An FTS output controller is de-
signed for the considered switched system, and it is demonstrated that the closed-loop
trajectories reach the origin despite the presence of unobservable modes and the presence
of uncontrollable modes that are unstable.

The simulation results have been obtained by discretizing the continuous-time dynam-
ics using Euler discretization. A step size of dt = 10−3 is used, and the simulations are
run till the norm of the states drops below 10−10. At this point, it is important to emphasize
that while the theoretical results hold for the continuous-time dynamics, and not for the
implemented discretized dynamics, still the simulations reflect stable behavior that meets
the theoretical bounds on the sufficiently long active time of the finite-time stable mode.
In other words, the simulations are included for the sake of visualizing the theoretical re-
sults despite the discrepancy between continuous and discretized dynamics. The study of
discretization methods for finite-time stable systems is left open for future investigation.

5.4.1 Example 1: finite-time stable hybrid system

A numerical example is presented to illustrate the FTS results on a hybrid system given as

H = {C,F , D,G}, F = {f1, f2, f3, f4, f5}, G = {g1},

f1 =

[
0.01x2

1 + x2

−0.01x3
1 + x2

]
, f2 =

[
0.01x1 − x2

−x2
1 + 0.01x2

]
,

f3 =

[
−x1 − x2

x1 − x2

]
, f4 =

[
0.01x2

1 + 0.01x1x2

−0.01x3
1 + x2

2

]
,

f5 =

[
x2 − 20sign(x1)|x1|α

−10sign(x1)|x1|2−2α

]
,

g1 =

[
−1.1x1

−1.1x2

]
, C = R2, D = R2,

(5.29)

with α = 0.98, where the fifth mode is FTS, and thus F = 5. Note that the states x1 and
x2 change sign and increase in magnitude at the discrete jumps. The Lyapunov functions

are defined as Vi(x) = xTPix, for i ∈ {1, 2, 3, 4}, with P1 =

[
1 0

0 1

]
, P2 =

[
5 2

2 4

]
, P3 =
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[
1 0

0 3

]
, P4 =

[
6 1

1 3

]
, and V5(x) = k2

2α
|x1|2α + 1

2
|x2|2. Note that this example is more

general than the examples considered in [82], as the dynamics is allowed to have unstable
modes. In this example, the switches in the continuous flows occur after 0.2 sec, i.e.,
|Tik | = 0.2 sec, k ∈ Z+, and discrete jumps occur after 0.1 sec. for all i ∈ {1, 2, . . . , 5}.
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Figure 5.2: Switching signal σf (t) for the considered hybrid system (5.29).

Figure 5.2 depicts the considered switching signal σf (t). The switching signal is de-
signed so that the Lyapunov candidates Vi satisfy conditions (i) and (iii) of Theorem 5.1.
Mode 3 and 5, being stable, satisfy condition (ii) with α2 = 0, and modes 1, 2 and 4, being
active for a finite interval each time, satisfy condition (ii) with α2 = k‖x0‖2 where k > 0,
and so α2 = k‖x0‖2 satisfy (ii) for all the modes. It can be verified that f5 is homogeneous
with degree of homogeneity d = α− 1 < 0. Thus, using [117, Theorem 7.2], the origin is
FTS under the system dynamics f5, and there exists a V5 satisfying (5.8); therefore, condi-
tion (iv) is satisfied. Finally, the switching signal is designed so that mode 5 is active for a
sufficient amount of time that satisfies condition (v).

Figure 5.3 illustrates the state trajectories x1(t) and x2(t). The states can be seen as
switching signs during discrete jumps. Note that the states change sign at the discrete
jumps. Figure 5.4 depicts the norm of the state vector x(t) on a logarithmic scale; note that
‖x(t)‖ is increasing while operating in unstable modes, and decreasing while operating
in stable modes. The norm of the states reach a small neighborhood ‖x‖ ≤ 10−10 of the
origin within a finite time starting from ‖x(0)‖ = 10 within the first 90 seconds of the
simulation. Finally, Figure 5.5 illustrates the evolution of the Lyapunov functions Vi with
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Figure 5.3: The evolution of x1(t) and x2(t) for hybrid system (5.29).

respect to time. Note that the Lyapunov functions increase, as expected, at the times of the
switches in σf , as well as during the continuous flows along the unstable modes 2 and 4.
The provided example demonstrates that the origin of the system is FTS even when one or
more modes are unstable if the FTS mode is active for a sufficient amount of time.
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Figure 5.4: The evolution of ‖x(t)‖ for (5.29).
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Figure 5.5: The evolution of the Lyapunov functions Vi(t) for t ∈ [0, 10] sec for (5.29).

5.4.2 Example 2: finite-time stable switched linear control system

In this second example, a linear switched system of the form (5.21) is considered and an
output feedback is designed that stabilizes the origin for the closed-loop system in a finite
time. For illustration purposes, consider a system of order n = 2, σ ∈ {1, 2, 3, 4, 5}, and
assume that mode σ = 5 , σ0 is controllable and observable, i.e., that the pair (Aσ0 , Bσ0)

is controllable and (Aσ0 , Cσ0) is observable, while other modes are both uncontrollable and
unobservable. The simulation parameters are:

• Number of modes N = 5, FTS mode F = 5, |Tik | = 0.1, α = 0.9, β = .9 k1 = 20

and k2 = 10;

• The matrices Ai, Bi, Ci are chosen as A1 =

[
0 1

−1 0

]
, A2 =

[
0.1 0

0 0.1

]
, A3 =[

−1 0

0 −1.2

]
, A4 =

[
1 0.1

0.1 2

]
, A5 =

[
0 1

0 0

]
, B1 = B2 = B3 = B4 =

[
0

0

]
, B5 =[

0

1

]
and C1 = C2 = C3 = C4 =

[
0 0

]
, C5 =

[
1 0

]
.

• Generalized Lyapunov functions are chosen as Vi(x) = xTPix where matrices Pi are

chosen as P1 =

[
1 0

0 1

]
, P2 =

[
5 2

2 4

]
, P3 =

[
1 0

0 3

]
, P4 =

[
6 1

2 3

]
, and V5(x) =

k2
2α
|x1|2α + 1

2
|x2|2;
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• Functions µij as

µij(x) =

{
−‖x‖2, i ∈ {1, 2, 4};

0, i ∈ {3, 5};

for all j ∈ σ.

Note that modes 1, 2, 3, and 4 are both uncontrollable and unobservable, and the origin
of the open-loop is LS for mode 1, AS for mode 3 is asymptotically stable, and unstable for
modes 2 and 4. The generalized Lyapunov candidates Vi, being quadratic, satisfy condition
(i) of Corollary 5.2. Modes 1, 3 and 5, being stable, satisfy condition (ii) with α2 = 0, and
modes 2 and 4, being active only for a finite time, satisfy condition (ii) with α2 = k‖x0‖2

where k > 0. Conditions (iii) and (iv) are satisfied by carefully designing the switching
signal, as discussed in Section 5.3.1.
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Figure 5.6: Closed-loop system states x1(t), x2(t) with time for linear switched system.

Figure 5.6 illustrates the state trajectories x1(t), x2(t) of the closed-loop system over
time for randomly chosen initial conditions, and Figure 5.7 depicts the norm of the states
‖x(t)‖. Figure 5.8 plots the norm of the state-estimation error, ‖x− x̂‖ with time. It can be
seen from the these figures that both the norms ‖x‖ and ‖x− x̂‖ go to zero in finite time.

Figure 5.9 shows the evolution of Lyapunov functions Vi(x − x̂) for the FTS observer
of the linear switched system. It can be seen that there are unstable modes in the observer,
where the value of the functions increase when the respective modes are active (e.g., mode
2 and 4). Finally, Figure 5.10 plots the switching signal σ with time. The switching signal
is designed as per the design procedure listed in Section 5.3.1. It can be seen that all the five
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Figure 5.7: The norm of the state vector x(t) for the closed-loop trajectories of linear
switched system with time.
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Figure 5.8: The norm of the state-estimation error x(t)−x̂(t) for the linear switched system
with time.

modes (including the unstable modes) get activated for the switched linear system, while
FTS of the origin is still ensured.

The provided examples validate that the system can achieve FTS even when one or
more modes are unstable if the FTS mode is active for long enough.
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Figure 5.9: The evolution of the Lyapunov functions Vi(t) for the FTS observer of the linear
switched system.
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Figure 5.10: Switching signal for the linear switched system.

5.5 Conclusions

In this chapter, FTS of a class of switched and hybrid systems is studied via a multiple
Lyapunov function approach. It is showed that under certain mild conditions on the bounds
on the difference of the values of Lyapunov functions, if the FTS mode is active for a suffi-
cient cumulative time, then the origin of the hybrid or the switched system is FTS. In other
words, the results demonstrate that under mild conditions, the stability of the origin and
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sufficient cumulative activation of an FTS mode implies FTS of the origin. The proposed
method allows the individual Lyapunov functions to increase both during the continuous
flows as well as at the discrete state jumps, i.e., it allows the system to have unstable modes.
Using the multiple Lyapunov function conditions, a method of designing a finite-time sta-
bilizing switching signal is proposed. As an application, an FTS output feedback for a
class of linear switched systems is designed in the case when only one of the modes is both
controllable and observable.
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CHAPTER 6

Continuous-time Optimization

This chapter develops novel gradient-flow schemes that yield convergence to the optimal
point of a convex optimization problem within a fixed time from all initial conditions for
unconstrained optimization, constrained optimization, and min-max problems. It is shown
that the solution of the modified gradient flow dynamics exists and is unique under certain
regularity conditions on the objective function. The application of the modified gradient
flow to unconstrained optimization problems is studied under the assumption of gradient
dominance, a relaxation of strong convexity. Then, a modified Newton’s method is pre-
sented that exhibits fixed-time convergence under certain mild conditions on the objective
function. Building upon this method, a novel technique for solving convex optimization
problems with linear equality constraints that yield convergence to the optimal point in a
fixed time is developed. It is also noted that the constrained optimization problem can be
reformulated as a min-max problem. Motivated from this, the general min-max problem
is considered where an objective function needs to be minimized over one set of variables
and maximized over another set of variables, and a modified scheme to obtain the optimal
solution of the min-max problem in a fixed time is developed. To the best of the author’s
knowledge, this is the first work that establishes FxTS of gradient flow-based techniques
and demonstrates their application to nonlinear constrained optimization and saddle-point
dynamics. The results in this Chapter are based on [115].

The following notation is frequently used in this chapter:

R The set of real numbers
R+ The set of non-negative reals
‖ · ‖ Euclidean norm of (·)
Ck k−times continuously differentiable functions
x? Optimal value of the variable x
f ∗ Conjugate of the function f given as f ∗(y) = sup

x∈Rn
(yTx− f(x))
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∇f Gradient of a C1 function f
∇2f Hessian of a C2 function f
∇x1f Partial derivative of f with respect to x1

A � 0 Positive definite matrix A
A � 0 Positive semi-definite matrix A
A � B Inequality A−B � 0

A � B Inequality A−B � 0

Note the difference between ? for optimality and ∗ for the conjugate.

6.1 Fixed-time stable gradient flows

6.1.1 Mathematical preliminaries

Various notions of convexity, and first and second order conditions for convexity are sum-
marized below (see [128, Chapter 3] for more details).

Definition 6.1. A C1 function f : D → R, where D ⊂ Rn is a convex set, is called

- Convex if for all x, y ∈ D and all α ∈ (0, 1), f(αx + (1 − α)y) ≤ αf(x) + (1 −
α)f(y);

- Concave if (−f) is convex;

- Strictly convex if for all x, y ∈ D and all α ∈ (0, 1), f(αx + (1− α)y) < αf(x) +

(1− α)f(y);

- m-Strongly convex if there exists m > 0 such that f(y) ≥ f(x) +∇f(x)T (y− x) +
m
2
‖x− y‖2, for all x, y ∈ D;

- β-Strongly smooth if for all x, y ∈ D, f(y) ≤ f(x) +∇f(x)T (y− x) + β
2
‖x− y‖2,

where β > 0.

Lemma 6.1. First-order conditions: A C1 function f : D → R, where D ⊂ Rn is a convex

set, is called

- Convex if and only if for all x, y ∈ D, f(y) ≥ f(x) +∇f(x)T (y − x);

- m-Strongly convex if and only if there exists m > 0 such that for all x, y ∈ D,

(∇f(x)−∇f(y))T (x− y) ≥ m‖x− y‖2.
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Second-order conditions: A function f : D → R such that f ∈ C2, where D ⊂ Rn is a

convex set, is called

- Convex if and only if for all x ∈ D,∇2f(x) � 0;

- Strictly convex if for all x ∈ D, ∇2f(x) � 0;

- m-Strongly convex if and only if there exists m > 0 such that for all x ∈ D,

∇2f(x) � mI .

- β-Strongly smooth if and only if there exists β > 0 such that for all x ∈ D,

∇2f(x) � βI .

It follows that strong convexity implies strict convexity, which implies convexity.

Definition 6.2 (Convexity-concavity). A function F : D1 × D2 → R, where D1 ⊂
Rn, D2 ⊂ Rm, is called locally convex-concave (respectively, locally strongly or locally

strictly convex-concave) if for all z̄ ∈ Uz ⊂ D2, F (x, z̄) is convex (respectively, strongly

or strictly convex) for all x ∈ Ux ⊂ D1, and for all x̄ ∈ Ux ⊂ D1, F (x̄, z) is concave

(respectively, strongly or strictly concave) for all z ∈ Uz ⊂ D2.

The Lyapunov conditions for FxTS from Chapter 3 are revisited here for the sake of
completeness. Consider a dynamical system

ẋ(t) = φ(x(t)), (6.1)

where φ : Rn → Rn is continuous, and assume that the origin is the unique equilibrium
point of (6.1).

Theorem 6.1 (Lyapunov conditions for FxTS). Suppose there exists a continuously dif-

ferentiable, positive definite, radially unbounded function V : Rn → R such that V̇ (x) ≤
−α1V (x)γ1 − α2V (x)γ2 holds along the trajectories of (6.1) for all x ∈ Rn \ {0}, with

α1, α2 > 0, γ1 > 1 and 0 < γ2 < 1. Then, the origin of (6.1) is FxTS with continuous

settling-time function T that satisfies T ≤ 1
α1(γ1−1)

+ 1
α2(1−γ2)

.

First, conditions for the existence and uniqueness of the solutions of dynamical systems
are reviewed, which would be instrumental in proving the main results in this chapter. The
following result from [131] is stated here for the sake of completeness.

Lemma 6.2 ( [131, Theorem 3.18.1]). Assume that
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i) The function g : R → R is continuous and y(t) = 0 is the unique solution of the

dynamical system ẏ(t) = g(y(t));

ii) The function φ : Rn → R is continuous; and

iii) There exists a positive definite, C1 function V : Rn → R+ such that V̇ (x) ≤ g(V (x))

for all x 6= 0.

Then, the dynamical system ẋ(t) = φ(x(t)) has a unique solution for all t ≥ 0.

Theorem 6.2 (Uniqueness of system trajectory). Suppose that there exists a positive

definite C1 function V : Rn → R+ such that V̇ (x) ≤ −c1V (x)α1 − c2V (x)α2 for all x 6= 0,

where c1, c2 > 0, 0 < α1 < 1 and α2 > 1. Then the solution x(t) of (6.1) exists and is

unique for all x(0) ∈ Rn and for all t ≥ 0.

Proof. Similar strategy as in the proof of Theorem 4.3 can be used to prove the result.
For existence, the result in [135, Ch2., Theorem 1] is used. Since the map φ is a single-
valued, continuous function, it satisfies all the conditions of [135, Ch2., Theorem 1], and
thus, existence of a solution is guaranteed for (6.1) on [0, τ) where τ > 0. Now, since the
solution x(t) remains bounded in the open set {x | V (x) < V (x(0)) + c} for all c > 0, it
follows that the solution of (6.1) is complete, i.e., τ = ∞. For uniqueness, the strategy is
to verify that all the conditions of Lemma 6.2 are satisfied for (6.1). To this end, consider
the dynamical system

ẏ(t) = g(y) := 0, y(0) = 0. (6.2)

Note that g(y) is continuous for all y ∈ R. Choose v(y) = 1
2
|y|2 so that its time derivative

along the trajectories of (6.2) satisfies v̇(y) ≤ 0 for all y. Thus, using [131, Theorem
3.15.1], it holds that y(t) ≡ 0 is the unique solution of (6.2). Hence, condition (i) of Lemma
6.2 is satisfied. Now, since φ ∈ C0, condition (ii) of Lemma 6.2 is also satisfied. Note
that the function V is positive definite, continuously differentiable, and satisfies V̇ (x) ≤
−c1V (x)α1 − c2V (x)α2 ≤ 0 = g(V (x)) for all x 6= 0. Thus, condition (iii) of Lemma 6.2
is also satisfied, and therefore, the solution of (6.1) exists and is unique for all x(0) ∈ Rn

and for all t ≥ 0, which completes the proof.

Next, novel gradient flow schemes are proposed for unconstrained and constrained con-
vex optimization problems. First, unconstrained optimization problems are considered.
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6.1.2 Unconstrained optimization

Consider the unconstrained minimization problem

min
x∈Rn

f(x), (6.3)

where f : Rn → R. The following assumption is made about the problem (6.3).

Assumption 6.1 (Unique minimizer). The minimum value of f(x) is attained, i.e., there

exists x? ∈ Rn such that −∞ < f ? = f(x?).

Remark 6.1. For (6.3), Assumption 6.1 is a necessary condition for convergence of gradient-

based methods to an optimal solution. Coercivity, or equivalently, compactness of the

sub-level sets of the convex function f is a sufficient condition to guarantee existence of a

minimizer [154, Chapter 2].

Lemma 6.3 ([128]). If a C1 function f : Rn → R is convex, then a point x? is the global

optimal point of the function f if and only if ∇f(x?) = 0. Furthermore, if f is strictly

convex, then the optimal point x? is unique.

6.1.2.1 Finite-time stable gradient flow

There has been a lot of research on developing discrete-time optimization schemes with
convergence rate faster than linear (see [10, 95] and references therein). The continuous
variant of such discrete-time schemes are also studied by various authors. Based on the GF
defined as

ẋ = −∇f(x), (6.4)

the authors in [10] discuss the following scheme

ẋ = − ∇f(x)

‖∇f(x)‖
p−2
p−1

, (6.5)

where p > 2 as a modification of GF. It is shown that the convergence rate for the solutions
of (6.5) is given as

f(x(t))− f ? ≤ O

(
1

tp−1

)
, (6.6)

under the assumption that the level-sets of f(x) are bounded. The flow in (6.5) is referred
to as rescaled GF in the subsequent text. In this section, it is shown that the optimal
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point of (6.3) is actually an FTS equilibrium of (6.5). Then, in the subsequent sections,
modifications of (6.5) are presented with fixed-time convergence guarantees.

Theorem 6.3. If a C2 function f : Rn → R is k-strongly convex where k > 0, then for all

p > 2, the trajectories of (6.5) converge to the optimal point x? in finite time T = T (x(0))

satisfying

T (x(0)) ≤ ‖∇f(x(0))‖2(1−β1)

k121−β1(1− β1)
, (6.7)

where k1 = 2
p

2(p−1)k and β1 = p
2(p−1)

.

Proof. First, using Lemma 6.1, one has that strong convexity of f implies that the optimal
solution x? of (6.3) is unique and satisfies ∇f(x?) = 0. Choose V (x) = 1

2
‖∇f(x)‖2 as

the candidate Lyapunov function. k-strong convexity of f implies that ∇2f(x) � kI for
all x ∈ Rn. Using this, one obtains that the time derivative of V along (6.5) satisfies

V̇ (x) = ∇f(x)T∇2f(x)ẋ = −∇f(x)T∇2f(x)
∇f(x)

‖∇f(x)‖
p−2
p−1

≤ −k∇f(x)T
∇f(x)

‖∇f(x)‖
p−2
p−1

= −k‖∇f(x)‖2− p−2
p−1

= −k‖∇f(x)‖
p
p−1 = −k (2V (x))

p
2(p−1) .

Define k1 = 2
p

2(p−1)k so that k1 > 0, and β1 = p
2(p−1)

, so that 0 < β1 < 1, and one obtains
V̇ (x) ≤ −k1V (x)β1 for all x ∈ Rn. Using Theorem 2.1, one obtains that ‖∇f(x(t))‖ = 0

for all t ≥ T where T ≤ V (x(0))1−β1

k1(1−β1)
. Since the function is strongly convex, the sublevel

sets of the norm of ∇f are bounded. Thus, V is radially unbounded, and hence, the result
holds for all x(0) ∈ Rn.

Remark 6.2. For a given p > 2, denote the bound on the time of convergence as T̄p. As

noted in [10], the limiting case of (6.5) as p → ∞, called normalized GF, is studied

in [93], and it is shown that the time of convergence is upper bounded by 1
k
‖∇f(x(0))‖

under the assumption of strong convexity. The same bound on the time of convergence is

recovered by allowing p→∞ in the bound of the settling time T̄∞ in Theorem 6.3.

It is clear from the expression of the upper-bound on the settling time T in Theorem
6.3 that it grows unbounded as the distance of x(0) increases from the optimal point x?.
Inspired from (6.5) and noting its finite-time convergence guarantees, a modified GF is
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designed in this section with fixed-time convergence guarantees, so that the optimal point
of (6.3) can be obtained within a fixed time for all x(0) ∈ Rn.

Consider the flow equation

ẋ =


−c1

∇f(x)

‖∇f(x)‖
p1−2
p1−1

− c2
∇f(x)

‖∇f(x)‖
p2−2
p2−1

; ∇f(x) 6= 0,

0; ∇f(x) = 0,

(6.8)

where c1, c2 > 0, p1 > 2 and 1 < p2 < 2. In what follows, (6.8) is referred to as FxTS-

GF. First, it is shown that the equilibrium points of the right-hand side of (6.8) are critical
points1 of the function f , and that the dynamics in (6.8) is continuous for all x ∈ Rn.

Lemma 6.4. A point x̄ ∈ Rn is an equilibrium point of (6.8) if and only if ‖∇f(x̄)‖ = 0.

Proof. One has that x = x̄ is an equilibrium of (6.8) if and only if

˙̄x = 0 ⇐⇒ − c1
∇f(x̄)

‖∇f(x̄)‖
p1−2
p1−1

− c2
∇f(x̄)

‖∇f(x̄)‖
p2−2
p2−1

= 0

⇐⇒ c1
‖∇f(x̄)‖

‖∇f(x̄)‖
p1−2
p1−1

+ c2
‖∇f(x̄)‖

‖∇f(x̄)‖
p2−2
p2−1

= 0

⇐⇒ c1‖∇f(x̄)‖1−
p1−2
p1−1 + c2‖∇f(x̄)‖1−

p2−2
p2−1 = 0,

⇐⇒ ‖∇f(x̄)‖ = 0,

since 1− p1−2
p1−1

, 1− p2−2
p2−1

> 0 for p1 > 2 and 1 < p2 < 2. This completes the proof.

Lemma 6.5 (Continuity of modified GF). If f : Rn → R is C1, then the right-hand side

of (6.8) is continuous for all x ∈ Rn.

Proof. Let X = {x | ∇f(x) = 0}. Since f ∈ C1, continuity of right-hand side of (6.8) is
immediate on Rn \ X . Let x̄ ∈ X so that one has∥∥∥∥∥lim

x→x̄
c1

∇f(x)

‖∇f(x)‖
p1−2
p1−1

∥∥∥∥∥ = lim
x→x̄

c1

∥∥∥∥∥ ∇f(x)

‖∇f(x)‖
p1−2
p1−1

∥∥∥∥∥
= c1 lim

x→x̄
‖∇f(x)‖1− p1−2

p1−1

= c1 lim
x→x̄
‖∇f(x)‖δ1 = 0,

1Recall that a point x is called a critical point of a C1 function f if∇f(x) = 0.
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where the last equality follows from continuity of ∇f since δ1 = 1 − p1−2
p1−1

> 0 for
p1 > 2. Hence, one has that limx→x̄ c1

∇f(x)

‖∇f(x)‖
p1−2
p1−1

= 0. Similarly, it can be shown that

limx→x̄ c2
∇f

‖∇f‖
p2−2
p2−1

= 0, since δ2 = 1 − p2−2
p2−1

> 0 for all 1 < p2 < 2. Per Lemma 6.4,

one has that x̄ is an equilibrium of (6.8). This implies that the right-hand side of (6.8) is
continuous at x = x̄, for all x̄ ∈ X , and hence, is continuous for all x ∈ Rn.

Next, it is shown that the solutions of (6.8) exist and are unique in the forward time.

Proposition 6.1. If a C1 function f : Rn → R is convex with unique minimizer, then for all

x(0) ∈ Rn, the solution of (6.8) exists and is unique for all t ≥ 0.

Proof. Note that right-hand side of the dynamics in (6.8) is continuous for all x ∈ Rn,
and therefore, it satisfies the conditions of Theorem 6.2. Furthermore, the function V =

f(x) − f(x?) is positive definite (since f is convex and x? is assumed to be unique), and
is continuously differentiable, satisfying all the requirements as in Theorem 6.2. Thus, the
solution of (6.8) exists and is unique for all x(0) ∈ Rn and for all t ≥ 0.

6.1.2.2 FxTS under gradient dominance

In the section, the notion of PL inequality, or gradient dominance, as defined in [94], is
assumed on the objective function f .

Definition 6.3 (PL inequality). The C1 function f : Rn → R is said to satisfy the PL

inequality, or is gradient dominated, with µf > 0, i.e., for all x ∈ Rn,

1

2
‖∇f(x)‖2 ≥ µf (f(x)− f ?). (6.9)

Based on this, the following assumption is made on the objective function f .

Assumption 6.2. The function f is C1, has a unique minimizer, and satisfies PL inequality

with µf > 0.

Remark 6.3. Strong convexity of the objective function is a standard assumption used in

the literature to show exponential convergence for gradient flows. As noted in [94], PL

inequality is the weakest condition among other similar conditions popularly used in the

literature to show linear convergence in discrete-time (exponential, in continuous-time)

gradient-based algorithms. Particularly, a C1 strongly convex function f satisfies PL in-

equality. Note that under Assumption 6.2, it is not required that the objective function f is

convex.
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It is shown in [94, Theorem 2] that satisfaction of PL inequality implies that the function f
has quadratic growth, i.e.,

f(x)− f ? ≥ µf
2
‖x− x?‖2. (6.10)

for all x, where µf is as defined in (6.9). The following result can now be stated.

Theorem 6.4 (FxTS under PL inequality). If the objective function f satisfies Assump-

tions 6.1 and 6.2, then, the trajectories of (6.8) converge to the optimal point x? in a fixed

time T1 for all x(0) such that

T1 ≤
4

k1(2− α1)
+

4

k2(α2 − 2)
, (6.11)

where α1 = 2− p1−2
p1−1

, α2 = 2− p2−2
p2−1

, k1 = c12
2+3α1

4 µ
α1
2
f and k2 = c22

2+3α2
4 µ

α2
2
f .

Proof. Proposition 6.1 is invoked for existence and uniqueness of the solutions. Note that
the convexity requirement in Proposition 6.1 is required for positive definiteness of the
function V = 1

2
(f(x) − f(x?))2. For the case when the optimal point x? is unique and

f satisfies the PL inequality, the function V is positive definite, and therefore, under As-
sumption 6.2, the solution of (6.8) exists and is unique for all x(0) ∈ Rn and t ≥ 0.

Now, consider the candidate Lyapunov function V (x) = 1
2
(f(x) − f(x?))2. It follows

from (6.10) that V is radially unbounded. The time derivative along the trajectories of (6.8)
reads

V̇ (x) = (f(x)− f(x?))(∇f(x))T

(
−c1

∇f(x)

‖∇f(x)‖
p1−2
p1−1

− c2
∇f(x)

‖∇f(x)‖
p2−2
p2−1

)
= −c1(f(x)− f(x?))‖∇f(x)‖2− p1−2

p1−1 − c2(f(x)− f(x?))‖∇f(x)‖2− p2−2
p2−1

= −c1(f(x)− f(x?))‖∇f(x)‖α1 − c2(f(x)− f(x?))‖∇f(x)‖α2

(6.9)
≤ −c1(2µf )

α1
2 (f(x)− f(x?))1+

α1
2 − c2(2µf )

α2
2 (f(x)− f(x?))1+

α2
2

= −c12
2+3α1

4 µ
α1
2
f V (x)

2+α1
4 − c22

2+3α2
4 µ

α2
2
f V (x)

2+α2
4

= −k1V (x)
2+α1

4 − k2V (x)
2+α2

4 ,

where α1 = 2 − p1−2
p1−1

, α2 = 2 − p2−2
p2−1

, k1 = c12
2+3α1

4 µ
α1
2
f and k2 = c22

2+3α2
4 µ

α2
2
f . Since

α1 < 2 and α2 > 2, one has 2+α1

4
< 1 and 2+α2

4
> 1. Hence, from Theorem 6.1, one

obtains that for t ≥ T1, f(x(t)) = f ?, which is equivalent to x(t) = x? under Assumption
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6.2, where T1 ≤ 4
k1(2−α1)

+ 4
k2(α2−2)

. Hence, the trajectories of (6.8) converge to the optimal
point x? of (6.3) in a fixed time.

Remark 6.4. Note that the difference between the proposed modified gradient flow (6.8)
and the rescaled gradient flow (6.5) is the second term with exponent 1 < p2 < 2. This term

results into the second term−V β in (3.4), while the first term, with exponent p1 > 2, results

into the first term −V α in (3.4). Since (6.5) contains only the first term, which dominates

when V is small, the time of convergence, though finite, grows larger as the initial distance

from the equilibrium increases (see also Remark 3.1).

It is showed that the FxTS-GF in (6.8) can be used to find the optimal solution of
(6.3) in fixed time. As mentioned in Remark 6.3, Assumption 6.2 is a relaxation used to
show exponential convergence of gradient flow. Hence, all such problems which have been
shown to have exponential convergence under strong-convexity can be solved within fixed
time using (6.8). It is easy to show that if a function f : Rm → R is strongly convex, then
the function g : Rn → R, defined as g(x) = f(Ax), A ∈ Rn×m, is strongly convex if A is
full row-rank. If matrix A is not full row-rank, then g may not be strongly convex. On the
other hand, as shown in [94, Appendix 2.3], g still satisfies PL inequality for all matrices
A ∈ Rn×m. Below, two important classes of problems are given for which, the objective
function satisfies PL inequality (see [94] for more examples on useful functions that satisfy
PL inequality).

Example 6.1. Least squares: Consider the optimization problem

min
x∈Rn

f(Ax) = ‖Ax− b‖2, (6.12)

where x ∈ Rn, A ∈ Rn×n and b ∈ Rn. Here, the function f(x) = ‖x − b‖2 is strongly-

convex, and hence, g(x) = ‖Ax− b‖2 satisfies PL inequality for all matrices A.

Linear regression: Consider the optimization problem

min
x∈Rn

f(Ax) =
m∑
i=1

log(1 + bia
T
i x), (6.13)

where x ∈ Rn, ai ∈ Rn and b ∈ R for i = 1, 2, . . . ,m. Here, the function g(x) = f(Ax)

satisfies PL inequality for all matrices A. The objective functions in (6.12) and (6.13)
satisfies PL inequality, but need not be strongly convex for all matrices A; if additionally,

uniqueness of the optimal solutions of (6.12) and (6.13) is assumed, one can use (6.8)
to find the optimal solutions for (6.12) and (6.13), respectively, in fixed time. These are

important classes of functions in machine learning problems.
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6.1.2.3 FxTS under strict convexity

In this section, the modification of the Newton’s method based GF is presented to guarantee
FxTS for a class of functions that do not satisfy Assumption 6.2. The nominal Newton’s
method is defined as

ẋ = −
(
∇2f(x)

)−1∇f(x). (6.14)

It is well-known that under certain conditions on the function f , (6.14) can achieve expo-
nential convergence. The following assumption is made about the objective function f .

Assumption 6.3 (Strict convexity). The function f : Rn → R is C2 and is strictly convex.

Furthermore, the Hessian ∇2f(x) invertible for all x ∈ Rn, and the norm of the gradient,

‖∇f‖ is radially unbounded.

Per Assumption 6.3, ∇2f(x) � 0 for all x ∈ Rn,2 and with Assumption 6.1, using
Lemma 6.3, one has that the optimal point x? is unique. Note that if f satisfies Assumption
6.3, it is not necessary that it satisfies Assumption 6.2. So, for the optimization problem
in (6.3), with this class of functions, fixed-time convergence cannot be guaranteed using
(6.8). Hence, another modified GF is proposed so that fixed-time convergence for this class
of functions can be guaranteed. Consider the flow equation for FxTS Newton’s method

ẋ =


−(∇2f(x))−1

(
c1

∇f(x)

‖∇f(x)‖
p1−2
p1−1

+ c2
∇f(x)

‖∇f(x)‖
p2−2
p2−1

)
; ∇f(x) 6= 0,

0; ∇f(x) = 0,

(6.15)

where c1, c2 > 0, p1 > 2 and 1 < p2 < 2. Under Assumption 6.3, it can be readily
shown that the system dynamics in (6.15) is continuous on Rn and that x∗? is the unique
equilibrium point of (6.15). The following result can now be stated.

Theorem 6.5 (FxTS under strict convexity). If f satisfies Assumptions 6.1 and 6.3, then

the trajectories of (6.15) converge to the optimal point x? in fixed time TNM for all initial

conditions x(0) ∈ Rn such that

TNM ≤
21−α1

2

c1(2− α1)
+

21−α2
2

c2(α2 − 2)
, (6.16)

where α1 = 2− p1−2
p1−1

and α2 = 2− p2−2
p2−1

.

Proof. Note that under Assumption 6.3, per Proposition 6.1, solutions of (6.15) exist and
are unique for all x(0) ∈ Rn. Consider the Lyapunov function V (x) = 1

2
‖∇f(x)‖2.

2This is needed so that the right-hand side in the Newton’s method is well-defined.
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Since the sub-level sets of norm of its gradient∇f are bounded under Assumption 6.3, the
candidate Lyapunov function V is radially unbounded. The time derivative of this function
along the trajectories of (6.15) reads

V̇ (x) = (∇f(x))T (∇2f(x))ẋ

= −(∇f(x))T

(
c1

∇f(x)

‖∇f(x)‖
p1−2
p1−1

+ c2
∇f(x)

‖∇f(x)‖
p2−2
p2−1

)
= −c1‖∇f(x)‖2− p1−2

p1−1 − c2‖∇f(x)‖2− p2−2
p2−1

≤ −c12
α1
2 V (x)

α1
2 − c22

α2
2 V (x)

α2
2 ,

where α1 = 2 − p1−2
p1−1

and α2 = 2 − p2−2
p2−1

. Since p1 > 2 and 1 < p2 < 2 one obtains that
1 < α1 < 2 and α2 > 2. Hence, using Theorem 6.1, one obtains that the trajectories of
(6.15) converge to the optimal point x? in the fixed time TNM for all x(0) ∈ Rn, where
TNM ≤ 21−

α1
2

c1(2−α1)
+ 21−

α2
2

c2(α2−2)
.

While strongly-convex functions satisfy PL inequality [94], strictly-convex functions do
not satisfy PL inequality in general. Thus, for convex optimization problems with strictly
convex objective functions that do not satisfy Assumption 6.2, (6.15) can be used to find the
optimal solution of (6.3) within a fixed time. One example is the class of quartic functions,
which can be used to reformulate a standard QP with sign constraints as an unconstrained
optimization problem [155].

Example 6.2. Consider the optimization problem

min
x

xTQx+ cTx,

s.t. xi ≥ 0, i = 1, 2, . . . , n,
(6.17)

where x, c ∈ Rn and Q ∈ Rn×n is a positive definite matrix. Let z ∈ Rn be defined as

xi = z2
i and re-write (6.17) in terms of z

min
z

zTZQZz + cTZz, (6.18)

where Z ∈ Rn×n is a diagonal matrix consisting of elements zi, i.e.,

Zij =

zi, i = j;

0, i 6= j,

for i, j = 1, 2, . . . , n. The optimal solution x̄ of (6.17) is given by x̄i = z̄2
i , where z̄ is the
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optimal solution of (6.18).

It is clear that the objective function in (6.18) is a quartic, is not strongly convex, and may
not satisfy PL inequality. Nevertheless, it is strictly convex and hence, (6.15) can be used
to find the optimal point of (6.18) within a fixed time.

Up to now, unconstrained minimization problems have been considered. Next, con-
strained minimization problems are studied, and FxTS-GF based methods are proposed
with fixed-time convergence guarantees.

6.1.3 Constrained optimization

Consider the optimization problem

min
x∈Rn

f(x),

s.t. Ax = b,
(6.19)

where f : Rn → R is convex, A ∈ Rm×n and b ∈ Rm.

Assumption 6.4. The matrix A is full row-rank and the objective function f is coercive.

Remark 6.5. Assumption 6.4 is commonly used in constrained optimization [156]; the

matrix A being full row-rank guarantees that the feasible set is non-empty and closed, and

thus, coercivity of the convex function f guarantees that the solution of (6.19) exists [154,

Chapter 2].

Define g : Rm → R as
g(ν) = inf

x∈Rn
(f(x) + νT (Ax− b)), (6.20)

so that the dual problem (see [128, Chapter 5]) for (6.19) is given by

sup
ν∈Rm

g(ν). (6.21)

Using (6.20), rewrite (6.21) as

sup
ν∈Rm

inf
x∈Rn

L(x, ν) , f(x) + νT (Ax− b). (6.22)

It is clear that (6.22) is a saddle-point problem, where L(x, ν) needs to be minimized over
x and maximized over ν. From (6.20), following the discussion in [128, Section 5.1], one
obtains:

g(ν) = −νT b− f ∗(−ATν), (6.23)

130



where f ∗ : Rn → R is the conjugate of f .3 Note that the function f ∗ is always convex,
whether f is convex or not [128, Chapter 3]. It can be readily seen from (6.23) that g is
a concave function (since f ∗ is convex, −f ∗ is concave). As shown in [157, Section 3.5],
strong convexity of function f and strong smoothness of its conjugate f ∗ are equivalent.
Using this, the following results can be stated.

Lemma 6.6. If f is a convex, β-strongly smooth function, then the function g defined as

per (6.20) is α-strongly concave, where α > 0.

Proof. The convexity and strong-smoothness assumptions on f implies that f ∗∗ = f , i.e.,
f is the conjugate of its conjugate f ∗. Define κ = f ∗ so that one has κ∗ = f ∗∗ = f . Now,
since the function f is the conjugate of κ and is β-strongly smooth, from [157, Section
3.5], one obtains that there exists β∗ such that κ is a β∗-strongly convex function. It holds
that if A is full row-rank, then β∗-strong-convexity of f ∗ implies α-strong-convexity of
f ∗(−ATν), where α = λβ∗ and λ = λmin(AAT ) is the minimum eigenvalue of AAT .
Since A is full row-rank, it follows that λ > 0. Finally, using the fact that f1 = f ∗(−ATν)

is α-strongly convex and f2 = νT b is convex, one obtains that f1+f2 = f ∗(−ATν)+νT b =

−g(ν) is α-strongly convex, or equivalently, g is α-strongly concave.

Note that the constrained optimization problem in (6.19) is equivalent to the uncon-
strained problem in (6.22). Furthermore, under the assumptions of Lemma 6.6 on the
function f , the function −g is strongly concave. Thus, if the function f ∗ is known in
closed-form, then (6.8) can be used to find the optimal point of (6.22). Based on this, the
following assumption is made on the function f .

Assumption 6.5. The objective function f : Rn → R is C1, β1-strongly convex, β2-strongly

smooth, and its conjugate function f ∗ : Rn → R is known in closed-form.

See Remark 6.6 and Corollary 6.2 for the case when f ∗ is not known in closed-form. For
the case when Assumption 6.5 holds, consider the dynamical system

ν̇ =


−c1

−∇g(ν)

‖∇g(ν)‖
p1−2
p1−1

− c2
−∇g(ν)

‖∇h(ν)‖
p2−2
p2−1

; ∇g(ν) 6= 0,

0; ∇g(ν) = 0,

(6.24)

where c1, c2 > 0, p1 > 2 and 1 < p2 < 2. Note that the assumptions on functions f, f ∗,
and matrix A implies sup

ν
inf
x
L(x, ν) = inf

x
sup
ν
L(x, ν) ([128, Section 5.5]). Also, using

Proposition 6.1, one has that the solutions of (6.24) exist and are unique for all ν(0) ∈ Rm.
3Since the considered space is the finite-dimensional vector space Rn with the Euclidean norm, the dual

space is Rn with the dual norm ‖ · ‖∗ = ‖ · ‖.
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Lemma 6.7 (FxTS of dual variable). The trajectories of (6.24) reach the optimal point

ν? of (6.21) in fixed time Tν for all initial conditions ν(0) ∈ Rm where

Tν ≤
4

k3(2− α1)
+

4

k4(α2 − 2)
, (6.25)

where α1 = 2− p1−2
p1−1

, α2 = 2− p2−2
p2−1

, k3 = c12
2+3α1

4 µ
α1
2
g and k4 = c22

2+3α2
4 µ

α2
2
g .

Proof. Per Lemma 6.6, −g(ν) is α-strongly convex. Thus, g satisfies PL inequality (6.9)
with µg > 0. Since g is strongly convex, and the maximizer ν? of g exists, it is also unique.
Furthermore, using [157, Theorem 3.5.10], one obtains that f ∗ ∈ C1 if f is strongly convex
and so, it holds that g ∈ C1. This implies that g satisfies Assumptions 6.1 and 6.2. Hence,
using Theorem 6.4, one obtains that the trajectories of (6.24) reach the the maximizer ν?

of g(ν) in a fixed time Tν ≤ 4
k3(2−α1)

+ 4
k4(α2−2)

for all initial conditions ν(0), where

α1 = 2− p1−2
p1−1

, α2 = 2− p2−2
p2−1

, k3 = c12
2+3α1

4 µ
α1
2
g and k4 = c22

2+3α2
4 µ

α2
2
g .

Under the assumption of existence (Assumption 6.4) and uniqueness (guaranteed by
Assumption 6.5) of the optimal point of (6.19) and using the fact that −g(ν) is α-strongly
convex, one obtains that the minimizer of L(x, ν?) is the optimal solution of (6.19) [128,
Section 5.5.5]. Using this, one obtains that

x? = arg min
x∈Rn

L(x, ν?) (6.26)

or, in other words, x? satisfies∇xL(x?, ν?) , ∇f(x?) + ν∗TA = 0. Hence, the trajectories
of the system

ẋ =


−d1

∇xL(x,ν?)

‖∇xL(x,ν?)‖
q1−2
q1−1

− d2
∇xL(x,ν?)

‖∇xL(x,ν?)‖
q2−2
q2−1

; ∇xL(x, ν?) 6= 0,

0; ∇xL(x, ν?) = 0,

(6.27)

where d1, d2 > 0, q1 > 2 and 1 < q2 < 2, converge to the optimizer of (6.19). The
following result can now be stated.

Theorem 6.6 (FxTS of primal variable). Let Assumptions 6.4 and 6.5 hold. Then, the

optimal point x? of (6.19) can be found in fixed time Teq by first solving (6.24) for all

ν(0) ∈ Rm, and then, solving (6.27) for all x(0) ∈ Rn, with

Teq ≤
4

k3(2− α1)
+

4

k4(α2 − 2)
+

4

k5(2− α3)
+

4

k6(α4 − 2)
,
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where α1, α2, k3, k4 are as defined in Lemma 6.7, and α3 = 2− q1−2
q1−1

, α4 = 2− q2−2
q2−1

, k5 =

d12
2+3α3

4 µ
α1
2
L and k6 = d22

2+3α4
4 µ

α4
2
L

Proof. From Lemma 6.7, one obtains that the trajectories of (6.24) reach the optimizer
ν? of (6.21) in fixed time Tν ≤ 4

k3(2−α1)
+ 4

k4(α2−2)
. Now, since f(x) is strongly convex,

it follows that L(·, ν) is strongly convex for each ν ∈ Rm, and in particular, L(·, ν?) is
strongly convex, and hence, also satisfies PL inequality with µL > 0. Furthermore, it can
be easily shown that L(·, ν?) satisfies Assumptions 6.1 and 6.2. Therefore, from Theorem
6.4, one has that there exists a fixed time Tx such that the trajectories of (6.27) reach the
optimal point of (6.26) in Tx ≤ 4

k5(2−α3)
+ 4

k6(α4−2)
for all initial conditions x(0), where

α3 = 2 − q1−2
q1−1

, α4 = 2 − q2−2
q2−1

, k5 = d12
2+3α3

4 µ
α1
2
L and k6 = d22

2+3α4
4 µ

α4
2
L . Hence, one has

that the optimal point of (6.19) can be obtained in fixed time Teq ≤ Tx+Tν , by first solving
(6.24) and then, (6.27).

A very important class of optimization problems in machine learning and model pre-
dictive control (MPC) is the class of QPs. In the following example, it is shown that QPs
with equality constraints that satisfy Assumption 6.5 fit into the proposed framework.

Example 6.3. Consider the following QP with equality constraints

min
x∈Rn

1

2
xTQx+ cTx,

s.t. Ax = b,

(6.28)

where Q ∈ Rn×n is positive definite and A ∈ Rm×n has full row-rank. The function g(ν)

for (6.28) is given as

g(ν) = inf
x∈Rn

(1

2
xTQx+ cTx+ νT (Ax− b)

)
= −νT b− 1

2
(c− ATν)TQ−1(c− ATν).

Hence, one has that f ∗(−ATν) = −1
2
(c−ATν)TQ−1(c−ATν). It can be readily verified

that the functions f, f ∗ satisfy Assumption 6.5.
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6.2 Fixed-time stable saddle-point dynamics

6.2.1 Min-max problem

In this section, min-max problems are considered that can be formulated as saddle-point
dynamics, and a modification is studied so that optimal point, which is a saddle-point, can
be found within a fixed time. To this end, the general saddle-point problem of minimizing
a function F (x, z) over x ∈ Rn and maximizing over z ∈ Rm is considered, where F :

Rn × Rm → R. Formally, this can be stated as

max
z∈Rm

min
x∈Rn

F (x, z). (6.29)

A point (x?, z?) is called as local saddle-point of F (as well as local optimal solution of
(6.29)), if there exist open neighborhoodsUx ⊂ Rn andUz ⊂ Rm of x? and z?, respectively,
such that for all (x, z) ∈ Ux × Uz, one has

F (x?, z) ≤ F (x?, z?) ≤ F (x, z?). (6.30)

The point (x?, z?) is global saddle-point if Ux = Rn and Uz = Rm.

6.2.1.1 FxTS under strict convexity-concavity

The results in this section are presented under the following assumption.

Assumption 6.6 (Strict convexity-concavity). A saddle point (x?, z?) exists that solves

(6.29). Furthermore, the function F : Rn × Rm → R is C2 and locally strictly convex-

concave in an open neighborhood U ⊂ Rn × Rm of the saddle point (x?, z?). More

specifically,∇xxF (x, z) � 0 and ∇zzF (x, z) ≺ 0 for all (x, z) ∈ U .

The local strong or strict convexity-concavity assumption is very commonly used in
literature for showing asymptotic convergence of saddle-point dynamics to the optimal
solution of (6.29) (see, e.g., [89, 158]). Using this, the following result can be stated.

Lemma 6.8 (Invertiblity of Hessian). Let Assumption 6.6 hold for an open neighborhood

U ⊂ Rn × Rm of the saddle-point (x?, z?). Then, the Hessian of F given as

∇2F (x, z) =

[
∇xxF (x, z) ∇xzF (x, z)

∇zxF (x, z) ∇zzF (x, z)

]
, (6.31)

is invertible for all (x, z) ∈ U .
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Proof. Define Hxx = ∇xxF , Hxz = ∇xzF and Hzz = −∇zzF . Since F is twice-
continuously differentiable, one has that ∇zxF = (∇xzF )T . Define H = ∇2F (x, z) so

that H =

[
Hxx Hxz

HT
xz −Hzz

]
. Note that Hxx and Hzz are positive definite for all (x, z) ∈ U

due to Assumption 6.6. The rank of the matrix H satisfies ( [159])

rankH = rankHxx + rank(−Hzz −HT
xzH

−1
xxHxz).

Now, since Hxx is invertible for all (x, z) ∈ U , one has that rankHxx = n. Let H1 = Hxx

and H2 = −Hzz − HT
xzH

−1
xxHxz. Since Hxx, Hzz are positive definite matrices, it follows

that H2 is also negative definite. Hence, one obtains that rankH2 = m. This implies that
rankH = rankH1 + rankH2 = n+m for all (x, z) ∈ U , i.e., ∇2F (x, z) is full rank and
hence, invertible for all (x, z) ∈ U .

Authors in [89] use the following saddle-point (SP) dynamics

ẋ = −∇Fx(x, z), ż = ∇Fz(x, z). (6.32)

and show asymptotic convergence to the saddle-point (x?, z?) under Assumption 6.6. The
flow in (6.32) is modified so that fixed-time convergence can be guaranteed. The FxTS
Newton’s method is used to define the FxTS-SP dynamics as

[
ẋ

ż

]
=


−(∇2F (x, z))−1

(
c1

∇F (x,z)

‖∇F (x,z)‖
p1−2
p1−1

+ c2
∇F (x,z)

‖∇F (x,z)‖
p2−2
p2−1

)
; ∇F (x, z) 6= 0,

0; ∇F (x, z) = 0,

(6.33)

where c1, c2 > 0, p1 > 2, 1 < p2 < 2, and ∇F (x, z) ,
[
∇xF (x, z)T ∇zF (x, z)T

]T
.

Note that per Lemma 6.4, the point (x, z) is an equilibrium point of (6.33) if and only if
it satisfies ∇F (x, z) = 0. Using strict convexity-concavity of F in U , one obtains that
∇F (x, z) = 0 implies x = x? and z = z?. The first main result of this section is presented
below.

Theorem 6.7 (FxTS under strict convexity-concavity). If F satisfies Assumption 6.6 for

U ⊂ Rn ×Rm, then the trajectories of (6.33) converge to the saddle point (x?, z?) in fixed

time TSP for all (x(0), z(0)) ∈ D ⊂ U where D is the largest compact sub-level set of

V (x, z) = 1
2
‖∇F (x, z)‖2 in U and

TSP ≤
21−α1

2

c1(2− α1)
+

21−α2
2

c2(α2 − 2)
, (6.34)
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where α1 = 2− p1−2
p1−1

and α2 = 2− p2−2
p2−1

. Furthermore, if U = Rn × Rm, then the results

holds for all (x(0), z(0)) ∈ Rn × Rm.

Proof. Consider the candidate Lyapunov function V (x, z) = 1
2
‖∇F (x, z)‖2. Define D as

the largest compact sub-level set of V . Using analysis similar to the proof of Theorem 6.5,
the time derivative of V along the trajectories of (6.33) can be bounded as

V̇ (x, z) ≤ −c12
α1
2 V (x, z)

α1
2 − c22

α2
2 V (x, z)

α2
2 ,

where α1 = 2− p1−2
p1−1

and α2 = 2− p2−2
p2−1

. It follows that for all t ≥ TSP ,∇F (x(t), z(t)) = 0,

or equivalently, (x(t), z(t)) = (x?, z?) for all (x(0), z(0)) ∈ D, where TSP ≤ 21−
α1
2

c1(2−α1)
+

21−
α2
2

c2(α2−2)
.

For the case when U = Rn×Rm, the sub-level sets of ‖∇F‖ are bounded and therefore,
V is radially unbounded. Therefore, the trajectories of (6.33) converge to the saddle-point
of (6.29) for all (x(0), z(0)) ∈ Rn × Rm.

Assumption 6.6 ensures that the Hessian ∇2F (x, z) is invertible for all (x, z) ∈ U

and that the saddle-point of F is the only critical point. Per the analysis in Lemma 6.8, a
sufficient condition for the Hessian to be invertible is that ∇xxF is invertible and ∇zxF is
full row-rank. Based on this observation, the following result can be stated.

Corollary 6.1. Suppose there exists an open set U ⊂ Rn×Rm such that∇xxF (x, z) is in-

vertible and∇zxF (x, z) is full row-rank for all (x, z) ∈ U . Then, the trajectories of (6.33)
converge to the set of the critical points of F , defined as ΩU = {(x, z) ∈ U | ∇F (x, z) =

0} in a fixed time TSP for all (x(0), z(0)) ∈ D ⊂ U , where D is the largest compact

sub-level set of V (x, z) = 1
2
‖∇F (x, z)‖2 in U .

Note that Corollary 6.1 does not require strict convexity-concavity of F . Also, if the
set ΩU contains only the SP, i.e., the only critical point of the function F in ΩU is the SP,
then Corollary 6.1 guarantees local convergence of trajectories of (6.33) to the SP in fixed
time.

6.2.1.2 FxTS under strong convexity-concavity

The modified saddle-point dynamics in (6.33) requires the computation of the inverse of
the Hessian matrix∇2F (x, z), which can be computationally expensive for problems with
large n,m. In this section, a first-order scheme, i.e., a method only requiring the gradient
of the function F , is proposed under a stronger assumption on the function F .
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Assumption 6.7 (Strong convexity-concavity). A saddle point (x?, z?) exists that solves

(6.29) and F : Rn × Rm → R is C2 and locally strongly convex-concave on open neigh-

borhood U ⊂ Rn × Rm of the saddle point (x?, z?), i.e., there exist kx, kz > 0 such that

∇xxF (x, z) � kxI and∇zzF (x, z) � −kzI for all (x, z) ∈ U .

Consider the following FxTS-GF based modified SP dynamics

[
ẋ

ż

]
=


−c1

∇̃F (x,z)

‖∇F (x,z)‖
p1−2
p1−1

− c2
∇̃F (x,z)

‖∇F (x,z)‖
p2−2
p2−1

; ∇F (x, z) 6= 0,

0; ∇F (x, z) = 0,

(6.35)

where c1, c2 > 0, p1 > 2, 1 < p2 < 2, ∇̃F (x, z) ,
[
∇xF (x, z)T −∇zF (x, z)T

]T
. Note

that (6.32) is a special case of (6.35) with c1 = 1, c2 = 0 and p1 = 2. The following result
can be readily stated for (6.35).

Theorem 6.8 (FxTS under strong convexity-concavity). Suppose the function F satisfies

Assumption 6.7. Then, the trajectories of (6.35) converge to the SP in a fixed time TSP2 for

all (x(0), z(0)) ∈ U such that

TSP2 ≤
2

k7(2− α7)
+

2

k8(α8 − 2)
, (6.36)

where k7 = c1k 2
α7
2 , k8 = c2k 2

α8
2 , α7 = 2−p1−2

p1−1
and α8 = 2−p2−2

p2−1
, with k = min{kx, kz}.

Furthermore, if U = Rn × Rn, then the result holds for all (x(0), z(0)) ∈ Rn × Rm.

Proof. Choose the candidate Lyapunov function as V (x, z) = 1
2
‖∇F (x, z)‖2. The time

derivative of V along the trajectories of (6.35) reads

V̇ = ∇xF
T∇xxFẋ+∇xF

T∇xzF ż +∇zF
T∇zxFẋ+∇zF

T∇zzF ż

(6.35)
= ∇xF

T∇xxFẋ+∇zF
T∇zzF ż

= −∇xF
T∇xxF

(
c1

∇Fx
‖∇F‖

p1−2
p1−1

+ c2
∇Fx

‖∇F‖
p2−2
p2−1

)

+∇zF
T∇zzF

(
c1

∇Fz
‖∇F‖

p1−2
p1−1

+ c2
∇Fz

‖∇F‖
p2−2
p2−1

)
. (6.37)
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Now, using the strong convexity-concavity of F , one obtains

V̇ ≤ −c1kx
‖∇xF‖2

‖∇F‖
p1−2
p1−1

− c2kx
‖∇xF‖2

‖∇F‖
p1−2
p1−1

− c1kz
‖∇zF‖2

‖∇F‖
p1−2
p1−1

− c2kz
‖∇zF‖2

‖∇F‖
p1−2
p1−1

≤ −c1k
‖∇F‖2

‖∇F‖
p1−2
p1−1

− c2k
‖∇F‖2

‖∇F‖
p1−2
p1−1

= −k7V
α7
2 − k8V

α8
2 ,

where k7 = c1k2
α7
2 , k8 = c2k2

α8
2 , 0 < α7 = 2− p1−2

p1−1
< 2 and α8 = 2− p2−2

p2−1
> 2, where

k = min{kx, kz}. Hence, using Theorem 6.1, one obtains that the optimal point of (6.29)
can be found in fixed time TSP2 satisfying TSP2 ≤ 2

k7(2−α7)
+ 2

k8(α8−2)
. Furthermore, the

norm of the gradient ‖∇F‖ is radially unbounded on U , and hence, for U = Rn ×Rm, the
result holds globally for all (x(0), z(0)) ∈ Rn × Rm.

6.2.2 Connections with constrained optimization

The constrained optimization problem in (6.19) can be equivalently posed as a min-max
problem via the Lagrangian L given in (6.22). Thus, the modified saddle-point dynamics
in (6.33) can be used to solve the constrained optimization of the form (6.19) under certain
conditions, as discussed in the remark below.

Remark 6.6. For problem (6.19) with strictly convex f and full row-rank matrix A, the

conditions of Corollary 6.1 are satisfied. Furthermore, it is known that for this problem,

the KKT conditions are also sufficient for optimality, i.e., the critical point (x̄, z̄) such that

∇F (x̄, z̄) ,

[
∇f(x̄) + AT z̄

Ax̄− b

]
= 0 is also the optimal point, i.e., (x?, z?) = (x̄, z̄). Hence,

one can use (6.33) with F (x, z) = L(x, z) for the problems of the form (6.19), in the case

when the conjugate function f ∗ is not known in the closed-form.

This is formally shown in the following result.

Corollary 6.2. Consider the optimization problem (6.19). Assume that Assumption 6.4

holds and that f : Rn → R is C2 and strictly convex, and the Hessian ∇2f is invertible.

Then, with F (x, z) = f(x) + zT (Ax− b), the trajectories of (6.33) reach the saddle-point

(x?, z?), where x? is the solution of (6.19), in fixed time Teq2 for all (x(0), z(0)) ∈ D ⊂ U ,

where D is the largest compact sub-level set of V (x, z) = 1
2
‖∇F (x, z)‖2 in U , and

Teq2 ≤
21−α1

2

c1(2− α1)
+

21−α2
2

c2(α2 − 2)
, (6.38)

where where α1 = 2− p1−2
p1−1

and α2 = 2− p2−2
p2−1

.
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Proof. Define F (x, z) = f(x) + zT (Ax − b). Note that for strictly convex f , ∇xxF =

∇2f(x) is invertible. Furthermore, ∇zxF = A is full row-rank, which implies that the
conditions of Corollary 6.1 are satisfied. Hence, the trajectories of (6.33) reach the set of
points (x, z) such that ∇F (x, z) = 0. Hence, one obtains that the trajectories of (6.33)
for F (x, z) = f(x) + zT (Ax − b) reach the optimal point of (6.19) in fixed time Teq2 ≤

21−
α1
2

c1(2−α1)
+ 21−

α2
2

c2(α2−2)
where α1 = 2− p1−2

p1−1
and α2 = 2− p2−2

p2−1
.

In summary, (6.33) can be used to solve constrained optimization problems of the form
(6.19) as well as min-max problems of the form (6.29), and the optimal solutions can be ob-
tained within a fixed time. Compared to [89,158], where asymptotic convergence is studied
for min-max problems of the form (6.29), and (6.19) posed as saddle-point problem, the
proposed method guarantees convergence within a fixed time under relaxed assumptions.

6.3 Simulations

The efficacy of the proposed methods is illustrated via three numerical examples. The com-
putations are done using MATLAB R2018a on a desktop with 32GB DDR3 RAM and an
Intel Xeon E3-1245 processor (3.4 GHz). Unless mentioned otherwise, Euler discretization
is used for MATLAB implementation with time-step dt = 10−5, and with constant step-size,
the convergence time T in seconds translates to T × 105 iterations. In the first example, an
instance of QP with equality constraints is considered as a constrained convex optimization
problem (6.19). The FxTS saddle-point dynamics in (6.33) is used to find the optimal point
of the problem, and to illustrate that for all initial conditions, the optimal point can be found
within a fixed time. Then, an instance of the min-max problem (6.29) is considered, and
the FxTS saddle-point dynamics in (6.33) is used to find the saddle-point.

6.3.1 Example 1: quadratic program with equality constraints

Consider (6.28) with x ∈ R10 and A ∈ R5×10. For simplicity, consider a diagonal matrix
Q with positive diagonal elements and a full row-rank matrix A, so that all the conditions
of Corollary 6.2 are satisfied. The values of Q,A, b, c are chosen through random matrix
generator in MATLAB. The following parameters are used for FxTS-SP dynamics in (6.33):
c1 = 10, c2 = 10, p1 = 2.2, p2 = 1.8. With these parameters, the upper bound on the
time of convergence in Corollary 6.2 satisfies Teq2 = TSP ≤ 1.0025.
Figure 6.1 compares the performance of the proposed method relative to Newton’s method
for saddle-point dynamics, i.e., (6.33) with c2 = 0 and p2 = 2. The dotted lines illustrate the
evolution of Newton’s method, while solid lines illustrate that of FxTS-SP dynamics (6.33).
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Figure 6.1: The norm ‖x(t) − x?‖ with time for various initial conditions for nominal
saddle-point dynamics (p1 = 2, c2 = 0) and FxTS saddle-point dynamics (p1 = 2.2, p2 =
1.8).

The vertical black dashed black line corresponds to TSP = 1.0025 sec. Figure 6.1 shows
the variation of ‖x(t)− x?‖ with time for various initial conditions. The proposed scheme
converges to the error of magnitude less than 10−8 within TSP sec, while the nominal
scheme takes a longer time (and thus, more number of iterations) to achieve the same. It can
also be seen that the convergence time is always bounded by TSP for all initial conditions
for the proposed method.

6.3.2 Example 2: min-max problem

A numerical example for the min-max problem max
z

min
x
F (x, z) is considered, where the

function F is defined as:

F (x, z) = (‖x‖ − 1)4 − ‖z‖2‖x‖2, (6.39)

with x ∈ Rn and z ∈ Rm. The dimensions are chosen as n = 3 and m = 1. The set of
optimal points (x, z) satisfy ‖x‖ = 1, ‖z‖ = 0 [89], i.e., the optimal point is not unique in
this case. The parameters c1, c2 are chosen as c1 = c2 = 10.

The first case study considers a varying range of initial conditions (x(0), z(0)) and
constant values of the parameters p1, p2, chosen as p1 = 2.2 and p2 = 1.8. Figure 6.2
shows the convergence time (up to an error of ‖∇F (x, z)‖ ≤ 10−15) for various initial
conditions x(0), z(0). The results illustrate that the time of convergence does not depend
upon the initial distance from the saddle point. Also, the actual time of convergence Tc is
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lower than the upper bound TSP .
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Figure 6.2: Time of convergence Tc with norm of the initial error ‖e(0)‖ , ‖[(x(0) −
x?)T (z(0)− z?)T ]T‖.
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Figure 6.3: The norm of the gradient, ‖∇F (x(t), z(t))‖, with time for various initial condi-
tions for nominal saddle-point dynamics (p1 = 2, c2 = 0) and FxTS saddle-point dynamics
(p1 = 2.2, p2 = 1.8).

Figure 6.3 illustrates the convergence of norm of the gradient, ‖∇F (x, z)‖, to zero in
fixed time for various initial conditions. Figure 6.4 and 6.5 plot the norm of the error x−x?

and z− z?, respectively, for various initial conditions. Solid lines show the performance of
the proposed method (6.33), and dotted lines show the performance of Newton’s method
(c2 = 0, p2 = 2) when solving for saddle-point dynamics.
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Figure 6.4: The norm ‖x− x?‖ with time for various initial conditions for nominal saddle-
point dynamics (p1 = 2, c2 = 0) and FxTS saddle-point dynamics (p1 = 2.2, p2 = 1.8).
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Figure 6.5: The norm ‖z − z?‖ with time for various initial conditions for nominal saddle-
point dynamics (p1 = 2, c2 = 0) and FxTS saddle-point dynamics (p1 = 2.2, p2 = 1.8).

The second case study considers that the parameters p1, p2 are varied in the ranges
[2, 2.2] and [1.8, 2], respectively. Figure 6.6 shows the norm of the gradient, ‖∇F (x, z)‖,
with time. As can be seen in the Figure 6.6, the case when p1 = p2 = 2 has linear
convergence (straight line on the log plot), while for p1 > 2 and p2 < 2, the convergence is
super-linear. It can also be observed that as p1 increases and p2 decreases, the convergence
becomes faster and the time of convergence becomes smaller.

The implementation of the proposed method in numerical studies is done using Eu-
ler integration with constant step size. Figure 6.7 shows the performance of the proposed
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Figure 6.6: The norm of the gradient, ‖∇F (x(t), z(t))‖, with time for various p1, p2.

method for various values of discretization steps between 10−2 and 10−6. As the figure sug-
gests, the discretization step does not affect the convergence performance of the proposed
method.
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Figure 6.7: The norm of the gradient, ‖∇F (x(t), z(t))‖, with time for various dt.

Finally, the performance of the proposed method is compared with the performance of
the rescaled-GF (6.5). More specifically, the considered rescaled-GF scheme is

[
ẋ

ż

]
=


−c1 (∇2F (x, z))

−1 ∇F (x,z)

‖∇F (x,z)‖
p1−2
p1−1

; ∇F (x, z) 6= 0,

0; ∇F (x, z) = 0.

. (6.40)

where 0 < θ < 1. Since the objective function in (6.39) is only strictly convex-concave and
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not strongly convex-concave, (6.35) cannot be used, but (6.33) can be used. The dynamical
system (6.40) is a Newton’s modification of rescaled-GF (6.5) discussed in [10], where
Hessian is used so that (6.40) can be used for a strictly convex-concave function.
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Figure 6.8: The norm of gradient, ‖∇F (x(t), z(t))‖, with time for various initial conditions
for the proposed scheme and the rescaled gradient flow scheme.

Figure 6.8 plots the norm of the gradient for various initial conditions, where p1 =

2.2, p2 = 1.8, c1 = c2 = 10 for (6.33), p1 = 2.2, c1 = 10 for (6.40). It can be seen
that the convergence of the rescaled gradient flow scheme (6.40) is super-linear (finite-time
convergence), but slower than the proposed scheme. It is evident from Figure 6.8 that the
time of convergence for (6.40) grows as ‖x(0)− x?‖ increases, while that of the proposed
scheme (6.33) remains bounded.

Figure 6.9: The wall-clock time for 1000 trials for the proposed scheme, rescaled gradient
flow based scheme.

Figure 6.9 depicts the wall-clock time (i.e., actual run-time) for the two aforementioned
schemes. The results are presented for 1000 trials, where the simulations are run until the
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norm of the gradient, ‖∇F (x(t), z(t))‖, drops below 10−10. The red dot represents the
mean value for the 1000 trials while the vertical lines represent the minimum and maximum
values of the respective schemes. It is clear from the figures the proposed scheme takes a
smaller computation time than the accelerated scheme while giving a better convergence
rate. Note that the wall-clock time, which corresponds to the actual computational time,
is different from the convergence time TSP , which, in the discrete setting, corresponds to
the number of steps required for the convergence per the relation N = TSP × 105. It is
evident that the proposed method performs better than the nominal Newton’s method, both
in terms of the number of iterations required for converging to a small neighborhood of the
optimal solution and wall-clock time.

6.4 Discussion

While optimization methods in continuous-time are important and have major theoretical
relevance in general, discrete-time algorithms are of more practical use. It is an open
question as to how one can discretize the dynamics (6.8) and other schemes presented in
this work so that the fixed-time convergence guarantees are provably preserved. While in
all the numerical examples the performance of the discretized implementation is at par with
the theoretical results, i.e., the convergence is super-linear and the time of convergence is
upper bounded by the theoretically established upper bound, the theoretical investigation
on how the convergence properties are preserved after discretization is an open problem,
and an active field of research (see [12, 13]).

In [12], the authors study a particular class of homogeneous systems and show that there
exists a consistent discretization scheme that preserves the finite-time convergence. They
extend their results to practically FxTS systems in [13], where they show that the trajec-
tories of the discretized system reach an arbitrarily small neighborhood of the equilibrium
point in a fixed time, independent of the initial condition. Given that the provided numer-
ical examples suggest that the proposed method works efficiently even with constant-step
Euler integration, the questions that naturally arise are: (i) how could the theory of consis-
tent discretization be extended to a more general class of FTS and FxTS systems, and (ii)
how this theory could be used for the methods developed in this dissertation so that exact
convergence of iterative discrete-time optimization schemes for the proposed methods can
be guaranteed in a finite or fixed number of steps. These topics are beyond the scope of the
current work and are left open for future research.
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6.5 Conclusions

This chapter presented modified GF schemes that provide convergence of the solution to
the optimal point in a fixed time, under various assumptions such as strict convexity and
gradient dominance, which is a relaxation of strong convexity. A modified scheme for
the saddle-point dynamics is proposed so that the min-max problem can be solved in a
fixed time. Though all the methods are presented for continuous-time optimization, nu-
merical examples illustrate that the proposed schemes have super-linear convergence in the
discretized implementation as well, that the time of convergence satisfies the theoretical
bound, and that the performance of the proposed method is better than the one of com-
monly used algorithms, such as Newton’s method and the rescaled gradient-based method.
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CHAPTER 7

Conclusions and Future Work

7.1 Conclusions

In conclusion, this dissertation advances the theory of finite- and fixed-time stability and
explores their applications in the field of robust control design and convex optimization
problems.

Chapter 2 studied the problem of distributed control design for agents modeled via
double-integrator dynamics moving in an environment consisting of wind disturbances and
dynamic obstacles. An FTS controller that uses feedback derived from an FTS observer is
designed in a distributed manner with guarantees on provable inter-agent safety, collision
avoidance with dynamic obstacles, and finite-time convergence to their respective goal lo-
cations. Chapter 3 presented two new results on FxTS by introducing a new term in the
Lyapunov conditions and discussed how the newly introduced term explains the relation-
ship between time of convergence, the domain of attraction, and input constraints. The
new FxTS results also characterize robustness against a class of disturbances. In particular,
it is shown that under the effect of additive, vanishing disturbances, fixed-time conver-
gence is preserved and that under the effect of additive non-vanishing disturbances, there
exists a neighborhood of the equilibrium point which is FxTS. Utilizing the new Lyapunov
conditions, Chapter 4 introduced the notion of FxT-CLF and presented a combination of
FxT-CLF and CBF in a QP formulation with guaranteed feasibility to compute a control
input that solves a multi-task problem under input constraints. Continuity of the solution of
the proposed QP is discussed so that the resulting closed-loop dynamics are well-defined. A
robust control synthesis framework is also presented using the notions of robust FxT-CLFs
and robust CBFs in a QP under input constraints.

Chapter 5 studied FTS of a class of hybrid and switched systems via multiple Lyapunov
functions. A finite-time stabilizing switching law is designed, and an FTS output-feedback
based on an FTS observer is developed for a class of switched linear systems when only one
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of the modes is both observable and controllable, demonstrating that the proposed method
can incorporate unstable modes. Finally, exploring the applications of FxTS, Chapter 6
proposed FxTS gradient flows to solve convex optimization problems within a fixed time.
Numerical case studies show that the proposed methods have super-linear convergence
when implemented using a simple Euler discretization scheme.

7.2 Future work

7.2.1 Multi-agent control

An important issue in multi-agent control which is still largely an open problem is dead-
lock resolution/mitigation. The problem of deadlock occurs in a multi-agent scenario when
the relative geometry of the agents and their respective goal locations induce local min-
ima, away from their desired equilibrium points. Thus, a deadlock can be thought of
as an undesirable equilibrium point. Deadlock mitigation is explored by excluding a set
with Lebesgue-measure zero when choosing the initial conditions in [160, 161], and dead-
lock resolution is addressed by choosing an appropriate direction of motion for each agent
in [107]. More recently, the authors in [138] study the problem of deadlock mitigation when
the control input is defined as the solution to an optimization problem. They characterize
various types of deadlocks depending upon the value of the slack variables in the optimiza-
tion problem and discuss methods of resolving certain deadlock scenarios. Very recently,
the authors in [162] show that a QP formulation consisting of CLF and CBF can induce
undesirable equilibrium points, and discuss ways to mitigate such scenarios by reshaping
the CLF. The author would like to study similar ideas, and explore other approaches, in
a multi-agent setting so that deadlock can be mitigated by appropriately choosing the ini-
tial conditions, and for the case when it is not possible to choose the initial conditions
arbitrarily, then deadlocks can be resolved effectively.

7.2.2 Forward invariance

One of the biggest assumptions used in the safe control design using CBFs is the knowl-
edge of a viability domain, a set that can be made forward invariant (see Assumption 4.2).
One way of computing such a viability domain is by computing the backward reachability
set of the underlying dynamical system [163]. Various tools have been developed for the
computation of the exact reachable sets (see [164, 165]), which tend to be computation-
ally heavy, or an overapproximation of the reachability set (see [166–168]), however, they
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tend to be very conservative. More recently, learning-based methods have attracted much
attention in computing either the CBF (or, equivalently, the safe set) [169, 170] or a safe
controller [171]. The author would like to study the utility of the proposed QP framework
in the development of online learning tools that can compute the viability domain while
maintaining safety.

7.2.3 Discretization of FxTS dynamical systems

One of the future research directions is to investigate discretization schemes for FTS and
FxTS systems that can preserve the time of convergence, and translate FTS and FxTS to
convergence in a finite and fixed number of steps, respectively. Recent articles [11, 172]
show that if FTS dynamical systems are discretized using common discretization schemes
such as Euler discretization or Runge-Kutta discretization with a small enough discretiza-
tion step, then the discretized trajectories remain close enough to the continuous trajecto-
ries, hence, showing convergence to an arbitrarily small neighborhood of the optimal point
in a finite number of steps. These works use the ideas from the notion of hybrid systems
simulators as defined in [173] to show that the trajectories of the continuous-time gradi-
ent flow system and that of the discretized dynamics can be made to remain arbitrarily
close and utilize the theory of FTS to show that the trajectories of the discretized dynam-
ics converge to an arbitrarily small neighborhood of the equilibrium point within a finite
number of steps. The author would like to explore this idea for FxTS gradient flows in par-
ticular, and dynamical systems exhibiting FxTS in general so that similar results showing
the convergence of the trajectories of the underlying discretized dynamics to an arbitrarily
small neighborhood of the respective equilibrium point within fixed number of steps can be
obtained.

On similar lines, as discussed in Discussion 4.5, it is important to study practical con-
trol design techniques such as zero-order hold control or sampled-data control, using QPs
so that they are implementable on real-world systems. This motivates the future work of
studying control design for discretized continuous-time dynamical system via a zero-order
hold controller so that 1) the safety guarantees in continuous time can be replicated in
practice through the zero-order hold controller, and 2) theoretical guarantees of FxT con-
vergence can translate to a fixed number of steps convergence.

149



7.3 Additional related work

In addition to the main work presented in this dissertation, the author has worked on multi-
agent control design for constrained dynamical systems modeled via unicycle dynamics to
model the motion of fixed-wing aircraft in [160, 161, 174]. The work in [160] is done in
collaboration with Dr. Dongkun Han and presents a robust distributed coordination proto-
col that achieves the generation of collision-free trajectories for multiple unicycle agents in
the presence of stochastic uncertainties. Building upon [160], the work in [161] considers
time-varying disturbances and uncertainties to model wind disturbance that can vary both
in space and time. In [174], a novel hybrid control protocol for de-conflicting multiple
vehicles with constraints on control inputs is proposed. Turning rate and linear speed con-
straints are considered to represent fixed-wing or car-like vehicles. A set of state-feedback
controllers along with a state-dependent switching logic are synthesized in a hybrid system
to generate collision-free trajectories that converge to the desired destinations.

Another approach of driving closed-loop trajectories to a goal set within a user-defined
time is explored in [175] in collaboration with Dr. Ehsan Arabi, where a time-transformation
technique is used for a prescribed-time convergence guarantee, and closed-form controllers
are designed using a form that is inspired by Sontag’s formula. More recently, relaxing the
requirement of continuity of the closed-loop dynamics, the author has done preliminary
work in exploring the notion of strong invariance using tools from the nonsmooth analysis
in [134] in collaboration with James Usevitch. Sufficient conditions under which the opti-
mization problem is feasible are presented and it is shown that all feasible solutions of the
considered optimization problem which is measurable render the multiple safe sets forward
invariant.

The author, in collaboration with Dr. Mayank Baranwal, extended the results on FxTS
in continuous-time optimization for the problem of distributed optimization in [176], eco-
nomic dispatch in [177] and sparse recovery (SR) in [178]. The work in [176] presents a
novel distributed nonlinear protocol for minimizing the sum of convex objective functions
in a fixed time under time-varying communication topology. In a distributed setting, each
node in the network has access only to its private objective function, while the exchange
of local information, such as state and gradient values, is permitted between the immediate
neighbors. The work in [177] proposes a fixed-time convergent, fully distributed economic
dispatch algorithm for scheduling optimal power generation among a set of distributed en-
ergy resources. The proposed algorithm incorporates both load balance and generation ca-
pacity constraints. Finally, [178] develops a novel Continuous-time Accelerated Proximal
Point Algorithm (CAPPA) for `1-minimization problems with provable fixed-time conver-
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gence guarantees. CAPPA betters the state-of-the-art methods such as Locally Competi-
tive Algorithm (LCA) and finite-time LCA (recently developed continuous-time dynamical
systems for solving SR problems) by exhibiting provable fixed-time convergence to the op-
timal solution. Consequently, CAPPA is better suited for the fast and efficient handling of
SR problems.

Finally, the author would like to mention their most recent work on the topic of QP
based control synthesis. One of the drawbacks of using myopic QP based approach for
control synthesis, as argued in [179], is that they are susceptible to infeasibility, i.e., there
is no guarantee that the underlying QP will remain feasible for all future times. To circum-
vent this issue, combining a high-level planner with a low-level controller has become a
popular approach [180]. The author explored such a multi-rate control framework in [181]
in collaboration with Ryan K. Cosner, Dr. Ugo Rosoliya, and Dr. Aaron D. Ames, where
the notion of periodic safety is studied, requiring the system to evolve in a safe set at all
times and visit a subset of this safe set periodically. For high-level planning, a model
predictive controller is used to generate a reference trajectory. Then, at a low-level, the no-
tions of the FxT-CLF and CBF are combined to introduce the concept of fixed-time barrier
functions, and a QP based controller is proposed to track the reference trajectory.

As mentioned in the previous section, from a practical point of view, it is important to
study safety guarantees with zero-order hold controllers. The author explored this direction
in [182] in collaboration with Joseph Breeden, where various conditions for guaranteeing
forward invariance of safe sets are studied. Two metrics are proposed to compare the
conservatism of the proposed set-invariance conditions and it is shown that the proposed
results are less conservative as compared to the prior work.
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APPENDIX A

Proofs from Chapter 2

A.1 Proof of Lemma 2.1

Proof. It is sufficient to prove that if displaced along γi when Fi = 0, the resulting field at
the displaced location drives the agent away from the point of deadlock. More specifically,
if ri is the position of the agent i such that Fi(ri) = 0, then after displacement δri along
the direction γi, it is sufficient to show that Fi(ri + δri) 6= 0, and that ∠Fi(ri + δri) = γi,
which results in agent i moving away from ri and do not return to the same point.

Figure A.1: A scenario with 6 agents located such that their resultant vector fields are 0.

Let us consider a scenario with K agents, where 2 ≤ K ≤ N , such that for each agent
i among these K agents, located at ri, the resulting vector fields Fi(ri) = 0; an example is
shown in Figure A.1 where blue arrows represent the vectors rj − ri for each j ∈ Ni and
red arrow represents the vector rgi − ri. It can be assumed that for all j ∈ Ni, Fj = 0. If
this is not true for some j, then this agent would have a non-zero vector field along which
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it moves with a non-zero speed and, hence, it would either go out of the sensing region of
the agent i in a finite time, or would reach a location rj such that Fj(rj) = 0.

The effect of the rest of the K − 1 agents on the agent i is denoted by a cumulative
repulsive field Frep, so that it holds that:

Fi = Frep +
∏
j

(1− σij)Fgi = 0. (A.1)

Let σ̄ =
∏
j

(1 − σij). As per the Figure A.1, there is at least one agent i such that (rgi −

ri)
T (rj − ri) ≥ 0 for all j ∈ Ni and at least one l ∈ Ni such that (rgi− ri)

T (rl− ri) > 0.
This implies that FT

giFil < 0 for at least one l ∈ Ni (or, equivalently, FT
giFrep < 0), since

Fil acts along −(rl − ri). Using this, from (A.1), it holds that

FT
giFi = FT

giFrep + σ̄‖Fgi‖2 = 0. (A.2)

Since FT
giFrep < 0, for (A.2) to hold, it is required that σ̄ > 0. Define an auxiliary agent o

located at a location ro to model the effect of the accumulated repulsive forces on the agent
i. Let the repulsive field of agent o on agent i be given by Fio = Frep

σ̄
and ro is such that it

satisfies ri−ro
‖ri−ro‖ = Frep

σ̄
, so that it holds that

Fi(ri) = Fio + Fgi = 0. (A.3)

Figure A.2: Motion of the agents along γ0
i .

The equation (A.3) depicts a two-agent scenario consisting of agents i and o, such that
Fl(rl) = 0 for l ∈ {i, o} as shown in Figure A.2, where gray, dotted arrows show the line
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joining an agent and its goal location and green arrows show the instantaneous direction
of motion of the agents along their respective directions given by γ0

i . The agent shown in
orange is the virtual agent o located at ro, with its resultant direction of motion given by
the orange arrow. Since the direction of the motion of the agent i along γ0

i is perpendicular
to the vector ri − rgi, denote it by the unit vector (ri − rgi)

⊥. Hence, the displacement
vector for agent i at the location ri is given by δri = δ0(ri − rgi)

⊥, where δ0 > 0 denotes
the infinitesimal length. Note that the resultant motion of the auxiliary agent o may or may
not be perpendicular to ri− rgi, since it would depend upon the locations of the rest of the
K − 1 agents. Denote by δro the displacement of the auxiliary agent o, so that it satisfies:

δro = −δ1(ri − rgi)
⊥ + δ2(ri − rgi)

‖, (A.4)

with δ1 > 0 since the motion of the agent o would be in the opposite direction as agent i
along the vector (ri−rgi)

⊥ and δ2 can be either positive or negative since its motion can be
in the either directions along the vector (ri − rgi)

‖ where (ri − rgi)
‖ denotes a unit vector

along (ri− rgi),. Using this, the vector field Fi after this infinitesimal displacement can be
expressed as:

Fi(ri + δri, ro + δro) =Fio(ri + δri, ro + δro) + Fgi(ri + δri)

=
(
Fio(ri, ro) +

∂Fio(ri, ro)

∂ri
δri +

∂Fio(ri, ro)

∂ro
δro

)
+
(
Fgi(ri) +

∂Fgi(ri)

∂ri
δri

)
(A.3)
=
(∂Fio(ri, ro)

∂ri
δri +

∂Fio(ri, ro)

∂ro
δro

)
+
(∂Fgi(ri)

∂ri
δri

)
(A.4)
=
(∂Fio(ri, ro)

∂ri
δ0(ri − rgi)

⊥ +
(∂Fgi(ri)

∂ri
δ0(ri − rgi)

⊥
)

+
∂Fio(ri, ro)

∂ro
(−δ1(ri − rgi)

⊥ + δ2(ri − rgi)
‖)
)

(2.6),(2.7)
=

(Id2
io − roir

T
oi

d3
io

δ0(ri − rgi)
⊥ −

(−Id2
gi + (ri − rgi)(ri − rgi)

T

d3
gi

δ0(ri − rgi)
⊥
)

+
Id2
io − roir

T
oi

d3
io

(−δ1(ri − rgi)
⊥ + δ2(ri − rgi)

‖)
)
,

where dgi = ‖ri − rgi‖, roi = ri − ro and I ∈ R2×2 is the identity matrix. Note that roi is
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also along (ri−rgi)
‖ and hence, it is perpendicular to (ri−rgi)

⊥. Using this, it holds that:

Fi(ri + δri, ro + δro) =
(δ0(ri − rgi)

⊥

dio
+
δ1(ri − rgi)

⊥

dio
− Id2

io − roir
T
oi

d3
io

(δ2(ri − rgi)
‖)
)

− δ0(ri − rgi)
⊥

dgi

=
(δ0(ri − rgi)

⊥

dio
+
δ1(ri − rgi)

⊥

dio
− δ0(ri − rgi)

⊥

dgi

− Id2
io − roir

T
oi

d3
io

(δ2(ri − rgi)
‖)
)
.

Also note that (Id2
io− roir

T
oi)δ2(ri− rgi)

‖ = δ2d
2
io(ri− rgi)

‖− δ2roir
T
oi(ri− rgi)

‖ = 0 for
all roi. Hence, for Fi(ri + δri, ro + δro) = 0 to hold, it is required that:

δ0 + δ1

dio
=

δ0

dgi
.

Equivalently, for Fi(ri + δri, ro + δro) = 0 to hold, it is required that:

dgi =
δ0

δ0 + δ1

dio < dio. (A.5)

Since the agent o is in the sensing radius of the agent i, it follows that dio ≤ Rc, and using
(A.5), it follows that dgi < dio ≤ Rc. Using the same set of arguments as above for some
other agent j from the rest of the K − 1 agents, one can obtain dgj < djo′ ≤ Rc, where o′

is the auxiliary agent corresponding to agent j. Now, using the above bounds and the fact
that j ∈ Ni, ‖rgi − rgj‖ can be bounded as

‖rgi − rgj‖ ≤ ‖rgi − ri‖+ ‖rgj − rj‖+ ‖ri − rj‖ = dgi + dgj + ‖r − rj‖ < 3Rc.

It follows that ‖rgi − rgj‖ < 3Rc, which violates Assumption 2.3. Hence, if the goal
locations are chosen as per Assumption 2.3, the condition dgi = δ0

δ0+δ1
dio would never hold,

and hence, it holds that Fi(ri+δri, ro+δro) 6= 0. Furthermore, note that from Assumption
2.3, there is at least one agent i out of the K agents such that dgi > dij , which implies that
Fi(ri + δri, ro + δro) is along (ri − rgi)

⊥, making agent i move away from the position
ri for which Fi(ri) = 0, which completes the proof.

155



A.2 Proof of Theorem 2.5

Proof. Before the inter-agent safety is shown, note that the following inequality holds for
all t ≥ 0 and for all i 6= j:

d̂ij = ‖r̂i − rijs‖ ≤ ‖r̂i − ri‖+ ‖rijs − rj‖+ ‖ri − rj‖ ≤ δe + εs + ‖ri − rj‖,

which means that if d̂ij = ‖r̂i − rijs‖ ≥ dm + εs + δe, then dij = ‖ri − rj‖ ≥ dm. Hence,
it is essential to prove that d̂ij ≥ dm + εs + δe holds for all time t ≥ 0. From Assumption
2.3, it holds that the inter-agent distance dij(0) ≥ dm which means that all the agents start
from a safe distance. Let j be some agent in the sensing region of the agent i at some time
instant t ≥ 0, i.e., d̂ij(t) ≤ Rc. Denote the steady-state values of the r̂i and ûi as r̂ssi and
ûssi , respectively. Note that the steady-state velocity satisfy ûssi = uid. Consider the time
derivative of the estimated distance, which in the steady state (i.e. when ûi = ûid and
r̂i = r̂ssi ) reads:

˙̂
dij =

ûid (r̂ssi − rijs)
T ûidn − (r̂ssi − rijs)

Tuijs

d̂ssij
. (A.6)

The worst-case neighbor is the agent j ∈ {Ni | Ĵi < 0} towards whom the rate of
change of the estimated distance d̂ij given by (A.6), due to the motion of agent i, is maxi-
mum. More specifically, the term Ĵi < 0 describes the set of agents j ∈ Ni towards whom
agent i is moving in its current direction (see [22] for more details). Consider the worst
case, i.e., d̂ssij = ‖r̂ssi − rijs‖ = ds . The commanded speed ûid in this case is equal to ûis|j
which is given as per (2.25). Plugging this into (A.6), it follows that:

˙̂
dij =

(1− εi)ueds + (εi − 1)(r̂i − rijs)
Tuijs

ds
(A.7)

Note that

(r̂i − rijs)
Tuijs = (r̂i − r̂j)

Tuijs + (r̂j − r̂js)
Tuijs

= (r̂i − r̂j)
T ûj + (r̂i − r̂j)

T (uijs − ûj) + (r̂j − r̂js)
Tuijs.

Using the fact that either the agent j is moving away from the agent i at the first place or
is following the vector field that points away from agent i, it holds that (r̂i − r̂j)

T ûj ≤ 0

(where ûj is the estimated velocity of agent j, available only to agent j). Furthermore,
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using the bounds on the estimation and sensing errors, it follows that

(r̂i − r̂j)
T ûj + (r̂i − r̂j)

T (uijs − ûj) + (r̂j − r̂js)
Tuijs ≤ (ds + εs)(δe + εs) + εs‖uijs‖.

Choose ue as

ue :=
(ds + εs)(δe + εs) + εs‖uijs‖

ds
(A.8)

Now, from (A.7) and choice of ue as per (A.8), it holds that

(1− εi)ueds + (εi − 1)(r̂i − rijs)
Tuijs ≥ (1− εi)ueds − (1− εi)

(
(ds + εs)(δe + εs) + εs‖uijs‖

)
≥ 0,

which implies that the steady-state estimated inter-agent distance d̂ssij can not become less
than ds. Now, to account for the transient period, consider the time derivative of the velocity
error ûide, which reads

u̇ide = ˙̂ui − ˙̂uid = ai + ki4rie‖rie‖α2−1 − ˙̂uid (A.9)

Substituting (2.27) into (A.9) yields

u̇ide = −λi(ûi − ûid)‖ûi − ûid‖β2−1 = −λiuide‖uide‖β2−1, (A.10)

where λi > 0. From Theorem 2.3, it follows that the origin is a finite-time stable equilib-
rium of the system (A.10). Integrating equation (A.10) furthermore yields

uide(t) = uide(0)
(

1− λit(1− β2)

‖uide(0)‖1−β2

) 1
1−β2 = c1(1− c2t)

ξ (A.11)

where, uide(0) is the initial velocity error, c1 = uide(0), c2 = λi(1−β2)

‖uide(0)‖1−β2 , and ξ = 1
1−β2 .

Note that uide(t) = 0 for all t ≥ t∗ = 1
c2

. Hence, after this instant, the error in position
would not change. By integrating (A.11), the transient position error ride(t) can be obtained
as

ride(t) = ride(0) +
c1

c2(1 + ξ)
(1− (1− c2t)

1+ξ) (A.12)
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With ride(0) = 0, the maximum position error rieMax, attained at t∗ = 1
c2

, has the form

rieMax = ride

( 1

c2

)
=

c1

c2(1 + ξ)
=

uide(0)‖uide(0)‖1−β2

λi(2− β2)
,

where uide(0) = ûi(0)− uid(0)uidn(0) + wav + ki3rie(0)‖rie(0)‖α1−1. Define re as

re := max
i
‖rieMax‖. (A.13)

Note that from the steady-state analysis, it holds that ‖r̂ssi − r̂js‖ ≥ ds. Using this, it
follows that :

d̂ij = ‖r̂i − r̂js‖ ≥ ‖r̂ssi − r̂js‖ − ‖r̂i − r̂ssi ‖ ≥ ds − re

Thus, with ds = dm + δe + εs + re, it holds that d̂ij ≥ dm + δe + εs and hence, dij ≥ dm,
i.e., the resulting agent trajectories are collision free.
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APPENDIX B

Proofs from Chapter 3

B.1 Proof of Lemma 3.1

Proof. It holds that

I =

∫ 0

V0

dV

−α1V γ1 − α2V γ2 + δ1V
=

∫ 0

V0

dV

V (−α1V
1
µ − α2V

−1
µ + δ1)

.

Substitute m = V
1
µ , so that dm = 1

µ
V

1
µ
−1dV , which implies that 1

µ
dV
V

= dm

V
1
µ

= dm
m

. Using
this, it follows that

I = µ

∫ 0

V
1
µ

0

dm

m(−α1m− α2
1
m

+ δ1)
= µ

∫ 0

V
1
µ

0

dm

(−α1m2 − α2 + δ1m)
.

Now, consider the three cases, namely, δ1 < 2
√
α1α2, δ1 = 2

√
α1α2 and δ1 > 2

√
α1α2

separately. First, consider the cases when δ1 < 2
√
α1α2. In the case, can be I re-written as

I = µ

∫ 0

V
1
µ

0

dm

−α1

(
(m− δ1

2α1
)2 +

4α1α2−δ21
4α2

1

)
Evaluate the integral to obtain

I =
µ

−α1k1

(tan−1 k2 − tan−1 k3),

where k1 =
√

4α1α2−δ21
4α2

1
, k2 = − δ1√

4α1α2−δ21
and k3 =

2α1V
1
µ

0 −δ1√
4α1α2−δ21

. Hence, it holds that

I =
µ

α1k1

(tan−1 k3 − tan−1 k2) ≤ µ

α1k1

(
π

2
− tan−1 k2),
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since tan−1(·) ≤ π
2
, which completes the proof of part (i).

Next, the case when δ1 > 2
√
α1α2 is considered. In this case, the roots of γ(m) = 0 are

real. Let a ≤ b be the such that α1m
2 − δ1m+ α2 = α1(m− a)(m− b). This substitution

allows to factorize the denominator to evaluate the integral I . The expressions for a, b are
given as

a =
δ1 −

√
δ2

1 − 4α1α2

2α1

, b =
δ1 +

√
δ2

1 − 4α1α2

2α1

.

Note that since ab = α2

α1
> 0 and a + b = δ1

α1
, it holds that 0 < a ≤ b. Since V

1
µ

0 ≤

k
δ1−
√
δ21−4α1α2

2α1
= ka where k < 1, it holds that 1

−α1V γ1−α2V γ2+δ1V
< 0 for all V ≤ V0, i.e.,

the denominator δ1V −α1V
γ1 +α2V

γ2 does not vanish for V ∈ [0, V0]. Thus, it holds that

I = µ

∫ 0

V
1
µ

0

dm

(−α1m2 − α2 + δ1m)
= − µ

α1

∫ 0

V
1
µ

0

dm

(m− a)(m− b)

= − µ

α1(a− b)

(∫ 0

V
1
µ

0

dm

m− a
−
∫ 0

V
1
µ

0

dm

m− b

)
.

Evaluate the integrals to obtain

I =
−µ

α1(a− b)

log

 a

|V
1
µ

0 − a|

− log

 b

|V
1
µ

0 − b|


=

µ

α1(a− b)

log

(
b

a

)
+ log

 |V 1
µ

0 − a|

|V
1
µ

0 − b|


≤ µ

α1(b− a)

(
log

(
b− ka
a(1− k)

)
− log

(
b

a

))
,

Finally, for the case when δ1 = 2
√
α1α2, it holds that a = b = −δ1

2α1
=
√

α2

α1
, and thus,

I = − µ

α1

∫ 0

V
1
µ

0

dm

(m− a)(m− b)
= − µ

α1

∫ 0

V
1
µ

0

dm

(m− a)2
.

It is easy to see that for V
1
µ

0 ≤ ka < a = δ1
2α1

=
√

α2

α1
, the integral I evaluates to a finite

160



value. Thus, for all V
1
µ

0 ≤ k
√

α2

α1
<
√

α2

α1
for 0 < k < 1, it holds that

I =
µ

α1

(
− 1

a
− 1

−a+ V
1
µ

0

)
≤ µ

α1

(
− 1

a
− 1

−a+ k
√

α2

α1

)
=

µ

α1

√
α1

α2

(
− 1− 1

−1 + k

)
=

µ
√
α1α2

( k

1− k

)
.

This completes the proof of part (ii).
For part (iii), let Ṽ = (k̃ δ1+

√
δ1−4α1α2

2α1
)µ for any k̃ > 1. It follows that for all V0 ≥ V ≥

Ṽ the integrand in (3.10) is negative, and thus, it holds that

∫ Ṽ

V0

dV

−α1V γ1 − α2V γ2 + δ1V
=

µ

α1(b− a)

log

 |Ṽ 1
µ − a|

|V
1
µ

0 − a|

− log

 |Ṽ 1
µ − b|

|V
1
µ

0 − b|


=

µ

α1(b− a)

log

(
|Ṽ

1
µ − a|

|Ṽ
1
µ − b|

)
+ log

 |V 1
µ

0 − b|

|V
1
µ

0 − a|


≤ µ

α1(b− a)
log
|Ṽ

1
µ − a|

|Ṽ
1
µ − b|

=
µ

α1(b− a)
log

(
k̃b− a
k̃b− b

)
,

since Ṽ = (k̃b)µ and log

(
|V

1
µ

0 −b|

|V
1
µ

0 −a|

)
≤ 0 as a ≤ b.

B.2 Proof of Lemma 3.3

Proof. For 0 < δ̄1 < 2
√
α1α2, note that −α1V

γ1 − α2V
γ2 + δ̄1 ≤ −2

√
α1α2V + δ̄1 ≤

−2
√
α1α2V̄ + δ̄1 < 0 for all V̄ > δ̄1

2
√
α1α2

. Since δ̄1
2
√
α1α2

< 1, one can choose V̄ = 1 so that
the integrand in (3.28) is negative for all V0 ≥ V̄ = 1. Using this, it holds that

I =

∫ 1

V0

dV

−α1V γ1 − α2V γ2 + δ̄1

.

Note that for V ≥ 1, it holds that δ̄1 ≤ δ̄1V . Using this, it holds that

I ≤
∫ 1

V0

dV

−α1V γ1 − α2V γ2 + δ̄1V
.
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Using Lemma 3.1, it can be shown that the first expression in the above inequality evaluates
to ∫ 1

V0

dV

−α1V γ1 − α2V γ2 + δ̄1V
≤ µ

α1k1

(π
2
− tan−1 k2

)
,

where k1 =
√

4α1α2−δ̄21
4α2

1
and k2 = 2α1−δ̄1√

4α1α2−δ̄21
which completes the proof of (i).

For the case when δ̄1 ≥ 2
√
α1α2, it holds that

V̄ = (k
δ̄1 +

√
δ̄1 − 4α1α2

2α1

)µ > (
δ̄1 +

√
δ̄1 − 4α1α2

2α1

)µ) > 1,

for any k > 1. Since V̄ > 1, it holds that−α1V
γ1−α2V

γ2 + δ̄1 ≤ −α1V
γ1−α2V

γ2 + δ̄1V

for all V ≥ V̄ , using which, the following inequality:

I ≤
∫ V̄

V0

dV

−α1V γ1 − α2V γ2 + δ̄1V
,

can be obtained. Since V̄ = Ṽ in part (iii) Lemma 3.1, it follows that I ≤ µ
α1(b−a)

log
(
kb−a
kb−b

)
for any k > 1.
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APPENDIX C

Proofs from Chapter 5

C.1 Proof of Theorem 5.1

Proof. First the stability of the origin under conditions (i)-(iii) is shown. Let x0 ∈ D,
where D is some open neighborhood of the origin. For all p ∈ Z+, it holds that

Vip(x(t+p )) = Vi0(x(t0)) +

p∑
k=1

(
Vik(x(t+k ))− Vik−1(x(t+k ))

)
+

p−1∑
k=0

(
Vik(x(t−k+1))− Vik(x(t+k ))

)
+

p−1∑
k=0

∑
tk+1∈Jik+1

(
Vik(x(t+k+1))− Vik(x(t−k+1))

)
≤ α0(‖x0‖) + α1(‖x0‖) + α2(‖x0‖) +Nfα3(‖x0‖)

= α(‖x0‖)

where α = α0 + α1 + α2 +Nfα3 with α0(r) = max
i∈Σf , ‖x‖≤r

Vi(x). Thus, it holds that

Vip(x(t+p )) ≤ α(‖x0‖), (C.1)

for all p ∈ Z+. Let di(c) = {x | Vi(x) ≤ c} denote the c sub-level set of the Lyapunov
function Vi, i ∈ Σf , and Bρ = {x | ‖x‖ ≤ ρ} denote a ball centered at the origin with
radius ρ ∈ R+. Define r(c) = inf{ρ ≥ 0 | di(c) ⊂ Bρ} as the radius of the smallest
ball centered at the origin that encloses the c sub-level sets di(c), for all i ∈ Σf . Figure
C.1 shows one such construction where the ball Bρ with ρ = ε, shown in dotted yellow,
encloses c sublevel sets of the Lyapunov functions Vi, whose boundaries are shown in solid
lines. Since the functions Vi are positive definite, the sub-level sets di(c) are bounded for
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Figure C.1: Construction of the ball Bρ.

small c > 0, and hence, the function r is invertible. The inverse function cε = r−1(ε) maps
the radius ε > 0 to the value cε such that the sub-level sets di(cε) are contained in Bε for all
i ∈ Σf . For any given ε > 0, choose δ such that α(δ) ≤ (r−1(ε)) > 0 so that (C.1) implies
that for ‖x0‖ ≤ δ, we have Vip(x(t+p )) ≤ α(‖x0‖) ≤ α(δ) ≤ r−1(ε), which implies that
‖x(t+p )‖ ≤ ε for all p ∈ Z+, i.e., the origin is LS.

Next, FTS of the origin is shown when conditions (iv)-(v) also hold. From (C.1), it
holds that

VF (x(tFi)) ≤ α(‖x0‖), (C.2)

for all i ∈ N. By definition, there is no discrete jump during T̄Fk , for all k ∈ N. Let M ∈ N
denote the total number of times the mode F is activated. From condition (iv), it holds that

V̇F (x(t)) ≤ −c(VF (x(t)))β. (C.3)

for all t ∈
⋃
T̄Fk ⊂ (

⋃
[tFk , tFk+1) \ JF ). Using the fact there is no discrete jump in T̄Fk ,

(C.3) can be integrated over the interval T̄Fk to obtain

|T̄Fk | ≤
V̄ 1−β
Fk

c(1− β)
−

V̄ 1−β
Fk+1

c(1− β)
,

164



where |T̄Fk | = t̄Fk+1 − t̄Fk . Thus, for any M ∈ N, it holds that

M∑
k=1

|T̄Fk | ≤
M∑
k=1

( V̄ 1−β
Fk

c(1− β)
−

V̄ 1−β
Fk+1

c(1− β)

)
=

V̄ 1−β
F1

c(1− β)
+

M−1∑
i=1

V̄ 1−β
Fi+1
− V̄ 1−β

Fi+1

c(1− β)
−

V̄ 1−β
FM+1

c(1− β)
.

Using (C.2), the following inequality can be obtained:

V̄ 1−β
F1

c(1− β)
≤ (α(‖x0‖))1−β

c(1− β)
. (C.4)

Define γ1(‖x0‖) , (α(‖x0‖))1−β
c(1−β)

and note that γ1 ∈ K. Now, let Fs = {q1, q2, . . . , qk}, 0 ≤
ql ≤ M, be the set of indices such that V̄Fi+1

≥ V̄Fi+1 for i ∈ Fs. For a ≥ b ≥ 0, it holds
that ar ≥ br for any r > 0. Hence, the following inequality holds:

M−1∑
i=1

V̄ 1−β
Fi+1
− V̄ 1−β

Fi+1

c(1− β)
≤
∑
i∈Fs

V̄ 1−β
Fi+1
− V̄ 1−β

Fi+1

c(1− β)
(C.5)

Using Lemma 5.1, the following inequality can be obtained:

∑
i∈Fs

V̄ 1−β
Fi+1
− V̄ 1−β

Fi+1

c(1− β)
≤
∑
i∈Fs

(V̄Fi+1
− V̄Fi+1)1−β

c(1− β)
. (C.6)

From the analysis in the first part of the proof, it holds that VF (x(t)) ≤ α(‖x0‖). Define
ᾱ = 2Mα so that the following holds:∑

i∈Q

(
V̄Fi+1

− V̄Fi+1

)
≤ ᾱ(‖x0‖). (C.7)

Hence, it holds that

M−1∑
i=1

V̄ 1−β
Fi+1
− V̄ 1−β

Fi+1

c(1− β)

(C.6)
≤

∑
i∈Fs

(
V̄Fi+1

− V̄Fi+1

)1−β

c(1− β)

≤
M−β

(∑
i∈Fs

V̄Fi+1
− V̄Fi+1

)1−β

c(1− β)
(C.7)
≤ M−β(ᾱ(‖x0‖))1−β

c(1− β)
, (C.8)

where the second inequality follows from [51, Lemma 3.4]. Define γ(‖x0‖) , γ1(‖x0‖) +
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M−β(ᾱ(‖x0‖))1−β
c(1−β)

and |T̄F | =
∑M

k=1 |T̄Fk | to obtain:

|T̄F |+
V̄ 1−β
FM+1

c(1− β)
≤

V̄ 1−β
F1

c(1− β)
+

M−1∑
i=1

V̄ 1−β
Fi+1
− V̄ 1−β

Fi+1

c(1− β)
≤ γ(‖x0‖).

Clearly, γ ∈ K. Now, with |T̄F | = γ(‖x0‖), the following holds:

|T̄F |+
V̄ 1−β
FM+1

c(1− β)
≤ γ(‖x0‖) = |T̄F |,

which implies that
V̄ 1−β
FM+1

c(1−β)
≤ 0. However, V̄F ≥ 0 since it is a positive definite function,

which further implies that V̄FM+1 = 0. Hence, if mode F is active for the accumulated time
|T̄F | = γ(‖x0‖) without any discrete jump in the system state, the value of the function VF
converges to 0 as t→ t̄FM+1, and thus, the origin of (5.1) is FTS.

Finally, if all the conditions (i)-(v) hold globally and the functions Vi are radially un-
bounded, it holds that α0 is also radially unbounded and α1, α2, α3, α4 ∈ K∞. Thus, it
follows that α(‖x0‖) <∞ and ᾱ(‖x0‖) <∞ for all ‖x0‖ <∞, and hence, γ(‖x0‖) <∞
for all ‖x0‖ <∞, which implies global FTS of the origin.
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barrier certificates with application to double integrator with input saturation and
zero-order hold,” in 2018 Annual American Control Conference, 2018, pp. 4664–
4669.

[141] T. Gurriet, P. Nilsson, A. Singletary, and A. D. Ames, “Realizable set invariance con-
ditions for cyber-physical systems,” in 2019 Annual American Control Conference,
2019, pp. 3642–3649.

[142] J. Usevitch and D. Panagou, “Adversarially resilient control barrier functions in
sampled-data systems,” in 2021 American Control Conference, May 2021.

177



[143] A. Singletary, Y. Chen, and A. D. Ames, “Control barrier functions for sampled-data
systems with input delays,” in 2020 59th IEEE Conference on Decision and Control,
2020, pp. 804–809.

[144] Y. Li and R. G. Sanfelice, “Results on finite time stability for a class of hybrid
systems,” in 2016 American Control Conference, July 2016, pp. 4263–4268.

[145] R. G. Sanfelice, R. Goebel, and A. R. Teel, “Invariance principles for hybrid systems
with connections to detectability and asymptotic stability,” IEEE Transactions on
Automatic Control, vol. 52, no. 12, pp. 2282–2297, 2007.

[146] H. Lin and P. J. Antsaklis, “Stability and stabilizability of switched linear systems:
a survey of recent results,” IEEE Transactions on Automatic control, vol. 54, no. 2,
pp. 308–322, 2009.

[147] P. Peleties and R. DeCarlo, “Asymptotic stability of m-switched systems using
Lyapunov-like functions,” in American Control Conference, 1991, pp. 1679–1684.

[148] Y.-E. Wang, H. R. Karimi, and D. Wu, “Conditions for the stability of switched sys-
tems containing unstable subsystems,” IEEE Transactions on Circuits and Systems
II: Express Briefs, vol. 66, no. 4, pp. 617–621, 2018.

[149] C. Cai, A. R. Teel, and R. Goebel, “Smooth Lyapunov functions for hybrid systems
part ii:(pre) asymptotically stable compact sets,” IEEE Transactions on Automatic
Control, vol. 53, no. 3, pp. 734–748, 2008.

[150] P. A. Parrilo, “Structured semidefinite programs and semialgebraic geometry meth-
ods in robustness and optimization,” Ph.D. dissertation, California Institute of Tech-
nology, 2000, PhD Thesis.

[151] S. Prajna, A. Papachristodoulou, and P. A. Parrilo, “Introducing SOSTOOLS: a gen-
eral purpose sum of squares programming solver,” in 41st IEEE Conference on De-
cision and Control, Dec 2002, pp. 741–746.

[152] D. Liberzon and A. S. Morse, “Basic problems in stability and design of switched
systems,” IEEE Control Systems Magazine, vol. 19, no. 5, pp. 59–70, 1999.

[153] W. Perruquetti, T. Floquet, and E. Moulay, “Finite-time observers: application to
secure communication,” IEEE Transactions on Automatic Control, vol. 53, no. 1,
pp. 356–360, 2008.

[154] A. Beck, Introduction to Nonlinear Optimization: Theory, Algorithms, and Applica-
tions with MATLAB. SIAM, 2014, vol. 19.

[155] I. M. Bomze and L. Palagi, “Quartic formulation of standard quadratic optimization
problems,” Journal of Global Optimization, vol. 32, no. 2, pp. 181–205, 2005.

[156] G. Qu and N. Li, “On the exponential stability of primal-dual gradient dynamics,”
IEEE Control Systems Letters, vol. 3, no. 1, pp. 43–48, 2019.

178



[157] C. Zalinescu, Convex Analysis in General Vector Spaces. World Scientific, 2002.

[158] A. Cherukuri, E. Mallada, S. Low, and J. Cortés, “The role of convexity on saddle-
point dynamics: Lyapunov function and robustness,” IEEE Transactions on Auto-
matic Control, vol. 63, no. 8, pp. 2449–2464, 2017.

[159] C. Paige, G. P. Styan, B.-Y. Wang, and F. Zhang, “Hua’s matrix equality and Schur
complements,” International Journal of Information & Systems Sciences, vol. 4,
no. 1, p. 124, 2008.

[160] K. Garg, D. Han, and D. Panagou, “Robust semi-cooperative multi-agent coordina-
tion in the presence of stochastic disturbances,” in 2017 IEEE 56th Annual Confer-
ence on Decision and Control, Dec 2017, pp. 3443–3448.

[161] K. Garg and D. Panagou, “A robust coordination protocol for safe multi-agent mo-
tion planning,” in AIAA Guidance, Navigation, and Control Conference, Jan 2018,
p. 0605.

[162] M. F. Reis, A. P. Aguiar, and P. Tabuada, “Control barrier function-based quadratic
programs introduce undesirable asymptotically stable equilibria,” IEEE Control Sys-
tems Letters, vol. 5, no. 2, pp. 731–736, 2021.

[163] J. N. Maidens, S. Kaynama, I. M. Mitchell, M. M. Oishi, and G. A. Dumont, “La-
grangian methods for approximating the viability kernel in high-dimensional sys-
tems,” Automatica, vol. 49, no. 7, pp. 2017–2029, 2013.

[164] I. M. Mitchell, A. M. Bayen, and C. J. Tomlin, “A time-dependent hamilton-jacobi
formulation of reachable sets for continuous dynamic games,” IEEE Transactions
on automatic control, vol. 50, no. 7, pp. 947–957, 2005.

[165] M. Chen and C. J. Tomlin, “Hamilton–jacobi reachability: Some recent theoretical
advances and applications in unmanned airspace management,” Annual Review of
Control, Robotics, and Autonomous Systems, vol. 1, pp. 333–358, 2018.

[166] N. Kochdumper and M. Althoff, “Sparse polynomial zonotopes: A novel set repre-
sentation for reachability analysis,” IEEE Transactions on Automatic Control, 2020.

[167] P.-J. Meyer, A. Devonport, and M. Arcak, “TIRA: Toolbox for interval reachability
analysis,” in Proceedings of the 22nd ACM International Conference on Hybrid Sys-
tems: Computation and Control, ser. HSCC ’19. New York, NY, USA: Association
for Computing Machinery, 2019, p. 224–229.

[168] A. Girard and C. Le Guernic, “Zonotope/hyperplane intersection for hybrid systems
reachability analysis,” in International Workshop on Hybrid Systems: Computation
and Control. Springer, 2008, pp. 215–228.

[169] A. Robey, H. Hu, L. Lindemann, H. Zhang, D. V. Dimarogonas, S. Tu, and N. Matni,
“Learning control barrier functions from expert demonstrations,” in 59th IEEE Con-
ference on Decision and Control, 2020, pp. 3717–3724.

179



[170] L. Lindemann, H. Hu, A. Robey, H. Zhang, D. V. Dimarogonas, S. Tu, and N. Matni,
“Learning hybrid control barrier functions from data,” in Conference on Robot
Learning. PMLR, 2020.

[171] A. Taylor, A. Singletary, Y. Yue, and A. Ames, “Learning for safety-critical control
with control barrier functions,” in Learning for Dynamics and Control. PMLR,
2020, pp. 708–717.

[172] M. Benosman, O. Romero, and A. Cherian, “Optimizing deep neural networks via
discretization of finite-time convergent flows,” 2020, arXiv:2010.02990.

[173] R. G. Sanfelice and A. R. Teel, “Dynamical properties of hybrid systems simulators,”
Automatica, vol. 46, no. 2, pp. 239–248, 2010.

[174] K. Garg and D. Panagou, “Hybrid planning and control for multiple fixed-wing air-
craft under input constraints,” in AIAA Scitech 2019 Forum, 2019, p. 0655.

[175] K. Garg, E. Arabi, and D. Panagou, “Prescribed-time convergence with input con-
straints: A control Lyapunov function based approach,” in 2020 Annual American
Control Conference, 2020, pp. 962–967.

[176] K. Garg, M. Baranwal, and D. Panagou, “A fixed-time convergent distributed algo-
rithm for strongly convex functions in a time-varying network,” in 59th Conference
on Decision and Control. IEEE, Dec 2020, pp. 4405–4410.

[177] M. Baranwal, K. Garg, D. Panagou, and A. O. Hero, “Robust distributed fixed-
time economic dispatch under time-varying topology,” IEEE Control Systems Let-
ters, vol. 5, no. 4, pp. 1183–1188, 2021.

[178] K. Garg and M. Baranwal, “CAPPA: Continuous-time accelerated proximal point
algorithm for sparse recovery,” IEEE Signal Processing Letters, vol. 27, pp. 1760–
1764, 2020.

[179] M. H. Cohen and C. Belta, “Approximate optimal control for safety-critical systems
with control barrier functions,” in 2020 59th IEEE Conference on Decision and Con-
trol. IEEE, 2020, pp. 2062–2067.

[180] U. Rosolia and A. D. Ames, “Multi-rate control design leveraging control barrier
functions and model predictive control policies,” IEEE Control Systems Letters,
vol. 5, no. 3, pp. 1007–1012, 2021.

[181] K. Garg, R. K. Cosner, U. Rosoliya, A. D. Ames, and D. Panagou, “Multi-rate con-
trol design under input constraints via fixed-time barrier functions,” IEEE Control
Systems Letters, under review, 2021, arXiv:2103.03695.

[182] J. Breeden, K. Garg, and D. Panagou, “Control barrier functions in sampled-data
systems,” IEEE Control Systems Letters, under review, 2021, arXiv:2103.03677.

180


	Dedication
	Acknowledgments
	Table of Contents
	List of Figures
	List of Appendices
	List of Abbreviations
	Abstract
	Introduction
	Motivation
	Literature review
	Contributions and outline

	Finite-time Multi-Agent Control Design
	Modeling and problem statement
	Robust Control Design
	Dynamic obstacle environment
	Simulations
	Discussion
	Conclusion

	New Results on Fixed-time Stability
	Preliminaries
	New Lyapunov conditions for fixed-time stability: first result
	New Lyapunov conditions for fixed-time stability: second result
	Simulations
	Conclusions

	Control Synthesis via Quadratic Programming
	Mathematical preliminaries
	Quadratic program formulation: nominal case
	Quadratic program formulation: perturbed case
	Simulations
	Discussion
	Conclusions

	Finite-time Stability of Switched and Hybrid Systems
	Preliminaries
	Finite-time stability of hybrid systems
	Finite-time stability result for switched systems
	Simulations
	Conclusions

	Continuous-time Optimization
	Fixed-time stable gradient flows
	Fixed-time stable saddle-point dynamics
	Simulations
	Discussion
	Conclusions

	Conclusions and Future Work
	Conclusions
	Future work
	Additional related work

	Appendices
	Proofs from Chapter 2
	Proof of Lemma 2.1
	Proof of Theorem 2.5

	Proofs from Chapter 3
	Proof of Lemma 3.1
	Proof of Lemma 3.3

	Proofs from Chapter 5
	Proof of Theorem 5.1

	Bibliography
	Index



