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Abstract 
 

Antibody-drug conjugates (ADCs) are a type of targeted therapy that combines the 

specificity of an antibody and a cytotoxic payload agent connected by a linker. The development 

of new ADCs has improved in the last few years with new ADCs being approved by the FDA and 

many others in the pipeline, but the failure rate for ADCs in solid tumors is still nearly 90%. One 

of the major problems is the limited ability of the ADC to penetrate into the tumor tissue; for 

example, the FDA-approved ADC Kadcyla® (T-DM1 targeted against HER2+ breast cancer) is 

localized only on tumor cells close to the blood vessel even at the clinical dose. As a result, many 

cells in the tumor do not receive any drug, influencing efficacy. In the clinic, it has also been found 

that the efficacy of T-DM1 and other ADCs is closely related to the expression of receptors per 

cell, making tumors with low receptor expression resistant to the treatment. Besides these 

challenges, several additional aspects of the tumor environment can influence efficacy such as 

variability in cancer cell dynamics (proliferation and death), blood vessel dynamics (angiogenesis), 

heterogeneous receptor expression, and intrinsic resistance.  

New approaches to improve ADC treatment, such as coadministration of the ADC with its 

unconjugated antibody, fractionated dosing, and bystander payloads, have been proposed to 

overcome these challenges that limit the efficiency of ADCs as cancer therapeutics. These 

approaches have overlapping contributions to efficacy, and analyzing them experimentally is a 

difficult and time-consuming task that requires an impractical and unethical number of in vivo 

experiments. Developments in the field of computational modeling methods have enabled the 
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development of more sophisticated and mechanistic models that can capture the complexity of the 

tumor environment to predict ADC behavior in vivo.  

In this thesis, I describe the use of a new hybrid agent-based model framework to 

mechanistically capture pharmacokinetics and pharmacodynamics of ADC treatment in solid 

tumors. I first describe the development of this new model that combines a commonly used 

deterministic Krogh cylinder tumor model with a stochastic agent-based model and show how it 

captures systemic, intratumoral, and single-cell dynamics that impact the overall drug efficacy. I 

also demonstrate how this model can be used to inform different dosing regimens, such as 

coadministration of ADC with its unconjugated antibody and fractionated dosing, by predicting 

tumor inhibition efficiency for each. I further extend the model capabilities to capture 

heterogeneity in receptor expression and intrinsic resistance by changing cell properties. I compare 

how different ADC dosing regimens influence the efficacy of ADCs containing bystander 

payloads, which possess the inherent ability to compensate for tumor heterogeneity. Finally, I 

apply this model to elucidate the in vivo behavior of a complex ADC currently under clinical 

evaluation in the complex tumor microenvironment of patient derived tumors. 

In summary, I demonstrate a new approach to evaluate the pharmacokinetics and 

pharmacodynamics of ADCs from the perspective of varying dosing regimens, mechanism of 

action, and tumor microenvironments that can guide future experiments and improve the overall 

development of this drug class.  



 

 1 

Chapter 1 Introduction 
 
1.1 Motivation 

Cancer is the second most deadly disease worldwide and is caused by mutations that lead 

to uncontrollable cell proliferation.1 The most common treatment for metastatic cancer is still 

chemotherapy, usually accompanied by surgery for the complete removal of the tumor when 

possible. Chemotherapy is usually given intravenously with doses of potent chemical compounds 

that function to kill rapidly dividing cells, but this treatment also has harsh side effects as it 

subsequently attacks healthy cells. New therapies have been developed to improve targeting of 

cancer cells while reducing toxicity to healthy cells. Typically these therapies focus on increasing 

the therapeutic index by increasing the maximum tolerable dose (MTD) while reducing the 

minimum effective dose.2, 3 

Antibody-drug conjugates (ADCs) are one type of targeted therapy for cancer. With nine 

Food and Drug Administration (FDA)-approved to date (Table 1), ADCs rank among the most 

actively pursued class of therapeutics in oncology.4 A major limitation in the development of 

ADCs for solid malignancies is that they have an elevated failure rate of about 90% in the clinic.5 

These failure rates have been related to poor ADC distribution, complicated ADC 

pharmacokinetics (PK) and pharmacodynamics (PD), and the complex tumor environment. Only 

0.001-0.01% of the injected dose of antibody reaches one gram of solid tumor in the clinic.3 

Understanding the mechanism and dynamics of these ADCs in the complex tumor environment 

could help us reduce the high failure rate in the clinic.  
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Table 1.1 ADCs FDA approved by 2020 

Drug 
(Trade Name) 

Maker Condition Year 
Approved 

Gemtuzumab ozogamicin 
(Mylotarg®) 

Pfizer/Wyeth  Relapsed acute myelogenous leukemia 
(AML) 

2001^ 

Reapproved 
2018 

Brentuximab vedotin 
(Adcetris®) 

Seattle Genetics, 
Millennium/Takeda 

Relapsed HL and relapsed sALCL 2017 

Trastuzumab emtansine 
(Kadcyla®) 

Genentech, Roche HER2-positive metastatic breast cancer 
(mBC) following treatment with trastuzumab 
and a maytansinoid 

2013 

Inotuzumab ozogamicin 
(Besponsa®) 

Pfizer/Wyeth  Relapsed or refractory CD22-positive B-cell 
precursor acute lymphoblastic leukemia 

2018 

Polatuzumab vedotin 
(Polivy®) 

Genentech, Roche  Relapsed or refractory (R/R) diffuse large B-
cell lymphoma (DLBCL) 

2019 

Enfortumab vedotin 
(Padcev®) 

Astellas/Seattle 
Genetics 

Adult patients with locally advanced or 
metastatic urothelial cancer who have 
received a PD-1 or PD-L1 inhibitor, and a Pt-
containing therapy 

2019 

Trastuzumab deruxtecan 
(Enhertu®) 

AstraZeneca/Daiichi 
Sankyo 

Adult patients with unresectable or metastatic 
HER2-positive breast cancer who have 
received two or more prior anti-HER2 based 
regimens 

2019 

Sacituzumab govitecan 
(Trodelv®) 

Immunomedics Adult patients with metastatic triple-negative 
breast cancer (mTNBC) who have received at 
least two prior therapies for patients with 
relapsed or refractory metastatic disease 

2020 

Belantamab mafodotin 
(Blenrep®) 

GlaxoSmithKline  Multiple myeloma patients whose disease has 
progressed despite prior treatment with an 
immunomodulatory agent, proteasome 
inhibitor and anti-CD38 antibody 

2020 

Source: www.adcreview.com 
^Mylotarg was withdrawn in 2010 due high toxicity and reapproved in 2018.  
 
 

Efficacy for new drugs and regimens is typically tested using animal models, and these are 

very expensive and time consuming. Computational models have been developed to help 

understand factors determining drug and regimen efficacy, guide experiments, and accelerate the 

development of these and other drug classes. Although very effective in building an understanding 

of ADC distribution, most of these models do not capture essential features of the drug delivery in 

the complex tumor environment. These factors include single cell efficacy, blood vessel dynamics, 

heterogeneous tumor environment, the influence of ADC PK on PD and vice-versa, and others.6, 7 
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Here, I present a new hybrid agent-based systems pharmacology model that is the foundation of a 

new platform to elucidate their PKPD properties, predict the best regimens of ADCs, quantify their 

efficacy, and guide new experiments. 

 

Figure 1.1 Antibody-Drug Conjugate Structure and Target Scheme 
(A) ADCs are composed of an antibody back-bone, a toxic payload, and a linker. Antibodies have 
a Fc region that attracts immune cells, and the fab region contains the variable regions that bind to 
the receptors. (B) ADCs target receptors overexpressed on the cancer cell surface. 
 

1.2 Antibody-Drug Conjugates 

Antibody-drug conjugates are composed of three main parts: 1) antibody, 2) payload, and 

3) linker (Figure 1). The antibody is responsible for binding to receptors that are overexpressed 

and/or selectively expressed on cancer cells. The payload is typically a very toxic drug that kills 

cells by interfering with cell proliferation via microtubule inhibiters, DNA crosslinkers, or DNA 

alkylators. The linkers connect the payload to the antibody, and they are usually classified as either 

non-cleavable, breaking this connection only after antibody degradation inside the cell, or 

cleavable, causing early release of the payload inside the cell and/or in the plasma and tumor 

environment.8, 9 Following intravenous delivery, ADCs extravasate from blood vessels into the 

tumor tissue, diffuse through the interstitium, and bind to receptors on cancer cells. Once bound, 
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they are typically internalized and degraded in lysosomes, and the free payload or payload-linker 

compound binds to the cellular target to initiate apoptosis. 

 

Target 

The selection of the appropriate target is very important for the efficacy of ADCs, and 

factors such as expression, shedding potential, and internalization dynamics must be taken into 

consideration. Optimal targets must be overexpressed on the cancer cell surface and have reduced 

or absent expression on heathy cells. They must also not shed into the interstitial tissue causing 

off-target binding and a decrease in overall efficacy. Finally, receptors must be internalized to 

initiate ADC degradation in the lysosomes, making the payload free to kill cells.10 For example, 

human epidermal factor receptor 2 (HER2) is overexpressed in about 25% of the cases of breast 

cancer, and it is currently the target of two FDA approved ADCs: trastuzumab emtansine (T-DM1, 

commercially known as Kadcyla® by Genentech, Roche) and trastuzumab deruxtecan (DS-8201, 

Enhertu® by AstraZeneca/Daiichi Sankyo). Another receptor that has been targeted in the clinic 

in solid tumors is guanylyl-cyclase C (GCC) found in colorectal cancer and GI malignancies. In 

this thesis, I focus on both HER2 and GCC targets. 

 

Antibody  

Antibodies are large proteins known as biologics that are produced by the immune system 

to contain foreign agents that are harmful to the body. These proteins can be engineered to bind 

cancer targets and used to deliver toxic drugs selectively to the cancer cells. The physicochemical 

properties of these antibodies of choice influence the pharmacokinetics of ADCs, and thus affect 

their distribution and uptake. Two major properties that affect distribution are affinity to target and 
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size.11, 12 High antibody affinity to the targets is essential for the efficiency of ADC uptake by 

cancer cells, and the majority of the antibodies in the clinic have a binding affinity (Kd) usually 

from the sub-micromolar (<10-6 M) to picomolar (10-12 M) range. For example, trastuzumab, an 

antibody that targets HER2 receptors, has a Kd of 0.5nM.13 Antibody size is another important 

property for increased uptake of these biologics, and size can affect both systemic clearance and 

drug penetration into the tumor.7, 12, 14 Full antibodies are known to have a long residence time 

with clearance half-life of several days, which is beneficial for uptake compared to small molecules 

that can be cleared in hours.7 However, due to their lower diffusivity coefficient, high affinity to 

receptors, and lower dose, they do not diffuse deep into the intracellular tissue.15, 16 Images of the 

distribution of fluorescently-labeled trastuzumab in xenograft mouse tumors show that most of the 

ADC is localized around the blood vessels and the drug permeates only a few cell layers.17 The 

next generation of ADCs are finding ways to overcome this problem. For example, some agents 

use only the binding region of the antibody such as peptides (several kDa), antigen binding 

fragments (50 kDa Fab), single chain Fv fragments (25 kDa scFv), or single domain antibody 

fragments (15 kDa sdAb or VH), instead of the full 150 kDa antibody.18-20 To avoid quick clearance 

of these small fragments though renal filtration, a half-life extender can be attached to the molecule 

such as with Humanbodyâ created by Crescendo Biologics.21  

Antibodies can also cause direct cell killing without the toxic payload through receptor 

signaling modulation and Fc-mediated immune cell recruitment.20 Human antibodies come in 

several isotypes (IgG1, IgG2, IgG3, and IgG4), with IgG1 being the most common for ADCs. This 

isotype has a long circulation half-life, is easy to conjugate to linkers, and some can activate the 

immunoglobin receptors (FcgR). Binding to FcyR helps the engagement of antibody dependent 

cellular cytotoxicity (ADCC), antibody dependent cellular phagocytosis (ADCP), antibody 
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dependent cytokine release (ADCR), complement dependent cytotoxicity (CDC), and priming 

dendritic cells with neoantigens.22 Immunotherapy approaches can further take advantage of these 

interactions using immune check point inhibitors to stimulate the immune system against antibody 

targeted cells, e.g. programmed cell death proteins on cancer cells and/or immune cells including 

PDL1, PD, and CTLA-4.23 

 

Cytotoxic Payload 

Payloads are the main driver of efficacy for ADCs. To achieve effective treatment, 

payloads must have high potency in the tumor, which is usually accompanied by high toxicity in 

healthy tissue. The payloads that are FDA approved in the clinic for example cannot be 

administered alone due to their low therapeutic index.24 The main failure in the first ADC 

generation was indeed due to the low potency of the payloads as they were usually drugs already 

used in chemotherapies, e.g. doxorubicin.25 The second generation, however, includes more potent 

payloads such as emtansine (DM1) and indolinobenzodiazepine DNA-alkylating (DGN). New and 

more potent payloads are still the focus of many researchers in the field to improve the therapeutic 

index. 

 Payloads in the ADCs usually affect microtubules, DNA, or replication machinery that are 

important for cell proliferation; therefore, affecting their function can potentially lead the cell to 

apoptosis, senescence, or necrosis.3, 26 Some of the main classes of payloads include: microtubules 

inhibitors (auristatins and maytansinoids), topoisomerases inhibitors (SN-38), DNA-intercalators 

(camptothecin and anthracycline agents), DNA double strand breakers (calicheamicin), and DNA 

alkylators (pyrrolobenzodiazepine - PBDs and duocarmycin-hydroxibenzamide-azaindole, also 
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known as duacarmycin-DUBA).27, 28 In this thesis, we will focus on auristatins, maytansionoids, 

and PBDs, and the reader is referred to 27, 29 for more information on other classes. 

Payloads also have other requirements for efficacy such as a functional handle for payload 

after conjugation, stability and solubility in the plasma, hydrophobicity in conjunction with the 

drug to antibody ratio (DAR), cell killing potency, and small immunogenicity risk.10, 27 Once 

conjugated to antibodies through a linker, the payload must not change the stability of the antibody 

in a way which results in faster clearance or premature release of the payload. Another factor that 

causes faster clearance is the number of payloads per antibody. As shown in Bender et al, the 

deconjugation rate of a single payload with a higher DAR is faster than the deconjugation of a 

single payload with lower DAR.22 In addition, DAR and hydrophobicity of the payload are an 

important consideration that affects the distribution and penetration of ADCs into the tumor.30 

Lower DAR allows higher ADC doses, and the total antibody dose to payload uptake has shown 

improved responses in some ADC treatments.14, 31 Hydrophobic payloads on other hand can 

diffuse through cell membranes, potentially reaching neighboring cells in a process known as 

bystander killing. These payloads that exhibit bystander effects could potentially improve 

distribution compared to more hydrophilic payloads that do not easily cross the cancer cell 

membrane.  

 

Linker 

The linker choice and conjugation to the antibody is fundamental for ADC kinetics, and 

there are cleavable and non-cleavable linkers. Cleavable linkers are used in the majority of ADCs, 

but they also have a greater risk of release outside the cancer cell in the plasma or interstitium. In 

contrast, non-cleavable linkers only release the payload after ADC degradation in the lysosomes 
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through enzymes (proteases) or pH-dependent degradation.3 These linkers do not release the 

payload in its original form, and their use with payloads such as MMAE are not very practical 

since MMAE is most effective in its original form. Over the past years, extensive research has 

been focused on creating more stable linkers, but, counterintuitively, the unstable linker found in 

sacituzumab govitecan (IMMU-132), an ADC that targets trophoblastic cell-surface antigen 

(Trop2) found in many epithelial cancers, has been used with great efficacy in the clinic.32  The 

reason for this ADC’s success with an unstable linker is still not clear, and researchers are still 

trying to understand the advantages and disadvantages of each type of linker.  

 

ADC Resistance  

 The development of ADC resistant mechanisms is a challenge in the field and can be due 

to low receptor expression, defective ADC and payload trafficking, efflux pumps, and others.33 

The most common form of resistance is a reduction in receptor expression. For example, down 

regulation of CD30 receptors in refractory Hodgkin lymphoma and anaplastic large cell lymphoma 

(ALCL) have shown to be the reason for resistance of the ADC Brentuximab vedotin.34 In the 

clinic, variability of receptors is also found from cell to cell in the same tumor, and in a tumor with 

high overall average of receptors per cell, some cells have much lower receptor expression.35-38 

Finding ways to overcome this resistance through different regimens or ADC mechanisms has 

been actively pursued in the field. 

 
1.3 Tumor Environment 

The tumor environment is composed of many different cells, including proliferating tumor 

cells, tumor stroma, blood vessels, infiltrating inflammatory cells, and a variety of associated tissue 

cells, making it extremely complex and challenging for the delivery of drugs such as ADCs.39-41 
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When cancer cells grow uncontrollably, the intratumor pressure increases, preventing the 

penetration of fluids into the tumor.42, 43 Molecules can only penetrate into the tumor tissue through 

diffusion, and large molecules such as biologics have low diffusivity coefficients, making this a 

barrier against ADCs. As cells proliferate and the tumor enlarges, access to oxygen also worsens 

causing cells to enter a hypoxic state and potentially leading to reduced drug sensitivity and cell 

death.  

Cells in hypoxic states start releasing vascular endothelial growth factor (VEGF), a 

signaling protein that recruits more blood vessels to sustain tumor growth. The tumor vascular 

network, however, is differentiated from normal vasculature, and the blood vessels that are 

recruited are characterized by tortuous and leaky vessel walls with lack of pericytes, making them 

inefficient in delivering oxygen, nutrients, and other substances such as drugs. Previous works 

have targeted the tumor vasculature either by normalizing it and potentially increasing drug uptake 

in the tumor or by targeting these vessels to obstruct cancer cells’ access to resources, preventing 

cancer cell growth.44, 45 

The tumor environment is also composed of many immune cells whose presence can  be 

correlated with good or poor prognosis, such as T lymphocytes, natural killer cells, macrophages, 

dendritic cells, and others.39, 41, 46, 47 For example, cytotoxic T cells (CD8+) kill cancer cells and 

are supported by T helper cells (CD4+), and these are correlated with a good prognosis. 

Macrophages and natural killer cells (NK) also kill cancer cells through the process of ADCC. 

However, NK cells are scarce in the tumor environment, and tumor-associated macrophages 

(TAMs) are correlated with poor prognosis.48 In particular, TAMs are thought to facilitate 

malignant cell migration, invasion, and metastases. Dendritic cells (DCs) are similarly complex in 

their effect. Even though DCs are important in antigen processing and presentation to other 
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immune cells’ attacks, they have been shown to suppress T cell responses at the tumor site.39 All 

these interactions between different cells in the tumor environment make it challenging to develop 

efficacious treatments that control the most important interactions of these cells, those that promote 

tumor progression. 

1.4 Computational Models of Tumor Growth and Drug Delivery 

Computational models capturing tumor growth and drug delivery are valuable to assist in 

approximating clinical doses, efficacy, and toxicity.49-51 Here I present some of the most common 

models used to capture tumor volume and drug delivery for the predictions of clinical dose, drug 

clearance, and distribution.  

 

Computational Models of Tumor Growth 

The computational modeling of tumor growth has a long history.52-57 Skipper’s law is one 

of the oldest and most simplistic approaches to tumor growth and involves a set of relationships 

regarding the efficiency of chemotherapies.58 Skipper’s first law assumes that all cells are in a 

proliferative state with a particular cell doubling time. The tumor volume is calculated from the 

number of cells in the tumor, and tumor growth is captured by a logarithmic or exponential curve. 

The second law assumes that drug killing follows first order kinetics regardless of the tumor 

burden. However, tumors have been demonstrated to not possess a high proliferation rate, as they 

also have a resting state for which chemotherapies are ineffective.  

Another older and famous model for tumor growth is the Gompertz model (Equation 1). 

The tumor volume curve of the Gompertz model follows a sigmoidal curve with a lower cell 

growth rate initially (avascular tumor formation), followed by a very fast or exponential growth 

rate (vascular tumor growth), and finally reaching a plateau which is assumed to be the maximum 
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tumor volume which kills the host (tumor saturation) (Figure 1.2). This model has been modified 

over time to take into account different dynamics and complexities of the tumor environment.59 

The tumor volume 𝑉 at time 𝑡 given by the Gompertz model is: 

𝑉(𝑡) = 𝑉!"#𝑒$(&'(
!"#)      (1) 

where 𝑉!"#  is the initial tumor volume at time 𝑡!"# = 0,  𝑏  is a constant, and positive 

constant 𝑘 = 	 𝑙𝑜𝑔$ ,
%(')
%())

-,	regulating both growth rate and saturation size. 

 
Figure 1.2 Gompertz growth curve 
The Gompertz tumor growth model includes three phases. (A) Avascular tumor growth initiates 
with few cells and is characterized by slow growth. (B) Exponential curve representing the 
vascular tumor growth during which tumors have ready access to oxygen and nutrients after 
recruiting blood vessels. (C) Tumor growth reaches a plateau at which cells no longer have space 
and resources to grow or the tumor causes host’s death. 
 

More recent tumor growth models use ordinary and partial differential equations (ODEs 

and PDEs, respectively) to account for other tumor characteristics and dynamics such as cell cycle, 

oxygen and nutrient availability, necrosis, immune cell action, vascular characteristics, tumor-cell 

density, cell motility, and/or stress response.60-64 Hybrid stochastic and deterministic models are 

becoming more common as these also capture the randomness of the biological systems and their 

intracellular interactions.65, 66 In this thesis I develop a model platform that uses doubling time to 
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represent tumor growth and vessel density changes within the tumor volume to predict ADC 

delivery and efficacy. This platform also allows other important features to drug delivery to be 

added in the future. 

 

Vascular Network Models 

The tumor vasculature is part of the tumor environment, and its complex arrangement and 

dynamics, such as angiogenesis, are of great interest in computational research.67-69 These models 

vary widely in complexity, from capturing only vessel density to capturing microvasculature 

details. As mentioned before, cells release signaling proteins to recruit new blood vessels, and 

these stimulate capillaries from parental vessels to sprout.70 Pericytes and cell-cell junctions are 

loosened and endothelial cells become migratory. The endothelial cells proliferate quickly, and the 

sprouting tip extends until it connects to another parental vessel.  

Tumor vascular network models can be represented by continuous, discrete, or hybrid 

models.71, 72 The most important aspect for cancer treatment involves predicting angiogenesis, the 

spatial orientation of vessels, vessel permeability, vessel density change with tumor growth, and 

responses to anti-angiogenic treatments, as all these affect ADC delivery.73 These different 

dynamics can be very computationally time expensive, and choosing how to simplify them, 

making appropriate assumptions to  select only the important aspects of this complex system, is 

an important challenge for modelers when studying drug delivery. 

 

Models for Drug Delivery and Distribution 

Tumor growth models provide a description of how the tissue behaves in the absence of 

treatment. Pharmacology deals with the drug delivery, the pharmacokinetics (PK), and how the 
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drug exerts its effect, the pharmacodynamics (PD). In the body, drugs are absorbed, distributed, 

metabolized, and excreted (ADME), and different types of models can represent many of these 

details.74, 75 The concentration and interaction with the drugs biological target then mediates an PD 

response, typically cell death in the case of ADC payloads. 

Mathematical and computations approaches can capture a large range in size and dynamic 

scales, and these approaches can take many forms such as compartmental models, non-

compartmental models, continuous and stochastic models, physiological/mechanistic models, and 

others.76-79 Compartmental models dedicate each part to represent a space of interest such as 

different blood compartments, organs, or parts of the tumor, and the change of substances (e.g. 

oxygen, drugs, immune cells, etc) in these spaces as a function of time is usually determined with 

continuous equations.80-82 For example, it is very common to use two or three compartment models 

to describe the absorption (for oral drug) and/or drug clearance in the plasma as a function of time 

and clearance parameters.83, 84 In comparison, non-compartmental models are independent of the 

number of compartments and capture important drug considerations for patients such as the 

maximum plasma concentration (Cmax), area under the plasma concentration-time curve (AUC), 

average drug concentration, apparent total plasma clearance (CL), elimination rate constant (k10), 

half-life (t1/2), and others.77, 85 Nevertheless, mechanistic models are usually more complex and 

describe more specific details that represent drug distribution, and these can use continuous and/or 

stochastic approaches. 

 Mechanistic models are very common for drug delivery and capture details of drug 

transport such as drug diffusion into the body, binding to targets, internalization into cells, and 

intracellular metabolism.86, 87 The Krogh cylinder model for example, originally developed by 

August Krogh in 1919 to study supply of oxygen in muscular tissues, has been used to capture the 
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distribution of ADCs from the blood vessels through the tumor tissue.88, 89 This model has a small 

cylinder in the center representing the blood vessel, surrounded by a larger cylinder representing 

the tumor tissue (Figure 1.3). Combined with ordinary and partial differential equations, it 

describes each dynamic shown. Although the Krogh cylinder model represents ADC distribution 

around single vessels well, it does not capture other important features for drug delivery in solid 

tumors such as changes in blood vessel density, single cell drug uptake, single cell killing, 

angiogenesis, and the interplay of pharmacokinetics and pharmacodynamics. In this thesis, I utilize 

a multi-layered approach, connecting a two-compartment model to capture the drug clearance in 

the plasma, a more detailed mechanistic models to capture drug distribution through the tumor 

tissue and entering cell compartments, and a stochastic agent-based model to capture 

pharmacodynamics and the influence of the tumor environment. 

 

Figure 1.3 Krogh cylinder model 
(A) ADCs flow through blood vessels, (B) leave blood vessel into interstitium tissue, (C) diffuse 
between cells, (D) and bind to antigens on the surface of cells. 
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1.5 Agent-Based Models 

Hybrid Agent-Based Models (Hybrid-ABMs), a type of discrete model, have been used 

not only to describe the complex interactions between cells in cancer biology, but also in areas 

such as economics, sociology, criminology, epidemiology, immunology, and healthcare.90-94 In 

systems biology, ABMs are often multiscale models that capture dynamics over different size and 

time scales.95-98 ABMs are also discrete and stochastic, having defined agents that behave based 

on probabilities. These probabilities change based on the environment and on the behavior of other 

agents, making this a powerful model framework to capture the complex interactions that occur 

within the tumor and affect drug delivery. 

ABMs can have agents with defined location determined by the modeler (lattice-based 

models) or be represented by volumes or masses (off-lattice methods).99 In this thesis, I focus on 

lattice-based models only, and for a list of many models and open ABM sources toolkits, the reader 

can refer to Metzcar et al.100 Both types of models can capture 2D or 3D dynamics, but lattice-

based are usually easier to connect to PDEs to solve diffusion of molecules such as chemokines, 

oxygen, or drugs in the ABM environment.101-103 Lattice-based models are beneficial for capturing 

single cell behavior in comparison with models that only take into account tumor volume or mass. 

Improving computational time for ABMs is still a hurdle. Because of ABM stochasticity, multiple 

simulations must be performed to study the average and ranges of model behavior, and, for 

example, a very descriptive 3D model with thousands of cells could take many hours to simulate. 

Another characteristic of ABMs that affects simulation time is the method of choice to solve the 

PDEs during diffusion on the environment grid compartments.104 PDE solvers and time steps must 

be chosen to achieve accurate solutions. Small drugs, such as antibiotics, diffuse very quickly into 

the systems, and PDEs solvers can use relatively large time steps while the opposite occurs with 
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large molecules. In addition, large molecules such as biologics bind with high affinity to receptors 

on cancer cells causing them to have even smaller effective diffusivity and require small time steps 

for optimal solution. Consequently, simpler PDE solvers are not efficient to provide optimal 

solutions, and implicit methods or smaller time steps must be used. Even with these different 

challenges, however, ABMs are being increasingly utilized in the field.105  

 

1.6 Thesis summary 

In this thesis, I will present a new ABM as a new platform to help better predict distribution 

and efficacy of ADCs. In Chapter 2, I describe the development of the model and show how it can 

capture single cell dynamics that impact the overall drug efficacy. I also demonstrate how we used 

this model to predict different regimens’ efficacy such as coadministration of ADC with its naked 

antibody and fractionated dosing. In Chapter 3, I extend the model capabilities to capture cell 

heterogeneity regarding receptor expression and intrinsic resistance. I compare how regimens with 

ADCs containing payloads that have bystander effects could potentially be effective in 

heterogenous tumors. In Chapter 4, I use this same model framework to help describe the 

experimental results of a new ADC that has a lipophilic payload in a system with lower receptors 

per cell. Finally, in the last chapter, I discuss future applications for this model and 

recommendations for the development of new ADCs.  
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Chapter 2 An Agent-Based Systems Pharmacology Model of the Antibody-
Drug Conjugate Kadcyla to Predict Efficacy of Different Dosing Regimens 
 
 
2.1 Publication Information 

Menezes, B, C. Cilliers, T. Wessler, G. M Thurber, J. J. Linderman. An Agent-Based Systems 

Pharmacology Model of the Antibody-Drug Conjugate Kadcyla to Predict Efficacy of Different 

Dosing Regimens. AAPS. 2020; J 22, 29. 

Modifications have been made to the published document to adapt the content to this text. 

The goal of this chapter is to develop a new complex agent-based model to better understand the 

efficacy of coadministration between T-DM1 and trastuzumab with different regimens including 

dose fractionation.  

 

2.2 Abstract 

The pharmaceutical industry has invested significantly in antibody-drug conjugates 

(ADCs) with increasing number of FDA-approved therapies and several more showing promise in 

late-stage clinical trials. The FDA-approved therapeutic Kadcyla (ado-trastuzumab emtansine or 

T-DM1) can extend the survival of patients with tumors overexpressing HER2. However, tumor 

histology shows that most T-DM1 localizes perivascularly, but coadministration with its 

unconjugated form, trastuzumab, improves penetration of the ADC into the tumor and subsequent 

treatment efficacy. ADC dosing schedule, e.g., dose fractionation, has also been shown to improve 

tolerability. However, the impact of coadministration with carrier doses in efficacy is still not clear 

in terms of receptor expression, dosing regimens, and payload potency. Here, we develop a hybrid 
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agent-based model (ABM) to capture ADC and/or antibody delivery and to predict tumor killing 

and growth kinetics. The results indicate that a carrier dose improves efficacy when the increased 

number of cells targeted by the ADC outweighs the reduced fractional killing of the targeted cells. 

The threshold number of payloads per cell required for killing plays a pivotal role in defining this 

cut off. Likewise, fractionated dosing lowers ADC efficacy due to lower tissue penetration from a 

reduced maximum plasma concentration. It is only beneficial when an increase in tolerability from 

fractionation allows a higher ADC/payload dose that more than compensates for the loss in 

efficacy from fractionation. Overall, the multiscale model enables detailed depictions of 

heterogeneous ADC delivery, cancer cell death, and tumor growth to show how carrier dosing 

impacts efficacy to design the most efficacious regimen. 

 

2.3 Background 

The number of approved antibody-drug conjugates (ADCs) has grown in recent years with 

nine ADCs approved by the Food and Drug Administration (FDA) and several more in late-stage 

clinical trials. However, developing effective ADC candidates for cancer therapy with a sufficient 

therapeutic index has been difficult, and several clinical failures of ADCs could have been avoided 

by minor improvements in the therapeutic window.106 This is due to the highly complex ADC 

pharmacokinetics and pharmacodynamics in the tumor environment, especially for solid tumors. 

Ado-trastuzumab emtansine (T-DM1), commercially known as Kadcyla, is the first FDA-

approved ADC for solid tumors, and only in 2020 the other three were approved: enfortumab 

vedotin, trastuzumab deruxtecan, and sacituzumab govitecan.  

ADCs are composed of three main parts - a targeting antibody (Ab), a cytotoxic payload, 

and a linker connecting the two. These agents must be optimized to specifically deliver the payload 
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to cancer cells while minimizing healthy tissue uptake as they traverse multiple drug delivery 

barriers. After intravenous administration, ADCs flow through the blood to the tumor, extravasate 

from blood vessel, diffuse through the interstitial tumor tissue, bind antigens, are internalized by 

cancer cells, and, upon linker cleavage or digestion, release the cytotoxic payload that diffuses 

across membranes to their site of action (often DNA or microtubules) inside the cells. Tumors may 

vary in blood vessel density, receptor expression, and receptor internalization, all affecting ADC 

delivery. 

ADC distribution in solid tumors is typically heterogeneous, which can impact efficacy.14 

Because of the large size of ADCs, uptake into the tumor is limited by extravasation from the 

blood to the tumor tissue (i.e., they are permeability-limited),15 resulting in reduced amounts of 

drug in the tissue. Once in the tissue, tumor penetration is slow as a result of elevated interstitial 

pressure, making them reliant on diffusion through the interstitial space. ADCs rapidly bind to 

antigens surrounding tumor blood vessels and are typically internalized before they can dissociate 

and diffuse deeper into the tissue. For example, at clinical doses of 3.6 mg/kg, T-DM1 localizes 

perivascularly, as seen in multiple mouse models,107 due to its large size and high affinity to HER2 

receptors. 

We and others have demonstrated that some ADC regimens can improve ADC distribution, 

efficacy, and tolerability. As previously established in our lab, the co-administration of T-DM1 

with its unconjugated antibody, trastuzumab, improves drug penetration and efficacy.31, 108 Other 

work from Hinrichs et al. and Jumbe et al. show that fractionating a single dose into 3 weekly 

doses can lead to similar efficacy, but better tolerability.109, 110 

Despite these findings, the design principles underlying the best choice of regimen and 

drug combinations are not well-understood.  For example, it is not clear if/when a ‘carrier dose’ 
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will increase drug penetration and improve efficacy. The impact of HER2 expression level and 

payload potency on the increase or reduction in efficacy from a carrier dose are also not well 

defined. Finally, the interplay of dose fractionation with carrier doses on overall efficacy is 

currently unknown. 

Testing all combinations of receptor expression, payload potencies, carrier doses, dose 

fractionation regimes, etc. in vivo would be a daunting and expensive process. For this reason, 

computational models that guide experiments and predict best drug regimens are becoming more 

widely used. Computational models to capture the pharmacokinetics of ADCs are already 

established in the field,111 112 113 89 114 but to our knowledge, there is not a 

pharmacokinetic/pharmacodynamic (PKPD) model of ADC distribution that captures the 

heterogeneous distribution of ADCs on individual cells to connect experimental single cell PK 

data to overall efficacy. 

Here we took a systems pharmacology approach to study and predict the best ADC 

regimens. We developed a hybrid agent-based model (ABM) to capture ADC and/or antibody 

delivery and predict individual cell killing and tumor growth kinetics. This multiscale model 

enables detailed depictions of heterogeneous ADC delivery, cancer cell death, and tumor growth. 

Partial and ordinary differential equation models of ADC extravasation from multiple vessels, 

diffusion, binding, and processing are overlaid on a grid of individual cancer cells (agents). These 

cells undergo growth (cell division) and respond to the drug by cell death as a probability function 

of their intracellular payload concentration. Tumor growth rate is a function of the total number of 

cancer cells at a given time. The model was validated by comparison to experimental 

measurements in a HER2 positive NCI-N87 mouse xenograft model.31 With this model, the role 
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of the carrier dose was analyzed, and predictions for the best regimen for different types of tumors 

overexpressing HER2 are presented. 

2.4 Materials and Methods 

We built a computational model to predict the efficacy of particular ADC regimens, 

accounting for ADC distribution in a heterogeneous tumor microenvironment. Our model is a 

hybrid ABM comprised of cancer cells and blood vessels that compose the tumor 

microenvironment and behave based on predefined rules and changes in their local 

microenvironment. The multi-scale model has portions that describe the tumor environment and 

PKPD: plasma dynamics, drug dynamics for T-DM1 and trastuzumab, and individual cancer cell 

dynamics (e.g., cell division, death) (Figure 2.1). 

 

Simulation Environment 

We simulate a subsection of a tumor and assume that i) the dynamics are representative of 

the entire tumor and ii) the tumor volume is proportional to the number of cells in the simulation. 

The model was simplified to a 2D representation because ADC concentration along the blood 

vessel is approximately constant (permeability limited).15 The representative subsection of the 

tumor includes a zero net-flux boundary condition on its border. At low doses, few drug molecules 

reach the boundaries of the subsection, so the effects of the boundary conditions are minimal. At 

higher doses, a zero net-flux boundary condition is convenient to represent the equal diffusion of 

drug into and out of the subsection from adjacent regions of the tumor. Because antibodies are 

permeability limited, this changes the location of the cells that are targeted but has a negligible 

impact on the total tumor uptake or fraction of cells targeted by the ADC. Each simulation starts 

with approximately 2500 cells, which is used to represent an initial tumor size of 250mm3. Cancer 
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cells and blood vessels each have different states, i.e., alive or dead for cells and functional and 

non-functional for vessels, and they occupy a position on the simulation grid. Their state changes 

during the simulation depending on their microenvironment. For example, a sufficient number of 

released payloads can kill a cancer cell or sufficient time allows the cells to proliferate. Blood 

vessel density and placement within tumors is highly variable (both between tumors and within 

the same tumor). To capture the heterogeneity in vessel distribution, each simulation has blood 

vessels randomly placed in the tumor space at its initialization, creating a different 

microenvironment for each cancer cell in the simulation. This variability can change the drug 

spatial distribution across cancer cells and consequently impact efficacy. 

 

Figure 2.1 Model schematic 
(A) Plasma dynamics describe the intact ADC concentration in the blood as a result of local and 
systemic clearance, including deconjugation. (B) ADCs in the blood extravasate from the blood 
vessel, diffuse through the interstitial tissue, bind to HER2 antigens, and are internalized. After 
ADC degradation in lysosomes, cytotoxins are released to kill the cell. (C) Individual cells and 
blood vessels are placed on a 2D lattice, forming the tumor environment. 
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Trastuzumab and T-DM1 Plasma Dynamics 

The concentrations of trastuzumab and T-DM1 in the blood are a function of dosing, total 

antibody clearance rate, and payload deconjugation rate (rate at which the cytotoxin detaches from 

the antibody). A simplified ordinary differential equation (ODE) model from22 to describe DM1 

deconjugation was implemented here: 
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where [TDM1] is the T-DM1 concentration in the central or plasma compartment (nM), [TDM1*+] 

is the T-DM1 concentration in the compartment 2 (peripheral tissue) (nM), [Tras]	 is the 

unconjugated antibody concentration in the central compartment (nM), [ Tras*+]  is the 

unconjugated antibody concentration in the peripheral compartment (nM), CL,,  is the total 

antibody clearance (L/s), CL+  is the antibody clearance for the peripheral compartment (L/s), 

CL-./ is the deconjugation rate (L/s), V0 is the volume of the central compartment (L), and V+ is 

the volume of the peripheral compartment (L) as seen on Figure 2.1.A at clinical doses. CLTT and 

CL2 were calibrated to experimental data115 as seen in appendix Fig A.1, and CLDEC was set to be 

the same as CLTT, making T-DM1 clearance twice as fast as trastuzumab clearance.22 

 

Trastuzumab and T-DM1 Extravasation and Diffusion 

Trastuzumab and T-DM1 extravasate from the blood vessels into the tumor, and this is 

described by a Robin boundary condition at the vessel boundary: 
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where x is distance from the blood vessel (μm), P is permeability (μm/s),  ε is fraction of free 

interstitial tissue, and Deff is the effective diffusivity (μm2/s), which describes the diffusion within 

the tissue.6, 116 Because ADCs are large molecules that cannot traverse cell membranes, the use of 

ε here accounts for the accessible interstitial volume that ADCs diffuse through. This parameter 

also adjusts for the relative higher concentration of these molecules in the interstitium compared 

to an average tumor volume concentration.12  

Diffusion of trastuzumab and T-DM1 on the 2D grid occurs according to Fick’s law:  
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where C is trastuzumab or T-DM1 concentration in (nM), t is time (s), D is the effective diffusivity 

(μm2/s), x and y are the Cartesian coordinates. A zero net-flux boundary condition at the edges of 

the tissue was used since this is a subsection of a large tumor where edge effects are minimal.117  

 

Trastuzumab and T-DM1 Binding, Internalization, and Degradation 

Within the tumor, ADCs bind target molecules, are internalized, and after degradation in 

the lysosomes, payloads are released to kill the cancer cells through apoptosis as seen in Figure 

2.1B. These drug dynamics are described by the following reactions: 
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This results in the following equations: 
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All variables are listed on Table I and model parameters on Table II. Both free and bound 

HER2 receptors are assumed to be internalized with the same rate constant. We also assume that 

the total number of receptors on the cell surface remains constant due to new receptor synthesis 

and unbound receptor recycling. Thus, Rs= kin [HER2]o. Because the binding and dissociation 

reactions between the trastuzumab backbone and HER2 receptors are fast in comparison to 

internalization, we assumed a pseudo-steady state for binding in each compartment to reduce 

computational time. 

 Table 2.1 Drug Dynamics Variables 

Variables Unit Description 
TDM1 nM Free T-DM1  
HER2 nM Free HER2  
HER2e nM HER2 in endosome 
B nM T-DM1 bound to HER2 
Be nM T-DM1 bound to HER2 in endosome 
DM1 nM DM1 
Tras nM Trastuzumab 
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Table 2.2 Model Parameters 

Parameter Value Unit Description Reference 
CLTT 1.74 x 10-9 L/s Total antibody clearance Estimated 115 
CL2 2.31 x 10-8 L/s Antibody clearance for compartment 2 Estimated 115 
CLDEC 1.74 x 10-9 L/s Deconjugation rate Estimated 22 
V1 1.2 x 10-3 L Volume central compartment Estimated 115 
V2 1.5 x 10-3 L Volume peripheral compartment Estimated 115 
kon 7.1 x 105 M-1s-1 T-DM1 binding rate constant 13 
Kd 0.5 nM  T-DM1 dissociation constant 13 
koff 3.5 x 10-4 s-1 T-DM1 dissociation rate constant 13 
ke 3.3 x 10-5 s-1 Internalization rate constant 7 
kdeg 8 x 10-6 s-1 T-DM1 lysosomal degradation rate constant 111 
kloss 3.94 x 10-5 s-1 Cytotoxin loss rate constant Estimated 30 
DAR 3.5 - DM1 to antibody ratio 118 
Rs 2.75 x 10-11 M/s Target synthesis 6 
HER2o* 5 x 104-2 x 106  receptors/cell Total targets per cell Varied 
ε 0.24 - Intracellular void fraction 119 
D 1 x 10-11 m2/s Diffusivity 6 
P 3 x 10-9 m /s Vascular permeability 120 
Pmax 0.014 - Maximum probability for cell killing Calibrated 
Km 800 nM Michaelis-Menten constant Calibrated 
td (in vivo) 5-17 days In vivo doubling time Calibrated 
td (in vitro) 1-2.5 days In vitro doubling time Estimated 

*1 million receptors per cell corresponds to 833nM receptors where each cell occupies about 2x 10-12 L.  

 

Cell Division and Death 

Tumor volume is proportional to the number of cancer cells in the simulation. Cancer cells 

proliferate depending on the tumor doubling time (td) assigned at the beginning of the simulation, 

and td is assumed to account for natural cell death. All cells in the same simulation are given the 

same doubling time but a different (random) birthtime to avoid synchronization. At cell division, 

two identical cells are created, and their bound drug and internalized drug are evenly divided 

between them. One of the daughter cells is placed in the original grid compartment, and the other 

daughter cells is placed on a neighboring grid compartment. If there is no space in the neighboring 

compartment, cells shuffle to make space for the new cell (see Appendix Fig. A.2).  

Cancer cells die only depending on the payload concentration inside the cells, and they are 

then removed from the simulation grid. The probability for cell killing (Pkill) during each agent 
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time step (i.e., the integral of the cell killing rate over the time step) is given by the Michaelis-

Menten equation:  

𝑃C!DD =
E&'(	[GH0]
I&J[GH0]

      (17) 

where 𝑃KLM is the maximum probability for cell killing, [DM1] is the concentration of cytotoxin 

inside the cells in nM, and 𝐾K is the Michalis-Menten constant. 𝑃KLM and 𝐾K were calibrated to 

experimental data.31 The overall probability for cell killing becomes the integration of all the 

probabilities for cell killing over the simulation time. While Eqn. 17 always has a probability of 

death > 0 for a non-zero payload concentration, in practice, low concentrations of drug typically 

exhibit a threshold effect below which no discernable difference between treated and untreated 

cells is seen. Therefore, we estimated the minimum concentration for cell killing (a cell killing 

threshold) to be 120 nM based on experimental data (Appendix Methods A.1).31 If the payload 

concentration inside the cell is below this threshold, the probability for cell killing is set to zero. 

Trastuzumab was assumed to have no effect on cell killing, although very high doses of 

trastuzumab might have an impact on efficacy in an NCI-N87 xenograft model system. Dead cells 

were estimated to stay on the grid for 2.5 days (Appendix Fig. A.3.) before they are removed from 

the grid. Neighboring cells shuffle from the outer border to fill the empty grid space caused by the 

removal of the dead cell (Appendix Fig. A.2).  

 

In Vitro Simulations 

To model in vitro toxicity experiments, we assumed that all cells are exposed to the same 

external concentration of trastuzumab and T-DM1 present in the media. For this reason, e is set 

equal to 1 in Eqns. 8, 9, 10, 13, and 14, as ADC diffusion is not hindered by the tumor tissue. For 

the toxicity assays, cells in each simulation are exposed to a constant T-DM1 concentration, and 
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cell viability was calculated at 6 days. For the coincubation of trastuzumab and T-DM1, cells were 

exposed to a total concentration of 10nM and various ratios of the concentrations of trastuzumab 

to T-DM1. For all in vitro simulations, cell doubling time was varied from 1 to 2.5 days.   

 

Computational Environment and Numerical Methods 

The model was constructed in C++ with Boost (distributed under the Boost software 

license – available at www.boost.org). The graphical user interface (GUI) was built using the Qt 

framework (open-source, distributed under GPL – available at qt.digia.com). Efficient linking and 

solution of our hybrid multiscale ABM followed the principles described in 104. We used a 

molecular time step of 2 seconds, a diffusion time step of 4 seconds, and an agent time step of 10 

minutes. The diffusion equation was solved using the alternating-direction explicit (ADE) method 

and ODEs were solved using the 4th order Runge-Kutta method.  

 

Vessel Density Determination 

To determine the number of vessels to include in simulations, we analyzed images of 

mouse tumor slices that were stained ex-vivo with CD31-AF555 to show blood vessels. Images 

were processed in MATLAB to find the vessel density.31 Briefly, random lines are placed on the 

images, and the number of cuts is counted. Based on that, we can find the surface of the blood 

vessel over tumor volume ratio (S/V) from 121:  

N
%
=	 +O

P"
       (18) 

 where c is the number of cuts, L is the length of the line (𝜇𝑚), and n is the number of the 

lines placed. Here we used 75𝜇𝑚  for L and 10000 lines. To match experimental data, we 

determined 18 to 36 blood vessels per initial simulation area (S/V range from 23/cm to 45/cm) is 
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appropriate. In this model, the relationship between doubling time and vessel density was 

estimated as shown in appendix Fig A.4. 

 

Fluorescence Histology 

Methods for fluorescence histology have been published previously by our lab 31. Briefly, 

for mouse tumor xenografts, 5x106 NCI- N87 cells, purchased from ATCC, were injected in the 

rear flanks of 4-8-week-old female nude (Foxn1nu/nu) mice from Jackson Laboratories. Kadcyla 

was conjugated with AlexaFluor 680 NHS Ester (AF680, Thermo Fisher Scientific, A37567) with 

antibody to dye ratio of 0.3 or less and given intravenously. The mice were then sacrificed 24 hours 

after injection and histology slices were labeled ex-vivo with anti-mouse CD31 conjugated with 

AlexaFluor 555 (Thermo FisherScientific, A37571) and mouse antihuman IgG Fc antibody 

conjugated with AlexaFluor 488 (Thermo Fisher Scientific, A20000). All animal studies were 

conducted according to University of Michigan Institutional Animal Care and Use Committee. 

 

2.5 Results 

Simulating Heterogeneous Distribution of Antibodies in Tumor Slices 

Our model captures the heterogeneous distribution of ADCs and antibodies seen in NCI-

N87 tumor xenografts.14 Here, vessel density varies between simulations following a normal 

distribution with an average blood vessel density of 28 functional vessels per simulation. At 

clinical doses (3.6 mg/kg), T-DM1 localizes perivascularly, but coadministration with trastuzumab 

competes for the perivascular binding sites, allowing more T-DM1 to penetrate farther in the 

tissue. Therefore, a constant dose of T-DM1 is ‘diluted’ in the tumor tissue to reach more cells as 

seen in images of mouse tumors (Figure 2.2.A). With the same image contrast for the same drug 
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regimens, our model also captures this dilution and spreading of ADCs in the simulation with T-

DM1 reaching all cells at regimens of 8:1 ratio, Figure 2.2.  

 

Figure 2.2 Comparison between experimental and simulated drug distributions in tumor 
tissue 
(A) Tumor sections from mice bearing NCI-N87 xenograft tumors dosed with 3.6 mg/kg of 
AlexaFluor680 labeled T-DM1 and different ratios of trastuzumab:T-DM1 were imaged after 24 
hours using the same settings and then set to the same window level for different carrier dose 
(trastuzumab) concentrations. T-DM1 intensity decreases as it is “diluted” with trastuzumab at 
higher ratios and spreads out to reach more cells. (B) Simulation results showing bound T-DM1. 
(C) The same tumor sections were stained with anti-Fc labeled antibody and window-leveled the 
same to show total drug penetration in tumor. (D) Simulation results show total antibody (T-DM1 
+ trastuzumab) penetration into the tumor. For all figure portions, scale bar = 200 μm. 
 

Likewise, our model captures the total antibody uptake as seen in mouse tumor slices 

stained with antihuman-Fc labeling that targets all antibody backbones (T-DM1 and trastuzumab), 

methods found in previous work.31 Here, although the concentration of T-DM1 is diluted through 

the tumor tissue, higher antibody concentrations are achieved with coadministration of 
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trastuzumab along with T-DM1 to improve tumor penetration. As seen on Figure 2.2.C and 2.2.D, 

our model also captures this total antibody uptake by the tumor reaching receptor saturation at the 

8:1 ratio.   

 

Calibrating Tumor Growth Kinetics and In Vivo Cell Killing 

 After demonstrating that the ABM can capture the heterogeneous distribution of 

antibodies and ADCs around vessels, we moved to capture the pharmacodynamics within the 

tumor. To understand how the drug microenvironment impacts efficacy, our model was calibrated 

to in vivo data31 on cell proliferation and cell killing due to drug action to capture the tumor growth 

dynamics. The tumor growth rate for the simulations was calibrated by fitting the average tumor 

cell doubling time and range to capture tumor volume growth curves from experimental control 

(untreated) mice as seen in Figure 2.3.A and 2.3.B. The calibrated tumor volumes have a doubling 

time range from 5 to 17 days. In this model, the doubling time for each tumor is defined at the 

initialization based on a normal distribution in which tumors with higher vessel density have a 

higher probability to grow faster (i.e., a smaller doubling time, appendix Fig. A.2). This was 

implemented to account for the blood vessels as the source for nutrients and oxygen that enables 

cell proliferation.122 The proliferation rate constitutes the net cell division above the level needed 

to replace intrinsic cell death within the tumor. 

The probability of cancer cell killing due to drug action was also calibrated to the in vivo 

experimental data for T-DM1 treatment at the clinical 3.6 mg/kg dosing. Using the Michaelis-

Menten equation for the killing probability, the average efficacy in 10 experimental mouse tumors 

was matched to the average efficacy of 100 simulations. 𝑃KLM and 𝐾K are highly correlated and 

are mostly in the linear range of Eqn. 17 for these simulations, so we set Km to 800nM based on 
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the likely range of payload concentration inside of the cell and calibrated Pmax to 0.014. Using 

these two parameters, cell killing results matched the range and average as seen of Figure 2.3.C 

and 2.3.D.  

 

 

Figure 2.3 Model calibration of tumor growth rate and cell killing using average and 
variability of NCI-N87 xenograft efficacy 
(A) The average experimental data and SD are plotted with the average and SD of simulated tumor 
sizes from 100 computational runs for the control group. (B) The range of growth rates for the 
simulations (shaded area) is shown together with individual tumor curves in the absence of drug 
treatment. (C) The average experimental data and SD are plotted with the average and SD of 
calibrated tumor sizes for a single dose. To calibrate cell killing in vivo, the growth curves for 
tumors treated with 3.6 mg/kg of T-DM1 were used to calibrate the probability of individual cell 
death as a function of intracellular payload concentration (Eq. 15). (D) The range of growth rates 
for the simulation (shaded area) is shown together with individual experiment curves for a 
treatment with a single dose. 
 

Simulation Accurately Predicts the Effect of Coadministration of Trastuzumab with T-DM1 on 

Tumor Growth 

Previously, our lab demonstrated that coadministration of trastuzumab and T-DM1 

improved efficacy. Using the model that was calibrated to data from a single dose of T-DM1, we 
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next simulated regimens for 1:1, 3:1, and 8:1 ratio and compared the results to the experimental 

curves for model validation (Figure 2.4.A-C). The mean tumor volumes and SD of the simulations 

(n=100) agree closely with the experimental data (n=10). Figure 2.4.D-F shows the simulation 

range achieved with the 100 simulations (blue shading) and the experimental tumor curves (black 

lines). 

 

Figure 2.4 Coadministration of T-DM1 with trastuzumab 
Using the calibrated tumor growth and cell killing probabilities determined in Fig. 2.4, the model 
was used to predict the tumor growth curves for mice treated with 3.6 mg/kg T-DM1 with 
trastuzumab to T-DM1 ratios of 1:1, 3:1, and 8:1. These independently generated simulations were 
then compared with the experimental data from Cilliers et al. (A–C) Mean and SD of the 
experimental and simulation data. (D–F) Simulation ranges (shaded area) and the experimental 
tumor volume curves (black lines). 
 

Reaching Maximum Number of Cells with Lower but Lethal Concentrations of Payload Results in 

the Greatest Tumor Efficacy  

We next simulated drug regimens with different ratios of trastuzumab to a fixed clinical 

dose (3.6 mg/kg) of T-DM1 to identify which dose regimen gives the best treatment outcome. 

Figure 2.5.A-D shows the efficacy of regimens with trastuzumab to T-DM1 ratios ranging from 

0:1 to 24:1 and over the course of 21, 30, 40, and 50 days. Increasing the ratio results in greater 
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competition of the unconjugated antibody to ADC. At a regimen of 8:1, the tumor approaches 

saturation by the antibody, and the maximum tumor uptake of T-DM1 reaches all of the cells 

within the tumor. At higher than saturating (super-saturating) doses, the unconjugated antibody 

competes with T-DM1, decreasing the uptake of payload into individual cells, while not reaching 

any more regions of the tumor. Both total tumor uptake of ADC and individual cell uptake decrease 

beyond this point. When graphing the fraction of cells receiving a given intracellular payload 

concentration for increasing carrier doses at 48 hrs, both the number of cells with very high levels 

of payload and those with no payload are reduced (Figure 2.5.E) while more cells receive a 

moderate dose of payload (i.e., reducing the heterogeneity of drug distribution). Importantly, even 

at the 8:1 carrier dose, ~60% of the targeted cells have greater than the 120 nM intracellular 

concentration needed for cell death. However, as the carrier dose increases, the concentration of 

the payload decreases below 120 nM, resulting in reduced efficacy. In summary, despite 

competition of T-DM1 uptake by the large antibody dose, the model predicts a better prognosis 

when more cells are reached at a lower (but still lethal) number of T-DM1 payloads per cell than 

when fewer cells receive high doses (‘overkill’). 

 

The Potency of the Payload Affects the Influence of a Carrier Dose 

The simulations indicated that a carrier dose improves efficacy when the increased number 

of cells reached by T-DM1 outweighs the reduced killing due to fewer payloads per cell. Implicit 

in this statement is that adding a carrier dose beyond the level needed for tumor saturation will 

lower efficacy since no new cells are reached. In the system studied here (T-DM1 with NCI-N87 

xenografts), the payload is very potent relative to the number of payloads delivered per cell, and 

the doses are below tumor saturation. However, for moderately potent payloads, there are 
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examples where concentrating the payload on fewer cells results in greater efficacy14 such as seen 

with sacituzumab govitecan.123 If the concentration of the payload delivered by pure ADC is just 

enough to kill these cells (i.e., there is no ‘overkill’), decreasing the concentration of the payload 

per cell with a carrier dose would lead to lower treatment efficacy because no cells would receive 

a toxic dose even though the new regimen is reaching more cells. To determine when a carrier 

dose might decrease efficacy even prior to tumor saturation, we used the simulations to examine 

the role of the minimum concentration needed for cell death (Cmin).  

The presence of a minimum threshold payload concentration for cell death has a significant 

impact on efficacy, particularly when the dose range is high enough to saturate the first cell layer 

but lower than required for tumor saturation. In this range, such as simulated in this work, the dose 

has a major impact on tissue penetration. We simulated tumor efficacy with a Cmin of 500nM, 

10nM, and no minimum threshold in toxicity needed for cell death (Appendix Fig. A.5). The latter 

scenario assumes a pure Michaelis-Menten relationship where any drug concentration, no matter 

how small, has some impact on cell viability. If this were the case, the carrier dose is virtually 

always beneficial prior to saturation of the tumor. This can be explained in terms of the number of 

cells reached and probability of cell death. If efficacy is the product of the number of cells targeted 

by the ADC multiplied by the fractional cell killing, the number of cells reached increases linearly 

with the total antibody dose. The fractional cell killing for payload concentrations well below the 

𝐾K results in close to, but always slightly less than, a linear decrease. Therefore, a carrier dose 

would always improve the overall product under these assumptions. However, most drugs exhibit 

some threshold below which there is no detectable response, so it was important to explicitly define 

a minimum concentration needed for cell death regardless of the pharmacodynamic model used 
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(including the Michaelis Menten model in this work). If a carrier dose reduces the payload uptake 

below this amount, a dramatic loss in efficacy is seen. 

 

Figure 2.5 Influence of carrier dose on tumor efficacy 
(A-D) The simulated efficacy of coadministration of trastuzumab with T-DM1 at 21, 30, 40, and 
50 days, respectively, is shown for 3.6 mg/kg T-DM1 and trastuzumab to T-DM1 ratios from 0:1 
to 24:1. Efficacy drops at higher concentrations of trastuzumab due to tumor saturation and/or 
reducing the number of payloads per cell below the threshold needed for cell death. N = 100 
simulations for each bar. (E) Density plot for cells in the simulation (live or dead) receiving 
particular intracellular payload concentrations was calculated at 48 hours. Here, the area under the 
curve of the density function represents the probability of getting an intracellular payload 
concentration value between a range of payload concentration values. The number of cells that 
receive no drug decreases (arrow on the left) with an increasing carrier dose increase evidencing 
an improvement in distribution. However, the payload concentration per cell decreases with an 
increasing carrier dose (arrow on the right)  
 

To simulate cells that are more resistant to the payload (i.e. the potency is decreased), Cmin 

was set to a 500 nM intracellular concentration needed to induce some cell death. In this case, even 

a 1:1 carrier dose starts to decrease overall efficacy (appendix Fig. A.5). This highlights how 

diluting the ADC to achieve better drug penetration depends on the potency of the payload to reach 

a minimum threshold while reaching the largest number of cells.  
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The Impact of the Carrier Dose is Dependent on the Average Tumor Expression of HER2 

ADC distribution within a tumor also depends on the number of receptors per cell.89, 31, 30 

As seen in previous work, a higher number of receptors decreases drug penetration into the tumor, 

and for those tumors, higher doses of coadministrated trastuzumab are needed to improve efficacy 

compared to tumors with lower receptor density. For this reason, the optimal drug regimen is 

dependent on the average number of receptors per cell in the tumor.  

 

Figure 2.6 Interplay of dose and receptor density. 
(A) Bound concentration of T-DM1with coadministration with trastuzumab (ratios trastuzumab to 
T-DM1 from 0:1 to 12:1) for tumors with different receptor densities. The Thiele modulus 
(calculated using total antibody dose) shows saturation when the value is less than ~ 0.2. (B) 
Average tumor volume at 30 days for different treatment regimens and tumors with different 
average receptor densities. The optimal carrier dose is dependent on receptor expression with 
higher trastuzumab doses needed for higher receptor expression. With the potency of this ADC, 
no efficacy is seen below 50,000 HER2/cell (Appendix Fig A.6). 
 

Tumors with different HER2 receptor expression levels were simulated with various drug 

regimens, and the results are shown in Figure 2.6.A. Regimens with doses of trastuzumab and T-

DM1 at 0:1, 1:1, 3:1, 8:1, and 12:1 were simulated for tumors with average of 0.1, 0.2, 1, and  2 

million receptors per cell. The Thiele modulus, a dimensionless number that predicts the antibody 
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saturation level in tumors 7 is listed in each box. For levels below ~0.2 the tumor is saturated.2 For 

tumors with lower HER2 expression, e.g. an average of 0.1 million receptors per cell, the best 

efficacy occurs at lower total antibody concentrations. However, at very low receptor expression 

levels, such as < 50,000 HER2 per cell, no response was observed as the minimum accumulation 

of payloads inside the cell to lead to efficacy is not reached (appendix Fig A.6). For tumors with 

higher expression density (e.g., 2M receptors per cell), the best treatment with coadministration 

occurs at higher doses of total antibody. However, at lower receptor expression, increasing the 

total antibody coadministered can actually decrease efficacy (Figure 2.6.B). 

 

Single Dosing with Coadministration is Better than Coadministration with Fractionated Dosing 

Previous work has demonstrated that fractionated doses can lead to similar efficacy, but 

better tolerability compared to single dosing. We simulated fractionated dosing treatment with 3 

weekly doses of 1.2 mg/kg of T-DM1 and compared it with a single dosing (3.6 mg/kg). The 

maximum concentration (Cmax) of single dose antibody in the plasma (3.6 mg/kg) is much higher 

than the Cmax of fractionated dosing as shown in Figure 2.7.A. However, the area under the curve 

(AUC) for these two regimens is the same. With the same total administered dose at the end of 3 

weeks, the efficacy of fractionated dosing is reduced but not significantly different than a single 

dose as shown on Figure 2.7.C. This is in agreement with reports by Hinrich et al. and Jumbe et 

al. showing lower efficacy when fractionating an ADC dose,109, 110 but not significant differences 

in the case of Hinrich et al. 

We also simulated single dosing and fractionated dosing for different carrier dose regimens 

of 1:1, 3:1, and 8:1 as shown in Figure 7.B-F. Here, for example, an 8:1 fractionated dose is equal 

to 3 weekly doses of 1.2 mg/kg T-DM1 coadministered with 9.6 mg/kg of trastuzumab. Our results 



 

 39 

predict that at higher carrier doses (e.g. 8:1), dose fractionation results in much lower efficacy than 

for single dosing regimens with the same carrier dose. Although more cells are reached by the 

higher total antibody dose, e.g. 8:1 regimen, the lower T-DM1 concentration in each dose plus the 

dilution that occurs by adding a carrier decreases payload concentration per cell below the 

minimum needed for efficacy 

 

  

Figure 2.7 Simulations of fractionated dosing with and without a carrier dose for NCI-N87 
tumor xenografts. 
(A) Plasma concentration of T-DM1 for a single 3.6 mg/kg dose or 3 fractionated doses at 1.2 and 
2.4 mg/kg. (B) Single T-DM1 versus total antibody concentration clearance for single and 
fractionated dosing at 3:1. (C–F) Simulated tumor volumes for the coadministration of trastuzumab 
to T-DM1 at 0:1, 1:1, 3:1, and 8:1 ratios are shown, respectively. Each plot compares a single 
bolus dose of 3.6 mg/kg to 3 weekly fractionated doses at 1.2 and 2.4 mg/kg T- DM1. In general, 
fractionation lowers efficacy due to reduced tissue penetration. This is exacerbated with high 
carrier doses (e.g., 8:1) because the lower payload delivery is significantly diluted below a 
threshold needed for cell death. This can be compensated, however, by increased tolerability if a 
reduction in toxicity allows larger ADC doses to be administered (e.g., 2.4 mg/kg weekly versus 
3.6 mg/kg every 3 weeks). 
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One benefit of dose fractionation is greater tolerability. In the clinic it has been shown that 

the maximum tolerable dosing for T-DM1 is 3.6 mg/kg every 3 weeks or 2.4 mg/kg every week.124 

We therefore simulated weekly doses of 2.4 mg/kg T-DM1 with different carrier levels, which led 

to better predicted efficacy. With regimens of 2.4 mg/kg every week for 3 weeks, the total T-DM1 

concentration is increased. Therefore, fractionated dosing with a carrier dose can be beneficial if 

this allows an increase in the total ADC dose reaching more cells with a lethal concentration of 

payload. 

 

Model Calibration in Vivo Matches Drug Efficacy in Vitro 

The pharmacodynamic model, calibrated to the in vivo data, also captures the toxicity of in 

vitro experiments (appendix Fig A.7). Originally, the pharmacodynamic model parameters were 

fit to in vivo data (Fig. 2.3.C-D) because it was not clear if the sensitivity of the cells in the tumor 

microenvironment would be different than in cell culture. Using the same parameters for in vivo 

calibration to simulate toxicity curves in vitro (either single-agent or coincubation of trastuzumab 

and T-DM1), the curves were similar to previously published results in our lab. Therefore, in this 

system, there did not appear to be a major shift in potency in vitro versus in vivo. 

 

2.6 Discussion 

The complexity of ADC development, encompassing the antibody design, target selection, 

linker development, payload potency, dosing regimen, along with delivery barriers, tumor 

heterogeneity, patient variability, and potential for drug combinations, requires tools beyond 

cellular and animal efficacy-based screening to efficiently identify compounds and drug regimens 

for clinical success. Agent-based modeling is a powerful tool to capture both the multiscale and 
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heterogeneous distribution of ADCs within tumors and also single cell responses and overall tumor 

efficacy (Fig. 2.1). A significant advantage of the current ABM model compared to previous ADC 

models is the ability to look at individual cellular responses for simulating pharmacodynamics, 

unlike our previous Krogh cylinder model which mainly captures pharmacokinetics. Here, we 

simulate the tumor environment in the context of many irregularly placed blood vessels, with some 

functional while others are not, capturing the irregularity seen in experimental data (Fig. 2.2).  

Another advantage of the ABM is the ability to capture the cellular level pharmacodynamic 

behavior of ADCs. Recent advances in pharmacodynamic modeling of ADCs have started 

incorporating tissue gradients89 or cellular heterogeneity (e.g., antigen positive and negative 

cells).112, 80 In the current model, by simulating individual cells within tissue-scale drug gradients, 

we capture both these effects across thousands of cells. An ABM enables direct comparisons 

between single cell PK/PD data gathered in the lab and the computational model.  

Treating a solid tumor as a homogeneous unit could overlook important effects of drug 

treatment regimens such as adding a carrier dose. Here, our model captures the correct drug 

distribution and efficacy of different regimens as compared with in vivo data from our lab (Fig. 

2.2, 2.3, and 2.4), demonstrating that our model is a powerful tool to capture ADC and antibodies 

administration in the tumor environment.  

The simulations also provide a series of predictions (Fig. 2.5, 2.6, and 2.7) that can aid in 

the development of drugs and design of new experiments. Although achieving greater tissue 

penetration (up to tumor saturation) has been shown to improve efficacy for tumors with high 

antigen expression treated with T-DM1, increasing the total antibody dose too much can also 

diminish cellular cytotoxin uptake and therefore lower efficacy (Fig. 2.5A-D). These results are 

dependent on the delivery (antigen expression, internalization rate, tumor vascularization, etc.) and 
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payload efficacy (linker cleavage, payload potency, etc.) necessitating a quantitative analysis for 

each individual ADC case rather than extrapolating the model results to all systems. 

In addition to the payload potency, another important consideration in adding a carrier dose 

to the regimen is the average tumor target expression. For tumors with lower antigen expression, 

adding a carrier dose results in no improvement, and potentially lowers the efficacy. This is seen 

for regimens in tumors with lower antigen expression such as £ 100,000 receptors per cell. In these 

tumors, single-agent ADC dosing at 3.6 mg/kg already saturates the tumor, delivering the 

maximum cytotoxin potency to the tumor cells (Fig. 2.6). Adding a carrier dose to those tumors 

can only reduce the concentration of payload per cell. However, for even lower antigen expression 

such as 50,000 receptors per cell, even with ADC alone, there is not enough payload per cell to 

cause a tumor response (appendix Fig A.6). For this reason, administering a carrier dose must be 

considered in the context of the target’s average tumor expression and payload potency. 

A major consideration in the development of ADCs is the drug to antibody ratio.125 T-DM1 

has an average DAR of 3.5, but adding a carrier dose reduces the average DAR in circulation (e.g., 

DAR 3.5 at 3.6 mg/kg compared to DAR 1.75 at 7.2 mg/kg dose – or 1:1 regimen). Lowering the 

DAR allows higher antibody doses because toxicity is typically driven by the payload dose. In the 

absence of DAR-dependent effects (such as DAR-dependent clearance and DAR-dependent 

deconjugation),126 lowering the average DAR by adding unconjugated (DAR 0) antibody is 

equivalent to lower the DAR of the ADC alone. However, DAR-dependent effects could lead to 

higher ADC exposure (AUC) for a lower DAR on the ADC compared to adding a carrier dose. 

The lower ADC DAR could improve efficacy by increasing tumor exposure from a higher AUC, 

but it also has the potential to change the toxicity profile (e.g., less deconjugation resulting in 

higher exposure to tissues such as the eye). Conversely, increasing the DAR of an ADC is expected 
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to increase the toxicity (at a constant antibody dose), lowering the maximum tolerated dose 

(MTD). The lower antibody dose can result in challenges such as target-mediated drug disposition 

and increased intratumor heterogeneity, which can reduce efficacy. Interestingly, some site-

specific conjugation strategies result in lower DAR,127 and lower potency payloads (e.g., 

topoisomerase inhibitors) also allow higher antibody doses to be administered, which can result in 

improved tissue distribution at the MTD. 

Reaching the maximum number of cells with the minimum payload needed for efficacy is 

also a subject of attention in fractionated dosing. With single-agent ADC dosing, fractionating the 

dose only results in slightly lower efficacy, likely because single dosing was probably overkilling 

perivascular cells. However, fractionated doses with coadministration of the carrier dose 

significantly decreased efficacy compared to a single bolus dose with a carrier at the same ratio 

(e.g., 8:1, Fig. 2.7). The lower T-DM1 concentration per dose and dilution of the payload from the 

carrier dose pushes too many cells below a lethal number of payloads per cell. However, 

fractionated dosing can increase tolerability, which leads to the possibility of increasing ADC 

dosing and tumor drug exposure. The coadministration of ADC with carrier and fractionated 

dosing can provide not only better tumor penetration but also greater AUC and total payload tumor 

uptake. Therefore, our results show that fractionated dosing can be beneficial if it improves 

tolerability enough to increase the dose and overcome the decreased tissue penetration caused by 

a lower Cmax, consistent with previous publications on fractionating dosing (appendix Fig A.8).110 

This is the approach taken with the clinical dosing for enfortumab vedotin, currently in phase III 

clinical trials with a 1.25 mg/kg weekly dose.128 

The current model has several limitations. Although this model is helpful in capturing the 

tumor growth efficacy of ADCs, it currently does not capture the development of resistance that 
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could occur when cancer cells are exposed to diluted drug concentrations.129 All the cells in this 

model are sensitive to the drug, and the results here have indicated that the best regimens are found 

with increased drug distribution even at lower payloads per cell. The trade-off in increased efficacy 

versus increased risk of resistance is complicated by other factors such as tissue-level secondary 

drug effects (e.g., collapse of vessels in heavily treated areas) and additional mechanisms of action 

(e.g., immune cell interactions) described below. For this reason, regimens that select resistant 

cells and stimulate cell mutation should be studied in the future with this model.    

We calibrated our model to in vivo toxicity, and our probabilities could have overestimated 

cell killing due to secondary effects from the drug treatment. Cancer cells in vivo can die through 

direct and indirect mechanisms. For example, as cancer cells around a blood vessel die, blood 

vessels can also collapse, limiting the oxygen and nutrient delivery to other cells nearby. This may 

alter cell death or proliferation rates locally and could be considered in future work. Further work 

might also consider other sources of heterogeneity, such as heterogeneous antigen receptor 

expression, and the simultaneous actions of the immune system toward killing tumor cells. Despite 

these caveats, our model results reasonably match the toxicity from in vitro experimental data 

(after accounting for a faster doubling time and lack of transport limitations, which are important 

considerations for in vitro/in vivo correlations).80 In addition, our model results agree with IC50 

values found in previously publications.9 

Finally, our current model does not take into consideration the immune system in 

combating cancer, including multiple mechanisms of action through the antibody Fc domain.130 In 

fact, ADCs have been shown to be more effective in immunocompetent animal models.29 

Fortunately, our computational model has the potential to study and incorporate the probabilistic 

behavior of the immune system in response to these therapies, as already established in our lab for 
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the study of an infectious disease.125, 131 Once appropriately calibrated to a particular ADC, the 

model also has the potential to be used to set preclinical benchmarks for targets with expression 

levels quantified by immunohistochemistry or even personalizing treatment with individualized 

dosing.132 Therefore, this ABM has the capability of addressing the complexities in ADC therapy 

including the impact of carrier doses and dosing regiments on the heterogeneous tissue delivery 

and single-cell responses demonstrated here. 

 

2.7 Conclusion 

We developed a hybrid ABM to capture heterogenous drug delivery of ADCs and 

individual cellular responses and to predict tumor growth curves and overall efficacy. The ABM 

enables detailed depictions of heterogeneous vascularization and ADC delivery, cancer cell death, 

tumor growth, and treatment efficacy following different drug regimens. The model results 

demonstrate that a carrier dose of unconjugated antibody can improve efficacy if the number of 

cells reached by the ADC outweighs the reduction in targeted cell killing, which depends on 

expression, payload potency, and dosing. This will result in the largest number of cells receiving 

a lethal dose. Likewise, fractionated dosing can improve efficacy if increased tolerability allows 

higher ADC dosing to overcome the loss in tissue penetration from a lower Cmax. By incorporating 

multiple competing effects within the tumor microenvironment, the simulations can aid in the 

development of new drugs and targeted therapies. 
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Chapter 3 A Prediction of the Selection of Resistant Cells by T-DM1 and T-
MMAE in Coadministration Regimens with Trastuzumab 
 

The goal of this chapter is to predict distribution and efficacy of coadministration regimens 

of ADCs with bystander (T-MMAE) or non-bystander payloads (T-DM1) with their unconjugated 

antibody trastuzumab in heterogeneous tumors. This was achieved by updating the model 

presented in Chapter 2 to capture intratumor heterogeneity with respect to receptor expression and 

intrinsic resistant that was used to also predict the selectivity of resistant cells by these regimens. 

 

3.1 Abstract 

Intratumoral heterogeneity is one of the main causes of treatment failures leading to tumor 

recurrence with worse prognosis. For the antibody-drug conjugate ado-trastuzumab emtansine (T-

DM1), two major types of resistance include changes in HER2 expression and reduced sensitivity 

to the payload, often exacerbated by heterogenous HER2 expression and ADC distribution in the 

treatment. ADCs with bystander payloads such as trastuzumab-MMAE (T-MMAE) have the 

ability to reach and kill adjacent cells with lower receptor expression that cannot be targeted 

directly with the ADC. Additionally, coadministration of T-DM1 with its unconjugated antibody 

(trastuzumab) can improve distribution and minimize heterogeneous delivery. However, the 

effectiveness of trastuzumab coadministration and ADC bystander killing in heterogenous tumors 

and the selection of resistant cells are not clear. Here, we use an agent-based modeling platform to 

predict outcomes with these different regimen combinations. The simulations demonstrate that 

both T-DM1 and T-MMAE benefit from trastuzumab coadministration for tumors with high 
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average receptor expression, with greater benefit for non-bystander payloads. However, the benefit 

decreases as receptor expression is reduced, reversing at very low concentrations for this resistance 

mechanism that impacts both the ADC distribution and efficacy. For tumors with intrinsic payload 

resistance, coadministration with both ADCs uniformly exhibited better efficacy than ADC 

monotherapy. Finally, we demonstrated that several regimens select for resistant cells, highlighting 

the need to pursue other mechanisms of action for durable treatment responses. 

 

3.2 Background 

One of the main causes of treatment failures for therapies that target HER2 receptors is 

intratumoral heterogeneity, which leads to cancer relapse with a worse prognosis.133 The 

combination of incomplete cell killing and tumor heterogeneity is a widespread problem in 

chemotherapy that can result in selection of resistant cell populations. Residual tumor cells left 

from previous treatment are the major cause of tumor recurrence as treatments are rarely able to 

eradicate all cancer cells.134, 135 Finding approaches to eliminate all tumor cells is a very 

challenging task in the development of effective treatments that avoid tumor relapse.  

Antibody-drug conjugates such as ado-trastuzumab emtansine (T-DM1), commercially 

known as Kadcylaâ, are a type of targeted therapy approved by the Food and Drug Administration 

(FDA) for HER2 overexpressing breast cancer relapsed from treatment with trastuzumab 

(Herceptinâ).136 T-DM1 efficacy has been linked closely to HER2 expression, and its efficacy 

decreases with the decrease in HER2 expression.33 Recently, Bon et al have shown that patients 

that are previously treated with pertuzumab (also a HER2 monoclonal antibody targeting agent) 

have reduced HER2 receptor availability making T-DM1 not as effective as a second-line 

treatment for patients previously treated with trastuzumab/pertuzumab as a first line regimen.137 
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Unfortunately, T-DM1 resistance is not limited to HER2 expression, but other forms of resistance 

such as binding site barrier, defective internalization, drug efflux pumps, and lysosomal proteolytic 

activities make both acquired and intrinsic resistance a major problem.33, 138-140 In this chapter, I 

will focus on two types of resistance mechanisms: reduced HER2 expression as a mechanism that 

impacts both tissue distribution and cellular potency, and payload sensitivity, which impacts cell 

potency alone. 

New ADC mechanisms and administration regimens have been shown to potentially 

overcome some of the barriers and resistance mechanisms to treatment. Some ADCs, for example, 

may contain linkers and payloads like MMAE that are more lipophilic than the DM1-lysine 

conjugate released by T-DM1, and have the ability to enter adjacent cells by crossing the cell 

membranes once they are released inside ADC-targeted cells. This mechanism is known as the 

bystander effect, and if the payload reaches sufficient concentration, adjacent cells that cannot be 

directly targeted by the ADC may be killed. This has been one approach proposed to kill cells that 

are resistant due to lower receptor expression. 

An approach to improve heterogenous drug distribution, also known as the binding site 

barrier, during T-DM1 administration is coadministration with its deconjugated antibody 

trastuzumab. ADC monotherapy with T-DM1 at a clinical dose (3.6 mg/kg) shows that the drug is 

localized around blood vessels in solid tumors, and most of the tumor does not receive the 

treatment.16 As shown by Cilliers et al, coadministration of trastuzumab and T-DM1 can improve 

penetration and efficacy of these in solid tumors.31 At the same time, this co-administration reduces 

the number of payload for the targeted cells, thereby making these cells theoretically more 

susceptible to continued growth and division. However, it is not clear how antibody 
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coadministration can influence the selection of more resistant cells alongside bystander effects, 

which can potentially alter the risk of tumor relapse. 

Quantifying the distribution, uptake, and efficacy of ADCs with and without 

coadministered antibody in heterogeneous tumors treated with bystander payloads in comparison 

to non-bystander payloads is important but time-consuming work that requires extensive animal 

experiments. These studies are also compounded by potential growth differences among sensitive 

versus resistant cell phenotypes and the large tumor growth variability present in animal models, 

requiring large cohort sizes. Here, we use a validated agent-based model described previously 

(Chapter 2 and 141) to quantify how ADCs with bystander payloads modulate efficacy in 

heterogeneous solid tumors, both with and without coadministered antibody, specifically focusing 

on overall efficacy and selection of resistant cells. In particular, we focus on three main questions: 

1) How do carrier doses and bystander effects (MMAE vs. DM1) impact the distribution, uptake, 

and efficacy of ADC treatment in tumors with heterogeneous HER2 expression? 2) Do carrier 

doses and bystander effects show the same result when cell sensitivity to the payload does not 

impact tumor distribution? And 3) How do different coadministration regimens affect the selection 

of resistant cells, which could lead to resistant tumor relapse?  

 
3.3 Methods 

We extended our hybrid agent-based model framework, introduced in 141 and Chapter 2, to 

incorporate additional physical and biological phenomena. Briefly, the model is comprised of cells 

and blood vessels that behave based on probabilistic rules and their microenvironment. The 

previous model described: plasma dynamics (clearance), drug dynamics (ADC mechanism for 

non-bystander payloads), and cell dynamics (e.g., cell division, death) that impact the tumor 

volume in our simulations. Here, the model is extended to include: 1) angiogenesis, allowing us to 
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look at treatment over longer periods of time, 2) heterogeneous receptor expression and/or internal 

sensitivity of cancer cells to payloads, and 3) bystander payloads. These additional features allow 

us to compare coadministration of T-DM1 and T-MMAE with trastuzumab in different tumor 

environments (Figure 3.1). 

Simulation Environment and Framework 

 

Figure 3.1 Model Schematic 
(A) ABM environment is composed of cancer cells with different characteristics (e.g. different 
number of receptors or sensitivity to treatment). B) The model will test different regimens: 1) 
single agent administration (top panel) vs coadministration (bottom panel) and 2) bystander (right 
column) vs non-bystander payloads (left column). The model can be used to examine these 
regimens for cell populations containing resistant cells. 
 

The model is a 2D representation of a tumor section that contains cells and blood vessels 

on a lattice of several thousand cells. The cells and blood vessels have different states, i.e., alive 

or dead for cells and functional and non-functional for vessels, and they occupy specific positions 

on the simulation grid. Each cell occupies a volume of 2 x 10-12 L (12.6 𝜇m on a side), and the 

initial tumor, which has about 1940 cells, is assumed to represent an initial tumor volume range of 
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200-300 mm3. ADCs enter the tumor through active blood vessels, and the functional vessel 

density changes based on the tumor size. Cells change their state from alive to dead based on the 

concentration of payload bound to microtubules inside of the cells. The plasma dynamics, drug 

dynamics, and agent dynamics (cancer cell and blood vessel dynamics) are synced as described 

previously.104 Cells were assigned either 1 million receptors/cell or 50K receptors/cell, and the 

fraction of cells in each category could be varied. Placement of cells with either receptor number 

was random on the grid. 

 

ADC Dynamics with Bystander Effects 

 For distribution studies, drugs are administered as a single administration on day 0, and 

their dynamics inside the host is described with ordinary and partial differential equations. Drug 

dynamics with bystander effects were previously published using a Krogh cylinder model in our 

lab.30 The same equations, also shown in Appendix B.1-B14, were added to ABM model. Briefly, 

as shown in Appendix Figure B.1.A and B.1.B, T-DM1, T-MMAE, and trastuzumab are cleared 

from the plasma biexponentially, while they can at the same time extravasate into the tumor, 

diffuse through the interstitial tissue, bind to HER2 receptors, and be internalized. After ADCs are 

degraded in lysosomes, the payloads Lys-SMMC-DM1 (referred to as “DM1” henceforth) and 

MMAE, from T-DM1 and T-MMAE respectively, enter the cytoplasm and either bind to 

microtubules or leave the cell. Both payloads in the interstitial tumor tissue also have the ability to 

enter cancer cells directly, but at different rates determined by their individual properties. All 

parameters and rate constants for model dynamics are shown in Table 3.1. 
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Table 3.1 Model Parameters 

Parameter Value Unit Description Reference 
k10 4.55 x 10-6 s-1 Total antibody clearance 114 
k12 8.06 x 10-6 s-1 Antibody clearance for compartment 1 to 2 114 
k21 1.33 x 10-5 s-1 Antibody clearance for compartment 2 to 1 114 
V1 1.2 x 10-3 L Volume central compartment 141 
kon 7.1 x 105 M-1s-1 ADC binding rate constant 13 
Kd 0.5 nM  ADC dissociation constant 13 
koff 3.5 x 10-4 s-1 ADC dissociation rate constant 13 
ke 3.3 x 10-5 s-1 ADC internalization rate constant 7 
kdeg 8 x 10-6 s-1 ADC lysosomal degradation rate constant 111 
kin,DM1 5.95 x 10-5 s-1 DM1 rate constant from the lysosome to cytosol 30 
kin,p DM1 5.95 x 10-5 s-1 DM1 cell internalization rate constant 30 
kout DM1 3.94 x 10-5 s-1 DM1 rate constant from the lysosome to cytosol 30 
kin,MMAE 1.41 x 10-3 s-1 MMAE rate constant from lysosome to cytosol 30 
kin,p MMAE 1.41 x 10-3 s-1 MMAE cell internalization rate constant 30 
kout MMAE 6.87 x 10-4 s-1 MMAE rate constant from lysosome to cytosol 30 
kon,p  8.33 x 10-6 nMs-1 DM1 and MMAE binding rate constant to intracellular target 86 
koff,p  0.003 s-1 DM1 and MMAE unbinding rate constant 86 
DARDM1 3.5 - DM1 to antibody ratio 118 
DARMMAE 4 - MMAE to antibody ratio 114 
Rs 2.75 x 10-11 M/s Target synthesis 117 
Ttotal 5 x104 - 1x106 receptors/cell Total targets per cell Varied 
ε 0.24 - Intracellular void fraction of ADC and Ab 119 
εpay 0.44 - Intracellular void fraction of payload 15, 30 
DADC 1 x 10-11 m2/s Effective Diffusivity of ADC and Ab 6 
DDM1 9.8 x 10-12 m2/s Effective Diffusivity of DM1 30 
DMMAE 1.4 x 10-11 m2/s Diffusivity of MMAE 30 
PADC 3 x 10-9 m /s Vascular permeability of ADC and Ab 120 
Ppay 1 x 10-4 m/s Vascular permeability of the payload 6 
Pmax, DM1 0.0014 - Maximum probability for cell killing for MMAE Calibrated 
Km, DM1 800 nM Michaelis-Menten constant for DM1 Calibrated 
Pmax, MMAE 0.006 - Maximum probability for cell killing for MMAE Calibrated 
Km, MMAE 600 nM Michaelis-Menten constant for MMAE Calibrated 
td (in vivo) 5-17 days In vivo doubling time Calibrated 
td (in vitro) 1-2.5 days In vitro doubling time Estimated 

*1 million receptors per cell corresponds to 833nM receptors where each cell occupies about 2x 10-12 L.  

 

Vessel Dynamics 

 While tumors form new blood vessels to sustain tumor growth (angiogenesis), the 

functional or active vessel density is also known to decrease in tumors.  In this model, locations 

on the grid blood vessels (functional and non-functional) were placed before the start of the 

simulations. The initial densities of total blood vessels and active blood vessels were calibrated as 
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shown in 141. At each agent time step, new blood vessels become functional as tumor size increases, 

but the overall vessel density decreases. This is done by calculating the fraction of active blood 

vessels at each agent time step and comparing it with the tumor volume at that exact time and with 

its initial fraction of active blood vessels set at the beginning of the simulation as shown in 

Equation 18. 

𝑓L = 𝑓𝑟Q(𝑎𝑉RS)     (18) 

where 𝑓L is the active fraction of blood vessels at the agent time step,  𝑓𝑟Q is the active fraction of 

blood vessels assigned at the beginning of the simulation, 𝑉 is tumor volume at the agent time step 

(mm3), and 𝑎 and 𝑏 were fit to experimental data and has values of 4.64 and 0.28 respectively, 

(Appendix Fig B.2).142 With this method, the overall decrease in active vessel density that occurs 

at the same time that a new blood vessels are formed with the increase in tumor volume is captured. 

As shown in Appendix Fig B.3, the addition of angiogenesis better fits the experimental data with 

fractionated doses as compared to our previous version of the model with static vessel distribution. 

 

Cell Dynamics and Model Calibration 

Cells proliferate and die during the simulation progression. All cells in the tumor in each 

simulation proliferate with the same doubling time, and each simulation has a different doubling 

time calibrated to experimental data with values from 5 to 17 days. Cancer cells change their states 

from alive to dead based on the concentration of payloads bound to the microtubules inside of the 

cell. The probability of cell killing per agent time step are represented by the Michaelis-Menten 

Equation (Appendix B.15). The maximum probability for cell killing and the Michaelis-Menten 

constant for DM1 (T-DM1) and MMAE (T-MMAE) were calibrated and validated to experimental 
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data from Cilliers et al31 and Singh, et al143, 144 using CaliPro, a calibration protocol for parameter 

estimation.145 Results are shown in Appendix Fig. B.4 and B.5. 

 

In vivo efficacy in xenograft model 

 All animal studies were conducted according to University of Michigan Institutional 

Animal Care and Use Committee. NCI-N87 cells were purchased from ATCC and grown at 37°C 

with 5% CO in RPMI1640 growth medium supplemented with 10% (v/v) FBS, 50 U/mL 

penicillin, and 50 µg /mL streptomycin. Mycoplasma testing was performed yearly using the 

Mycoalert Testing Kit (Thermo Fisher Scientific, NC971983). Cells were cultured 2 to 3 times per 

week up to passage number 40 (approximately 2.5 months). For the xenograft studies, 5 x 106 NCI-

N87 cells were inoculated in the rear flank of 4-8 weeks old female nude (Foxn1mu/mu) mice 

from Jackson Laboratories. Tumors were measured with calipers every other day, and the tumor 

volume was calculated as length x width2 / 2. When tumors reached approximately 250 mm3, 3 

doses of T-DM1 at 2.4mg/kg were given at days 0, 7, and 14. Tumors were monitored until the 

tumor reached 2000 mm3, or until the tumor ulcerated. 

 

3.4 Results 

 
Bystander Payload Reaches More Cells Although at Lower Concentration  

 First, the payload concentration of MMAE and DM1 was quantified by simulating the 

distribution and uptake of ADCs and their respective payloads for 3.6 mg/kg of T-DM1 with DAR 

3.5 (clinical dose) and 1.8 mg/kg of T-MMAE with DAR 4. The results shown in Figure 3.2 reflect 

the maximum peak that occurs at 24 hours for the ADCs bound on the surface of the cells and at 

day 4 for microtubule-bound payload. As seen in Figure 3.2A and 3.2.B, T-DM1 at 3.6 mg/kg 
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reaches more cells than T-MMAE at 1.8 mg/kg, consistent with increased penetration of a higher 

antibody dose. Appendix B.6 also shows the comparison between these two ADCs for the same 

dose and DAR where both ADCs reach the same number of cell receptors. However, for both of 

these doses, the payload MMAE reaches more cells than DM1 (Fig 3.2.C, Fig 3.2.D, Appendix 

Fig B.6.C and Fig B.6.D), consistent with previous results from the Krogh cylinder model and as 

expected given the bystander effects for MMAE.30 

The single cell analysis capabilities of the ABM were used to quantify the penetration of 

MMAE in comparison to DM1, measured by percentage of cells with concentrations greater 

than150nM (>150nM), in between 150nM and 1nM (150nM > x > 1nM), and smaller than 1nM 

(< 1nM) for all the four scenarios (3.6mg/kg T-DM1 with DAR 3.5, 3mg/kg T-DM1 with DAR 3, 

1.8mg/kg T-MMAE with DAR4, and 3mg/kg T-MMAE with DAR 3), as shown in Fig 3.2.E and 

Appendix Fig B.6.E. For T-MMAE administration, all cells are reached by MMAE, and the 

majority of the cells receive concentrations between 150nM and 1nM. In contrast, DM1 reaches 

fewer cells, and the majority of targeted cells receive concentrations higher than 150nM. Many 

cells in T-DM1 administration receive very little DM1, demonstrating a more heterogeneous 

distribution. These data capture the bystander effect of payloads such as MMAE that reach more 

cells with lower concentrations than the non-bystander payload, which is a consequence of the 

payload’s lipophilicity and ability to diffuse into adjacent cells.  
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Figure 3.2 ADC and payload distribution 
(A-B) Distribution of T-DM1 (3.6mg/kg with DAR 3.5) and T-MMAE (1.8 mg/kg, DAR 4) bound 
on the surface of the cancer cells. (B-C) Distribution of DM1 and MMAE bound to microtubules 
inside the cells. (E) Percentage of cells with >= 150nM, between 150nM and 1nM, and below 1nM 
at day 4 which refers to the day with maximum payload uptake for n=10. TMMAE has no cells 
with payload concentration lower than 1nM. 
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Antibody Coadministration Can Reduce Efficacy for Tumors with Low Receptor Expression  

 To compare how coadministration of trastuzumab with T-DM1 or T-MMAE impacts the 

efficacy in tumors with cell populations with different receptor expression of 1 million, we 

simulated tumors with varying fractions of cells with 1 million or 50,000 receptors per cell (ranging 

from 100% to 0% with 1M) and treated with trastuzumab to ADC dose ratios of 0:1, 3:1, and 8:1. 

The average tumor volumes at 50 days for administration of T-DM1 at 3.6 mg/kg (DAR 3.5) and 

T-MMAE at 1.8 mg/kg (DAR 4) are shown on Figure 3.3. In tumors with 60% - 100% of cells 

expressing 1M receptors, adding a carrier dose improves the efficacy for T-DM1 and for T-

MMAE. In tumors with a majority of cells having lower receptor numbers (20% to 0% with 1M 

receptors), coadministration reduces efficacy, and administration of ADC only is more efficacious. 

The reason for the poor efficacy of coadministration is as follows.  When most cells express only 

a low number of receptors, ADCs distribute more evenly in the tumor than for high receptor 

expression, increasing efficacy. Adding unconjugated antibody to the regimen (coadministration) 

puts the unconjugated antibody in competition with ADCs, and cells with fewer receptors do not 

internalize sufficient ADC for cell killing, lowering efficacy. As a control, Appendix B.7. shows 

the same regimens using cells with 1M receptors per cell versus cells with zero receptors/cell, 

demonstrating that there is no efficacy for tumors lacking receptor expression.146 

The trade-off between improved tissue distribution (pharmacokinetics) and targeted cell 

killing (pharmacodynamics) is highlighted in the shift of cell populations with high, moderate, and 

low levels of payload uptake. Appendix B.8 shows the percentage of cells with payload 

concentration greater than 150nM, between 150nM and 1nM, and below 1nM for co-

administration of T-DM1 and T-MMAE with trastuzumab for tumors with 100%, 70%, 30%, and 

0% of cells expressing 1M receptors/cell. For example, in the Appendix Figure B.8.A, fewer high 
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expression cells allow the ADC to reach more cells at concentrations >150 nM. In contrast, in 

Figure B.8.C, high coadministration (8:1) leads to fewer cells with >150 nM payload 

concentration. 

 

Figure 3.3 Treatment efficacy at 50 days for tumors with heterogeneous receptor expression. 
(A) T-DM1 regimens (3.6 mg/kg and DAR 3.5). (B) T-MMAE regimens (1.8 mg/kg and DAR 4) 
for tumors with changing percentage of 1M or 50K receptors per cell. Data is shown n=100 and 
SEM. SD is shown in Appendix B.7.  
 

Bystander Effects Mitigate Loss in Efficacy from Coadministration at Low Receptor Expression 

To better understand the role of MMAE bystander effects on T-MMAE efficacy, we 

simulated the distribution and efficacy of T-MMAE while artificially removing the payload’s 

ability to enter adjacent cells. For simulations varying receptor expression, similar to Fig 3.3, we 

set the internalization rate constant of MMAE to enter adjacent cells to zero (kinp=0) as shown on 

Figure 3.4. Comparing the distribution of Figure 3.4.E with control (Figure 3.4.B), the elimination 

of payload entering adjacent cells reduces the MMAE uptake in bystander cells, as expected. The 

tumor growth curves show modestly improved responses in general, with significant improvement 

for high co-administered doses with low receptor expression, where bystander effects help retain 
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payload concentrations at an effective concentration.  Similarly, efficacy requires that sufficient 

payload must remain inside the original cell to cause killing (Appendix Figure B.10). 

 

 

Figure 3.4 Spatial distribution of payload with bystander or non-bystander effects.   
A-C) Control distribution and efficacy for regimens for T-MMAE. D-F) Distribution and Efficacy 
for regimens of T-MMAE eliminating kinp rate constant. Simulations show mean and SEM with 
n=100. The same data is shown in Appendix Fig B.11 with SD.  

 
Coadministration Improves Efficacy with Intrinsic Resistance 

Not all mechanisms of drug sensitivity impact distribution. We simulated tumors with cell 

populations with higher Km parameter from the probability of cell killing (Appendix Eq. B15) to 

mimic cells that are naturally more resistant to treatment and predict how coadministration affects 

those tumors. For these cells, Km was doubled (Km=2x) and quadrupled (Km=4x), and 

simulations with varying percentages of more sensitive cell populations, with and without 

coadministration, are shown in Fig 3.5. For T-DM1, all the regimens with coadministration 

improve efficacy compared with ADC alone, and for these regimens, increasing the percentage of 

resistant cells worsen efficacy of all the regimens as expected (Fig 3.5.A and B). For T-MMAE, 
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coadministration for tumors with high fraction of sensitive cells also clearly show the benefit of 

the carrier dose. However, as the percentage of cells with intrinsic resistance increases, the benefit 

of the carrier dose is less evident. This is due to the high ‘dilution’ of T-MMAE with trastuzumab, 

which affects the ability to kill those more resistant cells that require a higher concentration of the 

payload despite better tissue penetration reaching more cells. 

 

Figure 3.5 Regimens with intrinsic resistance and comparison with sensitive cells. 
(A-B) Regimens with T-DM1 and TMMAE (C-D) with higher Km=2x and Km=4x to representing 
intrinsic resistance.  

 

The percentages of cells with high, medium, or low payload concentration does not change 

as the percentage of resistant cells increase.  The payload uptake between 100% to 0% is similar 

as expected (data not shown), and variations are only due to the stochasticity of the ABM. This 

confirms the lack of impact on tumoral distribution despite changes in drug sensitivity. Without 
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the ‘benefit’ of reduced receptor expression increasing tissue penetration, coadministration to 

achieve increased penetration generally results in better efficacy. 

 
Regimens with Greater Efficacy Can Select for More Resistant Cells 

We performed simulations to determine whether bystander or non-bystander payloads 

and/or different coadministrations could select for a small number of less sensitive cells to 

repopulate the tumor. Simulations were performed in which the initial tumor size was composed 

of 1% of cells with lower receptor expression (Fig 3.6.A-F), or with intrinsic resistance (value of 

Km 2x) (Fig 3.6.G-L). The average number of cells for 100 simulations are shown for 

coadministration of T-DM1 and T-MMAE with trastuzumab. In general, as the ratio of 

trastuzumab to ADC increases, efficacy is increased in T-DM1 administration and in T-MMAE 

administration in heterogenous receptor expressing tumors. However, resistant cells become a 

larger percentage of the tumor in several scenarios, showing the selection of resistant cells. 

Notably, the selection is highest for a non-bystander payload (T-DM1) at the highest 

coadministration dose (8:1). As observed in the Appendix Figure B.11, the percentage of the more 

resistant cell increases significantly. T-MMAE also had improved efficacy with higher 

coadministration for tumors with difference in receptor expression, but it showed no change in 

efficacy with coadministration for more intrinsically resistant tumors (Fig 3.6.J-L). 

MMAE presents bystander payload that allows the drug to diffuse more homogeneous 

through the tumor, but it also decreases the single-cell uptake. For intrinsic resistance that requires 

a higher concentration of the payload, T-MMAE here at 1.8mg/kg dose was not effective. Since 

bystander effects result in lower concentrations in cells than directly targeted cells, many of the 

intrinsically resistant cells distant from vessels do not receive a lethal dose.  
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Another important observation in these data was that with only 10 simulations, as shown 

in Appendix Figure B.13, the trends seen here in Figure 3.6 are lost in the tumor variability. This 

suggests that many samples must be taken to identify the most effective treatment, which may not 

be feasible with animal experiments alone. 

 

  
 
Figure 3.6 Tumor cell growth with initial composition of 1% more resistant cells vs 
sensitive cells for different regimens with T-DM1 or T-MMAE.   
(A-F) Coadministration of trastuzumab 0:1, 3:1, 8:1 with T-DM1 (A-C) and T-MMAE (D-F) 
regimens with 1% of cells with 50K receptors per cell vs 99% of 1M receptors per cell. (G-L) 
Coadministration of trastuzumab 0:1, 3:1, 8:1 with (T-DM1 (A-C) and T-MMAE (D-F) regimens 
with 1% of cells with higher intrinsic resistance (Km=2x) vs 99% of cell with Km=x. Km=800nM 
for T-DM1 and Km=600nM for T-MMAE. All simulations were n=100, and SE is plot. 
 
3.5 Discussion 

The development of ADCs has improved in the past few years, including the increased 

reliance on bystander payloads and higher antibody doses. The main goal of next generation ADCs 

is to improve the therapeutic index of these drugs by increasing efficacy while maintaining relative 
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safety.106 This could be achieved by: 1) increasing the delivery to more cells within the tumor, 2) 

balancing bystander payload physicochemical properties to reach adjacent cells with sufficient 

concentrations to induce cell killing while avoiding extensive tumor washout, and 3) driving 

immune responses to leverage alternative mechanisms of cell killing aside from the payload. In 

this work, we focused on the first two approaches. Overcoming ADC delivery challenges such as 

the binding site barrier and heterogeneous receptor expression requires strategies including the use 

of bystander payloads and coadministration regimens in order to reach cells that may not be 

directly targeted by ADCs like T-DM1. 33, 37 36 Here, we used our updated hybrid agent-based 

model to predict the various modalities of administration of ADCs with bystander or non-bystander 

payloads in heterogeneous tumors (specifically heterogeneous receptor expression and intrinsic 

resistance). This model presents an advantage to previous models because it includes single-cell 

heterogeneity, drug responses, high-resolution tuning of cancer cell and blood vessel dynamics, 

and heterogeneous ADC and payload delivery that are not achievable with commonly used 

compartmental or Krogh cylinder models.  

Bystander payloads vary in lipophilicity and potency, affecting both the ADC’s PK and 

PD. For example, MMAE has a larger lipophilicity compared to Lys-SMCC-DM1, clogD 2.01 and 

1.21 respectively.30 This changes how easily payloads cross cell membranes, how well they stick 

to proteins inside and outside the tumor cells, and the effective diffusion through the tumor tissue. 

As seen in Figures 3.4.C and 3.4.D (and Appendix B.6.C and B.6.D), this helps MMAE to 

penetrate deeper and more homogeneously into the tissue, while DM1 has a more heterogeneous 

distribution influenced entirely by the penetration depth of the intact ADC. MMAE, on the other 

hand, does not accumulate to sufficient levels inside cells reached via the bystander effect at the 
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doses given here (1.8mg/kg), but for higher doses like 3.6mg/kg, the payload reaches cells with 

higher concentrations shown to be very effective.86, 144  

Due to MMAE’s relatively high potency, the bystander scape of the payload and loss in 

the concentration are only evident in high trastuzumab ratios and in tumors with lower total 

receptor expression (e.g. 30%-0% 1M, Fig 3.4F). Other very toxic bystander payloads such as 

PBD and DGN (DNA alkylators) are also very lipophilic and have demonstrated more optimal 

bystander efficiency by balancing the difference between retention and diffusion through cells.30, 

147 However, these potent payloads must be administered at lower doses than microtubule 

inhibitors due to their toxicity. 

In general, T-MMAE and T-DM1 efficacy benefits from coadministration with 

trastuzumab for tumors with high receptor expression, but the benefit of coadministration is 

reduced and eventually lost for tumors with lower receptor expression as shown in Figure 3.3. 

Consistent with previous work by Khera et al, coadministration offers advantages for T-MMAE 

in high expression tumors, since the efficiency of direct cell targeting is greater than bystander 

killing.30 Because of the higher potency of MMAE compared with DM1, by artificially trapping 

the payload inside of the cell, MMAE benefits from higher accumulation of payload per cell 

(Appendix B.10). Figures 3.3 and 3.4 highlight the need for a balance between fast escape of the 

payload versus accumulation in cells to mediate cell death. Approaches that enable fast 

endosomal/lysosomal escape but prevent cellular escape (similar to the dolaflexin payload) could 

increase potency by locking the toxic payload inside of the cell.148 The higher efficacy of T-DM1 

and T-MMAE with increasing numbers of low-expressing cells may seem counter-intuitive. 

However, this result, where lower receptor expression improves efficacy due to better tissue 

penetration, has been observed experimentally.21, 146 
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Other diverse mechanisms of resistance can lead to intrinsic resistance wherein cells 

require a higher concentration of drug for cell killing.149 We performed simulations to understand 

how coadministration of antibody with ADCs carrying bystander and non-bystander payload in 

the presence of these resistant cells modulates efficacy. In general, the results on Figure 3.5 show 

that coadministration is better for the vast majority of tumor compositions when the resistance 

mechanism does not influence tumor distribution. A few tumor compositions with very high 

concentration of resistant cells (right side of Figures 3.5.C and D) show similar efficacy regardless 

of carrier dosing, but these regimens are ineffective overall. The benefit of the carrier dose is 

greater for T-DM1 than T-MMAE due to the ability of bystander payloads to partially compensate 

for heterogeneous tissue penetration. When the resistance mechanism doesn’t influence 

distribution, the carrier dose is more consistently beneficial with fewer trade-offs. 

In our study, we also saw that the regimens that lead to better efficacy, also lead to selection 

of more resistant cells (Fig 6.C) in comparison with other regimens. These dynamics highlight 

fundamental limitations in improving efficacy by only taking into consideration changes in dosing 

regimens of ADCs. Although these approaches are beneficial for a period of time, the reoccurrence 

of the tumor can lead to an even more resistant tumor composition which is often is seen in the 

clinic to lead to a worse prognose than from the beginning of the patient treatments. This work 

highlights the need to utilize other mechanisms of action and/or treatments, similar to combination 

therapy used with current chemotherapeutics. This could include efforts to mitigate specific 

mechanisms of resistance, such as selecting payloads that are less susceptible to drug exporters, or 

more broadly effective approaches including the stimulation of an immune response. 

The ability of the hybrid ABM to add other cells such as immune cells, in additional to the 

benefits of simulating regimens that would be impractical otherwise, make this a powerful tool to 
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study the development of this drug class. Many ADCs have already been used because of their 

immunostimulatory effects, such as combination therapy with checkpoint inhibitors and immune 

cell agonists, and these characteristics could be studied computationally to assist animal 

experiments.  In addition, computational approaches provide additional power to discern trends 

that may be lost in the noise during animal studies with small cohort sizes (Appendix Fig B.15) 

These mechanistic trends may not appear until later during development when larger studies and/or 

clinical trials are conducted. For example, when we tested the selection of resistant cells for n=10 

(Appendix Fig. 12), we could not see the trends as clear as with n=100 as shown on Figure 6. This 

supports the use of computer simulations, especially with ABMs, as an approach to help hasten 

the development of ADCs.  

 

3.6 Conclusions 

Using an updated hybrid ABM141 we tested the impact of carrier dosing and bystander 

payloads on treatment efficacy with heterogeneous cell populations and the selection of resistant 

clones. In addition to heterogeneous cell populations, the updated model included dynamic 

functional vessels to account for changes in vessel density due to angiogenesis and vascular 

collapse during repeated dosing. Finally, bystander payload effects were simulated where the 

payload can diffuse into adjacent cells or wash out of the tumor.  Two scenarios were simulated: 

changes in receptor expression, which impact both drug distribution and cellular potency, and 

intrinsic resistance that only impacts cell potency. The model demonstrated the benefit of a carrier 

dose with high receptor expression for both T-MMAE and T-DM1, with the greater benefit for 

non-bystander payloads. As the average receptor expression decreased, the benefit diminished 

until no carrier dose was more effective at low receptor density. When the resistance mechanism 
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only impacted cell potency, co-administration was more uniformly beneficial. Finally, we showed 

that several regimens efficiently selected for resistant clones, highlighting the need to pursue 

additional mechanisms of action or treatments to improve the durability of treatment response. In 

summary, by adding additional dynamics in the tumor microenvironment, these simulations can 

help guide the overall development of ADC therapies.   
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Chapter 4 Evaluating the PK/PD of Coadministration of TAK-164 with 5F9 in 
Heterogenous Tumors 
 

The goal of this chapter is to predict distribution and efficacy of coadministration regimens 

of the anti-GCC ADC TAK-164 with its unconjugated antibody 5F9 in primary human tumor 

xenograft (11C PHTX). The work in this chapter was in collaboration with Dr. Eshita Khera and 

Dr. Cornelius Cilliers who provided the experimental data. In Chapter 2, we demonstrated that 

tumors that receive heterogeneous distribution of ADCs can be improved through coadministration 

with their respective antibody. Here, we evaluated the mechanisms that modulate distribution and 

efficacy as they relate to TAK-164 and 5F9 coadministration in 11C PHTX tumors. 

 
4.1 Abstract 

The development of new antibody-drug conjugates (ADCs) has led to the approval of 5 

new ADCs by the FDA in the past two years. The ADC’s main components, the antibody, payload, 

and linker, have been designed to improve the overall delivery and efficacy of these therapeutics 

in solid tumors. Bystander payloads, for example, are of major interest in these new ADCs as these 

payloads have the potential to leave the targeted cell and diffuse into neighbor cells. This 

mechanism could improve the efficacy of ADC treatments in heterogeneous tumors (Chapter 3). 

TAK-164, an ADC composed of an anti-GCC antibody (5F9) conjugated to a DNG payload, has 

been demonstrated to have bystander effects.  In this chapter, my colleagues and I evaluated the 

distribution and efficacy of the coadministration of TAK-164 and 5F9 in primary human tumor 

xenografts (PHTX11C) which are considered more complex than single cell xenograft models. 
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Here we combined experimental and modeling approaches to understand the outcome of the 

coadministration regimens of this ADC. 

4.2 Background 

Antibody-drug conjugates (ADC) have seen significant growth in the past few years with 

a total of 9 ADCs approved and many more in the pipeline. Although ADCs have been explored 

in pursuit of a ‘magic bullet’ for about 30 years, progress has been slow until recently, with 5 of 

the ADCs were approved just within the past two years.3 However, the development of ADCs for 

solid tumors is still a challenge that depends on many complex physiochemical properties of its 

components and the complex tumor microenvironment. ADCs are composed of 1) an antibody that 

targets the receptors overexpressed in cancer cells, 2) a cytotoxic payload that leads to apoptosis, 

and 3) a linker that connects the payload to the antibody. Optimizing each of these ADC 

components individually and in concert is critical for the development more efficacious ADCs.8 

Many ADCs have a heterogenous distribution in solid tumors at clinical doses. Once given 

intravenously, ADCs extravasate blood vessels, diffuse into the interstitium, bind to receptors on 

cancer cells, and are internalized. After the ADC is degraded in the cell lysosome, the payload is 

released to kill the cell. However, because ADCs are permeability-limited and extravasate into the 

tumor slowly, little of the injected dose reaches the tumor. In addition, binding rates are much 

faster than diffusion in the interstitium (often resulting in a binding site barrier), so most of the 

ADC administrated at clinical doses is localized on tumor cells close to the blood vessels. As seen 

in Chapters 2 and 3, coadministration of ADC and its unconjugated antibody have been proposed 

as an approach for better distribution and therefore better efficacy.14, 31, 108, 141, 144  

The efficacy of the treatment is also dependent on the tumor microenvironment, which is 

not only composed of malignant cancer cells, but also many other cells and structures such as 
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immune cells, tumor vascular, stroma, and fibroblasts.46 Primary human tumor xenografts (PHTX) 

or other patient derived tumor models are known to be useful for fast preclinical screening.150 

These tumors have greater complexity and clinical relevance in comparison with cell derived 

tumor xenografts. In this chapter we will evaluate the distribution and efficacy of TAK-164 in 

these more complex tumor environments. 

TAK-164 is an ADC currently under clinical evaluation that targets guanylyl-cyclase C 

(GCC) receptors in colorectal and gastrointestinal cancers.151, 152 It consists of a 5F9 antibody 

backbone and a DNA-alkylating DGN-549 payload. Previous evaluation of TAK-164 shows 

heterogeneous distribution in some PTHX models at an estimated clinical dose (based on other 

DNA-alkylating agents) of 0.4 mg/kg.153 It has also shown strong bystander effects that could 

potentially compensate for ADC heterogenous distribution.147 

Bystander payloads have been heavily explored in the next generation of ADCs, as these 

payloads have the ability to leave the cell targeted by the ADC and enter adjacent cells. As 

discussed in Chapter 3, the efficiency of bystander payload killing depends on its ability to diffuse 

through cell membranes (lipophilicity) and kill the cells (potency) prior to washing out of the 

tumor. For example, monomethyl auristatin E (MMAE) has a higher lipophilicity (clogD 2.04) 

compared to a larger and more charged non-bystander payload like Lys-SMCC-DM1 (clogD 1.21), 

which imparts to MMAE the ability to escape the cell via diffusion across cell membranes. 

However, as shown in Chapter 3, MMAE’s absolute lipophilicity is not as high as lipophilic 

payloads (clogD ~3-6) such as pyrrolobenzodiazepine (PBD) and indolinobenzodiazepine (IGN), 

resulting in MMAE washing out from the interstitial tissue more easily. The highly lipophilic 

payloads are predicted to possess optimal properties that balance their ability to diffuse across the 

tumor interstitium and accumulate inside cells.30 However, these payloads are ultra-potent with 
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very high toxicities causing their maximum tolerable dose (MTD) in the clinic to be limited, e.g. 

~ 0.3mg/kg for PBD-based ADCs compared to 3.6mg/kg for Kadcyla®. 

 In this study, we used a combination of experimental and computational work to evaluate 

ADC modalities and the most important properties of TAK-164 that explains the results from the 

coadministration of this ADC. Next, I will present the experimental data that led to our research 

questions.  

 

Distribution and Uptake in Vivo and Comparison with Toxicity in Vitro  

Experiments showing the distribution of TAK-164 in histology tumor slices using 

fluorescence microscopy performed by Dr. Eshita Khera demonstrate better penetration with 

higher dose (1.5mg/kg compared to 0.4mg/kg) (Fig 4.1.A). In this experiment, mice bearing PHTX 

11C tumors were intravenously administrated 0.4 mg/kg or 1.5mg/kg of TAK-164 conjugated to 

the fluorophore Alexa Fluor 647. Stromal macrophages and untargeted receptors were stained ex 

vivo using anti-Mac-3 antibody conjugated to Alexa Fluor 488 and 5F9 conjugated to Alexa Fluor 

750 respectively. As seen in Figure 4.1.A, for lower dose (0.4 mg/kg on the left panel) TAK-164 

in green is distributed very heterogeneously, and 5F9 in cyan shows high prevalence of untargeted 

receptors and acinar pockets throughout the tumor. The higher dose (1.5 mg/kg on the right panel) 

penetrates deeper in the tumor tissue showing an improvement in distribution. The ex vivo staining 

for unbound receptors, however, reveals that there are still many receptors unbound at this higher 

dose, including a few acinar pockets, supporting that 1.5 mg/kg of TAK-164 is still sub-saturating. 

Additionally, the persistence of acinar pockets with high densities of receptors suggests that some 

fraction of receptors in cells in clinical tumors may have reduced accessibility by the in vivo 

administered dose (either due to physical barriers in the form of tight junctions or a dynamic 
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binding site barrier).151 

 

Figure 4.1 Increased distribution of TAK-164 with increase of the dose.   
(A)The increased antibody dose increases tissue penetration and antibody uptake while still at a 
subsaturating dose. Blood vessels (not shown) are exclusively in regions of macrophages (Mac 3 
in red). The TAK-164-Alexafluor 647 (green) distributes in a perivascular distribution reaching 
most cells at a 1.5 mg/kg dose at 3 days. More regions of untargeted antigen (cyan) are seen with 
the lower dose. Unpublished data collected by Dr. Eshita Khera. (B) 5F9 conjugated with Alexa 
Fluor 647 were giving to in vivo xenograft model at doeses 0.75, 1.5, and 3 mg/kg. Unpublished 
data collected by Dr. Cornelius Cilliers. (C) Viability and binding affinity of TAK-164 in HEK-
293-GCC cells reveal that the potency in HEK-293-GCC cells in vitro is higher than expected in 
the lower expressing PHTX models.  

 

Experimental uptake of the antibody 5F9 in xenograft models was measured by Dr. 

Cornelius Cilliers, and results are shown in Figure 4.1.C. In this experiment, the 5F9-AF647 was 

injected intravenously at 0.75, 1.5 and 3 mg/kg into PHTX 11C tumor bearing mice that were 

euthanized 24 hours post injection. The tumor was digested into a single cell suspension that was 

analyzed by flow cytometer, and the median fraction of receptors targeted was estimated as shown 

in Figure 4.1.B. As the dose increases, the uptake of antibodies per cell also increases. However, 
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doubling the dose from 0.75 to 1.5 mg/kg almost doubles the number of molecules per cell, but 

doubling the dose from 1.5 mg/kg to 3mg/kg only increases the number of molecules per cell 

approximately 25%. This uptake data suggests that saturation occurs when approaching doses of 

3mg/kg doses. 

 The efficacy of TAK-164 was determined in vitro using HEK-293-GCC cells (since the 

PHTX models cannot be grown as cell lines) and compared with the binding affinity of the 

antibody 5F9 to GCC cells. HEK-293-GCC with ~105 GCC receptors per cell was used to test the 

toxicity of TAK-164 and binding affinity of 5F9 to the antigen as shown in Figure 4.1.C. The 

results demonstrate that the IC50 in these cells are 4.6 pM while the binding affinity was about 51 

pM. Since potency is typically proportional to payload delivery, a 10-fold lower expression would 

result in ~10-fold lower potency (~46 pM). Despite the similar potency and binding affinity, the 

sub-saturating dose and heterogeneous distribution led us to test whether a carrier dose could 

improve efficacy in vivo. 

 

Coadministration of 5F9 and TAK-164 Does Not Improve Efficacy as Expected 

Dr. Eshita Khera evaluated the benefit of the coadministration of 5F9 antibody and TAK-

164 in primary human tumor xenograft model 11C PHTX with 20,000 to 30,000 GCC receptors 

per cell when analyzed for receptors expression ex vivo.147 When tumors reached ~ 100mm3, the 

mice were injected with 1.5 mg/kg dose of 5F9 (4:0), 0.4 mg/kg of TAK-164 (0:1), 

coadministration of 1:1 and 3:1 of 5F9 with TAK-164, and only saline for the control. As seen in 

Figure 4.2, coadministration of 5F9 and TAK-164 did not improve the efficacy. Given the multiple 

demonstrations of higher antibody doses and improved distribution increasing efficacy, this was 

unexpected. 14, 21, 31, 146 
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There are multiple mechanisms that could explain a lack in improved efficacy, which are 

difficult to test exclusively with animal experiments. Here, I use the computational platform 

presented previously (Fig. 4.3) in conjunction with the experimental data to determine the reason 

for a lack of improvement in efficacy despite improved tissue penetration. The mechanisms tested 

include: 1) a more diffuse binding front at low expression levels, 2) less ‘overkill’ in the PHTX 

models, 3) diminishing tumor uptake close to saturation, or 4) efficient bystander effects mitigating 

the benefit of a carrier dose. Conceptually, these mechanisms equate to 1) ‘filling up’ the first cell 

layer rather than increasing tissue penetration with a carrier dose, 2) the loss in potency on targeted 

cells compensating for the increase in the number of targeted cells, 3) a reduction in the total 

amount of payload in the tumor due to tumor saturation (blocking binding), and 4) the bystander 

payload reaching all cells regardless of the antibody dose. 

 

Figure 4.2 TAK-164 Efficacy and Survival with Carrier Dose 
Despite previous reports of heterogeneous uptake of TAK-164 in 11C PHTX tumors, a carrier 
dose does not improve tumor growth (A) or survival (B). Unpublished data collected by Dr. Eshita 
Khera. 
 

4.3 Methods 

As mentioned earlier, this work was performed in collaboration with Dr. Cornelius Cilliers 

and Dr. Eshita Khera who provided all experimental data that were explored with the 

computational model presented in Chapters 2 and 3 and updated here. In this chapter, I only 
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mention the most important aspects of the experimental methods and results. For more information 

on the experimental methods, the reader can find it in 15, 21, 115, 146. The model is a 2D representation 

of a tumor section that contains cells and blood vessels, as described previously. The cells and 

blood vessels have different states, i.e., alive or dead for cells and functional and non-functional 

for vessels, and they occupy specific positions on the simulation grid. Each cell occupies a volume 

of 2 x 10-12 L (12.6 𝜇m side grid), and the initial tumor (~1940 cells) is assumed to be 

representative of an initial tumor volume range of 75-150 mm3. ADCs enter the tumor through 

active blood vessels, the density of which changes based on vessel dynamics presented in Chapter 

3. Cells change their state from alive to dead based on the concentration of payload bound to DNA 

inside the cell. The computational model was updated from the model in Chapter 2 and 3 to capture 

the specific TAK-164 internalization, uptake, and payload kinetics. 

 

Computational model 

. The model is a 2D representation of a tumor section that contains cells and blood vessels, 

as described previously. The cells and blood vessels have different states, i.e., alive or dead for 

cells and functional and non-functional for vessels, and they occupy specific positions on the 

simulation grid. Each cell occupies a volume of 2 x 10-12 L (12.6 𝜇m side grid), and the initial 

tumor (~1940 cells) is assumed to be representative of an initial tumor volume range of 75-150 

mm3. ADCs enter the tumor through active blood vessels, the density of which changes based on 

vessel dynamics presented in Chapter 3. Cells change their state from alive to dead based on the 

concentration of payload bound to DNA inside the cell. The computational model was updated 

from the model in Chapter 2 and 3 to capture the specific TAK-164 internalization, uptake, and 

payload kinetics.  
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Simulation Environment 

We extended our hybrid agent-based model of Chapters 2 and 3 to incorporate additional 

physical and biological phenomena that occur for TAK-164, its payload DGN549, and the tumor 

environment. Briefly, our model is comprised of cells and blood vessels that behave based on 

probabilistic rules and their microenvironment. The previous model described: plasma dynamics 

(clearance), drug dynamics (ADC mechanism for bystander payloads), cell dynamics (e.g., cell 

division, death, expression type), and blood vessel dynamics that impact the tumor volume in our 

simulations. Here, we extended the model to include: 1) internalization of the antibody 5F9 and 

TAK-164, 2) uptake dynamics in vivo, and 3) payload with bystander effects which binds 

irreversibly. These additional features allow us to test how different mechanisms impact the 

efficacy of coadministration.  

To independently test these different mechanisms, we updated our computational model to 

include the parameters relevant for TAK-164 in the PHTX-11C model. All the parameters and 

rates constants for the model dynamics are shown in Table 4.1. 

 

Bystander Mechanism for DNA Alkylating Payloads  

 Drug dynamics with general bystander effects have been published previously using the 

Krogh cylinder model30 and introduced in Chapter 3. The equations of the same are shown in 

appendix C.1-C14, with the slight modification in the binding kinetics (reversible for payloads 

such as MMAE and DM1, irreversible for DGN549). Briefly, as shown in Figure C.1.A and C.1.B, 

TAK-164 and the antibody 5F9 are cleared from the plasma, leave the blood vessels, diffuse 

through the interstitial tissue, bind to GCC receptors on cancer cells, and are internalized. After 
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TAK-164 is degraded in the lysosomes, the payload DGN549 enters the cytoplasm, irreversibly 

binds to DNA or escapes the cell and enters into neighboring cells. 

 

 

Figure 4.3 Model Schematic   
(A) Plasma Dynamics for TAK-164 and 5F9. (B) Drug dynamics unreversible reaction of the 
payload DGN -549 and DNA. (C) Cells and blood vessels act as agents to capture the 11C 
dynamics and efficacy.  
 

Model of in Vitro Internalization of 5F9 

Internalization of 5F9 produces a rapid downregulation followed by recovery of the GCC 

receptors147. The same internalization was incorporated in a cellular model where it is assumed 

that all cells are exposed to 30nM of 5F9, and the internalization of free and bound receptors are 

different ( 𝑘$ < 𝑘$TQU"V)  and change from the first phase of the internalization dynamics 

(downregulation) to a second phase (recovery). In the ABM when agents are solved, the fraction 
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of receptors bound (fb) on each cell is calculated. If the cell being solved has a fraction of receptors 

bound greater than fb, an internal clock starts for that cell. Once the internal clock reaches the time 

to change the phases (tchange), the internalization 𝑘$  and 𝑘$TQU"V 	changes to the slower 𝑘$+ and 

𝑘$TQU"V+. 

 

Table 4.1 Model Parameters 

Parameter Value Unit Description Reference 
kTT 1.47 x 10-5 s-1 Total antibody clearance^ measured 
k12 4.29 x 10-4 s-1 Antibody clearance from compartment 1 to 2^ measured 
k21 4.81 x 10-4 s-1 Antibody clearance from compartment 2 to 1^ measured 
V1 1.2 x 10-3 L Volume central compartment 141 
kTT 9.67 x 10-6 s-1 Total antibody clearance* measured 
k12 4.33 x 10-4 s-1 Antibody clearance from compartment 1 to 2* measured 
k21 4.79 x 10-4 s-1 Antibody clearance from compartment 2 to 1* measured 
Kd 60 pM TAK-164 dissociation constant 147 
ke 3x10−4 s-1 5F9 Internalization rate constant free Rec (phase 1) 
keBound 4.6x10−4 s-1 5F9 Internalization rate constant bound Ab (phase 1) 
ke2 4.8x10−5 s-1 5F9 Internalization rate constant free Rec (phase 2) 
keBound2 4.8x10−5 s-1 5F9 Internalization rate constant bound Ab (phase 2) 
kdeg 8.0x10−6 s-1 TAK-164 lysosome degradation rate constant 
kin 1.05x10−3 s-1 DGN549 Payload rate constant entering cell membrane 
kout 5.53x10−5 s-1 DGN Payload rate constant leaving cell membrane 
kon 3.2x10−11 nMs-1 DGN Payload binding rate to microtubules 
koff 0 s-1 DGN Payload unbinding rate to microtubules 
DAR 2.9 - Drug to antibody ratio 
Rs Ke*To M/s Target synthesis 
ε 0.24 - Intracellular void fraction 
εp 0.44  - Intracellular void fraction for payload 
Dp 1.4 x 10-11 cm2/s Diffusivity 
D 1 x 10-11 cm2/s Diffusivity 
P 3 x 10-9 m /s Vascular permeability 
Pp 1 x 10-6 m /s Vascular permeability payload 
R 18 m /s Payload partition coefficient 
GCCo 3 x 103-3 x 105 rec/cell Total number of targets per cell - 
fb 0.4 - Fraction of receptors bound before switch internalization Calibrated 
tchange 6 hrs Time for switch from phase 1 to phase 2 Calibrated 
Pmax 0.011 - Maximum probability for cell killing Calibrated 
Km 3.5 nM Michaelis-Menten constant Calibrated 
td (in vivo) 7-10 days In vivo doubling time Calibrated 
td (in vitro) 1-2.5 days In vitro doubling time Estimated 

^ for dose 0.4 mg/kg 
* for dose 0.75 mg/kg or higher  
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Model of the uptake in vivo 

 The in vivo uptake was incorporated into the model to mimic the experimental uptake setup. 

In the experiment, the 5F9-AF647 was injected into nude mice bearing PHTX 11C tumors (~ 

250mm3) at 0.75, 1.5, or 3mg/kg. At 24 hours, the mice were euthanized, the cells digested and 

processed in flow cytometer.  The calculation for uptake for molecules per second is: 

 Uptake = ∑ (XYZ[?\@3	J	XYZ]@>	J	3^1)
* ).0)+,.%-.//.`a

"
       (19) 

Where Uptake is in KQD$OUD$b
O$DD

, 5F9SQU"V, 5F9!"c, and dye are the concentration in nM of 5F9 bound 

on the surface of the cell, 5F9 internalized, and residual dye respectively. Vcell is the volume of the 

cell (2x10-12L), Avg is Avogadro number (6.022x1023 molecules/mol), and n is the number of cells 

in the simulation. 

 

4.4 Results 

Calibration to the Experimental Data  

  The model PK and PD were calibrated to experimental data in vitro and in vivo. First the 

model PK was calibrated for average effective receptor per cell, the time to change the phases 

(tchange) for internalization, and fraction of receptors bound (fb) are shown in Appendix Figure C.2. 

The best fit values were 3000 receptors per cell, tchange = 6 hours, and fb = 0.4. Since this model 

does not grow as a cell line, and it was not possible to evaluate the trafficking and downregulation 

of the model relative to HEK-293-GCC cells, the expression level was fit to match in vivo cell 

uptake measurements. 

Next, we calibrated the model to the in vivo pharmacodynamics. First, cell proliferation 

was calibrated to the in vivo efficacy of the saline control as shown in Figure 4.4.A, and the 

doubling time for these tumors were found to range from 7 to 10 days. Then, the probability of 
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cell killing, given by Equation 15 in Appendix C, was calibrated to give Pmax equal to 0.011 and 

Km = 3.5nM as shown in Figure 4.4.B. The model was validated by comparing the predicted 

efficacy to that observed with coadministration of 1:1, 3:1, and in vitro potency as shown in Figure 

4.4.C-D. The same probability of cell killing were used in vitro and compared to the experimental 

data (Figure 4.4.E). These results demonstrate that our model was appropriately calibrated and 

validated.  

 

Benefit of the Coadministered Antibody Is Not Observed in Tumors with Low Receptor Expression 

To test if the lack in benefit of coadministration was a function the low receptor availability, 

we simulated tumors with different average receptor expression. In Figure 4.5 we show the 

distribution of the payload DGN549 and efficacy of the TAK-164 with different coadministration 

regimens of 0:1, 1,1, 3:1, and 8:1. Although the ADC distributes heterogeneously at low receptor 

expression (3K GCC per cell in Appendix Fig. C.3), the bystander abilities of DGN549 help the 

payload to reach most cells in the tumor, leading to efficacy. When the receptor expression 

increases to 30K GCC per cell, we see an increasing benefit from coadministration leading to best 

efficacy at regimens 8:1. However, when the average receptor expression is increased to 300K 

GCC per cell, coadministration shows no significant changes in the efficacy. This last scenario 

exemplifies a scenario where the carrier dose is not sufficient to improve tissue penetration and 

simply increases cell binding within the saturation front. 



 

 81 

 

 

Figure 4.4 Calibration of in vitro and in vivo pharmacodynamics and validation.  
(A) In vivo proliferation (B) In vivo cell death calibration for single administration of 0.4mg/kg of 
TAK-164 (C -D) Validation in vivo for coadministration 1:1 and 3:1 with 5F9 to TAK-164. (E) 
Comparison between in vivo curves. (F) In vitro toxicity validation with the parameters calibrated 
in vivo . 
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Figure 4.5 Prediction of distribution and efficacy in tumors varying receptor expression: 
Distribution of the payload DGN549 at day 7 (A) and Efficacy at day 50 (B) of the 
coadministrations of 5F9 and TAK-164 (0:1, 1:1, 3:1, 8:1) in tumors with an average of 3K, 30K, 
and 300K receptors/cell. 
 

To test if the lack in benefit of coadministration was a function the low receptor availability, 

we simulated tumors with different average receptor expression. In Figure 4.5 we show the 

distribution of the payload DGN549 and efficacy of the TAK-164 with different coadministration 
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regimens of 0:1, 1,1, 3:1, and 8:1. Although the ADC distributes heterogeneously at low receptor 

expression (3K per cell in Appendix Fig. C.3), the bystander abilities of DGN549 help the payload 

to reach all the cells in the tumor with low receptor expression, leading to efficacy. As the receptor 

expression increases, we see an increasing benefit from coadministration leading to best efficacy 

at regimens 8:1. However, as the average receptor expression increases to very high levels, 

coadministration shows no significant changes in the efficacy.  

 

Bystander Effects Improves Efficacy in Heterogeneous Tumors with Higher Receptor Expression  

To test the impact of bystander effects in tumors with increasing receptor expression, we 

compared simulations with bystander effects to those eliminating the ability of the payload to enter 

adjacent cells (by setting the internalization rate constant to zero (kinp = 0)) and administering 0:1, 

1:1, 3:1, and 8:1 doses. As seen on Figure 4.6A, regimens with bystander and non-bystander effects 

have similar efficacy for tumors with low receptor expression. However, for tumors with moderate 

receptor expression (~30K), eliminating bystander effects worsens the efficacy in these tumors for 

all coadministrations. This data suggests that the benefit of the carrier dose is more pronounced in 

the tumors with high expression when administering a carrier dose. Eliminating the bystander 

effect does not disturb direct cell targeting by the ADC, which is predicted to exhibit better efficacy 

than bystander effects alone. As a result, the simulations do not show any major effect on efficacy 

in the low receptor expression tumors. When we look at tumors with moderate receptor expression 

(30K), the benefit of the bystander effects is more evident. In more heterogeneous tumors, the 

ADC cannot directly target all the cells in the tumor, and the bystander payloads that reach these 

cells in the deeper tissue demonstrate a significant impact. However, as noted bystander effects 

are not predicted to be as efficient as direct cell targeting, which is reflected in the greater 
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improvement in efficacy with coadministration even when bystander effects are retained. 

However, comparison between the two groups with and without bystander effects suggests that 

direct cell-targeting and bystander effects can function in synergy to maximize efficacy. 

 

 

Figure 4.6 Prediction of regimens with no bystander effects and %IDg for tumors changing 
the receptor expression.  
(A) Average tumor volume at 40 days for tumors with 3K and 30K receptors per cell with and 
without bystander effects. Non-bystander payloads were represented by internalization rate of the 
payload to adjacent cells set to zero (kinp=0). (B) %IDg for coadministration in tumors with 3K 
and 30K receptors per cell.  
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Looking at the total tumor uptake of the ADC (calculated as percentage injected dose per 

gram of tumor tissue, %ID/g), we see a decrease in uptake at 3:1 and 8:1 coadministration regimens 

for low receptor expression tumors, suggesting that 3:1 and 8:1 regimes are saturating doses in 

comparison with 0:1 and 1:1. For tumors with moderate receptor expression, administrations 1:1, 

3:1, and 8:1 show the same ADC uptake, which indicate that even at higher coadministration doses, 

these regimes are non-saturating. Note that for single administration, the %IDg is lower than other 

coadministration doses, even though ADC uptake in the tumor is dictated primarily by the vascular 

permeability, which is the same for antibody and ADC. This happens because at very low doses, 

such as 0.4mg/kg, target mediated drug disposition (TMDD) results in faster systemic clearance 

that reduces plasma exposure to the tumors as compared to the higher doses where the excess 

antibody can saturate TMDD sinks. 

 

4.5 Discussion 

The development of new ADCs involves understanding and improving the different 

components of the ADC and ensuring they work in concert to maximize efficacy at tolerated doses. 

Recently, the impact of heterogeneous delivery from some ADCs has resulted in methods to 

improve tissue penetration, including the use of bystander payloads and carrier doses of antibody. 

Bystander payloads have been explored based on the potential to reach cells that were not directly 

targeted by the ADC, an approach that would benefit the treatments in tumors with heterogeneous 

receptor expression that are known to cause treatment resistance. Payload physicochemical 

properties such as the payload lipophilicity and potency can impact the distribution and efficacy 

in the tumor. The antibody dose, target expression, and ADC internalization all impact the potential 

benefit of an antibody carrier dose. Understanding the payload properties and antibody tissue 



 

 86 

penetration, in combination to that of the antibody and linker, are important for the development 

of better payloads and ADCs in the next generations of this drug. 

TAK-164 is an anti-GCC ADC undergoing clinical evaluation for gastrointestinal cancers 

which present very poor prognosis. GCC is considered a great target for ADC development as 

GCC receptors are considered a highly specific marker for GI cancers.153 However, GCC receptors 

are heterogeneously expressed between patients with differences that can vary up to 100-fold.154 

This heterogeneity, as shown throughout this chapter, can strongly influence the pharmacokinetics 

and pharmacodynamics of this ADC.  

Understanding which characteristics of TAK-164 and 5F9 impact the efficacy of 

coadministration regimens can help us understand in which scenarios co-dosing with an 

unconjugated antibody is beneficial and recommended. Here, we explored the influence of 

receptor expression on the binding site barrier, uptake at sub saturating and saturating doses, the 

efficiency of the bystander effects, and overkill in PHTX models. 

Despite multiple examples of carrier doses improving efficacy of ADCs, including animal 

models with only 70K receptors per cell, a carrier dose did not improve efficacy of TAK-164 in 

the PHTX 11C model even though it improved tissue penetration.146 To examine the mechanism 

behind this lack of improvement, computational models were combined with experimental data to 

test four hypotheses: 1) a more diffuse binding front at low expression levels, 2) less ‘overkill’ in 

the PHTX models, 3) diminishing tumor uptake close to saturation, or 4) efficient bystander effects 

mitigating the benefit of a carrier dose. 

The lower availability in receptor expression in the calibrated PHTX11C model in 

comparison to the receptor expression measured ex vivo affects the expected results in 

coadministration. As shown during the calibration to the uptake of the tumors with 0.75, 1.5, and 
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3 mg/kg (Appendix Fig. C.1), 3K receptors per cell demonstrated the best fit. This expression 

corresponds to a 10-fold decrease in the measured receptor expression reported in 147 for the 

PHTX11C tumor model. This lower receptor expression availability leads to a more homogeneous 

distribution compared to the tumor if it had 30K receptors per cell (Figure 4.5). In addition, 

increasing the coadministration to 3:1 and 8:1 regimen, the loss in efficacy occurs. 

The lower availability in receptor expression in the calibrated PHTX11C model in 

comparison to the receptor expression measured ex vivo affects the results of coadministration. As 

shown during the calibration to the uptake of the tumors with 0.75, 1.5, and 3 mg/kg (Appendix 

Fig. C.1), 3K receptors per cell best fit the in vivo uptake data. This target expression corresponds 

to a 10-fold decrease in the measured receptor expression reported in 147 for the PHTX11C tumor 

model. This lower receptor expression availability leads to less heterogeneity compared to the 

tumor with 30K receptors per cell (Figure 4.5). A carrier dose does improve tissue penetration 

even though it does not improve efficacy with 3K receptors/cell. In fact, 300K receptors per cell 

are needed for the carrier dose to bind within the reaction front, ruling out the first hypothesis. 

With such a small dose (0.4mg/kg) and high expression, the first cell layer close to the blood vessel 

is not fully saturated and increasing the antibody dose only saturates the first cell layer with no 

change in efficacy (Fig 4.5).  

Computational models showed that tumors with 30K receptor expression demonstrated an 

improvement in efficacy, consistent with previous results. Under these conditions, cell death 

occurs without saturating the receptors on the cell surface (Fig. 4.1), so a carrier dose can reach 

more cells without an equivalent drop in cell killing, consistent with the second hypothesis.   

Another possible explanation for the lack of benefit from a carrier dose is efficient 

bystander payload penetration compensating for the heterogeneous ADC delivery. To test this 
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hypothesis, we set the internalization rate constant to zero (kinp = 0) in simulations and compared 

it to the control simulations. Here, the bystander payload can diffuse out of the cell, but it cannot 

enter adjacent cells. In Figure 4.6, efficacy from bystander effects is more noticeable for tumors 

with moderate receptor expression than for tumors with lower receptor expression because of 

direct targeting of the ADC. This data suggests that in tumors with moderate receptor expression, 

cells that are not directly targeted by the ADC can benefit from efficacy from optimized bystander 

payloads.30 However, in tumors with lower expression, the impact of the bystander killing is not 

important for tissue penetration, ruling out the 3rd hypothesis. Notably, bystander effects can still 

be important for killing antigen negative cells, and bystander effects should be studied in tumors 

with cell-to-cell heterogeneity. 

Finally, tumor uptake data with 3K and 30K receptors per cell shows that at the 3K receptor 

expression, increasing the antibody co-dose to supersaturation can cause direct competition with 

the ADC for binding to the receptor, thus hurting efficacy. However, this does not occur until an 

8:1 carrier dose, with 0:1, 1:1, and 3:1 having similar peak uptake. This rules out the fourth 

hypothesis that super-saturation prevented an increase in efficacy. In contrast, even at high 

antibody co-doses, saturation was not achieved in 30K tumors, which demonstrates improvement 

in the efficacy due to maximum uptake and improved distribution.  

 

4.6 Conclusion 

Understanding the different ADC properties can help develop better mechanistic 

approaches to increase the therapeutic window of ADCs. Here, we explored coadministration of 

TAK-164 with its antibody and explored its influence in a variety of scenarios such as tumors with 

high receptor expression, bystander efficiency, distribution and saturation, and DGN549 potency. 
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We found that TAK-164 coadministration only improved efficacy in tumors with increased 

receptor expression. This resulted from lower cell uptake relative to cell potency, so increasing 

tissue penetration was compensated by decreased cell efficacy. Therefore, carrier doses are only 

effective in moderate to high receptor expression systems (e.g. 30K receptors per cell or above 

under these conditions). At the expression levels found in the primary human tumor xenograft 

model, the cellular delivery was matched with the cellular potency without the co-administration 

of additional antibody. These results should help clarify when a carrier dose can improve the 

therapeutic window of ADCs.  
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Chapter 5 Concluding Remarks and Future Directions 
 

5.1 Summary of Research Findings 
 

In this dissertation, I have shown how we explored different ranges of ADC properties and 

predicted their distribution and efficacy in a variety of tumor environments. The development of 

the new hybrid agent-based modeling approach described here is a powerful framework that 

captures the mechanistic ADC pharmacokinetics using deterministic equations while also 

employing stochastic processes involved in drug delivery and efficacy that are not easily 

represented with continuous equations. This new model was used to evaluate different ADCs and 

dosing regimens in the complex tumor environments.  

In Chapter 2, I described the development of an original framework for this model, which 

was subsequently updated with additional complexities in Chapters 2 and 3. This model combines 

continuous and stochastic approaches to capture different aspects of drug delivery that are 

characterized by widely different sizes (e.g., nanometer sizes of antibodies and payloads, 

micrometer sizes of cancer cells, and hundreds of micron distances and larger for blood vessels 

and tumors) and time scales (e.g., weekly doses versus target binding of molecules in seconds). 

Specifically, we implemented ADC dosing, plasma clearance, diffusion and molecular dynamics 

(binding, internalization, and degradation) to capture ADC pharmacokinetics. ADC 

pharmacodynamics were incorporated by including cell proliferation and cell death based on the 

payload concentration, all in heterogeneous solid tumors with a variety of blood vessel densities. 

This model helps describe the impact of different dosing regimens with antibody coadministration 
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and/or fractionated dosing of T-DM1 with trastuzumab in tumors with different receptor 

expression. We predicted that the benefit of the carrier dose is strongly dependent on average 

receptor expression, and an optimal co-dose exists that can achieve maximum efficacy. We also 

demonstrated that fractionated dosing with coadministration is only beneficial if fractionation 

enables an increase in the total dose administered. This study further demonstrates the potential of 

this complex hybrid agent-based model to mimic the clinical tumor environment with high 

resolution and was subsequently used to study ADC delivery with additional tumor 

microenvironment modifications. 

In Chapter 3, we explored how ADC bystander effects can impact efficacy and selection 

of resistant cells in heterogeneous tumors. The previous chapter examined dosing regimens using 

T-DM1, which does not exhibit bystander effects. Therefore, the payload was not free to diffuse 

following release from the antibody. To examine bystander effects, another layer of freely 

diffusing payload drug was added to the equations. After adding bystander drug dynamics, 

angiogenesis and intratumor cellular heterogeneity were implemented in the model. Angiogenesis 

allowed longer-term treatment regimens by enabling tissue remodeling to capture differences in 

vascular delivery, while cellular heterogeneity enabled variability in target expression and 

sensitivity. We simulated multiple dosing regimens with bystander (T-MMAE) and non-bystander 

(T-DM1) ADCs, with or without trastuzumab coadministration. Intratumor heterogeneity was 

computationally generated with cells varying in either receptor expression or intrinsic sensitivity 

to the payload. Our simulations showed that coadministration is more beneficial with non-

bystander ADCs, but still showing benefit with bystander payloads. This provides evidence for 

greater efficacy with direct cell targeting by the ADC in comparison to bystander effects of the 

payload alone in heterogenous tumors.  Cells with high intrinsic resistant also responded well to 
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coadministration treatment, but more effective regimens occur with higher coadministration that 

also selects for more resistant cells, highlighting a trade-off. Finally, this work demonstrates the 

power of this highly resolved hybrid model in performing hundreds of simulations to 

independently delineate trends and treatment response patterns that would normally be difficult to 

discern due to tumor variability from individual ADC and tissue properties without large animal 

experiments that would not be feasible. 

In Chapter 3, we employed this model to gain a deeper understanding of TAK-164 behavior 

in patient derived tumors that exhibit an even higher degree of tumor heterogeneity compared to 

pre-clinical tumor models as shown in Chapter 2. We evaluated the hypothesis that 

coadministration with the anti-GCC TAK-164 and its antibody 5F9 would improve distribution 

and efficacy in PHTX11C models. However, in vivo evaluations of efficacy presented no 

significant difference, despite an improvement in ADC distribution. After our model framework 

was updated to capture the complex internalization and uptake of TAK-164, we showed that 

coadministration does change the distribution of this ADC at tumors with 3K receptors per cell, 

reaching saturation at 3:1 and 8:1 confirmed by %IDg data. We demonstrated using our models 

that the lack in the benefit of coadministration with TAK-164 in PHTX11C is due to excessive 

dilution of the payload, resulting in underkill of tumor cells. In effect, the benefit of better 

penetration is completely countered by the reduction in killing efficiency of targeted cells. We also 

showed that the impact of the bystander in this tumor tissue is not as important in tumors with low 

receptor expression as in moderate receptor expression.  

In summary, this thesis demonstrates the advantage of combining experimental work with 

a powerful hybrid agent-based computational model to understand the complexity of ADC 

delivery and hasten efficient ADC development in the clinic. 
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5.2 Future Work and Directions 

Predicting ADC delivery and efficacy is becoming essential for faster clinical assessment 

and overall development. Changing the ADC regimens, depending on the tumor environment, can 

be important to improve efficacy, but it is still not enough to overcome treatment resistance. Hence, 

we need to continue to explore the potential of the ADC drug class and its vast application with 

new mechanisms of action. Computational models, such as the one presented here, can help us to 

avoid wasting resources on ADCs that are poor candidates and ultimately would fail in the clinic. 

In order to do this, the model developed here should be expanded to include additional important 

characteristics and dynamics of the tumor environment and ADCs. Examples of features to include 

are: distribution and uptake of oxygen and nutrients from blood vessels to cancer cells and cell 

death due to the lack of these resources (e.g. chronic hypoxia), resistant cancer stem cells and their 

dynamics, necrosis that affects cell growth and drug penetration, stimulation of immune system 

through Fc region and payload of ADCs, and new engineered antibodies and payloads with new 

mechanisms of action. All these interactions could be studied with our model and the addition of 

new cells and dynamics. 

Although not the focus of this thesis, ADCs have been purposefully designed in part to 

help the immune system kill cancer cells. The IgG antibody’s Fc region bridges NK cells and 

macrophages to cancer cells to induce antibody-dependent cellular cytotoxicity (ADCC) and 

antibody-dependent cellular phagocytosis (ADCP). Some payloads in ADCs are also known to 

stimulate the immune system. Once these payloads are released into the tumor environment, they 

activate dendric cells (DCs) to present antigens derived from the payload to T and B cells.155-157 

For example, the microtubule depolymerizing payload MMAE found on Brentuximab vedotin (Ab 

+MMAE) and the topoisomerase inhibitor, deruxtecan, in trastuzumab deruxtecan have been 

shown to stimulate DCs and T-cell infiltration in human lymphomas.158, 159 PNU, a potent 
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anthracycline payload, has been shown to stimulate CD8+ T cells and their immunological 

memory formation.160 These mechanisms can improve the durability of treatment responses by 

providing alternative mechanisms of action to kill resistant cells. 

Antibodies have also been successful in blocking programmed death-1 (PD-1), and its 

ligand (PD-L1), and regulators of T lymphocyte antigen-4 (CTLA-4) pathways alone or in 

combination with other checkpoint inhibitors in the clinic.158, 161, 162 These pathways can modulate 

killing by downregulating helper T cells, upregulating regulatory T cells (Treg), or causing 

cytotoxic T cell exhaustion.163 The discovery of PD-1 and CTLA-4, awarded the Nobel prize in 

2018, is considered a groundbreaking discovery in the field, opening a major interest in immune 

checkpoint inhibitors that can overcome the cancer immunologic suppression and improve cancer 

treatment.164 Besides that, these immunotherapies have also shown lower remission rates 

compared with cytotoxic treatments. Recently new antibodies have been developed to block these 

receptors and their respective pathways such as the ipilimumab (Yervoyâ) against CTLA-4, 

atezolizumab (Tecentriqâ) against PD-L1, and pembrolizumab (Keytrudaâ) against PD-1 

receptors, all FDA-approved to be used alone or in coadministration with chemotherapy.162, 165, 166 

Studies for the coadministration of toxic ADCs, such as T-DM1, with checkpoint inhibitors, such 

as CTLA-4 inhibitors, have also been pursued and could be studied by expanding the model 

presented here.29, 161  

Bispecific antibodies (bsAbs) are another improvement in engineered antibodies allowing 

two or multiple binding domains to different receptors or epitopes. This occurs through the 

differentiation of the Fab and/or the Fc region to change the target engagement, forming a variety 

of types of bsAbs used for both hematological and solid cancers with different functions.167 BsAbs 

can vary in size and binding ability with or without an Fc fragment. BsAbs with an Fc region can 
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have Fc-mediated effector functions such as ADCC and ADCP, and bsAbs that lack the Fc region 

avoid off-target binding. Some bsAbs resemble an IgG structure while others only have antibody 

parts such as dimeric molecules (dAbs) that connect only the short variable domains and bispecific 

T cell engagers (BiTES, also known as Tandem scFvs) that connect different scFvs for 

multivalency. Some of these bsAbs bind to different receptors, such as HER2 and prolactin on the 

same cell, and have been shown to improve uptake and efficacy.168, 169 Others bind to cancer cells 

and immune cells such as T cells and NK cells forming a trimer to trigger cell killing.82 For 

example, AFM-13 which targets both CD16 on NK cells and CD30 on tumor cells, forms a trimer 

to induce cell killing. In addition, bsAbs that bind to cancer cells and to T-cell receptors (most 

commonly CD3) on both CD4+ and CD8+ T cells have demonstrated enhanced cell killing while 

inducing secretion of cytokines and activating other T cells.170-172. Finally, bsAb have also been 

studied as checkpoint inhibitors. For example, bispecific PD-L1 and CD47 (e.g. IGGIL2v) showed 

significant therapeutic effect as a stimulator for exhausted T cells and NK cells.173-174  

Another important characteristic that can be studied by expanding the computational model 

developed here is the coadministration of antiangiogenic drugs and ADCs. Antiangiogenic drugs 

such as bevacizumab (commercially knows as Avastinâ) function by inhibiting angiogenesis and 

ultimately the supply of oxygen and nutrients to cancer cells. Avastinâ is FDA approved for 

coadministration with chemotherapies for advanced colorectal cancer (CRC), advanced non-small 

cell lung cancer (NSCLC), metastatic breast cancer (MBC), and advanced renal cell cancer.175 This 

antibody mechanism of action consists of reducing tumor interstitial pressure and vascular 

permeability, favoring apoptosis by scarcity of oxygen and nutrients while improving 

chemotherapy delivery.176 The scarcity of oxygen, counterintuitively, can also lead to the 

formation necrosis and a hypoxic environment that has been associated with cancer stem cells, 
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resistance, and poor clinical outcome, leading to the search of an important balance for optimal 

treatment approaches.177 In addition, the coadministration of bevacizumab with antibodies such as 

trastuzumab and cetuximab (anti-EGFR) or immune checkpoint inhibitors has also been 

investigated. Expanding the model here could allow for a thorough examination of potential drug 

regimens.  

The examples highlighted above show the complexity of the tumor microenvironment 

during treatment, whether it is immune cells trafficking to the tumor and killing cancer cells while 

they interact with ADCs or therapeutics that modulate the vascular density and permeability 

impacting delivery. By simulating the results of monotherapy and drug combinations, rational 

approaches can be used to design preclinical studies in vivo and importantly, scale the results to 

the clinic. Together, these simulations provide a powerful tool to guide the development of 

complex therapeutics such as ADCs and beyond. 
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Appendix A Supporting Information for Chapter 2 
 

 
Figure A.1 T-DM1 plasma clearance. 
Rates for antibody and T-DM1 clearance (CLTT, CL2, CLDEC) were calibrated to experimental data 
115 and literature 22. 
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Figure A.2 Cell shuffling algorithm 
We assume that at all times cells are close to each other. After cell proliferation and removal of 
any dead cells from the grid, cells “shuffle” to fill empty grid compartments while also maintaining 
only one cell per grid compartment. First, cells shuffle to make room for all daughter cells that 
proliferated on that agent time step, and then the tumor contracts to remove all empty spaces inside 
the tumor. For the tumor growth/expansion following cell division, two daughter cells are formed. 
One cell remains in the original grid compartment, and the other displaces the neighboring cell 
that is closest to an empty grid compartment or border. The newly displaced cell then displaces 
the next cell that is closest to that same empty grid compartment or border. If there is more than 
one empty grid compartment with the same distance, one of the compartments is chosen randomly. 
This shuffling algorithm repeats until only one cell occupies each grid space. Dead cells were 
estimated to leave the grid at 2.5 days based on observations of our published data, which show 
that maximum degradation occurs between 2 and 3 days and lower tumor volume decrease around 
5 days.31 Model results have low sensitivity to this parameter (Appendix Fig. A.3). When a dead 
cell is removed from the grid, an empty grid compartment is left. In this case, cells are shuffled 
from the farthest point on the border of the tumor (i.e. they collapse from the most protruding 
region of the tumor edge). This process is similar to the growth/expansion but in the opposite 
direction with the furthest cell displacing a neighboring cell that is closest to the empty grid 
compartment until a cell fills that empty grid compartment. 
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Figure A.3 Effect of cell degradation time parameter on tumor volume 
Simulations were run with cell degradation times varying from 1-3 days; the average of 100 
simulations is plotted.  
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Figure A.4 Relationship between blood vessel density and doubling time. 
Tumors with lower blood vessel density should have a higher cell doubling time td to account for 
hypoxic areas which often show lower proliferation 122. Here, we assume a linear relationship 
between the ranges of possible number of vessels for the simulation (18 - 36) and the doubling 
time (5 - 17 days). For each simulation, the doubling time is chosen from a normal distribution in 
which the mean is provided from this linear relationship, and the standard deviation is 1 day. Ten 
simulations with each value of blood vessel density are plotted to demonstrate the corresponding 
doubling time. 
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Figure A.5 Comparison of treatment regimens for drugs with different Cmin. 
Prediction of regimens with coadministration of trastuzumab and T-DM1 with a hypothetical 
without minimum threshold and for 10nM, 120nM, and 500nM Cmin at 30 days. 
 
 
 
 
 
 
 
 
 



 

 103 

 

 
 

Figure A.6 Distribution and efficacy for tumors with an average of 50,000 receptors/cell and 
comparison with 0.2M 
(A) T-DM1 bound for 0:1, 1:1, 3:1, 8:1, and 12:1 distribution and comparison with distribution 
200,000 receptors/cell with Thiele modulus displayed. (B) Efficacy predictions for 50,000 and 
200,000 receptor/cell tumors at 30 days. There is no efficacy for tumors with 50,000 receptors/cell 
even at clinical doses. 
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Figure A.7 In vitro simulations and comparison with experimental data 
(A) Toxicity assay showing the fraction of viable NCI-N87 cells incubated for 6 days with different 
concentrations of ado-trastuzumab emtansine (T-DM1). (B) Viability of NCI-N87 cells following 
coincubation of trastuzumab and T-DM1 ratio (kept at a constant total antibody concentration of 
10nM and varying the fraction of T-DM1) and comparison with experimental data31 (normalized 
to trastuzumab treatment account for the effect of trastuzumab alone). Both of these results indicate 
that the cell killing parameters fit to the in vivo data are similar to the sensitivity in vitro. 
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Figure A.8 Fractionation of T-DM1 and qualitative comparison with literature  
(A) Results from Jumbe, N. et al. using a BT474EEI xenograft model that is resistant to 
trastuzumab.110 Data was extracted using ‘Data Thief’ software. Fractionated dosing leads to worse 
overall efficacy, but with higher total doses (enabled by fractionated dosing), the efficacy 
improves. (B) The model simulation for fractionated dosing in NCI-N87 cells is replotted from the 
manuscript for convenience. The dose frequency (once weekly ‘Q1W’ versus every three weeks 
‘Q3W’) and dose escalation enabled by fractionation (2-fold increase) are the same for both 
studies, but the doses and number of cycles are different. Note that the x and y axes are also 
different.  Despite these differences, the overall trend is the same: fractionation has similar or 
worse efficacy compared to single dosing, but fractionated dosing can improve efficacy if it 
enables larger total doses to be administered.  
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Methods A.1 Estimating the minimum concentration of T-DM1 necessary to kill a cell 

We estimated the minimum concentration of T-DM1 necessary to kill a cell, Cmin, based 

on the concentration of T-DM1 in vitro that causes the first statistically significant drop in viability 

from in vitro data published in 31. We found that at least 5% of cell receptors on NCI-N87 cells 

(which have ~1 million receptors per cell) must be bound by T-DM1 for any efficacy. Assuming 

a steady state process, with internalization (ke) and loss rate constants (kloss) of 3.3 x 10-5 s-1 and 

3.94 x 10-5 respectively: 

 𝐷𝑀1!" ∗ 𝑘$ = 𝐷𝑀1QUc ∗ 𝑘DQbb and Cmin is ~ 120nM. 

The explicit inclusion of Cmin in the pharmacodynamic model ensures that the simulations 

capture the scenario where the ADC is ‘diluted’ too much with unconjugated antibody, lowering 

efficacy. Otherwise, the model choice (e.g. using a Hill coefficient less than or equal to one) may 

eliminate this possibility. In such a scenario, the simulations would always predict maximum 

efficacy by adding enough antibody to saturate the tumor, regardless of the payload potency, 

receptor expression, internalization rate, etc. By adding Cmin to these pharmacodynamic (PD) 

models, the results are less sensitive to the subjective choice of the PD model and therefore more 

robust. 
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Appendix B Supporting Information for Chapter 3 
 

 
 
Figure B.1 Model schematic. 
(A) Plasma dynamics is described with a two-compartment model (Eq. B.1-2) (B) From the blood 
vessel, drugs enter the interstitial tissue (Eq. B.3), diffuse through it (Eq. B.4), and bind to HER2 
receptors on cancer cells (Eq B.5). There, ADCs are internalized and degraded. After the payloads 
DM1 and MMAE are released, they either bind to microtubes or escapes the cancer cell. From the 
interstitial tissue, payloads diffuse and enter adjacent cells or are washed into the blood vessels. 
(Eq. B.6-14). (C) Cells with high or low receptor expression or different sensitivity and blood 
vessels behave based on the changes in the environment. The probability of cell killing follows the 
Michalis Menten equation (B.15). 
 
Plasma clearance: 
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Diffusion in 2D Cartesian coordinates 
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Equations for drug dynamics: 
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Table B.1: Drug Dynamics Variables 
 

Variables Unit Description 
ADC nM Free ADC  
Tfree nM Free Target 
BADC nM ADC bound to Target 
BADC,lys nM Bound ADC in the lysosome 
Plys nM Payload in the lysosome 
Pint nM Payload not bound to intracellular target 
Pb nM Payload bound to intracellular target 
Pext nM Payload free extracellular 
Abfree nM Free bare antibody 
BAb nM Bare antibody bound to Target 
Pkill - Probability of cell killing per agent time step 
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Figure B.2 Model fit to experimental blood vessel density 
Assuming the blood vessel density decays with increase in the tumor volume, we approximated 
the experimental data to an exponential decay function. From the published experimental data, we 
considered the tumor volumes from 250 mm3 to 1500 mm3 and their respective decay in vascular 
density.  The new fraction of active blood vessel is then a function of the simulated tumor volume. 
As the tumor volume increases, the vascular density decreases following the rate shown in here. 
At each agent time, if the new fraction of active blood vessel is lower than the vessel density after 
the decay is calculated, random blood vessel becomes functional in the simulation. 
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Figure B.3 Fractionated Dosing with or without Angiogenesis and Comparison with 
Experimental Data. 
(A) 5 x 106 NCI-N87 cells were inoculated in the rear flank of nude mice. When the tumor reached 
approximated 250 mm3, 3 doses of 2.4 mg/kg T-DM1 were given at days 0, 7, and 14. The tumor 
volume was measured every other day until 70 days or until it reached 2000 mm3. (B-C) 
Simulations with the same doses and frequencies were performed before and after the addition of 
angiogenesis into the model. The inclusion of angiogenesis into the model better predicted the 
tumor efficacy and tumor uptake (data not shown).  
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Figure B.4: Recalibration of T-DM1. (A) T-DM1 was recalibrated based on the concentration payload 
bound instead of the total concentration of the payload inside of the cell and to experimental data in Cilliers, 
C. et al.31 (B-D) Model was rerun to match with 1:1, 3:1, and 8:1. 
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Figure B.5: Calibration of T-MMAE. (A) Model was calibrated to T-MMAE in vivo data from Singh, A. 
et all.143 (B-D) model was run with dose of 10mg/kg, 3.6mg/kg 0:1, and 3.6 mg/kg 3:1144 for model 
validation. 
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Figure B.6: Distribution of T-DM1 and T-MMAE and their respective payloads at maximum uptake 
for same dose and DAR (3 mg/kg and DAR 3). (A-B) Distribution of ADCs, T-DM1 and T-MMAE on 
the surface of the cells. (C-D) Distribution of payload bound for DM1 and MMAE. 
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Figure B.7: Tumor efficacy at 50 days for tumors with different receptor expression (1M and 0)  
(A) T-DM1 regimens (3.6mg/kg and DAR 3.5) B) T-MMAE regimens (1.8 mg/kg and DAR 4).  
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Figure B.8 Percentage of tumor cells with concentration of payload bound. Percentage of tumor cells 
with concentrations greater or equal to 150nM, in between 150nM and 1nM, and lower than 1nM with 
coadministration of T-DM1 and T-MMAE with trastuzumab. (A-C) Uptake of DM1 for coadministration 
of T-DM1 and trastuzumab for tumors with 100%, 70%, 30%, and 0% of cells with 1million receptors per 
cell vs 50 thousand receptors per cell. (D-F) Uptake of MMAE for coadministration of T-MMAE and 
trastuzumab for tumors with 100%, 70%, 30%, and 0% of cells with 1 million receptors per cell vs 50 
thousand receptors per cell. 
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Figure B.9: Distribution and efficacy of regimens with kinp=0 and kout= 6.87x10-5. (A) Schematic of the 
simulation. B) Distribution of MMAE bound into microtubes. C) Efficacy of regimens with 
coadministration of trastuzumab and T-MMAE for tumors changing receptor expression.  
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Figure B.10: Percentage of tumor cells with concentration of payload bound with different bystander. 
Percentage of tumor cells with payload uptake with concentrations greater or equal to 150nM, in between 
150nM and 1nM, and lower than 1nM with coadministration of T-DM1 and T-MMAE with trastuzumab. 
(A-C) Uptake of MMAE for coadministration of T-MMAE and trastuzumab for tumors with 100%, 70%, 
30%, and 0% of cells with 1million receptors per cell vs 50 thousand receptors per cell. (D-F) Same 
regimens but eliminating bystander to adjacent cells by eliminating internalization rate constant (Kinp=0). 
(G-I) In addition to the elimination of bystander to adjacent cells (Kinp=0), the scape of the payload rate 
constant was lowered by one-fold.   
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Figure B.11 Percentage of tumor cell with concentration of payload bound with different intrinsic 
resistant. Percentage of tumors cells with payload uptake with concentrations greater or equal to 150nM, 
in between 150nM and 1nM, and lower than 1nM with coadministration of T-DM1 and T-MMAE with 
trastuzumab. (A-C) Uptake of DM1 for coadministration of T-DM1 and trastuzumab for tumors with 100%, 
70%, 30%, and 0% of cells with intrinsic resistance does not change. 
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Figure B.12 Percentage of sensitive and resistant cells in tumor composition. 
(A-F) Regimens changing tumor composition with 99% of cancer cells with 1M receptors per cell and 1% 
of cells with 50,000 receptors per cell. Regimens with T-DM1 (A-C) and T-MMAE (D-F) at 0:1, 3:1, and 
8:1 coadministrations. (G-L) Regimens changing tumor composition with 99% of cancer cells with no 
resistance (km=x) and 1% of cells with resistance (km=2x). These were treated with T-DM1 (G-H) and T-
MMAE (J-L) at 0:1, 3:1, and 8:1 coadministrations. 
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Figure B.13 Tumor cell growth with initial composition of 1% more resistant cells versus 99% 
sensitive cells for different regimens with T-DM1 or T-MMAE. 
(A-F) Coadministration of trastuzumab 0:1, 3:1, 8:1 with T-DM1 (A-C) and T-MMAE (D-F) 
regimens with 1% of cells with 50K receptors per cell vs 99% of 1M receptors per cell. (G-L) 
Coadministration of trastuzumab 0:1, 3:1, 8:1 with (T-DM1 (A-C) and T-MMAE (D-F) regimens 
with 1% of cells with higher intrinsic resistance (Km=2x) vs 99% of cell with Km=x. Km=800nM 
for T-DM1 and Km=600nM for T-MMAE. All simulations were n=10, and SE is plotted.  
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Appendix C Supporting Information for Chapter 4 
 

 
 
Figure C.1 Model Schematic. A) Plasma Dynamics for TAK-164 and 5F9. B) Drug Dynamics 
unreversible reaction of the payload DNG-549 and DNA. C) Cells and blood vessels act as agents to capture 
the 11C dynamics and efficacy.  
 
Plasma clearance: 
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Newman boundary condition around the blood vessels: 
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Diffusion in 2D Cartesian coordinates: 
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Equations for drug dynamics: 
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Table C.1: Drug Dynamics Variables 

 
Variables Unit Description 
ADC nM Free ADC  
Tfree nM Free Target 
BADC nM ADC bound to Target 
BADC,lys nM Bound ADC in the lysosome 
Plys nM Payload in the lysosome 
Pint nM Payload not bound to intracellular target 
Pb nM Payload bound to intracellular target 
Pext nM Payload free extracellular 
Abfree nM Free bare antibody 
BAb nM Bare antibody bound to Target 
Pkill - Probability of cell killing per agent time step 
Pmax - Maximum probability of cell killing 
Km nM Michaelis-Menten coefficient 
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Figure C.2 Calibration to experimental data. A) In vitro internalization rate with 2 phases was calibrated 
to the ABM. (B) In vivo ADC uptake was approximated to experimental data to estimate average receptor 
expression, time change between phases, and fraction bound (fb). 
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Figure C.3 Prediction of distribution and efficacy in tumors varying receptor expression.  
(A) Distribution of bound TAK-164 on the GCC receptors of the cancer cells at day 1 (B) Tumor volume 
curves for different coadministrations.   
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