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ABSTRACT 

 

The field of immunoengineering is highly interdisciplinary, involving the insights from 

various other fields of studies such as physiology, computation, pharmacology, materials science 

and many more. With the recent progress in technology development, analyzing detailed cellular 

interactions that constitute the immune system has become possible, and many more biological 

and engineering tools became within reach for precise investigation and modulation of immune 

responses. As a result, many breakthroughs have been achieved in various clinical settings. 

Immunotherapies, such as anti-PD-1 antibody and chimeric antigen receptor T cells, 

revolutionized cancer immunotherapy, while genome sequencing and nanotechnology allowed for 

the rapid development of various vaccines in response to the recent outbreak of Coronavirus 

Disease 2019. Also, analysis of massive amount of data collected from the bacterial genome within 

various parts of the body, called the microbiome, is enabling us to study the relationship between 

the microbiota and human body and health, and is suggesting new ways of treating once thought 

to be hard-to-treat diseases. 

In Chapters II and III, strategies for modulating the immune responses using biomaterials 

for cancer immunotherapy are introduced. Chapter II describes silica-based nanoparticle-mediated 

stimulator of interferon gene (STING) agonist delivery. Compared to soluble form of STING 

agonist, it induced ~4-fold higher dendritic cell activation in vitro, accompanied by significantly 

enhanced cytokine secretion, which together with prolonged immune cell activation within the 

tumor microenvironment, greatly improved therapeutic efficacy of the STING agonist in mouse 
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melanoma models. In Chapter III, an adjuvant and a model neoantigen peptide were formulated 

into a nanoparticle, which increased dendritic cell activation and antigen presentation by 2~4 folds 

and 4-folds, respectively in vitro compared to soluble formulation. It translated to ~3 folds higher 

antigen-specific CD8+ T cell frequency in blood circulation in mice. In addition, an attempt to 

induce a stronger chemokine gradient to recruit more T cells to tumor from the blood circulation 

was also investigated. 

In Chapter IV, use of lipid-based nanoparticle to formulate vaccines against infectious 

diseases, including human immunodeficiency virus-1 (HIV-1) and severe acute respiratory 

syndrome coronavirus-2 (SARS-CoV-2), is introduced. The aim of the study was to load subunit 

proteins into lipid-based nanoparticles while maintaining the structural intactness and to induce 

enhanced antibody responses when vaccinated to animals. Nanoparticle vaccine enhanced in vitro 

dendritic cell activation and antigen presentation, while improving antigen trafficking to lymph 

node in vivo, leading to significantly enhanced IgG responses in animals. 

In Chapter V, I investigated the effects of prebiotics on gut microbiota and immune 

responses during cancer immunotherapy using a cancer vaccine. Recently the communication 

between the gut microbiota and the immune system started to be revealed, thanks to mass data 

analysis and genome sequencing becoming more available for general research purposes. Also, 

studies are reporting the correlation of certain bacterial species and their metabolites with 

immunotherapeutic outcomes during cancer immunotherapies. Here, I sought to investigate the 

effects of prebiotics consumption on gut microbiota and if changes in bacterial frequencies can 

modulate the immune responses following cancer vaccination using mouse tumor models. 

Lastly in Chapter VI, I present the overall review of the studies in this thesis. Also, future 

directions to pursue are discussed with ways to provide complementing information to some of the 
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experiments, which currently can only suggest limited insights, and potential clinical translation 

in mind.
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CHAPTER I. Introduction 

 

1.1. Background 

Immunotherapy has gathered huge interests especially in the recent decades with the advent 

of advanced biological tools and computation technologies. With accumulating knowledge and 

data, immunoengineering approach to treat diseases became very effective and practical over the 

years, creating many different strategies of modulating the immune responses depending on the 

type of diseases. Here, strategies for treating cancer and infectious diseases by modulating innate 

and adaptive immune responses using immune-modulating agents and biomaterials as tools will 

be discussed. Depending on the type of disease, different stages of immune responses were 

targeted for modulation with strategies and materials carefully chosen. Described in more details 

in the following pages, the main research areas to be discussed are (1) cancer immunotherapy, (2) 

development of vaccines for infectious diseases, and (3) prebiotics delivery for enhancing immune 

responses. 

 

1.2. Cancer immunotherapy 

One of the most actively investigated areas of immunoengineering research is cancer 

immunotherapy. Programmed cell death receptor-1 (PD-1) blockade therapy may be one of the 

most well-known recent breakthrough discoveries in the field of cancer immunotherapy (1, 2). 

Within the tumor microenvironment, immunosuppression becomes more severe as the tumor 

progresses to later stages, through various mechanisms (3, 4). One of the major pathways the 
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spontaneously formed tumor-specific CD8+ T cells are inhibited is by the engagement of their PD-

1 receptors with the ligands, PD-L1 and PD-L2, expressed on tumor cells. Treatment of anti-PD-

1 or anti-PD-L1 antibodies has proven to have significantly meaningful efficacies in various 

cancers, including melanoma, colon carcinoma, head and neck squamous cell carcinoma, and 

many more (5-10). Another breakthrough is now a well-known chimeric antigen receptor T cell 

therapy (11-14). So called CAR-T, falls into the category of adoptive cell transfer (ACT) therapy, 

which is one of the cancer therapeutic techniques that transfers ex vivo expanded T cells to patients 

from different sources including autologous tumor infiltrating T cells and genetically modified 

peripheral T cells (14). Usually, the patient receiving ACT is preconditioned by eliminating pre-

existing lymphocytes in the body to maximize availability of cytokines to the transferred T cells 

that leads to greater expansion post transfer and prolong their existence in the blood circulation. 

CAR-T targeting CD19 expressed by leukemic B cells achieved outstanding response rates in 

patients with acute lymphoblastic leukemia (ALL) and have attracted a tremendous number of 

resources to the field. With CAR-Ts that target different receptors than CD19, such as CD20 and 

CD22, this technology is continuously evolving to prevent relapse and be more effective in treating 

different kinds of Hematologic Malignancies (15, 16). 

Together with the aforementioned hypes in the field, the discovery of neoantigen brought 

a huge revolution to how we perceive cancer which was once thought to be a disease that is expert 

at eluding the immune surveillance (17). Recent advances in genomics and proteomics discovered 

mutations within the somatic genes of tumor cells. The so-called tumour mutanome revealed that 

every tumor has a unique set of driver and passenger mutations (17-19). Tumor cells expressing 

mutated proteins (neoantigens) present these new epitopes in the context of major 

histocompatibility complex (MHC) molecules. In contrast to tumor associated antigens (TAA), 
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whose expression is shared among healthy and tumor cells, neoantigens arise from mutations in 

tumors and are, therefore, fully restricted to tumor cells. Thus, immunotherapies that capitalize on 

rich genomic and proteomic bioinformatics data for personalized strategies directed to neoantigens 

are enabling highly specific targeting of tumour cells without risking healthy tissues or being 

limited by immune tolerance (20). Using the neoantigens of different kinds that are synthesized 

into forms of DNA, RNA or peptides, cancer vaccines were produced to effectively treat different 

kinds of cancers, and currently many clinical trials are undergoing either as a monotherapy or in 

combination with various delivery vehicles and adjuvants (21-24). 

Despite these advances, still only a fraction of patients undergo complete tumor regression. 

There are many reasons for this, including immunosuppressive TME and suboptimal immune 

activation by therapeutic treatments. Immune response during cancer therapy is initiated by the 

release of tumor-specific antigens from spontaneously dying tumor cells or drug- or immune cell-

induced tumor cell death. These antigens are taken up by antigen presenting cells, processed into 

peptides that are presented on the MHC molecules, which together with co-stimulatory ligands on 

the APCs (B7.1/2) activate naïve T cells in the lymph nodes. T cells then proliferate and become 

effector cells, which effuse out from the lymph node into the blood circulation. They migrate 

following the chemokine gradient, traffic to and infiltrate the tumor. Many immunoengineering 

approaches are developed to solve the aforementioned issues that cause suboptimal therapeutic 

outcomes, by taking various strategies to modulate different stages of the immune responses and 

immune cell types, such as dendritic cells and T cells. 

Use of nanoparticles is one of the most commonly used strategies to enhance the efficacies 

of various therapeutics (25). Depending on the material and structural design of the nanoparticle, 

nanoparticle-mediated drug or vaccine delivery is reported to improve pharmacokinetics after 
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systemic administration, enabling co-delivery of adjuvant to antigen presenting cells (APC) for 

enhanced innate immune responses and increase the delivery of drugs to a targeted site within the 

body (26, 27). 

Another hurdle to achieving successful cancer immunotherapy is to increase tumor-

infiltration of antigen-specific CD8+ T cells. Many types of tumors are reported to down-regulate 

the expression of T cell attractant chemokines or have immature blood vessels, so-called leaky 

vasculature that limits the transmigration of T cells across the blood vessels into tumor tissues (28-

30). In such cases, the CD8+ T cells in the blood circulation either generated by vaccination or by 

adoptive cell transfer, fail to traffic to and infiltrate tumor. It is reported that the degree of tumor-

infiltration by lymphocytes is correlated with the patient prognosis (31, 32), highlighting the 

importance of finding the means to overcome this issue. In some studies, treatment of chemo-drugs, 

such as cisplatin and temozolomide (33), or agonists of pattern recognition receptors (PRR), such 

as stimulator of interferon genes (STING) agonist and cytosine-guanine-rich (CpG) motifs (CpG-

ODN) (34, 35), within tumors triggered the release of lymphocyte attractant chemokines from the 

tumor, increasing the tumor infiltration by T cells and NK cells. Therefore, it is presumed that in 

addition to other forms of immunotherapies that stimulate inflammatory immune responses against 

tumor, combinatorial treatment of therapeutics to recruit lymphocytes to tumor may provide a great 

synergy to achieving improved therapeutic outcome. 

In Chapters II and III, immunomodulation strategies using nanoparticle-mediated drug and 

vaccine delivery for cancer immunotherapy are discussed. First, a silica-based nanoparticle was 

used to deliver a model STING agonist to enhance the activation of dendritic cells (DC), which 

led to improved tumor growth suppression in mouse melanoma models. Next, a charge-induced 

nano-sized complex of cationic polymer and CpG was used to formulate a peptide-based cancer 
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vaccine to induce stronger DC activation and antigen presentation and subsequent CD8+ T cell 

responses. In combination with the vaccine treatment, STING agonist was treated to tumor to 

induce T cell attractant chemokine release from the tumor, which resulted in increased tumor 

infiltration by the vaccine-induced CD8+ T cells in the blood circulation. 

 

1.3. Infectious diseases 

Pathogenic bacteria and virus cause infectious diseases, the symptoms of which range from 

light to heavy illnesses, in some cases that reach serious morbidity or mortality. Many have been 

identified in history and are now well-known and thoroughly studied, while there are still newly 

emerging diseases that sometimes are alerting to the human society. Historically, there had been a 

number of outbreaks of infectious diseases that were highly contagious, causing epidemics that 

sometimes led to pandemics (36-38). Plague by a species of bacteria that caused Black Death and 

avian-origin viral infections that caused Spanish Flu are among many well-known pandemics that 

took many lives. With improved sanitization and more importantly by the advent of chemo-drugs 

and vaccines, many once thought to be detrimental and contagious diseases were able to be 

controlled and contained before being widely spread. 

While, on the bright side, many diseases are now in control with some of them even 

assumed to be extinct by ever improving vaccine and drug development technologies, there is a 

rising concern over the fight against infectious diseases. That is, the term between appearances of 

new pathogens with high transmissibility or mortality, thus with the potential to cause epidemic or 

to pandemic, is becoming shorter in the recent decades. One of the main reasons for the increased 

frequency is the apparent changes that have occurred in our society, such as overpopulation, 

increasing international travels and indoor activities. Most recently, first reported in December 
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2019, a novel corona virus called severe acute respiratory syndrome coronavirus 2 (SARS-CoV-

2) that spread throughout the world with an upsetting speed was declared a pandemic in March 

2020 and was named Coronavirus Disease 2019 (COVID-19). Unlike in the cases of similar 

viruses such as SARS-CoV that caused the 2002 epidemic and MERS-CoV that attracted global 

concerns due to its high mortality rate in 2012, both of which were managed to be contained, many 

conditions, such as ever-increasing international travels, overpopulation and mild- or 

asymptomatic, yet transmissible incubation period,  were met in the case of SARS-CoV-2 that let 

the virus exude out from the efforts to contain it regionally from where it began, and eventually 

spread globally at an epic speed to cause the pandemic (39). 

We have learned now that similar outbreaks will inevitably occur in future with shorter 

frequencies, which prompted global interest in developing interventions to counter diseases that 

cause such outbreaks. Broadly, those interventions can be categorized as either therapeutic or 

prophylactic. Both types of interventions ultimately aim to have a certain percentage of people in 

a community to have immunity that prevents further spread of the disease, which is termed 

communal/herd immunity. However, finding or discovering a therapeutic that shows sufficient 

efficacy each time an outbreak occurs, if at all possible, would be very challenging. Especially in 

the urgent setting of an epidemic outbreak, the extremely low percentile of drug candidates 

reaching the market and the typical time of 10 years spent for development of a new drug may 

seem even more unrealistic. To expedite the provision of efficacious drugs to the clinic, searching 

among drugs that are mostly FDA approved, called drug repurposing, is gaining a lot of attentions 

(40). However, when a novel pathogen arises, lack of preclinical study models and limited 

availability of pathogen and its biological/pathological information would still pose hurdles.  
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Similarly, vaccine development may also be challenging and time consuming when facing 

an epidemic outbreak by a novel pathogen. The process of developing a vaccine consists of two 

key steps: 1) identifying an antigen and 2) developing a delivery approach for said antigen to 

achieve robust cellular and humoral immunity. In case of COVID-19, our experiences of SARS-

CoV and MERS-CoV have enabled fast reaction against SARS-CoV-2 since analysis of viral 

genomic sequence and protein structures of ligands that bind to human receptors became rapidly 

available due to similarities between these viruses. It was discovered that SARS-CoV-2 can be 

targeted at specific sites of its surface glycoprotein called spike protein. 3D structural analyses 

have confirmed that the S1 subunit protein and more specifically the receptor binding domain 

(RBD) within the protein to be critical structural regions for the virus to bind with angiotensin-

converting enzyme 2 (ACE2) expressed on human cells and initiate infection (41, 42). Likewise, 

for future pathogens that may arise in future, various simulation and computation methods together 

with our experiences of encounters with previous variants of the pathogen may provide an 

expedited identification of targetable antigen. 

On the other hand, development of delivery approaches for efficient immune activation by 

a vaccine antigen is in the realm where we can invest on before an outbreak occurs (43, 44). 

Different types of vaccine technologies are used to develop vaccines which can be categorized 

depending on the type of antigen used: inactivated/attenuated virus, RNA, DNA and protein (45). 

Whole virus has been a type of vaccine conventionally used that brought a huge health benefit to 

human life, saving many lives while greatly reducing the cases of many major diseases, such as 

smallpox, tuberculosis and yellow fever. Live attenuated virus and inactivated virus are the two 

major types of whole virus vaccine. Live attenuated viruses are developed by passaging a virus 

multiple times in environments that differ from those of human hosts, making the virus lose its 
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ability to infect and replicate within human. In contrast, inactivated viruses are made by various 

ways to kill the virus, such as heating or chemical treatments. Therefore, as opposed to live 

attenuated vaccines, inactivated vaccines do not bear the risk of viral reversion. However, the 

reagents used to inactivate the live viruses often are damaging to the parts of the virion structure 

that is essential to the immunogenicity of the vaccine. Therefore, the vaccines synthesized with 

this method often fail to meet acceptable potency or need multiple vaccination regimen to achieve 

sufficient protection. 

In contrast to whole virus vaccines that are administered in the forms of virions, DNA, 

RNA and protein vaccines have an option to be encapsulated in delivery platforms which may 

enhance the vaccine potency. Many of the DNA and RNA vaccines (especially the RNA vaccines) 

currently under development for COVID-19 are in the forms of nanoparticles consisted of lipid-

based materials (46). Nanoparticles are used to achieve efficient trafficking of the vaccine antigen 

to the lymph node, co-delivery of adjuvant that further enhances the immune activation, and 

protection of antigen from degradation, benefiting the pharmacokinetics. 

It is important, however, to carefully design the structure and material of the delivery 

carrier depending on the type of antigen material, whether it being DNA, RNA or protein, the route 

of administration and expected pharmacokinetics after administration. Especially when protein 

subunits are used as the vaccine antigen, maintaining the quaternary and tertiary structures of the 

protein during the nanoparticle loading process is critical during the vaccine formulation, since it 

enables the vaccine to present appropriate epitopes to the immune cells, which is closely related 

to the generation of quality neutralizing antibodies that are effective at neutralizing the pathogens 

(47). In Chapter IV, generation of protein-based vaccines made in a form of lipid nanoparticle is 

introduced. Glycoproteins of human immunodeficiency virus-1 and RBD of SARS-CoV-2 are 
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used as model antigens to be loaded in the lipid nanoparticles, and rationale and the methods of 

formulating effective vaccines that generate potent antibody responses in mouse and rabbit are 

discussed. 

 

1.4. Effects of prebiotics on gut microbiome and immune responses 

 Microbiota is a collection of microorganisms that include bacteria, virus and fungi. 

Microbiome refers to the genomic materials as well as the physical entities of the microbes 

consisting the microbiota. It has been revealed that human body harbors multiple microbiotas 

depending on the organs or parts of the body. With the advances in sequencing tools and mass data 

analysis, people are able to take a deeper look into the composition of each microbiota and the 

factors that influence the bacterial residents within the microbiota. 

 The gut microbiome is one of the most actively studied subjects of microbiome research, 

where the food that we consume has been identified to be a critical factor to how gut bacteria react 

and metabolize, and ultimately to our general health (48, 49). More importantly, recent studies are 

finding scientific bases for the close relationship between the gut microbiota and host immunity. 

Depending on how the diet is regulated, one may either suffer from autoimmune or inflammatory 

disorders or may elicit robust immune responses against intrusions of external pathogens (50-52). 

In particular, consumption of dietary fibers is known to provide sources for gut bacteria to 

metabolize on, which upon fermentation generates short chain fatty acids (SCFA) as the metabolic 

products. Studies are reporting the effects of SCFA on the various types of immune cells, including 

dendritic cells, T cells, and many more (53-55), and their contributions during cancer 

immunotherapy (56-58). Although there are contrasting reports of the effect of SCFA levels in 

blood on the clinical responses upon therapeutic interventions, such as anti-PD-1 or anti-CTLA-4 
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antibody treatments (58, 59), it is certain that the bacterial metabolites have significant impact on 

how the immune system is regulated. 

 Based on these clues, people were able to predict the relationship between the gut 

microbiome and the way hosts respond to vaccination. From mice studies, immune responses 

induced by vaccination were varied based on whether a mouse received antibiotics or was kept in 

a germ-free environment (60, 61). Later, similar effects were observed in human cases, where 

antibiotic treatment led to marked reduction in bacterial loads in the gut and significantly reduced 

flu vaccine efficacy (62, 63). Therefore, from an immunoengineering perspective, modulation of 

immune response upon vaccination may be achieved by influencing the gut microbiome, and 

consumption of dietary fibers is a great way to achieve that goal. In Chapter V, the effects of 

prebiotics consumption on microbiome and subsequent influence on cancer vaccine efficacy in 

mouse tumor model are discussed. 
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CHAPTER II. Improving STING Agonist Delivery for Cancer Immunotherapy Using 

Biodegradable Mesoporous Silica Nanoparticles 

 

2.1. Abstract 

Stimulator of interferon genes (STING) activation by intratumoral STING agonist treatment has 

been recently shown to eradicate tumors in preclinical models of cancer immunotherapy, 

generating intense research interest and leading to multiple clinical trials. However, there are many 

challenges associated with STING agonist-based cancer immunotherapy, including low cellular 

uptake of STING agonists. Here, biodegradable mesoporous silica nanoparticles (bMSN) with an 

average size of 80 nm have been developed for efficient cellular delivery of STING agonists. 

STING agonists delivered via bMSN potently activate innate and adaptive immune cells, leading 

to strong anti-tumor efficacy and prolonged animal survival in murine models of melanoma. 

Delivery of immunotherapeutic agents via biodegradable bMSN is a promising approach for 

improving cancer immunotherapy. 

 

2.2. Introduction 

Exogenous nucleic acids that have successfully bypassed external sensing and appear in 

the cytosol are processed by cyclic GMP–AMP synthase (cGAS) into cyclic dinucleotides (CDNs), 

which engage stimulator of interferon genes (STING) molecules positioned along the endoplasmic 

reticulum. This triggers the interferon regulatory factor 3 (IRF-3) and nuclear factor kappa-light-
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chain-enhancer of activated B cells (NFB) signaling pathways and leads to type I interferon and 

pro-inflammatory cytokine production. In addition to protection against viral and bacterial 

infections, recent findings have also revealed a critical role of STING in initiating immune 

responses against cancer. Numerous studies have reported promising anti-cancer effects of STING 

agonists (64, 65). Importantly, STING agonist treatment induces significant anti-tumor immune 

responses, leading to complete tumor regression and durable anti-tumor immunity in multiple 

murine tumor models (66, 67). Compared with other PRR-binding adjuvants, STING agonists 

showed a distinct potency in that their sole treatment led to complete regression of established 

tumors in preclinical settings. The role of STING agonists in triggering type I interferon response 

leading to activation of various immune cell types suggests many potential applications for cancer 

treatment. Based on many promising preclinical studies, two types of STING agonist have 

undergone clinical evaluation as a single treatment or in combination with immune checkpoint 

blockers. Thus, STING has sparked intense research interest in the field of cancer immunotherapy 

(68, 69), and there are multiple clinical trials underway to evaluate the therapeutic efficacy of 

STING agonists. 

Despite their outstanding efficacies against various types of tumors, there are several 

hurdles of using soluble forms of STING agonist that limits their clinical translation. As STING 

agonists are based on cyclic dinucleotides with negative charges, their cellular permeability is 

minimal. Since STING molecules reside within the cytosol where endoplasmic reticulum is located, 

inability to permeate into cytosol leads to suboptimal activation of STING at a given dose. Also, 

due to their small molecular weight, STING agonists diffuse rapidly into systemic circulation upon 

injection, which may potentially cause severe off-target side-effects. Therefore, most preclinical 

and clinical studies with STING agonists have been limited to direct intratumoral injection, which 
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limits their use to treating local tumors. A recent report on STING activation in T cells leading to 

cell death exposes a negative effect of STING activation on cell types other than innate immune 

cells (70). In addition, since natural STING agonists are based on inherently unstable CDN 

structures, they exhibit a fast clearance from blood circulation. Lastly, the amount of STING 

agonist injected to tumor has been shown to dictate CD8+ T cell response (71), underscoring the 

importance of regulating the dose and pharmacokinetics of STING agonist to achieve robust anti-

tumor immunity. 

Here, we sought to promote cellular delivery of STING agonists using a well-established 

nanoparticle system with a strong track record of biocompatibility, safety, and manufacturability, 

considering the overarching direction of design to clinical translation. In particular, mesoporous 

silica nanoparticle (MSN) is a widely used inorganic drug delivery nanocarrier with tunable size, 

low immunogenicity, controlled release of cargo materials, and facile and low-cost preparation 

process (72, 73). However, while synthetic MSNs composed of amorphous silica are generally 

considered to be biocompatible, their limitations include relatively small pore sizes for drug 

loading, slow biodegradation, and long-term tissue retention (74-78). To address these issues, we 

have developed biodegradable mesoporous silica nanoparticles (bMSN) for cytosolic delivery of 

STING agonists. We have recently shown that bMSN with a less-dense Si-O-Si matrix undergoes 

faster biodegradation process than conventional MSN and that bMSN’s large pore size ranging 5-

10 nm allows for efficient loading and delivery of biomacromolecules for combination cancer 

treatments (79). Here, we report that bMSN surface-modified with amine serves as a promising 

platform for cellular delivery of STING agonists and immune activation. Using two murine models 

of melanoma, we demonstrate the therapeutic efficacy of bMSN carrying STING agonists, 

highlighting the potential of bMSN for applications in cancer immunotherapy. 
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2.3. Materials and Methods 

Synthesis of bMSN and CDA loading 

We synthesized bMSN by an oil-water biphase reaction approach.[22,41] Twenty-four ml 

of (25 wt %) CTAC solution and 0.18 g of TEA were added to 36 ml of water and stirred gently 

at 60 °C for 1 hr. Twenty ml of TEOS in cyclohexane (10 v/v %) was carefully added to 60 mL of 

the water-CTAC-TEA solution (0.3 M CTAC and 20 mM TEA) and kept at 60 °C. The reaction 

was kept at a constant temperature with continuous stirring for 18 hr to obtain nanoparticles. They 

were washed with ethanol for 3 times and water for 2 times with centrifugation at 15,500g for 15 

min. Surfactant was removed by incubating the nanoparticles in 10% NH4NO3/ethanol (v/v) at 

50 °C overnight, followed by washing. The resulting nanoparticles were freeze-dried and stored at 

4°C until use. To load CDA, 40 µg of CDA was mixed with 225 µg of bMSN in 5 mM histidine 

buffer, followed by 1 min of bath sonication. The mixture was incubated in 37 °C for 1 hour under 

constant shaking, then centrifuged at 10,000 g for 5 min. After removing the supernatant, the pellet 

was dispersed into PBS. The resulting CDA@bMSN showed 96.3% of CDA loading efficiency. 

In vivo studies 

Animals were cared for following the federal, state, and local guidelines. The University 

of Michigan, Ann Arbor is an AAALAC international accredited institution, and all work 

conducted on animals was in accordance with and approved by the Institutional Animal Care and 

Use Committee (IACUC) with the protocol # PRO00008587. Female C57BL/6 mice, 5-6 weeks 

in age (The Jackson Laboratory) were inoculated subcutaneously with 3x105 mouse melanoma 

cells (either B16F10 or B16F10OVA) on the right-side flank. After 6 days, mice received CDA 

formulations (PBS as control) via intratumoral injection. Blood sampling and tumor excision were 
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performed on the indicated time points. Blood samples were collected from the facial vein using a 

lancet. In a separate study, tumor sizes were measured every 2-3 days for monitoring tumor growth. 

Statistical analysis 

Data are presented as mean ± SEM. Data were approximately normally distributed, and 

variance was similar between the groups. Experiments were repeated multiple times as 

independent experiments with the sample size indicated in the figure captions. Data were analyzed 

using either one-way analysis of variance (ANOVA) or two-way ANOVA, followed by Tukey’s 

multiple comparison test for comparison of multiple groups using Prism 7.0e (GraphPad Software). 

Animal survival was analyzed by the log-rank (Mantel−Cox) test. *p < 0.05, **p < 0.01, ***p < 

0.001, and ****p < 0.0001. 

 

2.4. Results and Discussion 

We synthesized bMSN as we previously reported with some modifications for cytosolic 

delivery of STING agonists (79). The resulting bMSN had an approximate average diameter of 80 

nm, as visualized by transmission electron microscopy (TEM) (Figure 2-1a). Compared with 

conventional mesoporous silica nanoparticles, bMSN had a larger pore size (5 – 10 nm) and a 

thinner Si-O-Si matrix that allowed for rapid degradation within 120 hours in a physiological 

condition (Figure 2-1b). We loaded bMSN with a model STING agonist, bis-(3'-5')-cyclic dimeric 

adenosine monophosphate (CDA). Since CDA is a dicyclic nucleotide with anionic charges, the 

silica surface of bMSN was modified with amines (-NH2) to facilitate charge-mediated drug 

loading. The amine-modification changed the zeta potential of bMSN from -27.6 mV to 9.3 mV 

but did not affect the size of the nanoparticles (Figure 2-1c,d). The resulting bMSN-NH2 

(henceforth referred to as bMSN) was incubated at various concentrations with a fixed amount of 
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CDA (8 µg). After CDA was simply mixed and incubated with pre-formed bMSN for 1 hr, we 

observed > 90% loading of 8 µg CDA into 25 µg of bMSN (Figure 2-1e), indicating drug loading 

of ~290 µg per mg of bMSN (CDA@bMSN). CDA was released from CDA@bMSN within 1 hr 

at pH 7.0 (Figure 2-1f). However, when incubated at a slightly acidic condition of pH 6.0 

mimicking the conditions within the tumor microenvironment (TME) (80), we observed slower 

release of CDA (Figure 2-1f). 

 

Figure 2-1 Cellular delivery of STING agonists using bMSN. (a) TEM image of bMSN. (b) Degradation of bMSN in a 

physiological condition (Krebs-Henseleit solution at 37 °C). (c) Surface charge and (d) hydrodynamic size of bMSN measured 

before and after amine-modification using DLS. Particles were transferred to water for measurements. (e)  CDA-loading capacity 

of bMSN. (f) CDA Release profiles in different pH conditions. All data are presented as mean ± SEM, showing representative 

results from two independent studies with n = 3, with the exception of (e) with n = 1. Scale bars in (a) and (b) = 100 nm. 

 

Next, we examined cellular uptake of CDA@bMSN using mouse bone marrow-derived 

dendritic cells (BMDCs), as a widely used surrogate for APCs. BMDCs incubated with free 

fluorophore-tagged CDA for 6 hr showed a minimal increase in the fluorescence signal (Figure 2-

2a), whereas BMDCs incubated with CDA@bMSN exhibited markedly enhanced CDA signal 
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(Figure 2-2a). Similarly, confocal microscopy revealed that BMDCs and B16F10 melanoma cells 

incubated with fluorophore-tagged CDA@bMSN exhibited much stronger cytosolic fluorescence 

signal, compared with minimal signal in cells treated with free CDA (Figure 2-2b, Figure 2-2c), 

demonstrating efficient bMSN-mediated cytosolic delivery of STING agonist. 

In addition, CDA@bMSN treatment led to robust BMDC activation, as evidenced by 

significantly increased expression of CD40 (P < 0.0001) and CD86 (P < 0.001), compared with 

free CDA treatment (Figure 2-2d), likely due to the increased cellular uptake of CDA@bMSN. 

Blank bMSN slightly increased the expression level of CD40, but not CD86, indicating minimal 

immune activation by the blank bMSN itself. Next, we used THP1-Blue ISG (human monocyte-

derived cells expressing a reporter gene for STING activation) to study the effects of CDA@bMSN 

on STING activation. Compared with free CDA, CDA@bMSN induced significantly stronger 

STING activation even at 12.5 µg/ml dose of CDA (P < 0.0001, Figure 2-2e), indicating 

amplification STING activation by bMSN-mediated delivery of CDA. Notably, both THP1-Blue 

ISG cells and primary CD8+ T cells incubated with either free CDA or CDA@bMSN exhibited 

similar levels of viability (Figure 2-2f, Figure 2-2g), showing biocompatibility of CDA@bMSN. 

We have also previously reported biological safety of the bMSN platform (79). Taken together, 

compared with free soluble CDA, CDA@bMSN significantly improved cellular uptake of CDA 

and amplified STING activation, without negatively affecting cytotoxicity. 
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Figure 2-2. Effects of bMSN-mediated CDA delivery in vitro. (a-c) Uptake of CDA by BMDCs assessed in vitro with (a) flow 

cytometry and (b,c) confocal microscopy. (d) Activation of BMDCs measured by flow cytometry after 4 hr of incubation. (e) 

STING activation of human monocyte-derived THP1-Blue ISG cells measured after overnight incubation. Relative viability of 

THP1-Blue ISG cells (f) and CD8+ T cells (g) after STING agonist treatment, measured using cell counting kit-8. All data are 

presented as mean ± SEM, showing representative results from two independent studies with n = 3, Scale bars in (b,c) = 5 µm. **p 

< 0.01, ***p < 0.001, ****p < 0.0001 analyzed by one-way or two-way ANOVA with Tukey’s HSD multiple comparison post hoc 

test. 

 

We examined secretion of cytokines and chemokines from BMDCs treated with CDA 

formulations. In line with the enhanced uptake of CDA and activation of BMDCs (Figure 2-2a-

d), CDA@bMSN treatment significantly increased the release of IL-6, IL-12p40, IFN-β, CXCL10, 

CCL2, CCL3, and CCL5 from BMDCs, compared with free CDA (P < 0.0001, Figure 2-3a). 

Although tumor-infiltrating immune cells are known as the major cell types that are activated by 
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STING agonists and initiate anti-tumor immune response, tumor cells also have been shown to 

respond to STING agonists (81, 82). We examined whether CDA treatment can promote cytokine 

and chemokine production from melanoma cell lines, B16F10 and B16F10OVA. Tumor cells 

incubated with free CDA did not release any detectable levels of cytokines or chemokines; 

however, CDA@bMSN treatment led to significantly amplified secretion of CXCL10 and CCL5 

from B16F10 cells and CCL2 and CCL5 from B16F10OVA cells (P < 0.01 for CCL2 and P < 

0.0001 for the others, Figure 2-3b). In order to confirm STING-dependent activation, we pre-

treated BMDCs with a STING inhibitor, C-178, followed by incubation with CDA formulations. 

Pre-treatment with C-178 significantly decreased the secretion of cytokines and chemokines 

induced by both free CDA and CDA@bMSN (Figure 2-3c), showing that CDA-mediated immune 

activation is indeed dependent on the STING pathway. 
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Figure 2-3. CDA@bMSN promotes cytokine and chemokine release from BMDCs and tumor cells. (a) Mouse BMDCs and 

(b) mouse melanoma cell lines, B16F10 and B16F10OVA, were treated with 10 µg/ml of CDA for 6 hr in vitro. Supernatants 

were assessed by ELISA for cytokines and chemokines. (c) BMDCs pre-treated for 1 hr with 0.5 µM of a STING inhibitor, C-

178, followed by treatment with 10 µg/ml of CDA for 6 hr. Data are presented as mean ± SEM, showing representative results 

from two independent studies with n = 3-4. **p < 0.01, ***p < 0.001, ****p < 0.0001 analyzed by analyzed by one-way or two-

way ANOVA with Tukey’s HSD multiple comparison post hoc test. 

 

Next, anti-tumor effects of CDA@bMSN was investigated in a murine melanoma model 

of B16F10OVA. C57BL/6 mice were injected subcutaneously with 3x105 B16F10OVA cells on 

the right-side flank. When tumors reached > 100 mm3 on day 6 after tumor inoculation, we 

performed a single intratumoral administration of 2 µg CDA in either bMSN or free form (Figure 

2-4a). Interestingly, both free CDA and CDA@bMSN treatments were able to induce regression 
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of established tumors with minimal tumor volume by day 14 (Figure 2-4b). However, 50% of 

mice in the free CDA-treated group quickly relapsed and had to be euthanized by day 30. In stark 

contrast, 100% mice in the CDA@bMSN treatment group remained tumor free for the duration of 

the study (Figure 2-4c). To understand the differences between the free CDA and CDA@bMSN 

treatment groups, we analyzed the levels of cytokines and chemokines as well as various immune 

cell subsets. In line with our in vitro results (Figure 3), after 3 hours of intratumoral administration, 

CDA@bMSN induced strong release of IFN-β, CXCL10, CCL2, and CCL5 in TME and serum 

(Figure 2-4d,e). Notably, even after 24 hr of administration, higher levels of CXCL10 and CCL2 

were detected within the TME for the CDA@bMSN group, compared with free CDA group (P < 

0.05, Figure 2-4d), suggesting sustained immune activation mediated by bMSN. 

We also investigated the effects of CDA treatment on the innate and adaptive immune 

responses. Intratumoral administration of CDA@bMSN led to robust activation of DCs within the 

TME, as evidenced by upregulation of CD86 within 3 hr and CD40 within 24 hr post treatment 

(Figure 2-4f). There was a trend for higher expression levels of CD86 and CD40 on DCs after 24 

hr of treatment with CDA@bMSN, compared with free CDA (Figure 2-4f) although their 

differences were not statistically significant. While free CDA treatment induced transient 

upregulation and down-regulation of CD107α, a degranulation marker, on intratumoral NK cells, 

CDA@bMSN treatment led to sustained expression of CD107α on intratumoral NK cells for up 

to 24 hr (P < 0.5, Figure 2-4g). By 24 hr of CDA@bMSN treatment, we also observed activation 

of NK cells in the circulation, as shown by increased levels of CD107α and NKG2D (83, 84) 

(Figure 2-4h). 

Intratumoral injection of free CDA significantly decreased the number of CD8+ T cells 

within the tumor by 24 hr post CDA injection, compared with no treatment group (P < 0.05, Figure 
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2-4i). This is in line with the literature reporting decreased tumor-infiltration of lymphocytes after 

intratumoral administration of free STING agonist (71, 81). In contrast, intratumoral 

CDA@bMSN treatment resulted in significantly higher number of intratumoral CD8+ T cells at 

24 hr time point, compared with free CDA (P < 0.01, Figure 2-4h), suggesting that bMSN-

mediated CDA delivery reversed the decrease in intratumoral infiltration of CD8+ T cells 

associated with free CDA (71, 81). CDA@bMSN treatment also significantly increased the 

expression of a degranulation marker, CD107α, on intratumoral CD8+ T cells by 24 hr, compared 

with untreated control (P < 0.05, Figure 2-4j). Overall, these results suggest that bMSN-mediated 

delivery of CDA amplifies the magnitude and duration of cytokine and chemokine release within 

TME and potently activates intratumoral DCs, NK cells, and CD8+ T cells, thus leading to 

regression of established tumors. 
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Figure 2-4. A single intratumoral treatment with CDA@bMSN exerts potent anti-tumor efficacy. (a) C57BL/6 mice were 

subcutaneously injected with 3x105 B16F10OVA cells on the right-side flank. After 6 days, each mouse received intratumoral 

injection of 2 µg CDA as a soluble or bMSN formulations. After 3 or 24 hr, blood sampling and tumor excision were performed. 

(b) Tumor growth curves and (c) animal survival are shown. (d) Cytokine levels within tumor tissues or (e) sera were measured by 

ELISA after 3 and 24 hr or 3 hr of CDA injection, respectively. Flow cytometric analyses were performed to examine (f) CD86 

and CD40 expression on DCs, (g,h) CD107α expression on NK cells and (i) the number of CD8+ T cells within the B16F10OVA 

TME for (f,g,i) and blood for (h). Data are presented as mean ± SEM, showing representative results from two independent studies 

with n = 3-4 for (b-c) and n = 5 for (d-j). *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001 analyzed by analyzed by one-way 

or two-way ANOVA with Tukey’s HSD multiple comparison post hoc test. Animal survival curves were analyzed by the log-rank 

(Mantel−Cox) test. 
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Having observed strong anti-tumor efficacy of CDA@bMSN, we evaluated CDA@bMSN 

in the setting of established B16F10 melanoma. As B16F10 is a poorly immunogenic, highly 

aggressive tumor model, we increased the dose of CDA@bMSN to 5 µg. C57BL/6 mice were 

inoculated s.c. with 3x105 B16F10 cells. When tumors were > 50 mm3 on day 6, we performed a 

single intratumoral administration of CDA either in a soluble or bMSN forms (Figure 2-5a). 

Whereas mice in the untreated control group quickly succumbed to B16F10 tumor with a median 

survival of 12 days, free CDA treatment slowed the B16F10 tumor growth and extended the 

median survival to 18 days (p < 0.01, Figure 2-5b,c). Compared with free CDA group, 

CDA@bMSN treatment further inhibited B16F10 tumor growth (p < 0.01, Figure 2-5b) and 

extended the median survival to 24 days (p < 0.05, Figure 2-5c), thus highlighting the therapeutic 

potential of CDA@bMSN. 

 

Figure 2-5. A single intratumoral treatment with CDA@bMSN exerts potent anti-tumor efficacy in B16F10 mouse 

melanoma model. (a) C57BL/6 mice were subcutaneously injected with 3x105 B16F10 cells on the right-side flank. After 6 days, 

each mouse received intratumoral injection of 5 µg free CDA or CDA@bMSN. (b) Tumor growth curves and (c) animal survival 

curves are shown. Data are presented as mean ± SEM, pooled from two independent studies. *p < 0.05, **p < 0.01, ***p < 0.001, 

****p < 0.0001 analyzed by analyzed by two-way ANOVA with Tukey’s HSD multiple comparison post hoc test. Animal survival 

curves were analyzed by the log-rank (Mantel−Cox) test. 
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2.5. Conclusion 

In summary, we have developed bMSN for efficient cytosolic delivery of STING agonists. 

While previous studies have reported various STING agonist-loaded NP systems (85-89) including 

liposomes and polymeric NPs, their fabrication and drug loading procedures are often complicated 

with multiple synthesis and separation steps, and many of these NP platforms have not been 

clinically tested. On the other hand, silica-based NPs offer a promising platform with 

biocompatibility, facile manufacturing process, and clinical safety (72, 73, 90). Notably, we have 

achieved > 90% loading of CDA into bMSN simply by admixing CDA with pre-formed bMSN 

for 1 hr. We show that bMSN carrying STING agonists improves STING activation by DCs and 

tumor cells and elicits potent innate and adaptive immune responses in vivo, leading to strong anti-

tumor efficacy and prolonged animal survival in murine models of melanoma. While the 

mechanisms underlying bMSN-mediated STING activation and subsequent cascades of innate and 

adaptive immune responses remain to be elucidated, our results suggest that bMSN is a 

biodegradable and biocompatible carrier for efficient delivery of STING agonists. It is also notable 

that the typical dose of STING agonists reported in the literature ranges from 10-240 µg, often 

used in combination with chemotherapeutic or immunotherapeutic agents (66, 71, 91-95). In 

contrast, we report that a single injection of CDA@bMSN at the dose of 5 µg or less exerted potent 

anti-tumor efficacy, thus highlighting the dose-sparing effect of the bMSN platform. Recent 

advances in cancer immunotherapy have generated intense research interest in drug delivery 

vehicles for improving immune activation (20, 26, 96, 97), and our bMSN system may offer a 

promising platform for delivery of immunomodulatory agents for cancer immunotherapy. 

Nevertheless, as our current studies have mainly focused on the acute responses mounted 

by innate immune cells after intratumoral CDA injection, our future studies will address the effects 
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of bMSN-based CDA delivery on adaptive immune responses and examine systemic delivery of 

CDA@bMSN. Further research is warranted to optimize the bMSN platform for the delivery of 

STING agonists in the context of combination cancer immunotherapy. 
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CHAPTER III. Personalized Combination Nano-immunotherapy for Robust Induction and 

Tumor Infiltration of CD8+ T Cells 

 

3.1. Abstract 

Identification of tumor-specific mutations, called neoantigens, offers new exciting opportunities 

for personalized cancer immunotherapy. However, it remains challenging to achieve robust 

induction of neoantigen-specific T cells and drive their infiltration into the tumor 

microenvironment (TME). Here, we have developed a novel polyethyleneimine (PEI)-based 

personalized vaccine platform carrying neoantigen peptides and CpG adjuvants in a compact 

nanoparticle (NP) for their spatio-temporally concerted delivery. PEI NP vaccine significantly 

enhanced activation and antigen cross-presentation of dendritic cells, resulting in strong priming 

of neoantigen-specific CD8+ T cells with the frequency in the systemic circulation reaching as 

high as 23 ± 7% after a single subcutaneous administration. However, activated CD8+ T cells in 

circulation exhibited limited tumor infiltration, leading to poor anti-tumor efficacy. Notably, local 

administration of stimulator of interferon genes (STING) agonist promoted tumor infiltration of 

vaccine-primed CD8+ T cells, thereby overcoming one of the major challenges in achieving strong 

anti-tumor efficacy with cancer vaccination. PEI NP vaccination combined with STING agonist 

therapy eliminated tumors in murine models of MC-38 colon carcinoma and B16F10 melanoma 

and established long-term immunological memory. Our approach provides a novel therapeutic 

strategy based on combination nano-immunotherapy for personalized cancer immunotherapy.
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3.2. Introduction 

Recent advances in genomics and proteomics are shedding new light on the tumor 

mutanome, revealing that every tumor has a unique set of driver and passenger mutations (17-19). 

Expression of neoantigens is, by definition, restricted to tumor cells as opposed to tumor-

associated antigens with shared expression among healthy and tumor cells. Thus, immunotherapy 

directed against neoantigens may allow for specific immunological targeting of tumor cells 

without self-tolerance. It has been the motive for an avalanche of cancer vaccine studies in the 

recent years. 

In 2017, first-in-man phase I clinical trials were reported in which patients with advanced 

melanoma were treated with neoantigen peptide vaccines following surgical resection of the 

tumour (24). Each of six patients received seven doses of 20 different neoantigen peptides mixed 

with poly(I:C) stabilized with poly-L-lysine (poly-ICLC) adjuvant(24); neoantigen vaccination 

induced CD4+ and CD8+ T cells specific for 58 (60%) and 15 (16%) of the 97 unique neoantigens 

identified across the six patients. Four patients showed no recurrence at 25 months after 

vaccination, and two patients had complete tumour regression after co-treatment with the 

checkpoint blockade agent anti-PD-1. Along with another phase I trial with neoantigen encoding 

mRNA vaccine detailed below(98), these seminal trials showed that personalized neoantigen 

vaccination, especially in combination with immune checkpoint blockade, can unleash the full 

cytotoxic potential of neoantigen-specific T cells to kill tumours with limited adverse effects, and 

underscored the clinical applicability of personalized neoantigen vaccines as a new therapeutic 

strategy for long-term protection against tumour relapse and metastasis. 

The tantalizing results of neoantigen vaccination galvanized the personalized 

immunotherapy field; nevertheless, producing potent anti-tumour neoantigens therapies in a safe, 
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effective, and personalized process is challenging: efficient delivery strategies are needed to 

enhance transport of neoantigens together with adjuvant molecules to lymph nodes; the amino acid 

composition of neoantigen peptides can have significant effects on their isoelectric properties, 

meaning that the administration of a cocktail of soluble peptides can lead to their precipitation, 

deposition in off-target tissues, or dissemination through the systemic circulation without 

preferential targeting to lymphoid tissues. Issues in vaccine delivery can result in only a minor 

fraction of the injected peptides reaching the target lymphoid tissues, reducing vaccine efficacy. 

Also, even if vaccination generates sufficient anti-tumor CD8+ T cells in the systemic circulation, 

intratumoral trafficking of CD8+ T cells is often limited, thus resulting in poor anti-tumor effects.  

Notably, tumor infiltration of CD8+ T cells is correlated with patient prognosis, as shown by recent 

retrospective analyses of clinical cases (31, 99-101). Also, tumors with sparse T cell infiltration 

are less responsive to immune checkpoint blockade (ICB) therapies designed to reinvigorate 

tumor-infiltrating lymphocytes (102). Such immunologically “cold” tumors have various 

immunosuppressive mechanisms to exclude or reprogram immune cells, thus shaping the tumor 

microenvironment (TME) to evade the immune surveillance (2, 103). While chemotherapy (104, 

105), oncolytic virus (106), and anti-angiogenic agents (107) have been applied to reverse 

immunosuppression and convert non-immunogenic “cold” tumors into T cell-inflamed “hot” 

tumors, it remains to be seen how to combine them effectively with cancer vaccination.  

Therefore, current personalized cancer vaccines using neoantigen peptides face two major 

problems. 1) Neoantigen peptides delivered in soluble forms generate suboptimal immune potency. 

2) Many tumors release insufficient levels of chemokines to attract circulating CD8+ T cells to the 

site of tumor. Thus, new approaches are needed to promote the induction of neoantigen-specific T 

cells and increase their tumor infiltration. 
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Here, to overcome these urgent challenges, we have developed a facile personalized 

nanoparticle vaccine using polyethyleneimine (PEI) that offers versatile functionality for modular 

incorporation of neoantigens and simple electrostatic assembly of CpG adjuvant. PEI NP vaccine 

significantly enhanced cellular uptake of antigens and adjuvant molecules to promote activation 

and antigen cross-presentation of dendritic cells (DCs), resulting in robust priming of neoantigen-

specific CD8+ T cell. However, despite high frequency of anti-tumor CD8+ T cells in the systemic 

circulation, we observed weak anti-tumor effect due to limited intratumoral trafficking of activated 

CD8+ T cells. STING is a pattern recognition receptor (PRR) that triggers NF-κB and IRF3 

pathways, leading to strong type I IFN responses (108), and recent studies have reported promising 

therapeutic efficacy of STING agonists for cancer treatment (66, 71). Here, we have demonstrated 

that intratumoral administration of STING agonist induced robust secretion of cytokines and 

chemokines that promoted T cell trafficking into the TME. When combined with PEI NP 

vaccination, treatment with STING agonist led to strong recruitment of vaccine-primed, 

neoantigen-specific CD8+ T cells into the TME, leading to significantly improved anti-tumor 

efficacy, compared to either treatment alone. These studies present a new combination nano-

immunotherapy for inducing neoantigen-specific T cells and their tumor infiltration for achieving 

potent anti-tumor efficacy.   

Specifically, we prepared personalized NP vaccine based on PEI by taking advantage of 

its versatile functionality for chemical conjugation and electrostatic complexation. PEI was grafted 

with PEG for enhancing colloidal stability and biocompatibility, followed by conjugation with 

CSS-modified neoantigen peptides via reduction sensitive disulfide bond. Because of the strong 

cationic characteristic of PEI, the simple mixture of PEI conjugates with anionic CpG formed a 

nanoscale condensate by electrostatic complexation. (Figure 3-1a). CpG was employed as an 
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adjuvant not only because of its strong anionic property but also for its potent immunostimulatory 

property (109). 

 

3.3. Materials and Methods 

Synthesis of PEI conjugates and CpG nanocomplex 

PEI-PEG was prepared using branched PEI (Sigma-Aldrich, molecular weight ~25,000) 

and methoxy poly(ethyleneglycol) propionic acid N-hydroxysuccinimide (Nanocs, molecular 

weight 5000) as reported previously 41. For PEI-PEG/CSS-antigen, PEI-PEG was dissolved in 

DMSO and added with 3-(2-Pyridyldithio)propionic acid N-hydroxysuccinimide ester (SPDP, 

Sigma-Aldrich) to create thiol-reactive disulfide bond. After stirring for 3h, the mixture was 

reacted with CSS-antigen overnight, followed by dialysis-purification using Amicon ultra 10 kDa 

MW cutoff centrifugal filters. CpG nanocomplex was formed by vigorously mixing CpG (CpG 

1826, Integrated DNA Technology) and PEI conjugate in PBS at the weight ratio 0.5, 1, 2, or 3.   

Animal studies 

Animals were cared for following federal, state and local guidelines. All experiments 

performed on animals were in accordance with and approved by the Institutional Animal Care and 

Use Committee (IACUC) at the University of Michigan, Ann Arbor. 5-6 weeks old female 

C57BL/6 mice were purchased from Jackson Laboratories. Tumor cells (6x105 MC-38 cells per 

mouse (1.2x106 for re-challenge study) and 3x105 B16F10 cells per mouse) were injected s.c. on 

the right flank of each mouse. Vaccines were administered s.c. at the tail-base on indicated days. 

Four days after the vaccination, CDA (dissolved in PBS; 0.5 µg for the MC-38 model and 5 µg for 
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the B16F10 model) was injected into tumors on the indicated days. Tumor sizes were measured 

using a caliper. 

In vitro BMDC studies 

BMDCs were collected from hind femurs of C57BL/6 mice, cultured with media 

supplemented with GM-CSF for 8-10 days as previously reported 42. For the analysis of cytokine 

secretion and proliferation by PEI NP, immature BMDCs were treated with free PEI-PEG/CSS-

Adpgk (PEI conjugate, 3 µg/ml), free CpG (1 µg/ml), or PEI NPs formulated at different weight 

ratios of PEI conjugate/CpG (1 µg/ml CpG and the respective amount of PEI conjugate). Cells 

were washed after 2 h, supplemented with fresh media, and further incubated for 24 h for the 

detection of IL-12p70 in cell culture media using ELISA, while BMDC proliferation was measured 

using a cell counting kit (CCK-8; Dojindo Molecular Technologies, Inc.).   

For studying CpG uptake by BMDCs, 5' phosphate group of CpG was tethered with 

ethylenediamine and subsequently labeled with Alexa Fluor® 647 NHS Ester (AF647-NHS, 

Invitrogen) as described before.41 In parallel, PEI conjugates were labeled with Alexa Fluor® 488 

NHS Ester (AF488-NHS, Invitrogen). BMDCs were then incubated with soluble formulation or 

PEI NPs at dose of 10 µg/ml CpG-AF467 and 20 µg/ml PEI conjugates-AF488 (equivalent of 10 

µg/ml for free Adpgk). At the indicated time points, cells were collected, washed with FACS buffer 

(1% BSA in PBS), and then subjected to flow cytometry for measuring fluorescence signals. To 

visualize cellular localization, BMDCs were grown onto 12 mm glass coverslips in 24 well plates 

at a density of 5 × 105 cells/well and treated with samples as above for 24 h. Cells were further 

incubated with Hoechst 33342 (5 μg/ml, Invitrogen) and Lysotracker Red DND-99 (100 nM, 

Invitrogen) for 30 min for the staining of nuclei and endolysosomes, respectively. Then, cells were 
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fixed with 4% formaldehyde in PBS and mounted on slide glass using ProLong™ Diamond 

Antifade Mountant (Invitrogen) for confocal microscopy (Nikon A1Rsi). 

For assessing activation and antigen cross-presentation, PEI NPs were constructed using 

PEI-PEG/CSS-SIINFEKL and CpG. BMDCs were incubated for 24 h with either soluble or PEI 

NP formulation of SIINFEKL and CpG (2 µg/ml SIINFEKL and 1 µg/ml CpG). Cells were then 

stained with antibody-fluorophore conjugates including CD40-APC (Invitrogen), CD86-PE/Cy7 

(BD Biosciences), and SIINFEKL/H-2kb-PE (Invitrogen) for 30 min at room temperature. Cells 

were washed with FACS buffer and analyzed using flow cytometry.  

For the analysis of cytokine secretion by BMDCs in response to CDA treatment, BMDCs 

were seeded at a density of 105 cells/well in a 96-well tissue culture plate and incubated overnight 

at 37 oC with 5% CO2. Cells were washed with PBS twice, and then added with 5 µg of CDA in 

200 µl of fresh culture media. Culture media were retrieved after 6 hrs for ELISA assay. 

Analyses of CD8+ T cells and cytokines in blood and tumor 

Blood was collected at the indicated time points by submandibular bleeding, treated with 

ACS lysing buffer (Gibco), and washed with PBS to obtain PBMCs. For TME analysis, tumor 

tissues were excised from tumor-bearing mice, cut into small pieces (1-2 mm) with scissors, and 

treated with 1 mg/ml of collagenase A (Sigma-Aldrich) and 100 IU of DNase I (Sigma-Aldrich) 

for 30 min at 37 oC with continuous shaking. Samples were placed on top of 40 µm strainers and 

mashed through with a plunger, followed by centrifugation at 1000 g for 5 min. The cell pellet was 

resuspended and washed twice with PBS by centrifuging at 1500 g for 3 min. PBMCs and tumor 

cells were stained with a live/dead staining dye (eBioscience) and fluorophore-labeled antibodies 

including CD3-FITC (Biolegend), CD8-APC (BD Biosciences), and Adpgk tetramer-PE (NIH 

Tetramer Core Facility), fixed with 2% formaldehyde, and then suspended in FACS buffer for 
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flow cytometry. Blood sera and tumor tissue supernatants were separately collected for detection 

of cytokines using ELISA. 

Statistical analysis 

Statistical analysis was performed with Prism 7.0e (GraphPad Software). Statistical 

comparisons were performed using one-way ANOVA followed by Tukey’s HSD multiple 

comparison post hoc test or two-way ANOVA followed by Sidak’s multiple comparisons test, as 

indicated in the figure legends. Animal survival was analyzed by the log-rank (Mantel−Cox) test. 

Statistical significances are indicated as *p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001. 

 

3.4. Results and Discussion 

PEI-PEG conjugate was synthesized by conjugating methoxy poly(ethyleneglycol) 

propionic acid N-hydroxysuccinimide (methoxy-PEG-NHS) to the primary amine of PEI. The 

stoichiometry PEI:PEG was controlled to 1:15, which was reported to diminish cytotoxicity of 

PEI.(110, 111) The conjugation was confirmed by quantification of free amine groups using 2,4,6-

trinitrobenzene sulfonic acid (data not shown). To prepare a personalized NP vaccine, we 

employed Adpgk, a neo-epitope identified in MC-38 mouse colon adenocarcinoma.(112) PEI-PEG 

was incubated with 3-(2-pyridyldithio)propionic acid N-hydroxysuccinimide ester (SPDP) at room 

temperature (RT) for 3 hr for amine-to-sulfhydryl cross-linking, followed by overnight incubation 

with CSS-Adpgk. The resulting PEI-PEG/CSS-Adpgk conjugate was analyzed by gel permeation 

chromatography (GPC). As shown in Figure 3-1b, PEI-PEG/CSS-Adpgk had a major elution peak 

at 15 min; however, this particular peak was absent in the PEI-PEG conjugate, suggesting 

successful conjugation of Adpgk onto PEI-PEG. A brief treatment (~5 min) with dithiothreitol 
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(DTT) delayed the elution of PEI-PEG/CSS-Adpgk by ~0.9 min to be overlapped with the peak of 

free CSS-Adpgk + DTT sample (Figure 3-1b), indicating efficient release of CSS-Adpgk from 

PEI-PEG/CSS-Adpgk in a reduction sensitive manner.  

Incubation of PEI-PEG/CSS-Adpgk with CpG led to the formation of nanoparticles (PEI 

NPs). Dynamic light scattering (DLS) measurement showed that the hydrodynamic size of PEI 

NPs decreased with an increasing feed amount of CpG, resulting in 40 – 50 nm Z-average size and 

0.2 – 0.3 polydispersity index with the PEI conjugate/CpG weight ratio of > 1 (Figure 3-1c). In 

addition, the zeta potential values of PEI NPs were between those of free PEI conjugates and free 

CpG with almost neutral charges (Figure 3-1d), thus suggesting PEI/CpG charge compensation 

and PEG surface passivation. To assess the impact of complexation on immune activation by CpG, 

bone marrow-derived dendritic cells (BMDCs) were incubated with PEI NPs, and IL-12p70 

secretion and cellular viability were measured. PEI NPs formulated at the PEI-conjugate/CpG 

weight ratio of 1 or 2 promoted higher amount of IL-12p70 and proliferation of BMDCs, compared 

to PBS and free CpG (Figure 3-1e,f). In contrast, PEI conjugate alone did not induce the secretion 

of IL-12p70 nor proliferation of BMDCs, which indicated the crucial role of CpG in immune 

activation by PEI NPs. PEI NPs formulated at the PEI conjugate/CpG weight ratio of 2 exhibited 

relatively uniform size of 20 – 30 nm under transmission electron microscope (Figure 3-1g), which 

correlated well with the DLS measurements. Based on these results, PEI NPs formulated at the 

PEI conjugate/CpG weight ratio of 2 was chosen for the subsequent studies. 
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Figure 3-1. Synthesis and characterization of PEI NPs. (a) Schematic drawing of PEI nanoparticle vaccine formation. PEGylated 

PEI was conjugated with CSS-antigen via disulfide linkage and then condensated with CpG by electrostatic complexation to form 

PEI NPs. (b) GPC chromatograms, indicating the formation of PEI-PEG/CSS-Adpgk conjugate. (c) Hydrodynamic size and (d) 

surface charge of PEI NPs synthesized in different PEI conjugate:CpG weight ratios, as measured by DLS and zeta potential. (e) 

IL-12p70 secretion and (f) viability of mouse BMDC after incubation with PEI conjugate, CpG, or PEI NPs. (g) PEI NPs composed 

of a PEI conjugate:CpG weight ratio of 2:1 were imaged using TEM after 2% uranyl acetate staining. Scale bar = 100 nm. Data are 

presented as mean ± SEM. ***p < 0.001, ****p < 0.0001, analyzed by one-way ANOVA, followed by Tukey’s HSD multiple 

comparison post hoc test. 

 

Next, we investigated the impact of PEI NPs on DC uptake and subsequent activation and 

antigen presentation. Fluorophore-labeled CpG was formulated into PEI NPs for fluorescence-

based analysis of NP uptake by BMDCs. PEI NPs promoted the uptake of CpG as early as after 2 

h of incubation and showed > 30-fold increase over 72 hr, compared to free CpG (Figure 3-2a). 

The presence of Adpgk or CSS-Adpgk peptide admixed with CpG did not affect the uptake of 
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CpG, showing comparable levels with free CpG treatment alone. We further examined cellular 

uptake using confocal microscopy and confirmed that BMDCs incubated with PEI NPs displayed 

brighter CpG fluorescence within the endo-lysosomal compartments, compared with BMDCs 

incubated with free CpG (Figure 3-2b). Enhanced endo-lysosomal CpG delivery can potentiate  

engagement and activation of TLR9 receptors, which are located within the endo-lysosomes (113). 

We also investigated maturation and antigen presentation of BMDCs by employing SIINFEKL 

peptide, a MHC-I-restricted epitope of ovalbumin protein. BMDCs were incubated with PEI NPs 

consisting of PEI-PEG/CSS-SIINFEKL conjugates or control soluble formulations, followed by 

flow cytometric analysis. PEI NPs significantly increased the expression of co-stimulatory markers, 

including CD40 and CD86, on BMDCs (Figure 3-2c).  Next, cells were stained with 25-D1.16 

monoclonal antibody that recognizes SIINFEKL peptide complexed with H-2Kb MHC-I molecule 

(H-2Kb-SIINFEKL). Admixture of soluble SIINFEKL + CpG increased the expression of H-2Kb-

SIINFEKL within 8 h, which rapidly declined to the baseline level after 24 h (Figure 3-2d). In 

contrast, PEI NPs significantly increased antigen presentation after 24 h, as shown by highly 

elevated levels of H-2Kb-SIINFEKL, compared to SIINFEKL + CpG (p < 0.0001, Figure 3-2d). 

Thus, despite the slow kinetics, PEI NPs significantly increased the cumulative extent of antigen 

presentation, compared with soluble formulations. Taken together, these results show that PEI NPs 

promote cellular uptake of antigen and CpG, leading to enhanced DC activation, maturation, and 

antigen presentation, compared with their free admixture. 
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Figure 3-2. PEI NP promotes cellular uptake of antigen and CpG by DCs and improves DC maturation and antigen cross-

presentation. a-b) BMDCs were incubated in vitro with fluorophore-labeled CpG in the indicated formulations, and fluorescence 

signals were measured using (a) flow cytometry and (b) confocal microscopy (scale bar = 50 µm). (c-d) BMDCs were incubated 

with CpG, SIINFEKL + CpG, CSS-SIINFEKL + CpG, or PEI NP, and (c) DC activation and (d) antigen presentation were 

measured by staining cells with c) anti-CD86 and anti-CD40 antibodies or (d) anti-H-2Kb-SIINFEKL antibody, respectively, 

followed by flow cytometry. Data are presented as mean ± SEM. *p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001, analyzed 

by two-way ANOVA, followed by Tukey’s HSD multiple comparison post hoc test. Asterisks represent comparison between PEI 

NP vs. Adpgk + CpG in (a), and between PEI NP vs. SIINFEKL + CpG in (c) and (d). 

 

Next, we examined the immunogenicity and anti-tumor efficacy of PEI NPs in vivo. 

C57BL/6 mice were injected subcutaneously (s.c.) with 6x105 MC-38 mouse colon carcinoma 

cells on the right flank on day 0. On day 7 when tumors were palpable, mice were vaccinated with 

various doses of PEI NPs composed of PEI-PEG/CSS-Adpgk conjugates and CpG (NP Vacc) via 

s.c. injection at tail base (Figure 3-3a). Soluble vaccines composed of free Adpgk and CpG (Sol 

Vacc) at the corresponding doses were used as control groups. To assess the priming of antigen-

specific CD8+ T cells, peripheral blood mononuclear cells (PBMCs) were collected 7 days after 

the vaccination, and the frequencies of Adpgk-specific CD8+ T cells were measured by the 

tetramer assay. NP Vacc induced a dose-dependent increase in the frequency of Adpgk-specific 

CD8+ T cells in peripheral blood (Figure 3-3b).  Notably, a single vaccination with NP Vacc at 
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1x dose (containing 10 µg of Adpgk peptide + 15 µg CpG) promoted clonal expansion of Adpgk-

specific CD8+ cells as high as 23 ± 6.9% among all CD8+ T cells in PBMCs, representing 3-fold 

enhancement compared with 1x dose of Sol Vacc (p < 0.05, Figure 3-3b). However, despite this 

significant expansion of neoantigen-specific CD8+ T cells in the systemic circulation, we did not 

observe meaningful anti-tumor effect for any of the vaccine groups (Figure 3-3c). Since successful 

cancer immunotherapy requires sufficient infiltration of anti-tumor T cells into the TME (114) we 

analyzed the TME for the frequency of CD8+ T cells. The total number of tumor-infiltrating CD8+ 

T cells in the TME was similar for all the treatment groups (Figure 3-3d). Although NP Vacc 

induced a slight increase in the number of Adpgk-specific CD8+ T cells, compared with PBS 

(Figure 3-3e), there was no statistical difference between the NP Vacc and Sol Vacc groups. Taken 

together, NP Vacc effectively expanded tumor-specific CD8+ T cells in the systemic compartment, 

but their anti-tumor efficacy was limited, potentially due to poor tumor infiltration of activated T 

cells.  
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Figure 3-3. PEI NP elicits tumor-specific CD8+ T cell responses in the systemic compartment but fails to inhibit MC-38 

tumor growth (a) Timeline of experiment. (b) C57BL/6 mice were inoculated at s.c. flank with 6x105 MC-38 colon carcinoma 

cells on day 0 and vaccinated at s.c. tail base on day 7 with increasing doses of vaccines. Neoantigen-specific CD8+ T cell levels 

in blood circulation were quantified on day 14 by tetramer staining and flow cytometry. (c) Shown are the average MC-38 tumor 

growth curves. (d-e) Numbers of tumor-infiltrating (d) CD3+CD8+ T cells and (e) tetramer+CD3+CD8+ T cells were measured 

on day 14. Data are presented as mean ± SEM. *p < 0.05, **p < 0.01, and ****p < 0.0001, analyzed by one-way ANOVA, followed 

by Tukey’s HSD multiple comparison post hoc test. 

 

STING has been reported to promote tumor infiltration of peripheral T cells through the 

type I interferon (IFN) pathway (115, 116). Based on these studies, we investigated whether 

STING agonist can recruit vaccine-primed circulating CD8+ T cells into tumors. First, we 

examined whether cyclic-di-adenosine monophosphate (CDA), a potent STING agonist, can 

induce secretion of chemokines essential for recruitment of T cells. BMDCs treated with CDA in 
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vitro produced increased levels of CXCL10, CCL2, CCL3, and CCL5 (Figure 3-4a). When CDA 

was administered directly into MC-38 tumors in vivo, this led to increased serum concentrations 

of IFN-β, CXCL10, CCL2, and CCL5 in a dose-dependent manner (Figure 3-4b). Intratumoral 

(i.t.) administration of CDA at the dose range of 1-20 µg was well tolerated, and mice did not show 

any abnormal change in body weight (Figure 3-4c).  

 

Figure 3-4. In vitro and in vivo effects of CDA treatment. (a) CDA (5 µg/ml) was treated to mouse BMDCs for 6 hours and 

culture media were analyzed for the levels of chemokines by ELISA. (b) Serum chemokine/cytokine concentrations 3 hours after 

intratumoral injection of CDA. Mice with no tumor did not receive CDA injection. (c) Body weight change after CDA injection. 

For 1 and 5 µg CDA, mice received injections every 3 days for three times and for 20 µg, only one injection was performed. Initial 

injections were done on day 8 post tumor injection. Data are presented as mean ± SEM. *p < 0.05, **p < 0.01, ***p < 0.001 and 

****p < 0.0001, analyzed by (a) student’s t-test or (b) one-way ANOVA, followed by Tukey’s HSD multiple comparison post hoc 

test. 
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Next, we investigated the effects of i.t. administration of CDA on vaccine-primed CD8+ T 

cells. C57BL/6 mice were inoculated with 6x105 MC-38 cells at s.c. flank. On day 7 when tumors 

were palpable, mice were s.c. vaccinated with NP Vacc, Sol Vacc, or PBS, followed by i.t. 

injection of CDA on day 11 (Figure 3-5a). Analyses of PBMCs on day 14 for the frequency of 

tumor-specific CD8+ T cells indicated that CDA mono-therapy induced weak anti-tumor CD8+ T 

cells in the systemic circulation (Figure 3-5b). Additional i.t. administration of CDA followed by 

s.c. NP Vacc or Sol Vacc slightly increased the mean frequency of vaccine-primed tumor-specific 

CD8+ T cells in circulation, but the increases were not statistically significant (Figure 3-5b). In 

stark contrast NP Vacc + CDA potently increased the number of CD3+CD8+ T cells in the TME 

(Figure 3-5c) and achieved 10.9-fold (p < 0.0001), 3.6-fold (p < 0.001), and 3.7-fold (p < 0.001) 

higher numbers of intratumoral neoantigen-specific CD8+ T cells, compared with CDA alone, NP 

Vacc alone, or Sol Vacc + CDA, respectively (Figure 3-5d). On the other hand, Sol Vacc + CDA 

had a minor effect on the level of CD8+ T cells in the TME (Figure 3-5c,d), probably due to 

weaker priming of CD8+ T cells by Sol Vacc. Moreover, NP Vacc + CDA significantly elevated 

the intratumoral concentration of IFN-γ (Figure 3-5e), which is a pleiotropic cytokine involved in 

cellular migration and effector functions of T cells during tumor rejection (117-121). We also 

monitored the effect of Vacc + CDA combination therapy on tumor growth and survival of MC-

38-bearing mice. MC-38 tumor bearing mice were vaccinated with either NP Vacc or Sol Vacc on 

day 7, followed by i.t. administration of CDA on days 11, 14, and 17 (Figure 3-5f). Sol Vacc + 

CDA slowed the average tumor growth, but the majority of animals succumbed to tumor growth 

by day 50 with 32% survival rate (Figure 3-5g,h). Importantly, NP Vacc + CDA exhibited 

remarkable anti-tumor efficacy, leading to robust tumor regression and complete tumor 
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elimination in ~70% of animals (Figure 3-5g,h). In addition, 100% of the survivors from the NP 

Vacc + CDA group were resistant to tumor re-challenge with 1.2x106 MC-38 cells injected in the 

contralateral s.c. flank on day 90 (Figure 3-5i), showing long-term immunological memory 

response. Overall, these results demonstrate that CDA promotes tumor trafficking of antigen-

specific CD8+ T cells primed by NP Vacc, leading to potent anti-tumor efficacy and long-term 

memory response against tumor relapse. 
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Figure 3-5. Combination of PEI NPs and STING agonist elicits tumor-specific CD8+ T cells in peripheral blood and the 

TME, leading to robust anti-tumor efficacy. (a) Timeline of experiment. C57BL/6 mice were inoculated at s.c. flank with 6x105 

MC-38 colon carcinoma cells on day 0 and vaccinated at s.c. tail base on day 7 with the indicated vaccines. A subset of animals 

also received intratumoral administration of 0.5 𝜇g CDA on day 11. On day 14, animals were analyzed for (b) Adpgk-

tetramer+CD8+ T cells within PBMCs, (c) tumor-infiltrating CD3+CD8+ T cells, and (d) tumor-infiltrating Adpgk-

tetramer+CD3+CD8+ T cells by flow cytometry. (e) Concentrations of IFN-γ were measured in tumors using ELISA. (f) Timeline 

of experiment. C57BL/6 mice inoculated at s.c. flank with 6x105 MC-38 colon carcinoma cells on day 0 were vaccinated on day 7 

via s.c. tail base. These mice received intratumoral administration of 0.5 𝜇g CDA on days 11, 14, and 17. Shown are (g) the average 



 45 

tumor growth curves and (h) animal survival. (i) Tumor growth curve after re-challenging survivors with MC-38 cells. Mice were 

re-challenged with 1.2x106 MC-38 cells by subcutaneous injection on the left-side flanks 90 days after the initial tumor inoculation. 

Data are presented as mean ± SEM. *p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001, analyzed by (b-e) one-way ANOVA 

followed by Tukey’s HSD multiple comparison post hoc test or (g,i) two-way ANOVA followed by Sidak’s multiple comparisons 

test. (h) The survival curves were analyzed by the log-rank (Mantel−Cox) test. 

 

Lastly, we sought to demonstrate the therapeutic potential and generality of NP Vacc + 

CDA combination therapy using B16F10 melanoma model, which is highly aggressive and 

resistant to conventional immunotherapies (122, 123). M27 peptide, a MHC class I-restricted 

neoantigen identified in B16F10 cells (124), was utilized to prepare PEI-PEG/M27 conjugates and 

subsequently formulated into NP Vacc with CpG as described earlier. C57BL/6 mice were 

inoculated at s.c. flank with 3 x 105 B16F10 tumor cells and vaccinated at s.c. tail base with NP 

Vacc on day 4, followed by i.t. administration of CDA on days 8, 11, and 14 (Figure 3-6a). 

Proliferation and activation of M27-specific CD8+ T cells were analyzed by IFN-γ ELISPOT assay 

performed on day 11 using splenocytes. NP Vacc elicited robust M27-specific IFN-γ+ CD8+ T 

cells, generating 57-fold higher ELISPOT responses than CDA mono-therapy (p < 0.0001, Figure 

3-6b). Whereas combination CDA treatment slightly decreased the frequency of M27-specific 

IFN-γ+ T cells in spleen (Figure 3-6b), it significantly increased the concentrations of IFN-β, 

CCL5, and CXCL10 in tumor (Figure 3-6c), compared with NP Vacc alone. In parallel, we 

monitored animals for tumor growth and survival (Figure 3-6d,e). As B16F10 melanoma is a 

poorly immunogenic (122, 123), NP Vacc alone failed to slow the tumor growth or extend the 

animal survival (Figure 3-6d,e). While CDA mono-therapy slightly delayed the tumor growth, all 

mice succumbed to tumor growth within 35 days. On the other hand, NP Vacc + CDA exhibited a 

remarkable anti-tumor efficacy, eradicating B16F10 tumors in 100% of treated mice (Figure 3-

6d,e). Overall, these results showed that PEI NP vaccine + CDA combination therapy exerts potent 

anti-tumor efficacy against even poorly immunogenic tumors.  
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Figure 3-6. PEI NP vaccine plus CDA combination therapy regresses poorly immunogenic B16F10 melanoma. a) Timeline 

of experiment. While tumor growth and survival of B16F10-bearing mice were monitored, subsets of mice were sacrificed on day 

11 for ELISPOT and ELISA analyses using spleens and tumor samples, respectively. b) Neoantigen peptide (M27)-specific cells 

within splenocytes were detected with IFN-γ ELISPOT assay. c) Cytokine concentrations in tumor measured by ELISA. d) Tumor 

growth and e) survival curves of B16F10 tumor-bearing mice. Asterisks in d) indicate statistical comparison between CDA and NP 

Vacc + CDA. Data are presented as mean ± SEM. *p < 0.05, **p < 0.01, and ****p < 0.0001, analyzed by b,c) one-way ANOVA 

followed by Tukey’s HSD multiple comparison post hoc test or d) two-way ANOVA followed by Sidak’s multiple comparisons 

test. e) The survival curves were analyzed by the log-rank (Mantel−Cox) test. 
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3.5. Conclusion 

In conclusion, we have developed PEI-based NPs co-delivering CpG adjuvants and tumor-

specific neoantigen peptides for personalized cancer immunotherapy and showed that they elicit 

potent anti-tumor CD8+ T cell responses in the systemic circulation; however, this was not 

sufficient to inhibit tumor growth, in part due to poor tumor infiltration of activated CD8+ T cells. 

We demonstrated for the first time that local administration of STING agonist can significantly 

enhance infiltration of NP vaccine-primed CD8+ T cells into the TME by promoting secretion of 

T cell-attracting chemokines and cytokines, leading to robust tumor regression and long-term 

immunological memory. Our strategy of utilizing STING-based immunotherapy for potentiating 

NP-based cancer vaccines present a new combination nano-immunotherapy that is be widely 

applicable for combination cancer immunotherapy. 
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CHAPTER IV. Lipid-based Vaccine Nanoparticles for Induction of Humoral Immune 

Responses against HIV-1 and SARS-CoV-2 

 

4.1. Abstract 

The current health crisis of corona virus disease 2019 (COVID-19) highlights the urgent need for 

vaccine systems that can generate potent and protective immune responses. Protein vaccines are 

safe, but conventional approaches for protein-based vaccines often fail to elicit potent and long-

lasting immune responses. Nanoparticle vaccines designed to co-deliver protein antigens and 

adjuvants can promote their delivery to antigen-presenting cells and improve immunogenicity. 

However, it remains challenging to develop vaccine nanoparticles that can preserve and present 

conformational epitopes of protein antigens for induction of neutralizing antibody responses. Here, 

we have designed a new lipid-based nanoparticle vaccine platform (NVP) that presents viral 

proteins (HIV-1 and SARS-CoV-2 antigens) in a conformational manner for induction of antigen-

specific antibody responses. We show that NVP was readily taken up by dendritic cells (DCs) and 

promoted DC maturation and antigen presentation. NVP loaded with BG505.SOSIP.664 (SOSIP) 

or SARS-CoV-2 receptor-binding domain (RBD) was readily recognized by neutralizing 

antibodies, indicating the conformational display of antigens on the surfaces of NVP. Rabbits 

immunized with SOSIP-NVP elicited strong neutralizing antibody responses against HIV-1. 

Furthermore, mice immunized with RBD-NVP induced robust and long-lasting antibody  
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responses against RBD from SARS-CoV-2. These results suggest that NVP is a promising 

platform technology for vaccination against infectious pathogens. 

 

4.2. Introduction 

As shown during the current COVID-19 pandemic, reliable and efficient vaccine delivery 

systems are urgently needed for vaccine development against COVID-19 as well as other emerging 

pathogens (125, 126). Traditional vaccines based on the live attenuated virus and inactivated virus 

vaccines are potent activators of the immune system, but they are limited by potential viral 

reversion and long development and regulatory timeline. On the other hand, protein vaccines with 

favorable safety profiles have been widely used for prophylactic vaccination against various 

pathogens, such as hepatitis B and influenza viruses (127). Yet, protein subunit vaccines often fail 

to elicit potent and long-lasting immune responses.  

These challenges may be addressed by co-administering subunit protein vaccines with 

potent adjuvants (128), especially in nanoparticle formulations that allow for their co-delivery to 

antigen-presenting cells for strong immune activation (129). There are various nanoparticle 

vaccine platforms under development, including polymers (130, 131), gold (132, 133), silica (79, 

134), and others (44, 135). In particular, lipid-based nanoparticles are generally considered to have 

excellent biocompatibility and safety, and they have been used as a vaccine carrier to deliver 

mRNA (136), DNA (137-139), and peptides (140). However, for protein antigens, it remains 

challenging to preserve their conformational epitopes and achieve robust neutralizing antibody 

responses using nano-vaccines. In particular, conformational display of antigens in vaccine 

formulations is crucial as immunogens should present epitopes to which the immune cells 

recognize, interact, and generate immune responses. Here, we sought to address these challenges 
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by designing a new lipid-based nanoparticle vaccine platform (NVP) that can load and present 

viral proteins (HIV-1 and SARS-CoV-2 antigens) in a conformational manner for induction of 

antigen-specific antibody responses.  

In particular, previous studies on acquired immunodeficiency syndrome (AIDS) have 

revealed the presence of broadly neutralizing antibodies in a subset of AIDS patients (141, 142). 

As the human immunodeficiency virus-1 (HIV-1) envelope glycoprotein (Env gp) has been 

identified to induce broadly neutralizing antibodies, various HIV-1 Env gp immunogens have been 

developed. Among them, BG505.SOSIP.664 (SOSIP) has emerged as a promising immunogen for 

inducing neutralizing antibodies against HIV-1 (143-145). SOSIP is derived from the BG505 HIV-

1 clade A virus, which was isolated from a 6-week-old infant who later developed broadly 

neutralizing antibodies (145, 146). The native form of the glycoprotein gp160 is cleaved into 

gp120 and gp41 subunits during HIV-1 entry into host cells. To utilize gp160 for vaccination 

purpose, the membrane-associated and cytoplasmic domains were truncated and stabilized by 

insertion of a disulfide bond (referred to as “SOS”) and an Ile/Pro (“IP”) substitution at residue 

559 (I559P), resulting in an immunogen termed as SOSIP (143-145). SOSIP self-assembles into a 

soluble HIV-1 Env trimer; therefore, nano-vaccine formulation with SOSIP should maintain the 

structural integrity and neutralizing epitopes of SOSIP.  

During the initial COVID-19 outbreak, the structural similarities between SARS-CoV and 

SARS-CoV-2 were discovered (147). It was subsequently revealed that spike glycoprotein (S 

protein) of SARS-CoV-2 was responsible for viral infection via interaction with angiotensin-

converting enzyme 2 (ACE2) receptors on human cell membranes and that the antibodies 

generated against the S protein effectively neutralize viral entry to human cells (42, 148). The 

receptor-binding domain (RBD) is the functional domain within the S protein that first engages 
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with ACE2, is considered a prime target for COVID-19 vaccine development, and can be produced 

as a recombinant antigen to generate directed antibody responses (149, 150).  

It should be noted that both SOSIP and RBD possess tertiary molecular structures through 

various bonds, including disulfide bond (41, 151), that are prone to denaturation if placed under 

harsh condition, e.g., extreme pH, temperature, and physical stress. While we have previously 

reported lipid-based vaccine nanoparticles that employ thiol-maleimide crosslinking reaction to 

form nanoparticles (152-155), they are not ideal for immunogens held together by disulfide bonds, 

such as in SOSIP. Therefore, we sought to design a new nano-formulation for loading HIV-1 

SOSIP and SARS-CoV-2 RBD while preserving epitopes for inducing antibody responses. We 

show that pre-formed lipid vesicles incubated with protein antigens, followed by complexation 

and stabilization of lipid layers with branched polyethyleneimine (PEI), forms a nanoparticle 

vaccine platform (NVP) capable of loading viral antigens in a conformational manner. NVP co-

loaded with antigens and monophosphoryl lipid A (MPLA, a potent Toll-like receptor-4 agonist) 

was readily taken up by dendritic cells (DCs) and promoted DC maturation and antigen 

presentation. NVP carrying SOSIP or RBD was recognized and surface-bound by neutralizing 

antibodies, indicating the conformational display of antigens on the surfaces of NVP. Rabbits 

immunized with SOSIP-NVP elicited neutralizing antibody responses against HIV-1. Moreover, 

mice immunized with RBD-NVP induced robust and durable antibody responses against RBD 

from SARS-CoV-2. These results suggest that NVP is a promising platform technology for 

vaccination against infectious pathogens. 

 

4.3. Materials and Methods 

Reagents 
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SOSIP proteins were kindly provided by Drs. John Moore and Rogier Sanders from Weill 

Medical College, Cornell University, New York. Recombinant RBD proteins were kindly 

provided by Dr. Janet Smith of University of Michigan, Ann Arbor. Antigen (SOSIP)-specific 

primary monoclonal antibodies b6 and PGV04 were kindly provided by the International AIDS 

Vaccine Initiative. Rabbit Anti-Mouse IgG H&L-HRP was purchased from Abcam. Goat Anti-

Mouse IgG1-HRP and Goat Anti-Mouse IgG2a-HRP were purchased from Southern Biotech. 

Following antibodies were used for antigen display assay: human IgG1 kappa isotype (EMD 

Millipore), PE-conjugated anti-human IgG (Fcγ) secondary antibody (ebioscience), Alexa Fluor 

488-labeled anti-human IgG1 Fc secondary antibody (Invitrogen), Anti-SARS-CoV-2 RBD 

Neutralizing Antibody, Human IgG1 (SAD-S35) (Acrobiosystems). 

Synthesis and characterization of nanoparticle vaccine platform (NVP) 

1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) (Avanti Polar Lipids), n-

(succinimidyloxy-glutaryl)-L-α-phosphatidylethanolamine, dioleoyl (DOPE-NHS) (NOF 

America Corporation) and monophosphoryl lipid A (MPLA) (Avanti Polar Lipids), all dissolved 

in chloroform, were mixed in 50:50:0.5 molar ratio in a glass vial. Lipids were dried under nitrogen 

gas, followed by a further complete drying step by putting the vial inside a desiccator. The dried 

lipid film was rehydrated with 100 µl of bis-tris propane (BTP) buffer (pH 7.0) by vortexing for 

10 sec every minute for 7 min. The resulting multilamellar vesicles were probe tip-sonicated at 40% 

amplitude for 5 min while placed in ice. The resulting unilamellar vesicles (ULV) were mixed 

with 100 µl of either SOSIP (25 µg) - or RBD (20 µg)-containing BTP buffer and incubated in 37 

oC for 30 min under constant shaking. Branched PEI of 1800 Da (number-based average) (Sigma 

Aldrich) was added at 0.35:1 primary amine:NHS ratio (NHS groups present in liposome), and 

then the mixture was further incubated at 37 oC for 30 min. The resulting antigen-loaded NVP 
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suspension was centrifuged at 14,000 g for 5 min, then were washed with PBS twice, followed by 

final resuspension with 200 µl of PBS. The particles were transferred to deionized water for size 

and surface charge measurement using the Zetasizer Nano (Malvern, UK). The loading efficiencies 

of proteins in NVP were measured by sodium dodecyl sulphate–polyacrylamide gel 

electrophoresis (SDS-PAGE), followed by Coomassie Blue staining (for SOSIP and RBD). Gels 

were imaged with a gel doc machine, Fluorchem M Imaging System (Protein Simple). 

In vitro DC uptake assays 

Mouse BMDCs were isolated from bone marrow obtained from hind femurs of C57BL/6 

mice. Cells were cultured in media supplemented with GM-CSF for 10 days in 37 oC, 5% CO2. 

Mature BMDCs were seeded in 2x105 per well of a 96-well tissue culture plate (flow cytometry) 

or 1x105 per well of an 8-well chambered cover glass (confocal microscopy), incubated for at least 

6 hr for cell adhesion, and then treated with DQ-OVA (Invitrogen)-containing vaccine 

formulations for 1-24 hr. For flow cytometry analysis, cells were recovered after trypsin treatment 

for 10 min. Retrieved cells were incubated with anti-CD16/32 blocking antibody for 10 min in 

room temperature (RT), followed by incubation with anti-CD11c, anti-CD80, and anti-

SIINFEKL/MHC-I antibodies for 20 min in RT and a fixable viability dye (eFluor 450, 

eBioscience) for 10 min in RT. Cells were then fixed with 4% formaldehyde in PBS for 10 min, 

washed and resuspended in PBS containing 1% bovine serum albumin (BSA) and analyzed with 

a flow cytometer (Bio-Rad ZE5). For confocal microscopy, BMDCs were treated with DQ-OVA 

formulations for 4 hr, followed by three times of washing with PBS. Cells were then stained with 

0.1 µM Lysotracker (ThermoFisher L7528) and 1 µg/ml Hoechst (ThermoFisher H3570) in 37 oC 

for 30 min. After washing with PBS, cells were fixed with 4% formaldehyde in PBS for 15 min, 

followed by washing with PBS. Cells were then analyzed with Nikon A1Rsi confocal microscope. 
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Antigens display on NVP 

For assessing antigen display on NVP, 1,1´-dioctadecyl-3,3,3´,3´-

tetramethylindodicarbocyanine (DiD) (Invitrogen, 0.2 mol%) was added in the lipid composition 

of NVP. Fluorescence signal from DiD was used to normalize the amount of NVP for comparison 

between different formulations due to variance in the recovery of formulations. For SOSIP-NVP, 

SOSIP-specific antibodies, b6 and PGV04, were incubated with NVP, followed by washing in 

PBS and addition of PE-conjugated anti-human IgG (Fcγ) secondary antibody (ebioscience). For 

RBD-NVP, monoclonal neutralizing antibody (SAD-S35, Acrobiosystems) against SARS-CoV-2 

was treated (1:100 dilution), followed by washing in PBS (x3) and addition of Alexa Fluor 488-

labeled anti-human IgG1 Fc secondary antibody (1:50 dilution) (Invitrogen). Antibody incubations 

were performed at room temperature for 30 min with constant shaking. Resulting samples were 

measured with a fluorometer (Biotek Synergy Neo microplate reader) at excitation/emission 

wavelengths of 485 nm/528 nm and 630 nm/680 nm or by “NanoFACS” as we recently reported 

(153).  

In vivo vaccination study 

Animals were cared for following federal, state, and local guidelines. All experiments 

performed on animals were in accordance with and approved by the Institutional Animal Care and 

Use Committee (IACUC) at the University of Michigan, Ann Arbor. White New Zealand rabbits 

(6-8 weeks old females from Jackson Laboratory) were vaccinated subcutaneously at four sites on 

both caudal thighs (2 sites per side) with either soluble mixture SOSIP and MPLA or NVP co-

loaded with SOSIP and MPLA. Doses used for primary and boost injections were 30 µg SOSIP + 

50 µg MPLA and 12.4 µg SOSIP + 20.6 MPLA, respectively. Primary vaccination was injected 

on day 0, followed by boost vaccinations on days 28 and 84. 2-3 ml of blood was sampled from 
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each rabbit via marginal ear vein on days 28, 56, 105 and 169, which was placed in room 

temperature undisturbed for 1 hr to induce coagulation, followed by centrifugation at 2,000 g for 

12 min at 4 oC to obtain serum. Rabbit immune sera were analyzed for neutralizing activities 

against homologous tier 1A (MW965.26) and 2 (BG505/T332N) viral entry using the TZM-bl cell 

assay, which measures transactivation of a luciferase reporter gene by an infecting virus (156, 157). 

BALB/c mice (6-8 weeks old females from Jackson Laboratory) were vaccinated subcutaneously 

at the tail-base on days 0, 14, and 28 with either soluble mixture RBD and MPLA or NVP co-

loaded with RBD and MPLA. PBS was included as a negative control. The dose used for each 

injection was 0.5 µg RBD and 1 µg MPLA. Blood was sampled from each mouse via 

submandibular vein on days 14, 28 and 42. Samples were collected in a gel-containing tube 

(Microvette 500 SER-GEL, Sarstedt Inc.), followed by centrifugation at 10,000 g for 5 min to 

obtain serum. Mouse immune sera were analyzed for RBD-specific IgG, IgG1, and IgG2a antibody 

titers using ELISA. Briefly, RBD protein was coated on 96-well ELISA plates (0.1 µg/well) and 

serially diluted sera samples were added. After one hr of incubation and multiple washings, horse 

radish peroxidase (HRP)-labeled secondary antibodies were added and further incubated for 1 hr 

in room temperature. Secondary antibodies used included rabbit anti-mouse IgG H&L-HRP 

(Abcam), goat anti-mouse IgG1-HRP (Southern Biotech) or goat anti-mouse IgG2a-HRP 

(Southern Biotech). Next, TMB substrate solution was added, and the reaction was stopped by the 

addition of NaF. The absorbance was measured at a 620 nm wavelength using a plate reader 

(Synergy Neo, BioTek). To measure antibody titers, titration curves were drawn based on the 

absorbance and the dilution factor, from which half maximal effective concentration (EC50) values 

were calculated using a software Gen5 (BioTek). 

Lymph node trafficking study 
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BALB/c mice were subcutaneously injected at the tail-base with PBS, soluble antigen + 

MPLA, or antigen-MPLA-NVP. As a model antigen for investigating lymph node trafficking, 

Alexa Fluor 647-labeled ovalbumin (AF647OVA) (Invitrogen) was used. A dose consisting of 10 

µg of AF647OVA and 11 µg of MPLA was injected to each mouse. After 4, 8, 24 and 48 hr of 

injection, serum samples were collected for ELISA to measure proinflammatory cytokine levels. 

After 48 hr, draining lymph nodes were collected for fluorescence imaging to quantify the amount 

of antigen. Lymph nodes were placed in the imaging machine (IVIS spectrum, PerkinElmer) and 

imaged using 640 nm and 680 nm ex/em filters. Lymph nodes were then processed into single 

cells for flow cytometric analysis. Briefly, lymph nodes were homogenized with a mini-tissue 

homogenizer, then passed through a 40 µm strainer to collect single cells. After washing the cells 

twice with PBS (1% BSA), anti-CD16/32 Ab was added for 10 min at 4 oC, followed by the 

addition of anti-mouse CD80 Ab (FITC) (BD Biosciences), anti-mouse CD86 Ab (PECy7) 

(eBioscience), and anti-mouse CD11c Ab (PE) (BioLegend) Ab for 30 min at 4 oC. Then the cells 

were washed twice with PBS, stained for live/dead (EBioscience, Fixable viability dye eFluor 450), 

and fixed with 4% formaldehyde. Resulting cells were washed twice with PBS (1% BSA) and 

analyzed by flow cytometry. 

Blue native PAGE 

For Blue Native PAGE, samples were run on NativePAGETM Novex® Bis-Tris gel system 

(Life Technologies). Briefly, samples were diluted in Native PAGE sample buffer, bath sonicated 

to disrupt aggregates, and were incubated with N-Dodecyl β-D-maltoside (DDM, Invitrogen) at a 

1.11% working concentration for 30 min on ice. Immediately before loading onto gels (3%-12% 

Bis-Tris), Coomassie G-250 was added to the samples following manufacturer's instructions. Gels 

were run at room temperature using dark blue cathode buffer for approximately 100 min. Gels 
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were destained according to manufacturer's instructions, and protein migration was assessed by 

silver staining (Thermo Fisher). 

Statistical analysis 

The results are expressed as means ± SEM. Prism 7.0e (GraphPad Software) software was 

used for statistical analyses. Statistical comparisons were performed using either unpaired 

student’s t-test or one-way or two-way ANOVA, followed by Tukey's HSD multiple comparison 

test. Statistical significances are indicated as *p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 

0.0001. 

 

4.4. Results and Discussion 

Synthesis and characterization of NVP. 

We synthesized a nanoparticle vaccine platform (NVP) by adding viral antigens to pre-

formed unilamellar lipid vesicles, followed by incubation with branched PEI that allows for 

complexation and stabilization of vesicles into NVP via interaction between NHS-functionalized 

phospholipids and primary amine groups in PEI. Briefly, multilamellar vesicles were prepared by 

hydrating a lipid film composed of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), n-

(Succinimidyloxy-glutaryl)-L-α-phosphatidylethanolamine, dioleoyl (DOPE-NHS) and 

monophosphoryl lipid A (MPLA, a Toll-like receptor-4 agonist) (50:50:0.5 mol ratio). 

Multilamellar vesicles were tip sonicated to form into unilamellar vesicles, which then were mixed 

and surface-loaded with antigen proteins. Branched PEI (1,800 Da) was subsequently added in a 

primary amine:NHS ratio of 0.35:1 to induce complexation of lipid vesicles and nanoparticle 

formation by the reaction between the primary amines on PEI and the NHS groups on the 
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unilamellar vesicles (Figure 4-1a). The resulting NVP exhibited a hydrodynamic size of 200-400 

nm and a polydispersity index of 0.1-0.3 depending on the antigen added, with slightly negative 

surface charge as shown by dynamic light scattering (DLS) measurement (Figure 4-1b). 

 

Figure 4-1. Preparation and characterization of NVP. (a) Schematic drawing of NVP preparation process. (b) Mean 

hydrodynamic size, PDI, and surface charge of NVPs as measured by DLS.  Protein loading efficiency was calculated based SDS-

PAGE analysis. 

 

NVP improves antigen uptake by DCs and enhances DC activation and antigen presentation 

As a model antigen, DQ-labeled ovalbumin (DQ-OVA) was loaded to NVP to examine 

antigen delivery to and activation of DCs in vitro (Figure 4-2a-f) DQ is a self-quenched dye that 

emits fluorescence upon degradation after cellular entry (158). PAGE analysis showed efficient 

loading (~60%) of DQ-OVA to NVP (Figure 4-2g). BMDCs treated for 1 hr with NVP carrying 

DQ-OVA (DQ-OVA-NVP) exhibited a 2.72-fold increase in the DQ signal, compared with those 

treated with soluble DQ-OVA and MPLA mixture, as confirmed by flow cytometry (Figure 4-2a). 

A similar trend was observed over 24 hr (Figure 4-2b). As shown by confocal microscopy, 

BMDCs treated with DQ-OVA-NVP for 4 hr showed significantly higher DQ signal within the 

cytosol, with a high level of co-localization with lysosomes (Figure 4-2h). In addition, DQ-OVA-

NVP induced robust DC maturation, as shown by the up-regulation of CD80 co-stimulatory 
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marker on DCs within 1 hr of incubation (Figure 4-2c) and throughout 24 hr time window (Figure 

4-2d). Moreover, we examined antigen presentation on DCs by flow cytometry assay after staining 

DCs with a monoclonal antibody specific to an immunodominant OVA epitope (SIINFEKL) 

loaded in major histocompatibility complex-I (MHC-I) molecule. NVP-mediated DQ-OVA 

delivery led to significantly greater antigen presentation on DCs (Figure 4-2e-f). Taken together, 

these results show that NVP significantly increases DC uptake of vaccines, leading to improved 

DC activation and antigen presentation. 

 

Figure 4-2. NVP enhances antigen uptake, activation and antigen processing by dendritic cells in vitro. (a-g) BMDCs were 

treated with DQ-OVA and MPLA using the indicated formulations, and DQ-OVA signal was quantified by (a-b) flow cytometry 

after 1, 4, and 24 hr of incubation. BMDCs were also assessed for (c-d) CD80 expression and (e-f) antigen presentation of 

SIINFEKL on MHC-I. (g) SDS-PAGE image of DQ-OVA-loaded NVP. (h) After 4 hr of incubation, BMDCs were stained with 

LysoTracker and Hoechst, followed by confocal microscopy. Data are presented as mean ± SEM. **p < 0.01, ****p < 0.0001, 
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analyzed by one-way ANOVA (a,c,e) or two-way ANOVA (b,d,f), followed by Tukey’s HSD multiple comparison post hoc test. 

Asterisks in (b,d,f) indicate statistical comparison between DQ-OVA-NVP and DQ-OVA. 

 

NVP effectively delivers antigen to DCs in lymph nodes 

Next, we investigated NVP-mediated lymph node trafficking of antigen using a model 

antigen, Alexa Fluor 647 (AF647)-labeled ovalbumin (AF647OVA). Mice were given tail-base 

subcutaneous injection of PBS, soluble AF647OVA + MPLA, or AF647OVA-loaded NVP (OVA-

MPLA-NVP), followed by flow cytometry or ELISA analyses (Figure 4-3a). After 48 hr of 

vaccination, draining inguinal lymph nodes were visualized by IVIS fluorescence imaging. Mice 

administered with OVA-MPLA-NVP had significantly stronger AF647 signal in lymph nodes, 

compared with those treated with the soluble formulation (Figure 4-3b). Flow cytometric analysis 

showed that CD11c+ DCs in lymph nodes from the OVA-MPLA-NVP group exhibited signs of 

maturation, as shown by CD80 and CD86 staining (Figure 4-3c). Interestingly, among CD80+ 

and CD86+ DCs, the OVA-MPLA-NVP group had significantly higher mean fluorescence 

intensity of AF647OVA, compared with the soluble vaccine group (Figure 4-3d), showing robust 

DC-targeted delivery of antigen by NVP.  Lastly, the serum levels of proinflammatory cytokines, 

IL-6 and IL-12p40, were measured using ELISA. Serum concentrations of IL-6 and IL-12 were 

elevated at 4 hr and 8 hr post injection, respectively, for the soluble vaccine group (Figure 4-3e), 

whereas there was no spike of either cytokines in the NVP group. Taken together, these results 

showed that NVP provides an efficient and safe platform for antigen delivery to antigen-presenting 

cells in lymph nodes.  
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Figure 4-3. NVP improves antigen delivery to antigen-presenting cells in lymph nodes. (a) Mice were administered 

subcutaneously with PBS, soluble AF647OVA + MPLA, or AF647OVA-MPLA-NVP, followed by tissue analysis on the indicated 

time points. (b) Inguinal lymph nodes were excised and imaged for AF617OVA signal at 48 hr after vaccination. (c) CD11c+ DCs 

in inguinal lymph nodes were analyzed for CD80 and CD86 maturation markers. (d) CD11c+ DCs with or without upregulation of 

CD80 and CD86 were analyzed for AF647OVA. (e) At the indicated time points after vaccination, serum concentrations of IL-6 

and IL-12p40 were analyzed by ELISA. Data are presented as mean ± SEM. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001, 

analyzed by (b,c) one-way ANOVA or (d,e) two-way ANOVA, followed by Tukey’s HSD multiple comparison test. 

 

Loading recombinant HIV envelope glycoprotein (SOSIP) into NVP 
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BG505.SOSIP.664 (SOSIP) is a recombinant HIV-1 envelope glycoprotein derived from 

the BG505 clade A virus. SOSIP is held together by a disulfide bond and self-assembles into a 

soluble HIV-1 Env trimer (Figure 4-4a). SOSIP is a promising immunogen for HIV-1 vaccine 

development, as shown by prior pre-clinical studies reporting SOSIP-mediated induction of 

neutralizing antibodies against HIV-1 (143, 144, 159). Here, we prepared NVP carrying SOSIP 

antigen and examined its efficacy to induce neutralizing antibody response against HIV-1. Using 

the procedure described above, we loaded SOSIP into NVP (SOSIP-NVP), which exhibited a 

hydrodynamic size of ~330 nm, as determined by DLS analysis (Figure 4-1b). PAGE-based 

quantification indicated a ~25% loading efficiency of SOSIP in NVP (Figure 4-4b).  Notably, it 

is crucial to maintain the conformational epitopes and trimeric structure of HIV-1 Env for the 

induction of broadly neutralizing antibody responses (160). Therefore, we examined whether 

SOSIP-NVP preserves the structure and epitopes of SOSIP during the vaccine formulation. Our 

non-reducing PAGE analysis performed on SOSIP retrieved from SOSIP-NVP indicated that 

SOSIP-NVP maintained the disulfide bond in SOSIP without disruption during the loading process 

(Figure 4-4b). SOSIP also appeared in the high molecular weight area in the PAGE gel, which 

may have been due to complexation with PEI and incomplete retrieval process from SOSIP-NVP. 

In addition, the preservation of quaternary structure of SOSIP trimer after NVP loading was 

examined by blue-native PAGE. Interestingly, application of a significant physical stress (e.g. tip 

sonication) while SOSIP trimer is present in solution induced dissociation of the trimer into 

monomer and dimer, demonstrating the delicate binding force between the subunits (Figure 4-4c, 

3rd lane). Thus, we modified the SOSIP-NVP preparation by adding SOSIP to the reaction mixture 

after any physical stresses were taken place, which resulted in the preservation of intact quaternary 
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structure after SOSIP-NVP formulation (Figure 4-4c, 5th lane). Nevertheless, these results 

indicated that SOSIP was effectively loaded into NVP.  

To further examine whether SOSIP was displayed on the surface of NVP with its epitopes 

remaining intact, we performed immunofluorescence directly on SOSIP-NVP. For this, we 

employed Env-specific human antibodies, PGV04 and b6, which recognize the CD4 binding site 

of Env. PGV04 and b6 are HIV-1 broadly neutralizing antibody and non-neutralizing antibody, 

respectively. PGV04 and b6 were incubated with SOSIP-NVP, followed by washing and another 

round of incubation with fluorophore-tagged anti-human IgG antibody. Then fluorescence signal 

on SOSIP-NVP was quantified to assess antibody binding (Figure 4-4d, e). SOSIP-NVP was 

readily recognized and bound by PGV04, a broadly neutralizing antibody, on a whole population 

level, as shown by a plate-based fluorescence measurement (Figure 4-4d). SOSIP-NVP was also 

bound by b6, a non-neutralizing antibody, but to a lesser extent than PGV04. We recently reported 

that antibody-binding on nanoparticles could be quantified on an individual nanoparticle-basis 

using “NanoFACS” (153). Using NanoFACS, we confirmed that PGV04 was bound to individual 

SOSIP-NVPs (Figure 4-4e), thus showing the homogenous display of SOSIP on the surfaces of 

SOSIP-NVPs. These results indicated the preservation of SOSIP epitopes after loading in NVP. 
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Figure 4-4. BG505.SOSIP.664 (SOSIP) protein and its display on NVP surface after loading. a) Genetic modifications from 

Env gp160 resulted in SOSIP, having truncation at residue 664, added glycan (indicated by *; T332N) and a disulfide bond, and 

other point mutations. MPER: membrane proximal region, TM: transmembrane domain, CT: cytosolic tail. b) Loading of SOSIP 

into NVP confirmed by non-reducing PAGE, followed by silver staining. c) Blue native PAGE showing intact SOSIP trimer before 

or after physical disruption as well as after loading in NVP using an optimized formulation condition. d-e) To examine SOSIP 

display on NVP, human anti-SOSIP antibodies, b6 and PGV04, were incubated with SOSIP-NVP and PE-labeled anti-human IgG 

antibody, followed by quantification of antibody binding by d) plate-based fluorescence measurement and e) individual 

nanoparticle-based flow cytometry. Data are presented as mean ± SEM. *p < 0.05, ***p < 0.001, analyzed by one-way ANOVA, 

followed by Tukey’s HSD multiple comparison post hoc test. 

 

SOSIP-NVP vaccination study in rabbits 

We performed immunization studies with SOSIP-NVP and examined their potency to 

generate neutralizing antibody response in rabbits. White New Zealand rabbits were immunized 
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on day 0 with 30 µg SOSIP and 50 µg MPLA, followed by two boost immunizations on days 28 

and 84, each with 12.4 µg SOSIP and 20.6 µg MPLA (Figure 4-5a). SOSIP and MPLA were 

administered subcutaneously either in SOSIP-NVP or soluble formulations. Sera samples 

collected on days 28, 56, 105 and 169 were assessed for neutralization against HIV-1 viral entry 

to TZM-bl cells using heterologous tier 1A virus (MW965.26, clade C) and autologous tier 2 virus 

(BG505/T332N) (161, 162). On Day 56 and more noticeably on Day 105, immune sera from the 

SOSIP-NVP vaccine group showed strong neutralizing activity against heterologous titer 1A 

MW965.26 virus (Figure 4-5b), with a trend for increasing neutralizing activity compared with 

the soluble vaccine group. Day 169 immune sera also showed neutralizing activity, although 

dampened compared with day 105, against MW965.26 (Figure 4-5b). As BG505.SOSIP.664 

trimer is derived from HIV-1 clade A, our results showing neutralizing activity against MW965.26 

HIV-1 clade C virus indicated that SOSIP-NVP elicited a cross-neutralizing antibody response. 

Furthermore, day 105 immune sera from SOSIP-NVP immunized rabbits exhibited high 

neutralizing antibody titers against neutralization-resistant tier 2 BG505/T332N virus, whereas the 

soluble vaccine group induced no neutralizing antibody response (Figure 4-5c). Moreover, there 

was also a trend for higher neutralizing antibody titers against autologous BG505/T332N up to 

day 169 (Figure 4-5c). As it has been challenging to produce vaccines capable of neutralizing 

against a tier 2 virus, even an autologous one such as BG505/T332N virus, these results show the 

promise of SOSIP-NVP for vaccination against HIV-1.   
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Figure 4-5. Vaccination of rabbits using SOSIP-NVP enhances neutralizing antibody titers in sera against homologous virus 

in vitro. (a) Rabbits were prime vaccinated on D0 and boost vaccinated on D28 and D84, followed by blood sampling on D28, 

D56, D105 and D169. (b-c) Immune sera were analyzed for neutralization of (b) tier 1A and (c) tier 2 homologous viruses in vitro. 

Data are presented as mean ± SEM. *p < 0.05, analyzed by unpaired student’s t-test. 

 

NVP carrying receptor-binding domain (RBD) of SARS-CoV-2 

Motivated by the promising results of SOSIP-NVP, we sought to apply the NVP 

technology for COVID-19 vaccine development. According to previous studies, the spike protein 

(S protein) of SARS-CoV-2 is responsible for the interaction with ACE2 receptors on the human 

cells which leads to viral infection. Inducing antibody response against S protein therefore is an 

effective strategy to neutralize SARS-CoV-2 (42, 148). The receptor-binding domain (RBD) is the 

functional region within the S protein that engages ACE2, and has been suggested as a great target 

for vaccines against SARS-CoV-2 (149, 150). In addition, our analysis on genetic sequence 

comparison between SARS-CoV-2 variants reported on National Center for Biotechnology 

Information (NCBI) as of August 2020 and the original SARS-CoV-2 that appeared in Wuhan in 
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2019 indicated high conservation of RBD genetic sequence, compared with other genetic regions 

(Figure 4-6a,b), thus highlighting RBD as a promising target for COVID-19 vaccine development.  

We synthesized RBD-loaded NVP as described above. Loading of RBD in NVP was 

quantified by PAGE analysis, which showed ~21% loading efficiency (Figure 4-6c). The resulting 

RBD-loaded NVP (RBD-NVP) had a hydrodynamic size of ~240 nm as measured by DLS (Figure 

4-1b). Surface-display of RBD on RBD-NVP was examined by direct immunofluorescence as 

described. RBD-NVP was incubated with human RBD neutralizing antibodies, followed by 

washing and addition of AF488-labeled anti-human IgG secondary antibody. RBD-NVP exhibited 

a significantly higher fluorescence signal, compared with blank NVP control (Figure 4-6d), 

indicating the proper display of RBD and preservation of epitopes in RBD-NVP. 
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Figure 4-6. Genomic deviation of SARS-CoV-2 by coding region and characterization of RBD-NVP. (a) Spike protein is the 

most genetically conserved region within the genetic sequence of SARS-CoV-2, based on variants appearing with near 100% 

similarity to the original SARS-CoV-2 in this region. (b) RBD of SARS-CoV-2 variants has the highest sequence similarity to that 

of the original SASR-CoV-2 with the smallest deviation, compared with other domains. (c) RBD loading in NVP was confirmed 

by SDS-PAGE analysis. (d) RBD display on NVP surface was assessed by incubation with human anti-SARS-CoV-2 neutralizing 

antibody, followed by incubation with Alexa Fluor 488-labeled anti-human IgG1 Fc secondary antibody. Antibody bound to NVP 

was quantified by fluorometry. Data are presented as mean ± SEM. ***p < 0.001, ****p < 0.0001, analyzed by one-way ANOVA, 

followed by Tukey’s HSD multiple comparison post hoc test. 

 

RBD-NVP vaccination study in mice 

Lastly, we examined the potency of RBD-NVP to generate anti-RBD antibody response in 

mice. BALB/c mice were vaccinated three times with 2 weeks interval between each injection 

(days 0, 14, and 28) using 0.5 µg of RBD and 1 µg of MPLA either in NVP or soluble formulation 

(Figure 4-7a). Sera samples were collected on days 28, 42, and 70 and assessed for RBD-specific 

serum IgG, IgG1, and IgG2a titers. RBD-NVP generated significantly higher RBD-specific 

antibody titers, compared with RBD + MPLA soluble vaccine (Figure 4-7b-d). Specifically, by 

day 42 (2 weeks after 3rd vaccination), RBD-NVP elicited 55-fold, 17-fold, and 284-fold higher 

RBD-specific IgG, IgG1, and IgG2a titers, respectively, compared with the soluble vaccine (Figure 

4-7b-d). By day 70 (6 weeks after 3rd vaccination), mice immunized with RBD-NVP still 

maintained 30-fold, 13-fold, and 671-fold higher RBD-specific IgG, IgG1, and IgG2a titers, 

respectively, compared with the soluble vaccine group (Figure 4-7b-d). While the examination of 

functionality and neutralizing activities of these antibodies are beyond the scope of our current 

studies, these initial results indicated that RBD-NVP induced robust, long-lasting, Th1/Th2-

balanced antibody responses against RBD.  
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Figure 4-7. RBD-NVP elicits robust RBD-specific antibody responses in mice. (a) BALB/c mice were vaccinated three times, 

with 2 weeks intervals between each injection. Blood was sampled on the indicated days. RBD-NVP significantly increased serum 

antibody titers of RBD-specific (b) IgG, (c) IgG1, and (d) IgG2a, compared to the soluble vaccine. Data are presented as mean ± 

SEM. *p < 0.05, **p < 0.01, ***p < 0.001 and ****p < 0.0001, analyzed by two-way ANOVA, followed by Tukey’s HSD multiple 

comparison post hoc test. 

 

4.5. Conclusion 

Overall, we have developed NVP for the delivery of protein antigens and demonstrated the 

versatility of NVP for protein-based vaccination against infectious pathogens. Protein antigens 

incorporated into NVP maintained the configuration of the epitopes, as shown by the recognition 

and binding of neutralizing antibodies on the surfaces of antigen-displaying NVP. NVP was 

readily taken up by DCs in vitro, leading to greater DC activation and antigen presentation, 

compared with soluble vaccine formulation. We have successfully prepared NVP carrying SOSIP 

derived from HIV-1 and RBD derived from SARS-CoV-2. Animals immunized with NVP 
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generated strong antigen-specific antibody responses. While these initial proof-of-concept studies 

have shown the promise of NVP, more studies are warranted to delineate the immunological 

mechanisms of action and to assess protective immunity against viral challenge (e.g., HIV-1 or 

SHIV challenge in non-human primates; and SARS-CoV-2 challenge in mice engineered to 

express human ACE2).   
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CHAPTER V. Prebiotics Treatment for Modulation of Gut Microbiota and Improvement 

of Cancer Vaccine Efficacy 

 

5.1. Abstract 

It has long been known that diet has close relationship with the state of gut microbiota. Many 

dietary fibers are the sources for fermentation by the gut bacteria, which produce metabolites that 

have influence on the host in diverse aspects. Recent reports stating the close correlations between 

the gut microbiota and onset of diseases that were considered to be difficult-to-treat, such as cancer, 

autistic and autoimmune diseases, drew a lot of attention from various fields of study. Especially, 

the findings of bacterial metabolites called short chain fatty acids (SCFA) influencing the immune 

responses following therapeutic interventions sparked a huge interest in the field of cancer 

immunotherapy. Here, we sought to use engineering approaches to enhance the immune response 

after vaccination, by including prebiotics in the diet in an attempt to modulate the gut microbiota. 

Tested with mouse tumor models, several prebiotics such as potato starch and fructo-

oligosaccharide were found to induce changes in gut bacterial frequencies and subsequent immune 

responses after vaccination, which resulted in enhanced vaccine efficacy in terms of tumor growth 

suppression. 
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5.2. Introduction 

The microbiome is a collection of genes from trillions of microorganisms living inside an 

individual human. Each organ inside the body has its own unique microbiota developed, all of 

which have been known to have great impact on general human health. Gut microbiota has been 

one of the most extensively studied among others. Since 2010, an avalanche of studies reported 

the relationship between the gut microbiota and health and disease onset of other organs of the 

body (163). Especially, there are many recent studies reporting close relationships between the 

host gut microbiota and the immune system, where both members of the innate and adaptive 

immunity are found to be strongly influenced. Consumption of dietary fibers diversifies bacteria 

in the gut, which subsequently influences various members of the immune system, including 

dendritic cells, macrophages, regulatory T cells and memory T cells (55, 164, 165). Also, there are 

accumulating reports of certain bacterial species and their metabolites modulating patients’ 

responses to immunotherapies (166, 167).  

For the communication between microbiota and immune system, the metabolites of 

bacteria called short chain fatty acids (SCFA) act as one of the crucial mediators (55, 164). When 

bacteria metabolize, the metabolites called short chain fatty acids (SCFA) are released, which act 

as a mediator for the cross-talk between the gut microbiota and the immune system, ultimately 

contributing to therapeutic outcomes during cancer immunotherapy (168, 169). In the similar 

context, consuming dietary fibers, or prebiotics, which bacteria metabolize on has also been found 

to be important for the general health and immunity of an individual. With recent findings of SCFA 

acting as an important factor for the generation and potency of memory T cells, there are increasing 

interests in the field of immunology to investigate the effects of microbiota and T cell immune 

responses (165). However, despite the reports suggesting potential connections between the diet, 
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microbiota and immune responses (166, 167), there have not yet been studies of how the diet 

influences T cell responses after vaccination in cancer prophylactic/therapeutic settings. Here, we 

investigated the effects of prebiotics consumption on microbiota and how the changes in 

microbiota influence the T cell response generated by vaccination against cancer using a mouse 

tumor model. There are many prebiotics known to have effects on gut microbiome when consumed, 

such as inulin (170, 171), metformin (172-174), pectin (175, 176) and potato starch (177). Prior to 

tumor inoculation, these prebiotics were given by oral gavage followed by vaccination. Many of 

the prebiotics that were tested were shown to have influence on bacterial composition in the gut, 

including the increase in Akkermansia frequency, which has been found to be closely related to 

host’s immune response during cancer immunotherapy (168). 

 

5.3. Materials and Methods 

Animal studies 

Animals were cared for following federal, state, and local guidelines. All experiments 

performed on animals were in accordance with and approved by the Institutional Animal Care and 

Use Committee (IACUC) at the University of Michigan, Ann Arbor. BALB/c mice (n=5 per group) 

were given oral gavages with prebiotics using below indicated amounts: 

 Experiment #1 Experiment #2 

Vaccination: 

Adpgk HDL 

(15.5 nmol + 2.3 

nmol CpG); 

injected s.c. at 

tail-base 

Water NA Water NA 

Inulin 
120 

mg 
Inulin gel 60 mg 

Metformin 6 mg FOS 150 mg 

Pectin 10 mg Potato starch gel 30 mg 

Fucoidan 4 mg - - 
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Fructo-oligosaccharide 

(FOS) 

120 

mg 
- - 

No vaccination Water NA Water NA 

*Indicated doses are amount per gavage given to each mouse. 

Oral gavages were given using 22-gauge gavage needles (Cadence Science™) once every 2 days 

for 47 days (experiment #1) or for 8 days (experiment #2). Each gavage volume was fixed to 100 

µl. Vaccinations were given subcutaneously at the tail-base, injected on both sides with 50 µl 

injection volume per side. For serum IgG detection study, OVA (100 µg) and Alum (Alhydrogel, 

Fisher Scientific, 50% of total injection volume) (instead of the adpgk-HDL formulation) were 

given as vaccination. Fecal samples were collected at indicated time points using 1.5 mL 

centrifugal tubes, placed in dry ice immediately after collection. Blood samples were collected via 

submandibular vein using lancets. Collected blood samples were used for analyses using flow 

cytometry and ELISA. 

ELISA for serum IgG titer measurement 

Mouse immune sera were analyzed for adpgk-specific IgG antibody titers using ELISA. 

Briefly, ovalbumin was coated on 96-well ELISA plates (1 µg/well) and serially diluted sera 

samples were added. After 1 hr of incubation and multiple washings, horse radish peroxidase 

(HRP)-labeled secondary antibodies were added and further incubated for 1 hr in room temperature. 

Rabbit anti-mouse IgG H&L-HRP (Abcam) was used as the secondary antibody. Next, TMB 

substrate solution (Thermo Scientific) was added, and the reaction was stopped by the addition of 

H2SO4. The absorbance was measured at a 450 nm wavelength using a plate reader (Synergy Neo, 

BioTek). To measure antibody titers, titration curves were drawn based on the absorbance and the 

dilution factor, from which half maximal effective concentration (EC50) values were calculated 

using Prism 7 software. 
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Flow cytometry for analysis of antigen-specific CD8+ T cells in blood 

Red blood cells in the collected blood samples were removed by mixing with ACK lysis 

buffer (Life Technologies). After centrifugation at 500 g for 5 min, pallet was washed with PBS 

twice. Resulting PBMCs were stained with a live/dead staining dye (eBioscience), followed by 

mixing with Fc-receptor blocking antibody (anti CD16/32) and fluorophore-labeled antibodies 

including CD3-FITC (Biolegend), CD8-APC (BD Biosciences), and Adpgk tetramer-PE (NIH 

Tetramer Core Facility). Resulting cells were fixed with 2% formaldehyde for 10 min, and then 

suspended in FACS buffer for flow cytometry. 

Statistical analysis 

The results are expressed as means ± SEM. Prism 7.0e (GraphPad Software) software was 

used for statistical analyses. Statistical comparisons were performed using one-way or two-way 

ANOVA, followed by Tukey's HSD multiple comparison test or Sidak’s multiple comparison test, 

as indicated. The survival curves were analyzed by the log-rank (Mantel−Cox) test. Statistical 

significances are indicated as *p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001. 

 

 

5.4. Results 

 Effects of prebiotics on CD8+ T cell responses after vaccination were examined using 

BALB/c mice (n=5 per group). Mice were acclimated for a week to stabilize gut microbiota. Oral 

gavages with prebiotics were given bi-daily using gavage needles with each gavage volume of 100 

µl. Doses of prebiotics are indicated in the methods section. 7 days into the gavage period, mice 

were vaccinated subcutaneously at the tail-base with HDL nanodiscs containing CpG (2.3 nmol) 
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and adpgk peptide (15.5 nmol). Booster injections were given twice with 2 weeks intervals. MC38 

tumor cells were injected on day 47 which was the last day of prebiotics treatment. Blood samples 

were collected on days 14, 28, 40 and 54 for flow cytometric analyses on peripheral CD8+ T cells. 

Fecal samples were collected on day 7 (Figure 5-1a). Using blood samples, adpgk-tetramer 

staining analysis was performed on CD8+ T cells (Figure 5-1b). All treatment groups including 

water-treated group that was not given prebiotics showed increase in peripheral frequency of 

antigen-specific CD8+ T cells over time. Although statistically significant difference between 

water-treated and any of the prebiotics-treated groups was not observed, there were trends of shifts 

in adpgk-specific CD8+ T cell levels that fluctuated over time. Mostly, the water-treated group 

showed the trend of lowest frequency, indicating that it is likely that prebiotics treatment has an 

impact on CD8+ T cell responses after vaccination. Similarly, effector and memory T cell 

formation showed trends of variances depending on prebiotics treatment, albeit without statistical 

significance (Figure 5-1c). Serum IgG levels were measured using ELISA (Figure 5-2d). Again, 

trends of variance between treatment groups were observed without statistical significance, where 

we were able to assume that prebiotics treatment indeed has influence on immune responses 

including CD8+ T cell and serum antibody.  



 77 

 

Figure 5-1. Effects of prebiotics on cellular and humoral immune responses induced by vaccination. (a) Schematic of 

experiment timeline. Mice (n=5 per group) were given three times of vaccination (prime and two boosters) on days 7, 21 and 33, 

while they were given oral gavages of prebiotics every two days for 47 days. Fecal samples were collected on day 7 and blood 

samples were collected on days 14, 28, 40 and 54. (b) adpgk-tetramer staining using blood samples collected on indicated dates, 

analyzed with flow cytometry. (c) Analysis of effector and memory cell transition by peripheral CD8+ T cells over time, measured 

by flow cytometry. (d) Serum IgG levels indicated in EC50 of reciprocal serum dilution, measured by ELISA. 

 

In order to investigate how prebiotics have influenced the immune responses, fecal samples 

were analyzed to investigate the microbiome using 16S RNA sequencing. Among 125 bacterial 

species analyzed, noticeable shifts were observed from several species including Alistipes, 

Akkermansia, Lachnospiraceae, Bacteroides and Turicibacter (Figure 5-2a). Interestingly, 
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Akkermansia, which is reported to be beneficial for colonic mucin and overall gut health (178-

180), showed trends of increase in metformin- and pectin-treated groups. In order to investigate if 

the impact on gut microbiota by prebiotics treatment has influence on anti-tumor vaccine efficacy, 

the mice that were given prebiotics and vaccinations were challenged with subcutaneous injections 

of MC38 mouse colon carcinoma cells on day 47, and the tumor growths were monitored (Figure 

5-2b). Interestingly, tumor growth suppression had trends of enhancement when prebiotics were 

given together with vaccination to tumor-bearing mice. FOS, metformin and inulin were shown to 

have significant enhancement compared to other prebiotics. Although a noticeable survival 

benefits were not observed (Figure 5-2c), the results indicate that prebiotics treatment have 

impacts on gut microbiome which subsequently influences on host’s immune responses after 

prophylactic vaccination against tumor. 
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Figure 5-2. Changes in gut microbiome and their effects on vaccine efficacy in tumor-bearing mice. (a) Several gut bacterial 

species with trends of deviance compared to water-treated group are shown. Tumor growth curve (b) and survival (c) of tumor-

bearing mice that were given oral gavages of any one of water, inulin, FOS, pectin, metformin or fucoidan in combination with 

vaccination. Control group was given oral gavages of water without vaccination. For statistical analysis shown in (b), the top panel 

compares between ‘water’ and ‘FOS’, and the bottom panel compares between ‘water’ and ‘metformin’. Data are presented as 

mean ± SEM. *p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001, analyzed by two-way ANOVA followed by Sidak’s 

multiple comparisons test. 

 

Next, a similar animal study was designed, this time with a therapeutic setting. Oral gavage 

period was given for 8 days, which was shortened compared to the previous gavage period of 47 

days, based on a study reporting rapid change of microbiota of mice that occurs around 7 days 
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after cohousing in a different environment (181). These mice were inoculated subcutaneously on 

the right-side thigh on day 0 with MC38 cells. 4 days later, mice were given primary vaccination 

with adpgk-CpG-HDL (15.5 nmol adpgk + 2.3 nmol CpG). Two booster injections with the same 

dose, each given weekly. Fecal samples were collected on day 6 for microbiome analysis. Blood 

samples were collected on days 11, 18, 25 and 32 for adpgk-tetramer analysis on peripheral CD8+ 

T cells (Figure 5-3a). Similar to the previous experiment, trends of increase in antigen-specific 

CD8+ T cells were observed in peripheral blood until day 18, but not on day 25 and after (Figure 

5-3b). It may have been due to the long period of time since the cessation of oral gavages of 

prebiotics after day 18, which may result in normalization of gut microbiome between the sample 

groups. 
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Figure 5-3. Effects of prebiotics on therapeutic efficacy of vaccination against tumor. (a) Timeline of study. BALB/c mice 

(n=7) were given prebiotics every two days for 8 days, followed by tumor injection using MC38 mouse colon carcinoma cells. 4 

days after, mice were given vaccination once every week for three times. Fecal samples were collected on day 6, and blood samples 

were collected on days 11, 18, 25 and 32. (b) adpgk-tetramer staining on CD8+ T cells in peripheral blood, measured by flow 

cytometry. (c) 16S RNA sequencing data of fecal samples. Bacterial species that showed most noticeable changes are shown. (d) 

Tumor growth and (e) survival of tumor-bearing mice that received with or without vaccination and prebiotics treatment. For 

statistical analysis shown in (d), left panel compares between ‘water’ and ‘potato starch gel’. Data are presented as mean ± SEM. 

*p < 0.05, **p < 0.01, and ****p < 0.0001, analyzed by c) one-way ANOVA followed by Tukey’s HSD multiple comparison post 

hoc test or d) two-way ANOVA followed by Sidak’s multiple comparisons test. e) The survival curves were analyzed by the log-

rank (Mantel−Cox) test. 
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Fecal samples were analyzed with 16S RNA sequencing to investigate the changes in gut 

bacterial frequencies (Figure 5-3c). There were noticeable changes in several species of bacteria, 

including Akkermansia, Faecalibaculum and Coriobacteriaceae, depending on the prebiotics 

given. Interestingly, changes in Akkermansia were again observed as was in the previous study, 

indicating the potential positive effects of the tested prebiotics on the gut health. In line with the 

tetramer-staining study and changes observed in gut microbiome, mice given prebiotics showed 

trends of enhanced vaccine efficacy against tumor, correlating with increased survival of the 

tumor-bearing mice (Figure 5-3d,e).  

 

5.5. Conclusion 

Overall, we were able to observe the effects of prebiotics on vaccination efficacy against 

tumor, by the trends of changes in gut microbiome and in both cellular and humoral immune 

responses. Most importantly, despite the changes showing only the trends of changes that require 

multiple rounds of additional experiments to confirm reproducibility of the results with statistical 

significance, the efficacies of vaccines both in prophylactic and therapeutic settings showed 

enhancement when the tested animals were given oral gavages of certain prebiotics (e.g., potato 

starch, FOS, etc.). It states the possibility of diet-based preconditioning being included in the 

cancer therapeutic regimens and the importance of healthy diet that includes dietary fibers to 

maintain gut microbiota in a state that is beneficial for the prevention of neoplasm. Also, the study 

warrants further studies to investigate the effects of bacterial metabolites that are produced within 

the microbiota that is changed after prebiotics consumption. 
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CHAPTER VI. Conclusions and Perspectives 

 

There is an overarching aim that is shared between the studies described thus far, which is 

modulating the immune response to achieve enhancement of therapeutics or prophylaxis. Immune 

responses can be perceived as a cycle that begins with recognition of antigen and danger signals 

by innate immune response that leads to activation of adaptive immune response, where 

modulation at a certain stage may bolster the cycle, leading to stronger overall immune responses. 

Our studies used biomaterials to target a certain stage of immune response cycle that depended on 

the type of material used, kind of therapeutic or prophylaxis, administration route and target 

disease. 

In the first study, bMSN-mediated STING agonist delivery increased cellular uptake of 

STING agonist that enhanced STING activation of dendritic cells, subsequently leading to 

improved therapeutic outcomes of STING agonist treatment in mouse melanoma models. Here, 

we expect the large-sized pores of bMSN will not only enable the fast degradation of bMSN after 

administration, but also provide a possibility for larger-sized biomolecules, such as protein, to be 

loaded in bMSN which would make the system applicable to other therapeutic settings. Also, 

utilizing well-known silica surface modification chemistries may allow multiple kinds of 

biomolecules to be co-loaded, further diversifying the application scenarios. Meanwhile, the 

current study was done using mouse melanoma model, where the tumor was easily accessible for 

direct injections of bMSN loaded CDA, after which the presumed acidic tumor microenvironment  
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allows prolonged CDA release. However, there are many situations where tumors are not readily 

accessible for direct injections, in which case, other routes of drug administration should be 

considered. Intravenous injection is one of the commonly used routes of injection, where passive 

drainage of drug or delivery particles occurs to the sites of tumor via enhanced permeability and 

retention (EPR) effect (182, 183). In this case, the administered therapeutics are exposed to and 

interact with components, including albumins, present in the blood circulation, causing clearance 

at different parts of the body such as liver and kidney (184). It would be a great direction to pursue 

forward to modify the surface of bMSN, such as lipid- or polyethylene glycol-coating, to increase 

stability in blood circulation which would provide other possible routes of administration. 

The next study introduced combination of nanoparticle vaccine and STING agonist for 

cancer immunotherapy. The nanoparticle vaccine was used to enhance the potency of a neoantigen 

peptide vaccine, while STING agonist treatment induced stronger release of T cell attractant 

chemokines from tumors, leading to increased tumor infiltration by the vaccine-induced T cells. 

The combination treatment was strategically designed to overcome suboptimal tumor infiltration 

by T cells, a limitation frequently faced by vaccines designed for cancer immunotherapy. Causes 

that lead to such limitation and were attempted to be solved in the study include sequestration of 

T cells at the vaccine depot which is often formed when certain types of vaccine delivery platforms 

are used, and minimal expression of chemokines by the tumor (185-187). Importantly, the concept 

of recruiting circulating T cells to tumor may be applicable in different settings such as when T 

cells are adoptively transferred, which also increases the available number of T cells in the blood 

circulation (188). However, while STING agonist has worked out nicely in the current study, 

sensitivity to STING agonist treatment varies by the tumor types where excessive dose of treatment 

may cause suboptimal immune responses (71), requiring dose optimizations. Therefore, it would 



 85 

also be worthwhile to test other types of drugs that may substitute STING agonist to achieve similar 

effects for flexibility of adopting the idea of T cell recruitment in other therapeutic settings 

involving different types of tumor. For example, there are studies investigating the recruitment of 

circulating T cells to tumor, adopting the concept of vascular checkpoints where extravasation of 

T cells is controlled using various agents, such as cisplatin, temozolomide, or other anti-angiogenic 

agents (105, 188-190). 

Next discussed was lipid-based nanoparticle mediated protein subunit vaccine delivery as 

prophylaxis against infectious diseases, where the vaccine was codelivered with an adjuvant, 

MPLA, to enhance activation and antigen presentation by dendritic cells, which together with 

increased lymph node trafficking after subcutaneous administration induced stronger humoral 

immune responses in mice and rabbits. Another emphasis put in the study was maintaining the 

tertiary and quaternary structures of the protein antigens during the loading process into 

nanoparticles, since it is critical to the generation of neutralizing antibodies that are able to 

neutralize the pathogens after vaccination (191). The study involved various ways to examine the 

conformational intactness of the protein antigens after incorporation into the nanoparticle, such as 

non-reduced SDS-PAGE, native blue PAGE, and neutralizing antibody treatment followed by flow 

cytometric analysis. From the previous generations of the lipid nanoparticles with similar 

multilamellar lipid structures (152-154), the current version excluded the use of excessive physical 

stress and reducing agents after protein antigens were added to the reaction mixture, in order to 

prevent the structural disruptions that may occur. As a result, two different kinds of proteins, each 

having internal disulfide bonding and/or trimeric structure, were successfully loaded in the 

nanoparticle with great loading efficiencies (20~25%), demonstrating the applicability of the 

system to delivering various proteins with different structural characteristics. However, while the 
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generation of IgG antibodies in serum of vaccinated mice and rabbits have been confirmed, further 

studies are warranted for the validation of IgG-mediated neutralization of pathogens both in vitro 

and in vivo settings. 

Lastly, the effects of prebiotics consumption on gut microbial composition and subsequent 

immune response after vaccination was investigated using a mouse tumor model. Many studies 

reporting the correlations between the gut microbiota and various immune cell types provided the 

motivation to this project. Here, controlling the diet through consumption of prebiotics was 

proposed as a means for modulating the immune responses based on the links between prebiotics 

consumption, gut microbiota, and the immune system. Using mouse models, changes in gut 

bacterial composition upon oral delivery of prebiotics, including inulin, potato starch, fructo-

oligosaccharide and metformin, were observed. Together with the impact given to gut microbiota, 

we observed trends of enhancements in cellular and humoral immune responses upon vaccination, 

which correlated with improved the potency of vaccines treated in either prophylactic or 

therapeutic settings. Overall, the study provided a promising strategy for immune modulation that 

provides possibility of applying to other therapeutic settings. However, the duration of oral gavage 

adopted in the two studies were either relatively short or the gavage was seized after tumor 

challenge, from which point the gut microbiota may normalize back to the initial state. Therefore, 

it warrants additional studies of how prolonging the duration of prebiotics treatment may influence 

the microbiota and the immune responses. Also, the bacterial metabolites, SCFA, are in part 

responsible for the effects the bacterial community provides to the immune cells, and therefore 

should also investigated in detail in future studies (53, 55, 58, 192). 

Overall, here in the thesis, various ways of immune modulation for treating cancer and 

preventing infectious diseases were introduced. While some of the studies were more directed 
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towards proof-of-concept, others were focusing on the clinical translatability. Altogether, the 

future direction to which all our studies should be pursuing onward is getting thorough mechanistic 

insights in terms of how the immune system reacts to the therapeutic/prophylactic inputs given by 

our systems, such as nanoparticle mediated vaccine and drug delivery, intratumoral STING agonist 

treatment, and prebiotics treatment.  Tracking the drug or delivery particles after administration in 

longer terms, analyzing the immune response bias to Th1 or Th2 responses, and investigating other 

cell types that are also important during immune responses, such as macrophages and B cells, 

would provide clearer vision of how the therapeutic outcomes can be expected in clinical settings. 

With these clearly defined, our systems may provide great bases for combination therapies with 

other potent immunotherapeutics, such as immune checkpoint inhibitors and adoptive cell transfer 

of T cells and DCs. With currently available immunotherapies, still a large portion of patients fails 

to achieve complete responses (193, 194). Our studies may provide alternative therapeutic methods 

that are practical and effective to patients that are refractory to previous treatments. 
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