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Abstract

Software model checkers attempt to algorithmically synthesize an inductive proof
that a piece of software is safe. Such proofs are composed of complex logical asser‑
tions about program variables and control structures, and are computationally ex‑
pensive to produce.

Our unifying motivation is to increase the efficiency of verifying software control
behavior despite its dependency on data. Control properties include important topics
such as mutual exclusion, safe privilege elevation, and proper usage of networking
and other APIs. These concerns motivate our techniques and evaluations.

Our approach integrates an efficient abstraction procedure based on the logic of
equality with uninterpreted functions (EUF) into the core of a modern model checker.
Our checker, called EUFORIA, targets control properties by treating a program’s data
operations and relations as uninterpreted functions and predicates, respectively. This
reduces the cost of building inductive proofs, especially for verifying control rela‑
tionships in the presence of complex but irrelevant data processing. We show that
our method is sound and terminates. We provide a ground‑up implementation and
evaluate the abstraction on a variety of software verification benchmarks.

We show how to extend this abstraction to memory‑manipulating programs. By
judicious abstraction of array operations to EUF, we show that we can directly reason
about array reads and adaptively learn lemmas about array writes leading to signif‑
icant performance improvements over existing approaches. We show that our ab‑
straction of array operations completely eliminates much of the array theory reason‑
ing otherwise required. We report on experiments with and without abstraction and
compare our checker to the state of the art.

Programs with procedures pose unique difficulties and opportunities. We show
how to retrofit a model checker not supporting procedures so that it supports mod‑
ular analysis of programs with non‑recursive procedures. This technique applies to

xii



EUFORIA as well as other logic‑based algorithms. We show that this technique enables
logical assertions about procedure bodies to be reused at different call sites. We re‑
port on experiments on software benchmarks compared to the alternative of inlining
all procedures.
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Chapter 1.

The Thesis

EUF abstraction outperforms other model checking techniques on a variety of soft‑
ware analysis problems.

1.1. Introduction

The holy grail of software analysis is to run a “software safety checker” that guaran‑
tees that software doesn’t do anything unsafe. A checker that works on every software
program can’t be written — a well‑known fact thanks to results from Alan Turing,
Alonzo Church, Henry Rice, and others. Nevertheless, history has since repeatedly
shown that there are broadly applicable safety checking algorithms. In this dissertation,
we focus on the technique of automatic software verification by Model Checking.

Model checkers are designed to ensure that all reachable states are safe; this ap‑
proach often doesn’t scale because the number of states is astronomical. Modern
model checkers, therefore, usually check an abstraction of a system. Perhaps the re‑
curring question in model checking research is: how can we design an abstraction
that makes a useful trade‑off between fast and precise? Some abstractions are pre‑
cise but overly expensive to compute. Other abstractions are cheap to compute but
lead to too much time spent on false positives. My work provides one answer to this
question.

This dissertation describes a model checker, EUFORIA, that checks an equality with
uninterpreted functions (EUF) abstraction. While programs expressed in EUF contain
infinitely many reachable states, In Chapter 3, I contribute a terminating algorithm
called term projection that exploits the finiteness of the underlying C programs. I

1



also extend EUFORIA to support programs that manipulate arrays (Chapter 4) and pro‑
grams with functions (Chapter 5).

EUFORIA checks programs (and other discrete, dynamical systems) using a flexible
input format. EUFORIA’s targeted EUF abstraction outperforms other model checkers
on a variety of software analysis problems. This dissertation describes the checker’s
implementation and experiments probing its performance.

1.2. Model Checking Methods

Model checker internals can be a bit mysterious, so we’re going to review how the
research community arrived at the abstraction‑based model checkers of today.

Model checking began with a brute force idea. First, define which states are unsafe.
Next, explore all the reachable states; if we don’t find an unsafe state, conclude that
the program can’t reach one. Properties proscribing unsafe states are called safety
properties.

The code below shows a simple program with an assertion, which is a safety prop‑
erty.

𝑖 = 0, 𝑗 = 0
while ⋆ ∧ 𝑗 < 10

if 𝑖 < 𝑗 then
𝑖 = 𝑖 + 1

𝑗 = 𝑗 + 1
assert 𝑗 = 𝑖 ∨ 𝑗 = 𝑖 + 1

We use the star (⋆) syntax to mean an arbitrary value (of appropriate type).
The assertion tests, for every run reaching the assert, “does the state (𝑖, 𝑗) satisfy

𝑗 = 𝑖 ∨ 𝑗 = 𝑖 + 1?” For brevity, let’s call this formula 𝑃 . The states reachable at the

2



assert are the states that the model checker enumerates:

State Property
𝑖 𝑗 𝑗 = 𝑖 𝑗 = 𝑖 + 1 𝑗 = 𝑖 ∨ 𝑗 = 𝑖 + 1
0 0 true false true
0 1 false true true
1 2 false true true
2 3 false true true
…
9 10 false true true

Since the property is a logical or (∨), I’ve broken it up into its components. It can be
easily seen that every state in fact satisfies 𝑃 : the first state satisfies 𝑗 = 𝑖 and the rest
satisfy 𝑗 = 𝑖 + 1.

All is well until this table becomes too large. The number of states is exponential
in the number of if statements in the program; and it only gets worse when there are
loops or functions. In practice, this state space exploration method quickly becomes
intractable. Even worse, the number of states could be infinite, if 𝑖 and 𝑗 are integers.

This is known as the state explosion problem. One way this is addressed is by repre‑
senting states implicitly instead of explicitly. Symbolic model checkers [1] use math‑
ematical formulas to represent sets of states. The following formula represents the set
of states from the table above:

(𝑖 = 0 ∧ 𝑗 = 0) ∨ (0 < 𝑗 ≤ 10 ∧ 𝑗 − 1 = 𝑖) . (1.1)

The states in the table, and only those states, satisfy this formula. This formula de‑
scription is shorter than the tabular description, in terms of the number of symbols
each requires. If we increase the bound on program variable 𝑗 from 10 to a billion, for
instance, the formula description becomes much shorter than the state enumeration.

Without explicitly enumerating states, the property can no longer be checked against
each state. Instead, symbolic algorithms check whether the formula (1.1) forms an in‑
ductive proof for 𝑃 . 𝑃 is satisfied inductively if

1. it is true initially, and

3



2. it is preserved by every program transition.

To illustrate, let’s treat (𝑖 = 0, 𝑗 = 0) as the initial program state and say a program
transition corresponds to executing the while loop and exiting to the assert. (We dis‑
cuss alternate notions of “transition” shortly.) Here is an inductive proof of 𝑃 :

1. Is 𝑃 true initially? It is, because 𝑖 = 𝑗 = 0 implies 𝑃 .

2. Is 𝑃 preserved by executing the while loop (and exiting)? Formula (1.1) de‑
scribes exactly the states that exit the while loop. Let’s break the formula into
two cases, one for each side of the ∨, and show that each case implies 𝑃 :

a) Case (𝑖 = 0 ∧ 𝑗 = 0): Then 𝑗 = 𝑖, so 𝑃 holds. (This case corresponds to
executing the while loop body 0 times.)

b) Case (0 < 𝑗 ≤ 10 ∧ 𝑗 − 1 = 𝑖): 𝑗 − 1 = 𝑖 can be rewritten 𝑗 = 𝑖 + 1, implying
𝑃 holds in this case, too. (This case corresponds to executing the while loop
body up to 10 times.)

These steps form an inductive proof, relying on the exact formula (1.1) describing the
set of reachable states.

But how do we find such formula descriptions? We don’t know how to search
across arbitrary symbolic descriptions well enough to scale symbolic algorithms, ex‑
cept in restricted cases. This reality led to the idea of approximating the set of reach‑
able states. Approximations can be designed to facilitate automatic exploration. They
also usually make for more concise formulas. A superset approximation in particular
has the desirable property that if nothing in a superset violates 𝑃 , the program is safe.
Abstraction‑based model checkers implement this kind of abstraction.

To illustrate abstraction using the program above, consider a different property,
𝑃2(𝑖) = (𝑖 ≥ 0). The program satisfies this property (we can prove this by appealing to
the property 𝑃 which the program also satisfies). But now we will form an inductive
proof for 𝑃2 by constructing a superset of the reachable states.

For this proof, we define program transitions differently: a transition corresponds
to executing one statement. How a transition is defined isn’t baked into the inductive
proof method, so the model checker has some flexibility. Defining a transition in
this particular way also appears to put us at a disadvantage, since there are more
transitions than before. But with the power of abstraction, our proof is even simpler!

4



There are only two transitions (i.e., statements) in the program that change 𝑖: 𝑖 = 0
and 𝑖 = 𝑖 + 1. Let’s define the prime’d version 𝑖′ of 𝑖 as “the value of 𝑖 after any one
transition.” This is a powerful definition as it allows us to relate the next value of 𝑖 to
the previous value of 𝑖; formulas written in terms of variables and prime’d variables
are called transition relations. Considering every statement, the program does one of
two things to 𝑖:

1. It increments 𝑖: we write this as 𝑖′ = 𝑖 + 1.

2. It doesn’t change 𝑖: 𝑖′ = 𝑖.

These cases provide the foundation for an approximate representation of the program.
The full approximating formula is:

𝑖 = 0 initially and
[(𝑖′ = 𝑖 + 1) ∨ (𝑖′ = 𝑖)] ∧
(𝑗′ = ⋆)

(1.2)

All the reachable states are contained in this formula. But this formula also contains
these states (𝑖, 𝑗) (and many others):

• (0, 20) since 𝑗 can be assigned anything.

• (10, 111) since (9, 10) is a reachable state.

This approximation is terribly useful because it can be used to form a proof for 𝑃2.
We want to show that (1) initially 𝑖 is at least zero and (2) the next value of 𝑖 is at least
zero. We write the latter as 𝑃 ′

2(𝑖) = (𝑖′ ≥ 0). We want to show, using formula (1.2),
that 𝑃 ′

2(𝑖) holds after every program transition.

1. Initially 𝑖 = 0: Surely 0 ≥ 0, so 𝑃2(0) holds initially.

2. Separating the two possible transitions for 𝑖 into cases:

a) 𝑖′ = 𝑖 + 1: By induction hypothesis we assume that 𝑃2(𝑖) holds, so 𝑖 ≥ 0.
Incrementing a non‑negative number yields a non‑negative number, so 𝑖′ ≥
0, hence 𝑃 ′

2(𝑖) holds.

b) 𝑖′ = 𝑖: Also by induction hypothesis.

5



The over‑approximation (1.2) is simpler than the exact formula (1.1): (1.2) com‑
pletely ignores how the program updates 𝑗! Abstractions can radically reduce the
complexity of implicit state representations and are considered essential today.

In short, the goal of a symbolic model checker is to construct a proof (by induction)
that properties embedded in the program, represented by 𝑃 , are valid. In symbols,

𝐼 ⟹ 𝑃 (1.3)

𝑃 ∧ 𝑇 ⟹ 𝑃 ′ (1.4)

where 𝐼 stands for the initial states and 𝑇 represents the program’s transition relation.
The model checker employs abstraction for two reasons: to organize the search for
formulas and to bias itself toward simpler descriptions. The next section discusses
our abstraction.

1.3. Equality with Uninterpreted Functions Abstraction

EUF is a quantifier‑free logical theory in which formulas are composed of Boolean
connectives, uninterpreted function symbols 𝑓(𝑥), and uninterpreted predicate sym‑
bols 𝑃(𝑥). 𝑓(𝑥) may evaluate to any value under the constraint that equal arguments
produce equal results; this constraint is called functional consistency. 𝑃(𝑥) may evalu‑
ate to true or false under the same constraint. For instance, the formula

𝑓(𝑥) ≠ 𝑓(𝑦) ∧ (𝑥 = 𝑦)

is not satisfiable in EUF because the arguments 𝑥 and 𝑦 are equal, but the results are
not.

Burch and Dill [2] introduced the use of EUF for pipelined microprocessor verifica‑
tion. Their task was to ensure that a single‑cycle instruction execution produced the
same result as a multi‑cycle pipelined execution of the same instruction. The instruc‑
tion set architecture mandated the input‑output behavior of each instruction — this
was the specification. The microprocessor implemented an instruction pipeline, al‑
lowing multiple instructions to be in the process of executing at once. They observed
that “the differences between the specification and implementation behaviors are en‑
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tirely in the timing of operations and the transfer of values” (p. 69). EUF now seems
an obvious match to this task: uninterpreted functions abstract functional units (such
as adders) in both the instruction set specification and in the implementation; uninter‑
preted predicates abstract relational operators (like less‑than). Once abstracted with
EUF, the specification is checked for equivalence with the implementation.

Because this dissertation concerns software verification, I’ll give an example of trans‑
lation validation [3] where the goal is to verify that the result of evaluating an expres‑
sion is equivalent to a particular sequential order of evaluation. A compiler has the
freedom to pick among all sequential evaluation orders for nested expressions (one
order may be better than another because of pipelining, in fact). Here’s a nested ex‑
pression assigned to a variable 𝑧1 followed by a particular evaluation order, assigned
to 𝑧2 [4]:

𝑧1 = (𝑥1 + 𝑦1) ⋅ (𝑥2 + 𝑦2) (1.5)

𝑢1 = 𝑥1 + 𝑦1; 𝑢2 = 𝑥2 + 𝑦2; 𝑧2 = 𝑢1 ⋅ 𝑢2 (1.6)

A compiler will translate equation (1.5) into the three statements (1.6). To prove that
𝑧1 = 𝑧2, we check a verification condition (VC). Verification conditions [5] are for‑
mulas that encode correctness properties; if the condition is always true (valid), the
property holds. We check whether the following VC is valid:

(𝑢1 = 𝑥1 + 𝑦1 ∧ 𝑢2 = 𝑥2 + 𝑦2 ∧ 𝑧2 = 𝑢1 ⋅ 𝑢2)
⟹ 𝑧2 = (𝑥1 + 𝑦1) ⋅ (𝑥2 + 𝑦2)

(1.7)

The VC (1.7) encodes the property that 𝑧2 is equal to that produced by evaluating the
expression (1.5), for any 𝑥1, 𝑦2, 𝑥2, 𝑦2.

To prove the VC above one could use a theorem prover that supports reasoning
about arithmetic. But the VC includes non‑linear multiplication, which is an unde‑
cidable theory in general, so the proof might not be straightforward.1

Alternatively, this translation can by validated using EUF abstraction. EUF verifi‑
cation proceeds by abstracting the addition operations with an uninterpreted function

1I’m sure that every theorem prover can prove this faster than you could write it down. Neverthe‑
less, as the expressions get longer and more more complex, the complexity of a proof is likely to
skyrocket.
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𝐴, abstracting the multiplication with 𝑀 , which results in an abstract VC:

(𝑢1 = 𝐴(𝑥1, 𝑦1) ∧ 𝑢2 = 𝐴(𝑥2, 𝑦2) ∧ 𝑧2 = 𝑀(𝑢1, 𝑢2))
⟹ 𝑧2 = 𝑀(𝐴(𝑥1, 𝑦1), 𝐴(𝑥2, 𝑦2))

(1.8)

If the VC is valid in EUF (it is), then the original translation is valid. It is crucial that
the uninterpreted function symbols used in the antecedent and consequent are the
same (𝐴 and 𝑀 ). When one uses EUF for a translation validation, there is an expec‑
tation that translation preserves the sequence of data flow through the functions. EUF
verification checks that the data flow is preserved, since its core axiom is functional
consistency.

Previous work has applied EUF abstraction to hardware equivalence checking (e.g.,
[2], [4], [6], [7]). The two circuits under test use the same functions (e.g., for addition
and multiplication) and this is what makes EUF verification effective, because it al‑
lows applications of functional consistency.

1.4. Beyond Equivalence Checking with EUF

EUFORIA applies EUF abstraction beyond equivalence and to safety properties in gen‑
eral. We have developed an EUF abstraction that is effective for reasoning about lock
discipline, state machines, and array programs. More generally, our abstraction is
effective for control properties.

Control properties are an integral part of software verification. The 2014 Apple
Secure Transport “goto fail” bug [8] provides a compelling illustration:

1 extern int f();
2 int g() {
3 int ret = 0;
4 if ((ret = /* ... */) != 0)
5 goto out;
6 goto out; /* this line was inadvertently added */
7 ret = f();
8 out:
9 return ret;

10 }
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In this simplified version of the bug, the function f() implements a security check
that returns 0 on success. g() is supposed to call f(); however, f() is never called
because there is an inadvertent jump directly to g()’s return statement. To prove the
absence of this bug, one should ensure that every success path actually calls f() (i.e.,
that f() is called whenever g() returns 0). This property does not require reasoning
precisely about what f() does with data; it only requires reasoning about control
paths. Consequently, this property is a control property.

A variety of important properties are control properties. For instance, many oper‑
ating systems require that secure programs drop elevated privileges as soon as those
privileges are no longer needed. Such a rule is a control property because it has little
to do with details about particular privileged operations. Instead, the rule only re‑
quires reasoning about when privilege drops occur relative to the unprivileged parts
of a program [9]. Similarly, verifying a locking discipline does not require reasoning
about the data being protected; it only requires reasoning about when locking and un‑
locking occurs relative to when data is accessed or modified [10]. Data‑independent
programs, in which the only allowed operation on data is equality testing, are pro‑
grams for which entire classes of properties are control properties [11]–[13]. Typestate
properties [14] are also control properties.

1.5. Model Checking Architectures

In modern checkers, abstractions aren’t fixed. Instead, abstractions are refined until
they are strong enough to prove a property. Many model checkers follow the pattern
below, at a high level:

Program + Property Abstract Check Refine

Safe Unsafe

Such checkers roughly use the following steps:

1. Compute an initial abstraction, usually guided by a pile of heuristics.

2. Check if the program abstraction is strong enough to prove the property.
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3. If so, success! The program is safe. If not,

4. If the abstraction was insufficient because the program is unsafe, success! A bug
is identified. Otherwise, use the spurious bug trace to increase the fidelity of the
abstraction and go to step 2.

The spurious bug trace is called a counterexample. This general pattern is known
as counterexample‑guided abstraction refinement, or CEGAR [15]. Each part of the al‑
gorithm has myriad possible embodiments but the core of “guess, check, improve
guess” remains the same.

1.6. Incremental Induction

The last algorithmic method underlying EUFORIA is incremental induction. Why not
simply induction?

Symbolic model checkers search for an exact or over‑approximate formula 𝑅 char‑
acterizing the reachable states to complete an inductive proof. Specifically, 𝑅 is called
an inductive strengthening when 𝑃 is not inductive but 𝑅 ∧ 𝑃 is:

𝐼 ⟹ 𝑅 ∧ 𝑃 (1.9)

𝑅 ∧ 𝑃 ∧ 𝑇 ⟹ 𝑅′ ∧ 𝑃 ′ (1.10)

In general, one unrolls the program — that is, one looks at many transitions in a row —
to figure out how to come up with this formula. Unrolling a program and determining
what needs to be added to the proof quickly becomes a complex endeavor.

Enter incremental induction [16], whose key insight is to find facts that are inductive
relative to other facts. A fact 𝑄 is inductive if it is true initially, and it is preserved by the
program: if 𝑄 is true before any program transition, it is true afterward. For instance,
𝑄1 = (𝑖 ≥ 0) is inductive for the transition relation 𝑖′ = 𝑖+ 1. Let’s call this transition
relation 𝑇 .

A fact 𝑄 is inductive relative to 𝑅 if 𝑄 is true initially, and 𝑄 is preserved by the
program under the assumption of 𝑅: if 𝑄 and 𝑅 hold before any program transition,
then 𝑄 holds afterward. For instance 𝑄2 = (𝑖 ≠ 0) is inductive relative to 𝑅2 = (5 ≤
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𝑖 < 8) for 𝑇 , even though neither is inductive on its own. To see why, consider 𝑄2
and 𝑅2 in isolation:

• 𝑄2 by itself is not inductive for 𝑎. Suppose 𝑖 = −1 which is consistent with 𝑄2.
After 𝑇 , 𝑖′ = 0, which is inconsistent with 𝑄2, so the transition doesn’t preserve
𝑄2. 𝑄2 is not inductive for 𝑎.

• 𝑅2 isn’t inductive for 𝑇 either, because 𝑖 = 7 implies 𝑖′ = 8, which no longer
satisfies 𝑅2.

But if𝑄2∧𝑅2 holds before𝑇 , then 𝑖 is either 5, 6, or 7 and so 𝑖′ is 6, 7, or 8, respectively—
𝑄′

2 holds. 𝑄2 is inductive relative to 𝑅2.
Relative induction enables building an inductive proof bit by bit, avoiding any pro‑

gram unrolling. A model checker can construct an inductive strengthening 𝑅 using
many relative inductive steps.

This process is embodied in the IC3 algorithm. A complete and precise descrip‑
tion is given by Bradley [16] and our extension to EUF is described in Chapter 3. In
this section I show how IC3 avoids unrolling the transitions and how that leads to a
potential problem for EUF abstraction.

Let 𝑇 be a program description as a transition relation. Let’s presume the existence
of a sequence of formulas, 𝐹𝑖 (𝑖 ∈ {0,… , 𝑘} for some integer 𝑘), each denoting a set
of states, satisfying the following constraints:

𝐹0 = 𝐼 (1.11)

𝐹𝑖−1 ⟹ 𝐹𝑖 𝑖 ∈ {1,… , 𝑘} (1.12)

𝐹𝑖−1 ∧ 𝑇 ⟹ 𝐹 ′
𝑖 𝑖 ∈ {1,… , 𝑘} (1.13)

𝐹𝑖 ⟹ 𝑃 𝑖 ∈ {0,… , 𝑘} (1.14)

𝐹𝑖 denotes a set of states not known to be unreachable in 𝑖 transitions. Any state 𝑡 ∉ 𝐹𝑖
is known to be unreachable in 𝑖 transitions. Only states in 𝐼 are known to be reachable
initially. (1.12) means what is known about states after 𝑖 transitions is no more precise
than what is known about states after 𝑖 − 1 transitions. (1.13) means every transition
from a state in 𝐹𝑖−1 goes to a state in 𝐹𝑖 (but 𝐹𝑖 may contain unreachable states). (1.14)
means all states not known to be unreachable in 𝑖 transitions satisfy the property.
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The core of IC3 asks whether there is a counterexample‑to‑induction (CTI) relative
to some 𝐹𝑖. Each CTI check for state 𝑠 has the form 𝐹𝑖 ∧ ¬𝑠 ∧ 𝑇 ⟹ ¬𝑠′, which tests
whether ¬𝑠 is inductive relative to 𝐹𝑖. When ¬𝑠 is not inductive relative to 𝐹𝑖 (i.e., the
CTI check is not logically valid), then that means there is some pre‑image state 𝑡 that
transitions to 𝑠 and 𝑡 is not (yet) known to be unreachable in 𝑖 steps. 𝑡 is called a CTI
state.

Assume there is a state 𝑠 that does not satisfy 𝑃 and which is reachable from 𝐹𝑘, i.e.,
(𝑠 ⟹ 𝑃) is not valid and (𝐹𝑘∧𝑇 ⟹ ¬𝑠) is not valid. If 𝑠 is reachable from the initial
states it disproves the property. When a CTI check for 𝑠 on 𝐹𝑘 yields a CTI 𝑡, we can
continue working backward with a subsequent CTI check for 𝑡: 𝐹𝑘−1∧¬𝑡∧𝑇 ⟹ ¬𝑡′.
If the latter CTI check yields another CTI, we can continue this process, perhaps all
the way to 𝐹0. If the last CTI check, relative to 𝐹0, has a CTI, then we have discovered
a sequence of transitions that (1) begins in 𝐼 and (2) takes 𝑘 steps until in reaches 𝑠.
In this way, IC3 can find a counterexample to a failing property as a sequence of CTI
checks, rather than by unrolling 𝑇 .

CTI checks are the heart of why IC3 does not unroll the transition relation. How do
we represent CTIs in EUF?

1.7. Finite Pre‑images in Infinite Spaces

EUF abstraction has a pre‑image problem: there are infinitely many descriptions of
them. Consider the following program. The program is given on the left and its
description in logic and EUF are given on the right. Assume that the variables 𝑡 and
𝑖 are word‑sized unsigned integers; for example, 32‑bit integers.

Program:

while true
𝑡 ← 𝑖
𝑖 ← 𝑖 + 1
assert 𝑖 > 𝑡

Logic:

𝑡′ = 𝑖
𝑖′ = 𝑖 + 1
𝑃 ′ = (𝑖′ > 𝑡′)

EUF:

t′ = i

i′ = succ(i)
P′ = GT(i′, t′)

CTI states are pre‑images and IC3 may need to explore every CTI state to prove the
property. Since 𝑡 and 𝑖 are word sized integers, the state space is finite. States in this
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program are represented by a pair (𝑡, 𝑖) whose elements represent the assignment to
the program variables 𝑡 and 𝑖, respectively. Working one step back, the pre‑image
(𝑡(1), 𝑖(1)) for a state (𝑡, 𝑖) is described by 𝑖(1) = 𝑖+ 1, 𝑡(1) = 𝑖. Working two steps back,
the second pre‑image is 𝑖(2) = 𝑖 + 1 + 1, 𝑡(2) = 𝑖 + 1. Working backward 𝑛 states, we
can see that if the current state is (𝑡(𝑛), 𝑖(𝑛)) then the 𝑛th pre‑image (𝑡, 𝑖) satisfies these
equations:

𝑖(𝑛) = 1 + 1 + ⋯+ 𝑖⏟⏟⏟⏟⏟
𝑛 additions

𝑡(𝑛) = 1 +⋯+ 𝑖⏟⏟⏟⏟⏟
𝑛− 1 additions

Since unsigned addition wraps, all possible assignments to 𝑡 and 𝑖 will eventually
be enumerated, ensuring termination of the algorithm.

Instead, we want to use EUF abstraction. The 𝑛th pre‑image is analogous:

i(𝑛) = succ(succ(succ(… succ(i))))⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑛 additions

t(𝑛) = succ(succ(… succ(i)))⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑛− 1 additions

The drawback of EUF is that we can do this forever and never accomplish our original
goal, which was to prove (or disprove) the program’s assertion. For every integer 𝑛,
the state (t(𝑛), i(𝑛)) is unique, so the algorithm above risks running indefinitely.

Instead, we introduce a technique to represent pre‑images using only terms from the
EUF formula that describes the program. In our example, only one occurrence of succ is
used. This technique, introduced in Chapter 3, is called the term projection. Because
the formula is finite, there are a finite number of assignments to explore before all
pre‑images are exhausted.

This solution has introduced another problem: what if we need more than what
occurs in the formula? Answering this is the subject of the next section.

1.8. Abstraction Refinement in EUF

Refinement means changing the abstraction so that it more adequately reflects the
behavior of the concrete program. Each refinement step produces a new formula
which rules out some spurious behavior of the abstraction.

Recall the addition operation from the previous section. Below we show some pos‑
sible spurious behaviors of an EUF abstraction along with possible abstraction refine‑
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ments on the right:

Spurious Behavior Refinement
succ(𝑖) = 𝑖 succ(𝑖) ≠ 𝑖
𝑖′ = 3, 𝑖′ = succ(0) succ(succ(succ(0))) = 3
𝑖 = MAX_INT, 𝑖′ ≠ 0 succ(MAX_INT) = 0

In general, there may be many different formulas that adequately refine the EUF
abstraction. EUFORIA produces them by abstracting inconsistent concrete formulas.

1.9. Memory Manipulating Programs

Every program considered so far only uses scalar variables. But real C programs use
memory, and they use it all the time. This dissertation contributes, and I describe
in this section, a simple array abstraction using EUF that avoids large amounts of
redundant computation during model checking.

Encoding C programs with memory is a chore, as it typically requires a region‑
based pointer analysis and is very sensitive to how precise those regions are. Regions
denote non‑overlapping portions of the program’s memory. Each pointer variable is
associated with exactly one region; in this way, reads and writes to memory become
accesses into a particular region. Associated with a region are all accesses which may
overlap with other accesses to the same region.

Once segregated into regions, programs are encoded for EUFORIA by representing
pointer accesses in terms of array accesses. Arrays, first axiomatized by McCarthy
[17], represent a contiguous set of equal size memory locations. The locations store
words and are word‑addressed. Arrays support two access operations:

• select(𝐴, 𝑖) returns the value stored at array location 𝑖 in array 𝐴.

• store(𝐴, 𝑖, 𝑥) returns a fresh array in which location 𝑖 contains 𝑥 and every other
location contains whatever is stored in 𝐴.

Regions are represented by arrays; pointers are represented by indices into arrays.
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Chapter 4 contributes an EUF abstraction that naturally accommodates this array
representation. Select terms are abstracted to uninterpreted select terms, the same
way addition is abstracted. Store terms are treated similarly.

This abstraction also requires refinement. In the array theory, selecting from an
index that has been stored to retrieves the stored value; but EUF abstraction allows
select to return some other value. I contribute a refinement method that effectively
refines the array abstraction.

1.10. Functions

So far we have discussed programs with a single function (main). To support multiple
functions without modifying the checker, one must somehow get rid of functions.
There are a couple of common ways to do this:

1. By inlining. When a function call is inlined, the body of the function is copied to
the call site. The function’s local variables are renamed to avoid conflicts with
the local variables at the call site. If all call sites of the function are inlined, the
function itself can be removed from the analysis.

Inlining may lead to exponential blowup in the size of the program. Recursive
functions, moreover, can’t be inlined in general.

2. By up‑front abstraction. A function call 𝑥 = 𝑓(𝑦) can be replaced by an assign‑
ment 𝑥 = ⋆. If the function is irrelevant to the property, then the analysis will
return a correct answer. But if it is relevant, then the analysis may result in a
false positive: it may claim the program has a bug due to a value stored in 𝑥,
when in fact 𝑓(𝑥) never returns any such value.

EUFORIA addresses functions in a different way, via the program encoding. Chap‑
ter 5 contributes a function encoding that handles function call & return semantics on
a finite stack. As a result, EUFORIA can analyze programs with non‑recursive functions
without modifications, inlining, and abstraction.

15



EUF
Abstraction

Incremental
Reachability

Counterexample
Refinement

Term ProjectionNormalize
+ Constants

Safe Unsafe

C code Encoder
Bit‑Precise
Transition

System

Figure 1.1: EUFORIA architecture.

1.11. EUFORIA Architecture

EUFORIA was implemented from the ground up. At first, its design was soup to nuts.
The front‑end took a C programand at the end produced an answer: yes, the property
holds, or no, it doesn’t. Inside, it computed its own precise encoding of the program
as well as its abstraction.

The current architecture is shown in Figure 1.1; its entry point is the blue node. The
front‑end encoding is now separate from model checking. Instead of a front‑end for
C programs, EUFORIA reads an SMT‑LIB file describing the program as a transition
system directly using the first‑order theories of bit‑vectors and arrays. This disserta‑
tion discusses encoding methods that can be produce such files, but they can also be
hand‑written.

EUF Abstraction creates the initial abstraction of the transition system, which in‑
cludes normalizing mathematical operators and ensuring constants are distinct. In‑
cremental Reachability attempts to find an abstract counterexample to the property or
an inductive invariant, using term projection. If an invariant is found, the program
is Safe. Otherwise, the abstract counterexample is handed off to Counterexample
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Refinement, which either deduces that the counterexample is real — the program is
Unsafe — or that it should be used to refine the EUF abstraction.

A complete program and its SMT‑LIB encoding is shown in Figure 1.2. The pro‑
gram is defined by three Boolean formulas: :init, :trans, and :invar‑property.
These define the initial state, transition relation, and property, respectively. A tran‑
sition relation is a formula, similar to those discussed earlier in this chapter, which
relates next‑state variables 𝑖′ to current‑state variables 𝑖. In SMT‑LIB syntax, we use
a plus (+) instead of prime.

Variables are declared with declare‑fun in SMT‑LIB. The integers 𝑖 and 𝑗 are treated
as 32‑bit words, denoted by the type (_ BitVec 32). The :next annotations indicate
how logic variables define state variables. For instance, .def0 says “i is a state vari‑
able and its next state variable is i+.”

Programs steps have labels, like labels in C. The top of the while loop is labeled loop.
Initially, the program is at loop and remains there until the loop guard is not satisfied,
at which point it moves to done.

The assert is encoded as the property. The property holds if, whenever the program
is at done the asserted formula is true.

The following chapter formalizes the logical notation underlying all the math I use.
This sets the stage for presenting my contributions in subsequent chapters.
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Program:
𝑖 = 0, 𝑗 = 0

loop:
while ⋆ ∧ 𝑗 < 10

if 𝑖 < 𝑗 then
𝑖 = 𝑖 + 1

𝑗 = 𝑗 + 1
done: assert 𝑗 = 𝑖 ∨ 𝑗 = 𝑖 + 1

VMT encoding:
1 ; state variable decarations
2 (declare‑fun i () (_ BitVec 32)) (declare‑fun i+ () (_ BitVec 32))
3 (declare‑fun j () (_ BitVec 32)) (declare‑fun j+ () (_ BitVec 32))
4 (declare‑fun loop () Bool) (declare‑fun loop+ () Bool)
5 (declare‑fun done () Bool) (declare‑fun done+ () Bool)
6 ; input declarations
7 (declare‑fun star () Bool)
8 ; :next defs for state vars
9 (define‑fun .def0 () (_ BitVec 32) (! i :next i+))

10 (define‑fun .def1 () (_ BitVec 32) (! j :next j+))
11 (define‑fun .def2 () Bool (! loop :next loop+))
12 (define‑fun .def3 () Bool (! done :next done+))
13 ; initial state
14 (define‑fun .init () Bool
15 (! (and loop (not done) (= i #x00000000) (= j #x00000000))
16 :init true))
17 ; transition relation
18 (define‑fun .trans () Bool
19 (! (or
20 (and loop (and star (bvslt j (_ bv10 32)))
21 (not (bvslt i j))
22 loop+ (not done+)
23 (= i+ i) (= j+ (bvadd j (_ bv1 32))))
24 (and loop (and star (bvslt j (_ bv10 32)))
25 (bvslt i j)
26 loop+ (not done+)
27 (= i+ (bvadd i (_ bv1 32))) (= j+ (bvadd j (_ bv1 32))))
28 (and loop (not (and star (bvslt j (_ bv10 32))))
29 loop+ (not done+)
30 (= i+ i) (= j+ j))
31 (and done (or (= j i) (= j (bvadd i (_ bv1 32)))))
32 :trans true)))
33 (define‑fun .prop () Bool
34 (! (=> done (or (= j i) (= j (bvadd i (_ bv1 32)))))
35 :invar‑property 0))

Figure 1.2: Program and its concrete encoding as a VMT file. The encoding precisely cap‑
tures the semantics of each operation, including modular arithmetic. The while
loop has the label loop and the assert has the label done.
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Chapter 2.

Basic Techniques: EUF Abstraction & IC3‑style
Model Checking

This dissertation introduces a complete software model checking algorithm designed
using EUF abstraction. Its ideas are indebted to a large amount of prior work in logic‑
based software verification, algorithms, encodings, model checking, and abstraction.
This chapter covers all the necessary ground to contextualize the contributions.

Several ideas were introduced in the 1960’s which are fundamental for understand‑
ing our techniques. Verification conditions were intended to capture exactly the propo‑
sitions that hold at every program location. Floyd introduced VC generation [18]
which was further developed by Manna [19]; see Godefroid and Lahiri [5] for an
overview. Hoare introduced Hoare triples [20] as a general method for proving soft‑
ware correct by reasoning from precondition to postconditions. Applying these meth‑
ods to real programs requires a significant amount of creativity, however.

Transition systems were introduced by Keller as an abstract, conceptual model for
(parallel) programs [21]. Breaking with tradition, it did not distinguish between con‑
trol and data, which was “customary” at the time. He also defined an induction prin‑
ciple for proving invariants on transition systems.

Gradually, methods developed to automate the software checking task. Dijkstra
contributed Weakest Preconditions [22] as a way of automating some the computa‑
tion steps of a proof, specifically reasoning by giving rules to construct preconditions
for given postconditions. Abstract interpretation [23] provides a formalism for defin‑
ing and analyzing mechanical abstractions and abstraction‑based checkers. Model
checking is one of the strong developments along this line.
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Model checking, the term and technique, was introduced with an explicit‑state al‑
gorithm by Clarke and Emerson [24], [25]. Concurrently, Qeuille and Sifakis [26] in‑
troduced a similar technique for Petri nets. Both techniques checked branching time
temporal logic properties. Since then there has been significant research into methods
for checking safety properties, which simply ask: “can a program reach a given bad
state?”

The historical development of these techniques spent a significant amount of ef‑
fort characterizing the systems as well as the techniques used in those systems. This
dissertation will heavily use first‑order logic with equality as an encoding language,
including the theories of bit‑vectors and arrays (Section 2.1). We also use equality
with uninterpreted functions (EUF) as our primary abstraction (Section 2.2). The bit‑
vector and array theories can be abstracted using EUF (Section 2.3). We primarily use
transition systems as a logical description of program behavior (Section 2.4). Using
these we can formalize model checking (Section 2.5). Next we explain the IC3 algo‑
rithm, on which our contributions are based (Section 2.6). We then discuss the CEGAR
paradigm for automatically increasing the fidelity of an abstraction (Section 2.7). Fi‑
nally, we also cover a second program representation, Horn encodings (Section 2.8),
since we use them as a source language in Chapter 4.

2.1. First‑order Logic with Equality

First‑Order Logic with equality (FOL) is a language for describing logical assertions
and proofs. Our presentation is modeled after that in the Handbook of Model Check‑
ing [27] (chapter 10), a recent book detailing many model checking topics. This pre‑
sentation anticipates the discussion of interpreted theories in Satisfiability Modulo
Theories, below.

Fix a universe of sorts S and of variables X, each variable of which is associated
with a sort from S.

Definition 2.1. A signature Σ consists of three sets (Σ𝒮, Σ𝒫, Σℱ): a set of sort symbols
Σ𝒮 ⊆ 𝑆, a set of predicate symbols Σ𝒫, and a set of function symbols Σℱ; a total mapping
from Σ𝒫 to the set of strings over Σ𝒮; and a total mapping from Σℱ to the set of
non‑empty strings over Σ𝒮. Each predicate symbol 𝑝 ∈ Σ𝒫 has unique arity 𝑛 if it is
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mapped to 𝛾1𝛾2 …𝛾𝑛. Each function symbol 𝑓 ∈ Σℱ has unique arity 𝑛 if it is mapped
to 𝛾1𝛾2 …𝛾𝑛𝛾.

A signature defines a symbol universe and specifies the types of those symbols.

Definition 2.2 (First‑order Logic Syntax). Terms and formulas in first‑order logic are
constructed using the following grammar:

type production explanation
term (𝑡) ::= 𝑥 | 𝑦 | 𝑧 | ⋯ 0‑arity (constant) term

| 𝑥1 | 𝑥2 | 𝑥3 | ⋯ variable
| 𝐹(𝑡1, 𝑡2,… , 𝑡𝑛) uninterp. function (UF)
| ite(𝑓, 𝑡1, 𝑡2) if‑then‑else

atom (𝑎) ::= true | false Boolean constants
| 𝑡1 ≃ 𝑡2 equality atom
| 𝑃 (𝑡1, 𝑡2,… , 𝑡𝑛) uninterp. predicate (UP)

formula (𝑓) ::= a
| ¬𝑓 negation
| 𝑓1 ∧ 𝑓2 conjunction
| 𝑓1 ∨ 𝑓2 disjunction
| ∀𝑥𝑖. 𝑓 for all
| ∃𝑥𝑖. 𝑓 there exists

The syntax of first‑order logic is composed of two kinds of objects: terms and for‑
mulas. Terms represent things and formulas represent statements. Terms are com‑
posed of variables, Uninterpreted Function (UF) symbols, and if‑then‑else (ite). For‑
mulas are made up of equality tests between terms and Uninterpreted Predicate (UP)
symbols, combined with arbitrary Boolean operators. 𝑎 ⟹ 𝑏 is syntactic sugar for
¬𝑎 ∨ 𝑏. 𝑎 ⟺ 𝑏 is syntactic sugar for 𝑎 ⟹ 𝑏 ∧ 𝑏 ⟹ 𝑎. Formulas can be quantified
using the usual quantification operations, although unless we specify otherwise, the
use of the word “formula” implies quantifier‑free. We usually assume predicate sym‑
bols have arity at least 1 and speak of Boolean (variables) instead of 0‑arity predicates.
We also usually assume function symbols have arity at least 1 and speak of constant
symbols instead of 0‑arity functions. It is sometimes convenient, on the other hand, to
handle all function and predicate symbols uniformly; the text will make it clear when
this is the case.

Sorts restrict the way in which terms and equality atoms may be combined. Func‑
tions may only be applied to arguments of the correct sorts; similarly for predicates.

21



The following definition makes this notion precise.

Definition 2.3 (Well‑sorted). Formulas and terms that obey the following conditions
are well‑sorted.

• Every constant is well‑sorted.

• For every function symbol 𝐹 of sort 𝛾1𝛾2 …𝛾𝑛𝛾, 𝐹(𝑡1, 𝑡2,… , 𝑡𝑛) is well‑sorted iff
𝑡𝑖 is of sort 𝛾𝑖 and 𝑡𝑖 is well‑sorted (𝑖 ∈ {1,… , 𝑛}).

• For every formula 𝑓 and well‑sorted 𝑡1, 𝑡2, ite(𝑓, 𝑡1, 𝑡2) is well‑sorted iff 𝑡1 and 𝑡2
have equal sorts.

• For every well‑sorted 𝑡1, 𝑡2, 𝑡1 ≃ 𝑡2 is well‑sorted iff 𝑡1 and 𝑡2 have equal sorts.

• For every predicate symbol 𝑃 of sort 𝛾1𝛾2 …𝛾𝑛, 𝑃(𝑡1, 𝑡2,… , 𝑡𝑛) is well‑sorted iff 𝑡𝑖
is of sort 𝛾𝑖 and 𝑡𝑖 is well‑sorted (𝑖 ∈ {1,… , 𝑛}).

• If 𝑓1 and 𝑓2 are well‑sorted formulas, then the following are well‑sorted:

– ¬𝑓1
– 𝑓1 ∧ 𝑓2
– 𝑓1 ∨ 𝑓2
– ∀𝑥𝑖. 𝑓1
– ∃𝑥𝑖. 𝑓1

Definition 2.4 (Free Variables). For every formula 𝑓 , Vars(𝑓) denotes the set of vari‑
ables free in 𝑓 .

Definition 2.5 (Formula with Free Variable Annotation). A formula 𝑓 written

𝑓(𝑋1, 𝑋2,… ,𝑋𝑛)

means the free variables in 𝑓 are drawn solely from the set 𝑋1 ∪𝑋2 ∪⋯∪𝑋𝑛. Equiv‑
alently,

Vars(𝑓(𝑋1, 𝑋2,… ,𝑋𝑛)) ⊆ 𝑋1 ∪𝑋2 ∪ ⋯ ∪𝑋𝑛 .
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We frequently refer to formulas which are composed only of top‑level conjunctions
(or disjunctions) of indivisible Boolean statements. The following definitions make
this precise.

Definition 2.6. Atomic formulas or atoms are made up of Boolean identifiers, UP sym‑
bols, and equalities between terms.

Definition 2.7 (Atoms and Terms). For an arbitrary formula 𝑓 :

• Atoms(𝑓) is the set of atoms occurring in 𝑓 containing no occurrences of ite.

• Terms(𝑓) is the set of terms occurring in 𝑓 containing no occurrences of ite.

Definition 2.8. A literal is a (possibly‑negated) atom containing no occurrences of ite.

Definition 2.9. A clause is a disjunction of literals.

Definition 2.10. A cube is a conjunction of literals.

When convenient, a formula 𝑓 may be treated as a set of its top‑level conjuncts,
e.g., 𝑥 ≃ 1 ∈ 𝑓 if 𝑓 = (𝑥 > 17 ∧ 𝑥 ≃ 1). We typically use this notation for cubes, not
arbitrary formulas.

Definition 2.11 (List Notation). The notation 𝑥 denotes a possibly‑empty list:

𝑥 = (𝑥1, 𝑥2,… , 𝑥𝑘) .

The length of the list is |𝑥| = 𝑘. If 𝑓 is any function, then

𝑓(𝑥) = (𝑓(𝑥1), 𝑓(𝑥2),… , 𝑓(𝑥𝑘)) .

Definition 2.12 (Substitution). For a formula 𝑓 , let 𝑓[𝑥 ↦ 𝑦] denote 𝑓 with all occur‑
rences of 𝑥 substituted with 𝑦. Let 𝑓[𝑥 ↦ 𝑦] denote the simultaneous substitution of
𝑦𝑖 for 𝑥𝑖, 𝑖 ∈ {1,… , |𝑥|}, where |𝑥| = |𝑦|.

One has to take care when substituting into a formula that already binds the vari‑
able you’re substituting into the formula; this problem is called variable capture. One
should rename bound variables to avoid variable capture. We won’t run into this
problem because we substitute exclusively on quantifier‑free formulas.

23



Simultaneous substitution is not simply iterated single substitution. Consider the
substitution

(𝑥′ ≃ 𝑦 ∧ 𝑦′ ≃ 𝑥)[𝑦, 𝑥 ↦ 𝑥, 𝑦] .

Iterated substitution produces

((𝑥′ ≃ 𝑦 ∧ 𝑦′ ≃ 𝑥)[𝑦 ↦ 𝑥])[𝑥 ↦ 𝑦]
= (𝑥′ ≃ 𝑥 ∧ 𝑦′ ≃ 𝑥)[𝑥 ↦ 𝑦]
= (𝑥′ ≃ 𝑦 ∧ 𝑦′ ≃ 𝑦)

but simultaneous substitution produces (𝑥′ ≃ 𝑥 ∧ 𝑦′ ≃ 𝑦), exchanging 𝑥 and 𝑦.
It is useful to use functions as maps and be able to update them incrementally.

For example, the function can represent an environment mapping variables to their
current values. Environments are updated after an assignment statement.

Definition 2.13 (Function Update). Given a function 𝑚 ∶ 𝐴 → 𝐵, we define single
and parallel updates:

• 𝑚1 = 𝛿[𝑎 ↪ 𝑏] is a function for which 𝑚1(𝑎) = 𝑏 and 𝑚1(𝑥) = 𝑚(𝑥) for every
𝑥 ≠ 𝑎.

• 𝛿[𝑎 ↪ 𝑏] performs 𝑛 parallel updates where

𝑎 = (𝑎1, 𝑎2,… , 𝑎𝑛) and 𝑏 = (𝑏1, 𝑏2,… , 𝑏𝑛) .

.

We have so far discussed the syntax of FOL. We now move onto its semantics, or
meaning.

Definition 2.14 (Σ‑Interpretation). For a signature Σ and set of variables 𝑋 ⊆ X, a
Σ‑interpretation ℐ over 𝑋 maps

• every sort 𝛾 ∈ Σ𝒮 to a non‑empty set 𝐼𝛾, its domain;

• every variable 𝑥 ∈ 𝑋 of sort 𝛾 to an element 𝑥ℐ ∈ 𝐼𝛾;

• every function symbol 𝐹 ∈ Σℱ of sort 𝛾0 ⋯𝛾𝑛𝛾 to a total function 𝐹ℐ ∶ 𝐼𝛾0
×⋯×

𝐼𝛾𝑛
→ 𝐼𝛾; and
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• every predicate symbol 𝑃 ∈ Σ𝒫 of sort 𝛾1 ⋯𝛾𝑛 to a relation 𝑃ℐ ⊆ 𝐼𝛾1
×⋯× 𝐼𝛾𝑛

.

Interpretations satisfy a formula or they don’t.

Definition 2.15 (Satisfaction of an Interpretation). For every interpretation ℐ, ℐ ⊨ 𝑓
means that the interpretation ℐ satisfies ormodels the formula 𝑓 . Satisfaction is defined
inductively as follows:

⊨ true (2.1)

ℐ ⊭ false (2.2)

ℐ ⊨ 𝑡1 ≃ 𝑡2 if ℐ(𝑡1) = ℐ(𝑡2) (2.3)

ℐ ⊨ 𝑃(𝑡1, 𝑡2,… , 𝑡𝑛) if (𝑡1, 𝑡2,… , 𝑡𝑛) ∈ 𝑃 ℐ (2.4)

ℐ ⊨ ¬𝑓 if ℐ ⊭ 𝑓 (2.5)

ℐ ⊨ 𝑓1 ∧ 𝑓2 if ℐ ⊨ 𝑓1 and ℐ ⊨ 𝑓2 (2.6)

ℐ ⊨ 𝑓1 ∨ 𝑓2 if ℐ ⊨ 𝑓1 or ℐ ⊨ 𝑓2 (2.7)

ℐ ⊨ ∀𝑥𝑖. 𝑓 if for every 𝑥ℐ ∈ dom(𝑥𝑖), ℐ ⊨ 𝑓[𝑥𝑖 ↦ 𝑥ℐ] (2.8)

ℐ ⊨ ∃𝑥𝑖. 𝑓 if for some 𝑥ℐ ∈ dom(𝑥𝑖), ℐ ⊨ 𝑓[𝑥𝑖 ↦ 𝑥ℐ] (2.9)

where

ℐ(𝑥) = 𝑥ℐ (2.10)

ℐ(𝐹(𝑡1,… , 𝑡𝑛)) = 𝐹ℐ(ℐ(𝑡1),… , ℐ(𝑡𝑛)) (2.11)

ℐ(𝑖𝑡𝑒(𝑓, 𝑡1, 𝑡2)) =
⎧{
⎨{⎩

ℐ(𝑡1) if ℐ ⊨ 𝑓
ℐ(𝑡2) if ℐ ⊨ ¬𝑓

(2.12)

The algorithms in this dissertation make frequent use of satisfiability checks.

Definition 2.16 (Satisfiability Check). For every interpretation ℐ and formula 𝑓 , ℐ =
SAT(𝑓) implies ℐ ⊨ 𝑓 .

Definition 2.17 (Parameterized ModelAssertion). Let 𝑇 be a set of terms and 𝑄 a set
of atoms over some signature Σ. For every model 𝑀 ,

ModelAssertion(𝑀, 𝑇 ,𝑄)
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is a conjunction comprised of:

𝑎 if 𝑀(𝑎) = true, 𝑎 ∈ 𝑄 (2.13)

¬𝑎 if 𝑀(𝑎) = false, 𝑎 ∈ 𝑄 (2.14)

𝑡1 ≃ 𝑡2 if 𝑀(𝑡1) = 𝑀(𝑡2), 𝑡1, 𝑡2 ∈ 𝑇 (2.15)

𝑡1 ≄ 𝑡2 if 𝑀(𝑡1) ≠ 𝑀(𝑡2), 𝑡1, 𝑡2 ∈ 𝑇 (2.16)

Theorem 2.1 (ModelAssertion Satisfies Model). For all models𝑀 , terms 𝑇 , and atoms 𝑆
over signature Σ, then

𝑀 ⊨ ModelAssertion(𝑀, 𝑇 , 𝑆) .

Follows directly from the definition of the ModelAssertion.

Definition 2.18 (ModelAssertion). Let 𝐴𝑓 = Atoms(𝑓) and 𝑇𝑓 = Terms(𝑓) be the set
of atoms and terms, respectively, occurring in 𝑓 . For every model 𝑀 ⊨ 𝑓 ,

ModelAssertion(𝑀) = ModelAssertion(𝑀,𝐴𝑓 , 𝑇𝑓)

Theorem 2.2 (ModelAssertion Satisfies Formula). For all 𝑀,𝑓 s.t. 𝑀 ⊨ 𝑓 , if a model
𝑀0 ⊨ ModelAssertion(𝑀) then 𝑀0 ⊨ 𝑓 .

This theorem can be shown inductively on the structure of 𝑓 .

Interpreted Theories

In Satisfiability Modulo Theories (SMT) we often want some symbols to behave ac‑
cording to predetermined axioms. For instance, we want bit‑vector operations to be‑
have like bit‑vector operations. Following the Handbook [27] we define such theories
as classes of models with the same signature.

Definition 2.19. A Σ‑theory 𝑇 is a pair (Σ,A) where Σ is a signature and A is a class
of models.

We need to relate theories that share sorts, function, and predicate symbols. Sub‑
signatures formalize what it means for those signatures to relate in a consistent way.
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Definition 2.20. A signature Σ is a subsignature of Ω, written Σ ⊆ Ω, if Σ𝒮 ⊆ Ω𝒮,
Σ𝒫 ⊆ Ω𝒫, and Σℱ ⊆ Ωℱ; and every function or predicate symbol of Σ has the same
sort as in Ω. In this case, Ω is also a supersignature of Σ.

A reduct restricts the symbols and variables to which an interpretation applies but
does not otherwise change the interpretation mapping.

Definition 2.21 (Reduct). Let ℐ be an Ω‑interpretation over a set 𝑌 of variables. ℐΣ,𝑋

denotes the reduct ofℐ to (Σ,𝑋) if for everyΣ ⊆ Ω and𝑋 ⊆ 𝑌 , it is theΣ‑interpretation
over 𝑋 obtained by restricting ℐ to interpret only the symbols in Σ and variables in
𝑋.

A formula is satisfiable in a theory if symbols in the formula that come from that
theory are consistent with the theory’s class of models.

Definition 2.22 (Theory Satisfiability). Let 𝑇 = (Σ,A) be a Σ‑theory. A 𝑇 ‑interpre‑
tation is any Ω‑interpretation ℐ for some Ω ⊇ Σ such that ℐΣ,∅ ∈ A. A formula 𝑓 is
𝑇 ‑satisfiable or satisfiable in 𝑇 iff it is satisfied by some 𝑇 ‑interpretation ℐ. A set Φ of
Ω‑formulas 𝑇 ‑entails an Ω‑formula 𝑓 , written Φ ⊨𝑇 𝑓 , iff every 𝑇 ‑interpretation that
satisfies every formula in Φ also satisfies 𝑓 . Φ is 𝑇 ‑satisfiable iff Φ ⊭𝑇 false. 𝑓 is 𝑇 ‑valid
iff ∅ ⊨𝑇 𝑓 , usually written ⊨𝑇 𝑓 .

This dissertation relies on two theories: quantifier‑free bit‑vectors and arrays. In
SMT‑LIB, these theories are called QF_BV and QF_ABV [28]. We model program scalars
(values and variables) with bit‑vectors. We model the program stack and heap with
arrays.

Definition 2.23 (Bit‑Vector Theory). The bit‑vector signature Σ𝐵𝑉 consists of sorts BV𝑖
for each finite bit width (𝑖 ≥ 1). For each sort there is a set of constants {0, 1}𝑖 rep‑
resenting a binary number of size 𝑖. We write 𝑥[𝑛] to indicate that 𝑥 is a concrete bit
vector of bit width 𝑛.

We treat 𝑛 = 1 as Boolean and omit the superscript. We also omit the superscript
if it is unimportant or obvious from context.

The bit‑vector theory includes a wide variety of interpreted symbols:

• Arithmetic: addition (+𝑖), subtraction (−𝑖), division (signed ÷𝑖
𝑠 and unsigned

÷𝑖
𝑢), remainder, etc.
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• Logical: less‑than (<𝑖), less‑than or equal, etc., both signed and unsigned;

• Bitwise: concatenation, extraction, and, or, not, etc.

We write using the typical mathematical operators with a bit‑width superscript: for
example, 𝑥[32]+32𝑦[32] for 32‑bit addition of 𝑥 and 𝑦. This example is quite horrendous
to look at, so we can simplify this to 𝑥+32𝑦; the operator+32 requires that its arguments
each be 32‑bit bit‑vectors, so this syntax is no less precise and a bit more pleasant to
read. Usually, we write this as 𝑥 + 𝑦 when the bit‑widths of 𝑥 and 𝑦 are clear from
context.

All operators are parameterized by a bit width and it is an error to apply them to
bit‑vectors of a different width. All of the rules about which sorts may be passed to
which functions are specified in the QF_BV logic description in SMT‑LIB.

Definition 2.24 (Array Theory). The array signature ΣARR has sorts ARRAY[i↦v] for ar‑
rays whose indices are bit‑vectors of width 𝑖 and whose values are bit‑vectors of width
𝑣. It has the particular function symbols select, store, and const‑array. The theory is
defined by McCarthy’s axioms [17], extended with axioms for extensionality and con‑
stant initialization:

∀𝑎𝑖𝑗𝑒. 𝑖 ≃ 𝑗 ⟹ select(store(𝑎, 𝑖, 𝑒), 𝑗) ≃ 𝑒 (2.17)

∀𝑎𝑖𝑗𝑒. 𝑖 ≠ 𝑗 ⟹ select(store(𝑎, 𝑖, 𝑒), 𝑗) ≃ select(𝑎, 𝑗) (2.18)

∀𝑎𝑏. (∀𝑖. select(𝑎, 𝑖) ≃ select(𝑏, 𝑖)) ⟹ 𝑎 ≃ 𝑏 (2.19)

∀𝑖𝑘. select(const‑array(𝑘), 𝑖) ≃ 𝑘 (2.20)

We consider a theory of arrays with extensionality and constant‑initialized arrays.
This theory is based on the QF_ABV theory from SMT‑LIB. The first two axioms specify
array accesses. The third axiom specifies that arrays with identical elements are equal:
this feature is known as extensionality. The fourth axiom specifies that every index
of a constant‑initialized array has the initializer value. We consider this array theory
— specifically including extensionality and constant initialization — because of its
utility for software verification. Programs commonly bulk‑initialize arrays and array
equality allows encodings to be composed easily. Also, Z3, the SMT solver we use,
supports this theory.

A formula’s vocabulary is the uninterpreted symbols it uses.
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Definition 2.25 (Vocabulary). Let 𝑇 = (Σ,A) be a Σ‑theory and Σ1 the set of inter‑
preted symbols used in the theory. For every𝑇 ‑formula𝜙, the vocabulary of𝜙, denoted
𝒱(𝜙), is the subset of symbols from (Σℱ ∪ Σ𝒫) ∖ Σ1 occurring in 𝜙.

2.2. EUF

Equality with Uninterpreted Functions (EUF) is a decidable, expressive fragment of
first‑order logic without quantification. The EUF logic grammar is a restriction of the
FOL grammar in Definition 2.2: quantification is disallowed.

EUF has some advantageous properties. Fast congruence closure algorithms run
in almost linear time [29]. The algorithm is quite efficient in practice and is amenable
to efficient queries under assumptions.

EUF obeys a congruence rule which states that equal function arguments give equal
results. In other words, function symbols behave like mathematical functions.

Definition 2.26 (EUF Congruence). The congruence rule for EUF states that for all terms
𝑡1, 𝑡2,… , 𝑡𝑛 and 𝑢1, 𝑢2,… , 𝑢𝑛 (𝑛 > 0), and every model 𝑀 , the following two condi‑
tions hold:

1. For every function symbol 𝐹 of arity 𝑛, if 𝑀 ⊨ 𝑡1 ≃ 𝑢1,𝑀 ⊨ 𝑡2 ≃ 𝑢2,… ,𝑀 ⊨
𝑡𝑛 ≃ 𝑢𝑛 then 𝑀 ⊨ 𝐹(𝑡1, 𝑡2,… , 𝑡𝑛) ≃ 𝐹(𝑢1, 𝑢2,… , 𝑢𝑛).

2. For every function symbol 𝑃 of arity 𝑛, if 𝑀 ⊨ 𝑡1 ≃ 𝑢1,𝑀 ⊨ 𝑡2 ≃ 𝑢2,… ,𝑀 ⊨
𝑡𝑛 ≃ 𝑢𝑛 then 𝑀 ⊨ 𝑃(𝑡1, 𝑡2,… , 𝑡𝑛) ⟺ 𝑃(𝑢1, 𝑢2,… , 𝑢𝑛).

The congruence closure of a set of EUF equalities partitions the terms into equiva‑
lence classes. Congruence closure is the main building block for checking satisfiability
of an EUF formula.

To simplify matters, we formalize EUF satisfiability of a conjunction of literals with‑
out predicate symbols. This loses no generality, since every predicate symbol can be
replaced by equality with a new function symbol, as follows. First, introduce a fresh
sort 𝐵 and fresh constant T of sort 𝐵. Next, introduce a fresh function symbol 𝐹𝑃
of sort 𝛾1 ⋯𝛾𝑛𝐵 for each predicate symbol 𝑃 of sort 𝛾0 ⋯𝛾𝑛 and replace every occur‑
rence of 𝑃(𝑡1,… , 𝑡𝑛) with 𝐹𝑃 (𝑡1,… , 𝑡𝑛) = T and every occurrence of ¬𝑃(𝑡1,… , 𝑡𝑛)
with F𝑃 (𝑡1,… , 𝑡𝑛) ≠ T.
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Under this transformation, any set of literalsΦ can be partitioned into a set of equal‑
ities 𝐸≃ and disequalities 𝐸≄. The congruence closure 𝐸∗

≃ partitions 𝐸≃ into equiv‑
alence classes. Φ is then satisfiable exactly when no equivalent terms are disequal
according to 𝐸≄. The following definition makes this precise.

Definition 2.27 (Congruence Closure). Let Φ = 𝐸≃ ∪ 𝐸≄ be a set of literals over sig‑
nature Σ and 𝐸≃ be the set of equalities and 𝐸≄ the set of disequalities from Φ. The
congruence closure 𝐸∗

≃ of 𝐸≃ is the smallest equivalence relation over terms in Φ that
includes 𝐸≃ and satisfies congruence:

For every pair of terms 𝐹(𝑡1,… , 𝑡𝑛) and 𝐹(𝑢1,… , 𝑢𝑛), if (𝑡𝑖, 𝑢𝑖) ∈ 𝐸∗
≃ (𝑖 ∈ {1,… , 𝑛}),

then (𝐹(𝑡1,… , 𝑡𝑛), 𝐹 (𝑢1,… , 𝑢𝑛)) ∈ 𝐸∗
≃ .

Φ is satisfiable iff for every 𝑡1 ≠ 𝑡2 ∈ 𝐸≄, (𝑡1, 𝑡2) ∉ 𝐸∗.

To be explicit, we extend normal interpretations to EUF by including an explicit
partition of terms from a given formula that is consistent with its interpretation.

Definition 2.28 (EUF Model). For a signature Σ and set of variables 𝑋 ⊆ X, an EUF
Σ‑modelℳ for 𝑓 over 𝑋 is a Σ‑interpretation over 𝑋 along with a congruence closure
ℳ∗

≃ where for every term 𝑡1, 𝑡2 ∈ Terms(𝑓), 𝑡1, 𝑡2 ∈ ℳ≃ iff ℳ ⊨ 𝑡1 ≃ 𝑡2.

Because we frequently deal with models and their term congruence closures, we
develop a nicer syntax for writing them down, in terms of set partitions.

Definition 2.29 (Partition of a Set). A partition of a set 𝑆 is any set 𝑃 such that:

1. (⋃𝑈∈𝑃 𝑈) = 𝑆

2. for all 𝑈, 𝑉 ∈ 𝑃 , either 𝑈 = 𝑉 or 𝑈 ∩ 𝑉 = ∅ .

In words, a partition of 𝑆 groups all the elements of 𝑆 into non‑overlapping subsets.
For instance, {{𝑡1}, {𝑡2, 𝑡3}} is a partition of {𝑡1, 𝑡2, 𝑡3}.

A partition provides an alternative representation for an equivalence relation, such
as a congruence closure.
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Definition 2.30 (Partition of an Equivalence Relation). Let 𝑅 be an equivalence rela‑
tion on some set 𝑆. The 𝑅‑partition is the unique set

Part[𝑅] = ⋃
𝑥∈𝑆

{𝑦 | (𝑥, 𝑦) ∈ 𝑅} .

For every 𝑥 ∈ 𝑆, the equivalence set for 𝑥 is Part[𝑅](𝑥) = 𝑋, where 𝑋 ∈ Part[𝑅] is the
unique set where 𝑥 ∈ 𝑋.

The function notation allows us to go from an element to the set of all elements
equivalent to it.

An 𝑅‑partition retains all information from the equivalence relation 𝑅. 𝑅 can be
recovered from its 𝑅‑partition like so:

𝑅 = {(𝑥, 𝑦) | 𝑥 ∈ 𝑆, 𝑦 ∈ 𝑆, 𝑆 ∈ Part[𝑅]}

Written partitions can be cluttered, especially for partitions of terms from EUF mod‑
els, due to many curly braces and parentheses. We introduce a neater notation for
partitions that is just as precise.

Definition 2.31 (Partition Notation). Let {𝑆1, 𝑆2,… , 𝑆𝑛} be an arbitrary partition of
𝑆. We write this as

{𝑆∗
1 | 𝑆∗

2 | ⋯ | 𝑆∗
𝑛}

where 𝑆∗
𝑖 denotes the elements of 𝑆𝑖 written without the (implied) curly braces.

For example, {𝑥 | 𝑦, 𝑧} denotes the partition {{𝑥}, {𝑦, 𝑧}} of {𝑥, 𝑦, 𝑧}.

Example 2.1 (Possible Partitions). On three terms 𝑡1, 𝑡2, 𝑡3 there are four possible par‑
titions:

{𝑡1, 𝑡2, 𝑡3} all terms equivalent (2.21)

{𝑡1 | 𝑡2, 𝑡3} 𝑡1 ≠ 𝑡2, 𝑡1 ≠ 𝑡3, 𝑡2 = 𝑡3 (2.22)

{𝑡1, 𝑡2 | 𝑡3} 𝑡1 = 𝑡2, 𝑡1 ≠ 𝑡3, 𝑡2 ≠ 𝑡3 (2.23)

{𝑡1 | 𝑡2 | 𝑡3} no terms equivalent (2.24)

The Bell number, 𝐵𝑛 = ∑𝑛
𝑖=0 𝑆(𝑛, 𝑖), is the number of ways to partition 𝑛 objects
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into disjoint sets. The Stirling number of the second kind, 𝑆(𝑛, 𝑖), is the number of
ways to partition a set of 𝑛 objects into 𝑖 non‑empty subsets.

2.3. EUF Abstraction

EUF can be used to abstract bit‑vector and array terms. Such abstraction is described
informally in [4]. Abstract formulas over‑approximate their concrete counterparts.
Recovering the concrete formulas is easy: constant terms (which stand for concrete
constants) are mapped to their concrete countererparts; UFs and UPs are mapped to
their concrete operations by name. Abstract variables are mapped to their concrete
counterparts. Consider a concrete formula 𝜙(𝑋) and its EUF abstraction ̂𝜙(𝑋). The
relation of the concrete and abstract systems is that the concretization 𝜙 of any valid
EUF formula ̂𝜙 is valid.

Theorem 2.3 (EUF Abstraction Validity Implies Concrete Validity [4]). Let 𝜙 be a for‑
mula over the interpreted theories of bit‑vectors and arrays and let ̂𝜙 be 𝜙’s EUF abstraction.
Then:

⊨ ̂𝜙 ⟹ 𝜙 .

Although the general idea of EUF abstraction is not ours, our version is particular
to EUFORIA so we cover it in Chapter 3.

2.4. Transition Systems

Definition 2.32 (Transition System [30], [31]). A transition system 𝒯 = (𝑋, 𝑌 , 𝐼, 𝑇 ) is
a tuple consisting of a (non‑empty) set of state variables 𝑋 = {𝑥1,… , 𝑥𝑛}, a (possibly
empty) set of input variables 𝑌 = {𝑦1,… , 𝑦𝑚}, and two formulas: 𝐼 , the initial states,
and 𝑇 , the transition relation. The system’s transition relation 𝑇 (𝑋, 𝑌 ,𝑋′) is a formula
over the current‑state, next‑state, and input variables. The set of next‑state variables is
𝑋′ = {𝑥′

1, 𝑥′
2,… , 𝑥′

𝑛}.

For the remainder of this section, fix such a transition system 𝒯.
Formulas over state variables are special because we use them to denote sets of

states.
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Definition 2.33 (State Formula). A state formula 𝜎(𝑋) is a formula whose free variables
are drawn solely from the state variables of 𝒯.

For instance, a single state where 𝑥1 = 1 and 𝑥2 = 2 can be denoted by formula
𝑥1 ≃ 1 ∧ 𝑥2 ≃ 2. The formula 𝑥1 ≃ 1 ∧ 𝑥2 ≃ 𝑥1 + 1 also denotes the same state, so a
set of states doesn’t uniquely identify a formula. We frequently refer to state cubes,
which are simply state formulas that are also cubes.

Hereafter, state formulas are identified with the sets of states they denote. For ex‑
ample, the formula (𝑥1 ≃ 𝑥2) denotes all states where 𝑥1 and 𝑥2 are equal, and other
variables may have any value. We may also omit 𝑋 from 𝜎 if the transition system is
clear from context.

Definition 2.34 (Transition Formula). A transition formula 𝜏(𝑋, 𝑌 ,𝑋′) is a formula
whose free variables are drawn solely from the current‑state, next‑state, and input
variables; and which contains at least two out of three of: a current‑state, an input,
and a next‑state variable.

The latter clause of the definition ensures that state formulas aren’t a kind of tran‑
sition formula. A transition formula talks about a transition.

Definition 2.35 (Vars𝒯). For state every formula 𝜎(𝑋), Vars𝒯(𝜎(𝑋)) denotes the set
of state variables of 𝒯 free in 𝜎. Vars′𝒯(𝜎(𝑋)) denotes the set of next‑state variables
free in 𝜎.

Definition 2.36 (State Space). The state space of𝒯 is the set of all valuations to variables
in 𝑋; it is denoted by Ω(𝑋).

Priming makes it easy to talk about current‑ or next‑state variables without explic‑
itly referencing the state variable set. A formula without current‑state variables is
unchanged after priming; same for next‑state variables and unpriming.

Definition 2.37 (Priming). prime(𝜎) stands for the formula 𝜎[𝑋 ↦ 𝑋′], that is, all
state variable occurrences are replaced with primed (i.e., next‑state) state variables.
unprime(𝜎) is 𝜎[𝑋′ ↦ 𝑋].

We use transition systems to represent programs. Each “step” of the transition
system involves a single update of each state variable; on this step, input variables
are set arbitrarily.
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Definition 2.38. There is a transition from 𝜎𝑖(𝑋) to 𝜎𝑗(𝑋) under 𝑇 iff 𝜎𝑖(𝑋) ∧ 𝑇 ⊨
𝜎′
𝑗(𝑋). 𝜎𝑗(𝑋) is a successor of 𝜎𝑖(𝑋) and 𝜎𝑖(𝑋) is a predecessor of 𝜎𝑗(𝑋) under 𝑇 .

Definition 2.39 (Transition System Execution). A (possibly‑infinite) sequence of states
𝜎0(𝑋), 𝜎1(𝑋),… is an execution of𝒯 if𝜎0(𝑋) ⊨ 𝐼(𝑋) and for every pair (𝜎𝑖(𝑋), 𝜎𝑖+1(𝑋)),
there is a transition from 𝜎𝑖(𝑋) to 𝜎𝑖+1(𝑋), i.e., 𝜎𝑖(𝑋) ∧ 𝑇 ⊨ 𝜎′

𝑖+1(𝑋).

2.5. Model Checking

A model checker’s purpose in life is to check whether a property holds in a given tran‑
sition system. This dissertation only discusses safety properties, even though there
are many other classes of interesting properties. Informally, a safety property speci‑
fies that the system doesn’t do “something bad.” For instance, whether it is possible
to reach a state where 𝑥 = 0 is a safety property.

The core idea of model checking is to compute the set of reachable states and see—is
my bad state in the reachable set?

To make this idea precise we first define the set of reachable states. Let 𝒯2.5 =
(𝑋, 𝑌 , 𝐼, 𝑇 ) be an arbitrary transition system.

Definition 2.40 (Pre‑ and Post‑image States). For every set of states 𝑆 ⊆ Ω(𝑋),

pre(𝑆, 𝑇 ) = {𝑠 ∈ Ω(𝑋) | ∃𝑡 ∈ 𝑆. 𝑠 ∧ 𝑇 ⊨ 𝑡′} (2.25)

post(𝑆, 𝑇 ) = {𝑡 ∈ Ω(𝑋) | ∃𝑠 ∈ 𝑆. 𝑠 ∧ 𝑇 ⊨ 𝑡′} (2.26)

pre and post denote the set of predecessors (respectively, successors) of the states
in 𝑆. Usually, instead of sets of states, we manipulate formulas denoting them. Let’s
extend this definition to formulas.

Definition 2.41 (Pre‑ and Post‑images [32]). For an arbitrary state formula 𝑅(𝑋):

post(𝑅, 𝑇 ) = unprime(∃𝑋.𝑅 ∧ 𝑇) (2.27)

pre(𝑅, 𝑇 ) = ∃𝑋′. (prime(𝑅) ∧ 𝑇 ) (2.28)

post(𝑅, 𝑇 ) is a logical assertion that describes the set of all successor states of 𝑅.
pre(𝑅, 𝑇 ) is a logical assertion that describes the set of all predecessor states of 𝑅. We
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omit the 𝑇 argument and just write post(𝑅) if the transition relation is obvious from
context. The set of successor states is called the (post‑)image and the set of predecessor
states is called the pre‑image.

Using post we can define the set of all states reachable in 𝒯2.5.

Definition 2.42. For every transition system 𝒯, the set of all reachable states in 𝒯 is

𝑅̃(𝒯) =
∞
⋃
𝑛=0

𝑅̃𝑛 (2.29)

where 𝑅̃𝑖 is defined inductively as the set of states reachable in 𝑖 steps: 𝑅̃0 = 𝐼 and
𝑅̃𝑖 = post(𝑅̃𝑖−1) for 𝑖 > 0.

Bad states are those outside the property.

Definition 2.43 (Safety Property). A safety property is a state formula, 𝑃(𝑋).

Definition 2.44 (Model Checking Problem). Let 𝑃(𝑋) be a safety property. The model
checking problem is to determine whether any state satisfying¬𝑃(𝑋) is reachable through
some execution of 𝑇 . A model checking instance, therefore, is a tuple (𝑋, 𝑌 , 𝐼, 𝑇 , 𝑃 ) of
a transition system and property.

Definition 2.45 (Counterexample). A counterexample to a safety property 𝑃(𝑋) is a
𝑘‑step execution

𝜎0(𝑋), 𝜎1(𝑋),… , 𝜎𝑘(𝑋)

such that
𝜎𝑘(𝑋) ⊨ ¬𝑃(𝑋) .

It’s not usually feasible to calculate the set of reachable states for a reasonably sized
transition system. Often the number of states is astronomical; or those states do not
have a concise logical description, or it is difficult to discover; or the set is infinite
(though it is finite in this dissertation). Instead, we can show that ¬𝑃 is unreachable
by finding an inductive invariant.

Definition 2.46 (Inductive Invariant). An inductive invariant 𝑆 has the following prop‑

35



erties:

𝐼 ⊨ 𝑆 initiation (2.30)

post(𝑆) ⊨ 𝑆 consecution (2.31)

If 𝑆 is an inductive invariant and also 𝑆 ⊨ 𝑃 , then it is an inductive invariant for 𝑃 .

Inductive invariants are a fundamental technique used in the IC3 model checking
algorithm, on which EUFORIA is based.

2.6. IC3 Algorithm

Bradley introduced a model checking technique, Incremental Construction of Induc‑
tive Clauses for Indubitable Correctness (IC3) [16], that builds inductive invariants
incrementally, meaning that the inductive invariant is built one piece at a time until it
holds for every execution of a transition system. This dissertation explores an exten‑
sion of IC3.

The algorithm in Figure 2.1 forms the basis of the extension in this work. Our
presentation is based on a particular implementation of IC3 called Property Directed
Reachability (PDR) [33]. The algorithm is defined in terms of three main objects:

1. sets of cubes 𝐹𝑖, where each cube 𝑠(𝑋) ∈ 𝐹𝑖 represents a set of unreachable
states;

2. ℳ, a queue of proof obligations (pob) ⟨𝑀, 𝑖⟩ where 𝑀 is a cube, the level 𝑖 ∈ Int,
and the queue is ordered by lowest level pobs first; and

3. 𝐷, the current exploration depth.

IC3 is formalized as CHECK (Figure 2.1). CHECK takes a model checking instance
as input. The sequence 𝑅𝑖 represents over‑approximate reachability frontiers. 𝑅𝑖
(𝑖 ∈ {1,… ,𝐷}) is represented implicitly using the set of cubes 𝐹𝑖. 𝑅0 = 𝐼 . A cube
𝑐 ∈ 𝑅𝑖 means “the states 𝑐 are definitely unreachable after 𝑖 transitions, and we don’t
yet know whether they are unreachable after 𝑗 > 𝑖 transitions.”
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Globals:
𝐷 current depth
𝐹𝑖 set of cubes, 𝑖 ∈ {0, 1,… ,𝐷}
𝑅𝑖 ≡ ⋀𝑁+1

𝑗=𝑖 ⋀ ̂𝑐∈𝐹𝑗
¬𝑐 reachable set (over‑approximate)

1: procedure CHECK(𝐼, 𝑇 , 𝑃 )
2: INITIALIZE()
3: while true do
4: if𝑀 = SAT(𝑅𝐷 ∧ ¬𝑃) then
5: 𝑐 ← GETBADCUBE(𝑀)
6: if BACKWARDREACH(⟨𝑐,𝐷⟩) then
7: return true ▷ found counterexample
8: else
9: NEWFRAME()

10: if FORWARDPROPAGATE() then
11: return false ▷ found invariant
12: procedure INITIALIZE()
13: 𝐷 ← 0
14: push 𝐹0 ← {𝐼(𝑋)}
15: push 𝐹∞ ← ∅
16: procedure NEWFRAME()
17: push 𝐹𝐷 ← ∅
18: 𝐷 ← 𝐷+ 1
19: procedure GETBADCUBE(𝑀 )
20: return ModelAssertion(𝑀)
21: procedure ADDUNREACHABLECUBE(⟨𝑀, 𝑖⟩)
22: for 𝑗 ∈ {1,… , 𝑖} do
23: if𝑀 ⊆ 𝑐 for any 𝑐 ∈ 𝐹𝑗 then
24: 𝐹𝑗 ← 𝐹𝑗 ∖ {𝑐}
25: 𝐹𝑖 ← 𝐹𝑖 ∪ {𝑀}

Figure 2.1: Word‑level IC3.
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The SAT query on line 4 asks whether there is a state not satisfying 𝑃 in 𝑅𝐷. If
so, the state is generalized to a cube 𝑐 and is the first proof obligation for backward
reachability. Otherwise, the system is safe up to 𝐷 steps and so a new from is cre‑
ated. Next, FORWARDPROPAGATE attempts to prove that currently‑unreachable states
are still unreachable at a greater depth. In the process, the procedure may discover
an invariant.

IC3 alternates between two phases: backward reachability (Figure 2.2a) and for‑
ward propagation (Figure 2.2b).

Backward reachability (Figure 2.2a) attempts to a construct a counterexample to 𝑃
with at least 𝐷 transitions (possibly more). It manages a queue ℳ of proof obliga‑
tions that represent potential executions to ¬𝑃 . At each iteration, it chooses a pob
pair ⟨𝑀, 𝑖⟩. If the pob is at step 𝑖 = 0, then it represents an execution to ¬𝑃 . Other‑
wise, IC3 performs a counterexample‑to‑induction (CTI) query (line 9) to see if cube
𝑀 is reachable from the current (𝑖 − 1)‑step over‑approximation (lines 3–9). If so,
GENERALIZEFEASIBLE generalizes the pre‑state and adds it to the queue (lines 9–12). It
also adds the current pob to the queue so that it will be examined again, after pos‑
sibly proving other pob’s unreachable. If 𝑀 is not reachable, GENERALIZEINFEASIBLE
generalizes the unreachable cube 𝑀 to refine the reachability frontier 𝑖 and possibly
later frontiers also (lines 13–18).

Forward propagation (Figure 2.2b) pushes unreachable cubes forward, attempting
to prove states unreachable at a further depth (lines 23–27). Line 28 checks whether
two (over‑approximate) reachable sets become identical, i.e., 𝑅𝑖 = 𝑅𝑖+1 (𝑖 < 𝑁). If
so, the algorithm terminates having discovered an inductive invariant for 𝑃 .

Bradley [16] and Een et al. [33] give proofs of correctness for IC3 and PDR, respec‑
tively.

The presentation of EUFORIA in this dissertation builds on the algorithm CHECK.

2.7. Counterexample‑guided Abstraction & Refinement

CEGAR is usually referred to as a framework rather than an algorithm. It is a template
for algorithms that must be instantiated for the particular abstraction being used. This
dissertation uses transition systems over bit‑vectors and arrays as the concrete rep‑
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1: procedure BACKWARDREACH(⟨𝑀𝑖𝑛, 𝑖𝑖𝑛⟩)
2: ℳ ← ⟨𝑀𝑖𝑛, 𝑖𝑖𝑛⟩𝜖
3: whileℳ = ⟨𝑀, 𝑖⟩ℳ′ do
4: ℳ ← ℳ′

5: if 𝑖 = 0 then
6: return true
7: if ¬ SAT(𝑅𝑖 ∧𝑀) then
8: continue ▷ 𝑀 known unreachable
9: if𝑀0 = SAT(¬𝑀 ∧ 𝑅𝑖−1 ∧ 𝑇 ∧𝑀 ′) then

10: 𝑀𝑠 ← GENERALIZEFEASIBLE(𝑀0) ▷ Overridden in Chapter 3
11: ℳ ← ⟨𝑀𝑠, 𝑖 − 1⟩ℳ
12: ℳ ← ⟨𝑀, 𝑖⟩ℳ
13: else
14: ⟨𝑀𝑏, 𝑘⟩ ← GENERALIZEINFEASIBLE(⟨𝑀, 𝑖⟩)
15: ▷ Attempt to generalize more
16: while 𝑘 < 𝐷− 1 and ¬ SAT(¬𝑀𝑏 ∧ 𝑅𝑘−1 ∧ 𝑇 ∧𝑀 ′

𝑏) do
17: ⟨𝑀𝑏, 𝑘⟩ ← GENERALIZEINFEASIBLE(⟨𝑀𝑏, 𝑘⟩)
18: ADDUNREACHABLECUBE(⟨𝑀𝑏, 𝑘⟩)
19: if 𝑘 < 𝐷 then
20: ℳ ← ⟨𝑀𝑏, 𝑘 + 1⟩ℳ
21: return false

(a) Backward reachability.
22: procedure FORWARDPROPAGATE()
23: for 𝑖 ∈ {1,… ,𝐷 − 1} do
24: for 𝑠 ∈ 𝐹𝑖 do
25: if ¬ SAT(𝑅𝑖 ∧ 𝑇 ∧ 𝑠′) then
26: 𝑚 ← maximum in {𝑖 + 1,… ,𝐷 + 1} at which 𝑠 blocked
27: ADDUNREACHABLECUBE(⟨𝑠,𝑚⟩)
28: if 𝐹𝑖 is empty then
29: return true ▷ invariant found
30: return false

(b) Forward propagation.

Figure 2.2: Backward reachability and forward propagation.
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resentation and EUF abstraction. One could also use Kripke structures over concrete
formulas and predicate abstraction.

Abstraction refinement is the process of bringing the over‑approximate abstract
representation closer to the concrete one. CEGAR doesn’t dictate the refinement mech‑
anism; it specifices the trigger, which is the counterexample.

CEGAR is a three‑step process. Let𝒫 be the concrete representation of the program,
such as a transition system.

1. Compute an initial abstraction 𝒫 of 𝒫. This typically involves abstracting the
property as well. This step also often involves whatever high level text of the
program is available.

2. Model check the current abstraction 𝒫 which results in either: (a) 𝒫 has a coun‑
terexample 𝐶 in 𝒫 that violates the abstract property; (b) 𝒫 satisfies the abstract
property, in which case CEGAR is done. In the former case, CEGAR examines
the concretization 𝐶 of 𝐶 to determine whether 𝒫 has that counterexample and,
if so, terminates. If there is no counterexample in 𝒫 corresponding to 𝐶, 𝐶 is
said to be spurious and CEGAR proceeds to step 3.

3. Keying off of 𝐶, refine the program abstraction and update the abstraction 𝒫.
Refinement must increase the fidelity of 𝒫 enough so that 𝐶 is no longer a coun‑
terexample in 𝒫. A subsequent model check of 𝒫 may give a different result, so
CEGAR returns to step 2.

This high‑level presentation of CEGAR is sufficient to discuss EUFORIA. See the
Handbook [27], Chapter 13, for a thorough discussion of abstraction refinement and
CEGAR.

2.8. Horn Encodings

This section gives a brief explanation of Horn encodings, a different formalism for
programs. We will discuss how programs are encoded as Horn in Chapter 4.
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Definition 2.47 (Horn Clause). A Horn clause or rule is a universally quantified for‑
mula with a body formula and a head formula

∀𝑥1,… , 𝑥𝑚.
𝑗
⋀
𝑘=1

𝑃𝑘(𝑥𝑘) ∧ 𝜙(𝑥1,… , 𝑥𝑚)
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

body

⇒ head (2.32)

where for every 𝑘, 𝑃𝑘 ∈ ℛ is an uninterpreted predicate symbol, 𝑥𝑘 ⊆ {𝑥1,… , 𝑥𝑚},
and |𝑥𝑘| = |𝑃𝑘| [34].

The constraint 𝜙 is a formula that uses no uninterpreted atoms. head must either
be an application of an uninterpreted predicate or an interpreted formula. In this
dissertation, 𝑗 = 1, which corresponds to linear Horn clauses.

2.9. Model Checking Tools

This section gives a brief description two model checkers, SPACER and IC3IA, which we
use when evaluating EUFORIA.

SPACER

SPACER [34]–[36] is a state‑of‑the‑art model checker. It is an over‑ and under‑approx‑
imation driven incremental model checker that is tightly integrated with Z3. It is ca‑
pable of inferring quantified array invariants and uses model‑based projection array
procedures to lazily instantiate property‑directed array axioms. It represents pro‑
cedure summaries as logical formulas to support checking programs with recursive
functions.

IC3IA

IC3IA [37] is an IC3‑style CEGAR model checker that implements implicit predicate ab‑
straction. IC3IA’s architecture is quite similar EUFORIA’s, more similar than SPACER’s.
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As discussed in Cimatti [37], IC3IA is superior to state‑of‑the‑art bit‑level IC3 imple‑
mentations and can support hundreds of predicates, around an order of magnitude
more than what explicit predicate abstraction tools practically support.
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Chapter 3.

EUFORIA: A Model Checker for C Programs

This chapter presents the core ideas behind EUFORIA, culminating in a checker that
works for C programs with scalar variables. In other words, all C operations and
loops are supported; arrays and procedures are not supported.

First we discuss a method for encoding C programs into a logical representation,
using LLVM as intermediate representation (Section 3.2). Next, we introduce EUFORIA,
a novel model checker built around IC3 (Section 3.3). In the process, we introduce two
of our novelties: an efficient, sound EUF abstraction for programs (Section 3.3.1) and a
fast projection procedure for generalizing pre‑images (Section 3.3.3). This procedure
makes it possible to adapt IC3 to EUF transition systems. We then discuss refinement
and give proofs of correctness and termination (Sections 3.4 and 3.5). Finally, we
present an evaluation of our checker (Section 3.6).

3.1. Introduction

The first chapter introduced the concept of control properties. A variety of impor‑
tant properties are control properties. We gave examples such as dropping elevated
privileges, locking disciplines, and typestate properties. These kinds of properties
motivate the checker presented in this chapter.

The typical approach for verifying control properties is predicate abstraction [38],
[39], which casts the state space of a program into a Boolean space defined by a set of
predicates over program variables. The primary challenge with predicate abstraction
lies in the selection of predicates. All of the necessary information about data and con‑
trol must be inferred using a finite set of predicates. Searching the predicate space has
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an exponential cost because adding a new predicate doubles the size of abstract state
space. To make matters worse, predicate abstraction does not directly abstract opera‑
tions, which can lead to time‑consuming solver queries for complex operations—even
though many complex operations are irrelevant for control properties.

Instead, we propose a more direct abstraction. Rather than projecting program state
onto an interpreted predicate space, we syntactically abstract it into a set of constraints
over the theory of equality with uninterpreted functions (EUF). This means that our
abstraction can happen at the operation level (e.g., addition, subtraction, comparison,
etc.) reducing the complexity of queries sent to the solver. Moreover, EUF reduces the
number of bits in the search space (by abstracting bit vector terms), and has efficient
implementations.

3.2. Encoding C Programs

The way one encodes programs is crucial to the scalability of a model checker, and en‑
codings are often developed alongside checking algorithms. We construct our encod‑
ing carefully to maximize the effectiveness of EUF abstraction. For instance, flipped
occurrences of commutative operations (e.g., 𝑥 + 𝑦 and 𝑦 + 𝑥 occur in the program)
are normalized to a fixed order. EUFORIA thus avoids learning some refinements about
commutativity. We want to apply EUFORIA to C programs, so this section describes an
encoding of LLVM programs into a logical representation amenable to analysis.

First we present a pared‑down LLVM‑like language, MiniLLVM, based on the Vel‑
lvm work [40], [41]. Vellvm specifies a formal semantics for LLVM programs. We
only require a small subset of the language in order to give a formal description of
our encoding. We encode programs in this language as transition systems over SMT
formulas.

Figure 3.1 shows the syntax and operational semantics of MiniLLVM. The language
has statements, local variables, global variables, the usual suspect operators, (condi‑
tional) branches, and a single @main function. Statements are grouped into labeled
blocks. If a block labeled 𝑙1 ends with a branch to a block labeled 𝑙2, we say 𝑙2 is a suc‑
cessor of 𝑙1 and 𝑙1 is a predecessor of 𝑙2. The language is in Static Single Assignment
(SSA) form, so it includes the usual phi nodes. Phi nodes support two predecessors;
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MiniLLVM syntax:

Category Meta‑variable Productions
Types typ ::= isz | void | typ∗
Constants cnst ::= isz Int | (typ∗)null
Values val ::= id | cnst
Binops bop ::= add | mul | sdiv | load | store | ⋯
Right‑hand‑sides rhs ::= val1 bop val2
Commands c ::= id ∶= rhs
Terminators tmn ::= br val 𝑙1 𝑙2 | return typ val
Phi Nodes 𝜙 ::= id = phi typ [val1, 𝑙1], [val2, 𝑙2]
Instructions insn ::= 𝜙 | c | tmn
Non‑𝜙s 𝜓 ::= c | tmn
Blocks b ::= 𝑙 𝜙 c tmn
Functions f ::= define void @main(){𝑏𝑠, b, 𝑏𝑒}
Products prod ::= id = global typ cnst | 𝑓
Module mod ::= prod

Semantic domains:

Values v ::= Int Environment 𝛿 ::= id ↦ v
Frames 𝜎 ::= (pc, 𝛿) Prog Counters pc ::= 𝑙.𝑖 | 𝑙.t

MiniLLVM operational semantics:

BINARY‑OP
𝑐 = 𝑟 ∶= val1 bop val2 ⟪val1⟫𝛿 = 𝑣1 ⟪val2⟫𝛿 = 𝑣2 eval(bop, 𝑣1, 𝑣2) = 𝑣3

𝑓 ⊢ (𝑙, (𝑐, 𝑐), tmn, 𝛿) ⟶ (𝑙, 𝑐, 𝑡𝑚𝑛, 𝛿[𝑟 ↪ 𝑣3])

BRANCH
𝑓[𝑙3] = (𝜙3 𝑐3 tmn3) ⟪val⟫𝛿 = 𝑣 𝑙3 = (𝑣 ? 𝑙1 ∶ 𝑙2) ⟪𝜙3⟫𝑙

𝛿 = 𝛿′
𝑓 ⊢ (𝑙, [],br 𝑣𝑎𝑙 𝑙1 𝑙2, 𝛿) ⟶ (𝑙3, 𝑐3, tmn3, 𝛿′)

Figure 3.1: Syntax and operational semantics of MiniLLVM.
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extending the encoding to more predecessors is straightforward. The metavariable id
ranges over MiniLLVM identifiers such as %x, %y, %tmp, and so on. The metavariable l
ranges over MiniLLVM labels. sz ranges over positive integers.

A MiniLLVM module consists of a number of global variables and a @main function.
Functions are composed of a list of blocks 𝑏𝑠, 𝑏, 𝑏𝑒 with a distinguished start block 𝑏𝑠
and exit block 𝑏𝑒. A basic block has a labeled entry point 𝑙, a list of phi nodes 𝜙, a list
of commands 𝑐, and a terminator instruction tmn. Labels are globally unique.

Commands 𝑐 include the usual set of arithmetic, relational, and bitwise operators,
in addition to memory operations load and store. The br and return commands
branch to another block in the function, or return a value from the function, respec‑
tively. In MiniLLVM, there is only one occurrence of return, in the exit block of @main,
which contains no other instructions.

The operational semantics of MiniLLVM is defined as a judgment that relates the
current frame to the next frame in function 𝑓 :

𝑓 ⊢ (pc, 𝛿) ⟶ (pc′, 𝛿′) .

A frame 𝜎 = (pc, 𝛿) specifies a control configuration of the program using the program
counter pc and a map of variables to values 𝛿. The current program counter is 𝜎.𝑝𝑐
and the current mapping is 𝜎.𝛿. In a procedure, 𝑙.𝑖 refers to the 𝑖’th instruction of
block 𝑙 and 𝑙.t to its terminator. We write 𝑓[𝑙] = 𝑏 if there is a block 𝑏 with label 𝑙 in
function 𝑓 . A frame 𝜎 can be written in an expanded form as (𝑙, 𝑐, tmn, 𝛿) where:

1. 𝑙 is the label of the block at 𝜎.pc and

2. 𝑐 and tmn are as‑yet‑unexecuted commands.

⟪val⟫𝛿 denotes the evaluation of a value to an integer, possibly by consulting the
local state 𝛿. eval computes values using concrete operations on given integers. ⟪rhs⟫𝛿
denotes evaluating the right‑hand side rhs using mapping 𝛿.

Phi nodes perform assignments dependent on predecessor blocks. Each phi node
has a two‑element list where each element is of the form [val, l] and where 𝑙 must label
a predecessor block. In MiniLLVM, phi nodes must occur at the beginning of a block
and their assignments are evaluated simultaneously, using the current values of the
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right‑hand sides. Consider the following example:

𝑙0 ∶ ⋯
𝑙1 ∶ 𝑥 = phi int [𝑦, 𝑙1], [0, 𝑙0]

𝑦 = phi int [𝑥, 𝑙1], [1, 𝑙0]
𝑧 ∶= 𝑥 = 𝑦
br 𝑧 𝑙1 𝑙2

𝑙2 ∶ ⋯

Block 𝑙1 assigns to variables 𝑥 and 𝑦. The respective values assigned to 𝑥 and 𝑦 de‑
pend on which predecessor was executed immediately before 𝑙1, either 𝑙0 or 𝑙1. The
assignments to 𝑥 and 𝑦 must be evaluated in parallel. Assume that the current state
is 𝑙1, 𝑥 = 0, and 𝑦 = 1. Evaluating the statements sequentially will produce the state
𝑥 = 1, 𝑦 = 1. Evaluating the statements in parallel will produce the state 𝑥 = 1, 𝑦 = 0.
These results flip the direction of the branch; the parallel assignment is the correct
one.

This parallel assignment is handled by ⟪𝜙3⟫𝑙
𝛿 in the BRANCH rule. ⟪𝜙3⟫𝑙

𝛿 returns a 𝛿′
in which variables from 𝛿 are updated according to the phi instructions 𝜙3 when the
predecessor executed is 𝑙. The following exhibits the general case for a block 𝑙3 when
predecessor 𝑙 was executed immediately before 𝑙3:

𝑓[𝑙3] = [ 𝜙3
𝜓 ]

where

𝜙3 =

⎧{{
⎨{{⎩

𝑣1 = phi typ1 [val1, 𝑙],…
𝑣2 = phi typ2 [val2, 𝑙],…
…
𝑣𝑘 = phi typ𝑘 [val𝑘, 𝑙],…

.

Since the predecessor location 𝑙 must occur once in each phi list, we can without loss
of generality write it as occurring first. And since the other predecessor location is by
assumption not relevant, we leave it unspecified. Then, the semantics of phi instruc‑
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tions are given as follows:

⟪𝜙3⟫𝑙
𝛿 = 𝛿[𝑣 ↪ val] where

𝑣 = (𝑣1, 𝑣2,… , 𝑣𝑘)
val = (val1, val2,… , val𝑘)

The BINARY‑OP rule evaluates a single non‑control statement. Arguments to the bi‑
nary operation are evaluated and then the result of the operation is computed. We
don’t belabor the exact semantics of each binary operation. Each operation corre‑
sponds in a relatively straightforward way to a bit‑vector operation in SMT‑LIB.

The initial frame is
(𝑙.1, 𝛿0) (3.1)

and execution begins at @main. The initial 𝛿0 is populated with symbolic pointer values
for each global variable. Although there is a store that models heap interactions, we
leave it unspecified because we describe below how to soundly remove the heap from
consideration for our encoding.

3.2.1. Encoding sans Memory

We now describe an encoding of a subset of MiniLLVM without memory operations,
global variables, and using only scalar local variables. Subsequently, in Section 3.2.2,
we describe how we translate a MiniLLVM program into one without memory oper‑
ations or globals.

We modify the exit block 𝑙𝑒 to read:

𝑙𝑒 ∶ br 1 𝑙𝑒 𝑙𝑒 .

In other words, we change the return to a branch that introduces a self‑loop. This
indicates a safe program exit.

A program’s state variables can be classified into two categories: program (local)
variables 𝑉 and location variables 𝐿. Let ℒ denote the set of all labels in the program,
including three distinguished labels, 𝑙𝑠 and 𝑙𝑒 and 𝑙err, denoting the entry point, exit
block, and error location of the program, respectively. We use a possibly‑subscripted
𝑙 to denote elements of ℒ. We define the encoder 𝜇J⋅K to map program variables,

48



operations, and locations to encoding objects. For instance, a variable 𝑥 of type i32 is
encoded as a bit‑vector 𝜇J𝑥K = 𝑥[32]. The encoder maps sorts as follows:

𝜇Ji1K = BOOL (3.2)

𝜇JiszK = BVsz (3.3)

Type i1 is treated specially: it is encoded using Boolean values and operations.
The encoder maps program objects as follows:

𝜇Jisz cnstK = cnst[sz] (3.4)

𝜇Jisz 𝑥K = 𝑥[sz] (3.5)

𝜇J𝑣1 bop 𝑣2K = 𝜇J𝑣1K 𝜇JbopK 𝜇J𝑣2K (3.6)

𝜇J𝑙K = ℓ for all 𝑙 ∈ ℒ (3.7)

Variables and constants are encoded as bit‑vectors of the appropriate type. Loca‑
tion variables are used to model labels of program statements in order to capture the
program’s control flow and can be encoded in a variety of ways (see, e.g., [42]–[44]).
We encode each block label with a single Boolean location variable that becomes true
when that block is reached. Location variables allow us to partition a program’s state
space into a set of disjoint control states. We usually just write ℓ instead of the more
verbose 𝜇J𝑙K, and may subscript it as we do for labels themselves.

Let 𝑀 be an arbitrary MiniLLVM program. The transition system encoding of 𝑀
defined as (𝑋, 𝑌 , 𝐼, 𝑇 , 𝑃 ). First, we define the state space. Let 𝑉𝜙 = {𝜇J𝑥K | 𝑓[𝑙] =
(𝑥 = phi typ [val1, 𝑙1], [val2, 𝑙2])} be the set of variables occurring on the left‑hand
sides of phi instructions. Let 𝑉𝑡 = {𝜇J𝑥K | 𝑥 ∶= rhs} be the rest of the variables. Now,
𝑉 = 𝑉𝜙 ∪ 𝑉𝑡 is the set of bit‑vector‑encoded variables that occur in 𝑀 . The set of
locations is 𝐿 = 𝐿𝜙∪𝐿𝑏, where 𝐿𝜙 = {ℓ𝑖 | 𝑓[𝑙𝑖] = (𝜙 𝜙 𝑐 tmn)} is the set of basic blocks
containing phi instructions and 𝐿𝑏 = {ℓ𝑖 | 𝑓[𝑙𝑖] = 𝑐 tmn} is the rest of the blocks. The
location variables for the start and exit blocks are ℓ𝑠 and ℓ𝑒, respectively. There is a
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designated error location, ℓerr. We can now define the state space as

𝑋 = 𝑉𝜙 ∪ 𝐿𝜙 ∪ {ℓ𝑠, ℓ𝑒, ℓerr} (3.8)

𝑌 = 𝑉𝑡 ∪ 𝐿𝑏 . (3.9)

Next we define the transition relation, 𝑇 . To define 𝑇 we need to encode basic
blocks, which are composed of phi nodes, commands, and a terminator. We discuss
each one in turn.

Phi nodes A generic maximal contiguous sequence of phi nodes, for a block labeled
𝑙, looks like this:

𝑓[𝑙] =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

𝑣1 = phi typ1 [val11, 𝑙1], [val12, 𝑙2]
𝑣2 = phi typ2 [val21, 𝑙1], [val22, 𝑙2]
…
𝑣𝑘 = phi typ𝑘 [val𝑘1, 𝑙1], [val𝑘2, 𝑙2]
…

⎤
⎥
⎥
⎥
⎥
⎥
⎦

We assume predecessors are ordered the same way in each assignment, i.e., 𝑙1 before
𝑙2.

The state update for the state variables is encoded as the conjunction of the ite‑trees
below:

𝜇J𝑣1K′ ≃ ite(ℓ′ ∧ ℓ1, 𝜇Jval11K, ite(ℓ′ ∧ ℓ2, 𝜇Jval12K, 𝜇J𝑣1K))
𝜇J𝑣2K′ ≃ ite(ℓ′ ∧ ℓ1, 𝜇Jval21K, ite(ℓ′ ∧ ℓ2, 𝜇Jval22K, 𝜇J𝑣2K))

⋯
𝜇J𝑣𝑘K′ ≃ ite(ℓ′ ∧ ℓ1, 𝜇Jval𝑘1K, ite(ℓ′ ∧ ℓ2, 𝜇Jval𝑘2K, 𝜇J𝑣𝑘K))

(3.10)

The variables are updated when control reaches 𝑙 (indicated by ℓ′) and their values
value depend on the predecessor location. Note that this encoding ensures “parallel
assignment” as required by the MiniLLVM semantics.
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Commands Non‑phi instructions are easily encoded. Let 𝑓[𝑙] = (id ∶= rhs). These
are encoded as global constraints of the form

𝜇J𝑖𝑑K ≃ 𝜇JrhsK . (3.11)

Encoding the right‑hand side consults a table mapping MiniLLVM operations into
SMT‑LIB operations in QF_BV. For instance, add is mapped to +sz where val1 and val2
have type isz.

Note that id is not encoded as a state variable in this case because it is not a phi
node assignment. Note further that this assignment does not depend on 𝑙. The reason
for this is that the program is in SSA form, so id is assigned in exactly one program
location.

Branches Let 𝑙 be the label of a basic block whose predecessor labels are 𝑙1, 𝑙2,… , 𝑙𝑛.
Also assume that 𝑙𝑖.t is either br val𝑖 𝑙 _ or br val𝑖 _ 𝑙; that is, each predecessor contains
a branch to 𝑙 using val𝑖 and the opposite side of the branch is unspecified. The transfer
of control to block 𝑙 is encoded as follows

prime(ℓ) ≃ ⋁
𝑖∈{1,…,𝑛}

ℓ𝑖 ∧ 𝛾 where 𝛾 =
⎧{
⎨{⎩

𝜇Jval𝑖K ≃ 0 if 𝑙𝑖.t is br val𝑖 _ 𝑙
𝜇Jval𝑖K ≄ 0 if 𝑙𝑖.t is br val𝑖 𝑙 _

(3.12)

This equation captures the fact that reaching ℓ happens exactly when one of the pre‑
decessor locations has been reached.

Transition relation Finally, the transition relation 𝑇 is defined as the conjunction of
constraints (3.10), (3.11), and (3.12).

Initial state Initially, the program is at the entry block and nowhere else. This con‑
dition is encoded in the initial state:

𝐼 = ℓ𝑠 ⋀
ℓ∈𝐿𝜙,ℓ≠ℓ𝑠

¬ℓ . (3.13)

This reflects the initial frame (3.1) for @main.
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1 define i32 @main() {
2 s: ; start
3 br label l
4 l: ; loop
5 %i = phi [0, s], [%incr, b]
6 %cond = icmp slt %i, 5
7 br i1 %cond, label b, label d
8 b: ; body
9 %incr = add %i, 3

10 br label l
11 d: ; done
12 %acond = icmp slt %i, 7
13 br i1 %acond, label x, label e
14 err: ; error
15 call __VERIFIER_error()
16 e: ; exit
17 ret 0
18 }

𝑖 = 0
while (𝑖 < 5) {

𝑖 = 𝑖 + 3
}
assert(𝑖 < 7)
(a) Example LLVM (top) for the pseudocode

program (below).

Transition relation 𝑇 :

𝑖′ ≃ ite(ℓ′𝑙 ∧ ℓ𝑠, 0,
ite(ℓ′𝑙 ∧ ℓ𝑏, 𝑖𝑛𝑐𝑟, 𝑖))

(3.15)

ℓ′𝑠 ≃ false (3.16)
ℓ′𝑙 ≃ ℓ𝑠 ∨ ℓ𝑏 (3.17)

ℓ′err ≃ ℓ𝑑 ∧ ¬𝑎𝑐𝑜𝑛𝑑 (3.18)
ℓ′𝑒 ≃ (ℓ𝑑 ∧ 𝑎𝑐𝑜𝑛𝑑) ∨ ℓ𝑒 (3.19)
ℓ𝑏 ≃ ℓ𝑙 ∧ 𝑐𝑜𝑛𝑑 (3.20)
ℓ𝑑 ≃ ℓ𝑙 ∧ ¬𝑐𝑜𝑛𝑑 (3.21)

𝑐𝑜𝑛𝑑 ≃ (𝑖 < 5) (3.22)
𝑖𝑛𝑐𝑟 ≃ (𝑖 + 3) (3.23)

𝑎𝑐𝑜𝑛𝑑 ≃ (𝑖 < 7) (3.24)

Initial state 𝐼 :

ℓ𝑠 ∧ ¬ℓ𝑙 ∧ ¬ℓerr ∧ ¬ℓ𝑒 (3.25)

Property 𝑃 :
¬ℓerr (3.26)

(b) Encoding of LLVM into (𝑋,𝑌 , 𝐼, 𝑇 ,𝑃).
𝑋 = {ℓ𝑠, ℓ𝑙, ℓerr, ℓ𝑒, 𝑖}.
𝑌 = {ℓ𝑏, ℓ𝑑, 𝑐𝑜𝑛𝑑, 𝑖𝑛𝑐𝑟, 𝑎𝑐𝑜𝑛𝑑}.

Figure 3.2: LLVM program and transition system encoding example.

Property The property is
𝑃 = ¬ℓerr . (3.14)

O

Figure 3.2 shows a complete example of an LLVM program and its transition system
encoding. Pseudocode for the simple program is also shown. The program has a very
simple safety property: that 𝑖 < 7 after the loop executes. The program will execute
the body of the loop twice, resulting in 𝑖 = 6; thus the property holds.
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The program is not in the MiniLLVM language. In particular, the program has a call
to __VERIFIER_error to denote the property. MiniLLVM is an idealization to explain
the encoding.

There are a couple of interesting features of this encoding. For one, the transition
system’s state variables are proportional to the number of phi statements in the pro‑
gram, not the number of SSA temporaries. For typical LLVM programs, this drastically
reduces the state space size compared to treating each temporary as a state variable.

A second feature is that blocks in the language can be translated independently of
another, simplifying the encoder implementation. For instance, in the example, con‑
straints (3.17) and (3.20) are both encoded using (3.12), but (3.20) results in a constraint
over primary inputs, since block b contains no state variables. This feature is also true
of a Single Block Encoding [45], but ours uses larger blocks which encode multiple
paths, and which may be more efficient to check in practice.

Correctness 𝐿 is a cutset of the CFG because it contains the destinations of all the
back edges discovered by a DFS and contains ℓ𝑠, ℓ𝑒, and ℓerr. Therefore, it defines a
cutset program summary as defined by Gurfinkel et al. [46].

3.2.2. Encoding Programs with Global Variables

The C programs we consider in our evaluation contain local and global variables of
integer types. Encoding global variables is conceptually no different from encod‑
ing locals. However, a problem arises after LLVM’s front‑end processes C programs
with globals: all global variables are of pointer type and are accessed through load
and store operations. Globals in LLVM “define pointer values” [47], meaning that
they cannot in general be encoded as scalar registers.2 While stack‑allocated local
variables can be promoted to scalars via the mem2reg pass, LLVM rarely promotes a
global variable to a scalar.3 A compiler that did so would be unsound in general, since
other modules could refer to the global.

2The reason globals are modeled as memory regions is ultimately that the C language allows one to
take the address of any object.

3If a global is never changed, sometimes LLVM will promote it to a scalar, but that doesn’t help our
cause.
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Since our encoding applies only to a single module and assumes that all variables
are accessed as scalars, I opted to thread the globals through the program, which allows
promoting the globals to locals. At a high level, the global variable is modeled using
pointer variables local to each procedure. Then the locals can be promoted to scalars
using mem2reg.

Not all global variables are threadable. Threadable globals:

• are pointers to bit‑vector type (e.g., i32 *);

• have local linkage;

• are used only as the memory operand for load and store operations of the exact
same type as the bit‑vector type.

Threading the global is implemented as a whole‑program LLVM pass. The Thread‑
Globals pass consists of the following steps. We detail the steps for single global
variable, 𝑔. The generalization to multiple variables is straightforward.4

1. Allocate a local variable 𝑔main inside @main and initialize in the same way that 𝑔 is
initialized (e.g., to 0). Replace every use of 𝑔 in 𝑓 with a use of 𝑔main.

2. For each function 𝑓 other than @main, add in‑parameter 𝑖𝑛𝑓 and return value 𝑜𝑢𝑡𝑓 .
The return value is added to the function signature by using a structure to store
multiple return values, if necessary. 𝑖𝑛𝑓 represents the current value of 𝑔 on
entry, 𝑜𝑢𝑡𝑓 represents the value of 𝑔 on exit, and 𝑔𝑓 stores the value of 𝑔 within
𝑓 . Initially, bind 𝑔𝑓 to 𝑖𝑛𝑓 ; on exit return 𝑜𝑢𝑡𝑓 . Finally, replace all uses of 𝑔 with
𝑔𝑓 .

3. For each call from ℎ to 𝑓 , bind 𝑔ℎ to 𝑖𝑛𝑓 before the call and bind 𝑜𝑢𝑡𝑓 into 𝑔ℎ after
the call.

Figure 3.3 shows an example program and its transformation with ThreadGlobals.
The program in Figure 3.3a has a single global variable %g and two function calls to f.

4A peek behind the curtain: when I implemented ThreadGlobals, I had already prototyped the func‑
tion encoding (Chapter 5). Ultimately, it was too much for one paper to assess EUFORIA with and
without functions, so I omitted the encoding from our paper [48]. But in this section I describe
ThreadGlobals in its general form, with functions.
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The program after the ThreadGlobals pass is shown in Figure 3.3b. Step 1 introduces
the variable %g_main (which will replace @g) and initializes it to 0 (line 3). For the func‑
tion @f, step 2 introduces variables %g_f, %in_g, and %out_g. %g_f (line 21) is initialized to
%in_g (line 22) and %out_g is set to the current value of %g_f before returning (line 26).
All references to @g are replaced with the corresponding variables just introduced.
During step 3, the caller, @main, binds the actual %in_g to the current value of %g_main
(lines 6 and 10). It also stores the return value from @f into %g_main (lines 7 and 11).

After ThreadGlobals, LLVM’s mem2reg pass promotes the introduced variables to
scalars, so they are encoded as bit‑vectors.

3.3. EUFORIA

EUFORIA builds on the model checker IC3 [16] by extending it to EUF and wrapping it
inside a CEGAR loop that refines the abstract transition system. The algorithm’s main
novelties are that it checks an entirely uninterpreted transition system, is guaranteed
to terminate, and refines spurious counterexamples automatically.

3.3.1. EUF Abstraction of Transition Systems

A key advantage of our abstraction is that it is cheap to compute. It is defined by an ab‑
straction mapping that performs a linear‑time, syntax‑directed, structure‑preserving
transformation of the concrete transition system. This section formalizes the particu‑
lars of our abstraction.

We define an EUF abstraction mapping𝒜J⋅K which returns the abstraction of a given
concrete sort or transition formula, i.e., a formula over current‑ and next‑state vari‑
ables, inputs, operations, and constants in QF_BV. The mappings below show how
sorts are handled. We write uninterpreted objects that are abstractions of concrete
objects—sorts, terms, functions, and predicates—in sans serif face, to distinguish them
from interpreted objects. For instance, the UF for addition is ADD. The translation is
defined in terms of a fresh uninterpreted sort UBV𝑛 corresponding to the interpreted
bit‑vector sort BV𝑛.

Definition 3.1 (UBV Sort). For every positive integer 𝑛,UBV𝑛 is an uninterpreted sort.
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1 @g = global i32 0, align 4
2 define i32 @main() {
3 call void f(3)
4 call void f(4)
5 %t = load @g
6 %t2 = add %t, 1
7 store @g, %t2
8 call void print(@g)
9 ret void

10 }
11 define void @f(i32 %x) {
12 %y = load @g
13 %z = add %y, %x
14 store @g, %z
15 ret void
16 }

(a) Original LLVM code using a global vari‑
able.

1 define i32 @main() {
2 %g_main = alloca i32, align 4
3 store %g_main, 0
4 ; first call to f
5 %g1 = load %g_main
6 %r1 = call i32 f(3, %g1)
7 store %g_main, %r1
8 ; start second call to f
9 %g2 = load %g_main

10 %r2 = call i32 f(4, %g2)
11 store %g_main, %r2
12 %t = load %g_main
13 %t2 = add %t, 1
14 store %g_main, %t2
15 ; start call to print
16 %g3 = load %g_main
17 call void print(%g3)
18 ret void
19 }
20 define i32 @f(i32 %x, i32 %in_g) {
21 %g_f = alloca i32, align 4
22 store %g_f, %in_g
23 %y = load %g_f
24 %z = add %y, %x
25 store %g_f, %z
26 %out_g = load %g_f
27 ret %out_g
28 }

(b) LLVM code transformed with Thread‑
Globals. The global variable g becomes
local to main and modifications to it are
threaded through each function invoca‑
tion.

Figure 3.3: ThreadGlobals example. The purpose is to remove global variables from the
program by promoting them to local allocations, enabling mem2reg to optimize
the local accesses into register operations.
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Just as bit‑vectors have a notation indicating their sort, we define a notation for
uninterpreted terms, indicating their sort.

Definition 3.2 (Sized EUF Term). For every term 𝑒 and positive integer 𝑛, we write
𝑒⟨𝑛⟩ to indicate that the abstract term 𝑒 is a term of uninterpreted sort UBV𝑛.

Definition 3.3 (EUF Abstraction Mapping).

𝒜JBOOLK = BOOL

𝒜JBV𝑛K = UBV𝑛

𝒜J𝑏K = 𝑏 for Boolean 𝑏
𝒜J𝑥[𝑛]K = x⟨𝑛⟩ for state variable 𝑥
𝒜J𝑐[𝑛]K = c⟨𝑛⟩

𝒜Jite(cond, 𝑎[𝑛], 𝑏[𝑛])K = ite(𝒜JcondK,𝒜J𝑎[𝑛]K,𝒜J𝑏[𝑛]K)
𝒜J𝑎[𝑛] ≃ 𝑏[𝑛]K = 𝒜J𝑎[𝑛]K ≃ 𝒜J𝑏[𝑛]K

𝒜J¬𝑎K = ¬𝒜J𝑎K
𝒜J𝑎 ∧ 𝑏K = 𝒜J𝑎K ∧𝒜J𝑏K

𝒜Junop 𝑎[𝑛]K = 𝒜JunopK(𝒜J𝑎[𝑛]K)
𝒜J𝑎[𝑛] bop 𝑏[𝑛]K = 𝒜JbopK(𝒜J𝑎[𝑛]K,𝒜J𝑏[𝑛]K)

Boolean constants and variables 𝑏 are mapped to themselves, since EUF logic sup‑
ports them directly. State variables 𝑥[𝑛] and bit‑vector constants 𝑐[𝑛] are translated to
uninterpreted terms of sort UBV𝑛. Equalities are mapped into abstract equalities and
Boolean structure is preserved.

The names unop and binop are metavariables ranging over arithmetic, relational,
and bitwise operations; each is mapped to an uninterpreted variant on mapped argu‑
ments. The name of the uninterpreted function or predicate is logically irrelevant in
EUF, as long as distinct operations have distinct names. We use distinct UFs for dis‑
tinct argument sorts, so we subscript our names. For example, for the signed greater‑
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than and bitwise‑or operators on 𝑛 bits:

𝒜J𝑥[𝑛] >𝑠 𝑦[𝑛]K = SGT𝑛(𝒜J𝑥[𝑛]K,𝒜J𝑦[𝑛]K)
𝒜J𝑥[𝑛] | 𝑦[𝑛]K = BOR𝑛(𝒜J𝑥[𝑛]K,𝒜J𝑦[𝑛]K)

The rest of the operators follow this pattern.
This abstraction preserves type safety. By ensuring that each concrete type is trans‑

lated into a corresponding abstract type, we guarantee that the abstract system respect
the types of the underlying values. Therefore the abstract system will never attempt
to compare a byte with a 32‑bit integer, for example.

Concretization works by performing the reverse mapping.

Definition 3.4 (EUF Concretization Mapping).

𝒟JBOOLK = BOOL

𝒟JUBV𝑛K = BV𝑛

𝒟J𝑏K = 𝑏 for Boolean 𝑏
𝒟Jx⟨𝑛⟩K = 𝑥[𝑛]

𝒟Jc⟨𝑛⟩K = 𝑐[𝑛]

𝒟Jite(cond, 𝑎⟨𝑛⟩, 𝑏⟨𝑛⟩)K = ite(𝒟JcondK,𝒟J𝑎⟨𝑛⟩K,𝒟J𝑏⟨𝑛⟩K)
𝒟J𝑥⟨𝑛⟩ ≃ 𝑦⟨𝑛⟩K = 𝒟J𝑥⟨𝑛⟩K ≃ 𝒟J𝑦⟨𝑛⟩K

𝒟J𝑥 ∧ 𝑦K = 𝒟J𝑥K ∧𝒟J𝑦K
𝒟J¬𝑥K = ¬𝒟J𝑥K

𝒟Juunop 𝑎[𝑛]K = 𝒟JuunopK(𝒜J𝑎[𝑛]K)
𝒟J𝑎[𝑛] ubop 𝑏[𝑛]K = 𝒟JubopK(𝒜J𝑎[𝑛]K,𝒜J𝑏[𝑛]K)

O

Definition 3.5 (CTS). A Concrete Transition System (CTS) is any transition system over
QF_BV or QF_ABV.
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Algorithm 1 (EUFORIA Entry Point).
1: procedure EUFORIA(𝐼, 𝑇 , 𝑃 )
2: ̂𝐼 , ̂𝑇 , ̂𝑃 ← ABSTRANS(𝐼, 𝑇 , 𝑃 ) ▷ construct abstract transition system
3: while true do
4: if CHECK( ̂𝐼 , ̂𝑇 , ̂𝑃 ) then ▷ if there is an abstract counterexample
5: if cx = BUILDCX() then
6: return cx ▷ found true counterexample
7: procedure ABSTRANS(𝐼, 𝑇 , 𝑃 )
8: ̂𝐼 , ̂𝑇 , ̂𝑃 ← 𝒜J𝐼K,𝒜J𝑇 K,𝒜J𝑃 K
9: {𝑐1, 𝑐2,… , 𝑐𝑘} ← all concrete constants in 𝐼, 𝑇 , 𝑃

10: ̂𝑇 ← ̂𝑇 ∧ distinct(c1, c2,… , c𝑘)
11: return ( ̂𝐼, ̂𝑇 , ̂𝑃 )

Figure 3.4: Entry point to EUFORIA. 𝐼 , 𝑇 , and 𝑃 define a model checking problem. CHECK
either converges or discovers an abstract counterexample, which may trigger a
refinement. BUILDCX either constructs a concrete program trace from a feasible
abstract counterexample or it refines the abstraction.

A CTS may be abstracted with 𝒜J⋅K, resulting in an abstract transition system.

Definition 3.6 (ATS). Let𝒯 = (𝑋, 𝑌 , 𝐼, 𝑇 ) be a concrete transition system. AnAbstract
Transition System (ATS) (𝑋̂, ̂𝑌 , ̂𝐼, ̂𝑇 ) consists of state variables 𝑋̂ = {x1, x2,… , x𝑛},
input variables ̂𝑌 = {y1, y2,… , y𝑚}, initial state ̂𝐼 = 𝒜J𝐼K, and transition relation ̂𝑇 :

̂𝑇 (𝑋̂, ̂𝑌 , 𝑋̂′) = 𝒜J𝑇 (𝑋, 𝑌 ,𝑋′)K (3.27)

Because EUF abstraction is sound, if the abstract system cannot reach an unsafe
state, then the concrete system will also never reach it.

3.3.2. Algorithm

EUFORIA’s entry point is given in Figure 3.4. EUFORIA first abstracts the CTS into an
ATS and then performs a CHECK to search for an inductive invariant for the EUF ATS.
The procedure ABSTRANS computes the abstraction and adds additional constraints
to force all abstract constants to be distinct from one another. We use the term

distinct(c1,… , c𝑘)
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to represent this constraint. Some SMT solvers, like Z3, support this construct na‑
tively.5 Of course, one can instead use 𝑛(𝑛 − 1) disequalities:

⋀
𝑖∈{1,…,𝑘}

⋀
𝑗∈{𝑖+1,…,𝑘}

c𝑖 ≄ c𝑗

After abstraction and checking, EUFORIA may find an abstract counterexample.

Definition 3.7 (ACX). Let 𝒯̂ = (𝑋̂, ̂𝑌 , ̂𝐼, ̂𝑇 ) be an ATS and ̂𝑃 be a safety property.
An 𝑛‑step Abstract Counterexample (ACX) is an execution ̂𝐴0, ̂𝐴1,… , ̂𝐴𝑛 in 𝒯̂ where
̂𝐴𝑛 ⊨ ¬ ̂𝑃 .

If an ACX is found, it is used to construct a Concretized Abstract Counterexam‑
ple (CACX), which, if feasible, is returned on line 6. If the CACX is spurious, then
refinement is attempted on line 5.

3.3.3. Term Projection

Most of the procedure CHECK (Figure 2.1) maps to the EUF case directly. The operation
that needs to be tweaked is GENERALIZEFEASIBLE, the pre‑image construction on line
10, Figure 2.2a.

When the Counterexample‑to‑Induction (CTI) query, line 9 of Figure 2.2a, is sat‑
isfiable, EUFORIA generalizes the single pre‑image state to a cube that includes many
states that satisfy the query. The purpose of generalization is efficiency: a bad state is
often reached by many states and it is usually more efficient to find counterexamples
if state sets contain as many states as possible. We call this process CTI expansion.

EUFORIA’s expansion procedure is given in Algorithm 2. At a high level, the expan‑
sion procedure uses the CTI model 𝑀 to compute (a) a set of atomic formulas 𝑆 and
(b) a set of terms 𝑄; then it uses 𝑆 and 𝑄 to construct a formula (implied by 𝑀 ) de‑
scribing many states that reach the target states. TermProj is a projection operator
which is the focus of this section. TermProj is a mechanism for reducing the size of
the ModelAssertion constructed on line 6.

First we’ll illustrate TermProj.

5Z3 exposes a distinct constraint to the user, but internally the constraint is lowered into disequalities.
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Algorithm 2 (CTI Expansion). Precondition: 𝑀 ⊨ ̂𝑇 ∧ ̂𝑠′.
1: procedure EXPANDPREIMAGE( ̂𝑠′,𝑀 )
2: 𝑆 ← ∅; 𝑄 ← ∅
3: 𝑆,𝑄 ← TermProj(𝑀, ̂𝑇 (𝑋̂, ̂𝑌 , 𝑋̂′) ∧ ̂𝑠(𝑋′))
4: 𝑆 ← {𝑝 ∈ 𝑆 | Vars(𝑝) ∩ ( ̂𝑌 ∪ 𝑋̂′) = ∅}
5: 𝑄 ← {𝑡 ∈ 𝑄 | Vars(𝑡) ∩ ( ̂𝑌 ∪ 𝑋̂′) = ∅}
6: ̂𝑔 ← ModelAssertion(𝑀,𝑄, 𝑆)
7: return ̂𝑔

Pre‑image generalization procedure used in EUFORIA in lieu of GENERALIZEFEASIBLE from
Figure 2.2a, line 10. 𝑀 is the model for the CTI query. ModelAssertion is defined in Fig‑
ure 2.17.

Example 3.1. Consider the following abstract transition relation ̂𝑇 on variables 𝑋̂ =
{x1, x2}:

x1′ ≃ ̂𝑓1 where ̂𝑓1 = ite(x1 ≃ x2,ADD(x1,1), SUB(x1,3)) (3.28)

x2′ ≃ ̂𝑓2 where ̂𝑓2 = x1 (3.29)

𝑀3.1 = { {x1, x2, x2′ | 1,ADD(x1,1), x1′ | 3, SUB(x1,3)}
GT𝑀3.1 = {(x1, x2), (x1′, x2′)}

Turning this model into an assertion, we get:

ModelAssertion(𝑀3.1) = GT(x1, x2) ∧ GT(x1′, x2′) ∧
x1 ≃ x2 ∧ x1 ≃ x2′ ∧ x2 ≃ x2′ ∧

(ADD(x1,1) ≃ 1) ∧ (1 ≃ x1′) ∧ (ADD(x1,1) ≃ x1′) ∧ (3 ≃ SUB(x1,3)) ∧
x1 ≄ 1 ∧ x1 ≄ 3 ∧ 1≄ 3

(3.30)

Instead, EUFORIA performs a traversal TermProj on ̂𝑓1 and ̂𝑓2 to find relevant con‑
straints, terms, and variables; in this example, it returns:

TermProj(𝑀3.1, ̂𝑇 ) = (𝑆,𝑄) where

𝑆 = {},
𝑄 = {1,ADD(x1,1), x1, x2} .

(3.31)
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Algorithm 3. 𝑀 is a model. 𝑆 and 𝑄 are sets of formulas and terms, respectively. Precon‑
dition: 𝑀 ⊨ 𝑓0.
1: procedure TermProj(𝑀 , 𝑓0)
2: 𝑆 ← ∅; 𝑄 ← ∅
3: 𝑟 ← TPRec(𝑓0)
4: return (𝑆 ∪ {Lit(𝑟)},𝑄)
5: procedure TPRec(𝑓)
6: switch 𝑓 do
7: case 𝑥 ▷ 𝑥 a 0‑arity term
8: 𝑄 ← 𝑄∪ {𝑥}
9: return 𝑥

10: case F(𝑡1, 𝑡2,… , 𝑡𝑛)
11: 𝑡 ← F(TPRec(𝑡1),TPRec(𝑡2),… ,TPRec(𝑡𝑛))
12: 𝑄 ← 𝑄∪ {𝑡}
13: return 𝑡
14: case ite(𝑐, 𝑡1, 𝑡2) ▷ only traverse satisfied branch
15: 𝑆 ← 𝑆 ∪ {Lit(TPRec(𝑐))}
16: if𝑀 ⊨ 𝑐 then
17: return TPRec(𝑡1)
18: else
19: return TPRec(𝑡2)
20: case 𝑏 ▷ 𝑏 a Boolean variable
21: return 𝑏
22: case 𝑡1 ≃ 𝑡2
23: return TPRec(𝑡1) ≃ TPRec(𝑡2)
24: case P(𝑡1, 𝑡2,… , 𝑡𝑛)
25: return P(TPRec(𝑡1),TPRec(𝑡2),… ,TPRec(𝑡𝑛))
26: case ¬𝑓1
27: return ¬TPRec(𝑓1)
28: case 𝑓1 ∧ 𝑓2
29: if𝑀 ⊨ 𝑓 then 𝑆 ← 𝑆 ∪ {Lit(TPRec(𝑓2))}; return TPRec(𝑓1)
30: else if𝑀 ⊨ ¬𝑓1 then return TPRec(𝑓1)
31: else ▷ 𝑀 ⊨ ¬𝑓2
32: return TPRec(𝑓2)
33: case 𝑓1 ∨ 𝑓2
34: if𝑀 ⊨ 𝑓1 then return TPRec(𝑓1)
35: else if𝑀 ⊨ 𝑓2 then return TPRec(𝑓2)
36: else ▷ 𝑀 ⊨ ¬𝑓
37: 𝑆 ← 𝑆 ∪ {Lit(TPRec(𝑓2))}; return TPRec (𝑓1)

Figure 3.5: Calculates a model‑based set 𝑆 of constraints and a set𝑄 of terms and variables
for a formula (or term) 𝑓 using model𝑀 . Let Lit(𝑏) = 𝑏 if𝑀 ⊨ 𝑏 and Lit(𝑏) = ¬𝑏
if𝑀 ⊨ ¬𝑏. In the body of TPRec,𝑀 refers to the model from TermProj.
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We then compute ModelAssertion(𝑀, 𝑆,𝑄)which yields our generalized pre‑image
cube, for which 𝑀 is an implicant:

(x1 ≃ x2) ∧ (ADD(x1,1) ≃ 1) ∧ (x1 ≄ 1) (3.32)

The cube does not include the term SUB(x1,3) because only the true branch of the ite
in 𝑓1 needs to be traversed. The predicate GT(x1, x2) was excluded since its assign‑
ment did not matter.

The implementation of our projection operator TermProj is given in Figure 3.5. In‑
tuitively, TermProj uses the model to prune large portions of the input formula by:
(1) only traversing the true branch of ite’s; (2) picking a single witness for false con‑
junctions and, dually, true disjunctions.

𝑀 is an implicant of the formula EXPANDPREIMAGE returns.

Theorem 3.1. For every model 𝑀 such that 𝑀 ⊨ 𝑇 ∧ 𝑠′,

𝑀 ⊨ EXPANDPREIMAGE(𝑠′,𝑀) .

Proof. See Appendix Theorem 3.1.

CTI expansion is common to many IC3‑style checkers. One option for comput‑
ing the exact pre‑image is existential elimination. Unfortunately, EUF does not ad‑
mit existential elimination. For instance, there is no equivalent 𝑥‑less formula for
∃𝑥. 𝑃 (𝑥). Instead, an attractive candidate is the weakest precondition predicate trans‑
former [22] wlp which computes pre‑images by substitution and has been used in the
context of IC3 [7], [44]. If we assume 𝑇 is defined in terms next‑state functions, i.e.,
𝑇 = (𝑥′ ≃ 𝜏(𝑋)), then wlp(𝑅, 𝑇 ) = 𝑅[𝑥 ↦ 𝜏(𝑋)]. For example:

𝑇 = [𝑥′ ≃ 𝐹(𝑥) ∧ 𝑦′ ≃ 𝐻(𝑘,𝐺(𝑦,𝑚))] (3.33)

wlp(𝑄(𝑥) ∧ 𝑃(𝑦), 𝑇 ) = [𝑄(𝐹(𝑥)) ∧ 𝑃(𝐻(𝑘,𝐺(𝑦,𝑚)))] (3.34)

Unfortunately, wlp is particularly problematic for EUF, as iterated applications of it
can cause EUF terms to grow arbitrarily large, leading to potential non‑termination
of EUF abstract reachability. CTIGAR [49] generalizes by examining the unsatisfiable
core of a query that is unsatisfiable by construction: it asks whether a state has, under
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the same inputs, some other successor than the reached one. EUFORIA can’t reliably
use this method to generalize because such a query may be satisfiable over EUF (due
to the non‑deterministic nature of UFs). PDR performs generalization using ternary
simulation at the bit level, which is not suitable for the word‑level EUF abstract tran‑
sition system. Other checkers have explored generalization methods in the context of
interpreted theories, such as for linear arithmetic [43], [50] and for polyhedra [51].

Generalizing Unsatisfiable CTI Queries If the CTI query (line 9 of Figure 9) is un‑
satisfiable, then state ̂𝑠 is unreachable in 𝑖 transitions. We want to generalize ̂𝑠 by
finding a set of states (a cube) 𝑚̂ ⊇ ̂𝑠 that is unreachable and covers more states than
̂𝑠, if possible. We use a simple greedy scheme for finding a minimal unsatisfiable set

that is given in Algorithm 4. This algorithm is not novel; we include it to flesh out
EUFORIA’s description.

Algorithm 4 (Generalizing Unsatisfiable CTI Queries).
1: procedure GENERALIZEINFEASIBLE(⟨ ̂𝑠, 𝑖⟩)
2: ̂𝑡 ← ̂𝑠
3: 𝑗 ← 𝑖
4: for each literal ̂𝑙 in ̂𝑠 do
5: 𝑚̂ ← ̂𝑡 ∖ ̂𝑙 ▷ test if 𝑚̂ unreachable if literal ̂𝑙 removed
6: if ¬ SAT(𝑚̂ ∧ 𝐼) and ¬ SAT(¬𝑚̂ ∧ 𝑅𝑗−1 ∧ ̂𝑇 ∧ 𝑚̂′) then
7: 𝑗 ← frame ≥ 𝑗 at which 𝑚̂ is still unreachable
8: ̂𝑡 ← 𝑚̂ ▷ literal ̂𝑙 was not necessary

9: return ⟨ ̂𝑡, 𝑗⟩
Generalization of definitely‑unreachable cubes. EUFORIA, like PDR, examines the unsat core
of the query on line 6 in order to implement line 7.

Algorithm 4 attempts to drop each literal, one at a time, from the input cube. If the
resulting cube does not intersect 𝐼 and is still unreachable, then it is kept for further
generalization. Line 7 implicitly examines the unsat core of the CTI check to deter‑
mine which frontiers contributed to unsatisfiability, potentially generalizing m.
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3.4. Refinement

When EUFORIA finds an ACX, it must be checked for feasibility, potentially refining
the abstract state space.

Definition 3.8 (Feasibility). An abstract formula 𝜎̂ is feasible if its concretization 𝜎 is
satisfiable over QF_BV or QF_ABV.

An abstract counterexample is feasible, therefore, if its concretization is a coun‑
terexample in the CTS. Let ̂𝐴0, ̂𝐴1,… , ̂𝐴𝑛 be an ACX in ̂𝑇 . The ACX is spurious for at
least one of the following reasons:

1. 𝐴𝑖 is infeasible for some 𝑖, i.e., there are no concrete states that correspond to the
abstract state cube ̂𝐴𝑖; or

2. 𝐴𝑖−1 ∧ 𝑇 ∧ 𝐴′
𝑖 is unsatisfiable for some 𝑖, i.e., there are no concrete transitions

that correspond to the abstract state transition; or

3. the concretized counterexample is discontinuous. This will happen if all con‑
cretized cubes and transitions are feasible but the transitions “land” on distinct
concrete states in a concretized cube. Below, the circles represent concrete cubes
and the dots represent concrete states:

1k
A - k

A 1k
A +

1k
Y -

k
Y

Discontinuous concrete counterexample

The goal of EUFORIA’s refinement procedure, BUILDCX (Figure 3.6a), is to produce
one or more abstraction refinement lemmas. The following definition reflects all the
lemmas that EUFORIA currently learns; it does not account for other possible learning
mechanisms.

Definition 3.9. An abstraction refinement lemma is an abstract formula ¬ ̂𝑓 such that
SAT( ̂𝑇 ∧ ̂𝑓) and ⊨ ¬𝑓 .

In BUILDCX, 𝑓 is an unsatisfiable subset of constraints whose abstraction is consis‑
tent with the current abstract transition relation; the lemma is formed by abstracting
𝑓 and conjoining ¬ ̂𝑓 to ̂𝑇 .
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Algorithm 5. Returns true if counterexample is feasible, false if abstraction is refined
input: counterexample ( ̂𝐴0, ̂𝐴1,… , ̂𝐴𝑛) in ̂𝑇
1: procedure BUILDCX()
2: for 𝑖 ∈ {0, 1,… , 𝑛} do ▷ check states
3: if ¬ SAT(𝐴𝑖) then
4: LEARNLEMMA(UNSATCORE())
5: return false
6: for 𝑖 ∈ {0, 1,… , 𝑛} do ▷ check transitions
7: if ¬ SAT(𝐴𝑖−1 ∧ 𝑇 ∧ 𝐴′

𝑖) then
8: LEARNLEMMA(UNSATCORE())
9: return false

10: return REFINEFORWARD()

(a) The first two stages of refinement: examining concretized states and transitions.
Algorithm 6.
1: procedure REFINEFORWARD()
2: if ¬ SAT(𝐼 ∧ 𝐴0) then ▷ check initial state
3: LEARNLEMMA(UNSATCORE())
4: return false
5: 𝑠1 ← ⟨concrete assignment for each state variable, {}⟩
6: for 𝑖 ∈ {2, 3,… , 𝑛} do
7: if𝑀 = SAT(𝑣𝑖−1 ∧ 𝑝𝑐𝑖−1 ∧ 𝑇 ∧ 𝐴′

𝑖) then
8: 𝑠𝑖 ← SIMULATE(𝑀, 𝑠𝑖−1, 𝑇 , 𝐴𝑖) ▷ 𝑀 is the model for the query
9: else

10: LEARNLEMMA(UNSATCORE())
11: return false
12: return true ▷ feasible counterexample

(b) Symbolically simulate counterexample
Algorithm 7.
1: procedure SIMULATE(𝑀, ⟨𝑣𝑖−1, 𝑝𝑐𝑖−1⟩, 𝑇 ,𝐴𝑖))
2: 𝑣𝑖 ← empty map
3: for 𝑥𝑗 ∈ 𝑋 do
4: 𝑣𝑖[𝑥𝑗] ← TPRec𝑀(𝑓𝑗[𝑋 ↦ 𝑣𝑖−1]) ▷ update entry for 𝑥𝑗 in 𝑣𝑖
5: 𝑠, _ ← TermProj(𝑀, 𝑇 )
6: 𝑝𝑐𝑖 ← 𝑝𝑐𝑖−1 ∪ {𝑙[𝑋 ↦ 𝑣𝑖−1] | 𝑙 ∈ 𝑠}
7: return ⟨𝑣𝑖[𝑌 ↦ 𝑦𝑖], 𝑝𝑐𝑖[𝑌 ↦ 𝑦𝑖]⟩

(c) Steps a symbolic state 𝑠𝑖−1 = ⟨𝑣𝑖−1, 𝑝𝑐𝑖−1⟩ forward one step by updating value map (𝑣𝑖) and
path constraint (𝑝𝑐𝑖) using 𝑇 .

Figure 3.6: EUFORIA’s refinement procedure, BUILDCX.
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Algorithm 8. Input: unsatisfiable set of constraints 𝑐.
1: procedure LEARNLEMMA(𝑐)
2: ̂𝑐 ← ABSTRACTANDNORMALIZE(𝑐) ▷ abstract and eliminate input variables
3: if 𝑐 contains no inputs then
4: if VARS(𝑐) ⊆ 𝑋 then ▷ only present‑state vars
5: Simplify and add lemma ¬ ̂𝑐(𝑋̂′)
6: if VARS(𝑐) ⊆ 𝑋′ then ▷ only next‑state vars
7: Simplify and add lemma ¬ ̂𝑐(𝑋̂)
8: Simplify and add lemma ¬ ̂𝑐

Figure 3.7: Learns a lemma by abstracting the concrete core 𝑐 and conjoining ̂𝑐 to ̂𝑇

BUILDCX has three stages. The first stage (lines 3–5) checks whether each ̂𝐴𝑖 is fea‑
sible (0 ≤ 𝑖 ≤ 𝑛). The second stage (lines 7–9) checks whether each ̂𝐴𝑖−1 ∧ ̂𝑇 ∧ ̂𝐴′

𝑖 is
feasible (0 < 𝑖 ≤ 𝑛). These stages address reasons 1 and 2.

States and transitions are prioritized over the third stage because it is advantageous
to learn constraint lemmas, since they make the abstract state space smaller. Nev‑
ertheless, EUFORIA must learn across multiple counterexample steps in general. The
third stage performs symbolic simulation on the counterexample path to address rea‑
son 3 (Figure 3.6b).

If the counterexample is spurious, one of these feasibility checks will find an unsat‑
isfiable subset of constraints. LEARNLEMMA creates a refinement lemma by abstracting
the unsatisfiable subset and asserting its negation in ̂𝑇 .

The details of symbolic simulation refinement are fiddly but the idea is simple: to
determine if the counterexample is feasible, symbolically simulate the program along
the concretized counterexample path. Beginning in the initial state, our implementa‑
tion iteratively computes the next state in a manner reminiscent of image computation
in BDD‑based symbolic model checking. Note that there is no path explosion during
this process because we only follow the path denoted by the concretized counterex‑
ample. If a contradiction is reached, then an unsatisfiable subset is found and used to
learn a lemma.

Specifically, REFINEFORWARD (Figure 3.6b) represents a symbolic state 𝑠𝑖 as a pair
⟨𝑣𝑖, 𝑝𝑐𝑖⟩ where 𝑣𝑖 represents a map of state variables to values, and 𝑝𝑐𝑖 is the path
constraint represented as a set of cubes. One transition at a time, it asks whether the
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next transition in the abstract counterexample is concretely feasible. If it is, SIMULATE
(Figure 3.6c) computes the next state symbolically, in two steps: (1) updating variable
assignments by symbolically evaluating each next‑state function in𝑇 , (2) updating the
path constraint with any new input constraints, and (3) uniquely renaming all input
variables.

As we have said, the symbolic formula created by this process represents a single
execution path through the program being analyzed, with inputs remaining sym‑
bolic. If this formula is found to be unsatisfiable, then it is desirable to find an equiv‑
alent formula without symbolic input variables. A full‑fledged quantifier elimination
procedure is computationally expensive. Instead, LEARNLEMMA (Figure 3.7) calls AB‑
STRACTANDNORMALIZE, which (1) performs some simple equality propagation (which
often will eliminate the inputs) and (2) otherwise under‑approximates by substitut‑
ing for each input variable the last concrete value that was assigned during symbolic
simulation.

EUFORIA’s refinement lemmas fall into two categories: constraint lemmas and ex‑
pansion lemmas.

Definition 3.10 (Constraint and Expansion Lemmas). Let 𝒯̂ = (𝑋̂, ̂𝑌 , ̂𝐼, ̂𝑇 ) be an ab‑
stract transition system. Two types of lemmas are learned during refinement of 𝒯̂.

1. A constraint lemma restricts the behavior of uninterpreted functions to make them
conform more closely to the behavior of their concrete counterparts, using terms
from 𝒯̂. It is an instance of the axioms for one or more bit‑vector operations.

2. An expansion lemma introduces new terms not in 𝒯̂.

Constraint lemmas only are learned during one‑step checks, lines 2–9 in Figure 3.6a.
Constraint and expansion lemmas are learned during the symbolic simulation of the
concrete counterexample, Figure 3.6b.

A key fact is that constraint lemmas reduce the size of the abstract state space. Con‑
straint lemmas constrain the behavior of uninterpreted objects to be consistent with
their concrete semantics, i.e., partially interpreting the uninterpreted operations. Ex‑
pansion lemmas, on the other hand, increase the size of the abstract state space, sim‑
ilar to predicates added during predicate abstraction refinement. As we discuss in
Section 3.5, both types of lemmas are necessary for correctness.
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There are many options for performing feasibility checks and deriving suitable re‑
finements from them if one or more of them fail (e.g., [52]–[54]). We chose this refine‑
ment procedure because our focus is on assessing the suitability of EUF abstraction
for control properties, and because it’s simple.

3.5. Termination & Correctness

First, we prove that reachability for EUF transition systems terminates. Second, we
show that EUFORIA’s refinement will increase the fidelity of the abstract system until
it represents all concrete states exactly. Since the concrete system is finite, EUFORIA
must eventually terminate. Throughout, we make the assumption that the projection
operator does not fail.

Theorem 3.2. BACKWARDREACHABILITY terminates with an answer of true or false.

Proof. See Appendix Section A.2.

Theorem 3.3. EUFORIA’s refinement procedure increases the fidelity of the ATS, up to express‑
ing all concrete QF_BV behavior.

Proof. See Appendix Section A.2.

3.6. Evaluation

EUFORIA uses LLVM 5.0.1 as front‑end for processing C programs, running various
optimizations including inlining, dead code elimination, and promoting memory to
registers. It uses Z3 4.5.0 [56] for EUF solving during backward reachability and
Boolector 2.0 [57] for QF_BV solving during refinement. EUFORIA as evaluated does not
support programs with memory allocation or recursion. EUFORIA also assumes that C
programs do not exhibit undefined behavior (signed overflow, buffer overflow, etc.),
and may give incorrect‑seeming results if the input program is ill‑defined.

We evaluated EUFORIA on 752 benchmarks containing safety property assertions
from the SV‑COMP’17 competition [58]. 516 are safe and 236 are unsafe. We ran
all the benchmarks on 2.6 GHz Intel Sandy Bridge (Xeon E5‑2670) machines with 2

69



ControlFlow ECA Loops

0

100

200

300

400
n
u

m
b

er
o
f

st
a
te

va
rs

(a) State variables

ControlFlow ECA Loops

0

2

4

6

8

10

n
u

m
b

er
o
f

U
F

s/
U

P
s

(b) Uninterpreted elements

ControlFlowECA Loops

0

2000

4000

6000

8000

10000

12000

n
u

m
b

er
o
f

d
is

ti
n

ct
ex

p
re

ss
io

n
s

(c) Benchmark size

Figure 3.8: Box plots showing quartile ranges and outliers for all benchmark. Plot (a) shows
that the ControlFlow class contains the instances with the most state variables.
The 𝑦 axis of plot (c) is the number of distinct expressions in 𝑇 , indicating that
the ECA instances can be huge. In particular, the ECA benchmarks are on aver‑
age the largest‑size benchmarks; followed by ControlFlow, followed by Loops.

sockets, 8 cores with 64GB RAM. Each benchmark was assigned to one socket during
execution and was given a one hour timeout. All the benchmarks are C programs
in the ReachSafety‑ControlFlow, ReachSafety‑Loops, and ReachSafety‑ECA sets. Al‑
though these sets contain 1,451 total benchmarks, we elided all the benchmarks that
use pointers or arrays, as well as those that took more than 30 seconds to pre‑process.6

Some static characteristics of these benchmarks are presented in Figure 3.8.
We evaluated EUFORIA against IC3ia [37], a CEGAR‑style IC3‑based checker that im‑

plements implicit predicate abstraction. It is covered in Section 2.9. We chose IC3ia
largely because it is similar to EUFORIA, with one essential difference: it uses predi‑
cate abstraction instead of EUF abstraction. In order to ensure an apples‑to‑apples
comparison, we run IC3ia on the exact same model checking problem as EUFORIA, by
dumping the model checking instance (transition system and property encoding) into
a VMT file [59] which is readable by IC3ia.7

6Note that this is pre‑processing time, which is the time to optimize and encode the instances. The
instances that take more than 30 seconds to preprocess are multi‑megabyte source files that come
from the ECA set. They are so big that they time out on both checkers, so we excluded them from
our evaluation.

7When these experiments were conducted, EUFORIA’s front‑end processed LLVM bitcode directly, in‑
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Figure 3.9: Scatter plot of runtimes broken down by benchmark set. Timeout was set to one
hour. Safe benchmarks show with green dots, unsafe with blue x’s.

Our evaluation sought answers to the following questions:

1. When EUFORIA performs relatively well, why?

2. When EUFORIA performs relatively poorly, why?

3. Does EUFORIA require more clauses than IC₃IA to accomplish verification?

4. How does convergence depth compare?

Figure 3.9 shows our overall results on all benchmarks compared with IC3ia. EU‑
FORIA and IC3ia are to a certain extent complementary in what they are able to solve
within the timeout. IC3ia uniquely solves 62 benchmarks (17 from Loops and 45 from
ECA, none from ControlFlow); all of these benchmark properties are about arith‑
metic and EUFORIA gets stuck inferring weak refinement lemmas. The properties in‑
volve things like proving sorting; complex state updates involving division, multi‑
plication, and addition; and invariants involving relationships between addition and
signed/unsigned integer comparison. These are benchmarks expected to be tough
for EUFORIA, since we have explicitly abstracted these operations in order to target
control properties. We believe this weakness can be addressed through a refinement
algorithm that infers lemmas related to arithmetic facts, such as commutativity or
monotonicity. These benchmarks help address research question 2.

stead of VMT. As a result, EUFORIA’s runtime numbers include the time it takes to encode the tran‑
sition system and property. IC3ia does not need to do this. Thus EUFORIA’s numbers are slightly
higher than they could be (up to 30 seconds).
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EUFORIA’s Uniquely Solved Benchmarks

EUFORIA uniquely solves 26 benchmarks; these cut across the benchmark sets: 9 in
Loops, 5 ControlFlow, and 12 ECA. EUFORIA is on average spending only 13 seconds
in refinement on these benchmarks, compared to 767 for IC3ia:

Refinement times on uniquely solved benchmarks

EUFORIA IC3ia (timeout)
average 12.98 766.57
median 0.11 135.95

EUFORIA (timeout) IC3ia
average 937.65 154.27
median 975.41 81.59

On the ControlFlow set (which fits our property target best), EUFORIA solves 5 unique
benchmarks and IC3ia solved no uniques. The ControlFlow benchmarks have the
most state variables, moderate UF/UP use, and are medium‑sized. Moreover, EUFORIA
requires very little refinement time, supporting our hypothesis that EUFORIA’s EUF
abstraction provides a decent means for targeting control properties.

Benchmarks Both Solved

Figure 3.10 shows that, of the 249 benchmarks for which both checkers terminated, EU‑
FORIA is able to solve the overwhelming majority faster than IC3ia. Surprisingly, nearly
200 benchmarks among these required no refinements from EUFORIA, as shown in Fig‑
ure 3.11. This result is perhaps unexpected because EUFORIA’s abstraction removes
nearly all behavior from program operators, suggesting that refinement is likely nec‑
essary. While much behavior is abstracted, equality, which is critical for verification,
is preserved and some benchmarks simply need EUF reasoning (i.e., functional con‑
sistency), as we’ll see shortly.

Discussion

It is interesting that for some relatively simple arithmetic benchmarks, IC3ia diverges
and EUFORIA converges. IC3ia begins inferring predicates like (𝑘 = 0), (𝑘 = 1), (𝑘 =
2),… as well as (1 < 𝑗), (2 < 𝑗), (3 < 𝑗),… and will continue this until exhausting all
possible values (on 32 bits). A sample program is shown below:
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Example 3.2.

𝑘 = 𝑖 = 0
while 𝑖 < 𝑛 do ▷ 𝑘 = 𝑖 is invariant

𝑖 ← 𝑖 + 1; 𝑘 ← 𝑘 + 1
𝑗 ← 𝑛 ▷ 𝑘 = 𝑗 = 𝑛
while 𝑗 > 0 do ▷ 𝑘 = 𝑗 is invariant

assert(𝑘 > 0)
𝑗 ← 𝑗 − 1; 𝑘 ← 𝑘 − 1

The second while loop’s assertion holds because of the relatively simple property
that (𝑘 = 𝑗 ∧ 𝑗 > 0) → (𝑘 > 0), which also holds in EUF. IC3ia was unable to discover
the relevant predicates, underscoring that choice of predicates is crucial for predicate
abstraction. Several other benchmarks follow a similar pattern.

We hypothesize that EUFORIA can take advantage of certain structure from the Con‑
trolFlow benchmarks. For example, many of the benchmarks implement a state ma‑
chine that records its state in an integer state variable. Our abstraction will keep state
machine states distinct, since equality is interpreted and integer terms are kept dis‑
tinct. IC3ia on the other hand must learn predicates such as (𝑠 = 4), (𝑠 = 5), in order
to reason about which state the state machine is in. Indeed, all predicates that IC3ia
learns on this benchmark set are of the form (𝑥 = 𝑦) where 𝑥 is a state variable and
𝑦 is a constant or a variable; in other words, it learns no predicates besides simple
equalities that EUFORIA preserves intrinsically.

There are several other factors contributing to EUFORIA’s relatively low runtime on
these benchmarks. EUFORIA’s SMT queries are roughly an order of magnitude faster
than IC3ia’s, due to the fact that it is reasoning using EUF and not bit vectors. EUFORIA’s
effort spent per lemma is consistently lower than IC3ia’s effort spent per predicate: the
time spent generating each new lemma is up to 10x faster than IC3ia. IC3ia performs
bounded model checking on the concrete system to extract an interpolant to generate
new predicates, which is more expensive than our approach of examining a single
error path and finding an unsatisfiable constraint. For larger transition relations, the
difference between query times increases steadily, and the performance advantage of
EUFORIA’s EUF reasoning becomes more evident. This difference comes out in driver
benchmarks which implement several state machines at once. EUFORIA solves these
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benchmarks one or two orders of magnitude faster than IC3ia and finds smaller invari‑
ants. Both checkers refine similarly (i.e., number of refinement lemmas/predicates in‑
troduced is comparable) but EUFORIA exploits that information much more effectively,
as evidenced by IC3ia requiring roughly an order of magnitude more blocking cubes
than EUFORIA.

An interesting outcome of these experiments is that the vast majority of EUFORIA’s
refinement lemmas are one‑step lemmas that merely constrain the behavior of the
UFs and UPs in the abstract transition system. In contrast, every new predicate that
is introduced by IC3ia doubles the size of the state space (i.e., it goes from size 2𝑛 to
2𝑛+1 when increasing the number of predicates from 𝑛 to 𝑛 + 1).

Figure 3.12 shows the number of cubes blocked (i.e., clauses added) during solving.
Generally, EUFORIA is able to complete with fewer blocked cubes than IC3ia, address‑
ing research question 3.

We hypothesized that EUFORIA, due to its abstraction, may require fewer frames to
converge than IC3ia; this is why we asked research question 4. Figure 3.13 shows the
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termination depths of EUFORIA and IC3ia. Generally, the termination depths of both
checkers are comparable.

Overall, EUFORIA performs well on benchmarks testing control properties. In aggre‑
gate, EUFORIA solved 275 out of 752 and timed out on 477. IC3ia solved 311 and timed
out on 441.

3.7. Related Work

Abstraction in general has been employed extensively to address verification com‑
plexity [15], [60]–[62]. Counterexample‑Guided Abstraction Refinement (CEGAR)
was introduced by Kurshan [63] and refined and generalized by Clarke et al. [15],
[64] [65].

3.7.1. EUF Abstraction

The first application of EUF to verification was for equivalence checking pipelined
microprocessors [2], [66], [67]. EUF is a major technique for software equivalence
checking [68]–[71], compiler translation validation [3], [72], and global value num‑
bering [73]. Recently, EUF programs as such have been investigated for decidability
[74]. As a modeling tool, uninterpreted functions are often used in place of operations
that are costly to reason about, like nonlinear functions [75], or where no automated
reasoning is available (e.g., [76], [77]).

Applications such as these prompted an avalanche of research integrating EUF into
reasoning tools. EUF plays an important role in solvers such as CLU [78], UCLID
[79], and Simplify [80] (see [4] for an extensive bibliography). EUF provides a “base
theory” for arrays [81] because it provides a natural over‑approximation for array
theory terms. EUF is also used as a “layered theory” for bit‑vectors [82] for the same
reason. Gulwani et al. investigate generic EUF support for abstract interpreters [83],
[84].

Reveal [6] applied EUF to abstracting wide datapaths with uninterpreted functions.
It also included a CEGAR flow for analyzing counterexamples and refining the ab‑
straction, but it was limited to sequential circuit descriptions. Averroes [7] is the pro‑
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cedure that inspired EUFORIA. Building on Reveal, Averroes performs an IC3/PDR style
check on an uninterpreted transition system. EUFORIA is a software model checker
while Averroes is a hardware model checker. As a hardware model checker, Averroes
is tightly integrated with its hardware‑based frontend. EUFORIA supports a flexible
input format independent of the source program. As we’ll see in Chapter 4, EUFORIA
supports array reasoning. Moreover, EUFORIA’s abstract IC3‑based search is guaran‑
teed to terminate.

3.7.2. Predicate Abstraction

Predicate abstraction (PA) is the dominant technique in control property verification
(see the Handbook, Chapter 15 for a detailed introduction [85]). Predicate abstraction
allows abstracting a program with respect to a set of predicates. Given a set of pred‑
icates 𝑝1,… , 𝑝𝑛, PA projects the program into a state space over valuations of these
predicates. This technique was originally applied to abstract state graphs using the
PVS theorem prover [38].

PA is arguably the most widespread type of automatic abstraction and has been ap‑
plied to virtually every program analysis task. Well‑known projects include SLAM
[61], [86], BLAST [87], and IC3IA [37]. SLAM’s approach is to abstract the program into
a program on Boolean variables alone [88], which preserves control and abstracts data
with respect to a set of predicates. SLAM checks properties like, “this program only
locks unlocked locks, and unlocks locked locks.” SLAM checks its Boolean program
with pushdown techniques using binary decision diagrams (BDDs) [89], supports
procedure summaries [90], and refines using a CEGAR scheme [91]. BLAST intro‑
duces lazy abstraction: it uses interpolants to discover relevant predicates locally and
these predicates are only kept track of in the parts of the abstract state space where
spurious counterexamples occurred. SLAM requires an exponential number of calls
to the theorem prover in the worst case (or an approximation to the abstraction [92]).
IMPACT implicitly computes the predicate abstraction, to avoid this cost [93]. YASM
[94] extends predicate abstraction to liveness properties. UFO [95] combines predi‑
cate abstraction’s over‑approximations (e.g., SLAM) with interpolation‑driven under‑
approximation (e.g., IMPACT) in a single framework.

EUF abstraction is nearly “free” in that it does not require any calls to a theorem
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prover (cf. [13], a syntactic abstraction in which a theorem prover is called numerous
times). Moreover, our approach directly abstracts operations as well as predicates, in
order to more effectively target control properties. One can look at our term projec‑
tion as a form of predicate abstraction over EUF formulas, in which the universe of
predicates is implicitly explored.

3.7.3. IC3 Extensions

Applications and extensions of the IC3 algorithm abound. To adapt IC3 to SMT‑based
model checking, two issues must be resolved: how to generalize SAT to SMT and how
to represent the program counter.

Hoder and Bjørner [50] and Cimatti and Griggio [43] present the first SMT‑based
software model checkers built in IC3 style. Both generalize IC3 to the theory of linear
rational arithmetic. Komuravelli et al. generalizes IC3 to linear integer arithmetic [36]
and to arrays [34]. Bjørner and Gurfinkel [96] integrate polyhedral abstract interpre‑
tation with IC3 to compute safe convex polyhedral invariants. Karbyshev et al. gener‑
alize IC3 for inferring the presence or absence of quantified universal invariants [97].

Hoder et al. [50] generalize IC3 to apply to Horn‑based pushdown analysis; their
algorithm, GPDR, is capable of verifying programs with recursive functions. Software
Proof‑based Abstraction with CounterExample‑based Refinement [35] — SPACER —
connects CEGAR with proof‑based abstraction. SPACER is like a chain dance between
a bounded (under‑approximate) safety check and an unbounded (over‑approximate)
inductivity check. Subsequently, RecMC (implemented in SPACER) over‑ and under‑
approximates procedure summaries in co‑operation with the previous scheme. SPA‑
CER abstracts programs by dropping elements of the transition relation; it’s a kind
of generic abstraction support, but expressing EUF abstraction under such a model
would require a significant amount of extra constraints (to encode functional consis‑
tency). EUFORIA is more vanilla: it adapts IC3 to the EUF theory in an efficient way,
and does nothing in particular for recursive functions.

IC3 has been adapted to use predicate abstraction, with a couple of different re‑
finement schemes. CTIGAR’s [49] refinement is triggered by individual queries dur‑
ing backward reachability. IC3IA’s [37] refinement is triggered whenever an abstract
counterexample is found and uses interpolation to derive new predicates. Our work
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abstracts using EUF, which is a different mechanism from each of these, and is bit‑
precise in its concrete representation.

SMT‑based model checkers handle the program counter either symbolically or ex‑
plicitly. Explicit handling can use an abstract reachability tree, similar to lazy abstrac‑
tion [43]. Alternatively, Lange et al. adapt IC3 to control flow automata [44] by asso‑
ciating with each program location its own copy of IC3’s over‑approximate frames.
Welp and Kuehlmann use IC3 to refine loop invariants [98] as well as a hybrid ap‑
proach of cooperating IC3 solvers that are each responsible for disjoint parts of the
program to verify [51]. In contrast, our work only uses a symbolic representation for
the program counter, only one copy of IC3’s frames, and applies to entire programs.

3.7.4. Term Projection and Interpolation

Craig interpolation is frequently used in model checkers (BLAST [87], IMPACT [93],
Whale [99], SPACER [35], etc.) for computing sets of states. These states are used for
computing proofs of safety (among other things). (See the Handbook, Chapter 14
[100] for an overview of interpolation and model checking.) Term projection is, at
first blush, another way to solve the same problem.

Definition 3.11 (Interpolant). Given an inconsistent formula 𝐴∧𝐵, an interpolant is a
formula 𝐼 such that:

1. 𝐼 uses the common vocabulary of 𝐴 and 𝐵 (i.e., 𝒱(𝐼) ⊆ (𝒱(𝐴) ∩ 𝒱(𝐵)), and

2. 𝐴 ⟹ 𝐼 and 𝐼 ⟹ ¬𝐵.

Example scenario: let𝐴 = 𝑠0∧𝑇 and𝐵 = 𝑠′1. 𝐴 represents a transition from states 𝑠0
and 𝐵 represents a set of next states. Assume that 𝐴∧𝐵 is inconsistent, indicating the
transition is infeasible. The common vocabulary of𝐴 and𝐵 is the next‑state variables.
Thus, an interpolant for 𝐴 and 𝐵 represents a state formula. The predicates used in
this formula can be used to refine a predicate abstraction.

Interpolants are computed for inconsistent formulas. Pre‑image generalization, on
the other hand, begins with a consistent formula and attempts to generalize it. Inter‑
polation doesn’t directly apply, therefore, to the problem of generalizing pre‑images.
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Nevertheless, interpolation can be used as an alternative to term projection in the
following way ([49] is closely related). When the CTI query 𝑅𝑖−1 ∧ 𝑇 ∧ 𝑡′ (line 9
of Figure 2.2a) is satisfiable, there is a state 𝑠 in 𝑅𝑖−1. The following query may be
unsatisfiable:

𝑠 ∧ 𝑇 ∧ ¬𝑡′ (3.35)

If it is, compute an interpolant 𝐼 for 𝐴 = 𝑠 and 𝐵 = (𝑇 ∧ ¬𝑡′). By the properties of
interpolation, 𝐼 ’s vocabulary makes it a state formula, 𝐴 ⟹ 𝐼 , and

𝐼 ⟹ ¬(𝑇 ∧ ¬𝑡′)
= 𝐼 ⟹ ¬𝑇 ∨ 𝑡′ .

Therefore, 𝐼 ∧ 𝑇 ⟹ 𝑡′ — that is, every state in 𝐼 reaches 𝑡′ in one transition. 𝐼 is
a generalized pre‑image. Over EUF transition systems, the query (3.35) may be SAT
(due to the non‑deterministic nature of UFs), so this method may not be reliable.

3.7.5. Control Properties

Wolper provides a precise characterization of what he terms data‑independent pro‑
grams [11]. These reactive programs consume and produce data from a set 𝐷; the
programs may make decisions based on the data, but they do not modify it. Put an‑
other way, the only operation you can perform on data is equality testing [13]. Such
programs are data‑independent if they do not change their behavior under transfor‑
mations of the input values, except for the corresponding output values. The central
result is that proofs of properties over infinite domains 𝐷 be reduced to proofs of
properties over finite domains. Namjoshi et al. define a predicate abstraction that
is precise over such programs [13]. Lazić and Nowak give a semantic characteriza‑
tion of data‑independence [12] which Benalycherif et al. extend to hardware property
verification [101].

Our techniques generalize beyond data‑independent programs. The programs we
check may liberally depend on data inputs when the property does not. Our cheap
abstraction allows us to ignore such dependencies.

Typestate properties [14] are a broad subset of control properties, though EUFORIA
is not limited to checking typestate properties. A typestate property is expressed as a
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finite‑state automaton which encodes legal state changes that the program may make.
Typestate is frequently used to encode API protocols, which are usage rules for APIs
[102].
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Chapter 4.

EUFORIA with Arrays

This chapter extends the EUFORIA algorithm to support reasoning about programs
with memory. Encoding real programs that use arbitrary pointer manipulations is
complicated. Instead of implementing our own front‑end, we translated SEAHORN’s
Horn‑encoded output into transition systems (Section 4.2). We introduce a simple
abstraction for arrays (Section 4.3). As a result, the core model checking algorithm
doesn’t change. The main changes are introduced during refinement. We introduce a
method for abstraction refinement (Section 4.4) that significantly improves the scala‑
bility of EUFORIA, compared to the refinement from the previous chapter (Section 3.4).
We prove that EUFORIA still terminates (Section 4.5). We experimentally evaluate EU‑
FORIA and find that it solves more than 100 more SV‑COMP benchmarks than SPACER,
a leading model checker (Section 4.6). We conclude with related work (Section 4.7).

4.1. Introduction

Arrays and array‑like structures are pervasively used for software development. From
C/C++ arrays and vectors to Python lists, it is difficult to find software that doesn’t
use and manipulate arrays. Despite this, research of software model checkers has
largely focused on finding numerical invariants and proving numerical properties of
programs. As results of the software verification competition (SV‑COMP) show, even
when model checkers support arrays, there are a significant number of programs that
cannot be automatically verified — some for a lack of expressivity and some for a lack
of performance. Our focus is on the latter.

The key challenge that we face is adequately controlling theory reasoning in the
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SMT solver underlying the model checker. While SMT solvers typically have an ar‑
ray theory and can therefore directly solve array problems, the interface that SMT
solvers provide does not provide for adequate incrementality and hinting to enable
maximal performance. For instance, we find that, in our SV‑COMP benchmarks, as
many as 90% of the array lemmas that the SMT solver is learning are either redundant
or ultimately irrelevant. Most lemmas either do not advance the cause of the model
checker or were thrown away by the SMT solver due to imperfect caching. Thus time
spent learning those lemmas was wasted effort.

To eliminate this waste, we do incremental inductive model checking on top of an
equality with uninterpreted functions (EUF) theory [48]. This removes the need for
SMT array theories in the core incremental model checking process, relegating the
array theory solely to abstraction refinement operations, and yielding a thousand‑
fold reduction in the number of operations that do redundant or irrelevant work.
Additionally this means that array lemmas are only learned where they are pertinent
to proving or disproving the property.

Moreover our strategy addresses a fundamental tension. On the one hand, incre‑
mental model checkers [16], which construct a safety proof bit by bit, are particularly
scalable because their many individual queries are simple to solve and generalize. On
the other hand, these queries lack error path information that could simplify overall
checking.

For example, consider model checking the following program, assuming that a, b,
and f are distinct constant values:

1 int[] A; int i, a, b, f;
2 ℓ1: A[3] = f;
3 ℓ2: A[1] = a;
4 A[2] = b;
5 assume(1 <= i <= 3);
6 if (A[i] == f);
7 ℓ3: error();
8 else
9 ℓ4: exit();

The model checker attempts to find values for i which lead to the error at location
ℓ3. Of course it can reach ℓ3 if i = 3, which the checker takes two SMT queries to
discover. The first query corresponds to reaching ℓ3, where A[i] = f, from ℓ2. The
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solver deduces 𝑖 ∉ {1, 2}, meaning the property may yet be violated, so the checker
moves on to the next query, which corresponds to reaching the failure from ℓ1. The
first query involves two array stores and one read; the SMT array theory will generate
theory lemmas to deduce that A[i] is not set to f by any assignment from ℓ2. Several
of these lemmas ultimately do not matter, however, since the property is discovered
to be violated by the antecedent assignment at ℓ1.

EUFORIA’s array abstraction avoids much of this redundant work. To set the stage
for the abstraction, we begin by discussing how to go from programs to transition
systems via Horn encodings.

4.2. Encoding Memory‑Manipulating Programs

It’s no trivial matter to encode memory‑manipulating programs using array con‑
straints. A standard approach is to (1) compute a set of disjoint regions of memory
and (2) encode each such region as an array in QF_ABV. SEAHORN [103] does this, as
do SMACK [104], CBMC [105], ESBMC [106], and CASCADE [107]. Care must be
taken when computing regions to prevent them from collapsing into a single region,
which would inhibit further analysis.

So, we implemented a program encoding different from the previous Section 3.2.
SEAHORN outputs a Horn encoding as an SMT‑LIB formula which we translate to a
transition system encoding. We call this encoding Horn2VMT [108].

4.2.1. Translating Horn to Transition Systems

We begin with a motivating example: a program encoded as Horn which we will
translate into a transition system.

Example 4.1 (Program with Assert).
function main()
𝑙𝐸: 𝑖 ← 0
𝑙𝐿: while (𝑖 < 5)

𝑖 ← 𝑖 + 3
𝑙𝑀 : assert 𝑖 < 7
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This program is safe. The while loop executes (deterministically) twice before reach‑
ing the assert with the value 𝑖 = 6.

The program’s Horn encoding is defined over interpreted symbols {<,+} and rela‑
tion symbols ℛ = {𝐸,𝐿,𝑀,𝑈}; relations model the program’s control locations and
state [109]. Specifically, the nullary relation 𝐸 models the entry point of main. 𝐿 is
unary and models the while loop. 𝑀 is also unary and models the location on exit
from the loop, at the assert. 𝑈 is nullary and models assertion failure.

Example 4.2 (Horn Encoding of Example 4.1). The complete Horn encoding is defined
as the conjunction of the following constraints:

true ⇒ 𝐸 (4.1) 𝐸 ⇒ 𝐿(0) (4.2)

∀𝑥. 𝐿(𝑥) ∧ (𝑥 < 5) ⇒ 𝐿(𝑥 + 3) (4.3) ∀𝑥. 𝐿(𝑥) ∧ ¬(𝑥 < 5) ⇒ 𝑀(𝑥) (4.4)

∀𝑥. 𝑀(𝑥) ∧ ¬(𝑥 < 7) ⇒ 𝑈 (4.5)

A Horn clause solver asks the question, “is the relation𝑈 non‑empty?” All relations
are considered empty unless proven otherwise, using the rules above. Below, when I
say a relation is reachable, I mean that the relation is derivable from the rules above.

(4.1) This rule is read as, “The entry point 𝐸 is always reachable.”

(4.2) “If𝐸 is reachable, then𝐿 is reachable and 0 ∈ 𝐿.” The fact that 0 ∈ 𝐿 corresponds
to the assignment 𝑖 ← 0.

(4.3) “If 𝐿 is reachable and 𝑥 ∈ 𝐿 for any 𝑥 < 5, then 𝑥 + 3 ∈ 𝐿.” This rule models
one trip through the while loop by adding elements to the relation 𝐿.

(4.4) “If 𝐿 is reachable and 𝑥 ∈ 𝐿 for any 𝑥 ≥ 5, 𝑀 is reachable and 𝑥 ∈ 𝑀 .”

(4.5) “If 𝑀 is reachable and 𝑥 ≥ 7, 𝑈 is reachable.”

To use a VMT‑capable model checker to answer the question, “is the relation 𝑈
non‑empty?” we show below how to encode Horn clauses (4.1)–(4.5) as a transition
system. First we define a simple notation to preserve the value of a set of variables
across a transition.
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Definition 4.1 (Value Preservation). For any set of variables 𝑆,

𝜋[𝑆] ≡ (⋀
𝑥∈𝑆

𝑥′ = 𝑥) .

Example 4.3 (Transition System Encoding of Example 4.2). The corresponding tran‑
sition system 𝔸 = (𝑋, ∅, 𝐼, 𝑇 ) and property 𝑃 are:

𝑋 = {ℓ𝐸, ℓ𝐿, ℓ𝑀 , ℓ𝑈 , 𝑃𝐿,1, 𝑃𝑀,1} (4.6)

𝐼 = (¬ℓ𝐸 ∧ ¬ℓ𝐿 ∧ ¬ℓ𝑀 ∧ ¬ℓ𝑈) (4.7)

𝑃 = (¬ℓ𝑈) (4.8)

and 𝑇 is defined as the disjunction of the following constraints:

(ℓ′𝐸 ∧ 𝜋[𝑋 ∖ {ℓ𝐸}]) (4.1*)

(ℓ𝐸 ∧ ℓ′𝐿 ∧ (𝑃 ′
𝐿,1 = 0) ∧ 𝜋[𝑋 ∖ {ℓ𝐿, 𝑃𝐿,1}]) (4.2*)

(ℓ𝐿 ∧ (𝑃𝐿,1 < 5) ∧ ℓ′𝐿 ∧ (𝑃 ′
𝐿,1 = 𝑃𝐿,1 + 3) ∧ 𝜋[𝑋 ∖ {ℓ𝐿, 𝑃𝐿,1}]) (4.3*)

(ℓ𝐿 ∧ ¬(𝑃𝐿,1 < 5) ∧ ℓ′𝑀 ∧ (𝑃 ′
𝑀,1 = 𝑃𝐿,1) ∧ 𝜋[𝑋 ∖ {ℓ𝑀 , 𝑃𝑀,1}]) (4.4*)

(ℓ𝑀 ∧ ¬(𝑃𝑀,1 < 7) ∧ ℓ′𝑈 ∧ 𝜋[𝑋 ∖ {ℓ𝑈}]) (4.5*)

The variables ℓ𝐸, ℓ𝐿, ℓ𝑀 , ℓ𝑈 are Boolean relation variables that correspond to the rela‑
tion symbols in the Horn clauses. 𝑃𝐿,1, 𝑃𝑀,1 are integer place variables that correspond
to elements inhabiting Horn clause relations.

Each disjunct of 𝑇 corresponds to a single Horn rule; (4.1*) corresponds to (4.1),
(4.2*) to (4.2), and so on. It is possible in𝔸 to reach states (ℓ𝐿∧𝑃𝐿,1 = 0), (ℓ𝐿∧𝑃𝐿,1 = 3),
and (ℓ𝐿 ∧ 𝑃𝐿,1 = 6)8, meaning {0, 3, 6} ⊆ 𝐿. Moreover, every reachable state satisfies
𝑃 , implying that clauses (4.1)–(4.5) are not satisfiable.

4.2.2. General Translation

We now present our general translation from set of 𝑛 linear Horn clauses over ℛ into
a transition system 𝔾 = (𝑋, 𝑌 , 𝐼, 𝑇 ) such that a reachability query (i.e., whether a

8Boldface indicates the only difference among the three formulas.
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relation is derivable) holds if and only if a safety property on 𝑇 fails. Recall from
Section 2.8 that a Horn clause has the following form:

∀𝑥1,… , 𝑥𝑚.
𝑗
⋀
𝑘=1

𝑃𝑘(𝑥𝑘) ∧ 𝜙(𝑥1,… , 𝑥𝑚)
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

body

⇒ head (4.9)

Without loss of generality, we assume each Horn clause head is a relation occurrence
and that we wish to solve a single query, a 0‑ary relation 𝑈 .9

The states of the resulting transition system are defined over a finite set of state
variables 𝑋 = {ℓ𝑅 | 𝑅 ∈ ℛ} ∪ {𝑃𝑅,𝑖 | 𝑅 ∈ ℛ, 1 ≤ 𝑖 ≤ 𝑘 where 𝑅 has arity 𝑘}: Boolean
relation variables ℓ𝑅 and place variables 𝑃𝑅,𝑖; and fresh primary inputs of the form
{𝑌𝑗,𝑥 | 1 ≤ 𝑗 ≤ 𝑛}, as explained below. Horn clauses are translated with the help of
the syntactic mapping ℋJ⋅K defined over quantifier‑free formulas.

Definition 4.2 (Horn Translation MappingℋJ⋅K). Let (possibly‑subscripted) 𝑒, 𝑓, 𝑔, 𝑠, 𝑡
be expressions:

ℋJ𝑥K = 𝑌𝑖,𝑥 quantified variable 𝑥 occurs in rule 𝑖 (4.10)

ℋJ𝑅(𝑥1,… , 𝑥𝑘)K = ℓ𝑅 ∧ 𝑃𝑅,1 ≃ ℋJ𝑥1K ∧ ⋯ ∧ 𝑃𝑅,𝑘 ≃ ℋJ𝑥𝑘K (4.11)

ℋJ𝐹(𝑒1,… , 𝑒𝑘)K = 𝐹(ℋJ𝑒1K,… ,ℋJ𝑒𝑘K) for interpreted 𝐹 (4.12)

ℋJ𝑠 ≃ 𝑡K = ℋJ𝑠K ≃ ℋJ𝑡K (4.13)

ℋJ𝑓 ∧ 𝑔K = ℋJ𝑓K ∧ℋJ𝑔K (4.14)

ℋJ¬𝑓K = ¬ℋJ𝑓K (4.15)

During translation, 𝑇 is treated as a disjunction. For every Horn clause with atom
𝐴 in its body, (∀𝑥1,… , 𝑥𝑘.𝐴 ∧ 𝜙 ⇒ head), add the following disjunct to 𝑇 : ℋJ𝐴 ∧
𝜙K ∧ prime(ℋJheadK) ∧ 𝜋[𝑋 ∖ Vars𝔾(head)]. The initial state 𝐼 = (⋀ℓ𝑅

¬ℓ𝑅) and the
property 𝑃 = ¬ℓ𝑈 . By cases it can be tediously but straightforwardly shown that if a
single Horn clause is satisfiable, the resulting transition system has a corresponding
satisfying assignment.

9If we wish to solve a more complex query, for example 𝑃(1, 4, 𝑥) (for 𝑃 ∈ ℛ), simply modify the
Horn clauses as follows: add a fresh relation symbol 𝑈 to ℛ and a rule (∀𝑥.𝑃(1, 4, 𝑥) ⇒ 𝑈).
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Let 𝛽 be a map from variables to terms. It is indexed by relation‑ and place‑variables.
Initially, 𝛽(ℓ) = false for every relation‑variable ℓ and 𝛽(𝑃) = 𝑃 for every place‑
variable 𝑃 .

Algorithm 9 (“Functional” VMT Re‑encoding of Horn).
1: procedure HORN₂FVMT
2: 𝑇 ← true
3: for the 𝑖’th Horn clause (∀𝑥1,… , 𝑥𝑚.𝐴(𝑥𝑚) ∧ 𝜙(𝑥𝑚) ⟹ 𝐻(𝑥𝑚)) do
4: 𝛽(ℓ𝐻) ← ite(act𝑖, true, 𝛽(ℓ𝐻))
5: for 𝑗 ∈ {1,… ,𝑚} do
6: 𝛽(𝑃𝐻,𝑗) ← ite(act𝑖,ℋJ𝑥𝑗K, 𝛽(𝑃𝐻,𝑗))
7: 𝑔𝑖 ← ℋJ𝐴(𝑥𝑚) ∧ 𝜙(𝑥𝑚)K
8: Conjoin to 𝑇 : (act𝑖 ⟹ 𝑔𝑖)
9: for each 𝑥, 𝑡 such that 𝛽(𝑥) = 𝑡 do

10: Conjoin to 𝑇 : 𝑥′ ≃ 𝑡
11: Conjoin to 𝑇 one‑hot constraints on {act𝑖}

Figure 4.1: Algorithm to compute functional VMT encoding from Horn encoding.

4.2.3. Proof of Correctness

Theorem 4.1. The transition system has the property that the state ℓ𝑅 is reachable in 𝑇 if
and only if relation 𝑅 is derivable under the Horn clauses.

Proof. See Appendix Section A.3.

4.2.4. VMT Re‑encoding Algorithm

Our translation takes linear time and uses space linear in the number of Horn clauses
and the relation symbols. The number of state variables is proportional to the sum of
the relation symbol arities. In addition, an 𝑛‑step Horn derivation corresponds to an
𝑂(𝑛)‑length execution.

This encoding is simple but it does not have the functional characteristics we need.
EUFORIA excels when the next state is a function of the current state. So, our actual
implementation incorporates a few tweaks. At a high level, 𝑇 is defined as a conjunc‑
tion rather than a disjunction. State variables updates are defined in a single, top‑level
equation, similar to the encoding defined in Section 3.2.
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The algorithm for producing 𝑇 is given in Figure 4.1. It maintains a map 𝛽 from
variables to terms. Once the algorithm reaches line 9, 𝛽(𝑥) = 𝜏𝑥 means that the state‑
update function for variable 𝑥 is represented by 𝑥′ = 𝜏𝑥(𝑋, 𝑌 ).

The algorithm processes each Horn clause once. The order of processing may pro‑
duce a different, equivalent result.10 For the 𝑖’th Horn clause, it allocates an activation
variable act𝑖. When act𝑖 is true the translation 𝑔𝑖 of the body of the corresponding Horn
clause must hold in the current state, enabling the place and relation variable assign‑
ments specified on lines 4 and 6. The last line of the procedure forces the system to
choose exactly one activation variable per transition. Omitting this might introduce
spurious transitions in 𝑇 .

Finally, the resulting transition system (𝑋, 𝑌 , 𝐼, 𝑇 ) is defined over state variables
𝑋 and inputs 𝑌 as defined in Section 4.2.2, and 𝑇 as produced by the algorithm in
Figure 4.1. The final 𝑇 has the form:

⋀
𝑥∈𝑋

(𝑥′ = 𝜏𝑥(𝑋, 𝑌 )) ∧ ⋀
1≤𝑖≤𝑛

(act𝑖 ⟹ 𝑔𝑖(𝑋, 𝑌 )) ∧ OneHot({act𝑖}) (4.16)

where OneHot(𝑆) constrains exactly one act𝑖 variable to be true in every satisfying
assignment.

Below we show the Horn2FVMT output corresponding to the Horn encoding above.

10The order of processing affects the order of ite’s constructed by lines 4 and 6; the different orders
produce equivalent state updates.
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Example 4.4 (Horn2FVMT Output for Example 4.2).

act1 ⟹ true (4.17)

act2 ⟹ ℓ𝐸 (4.18)

act3 ⟹ ℓ𝐿 ∧ (𝑃𝐿,1 < 5) (4.19)

act4 ⟹ ℓ𝐿 ∧ ¬(𝑃𝐿,1 < 5) (4.20)

act5 ⟹ ℓ𝑀 ∧ ¬(𝑃𝑀,1 < 7) (4.21)

ℓ′𝐸 = act1 (4.22)

ℓ′𝐿 = act2 ∨ act3 (4.23)

ℓ′𝑀 = act4 (4.24)

ℓ′𝑈 = act5 (4.25)

𝑃 ′
𝐿,1 = ite(act3, 𝑃𝐿,1 + 3, ite(act2, 0, 𝑃𝐿,1)) (4.26)

𝑃 ′
𝑀,1 = ite(act4, 𝑃𝐿,1, 𝑃𝑀,1) (4.27)

The state variables, initial state, and property are defined as in Example 4.3. The two
transition systems have equivalent behavior.

4.3. Array Abstraction

To avoid the overhead of instantiating array axioms, array operations and terms may
be abstracted. The operations select, store, and const‑array are mapped into corre‑
sponding uninterpreted functions, select, store, and const‐array by extending the
EUF abstraction mapping 𝒜J⋅K to array terms and operations as follows:

Definition 4.3 (EUF Abstraction Mapping with Arrays—cf. Section 3.3.1).

𝒜J𝑎 ∶ ArrayK = a (4.28)

𝒜Jselect(𝑎, 𝑖)K = select(𝒜J𝑎K,𝒜J𝑖K) (4.29)

𝒜Jstore(𝑎, 𝑖, 𝑥)K = store(𝒜J𝑎K,𝒜J𝑖K,𝒜J𝑥K) (4.30)

𝒜Jconst‑array(𝑘)K = const‐array(𝒜J𝑘K) (4.31)

The array abstraction fits neatly into EUFORIA’s data abstraction approach. In fact,
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this abstraction approach keeps EUFORIA reasoning at the pure (quantifier‑free) unin‑
terpreted function level, for which there are efficient decision procedures.

4.4. Array Refinement

EUF reachability may find an Abstract Counterexample (ACX). Due to EUF abstrac‑
tion, the Concretized Abstract Counterexample (CACX) may not be a counterexample
in the CTS. Consider the following model checking problem.

Example 4.5 (Model Checking Problem Requiring Refinement). ℰ4.4 = (𝑋, 𝑌 , 𝐼, 𝑇 , 𝑃 )
where

ℰ4.4 = ({𝑎, 𝑖}, ∅, [select(𝑎, 𝑖) ≃ 3], [𝑎′ ≃ store(𝑎, 𝑖, 3)]) and 𝑃 = [select(𝑎, 𝑖) ≃ 3],

̂ℰ4.4 = ({a, i}, ∅, [select(a, i) ≃ 3], [a′ ≃ store(a, i,3)]) and ̂𝑃 = [select(a, i) ≃ 3] .
The property 𝑃 is its own safety invariant. Nevertheless, ̂𝑃 does not hold in ̂ℰ4.4,

since EUF abstraction does not preserve the relationship between store and select.
This example has the two‑step CACX (𝐼, select(𝑎, 𝑖) ≄ 3) which is infeasible in the
QF_ABV theory. EUFORIA uses this contradictory CACX to refine, or increase the fidelity
of, the array abstraction. Refinement is accomplished by conjoining formulas, called
lemmas, to the abstract transition relation.

For Example 4.5, EUFORIA learns an instance of McCarthy’s axiom (2.17), to eliminate
the spurious behavior caused by the abstraction:

a′ ≃ store(a, i,3) ⟹ select(a′, i) ≃ 3

This lemma constrains the abstract state space of ̂ℰ4.4 and is therefore a constraint
lemma. We will further discuss lemmas after we present our implementation of ab‑
straction refinement.

4.4.1. Implementation of Abstraction Refinement

The previous chapter presented an implementation of abstraction refinement (Sec‑
tion 3.4). In the presence of array constraints, this implementation proved to be in‑

91



Algorithm 10.
1: procedure BUILDBMCCX()
2: ℬ ← BMCFORMULA() ▷ phase one
3: if ¬SAT(ℬ) then
4: REFINEWITHINTERPOLANTS(UNSATCORE())
5: return false
6: return true ▷ feasible counterexample
7: procedure REFINEWITHINTERPOLANTS(core) ▷ phase two
8: ℬHC ← BUILDHORN(core)
9: ℳ ← HORNSOLVE(ℬHC)

10: for 𝑖 ∈ {1,… , 𝑛} do
11: 𝑝𝑖 ← GETINTERPOLANT(ℳ, 𝑖)
12: 𝑝𝑖+1 ← GETINTERPOLANT(ℳ, 𝑖 + 1)
13: 𝑙 ← 𝑝𝑖−1(𝑋) ∧ body𝑖(𝑋, 𝑌 ,𝑋′) ∧ ¬𝑝𝑖(𝑋′)
14: LEARNLEMMA(𝑙)

EUFORIA’s refinement procedure, BUILDBMCCX.

efficient, solving hundreds fewer benchmarks. This section describes a different ap‑
proach. Instead of symbolic simulation‑based image computation, EUFORIA constructs
a single formula representing the bounded‑model check query for the CACX. Further,
it augments this formula with extra constraints that may make it easier to solve. If that
formula is inconsistent, EUFORIA calculates interpolants for the query and learns from
those.

Instead of REFINEFORWARD (Figure 3.6b) EUFORIA calls BUILDBMCCX, presented in Al‑
gorithm 10. It performs a bounded model check (BMC) of the entire counterexample
instead of symbolic simulation. If that check is inconsistent, then EUFORIA calculates
interpolants from which it derives expansion lemmas. We use a Horn clause solver
(SPACER) for convenience to calculate the interpolants; but the interpolants could be
obtained using any interpolating theorem prover for QF_ABV.

BUILDBMCCX has two phases.

BUILDBMCCX phase one, BMC solving In phase one (lines 2–3), BMCFORMULA con‑
structs the instance as below by explicitly renaming variables and using multiple
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copies of 𝑇 :

ℬ = 𝐴(𝑋0) ∧ 𝐼(𝑋0) ∧ 𝑇 (𝑋0, 𝑌1, 𝑋1) ∧
𝐴(𝑋1) ∧ 𝑇 (𝑋1, 𝑌2, 𝑋2) ∧ … ∧
𝐴(𝑋𝑛−1) ∧ 𝑇 (𝑋𝑛−1, 𝑌𝑛, 𝑋𝑛) ∧ 𝐴(𝑋𝑛)

ℬ is then checked for feasibility. Solving BMC queries is challenging for several rea‑
sons. First, there are multiple copies of 𝑇 which makes for a large formula. Second, 𝑇
is monolithic — it encodes the entire program, though we expect that only part of the
program is relevant for a given counterexample step. Third, even if we could reduce
𝑇 at each step by removing irrelevant parts, using a large‑step encoding [45] for 𝑇
means that the reduced 𝑇 would likely still contain a whole pile of nested Boolean
logic, not all of which is necessarily relevant.

At a high level, we address these difficulties by conjoining extra constraints 𝒬 onto
ℬ that significantly prune its search space. These constraints are derived from abstract
models gathered during EUFORIA’s EUF reachability. We use our projection proce‑
dure, TermProj, given in Figure 3.5, to derive these extra constraints from the abstract
transition relation. We now detail how we construct and solve ℬ ∧ 𝒬.

Let 𝑀̂ 𝑖+1
𝑖 denote the abstract model for the transition ( ̂𝐴𝑖, ̂𝐴𝑖+1) in the abstract coun‑

terexample (0 ≤ 𝑖 < 𝑛). 𝑄 is the concretization of an abstract formula

̂𝒬 = ⋀
0≤𝑖<𝑛

TermProj(𝑀 𝑖+1
𝑖 , ̂𝑇 (𝑋̂𝑖, ̂𝑌𝑖+𝑖, 𝑋̂𝑖+1)) .

The intuition is that the constraints in ̂𝒬 help prune irrelevant states of the counterex‑
ample, focusing the BMC query. We then preprocessℬ∧𝒬 by an equation solving pass
that performs Gaussian elimination and variable elimination.11 Variables assigned to
constants at the top‑level will be removed, possibly opening up other elimination op‑
portunities. Linear constraints are solved, leading to further variable elimination.

We’ve outlined two strategies that attempt to simplify the BMC query: (1) adding
extra constraints and (2) preprocessing with elimination passes. These strategies ad‑
dress difficulties two (𝑇 is monolithic) and three (𝑇 contains much nested logic). In

11The solve‑eqs tactic in Z3.
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practice, their combination achieves efficiency far beyond what either does in isola‑
tion. From this point on in the discussion, ℬ refers to the BMC query augmented with
𝒬.

Ultimately, if ℬ is feasible (BUILDBMCCX line 6), it is a counterexample to the prop‑
erty. If ℬ is infeasible, BUILDBMCCX enters phase two.

BUILDBMCCX phase two, interpolants Phase two is implemented in REFINEWITH‑
INTERPOLANTS. BUILDHORN creates an inductive interpolant sequence problem from
ℬ.

Definition 4.4 (Inductive Interpolant Sequence [110]). Let 𝐹1 ∧ 𝐹2 ∧ ⋯ ∧ 𝐹𝑛 be an
unsatisfiable formula. An inductive interpolant sequence is a sequence 𝐼0, 𝐼2,… , 𝐼𝑛 such
that

1. 𝐼0 = true and 𝐼𝑛 = false,

2. for all 𝑖 ∈ {1,… , 𝑛}, 𝐼𝑖−1 ∧ 𝐹𝑖 ⊨ 𝐼𝑖, and

3. for all 𝑖 ∈ {0,… , 𝑛}, Vars(𝐼𝑖) ⊆ Vars(𝐹1,… , 𝐹𝑖) ∩ Vars(𝐹𝑖+1,… , 𝐹𝑛).

In the context of refinement learning, ℬ is the unsatisfiable formula and the vari‑
ables in common for condition 3 are the state variables.

BUILDHORN leverages ℬ’s UNSAT core to create ℬHC, using only the constraints
from ℬ that occur in the core. ℬHC is a set of recursion‑free Horn clauses in which
fresh uninterpreted predicates 𝑃𝑖 stand for step‑wise interpolants:

ℬHC =

⎧{{{{
⎨{{{{⎩

𝑃0(𝑋0) ⟸ true
𝑃1(𝑋1) ⟸ 𝑃0(𝑋0) ∧ 𝐴⋆(𝑋0) ∧ 𝐼(𝑋0) ∧ 𝑇 ⋆(𝑋0, 𝑌1, 𝑋1)
𝑃2(𝑋2) ⟸ 𝑃1(𝑋1) ∧ 𝐴⋆(𝑋1) ∧ 𝑇 ⋆(𝑋1, 𝑌2, 𝑋2)
⋮
𝑃𝑛(𝑋𝑛) ⟸ 𝑃𝑛−1(𝑋𝑛−1) ∧ 𝐴⋆(𝑋𝑛−1) ∧ 𝑇 ⋆(𝑋𝑛−1, 𝑌𝑛, 𝑋𝑛)
false ⟸ 𝑃𝑛(𝑋𝑛)

(4.32)

where 𝐹 ⋆ = ⋀{𝑓 ∈ 𝐹 | 𝑓 ∈ UnsatCore(ℬ)} for 𝐹 ∈ {𝐴, 𝑇}.12 These Horn clauses are
12ℬHC could be computed without ℬ’s UNSAT core, but using it promotes learning concise lemmas,

because it substantially reduces the complexity of the Horn clause bodies. See equation (4.33).
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satisfiable by construction since ℬ is infeasible. The solution to (4.32) is an inductive
interpolant sequence [110].

The Horn solver produces, for each predicate 𝑃𝑖, a formula 𝑝𝑖(𝑋𝑖) consistent with
(4.32). For each solution 𝑝𝑖, EUFORIA constructs a lemma from the corresponding Horn
clause as follows:

¬[𝑝𝑖−1(𝑋) ∧ body𝑖(𝑋, 𝑌 ,𝑋′) ∧ ¬𝑝𝑖(𝑋′)] 𝑖 ∈ {1,… , 𝑛} (4.33)

where 𝑏𝑜𝑑𝑦𝑖 stands for the interpreted body portion from the rule whose head is 𝑃𝑖.
We now return to the topic of expansion lemmas. Consider the following three‑line

program:
𝑥 ← 3
𝑥 ← 𝑥 + 3
assert 𝑥 < 7

Consider an (infeasible) 2‑step counterexample (𝑥 = 3, 𝑥 ≥ 7) and its corresponding
set of Horn clauses:

𝑃0(3) (4.34)

𝑃1(𝑥1) ⟸ 𝑃0(𝑥0) ∧ 𝑥1 ≃ 𝑥0 + 3 (4.35)

false ⟸ 𝑃1(𝑥1) ∧ 𝑥1 ≥ 7 (4.36)

A solution is 𝑃0(𝑥) = (𝑥 ≃ 3) and 𝑃1(𝑥) = (𝑥 ≃ 6) which results in the following
lemmas (see (4.33)):

¬[x ≃ 3 ∧ x′ ≃ ADD(x,3) ∧ x′ ≄ 6] (4.37)

¬[x ≃ 6 ∧ ¬LT(x,7)] (4.38)

where ADD and LT are UF’s used to abstract addition and less‑than, respectively.
The key take‑away here is that these lemmas introduce the new term 6 into the

abstraction, which previously only contained terms from the program text, namely
3, 𝑖, 7, and the addition and less‑than. These lemmas increase the granularity of the
abstraction. This kind of learning is similar to learning new predicates in a predicate
abstraction (e.g., [37]).
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Lemmas are expansion lemmas only when the interpolants contain new terms. Us‑
ing our method implies that the interpolation system itself decides whether a par‑
ticular lemma is expansive or not; EUFORIA does not make this decision explicitly.
EUFORIA’s back‑end uses SPACER to solve ℬHC.

Refinement is not guaranteed to succeed. The interpolation problem is constructed
over the quantifier‑free theory of bit‑vectors and arrays. We require quantifier‑free
interpolants but interpolants for arrays in general are not quantifier‑free [111]. More‑
over, the interpolant back‑end may give up.

Properties of arrays, such as sortedness, typically require quantification. Other ex‑
amples include modeling variables in parameterized programs [112] and, more gen‑
erally, stating properties about every element (or every index) of an array. Our restric‑
tion to quantifier‑free interpolants means we will not be able to discover invariants
for these properties. Nevertheless, EUFORIA can prove statements about particular ar‑
ray indices and values, similar to the way our bit‑vector invariants learn facts about
particular inputs to arithmetic operators. The programs targeted in our evaluation
typically do not depend on complex array properties.

To sum up, constraint lemmas specialize UFs to particular concrete behaviors. Ex‑
pansion lemmas increase the granularity of the EUF abstraction. EUFORIA learns array
lemmas only if they crop up in a CACX’s contradiction, ensuring that the lemmas are
directly relevant to the property that is being checked. Empirically speaking, contra‑
dictions usually feature a small handful of UFs which are ultimately relevant to the
property, resulting in targeted lemmas. Our process avoids most of the expense array
reasoning, as we will see in the evaluation.

4.4.2. Exceptionally Lazy Learning of Array Lemmas

Fundamentally, the procedure LEARNLEMMA (Figure 3.7) learns its lemmas by negat‑
ing formulas found to be unsatisfiable in QF_ABV and conjoining them to 𝑇 . It also sim‑
plifies the formulas in order to generalize the lemmas as much as possible, specifically
by eliminating input variables (line 2). We eliminate input variables from formulas
by (1) collecting top‑level equalities and computing their equality closure, resulting
in equivalence classes of terms; and (2) substituting every input with a member of its
equivalence class that doesn’t contain inputs (if possible). Next, if the lemma formula
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is a state formula, then two versions are learned: one on current‑state variables and
one on next‑state variables (lines 3–7).

Consequently, EUFORIA generates property‑directed instantiations of array theory
axioms. For instance, here is a lemma learned in one of our benchmarks:

Example 4.6.
𝐴 ≃ const‑array(0) ⟹ select(𝐴, 𝑖) ≃ 0

This lemma is an instance of axiom (2.20). We also find instances of McCarthy’s
axiom (2.17):

Example 4.7.
select(𝐴′, 𝑖) ≃ 0 ∨ 𝑖′ ≄ 𝑖 ∨ 𝐴′ ≄ store(𝐴, 𝑖′, 0)

Array lemmas may also include bit‑vector function symbols to learn targeted lem‑
mas about composite behavior:

Example 4.8.

𝐵 ≃ store(𝐴, 𝑖, 0) ⟹ extract(7, 0, select(𝐵, 𝑖)) ≃ 0

Finally, some lemmas combine multiple array axioms:

Example 4.9.
store(𝐵, 𝑖, 0) ≄ 𝐴 ∨ store(𝐴, 𝑖, 0) ≃ 𝐴

This lemma relates stores and array extensionality. It is not a direct instance of any
axiom (2.17)–(2.20), but rather a consequence of several instantiations.

Note that LEARNLEMMA is not specialized to produce array lemmas. Rather, it
generalizes formulas from unsatisfiable refinement queries that themselves pinpoint
which array lemma instantiations to learn. This design allows LEARNLEMMA to pro‑
duce lemmas that are property‑directed combinations of array theory axiom instan‑
tiations.

4.5. Termination & Correctness

Most of the proof from Section 3.5 carries over. The only new terms are array terms.
In our language, array terms are restricted to be from bit‑vectors to bit‑vectors—
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meaning an array can only store a finite number of items. Hence, the concrete state
space is still finite and refinement will eventually discover every conceivable fact
about the state space of a given program.

4.6. Evaluation

To evaluate EUFORIA, we rely on benchmarks from SV‑COMP’17 [58], as they are
widely used and relatively well understood. We evaluate on C programs from the Sys‐
tems_DeviceDriversLinux64_ReachSafety benchmark set, hereafter abbreviated De‑
viceDrivers. This set contains 64‑bit C programs and contains “problems that require
the analysis of pointer aliases and function pointers.” EUFORIA was originally de‑
signed for control properties, so our benchmark set includes benchmarks with control
properties and arrays.

We consider two other model checkers, SPACER and IC3IA, which are introduced in
Section 2.9. We also evaluated ELDARICA [113], a predicate‑abstraction based CEGAR
model checker that supports integers, algebraic data types, arrays, and bit vectors.
Unfortunately, ELDARICA either threw errors, ran out of time, or ran out of memory
on all of our benchmarks, so we do not consider it further.

We use SEAHORN as a front‑end to encode programs into Horn clauses. SEAHORN
[103] is a verification condition (VC) generator for C and C++ programs that uses
LLVM in order to optimize and generate large‑step, Horn clause benchmarks in SMT‑
LIB declare‐rel format [114]. Note that we use the term benchmark to refer both to the
C programs and their encoded counterparts. Since SEAHORN is not able to produce bit‑
vector encoded benchmarks, we modified it to produce bit‑vector VCs.13 Moreover,
since EUFORIA does not yet support procedure calls, we instruct SEAHORN to inline all
procedures, resulting in linear Horn clauses. We ran SEAHORN on each benchmark,
limiting it to one hour of runtime and 8GB of memory. SEAHORN can fail to produce a
usable benchmark due to lack of resources or because the input is trivially solved dur‑
ing optimization. All told, SEAHORN produced 948 DeviceDrivers Horn clause bench‑
marks out of 2703 original C programs. 687 are safe and 261 are unsafe.

SPACER natively supports Horn clauses, but EUFORIA and IC3IA take VMT files as in‑

13We worked from SEAHORN commit id 8e51ef84360a602804fce58cc5b7019f1f17d2dc.
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put. The VMT format [59] is a syntax‑compatible extension of the SMT‑LIB format
that specifies a syntax for labeling formulas denoting initial state, the transition rela‑
tion, and property. In order to create comparable benchmarks for EUFORIA and IC3IA,
we translate the Horn clause benchmarks into VMT using Horn2VMT (Section 4.2),
resulting in 948 VMT files that correspond to the 948 Horn benchmarks. The bench‑
marks range in size from 29 to more than 223, with a median size of 219; this size is the
number of distinct SMT‑LIB expressions used to define (𝐼, 𝑇 , 𝑃 ). When compressed
with gzip, their sizes range from 2K to 153 MB.

All checkers run on 2.6 GHz Intel Sandy Bridge (Xeon E5‑2670) machines with 2
sockets, 8 cores with 64GB RAM, running RedHat Enterprise Linux 7. Each checker
run was assigned to one socket during execution and was given a 30 minute timeout.
For every benchmark solved by any checker, we verified that its result was consistent
with other checkers.

EUFORIA Compared with SPACER

Figure 4.2 shows a scatter plot of runtime for EUFORIA and SPACER on DeviceDrivers
benchmarks. Overall, EUFORIA solves 491 benchmarks and SPACER solves 386. EUFORIA
times out on 33 benchmarks that SPACER solves. SPACER times out on 138 benchmarks
that EUFORIA solves.

When SPACER solves EUFORIA’s timeouts In the 33 cases where spacer was able to
solve a benchmark that EUFORIA could not, we identified several causes:

1. SPACER’s preprocessor is able to solve 19 benchmarks without even invoking
search. By comparison, EUFORIA’s front‑end takes excessive time to parse and
normalize the benchmarks. EUFORIA parses VMT files using MathSAT5, since
it the simplest API to do so. In addition to parsing, MathSAT normalizes and
simplifies the resulting formula.

2. Another 12 benchmarks are quite large, and the overhead of a monolithic tran‑
sition relation dominates EUFORIA’s abstract reachability. To explain: SEAHORN
produces an explicitly sliced transition relation which SPACER exploits by making
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Figure 4.2: Benchmarks solved by either solver (or both). Note the points on the right hand
side of this plot. Each point is a benchmark that EUFORIA solved within 30 min‑
utes that SPACER did not solve during that time.
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sliced incremental queries. EUFORIA consumes and queries a monolithic transi‑
tion relation as produced by Horn2VMT.

3. In one benchmark EUFORIA gets stuck in a single interpolation query. We suspect
this is because some interpolation queries generated by EUFORIA are unexpect‑
edly difficult for SPACER.

In the last un‑accounted for benchmark, there was no obvious cause. We believe that
front‑end improvements would address the issues identified in item 2. For instance,
SPACER’s preprocessor could be made independent of Z3 so that it could be applied
before Horn2VMT.14 Alternatively, EUFORIA could be integrated into Z3 so that it could
exploit the same preprocessing as SPACER, but exploring this remains future work.

When EUFORIA solves SPACER’s timeouts In the 138 cases where EUFORIA was able
to solve a benchmark that SPACER did not, we examined causes. In over half of the
cases, SPACER gets stuck solving concrete incremental queries. In the other 52 cases,
SPACER gives up before the timeout (it returns unknown). In other words, in every
case individual queries were unable to be tackled given the resources constraints.
Therefore we emphasize that, in contrast, EUFORIA has the strong benefit of making
individual queries predictably fast.

We wondered: is EUFORIA only winning because it hardly needs to do refinement?
The answer is no. Figure 4.3 shows the same scatter plot as Figure 4.2 but restricted
to EUFORIA‑solved benchmarks that required at least one abstraction refinement. It
shows that EUFORIA requires refinement for many of the benchmarks for which SPACER
times out.

EUFORIA Compared with IC3IA

Figure 4.4 shows a scatter plot of our results compared with IC3IA. IC3IA solves 128
benchmarks total. Excepting three of these, EUFORIA solves all the benchmarks that
IC3IA solves, usually in orders of magnitude less time. Our results are significant be‑
cause IC3IA and EUFORIA are quite similar: both implement a PDR‑style [33] algorithm,

14We tried dumping the benchmark after SPACER’s preprocessing step, but the benchmark was no
longer guaranteed to be Horn, so it was not a valid input for encoding to VMT with Horn2VMT.
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Figure 4.3: EUFORIA vs SPACER restricted to those benchmarks that require at least one ab‑
straction refinement.
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Figure 4.4: Scatter plot of EUFORIA vs IC3IA.

both operate on exactly the same VMT instance encoding, and both are written it C++.
They differ in two respects: (1) IC3IA uses (implicit) predicate abstraction and EUFORIA
uses EUF abstraction; (2) IC3IA’s SMT solver backend is MathSAT5 and EUFORIA’s is
Z3.

On the benchmarks where EUFORIA times out, two benchmarks get stuck after sev‑
eral seconds in an interpolant query; the other learns a pile of lemmas but doesn’t
converge in time.
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Figure 4.5: EUFORIANAA (no array abstraction) (𝑥 axis) compared with EUFORIA (𝑦 axis).

EUFORIA and Array Abstraction

For solvers that use lazy theory lemma learning or a trigger‑based saturation method
[115], array lemmas will be learned in response to property‑directed queries. Does
EUFORIA’s array abstraction really provide a benefit over such an approach?

To address this question, we modified EUFORIA to compute a hybrid abstraction
using the theory of EUF and arrays. It abstracts bit‑vector operations into UFs (as be‑
fore), but uses array theory operations for arrays. Call this configuration EUFORIANAA,
for No Array Abstraction.

As demonstrated in Figure 4.5, EUFORIANAA is significantly slower almost every‑
where and strictly slower in all cases but four. One important difference between
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EUFORIA and EUFORIANAA is an enormous disparity in array theory lemmas learned
by the underlying SMT solver. Between configurations, the difference of the num‑
ber of array theory lemma instantiations is almost two orders of magnitude (1.9), on
95% of the benchmarks; almost four orders of magnitude (3.8), on 50% of the bench‑
marks; and more than seven orders of magnitude (7.2), on 5%. To calculate this result,
we measure the number of array theory axiom instantiations in the underlying SMT
solver (Z3). Then, for each benchmark, we took the difference of the logs (base 10) be‑
tween the two configurations; this quantity is proportional to the order of magnitude
difference between the numbers.

We conclude that EUFORIANAA spends a lot of time reasoning about arrays despite
the fact that EUFORIA required relatively little array reasoning to solve the same bench‑
marks. Moreover, compared to SPACER’s 386 solves, EUFORIANAA solves only 227 in‑
stances, which (1) shows that array abstraction is critical to performance and (2) gives
some additional evidence that SPACER’s array projection helps its runtime.

EUFORIA in Itself—the Role of Lemmas

This section discusses EUFORIA’s learned lemmas as detailed in Section 3.4. Lemmas in
general play a relatively minor role; they’re only required in 19% of benchmarks that
EUFORIA solved (91). Moreover, only 22 benchmarks required interpolants. Figure 4.6
shows the count of total lemmas learned, broken down by whether EUFORIA learned
array lemmas or non‑array lemmas. First, we can see that there is a trend that EUFO‑
RIA learns fewer array lemmas than data lemmas. Second, all but two benchmarks
required fewer than 100 lemmas. These results suggest our benchmarks only depend
sparingly on the behavior of memory manipulations, and confirm the suitability of
EUFORIA’s abstraction. SPACER solves 34 of these benchmarks; out of 34, 14 benchmarks
require array lemmas and 20 do not.

4.7. Related Work

The relationship between EUF and the theory of arrays has been long recognized [111],
[116] and analyzed [117] and exploited in decision procedures [112] and in the imple‑
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mentation of several SMT solvers, including Yices [118] and Z3 [56]. Array terms are
compiled into EUF or a ground theory to instantiate the needed array axioms. Our
approach lifts EUF outside the SMT solver, to the model checking level, and refines it
on demand.

Komuravelli et al. introduce a model‑based projection for pre‑images in order to
rewrite array operators into terms in a scalar theory [34]; this algorithm is imple‑
mented in SPACER [36] used in our evaluation. Predicate abstraction applies to pro‑
grams with arrays directly [37], with the limitation that quantifier‑free interpolants
do not exist in general for the theory of arrays [111]. We inherit that limitation, but
contribute a different, inexpensive way to place array constraints in pre‑images and
refine them lazily.

Broadly, SMT solvers solve constraints over arrays in three ways (sometimes com‑
bined): (1) by rewriting selects and stores into a finite number of terms and axiom in‑
stantiations in a ground theory, possibly combined with EUF [112], [115]–[117], [119]–
[123]; (2) by abstraction‑refinement procedures over the array constraints [124], [125];
(3) by rewriting into (non‑abstract) representations which are solved with specialized
algorithms [81], [126], [127]. The issue addressed by our paper is applicable to each
of these: we use an abstraction that inexpensively supports (limited) array reasoning
and we only invoke an SMT array solver at the last possible moment.

4.7.1. Extensions To Other Theories

The EUF abstraction described so far has been applied to the quantifier‑free theory of
bit vectors and arrays. What about other theories?

It is likely that EUF abstraction over‑approximates any other SMT‑LIB theories.15

So long as interpreted function symbols behave like functions (i.e., obey functional
consistency), UFs over‑approximate them. This includes the theories of Integers, Re‑
als, Strings, and Floating Point. What is unclear is the effect of EUF abstraction on
refinement in these theories. Synthesizing refinement lemmas may be more or less
difficult, depending on the theory.

15http://smtlib.cs.uiowa.edu/theories.shtml
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Chapter 5.

EUFORIA with Functions

This chapter extends EUFORIA to support checking programs with functions. We intro‑
duce a novel encoding for programs with non‑recursive functions (Section 5.2). This
encoding enables EUFORIA as already described to reason about programs with func‑
tions. We formalize this encoding (Section 5.3) and detail its implementation (Sec‑
tion 5.4). Finally, we report some experiments comparing this encoding to a fully‑
inlined encoding (Section 5.5).

5.1. Introduction

Typical interprocedural program analyses must be function‑aware. Support for func‑
tions is baked into the analysis algorithm. Broadly, analyses either approximate the
call stack (via call strings) or approximate the mapping of inputs to outputs (via
function summaries) [128]. GPDR introduced a summary‑based approach for IC3 [50],
which SPACER builds upon [36].

These approaches share an important drawback: one has to modify the model
checker. To retrofit an intraprocedural checker to analyze programs with functions,
one usually does one of two things:

1. Full function inlining. When a function call is inlined, the body of the function
is copied to the call site. The function’s local variables are renamed to avoid
conflicts with the local variables at the call site. If all call sites of the function are
inlined, the function itself can be removed from the analysis.
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Inlining may lead to exponential blowup in the size of the program. Recursive
functions, moreover, can’t be inlined in general.

2. Abstraction. A function call 𝑥 = 𝑓(𝑦) can be replaced by an assignment 𝑥 = ⋆. If
the function is irrelevant to the property, then the analysis will return a correct
answer. But if it is relevant, then the analysis may result in a false positive: it
may claim the program has a bug due to a value stored in 𝑥, when in fact 𝑓(𝑥)
never returns any such value.

Instead, we propose an encoding that is concise and precise for non‑recursive pro‑
grams. It is concise because it does not clone functions, as required by full inlining,
so its size is linear in the input program’s size. It is precise because it preserves the
exact program semantics. Moreover, the encoding makes it possible to use existing
intraprocedural analyses transparently.

We implemented this encoding as SEAHORNVMT, a new SEAHORN backend [103].
SEAHORN is an extensible, LLVM‑based verification framework. We show experimen‑
tally that EUFORIA, an IC3‑based model checker, is able to discover reusable facts about
functions. In effect, we use IC3 to automatically derive function summaries by exploit‑
ing our encoding. Moreover, our encoding does not restrict the abstraction used by
the model checker.

Unfortunately, our encoding is limited to non‑recursive programs. Nevertheless,
we believe such an encoding is useful. The stack size for C programs is determined by
the operating system, so C programs usually don’t heavily rely on recursive functions.
Often, recursive functions are part of the “data” of programs, rather than “control.”
Typical examples used in motivating recursive function handling involve numerical
properties [36], [50], [99], [110]. Other recursive functions involve linked data struc‑
tures (lists, trees, graphs). We are not aiming to prove the correctness of algorithms
manipulating such data structures, such as tree rebalancing, graph reachability, etc.
Our focus is on control verification.

5.2. Function Encoding

We introduce a novel encoding in order to support programs with functions. The
core insight behind the encoding is that without recursion, at runtime the program
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will never repeat a call to a function already on the stack. Therefore, the possible stack
configurations can be represented as a graph rooted at the program entry function. A
call graph is a graph in which each vertex represents a function and there is an edge
from vertex 𝑓 to vertex 𝑔 iff 𝑓 calls 𝑔.

Since there is no recursion, all possible call sequences are representable as a finite
number of finite paths through the call graph. All call sites are finitely enumerable
as well16. Instead of pushing a stack frame for a call, we can use a normal branch
instruction and “activate” the corresponding (site, edge)‑pair; instead of popping the
stack on return, we again use a normal branch and “deactivate” the corresponding
(site, edge)‑pair. Assuming that all edges are initially inactive, we will never activate
an active edge (or deactivate a inactive one) because there are no recursive functions.

One advantage of our encoding is that indirect function calls are easily supported:
we simply use an ite to test which function is being invoked and activate the corre‑
sponding edge.

5.2.1. Example

The encoding introduces pseudo‑control wait and return states that model control in‑
side a function (wait) and returning from the function (return). We illustrate with an
example.

Consider a function 𝑓 that takes a single integer argument and returns an integer
value. A skeleton for 𝑓 is given below on the left, along with code that calls 𝑓 on the
right.

function int 𝑓(int 𝑢)
𝑙𝑠:

... use 𝑢 and set 𝑧 ...
𝑙𝑒: return 𝑧

function main()
𝑙𝑖: 𝑣 ← 𝑓(4)

...
𝑙𝑗: 𝑞 ← 𝑓(𝑣)

𝑙𝑠 and 𝑙𝑒 denote the function’s start and exit locations, and 𝑙𝑒 denotes the unique lo‑
cation in the function’s body corresponding to a return statement. In addition to any
declared local variables, the function’s state variables include its formal argument 𝑢
as well as a special variable rv that stores its return value. There are two calls to this

16Assuming the source file isn’t infinite.
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function at locations 𝑙𝑖 and 𝑙𝑗. The constraints needed to correctly encode these calls
consist of:

• Constraints to transition to the callee’s entry. Control enters 𝑓 from either call,
so the state updates for the entry location to 𝑓 are:

𝑙′𝑠 = 𝑙𝑖 ∨ 𝑙𝑗 (5.1)

• Constraints that set the function’s formal parameter 𝑢 for the call:

𝑢′ ≃ ite(𝑙𝑖, 4, ite(𝑙𝑗, 𝑣, 𝑢)) (5.2)

• Constraints that update the function’s return value rv once function exit is reached:

rv′ ≃ ite(𝑙′𝑒, 𝑧, rv) (5.3)

• Constraints that copy the return value to caller‑variables 𝑣 and 𝑞. To handle this
correctly, control must first be transferred to 𝑓 and the calling function(s) must
wait for 𝑓 to finish before updating 𝑣 and 𝑞. Let 𝑤𝑖, 𝑟𝑖 and 𝑤𝑗, 𝑟𝑗 denote pseudo
control states that correspond to waiting at and returning to locations 𝑙𝑖 and 𝑙𝑗,
respectively. The updates to these four pseudo states are:

𝑤′
𝑖 ≃ 𝑙𝑖 ∨ (𝑤𝑖 ∧ ¬𝑙𝑒) 𝑤′

𝑗 ≃ 𝑙𝑗 ∨ (𝑤𝑗 ∧ ¬𝑙𝑒) (5.4)

𝑟′𝑖 ≃ 𝑤𝑖 ∧ 𝑙𝑒 𝑟′𝑗 ≃ 𝑤𝑗 ∧ 𝑙𝑒 (5.5)

In these equations, once the formal arguments of 𝑓 are updated by the actual ar‑
guments, the caller enters a call‑site‑specific waiting state 𝑤 = true and remains
in that state as long as 𝑓 has not reached its end, indicated by 𝑙𝑒 being false.
When 𝑓 exits, 𝑙𝑒 becomes true and control is transferred to the caller, indicating
a return 𝑟𝑖 = true or 𝑟𝑗 = true. Updates to variables 𝑣 and 𝑞 can now be made:

𝑣′ ≃ ite(𝑟′𝑖, rv, 𝑣) 𝑞′ ≃ ite(𝑟′𝑗, rv, 𝑞) (5.6)

This encoding supports nesting of function calls, but not recursion. Note that wait
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states may be simultaneously true, even though multiple locations are never simul‑
taneously true. Nested function calls may lead to several 𝑤’s being true at the same
time (each one represents a stack frame).

5.3. Formal Presentation

We extend the MiniLLVM language from Figure 3.1 to include functions and function
calls. We call this language FunLLVM and it is shown in Figure 5.1. Instead of a
single @main, FunLLVM supports defining arbitrary top‑level functions with thedefine
directive. These are called with the call command. Functions may not be passed as
parameters.

In order to model multiple‑parameter functions, this language supports fixed‑size
vectors of values with the type v𝑠𝑧. Therefore, the values domain is over 𝑛‑tuples
of integers. Frames now include the current function identifier and program states
include a stack of function calls. A module is now a list of function definitions. For this
presentation we assume functions have no side effects. In practice, side effects can be
handled by introducing updated versions of side‑effected parameters and threading
them through the encoding.

The semantics is defined as a judgment mod ⊢ 𝑆 ⟶ 𝑆′ meaning that in the module
mod, executing program state 𝑆 results in new state 𝑆′. A program state 𝑆 = (𝑀, 𝜎)
is composed of a memory state 𝑀 and list of stack frames 𝜎. FunLLVM is call‑by‑
value and follows typical call & return semantics. A call evaluates its parameter in
the caller’s context, transfers control to the callee, and pairs the evaluated parame‑
ter with the callee’s argument and in the callee’s context binds them (rule CALL). A
return instruction inspects the highest stack frame to find the caller’s location and
binds the caller’s variable to the return value of the callee, resuming execution after
call instruction in the caller (rule RETURN).

We assume that every function returns a value; this simplifies the presentation but
generalizing to functions returning void is straightforward. Our encoding captures
functions that do not terminate; they will correctly never return to the caller. We
also assume each function 𝑓 has unique entry block 𝑏𝑠 and exit block 𝑏𝑒. 𝑏𝑒 contains
only a return instruction. No other blocks contain returns. Further, we assume that
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FunLLVM syntax:

Category Meta‑variable Productions
Types typ ::= isz | vsz | void | typ∗ | id
Constants cnst ::= isz Int | (typ∗)null
Values val ::= id | cnst | vsz [val]
Binops bop ::= add | mul | sdiv | load | store | ⋯
Right‑hand‑sides rhs ::= val1 bop val2
Arguments arg ::= typ id
Parameters param ::= typ val
Commands c ::= id ∶= call typ0 id0(param)

| id ∶= rhs
Terminators tmn ::= br val 𝑙1 𝑙2 | return typ val
Phi Nodes 𝜙 ::= id = phi typ [val1, 𝑙1], [val2, 𝑙2]
Instructions insn ::= 𝜙 | c | tmn
Non‑𝜙s 𝜓 ::= c | tmn
Blocks b ::= 𝑙 𝜙 c tmn
Functions f ::= define typ id( arg ){𝑏𝑠, b, 𝑏𝑒}
Module mod ::= module 𝑓

FunLLVM semantic domains:

Values 𝑣 ::= Int𝑛 Environment 𝛿 ::= id ↦ 𝑣
Frames 𝜎 ::= (fid, 𝑙, insn, tmn, 𝛿) Prog Counters pc ::= 𝑙.𝑖 | 𝑙.t

Prog States S ::= 𝑀,𝜎

FunLLVM operational semantics:

CALL
𝑐 = r ∶= call typ1 id1(typ val) 𝑓1 = define typ1 id1(typ p){𝑏𝑠, 𝑏, 𝑏𝑒}

⟪𝑣𝑎𝑙⟫𝛿 = 𝑣 𝜎0 = (𝑓0, 𝑙0, (𝑐, 𝑐0), tmn0, 𝛿) 𝑏𝑠 = 𝑙1 𝑐1 tmn1
mod ⊢ 𝑀, (𝜎0, 𝜎) ⟶ 𝑀, ((id1, 𝑙1, 𝑐1, tmn1, {}[𝑝 ↦ 𝑣]), 𝜎0, 𝜎)

RETURN
𝑐 = r ∶= call typ1 id1(typ val) ⟪val1⟫𝛿 = 𝑣1 𝜎0 = (id0, 𝑙0, (𝑐, 𝑐0), tmn0, 𝛿0)

mod ⊢ 𝑀, ((id1, 𝑙1, [], return val1, 𝛿1), 𝜎0, 𝜎) ⟶ 𝑀, ((id0, 𝑙0, 𝑐0, tmn0, 𝛿0[𝑟 ↦ 𝑣1]), 𝜎)

Figure 5.1: FunLLVM syntax and semantics, defined as an extension of MiniLLVM (Sec‑
tion 3.2, Figure 3.1), with new elements highlighted .
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if a function call occurs in a basic block, it is the first instruction and is immediately
followed by an unconditional branch instruction. In other words, calls are isolated
in blocks. We describe the encoding under these assumptions. Later, we will explain
how to satisfy them. To simplify our presentation, we use an auxiliary meta‑level
encoding function nite. It creates a nested if‑then‑else tree from two (equal‑length)
lists of conditions and values.

Definition 5.1 (Nested If‑then‑else).

nite(𝑐, 𝑣, 𝑣) = ite(𝑐1, 𝑣1, ite(𝑐2, 𝑣2,… ite(𝑐𝑛, 𝑣𝑛, 𝑣)))) where
𝑐 = (𝑐1, 𝑐2,… , 𝑐𝑛)
𝑣 = (𝑣1, 𝑣2,… , 𝑣𝑛) .

The remainder of this section defines a transition system encoding (𝑋, 𝑌 , 𝐼, 𝑇 ) for
a program containing a function 𝑓 , defined generically as:

define typ 𝑓(arg){𝑏𝑠, b, 𝑏𝑒} where 𝑏𝑒 = return val .

There are 𝑛 calls to 𝑓 in the program; let 𝑙𝑗 (𝑗 ∈ {1,… , 𝑛}) denote the block location
of the call numbered 𝑗. Let 𝑝𝑗 denote the actual parameter value for the 𝑗’th call to 𝑓 .
Let 𝑣𝑗 denote the caller‑return variable for the 𝑗’th call to 𝑓 . So, the 𝑗’th call looks like
this:

𝑙𝑗: v𝑗 = call 𝑓(𝑝𝑗)

We extend the encoder 𝜇J⋅K from Section 3.2.1. The encoding state space for a Fun‑
LLVM program contains the same state variables as for a MiniLLVM program, along
with some extras. Additionally, 𝑋 contains, for each function 𝑓 as above:

1. an argument‑variable 𝜇J𝑎𝑟𝑔K representing the input to 𝑓 ;

2. a return‑variable rv of sort 𝜇JtypK; and

3. wait 𝑤𝑗 and return 𝑟𝑗 variables for each call site.

Figure 5.2 shows the constraints to encode non‑recursive functions. (5.7) shows
how arguments are set depending on call site. Upon entering a function, the system
enters wait state that indicates it is waiting to return from 𝑓 . In (5.8), a call binds the
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𝜇JargK′ ≃ nite(ℓ, 𝜇J𝑝K, 𝜇JargK) (5.7)

Update function arguments to actuals.

𝑤′
1 ≃ (ℓ′𝑠 ∧ ℓ1) ∨ (𝑤1 ∧ ¬ℓ𝑒)

𝑤′
2 ≃ (ℓ′𝑠 ∧ ℓ2) ∨ (𝑤2 ∧ ¬ℓ𝑒)
⋯
𝑤′

𝑗 ≃ (ℓ′𝑠 ∧ ℓ𝑗) ∨ (𝑤𝑗 ∧ ¬ℓ𝑒)

(5.8)

Update stack by recording which callee to
wait for.

rv′ ≃ ite(ℓ′𝑒, 𝜇J𝑣𝑎𝑙K, rv) (5.9)

Update return value at end of called func‑
tion.

𝜇J𝑣1K′ ≃ ite(𝑟′1, rv, 𝜇J𝑣1K)
𝜇J𝑣2K′ ≃ ite(𝑟′2, rv, 𝜇J𝑣2K)

⋯
𝜇J𝑣𝑗K′ ≃ ite(𝑟′𝑗, rv, 𝜇J𝑣𝑗K)

(5.10)

Update caller variable with callee return
value.

(a) Data and pseudo control updates.

ℓ′𝑠 ≃ (ℓ1 ∨ ℓ2 ∨ ⋯ ∨ ℓ𝑗) (5.11)

Transfer control to callee entry from some
call site.

𝑟′1 ≃ ℓ𝑒 ∧ 𝑤1
𝑟′2 ≃ ℓ𝑒 ∧ 𝑤2
⋯
𝑟′𝑗 ≃ ℓ𝑒 ∧ 𝑤𝑗

(5.12)

Return from callee to appropriate caller.

(b) Control updates.

Figure 5.2: Encoding of non‑recursive function calls.
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The SeaHorn Verification Framework 345

6. Finally, it is implemented on top of the open-source LLVM compiler infrastruc-
ture. The latter is a well-maintained, well-documented, and continuously
improving framework. It allows SeaHorn users to easily integrate program
analyses, transformations, and other tools that targets LLVM. Moreover, since
SeaHorn analyses LLVM IR, this allows to exploit a rapidly-growing fron-
tier of LLVM front-ends, encompassing a diverse set of languages. SeaHorn
itself is released as open-source as well (source code can be downloaded from
http://seahorn.github.io).

Fig. 1. Overview of SeaHorn architecture.

The design of SeaHorn provides users, developers, and researchers with
an extensible and customizable environment for experimenting with and imple-
menting new software verification techniques. SeaHorn is implemented in C++
in the LLVM compiler infrastructure [38]. The overall approach is illustrated in
Fig. 1. SeaHorn has been developed in a modular fashion; its architecture is
layered in three parts:
Front-End: Takes an LLVM based program (e.g., C) input program and gener-

ates LLVM IR bitcode. Specifically, it performs the pre-processing and opti-
mization of the bitcode for verification purposes. More details are reported
in Sect. 2.

Middle-End: Takes as input the optimized LLVM bitcode and emits verifi-
cation condition as Constrained Horn Clauses (CHC). The middle-end is in
charge of selecting the encoding of the VCs and the degree of precision. More
details are reported in Sect. 3.

Back-End: Takes CHC as input and outputs the result of the analysis. In
principle, any verification engine that digests CHC clauses could be used to
discharge the VCs. Currently, SeaHorn employs several SMT-based model
checking engines based on PDR/IC3 [13], including Spacer [35,36] and
GPDR [33]. Complementary, SeaHorn uses the abstract interpretation-
based analyzer IKOS (Inference Kernel for Open Static Analyzers) [14] for
providing numerical invariants1. More details are reported in Sect. 4.

1 While conceptually, IKOS should run on CHC, currently it uses its own custom IR.

Figure 5.3: Overview of the SEAHORN architecture, taken from [103].

corresponding wait state, which stays true so long as the function has not returned.
(5.9) handles storing the return value of 𝑓 into 𝑟𝑣 once the function has finished. On
return from 𝑓 , i.e., when ℓ𝑒 holds, the call‑site variable 𝑣𝑗 must be set to 𝑓 ’s return
value; (5.10) shows these state updates. 𝑟𝑗 denotes the state immediately after return‑
ing to the corresponding call site. Note that once 𝑓 returns, the corresponding wait
state 𝑤𝑗 will deactivate.

Next we define the control updates. (5.11) defines the function entry; it is entered
from one of the call sites. In (5.12), returning to a call site occurs when the system is
in the corresponding wait state and at the end of the function.

The transition relation, then, is defined as the conjunction of the constraints from
Section 3.2 as well as those in Figure 5.2. The initial state 𝐼 and inputs𝑌 are unchanged
from the MiniLLVM encoding.

5.4. Implementation

We implemented this encoding as a backend for SEAHORN [103], called SEAHORNVMT.
SEAHORN encodes LLVM programs using a multi‑stage process shown in Figure 5.3.
SEAHORN’s front‑end is quite sophisticated, performing inlining, dead code elimina‑
tion, SSA form, CFG simplifications, loop invariant code motion, scalar replacement
of aggregates, etc. It performs a three‑phase shape analysis that is context‑ and field‑
sensitive [129], [130]. This results in a data structure graph where each node repre‑
sents a (potentially infinite) set of memory objects, edges represent points‑to relation‑
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ships, and distinct nodes represent disjointness. Nodes are also typed and represent
distinct fields distinctly. Node updates are represented in a memory SSA form, al‑
lowing heap manipulations to be modeled as conveniently as scalar variables.

SEAHORN provides small‑block and large‑block Horn encodings. A large‑block en‑
coding [45] summarizes cycle‑free sections of code by a single transition. A small‑
block encoding (called a single‑block encoding in [45]) models each basic block by a
distinct transition. Large‑block encodings are typically much more efficient, so we
integrated our VMT encoding with SEAHORN’s large‑block encoding.

SEAHORN large‑block encoding [46] is expressed in terms of a cutpoint graph. Our
implementation alters this graph by adding new cutpoints for function calls. We now
precisely describe the cutpoint graph, how our implementation alters it, and the im‑
plementation of the resulting encoding.

Definition 5.2. (Cutset and Cutpoint [46]) Let 𝐺 = (𝑉 ,𝐸) be a graph. A set of vertices
𝑆 ⊆ 𝑉 is a cutset of 𝐺 iff 𝑆 contains a vertex from every cycle in 𝐺. Equivalently, the
graph (𝑉 ∖ 𝑆,𝐸 ∖ ((𝑆 × 𝑉 ) ∪ (𝑉 × 𝑆))) is acyclic. Every 𝑠 ∈ 𝑆 is a cutpoint.

Definition 5.3 (Cutpoint Graph). Let 𝐺 = (𝑉 ,𝐸) be a graph and 𝐶 ⊆ 𝑉 a cutset. The
𝐶‑cutpoint graph is 𝐺𝐶 = (𝐶,𝐸𝐶) where, for every 𝑛1,𝑚 ∈ 𝐶, if there exists a path
𝑛1, 𝑛2,… , 𝑛𝑘,𝑚 in 𝐺 such that 𝑛2,… , 𝑛𝑘 ∉ 𝑆, then (𝑛1,𝑚) ∈ 𝐸𝐶 .

If the cutpoint is clear from context, we omit the cutset qualifier on the cutpoint
graph.

Definition 5.4 (L‑Block). Let 𝐺𝐶 = (𝐶,𝐸𝐶) be a cutpoint graph for the CFG 𝐺 =
(𝑉 ,𝐸). For each edge (𝑛,𝑚) ∈ 𝐸𝐶 , let 𝐶(𝑛,𝑚) be the set of all vertices (excluding 𝑚
unless 𝑚 = 𝑛) reachable on any path 𝑛, 𝑛2,… , 𝑛𝑘,𝑚 in 𝐺 such that 𝑛2,… , 𝑛𝑘 ∉ 𝐶.
𝐶(𝑛,𝑚) is the lblock (for “large block”) corresponding to the edge (𝑛,𝑚) with respect
to the cutset 𝐶 for 𝐺.

Example 5.1 (CFG and its Cutpoint Graph).
A control flow graph 𝐺.
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Let 𝐶 = {𝑎, 𝑒} be a cutset for 𝐺. The cutpoint graph is 𝐺𝐶 = (𝐶,𝐸𝐶) where

𝐸𝐶 = {(𝑎, 𝑒), (𝑒, 𝑒), (𝑒, 𝑎)} .

The cutpoint graph looks like this:

𝑎 𝑒

and the large blocks associated with each cutpoint graph edge are:

𝐶(𝑎,𝑒) = {𝑎, 𝑏, 𝑐, 𝑑}
𝐶(𝑒,𝑒) = {𝑒, 𝑓, 𝑔, ℎ}
𝐶(𝑒,𝑎) = {𝑒, 𝑓, 𝑔, ℎ} .

The cutpoint graph defines a summary of the program; this is made precise in [46].
Using a cutpoint graph and its lblocks, SEAHORNVMT produces a transition system.
Each edge in the cutpoint graph is encoded as a single transition, using the edge’s
lblock. The subgraph induced by an lblock is acyclic so the lblock is encoded using
combinational logic only.

The encoding presented in the previous section assumes that each function call is
isolated in a block. LLVM allows an arbitrary number of calls to occur in a single basic
block because the stack is implicit in LLVM’s representation. Our encoding makes the
stack explicit and it is simpler to implement if we isolate calls in blocks.

To ensure that function calls fit our assumptions, we implemented an IR pass,
SplitBBAtCalls. SplitBBAtCalls either modifies a given block or it does not. Blocks
not containing calls are not modified; blocks with at least one call are modified. Blocks
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containing calls fit the pattern on the left; assume that 𝑐0 contains no calls. Such basic
blocks are transformed to the set of blocks on the right:

𝑙: 𝑐0
v = call 𝑓(𝑎1,… , 𝑎𝑘)
𝑐1

𝑙: 𝑐0
br true 𝑙𝑐𝑎𝑙𝑙 _

𝑙𝑐𝑎𝑙𝑙: v = call 𝑓(𝑎1,… , 𝑎𝑘)
br true 𝑙1 _

𝑙1: 𝑐1
where 𝑙𝑐𝑎𝑙𝑙 and 𝑙1 are fresh block names. Afterward, the block 𝑙1 is recursively pro‑
cessed, as it might contain further calls. At the call site for 𝑓 , SplitBBAtCalls splits
block 𝑙 into three blocks:

1. 𝑙: This block contains non‑call instructions up to (but not including) the call. We
insert an unconditional branch from 𝑙 to 𝑙𝑐𝑎𝑙𝑙.

2. 𝑙𝑐𝑎𝑙𝑙: This block isolates the call site. We insert an unconditional branch from
𝑙𝑐𝑎𝑙𝑙 to 𝑙1.

3. 𝑙1: This block contains the commands after the call. Note that 𝑙1 may contain
further call instructions.

Since control flows from 𝑙 to 𝑙𝑐𝑎𝑙𝑙 to 𝑙1, the transformed program behaves the same as
the original program. Only two branch instructions are introduced for each call, so
the transformed program is linear in the size of the original one.

One particular problem this transformation addresses is the following. Consider a
block like this:

𝑙1: 𝑡1 = 𝑥 + 𝑦
𝑡2 ∶= op(...)

𝑙2: 𝑞 = phi [𝑡1, 𝑙1],…
𝑟 = phi [𝑡2, 𝑙1],…

Suppose that op is an add instruction. The MiniLLVM encoding for these blocks works
out fine. If we assume that 𝑥 and 𝑦 are state variables, the set of state variables is
𝑋 = {𝑥, 𝑦, 𝑞, 𝑟}. The set of inputs is 𝑌 = {𝑡1, 𝑡2}.

Instead, suppose that op(...) = call 𝑓() for some 𝑓 . Since 𝑡1 is calculated before the
call to 𝑓 and used after the call to 𝑓 , its value must be “remembered” across the call
to 𝑓 . Therefore, 𝑡1 must be a state variable, not an input.

119



SEAHORNVMT adds cutpoints as follows. First, we run SplitBBAtCalls after all of
SEAHORN’s optimizations but immediately before encoding. Second, SEAHORNVMT
adds each newly‑isolated call block to the cutset. This way we get maximal benefit
from the lblock encoding since we introduce extra cutpoints only for calls. SEAHORN‑
VMT then outputs interprocedural encoding in VMT format.

5.5. Evaluation

RQ1 How does the wait‑encoding compare with the same programs, fully inlined?

RQ2 Can we expect that as number of calls increases, we get more benefit from this
encoding, under ideal conditions?

RQ3 Does this encoding work with another solver, such as IC3IA?

RQ1: Wait Encoding vs. Full Inlining

The configuration where all functions are inlined is called Inline. The wait encoding
is called Wait. LLVM calculates a heuristic cost for a given call site to a given func‑
tion. This cost accounts for things like the potential code size increase, the stack size
increase, the savings of removing a function, etc. If this cost is less than the “inline
threshold,” then the call site is inlined. We set the inline threshold to 8191 for the
Wait‑encoded benchmarks. We determined empirically that 8191 was a good balance
between no inlining and full inlining.

To generate the large‑block benchmarks, SEAHORN was limited to an hour of wall
time and 7 GB of memory. SEAHORN may fail to encode because of time‑out, mem‑
out, or because SEAHORN crashes during optimization. We observed all three of these
cases. Out of 948 original benchmarks (the same used in Chapter 4), this process
produced 709 benchmarks.

Figure 5.4 shows a scatter plot of runtimes using a large‑block encoding. Wait
solves 388 benchmarks and Inline 387. 348 were solved by both configurations; of
these, 233 (67%) are below the diagonal, suggesting that the Wait encoding improves
runtime overall. The two configurations are complementary in that each has nearly
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Figure 5.4: Inline configuration vsWait encoding.
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40 uniquely solved benchmarks. A portfolio model checker would do well to try both
encodings.

WhenWait times out (but Inline doesn’t) There are 39 benchmarks for which Wait
times out.

1. 20 of these benchmarks slow down due to longer proofs despite the fact that the
Wait encoding is smaller in overall size and there are 10’s of calls to functions.

2. On 15 benchmarks EUFORIA gets stuck in a refinement step, but does not get stuck
on the Inline version.

3. The remaining 4 may fit into the first category, but it’s hard to tell.

When Inline times out (butWait doesn’t) There are 40 benchmarks for which Inline
times out.

1. 23 benchmarks suffer at least 2x blowup in size under Inline which causes them
to be much slower than Wait.

2. 11 benchmarks get stuck during refinement.

3. 3 benchmarks have longer proofs under Inline but this isn’t due to a much larger
size.

The remaining 2 benchmarks don’t fit into the previous categories and we’re not yet
sure exactly what causes the difference.

As discussed above, SEAHORNVMT produces its Wait encoding by inserting a cut‑
point for each function call. This interacts with the large‑block encoding, sometimes
quite negatively compared to inlining. As a result, it is difficult to tell if an improve‑
ment (or lack thereof) is due to the block size or to the Wait encoding. Take the fol‑
lowing program, for instance:
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function
main()
𝑙1: 𝑓()
𝑙2: 𝑓()
𝑙3: 𝑓()
𝑙4: 𝑓()
𝑙5: 𝑓()
𝑙6:

function 𝑓()
𝑥 ← 𝑥+𝑦

𝑙1: 𝑥 ← 𝑥 + 𝑦
𝑙2: 𝑥 ← 𝑥 + 𝑦
𝑙3: 𝑥 ← 𝑥 + 𝑦
𝑙4: 𝑥 ← 𝑥 + 𝑦
𝑙5: 𝑥 ← 𝑥 + 𝑦
𝑙6:

If every call to 𝑓 is inlined, what results is the program on the right. This program
can be encoded as a single large block comprised of the five addition statements. The
large‑block encoding of this program uses two locations: one corresponding to 𝑙1–𝑙5
and one for 𝑙6. The Wait encoding of this program uses 12 locations: 2 for the entry
and exit of 𝑓 , 5 for each call site, and 5 for each return site. TheWait encoding requires
examining many more transitions, compared to the inlined encoding.

The number of state variables may change between encodings, again because of the
block size. One might expect that Wait‑encoded benchmarks will contain the same
state variables as Inline‑encoded ones (aside from variables introduced to encode calls
themselves). But this is not so, again because of the large block encoding. For instance:

𝑙: 𝑥 ← 𝑎 + 𝑏
𝑦 ← 𝑏 ∗ 𝑐
𝑡 ← 𝑓(𝑥, 𝑦)
𝑧 ← 𝑡 ∗ 𝑥 ∗ 𝑦
if ⋆ then

goto 𝑙
... use 𝑧 ...

When Wait‑encoded, 𝑥 and 𝑦 are state variables because they are used after the call
to 𝑓 , that is, after the transitions to the entry, and eventually the exit, of 𝑓 . When
Inline‑encoded, 𝑥 and 𝑦 are simply names for 𝑎+ 𝑏 and 𝑏 ∗ 𝑐, respectively, and are not
encoded as state variables.

To get a clearer picture of the Wait encoding’s effect — in other words, to remove
the interaction with block size — we might use an encoding in which each instruction
is encoded as a single transition. Such an encoding would be totally impractical for
verification, but it would allow us to more directly compare Inline‑encoded andWait‑
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encoded benchmarks.
Unfortunately, SEAHORN does not easily support such an encoding. A small‑block

encoding is as close as we can get. In the small‑block encoding, each transition in
encodes executing a single basic block.

In the small‑block configuration, SEAHORN was given 5 minutes of wall time and 1
GB memory for encoding. As a result, some benchmarks failed during inlining that
did not fail under the large‑block configuration. Furthermore, the Inline configuration
fails more often thanWait because it uses more resources. All told, there are 599 Inline
benchmarks and 643 Wait benchmarks.

Figure 5.5 shows size information for the small‑block benchmarks. I use violin plots
to show aggregate data. A violin plot [131] is an augmented box plot. Box plots show
four features of a variable: the median, spread, asymmetry, and outliers. The median
is denoted by a line in the box. The box extends up and down from the 1st to the 3rd
quartiles, that is, the 25% lowest values are below the box and the 25% highest are
above it, with the rest inside. The violin plot omits the outliers and adds a density
trace, which is a smoothed histogram. The trace is plotted symmetrically about the
vertical midline of the plot.

Figure 5.6 shows three measurements from the benchmark data: the number of
calls, functions, and the call ratio. These are measured on the intermediate LLVM
representation. The call ratio is the ratio of calls to functions. The most salient con‑
clusion from these plots is that the call ratio is low: it never exceeds one. While we
don’t know an optimal call ratio for the wait encoding, a higher ratio is likely to pro‑
vide more benefit, as we will see in our discussion of RQ2.

The Inline configuration contains functions, which was initially surprising. All
function calls are inlined, as can be seen by the lack of function calls in the num‑calls
plots in Figure 5.6. We discuss this in the subsequent Limitations section, as it is an
artifact of the current implementation.

In Figure 5.7, Wait solves 17 benchmarks not solved by Inline. On 5 of these bench‑
marks, Inline crashes or runs out of resources during encoding. On 10 of these bench‑
marks, Inline produces a much larger benchmarks andWait’s benchmark is able to be
solved more quickly and easily. On the remaining 2 benchmarks the previous expla‑
nations don’t hold and the reason is yet unknown.
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(b) Solved benchmarks.

Figure 5.5: Benchmark size distribution. The size of a benchmark is the number of dis‑
tinct expressions used to define the initial state, transition system, and property
formulas.

Conclusion In both the large‑ and small‑block encodings, we see frequently that
when full inlining blows up (even as little as doubling in size), EUFORIA takes advan‑
tage of the concise Wait encoding and solves more quickly. Optimizing the encoding
by better inlining or more selectively applying it may show a better overall improve‑
ment. For example, one could calculate the improvement that results from doing
inlining to see if it reduces the number of large blocks. If so, do inlining. Otherwise,
don’t.

Questions for future work:

• Why doesWait performance not improve over Inlinewhen there are many func‑
tion calls?

• What causes the Wait proofs to get longer even if the benchmark is smaller than
Inline?
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(a) Comparing configurations on aggregate function measurements over all benchmarks.
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(b) Comparing configurations on aggregate function measurements over benchmarks solved by
each configuration. The call ratio never exceeds one. This suggests our encoding isn’t likely
to give much benefit.

Figure 5.6: Aggregate benchmark info about functions using small‑step encoding. The call
ratio is the number of calls divided by the number of functions.
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1 int i;
2 void loop() {
3 do {
4 i += 3;
5 } while (i < 5);
6 __VERIFIER_assert(i < 7);
7 }
8

9 int main() {
10 i = 0; loop(); /* this line repeats some number of times */
11 /* ... more calls to loop() */
12 return 0;
13 }

(a)Microbenchmark template. Each instance of this microbenchmark varies the number of calls to
loop.
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(b)Microbenchmark results under Inline andWait encodings. The 𝑥 axis is the number of calls to
loop. The 𝑦 axis for total_time is in seconds.

RQ2: Reusable Reasoning

This section demonstrates an important feature of our encoding: EUFORIA can discover
information that is reusable across different calling contexts. We created a sequence
of benchmarks to show the potential of this reuse. The benchmark template in Fig‑
ure 5.8a is used to derive the sequence.

It consists of a function loop which satisfies a simple assertion. When checking loop

in isolation, EUFORIA generates 7 refinement lemmas to prove that loop satisfies the
assertion. The 𝑛th instance of the benchmark repeats the call to loop 𝑛 times. We
tested values of 𝑛 between 2 and 100 which means the call ratio is between 2 and
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100, respectively. We tested the Inline encoding against the Wait‑0 encoding, where 0
refers to the inline threshold. Using Wait‑0 guarantees that no inlining is performed
at all.

Figure 5.8b shows the results of solving the benchmark sequence using the Wait‑0
and Inline encodings. In the Inline configuration, the number of lemmas grows num‑
ber of call sites 𝑛 increases. Each call site is inlined, resulting in 𝑛 distinct while loops
for 𝑛 distinct call sites. Each lemma needs to be learned for each distinct occurrence
of the while loop. Using the Wait encoding, however, the number of lemmas stays
constant at 7! The lemmas are learned once for the body of loop and reused at all call
sites.

Furthermore, the Inline configuration increases convergence depth and total time
as a function 𝑛. But the Wait encoding converges at a constant depth (5) and the time
looks to increase linearly (and slowly). All Wait runtimes are below three seconds,
even for 𝑛 = 100.

We did not test Inline benchmarks for 𝑛 beyond 15, since the runtime exceeds our
timeout of 5 minutes. Using the Wait encoding, every benchmark up to 𝑛 = 100 is
solved in at most a couple of seconds.

RQ3: IC3IA

We ran IC3IA on the 709 large‑step benchmarks. The runtime scatter plot for these ex‑
periments is shown in Figure 5.9. The configurations are again complementary, since
Wait solves 16 unique benchmarks and Inline solves 14 uniques. The Wait configu‑
ration solves two more benchmarks than Inline. 134 benchmarks are solved by both
configurations; of these, 63 (47%) are below the diagonal. Since these results are con‑
sistent with EUFORIA’s, we did not deeply investigate these benchmarks. These results
show that the Wait encoding is usable with other model checkers.

5.5.1. Limitations

The implementation has several limitations. It is not conceptually necessary to add
cutpoints for each function call, as SEAHORNVMT does. All that a cutset requires is a
vertex from every cycle in the control flow graph, as discussed in Section 5.4. A clev‑
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Figure 5.9: Runtime scatter plot for IC3IA.
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erer implementation would do the flow analysis necessary to minimize the number
of new cutpoints.

We frequently found that encoded benchmarks contained functions that were never
called. In these cases the function is used because its address is stored into a data struc‑
ture; but it isn’t called. SEAHORN (including LLVM’s passes) does not use a pass that
detects such cases so that the function can be removed. As a result, the benchmark
encoding is cluttered with many infeasible transitions, negatively affecting the un‑
derlying SMT solving.

5.6. Related Work

GPDR [50] integrates procedures — encoded as linear Horn clauses — with IC3. The
core change is that proof obligations are arranged in a DAG instead of a list. A satisfi‑
able pob generates two predecessors instead of one. If a node is proved unreachable,
its sibling is removed from the DAG as well because it no longer matters to the cur‑
rent potential counterexample. A counterexample is found when all the leaves of
the DAG are in 𝐼 . To facilitate finding counterexamples, GPDR maintains a cache that
under‑approximates up to length‑𝑛 executions. Nodes are added to the cache when
in 𝐼 and, recursively, when both children are in the cache. Therefore, when the root
of the counterexample DAG is in the cache, GPDR terminates with a counterexample.

SPACER [36] maintains both over‑ and under‑approximations of procedures. It main‑
tains a symbolic over‑approximation (similar to that maintained by IC3 frontiers). It
also maintains a symbolic under‑approximation which facilitates call site analysis
without inspecting the callee’s body.

SLAM [61] computes procedure summaries in terms of its predicate abstraction,
using BDDs as the underlying data structure. Whale [99] computes summaries from
interpolants derived from infeasible executions in which callees are under‑approxi‑
mated. Others that use Craig Interpolation for function handling include HSF [132],
Duality [133], Ultimate Automizer [134], and Eldarica [135].

Sharir and Pnueli [128] identify a problem with treating calls and returns as branches:
facts about call sites bodies can “leak into” other call sites. Treating calls and returns
as branches amounts to, in the terminology of Reps et al. [136], “considering all paths
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rather than considering only the interprocedurally realizable paths.” The problem
occurs because branches corresponding to a call are no longer associated with their
corresponding return branches. As a result, paths which should be infeasible are fea‑
sible. For the example of Section 5.2.1, if calls and returns were treated as branches,
the following path would be considered feasible:

𝑙𝑖 →𝑐 𝑙𝑠 → ⋯ → 𝑙𝑒 →𝑟 𝑙𝑗 .

This path corresponds to a call to 𝑓 that returns to the wrong call site (it should return
to 𝑙𝑖, where the call originated).

This situation cannot happen in our encoding. Calls are treated as branches along
with stack information, in the form of wait and return states. The stack information
pairs calls and returns properly so that only interprocedurally realizable paths are
explored.

DAG inlining [137] is a procedure for handling programs with no loops and no
recursion. It constructs a DAG unfolding of a program for deciding bounded reach‑
ability queries. The DAG unfolding achieves exponential savings compared to a tree
unfolding of the call graph. Our approach, on the other hand, does not unfold the
call graph at all, but encodes all possible call sequences implicitly by assignments to
the wait states.

Stratified inlining [138] is a method for iteratively refining approximations of (pos‑
sibly‑recursive) procedure bodies on demand. The technique does not eliminate the
cost of inlining, but delays it. By contrast, we do not require any inlining.
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Chapter 6.

Epilogue

6.1. Conclusions

We presented an approach for the automatic verification of safety properties of pro‑
grams using EUF abstraction on top of incremental, inductive model checking. Our
approach targets control properties by abstracting operations and predicates but leav‑
ing a program’s control flow structure intact. EUF abstraction is syntactic; it pre‑
serves the structure of the concrete transition system and can be computed in linear
time. EUF has particularly efficient decision procedures. We have integrated it with
modern incremental inductive solving and proved that it terminates by producing
a word‑level inductive invariant demonstrating safety or a true concrete‑level coun‑
terexample.

Our evaluations show that EUFORIA is particularly effective on control‑oriented bench‑
marks. In many cases EUFORIA completes without requiring any refinements even in
the presence of arithmetic operations. In cases where refinement is required, most
refinement lemmas are simply constraints on the abstract transition system that do
not increase the size of the state space. This suggests that EUF abstraction is a natu‑
ral over‑approximation of program behavior when data state is mostly irrelevant to
establishing the truth or falsehood of the desired safety property.
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6.2. Future Work

• Some control properties require reasoning localized data operations. Specific
code fragments in a program may be critical for verifying the property, even if
by and large data is irrelevant. It may be beneficial in these situations to modify
the refinement procedure so that such fragments are concretized to avoid gen‑
erating a large number of refinement lemmas. In other words, uninterpreted
functions are replaced with their concrete counterparts, enabling concrete rea‑
soning mixed with EUF abstraction.

• The term projection procedure presented in Chapter 3 works for some EUF for‑
mulas. It works almost all the time for transition systems whose encoding we
control. It appears that, at least, it doesn’t work when the existential formula
∃𝑉 . 𝜙qf(𝑉 ,𝑊) implies an atom 𝑎(𝑊) involving a term not in 𝜙qf.

We want to characterize exactly when this projection works and when it does
not, either syntactically (e.g., “it works on certain types of formulas”) or seman‑
tically (e.g., ”it works when the quantifier‑free model has a certain property”).
Moreover, we wish to extend the projection to arbitrary EUF formulas. We be‑
lieve this can be done via a grounding procedure, that is, by enumerating ground
formulas using the quantifier‑free formula until sufficient to imply the desired
existential. The trouble is that we can generate groundings indefinitely; even if
bounded, the number of groundings may explode and many of them are irrele‑
vant, so enumerating them would be a waste. Further work would investigate
how to make an EUF MBP procedure that is efficient for model checking.

• EUFORIA supports non‑recursive functions. What about recursive functions? EUF
provides an opportunity to preserve function bodies and abstract recursive calls
using UFs. Such an abstraction over‑approximates the recursion. Without re‑
finement, the abstraction may still be sufficient to prove some properties. Fur‑
ther work is required to determine how to refine this efficiently.

• We noticed that the LLVM front‑end is at times generating code that is sub‑
optimal for verification. We found a simple example that contains one state vari‑
able, and uses only assignments of constants and equality tests against constants.
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The property requires only equality reasoning and thus should not trigger any
refinement. Nevertheless, LLVM’s optimizer transforms this into code that uses
a subtraction, and verifying the property requires a refinement. Wagner et al.
have also identified situations in which compilers produce code suboptimal for
verification [139]. Moreover, recent work [140] has elucidated some drawbacks
of static single assignment (SSA) form, specifically in its name management and
input/output asymmetry. Besides complicating EUFORIA’s encoder implementa‑
tion, our SSA‑based encoding introduces more state variables and leads to less
understandable verification lemmas. Exploring alternative front‑ends tailored
for verification remains important future work.
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Appendix A.

Supplements

A.1. Term Projection

The following two theorems assume that the model 𝑀 is the one that is globally used
by TPRec.

TheoremA.1 (TPRec Preserves Term Equivalence). For every EUF term 𝑡 and model𝑀 ,

Part[𝑀∗
≃](TPRec(𝑡)) = Part[𝑀∗

≃](𝑡)

Proof. We proceed by structural induction on the term 𝑡 using the definition of TPRec
in Figure 3.5.

• 𝑥: Handled on line 7. Trivial because TPRec(𝑥) = 𝑥.

• F(𝑡1, 𝑡2,… , 𝑡𝑛): Line 10 returns F(TPRec(𝑡1),TPRec(𝑡2),… ,TPRec(𝑡𝑛)). By in‑
duction hypothesis, TPRec preserves equivalence of each argument, i.e.,

Part[𝑀∗
≃](TPRec(𝑡𝑖)) = Part[𝑀∗

≃](𝑡𝑖) for all 𝑖 ∈ {1,… , 𝑛} .

By EUF congruence on F’s arguments Part[𝑀∗
≃](TPRec(𝑡𝑖)) and Part[𝑀∗

≃](𝑡𝑖):

Part[𝑀∗
≃](F(TPRec(𝑡1),TPRec(𝑡2),… ,TPRec(𝑡𝑛))) = Part[𝑀∗

≃](F(𝑡1, 𝑡2,… , 𝑡𝑛))

which is what we want to show.

• ite(𝑐, 𝑡1, 𝑡2): Line 14 returns either TPRec(𝑡1) or TPRec(𝑡2).
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1. If 𝑀 ⊨ 𝑐, then Part[𝑀∗
≃](𝑓) = Part[𝑀∗

≃](𝑡1) and

Part[𝑀∗
≃](TPRec(𝑡1)) = Part[𝑀∗

≃](𝑡1)

by induction hypothesis.

2. If 𝑀 ⊨ ¬𝑐, then Part[𝑀∗
≃](𝑓) = Part[𝑀∗

≃](𝑡2) and

Part[𝑀∗
≃](TPRec(𝑡2)) = Part[𝑀∗

≃](𝑡2)

by induction hypothesis.

Theorem A.2. For every EUF formula 𝑓 and model 𝑀 ,

𝑀 ⊨ TPRec(𝑓) iff 𝑀 ⊨ 𝑓 .

Proof. We prove this by structural induction on 𝑓 .

• 𝑡1 ≃ 𝑡2: Line 22. By induction hypothesis,

𝑀(TPRec(𝑡1)) = 𝑀(𝑡1) and 𝑀(TPRec(𝑡2)) = 𝑀(𝑡2) .

By congruence on equality, 𝑀(TPRec(𝑓)) = 𝑀(𝑓).

• P(𝑡1, 𝑡2,… , 𝑡𝑛): Line 24. Same argument as for an uninterpreted function F.

• ¬𝑓1: Line 26. By the induction hypothesis, 𝑀(TPRec(𝑓1)) = 𝑀(𝑓1). By congru‑
ence on negation, 𝑀(TPRec(¬𝑓1)) = 𝑀(¬𝑓1).

• 𝑓1∧𝑓2: Line 28. If 𝑀 ⊨ 𝑓 , then 𝑀(𝑓1) = 𝑀(TPRec(𝑓1)) by induction hypothesis.
Otherwise, 𝑀(𝑓) = false, which happens if either (or both) 𝑀(𝑓1) = false or
𝑀(𝑓2) = false. If 𝑀 ⊨ ¬𝑓1, 𝑀(TPRec(𝑓1)) = 𝑀(𝑓1) by induction hypothesis and
𝑀(𝑓1) = 𝑀(𝑓). If 𝑀 ⊨ ¬𝑓2, 𝑀(TPRec(𝑓2)) = 𝑀(𝑓2) by induction hypothesis
and 𝑀(𝑓2) = 𝑀(𝑓).
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• 𝑓1∨𝑓2: Line 33. If 𝑀 ⊨ 𝑓1 then 𝑀(TPRec(𝑓1)) = 𝑀(𝑓1) by induction hypothesis
and 𝑀(𝑓1) = 𝑀(𝑓). If 𝑀 ⊨ 𝑓2 then 𝑀(TPRec(𝑓2)) = 𝑀(𝑓2) by induction hy‑
pothesis and 𝑀(𝑓2) = 𝑀(𝑓). Otherwise, 𝑀 ⊨ ¬𝑓 then 𝑀(TPRec(𝑓1)) = 𝑀(𝑓1)
by induction hypothesis and 𝑀(TPRec(𝑓1)) = 𝑀(𝑓).

Theorem 3.1, pg. 63. For every model 𝑀 such that 𝑀 ⊨ 𝑇 ∧ 𝑠′,

𝑀 ⊨ EXPANDPREIMAGE(𝑠′,𝑀) .

Proof. The call to ModelAssertion(𝑀,𝑄, 𝑆) ensures that the returned formula is sat‑
isfied by 𝑀 .

A.2. Termination & Correctness

Theorem 3.2, pg. 69. BACKWARDREACHABILITY terminates with an answer of true or false.

Proof. Our proof relies on two facts: (1) the number of models for an abstract tran‑
sition system is finite and (2) EUFORIA searches among these models only, eventually
blocking all of them or producing an abstract counterexample.

The set of possible models for a given abstract transition system ̂𝑇 is finite. In fact,
if the system has 𝑘 Boolean state variables and 𝑛 terms, then the number of Herbrand
models is bounded by 2𝑘 ⋅𝐵𝑛, where 2𝑘 is the number of possible Boolean assignments
to 𝑘 Boolean variables and 𝐵𝑛 = ∑𝑛

𝑖=0 𝑆(𝑛, 𝑖) is the number of ways to partition 𝑛
objects into disjoint sets (the Bell number). 𝑆(𝑛, 𝑖) is the number of ways to partition
a set of 𝑛 objects into 𝑖 non‑empty subsets (Stirling number of the second kind).

EUFORIA’s pre‑image generalization procedure, EXPANDPREIMAGE (Algorithm 2), searches
only among this bounded set of models, since it explicitly uses only terms from 𝑇 to
construct its preimage cube. If a cube is subsequently blocked by GENERALIZEINFEAS‑
IBLE (Algorithm 4), those models will be infeasible. As there are finitely many models
and frames, eventually all cubes will be blocked and BACKWARDREACHABILITY will ter‑
minate.

Theorem 3.3, pg. 69. EUFORIA’s refinement procedure increases the fidelity of the ATS, up
to expressing all concrete QF_BV behavior.
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Proof. One‑step lemmas do increase the fidelity of the ATS but do not increase the
number of terms in the ATS. REFINEFORWARD may increase the number of terms in the
ATS, resulting in an increased state space. If the state space size could grow without
bound, EUFORIA would potentially not terminate.

We first show that we can guarantee termination by using a refinement method
simpler than REFINEFORWARD. This method learns a lemma from a single concrete
path. Recall that an 𝑛‑step abstract counterexample is an execution 𝐴0, 𝐴1,… ,𝐴𝑛 in 𝑇
where each𝐴𝑖 (0 ≤ 𝑖 ≤ 𝑛) is a state formula. Beginning in any single state 𝜎0 ∈ 𝐴1∧𝐼 ,
for all 1 ≤ 𝑖 ≤ 𝑛,

1. Check whether 𝜎𝑖−1 ∧ 𝑇 ∧ 𝐴′
𝑖 is satisfiable.

2. If so, form new state 𝜎𝑖 using the concrete assignments to all variables 𝑋′

3. If not, call LEARNLEMMA(𝑐) where 𝑐 is the unsat subset of the query (1.)

When step 1 is not satisfiable, this procedure will introduce a new abstract constant
(from state 𝜎𝑖−1) and a new abstract UF/UP constraint (due to the transition to 𝐴′

𝑖) on
that constant. The number of constants is bounded by the size of bit vector words in
the concrete transition system and the number of constraints is as well (up to modeling
every concrete behavior of every UF/UP in the program).

REFINEFORWARD (Section 3.4) is essentially the same as this procedure, except RE‑
FINEFORWARD attempts to generate stronger lemmas that refute multiple spurious con‑
crete paths at once.

A.3. Horn2VMT

Theorem A.3. The transition system has the property that the state ℓ𝑅 is reachable in 𝑇 if
and only if relation 𝑅 is derivable under the Horn clauses.

Proof. Direction (⇐): We proceed by induction on the length of the derivation of
𝑅. All relations are initially empty; this is correctly modeled by the definition of 𝐼 .
Length‑1 derivations use a single Horn clause whose body contains no uninterpreted
relations with head 𝑅. Such a clause translates to a transition that can be similarly
satisfied without relation variables and which also satisfies ℓ′𝑅.
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Consider a relation 𝑅 derivable in 𝑛+1 steps. Its last derivation step involves some
rule with head 𝑅; by the induction hypothesis, a state satisfying the body of this rule
is reachable in 𝑇 . Examining 𝑇 and the definition of ℋJ⋅K allows us to conclude that
the next state satisfies ℓ′𝑅.

Direction (⇒): We proceed by induction on the number of transitions. Initially, no
relation variable is reached, due to 𝐼 ’s definition. Next, suppose that 𝐼 ∧ 𝑇 ∧ ℓ′𝑅 is
satisfied. 𝑇 guarantees that the body of the Horn rule corresponding to the transition
is satisfied, so 𝑅 is derivable.

Assume that some state 𝜎 ∧ ℓ′𝑅 is reachable after 𝑛 + 1 steps. By the induction
hypothesis, the current state, which took 𝑛 steps to reach, has a Horn derivation. The
current state corresponds to the body of a rule with head 𝑅, since the only transitions
to ℓ′𝑅 in 𝑇 correspond to such rules. Therefore 𝑅 is derivable.

If we do not assume that the Horn clauses are linear, Direction (⇐) doesn’t work,
because one can produce a rule that can never be activated (e.g., body 𝑅(1) ∧ 𝑅(2)
translates to ℓ𝑅 ∧ 𝑃𝑅,1 = 1 ∧ 𝑃𝑅,1 = 2, a contradiction).
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