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ABSTRACT

Thrombosis is a process whereby a blood clot forms in situ within a vessel and impedes

flow. Although necessary to maintain hemostasis, the human thrombotic system often be-

comes unstable leading to scenarios of thrombosis and subsequent diseases such as myocardial

infarction, stroke, pulmonary embolism, and deep vein thrombosis. Computational modeling

is a powerful tool to understand the complexity of thrombosis initiation and provides both

temporal and spatial resolution that cannot be obtained via in vivo experimental techniques.

The goal of this investigation is to develop a computational model of thrombosis initiation in

patient-specific models that includes both a complex description of the hemodynamics and

biochemistry of thrombin formation. We argue that the complex hemodynamics occurring

in vivo significantly alter the initiation and progression of thrombosis.

While blood viscosity is known to exhibit nonlinear behavior, a Newtonian assumption

is often employed in computational analyses. This assumption is valid in healthy arteries

where shear rates are high and recirculation is low. However, in pathological geometries,

such as aneurysms, and venous geometries, this assumption fails, and nonlinear viscous ef-

fects become exceedingly important. Previous computational models of thrombosis have

investigated coagulation through chemistry based formulations focusing on protein dynam-

ics23,61 but have generally excluded complex 3D hemodynamics.

A computational framework was developed to investigate the interplay between 3D hemo-

dynamics and the biochemical reactions involved in thrombosis initiation in patient-specific

models under transient flow. The salient features of the framework are: i) nonlinear rheo-

logical models of blood flow; ii) a stabilized numerical framework for scalar mass transport;
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and iii) a computational interface for nonlinear scalar models of protein dynamics that can

be easily customized to include an arbitrary number of species and protein interactions.

We implemented and verified nonlinear rheological models of viscosity into CRIMSON6

and investigated the effects of non-Newtonian viscosity on both hemodynamic and trans-

port metrics in an arterial and venous patient-specific model. Results demonstrated the

importance of considering accurate rheological models.

A stabilized finite element (FE) framework was developed to solve scalar mass transport

problems in CRIMSON. Simulation of cardiovascular scalar mass transport problems offers

significant numerical challenges such as highly advective flows and flow reversal at outlet

boundaries. Furthermore, little attention has been given to the identification of appropriate

outflow boundary conditions that preserve the accuracy of the solution. These issues were

resolved by developing a stabilized FE framework that incorporates backflow stabilization for

Neumann outlet boundaries; a consistent flux boundary condition that minimally disturbs

the local physics of the problem; and front-capturing stabilization to regularize solutions in

high Pe number flows. The efficacy of these formulations was investigated for both idealized

and patient-specific geometries.

Next, a flexible arbitrary reaction-advection-diffusion (ARAD) interface was implemented

that enables prototyping nonlinear biochemical models of thrombin generation. After ver-

ifying the ARAD interface, the performance was compared against the original hardcoded

FORTRAN implementation for speed and accuracy using a 4-scalar nonlinear reaction model

of thrombosis103. Three different biochemical models of thrombin generation were investi-

gated in idealized geometries. Finally, we implemented the 18 scalar model in both idealized

and patient-specific geometries to determine the effects of complex 3D hemodynamics on

thrombin generation.

The computational framework for thrombosis initiation presented in this work has three

key features: i) non-Newtonian hemodynamics; ii) a stabilized numerical framework for

scalar RAD problems; and iii) a method to rapidly prototype custom reaction models using

xvii



Python with negligible associated computational expense.

xviii



CHAPTER I

Introduction

1.1 Epidemiology of Thrombosis

Thrombosis is the process of a blood clot, also known as a thrombus, forming in a blood

vessel. Thromboembolic conditions, a combination of thrombosis and embolism (block-

age of an artery), have been estimated to account for 1 in 4 deaths worldwide in 2010144.

Thrombosis is the common mechanism of all thromboembolic conditions including myocar-

dial infarction (MI), ischemic stroke, and venous thromboembolism (VTE)85. Thrombosis

can be broadly classified as either venous thrombosis or arterial thrombosis, according to

where the thrombus presents in the body. The leading forms of arterial thrombosis are is-

chemic heart disease and ischemic stroke, while venous thromboembolism leads to deep-vein

thrombosis (DVT) and pulmonary embolism (PE)144. Although different in their origin and

presentation, both arterial and venous thrombosis are a large burden to both the health care

system and the patients they affect.

1.1.1 Arterial Thrombosis

Arterial thrombosis refers to a blood clot forming in one of the major arteries and often co-

incides with the incidence of a buildup of cholesterol plaque in the walls of the arteries, known

as atherosclerosis68. The combination of these two diseases is referred to as atherothrom-

botic disease. Ischemic heart disease (coronary artery disease), stroke, and atrial fibrillation
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are three groups of arterial diseases all fundamentally linked to arterial thrombosis144.

In recent years there has been an increase in death and years of life lost (YLL) from

ischemic heart disease and ischemic stroke85, both of which can be attributed to arterial

thrombosis. Coronary artery thrombus occurs due to the rupture or erosion of a preexisting

coronary artery plaque formed via atherosclerosis, resulting in the artery’s complete occlu-

sion, ischemic heart disease, and ultimately myocardial infarction (death of heart tissue)72.

Coronary thrombus can occur in both symptomatic and asymptomatic patients with signif-

icant or less than 50% degree of stenosis and is one of the frequent causes of sudden cardiac

death31,136.

Ischemic stroke is a thrombotic condition similar to ischemic heart disease. Instead of

the blood clot or thrombosis blocking blood flow to the heart, the obstruction in circulation

is now to the brain144. Approximately 85% of all strokes are ischemic stroke because of

thromboembolism, and 15% are hemorrhagic stroke144.

Lastly, atrial fibrillation is an irregular and often rapid heart rate that can increase

the risk of strokes, heart failure and other heart-related complications by predisposing the

affected patient to thrombus formation and cardioembolism144. Atrial fibrillation is a leading

preventable cause of ischemic stroke2 and is associated with a four- to five-fold increased risk

of ischemic stroke124.

Overall, arterial thrombosis presents as a broad disease that can affect multiple organs

and regions of the body. Often present with an associated disease such as atherosclero-

sis or atrial fibrillation, atherothrombotic diseases are responsible for > 25% of all deaths

worldwide3.

1.1.2 Venous Thrombosis

Venous diseases are typically regarded as long-term disabilities lacking the immediate,

fatal consequences associated with arterial diseases. Nevertheless, conditions such as DVT

and PE affect an important part of the population and represent a large burden for the
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health care system. The direct annual cost of VTE events to the US healthcare system alone

is seven-ten billion dollars for 375, 000−425, 000 newly diagnosed VTE cases56. The indirect

cost of treatment is also high; six million days of work are lost in the United States because

of complications due to chronic venous insufficiency142. Furthermore, patients’ quality of life

is often diminished by the loss of workdays and frequent doctor or nursing visits126. Studies

have shown that an estimated five to eight percent of the world population suffers from

venous disease, and in the United States alone there are approximately five million cases

of DVT each year46,132. DVT is typically treated through a combination of blood thinners,

internal filters, and/or surgical removal. These procedures can be highly invasive and have

severe side effects, including hemorrhaging91. For this reason it is fundamental to broaden

our understanding of this complex disease.

1.2 Thrombus Formation

The factors that contribute to thrombosis can be summarized by Virchow’s Triad (Fig-

ure 1.1), which describes three broad categories. Alone or in combination, hemodynamics,

endothelial damage, and the hypercoagulability of blood all directly contribute to the for-

mation of thrombosis. Thrombosis formation is comprised of two major interacting parts,

platelet aggregation and coagulation. These two processes work both independently and

together to form a blood clot.

1.2.1 Coagulation Cascade

The coagulation cascade is a series of complex biochemical processes that change blood

from a liquid to a gel and results in the formation of a blood clot (thrombus). Enzymes

or proteins known as clotting factors and referred to by Roman numerals, see Figure 1.2,

undergo a series of nonlinear biochemical reactions to produce the key enzyme thrombin

(Factor IIa). Thrombin serves a crucial role in the coagulation cascade by cleaving the

polymer fibrinogen into fibrin strands that result in the formation of a “fibrin mesh”141.
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Figure 1.1: Virchow’s Triad.

In the process of clotting, many erythrocytes, platelets, and other cells are trapped in the

fibrin meshwork formed from fibrinogen. Previous in vitro studies have shown the thrombin

concentration present during clot formation determines the eventual fibrin structure148.

The coagulation cascade is comprised of three pathways: extrinsic, intrinsic, and com-

mon, see Figure 1.2. The division of the coagulation cascade originates from laboratory tests

in which clotting times were measured after the clotting was initiated by glass (or by throm-

boplastin which is a mixture of tissue factor and phospholipids). Two laboratory tests that

are used commonly to evaluate blood coagulation are: Prothrombin Time (PT) which mea-

sures the integrity of the extrinsic system and Partial Thromboplastin Time (PTT) which

measures the integrity of the intrinsic system.

The extrinsic system, the principle initiating pathway of in vivo blood coagulation, in-

volves both blood and vascular elements89. The critical component is tissue factor (TF), a

glycoprotein embedded in the subendothelium of the vessel wall as well as in various other

cells (i.e. leukocytes)89. Under physiologic conditions, tissue factor is covered by healthy

endothelial cells and is not exposed to blood. When vascular injury occurs due to various

reasons (piercing, shear stress, vessel wall weakening etc.) TF becomes exposed and acts in

concert with activated Factor VIIa and phospholipid initiate the coagulation cascade and
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form thrombin.

Figure 1.2: Coagulation Cascade146.

Early reactions in coagulation produce catalysts, known as enzymes, which speed up

the rates of other reactions and allow for clotting to occur in a feasible time span. At

the same time that the coagulation cascade creates the fibrin mesh, the fibrinolytic system

breaks down the fibrin meshwork via the enzyme plasmin. These reactions typically remain

in a well-balanced state. In the absence of this balance, clotting disorders occur including

thrombosis.

Overall, the coagulation cascade is a complex system of biochemical reactions that re-

sults in the formation of a blood clot via thrombin formation and is closely tied to platelet

activation and aggregation.

1.2.2 Platelet Aggregation

Platelets are small cells fragments, two to three microns in size, that play an active

role in both hemostatic and pathological thrombosis34. At a resting state platelets are
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small disc-like cell fragments that are advected throughout blood. When endothelial damage

occurs, platelets come into contact with exposed collagen and von Willebrand factor (VWF),

becoming activated. Once activated, platelets change their shape and unveil projections and

receptors that allow them to bind to one another and to clotting factors152. Once activated

platelets adhere to both each other and the vessel’s wall to form what is known as platelet

plug. In the case of an injury, this prevents more blood from leaving the body as well as

prevents any outside contaminants from entering the body.

Figure 1.3: Platelet Activation. Taken from M. Holinstat, 201763.

Platelets, also serve an important role in the coagulation cascade, in addition to forming

a platelet plug. Once activated, platelets display specific plasma membrane receptors that

bind several of the clotting factors, and this permits the reactions to take place on the surface

of the platelets. The activated platelets also display certain phospholipids, called platelet

factors, which function as a cofactor in the steps mediated by the bound clotting factors.

After the initial generation of small concentrations of thrombin via the coagulation cascade,

thrombin serves an important stimulator of platelet activation and works through positive

feedback to activate additional platelets which in turn allow more clotting factors to be

activated on their surface.
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1.2.2.1 Mechanical Activation of Platelets

It has been previously recognized that platelet activation in the presence of high shear-

rate flows contributes to the formation of arterial thrombi. Von Willebrand factor (VWF),

the largest protein found in plasma, is involved in hemostasis53. VWF has a multimer

structure, where each monomer of VWF contains an A1 domain that is capable of binding

to the platelet receptor GP-Ib153. Through this binding process VWF is able to initiate

platelet activation. Typically, at rest VWF does not induce thrombosis because VWF is

present in its globular form where platelets are not able to reach the A1 binding sites. In

pathophysiologic cases of increased shear rate globular VWF unravels into an elongated form

and exposes its A1 binding sites. Therefore, critically high shear rates are capable of inducing

platelet activation and promoting thrombosis formation. The value of critical shear rate at

which the unfolding of VWF occurs is thought to be between 1000 − 10000 s−1 153. The

mechanism of VWF induced platelet activation serves as an explanation for the increased

rate of thrombosis in arterial geometries where high shear is present, for example aortic

stenoses10.

1.2.3 Hemodynamic Metrics of Thrombosis

Various hemodynamic metrics have been linked to thrombosis formation. Endothelial

cells play a large role in the prevention of thrombosis by shielding the blood from TF and

collagen, two prothrombotic substances. Various hemodynamic stimuli have been linked to

endothelial cell gene expression that leads to either pro-atherosclerotic or pro-thrombogenic

phenotypes. For example, both low Wall Shear Stress (WSS) and high oscillatory flow have

been correlated to endothelial activation36. Biasetti et al. studied how vortex formation and

shedding resulting from complex aneurysmal flow leads not only to the activation but the

convection, and deposition of platelets distal to the original location16.

Hemodynamics is also strongly linked to venous thrombosis formation where stasis is one

of the leading risk factors in venous thrombosis formation44, particularly in the venous valve

7



sinus. Endothelial cells that line the venous valve sinus and adjacent valve leaflet exhibit

high expression of antithrombotic phenotype, characterized by low levels of prothrombotic

proteins (i.e. VWF, P-selectin, ICAM1, etc.) thrombotic inhibitors such as tissue factor

pathway inhibitor (TFPI)143. The loss of this antithrombotic phenotype in the endothelial

cells lining the venous valves is observed following venous stasis143.

1.3 Computational Models of Thrombosis

Computational models of blood flow are useful tools for gaining insight into the physical

behavior of the cardiovascular system in healthy and diseased states. Computational models

have advanced to the point that they have been used for surgical planning, medical device

design, and drug development.

Computational models can be used to understand the complex mechanisms intertwined

in thrombosis initiation such as hemodynamics, biochemistry, and cell dynamics. Among

its many advantages, computational modeling provides high spatial and temporal resolution

descriptions on metrics which often cannot be measured in humans, such as Walls Shear

Stress (WSS), blood velocity and pressure, and the concentration of various coagulation

factors. Computational models can help build intuition to interpret clinically available re-

sults. The methods used to model thrombosis initiation range from biochemically complex

reduced order models of thrombin generation that do not take into account blood flow, to

full 3D formulations of image-based geometries and hemodynamics with simple descriptions

of the biochemical reactions. In this work we develop a robust, data-driven computational

framework that combines imaged-based modeling, non-Newtonian hemodynamics, a stabi-

lized scalar mass formulation, and a complex description of coagulation biochemistry. The

framework was implemented within the cardiovascular hemodynamic modeling environment

CRIMSON (crimson.software)6. We employed this framework to study thrombosis initiation

in both idealized and patient-specific geometries and investigate how complex 3D hemody-

namics affects thrombin generation and transport in image-based geometries.
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1.4 Modeling Non-Newtonian Rheology in the Cardiovascular Sys-

tem

Blood is a heterogeneous multi-phase mixture composed of cells and cell fragments (ery-

throcytes, leukocytes, and thrombocytes) suspended in blood plasma which is an aqueous

solution of proteins, organic molecules and minerals. The viscosity of a fluid (blood) can be

viewed as an internal friction that resists flow. It is defined as a ratio of shear stress to shear

rate76:

viscosity =
shear stress

shear rate
(1.1)

Blood has been described as a non-Newtonian fluid, in which viscosity is a function of

the shear rate and exhibits a large range of viscosities based on its complex composition of

cells suspended in fluid. The non-Newtonian behavior of blood is largely due to the presence

of erythrocytes, or red blood cells (RBCs). RBCs are solid but pliable and aggregate to

form three-dimensional cell clusters and one-dimensional “rouleaux” stacks93. High shear

rates disrupt RBC aggregates and deform RBCs to align better with flow and reduce drag.

Therefore, the effective viscosity of blood decreases with increasing shear rates until reaching

an asymptotic value for shear rates > 100s−1.9

The viscosity of blood is nearly constant and independent of shear rate in large vessels

with high blood velocity, such as arteries. Here, the shear rate of blood is too high (> 100s−1)

for RBC rouleaux formation to occur. In these vessels, blood can be approximated as a

Newtonian fluid with constant viscosity. However, in vessels with low shear rates and/or

recirculation such as diseased arteries and veins, viscosity increases as shear rate declines

due to the presence of RBC aggregates9. This behavior is known as “shear-thinning”, see

Figure 1.4.

Two of the most known and used shear-thinning models are the Power Law and the
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Figure 1.4: Shear rate–viscosity curve for blood with RBC disaggregation and deformation
illustrated. Adapted from Aycock et al.9.

Carreau-Yasuda67,88. The Power Law or Ostwald-de Waele Power Law model describes non-

Newtonian viscosity as a function that is proportional to the shear rate raised to a power,

n:

µ(γ̇) = δγ̇n−1 (1.2)

Where n and µ0 are coefficients fit from experimental data. Values of n greater than 1

indicate shear thickening, less than one shear thinning, and equal to 1 indicates Newtonian

viscosity (i.e. Poiseuille flow). The Power-Law model begins to fail at both very high and

very low shear rates; where the estimated tends to infinity rather than reaching a constant

value as observed experimentally115. The Carreau-Yasuda model was developed to remedy

these problems, offering superior flexibility to fit experimental data. This model is defined

as:

µ(γ̇) = µ∞ + (µ0 − µ∞) (1 + (λγ̇)a)
n−1
a (1.3)
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Where n, µ0, µ∞, a, and λ are parameters that can be fit from experimental data. Here µ0

is the zero-shear-rate viscosity, µ∞ is the infinite-shear-rate viscosity, λ is a time constant for

the fluid, n is a power-law-like exponent, and a is a dimensionless parameter. The advantage

of the Carreau-Yasuda model is that it can fit most viscosity data over a wide range of shear

rates, at the expense of the large number of material parameters. Figure 1.5 provides a

comparison between these two non-Newtonian models as well as the Newtonian assumption.

Figure 1.5: Constitutive equations of blood rheology. Newtonian models (blue line), Power-
Law model (yellow line), and Carreau-Yasuda model (orange line).

Modeling efforts of both venous or complex arterial hemodynamics should account for this

nonlinear dependence between viscosity and shear rate. We aim to incorporate established

non-Newtonian constitutive models of blood in our group’s Finite Element modeling software

CRIMSON6.

1.4.1 Numerical Challenges of Computational Thrombosis Models

Computational models provide key insights into quantities that are often not possible to

measure in vitro or in vivo and have potential for unveiling key mechanics of thrombosis

11



initiation. To create realistic models of thrombosis initiation that are some key challenges

that must first be addressed. Modeling thrombosis via mass transport in cardiovascular

systems presents numerical challenges due to: the inherently complex and time-dependent

flow patterns and vessel geometries; the large Péclet numbers that arise due to the extremely

small diffusivity of platelets and clotting factors; the complex nonlinear reaction models

involved in thrombin generation; and the disparities in time scales between cardiac cycles

and the coagulation cascade.

1.4.1.1 RAD Problems in Transient Flow

From previous literature it is apparent that transient 3D cardiovascular hemodynamics

affects thrombus formation16,36. Retrograde flow is often induced during flow deceleration in

parts of the cardiovascular system and may persist throughout the cardiac cycle. To model

thrombin formation and therefore mass transport in imaged based non-Newtonian models

it is necessary to solve the scalar reaction-advection-diffusion equations under conditions of

transient flow.

Previous work on scalar transport under flow has been limited to investigations with

complex scalar phenomena with relatively simple flow fields81 or relatively complex flow

fields with physiologically inaccurate boundary conditions. For example, previous studies

have typically used an assumption of steady parabolic flow which is not true for many

sites of disease progression. Furthermore, this assumption negates the effects that complex

hemodynamics has on disease initiation and progression36.

Other researcher groups have gone a step further and formulated innovative models of

scalar transport that also include image-based geometries and transient cardiovascular flows.

These investigations8,57 have relied exclusively on Dirichlet mass transport boundary con-

ditions prescribed on outlet faces. While numerically this assumption is valid, biologically

an assumption of a set scalar value (typically prescribed to be 0) at an arbitrary point

in space is non-physiologic and can affect the conclusions drawn from the aforementioned
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studies. Alternatively, Neumann boundary conditions, although more physiologically accu-

rate, are known to lead to numerical divergence in boundaries exhibiting partial or complete

flow reversal51,74,97. It is therefore necessary to develop and implement methods that allow

for numerically stable solutions in the presence of backflow at outlets as this is a common

phenomena of cardiovascular flows.

1.4.1.2 Consistent Flux Boundary Condition

Arguably the most challenging aspect of numerical modeling is the choice of realistic

boundary conditions. Often times researchers employ the use of elongated geometries to

ensure that the area of interest is ‘far enough away’ from the boundary to avoid artificial

boundary effects. This is an extremely computational expensive task. In thrombosis mod-

eling computational expense becomes a limiting factors as clotting occurs on the order of

minutes and often in very large and/or complex geometries. Therefore, developing phys-

iologically relevant boundary conditions that allow for the truncation of large domains is

essential to accurately modeling thrombosis. To mitigate this issue it is necessary to de-

velop and implement boundary conditions that maintain the accuracy and reliability of the

computed solution without increasing computational cost.

While there have been numerous contributions proposing outflow boundary conditions

for cardiovascular flow problems (i.e. the Navier-Stokes equations)135, little work has been

done for the scalar reaction-advection-diffusion problem. Typically, cardiovascular mass

transport models have employed either Dirichlet or Neumann conditions prescribing known

scalar concentrations8,57 or diffusive fluxes81,151 at an outlet face, respectively. An alternative

choice of boundary condition, henceforth referred to as “consistent boundary condition” has

been shown to provide better error estimates55. This approach relies on calculating the

consistent diffusive flux (rather than imposing an arbitrary diffusive flux) that satisfies the

weak form of the mass transport equation.
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1.4.1.3 Stabilization Techniques

The numerical complexity of thrombosis modeling is further compounded by the ex-

tremely low diffusivities of clotting factors and platelets which are on the order of 10−10 m2s49,81,149.

The Péclet number, is a non-dimensional parameter, that describes the relative role of ad-

vective and diffusive transport and is defined as

Pe =
Lu

D
, (1.4)

where L is the characteristic length, u the local flow velocity, D the mass diffusion coefficient.

Péclet numbers can vary greatly throughout the cardiovascular system based on the size of

the vessel, velocity field (i.e. stenosis or diseased flow), and the diffusivity of the species of

interest. High Péclet numbers lead to the formation of steep concentration gradients within

the flow, causing the presence of spurious oscillations in the numerical solution. In mass

transport, and particularly in computational models of thrombosis, due to the low diffu-

sivities and high velocity fields, Péclet numbers can be on the order of O(108). Previous

investigations have addressed the numerical challenges associated with high Pe number flows

by either limiting their investigation to relatively simple flows (i.e. steady flow without sharp

gradients) in over simplified geometries (i.e. cylinder, idealized geometries)16,96, using unre-

alistic physical parameters (i.e. artificially increased diffusivities)16,50, or using inconsistent

stabilization methods (i.e. isotropic diffusion)16 to circumvent the need for these robust and

consistent stabilization methods.

To create a numerically accurate and reliable computational model of thrombosis it is

necessary to use appropriate stabilization methods to address the presence of spurious oscil-

lations at high Péclet numbers that allow for solving the scalar reaction-advection-diffusion

equations in realistic 3D geometries with complex flows.
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1.4.2 Flexible Reaction Models

Although the main application of interest in this work is thrombosis initiation, RAD

equations can be applied to study numerous biochemical diseases such as atherosclerosis,

cholesterol metabolism and lipid-lowering drugs, among others. Furthermore, it is common

to focus on a subsection of the coagulation cascade, such as the intrinsic or extrinsic pathway,

to investigate a specific biological question. Therefore, there is a need to develop a flexible

computational framework that enables rapidly prototype nonlinear reaction models within

a stabilized fluid-RAD framework. Until now the majority of thrombosis models have either

been hardcoded using in-house codes81 or implemented in commercialized software16 that

does not offer the flexibility of customized models. In addition, many previous coagulation

models have ignored the effects of complex 3D hemodynamics altogether. There remains a

need to develop a stabilized 3D models of thrombosis initiation that allows the flexible and

rapid prototyping of nonlinear reaction models.

1.4.3 Previous Computational Models of Thrombosis

Various groups have used computational models to investigate thrombus formation. Pre-

vious computational models of thrombosis initiation have focused on reduced-order models

(0D) that provide a detailed description of the biochemistry of thrombin formation in the

absence of flow. Attempts at modeling thrombin formation under flow has been limited

to using idealized 3D geometries or 2D models with broad simplifications to the hemody-

namics. Currently, few groups have attempted to model thrombosis initiation incorporating

image-based 3D geometries, complex hemodynamics, and the complex biochemistry that

describes thrombin generation. The development of such a model will be vital to improve

our understanding of the role of hemodynamics in thrombus formation.
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1.4.3.1 Reduced Order Models

Hockin and Mann developed a mathematical model of blood coagulation that accounts for

the biochemical reactions involved in the extrinsic blood coagulation system and includes the

stoichiometric anticoagulants TFPI and antithrombin61. The model consists of 34 differential

equations with 44 rate constants that together describe the 27 independent equilibrium

expressions and account for the 34 species61. The model simulates an injured state via an

initial nonzero value of tissue factor (TF). The initiation of the biochemical cascade leads to

the formation of thrombin and a blood clot. This model ignores the influence of platelets,

binding sites, and flow. Instead the model assumes a closed, static zero-dimensional system

with an infinite amount of lipids present for the coagulation reactions to occur.

Sagar et al.123 developed a reduced-order model for thrombin generation using a hybrid

strategy combining ordinary differential equations (ODEs) and logical rules to model throm-

bin dynamics. The model shows good performance for thrombin dynamics, but ignores key

clotting factors such as Factor V and Factor X. Arumugam et al.7 proposed a model focused

on the interactions between thrombin and antithrombin III with greater connection to the

coagulation biochemistry, but failed to include the effect of platelets. Papadopoulos et al.103

suggested a four-species phenomenological model for thrombin dynamics. The reactions have

been shown to match patient specific thrombin generation curves and include dynamics of

thrombin, prothrombin, platelets, and activated platelets.

1.4.3.2 Continuum Models of Thrombosis

Leiderman and Fogelson developed a computational model of thrombosis that builds

upon Hockin and Mann’s description to include fluid dynamics81 along with platelets and

binding sites for clotting factors on platelets in a two-dimensional geometry of an arteri-

ole. The Navier-Stokes equations were combined with the enzymatic equations to create a

reaction-advection-diffusion model of thrombus initiation. This model provided key informa-

tion in regards to diseases such as hemophilia. The strengths of this model are its detailed
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description of the biochemistry of thrombin formation, biologically informed description of

platelet-plug formation, and two-way coupling between flow and the platelet-plug. This

model is limited by its simplified hemodynamics including an idealized geometry, steady

flow and Newtonian viscosity.

Biasetti et al. described the formation of intraluminal thrombus in abdominal aortic

aneurysms (AAAs). In their first investigation they studied the effects of non-Newtonian

viscosity in an image-based computational model of an AAA15. Subsequently, they imple-

mented their non-Newtonian model in an idealized, axisymmetric, 2D model of an AAA

with a biochemical model of blood coagulation16. The strengths of this model include: non-

Newtonian viscosity and complex enzyme kinematics. However, their thrombosis model was

implemented in an idealized 2D geometry that ignores the complex hemodynamic effects

resulting from 3D image-based geometries. In addition, the model does not account for the

effects of inhibitors such as tissue factor pathway inhibitor (TFPI) and antithrombin-III

(AT-III) which were included in the Hockin-Mann model61. These inhibitors directly impact

the amount of thrombin formed and the time to peak thrombin formation61. Furthermore,

instead of using physiologic values of diffusivity, Biasetti et al. increased the diffusion co-

efficients used by over two orders of magnitude to avoid numerical oscillations. This was

discussed in more detail in Section 1.4.1.

Three dimensional continuum models of thrombus formation exist in the literature. A

hemodynamics-based thrombosis model was developed by Menichini and Xu in 201696 and

later modified by Menichini et al.94 and used to investigate lumen thrombosis in aortic

dissections following thoracic endovascular repair95. This thrombosis model relies on a phe-

nomenological approach of modeling platelet deposition and tracking the concentration of

an arbitrary coagulation. Specifically, transport equations for fluid residence time, resting

and activated platelets, and an arbitrary coagulant, are solved for approximately 20 cardiac

cycles with transient hemodynamics. Here, a growing thrombus is identified through the

local concentration of bound platelets. This model is strengthened by its 3D non-Newtonian
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hemodynamics, but it is limited by the phenomenological approach to modeling thrombosis

formation.

Seo et al.127 developed a 3D model of thrombosis initiation in infarcted left ventricles

using the same thrombosis model as Biasetti et al16. This 3D model solves for the reaction,

advection, and diffusion of 18 scalar species throughout the computational domain. In

addition, this study includes a model of the polymerization of the fibrinogen and platelet

activation and aggregation. This investigation is strengthened by its complex and biologically

relevant biochemical model but is limited by the use of Newtonian viscosity. In addition,

simulations were only run for 6 cardiac cycles which is not long enough to capture thrombin

formation which occurs on the order of minutes.

The reduced order developed by Papadopoulos et al. was later implemented in a 3D flow

model using Newtonian viscosity104. To account for the disparity in time scales between

a cardiac cycle and the coagulation process a simplified inflow pulse consisting of 9 time

instances of the original cardiac pulse was used. This allowed the transport simulations to

be run for multiple minutes of physical time. This investigation is again limited by the

simplified inflow and phenomenological coagulation model.

Lastly Bodnár and Sequeira developed a Finite Volume Method model of thrombosis ini-

tiation and fibrinolysis using a non-Newtonian description of blood flow and a set of twenty-

three coupled advection, diffusion, and reaction equations describing the extrinsic pathway

of the blood coagulation process and fibrinolysis in quiescent plasma. This model also uses

realistic values of diffusion and is strengthened by its complex and accurate biochemical

description. This model is limited by its simplified hemodynamic description: simulations

are done in an idealized cylinder with steady parabolic flow conditions.

1.4.3.3 Lagrangian Computational Thrombosis Models

The Humphrey group has studied intraluminal thrombus in AAAs in depth. In particular,

they have developed a predictor of platelet activation and therefore thrombus formation in
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AAAs known as the Platelet Activation Potential (PLAP)36. PLAP is a non-dimensional

scalar index that represents the magnitude of shear rates that a fluid particle accumulates

while traveling through the fluid domain and is defined as:

PLAP (x, t) =

t∫
t−2T

|D(x(τ), τ)|dτ, (1.5)

where |D(x(τ), τ)| is the Frobenius norm of the symmetric part of the spatial gradient of

the velocity tensor, t is the time of injection of the particle and 2T indicates how long the

particle has been tracked.

To compute PLAP, after solving for a periodic flow solution, a number of massless tracer

particles with prescribed initial positions are released and their Lagrangian trajectories in the

Eulerian flow field are integrated using a fourth-order Runge-Kutta scheme. This Lagrangian

tracking metric of ‘platelet activation potential’ has been linked to thrombus formation in

thoracic (Figure 1.6) and abdominal aortic flows36,98. We remark that owing to the discrete

size of the integration time step, a small percentage of particles are erroneously lost through

the wall boundaries.

This predictor is physics driven but entirely phenomenological, as it is separated from

the biological complexity of the biochemistry of thrombus formation. The production of

thrombin is not modeled directly, and mechanical platelet activation is the only stimulus

considered, ignoring the influence of clotting factors and inflammation. A more complex and

biologically relevant predictor of thrombus formation is necessary to fully describe thrombus

potential.

Overall, although several groups have developed computational models of thrombus for-

mation, these have been focused on idealized 1D and 2D geometries, 3D geometries with

simplified assumptions made to the flow field, and/or simplified phenomenological descrip-

tion of the coagulation cascade (i.e. thrombin formation). Currently, no model exists to
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Figure 1.6: (Left) Computed tomography imaging showing the aortic thrombus (red circle).
(Right) Simulation of PLAP, a metric generated via Lagrangian advection of large quantities
of massless particles. PLAP calculates the history of accumulated shear in each particle.
Simulations correspond to two surgical reconstructions of a patient. The CT insert reveals
the location of a thrombus which roughly coincides with the predicted region of high PLAP
(Actual Surgery)98

study thrombosis in a three-dimensional setting that characterizes coagulation in the larger

vessels where both venous and arterial thrombosis naturally occurs. Therefore, we propose

to develop an image-based computational model of thrombosis initiation. Our model will

be the first to include image-based geometries with transient cardiovascular flow, non-linear

viscosity, and a complex description of the enzymatic reactions involved in thrombin forma-

tion.

1.5 Structure of Thesis

In this work, we first implemented non-Newtonian rheological models into CRIMSON

in order to develop an accurate representative of the hemodynamics across the range of

physiological shear rates, from arterial to venous (Chapter II). We next developed a sta-

bilized numerical framework of scalar mass transport in CRIMSON to enable the analysis

of advection-diffusion transport problems under conditions of cardiovascular hemodynamics

and applied the framework to further investigate non-Newtonian viscosity on mass transport.

This involved both contributions to boundary conditions as well as numerical stabilization
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(Chapter III). After the implementation of non-Newtonian hemodynamics and a stabilized

numerical framework scalar mass transport we turned our attention to implementing nonlin-

ear reaction models of thrombosis initiation (Chapter IV). Lastly, we presented preliminary

work involving possible mechanisms of venous thrombosis formation in patients with May-

Thurner syndrome (Chapter V) and preliminary work applying our mass transport frame-

work to different clinical applications (Chapter VI). The general Discussion of this thesis is

presented in Chapter VII. Chapters II, III and IV correspond to journal articles that are

either in print or under preparation. The format of the papers has been adjusted to match

the rest of the thesis with minimal changes to the content.
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CHAPTER II

Effects of non-Newtonian Viscosity on Arterial and

Venous Flows

2.1 Introduction

Despite significant progress in clinical research and care, cardiovascular diseases remain

the leading cause of death and disability worldwide92. Advances in both experimental and

computational modeling techniques have led to an improved understanding of basic mech-

anisms underlying various cardiovascular diseases. In particular, numerous studies have

implicated altered local hemodynamic metrics (e.g., vorticity, wall shear stress (WSS), etc.)

in the initiation and progression of thrombosis and atherosclerosis15,36,80. Moreover, anatom-

ical features such as aneurysms trigger complex local flow patterns, which lead to increases in

residence time of biochemical species118,138. Therefore, computational models for cardiovas-

cular disease research must account for the altered hemodynamics in image-based geometric

models, specifically in recirculation areas likely to experience complex transport phenomena.

An important aspect of a computational model is the constitutive assumption. Blood

has been shown to exhibit shear-thinning behavior and has been described via various shear-

dependent constitutive models such as the Carreau-Yasuda and Power-Law models17. Never-

theless, most computational hemodynamics studies have treated blood as a Newtonian fluid

with uniform viscosity40,129,133. The use of a Newtonian assumption for blood is typically
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justified for large arteries with high shear rate flows. However, this assumption is question-

able in regions exhibiting low shear rates and local flow recirculation such as aneurysmal

vessels and veins. Therefore, it is crucial to incorporate shear rate dependent blood rheology

for accurately describing the local hemodynamics in such cases.

Several studies have investigated the effects of non-Newtonian viscosity in diseased ar-

terial models. While some studies concluded that considering the shear thinning behavior

of blood is significant15,28,140, others reported relatively minor differences in hemodynam-

ics112. With regards to venous flows, most studies considered a Newtonian assumption for

blood83,119, and only a few contributions considered non-Newtonian behavior9, albeit under

idealized (constant) flow conditions.

In this work, we aimed to increase our understanding of the impact of blood rheology

on complex arterial and venous flows, with significant regions of low shear rates. Towards

that end, we implemented a Power-Law and Carreau-Yasuda model in the cardiovascular

hemodynamics modeling environment CRIMSON6. In addition to exploring the impact of

constitutive models on traditional hemodynamic metrics such as velocity and wall shear

stress, we aimed to examine other metrics such as Lagrangian indices of accumulated shear.

The structure of this Chapter is as follows. In the Materials and Methods, an overview of

governing equations, constitutive models, and Lagrangian particle tracking is provided. In

the Results section, the implementation of the Power-Law model is first verified in an ideal-

ized cylindrical geometry against an analytical solution. Next, the effects of non-Newtonian

rheology (using the Carreau-Yasuda model) are investigated in two representative three-

dimensional, transient, image-based scenarios: (a) a thoracic aortic aneurysm model, and

(b) a venous model of the inferior vena cava and iliac bifurcation. In each case, differ-

ences between in-plane velocity, vorticity, WSS, and Lagrangian indices of shear between the

Newtonian and Carreau-Yasuda models are studied in detail.
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2.2 Materials and Methods

2.2.1 Fluid Dynamics

2.2.1.1 Governing Equations

The strong form of the governing equations for an incompressible fluid in a three-

dimensional bounded domain Ω ⊂ R3 is given as

ρ

(
∂u

∂t
+ u · ∇u

)
= −∇p+∇ · τ(u) + f , (2.1)

∇ · u = 0, (2.2)

where ρ is the fluid density, t is the time, u is the fluid velocity, p is pressure, f is the external

body force per unit volume (set to zero), and τ is the viscous stress tensor. For a Newtonian,

incompressible fluid, τ is defined as:

τ = 2µD, (2.3)

where µ is the Newtonian viscosity and D is the rate of deformation tensor defined as:

D :=

(
∇u +∇uT

)
2

. (2.4)

For a non-Newtonian fluid τ can be written as:

τ = 2µeff(γ̇)D, (2.5)

where γ̇ refers to the shear rate defined as

γ̇ =
√

2D : D, (2.6)
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and µeff(γ̇) is the constitutive shear rate function which describes the effective viscosity in

terms of γ̇.

2.2.1.2 Constitutive Models of non-Newtonian Viscosity

Various constitutive models have been developed and calibrated against experimental

data to describe the shear-thinning behavior of blood. Table 2.1 presents the three consti-

tutive models considered in this study and their associated parameter values, chosen from

previous reports1,15–17: (a) Newtonian model, (b) Power-Law model, and (c) Carreau-Yasuda

model. The Newtonian fluid model employs a constant, shear-independent viscosity (µN). In

contrast, the Power-Law fluid model employs two constants, a flow consistency index δ, and

a flow behavior index n, to model the shear dependent blood viscosity. Lastly, the Carreau-

Yasuda model employs five coefficients: λ, a relaxation time, power indices n and a, and

asymptotic values of the effective viscosity µ(γ̇), µ0 and µ∞, at zero and infinite shear-rates,

respectively.

Constitutive Models Form Parameter Values

Newtonian µ(γ̇) = µN µN = 0.0035

Power-Law µ(γ̇) = δγ̇n−1 δ = 0.0147, n = 0.7755

Carreau-Yasuda µ(γ̇) = µ∞ + (µ0 − µ∞) (1 + (λγ̇)a)
n−1
a

µ∞ = 0.0035, µ0 = 0.16

λ = 8.2, n = 0.2128

a = 0.64

Table 2.1: Constitutive Models used in this investigation.

Figure 2.1 shows the viscosity-shear rate relationship for the three constitutive models and

parameter values considered in this study. The Power-Law model displays a linear response

with a constant slope given by the flow behavior index n on a log–log scale. Values of

n > 1 imply shear thickening behavior while values of n < 1 imply shear-thinning behavior.

Conversely, the Carreau-Yasuda model is characterized by constant values of viscosity in

both the low (µ0) and high (µ∞) shear-rate limits. Between these limits, the viscosity varies
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in a nonlinear manner on the log-log scale.

Figure 2.1: Constitutive Models

In this study the Power-Law model and its analytical solution were used to verify our

implementation of shear-dependent, non-Newtonian viscosity. For all patient-specific analy-

ses, we employed the Carreau-Yasuda model since it has been shown to better represent the

in vivo behavior of blood over a wider range of shear rates139.

2.2.2 Lagrangian Particle Tracking

A significant goal of this work is to understand the impact of non-Newtonian rheology on

transport phenomena. Towards that goal, we considered an approach to assess Lagrangian

transport within a given flow field.

The Navier-Stokes equations are typically solved in fixed Eulerian formulations. Conse-

quently, the solution fields (velocity and pressure) do not directly provide insights on the

path of particles traversing through the flow. Conversely, a Lagrangian representation of a

flow field can be used to describe the path, history of hemodynamic stresses, and residence

time experienced by a particle in certain parts of the vasculature. In blood flow, constituents
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such as platelets are small enough in size that can be reasonably approximated by massless

particles advected by the flow. The path and the history of stress of these particles are

important quantities to study processes such as platelet mechanical activation, a key process

in thrombus formation10,36. Therefore, in this work we considered a Lagrangian particle

tracking method derived from the Eulerian solution fields to assess the cumulative shear ex-

perienced by massless particles36,128. Specifically, we introduced a number of particles with

prescribed initial positions and integrated their Lagrangian trajectories from the Eulerian

flow field solution using a fourth-order Runge-Kutta scheme. This Lagrangian tracking al-

lowed us to assess the ‘platelet activation potential’ (PLAP), a metric that has been linked to

thrombus formation in thoracic and abdominal aortic flows36,98. PLAP is a non-dimensional

scalar index that represents the magnitude of shear rates that a particle accumulates while

traveling through the fluid domain and is defined as

PLAP (x, t) =

t∫
t−T

|D(x(τ), τ)|dτ, (2.7)

where |D(x(τ), τ)| is the Frobenius norm of the symmetric part of the spatial gradient of

the velocity tensor, t is the current time, and T indicates how long the particle has been

tracked.

2.2.3 Patient-Specific Models and Boundary Conditions

Two patient-specific geometries were considered: a thoracic aortic aneurysm model, and

a venous model of the inferior vena cava and iliac veins. To ensure a consistent comparison

between the Newtonian and Carreau-Yasuda models, the parameter values listed in Table 2.1

were adopted. Specifically, the parameter µ∞ was chosen to match the Newtonian viscosity

(µ∞ = µN = 0.0035 Pa · s)90. Therefore, both the Newtonian and Carreau-Yasuda mod-

els yield the same effective viscosity in the high shear rate limit. At low shear rates, the

Newtonian model exhibits lower viscosity. Blood density was 1060 kg/m3 for both models.
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2.2.3.1 Arterial Model

A patient-specific thoracic aortic aneurysm model was generated from computed tomog-

raphy angiography (CTA) image data using CRIMSON6. Figure 2.2 (left panel) shows the

computational domain, consisting of the ascending and proximal descending aorta and nine

outlet branches, and a schematic of the boundary conditions. An echocardiography-derived

periodic flow waveform (time period T = 0.91 s) was mapped to a parabolic velocity profile,

and prescribed as the inflow condition at the inlet face of the aortic model. Three-element

Windkessel models135 were prescribed at the outlet faces (Table A.1)133. A zero velocity

boundary condition was prescribed on all walls.

Several meshes with increasing levels of refinement were considered. A mesh with 22

million linear tetrahedral elements and 3.9 million nodes was ultimately chosen to adequately

capture flow recirculation in the aneurysmal region. Cycle-to-cycle periodicity was achieved

after four cardiac cycles.

2.2.3.2 Venous Model

A patient-specific venous model was generated from CTA image data using CRIMSON6.

Figure 2.2 (right panel) shows the computational domain, consisting of the inferior vena cava

(IVC) and left and right common, internal, and external iliac veins (CIV, IIV, EIV), and a

schematic of the boundary conditions. The venous geometry was scaled to match literature

diameters values of the IVC and iliac veins.

Measurements of velocity were obtained at the IVC, common, and external iliac veins

using duplex Doppler ultrasonography. Average flow values were calculated based on the

mean velocity and diameter values obtained from the CTA. Internal iliac vein flows were

deduced from the difference between the common and external iliac flows. A period of

T = 0.8 s was utilized for all waveforms, which were mapped to a parabolic velocity profiles

prescribed at the four inlet vessel faces of the model (e.g., external and internal iliac veins).

A three-element Windkessel model was applied to the IVC outlet face (Table A.2). A zero
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Figure 2.2: Computational domains of the patient-specific arterial model (Left) and venous
model (Right). Inflow and outlet boundary conditions are specie as either a prescribed inflow
waveform or reduced order Windkessel model.

velocity boundary condition was prescribed on all walls.

Several meshes with increasing levels of refinement were considered. Reported results cor-

respond to a mesh consisting of 2 million nodes and 12.5 million linear tetrahedral elements.

Cycle-to-cycle periodicity was achieved after four cardiac cycles.

2.3 Results

2.3.1 Verification of Power-Law Implementation

We considered a cylindrical domain with diameter d = 40.0 mm and length l = 200.0 mm.

Using a Power-Law constitutive model, a steady flow solution was obtained by prescribing a
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constant flow rate of 833.33 mm3/s mapped to a Poiseuillle parabolic velocity profile at the

inlet, with a maximum centerline velocity vmax = 1.3 mm/s and a mean Reynold’s number

Remean = 4.0. No-slip and zero traction boundary conditions were prescribed on the lateral

wall and the outlet face, respectively.

Figure 2.3: Verification of a Power-law model. Left: Cylinder dimensions. The prescribed
Poiseuille profile at the inlet (A) develops into a non-Newtonian Power-Law velocity profile
at the mid-section of the cylinder (B). 1D plots show good agreement between analytical
(black solid line) and numerical (black symbols) solutions at section B (max. error: 0.72%).

Figure 2.3(A) shows 3D warps of the prescribed velocity profile at the inlet (section A)

and the numerically obtained velocity profile at the midplane of the domain (section B).

Figure 2.3(B) compares the analytical and numerical solution at these two locations. The

prescribed Poiseuille profile at the inlet (blue circles) develops into a non-Newtonian profile

along the length of the cylinder, and by its mid-section (black solid symbols) shows an

excellent agreement (max. error: 0.72%) with the Power-law analytical solution (black solid

line).

2.3.2 Patient-Specific Hemodynamic Analysis

In this section, diastolic solutions for velocity, vorticity, and WSS are discussed for both

the Newtonian and Carreau-Yasuda constitutive laws, for the arterial and venous models.

Vorticity is defined as the curl of the velocity field (ω = ∇ × u) and describes the local
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spinning motion of the fluid. To provide a quantitative comparison between solutions, surface

(in-plane velocity and WSS) or volume (vorticity) averages of the solution fields are calculated

at four locations: mid-aneurysm (section A) and distal aorta (section B) for the aortic

model, and IVC (section C) and left common iliac vein (section D) for the venous model.

Furthermore, to study the differences between solutions on a point by point basis, we define

a relative difference metric as:

Relative Difference =
‖Newtonian - Carreau Yasuda‖

‖Carreau Yasuda‖
, (2.8)

where ‖‖ is the L2 norm of the solution field, and ‖ ‖ is a reference mean value of the

Carreau-Yasuda solution, calculated for each slice of the in-place velocity, and for the shaded

regions in the ascending aorta and IVC for the vorticity and WSS (see Figures 2.5 and 2.6).

This reference mean value defines a suitable norm to study relative differences for each

solution field between Newtonian and Carreau-Yasuda models36.

2.3.2.1 In-Plane Velocity

Figure 2.4 shows contour plots of the in-plane velocity magnitude and bar plots of mean

in-plane velocity. In the arterial model, larger mean values of in-plane velocities are ob-

served in the Newtonian model, with larger discrepancies between models seen in Section

B (Section A: 10.6% and Section B: 70.3%). Larger relative differences in in-plane velocity

magnitude are also observed in section B with relative differences of up to 7.5. In the venous

model, similar patterns are observed: larger mean in-plane velocities are obtained with the

Newtonian model (Section C: 56.2% and Section D: 15.5%), and larger relative differences

in in-plane velocity magnitude are seen in Section C. (Max. Relative Difference 2). Due to

the smaller pulsatility and lower flow in the venous model, smaller values of in-plane velocity

are obtained (max. in-plane velocity 27 mm/s) relative to the arterial model (max. in-plane

velocity 175 mm/s).
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Figure 2.4: Arterial and venous in-plane velocity in diastole. (Left) Contour plots of in-plane
velocity magnitude for the Newtonian and Carreau-Yasuda models, and relative difference
between the two, at four representative locations. (Right) Bar plots of mean values for each
location.

2.3.2.2 Vorticity

Figure 2.5 shows volume rendering plots of vorticity magnitude and bar plots of mean

vorticity. More vortical structures are apparent in the Newtonian solution for both the

arterial and venous models, with a maximum relative difference of 3.0 in the arterial and 1.0

in the venous model. Mean vorticity is larger in all four locations for the Newtonian model,

ranging from 10.5% in the IVC (Section C) to 36.9% in the descending aorta (Section B).

Due to the lower pulsatility of the venous flow, smaller values of vorticity are obtained in

the venous model (max. vorticity 30 s−1) relative to the arterial model (max. vorticity 50

s−1).
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Figure 2.5: Arterial and venous vorticity in diastole. (Left) Volume rendering plots of
vorticity magnitude for the Newtonian and Carreau-Yasuda models, and relative difference
between the two. (Right) Bar plots of mean values for four representative locations (A-D).

2.3.2.3 Wall Shear Stress

Figure 2.6 shows contour plots of WSS magnitude and bar plots of mean WSS. In the

arterial model, mean WSS is smaller in the Newtonian solution (18.4% smaller in the mid-

aneurysm and 7.0% smaller in the descending aorta) in both the aneurysm and descending

thoracic aorta. For the venous model, smaller values of WSS are also obtained with the

Newtonian solution (26.4% smaller in the IVC and 25.6% smaller in the left common iliac

vein). Larger relative differences are observed in the arterial model (2.0 for the arterial model

vs. 0.6 for the venous model). Due to the smaller pulsatility of the venous flow, smaller

values of WSS are obtained in the venous model (max. WSS 0.10 Pa) relative to the arterial

model (max. WSS 0.50 Pa).

We remark that the reported trends in in-plane velocity, vorticity, and WSS are consistent
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Figure 2.6: Arterial and venous WSS in diastole. (Left) Contour plots of WSS magnitude for
the Newtonian and Carreau-Yasuda models, and relative difference between the two. (Right)
Bar plots of mean values for four representative locations (A-D).

throughout the cardiac cycle for each model, and not just in diastole.

2.3.2.4 Regions of Critical Shear Rate

Lastly, regions of high viscosity and low shear rate in the Carreau-Yasuda model are

identified through an arbitrary threshold of viscosity: (µ ≥ µcritical = 0.01 Pa.s = 3µN), see

Figure 2.7, for both the arterial and venous models in diastole. These are the regions where

the non-Newtonian effects are most important.

A few areas of increased viscosity can be identified in the aneurysmal and descending

aortic regions, as well as in the head and neck vessels of the aortic model. In contrast, the

venous model shows extensive regions of elevated viscosity and low shear rate throughout the

entire model, except in the near wall regions. In the arterial model, regions of low shear rate
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Figure 2.7: (A) Maps of viscosity and shear rate obtained with the Carreau-Yasuda model
in the regions of the computational domain where the viscosity is greater than the criti-
cal threshold (µ ≥ µcritical). These are regions where the non-Newtonian effects are most
important. (B) Critical viscosity is defined by µcritical = 3 ∗ µN.

are expected in the aneurysmal region, but it is interesting to also observe those regions in

the descending aorta, where the aortic diameter is normal. In the venous model, widespread

areas of low shear rate emphasize the need to consider non-Newtonian viscosity models when

studying problems on the large veins.

2.3.3 Lagrangian Transport Analysis

The transport of biochemical species such as proteins, platelets and chemical signaling

species plays a significant role in the initiation and propagation of various cardiovascular

diseases such as thrombosis and atherosclerosis16,60,130. We next investigate the effect of

viscosity models on Lagrangian transport in the patient-specific models.
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Figure 2.8: (A,D) Particles left in the arterial and venous computational domains for New-
tonian and Carreau-Yasuda simulations. (B,E) Box and whisker plot describing the particles
left in the domains. (C,F) Line plots describing the number of particles leaving the compu-
tational domains over time.

Approximately one million massless particles were injected into the arterial and venous

anatomical models and tracked for ten cardiac cycles. For the arterial model, a single

bolus was released at the ascending thoracic aorta. In the venous model, four boluses of

approximately 250,000 particles each were released at the left EIV, left IIV, right EIV, and

right IIV. Particles were tracked as they were passively advected through each computational

domain over time and collected at the outflow faces. Statistics on PLAP and the number of

particles were recorded.

Mean PLAP Newtonian Mean PLAP Carreau-Yasuda

Arterial 229.1 177.1

Venous 146.7 130.7

Table 2.2: Mean values of PLAP for the particles left in the arterial and venous domains
after ten cardiac cycles.

36



Figure 2.8(A,D) shows the particles remaining in the arterial and venous models after

ten cardiac cycles. Mean PLAP values in both models are larger in the Newtonian analysis

compared to the Carreau-Yasuda, see Figure 2.8(B,E) and Table 2.2.

Figure 2.8(C,F) show the total number of particles inside the anatomical domains over

time. Particles leave the domains at different rates due to differences in viscosity. Interest-

ingly, particles leave the domains at a slower rate in the Newtonian model. This is likely

due to the increased vorticity of the flow in the Newtonian simulation, see Figure 2.5. The

pulsatility of the arterial flow is apparent in panel C, where we observe that non-Newtonian

viscosity is more important during diastole (flat portions of the curve). After t = 3.64 s, the

differences between Newtonian and Carreau-Yasuda simulations are apparent throughout

the entire cardiac cycle. For the venous model (panel F), particles leave the domain at a

relatively constant rate due to the smaller pulsatility of the flow.

2.4 Discussion

Despite the long-standing knowledge of the shear thinning behavior of blood, compu-

tational studies have typically assumed a shear-independent Newtonian viscosity model for

blood. While this assumption is generally applicable in large arteries characterized by high

shear rates, it is difficult to justify in regions of vasculature exhibiting low shear rates such

as veins and diseased arteries. Moreover, previous studies which considered non-Newtonian

viscosity models often employed idealized vascular geometries, despite the evident role that

complex anatomical features have in altered flow patterns39,125,140. In this work, we set out

to investigate the impact that the choice of constitutive model has on hemodynamic metrics

(velocity, vorticity, wall shear stress) as well as Lagrangian transport metrics for arterial and

venous anatomies in which low shear and recirculation are expected.

We first implemented two shear-dependent non-Newtonian viscosity models of blood, the

Power-Law and Carreau-Yasuda model. To test our implementation of shear-dependent vis-

cosity, we compared the results of the Power-Law model in an idealized cylindrical vessel
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against the Power-Law analytical solution, obtaining excellent agreement between profiles

(Figure 2.3). Our implementation was explicit (e.g., we only accounted for shear-dependent

viscosity on the right-hand-side residual and not the left-hand-side linearization matrix).

This explicit implementation of shear-dependent viscosity led to minor increments in com-

putational cost compared to solutions obtained with a Newtonian model.

We then studied the effect of blood rheology in two patient-specific models which are

expected to exhibit regions of low shear rate: a thoracic aortic aneurysm model, and a

venous model of the IVC and iliac veins, see Figure 2.2. In each case, we performed a

comparative hemodynamics and transport analysis using Newtonian and Carreau-Yasuda

viscosity models.

For the arterial model, our analysis of hemodynamic indices revealed lower in-plane

velocities and vorticity and larger WSS in the Carreau-Yasuda solution, see Figures 2.4, 2.5,

and 2.6. Lower vorticity in the Carreau-Yasuda solution is expected since non-Newtonian

models are characterized by higher viscosity and lower shear rates that result in larger

diffusion on the flow vorticity. In the Carreau-Yasuda solution, the viscosity is sufficiently

large to result in greater WSS.

The venous model was characterized by lower pulsatility and velocities compared to the

arterial model. Our analysis again revealed lower velocities and vorticity (Figures 2.4 and

2.5) and larger WSS (Figure 2.6) in the non-Newtonian case. This observation suggests that

the increased viscosity in the non-Newtonian case is sufficiently larger to result in higher

WSS, despite the lower velocity gradients.

A Lagrangian particle tracking analysis was then performed in both the arterial and ve-

nous models to assess the effect of blood rheology on cardiovascular transport (Figure 2.8).

A particle tracking technique was used where massless tracer particles were introduced and

tracked as they traverse through the computational domain. This analysis allows us to cal-

culate a metric of accumulated shear termed ‘platelet activation potential’ (PLAP). Our

analysis revealed an increase in mean PLAP in the Newtonian case for both the arterial
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and venous models (Figure 2.8(B,E)). In addition, non-Newtonian viscosity affected the rate

at which particles left the computational domain with particles leaving at a slower rate in

the Newtonian case (Figure 2.8(C,F)). We hypothesize that this is caused by the increased

vorticity (see bar plots in Figure 2.5) which led to particles recirculating longer before ex-

iting the domain. Residence time and PLAP are two metrics that have both been linked

to thrombosis formation94,98 and this suggests that considering accurate blood rheological

models can have a significant effect on solutions for computational cardiovascular disease

models.

One of the primary limitations of the current study is that both the arterial and venous

walls were modeled as rigid. However, owing to the limited availability of vessel wall material

properties and their regional variation, such a study demands a separate focused effort and

will be the subject of future work.

In this study, we used previously reported values of viscosities in the low and high shear

rate limit for the Carreau-Yasuda model. However, there exist numerous other computational

studies11,120,139 that employed different values, making it difficult to compare results across

studies. Therefore, better standardization and computational benchmarks are needed, per-

haps in idealized geometries, to allow both the validation of new computational frameworks

and the study of isolated effects of flow conditions and vessel geometry.

Future studies should investigate shear-dependent rheological models in healthy arterial

and/or diseased venous models which may have considerably fewer regions of low shear flow,

as well as study other well known constitutive models for blood such as the Casson and

Herschel-Bulkley.
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CHAPTER III

Numerical Considerations for Advection-Diffusion

Problems in Cardiovascular Hemodynamics

3.1 Introduction

Mass transport of biochemical species plays an important role in numerous cardiovas-

cular pathologies including thrombosis and atherosclerosis. Computational models of mass

transport offer the unique capability to study various biochemical processes essential to un-

derstand the kinetics of disease progression, but which are otherwise difficult to measure

in vivo. However, cardiovascular mass transport problems are characterized by highly ad-

vective flows (with Péclet numbers up to 107) that make obtaining an accurate numerical

solution challenging. Furthermore, every outlet face of a computational model is an artificial

boundary resulting from the arbitrary truncation of a vessel. Therefore, it is necessary to

prescribe realistic boundary conditions that result in a stable solution at outlet faces while

preserving the accuracy of the solution.

In this work, we present a stabilized finite element framework that incorporates three

salient features: (i) a backflow stabilization technique to obtain stable solutions with Neu-

mann outflow boundaries for scalar advection-diffusion problems, (ii) a consistent flux bound-

ary condition that minimally disturbs the local physics of the problem on outflow boundaries

resulting from the artificial truncation of vessels; and (iii) a front-capturing stabilization
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technique to regularize the solution with a concentration front in scenarios of high Péclet

numbers.

Backflow Stabilization: Neumann conditions have typically been prescribed for outlet

boundaries in cardiovascular flows, either through direct imposition of a known traction

(i.e. zero or constant pressure condition)102,111 or, more recently, through the coupling of

reduced order models (i.e. lumped parameter networks) of the distal vasculature, which

ultimately results in the specification of a time-varying weak traction on the outlet face135.

However, Neumann conditions in boundaries exhibiting partial or complete inflow are known

to lead to numerical divergence18,21,22,41–43,48,51,74,77,97,100,114. Specifically, prescribing a dif-

fusive flux fails to guarantee stable energy estimates due to the unknown velocity profile

at these boundaries54. To mitigate these difficulties associated with flow modeling, several

strategies have been proposed including adding a backflow stabilization term to the bound-

ary nodes13,18,21,22,41–43,48,54,77,100,114, constraining the velocity to be normal to the outlet97,

or using Lagrange multipliers to constrain the velocity profile at all or some of the outlets74.

A comparison of these strategies determined that backflow stabilization was the most robust

approach with the least impact on both the solution and computational cost97.

Similar scenarios of numerical instability can arise in scalar advection-diffusion systems65.

Despite the numerous reports on backflow stabilization for flow problems12,18,21,22,41–43,48,74,77,97,100,114

and 2D heat mass transfer27,84,99,108,109, these strategies have not been adopted for 3D cardio-

vascular scalar advection-diffusion systems. Instead, to circumvent the numerical instability

issues in the presence of backflow, mass transport models have resorted to unphysical ap-

proaches such as the imposition of arbitrary Dirichlet boundary conditions at the outlet

faces8,57, artificial extensions of the computational domain47 that seek to regularize the flow

profile, or an artificial increase in the diffusivity of the scalar16,50. In this work, we pro-

pose a stabilization method for outlet Neumann boundaries, following the ideas presented

by Hughes and Wells65.

Consistent Flux Boundary Condition: While there have been numerous contributions
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proposing outflow boundary conditions for cardiovascular flow problems135, little work has

been done for the scalar advection-diffusion problem. Typically, cardiovascular mass trans-

port models have employed either Dirichlet or Neumann conditions prescribing known scalar

concentrations8,57 or diffusive fluxes81,151 at the outlet face, respectively. An alternative

choice of boundary condition, henceforth referred to as “consistent boundary condition” has

been shown to provide better error estimates55. This approach relies on calculating the

consistent diffusive flux (rather than imposing an arbitrary diffusive flux) that satisfies the

weak form of the mass transport equation. To the best of our knowledge, this boundary

condition has been thus far unexplored for cardiovascular mass transport problems. In this

work, we demonstrate the superior performance of this approach over the traditional zero

diffusive flux boundary condition.

Front-Capturing Stabilization Techniques : Another important issue concerning simula-

tion of mass transport in cardiovascular applications is the presence of high Péclet number

flows typically found in the large arteries. These advection-dominated flows lead to the

development of steep concentration gradients, thereby necessitating the use of stabilization

techniques to avoid unphysical oscillations in the numerical solution near the concentra-

tion front. To address this issue, several discontinuity capturing methods have been pro-

posed32,35,64. In this work, we discuss the performance of the discontinuity capturing (DC)

stabilization technique, implemented in the context of a streamline upwind Petrov-Galerkin

(SUPG) stabilized finite element formulation.

Numerical results are presented in both idealized and patient-specific geometries to

demonstrate the efficacy of the proposed numerical procedures. Lastly, to build on the

work of Chapter II the scalar mass transport framework is applied to the arterial and ve-

nous models previously used to investigate the effects of non-Newtonian rheology on mass

transport.
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3.2 Methods

3.2.1 Strong form and boundary conditions

The strong form of the governing equation for mass transport in a three-dimensional

bounded domain Ω ⊂ R3 is given as

∂c

∂t
+ u · ∇c−∇ · (D∇c) = r in Ω, (3.1)

where c, D, r, and t denote the concentration of the scalar, diffusion coefficient, source (or

reaction) terms and time, respectively and u is a known, solenoidal velocity field. Ω is a

open set with boundary Γ = ∂Ω, such that:

Γ = ΓD ∪ ΓN , (3.2)

ΓD ∩ ΓN = ∅, (3.3)

where ΓD and ΓN are the Dirichlet and Neumann partitions of the boundary Γ, respectively.

We consider a further partition of Γ = Γin ∪ Γout, Γin ∩ Γout = ∅ such that:

Γin(t) = {x ∈ Γ|un(x, t) ≤ 0}, (3.4)

Γout(t) = Γ− Γin(t), (3.5)

where un is the dot product of the velocity with the outward unit normal at the boundary,

x is the position vector, Γin(t) is the inflow boundary, and Γout(t) is the outflow boundary.

Γin(t) and Γout(t) are functions of time owing to the time dependence of the velocity field.

In this manuscript, the terms ‘outlet’ and ‘inlet’ are used to refer to spatially fixed positions

of boundary faces, while the terms ‘inflow boundary’ and ‘outflow boundary’ are used to

refer to regions of the boundary that exhibit inflow and outflow at a given time instant,
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respectively. Given these definitions, a total of four distinct boundaries can be defined for

mass transport problems65:

Γαβ(t) = Γβ ∩ Γα(t), α = {in, out}, β = {D,N} (3.6)

Typically, finite element simulations of mass transport have considered Dirichlet boundary

conditions on inlet faces and Neumann boundary conditions on outlet faces. However, this

strategy often shows numerical divergence if backflow occurs on the Neumann boundary

(e.g., if Γin
N(t) 6= ∅). Indeed, it has been shown that the prescription of diffusive flux on a

Γin
N(t) boundary fails to guarantee stable energy estimates and therefore leads to numerical

divergence54. Prescribing the total flux on inflow Neumann boundaries Γin
N(t) mitigates this

issue, whereas the diffusive flux can be safely prescribed on outflow Neumann boundaries

Γout
N (t)65, viz:

D∇c · n = hout on Γout
N (t), (3.7)

−cu · n +D∇c · n = hin on Γin
N(t). (3.8)

Here, hout and hin denote the diffusive and total (i.e., advective plus diffusive) flux data,

respectively.

3.2.2 Weak form

The Galerkin weak form for the scalar advection-diffusion problem governed by Eq. 3.1

is as follows: find c ∈ H1(Ω) such that

∫
Ω

[
δc
∂c

∂t
+ δcu · ∇c+∇δc ·D∇c

]
dV −

∫
ΓN

δc (D∇c) · ndA =

∫
Ω

δcrdV ∀δc ∈ H1
0 (Ω)

(3.9)
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where δc is a weighting function, H1(Ω) is a (solution) space of once-differentiable functions

satisfying the Dirichlet boundary conditions on ΓD, and H1
0 (Ω) is a (weighting) space of

once-differentiable functions vanishing on the Dirichlet boundary ΓD. Since cardiovascular

mass transport problems are characterized by high Péclet number flows, we utilize a SUPG

stabilized finite element formulation19, resulting in the following discrete weak form:

∫
Ω

[
δc
∂c

∂t
+ δcu · ∇c+∇δc ·D∇c

]
dV −

∫
ΓN

δc (D∇c) · ndA

+

nel∑
i=1

∫
Ωi

∇δc · uτRdV =

∫
Ω

δcrdV ∀δc ∈ H1
0 (Ω)

(3.10)

where nel denotes the total number of elements in the discretized domain, Ωi is the domain

of the i-th element, τ is the stabilization parameter, and R is the residual given as

R =
∂c

∂t
+ u · ∇c−D∇2c− r. (3.11)

The stabilization parameter τ is given as

τ−2 = τ−2
1 + τ−2

2 + τ−2
3 , (3.12)

τ−2
1 =

(
∆t

2

)−2

, τ−2
2 = u · gu, τ−2

3 = 9D2g : g, g =

(
∂ξ

∂x

)T
∂ξ

∂x
, (3.13)

where ∆t is the time step size, : is the Frobenius inner product, and g is the metric tensor

based on the Jacobian of the mapping between the element coordinates ξ and the physical

coordinates x (e.g. in 1D, g = 4/h2). We remark that, without loss of generality, the

examples shown in this article all use a zero reaction term and hence no contributions from

the reaction terms appear in the above-mentioned stabilization terms.
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3.2.3 Backflow stabilization and total flux

Using Eqs. 3.7 and 3.8, the Neumann boundary term in Eq. 3.10 becomes

∫
ΓN

δc (D∇c) · ndA =

∫
Γout
N (t)

δc (D∇c) · ndA+

∫
Γin
N (t)

δc (D∇c) · ndA,

=

∫
Γout
N (t)

δch
outdA+

∫
Γin
N (t)

δc (D∇c− cu) · ndA+

∫
Γin
N (t)

δccu · ndA,

=

∫
Γout
N (t)

δch
outdA+

∫
Γin
N (t)

δch
indA+

∫
Γin
N (t)

δccu · ndA. (3.14)

As indicated earlier, diffusive flux Neumann boundary conditions are typically prescribed at

outlet faces Γout
N (t). In this scenario, the last term of Eq.3.14 (i.e., advective flux) vanishes

since Γin
N(t) = ∅. However, in cases where Γin

N(t) 6= ∅, the total flux must be prescribed and

therefore the advective flux term in Eq. 3.14 is non-trivial and must be included in Eq. 3.10

to obtain a stable solution. Previous publications on backflow stabilization for Navier-

Stokes problems have introduced a parameter β scaling the advective flux contribution13,54,97.

However, owing to the lack of mathematical rigor justifying the introduction and choice of

such a scaling factor, we do not consider it for the scalar advection-diffusion problem.

3.2.4 Consistent flux boundary condition

The boundary conditions imposed at artificial boundaries generated due to the trun-

cation of a physical domain form a crucial component of the computational model. Since

the downstream physics for mass transport applications is often unknown at such artificial

boundaries, the task of identifying appropriate conditions that preserve the accuracy of the

solution remains challenging.

While there have been numerous contributions proposing conditions for artificial bound-

aries in cardiovascular flow problems, little work has been done for the scalar advection-

diffusion problem. Typically, cardiovascular mass transport models have employed either
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Dirichlet or Neumann conditions prescribing scalar concentrations8,57 or diffusive fluxes81,151

at the outlet face as in Eq. 3.7, respectively. Neither of these approaches is ideal, since they

assume knowledge of a physical quantity which is typically unknown. While imposing an

arbitrary Dirichlet outlet boundary condition renders a stable solution, it severely affects the

scalar solution field and has resulted in approaches relying on extending the outflow branches

to minimize the impact of such conditions in the region of interest8,57. These approaches

also increase the computational cost due to the larger domain. Conversely, a zero diffusive

flux condition has been used more sporadically (likely due to the numerical instabilities as-

sociated with backflow, as noted above), and, while seemingly less intrusive than a Dirichlet

condition, it still fundamentally prescribes an unknown property of the solution field.

An alternative to this zero diffusive flux condition, proposed in the context of the Navier-

Stokes equations by Papanastasiou and Malamataris106, is to calculate the diffusive flux

that satisfies the weak form of the mass transport equation and iteratively impose it as a

boundary condition. This approach amounts to treating the boundary integral in the weak

form given by Eq. 3.9 as unknown and is particularly useful when analytic or asymptotic

techniques cannot predict the physics downstream from the artificial outlets, making it chal-

lenging to formulate appropriate boundary conditions at these faces. The strategy of leaving

an undefined boundary integral could lead to an ill-posed variational form, particularly in

diffusion-dominated problems which are more elliptical in nature and thus necessitate spec-

ification of conditions on every boundary. Conversely, advection-dominated problems have

a stronger hyperbolic behavior and are less likely to be affected by the ill-posedness of this

strategy. For a more detailed discussion on the mathematical implications of this approach,

we refer the reader to the work of Griffiths55 and Renardy121.

In the context of the Navier-Stokes equations, these boundary conditions have been re-

ferred to using different terminologies such as “no boundary condition” or “free boundary

condition”55,106. However, here we will refer to them as “consistent flux boundary condi-

tion”. In this work, we employ both the zero diffusive flux (see Eq. 3.7), and the consistent
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flux boundary conditions for the scalar advection-diffusion problem and compare their per-

formance in preserving the local physics of the computed solution.

3.2.5 Discontinuity capturing operator

In the context of high Péclet number flows, SUPG stabilized formulations for scalar

advection-diffusion problems fail to resolve the steep gradients in the solution, resulting

in numerical undershoot/overshoot in concentrations near the scalar front. Therefore, in

addition to SUPG stabilization, we implemented a discontinuity capturing (DC) operator to

resolve steep gradients in the solution79. This approach introduces an additional term for

each element of the form ∇δc · νDC∇c in Eq. 3.10 similar to the last term on the LHS. νDC

is defined as

νDC = max[0, ωDC ] g̃, (3.15)

where g̃ is the contravariant counterpart of the metric tensor introduced in Eq. 3.13 and

ωDC = fDC

√
R2

∇c · g̃∇c
− τ R2

∇c · g̃∇c
, (3.16)

where fDC = 1 for linear finite elements and τ is the stabilization parameter defined in

Eq. 3.12. We want to make two remarks on the DC term: 1) it involves gradients of

the weighting function and thus, conservative properties of the semi-discrete form are un-

changed65, and 2) it makes the weak form of the scalar advection-diffusion problem nonlin-

ear. Therefore, the resolution of gradients near the concentration front is obtained at an

increased computational expense. For nonlinear scalar problems, however, the increase in

computational cost due to the use of DC operator is not high (as discussed later).
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3.3 Numerical Examples

In this section, we present numerical results to illustrate the suitability of the proposed

computational framework. The following applies to all the numerical examples presented in

this section:

• A flow solution is first obtained by solving the stabilized Navier-Stokes equations using

the cardiovascular hemodynamics modeling environment, CRIMSON6. All walls are

modeled as rigid (i.e., homogeneous Dirichlet boundary conditions for the velocity field)

and blood is modeled with a density of 1060 kg/m3.

• In Sections 3.3.1 and 3.3.2 blood is modeled as a Newtonian fluid with a dynamic

viscosity of 0.004 Pa · s. In Section 3.3.3 blood is modeled as both a Newtonian fluid

with a dynamic viscosity of 0.0035 Pa · s and as a Carreau-Yasuda fluid based on

parameters described in Table 2.1.

• For all flow solutions backflow stabilization was used when solving the Navier-Stokes

equations.

• For the mass transport problems, a constant concentration of c = 10 mol/mm3 is

prescribed at the inlet face(s) and a zero concentration flux boundary condition is

applied to all walls. An initial concentration of c = 0 mol/mm3 is assumed for all mass

transport problems.

3.3.1 Idealized geometries

To provide a better understanding of specific numerical challenges, we first present results

for cases where idealized geometries and problem parameters are chosen to isolate specific

numerical challenges. Here, we present results for three specific cases that highlight the

effectiveness of the different components of the proposed computational framework.
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3.3.1.1 Backflow stabilization

To illustrate the numerical issues caused by Γin
N(t) boundaries, we consider a T-shaped

bifurcation as shown in Figure 3.1. The choice of geometry and boundary conditions of

Figure 3.1: 3D T-shaped bifurcation model.

this problem leads to partial backflow at the outlet faces even under steady flow conditions.

A velocity field was obtained by prescribing a constant inlet flow of 196 mm3/s, mapped

to a parabolic velocity profile, resulting in a maximum velocity of vmax = 2000 mm/s, a

mean velocity of vmean = 1000 mm/s, and a Reynolds number Remean = 66.25, based on

the mean velocity and the inlet radius. A zero traction boundary condition was applied at

both outlet faces. For the scalar advection-diffusion problem, a zero diffusive flux condition

was prescribed at the outlet faces. The diffusion coefficient was set to D = 10−2 mm2/s,

resulting in a Péclet number of Pemean = 2.5× 104. The domain was discretized using linear

tetrahedral elements with characteristic length of 10−2 mm, resulting in a total mesh size of

11.3 million elements. Simulations were run using a constant time-step size of ∆t = 10−5 s
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for 8000 time steps.

Figure 3.2(A) shows the velocity field plotted at the mid-plane of the T-shaped bifurcation

perpendicular to the Z direction. The velocity profiles at the outlet faces exhibit backflow,

Figure 3.2(B). Figure 3.3(A) shows the solution for the scalar concentration at t = 0.036 s,

obtained without backflow stabilization. The solution presents strong numerical artifacts on

the top outlet boundary, corresponding to the Γin
N(t) region of the outlet boundary. These

numerical artifacts eventually lead to divergence of the simulation and also appear in the

bottom outlet boundary over time. In contrast, the proposed backflow stabilization technique

yields a stable solution as shown in Figure 3.3(B). We would like to point out that the two

numerical solutions in Figure 3.3(A) and Figure 3.3(B) exhibit spurious oscillations in the

interior of the domain, these will be addressed in Section 3.3.1.3.

Figure 3.2: A) Velocity contours in the mid-plane of the T-shaped bifurcation. Red lines
indicate velocity profiles at discrete number of locations. B) Close-up view of the velocity
at the outlets, illustrating backflow in a small segment of the outlet face.
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Figure 3.3: Scalar contours at time t = 0.036s in the T-Bifurcation. A) No backflow stabi-
lization resulting in an unstable solution, and B) With backflow stabilization resulting in a
stable solution in the presence of backflow.

3.3.1.2 Consistent flux boundary condition

In this example, we compare the behavior of the consistent flux and the zero diffusive

flux boundary conditions. We consider two cylindrical domains of diameter d = 1.0 mm

and lengths l1 = 10 mm and l2 = 5 mm, respectively. For each cylindrical domain, we

apply both types of boundary conditions, rendering a total of four different scenarios. The

ultimate goal of this test is to examine the impact of the boundary conditions on the scalar

field, specifically by comparing solutions at the outlet of the shorter cylinder with solutions

at the mid-section of the longer cylinder, which are taken as the “reference solution”. A

desirable feature of the boundary condition is to minimize the impact on the scalar field,

given that these conditions are typically prescribed on “artificial” boundaries (i.e., arbitrary

truncations of a branch).

Steady flow field solutions were obtained by prescribing a constant flow rate of 196 mm3/s,

mapped to a parabolic velocity profile resulting in a maximum velocity of vmax = 500 mm/s,

a mean velocity of vmean = 250 mm/s and a Reynolds number of Remean = 33.125. A zero
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traction boundary condition was applied at the outlet face. For the mass transport problem,

a constant value of diffusivity was adopted, D = 102 mm2/s, resulting in Péclet number

of Pemean = 1.25. This relatively low Péclet number was chosen because it amplifies the

differences between zero diffusive and consistent flux boundary conditions. Simulations were

run using a constant time-step size of ∆t = 10−4 s for 8000 time steps.

Figure 3.4(A) shows scalar concentration contours at t = 0.042 s. for the long (i-ii) and

short (iii-iv) cylinders, respectively. Figure 3.4(B) shows scalar concentration profiles at the

mid-section of the long cylinder (i-ii) and the outlet face of the short cylinder (iii-iv). For

the long cylinder, the solutions overlap each other, indicating that at this location far away

from the boundary, and this point in time, there is no noticeable difference between solutions

obtained with either boundary condition. For the short cylinder, however, there is a notice-

able difference between the solutions obtained with the zero diffusive and consistent flux

boundary conditions. Taking the solution in the long cylinder as the “reference solution”, it

can be observed that the zero diffusive flux condition renders 10% larger scalar concentration

values. In contrast, the consistent flux boundary condition yields scalar values much closer

to the true solution, overestimated by just 0.015%. These results illustrate the superior

performance of the consistent flux boundary condition in preserving the local physics of the

numerical solution near artificial boundaries.

3.3.1.3 Discontinuity capturing operator

Having addressed numerical issues concerning outlet boundaries, we now focus our at-

tention to spurious oscillations in the numerical solution around the concentration front

within the computational domain. We consider the flow solution for the shorter cylindri-

cal domain (l2 = 5 mm) described in the previous section. A smaller diffusion coefficient

D = 10−2 mm2/s was adopted, resulting in a higher Péclet number of Pe = 1.25 × 104,

that is of practical interest and exhibits spurious oscillations. A consistent flux boundary

condition was prescribed at the outlet face. Same mesh and time step size were used as in
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Figure 3.4: A) Scalar contours for four different cylinders. From top to bottom: (i) 10 mm
cylinder with the consistent flux outflow boundary condition, (ii) 10 mm cylinder with a zero
Neumann outflow boundary condition, (iii) 5 mm cylinder with the consistent flux boundary
condition, and (iv) 5 mm cylinder with a zero Neumann boundary condition. B) Line plot
showing scalar concentration across the cylinder at X = 5 mm for cases i-iv.

the previous section.

Figures 3.5(A) and Figure 3.5(B) show concentration contours obtained without and with

the DC operator, respectively. Undershoot/overshoot in the numerical solution is apparent

near the wavefront of the scalar field when no DC operator is used. These oscillations result

in unphysical negative scalar concentrations (−0.98 mol/mm3) as well as in values higher

than those imposed at the inlet (11.92 mol/mm3). Figure 3.5(C) shows plots of the scalar

concentration along the centerline of the cylinder at different times. It can be observed

that spurious oscillations begin in the numerical solution without the DC operator (red line)

within the first five time steps (t = 0.0005 s) and increase in magnitude with time. In

contrast, the use of the DC operator (black line) results in smooth solution profiles for all

times.

3.3.2 Patient-specific geometry

Having demonstrated the capabilities of the stabilized computational framework in ide-

alized geometries under steady flows, we now shift our focus to a patient-specific geometry
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Figure 3.5: A) Scalar contours of 5mm cylinder without the DC Operator at t = 4× 10−3 s.
B) Scalar contours with the DC Operator at t = 4 × 10−3 s. C) Scalar concentration
along the center of the cylinder with and without DC Operator at three instances in time:
t = 5× 10−4 s, t = 2× 10−3 s and t = 4× 10−3 s.

of a human thoracic aortic aneurysm under periodic flow conditions133. The aortic geometry

was built from computed tomography angiography (CTA) image data using the cardiovascu-

lar hemodynamic modeling environment CRIMSON6. Figure 3.6 shows the computational

domain comprised of the ascending aorta and nine outlet branches. The aortic geome-

try was discretized into 6.2 million linear tetrahedral elements and 1.1 million nodes. An

echocardiography-derived periodic flow waveform (with time period T = 0.91 s) mapped to a

parabolic velocity profile was imposed at the aortic inflow, resulting in a maximum Reynolds

number of approximately Remax = 2.1x103. Three-element Windkessel models135 were pre-
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scribed at each outlet face, representing the behavior of the distal vascular beds (numerical

values given in Appendix A)133. Cycle-to-cycle periodicity was achieved after running the

flow problem under rigid wall assumptions for four cardiac cycles, corresponding to a physical

time of t = 3.64 s. Subsequently, the scalar advection-diffusion equation was solved, assum-

ing a zero concentration initial condition, a constant Dirichlet inlet boundary condition of

c = 10 mol/mm3, and zero total flux boundary conditions at the vessel walls for t > 3.64 s.

Simulations were run using a constant time step size of ∆t = 10−4 s.

Figure 3.6: A) 3D geometric model reconstructed from CTA image data. B) Computational
mesh used in all patient-specific simulations. Both the geometric model and computational
mesh were created using CRIMSON.

3.3.2.1 Backflow stabilization

We first studied the issue of numerical instabilities on inflow Neumann boundaries (Γin
N).

A constant diffusion coefficient, D = 1.0 mm2/s was used, resulting in a maximum Péclet

number of Pemax = 8.0x103 at the inlet face. Zero diffusive flux boundary conditions were

prescribed on each outlet face. Figure 3.7(A) shows a 3D warp of the velocity profile at the

aortic outlet boundary in mid-diastole (t = 4.39 s). Flow reversal is apparent on this bound-

ary at this point in time. Using the standard zero diffusive flux boundary condition without
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backflow stabilization leads to instabilities in the numerical solution and eventual divergence,

see Figure 3.7(B). Figure 3.7(C) shows the corresponding stable scalar concentration solution

obtained with the inclusion of backflow stabilization. There was no significant difference in

computational cost between solutions obtained with and without backflow stabilization.

Figure 3.7: A) Computational domain with thoracic aortic aneurysm showing flow reversal
at the descending thoracic aorta outlet. Surface contours of scalar concentration at time
t = 4.39 s. B) Without scalar backflow stabilization numerical instability is observed at
the thoracic aorta outlet that proceeds to pollute the scalar domain. C) With backflow
stabilization a stable scalar solution is obtained in the presence of backflow at an outlet.

3.3.2.2 Consistent flux boundary condition

We next studied the performance of the consistent flux versus the zero diffusive flux

boundary condition. In both cases, backflow stabilization and a constant value of diffusion

coefficient D = 102 mm2/s were used resulting in a maximum Péclet number of Pemax = 80

at the inlet face. Figure 3.8 shows the geometric model with four arbitrary locations A-D

along the aorta. Scalar concentration profiles obtained with both boundary conditions at

t = 6.55 s for locations A-D are given. The concentration profiles show substantial variations

along the cross section of the vessel for each location, highlighting the contribution of the
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advection to the concentration profile. For instance, panels A and B show larger values of

concentration along the outer curvature of the aorta, where the velocity field is larger. Pan-

els A and B also show close agreement between the solutions obtained with each boundary

condition. In contrast, panels C and D show clear differences between the scalar concentra-

tion profiles, with discrepancies between solutions increasing in locations closer to the outlet

boundary. Location D shows substantial differences in numerical values and concentration

profiles between the two solutions. These results highlight the intrusiveness of the zero dif-

fusive flux boundary condition, particularly in regions of the computational domain near

the outlet boundaries. There was no significant difference in computational cost between

solutions obtained with the zero diffusive or consistent flux boundary conditions.

Figure 3.8: Patient-specific simulations in a human thoracic aneurysm were run with both
a zero diffusive flux boundary condition (solid red line) and a consistent flux boundary
condition (dashed black line). Comparisons of the scalar profile across the diameter of the
model is shown at four locations (A-D). Results show that close to the inflow the scalar
profile across the aorta is the same for both boundary conditions at outlet faces. After the
thoracic aneurysm the scalar profiles begin to differ and the greatest differences are observed
near the primary outlet face.

58



3.3.2.3 Discontinuity capturing operator

In this last example, we demonstrate the efficacy of the DC operator in resolving spu-

rious oscillations in the scalar concentration solution. A constant diffusion coefficient,

D = 1.0 mm2/s was used, resulting in a maximum Péclet number of Pemax = 8.0x103 at

the inlet face. Consistent flux boundary conditions were prescribed on each outlet face and

backflow stabilization was used. Figures 3.9(A) and (B) shows the concentration contours

at t = 4.04 s obtained without and with the DC operator, respectively. Numerical under-

shoot/overshoot is observed near the wavefront of the scalar field when no DC operator is

used. Figure 3.9(C) shows a comparison between the two scalar concentration solutions,

plotted along an arbitrary line passing through the concentration wavefront. It can be ob-

served that the solution without the inclusion of the DC operator is characterized by spurious

oscillations near the concentration wavefront. These oscillations result in unphysical (neg-

ative) minimum (−1.43 mol/mm3) and maximum (12.39 mol/mm3) values of concentration.

In contrast, the solution obtained with the inclusion of the DC operator shows always pos-

itive, smoothly varying scalar concentrations across the wavefront, devoid of any spurious

oscillations.

3.3.3 Effects of non-Newtonian Viscosity on Mass Transport

To further investigate the impact of non-Newtonian rheology on transport in patient-

specific arterial and venous flows the stabilized mass transport framework, developed in this

work, was applied to the both the arterial and venous models discussed in Chapter II. We

prescribed concentrations of species through the inlet face(s) of the computational models

under two different viscosity constitutive assumptions (Newtonian and Carreau-Yasuda),

and solved the spatio-temporal concentration fields, to study potential discrepancies in mass

transport in the lumen and near the vessel wall. For both models, scalar backflow stabi-

lization and discontinuity capturing were used. A zero total flux boundary condition was

prescribed at all walls while a consistent-flux boundary condition was prescribed at the outlet
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Figure 3.9: Scalar concentration contours at t = 4.04 s obtained without (A) and with the DC
operator (B), respectively. Oscillations in the scalar solution can be seen near the wavefront
in (A); a smooth concentration solution can be seen in (B). The lines (in A and B) indicate
the location where the scalar concentration profiles are shown in (C). The use of the DC
operator effectively avoids the overshoot/undershoot phenomena seen in the simulation with
no DC.

face(s). A constant diffusion coefficient D = 1.0 mm2/s was used for all species.

Figure 3.10(A) shows the aortic computational domain with four locations (i)-(iv) high-

lighted along the aorta. Figure 3.10(B) shows volume rendered plots of scalar concentration

for the Newtonian and Carreau-Yasuda cases during diastole. Consistent with the differences

observed in the hemodynamic flow analysis from Chapter II, see Figs. 2.4, 2.5, and 2.6, the

scalar concentration fields also differ significantly in Newtonian vs. Carreau-Yasuda case,

particularly in the aneurysmal region. To further investigate these differences, Figure 3.10(C)

shows warped scalar concentration profiles at the four locations (i)-(iv) along the aorta, as

indicated in Figure 3.10(A). It can be observed that while the mean concentration values

in the Newtonian and Carreau-Yasuda cases are similar, there are significant differences in

the spatial distribution of the concentration, both in the domain as well as near the wall.

Since the initiation and propagation of numerous cardiovascular diseases (e.g., thrombosis,

atherosclerosis, etc.) is dictated by near-wall transport58,60,130, we next investigate the scalar

concentration profiles at the wall boundary. Figure 3.10(D) compares the scalar concentra-

tion along the wall for Newtonian and Carreau-Yasuda cases at the same four locations, as
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considered in Figure 3.10(C). Again, significant differences are observed in the concentra-

tion profiles, highlighting the importance of considering accurate blood rheological models

to assess mass transport in cardiovascular pathologies.

Figure 3.10: (A) Computational domain highlighting four locations (i-iv) along the aortic
arch. (B) Volume rendering of the scalar field for the Newtonian and Carreau-Yasuda simula-
tions at time t = 3.64s. (C) Warp of the scalar field at locations i-iv. (D) Scalar concentration
along the aortic wall at locations i-iv for Newtonian and Carreau-Yasuda simulations.

Next, we perform the scalar mass transport analysis in the venous model from Chapter II.

Details on the computational domain, mesh, and boundary conditions for the venous model

can be found in Chapter II. In contrast to the arterial model, the venous model has four

inlet faces. To separately track the mass transport corresponding to the flow from each of

these inlet faces, we consider four distinct scalar species entering the computational domain

through these faces. Figure 3.11(A) shows the venous computational domain with three

locations highlighted at (i) IVC, (ii) left external iliac, and (iii) external iliac. Figure 3.11(B)
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shows volume rendered plots of scalar concentration for the Newtonian and Carreau-Yasuda

cases at a representative time during the cardiac cycle (t = 2.4 s). Again, consistent with the

differences observed in the hemodynamic flow analysis (Figs. 2.4, 2.5, and 2.6), the scalar

concentration fields show significant differences in the Newtonian vs. Carreau-Yasuda case,

particularly in the IVC region where the four scalars begin to mix.

Figure 3.11(C) shows contour plots of the concentration of 4 scalars at the three locations,

highlighted in Figure 3.11(A). The concentration plot at location (i) shows the mixing of

all four scalars with significant qualitative differences between the Newtonian and Carreau-

Yasuda case. It is observed that the Carreau-Yasuda case is characterized by smaller gra-

dients in the concentration fields, resulting in smoother concentration profiles. This finding

is consistent with the higher viscosity in the Carreau-Yasuda case at lower shear rates that

tends to diffuse the gradients in the flow field. The concentration plots at locations (ii) and

(iii) show the mixing of scalars entering through the two left and right inlets of the model,

respectively. The concentration profiles at these locations show subtle qualitative differences

- an interesting finding given the largely unidirectional flow profiles with low vorticity at

these locations.

Lastly, Figure 3.11(D) compares the scalar concentration along the wall of the IVC for

the Newtonian and Carreau-Yasuda case. Each of the four scalar concentrations is compared

between Newtonian and Carreau-Yasuda case and is plotted separately in individual panels.

Significant differences are observed in the concentration profiles at the wall, again illustrating

the importance of incorporating Carreau-Yasuda viscosity models for accurate assessment of

mass transport in cardiovascular disease research.

3.4 Discussion

Transport problems are of paramount importance in studying cardiovascular patholo-

gies. Diseases such as intimal hyperplasia, atherosclerosis and thrombosis are all directly

affected by complex transient hemodynamics as well as the transport of numerous chem-
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Figure 3.11: (A) Computational domain highlighting three locations (i-iii). (B) Volume
rendering of the four scalar scalar fields for the Newtonian and Carreau-Yasuda simulations.
(C) Concentration contours of the four scalar fields at locations i-iii. (D) Scalar concentration
along the IVC wall for Newtonian and Carreau-Yasuda simulations for each scalar species.
All results are shown for time t = 3.2s.

ical species and proteins33,60,71,110,130. Modeling mass transport in cardiovascular systems

presents numerical challenges due to the inherently complex and time-dependent flow pat-

terns and vessel geometries. This complexity is further compounded by the large range of

Péclet numbers found in cardiovascular flows. The primary aim of this work is to present

a stabilized computational framework to study 3D, transient cardiovascular mass transport

problems. This includes the identification of appropriate boundary conditions that allow for
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physiologic flow reversal as well as use of stabilization techniques to avoid spurious numerical

oscillations in the computed concentration field.

A number of previous computational studies have employed modeling assumptions or

simplifications that are difficult to justify in cardiovascular mass transport problems. These

have included unphysiologically large values of diffusion coefficients to lower the Péclet num-

ber16,50; unrealistic extension of model branches to regularize velocity profiles near outlet

faces8,57; and the prescription of arbitrary concentration or flux values at outlet bound-

aries8,57 with a significant influence on the computed solution in regions of interest. These

simplifications, always resulting from limitations in the numerical approach, severely limit

the applicability of such models for general cardiovascular mass transport studies.

The computational framework for cardiovascular mass transport presented in this work

has three salient features. Firstly, we have presented a backflow stabilization strategy to

obtain stable numerical solutions in the presence of flow reversal at outlet boundaries. Sec-

ondly, we have introduced a ‘consistent flux boundary condition’ and have demonstrated its

superiority over the typically used zero diffusive flux boundary condition in preserving the

local physics of the numerical solution, particularly in cases of low Péclet numbers. Lastly,

this framework employs SUPG and DC formulations to resolve steep concentration gradients

in mass transport characterized by high Péclet numbers.

We have demonstrated the application of this framework in two different sets of geome-

tries. Firstly, we chose idealized geometries with steady flow conditions to allow for a clear

interpretation of different numerical challenges and to illustrate the efficacy of the various

stabilization techniques reported in this work. The second set of application examples con-

sidered a patient-specific model of a human aortic aneurysm under pulsatile flow conditions.

This example illustrates the applicability of the framework to complex cardiovascular mass

transport problems.

Figure 3.3(A) demonstrates the issue of numerical divergence in simulations with backflow

at Neumann boundaries. The problem was set up in such a way that even under steady flow

64



conditions, flow reversal occurred on some fraction of the outlet boundaries (Γin
N). For a

diffusion coefficient D = 10−2 mm2/s and Péclet number of Pemean = 2.5× 104, simulations

diverged if no backflow stabilization was utilized. Following concepts used for stabilization

of outlet boundaries in flow problems, the backflow stabilization condition adds an advective

component to the diffusive boundary flux. When running experiments with lower Péclet

numbers (i.e., with larger diffusion coefficients), stable solutions can be obtained even without

any backflow stabilization. This is expected since the contribution of the advective flux to

the total flux decreases with smaller Péclet numbers. This observation explains that previous

studies could report stable solutions without using stabilized outlet boundary conditions for

mass transport problems16,50. However, an artificial increase in diffusion coefficient changes

the physics of the problem entirely.

In Section 3.3.1.2, we studied the performance of the “consistent flux” versus standard

zero diffusive flux boundary conditions in a short cylindrical geometry, and compared the

results against reference solutions obtained in an extended cylindrical geometry. Simulations

demonstrated the superiority of the consistent flux boundary condition in preserving the local

accuracy of the solution near the outlet boundary (Figure 3.4), albeit a marginal difference

relative to the reference truth solution are still noticeable. Important to note, the diffusion

coefficient used in this example was increased to D = 102 mm2/s, leading to a smaller Péclet

number of Pemean = 10. Simulations run with larger Péclet numbers show smaller differences

between consistent and zero flux boundary condition results.

In Section 3.3.1.3, the performance of the DC operator to stabilize oscillations in the

wavefront of the scalar field for high Péclet numbers was studied. A diffusion coefficient

D = 10−2 mm2/s, rendering a Péclet number Pe = 104 was considered. Figure 3.5 illustrates

that without the DC operator, overshoot/undershoot in the numerical solution occurs at the

wavefront, resulting in unphysical negative scalar concentrations (−0.98 mol/mm3) as well

as in concentration values higher than those imposed at the inlet (11.92 mol/mm3). The DC

operator eliminates the spurious oscillations, rendering a smooth solution without unphysical

65



negative concentrations.

Lastly, in Section 3.3.3 we applied computational framework for cardiovascular mass

transport to further study the effects on non-Newtonian rheology on cardiovascular trans-

port. A comparative scalar mass transport analysis was performed using scalar backflow

stabilization, the consistent flux boundary condition, and Discontinuity-Capturing in both

the arterial and venous model for both Newtonian and Carreau-Yasuda viscosity. Here,

biochemical scalar species of interest were represented via respective Eulerian concentration

fields governed by the scalar advection-diffusion equations. In our analyses, we injected scalar

species with prescribed concentrations through the inlet(s) of our computational domain and

solved scalar mass transport equations to obtain the spatio-temporal distribution of these

species. Our analyses revealed significant differences in the concentration fields between the

Newtonian and Carreau-Yasuda case for both the arterial and the venous models. These

differences were observed both in the bulk domain and perhaps more importantly, in the

near-wall region, again highlighting the importance of considering accurate blood rheologi-

cal models to obtain accurate assessment of mass transport via computational cardiovascular

analyses.

The performance of the three formulations was then tested in a patient-specific aortic

aneurysm geometry under pulsatile conditions, see Section 3.3.2. The backflow stabilization

produced stable results in the presence of significant flow reversal (Figure 3.7). The consis-

tent flux boundary condition showed substantial differences in scalar concentration profiles

compared to the zero diffusive flux boundary condition, specifically in regions near the outlet

boundary, see Figure 3.8. Lastly, the DC operator rendered smooth concentration profiles

near the wavefront of the solution for high Péclet number transport, see Figure 3.9.

While the different formulations presented in this work provide a set of robust tools to en-

able simulation of cardiovascular mass transport under realistic geometries, flow, and Péclet

number conditions, further developments are needed. Future work includes validation of

the proposed framework with in vitro dye perfusion experiments and in vivo patient-specific
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angiography studies. Similarly to the reduced-order models widely adopted for cardiovascu-

lar flow problems5,134,135, it is critically important to develop reduced-order models of mass

transport for the proximal and distal portions of the vascular system not included in the 3D

geometric model. This is particularly important when dealing with closed-loop models and

simulations involving reaction.

The DC scheme introduces a non-linear term in the weak form of the problem. Although

an increase in computational cost was expected, no increase was observed in simulations

run with the DC operator. This expense can be mitigated by the use of a time-lagging DC

scheme26. We remark, however, that in the presence of nonlinearity (e.g. in source terms),

the scalar advection-diffusion problem would be nonlinear regardless of the DC scheme and

computational cost will not be significantly different with and without the DC operator.
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CHAPTER IV

Arbitrary Scalar Reaction-Advection-Diffusion

(ARAD) Framework for the Computational Modeling

of Thrombosis in Cardiovascular Hemodynamics

4.1 Introduction

Thrombosis is a process whereby a blood clot forms in situ within a vessel and im-

pedes flow. Although necessary to maintain hemostasis, often the human thrombotic system

becomes unstable leading to scenarios of thrombosis and subsequent diseases such as myocar-

dial infarction, stroke, pulmonary embolism, and deep vein thrombosis (DVT). Thrombosis

initiation involves the complex interplay between hemodynamics and biochemical reactions

that lead to the formation of a blood clot.

The development of multiscale computational models integrating both complex hemo-

dynamics and complex biochemical reactions may provide valuable tools for thrombosis

research150. However, prior computational models have focused on either the complex bio-

chemistry23,61 or flow dynamics36 involved in thrombosis formation, thereby limiting the abil-

ity to investigate their interplay. This limitation is primarily due to the numerical challenges

associated with modeling thrombosis. In particular, thrombosis initiation involves: highly

nonlinear biochemical reactions, high Péclet number flows resulting from the extremely low

diffusivities of coagulation factors and platelets (10−10 m2/s), complex 3-D hemodynamics,
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and near wall transport. Furthermore, it has often been considered computationally cost

prohibitive to run the full coagulation cascade in patient-specific 3D models with realistic

cardiovascular hemodynamics103.

To circumvent these numerical challenges various groups have resorted to non-physiologic

simplifications. For example, groups have employed highly complex nonlinear reaction mod-

els but either simplified geometries (i.e. 2D or 3D cylindrical domains)15,81 or simplified

flow fields (i.e. steady and/or parabolic flow)81. Other groups have modeled thrombin

formation in complex 2 or 3D geometries but with either reduced or phenomenological reac-

tion models103,104 or with non-physiologic changes to the reaction parameters15. Examples

include increasing the diffusivity values of the coagulation factors by multiple orders of mag-

nitude15,127 or using inconsistent stabilization methods such as additional isotropic diffusion

to avoid spurious oscillations15 in the solution field (i.e. negative concentration values).

Therefore, there is a need to develop a flexible computational interface that integrates state

of the art patient-specific hemodynamics with sophisticated biochemical reaction models,

and appropriate numeric stabilization.

In this work, an arbitrary reaction-advection-diffusion (ARAD) interface was developed

for the rapid prototyping of nonlinear reaction models in cardiovascular mass transport

simulations. A novel aspect of the ARAD framework is the ability to run large parallel

patient-specific mass transport simulations with an arbitrary number of scalar species (i.e.

up to 20) with arbitrary nonlinear reaction terms. The ARAD framework takes advantage

of a Python interface for easy prototyping of the reaction models, without having to alter

the underlying C++/FORTRAN finite element (FE) flow solver.

The proposed ARAD framework leverages previous advancements in both hemodynamic

modeling via the open-source hemodynamics software CRIMSON (www.crimson.software)6

and methods for stabilization of scalar mass transport problems87 presented in Chapter III.

CRIMSON has an active community of users which is substantial and constantly growing

and has been widely tested by both members of the research group and outside users.
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The structure of this Chapter is as follows. In the Materials and Methods section, an

overview of the governing equations, nonlinear reaction models, methods of reaction model

implementation, and best practices for thrombosis modeling are provided. In the Results

section a comparison of the performance of the hardcoded and ARAD implementations are

first compared. The flexibility of this framework is next illustrated by prototyping established

coagulation models (4−, 7−, and 18-species models) within a 3D cylindrical domain. Finally,

the 18-species coagulation model is investigated in both an idealized and patient-specific

model of an aortic abdominal aneurysm (AAA).

4.2 Materials and methods

4.2.1 Fluid Dynamics Model

4.2.1.1 Strong Form

The strong form of the governing equations for an incompressible fluid in a 3D bounded

domain Ω ⊂ R3 is given as

ρ

(
∂u

∂t
+ u · ∇u

)
= −∇p+∇ · τ(u) + f , (4.1)

∇ · u = 0, (4.2)

where ρ is the fluid density, t is the time, u is the solenoidal velocity field, p is pressure, f is

the external body force per unit volume (set to zero), and τ is the viscous stress tensor. For

a Newtonian, incompressible fluid, τ is defined as:

τ = µ
(
∇u +∇uT

)
, (4.3)

where µ is the Newtonian viscosity.
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4.2.1.2 Weak Form

For the solution and test function spaces S, W, and P, Eqs. 2.1 and 2.2 yield the following

weak form:

∫
Ω

{w · (ρu,t + ρu · ∇u− f) +∇w : (−pI + τ)−∇q · u}dV

+

∫
Γg

qu · ndA−
∫
Γh

{w · th}dA+

∫
Γh

qu · ndA+ Stab = 0 (4.4)

∀x ∈ Ω,∀t ∈ [0, T ], (4.5)

where w ∈ W and q ∈ P are test functions for the momentum and mass conservation equa-

tions, respectively. Ω represents the 3-dimensional computational domain, Γg is a Dirichlet

boundary (typically the inflow) where the test function w vanishes and Γh is a Neumann

boundary where a traction

th = (−pI + τ) · n = h (u, p,x, t) (4.6)

is prescribed. The standard Galerkin method exhibits instabilities for advection domi-

nated flows and in the diffusion dominated limit for equal order interpolation of velocity

and pressure. The term “Stab” refers to the stabilization terms131,145 of the Streamline

upwind Petrov–Galerkin (SUPG) formulation utilized in our in-house software CRIMSON

(www.crimson.software)6. This stabilization allows us to employ equal order interpolation

for velocity and pressure. In the current work, we employ tetrahedral elements supporting

Lagrange polynomial basis functions of order one for both velocity and pressure. For time

integration, we employ the generalized-α method29.
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4.2.2 Reaction-Advection-Diffusion (RAD) Model

4.2.2.1 Strong Form

The strong form of the governing equation for mass transport in a 3D bounded domain

Ω ⊂ R3 is given as

∂ci
∂t

+ u · ∇ci −∇ · (Di∇ci) = ri in Ω for i = 1, ..., number of scalars, (4.7)

where i = 1, ..., number of scalars and ci, Di, and ri refer to the concentration, diffusion

coefficient, reaction term(s) for the scalar i.

4.2.2.2 Weak Form

The Galerkin weak form for the scalar advection-diffusion problem governed by Eq. 4.7:

is as follows: find c ∈ H1(Ω) such that

∫
Ω

[
δc
∂ci
∂t

+ δcu · ∇ci +∇δc ·Di∇ci
]
dV−

∫
ΓN

δc (Di∇ci) · ndA =

∫
Ω

δcridV ∀δc ∈ H1
0 (Ω) (4.8)

where δc is a weighting function, H1(Ω) is a (solution) space of once-differentiable functions

satisfying the Dirichlet boundary conditions on ΓD, and H1
0 (Ω) is a (weighting) space of

once-differentiable functions vanishing on the Dirichlet boundary ΓD. Since cardiovascular

mass transport problems are characterized by high Péclet number flows, we utilize a SUPG

and Discontinuity-Capturing (DC) stabilized finite element formulation20.

Details of the scalar RAD formulation used in this paper, including background on sta-

bilization and boundary conditions, can be found in Chapter III.

72



4.2.3 Reaction Terms for Biochemical Models

The RAD equations (Eq. 4.7) model the transport of any number of scalar species via

advection, diffusion, and reaction. Various cardiovascular diseases exist that involve the

reaction of a number biochemical species such as atherosclerosis, thrombosis, or oxidation.

These biochemical reactions can be modeled using the well-mixed assumption where the

effects of spatial transport are ignored (i.e. “batch reactor”). In well-mixed systems chemical

concentrations are considered as a function of time only can be described mathematically by

a system of ordinary differential equations (ODEs)16,61 as in Eq. 4.9,

dc1

dt
= k1c1c2c3 + k2c2 − k5c3

dc2

dt
= −k1c1c2c3 − k2c1c2 − k4c1 (4.9)

dc3

dt
= k3c2c3 + k4c1 − k5c3,

where ci represents a scalar species involved in the chemical pathway and the coefficients ki

can be either positive (production) or negative (depletion).

Conversely, in cardiovascular flows, including flows in abdominal aortic aneurysms (AAAs),

the concentration of chemical species vary in both time and space, leading to a 3-dimensional

and time dependent problem. This can be solved by coupling the Navier-Stokes equations

(Eq. 4.1) to the time-dependent RAD equations (Eq. 4.7) where i refers to the number of

scalar species of interest. Ri represents the reaction term for each scalar species and can take

the form of the experimentally obtained ordinary differential equation models (see Eq. 4.9).

For systems where there is more than one scalar species (i > 1) the system of RAD equations

will be solved using a “staggered” finite element modeling (FEM) approach.

Although the RAD equations can be applied to study numerous biochemical diseases

such as atherosclerosis, cholesterol metabolism and lipid-lowering drugs, among others, the

main application of interest in this work is thrombosis initiation. The coagulation cascade
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is a series of subsequent biochemical reactions, where enzymes or proteins known as clotting

factors undergo a series of nonlinear biochemical reactions leading to thrombin generation.

The coagulation cascade is triggered at sites of endothelial damage, i.e., when extravascu-

lar tissue factor (TF), which is present under the endothelial layer, binds to blood-borne

factor VIIa. In this investigation, our numerical examples will focus on modeling thrombin

formation via the coagulation cascade in both idealized and patient-specific cardiovascular

models.

4.2.4 Thrombin Generation Models

Numerous models of thrombin generation exist, varying from highly phenomenological

to mechanistic. In this investigation three models of thrombin generation were implemented

varying in complexity and size, see Fig. 4.1.

The simplest model, developed by Papadopoulos et al.103, consists of 4 scalar species:

resting platelets (RP), activated platelets (AP), prothrombin (II) and thrombin (IIa) and

5 rate constants (k coefficients), see Fig. 4.1(A) where the concentration of prothrombin

and thrombin is shown over time. This 4-ODE model is entirely phenomenological but

able to match patient-specific laboratory data for thrombin generation103. The model is

strengthened by its low computational cost and ease of implementation. Limitations include

ignoring key clotting factors, such as factors V, X, VIIa, etc., and the use of a step-function

for the rate constant describing platelet activation by thrombin kIIa
AP.

The next thrombin generation modeled considered, Fig. 4.1(B), was developed by Hansen

et al.59 and consists of 7 scalar species and 4 rate constants. Hansen and others introduced an

automated framework to generate reduced-order models of blood coagulation and compared

their performance to a benchmark 34-species model61 for a range of tissue factor concen-

trations, including those not included in the optimization process59. This model balances

computational cost and inclusion of species of interest but it still limited by its over-simplicity.

The last ODE model examined, Fig. 4.1(C), was developed by Jones and Mann70, empir-
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Figure 4.1: ODE Thrombin Generation Models

ically supported by Lawson and team78, and used extensively thereafter16,127. It consists of

18 scalar species, 19 rate constants and 16 total chemical reactions. The model involves both

plasma-phase and surface-bound enzymes and zymogens. This model allows for a detailed

analysis of the coagulation cascade at the expense of higher computational cost.

A notable difference between the 18-species reaction model compared to the 4- and 7-

species model is the lack of inhibitors in the reaction model. In Fig. 4.1(A-C) thrombin

concentration is denoted by the black curves. For the 18-species model, Fig. 4.1(C), the

thrombin concentration curve peaks at approximately 40s and plateaus to a constant value

as opposed to Fig. 4.1(A,B) where thrombin peaks around 50s and then falls back to a

zero-concentration (i.e. bell curve shape). Despite more recent models including thrombin

inhibitors (i.e. tissue factor pathway inhibitor), it has been accepted that these inhibitors

do not function in AAAs and can therefore be ignored16.

The ordinary differential equations, rate constants, and initial conditions used for the 4,

7, and 18-species reactions models can be found in Appendix B.

4.2.5 Implementation of nonlinear Reaction Terms

The scalar reaction-advection-diffusion equations were implemented within the finite el-

ement solver CRIMSON6 using two separate approaches for the reactive transport models.

The simplest 4-scalar ODE model was implemented using both a hardcoded FORTRAN
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approach for the nonlinear reaction terms and using the proposed ARAD framework.

4.2.5.1 Hardcoded FORTRAN Implementation

The conventional FORTRAN implementation corresponds to the previously reported

scalar advection-diffusion formulation87. This involves a standard finite element implemen-

tation where contributions to the stiffness matrix and residual vector are assembled within a

Gaussian quadrature loop. This necessitates the implementation of the reaction terms and

their gradients for each scalar species. Consequently, a change in the reaction model requires

modifications to the relevant code sections (corresponding to the calculation of contributions

to the stiffness matrix and residual vector), followed by compilation of the entire CRIMSON

source code. While this approach is robust and is typical in finite element codes, it requires

user familiarity with coding and compiling of source codes.

4.2.5.2 Arbitrary Reaction-Advection-Diffusion (ARAD) Framework

Figure 4.2 describes the developed ARAD framework that enables flexible run time spec-

ification of nonlinear reaction models for an arbitrary number of scalars species. Currently,

the number of scalar species can be anywhere from 1− 20 scalar species.

Under the finite element framework, reactions between scalar species are realized via

the computation of reaction term relationships between scalar concentrations at every node

of the finite element mesh. The ARAD system has been developed to allow for run-time

specification of such reaction terms (our Flexibility Goal) without adding significant compu-

tational cost when compared to an inflexible implementation in pure FORTRAN or C++

(our Performance Goal). These goals are addressed as follows. 1) The reaction terms (and

their derivatives, which are required for insertion in the Jacobian matrix for the nonlinear

finite element problem) are specified in Python, in a user-editable Python file included in the

simulation working directory, read by the CRIMSON flowsolver at run-time. This leverages

the fact that Python is interpreted rather than compiled. This addresses the Flexibility Goal.
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Figure 4.2: ARAD Framework

Secondly, data arrays comprising the scalar concentrations at the mesh nodes are created and

managed by FORTRAN, but pointers to these arrays, contiguous in memory, are passed to

Python, where they are wrapped into standard Python NumPy arrays. This is done in-place,

avoiding costly in-memory copies on every time-step; from here they can be manipulated by

the user-specified Python code. A similar pointer-wrapping mechanism is used to return

the computed reaction terms from Python to FORTRAN, via a FORTRAN-owned return

value array. Manipulations within Python are performed using NumPy array operations,

which are typically wrappers for underlying efficient C implementations. This addresses the

Performance Goal.

In addition to these goals, a number of descriptors for the scalar problem - including

scalar diffusivities and the order in which each scalar RAD problem should be solved relative

to the others - are specified in the same Python file as the reaction terms. This avoids

spreading the specification of a particular scalar problem across multiple files, and makes

such specifications easily interchangeable.

Ultimately, this ARAD design enables run-time specification of arbitrary reaction mod-

els that can be used to describe a broad range of biochemical cardiovascular diseases or
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additional applications, at minimal additional computational cost.

4.2.6 Reaction-Advection-Diffusion Modeling Best Practices

Often times the important physics of various cardiovascular biochemical diseases, such

as atherosclerosis or thrombosis, are confined to thin near-wall concentration boundary lay-

ers45,58. These problems are typically characterized by high Péclet numbers, low diffusivities,

and small nanomolar concentration values often leading to numerical instabilities. In this

investigation we propose a set of practices to enable the appropriate and accurate modeling

of biochemical reactions and transport from the vessel wall.

Figure 4.3: The proposed methods of best practices used in the developed ARAD Framework.
A) Nondimensionalization, B) boundary layer meshes, C) outflow boundary conditions that
enable the investigation of mass transport in transient flows, and D) numerical stabilization
of high Péclet number flows

Figure 4.2 outlines the methods of best practice used in this investigation. Briefly,

boundary layer meshes were used to capture the near-wall transport at the site of thrombin

generation. The meshes consisted of boundary layer elements near the cylinder wall and

isotropic elements in the cylinder interior, see Figure 4.2(B). In all cases a sufficient number

of boundary-layers were added to ensure the boundary elements smoothly transitioned into

the interior elements. SUPG and DC stabilization of the scalar problem were used to prevent
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spurious oscillations in the scalar field which often results from high Péclet numbers. In addi-

tion, backflow stabilization was applied to enable solving scalar reaction-advection-diffusion

problems in transient cardiovascular flows. Lastly, thrombin formation in particular, in-

volves extremely small concentration values on the order of 10−9. Numerically it can be

challenging to solve problems on such small scales. Similarly to previous investigations4,

nondimensionalization was used to aid the numerical scheme.

Overall, these four practices enabled the simulation of realistic values of diffusion, co-

agulation factors, and hemodynamic metrics such as Reynolds number within the ARAD

framework.

4.3 Results

In this section, we present numerical results to illustrate the suitability of the proposed

computational framework. The following applies to all the numerical examples presented in

this section:

• A flow solution is first obtained by solving the stabilized Navier-Stokes equations using

the cardiovascular hemodynamics modeling environment, CRIMSON (www.crimson.software)6.

• Blood is modeled as a Newtonian fluid with a density of 1060 kg/m3 and a dynamic

viscosity of 0.004 Pa · s.

• All walls are modeled as rigid (i.e., homogeneous Dirichlet boundary conditions for the

velocity field).

4.3.1 Scalability Tests

In this example, we compare the scalability of the FORTRAN and ARAD nonlinear

reaction implementations for the 4-scalar reaction model in an idealized cylindrical domain

with a diameter d = 1.0 mm and length l1 = 10 mm. Steady flow field solutions were first

obtained by prescribing a constant flow rate of 2.0 L/min, mapped to a parabolic velocity
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profile resulting in a mean velocity of vmax = 500 mm/s and a mean Reynolds number of

Remean = 33.125. A zero traction boundary condition was applied at the outlet face.

For the RAD transport problem, a constant value of diffusivity (D) was adopted, D =

1.0 mm2/s, resulting in a Péclet number of Pemean = 1.25. A patch on the cylinder wall

with a uniform Dirichlet concentration of activated platelets was used to initiate thrombin

formation. Simulations were run using a constant time-step size of ∆t = 10−4 s for both

the flow and transport problems. After obtaining a constant flow field, the scalar reaction-

advection-diffusion transport problems were run for 10, 000 time steps, corresponding to 1.0 s

of physical run time.

Mesh size

(millions of elements)
Number of Cores Elements/Core

1.0 20 50,000

1.0 40 25,000

1.0 60 16,667

1.0 80 12,500

1.0 100 10,000

1.0 120 8,333

Table 4.1: Strong Scalability.

All scalability tests were run using the High-Performance Computer (HPC) cluster ‘Con-

Flux’ at the University of Michigan. Tables 4.1 and 4.2 outline the scalability tests performed.

Briefly, for the strong scaling tests the cylindrical domain was discretized uniformly using

linear tetrahedral elements with a total mesh size of 1.0 million elements and 0.18 million

nodes, the mesh size was held constant for all simulations. The number of cores varied

from 20 to 120 cores for a total of 6 meshes and 12 simulations: 6 with the FORTRAN

implementation and 6 with the ARAD implementation.

Fig. 4.4(A) shows results for the strong scalability tests. Both the FORTRAN and

ARAD implementations performed well over the range of HPC cores tested, with the slopes
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Mesh size

(millions of elements)
Number of Cores Elements/Core

0.25 5 50,000

0.5 10 50,000

1.0 20 50,000

2.0 40 50,000

4.0 80 50,000

8.0 160 50,000

Table 4.2: Weak Scalability.

of approximately −1.0 for both implementations (FORTRAN and ARAD).

Figure 4.4: (A) Strong scalability and (B) weak scalability for FORTRAN (red) and ARAD
Python (blue) implementations

The same cylindrical domain was used for the weak scalability tests. Both the mesh

size (250, 000− 8, 000, 000 cores) and the number of cores (5− 160 elements) were varied to

maintain the same constant ratio of elements per core (elements/core = 50, 000). Again 12

simulations were performed: 6 with the FORTRAN implementation and 6 with the ARAD

implementation.

Fig. 4.4(B) shows results from the weak scalability tests. A slope of zero would indicate

ideal performance, corresponding to no increase in computational cost despite the increase

81



in the number of cores and communication time. For both the FORTRAN and ARAD

implementations the slopes are approximately zero (FORTRAN slope ≈ 0.03 and ARAD

slope ≈ 0.01).

Overall, both strong and weak scalability tests indicated good performance for both the

FORTRAN and ARAD implementations despite Python being an interpreted language.

4.3.2 Prototyping reaction models in a cylinder

To illustrate the overall flexibility of the developed ARAD framework the three reaction

models of thrombin generation previously discussed (see Figure 4.1) were implemented in a

cylindrical domain. The idealized cylindrical domain considered has a diameter d = 13.4 mm

and length l1 = 50 mm. Steady flow field solutions were obtained by prescribing a constant

flow rate of 0.395 L/min, mapped to a parabolic velocity profile at the inlet face, resulting

in a mean velocity of vmax = 49 mm/s and a mean Reynolds number of Remean = 175.15. A

zero traction boundary condition was applied at the outlet face.

For the scalar reaction-advection-diffusion transport problem, constant values of diffusiv-

ity were adopted for all scalar species. D = 2.5 x 10−5 mm2/s was prescribed for both resting

and activated platelets and D = 5 x 10−5 mm2/s was prescribed for all coagulation factors81.

For each reaction model (4, 7, and 18) chemical species’ concentrations at the inlet were set

equal to the initial values taken from literature (see Appendix B for parameters values and

reaction terms). The exception for the 4 scalar model was activated platelets. At the site

of subendothelial exposure (red wall patch) 5% of platelets were assigned to be activated to

initiate thrombin formation. The exception for the 7- and 18-species models was TF and

TF:VIIa, respectively. Both were set to 1.0 nM on the wall patch to simulate subendothelial

exposure.

Simulations were run using a constant time-step size of ∆t = 2 x 10−4 s for both the

flow and transport equations. After obtaining a constant flow field, the scalar reaction-

advection-diffusion transport problems were run for 220, 000 time steps corresponding to
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44 s of physical time.

Figure 4.5: (Left) Idealized cylindrical geometry with exposed TF:VIIa representing suben-
dothelial exposure highlighted in red. (Right) Thrombin concentration at t = 44 s in the
cylindrical domain.

Figure 4.5(left) shows the computational domain with the associated dimensions. For

brevity, results for the scalar reaction-advection-diffusion transport equations are presented

only for the 18-species reaction model only. The red patch in the center of the domain

(l = 25 mm) represents the site of thrombosis initiation by TF:VIIa, see Figure 4.5(left).

The mean Péclet number is Pemean = 1.32 x 107 for all coagulation factors. Figure 4.5(right)

shows concentration contours for thrombin after 44 s. After the initial lag time, a thin

boundary layer of thrombin forms at the patch and is transported, mainly via advection,

along the wall and eventually, outside of the domain. Over the length of the cylinder the

height of the thrombin boundary layer increases slightly due to the increased amount of

diffusion over time. Virtually no thrombin is transported to the center of the domain or far

from the wall due to the steady parabolic flow profile used in this example.

4.3.3 Idealized AAA

To investigate the effects of transient hemodynamics on thrombin generation and trans-

port the same 18-species reaction model from Jones and Mann70 was implemented in an

idealized abdominal aortic aneurysm geometry. A 3D domain representing an idealized

fusiform AAA was created in SolidWorks, see Figure 4.6. Dimensions were chosen according

to the 2D axisymmetric AAA from Biasetti et al.16 and boundary conditions were applied to

match Biasetti et al.14,16. A periodic flow waveform mapped to a parabolic velocity profile
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was imposed at the inlet face. At the outlet a prescribed pressure waveform was applied,

where p = p(t). Often intraluminal thrombus forms in AAAs along the diseased arterial

wall. Therefore, in accordance with Biasetti et al.16, thrombin generation (subendothelial

exposure of TF:VIIa) was modeled at the site of aneurysmal wall expansion.

Figure 4.6: Idealized axisymmetric fusiform abdominal aortic aneurysm matching the model
reported in Biasetti et al.16. The exposed TF:VIIa representing subendothelial exposure is
highlighted in red.

Figure 4.6 shows the computational domain with the region of subendothelial exposure

(TF:VIIa = 1.0 nM) highlighted in red. The same scalar reaction-advection-diffusion trans-

port boundary and initial conditions and values of diffusivity (D = 5 x 10−5 mm2/s) were

used as prescribed in the cylindrical example for the 18-species reaction model. Simulations

were run using a constant time step size of ∆t = 5 x 10−4 s.

Figure 4.7: Thrombin concentration in the idealized AAA after 19.5 s.
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Figure 4.7 shows the thrombin concentration field plotted at the mid-plane of the idealized

AAA perpendicular to the Z-direction at time t = 19.5 s. The maximum Péclet number

at time t = 19.5 s is 3.5 x 108 for all scalar species. Results illustrate thrombin generation

begins at the site of TF:VIIa exposure on the aneurysmal wall. Thrombin is then transported

by advection and diffusion to the interior of the domain and recirculates due to the complex

periodic flow patterns before leaving the domain. Figure 4.7 shows two vortical structures

carrying increased levels of thrombin concentration. These results contrast to the overall

simple boundary layer of thrombin formed in the idealized cylinder where both complex

geometries and flow patterns are ignored.

Figure 4.8: (Top) Idealized cylindrical geometry with exposed TF:VIIa representing suben-
dothelial exposure highlighted in red. (Bottom) Thrombin concentration at t = 20.0 s in the
cylindrical domain.

To compare the effects of complex geometry and hemodynamics on thrombin generation

a long cylinder with steady flow was compared to the idealized AAA. Steady flow conditions

with a mean Reynolds number corresponding to the idealized AAA simulation were used.

The same 18-scalar reaction model, boundary conditions, and diffusivity values were also
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prescribed. Thrombin formation was initiated using a similar region on the wall as in Fig-

ure 4.6. Figure 4.8 shows results at time t = 20.0 s. Similar to Figure 4.5, a thin boundary

layer is formed on the cylinder wall at the site of subendothelial exposure. Unlike the results

in Figure 4.6, the generated thrombin does not recirculate within the domain due to the

simple geometry and flow conditions. Due to the larger area of subendothelial exposure, a

larger boundary layer of thrombin is formed compared to Figure 4.5. Similar to Figure 4.5

the thrombin that is generated stays near the domain wall before being washed out.

4.3.4 Patient-Specific AAA

Having investigated thrombin formation in three idealized geometries (cylinder and AAA)

we now shift our focus to a patient-specific geometry of a human abdominal aortic aneurysm

under periodic flow conditions82. The AAA geometry was built from magnetic resonance

angiography (MRA) image data using custom software147. Figure 4.9(A) shows the max-

imum intensity projection (MIP) of the MRA and Figure 4.9(B) shows the reconstructed

computational domain, comprised of the abdominal aorta, the hepatic and splenic arteries,

the superior mesenteric artery, the left and right renal arteries, and the left and right internal

and external iliac arteries.

The aortic geometry was discretized into 6.5 million linear tetrahedral elements and 1.1

million nodes. A PC-MRI derived periodic flow waveform (with time period T = 0.769 s)

mapped to a parabolic velocity profile was imposed at the aortic inlet. Three-element Wind-

kessel models135 were prescribed at each outlet face, representing the behavior of the distal

vascular beds.

Velocity fields were obtained with a stabilized finite element method using the cardio-

vascular hemodynamic modeling environment CRIMSON6. Cycle-to-cycle periodicity was

achieved after running the flow problem under rigid wall assumptions for two cardiac cycles.

The same 18-species reaction model was investigated.

Figure 4.6 shows the computational domain with the region of subendothelial exposure
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Figure 4.9: The maximum intensity projection (MIP) of the MRA (A) is compared to the
3D computer model (B)82.

highlighted in red. The same scalar reaction-advection-diffusion transport boundary and

initial conditions and values of diffusivity (D = 5 x 10−5 mm2/s) were used as prescribed

in the cylindrical example for the 18-species reaction model. Simulations were run using a

constant time step size of ∆t = 2 x 10−4 s.

Figure 4.11 shows a volume rendering of the thrombin concentration field at time t =

16.7 s. The maximum Péclet number is to 1.5x 108 for all scalar species. Results illustrate

thrombin generation begins at the site of TF:VIIa exposure on the aneurysmal wall is then

transported by predominately advection to the interior of the domain. This serves as a proof

of concept study to highlight the ability to study patient-specific models of thrombosis using

the developed ARAD framework.

4.4 Discussion

RAD problems are of paramount importance in studying cardiovascular pathologies. Dis-

eases such as thrombosis, atherosclerosis, lipid metabolism, and drug delivery are all di-

rectly affected by complex biochemical reactions and transient cardiovascular hemodynam-
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Figure 4.10: Patient-specific abdominal aortic aneurysm model. The exposed TF:VIIa rep-
resenting subendothelial exposure is highlighted in red.

ics33,60,130. Modeling RAD transport in the cardiovascular system presents inherent numeri-

cal challenges due to the large nonlinear reaction models involved in biochemical diseases and

the complex and time-dependent flow patterns and vessel geometries. These complexities

are further compounded by the small diffusivities and large Péclet numbers found in cardio-

vascular flows58. In this work, an arbitrary reaction-advection-diffusion (ARAD) interface

was developed for the rapid prototyping of nonlinear reaction models in cardiovascular RAD

transport simulations. Figure 4.2 outlines the structure of the ARAD framework which relies

heavily on Python to communicate to the FORTRAN/C++ FE flowsolver. A novel aspect

of the ARAD framework is the ability to run large parallel patient-specific RAD transport

simulations with an arbitrary number of scalar species (i.e. up to 20) and nonlinear reaction

terms. The ARAD framework takes advantage of a Python interface for easy prototyping of
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Figure 4.11: Patient-specific abdominal aortic aneurysm model with thrombin concentration
generated from the TF:VIIa patch on the aneurysm wall at time t = 16.7 s.

the reaction models, without having to alter the underlying C++/FORTRAN finite element

flow solver.

Various groups have used computational models to investigate thrombus formation. Pre-

vious computational models of thrombosis initiation have focused on reduced-order models

(OD) that provide a detailed description of the biochemistry of thrombin formation in the

absence of flow23,61. Attempts at modeling thrombin formation under flow have been limited

to using idealized 3D or 2D models with broad simplifications to the hemodynamics16,81,104.

Currently, few groups have attempted to model thrombosis initiation incorporating image-
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based 3D geometries, complex hemodynamics, and the complex biochemistry that describes

thrombin generation. The development of such a model will be vital to improve our un-

derstanding of the role of hemodynamics in thrombus formation. Often the challenge in

creating these models is the lack of methods that permit rapid prototyping of nonlinear re-

action pathways in the presence of complex hemodynamics. Furthermore, it has often been

considered cost prohibitive to run the full coagulation cascade in a patient-specific 3D model

with realistic hemodynamics including pulsatile flow.

We first introduced a set of guidelines in Figure 4.3 that were adopted for investigating

thrombosis initiation. This includes using boundary layer meshes, nondimensionalization,

and appropriate stabilization techniques. Next, the scalability of the ARAD interface was

compared to the FORTRAN implementation under steady flow conditions in an idealized

cylinder, see Figure 4.4. Both implementations scaled well over a large range of cores with the

ARAD implementation having slightly faster run times. This initial investigation illustrated

the robustness of the ARAD implementation despite being Python based.

We next demonstrated the applicability of the developed ARAD interface to study throm-

bosis initiation in three different models: (1) an idealized geometry with steady flow, (2) an

idealized geometry with periodic flow, and (3) a patient-specific geometry with periodic flow.

The ability to rapidly prototype various nonlinear reaction models of thrombin generation

was investigated in a idealized cylinder. Three different reactions models of increasing com-

plexity (Figure 4.1) were investigated and results were presented for the 18-species model

(Figure 4.5). In this example a thin boundary layer of thrombin was generated along the

cylinder wall, beginning at the site of initiation.

The next examples considered both an idealized and a patient-specific model of a hu-

man abdominal aortic aneurysm under pulsatile flow conditions. Figure 4.7 shows thrombin

generation and transport after 19.5s in an idealized AAA model. Here, the complex hemo-

dynamics transport thrombin away from the wall, as compared to the cylindrical example

where relatively no thrombin was seen in the center of the domain. In addition, Figure 4.11
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illustrates the feasibility of solving thrombin generation in patient-specific cardiovascular

geometries.

Currently, the ARAD interface allows for up to 20 scalar species. Future work should

address this limitation to allow for 34 or more scalar species. In addition, the current

application of the ARAD interface to thrombosis ignores the effects of both red and white

blood cells in thrombosis initiation. Future work may aim at incorporating platelet and

cellular binding sites into our thrombosis model, but this is out of the scope of the current

investigation.

Future work should address implementing a model for two-way coupling between the flow

and transport equations. This will be vital in enabling the model to accurately describe not

only thrombosis initiation but platelet plug formation and propagation. Other groups have

implemented two-way coupling between the flow and RAD equations by treating the bound

platelet mass as a porous media and using Darcy’s Law to describe flow through the platelet

plug81. We plan to follow a similar approach by adding a forcing term to the Navier-Stokes

equations to describe the force of the growing thrombus on the fluid field.

Lastly, in the current investigation we have presented the application of the proposed

ARAD interface to study thrombosis initiation. The ARAD framework has been developed in

a flexible and arbitrary manner that enables the studying of numerous biochemical diseases.

In the future, the ARAD framework will be applied to study additional topics such as

atherosclerosis and drug delivery.
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CHAPTER V

May-Thurner Syndrome and Venous Thrombosis

To further investigate venous thrombosis, a patient with May-Thurner syndrome was

studied from a hemodynamic perspective and compared to a healthy venous model. The

goal of this investigation was to better understand the hemodynamic forces that contribute

to thrombosis formation in patients with May-Thurner syndrome and to provide input to

possible treatments and therapies.

5.1 Introduction

May-Thurner syndrome is a rarely diagnosed condition that occurs due to an anatomical

variant where the right common iliac artery overlays and compresses the left common iliac

vein against the lumbar spine113. Compression of the left iliac vein against the lumbar verte-

brae combined with trauma caused by arterial pulsation can, overtime, lead to accumulation

of elastin and collagen with intimal proliferation in May-Thurner patients101. Histologic

analyses of veins with May-Thurner syndrome have demonstrated that normal/healthy vein

intima and media are replaced with connective tissue covered by endothelium116 and can

create a mechanical obstruction to blood flow and increases the risk of left-sided iliofemoral

thrombosis116. This may explain why left-sided iliofemoral deep vein thrombosis is nearly five

times more frequent than right-sided thrombosis116 and why May-Thurner syndrome is often

associated with development of deep vein thrombosis and chronic venous insufficiency75.
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Many patients with May-Thurner syndrome are asymptomatic or never develop com-

plications73, while other patients present with left leg edema, pain, deep vein thrombosis,

or pulmonary embolism75. Typically May-Thurner syndrome is only diagnosed and treated

for symptomatic patients presenting with DVT or PE25. Anticoagulation alone is typi-

cally ineffective for treatment75, suggesting that hemodynamics play a large role in throm-

bus formation in May-Thurner patients. The goal of May-Thurner surgical repairs (open

or endovascular) is to restore normal hemodynamics by increasing the luminal size of the

compressed vein. Treatment strategies have evolved from predominately open surgical tech-

niques towards endovascular therapy including catheter-directed thrombolysis, mechanical

thrombectomy, self-expanding stent placement, or a combination86. Previous reports have

shown that anticoagulation alone and thrombectomy combined with prospective anticoag-

ulation have a rethrombosis rate of up to 73% in patients with May-Thurner syndrome24,

further indicating that hemodynamics plays a significant role in the pathophysiology of May-

Thurner syndrome.

Currently it is not completely understood why some people with May-Thurner syndrome

present with DVT or PE and why others remain asymptomatic. This may be due the presence

of co-morbidities. Regardless, there remains a need to better understand the pathophysiol-

ogy of May-Thurner syndrome and how the unique venous hemodynamics in these patients

contributes to the formation of venous thrombosis. The goal of this investigation is to com-

pare hemodynamic metrics between a patient-specific model of a patient with May-Thurner

syndrome compared to a patient with normal venous anatomy and hemodynamics.

5.2 Methods

In this study, we compared hemodynamic metrics of flow and Lagrangian transport in two

patient-specific venous geometries: (a) a May-Thurner venous anatomy, and (b) a normal

venous anatomy. First, we describe the computational domain and the associated boundary

conditions for each model. Subsequently, we perform a comparative hemodynamic and
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transport analysis for each model.

Initially, a patient was treated at the University of Michigan hospital for pulmonary

embolism and after further investigation the patient was diagnosed with deep vein throm-

bosis and May-Thurner syndrome from ultrasound and CTA imaging. A patient-specific

computational model of the iliac bifurcation and inferior vena cava of a patient with May-

Thurner anatomy was obtained from computed tomography angiography (CTA) image data

and segmented using the cardiovascular hemodynamic modeling environment CRIMSON6.

Figure 5.1: Data collected from patient treated at the University of Michigan hospital for
thrombosis and pulmonary embolism with a May-Thurner anatomy. (Left) CTA imaging
and reconstructed computational model (Right) ultrasound data collected at 5 locations
(approximate location shown on the computational model)

The computational domain consists of the inferior vena cava (IVC) and the left and

right internal iliac (II) and external iliac veins (EI). For the flow analysis, duplex Doppler

ultrasonography-derived periodic flow data mapped to parabolic velocity profiles were pre-

scribed at the 4 inlet vessel faces (external and internal iliac veins). A three-element Wind-

kessel model was applied to the IVC outlet face. The vessel walls were assumed to be

rigid and were prescribed a homogeneous Dirichlet boundary condition for the velocity field.
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Figure 5.1 shows the CTA and ultrasound imaging and corresponding computational model.

The healthy (normal) venous model from Chapter II was used as a control and compared

to the May-Thurner simulation. For the current investigation, blood is modeled as a New-

tonian fluid with a density of 1060 kg/m3. Differences between velocity magnitude, shear

rate, wall shear stress (WSS), and Lagrangian indices of shear (PLAP, see Chapter II) were

studied between the May-Thurner and healthy venous models.

5.3 Results

5.3.1 Hemodynamic Analysis

We first performed a comparative analysis between the May-Thurner and normal hemo-

dynamics. For the comparative hemodynamic analysis, we consider the velocity solution field

as well as derived quantities (shear rate, vorticity and WSS). Increased shear rates have been

linked to VWF unfolding and platelet activation153. Vorticity is obtained as the curl of the

velocity field (ω = ∇× u) and provides information about the local spinning motion of the

fluid in the domain. Vortical motion has been linked to various cardiovascular pathologies,

such as atherosclerosis and thrombosis15,16,36. In contrast, WSS is a surface quantity that

provides an assessment of the shear forces imposed by the fluid on the vessel wall. Alter-

ations in WSS have been linked to local alterations in endothelial mechanobiology that leads

to either pro-atherosclerotic or pro-thrombogenic phenotypes36,105.

Figure 5.2(A,B) show volume rendered plots of the magnitude of velocity for the May-

Thurner and healthy venous models. It can be observed that the velocity magnitude is

increased in the May-Thurner case. This is expected given that the increased flow rate and

decreased luminal diameter of the compressed left iliac vein. In addition, Figure 5.2(C,D)

shows volume rendered plots of the shear rate for both models. Increased shear rates are

observed in the May-Thurner model, greater than 1000 s−1, which corresponds to levels of

shear that can unravel VWF and lead to increased rates of thrombosis formation153.
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Figure 5.2: Flow Metrics

Figure 5.3 shows a comparison of WSS for the May-Thurner and healthy venous models.

Increased WSS is observed in the May-Thurner anatomy (left) compared to the healthy

venous model (right). The highest regions of WSS are observed in the left internal and

common iliac veins of the May-Thurner model. In particular, the left common iliac vein

shows higher WSS than the right common iliac in the diseased anatomy suggesting that the

left iliac vein compression is responsible for the higher values of WSS.
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Figure 5.3: Computer model showing values of WSS for a patient with May-Thurner syn-
drome (Left) and a normal venous anatomy (Right). Higher values of WSS are observed
in the May-Thurner anatomy with highest values occurring in the region of left iliac vein
compression.

5.3.2 Lagrangian Particle Tracking Analysis

The transport of biochemical species such as proteins, platelets and chemical signaling

species plays a significant role in the initiation and propagation of various cardiovascular

diseases such as thrombosis and atherosclerosis16,60,130. We next investigate the effect of

the May-Thurner anatomy and hemodynamics on Lagrangian transport in the two patient-

specific models.

In this work, approximately one million particles were injected into both venous com-

putational domains and tracked for ten cardiac cycles. Particles were collected in virtual

spheres at the outflow(s) as they left each domain. For both venous simulations, four parti-

cle boluses, each with approximately 250,000 particles, were released from the inflows (left

EI, left II, right EI, and right II). Particles were tracked as they were passively advected

through each computational domain over time. Statistics on platelet activation potential

(PLAP) and the number of particles in the computational domains were recorded.
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Figure 5.4: (Left) Computer model of a patient with May-Thurner syndrome displaying
values of PLAP. Area of highest platelet activation potential is visualized by the red cir-
cle. (Right) Simulation of PLAP in a healthy venous anatomy. Lowest values of PLAP
(accumulated shear) are highlighted by the blue circle.

Figure 5.4 shows the particles left in the May-Thurner and healthy venous domains.

PLAP is observed to be significantly higher in the May-Thurner case. In addition, the

particles in the May-Thurner anatomy leave the domain at a faster rate. Higher values of

PLAP correspond to higher platelet activation potential and have previously been linked

to thrombosis formation36,98. Therefore, the higher PLAP values observed in the diseased

May-Thurner anatomy can serve as a possible additional explanation for the formation of

large thrombi in these patients.

5.4 Conclusion

In this investigation, we performed a preliminary comparison of hemodynamic and trans-

port metrics that have been associate with thrombosis formation36,98 between a May-Thurner

and healthy venous anatomy. Preliminary results suggest that the compressed common il-

iac vein in the May-Thurner anatomy leads to increased velocity, shear rate magnitude,
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wall shear stresses, and increased accumulation of shear assessed through Lagrangian par-

ticle tracking. Suggesting possible mechanisms for thrombosis formation in May-Thurner

patients.

Virchow described the leading factors that contribute to venous thrombosis as hemo-

dynamics (stasis), hypercoagulability, and endothelial injury (wall damage). It is generally

accepted that venous thrombosis most often forms due to stasis in combination with hy-

percoagulability or endothelial injury. Venous thrombi have long been described as ‘red

thrombi’ rich in red blood cells as compared to the platelet rich arterial thrombi. We pre-

viously described in Section I that platelets can be activated with high shear rates which in

turn increases the rate of arterial thrombosis. Based on the current preliminary hemody-

namic analysis of a patient with May-Thurner syndrome we propose that in patients with

May-Thurner anatomy due to the compression of the left iliac vein, arterial shear rates are

achieved that contribute to the formation of venous thrombosis in these patients. These

increased shear rates have previously been observed to cause platelet activation and throm-

bosis formation in arterial stenosis. We argue that these patients are at a higher risk of

venous thrombosis formation because of increased venous shear rates from the compression

of the left iliac vein.

First, we performed a hemodynamic comparison between the May-Thurner and healthy

venous models. For the May-Thurner model, increased velocity magnitude, shear stress mag-

nitude, and WSS were observed. Next, we performed a Lagrangian mass transport analysis

in both the May-Thurner and normal models to assess the effect of the compressed left il-

iac vein on cardiovascular mass transport. Here, we employed a particle tracking technique

where numerous massless tracer particles were introduced in the flow field. These particles

are then tracked as they traverse through the computational domain to enable a Lagrangian

interpretation of the flow field. This analysis allows us to calculate ‘platelet activation po-

tential’ (PLAP), a metric to assess the history of shear stresses experienced by the particles

as they travel through the computational domain. Our Lagrangian mass transport analysis
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revealed a significant increase in PLAP values in the May-Thurner anatomy.

Additional studies on more patients are needed to confirm the current hypothesis. In

addition, it will be imperative to perform non-Newtonian analyses on these patients based on

results from Chapter II where is was observed that Newtonian viscosity can lead to increased

values of PLAP and altered values of WSS compared to non-Newtonian viscosity. Although

the current data serves only as a preliminary analysis, the results show an exciting new

explanation for the high rate of formation of venous thrombi in patients with May-Thurner

anatomy.
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CHAPTER VI

Novel Applications of ARAD Framework

Contributions. Dr. Yunus Ahmed, MD is the main investigator on the ECMO project.

He created the patient-specific hemodynamics models and I preformed the scalar mass trans-

port analysis. Kritika Iyer is the main investigator on the coronary flow project. She per-

formed the hemodynamics analysis and I was responsible the scalar mass transport model.

After the implementation and investigation of thrombosis initiation the developed scalar

framework has been applied to study two other cardiovascular diseases: (1) extracorporeal

membrane oxygenation (ECMO) and (2) impaired coronary flow.

6.1 ECMO

6.1.1 Introduction

Extracorporeal membrane oxygenation (ECMO) is a mechanical device that temporarily

supports the function of both the heart and lungs and is designed to help patients with failing

hearts. There are two types of ECMO used clinically, (1) Veno-venous-ECMO (VV-ECMO)

where the ECMO cannula is connected to one or more veins, usually near the heart, and is

used when a patient’s lungs are failing and (2) Venoarterial-ECMO (VA-ECMO) where the

cannula is connected to both a vein and an artery and is used when both the heart and lungs

are unable to function sufficiently117. In VA-ECMO blood flow is routed to an artificial lung
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that adds oxygen to the blood and is subsequently pumped back into the patient’s circula-

tion. VA-ECMO therapy may be prompted in the following conditions: acute myocardial

infarction, sepsis, hypothermia, post-transplantation, COVID-19, as well as others. ECMO

provides circulatory support and allows time for the heart and lungs to rest and recover

or bridges the gap to a more permanent therapy/solution (i.e. transplantation, Left Ven-

tricular Assist Device (LVAD), etc.). ECMO driven flow is non-pulsatile, and thus ECMO

patients have unique blood flow characteristics from the combination of cardiac-driven pul-

satile hemodynamics and ECMO-driven steady-state hemodynamics. This interplay results

in regions involving high shear flows, abnormal pulsatility, and lower perfusion pressures.

The focus of this investigation is VA-ECMO. Two principal VA-ECMO configurations

exist (1) peripheral and (2) central. Peripheral ECMO cannulation involves inserting the

ECMO cannula in either the femoral or subclavian artery. The venous cannula with be

placed into the femoral artery and positioned at the level of the right atrium. The main

advantage of peripheral artery cannulation is the ease of insertion of the arterial ECMO can-

nula, unlike central ECMO cannulation, peripheral cannula does not require a sternotomy

and can be performed outside of the operating room. However, disadvantages of periph-

eral ECMO cannulation can include aortic root thrombus formation and left ventricular

distension, and lower extremity ischemia69. Furthermore, when using femoral cannulation

the femoral arterial lumen becomes partially occluded by the cannula, little blood from the

ECMO cannula is able to flow in the retrograde direction69. This results in little to no blood

flow in the distal femoral tree69. To overcome this, a distal perfusion cannula will be placed

to perfuse the distal femoral tree. Finally, when the cannula is placed in the femoral artery,

features retrograde flow from the arterial cannula competing with the native antegrade blood

flow generated by the impaired heart. This can lead to scenarios where regions of the body

receive blood from different sources (heart or ECMO) and becomes clinically relevant when

the heart and lungs are too weak to produce sufficiently blood oxygenation levels. Therefore,

scenarios arise where the upper body only receives semi- or de-oxygenated blood from the
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weakened heart, resulting in arterial hypoxemia in regions of the upper part of the body.

This is also known as the Harlequin or North-South syndrome30,107.

Alternatively, in central VA-ECMO the arterial cannula is inserted directly into the

ascending aorta. The venous cannula will be placed directly into the right atrium. In this

instance the chest is open. Central VA-ECMO cannulation is used when the ventricle is too

weak to wean off bypass following open heart surgery or as an alternative if peripheral ECMO

does not achieve adequate flows and/or end-organ function107. The invasive nature of central

cannulation serves as its main disadvantage due to complications from sternotomy related

issues (i.e. bleeding, infection, etc.), aortic dissection, inability to mobilize the patient,

ischemic events, etc122.

Not much is currently known about which VA-ECMO cannulation strategy is ideal. In

particular, little is known about how the cannulation site affects the hemodynamics of the

patient. The goal of this study is to investigate the hemodynamics and mass transport of

blood in different configurations for vascular access in VA-ECMO, seen in Fig. 6.1.

Figure 6.1: VA-ECMO cannulation locations taken from Rao, P. et al.117. Femoral artery
cannulation (A), ascending aorta cannulation (B) and subclavian artery cannulation (C).
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6.1.2 Methods

In this investigation, scalar mass transport was used to study and compare three dif-

ferent configurations for vascular access for VA-ECMO using patient-specific models. A

56-year old female patient with a history of non-ischemic cardiomyopathy was treated at the

University of Michigan’s Cardiovascular Center. The patient presented with non-sustained

ventricular tachycardia and unstable hemodynamics and was treated with a combination of

an implantable cardioverter defibrillator and hemodynamic support from VA-ECMO via a

femoral access for 10 days.

6.1.2.1 Computational Modeling

The arterial baseline geometry was built from computed tomography angiography (CTA)

image data and adapted to represent the three possible locations of ECMO cannulation ((1)

femoral, (2) subclavian, and (3) ascending aorta) using the cardiovascular hemodynamic

modeling environment CRIMSON6. Figure 6.2 shows the baseline and adapted computa-

tional domains. The baseline domain is comprised of the aortic inflow and 13 outlet branches,

while the three adapted domains are comprised of both the aortic and ECMO cannula inflows

as well as the 13 outlet branches.

Each aortic geometry was discretized into 3.9 million linear tetrahedral elements. For

the baseline geometry, a prescribed periodic flow waveform (with time period T = 0.90 s)

mapped to a parabolic velocity profile was imposed at the aortic inflow, and three-element

Windkessel models135 were prescribed at each outlet face, representing the behavior of the

distal vascular beds (numerical values given in Supplementary Material). For the three

VA-ECMO configurations, an additional constant inflow was prescribed at the at ECMO

cannula. Based on patient-specific data collected at the University of Michigan hospital, a

cardiac output of 1.08 L/min and an ECMO output of 3.4 L/min were prescribed.

Cycle-to-cycle periodicity was achieved after running the flow problem under a rigid wall

assumption for five cardiac cycles, corresponding to a physical time of t = 4.50 s. Subse-
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Figure 6.2: Baseline and adapted ECMO Geometries

quently, the scalar advection-diffusion equations were solved for the ECMO configurations

using a staggered approach for two scalar species, assuming a zero-reaction term (R = 0) for

each species. A zero-concentration initial condition was prescribed for both scalar species.

Two Dirichlet inlet boundary conditions of c = 10 mol/mm3 were prescribed at the ascend-

ing aortic inflow face to track the transport of blood by the weakened heart and the ECMO

cannula inlet face to track the transport of blood from the ECMO circulation. Zero total flux

boundary conditions were prescribed for both scalars at the vessel walls. For both scalars,

a Consistent-flux boundary condition was prescribed for all outlets, except the aortic inflow

and ECMO cannula, where zero-Dirichlet boundary conditions were prescribed. Simulations

were run using a constant time step size of ∆t = 2x10−5 s until cycle-cycle periodicity was

achieved for the scalar problem (approximately 22 cardiac cycles).
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6.1.3 Results

The femoral access ECMO simulation was first investigated as it corresponds to the access

location used to treat the patient at the University of Michigan hospital. Fig. 6.3 shows

results of the femoral ECMO model after 22 cardiac cycles corresponding to diastole. It can

be observed that due to the weakened heart and corresponding impaired cardiac output, the

blood velocity is lower in the aortic arch and abdominal aorta. Due to the higher constant

flow rate from the ECMO cannula insert at the femoral artery, blood velocity is higher in the

femoral and the infrarenal aortic arteries, this is particularly emphasized during diastole, see

Fig. 6.3. The pressure contours seen in Fig. 6.3 correspond to lower values typically observed

during diastole throughout the computational domain, except in the ECMO cannula where

higher pressure 100 mmHg is observed. Lastly, in the plot of both scalar concentrations

we can see that blood transported from the heart and ECMO cannula mix and form the

Harlequin region at the location of the left subclavian artery when flow stabilized after

approximately 20 cardiac cycles.

Subsequently, the ascending aorta and subclavian cannula access locations were inves-

tigated. After running each VA-ECMO configuration until cycle-to-cycle periodicity was

achieved for the scalar problem, scalar concentration results from each configuration were

compared. Fig. 6.4 shows similar results for the ascending aorta and subclavian ECMO

cannula configurations. Both configurations show similar mass transportation of oxygenated

blood from the ECMO cannula to all main aortic branches and outlets. These configurations

are highly invasive and pose higher risks to the patients (compared to femoral access) related

to coronary arteries or cerebral perfusion because the cannula is positioned closer to the heart

and aortic arch. Conversely, the femoral VA-ECMO model shows predominately transport

of blood form the heart to the right subclavian and carotid arteries with the Harlequin region

forming around the left subclavian artery.

In this work we compared hemodynamics (flow, pressure, and mass transport) between

3 VA-ECMO configurations. This serves as preliminary work to investigate VA-ECMO
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Figure 6.3: Velocity volume rendering (A), pressure contours (B) and volume rendering of
scalar from the heart (blue) and ECMO cannula (red) after 22 cardiac cycles (C). Time point
corresponds to diastole.

configurations for patient treatment. Additional work is needed to further study the effects

of cannulation location on hemodynamic metrics such as wall shear stress and vorticity,

similar to Section II. Future work should address varying ECMO and cardiac flow rates and

investigate the effects of ECMO flow rate on transport, Harlequin region, and hemodynamic

metrics (WSS and vorticity).
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Figure 6.4: Volume rendering of scalars species from the heart (blue) and ECMO cannula
(red) for (A) Femoral, (B) Ascending Aorta, and (C) Subclavian cannula locations.

6.2 Coronary Flow

Next, the stabilized reaction-advection-diffusion framework developed in Section III was

applied to study coronary transport. In this example a patient-specific model of the coronary

tree of a 58 year-old man treated at the University of Michigan Cardiovascular Center was

built and tuned to match patient-specific flow data using CRIMSON6. The patient had

calcified and non-calcified lesions in the major branches of both the left and right coronary

arteries. Specifically, the patient had a 30%, 50%, and > 70% stenosis in his left anterior

descending coronary artery, a 50% and 70% stenosis in his left circumflex coronary artery,

and a > 70% stenosis in his right coronary artery with diffuse 40 − 70% throughout the

midsection of the vessel.
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The flow and pressure fields were solved for using the developed computational model.

In addition, a virtual angiogram was created using our scalar transport model. Briefly, a

catheter inserted into the aortic root and directed at the left coronary artery was modeled

using CRIMSON. A single scalar species, mimicking a dye, was virtually injected into the

catheter and the spatial temporal evolution of the injected scalar species was tracked through

the distal left coronary tree over time, creating a virtual coronary angiogram, see Fig. 6.5.

In this example, again only the advection and diffusion of the scalar species through the flow

field was considered without any reaction terms.

Figure 6.5: Coronary Flow

Fig 6.5 shows results of the scalar, pressure, and velocity fields for the coronary model.

Preliminary results demonstrate the ability to create a computational angiogram. Future

studies will work on using this data to aid in diagnosis and treatment of coronary stenosis.
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CHAPTER VII

Discussion

7.1 General Discussion

Thrombosis represents a large burden for the health care system56,85. Despite recent

advancements in thrombosis research38,52,137, the understanding of the pathophysiology of

thrombosis initiation is incomplete and still evolving. Understanding the effects of hemo-

dynamics and biochemistry on thrombosis initiation is of significant importance to develop

more effective thrombolytic therapies and preventative measures. In comparison with in vitro

or in vivo experiments, computational modeling can give insights into the hemodynamic and

biochemical processes with high spatial and temporal resolution. In this thesis, we developed

advanced computational models of thrombosis to investigate the effects of complex hemody-

namics on thrombosis initiation. The goal of this work was to develop a robust and flexible

model of thrombosis initiation that can be used to probe this disease. Furthermore, the key

question that we have investigated with our model is whether hemodynamics at the early

stages of thrombosis initiation affects thrombosis formation.

Thrombosis occurs in both arterial and venous flows over a large range of shear rates.

Blood is known to exhibit non-Newtonian viscosity, particularly in regions of low shear.

Therefore in this investigation, we first implemented non-Newtonian rheological models into

CRIMSON to accurately capture the hemodynamics in both arterial and venous flows. In

this study, two non-Newtonian rheological models (Power Law and Carreau-Yasuda) were im-
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plemented into the cardiovascular hemodynamic modeling environment CRIMSON and the

Carreau-Yasuda model was used to investigate patient-specific arterial and venous flows. The

Carreau-Yasuda model revealed important differences in both hemodynamic and Lagrangian

transport metrics relative to a Newtonian approximation. In-plane velocity, vorticity, recir-

culation, and platelet activation were consistently larger in the Newtonian approximation for

both models The Newtonian assumption rendered larger values of wall shear stress for the

arterial model. Conversely, the non-Newtonian model produced larger wall shear stress for

the venous model. These findings demonstrate the importance of including non-Newtonian

rheological models in cardiovascular simulations where low shear rates are expected, such as

diseased arterial and venous flows.

In order to simulate thrombosis initiation, it is necessary to first develop a framework for

mass transport simulations. Numerical simulations of cardiovascular mass transport pose

significant challenges due to the wide range of Péclet numbers and backflow at Neumann

boundaries. In this work we presented and discussed several numerical tools to address these

challenges in the context of a stabilized finite element computational framework. To over-

come numerical instabilities when backflow occurs at Neumann boundaries, we proposed an

approach based on the prescription of the total flux. In addition, we introduced a “consis-

tent flux” outflow boundary condition and demonstrated its superior performance over the

traditional zero diffusive flux boundary condition. Lastly, we discussed discontinuity cap-

turing (DC) stabilization techniques to address the well-known oscillatory behavior of the

solution near the concentration front in advection-dominated flows. We presented numer-

ical examples in both idealized and patient-specific geometries to demonstrate the efficacy

of the proposed procedures. The three contributions discussed in this thesis enable us to

successfully address commonly found challenges when simulating mass transport processes

in cardiovascular flows.

Despite the gains made during this investigation various limitations still exist regarding

scalar advection-diffusion finite element implementation. Although herein the authors have
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demonstrated the superiority of consistent flux boundary condition in reducing boundary

effects, small effects were still observed and serve as a limitation to this condition. In

addition, the DC operator used in this investigation is nonlinear and therefore converts the

scalar advection-diffusion equations from linear to nonlinear. Therefore, the DC operator

should only be employed in situations of high Pe flows where large gradients exist at the

scalar wavefront. Although, the use of these operators is non-ideal due to the increased

nonlinearity, they are ultimately necessary because without the DC operator oscillations in

the solution persist.

We next presented a stabilized flexible arbitrary scalar reaction-advection-diffusion (ARAD)

framework for computational modeling of thrombosis initiation in patient-specific cardio-

vascular models. We implemented and verified our numerical framework within CRIM-

SON. The developed framework relies heavily on Python to interface with CRIMSON’s

C++/FORTRAN flowsolver without the need to recompile or edit the source code. Strong

and weak scalability tests were performed over a broad range of mesh sizes and comput-

ing hours. Results showed the Python-based framework did not result in a reduction in

computational efficiency. We next applied the developed ARAD framework to study throm-

bosis initiation in both idealized and patient-specific geometries. Three different biochemical

models of increasing complexity, ranging from purely phenomenological to mechanistic, were

investigated in an idealized-cylinder. After prototyping the thrombin generation models,

the most complex and biochemically informative model was used to investigate thrombo-

sis initiation in both an idealized and patient-specific abdominal aortic aneurysm. Results

showed that complex hemodynamics affects both thrombin generation and propagation. In

addition, ‘methods of best practice’ were discussed for thrombosis modeling, including the

use of refined boundary layer meshes and non-dimensionalization to address near-wall mass

transport. Overall, this work presented a stabilized numerical framework for mass transport

that allows for the flexible prescription of complex nonlinear reaction models of thrombosis

initiation. Investigation into thrombin formation in idealized and patient-specific geometries
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suggested that hemodynamics has a significant role in thrombin initiation and propagation

in vivo.

Our computational model of thrombosis initiation is limited by the complexity of the

scalar models used. Currently, using the developed ARAD framework it is possible to pro-

totype ODE-based reaction models with up to 20 scalar species. Often, reaction networks

describing thrombosis initiation contain 30 or more scalar species62. Additionally, blood

cells (RBCs, WBCs, and platelets) are known to affect the thrombotic process, but have not

been incorporated into our model.

7.2 Future Work

One of the primary limitations of the hemodynamic and transport studies presented

in this work is the use of rigid wall assumption. Particularly in the case of the venous

models, this assumption is no longer valid. Given the implementation of deformable wall

models within CRIMSON, it is possible to directly extend the current study to incorporate

vessel wall compliance. Furthermore, given the disparate observations concerning WSS in

arterial and venous models in our analysis, future studies will include a broader range of flow

conditions and model geometries to better understand their effects on flow and transport

metrics.

In the future we plan to expand our computational model of thrombosis initiation by

increasing the number of scalar species that can be modeled to 34 or more. Future inves-

tigations may also incorporate platelet and cellular binding sites. The thrombosis model

presented herein utilizes one-way coupling between the Navier-Stokes and RAD equations.

Future work should address implementing a model for two-way coupling between the flow

and transport equations. This will be vital in enabling the model to accurately describe not

only thrombosis initiation but platelet plug formation and propagation. Other groups have

implemented two-way coupling between the flow and RAD equations by treating the bound

platelet mass as a porous media and using Darcy’s Law to describe flow through the platelet

113



plug81. We plan to follow a similar approach by adding a forcing term to the Navier-Stokes

equations to describe the force of the growing thrombus on the fluid field. This will enable

the exploration of RAD transport within the growing thrombus and the effect of reduced

luminal size on flow through a vessel.

In Chapter III we proposed the “consistent flux” boundary condition for scalar mass

transport and investigated its accuracy compared to the typically prescribed zero-diffusive

flux condition. Although this is an improvement to the typically used zero Dirichlet or zero

Neumann boundary conditions this is still not an accurate representation of what happens

in vivo where blood vessels form a closed-loop system. Similarly to reduced-order models

widely adopted for cardiovascular flow problems5,134,135, it is critically important to develop

reduced-order models of mass transport for the proximal and distal portions of the vascular

system not included in the 3D geometric model. This is particularly important when dealing

with closed-loop models and simulations involving reaction. Furthermore, this will be crucial

for thrombosis models where it is necessary to track the amount of thrombin for example

that leaves and reenters a domain through transient flow at a boundary.

Additionally, the proposed model of thrombosis initiation discussed in Chapter IV sim-

ulates thrombin generation and transport on the span of seconds to minutes. At this stage

the thrombus is young and not fully formed. Numerous in vivo works have investigated the

differences between acute (days) and chronic (weeks-months) thrombosis, as well as the long

term effects of chronic thrombosis on vessel walls. Histological techniques allow for a better

understanding of the structural components of a biological sample. Using a stasis murine

model for DVT (the stenosis model), 3 day old acute and 9 month chronic thrombi were

previously analyzed for their structural components. Four staining techniques were utilized:

Hematoxylin and eosin (H&E), Masson’s Trichrome, Picrosirius Red, and Martius Scarlet

Blue (MSB) were utilized. Results can be seen in Figures 7.1 and 7.2.

From this investigation, we gained insight into structure of thrombus. Figure 7.1 reveals

that acute thrombus is predominately composed of fibrin and red blood cells. The formation
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Figure 7.1: Acute thrombus stained with (a) H&E, (b) Masson’s Trichrome, (c) Picrosirius,
(d) Picrosirius with polarized light, and (e) MSB.

Figure 7.2: Chronic thrombus stained with (a) H&E, (b) Masson’s Trichrome, (c) Picrosirius,
(d) Picrosirius with polarized light, and (e) MSB.

of fibrin begins at the wall and moves in towards the center of the vessel. Small amounts of

Type I collagen were observed around the wall of the IVC. Conversely, the chronic thrombi

depicted in Figure 7.2 are composed predominately of collagen and red blood cells. In

addition to collagen content, changes in the shape of the IVC were observed between both

groups. The IVC wall appeared regular and circular in the acute samples whereas in the

chronic group it appears non-regular and non-circular. The change in shape of the IVC is

likely due to the fibrosis of the vein wall because of the original thrombotic event. This

illustrates the chronic effects that a large thrombotic event has on the vessel wall.

Spatial variation occurs throughout the length of a thrombus and can be seen in Figure 7.3

for the acute group. These variations highlight the heterogeneity of the thrombus structure.

We argue that this heterogeneity is greatly dictated by the interplay between hemodynamics

and the specifics of enzymatic reactions at time zero. Therefore, it will be necessary to

employ a growth and remodeling framework, similar to Humphrey and Rajagopal66, to study

both the acute versus chronic nature of thrombi as well as to study the long term effects of

thrombosis on thrombus and vein structure. Creating 3-dimensional computational models

of thrombi will also enable investigation into the 3-dimensional heterogeneity of thrombus

115



structure.

Figure 7.3: MSB stain of axial cross
sections for acute thrombus

Lastly, future work should aim at validating the

proposed thrombosis model through the use of either

in vitro or in vivo experiments. For ethical and prac-

tical reasons, human samples of thrombosis are not

readily available for research. Animal models are of-

ten used to study the stages of DVT in vivo. An-

imals do not naturally develop thrombosis so spe-

cific methods must be used to artificially induce these

events. Currently, models exist to mimic both acute

and chronic thrombotic events in small and large an-

imals37. These models rely on a combination of sta-

sis, chemical activation and/or of endothelial dam-

age to initiate a thrombotic event. Examples include:

a stenosis model, ligation model, and an electrolytic

vein model (EIM). Animal models allow researchers

to obtain information about thrombosis that would

otherwise be impossible and will play a large role in

this investigation.

Ultimately, we hope that the proposed thrombosis models will lead to advancements in

thrombosis treatment and prevention. Future work should also include using the developed

transport and reaction framework in other applications such as atherosclerosis and drug

delivery research.
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APPENDIX A

Three-element Windkessel values used for Aortic and

Venous Models

Outlet
Proximal Resistance

(g/(mm4·s))
Capacitance
(mm4· s2/g)

Distal Resistance
(g/(mm4· s))

RSA 0.19 0.15 2.29
REC 0.63 0.11 7.09
LEC 0.28 0.10 3.28
TA 0.01 5.18 0.22
LSA 0.18 0.15 2.27
LIC 0.19 0.18 2.36
RIC 0.17 0.23 2.19
RVA 0.54 0.09 6.03
LVA 0.44 0.07 4.80

Table A.1: Three-element Windkessel values used for thoracic aortic aneurysm model

RSA- Right subclavian artery

REC - Right external carotid artery

LEC - Left external carotid artery

TA -Thoracic Aorta

LSA- Left subclavian artery

LIC- Left internal carotid artery
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RIC- Right internal carotid artery

RVA- Right vertebral artery

LVA- Left vertebral artery
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Outlet
Proximal Resistance

(g/(mm4·s))
Capacitance
(mm4· s2/g)

Distal Resistance
(g/(mm4· s))

IVC 0.0033 3.4 0.063

Table A.2: Three-element Windkessel values used for venous model of the inferior vena cava
and iliac veins.

IVC- Inferior vena cava
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APPENDIX B

Reaction Models and Associated Parameter Values

and Initial Conditions

4-Species Thrombin Model

Species
Initial
Concentration (M)

RP 0.95
AP 0.05
II 1.4 x 10−6

IIa 0

(a) Prescribed Initial concentrations.

Rate
Constant

Value Units

ksurf 7.223 x 10−6 s−1

kAP
II 0.525 M−1s−1

kin 0.0262 s−1

kAP
AP 5.24 x 10−2 M−1s−1

kIIa
AP 0.002 if [IIa] ≥ 1.0x10−8 s−1

(b) Rate constants used.

Table B.1: Initial conditions and rate constants used for the 4-species coagulation model.

d[RP]

dt
= −kAP

AP[AP][RP]− kIIa
AP[RP], (B.1)

d[AP]

dt
= kAP

AP[AP][RP] + kIIa
AP[RP],

d[II]

dt
= −(ksurf + kAP

II ∗ [AP])[II],

d[IIa]

dt
= −kin[IIa] + (ksurf + kAP

II [AP])[II],
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7-Species Thrombin Model

Species
Initial
Concentration (M)

TF 1.0 x 10−9

IIa 0
X 1.6 x 10−7

II 1.4 x 10−6

V 2 x 10−8

Xa:Va 0
IIa:ATIII 0

(a) Prescribed Initial concentrations.

Rate Constant Value Units
k1 6.93938 x 1020 M−3s−1

k2 3.49444 x 103 M−2s−1

k3 1.48266 x 108 M−1s−1

k4 2.82183 x 10−2 s−1

(b) Rate constants used.

Table B.2: Initial conditions and rate constants used for the 7-species coagulation model.

d[TF]

dt
= −k1[TF][IIa][X][V], (B.2)

d[IIa]

dt
= −k1[TF][IIa][X][V] + k2[TF][X][II] + k3[Xa : Va][II]− k4[IIa],

d[X]

dt
= −k1[TF][IIa][X][V],

d[II]

dt
= −k2[TF][X][II]− k3[XaVa][II],

d[V]

dt
= −k1[TF][IIa][X][V],

d[Xa : Va]

dt
= k1[TF][IIa][X][V],

d[IIa : ATIII]

dt
= k4[IIa],

*Note: The “:” is used to describe the complex of two proteins, i.e. Factor Xa and Factor

Va coming together to form the complex Xa:Va
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18-Species Thrombin Model

Species
Initial
Concentration (M)

IX 9.0 x 10−8

TF:VIIa 1 x 10−9

X 1.7 x 10−7

V 2.0 x 10−8

VIII 7.0 x 10−10

VIIa 1.0 x 10−10

II 1.4 x 10−6

IX:TF:VIIa 0
IXa 0
X:TF:VIIa 0
Xa 0
VIIIa:IXa 0
X:VIIIa:IXa 0
Va 0
IIa 0
Va:Xa 0
II:Va:Xa 0
mIIa 0

(a) Prescribed Initial concentrations.

Rate Constant Value Units
k1 2 x 107 M−1s−1

k2 2 x 107 M−1s−1

k3 1x 107 M−1s−1

k4 2x 107 M−1s−1

k5 1x 107 M−1s−1

k6 1x 108 M−1s−1

k7 1x 107 M−1s−1

k8 4x 108 M−1s−1

k9 0.005 s−1

k10 0.4 s−1

k11 0.3 s−1

k12 1.15 s−1

k13 8.2 s−1

k14 32 s−1

k15 1x 105 M−1s−1

k16 24 s−1

k17 44 s−1

k18 0.001 s−1

k19 70 s−1

(b) Rate constants used.

Table B.3: Initial conditions and rate constants used for the 18-species coagulation model.
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d[IX]

dt
= −k6[IX][TF : VIIa] + k16[IX : TF : VIIa]− k15[IX][Xa], (B.3)

d[TF : VIIa]

dt
= −k6[IX][TfVIIa] + k16[IX : TF : VIIa]− k6[X][TF : VIIa]

+k17[X : TF : VIIa] + k11[IX : TFVIIa] + k12[X : TF : VIIa],

d[IX : TF : VIIa]

dt
= k6[IX][TF : VIIa]− k16[IX : TF : VIIa]− k11[IX : TF : VIIa],

d[IXa]

dt
= k11[IX : TF : VIIa] + k15[IX][Xa]− k7[VIIIa][IXa] + k9[VIIIa : IXa],

d[X]

dt
= −k6[X][TF : VIIa] + k17[X : TF : VIIa]− k6[X][VIIIa : IXa]

+k18[X : VIIIa : IXa],

d[X : TF : VIIa]

dt
= k6[X][TF : VIIa]− k17[X : TF : VIIa]− k12[X : TF : VIIa],

d[Xa]

dt
= k13[X : VIIIa : IXa] + k12[XTF : VIIa]− k8[Va][Xa] + k10[Va : Xa],

d[VIIIa : IXa]

dt
= −k6[X][VIIIa : IXa] + k18[X : VIIIa : IXa] + k13[X : VIIIa : IXa] (B.4)

+k7[VIIIa][IXa]− k9[VIIIa : IXa],

d[X : VIIIa : IXa]

dt
= k6[X][VIIIa : IXa]− k18[X : VIIIa : IXa]− k13[X : VIIIa : IXa],

d[V]

dt
= −k1[V][Xa]− k2[V][IIa],

d[Va]

dt
= k1[V][Xa] + k2[V][IIa]− k8[Va][Xa] + k10Va : Xa,

d[VIII]

dt
= −k3[VIII][Xa]− k4[VIII][IIa],

d[VIIIa]

dt
= k3[VIII][Xa] + k4[VIII][IIa]− k7[VIIIa][IXa] + k9[VIIIa : IXa],

d[IIa]

dt
= k5[mIIa][VaXa],

d[II]

dt
= −k6[II][Va : Xa] + k19[II : Va : Xa],

d[Va : Xa]

dt
= −k6[II][Va : Xa] + k19[II : Va : Xa] + k14[II : Va : Xa] + k8[Va][Xa]− k10[Va : Xa],

d[II : Va : Xa]

dt
= k6[II][VaXa]− k19[II : Va : Xa]− k14[II : Va : Xa],

d[mIIa]

dt
= k14[II : Va : Xa]− k5[mIIa][Va : Xa],
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