
Advancements in Adversarially-Resilient Consensus and
Safety-Critical Control for Multi-Agent Networks

by

James Bryan Usevitch

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Aerospace Engineering)

in the University of Michigan
2021

Doctoral Committee:

Associate Professor Dimitra Panagou, Chair
Associate Professor Anouck R. Girard
Assistant Professor Jean-Baptiste Jeannin
Associate Professor Vijay G. Subramanian

James Bryan Usevitch

usevitch@umich.edu

ORCID iD: 0000-0002-1230-7304

© James Bryan Usevitch 2021

I dedicate this to my wife Catherine, whose support and

encouragement made this dissertation possible.

ii

Acknowledgments

Everyone knows that Neil Armstrong was the first person on the moon. But how many people helped

him get there? Of course there was the rest of the crew: Buzz Aldrin and the oft-forgotten Michael

Collins. Then, just like in the movies, there were the dozens of worried-looking mission-control staff on

the ground, and notables like Wernher von Braun—intellectual forces who drove the entire

program....Armstrong’s success required contributions from an entire metropolis worth of people, not

including the millions of taxpayers who paid the bills, and the president who challenged a nation to

believe. Neil Armstrong is a household name only because his contribution was the most visible.

However, the most visible contribution isn’t necessarily the most significant.

—Scott Berkun, The Myths of Innovation [1]

My path to a PhD would not have been possible without the contributions, influence, and
support of many people who have influenced my life. I am grateful for the help and assistance I
have received on my path to earning this degree.

I was undecided on whether or not I wanted to pursue a PhD until my senior undergraduate
year in college. Four individuals inspired me to finally pursue this path. The first is my father
Bryan Usevitch who earned his PhD in Electrical Engineering from the University of Illinois and
was a faculty member at the University of Texas at El Paso. I will always be grateful for his
attempts to pique my interest as a child in programming with Python, soldering electronics, and
working with microcontrollers. The second is my grandfather George Wilson McConkie IV who
as a faculty member at Cornell University and the University of Illinois performed groundbreaking
experiments in how the eyes and mind process information obtained through reading. His inge-
nious computer eye-tracking research performed in the 1970’s continues to astound me to this day.
The third and fourth people are my brother David Usevitch and my cousin Nathan Usevitch, who
both entered or were accepted into PhD programs at roughly the same time as myself. I would
be less than honest if I didn’t admit to feeling at least a little bit of friendly competition to not be
outdone by them.

iii

I am deeply indebted to my advisor, Professor Dimitra Panagou, who was willing to take a chance
on me and offer me a PhD position that I did not fully deserve. I have had a fantastic experience
learning from and working with her, and have appreciated her style of mentoring and teaching as
I’ve earned my degree. I am also grateful for the positive experiences I’ve had with all past and
present members of the DASC lab. Much of what I have learned has been through collaborations
and discussions with members of the lab, and I’ve enjoyed the opportunities to work with each
of them. I would like to thank two members in particular for their influence on my PhD: Will
Bentz and Kunal Garg. Will was incredibly helpful as I navigated the early stages of my PhD, and
offered valuable advice as I prepared for graduation. Kunal has been a huge influence on my PhD
experience and technical ability ever since we started the program together. I have appreciated
his tutoring, willingness to collaborate and discuss ideas, and his ability to cowrite papers in an
unbelievably short amount of time.

I owe much of my success in my work to my mother and father, Heather and Bryan Usevitch.
Without their influence I would not be the man I am today. They are an incredible duo who
sacrificed part of their present to build a bright future for their children and beyond. All that I
know about hard work, honesty, sacrifice, and faith I owe to them. I’d also like to acknowledge
the many people from local congregations of The Church of Jesus Christ of Latter-Day Saints who
have extended love, service, and friendship to my family during the past 5 years.

Most of all, I would like to thank my wonderful and incredible wife Catherine for her love,
optimism, and cheerful encouragement throughout this PhD. Words will never be able to describe
how much happiness she has brought me during our experience here at the University of Michigan.

To close, I would like to acknowledge the support of the Automotive Research Center (ARC)
in accordance with Cooperative Agreement W56HZV-14-2-0001 U.S. Army TARDEC in War-
ren, MI; Cooperative Agreement W56HZV-19-2-0001 U.S. Army CCDC Ground Vehicle Systems
Center (GVSC) Warren, MI; and the Award No W911NF-17-1-0526. Part of this dissertation has
been funded by the Center for Unmanned Aircraft Systems (C-UAS), a National Science Founda-
tion Industry/University Cooperative Research Center (I/UCRC) under NSF Award No. 1738714
along with significant contributions from C-UAS industrymembers.

iv

Table of Contents

Dedication . ii

Acknowledgments . iii

List of Figures . viii

Abstract . xiv

Chapter

1 Introduction . 1

1.1 Motivation . 1
1.2 Literature Review . 2

1.2.1 Origins of the Resilient Agreement Problem 2
1.2.2 MSR Algorithms for Resilient Consensus 5
1.2.3 Resilient Safety and Control of Dynamical Systems 6

1.3 Contributions . 9
1.4 Outline . 13
1.5 Notation . 13

2 Resilient Consensus Algorithms . 15

2.1 Introduction . 15
2.2 Preliminaries on Resilient Consensus and MSR Algorithms 18
2.3 Resilient Leader-Follower Consensus to Arbitrary Reference Values in Time-

Varying Graphs . 23
2.3.1 Problem Formulation . 24
2.3.2 Resilient Leader-Follower Consensus in Time-Varying Graphs 28
2.3.3 Adversarial Implications . 34
2.3.4 Simulations . 35

2.4 Finite-Time Leader-Follower Consensus: Formation Control 38
2.4.1 Notation and Problem Definition . 39
2.4.2 Continuous-time System . 42
2.4.3 Discrete-time System . 49
2.4.4 Simulations . 53

2.5 Resilient Finite-Time Consensus: A Discontinuous Systems Perspective 57

v

2.5.1 Problem Formulation . 58
2.5.2 Justification for Discontinuous Systems Approach 62
2.5.3 Review of Discontinuous Systems Theory 62
2.5.4 Main Results . 66
2.5.5 Discussion . 72
2.5.6 Simulations . 73

2.6 Discussion . 74
2.7 Conclusion . 76

3 Determining r- and (r, s)-Robustness for Design and Analysis of Resilient Networks . 77

3.1 Introduction . 77
3.2 Problem Formulation . 79
3.3 Robustness of k-Circulant Digraphs . 83

3.3.1 Strong r-Robustness of k-Circulant Graphs 89
3.3.2 Implementation of W-MSR Algorithm on k-Circulant Digraphs 90

3.4 Determining r- and (r, s)-Robustness of Digraphs using
Mixed Integer Programming . 95

3.4.1 Determining r-Robustness using Mixed Integer Linear Programming . . 95
3.4.2 Determining (r, s)-Robustness using Mixed Integer Linear Programming 102
3.4.3 Approximate Bounds on rmax(D) . 109
3.4.4 Discussion . 115
3.4.5 Comparison of MILP Robustness Determination with Prior Methods . . 116

3.5 Conclusion . 121
3.6 Appendix: Description of Algorithm Implementations 121

4 Resilient Broadcast . 126

4.1 Introduction . 126
4.2 Preliminaries on Resilient Broadcasting . 127
4.3 Notation and Problem Formulation . 128

4.3.1 Problem Formulation . 129
4.4 Sensitivity Analysis . 134

4.4.1 Sensitivity to Clock Synchronization Errors 134
4.4.2 Sensitivity to Differences in Parameters 138
4.4.3 Combined Clock and Parameter Perturbation Errors 141

4.5 Resilient Parameter Propagation . 142
4.5.1 Synchronous propagation without parameter perturbations 142
4.5.2 Propagation with Time-Varying Graphs 146
4.5.3 Incorporating Parameter Perturbations 148

4.6 Simulations . 153
4.6.1 Incorporating Formational Offsets . 155
4.6.2 Simulation 1 . 157
4.6.3 Simulation 2 . 158
4.6.4 Hardware Experiments . 163

4.7 Conclusion . 168
4.8 Appendix . 169

vi

4.8.1 Bernstein Polynomials and Bezier Curves 169

5 Adversarial Resilience for Sampled-Data Systems under High-Relative-Degree Safety
Constraints . 171

5.1 Introduction . 171
5.2 Overview of Control Barrier Function Methods 172
5.3 Adversarial Resilience in Sampled-Data Systems Under

Safety Constraints . 175
5.3.1 Notation and Problem Formulation . 176
5.3.2 Problem Formulation . 176

5.4 Safe Set Functions with Relative Degree 1 . 179
5.4.1 Preliminaries . 179
5.4.2 Synchronous Sampling Times . 182
5.4.3 Asynchronous Sampling Times . 186
5.4.4 Maximum Safety-Preserving Control Action 188

5.5 Safe Set Functions with High Relative Degree 190
5.5.1 Discussion . 196

5.6 Simulations . 197
5.6.1 Unicycle Agents in R2 . 197
5.6.2 Double Integrators in R3 . 199

5.7 Conclusion . 208

6 Conclusions and Future Work . 209

6.1 Conclusions . 209
6.2 Future Work . 211

6.2.1 Final Discussion . 211

Bibliography . 213

vii

List of Figures

Figure

2.1 A pictorial representation of how the W-MSR algorithm operates (Algorithm 2.1). . . 20
2.2 A network of agents running the normal W-MSR algorithm with n = 20, k = 15. The

dotted red lines represent adversarial agents, while the solid lines represent normally
behaving agents. 22

2.3 A pictorial representation of the Sliding Window Mean-Subsequence-Reduced (SW-
MSR) algorithm (Algorithm 2.2). The chief difference between the SW-MSR and
W-MSR algorithms are that the SW-MSR considers the most recently received infor-
mation over a sliding time window to mitigate the effects of the network graph being
time-varying. 27

2.4 Time-varying graphs used in the last two simulations. In each graph Gj , ∀i ∈ V
each agent i sends its state information to the agents depicted. The terms i + p for
p ∈ {1, . . . , 7} are shorthand for (i+ p) mod n, where n is the total number of agents. 37

2.5 Leader-follower simulation using the SW-MSR algorithm with a constant reference
value in the presence of 2 malicious agents. 37

2.6 Leader-follower simulation using the SW-MSR algorithm with a time-varying refer-
ence value in the presence of 3 malicious agents. Note that the normal agents track the
reference signal even when the behavior of the malicious agents may be unbounded. . 38

2.7 Visual depiction of the vectors pi, ξi, and τi used in this section. The formation is
achieved when agents’ τ vectors come to consensus. 40

2.8 An example of a Resilient Directed Acyclic Graph (RDAG) with parameter r = 3. . . 41
2.9 Diagram of the filtering and state update control law used for the continuous time

system in this section. Note that as per Algorithm 2.3, the filtered set Ki(t) is updated
only at time instances t = mεd where εd > 0, m ∈ Z≥0. The reasons for this behavior
are discussed below. 43

2.10 Norm ‖τi(t) − τL‖ of a subset of the normal agents in the continuous time case. For
sake of clarity, only a few normal nodes from each set Sp are shown. 54

2.11 Path of the agents in the continuous time case. All normal and adversarial agents start
from the centre of the circle marked by red dots. The leaders are denoted by the star
points pL and the non-adversarial agents are denoted by pN. 55

2.12 Norm ‖ui(t)‖ of a subset of the normal agents in the continuous-time case, demon-
strating that their input magnitudes never exceed the bound uM = 1. The rest of the
network is not shown for sake of clarity. 55

viii

2.13 Discrete Time: Norm of formational position differences ‖τi[k] − τL‖ of a subset of
the normal agents in the discrete time case. For sake of clarity, only a few normal
nodes from each set Sp are shown. 56

2.14 Discrete Time: Path of the agents in the discrete time case. The leaders are denoted
by the star points pL and the non-adversarial agents are denoted by pN. 56

2.15 Discrete Time: Norm ‖ui[k]‖ of a subset of the normal agents in the discrete time
case. Again, the magnitude of each agents’ control input never exceeds the bound
uM = 1 and goes to zero as the agents converge to formation. 57

2.16 Simulation of a network of 15 agents appling the FTRC-P. The dotted red lines repre-
sent the adversarial agents. 74

3.1 Depiction of all 12 possible (S1, S2) elements in T for a complete graph D of 3
agents. Each graph represents a different possible way of dividing D into sets S1 and
S2. In each individual graph, yellow agents are in S1, blue agents are in S2, and white
agents are in neither S1 nor S2. 81

3.2 An example of the elements of Θ for a digraph D1. Since |V| = 4, the possible values
of r and s for which the digraph is (r, s)-robust fall within the range 0 ≤ r ≤ 2,
1 ≤ s ≤ 4. One possible pair of subsets S1 and S2 is depicted, which satisfies
|X 2

S1
| 6= |S1|, |X 2

S2
| 6= |S2|, |X 2

S1
| = 0 and |X 2

S2
| = 1. By Definition 3.4, D1 therefore

cannot be (2, 2)-robust, (2, 3)-robust, or (2, 4)-robust. 83
3.3 The general structure of a circulant matrix. By defining the first row, the rest of the

matrix is determined. Circulant digraphs have circulant adjacency matrices. 84
3.4 A 3-circulant digraph on 7 nodes, denoted C7{1, 2, 3}. Nodes are arranged in a circle

for visual clarity; in general the name “circulant” has nothing to do with the physical
arrangement of the nodes or agents. 84

3.5 Example of a directed graph whose underlying graph is p-connected, but which is not⌊
p
2

⌋
-robust. The graph shown has an underlying graph with vertex connectivity equal

to 4. If the nodes of the graph are divided into the two nonempty, disjoint sets denoted
by the green and blue colors, each node clearly only has one in-neighbor outside its
set. This implies that the graph can be no more than 1-robust. Note that the two
arrangements are the exact same graph; the second configuration is rearranged for
clarity. 85

3.6 Counterexample showing that there exist digraphs with an arbitrarily large minimum
vertex disconnecting set which are at most 1-robust. The class of digraphs in this
figure are composed of two cliques with p directed edges going from clique 1 to clique
2 as shown, and p more directed edges going from clique 2 to clique 1. The size of
a minimum vertex disconnecting set is therefore p. However, by Definition 3.2 the
digraph can be at most 1-robust since no agent in either of the cliques has more than
1 in-neighbor outside its own clique. 86

3.7 Visualization of the sets Vi and Vi+b, and the values α1, α2, β1, β2. Here, i ∈ S1 with
S1 represented by the color blue. From the proof, there exists a node i+ b ∈ S2, with
S2 represented by the color yellow. Nodes i − k through i − 1 are either in S1 or S2,
while nodes i+ 1 through i+ b− 1 are not in S2, i.e. either in S1 or neither in S1 nor S2. 88

ix

3.8 The network topology of digraphs D1 and D2. For sake of clarity, only the edges
extending from one node are shown; in the actual graph, each node has the same pat-
tern of edges extending from it. The first graph simulated is a C15{1, . . . , 6} circulant
digraph. The second is a C15{1, . . . , 9} circulant digraph. In the first graph, nodes 1
and 7 are misbehaving. In the second, nodes 1, 7, and 13 are misbehaving. The nodes
are visualized in a circular manner for ease of understanding rather than representing
any kind of physical arrangement. 92

3.9 Simulation on the graph D1 = C15(1, 2, . . . , 6). The dotted red lines represent the
state trajectories of the misbehaving agents. 93

3.10 Simulation on the graph D2 = C15(1, 2, . . . , 9). 94
3.11 Illustration of how the (r∗, s∗)-robustness of a graph is found by the DetermineRo-

bustness algorithm and the MILP method. Consider a digraphD of n = 6 nodes which
satisfies (r∗, s∗) = (2, 3). DetermineRobustness begins with the maximum possible r
and s values (r = dn/2e and s = n), then iterates in a lexicographically decreasing
manner. The MILP formulation first determines rmax(D), then s̄min(rmax(D)), then
finally infers smax(rmax(D)) (abbreviated to s̄min(r) and smax(r) for clarity). 104

3.12 Comparison of DetermineRobustness to (r, s)-Rob. MILP (Algorithm 3.3). The
interpolating lines and circles represents the average computation time in seconds over
100 digraphs for each value of n, the upper and lower lines represent the maximum
and minimum computation times, respectively, over the 100 trials for each n. Note
that (r, s)-Rob. MILP actually solves two MILPs sequentially: one to find rmax(D),
and one to find smax(rmax(D)). 118

3.13 Comparison of the Mod. Det. Rob. algorithm (Algorithm 3.4) which determines
rmax(D) to three MILP formulations. The first MILP formulation labeled r-Rob.
MILP is an implementation of Theorem 3.4 and calculates rmax(D) exactly. The MILP
formulation labeled r-Rob. Lower Bnd is an implementation of Theorem 3.6 and cal-
culates a lower bound on rmax(D). The MILP formulation labeled r-Rob. Upper Bnd
is an implementation of Theorem 3.7 and calculates an upper bound on rmax(D). The
interpolating lines and circles represents the average computation time over 100 di-
graphs for each value of n, the upper and lower lines represent the maximum and
minimum computation times, respectively, over the 100 trials for each n. 120

3.14 (Left) Example of a digraph which has δin(D) = 0 but which is 1-robust. The graph is
depicted on the far left, and all possible (S1, S2) pairs in T are depicted on the close
left. (Right) Fig A.2. A rooted out-branching, where the in-degree of the root node
(far left) is zero. All digraphs containing a rooted outbranching are at least (1, 1)-
robust [2]. 123

4.1 An overview of the trajectory propagation method using parameter vectors. Each
leader broadcasts a vector of static parameters representing a Bezier-curve-based tra-
jectory. Followers receive messages from both normally-behaving robots and misbe-
having robots. From its received information each follower accepts a parameter vector
and uses it to reconstruct a trajectory locally. 130

x

4.2 Example of the effects of Bezier control point perturbation. The control points for
each Bezier curve are represented by the squares, with dotted connecting lines for
visual clarity. The actual Bezier trajectories are the solid blue and yellow lines. The
magenta lines represent various pointwise differences between points on the curves
with corresponding s ∈ [0, 1] value. 133

4.3 An example of an RDAG with parameter r = 3. 144
4.4 An illustration of how the MSRPA algorithm operates in a sychronous setting. The

graph depicted is an RDAG with parameter 3 under an F -local adversarial model
with F = 1. The set of leaders is indicated by the circles in the box on the left,
adversarial agents are indicated by the color red, and agents possessing the reference
vector of parameters are indicated by the color blue. Leaders begin by broadcasting
the reference vector to their out-neighbors. At each time step, any normal follower
which receives the same vector message from at least F + 1 in-neighbors accepts the
vector message and begins rebroadcasting it to its out-neighbors at the next time step. . 145

4.5 Depiction of the method used to specify formational offsets in the simulations. The
x-axis of the formation frame Ff is defined to be colinear with the tangent vector to
the Bezier curve at the time-varying reference point prf (t). 156

4.6 The nominal Bezier path for Simulation 1, shown as a solid blue line. The Bezier
control points are shown as squares, with dotted lines connecting the control points
for clarity of visualization. The exact trajectory is not known to any of the leaders or
followers; leaders each have parameter vectors perturbed from the nominal parameters
for this trajectory. 158

4.7 Still frames from the video of Simulation 1. The dotted lines represent the recon-
structed trajectories for normal robots. The diamonds on the dotted line trajectories
represent each robot’s reconstructed estimate of the formation reference point. The
small x marks represent each normal robots’ time-varying desired position pri (t). Two
adversarial robots (red) move off towards infinity while simultaneously propagating
misinformation through the network. 159

4.8 Plot of the maximum pointwise error between all pairs of normal robot reconstructed
target trajectories for Simulation 1, along with the theoretical upper bound. The theo-
retical upper bound derived in this chapter is quite conservative for the given problem
data; future work will investigate ways to tighten this bound. 160

4.9 Plot of the minimum inter-robot distances in Simulation 1. The red dotted line repre-
sents the minimum inter-robot distance required for safety to be maintained. 161

4.10 The nominal Bezier path for Simulation 2, shown as a solid blue line. The Bezier
control points are depicted as squares, with dotted lines connection the control points
for clarity of visualization. As in Simulation 1, this exact trajectory is not known to
either leaders or followers. Leaders each have parameter vectors perturbed from the
nominal parameters representing this trajectory. 162

xi

4.11 Still frames from the video of Simulation 2. The dotted lines represent the recon-
structed trajectories for normal robots. The diamonds on the dotted line trajectories
represent each robot’s reconstructed estimate of the formation reference point. The
small x marks represent each normal robots’ time-varying desired position pri (t). Both
adversarial robots propagate misinformation throughout the network. One adversarial
robots (red) moves off towards infinity while the other remains in place for the entire
simulation. 164

4.12 Plot of the maximum pointwise error between all pairs of normal robot reconstructed
target trajectories for Simulation 2, along with the theoretical upper bound. The plot
begins at time t = 1.33 seconds when all normal robots have accepted a parameter
vector and reconstructed a trajectory. Again, the theoretical upper bound derived in
this chapter is quite conservative for the given problem data; future work will investi-
gate ways to tighten this bound. 165

4.13 Plot of the minimum interrobot distances in Simulation 2. The red dotted line repre-
sents the minimum inter-robot distance required for safety to be maintained. 166

4.14 Minimum value of hjoi(zj(t), poi), as defined in (4.52), over all agents j ∈ V and
obstacles o1, o2, o3 as a function of time in Simulation 2. A log scale is used in the
x-axis for greater clarity. This value never decreases below zero, which indicates there
were no agent-obstacle collisions for all agents and obstacles. 167

4.15 Depiction of the network structure for the hardware experiments. Agents 1 through
3 are leaders, and agents 4 through 6 are followers. Agent 2 is a misbehaving leader
and propagates misinformation to its out-neighbors. 168

5.1 An example of the sets S, ∂Sε∗ , and ∂S2ε∗ for a given ε∗ > 0. Note that each of the
three ellipses is a separate view of the same set S. The dotted blue line in the rightmost
ellipse is the inner boundary of ∂Sε∗ , highlighting the fact that ∂Sε∗ ⊂ ∂S2ε∗ 189

5.2 Two examples of initial system states where it is impossible to guarantee forward
nonemptiness of the normal agent’s feasible controls set Ki(·). Agents have single
integrator dynamics; the normal agent is depicted in blue, and adversarial agents are
depicted in red. The line in the right image denotes an obstacle. Determining initial
conditions for which nonemptiness of the feasible sets is guaranteed for all forward
time is intractable in general when considering nonlinear control-affine systems. . . . 198

5.3 Still frames from the video of Simulation 1. Normal agents are represented by blue cir-
cles and adversarial agents are represented by red circles. The dotted red lines around
the blue circles represent normal agents’ safety radii. The time-varying formation
trajectory is represented by the dotted magenta line; the magenta diamond represents
the center of formation. Black crosses represent agents’ nominal local time-varying
formational points. 200

5.4 The value of the composed function htot representing the safe set S. Non-positive
values represent safety of the normal agents. 200

5.5 The value of the composed function htot representing the safe set S when η(Γ) = 0
for all normal agents; i.e., sampling times and disturbances are not accounted for in
the control input calculations. The safety bound for the normal agents is violated. . . . 201

xii

5.6 Input values for (normal) agent 2. The blue solid line represents linear input value
and the green solid line represents angular input value. Dotted lines represent input
bounds. Times at which the worst-case LP is used are marked with red X’s on both
the linear and angular input lines. 202

5.7 Still frames from the video of Simulation 2. Normal agents are represented by blue
circles and adversarial agents are represented by red circles. For clarity, the safety
radii of the normal agents has been omitted. The time-varying formation trajectory
is represented by the dotted magenta line; the magenta diamond represents the center
of formation. Black crosses represent individual agents’ nominal local time-varying
formational points. Black spheres represent randomly placed obstacles. 205

5.8 The value of the composed function htot representing the safe set S for all normal
agents in the second simulation. Non-positive values represent safety of the normal
agents. For the entire duration of this simulation, the value of htot remains strictly
negative, indicating that safety is maintained for all normal agents. 206

5.9 Infinity norm of control input for (normal) agent 2. The control norm bound is plotted
in red, and the norm of agent 2’s control input is plotted in blue. Times when the
backup LP is used are marked with red X’s. 207

xiii

Abstract

The capabilities of and demand for complex autonomous multi-agent systems, such as networks of

unmanned aerial vehicles and robots, are rapidly increasing in both research and industry settings.

As the size and complexity of these systems increase, dealing with faults and failures becomes

a crucial element that must be accounted for when performing control design. In addition, the

last decade has witnessed an ever-accelerating proliferation of adversarial attacks on cyberphysical

systems across the globe. Unlike typical disturbances and noise considered in traditional control

design, these adversarial attacks may not exhibit a predictable structure and are usually specifically

designed to exploit and manipulate vulnerable elements in the targeted system.

In response to these challenges, recent years have seen an increased focus on resilience of

multi-agent systems to faults and adversarial attacks. Broadly speaking, resilience refers to the

ability of a system to accomplish control or performance objectives despite the presence of faults

or attacks. Ensuring the resilience of cyberphysical systems is an interdisciplinary endeavor that

can be tackled using a variety of methodologies. This dissertation approaches the resilience of

such systems from a control-theoretic viewpoint and presents several advancements in resilient

control methodologies. More specifically, this dissertation contains the following contributions

and developments.

First, several novel advancements are given for resilient consensus in multi-agent systems

using computationally inexpensive, distributed algorithms. Both leaderless and leader-follower

consensus algorithms are fundamental methods for achieving cooperation and agreement on in-

formation among distributed agents in a broad variety of practical settings, including information

xiv

fusion in distributed sensor networks, rendezvous and formation tracking in networks of mobile

robots, clock synchronization between distributed computers, cooperative surveillance with multi-

ple UAVs, synchronization of oscillator networks, transaction commit protocols, opinion dynamics

in social networks, and more. The consensus problem becomes more challenging however when

a subset of the agents do not behave according to the nominally specified consensus control law

due to faults or adversarial attacks. The resilient consensus problem studies how to guarantee con-

sensus of normally-behaving agents despite such faults and attacks. We present conditions under

which resilient leader-follower asymptotic consensus in time-varying graphs can be achieved in

the presence of adversarially-behaving agents using a control law and information filtering from

the class of Mean-Subsequence-Reduced family of algorithms. In addition, we present a novel

algorithm for achieving finite-time leader-follower consensus in a continuous-time system set-

ting. Finally, we present a general method for achieving finite-time leaderless consensus in a

continuous-time setting using a class of nonlinear controllers. The analysis utilizes discontinuous

systems theory and considers a more general model of adversarial distribution and behavior than

prior work.

Second, novel graph theoretic tools for constructing and analyzing resilient networks are pre-

sented. Prior results on resilient control methods often require strict conditions on the underlying

communication topology of the network of agents to guarantee the achievement of system objec-

tives. Determining to what extent given networks satisfy these conditions is often a computation-

ally challenging problem, and constructing graphs satisfying these conditions by design can also

be difficult. This dissertation presents methods to ameliorate both of these challenges. To address

the issue of construction, a class of circulant graphs is proposed whose resilience properties depend

solely on a design parameter independent of the size of the graph. Such graphs can be scaled to

an arbitrarily large number of nodes while preserving desired resilience properties. In addition, a

mixed-integer linear programming (MILP) optimization framework is presented that can be used to

determine the exact resilience properties of arbitrary directed and undirected graphs. These MILP

xv

methods allow for the iterative approximation of resilience parameters and demonstrate reduced

computation time in practice as opposed to prior techniques.

Third, an algorithm is proposed for resiliently broadcasting vector-valued information from a

set of leaders to a set of followers in the presence of adversarial misinformation. This algorithm

can tolerate both misbehaving leaders and followers, and can operate under a dynamic graph model

for the network topology. The algorithm can operate even when the vector values of the normally-

behaving leaders do not exactly agree due to noise or perturbations, and it is proven that bounded

perturbations or noise results in bounded maximum error between normally-behaving leaders’ and

followers’ accepted values. In addition, we present a novel application of resiliently propagating

time-varying trajectory information in the form of Bezier curve parameters from a set of leaders to

followers.

Finally, we present a novel framework for resilient safety maintenance of multi-agent, dis-

tributed, sampled-data systems in the presence of adversaries using Control Barrier Functions

(CBFs). CBFs combined with quadratic programming (QP) methods have arisen in the last decade

as a powerful method for computing control inputs that guarantee safety and set forward invari-

ance for nonlinear control affine systems. Prior work has typically assumed that the control inputs

resulting from the associated quadratic programs are continuous in time; however the behavior of

practical systems is more accurately modeled by sampled-data dynamics. In addition, none of the

prior literature on multi-agent CBF set invariance considers the effects of adversarially-behaving

agents seeking to violate system safety constraints. The framework presented in this thesis is

the first to present a method for normally-behaving agents in a multi-agent system to compute

safety-preserving control inputs despite the actions of adversarial agents. This framework con-

siders a general class of nonlinear, control-affine, sampled-data dynamics with disturbances and

asychronous communication between agents and input bounds. In addition, it considers CBFs

having high relative degree with respect to agents’ dynamics.

xvi

CHAPTER 1

Introduction

1.1 Motivation

The first twenty years of the 21st century have witnessed an explosion in both technological ad-
vances and distribution of cyberphysical systems. These systems have become ubiquitous in the
settings of academia, industry, and the everyday lives of billions of people across the globe. Within
the technological transformation that has taken place since the dawn of the new millenium, two
prominent trends stand out.

First, a wide variety of distributed control systems have rapidly proliferated in both academic
and industrial settings. The rise of the Internet of Things has led to the incorporation of sen-
sors, software, and control algorithms into a vast variety of physical objects, with the number
of such devices projected to reach 43 billion by 2023 [3]. Many of these devices operate with
limited power and computational resources. A similar rise in multi-agent systems has occurred
in academia and industry, including multi-UAV systems for surveillance [4], mapping [5], atmo-
spheric sensing [6], outdoor light shows [7], and military applications [8]; large-scale deployment
of autonomous robots in places such as Amazon warehouses [9] and British supermarket company
Ocado’s Andover warehouse [10]; autonomous vehicle systems in mining [11], vehicle platoon-
ing [12], and commercial autonomous passenger vehicle research [13]; and many more settings.

Second, there has been an exponential rise in the number of attacks made on cyberphysical
systems. The global cost of cybercrime for 2021 has been projected to reach USD $6 trillion an-
nually, with this estimate growing to USD $10.5 trillion annually by 2025 [14, 15]. An estimated
9.9 billion cyberattacks worldwide took place in 2019 alone. Since the vast majority of control
systems are implemented via computers or embedded systems, these systems have become vulner-
able targets for attackers. Notable examples of attacks on cyber-physical control systems include
Stuxnet in 2009 [16], a cyberattack attack on an RQ-170 military UAV in 2011 [17], multiple
attacks conducted on consumer automobiles [18–20], and the hacking of multiple UAVs by the
Russian military during an insurgent attack on a Syrian base [21].

1

Two conclusions can be drawn from this trend: first, the increase in number of cyberphysical
systems will be accompanied by a rise in faults and failures of such systems. Systems composed
of large numbers of agents, sensors, or processors will inevitably see failures in functionality and
collaboration between those entities. Second, ensuring systems can withstand adversarial manip-
ulation and attacks must become a fundamental consideration when designing or choosing the
control algorithms responsible for enabling the system achieve its objectives. The necessity of
overcoming faults and adversarial attacks has driven an increase in focus on the topic of resilience

in control systems.
The word resilience has an extremely wide variety of meanings across multiple disciplines

and contexts. Giving a satisfactory definition general enough to capture all of these meanings is
beyond the scope of this work. However to describe how the term resilience is used in this dis-
sertation, we consider a problem setting to be composed of a system model, a nominal objective,
and an adversarial model. Informally speaking, a system is resilient if it can guarantee achieve-
ment of the nominal objective despite all possible adversarial actions described by the adversarial
model. The study of resilience can be approached from an infinite number of perspectives and
using tools from countless fields and specialties including control theory, game theory, computer
science, artificial intelligence, biology, mathematics, statistics, and more. This dissertation does
not attempt to approach resilience from all of these angles. Rather, this dissertation will present
several contributions towards desigining resilient systems from a control theoretic perspective.

1.2 Literature Review

We first give an overview of several approaches in prior literature towards creating resilient sys-
tems. This overview is far from exhaustive; rather, we chiefly cover areas that are related to the
contributions of this dissertation.

1.2.1 Origins of the Resilient Agreement Problem

Achieving agreement on common information by a set of agents has been a fundamental prob-
lem in both computer science and control theory for decades [22–25]. These problems, which are
known by different names such as agreement problems or consensus problems, arise in many prac-
tical scenarios. In distributed computing the agreement problem underlies commit protocols [26],
file copy storage [27], clock synchronization [28], among others. In the controls community, con-
sensus is fundamental to distributed sensing [29], distributed observers [30, 31], rendezvous of
mobile agents [32–34], formation control [35], flocking [36], leader-follower control of mobile
agents [37], synchronization of biological and engineering oscillator networks [38], among others.

2

Consensus has also been addressed in cases when various elements of the system are subject to
stochasticity and noise. Several works have studied a graph theoretic model where edge weights
behave stochastically over time to model uncertainty in communication between agents [39, 40].
Other works have modeled signals between agents as having stochastic additive noise [41, 42].

Agreement and consensus protocols in the presence of faults or attacks have been long stud-
ied in computer science [22, 43]. A seminal work that sparked interest in agreement algorithms
resilient to faults and adversaries is [44], which introduces the Byzantine Generals Problem. This
problem considers several computer processors seeking to achieve agreement on a “correct” com-
mon value broadcasted by a leader processor when a subset of the processors, called “Byzantine”,
either stop working or communicate deliberate misinformation to their neighbors within the net-
work. The recursive algorithms presented in this work require either signed messages to verify the
identity of the sender, or they require each agent to possess global information about the structure
of the communication graph. Many later papers built upon this idea of agreement in the presence
of faults and adversarial behavior including [45] which extended the results to more general graph
conditions; [46] which considers the weaker problem of agents simply coming to agreement on
a value that may not be the “correct” one; [47] which uses a randomized lottery procedure and
asymmetric cryptographic message verification; [48] which considers clock synchronization in the
presence of Byzantine faults, among many others. The proposed solution in [44] to the Byzantine
Generals problem has the advantage of guaranteeing exact agreement of normally-behaving agents
in a finite number of time steps. However, one key shortcoming of this solution is that all normal
agents must be able to reliably communicate information to all other normal agents in a particular
sense. This requires the communication topology to be either a complete network, or agents are
required to have nonlocal knowledge about the communication topology structure. More specif-
ically, in the noncomplete case each agent is required to have knowledge of redundant, separate
paths from itself to any other agent in the network.

One widely cited result with regards to consensus of computer processes in the presence of
faults (and possibly Byzantine processors) is [49]. This work shows that it is impossible for asyn-
chronous computer processes under a general model to achieve agreement on a common value.
It is important however to understand the assumptions made upon the system model and the au-
thors’ definition of consensus; in particular, consensus for a system of message-passing processes
is defined as reaching a decision on a particular value in finite time. Consensus in other fields
(e.g. control theory) typically assumes a different state update model and/or asymptotic consensus,
where agents’ states converge to a common value as time tends to infinity.

The computer science community has presented many other algorithms for consensus of multi-
ple “agents” or processors in the presence of various fault, asynchrony, and adversarial models. The
works [50–53] outline algorithms for multi-agent vector consensus of asynchronous systems in the

3

presence of Byzantine adversaries. The Paxos algorithm [54, 55] presents a method for a network
of agents to come to common agreement on values via a propose, learn, accept model in which
a set of one or more proposers processes propose values to be agreed upon, a set of one or more
acceptors processes collaboratively choose a proposed value, and a set of one or more learners

processes learn the value that has been chosen. The algorithm considers asynchrony, temporary or
permanent agent failure, and message delays / losses. The main disadvantage of the original Paxos
algorithm, however, is that it cannot tolerate adversarial misinformation or corrupted messages.
Some later studies have built upon the Paxos algorithm including [56] which presents a variant of
Paxos guaranteeing learning of the consensus value within two message delays; [57] which con-
siders the presence of Byzantine acceptors (but not proposers or learners) which can communicate
false messages within the Paxos algorithm; [58] which presents a specialized version of Paxos for
systems with (2F + 1) processors which can tolerate up to F faults; among others. Even with
the modifications for Byzantine resilience proposed in [57], there are two disadvantages for using
the Paxos algorithm in certain settings. First, the Paxos algorithm requires proposed consensus
values to be uniquely numbered with a total order on the numbering values, with higher ballot
numbers receiving precedence over lower ballot numbers. With Byzantine adversaries, there are
difficulties with guaranteeing that Byzantine leaders do not execute higher-numbered ballots to
disrupt operation of the algorithm [57]. In addition, the Paxos algorithm chooses only one pro-
posed value, typically one of the earliest proposed values, and discards all other proposed values.
The value selected depends on the timing for which possible candidate values are proposed to the
acceptor agents, with the algorithm biased towards selecting a value proposed earlier than other
values. In some contexts such as sensor fusion however, allowing multiple sources to influence
the final selected value may give a better estimate of the actual data being observed (e.g., the
mean of multiple proposed values) than simply selecting the earliest proposed value by one of
the sensors. Blockchain methods have also been used for decentralized Byzantine-resilient con-
sensus [59–62]. The practical efficacy of these methods for implementing applications such as
decentralized cryptocurrencies [63, 64], distributed ledgers [65, 66], and smart contracts [67] has
been widely demonstrated. However, these methods possess their own vulnerabilities including
the notorious 51% attack and selfish miners attack [68]. In addition, blockchains relying upon
proof-of-work methods for verification inherently require the expenditure of fairly significant time,
memory, and computational effort to implement. This time and computational effort can be at odds
with systems having limited energy and computational resources, and systems seeking to converge
to consensus in a rapid manner.

Building upon the Byzantine Generals Problem, the paper [69] considers the problem of a
leader agent securely broadcasting a value in a network with agents behaving in a Byzantine
manner. This work proposes the Certified Propagation Algorithm (CPA), which operates in a

4

synchronous manner and guarantees that the original message will eventually reach all normal fol-
lowers in the network if adversaries are able to corrupt no more than t of their neighbors, where
t is a nonnegative integer. This result is extended in [70] to be able to handle message collisions
and adversarial address spoofing. The work [71] demonstrates that the graph-theoretic condition
of r-robustness on the network topology is a sufficient condition for the CPA algorithm to succeed
for any arbitrarily chosen leader node in the network. Considering a similar problem scenario, [72]
studies tighter bounds on the number of total corrupted agents t that the CPA can tolerate for par-
ticular graph structures, and characterizes the relationship of graph parameters for these structures
with the number of corrupted agents t. In [73] the adversarial model is extended to the t-local

model where the number of Byzantine agents in any normal agent’s neighborhood is no more than
t. The paper also studies more general resilient broadcast algorithms that consider safety of agents’
accepted values; i.e., algorithms that guarantee that no agent will ever accept an incorrect or false
value, even if agents do not come to consensus.

1.2.2 MSR Algorithms for Resilient Consensus

The Mean-Subsequence-Reduced (MSR) family of algorithms is introduced in [74] to address
several disadvantages of algorithms solving the Byzantine Generals problem. Specifically, the
authors seek to reduce the number of messages required and the complexity of the contents of each
message. The salient characteristic of the MSR family of algorithms is that each agent updates its
current information based on a trimmed mean of a subset of the information it receives from its
neighbors. Building upon the concept of MSR algorithms, the seminal work [75] introduces both
the Weighted Mean-Subsequence-Reduced (W-MSR) algorithm and the graph-theoretic notions
of r- and (r, s)-robustness. These notions provide both necessary and sufficient conditions on
when the W-MSR algorithm guarantees asymptotic convergence of a set of agents to a consensus
value in the presence of a variety of adversarial models. The conditions in this work are closely
related to those in [50], which also considers iterative approximate consensus in the presence of
Byzantine agents. The introduction of the W-MSR algorithm sparked the development of a wide
array of MSR algorithms specialized for various problem settings. Variants include the DP-MSR
algorithm for zero-order-hold (ZOH) discretized continuous-time systems [76, 77], the QW-MSR
algorithm for systems with quantized states [78], the SW-MSR algorithm for systems with dynamic
graphs [79], the E-MSR and QE-MSR algorithms for event-based consensus [80,81], and the MP-
MSR algorithm which incorporates resilience into a model predictive control framework [82].
Resilient MSR-type consensus for continuous-time models include the ARC-P algorithm [83], the
RAC algorithm for resilient synchronization of linear systems [84], the CT-MSR algorithm [85],
a hybrid systems version of the W-MSR algorithm [86], and a discontinuous variant based on the

5

sign function called FTRC-P [87], among others [88]. MSR-type algorithms have been studied in a
variety of settings including output synchronization [84], simultaneous arrival of interceptors [89],
distributed optimization [90], clock synchronization [91], randomized quantized consensus [92],
event-triggered consensus [80, 93], and differentially private consensus [94, 95].

The rise of interest in MSR-type algorithms was accompanied by an increased focus on the
graph-theoretic properties of r-robustness and (r, s)-robustness, which are commonly part of the
sufficient conditions for MSR-type algorithms to guarantee resilient consensus. Determining the
values of r and s for which a graph is robust is NP-hard in general [96]; determining whether a
given graph is r robust for a particular r is coNP-complete [97]. Subsequent work has focused
heavily on circumventing this difficulty through various methods. The first algorithmic analysis
of determining the values of r and s for arbitrary digraphs was given in [96]. The algorithms
proposed in [96] employ an exhaustive search to determine the maximum values of r and s for
a given digraph, and have exponential complexity w.r.t. the number of nodes in the network.
Other methods to determine the robustness of graphs include graph construction methods that
increase the graph size while preserving given values of r and s [2, 98]; lower bounding r with
the isoperimetric constant and algebraic connectivity of undirected graphs [99]; and demonstrating
the behavior of r as a function of certain graph properties [97, 100–104]. In particular, it has
been shown that the r-robustness of some specific classes of graphs can be exactly determined
in polynomial time from certain graph parameters. Examples include k-circulant graphs [102]
and lattice-based formations [103, 104]. Another approach has used machine learning to correlate
characteristics of certain graphs to the values of r and s [105]. Out of all of these prior efforts,
none have used an optimization framework to determine or approximate the robustness properties
of graphs, and none have even suggested that this might be possible. In addition, no methods
exist in prior literature for lower bounding the robustness parameters of arbitrary directed graphs.
Finding more efficient methods to determine the robustness of arbitrary graphs, especially directed
graphs, remains an important open problem.

1.2.3 Resilient Safety and Control of Dynamical Systems

Within the controls community, several approaches to mitigating the effects of faults and adver-
sarial attacks have been proposed. One of the earliest and most exhaustively studied topics stud-
ied in control theory that has relevance to designing resilient systems is the topic of robust con-
trol [106–109]. The essence of robust control is to guarantee system performance for a wide class
of system model parameters and disturbances due to system uncertainty. Informally speaking, the
chief distinguishing element between robust control and resilient control is the difference between
the set of parameters / disturbances (in robust control) and the adversarial model (in resilient con-

6

trol). Typically, robust control considers uncertainties in the model parameters and disturbances
that are inherently bounded in nature. Disturbances to the system are generally, roughly speak-
ing, oblivious and indifferent to both the system objectives and the control actions and intents of
the agents that compose the system. In contrast, resilient control considers an adversarial model
in which adversaries have the express intent to prevent or degrade the accomplishment of system
objectives. Adversarial actions or misinformation may not be bounded in nature and typically
exploit weaknesses or vulnerabilities in the system. Despite these differences however, there is
a large overlap between the domains of resilient and robust control. In [110], H∞ control proto-
cols are used to mitigate the effects of attacks on sensors and actuators of a dynamical system.
In [111, 112] the robust minimal controllability problem is considered, where the objective is to
find the minimum number of actuators for a linear system under which the system is controllable.

Motivated by the vulnerability of power grids and other cyber-physical systems to cyber at-
tacks, much work has focused on the detection and mitigation of several types of attacks on
networked control systems. System models considered in this literature tend to be linear; how-
ever centralized, decentralized, and distributed types of networked systems are all considered. The
work [113] brought attention to why control theorists should be interested in the security of control
systems, and formulated the problems of detecting and surviving attacks. Several control theoretic
models of the effects of cyber attacks on linear control systems are given in [114,115]. In [116,117]
a comprehensive theory of the detectability and identifiability of cyberattacks in networked cyber-
physical systems is given, along with an analysis of the complexity of attack identification for
these systems. Attack detection for networked cyber-physical systems has been well-studied by
additional works as well [117–121]. Another interesting direction being pursued is the use of `0

norm decoding methods for both identification of attacks and error correcting of the corrupted state
measurements. This problem was introduced in [122], which used results from the error correcting
literature [123] to create a method for reconstructing the state and adversarial attack pattern for a
linear dynamical system. This work prompted later variants of resilient state estimators including
estimators incorporating noise and stochasticity [124], linear and nonlinear resilient Kalman fil-
ters [125], and approaches using satisfiability modulo theory [126]. Game theoretic approaches to
mitigating attacks on cyber-physical systems have also been studied [127, 128].

Safety in dynamical systems is often modeled in the literature as dividing the state space into
disjoint “safe” and “unsafe” sets of states. The question of safety then becomes whether or not it
is possible for the system state to reach an unsafe set of states from a given initial configuration. A
foundational result for determining the forward invariance of subsets of the state space for dynam-
ical systems is Nagumo’s Theorem [129]. The setting of differential games was another of the first
approaches to address the question of safety in continuous systems [130, 131]. Other approaches
for verifying safety involve calculating forward reachable sets using various methods including el-

7

lipsoidal calculus [132], flow pipe approximations [133,134], Hamilton-Jacobi analysis [135–138],
and zonotope approximation algorithms [139–142]. These methods can be computationally expen-
sive to implement in practice. To circumvent this difficulty, barrier certificates were proposed as
a means for verifying safety without requiring computation of forward reachable sets [143–147].
The crux of the method is to determine a differentiable function of the system state that 1) takes
on nonpositive values for states within the safe set, 2) takes on strictly positive values for states in
the unsafe set, and 3) has a nonpositive time derivative under the flow of the dynamical system.
Such a function satisfying these three conditions serves as a certificate that the state remains within
the safe set for all forward time, and hence is called a barrier certificate. Lyapunov-like barrier
functions [148–150] and potential function methods [151] have also been studied for guaranteeing
forward invariance of safety sets. With regards to studying safety in the presence of adversarial ac-
tions, extensive study in the game theoretic domain has been performed on conditions under which
a subset of agents (“evaders”) in a system can evade collisions with or capture by another subset of
agents (“pursuers”) in pursuit-evasion games. Such a setting can be used to model “normal” agents
avoiding physical attacks from “adversarial” agents, depending on the context. Some examples in-
clude the homicidal chauffeur problem [130,152], multi-agent homicidal chauffeur variants [153],
the suicidal pedestrian problem [154], the lion and man problem [155], among others. The simplest
of these games admit closed-form solutions for agents’ optimal control inputs. Methods to com-
pute optimal control inputs in more complex games include solving the Hamilton-Jacobi-Isaacs
equations [156] and computing dominance regions [157–159].

A major development in safety and set invariance methods within the last decade has been the
creation of control barrier functions (CBFs) [160,161]. First proposed in [162] and inspired by the
concept of control Lyapunov functions [163], CBFs are a class of functions similar to barrier cer-
tificates, except that forward invariance can be established by considering the infimum of the time
derivative of the CBF over an entire set of feasible agent inputs. When paired with parametric con-
vex quadratic programming methods to compute feasible inputs satisfying the required conditions
for forward invariance [161, 164, 165], CBFs have proven to be a powerful method for comput-
ing inputs online that guarantee forward invariance of a safe set in a computationally efficient and
tractable manner. CBFs can be used in tandem with control Lyapunov functions to compute control
inputs that safely take the system state to a goal set [161, 166,167]. CBFs have been used in many
applications including coordinating the motion of multi-agent systems [168–170], accomplishing
spatiotemporal tasks [171–174], calculating control inputs for legged robots [165, 174, 175], and
more. There are a few limitations to prior work on CBFs however. First, the majority of prior work
assumes that control inputs are continuous functions of time. In particular, these works assume that
the parametric convex quadratic program (QP) is solved infinitely often and that the resulting con-
trol input from the arg min operation is continuous. A more accurate model is to treat the system

8

dynamics in a sampled-data manner, e.g. with zero-order-hold inputs (ZOH). A few works have
explicitly considered sampled-data dynamics for control barrier functions [176, 177]. However,
these works do not consider systems where the CBF function has high relative degree with respect
to the given system dynamics; i.e., the control input does not appear in the first time derivative
of the CBF function. In addition, these works do not consider multi-agent systems where con-
trol inputs must be calculated in a distributed manner and communication may be asynchronous.
Finally, prior work considering multi-agent systems (with continuous controllers) do not consider
the presence of agents behaving in an adversarial manner. Typically any disturbances to the system
are assumed to be bounded in nature and do not have adversarial intent [178, 179].

1.3 Contributions

The objective of this dissertation is to present several contributions towards enabling multi-agent
systems to operate despite a subset of the agents within the system behaving in a faulty or adversar-
ial manner. Specifically, this dissertation presents several novel results pertaining to the problems
of resilient consensus and resilient safety maintenance in multi-agent systems. The specific contri-
butions of this dissertation are as follows:

1. Several novel advancements are given for resilient consensus in multi-agent systems using
computationally inexpensive, distributed algorithms. We present conditions under which re-
silient leader-follower asymptotic consensus in time-varying graphs can be achieved using an
MSR algorithm in the presence of adversarially-behaving agents. Unlike other approaches
in prior literature, this method does not require any global information about the graph the-
oretic structure of the network, is computationally simple to perform, and is resilient to a
subset of leaders as well as followers behaving in a faulty or adversarial manner. In ad-
dition, we present a novel method for achieving finite-time leader-follower consensus in a
continuous-time system setting. Unlike prior literature, we present a novel norm-based filter-
ing mechanism that explicitly guarantees a dwell time for the switching dynamics induced
by agents performing filtering actions, and we consider bounds on the agents’ control in-
puts. Finally, we present a general method for achieving finite-time leaderless consensus in
a continuous-time setting using a class of nonlinear controllers. The analysis utilizes discon-
tinuous systems theory and considers a more general model of adversarial distribution and
behavior than prior work. In particular, any Lebesgue-measurable adversarial signals for an
F -local class of Byzantine adversaries can be considered.

2. Novel methods for constructing and analyzing the resilience properties of communication
graphs are presented. In particular, we present results showing that a class of circulant di-

9

rected graphs parameterized by an integer k have r and s robustness parameters as a function
of k. This class of graphs greatly simplifies the creation of scalable networks of arbitrary size
with known robustness. We also present a novel method for determining the r- and (r, s)-
robustness for arbitrary digraphs and undirected graphs using mixed integer linear program-
ming. This is the first work to demonstrate that the robustness determination problem can be
solved using optimization methods, and it is the first work to give a method for calculating
an approximate lower bound on the robustness values of general digraphs. Techniques from
the mixed integer programming literature can be used to either determine exactly or approx-
imate the robustness of digraphs, and simulation results demonstrate that the optimization
framework outperforms prior algorithms for robustness determination in practice.

3. Inspired by the Certified Propagation Algorithm (CPA), an algorithm is proposed for re-
siliently broadcasting vector-valued information from a set of leaders to a set of followers
in the presence of adversarial misinformation. Prior work on resilient broadcast using the
CPA typically assumes that there exists only one leader that is invulnerable to adversarial
attacks. In contrast, the proposed algorithm uses a multi-leader approach that can toler-
ate both misbehaving leaders and followers, and can operate under a time-varying graph
model for the network topology. Unlike prior works, the algorithm can operate even when
normally-behaving leaders’ vector messages do not exactly agree due to noise or perturba-
tions, and it is proven that bounded perturbations or noise results in bounded maximum error
between normally-behaving leaders’ and followers’ accepted values. We apply this algo-
rithm to the problem of resiliently propagating full knowledge of time-varying trajectories in
the form of Bezier curve and timing law parameters from a set of leaders to followers. More
specifically, we consider a system of mobile agents (e.g., robots) connected via a wireless
communication network. Leaders use the resilient broadcast method presented in this sec-
tion to propagate to the followers the parameters for a center of formation moving along a
time-varying trajectory described by a Bezier curve and timing law. Followers are then able
to use the received parameters to reconstruct their local time-varying formational positions
such that normally-behaving leaders and followers in the system move in formation along
the time-varying trajectory.

4. We present a novel framework for resilient safety of multi-agent, distributed, sampled-data
systems in the presence of adversaries using methods from the literature on Control Bar-
rier Functions (CBF). Prior work has typically assumed that control inputs are continuous
in time and that all agents in a multi-agent CBF setting cooperate to preserve system safety.
In contrast, we present conditions under which normally-behaving agents in a sampled-data
system are able to maintain safety despite the actions of an adversarial set of agents seeking

10

to violate safety conditions. Our method considers nonlinear control-affine sampled-data
dynamics with disturbances, and presents a computationally tractable method for normally-
behaving agents to compute safety-preserving, bounded control inputs in a distributed man-
ner. In addition, we consider safe sets having high relative degree with respect to agents’
dynamics. This the first work to consider the presence of adversarial agents in a CBF setting
and the first work to consider multi-agent safe sets having high relative degree with respect
to system dynamics in a sampled-data setting. We demonstrate through simulations that
normally-behaving agents applying our method can maintain safety despite the actions of
adversarial agents within the system.

These contributions have several advantages compared to prior approaches, as well as a few
disadvantages. We discuss these advantages and disadvantages here to give some perspective on
why these approaches and contributions were pursued.

First, one key advantage of MSR-type algorithms over prior proposed solutions for resilient
consensus is that they require purely local information to operate. Agents are not required to have
any knowledge of the network topology; rather, the MSR algorithm is able to operate using only
the local information received from each agents’ immediate in-neighbors. In addition, the asymp-
totic convergence behavior of MSR-type algorithms can be leveraged towards achieving resilient
consensus in both asychronous computer systems and physical control systems. When compar-
ing MSR-type algorithms specifically to Paxos-type algorithms, there are two main advantages of
MSR-type algorithms. MSR-type algorithms do not require individual messages to be uniquely
numbered with a total order; this enables MSR-type algorithms to tolerate Byzantine leaders more
easily than Byzantized Paxos variations. Second, in the leaderless case MSR-type algorithms do
not exhibit the same bias towards simply selecting earlier-proposed values as Paxos-type algo-
rithms do. Since MSR-type algorithms use a trimmed-mean approach for consensus, they are able
to combine information from multiple agents into a final approximate consensus result while still
exhibiting resilience to Byzantine misinformation. Disadvantages of MSR-type algorithms include
the fact that MSR algorithms with asymptotic or exponential convergence rates can only guarantee
approximate resilient consensus in finite time. In addition, MSR-type algorithms require specific
conditions on the network structure which are computationally difficult to determine for the lead-
erless case. For communication networks defined in terms of spatio-temporal conditions, such
as proximity-based communication models, ensuring that such conditions are satisfied using only
local information can also be challenging.

With regards to constructing and analyzing the resilience properties of networks, the main
advantage of the proposed circulant graphs is the simplicity of determining their robustness and
their ability to be scaled to any arbitrary network size. The chief disadvantage of this approach is
simply the specific form that is required for this class of graphs. For robustness determinination,

11

there are several advantages of the mixed-integer linear programming framework for determining
r- and (r, s)-robustness as compared to prior literature. As mentioned previously, this framework
is the first to apply optimization methods to the robustness determination problem. In particular,
this framework allows the robustness problem to benefit from ongoing innovations in the highly
active research area of integer programming. It also allows highly optimized commercial solvers
to be applied towards determining graph robustness. In addition, this results enables for the first
time the approximation of lower bounds on the robustness of arbitrary directed graphs, which was
not possible with prior results. The main disadvantage of the mixed integer linear programming
approach is the worst-case complexity of solving such problems (NP-hard). However since robust-
ness determination is also NP-hard, this approach does not increase the worst-case complexity of
robustness determination.

With respect to resilient broadcast, we chose to develop a variant of the CPA algorithm since
it only requires local information, and it is optimal among resilient broadcast algorithms using
only local information [73]. The advantages of using the CPA algorithm are its simplicity, its
ability to operate using only local information, and its ability to operate even with asynchronous
communication between agents. In addition, our proposed method for resiliently propagating entire
knowledge of a time-varying trajectory is the first of its kind; prior work typically only considers
the communication of static information. The main drawback to this approach is the specific
conditions on the communication network required for CPA to achieve resilient broadcast, which
are discussed in Chapter 4.

Finally, with respect to resilient safety of multi-agent, distributed systems using Control Bar-
rier Function (CBF) methods, the main advantage of CBF methods is their balance of rigorous
theoretical guarantees on safety and computational efficiency when applied in practice. Unlike
prior literature, CBF methods do not require the calculation of forward reachable sets, and do not
require the computation of game-theoretic optimal control inputs or dominance regions, which can
be computationally expensive or prohibitive in practice. In contrast, CBF methods allow for control
inputs that provably guarantee forward invariance of a set to be computed using computationally
efficient convex Quadratic Programming (QP) techniques, under appropriate assumptions that the
safety preservation problem is feasible. With respect to modeling agents as having sampled-data
dynamics, there are two advantages as compared to prior literature: first, sampled-data dynamics
more closely match the dynamics of practical control systems, which are most commonly im-
plemented using computer systems. These dynamics also reflect the inherent limitation that the
convex optimization problems computing control inputs require a nonzero amount of time to run.
Prior work typically ignores this limitation and assumes that the optimization problems are solved
infinitely often. Second, sampled-data dynamics ensure the existence and uniqueness of solutions
to the ordinary differential equations modeling the evolution of system states. This is particularly

12

useful when control inputs are computed via convex parametric QPs, since it can be difficult in
general to prove that the optimal point of a constrained, parametric QP is locally Lipschitz contin-
uous with respect to the QP parameter. Disadvantages to the CBF approach include the myopic
nature of the algorithm, which considers optimality of the control input only for the given instant
and does not consider a time horizon, and the open question of guaranteeing forward nonemptiness
of the set of safety-preserving control inputs.

1.4 Outline

This dissertation is organized as follows: Chapter 2 presents our results on resilient consensus in
multi-agent systems. It is based upon the works [87, 180–182]. Chapter 4 presents our method
for resiliently broadcasting vector-valued information from a set of leaders to a set of followers in
the presence of adversarial misinformation. It is based on the work [183]. Chapter 3 presents our
method for constructing resilient graphs and analyzing the resilience properties of communication
graphs using mixed integer linear programming. It is based upon the works [102,184–186]. Chap-
ter 5 presents our framework for resilient safety maintenance of multi-agent, distributed, sampled-
data systems in the presence of adversaries using Control Barrier Functions. It is based on the
work [187, 188].

1.5 Notation

The following notation will be used throughout this dissertation. The sets of real numbers, integers,
and natural numbers are denoted R, Z, and N respectively. The sets of nonnegative real numbers
and integers are denoted R≥0 and Z≥0, respectively. Rn denotes an n-dimensional vector space
over the field R, Zn represents the set of n dimensional vectors with integer entries, and {0, 1}n

represents a binary vector of dimension n. Scalars are denoted in normal text (e.g. x ∈ R) while
vectors are denoted in bold (e.g. x ∈ Rn). The notation xi denotes the ith entry of vector x. The
inequality symbol � denotes a componentwise inequality between vectors; i.e. for x,y ∈ Rn,
x � y implies xi ≤ yi ∀i ∈ {1, . . . , n}. A vector of ones is denoted 1, and a vector of zeros is
denoted 0, where the length of each vector will be implied by the context. The notations B(x, ε),
B̄(x, ε) denote the open and closed balls of radius ε > 0 at x ∈ Rd, respectively. The ith column
of the identity matrix I is denoted ei, with I = [e1 e2 ... en].

The union, intersection, and set complement operations are denoted by ∪, ∩, and \, respec-
tively. The cardinality of a set S is denoted as |S|, and the empty set is denoted ∅. The infinity
norm of a vector is denoted ‖·‖∞. The notations C(n, k) = (nk) = n!/(k!(n − k)!) are both used
in this paper to denote the binomial coefficient with n, k ∈ Z+. Given a set S, the power set of S

13

is denoted P(S) = {A : A ⊆ S}. The convex hull of a set S is denoted co{S}, and the convex
closure of a set S is denoted co{S}.

Given a function f : D → R, the image of a set A ⊆ D under f is denoted f(A). Similarly,
the preimage of B ⊆ R under f is denoted f−1(B). The logical OR operator, AND operator,
and NOT operator are denoted by ∨,∧,¬, respectively. The lexicographic cone is defined as
Klex = {0} ∪ {x ∈ Rn : x1 = . . . = xk = 0, xk+1 > 0} for some 0 ≤ k < n. The lexicographic
ordering on Rn is defined as x ≤lex y if and only if y − x ∈ Klex, with x,y ∈ Rn [189, Ch. 2].
The sign function (sign : R→ R) is defined as follows:

sign(x) =


1 if x > 0

0 if x = 0

−1 if x < 0

, x ∈ R (1.1)

A directed graph (digraph) is denoted as D = (V , E), where V = {1, . . . , n} is the set of
indexed vertices and E is the edge set. This dissertation will use the terms vertices, agents, and
nodes interchangeably. A directed edge is denoted (i, j), with i, j ∈ V , meaning that agent j can
receive information from agent i. Agent i is called an in-neighbor of j and agent j is called an
out-neighbor of i. The set of in-neighbors for an agent j is denoted Vj = {i ∈ V : (i, j) ∈ E}. The
set of inclusive in-neighbors is defined as Ji = Vi ∪ {i}; i.e. Ji contains both the agent i and its
in-neighbors. The set of out-neighbors of each agent i is denoted Vouti = {j ∈ V : (i, j) ∈ E}. The
minimum in-degree of a digraph D is denoted δin(D) = minj∈V |Vj|. Occasionally, G = (V , E)

will be used to denote an undirected graph, i.e. a digraph in which (i, j) ∈ E ⇐⇒ (j, i) ∈ E . The
graph Laplacian L for a digraph (or undirected graph) is defined as follows, with Li,j denoting the
entry in the ith row and jth column:

Li,j =


|Ni| if i = j,

−1 if j ∈ Ni,

0 if j /∈ Ni.

(1.2)

14

CHAPTER 2

Resilient Consensus Algorithms

2.1 Introduction

Guaranteeing resilience to adversarial misbehavior and misinformation is critically needed in mod-
ern autonomous systems. An ever-growing amount of cyber attacks has led to increasing attention
on algorithms that guarantee safety and security despite the influence of faults and malicious be-
havior. Controllers that protect against adversarial actions are especially critical in distributed
systems where agents may have limited power, computational capabilities, and knowledge of the
system as a whole. In response to this need, the resilient consensus problem has been treated
in the literature for several decades. In this problem, normally-behaving agents in a multi-agent
network seek to come to agreement on one or more state variables in the presence of adversarially-
behaving agents whose identity is unknown. Multiple resilient consensus algorithms based on a
filtered-mean or median based approach have gained traction recently in the literature as a means to
counteract the influence of faulty or adversarial agents. These algorithms include the W-MSR [75],
ARC-P [190], SW-MSR [79], DP-MSR [76], QW-MSR [92], LFRE [191], and MCA [192] algo-
rithms, which have all been used for resilient consensus. Several of these algorithms are based
upon the Mean-Subsequence-Reduced (MSR) family of algorithms [74]. These algorithms guar-
antee consensus of the normally-behaving agents when the number of adversaries is bounded and
the network communication structure satisfies certain robustness properties. The final consensus
value of the normal agents is within the convex hull of the normal agents’ initial states. However,
the exact final value within this convex hull may depend in part upon the behavior of the adversarial
agents.

There are several gaps in this body of prior work. First, the vast majority of these papers con-
siders only the problem of resilient leaderless consensus. An interesting direction of research is
extending the property of resilience to leader-follower consensus scenarios where follower agents
track the leader agents’ reference state, which may or may not lie within the convex hull of ini-
tial agent states, while rejecting the influence of adversarial agents whose identity is unknown.

15

This task becomes more challenging when the identities of the leader agents are not known to
the follower agents, and when leader agents themselves are vulnerable to attacks and may behave
adversarially. Only a few recent papers have considered problems related to the resilient leader-
follower consensus problem [181, 191, 193, 194]. In [193], the problem of resilient distributed
estimation is considered where certain “reliable agents” drive the errors of the remaining normal
agents to the static reference value of zero in the presence of misbehaving agents; however this
work assumes that reliable nodes are completely immune to adversarial attacks. In [191, 195], the
problem of distributed, resilient estimation in the presence of misbehaving nodes is treated. The
authors show conditions under which information about the decoupled modes of the system is re-
siliently transmitted from a group of source nodes to other nodes that cannot observe those modes.
This work assumes however that the transmitted information is limited to trajectories of the form
x(k + 1) = Ax(k) where the matrix A is known to all agents.

The second limitation to prior work is that the vast majority of papers considers only discrete-
time systems and algorithms with asymptotic or exponential convergence guarantees. Less atten-
tion has been devoted to studying counterparts of these MSR algorithms designed for continuous-
time systems that are not discretized [83–86, 88], and few papers consider finite-time consensus
in the presence of adversarial agents. One of the difficulties in studying resilient consensus in
the continuous-time domain with arbitrarily misbehaving adversaries is the issue of existence and
uniqueness of system solutions that describe normal agents’ state trajectories. For example, guar-
anteeing existence and uniqueness of system solutions can become difficult when adversarial sig-
nals are discontinuous without a minimum dwell time between discontinuities. In the seminal
work [83] the Adversarial Robust Consensus Protocol (ARC-P) was presented, where continuous-
time single-integrator agents apply a trimmed-mean approach to achieve resilient consensus. These
results were extended in [84] to more general LTI agents achieving state synchronization. A lim-
iting assumption made in [83, 84] is that all signals sent from adversarial agents to normal agents
are continuous in time. The authors of [83] give reasonable justifications for this assumption,
but their results have not yet been extended to more general adversarial signals that may exhibit
discontinuities. A few prior works have made the assumption of minimum dwell time between
instances where the system dynamics change due to filtering [86,88]. Nevertheless for many prior
control algorithms it is possible to construct adversarial signals that cause infinite switching of
system dynamics in a finite amount of time (which is demonstrated in Section 2.5.2 of this chap-
ter). The works [85, 86, 88] do not discuss the possibility of discontinuous adversarial signals or
the existence and uniqueness of system solutions. Finite-time convergence for continuous systems
with faulty or adversarial is considered in [196, 197]. However, in [196] it is assumed that only
the initial conditions of certain agents are faulty, with all agents applying the nominally specified
control protocol. In contrast, Byzantine adversaries may apply an arbitrary control protocol at any

16

instant subsequent to the initial time. In addition, [197] considers only undirected graphs, assumes
that there exists a safe set of trusted agents that never misbehave, and assumes that all misbehaving
agents are only connected to trusted agents.

A third limitation is that, to the best of our knowledge, none of this prior work considers input
bounds. Many systems with agents coming to consensus on physical states are subject to bounds
on their control inputs.

This chapter presents methods addressing each of these limitations. First, we present conditions
under which resilient leader-follower consensus to arbitrary reference values can be achieved in
the presence of adversarial agents. The results apply to both static and time-varying graphs, and
consider the presence of adversarial leaders in addition to adversarial followers. In addition, this
result is shown to have important implications for adversarial attacks which violate the typical
assumptions made by prior literature. More specifically, when the F -locality of the adversarial
set is violated, we demonstrate sufficient conditions for adversarial agents to drive a consensus
network to arbitrary values despite normal followers’ application of MSR-type resilient algorithms.

Second, we present a method for achieving finite-time resilient formation control in continuous-
time multi-agent systems with bounded inputs using resilient leader-follower consensus methods.
More specifically, we introduce a novel continuous finite-time controller that allows agents to
achieve formations specified by a set of leaders in the presence of adversarial agents. The con-
troller employs a novel filtering mechanism based on the norm of the difference between agents’
states. In addition, we prove that this controller guarantees convergence of the normally-behaving
agents to their respective formational positions when control inputs are bounded. We also define
novel conditions for the filtering timing and input weights that ensure that agents can remain in
formation even with a dwell time in the filtering mechanism. Finally, we also show that the norm-
based filtering and bounded input elements of our continuous-time controller can be used in a
similar resilient discrete-time system. Normally-behaving agents achieve exponential convergence
to their respective formational positions under this discrete-time controller.

Third, we use discontinuous systems theory [198] to relax many of the assumptions of prior
literature and consider finite-time resilient leaderless consensus. More specifically, we introduce
a novel class of controllers that guarantee finite-time consensus for a class of nonlinear systems in
the presence of adversarial attacks and faults. We also demonstrate using discontinuous systems
theory that our analysis holds even for discontinuous adversarial signals with no minimum dwell
time between discontinuities. Finally, we show that our analysis holds for the general F -local
adversarial model on digraphs without assuming the presence of any trusted agents.

This chapter is organized as follows: Section 2.2 gives a brief overview of the resilient consen-
sus problem in an MSR algorithm context. Our results on conditions for resilient leader-follower
consensus to arbitrary reference values are given in Section 2.3. A method for finite-time resilient

17

formation control using bounded inputs is given in Section 2.4. Our results for finite-time leader-
less consensus in continuous-time systems using discontinuous systems theory are given in Section
2.5. Finally, we give a brief conclusion in Section 2.7.

2.2 Preliminaries on Resilient Consensus and MSR Algorithms

This section will give a brief overview of the resilient leaderless consensus problem and how
MSR-type algorithms operate in this context. Consider a system of n ∈ Z>0 agents. Connections
between agents are described by a directed graph (digraph) D = (V , E), which for now is assumed
to be static in time. Time-varying graphs will be considered in Section 2.3. Each agent i ∈ V
has a scalar state xi ∈ R. Agents update their states according to the dynamics xi[t + 1] = ui[t].
Agents are also able to send information to their out-neighbors j ∈ Vouti and receive information
from their in-neighbors j ∈ Vi. We will denote the inclusive set of in-neighbors as Ji = Vi ∪ {i}.
More specifically, at each timestep t each agent is able to receive the states xij[t], j ∈ Vi where
xij[t] denotes the state received by agent i from agent j at time t.

For purposes of analysis, agents are classified into two types: normal agents (also called
normally-behaving agents) and adversarial agents (also called adversarially-behaving agents).
Given a nominally specified control law f [t], the set of normal agents includes all agents i ∈ V
that apply the nominal control law ui[t] = f [t] for all times t ≥ t0. The set of all normal agents is
denoted N ⊂ V .

On the other hand, the set of adversarial agents includes all agents j ∈ V for which there exists
a t′ ≥ t0 such that at least one of the following conditions holds:

1. Agent j does not apply the nominal control law to update its state; i.e., uj[t′] 6= f [t′],

2. Agent j sends a value which is not equal to its actual state to at least one out-neighbor; i.e.
there exists i ∈ Voutj such that xij[t

′] 6= xj[t
′],

3. Agent j sends different information to different out-neighbors; i.e. there exist agents i1, i2 ∈
Voutj such that xi1j [t′] 6= xi2j [t′].

The set of all adversarial agents is denoted A ⊂ V . In general, normal agents are not aware of
which other agents are normal, and which are adversarial. On the contrary, adversarial agents
may have full knowledge of which other agents are normal and adversarial. Adversarial agents may
also collude together and send state values of arbitrary size to their out-neighbors. Prior literature
often further classifies adversarial behavior into malicious behavior, where adversaries send the
same misinformation to all outneighbors, and Byzantine behavior, where agents may send different
misinformation to different out-neighbors (i.e. condition 3 above). Faulty behavior such as crash

18

faults can also be modeled under malicious or Byzantine behavior, although faults typically do
not exhibit underlying adversarial intent. The cardinality and distribution of the adversarial set is
quantified by the notions of F -total and F -local sets:

Definition 2.1 ([2]). Let F ∈ Z≥0. A set S ⊂ V is F-total if it contains at most F nodes; i.e.

|S| ≤ F .

Definition 2.2 ([2]). Let F ∈ Z≥0. A set S ⊂ V is F-local with respect to (w.r.t.) a given t0 ∈ Z if

|S ∩ Vi[t]| ≤ F ∀i ∈ V\S, ∀t ≥ t0.

The objective of the resilient leaderless consensus problem is to determine a nominal control
law that guarantees that the states of normally-behaving agents converge to a common value in
the presence of either an F -local or F -total adversarial set A. More precisely, here we consider
asymptotic consensus rather than exact consensus, where the objective is for all of the following
conditions to be satisfied:

1. Agreement: There exists L ∈ R such that limt→∞ xi[t] = L for all i ∈ N , and

2. Safety: Each normal state i ∈ N satisfies xi[t] ∈ [m[0],M [0]] for all t ≥ t0 where m[t] =

mini∈N xi[t], M [t] = maxi∈N [t].

When combined together, the conditions of agreement and safety form the condition of Validity,
where the final consensus value lies within the convex hull of initial normal agents’ states [75].

Prior literature is replete with examples of consensus laws achieving asymptotic consensus in
the absence of adversarial agents. A representative example is the control law

ui[t] =
∑
j∈V

wij[t]x
i
j[t], (2.1)

where the (possibly time-varying) weights wij : R→ R satisfy all of the following conditions:

• wij[t] = 0 if j 6∈ Ji,

• wij[t] ≥ α > 0 ∀t ≥ t0 for some α ∈ R>0,

•
∑

j∈V wij[t] = 1.

However, it is well-known that the presence of even one adversarial agent can result in agents
applying (2.1) to be led off to arbitrary values. The presence of multiple adversarial agents can
prevent consensus entirely.

MSR algorithms were proposed as a method for achieving resilient asymptotic consensus in
a computationally lightweight, distributed manner. A seminal example of an MSR algorithm is

19

Algorithm 2.1 W-MSR ALGORITHM [75]:

1. At each time step t, each agent i forms a sorted list Ωi[t] of the values received from its
in-neighbors as follows:

Ωi[t] = {xij[t] : j ∈ Ji}, (2.2)

2. If there are less than F values strictly greater than xi[t] in Ωi[t], then agent i removes all
values strictly greater than xi[t] from Ωi[t]. Otherwise, agent i removes the F largest values
from Ωi[t].

3. In addition, if there are less than F values strictly less than xi[t] in Ωi[t], then agent i removes
all values strictly less than xi[t] from Ωi[t]. Otherwise, agent i removes the F smallest values
from Ωi[t].

4. Let Ri[t] denote the set of all agent indices whose state values were removed from Ωi[t] in
steps 2) and 3). Each normal agent i applies the update

xi[t+ 1] = ui[t] (2.3)

ui[t] =
∑

j∈J T ′i [t]\Ri[t]

wij[t]x
i
j[t] (2.4)

where ∀t ≥ t0 and ∀i ∈ Sf the weights satisfy wij[t] ≥ α > 0 ∀j ∈ Ji[t], and∑
j∈Ji[t]\Ri[t] wij[t] = 1.

Figure 2.1: A pictorial representation of how the W-MSR algorithm operates (Algorithm 2.1).

20

the Weighted Mean-Subsequence-Reduced (W-MSR) algorithm which defines the normal agent
update law as per Algorithm 2.1.

In short, rather than taking a convex combination of all received values, each agent ignores the
F highest values above its own state and the F lowest values below its own state, and then takes
the convex combination of the remaining values. Here, F is an integer parameter that all normal
agents are assumed to have knowledge of. Note that when F = 0 no filtering takes place and the
original consensus algorithm 2.1 is recovered.

It is straightforward to verify that when the adversarial set is either F -local or F -total, the
safety condition xi[t] ∈ [m[0],M [0]] for all t ≥ 0, i ∈ N is satisfied. To give a rough overview,
this is because there will be at most F adversarial values xij[t], j ∈ A either above or below the
value xi[t]. These values will therefore be filtered out as per Algorithm 2.1. Any unfiltered values
will be from normally-behaving agents, and therefore will lie within the convex hull of normal
agents’ initial states.

However, the conditions under which all normal agents converge to an agreement value L ∈
[m[0],M [0]] are not as straightforward. The conditions under which the W-MSR algorithm guaran-
tees convergence to agreement are based on the graph-theoretic notion known as r-robustness [2]:

Definition 2.3. Let r ∈ Z≥0 and D = (V , E) be a digraph. A nonempty subset S ⊂ V is r-

reachable if ∃i ∈ S such that |Vi\S| ≥ r.

Definition 2.4. Let r ∈ Z≥0. A nonempty, nontrivial digraph D = (V , E) on n nodes (n ≥ 2) is r-

robust if for every pair of nonempty, disjoint subsets of V , at least one of the subsets is r-reachable.

By convention, the empty graph (n = 0) is 0-robust and the trivial graph (n = 1) is 1-robust.

The problem of determining whether a given graph is r-robust for a particular integer r will be
discussed in Chapter 3 of this dissertation. To give a brief example, it is an established fact that all
complete graphs with n ∈ Z>0 agents are dn/2e-robust.

If the digraphD is (2F+1)-robust and normally-behaving agents apply the W-MSR algorithm,
resilient asymptotic consensus is guaranteed (i.e. consensus, safety, and validity are achieved). Full
details and proofs of this fact can be found in [2]. A plot of normally-behaving agents achieving
consensus using the W-MSR algorithm is shown in Figure 2.2. This simulation shows 20 agents
running the normal W-MSR protocol in a digraph that is 8-robust under a 3-total adversarial model,
with each agent having the parameter F = 3 in the W-MSR algorithm. The three agents behave
in a malicious manner by sending the same misinformation to all their out-neighbors; the evolu-
tion of each adversarial agent’s misinformation is indicated by the dotted red lines. The normal
agents come to consensus to a value within the convex hull of their initial states despite having no
knowledge of whether their in-neighbors are adversarial or not.

21

Figure 2.2: A network of agents running the normal W-MSR algorithm with n = 20, k = 15.
The dotted red lines represent adversarial agents, while the solid lines represent normally behaving
agents.

22

In addition to r-robustness, other graph-theoretic notions of robustness have been considered
in prior literature. One that will be used in this chapter is strong r-robustness w.r.t. a set S ⊂ V:

Definition 2.5 (Strong r-robustness w.r.t. S [191]). Let r ∈ Z≥0, D = (V , E) be a digraph, and

S ⊂ V be a nonempty subset. D is strongly r-robust w.r.t. S if for any nonempty subset C ⊆ V\S,

C is r-reachable.

Whereas r-robustness quantifies the level of redundancy of information connections between
any two nonempty, disjoint subsets of agents in a graph, strong r-robustness w.r.t. a set S quan-
tifies the redundancy of information connections flowing from the set S down to other nonempty
subsets of the remaining agents in the graph. As will be shown in the next section, this will have
implications for the resilient leader-follower consensus problem when S is taken to be the set of
leader agents. Unlike r-robustness, given a particular subset S ⊂ V it can be verified in polynomial
time whether D is strongly robust w.r.t. S [194].

As a final note, the reader may perhaps wonder why a trimmed mean is used for the state update
step in MSR algorithms rather than the median, which is more resistant to the effects of outliers
than the mean. In complete graphs where agents have access to global information, it would indeed
be more appropriate to use the median of received values rather than a trimmed mean. However
in non-complete graphs where agents only have access to local information received from their in-
neighbors, each agent’s local median will in general not be equal to other agents’ local medians or
the global median. Ensuring that these local medians converge to a common value requires much
stronger conditions on the graph structure and the number of edges within the network for a given
adversarial distribution, as outlined in [192].1 Using a trimmed mean approach allows for more
relaxed graph-theoretic requirements on the network while still exhibiting resilience to adversarial
misinformation.

2.3 Resilient Leader-Follower Consensus to Arbitrary Refer-
ence Values in Time-Varying Graphs

The previously mentioned results from prior literature do not address the resilient leader-follower

consensus problem, which will be described more precisely below. Leader-follower consensus is
employed in several practical scenarios including multi-agent rendezvous, trajectory tracking, and
others. The chief difference between the leaderless and leader-follower consensus problems is that
the objective of leader-follower consensus is for agents to converge to a particular reference value

propagated by the leader or leaders. This reference value may change and take on values lying

1The graph-theoretic requirement for a median-based approach is called r-excess robustness and is treated in [192].

23

outside the convex hull of initial agents’ states. In addition, the possibility of leaders themselves
becoming adversarial must be considered. Agents must be able to converge to the desired reference
value without necessarily having knowledge of which other leaders or followers are normal or
adversarial.

There is a second important reason for studying the resilient leader-follower consensus prob-
lem. Given a network of agents applying an MSR-type algorithm with parameter F ∈ Z≥0, no
prior literature asks the question What happens if the F -local condition is violated? For exam-
ple, what happens when agents apply the W-MSR algorithm with parameter F , but the adversary
model is F + 1-total or -local? No prior work attempts to address whether or not the W-MSR
algorithm exhibits graceful degradation when the F -local assumption is violated. Our results in
this section present a sufficient condition for a set of adversarial agents to drive an entire network
of agents applying an MSR-type algorithm to arbitrary values. This result serves as a caution for
those seeking to design networks applying MSR-type algorithms for resilience.

2.3.1 Problem Formulation

Consider a digraph of n agents with time-varying edges, denoted D[t] = (V , E [t]). Each agent
i ∈ V has a state xi[t] ∈ R. Two types of agents are considered: leader agents (also called
“source” agents) and follower agents. The set of leader agents consists of agents that propagate a
desired reference signal to the set of follower agents.

Definition 2.6. The set of leader agents is denoted L ⊂ V . The set of follower agents is denoted

Sf = V\L.

Assumption 2.1. The sets L and Sf are static and satisfy L ∪ Sf = V and L ∩ Sf = ∅.

Each normally-behaving leader agent l updates its state according to a reference function fr :

R→ R as follows:

xl[t+ 1] = fr[t]. (2.5)

The precise definition of normally-behaving will be given in Definition 2.9.
The purpose of this section is to determine conditions under which normally-behaving follower

agents resiliently achieve consensus with a static reference state of the set of normally-behaving
leader agents in the presence of a possibly nonempty set of adversarial agents, where the precise
definition of adversarial agents will be given in Definition 2.15.

Problem 2.1. Given a digraphD[t] = (V , E [t]) with a time-varying edge set satisfying Assumption

2.1, determine conditions under which limt→∞maxi, l |xi[t]−xl[t]| = 0 for all normally-behaving

24

follower agents i and for all normally-behaving leaders l in the presence of a possibly nonempty

adversarial subset of agents A ⊂ V .

Each normally-behaving leader agent is able to send its state value to its out-neighbors at each
time t. In addition, each normally-behaving follower agent i ∈ Sf can receive state values from its
in-neighbors at each time t, and can also send its own state value to its out-neighbors at each time
t.

Definition 2.7. The value received by agent i from agent j at time t is denoted xij[t].

Since the set of edges E [t] is time-varying, agents use a sliding-window approach over a time
period T ∈ Z≥0 when taking into account information received from their in-neighbors. Let
T ′ = min(T, t − t0), t ≥ t0. At each time t ≥ t0, each normally-behaving follower agent i
considers information received from the set

J T
i [t] =

T ′⋃
τ=0

Ji[t− τ], (2.6)

i.e. the union of i’s in-neighbor sets over the time interval [t − T, t] if t ≥ t0 + T , or [t0, t] if
t < t0 + T .

Each normally-behaving follower agent i updates its state according to the Sliding Weighted

Mean-Subsequence-Reduced (SW-MSR) algorithm [79], which is outlined in Algorithm 2.2. A
pictorial description of the SW-MSR Algorithm is given in Figure 2.3. In essence, the SW-MSR
algorithm is a generalization of the W-MSR algorithm where normally-behaving follower agents
update their state based on the most recently received information from each in-neighbor in J T

i [t]

over a sliding time window of length T . If T = 0, the SW-MSR algorithm essentially reduces to
the Weighted Mean-Subsequence-Reduced (W-MSR) algorithm [2].

In context of the leader-follower consensus problem considered in this section, the definition
of adversarial agents is as follows:

Definition 2.8. An agent j ∈ V is adversarial if at least one of the following conditions hold:

1. There exists a time t where agent j does not update its state according to either the leader

update law (2.5) or the follower update law (2.8).

2. There exists a time t where j does not communicate its true state value xj(t) to at least one

of its out-neighbors; i.e. ∃t ≥ t0 and ∃k ∈ V out
j [t] s.t. xj[t] 6= xkj [t].

2Observe that by the definition of Ji[t], xii[τii[t]] ∈ Ωi[t] for all t ≥ t0. This implies that the set Ωi[t] is never
empty at any time, even for t0 ≤ t < t+ T .

25

Algorithm 2.2 SW-MSR ALGORITHM [79]:

1. At each time step t, each agent i forms a sorted list Ωi[t] of the most recently received values
from its in-neighbors as follows:

τij[t] = max({τ ∈ [t−T ′,t] : j ∈ Ji[τ]}), ∀j ∈ J T ′

i [t]

Ωi[t] = {xij[τij[t]] : j ∈ J T ′

i [t]}, (2.7)

with T ′ = min(T, t− t0) and J T
i [t] defined in (2.6).2

2. If there are less than F values strictly greater than xi[t] in Ωi[t], then agent i removes all
values strictly greater than xi[t] from Ωi[t]. Otherwise, agent i removes the F largest values
from Ωi[t].

3. In addition, if there are less than F values strictly less than xi[t] in Ωi[t], then agent i removes
all values strictly less than xi[t] from Ωi[t]. Otherwise, agent i removes the F smallest values
from Ωi[t].

4. Let Ri[t] denote the set of all agent indices whose state values were removed from Ωi[t] in
steps 2) and 3). Each normal agent i applies the update

xi[t+ 1] = ui[t] (2.8)

ui[t] =
∑

j∈J T ′i [t]\Ri[t]

wij[t]x
i
j[τij[t]] (2.9)

where ∀t and ∀i ∈ Sf the weights satisfy wij[t] ≥ α > 0 ∀j ∈ J T ′
i [t], and∑

j∈J T ′i [t]\Ri[t] wij[t] = 1.

26

Figure 2.3: A pictorial representation of the Sliding Window Mean-Subsequence-Reduced (SW-
MSR) algorithm (Algorithm 2.2). The chief difference between the SW-MSR and W-MSR algo-
rithms are that the SW-MSR considers the most recently received information over a sliding time
window to mitigate the effects of the network graph being time-varying.

3. There exists a time t where j communicates different values to different out-neighbors; i.e.

∃t ≥ t0 and ∃k1, k2 ∈ V out
j [t] s.t. xk1

j [t] 6= xk2
j [t].

The set of adversarial agents is denoted A ⊂ V .

Definition 2.9. The set of agents that are not adversarial are denotedN = V\A. Agents inN are

referred to as normally-behaving agents.

Again, adversarial agents are agents that update their states arbitrarily or communicate false
information to their out-neighbors. By Definition 2.8, the set of adversarial agentsA includes both
malicious agents and Byzantine agents [2].

This section considers scenarios where both followers and leaders are vulnerable to adversarial
attacks and faults, and therefore the set A ∩ L may possibly be nonempty, and the set A ∩ Sf
may possibly be nonempty. Observe that the sets L and Sf are disjoint, and the sets N and A
are disjoint, but the intersections L ∩N and Sf ∩ N represent the normally-behaving leaders and
followers, respectively, and the intersectionsL∩A and Sf∩A represent the adversarially-behaving
leaders and followers, respectively. The following notation will be used:

Definition 2.10 (Adversarially-behaving agent notation). The set of adversarial leaders is denoted

as LA = L ∩ A. The set of adversarial followers is denoted as SAf = Sf ∩ A.

Definition 2.11 (Normally-behaving agent notation). The set of normally-behaving leaders is de-

noted LN = L\A. The set of normally-behaving followers is denoted SNf = Sf\A.

27

To achieve resilient leader-follower consensus, the graph-theoretic structure of the network
will be required to satisfy certain conditions. For example, under an F -local or F -total adversary
model it must be ensured that adversarial agents do not cut off the flow of information from the
normally-behaving leaders to the normally-behaving followers. Towards this end we introduce the
concept of strong (T, t0, r)-robustness. Recall that the definition of strong r-robustness is given in
Definition 2.5.

Definition 2.12. Let T, r ∈ Z≥0 and let t0 ∈ Z. Let D[t] = (V , E [t]) be a digraph with a time-

varying edge set, and define DT [t] =
⋃T
τ=0D[t − τ]. Then D[t] is strongly (T, t0, r)-robust with

respect to a subset S ⊂ V if DT [t] is strongly r-robust with respect to S ⊂ V for all t ≥ t0 + T .

Strong (T, t0, r)-robustness generalizes the notion of strong r-robustness to digraphs with a
time-varying edge set. Note that the property of strong r-robustness in Definition 3.10 is a par-
ticular case of strong (T, t0, r)-robustness with T = 0. In many time-varying networks it may be
difficult to ensure that a digraph D[t] is strongly r-robust w.r.t. S at every time step t. The time
window T relaxes this requirement by only requiring the union of D[t] over the last T timesteps
to be strongly r-robust w.r.t. S. Increasing T allows for edges to be “active” less often while still
preserving the (T, t0, r)-robustness of D[t].

Notice that for r = 2F + 1, a digraph which is strongly (T, t0, r)-robust w.r.t. the leader set L
must have at least 2F+1 leaders. This implies that at least F+1 normally-behaving leaders will be
present at all times under either an F -total or F -local adversarial model. The proof of Theorem 2.1
will demonstrate that the structure of strong (T, t0, 2F + 1)-robust graphs w.r.t. L will guarantee
that information from the normally-behaving leaders will reach all normally-behaving followers.3

2.3.2 Resilient Leader-Follower Consensus in Time-Varying Graphs

For our analysis of time-varying graphs, the following functions are defined for purposes of show-
ing convergence of normally-behaving followers to normally-behaving leaders’ reference value.
Recall that T ′ = min(T, t− t0) as per Algorithm 2.2.

M [t] = max
i∈SNf ,l∈LN ,τ∈[0,T ′]

(xi[t− τ], xl[t− τ])

m[t] = min
i∈SNf ,l∈LN ,τ∈[0,T ′]

(xi[t− τ], xl[t− τ])

V [t] = M [t]−m[t] (2.10)

3To clarify, not all normally-behaving followers will necessarily have leaders as direct in-neighbors. But, roughly
speaking, there will be enough redundant information paths from the normal leader set to each normal follower such
that all normal followers will converge to the desired reference value.

28

The following Lemma establishes that M [t] and m[t] are nonincreasing and nondecreasing
functions, respectively, on any time interval where fr[t] is constant.

Lemma 2.1. Let D[t] = (V , E [t]) be a nonempty, nontrivial, simple digraph with Sf nonempty.

Let F, τ ∈ Z≥0, t0, t1, t2 ∈ Z with t2 > t1 ≥ t0. Suppose that A is an F -local set with respect

to t0, and suppose that all normally-behaving agents i ∈ SNf apply the SW-MSR algorithm with

parameter F . If fr[t] is constant ∀t ∈ [t1, t2), then all of the following statements hold ∀t ∈ [t1, t2):

• xi[t] ∈ [m[t1],M [t1]] ∀i ∈ SNf

• M [t] and m[t] are nonincreasing and nondecreasing, respectively.

Proof. First, observe that xl[t] = fr[t] ∀l ∈ LN , ∀t ≥ t0 by (2.5). Since fr[t] is constant ∀t ∈
[t1, t2), by (2.10) we have xl[t] ∈ [m[t1],M [t1]] ∀l ∈ LN , ∀t ∈ [t1, t2). Next, consider any i ∈ SNf .
By definition of M [t] and m[t], ∀j ∈ J T

i [t1]\A, xij[τij[t1]] ∈ [m[t1],M [t1]] where τij[t] is defined
by (2.7). Now consider any agent k ∈ A. If we have xik[τik[t1]] > M [t1] ≥ xj(τij[t1]) ∀j ∈ V\A,
the fact that |A| ≤ F implies any value xik[τik[t1]] satisfying this condition is one of the F highest
values in Ωi[t1] and will be filtered out as per the SW-MSR Algorithm (Algorithm 2.2). Similarly,
if xik[τik[t1]] < m[t1] ≤ xj(τij[t1]) ∀j ∈ V\A, then xik[τik[t1]] is one of the F lowest values
in Ωi[t1] and will be filtered out. Therefore all state values in J T

i [t1]\Ri[t1] fall in the interval
[m[t1],M [t1]] ∀i ∈ SNf . Since the values of wij[t1] imply a convex combination of values in the
set Ji[T [t1]\Ri[t1], xi[t1 + 1] ∈ [m[t1],M [t1]]. Further, since by definition of m and M we have
xi[t − τ] ∈ [m[t1],M [t1]] ∀i ∈ SNf , ∀l ∈ LN , ∀τ ∈ [0, T ′] where T ′ = min(T, t − t0), it holds
that xi[t1 + 1 − τ] ∈ [m[t1],M [t1]] ∀τ ∈ [0, T ′], ∀i ∈ SNf , ∀l ∈ L. These arguments imply
M [t1 + 1] ≤M [t1]. Similar arguments can be used to show m[t1 + 1] ≥ m[t1].

Now by induction assume M [t1 + p] ≤ M [t1 + p− 1] and m[t1 + p] ≥ m[t1 + p− 1], for all
p ∈ Z≥0 such that p ≥ 1, t1 + p < t2 − 1. By (2.10), xi[t] ∈ [m[t1 + p],M [t1 + p]] ∀i ∈ SNf , ∀t ∈
[t1 +p−T, t1 +p]. In addition, fr[t] being constant on [t1, t2) implies xl[t] ∈ [m[t1 +p],M [t1 +p]]

∀l ∈ LN . Therefore xij[τij[t1 + p]] ∈ [m[t1],M [t1]] ∀j ∈ J T
i [t1 + p]\A. Since |A| ≤ F , it can

be shown by prior arguments that xij[τij[t1 + p]] for all j ∈ J T
i [t1 + p]\Ri[t1 + p] will lie in the

interval [m[t1 + p],M [t1 + p]] ∀i ∈ SNf . Therefore all i ∈ SNf will update their states with a
convex combination of values in [m[t1 + p],M [t1 + p]], implying m[t1 + p + 1] ≥ m[t1 + p] and
M [t1 + p+ 1] ≤M [t1 + p].

The next theorem presents the first main result of this section. It demonstrates that the error
between the normal agents and normally-behaving leaders decreases exponentially on any time
interval t ∈ [t1, t2) where fr[t] is constant and t2 − t1 is sufficiently large.

29

Theorem 2.1. Let D[t] = (V , E [t]) be a nonempty, nontrivial, simple digraph. Let L, Sf , SNf ,A
be defined as per Definitions 2.6 and 2.8. Let F ∈ Z≥0, t0, t1, t2 ∈ Z with t2 > t1 ≥ t0 + T ,

and let V [t] be defined as in (2.10). Suppose that Sf is nonempty, A is an F -local set with respect

to t0, D[t] is strongly (T, t0, 2F + 1)-robust w.r.t. the set L, and all normally-behaving agents

i ∈ SNf apply the SW-MSR algorithm with parameter F . If fr[t] is constant ∀t ∈ [t1 − T, t2) and

t2 > t1 + (|SNf |+ 1)σT for some σ ∈ Z≥0, then

V [t1 + (|SNf |+ 1)σT] ≤ (1− α(|SNf |+1)T)σV [t1 + T],

where 0 < α < 1 is defined in Algorithm 2.2. Furthermore, if t2 =∞,

lim
t→∞

V [t] = lim
t→∞

max
i∈SNf , l∈LN

|xi[t]− xl[t]| = 0.

Proof. Consider the case where fr[t] is constant for t ∈ [t1 − T, t2) and t2 < ∞. This implies
xl[t] = fr[t] is constant ∀l ∈ LN , ∀t ∈ [t1 − T, t2). We define

Xm(t, t′, ε) = {i ∈ N : xi[t
′ − τ] < m[t] + ε for some 0 ≤ τ ≤ T, τ ∈ Z},

XM(t, t′, ε) = {i ∈ N : xi[t
′ − τ] > M [t]− ε for some 0 ≤ τ ≤ T, τ ∈ Z},

SX(t, t′, ε, ε) = Xm(t, t′, ε) ∪XM(t, t′, ε),

SX(t, t′, ε, ε) = V\SX(t, t′, ε, ε).

We prove the result by first showing that |SX(t, t′, ε, ε)| decreases over an appropriate sequence of t′

and with an appropriate choice of ε, ε. Let ε = fr[t1]−m[t1] and ε = M [t1]−fr[t1]. D[t] is strongly
(T, t0, 2F+1)-robust w.r.t L, implyingDT [t] is strongly (2F+1)-robust w.r.t L ∀t ≥ t0 +T . DT [t]

being strongly (2F +1)-robust with respect to L implies there exists a nonempty S1 ⊆ SNf ⊂ V\L
such that ∀i1 ∈ S1, |J T

i1
[t1]\SNf | ≥ 2F + 1. Since A is F -local and V\SNf = L ∪ A, this implies

|J T
i1

[t1]∩LN | ≥ F + 1. This implies by the SW-MSR Algorithm, J T
i1

[t1]\Ri1 [t1] contains at least
one normally-behaving leader l ∈ LN with xil[τi1l[t1]] = fr[t1]. This can be seen by noting that
xl[t] = fr[t] ∀l ∈ LN , ∀t ∈ [t1 − T, t2). Using this fact, lower bounds on xi1 [t] for all i1 ∈ S1 and
t ∈ [t1 + 1, t1 + T] can be established as follows: recall that the weights wij are lower bounded by
α > 0. By Lemma 2.1, xi1j [t] ∈ [m[t1],M [t1]] ∀j ∈ J T

i1
[t]\Ri1 [t], ∀t ∈ [t1 − T, t2). Observe that

xi1 [t1 + 1] =
∑

j∈J Ti1 [t]\Ri1 [t]

wi1j[t]x
i1
j [τi1j[t]], (2.11)

≥ αfr[t1] + (1− α)m[t1]. (2.12)

30

Since there exists at least one normally-behaving leader in J T
i1

[t1]\Ri1 [t1], (2.12) represents the
minimum possible value for xi1 [t1 + 1]. Extending these bounds to time t1 + T yields

xi1 [t1 + 2] ≥ αxi1 [t1 + 1] + (1− α)m[t1],

≥ α2fr[t1] + (1 + α)(1− α)m[t1],

xi1 [t1 + 3] ≥ α3fr[t1] + (1 + α + α2)(1− α)m[t1],

...
...

xi1 [t1 + k] ≥ αkfr[t1] +

(k−1∑
j=0

αj
)

(1− α)m[t1],

≥ αkfr[t1] + (1− αk)m[t1],

≥ m[t1] + αkε. (2.13)

This holds for 0 < k ≤ T . Using similar arguments, an upper bound on xi1 [t1 + k] can be
established as follows:

xi1 [t1 + 1] ≤ αfr[t1] + (1− α)M [t1],

...
...

xi1 [t1 + k] ≤ αkfr[t1] + (1− αk)M [t1],

≤M [t1]− αkε, (2.14)

for 0 < k ≤ T . Therefore xi1 [t1 + T] ∈ [m[t1] + αT ε,M [t1]− αT ε] for all i1 ∈ S1.
We show next that |SX(t1, t1 + 2T, α2T ε, α2T ε)| < |SNf |. Define C2 as the set of all i2 ∈ SNf

such that xi2 [t1 + T] ∈ [m[t1] + αT ε,M [t1] − αT ε]. Since S1 ⊆ C2 by (2.13) and (2.14), C2 is
therefore nonempty. Since each agent in SNf always uses its own state in (2.8) as per the SW-MSR
algorithm, lower bounds on the state of each i2 ∈ C2 can be established as:

xi2 [t1 + T + 1] ≥ αxi2 [t1 + T] + (1− α)m[t1],

≥ α(m[t1] + αT ε) + (1− α)m[t1],

≥ αT+1ε+m[t1]

xi2 [t1 + T + 2] ≥ m[t1] + αT+2ε,

...
...

xi2 [t1 + T + k] ≥ m[t1] + αT+kε, (2.15)

31

which holds for 0 < k ≤ T . Similarly, the following upper bounds can be established:

xi2 [t1 + T + 1] ≤ αxi2 [t1 + T] + (1− α)M [t1],

≤ α(M [t1]− αT ε) + (1− α)M [t1],

≤M [t1] + αT+1ε,

xi2 [t1 + T + 2] ≤M [t1] + αT+2ε,

...
...

xi2 [t1 + T + k] ≤M [t1] + αT+kε, (2.16)

which holds for 0 < k ≤ T . These arguments imply that for all i2 ∈ C2, i2 /∈ SX(t1, t1 +

2T, α2T ε, α2T ε). Therefore |SX(t1, t1 + 2T, α2T ε, α2T ε)| < |SNf |.
We next show that |SX(t1, t1 + 3T, α3T ε, α3T ε)| < |SX(t1, t1 + 2T, α2T ε, α2T ε)|. Since DT [t]

is strongly (T, t0, 2F + 1)-robust, there exists a nonempty S3 ⊆ SX(t1, t1 + 2T, α2T ε, α2T ε) such
that for all i3 ∈ S3, |J T

i3
[t1 + 2T] ∩ SX(t1, t1 + 2T, α2T ε, α2T ε)| ≥ 2F + 1. Since A is an F -local

set, J T
i3

[t1 + 2T] ∩ SX(t1, t1 + 2T, α2T ε, α2T ε) includes at least F + 1 normally-behaving agents
from N ∀i3 ∈ S3. Observe that by the definition of SX(t1, t1 + 2T, α2T ε, α2T ε) the state of each
i3 ∈ S3 satisfies either xi3 [t1 + 2T] < xi3j [τi3j[t1 + 2T]] or xi3 [t1 + 2T] > xi3j [τi3j[t1 + 2T]] for all
j ∈ N ∩ SX(t1, t1 + 2T, α2T ε, α2T ε). Therefore i3 will incorporate at least one in-neighbor’s state
from the interval [m[t1] + α2T ε,M [t1] − α2T ε] in its state update, yielding the following bounds
for all i3 ∈ S3:

xi3 [t1 + 2T + 1] ≥ α(m[t1] + α2T ε) + (1− α)m[t1]

≥ m[t1] + α2T+1ε

xi3 [t1 + 2T + 2] ≥ m[t1] + α2T+2ε

...
...

xi3 [t1 + 2T + k] ≥ m[t1] + α2T+kε, (2.17)

for all 0 < k ≤ T . Similarly,

xi3 [t1 + 2T + 1] ≤ α(M [t1] + α2T ε) + (1− α)M [t1]

≤M [t1] + α2T+1ε

xi3 [t1 + 2T + 2] ≤M [t1] + α2T+2ε

...
...

xi3 [t1 + 2T + k] ≤M [t1] + α2T+kε (2.18)

32

for all 0 < k ≤ T . This implies that i3 /∈ SX(t1, t1 + 3T, α3T ε, α3T ε) ∀i3 ∈ S3. Furthermore,
we define C3 as the set of all j3 ∈ SNf such that xj3 [t1 + 2T] ∈ [m[t1] + α2T ε,M [t1] − α2T ε].
By this definition, C2 ⊆ C3. Note that the bounds in equations (2.17) and (2.18) also apply to all
agents j3 ∈ C3 since xj3 [t1 + 2T] ∈ [m[t1] + α2T ε,M [t1] − α2T ε] ∀j3 ∈ C3, and each j3 does
not filter out its own state. Therefore j3 /∈ SX(t1, t1 + 3T, α3T ε, α3T ε) ∀j3 ∈ C3, and therefore
|SX(t1, t1 + 3T, α3T ε, α3T ε)| < |SX(t1, t1 + 2T, α2T ε, α2T ε)|.

This logic can be continued iteratively to show that |SX(t1, t1+pT, αpT ε, αpT ε)| < |SX(t1, t1+

(p − 1)T, α(p−1)T ε, α(p−1)T ε)| for all p ≥ 2, p ∈ Z such that t1 + pT < t2. This can be done by
defining

Cp ={ip∈SNf :xip [t1+(p−1)T]∈[m[t1]+α(p−1)T ε,M [t1]+α(p−1)T ε]},

which satisfies Cp−1 ⊆ Cp, and considering each SX(t1, t1 + (p − 1)T, α(p−1)T ε, α(p−1)T ε) for
p ≥ 3. SinceDT [t] is (T, t0, 2F+1)-robust, if SX(t1, t1+(p−1)T, α(p−1)T ε, α(p−1)T ε) is nonempty
at time t1+(p−1)T then there exists a nonempty Sp ⊆ SX(t1, t1+(p−1)T, α(p−1)T ε, α(p−1)T ε) such
that ∀ip ∈ Sp, |J T

ip [t1 +(p−1)]∩SX(t1, t1 +(p−1)T, α(p−1)T ε, α(p−1)T ε)| ≥ 2F +1. Using prior
arguments, it can then be shown that xip [t1+pT] ∈ [m[t1]+αpε,M [t1]−αpε]. This implies that ip /∈
SX(t1, t1 +pT, αpT ε, αpT ε) ∀ip ∈ Sp. Similarly, by using prior arguments it also holds that xjp [t1 +

pT] ∈ [m[t1]+αpε,M [t1]−αpε] ∀jp ∈ Cp, and therefore jp /∈ SX(t1, t1+pT, αpT ε, αpT ε) ∀jp ∈ Cp.
This implies that |SX(t1, t1 + pT, αpT ε, αpT ε)| < |SX(t1, t1 + (p− 1)T, α(p−1)T ε, α(p−1)T ε)| for all
p ≥ 2, p ∈ Z such that t1 + pT < t2.

Since SNf ⊂ V is finite, there exists a p′ > 1, p′ ∈ Z≥0 such that

SX(t1, t1 + (p′ + 1)T, α(p′+1)T ε, α(p′+1)T ε) = ∅.

This implies that for all i ∈ SNf ,

xi[t1 + (p′ + 1)T] ≥ m[t1] + α(p′+1)T ε

xi[t1 + (p′ + 1)T] ≤M [t1] + α(p′+1)T ε (2.19)

Considering V [t1 + (p′ + 1)T], we have

V [t1 + (p′ + 1)T] = M [t1 + (p′ + 1)T]−m[t1 + (p′ + 1)T]

≤M [t1]− α(p′+1)T ε− (m[t1] + α(p′+1)T ε)

≤ V [t1]− α(p′+1)T (ε+ ε) (2.20)

Recall that ε = fr[t1]−m[t1] and ε = M [t1]− fr[t1]. This implies that ε + ε = M [t1]−m[t1] =

33

V [t1], implying

V [t1 + (p′ + 1)T] ≤ V [t1]− α(p′+1)TV [t1] = (1− α(p′+1)T)V [t1] (2.21)

Recalling that |SX(t1, t1 + 2T, α2T ε, α2T ε)| < |SNf | at time t1 + 2T , and that

|SX(t1, t1 + pT, αpT ε, αpT ε)| < |SX(t1, t1 + (p− 1)T, α(p−1)T ε, α(p−1)T ε)|

for all p ≥ 3, it follows that p′ ≤ |SNf | since SX(t1, t1 +(p′+1)T, α(p′+1)T ε, α(p′+1)T ε) = ∅ after no
more than (|SNf |+1)T time steps. Therefore we have V [t1 +(|SNf |+1)T] ≤ (1−α(|SNf |+1)T)V [t1]

by substituting p′ = |SNf | into (2.21). The above analysis can be repeated to show

V [t1+(|SNf |+1)σT] ≤ (1−α(|SNf |+1)T)V [t1+(σ−1)T]

for σ ≥ 1, σ ∈ Z such that t1 + (|SNf | + 1)σT < t2. This yields the result V [t1 + T + (|SNf | +
1)σT] ≤ (1− α(|SNf |+1)T)σV [t1 + T] when t2 <∞.

If t2 =∞, then limt→∞ V [t] = limσ→∞ V [t1+T+(|SNf |+1)σT] ≤ (1−α(|SNf |+1)T)σV [t1+T].
Note that α < 1 implies (1−α(|SNf |+1)T) < 1, and therefore the limit converges to zero. By (2.10),
limt→∞ V [t] = 0 implies limt→∞maxi∈SNf , l∈LN |xi[t]− xl[t]| = 0.

Remark 2.1. Although the proof of Theorem 2.1 follows a similar line of reasoning as the results in

[79], Theorem 2.1 contains two significant theoretical differences. First, Theorem 2.1 considers the

more general Byzantine adversarial model [2], whereas the results in [79] consider only malicious

adversaries.4 Second, Theorem 2.1 considers consensus of the followers to a specific reference

value propagated by the set of normally-behaving leader agents that may lie outside the convex

hull of initial agents’ states. The analysis in [79] considers leaderless consensus to some unknown

value in the convex hull of the initial normal agents’ states.

2.3.3 Adversarial Implications

We next discuss the adversarial implications of Theorem 2.1. In most leaderless resilient consensus
settings considered in prior work, the networks consist only of normally-behaving agents seeking
a common consensus value, and adversarial agents behaving arbitrarily. Often, these results guar-
antee resilient consensus if the adversary model is at most F -local. However, these results for
leaderless resilient consensus raise the following critical question: What happens if the adversary

4In essence, malicious adversaries may update their state arbitrarily, but will send the same state information to
all out-neighbors. Byzantine adversaries may update their state arbitrarily and send different information to different
out-neighbors.

34

model is NOT F -local? To the authors’ best knowledge, little (if any) analysis has focused on
the precise effects of the F -local assumption being violated in these scenarios. From a practical
standpoint it is difficult to provide absolute guarantees that A will always be strictly F -local in
any real-world application of resilient algorithms. It is therefore critical to understand the conse-
quences which will occur if the F -local assumption does not hold.

Theorem 2.1 can be used to show one possible catastrophic outcome if the F -local assumption
is violated in a leaderless network. More specifically, Theorem 1 can be used to demonstrate
that for a leaderless network applying the SW-MSR algorithm, if there exists a colluding set of
adversarial agents A and if the network is strongly (T, t0, 2F + 1)-robust with respect to A, then
the adversarial agents can drive the states of all normal agents to any arbitrary value. This result
is presented more precisely in the following corollary:

Corollary 2.1. Let D[t] = (V , E [t]) be a nonempty, nontrivial, simple digraph with L = ∅. Let

F ∈ Z≥0, t0, t1, t2 ∈ Z with t2 > t1 ≥ t0 + T . Suppose that D[t] is strongly (T, t0, 2F + 1)-robust

w.r.t. a set of adversarial agents A and all normally-behaving agents i ∈ V\A apply the SW-MSR

algorithm with parameter F . If all agents j ∈ A send a constant, common value xij[t] to all of

their respective out-neighbors i ∈ Voutj for all t ∈ [t1 − T, t2), and if t2 > t1 + (|V\A|+ 1)σT for

some σ ∈ Z≥0, then the error between the normally-behaving agents’ states and the adversaries’

common state xij[t] is exponentially decreasing for t ∈ [t1 − T, t2). Furthermore, if t2 = ∞ then

limt→∞maxi∈V\A |xi[t]− xij[t]| = 0.

Proof. The proof follows from Theorem 2.1 by treating A as the set L, V\A as the set SNf , and
xij[t] as the signal fr[t]. Note that by Definition 2.8, xij[t] need not be equal to any of the actual
states xj[t] of j ∈ A.

In short, if the digraph D for a leaderless consensus network is strongly (T, t0, 2F + 1)-robust
w.r.t. the adversary set A and the adversaries collude to send a common constant to their out-
neighbors on sufficiently long time intervals, the error between the normal agents and the adversar-
ial signal will decrease exponentially. These conditions imply that the adversaries have the ability
to drive the entire network to arbitrary state values. When working with a given digraph D[t],
this result demonstrates the need for awareness of the agent subsets S such that D[t] is strongly
(T, t0, 2F + 1)-robust w.r.t. S. Adversaries seeking to obtain control of the network will succeed
if such subsets are successfully compromised.

2.3.4 Simulations

The resilient leader-follower consensus framework in the first part of this chapter can be applied
to a wide range of problems where a network of agents need to be driven to a desired reference

35

value by a set of leaders. Some examples of such reference values include a reference altitude for
unmanned aerial vehicles, a reference rendezvous time for multiple unmanned ground vehicles,
and a reference radius for a circular patrolling path [79], to name only a few.

The simulations consider agents connected via time-varying k-circulant digraphs. The Ap-
pendix contains the definition of k-circulant digraphs and details about the conditions under which
k-circulant digraphs are strongly r-robust w.r.t. a subset. For each simulation the network topology
switches between the three graphs depicted in Figure 2.4. The union of the three graphs forms a
7-circulant digraph. The simulations consider the presence of malicious adversaries, which may
send the same misinformation to their respective out-neighbors [2]. In all simulations, agents have
no knowledge as to whether their in-neighbors are normal, malicious, or behaving as leaders. In
addition, t0 = 0 and the agents’ initial states are random values on the interval [−25, 25] for all
agents in (V\L). The results of the first simulation are shown in figure 2.5. In this simulation, the
number of agents is 15, with L = {4, 5, ..., 8} (5 leaders). The time window is T = 12 steps, and
the network switches graphs every 4 seconds (G1,G2,G3,G1 . . .), where the graphs are depicted in
Figure 2.4. By the results of the Appendix, the digraph is strongly (12, 0, 5)-robust w.r.t. L. For all
normal follower agents, parameter F = 2. Two of the agents in the network behave maliciously.
The function fr[t] is simply the constant fr[t] = 30. The error between the normally-behaving
agents’ states (denoted by colored lines) and the normally-behaving leaders’ states (the solid black
line) decreases exponentially in the presence of two adversarial agents (the dotted red lines). The
second simulation, depicted in Figure 2.6, considers a scenario where fr[t] takes on different values
over time. In this simulation, the network size is 30 agents, with L = {1, 2, . . . , 7} (7 leaders). The
time window for each agent is T = 30, and the network switches between graphs every 10 sec-
onds (G1,G2,G3,G1 . . .). By the results of the Appendix, the digraph is strongly (30, 0, 7)-robust
w.r.t. L. For all normal follower agents, parameter F = 3. Three of the agents in the network
behave maliciously. The error between the normally-behaving agents and the normally-behaving
leaders decreases exponentially on the time intervals where fr[t] is constant as per the conditions
of Theorem 2.1.

36

Figure 2.4: Time-varying graphs used in the last two simulations. In each graph Gj , ∀i ∈ V each
agent i sends its state information to the agents depicted. The terms i + p for p ∈ {1, . . . , 7} are
shorthand for (i+ p) mod n, where n is the total number of agents.

0 10 20 30 40 50

Time step t

-40

-30

-20

-10

0

10

20

30

S
ta

te
 v

a
lu

e

Figure 2.5: Leader-follower simulation using the SW-MSR algorithm with a constant reference
value in the presence of 2 malicious agents.

37

0 500 1000 1500

Time step t

-40

-20

0

20

40

S
ta

te
 v

a
lu

e

Figure 2.6: Leader-follower simulation using the SW-MSR algorithm with a time-varying refer-
ence value in the presence of 3 malicious agents. Note that the normal agents track the reference
signal even when the behavior of the malicious agents may be unbounded.

2.4 Finite-Time Leader-Follower Consensus: Formation Con-
trol

As discussed in the Introduction to this chapter, prior work on MSR-type algorithms has focused
on demonstrating asymptotic or exponential convergence for systems with discrete-time dynamics.
Few works have considered MSR-type consensus algorithms in the continuous-time domain, and
no prior work has considered finite-time convergence of MSR-type algorithms under a general
F -total or F -local adversarial model.

In addition, the majority of MSR-type algorithms consider agents with scalar states. The chief
difficulty with applying MSR-type algorithms to vector-valued states is determining a suitable total
order on vectors. The filtering step in MSR algorithms requires each agent to sort the information
it receives from maximum to minimum value, which requires a total order to exist for the infor-
mation. One proposed extension to vector-valued states in Rn has focused on applying n separate
MSR algorithms to each dimension and achieving resilient consensus elementwise [84]. However,
more general methods for applying MSR techniques to systems with vector-valued states remains
an open question.

As discussed in the Introduction, this section presents several contributions addressing these
limitations to prior literature. This section presents a method for agents with continuous-time dy-
namics and states in Rn to achieve leader-follower consensus in finite time to a formation in Rn.

38

To achieve this, we present a novel MSR-type filtering algorithm which uses a norm to induce a
total order on the vector-valued information and allows for the filtering out of adversarial misinfor-
mation. This is the first MSR-type algorithm to use a norm-based filtering approach in this manner.
Finally, the method in this section considers input bounds for each of the agents’ dynamics, which
is an aspect neglected by prior MSR algorithm literature. The section concludes by applying the
norm-based filtering approach to a discrete-time system which is shown to converge in exponential
time.

2.4.1 Notation and Problem Definition

Similar to the prior section, three subsets of V are considered in this paper: leader agents L ⊂ V ,
adversarial agents A ⊂ V , and normal follower agents denoted N ⊂ V .5 These subsets will be
described in more detail later in this section. We denote Ai = Vi ∩ A, i.e. the set of adversarial
agents in the in-neighbour set of agent i. The upper right Dini derivative of a function g : [a, b)→
R is defined as follows [199]:

D+g(t) = lim sup
h→0+

1

h
[g(t+ h)− g(t)], t ∈ [a, b).

Finally, ‖·‖ in this section denotes any p-norm defined on Rn.
The MSR-type control protocol presented in this section will involve a sorting and filtering

method similar to the prior MSR algorithms presented in this chapter. For a given i ∈ N the
in-neighbors which are not filtered out are denoted Ki ⊆ Vi; i.e. letting Ri(t) denote the set of
agents which are filtered out at time t, we define Ki , Vi\Ri. For brevity of notation, we will
denote KNi = Ki \ (Ai ∩ Ki) and KAi = Ai ∩ Ki, which implies Ki = KNi ∪ KAi . We also denote
Ki , |Ki(t)|.

Consider a time-invariant digraph D = (V , E) of n agents with states pi ∈ Rn. Each agent
i ∈ V has the system model

δpi(t) = ui(t), (2.22)

where δpi(t) denotes the time derivative ṗi for the case of continuous-time system and the time-
difference pi[t + 1] − pi[t] for the case of discrete-time systems. The variable ui is the input
to agent i, which will be explained in sections 2.4.2 and 2.4.3 respectively for continuous- and
discrete-time system.

There is much prior literature on formation control problems involving a set of leaders to which

5Unlike the previous section, N will be used to denote normally behaving agents which are not leaders; i.e.
N ∩ L = ∅.

39

Figure 2.7: Visual depiction of the vectors pi, ξi, and τi used in this section. The formation is
achieved when agents’ τ vectors come to consensus.

the rest of the network converges. We assume that a subset of the agents L ⊂ V are designated
to behave as leaders. However, these leaders are not invulnerable to attacks, implying (L ∩ A)

may possibly be nonempty. Any nodes which are neither leaders nor adversarial are designated as
normal nodes N ⊂ V . In all, N ∪ L ∪A = V .

We assume that prescribed constant formation vectors ξi ∈ Rn have been specified for these
agents. Each ξi ∈ Rn represents agent i’s desired formational offset from a group reference

point. The formation offsets of the entire network is written as ξ =
[
ξT1 . . . ξTn

]T
. As outlined

in [24, Chapter 6], we define the variable τi(t) = pi(t) − ξi. If non-adversarial agents come to
formation on their values of τi(t), i.e. ‖τi(t)− τj(t)‖ → 0 ∀i, j ∈ (L ∪ N)\A then they have
achieved formation. In essence, the agents will have achieved consensus on the center of formation.
The behaving leaders are assumed to be maintaining their τ values at some arbitrary point τL. The
goal of this section is to design a resilient control protocol such that all the normal behaving agents
can come to formation at τL. We assume that each agent i is able to obtain the time-varying
relative vectors τj(t)−τi(t) for all j ∈ Vi. Two ways in which this might be accomplished include
each agent i measuring this vector via on-board sensors or calculating it by receiving transmitted
messages from each j ∈ Vi. In the former case, it is required that agents share a common reference
orientation, and in the latter both a reference orientation and a common origin point.

We assume that there exists a subset of the agents A ⊂ V that is adversarial, and that A is
an F -total set; i.e. for any i ∈ (V\A), |Vi ∩ A| ≤ F ([75]). Any adversarial agent k ∈ A
may attempt to prevent its normal out-neighbors from coming to formation by manipulating the
value of τk(t) received by its out-neighbors. Two ways in which this may occur include physical
or communication misbehavior. Explicitly, an agent misbehaves if at any time t ≥ t0 it applies a
different control law than the nominal one in the former case, or by sending false information in
the latter. In either case, this misbehavior is modeled as normal agent i obtaining the time-varying
relative vector τk(t) − τi(t) where the adversarial dynamics of the value of τk(t) received by any

40

Figure 2.8: An example of a Resilient Directed Acyclic Graph (RDAG) with parameter r = 3.

normal agent i are
δτk(t) = fk,m(t), (2.23)

where fk,m(t) is the adversarial input. This adversarial behavior is malicious ([75]) in the sense
that each out-neighbor of k receives the same misbehavior. As outlined in [190], since in the
continuous time case each normal agent will have continuous state trajectories, any discontinuity
in an adversarial agent’s transmitted signal could expose its misbehavior to the network. Hence we
assume that in the continuous time case, the time-varying relative vector τk(t)− τi(t) obtained by
any normal agent i ∈ N from any adversary k ∈ A is continuous. The assumption of continuity
of τk(t) is also made for the case where agents make on-board measurements.

The method for finite-time resilient formational consensus in this section employs a graph-
theoretical structure which we call a Resilient Directed Acyclic Graph (RDAG). This structure is a
special case of a class of graphs called Mode Estimated Directed Acyclic Graphs (MEDAGs) [200],
and is defined as follows:

Definition 2.13. A digraph D = (V , E) is a Resilient Directed Acyclic Graph (RDAG) with pa-

rameter r if it satisfies the following properties for an integer r ≥ 0:

1. There exists a partitioning of V into sets S0, . . . ,Sm ⊂ V , m ∈ Z such that |Sj| ≥ r for all

0 ≤ j ≤ m.

2. For each i ∈ Sj, 1 ≤ j ≤ m, Vi ⊆
⋃j−1
k=0 Sk

An example of an RDAG is depicted in Figure 2.8. Intuitively, an RDAG is a graph defined
by successive subsets of agents Sj . Agents in each subset only have in-neighbors from preceding
subsets. The purpose of an RDAG is to introduce enough edge redundancy to ensure the existence
of an unfiltered directed path of behaving nodes from the leaders to each normal agent. This can be

41

achieved by designating all agents in the set S0 to behave as leaders, i.e. S0 = L. In our analysis,
we consider RDAGs with parameter r ≥ 3F + 1. As we will show, an RDAG of this form is a
sufficient condition implying that normal agents applying our filtering methods and controllers will
converge to the leaders. A method exists by which RDAGs can be constructed from existing graph
topologies even in the presence of adversaries ([191]). This method involves agents successively
receiving in a resilient manner and rebroadcasting a communication signal initiated by the set of
leaders, identifying their own set and the agents in the preceding set, and then restricting their in-
neighbor set to only agents in the preceding set. In particular, an RDAG can be constructed from an
initial graph that is strongly robust with respect to a subset S ⊂ V . An example of such a graph is
a k-circulant graph [102, 181]. The existence of an RDAG graph structure does not guarantee that
normal agents are able to identify adversarial agents. Rather, the edge redundancy guarantees that
each normal agent has enough behaving in-neighbors to still achieve formation under the proposed
controllers.

2.4.2 Continuous-time System

2.4.2.1 Filtering Algorithm and Control Law

We first consider the continuous-time setting. In this setting, each agent applies Algorithm 2.3 at
every time instance t = mεd, where εd > 0 is defined later in this section.

Algorithm 2.3 Continuous-Time Filtering
procedure UPDATEFILTEREDLIST

Calculate τij = ‖τj − τi‖ ∀j ∈ Vi
if t = mεd, m ∈ Z≥0, εd > 0 then

Sort τij values such that τij1 ≥ . . . ≥ τij|Vi|
Ki(t)← {j : τij ∈ {τijF+1

, . . . , τij|Vi|}}
end if

end procedure

The dynamics of continuous time τ (t) are given as:

τ̇i(t) = ṗi(t)− ξ̇i = ui(t). (2.24)

We will sometimes omit the argument t for the sake of brevity when the dependence on t is clear
from the context. We assume that the speed of each agent i is bounded above by uM , i.e. ‖ui(t)‖ ≤

42

Figure 2.9: Diagram of the filtering and state update control law used for the continuous time
system in this section. Note that as per Algorithm 2.3, the filtered set Ki(t) is updated only at time
instances t = mεd where εd > 0, m ∈ Z≥0. The reasons for this behavior are discussed below.

uM for all t ≥ 0. Under this constraint, the saturation function is defined as

σi(t) = min{‖upi (t)‖, uM}, (2.25)

upi (t) =
∑

j∈Ki(t)

wij(t)(τj(t)− τi(t))‖τj − τi‖α−1, (2.26)

where 0 < α < 1. To simplify the notation, define the term γi(t) = σi(t)
‖upi ‖

. With this saturation
function6, inspired from the control law used in [201] and using results from [202], we define the
continuous time control law as:

ui(t) =
∑

j∈Ki(t)

γi(t)wij(t)(τj − τi)‖τj − τi‖α−1 (2.27)

where 0 < α < 1. It can be verified from (2.27) that ‖ui(t)‖ ≤ uM for all t ≥ 0 and that the
control input goes to zero as agent i goes to its equilibrium.7 Note that for α = 1, the control law
(2.27) is same as the traditional formation control law (see [203] for example), while for α = 0, we
obtain a control law similar to the one introduced in [204]. We make use of this type of controller
to not only ensure that τi converges to τL, but does so in finite time.

As opposed to [84], this protocol is designed such that agents do not update their filtered
list Ki(t) at every time instance t, but instead only at time instances t1, t2, t3, ... while keeping it
constant during the interval (tl, tl+1). Each of these intervals have constant length, i.e. tl+1−tl = εd

for all l ∈ {1, 2, 3, ...} where εd > 0 is a user-defined small, positive constant. The weights wij(t)
for all i ∈ N are designed such that malicious agents are not able to exploit this behavior of Ki(t).

6For all t ≥ 0, 0 ≤ γi(t) ≤ 1. Note that if the distances of agent from its in-neighbours j ∈ Ki are finite, then
γi(t) is strictly positive.

7As τj → τi, term (τj − τi)‖τj − τi‖α−1 → 0 for α > 0

43

Let Ξi(t) be the set of in-neighbour agents whose τ vectors are NOT equal to that of agent i, i.e.

Ξi(t) = {j ∈ Vi : ‖τj − τi‖ > 0}.

Then for all i ∈ N , we define the control weights wij(t) for all j ∈ Ki(t) as

wij(t) =

{
0, |Ξi(t)| ≤ F ,
1
Ki
, |Ξi(t)| > F .

(2.28)

To the authors’ best knowledge, this choice of control weights have never been introduced in
the prior literature. Intuitively, this implies that each normal agent i will have a velocity of zero if
its τ is co-located with the τ of all but at most F of its in-neighbors. We impose this constraint
to ensure that when all normal agents’ τ values have converged to τL, the malicious agents cannot
perturb them away from τL during the dwell time. This could happen, for example, if for some
i ∈ N , ‖τi − τk‖ = 0 at all t = mεd and ‖τi − τk‖ > 0 for time t ∈ (mεd, (m + 1)εd), where
k ∈ Ai, m ∈ Z≥0. Since Ki(t) is constant for each t ∈ [mεd, (m + 1)εd), the malicious agents
would not be filtered out by agent i. The properties we impose on the weights prevent the malicious
agents from steering the normal agents away during such period.

Theorem 2.2. For each agent i ∈ N , |Ξi(t)| ≤ F for all t ≥ ti if and only if τi(t) = τL for all

t ≥ ti, for some time ti.

Proof. Sufficiency: Assume that there exists some time instant ti such that for all future times
t ≥ ti, ‖τi(t)− τL‖ ≡ 0. This can only happen if all the filtered in-neighbors of the agent i (i.e.
j ∈ Ki) are at τL. To see why this is true, assume that there exists a filtered in-neighbour of
agent i which is not at τL. Then, by the virtue of the control law (2.27), agent i would have a
non-zero control input ui(t), which is a contradiction to the assumption that agent stays at the
point τL. Hence, all its filtered in-neighbours are at the point τL. Since we assume that there are at
most F agents in the filtered set Vi\Ki, we have that at most these F agents may not be at τL, i.e.
|Ξi(t)| ≤ F and wij(t) = 0 ∀j ∈ Ki.

Necessity: We prove this by contradiction. Let us assume that there exist τ ∗ 6= τL and a time
ti such that τi(t) = τ ∗ and in addition we have that |Ξi(t)| ≤ F for all t ≥ ti. Let us assume that
i ∈ Sp. Since |Vi| ≥ 3F + 1 and |Ξi(t)| ≤ F , there are at least 2F + 1 in-neighbors which are also
staying at τ ∗. This implies that there is at least one normal behaving agent in the in-neighbour set
of agent i in the set

⋃p−1
l=0 Sl, which stays at τ ∗. This in turn means that one of its normal behaving

in-neighbors in the set
⋃p−2
l=0 Sl stays identically at τ ∗. Using this argument recursively, we have

that there exists a normal in-neighbor in the set S0, which stays identically at the location τ ∗.

44

Since all the normal behaving in-neighbors S0 stay at τL, this contradicts the assumption τ ∗ 6= τL.
Hence, we obtain τ ∗i = τL, and that |Ξ(t)| ≤ F for all t ≥ ti only if τi(t) = τL for all t ≥ ti.

Intuitively speaking, Theorem 2.2 states that if there exists a time ti such that the set |Ξi(t)| ≤ F

for all future time after ti, this implies that τi has converged to the normal leader reference value
τL and will remain there for all future time after ti. Since all weights wij(t) = 0 when |Ξi(t)| ≤ F ,
this fact establishes that there will never exist a situation when all weights wij(t) = 0 become zero
for i for all future time with τi not equal to the reference value τL.

2.4.2.2 Convergence Analysis for Continuous-Time System

We now prove that under the control law (2.27), filtering Algorithm 2.3, and the definition of
control weights wij in (2.28), all the normal behaving agents achieve formation in finite time,
despite the presence of adversarial agents. First, we show that for each normal agent i ∈ S1,
‖τi(t)− τL‖ converges to zero in finite time:

Lemma 2.2. Consider a digraph D which is an RDAG with parameter 3F + 1, where S0 = L and

A is an F -total set. For each normal agent i ∈ S1, τL is a globally finite-time stable equilibrium

for the closed-loop dynamics (2.24)-(2.28).

Proof. Choose the candidate Lyapunov function V (τi) = 1
2
‖τi − τL‖2. Since τ̇i is piece-wise

continuous in each interval (tl, tl+1), the trajectory τi(t) is piecewise differentiable in each such
interval. Let τ̇i(t−l+1) and τ̇i(t+l+1) denote the value of the vector τ̇i just before and after the filtering
at time instant tl+1, respectively. Because the right hand side of (2.27) is bounded at the beginning
of each interval, the upper right Dini derivative is defined for τi(t) everywhere, and takes values as

D+(V (τi))(t) =

{
∇V (τi)τ̇i(t), tl ≤ t < tl+1,
∇V (τi)τ̇i(t

+
l+1), t = tl+1.

,

For the worst case, assume that there are F adversarial agents and Ki − F leaders in the filtered
list Ki. This requires that the adversarial agent should satisfy ‖τi− τj‖ ≤ ‖τi− τL‖ for all j ∈ Ai
and for all t ≥ 0, otherwise agent j would be filtered out as per Section 2.4.2.1. Using this and
taking the upper right Dini-derivative of the candidate Lyapunov function along the closed loop

45

trajectories of (2.24), we have:

D+(V (τi)) = (τi − τL)T
∑
j∈KNi

γiwij(τj − τi)‖τj − τi‖α−1

+ (τi − τL)T
∑
j∈KAi

γiwij(τj − τi)‖τj − τi‖α−1

= γi
Ki − F
Ki

(τi − τL)T (τL − τi)‖τL − τi‖α−1

+ (τi − τL)T
∑
j∈KAi

γiwij(τj − τi)‖τj − τi‖α−1

Since ‖τi − τj‖ ≤ ‖τi − τL‖ for all j ∈ KAi , we have:

D+(V (τi)) ≤ −γi
Ki − F
Ki

‖τi − τL‖1+α + γi
∑
j∈KAi

wij‖τi − τL‖‖τj − τi‖‖τj − τi‖α−1

≤ −γi
Ki − F
Ki

‖τi − τL‖1+α + γi
F

Ki − F
‖τi − τL‖‖τL − τi‖‖τL − τi‖α−1

⇒ D+(V (τi)) ≤ −cV (τi)
β,

where β = 1+α
2

< 1. Note that D+(V (τi)) ≤ 0 which means that the Lyapunov candidate
V (τi(t)) is bounded by V (τi(0)). This implies that the agent i remains at a bounded distance from
the leaders. Also, if any adversarial agent’s state moves further away, by the filtering algorithm,
they would be filtered out. Hence, each term in upi remains bounded, which in turn means that
γi(t) > 0. Define γ∗i = min

t
γi(t). Hence, we have that c , γ∗i

Ki−2F
Ki

> 0. From the results

in [199], since Dini derivative satisfies D+(V (τi)) ≤ −cV (τi)
β for all τi ∈ R2, we obtain that τL

is finite-time stable, with the bound on the finite time of convergence given as T1i ≤ V (τi(0))1−β

c(1−β)
=

‖τi(0)−τL‖2(1−β)

21−βc(1−β)
. Now, at t = T1i, agent i has its τi co-located with all the normal leaders’ τ . This

means that there can be at max F agents (i.e. the adversarial leaders) which are not co-located with
the agent’s τi. Hence, we obtain that |Ξi(t)| ≤ F for all t ≥ T1i. Therefore, by Theorem 2.2 agent
i will stay at τL for all future times.

Next we take the case of normal agents i ∈ S2:

Lemma 2.3. Consider a digraph D which is an RDAG with parameter 3F + 1, where S0 = L and

A is an F -total set. Under the closed loop dynamics (2.24)-(2.28), the value τi(t) for each normal

agent i ∈ S2 converges to τL in finite time T2i.

Proof. For the worst case analysis, assume that all the agents in Ki(0) are from S1 and are located
such that (τj(0) − τi(0))T (τL − τi(0)) < 0 for each j ∈ Ki(0). This simply means that the

46

agents in Ki at time t = 0 are located on one side of the agent while the leaders are on the
other side. This is the worst case because this arrangement of in-neighbors would make agent i
move away from the leaders, initially. Also, assume that |KAi | = F and |KNi | = Ki − F , so
that agent i has maximum number of adversarial in-neighbours. Consider the candidate Lyapunov
function V (τi(t)) = 1

2
‖τi(t) − τL‖2. Taking its upper right Dini derivative along the closed-loop

trajectories of agent i, we have D+(V (τi)) = (τi− τL)T
∑

j∈Ki γiwij(τj − τi)‖τj − τi‖
α−1. Now,

from the assumption on the initial locations of agents in Ki(t), we have that D+(V (τi(0))) =

γi(0)
∑

j∈Ki wij(τi − τL)T (τj − τi)‖τj − τi‖α−1 > 0. Also, define T1 , max
l∈S1∩N

T1l, i.e. T1 is the

maximum time after which each normal agent in S1 would achieve formation and have τi = τL.
Hence, at time t = T1, we have that:

D+(V (τi)) =
∑
j∈KNi

γiwij(τi − τL)T (τj − τi)‖τj − τi‖α−1

+
∑
j∈KAi

γiwij(τi − τL)T (τj − τi)‖τj − τi‖α−1

= γi
Ki − F
Ki

(τi − τL)T (τL − τi)‖τL − τi‖α−1

+
∑
j∈KAi

γiwij(τi − τL)T (τj − τi)‖τj − τi‖α−1

≤ −γi
Ki − F
Ki

‖τL − τi‖1+α + γi
∑
j∈KAi

wij‖τi − τL‖‖τj − τi‖α

Now, for all j ∈ KAi , the norm ‖τj(T1)−τi(T1)‖ ≤ ‖τk(T1)−τi(T1)‖ for some k ∈ KNi otherwise,
these adversarial agents would be filtered out. Using this and the fact that τk(T1) = τL, we have
that for all t ≥ T1:

D+(V (τi(t))) ≤ −γi
Ki − F
Ki

‖τL − τi‖1+α +
∑
j∈KAi

γiwij‖τi − τL‖‖τL − τi‖α

= −γi
Ki − 2F

Ki

‖τL − τi‖1+α < 0.

Since D+(V (τi))(0) > 0 while D+(V (τi))(T1) < 0, and it is bounded above in the interval
(0, T1), the increment in the value of V (τi) is bounded in the interval. Hence, agent i would be at a
finite distance away from the leaders at time T1. This also implies that upi (t) is bounded and hence
γ∗i = min

t
γi(t) > 0. Hence, we obtain that D+(V (τi)) ≤ −cV (τi)

β where c = γ∗i
Ki−2F
Ki

> 0

and β = 1+α
2

< 1. Hence, we have that τi → τL in finite time. Let τi(T1) be the position of
agent at time instant T1. Using the bound on finite time of convergence, we obtain that for t ≥ T2i,

47

τi(t) = τL where

T2i ≤ T1 +
V (τi(T1))1−α

c(1− α)
= T1 +

‖τi(T1)− τL‖2(1−β)

21−βc(1− β)

Since both T1 and ‖τi(T1)−τL‖ are finite, α < 1 and c > 0 we obtain that T2i is also finite. Again,
after time instant T2i, agent i has its τi co-located with all the normal in-neighbors’ τ . This means
that there can be at max F agents (i.e. the adversarial agents) which are not co-located with the
agent’s τi. Hence, we have that |Ξi(t)| ≤ F for all t ≥ T2i. Therefore, Theorem 2.2 implies that
agent i will stay at τL for all t ≥ T1i.

We have shown that each normal agent i ∈ S2 will achieve the formation in finite time. Now
we present the general case:

Theorem 2.3. Consider a digraph D which is an RDAG with parameter 3F + 1, where S0 = L
and A is an F -total set. Under the closed loop dynamics (2.24)-(2.28), τi will converge to τL in

finite time for all normal agents i ∈ N .

Proof. We have already shown that all the agents in S1 and S2 will achieve formation in finite
time. Consider any agent i ∈ S3. Since all the in-neighbors of agents in S3 are from

⋃2
i=0 Si, after

a finite time period all the agents in Vi ∩ N will satisfy τi = τL. Define T2 , max
k
T2k, where k

belongs to the set of normal agents in S1. After the time instant t = T2, the Lyapunov candidate
V (τi) = 1

2
‖τi − τL‖2 and its Dini derivative will satisfy the conditions similar to Lemma 2.3.

Hence, we have that all the normal agents in S3 will achieve formation in finite time. This time can
be bounded as T3i ≤ T2 + ‖τi(T2)−τL‖1−α

c(1−α)
for each i ∈ S3. This argument can be used recursively

to show that each normal agent in
⋃p
l=1 Sl will achieve formation in finite time. Defining Tl as

the maximum time by which all the normal agents in set Sl will achieve the formation, one can
establish the following relation for l ≥ 1:

Tl+1 ≤ Tl + max
i∈Sl+1

‖τi(Tl)− τL‖2(1−β)

21−βc(1− β)
,

where T1 ≤ maxi∈S1

‖τi(0)−τL‖2(1−β)

21−βc(1−β)
. Since Tl and ‖τi(Tl) − τL‖ both are finite ∀ l ≥ 1, we have

Tl+1 <∞.

Hence, we have shown that under the effect of our protocol, each normal agent i would achieve
formation in finite time, despite adversarial agents. In the next section, we show that our filtering
mechanism can be used for the case of discrete time systems as well.

48

2.4.3 Discrete-time System

In this subsection we demonstrate that the norm-based sorting and filtering law defined previously
can be applied in the discrete-time domain as well. More specifically, we demonstrate that normal
follower agents with bounded inputs and discrete-time dynamics can achieve formational consen-
sus in exponential time to a formation defined by normally-behaving leaders in the presence of
adversarial agents.

2.4.3.1 Filtering Algorithm and Control Law

At each time step t, each agent i ∈ N applies the following algorithm:

Algorithm 2.4 Discrete-Time Filtering
procedure UPDATEFILTEREDLIST

Calculate τij = ‖τj − τi‖ ∀j ∈ Vi
Sort τij values such that τij1 ≥ . . . ≥ τij|Vi|
Ki[t]← {j : τij ∈ {τijF+1

, . . . , τij|Vi|}}
end procedure

The discrete time system dynamics are given as

τi[t+ 1] = pi[t+ 1]− ξi = pi[t] + ui[t]− ξi
= τi[t] + ui[t] (2.29)

The input of each agent i is bounded above by uM > 0, i.e. ‖ui[t]‖ ≤ uM for all t ≥ 0. Under this
constraint, the saturation function is given as

σi[t] = min{‖upi [t]‖, uM}, (2.30)

upi [t] =
∑
j∈Ki[t]

wij[t](τj[t]− τi[t]). (2.31)

To simplify the notation, define γi[t] = σi[t]
‖upi [t]‖ . We define the control law ui[t] as

ui[t] = γi[t]
∑
j∈Ki[t]

wij[t](τj[t]− τi[t]), (2.32)

where for all time steps t and for all i ∈ N , wij[t] > 0 and
∑

j∈Ki[t] wij[t] = 1. For simplicity,
we choose wij[t] = 1

Ki
. We point out that 0 < γi[t] ≤ 1. In the following subsection, we prove

that under the effect of the control law (2.32) and Algorithm 2.4, normal behaving agents in the

49

discrete time setting are also guaranteed to achieve formation despite the presence of adversarial
agents.

2.4.3.2 Convergence Analysis for Discrete-Time System

For our analysis, we need the following result:

Lemma 2.4. Let b[k] = kckb[0], k ∈ Z≥0 be a series where b[0] > 0 and 0 < c < 1. Then there

exist positive constants α, β with c < β < 1 such that ∀k ∈ Z≥0,

b[k] = kckb[0] ≤ αβk. (2.33)

Proof. It can be readily verified that for any c < β < 1 and α ≥ b[0]

e log β
c

, the inequality (2.33) holds
for all k ≥ 0.

First, consider the normal agents in the set S1:

Lemma 2.5. Consider a digraph D which is an RDAG with parameter 3F + 1, where S0 = L and

A is an F -total set. For every normal agent i ∈ S1, ‖τi[t]− τL‖ converges to zero exponentially.

Proof. For the worst case, assume there are F adversarial agents. Consider any normal agent
i ∈ S1. Since all of its in-neighbours are from S0, we have that Vi ⊂ L and for all k ∈ Vi ∩ N ,
τk = τL. By definition of an RDAG, |Vi| ≥ 3F +1 which impliesKi ≥ 2F +1 and |KNi | ≥ F +1.
For the worst case, suppose that ‖τi[t] − τj[t]‖ ≤ ‖τi[t] − τL‖ ∀j ∈ Ai so that none of the
adversarial agents are filtered out. This implies that |KAi | = F and |KNi | = Ki − F . From the
closed loop dynamics, we obtain:

τi[t+ 1]− τL = τi[t] +
∑
j∈Ki

γiwij(τj[t]− τi[t])− τL.

Noting that Ki ⊂ L, after some manipulation we obtain:

τi[t+ 1]− τL = (1− γi
Ki − F
Ki

)(τi[t]− τL) +
∑
j∈KAi

γiwij(τj[t]− τi[t]). (2.34)

Since ‖τi[t] − τj[t]‖ ≤ ‖τi[t] − τL[t]‖ for all j ∈ KAi , we have ‖
∑

j∈KAi
wij(τj[t] − τi[t])‖ ≤

F
|Ki|‖τi[t]− τL‖. Hence, we obtain the bound on ‖τi[t+ 1]− τL‖ as:

‖τi[t+ 1]− τL‖ ≤ (1− γi
Ki − 2F

Ki

)‖τi[t]− τL‖. (2.35)

50

Let γ∗i = mink γi[k] > 0. Since 1 − γi Ki−2F
Ki

≤ 1 − γ∗i Ki−2F
Ki

< 1, define c = 1 − γ∗i Ki−2F
Ki

, so
that we have ‖τi[t + 1] − τL‖ ≤ c‖τi[t] − τL‖, i.e. ‖τi[t] − τL‖ is an exponentially converging
sequence.

For i ∈ Sp where p ≥ 2, we know that there are at most F adversarial agents in Ki. Note
that by definition of the network RDAG, all agents in Ki are from

⋃p−1
j=0 Sj . For the worst-case

analysis, we assume there are F adversarial agents in Ki and all the normal agents in Ki are from
Sp−1. From the closed-loop dynamics of the agent i, we have:

τi[t+ 1]− τL = τi[t] +
∑
j∈Ki

γiwij(τj[t]− τi[t])− τL,

which after some manipulation gives:

τi[t+ 1]− τL = (1− γi
Ki − F
Ki

)(τi[t]− τL)

+
∑
j∈KNi

γiwij(τj[t]− τL) +
∑
j∈KAi

γiwij(τj[t]− τi[t]). (2.36)

Using the same logic as in Lemma 2.5, we assume for the worst case that ∀j ∈ Ai, ‖τi[t]−τj[t]‖ ≤
‖τi[t]− τk[t]‖ for some k ∈ KNi . Using this, the fact that |KAi | = F , we obtain:

‖
∑
j∈KNi

wij(τj[t]− τL)‖ ≤ |Ki| − F
|Ki|

‖τk[t]− τL‖,

‖
∑
j∈KAi

wij(τj[t]− τi[t])‖ ≤
F

|Ki|
‖τk[t]− τi‖.

We can bound ‖τk − τi‖ ≤ ‖τk − τL‖+ ‖τi − τL‖ to obtain:

‖τi[t+ 1]− τL‖ ≤ c‖τi[t]− τL‖+ ‖τk − τL‖, (2.37)

where c = 1 − γ∗i Ki−2F
Ki

< 1 where γ∗i is defined as in Lemma 2.5. Inequality (2.37) is true for
every normal agent in Sp with p ≥ 2. Using this observation, we next consider the case of agents
in set S2 :

Lemma 2.6. Consider a digraph D which is an RDAG with parameter 3F + 1, where S0 = L and

A is an F -total set. For every normal agent i ∈ S2, ‖τi[t]− τL‖ converges to zero exponentially.

Proof. Define a[t] = ‖τi[t]− τL‖, bk[t] = ‖τk[t]− τL‖ so that (2.37) can be written as a[t+ 1] ≤

51

ca[t] + bk[t]:

a[t+ 1] ≤ ct+1a[0] +
t∑
i=0

ct−ibk[i]. (2.38)

Now, bk[i] represents the norm ‖τk[i]− τL‖ of a normal agent k ∈ S1, which can be bounded as
bk[i] ≤ cikbk[0] as per (2.35) where ck = 1 − γ∗k

Rk−2F
Rk

< 1. For the sake of brevity, let a0 = a[0],
bk0 = bk[0]. Using this, we obtain:

a[t+ 1] ≤ ct+1a0 +
t∑
i=0

ct−icikbk0

Define b∗0 = max
k∈KNi

bk0, c∗ = max
k∈KNi

ck, and c̃ = max{c, c∗}, so that

a[t+ 1] ≤ c̃t+1a0 +
t∑
i=0

c̃tb∗0 = c̃t+1a0 + (t+ 1)c̃tb∗0.

Using this and Lemma 2.4, i.e., kc̃tb∗0 ≤ αβt, we have that:

a[t+ 1] ≤ c̃t(ca0 + b∗0) + tc̃tb∗0 ≤ c̃t(ca0 + b∗0) + αβt,

where α > 0 and c̃ < β < 1. Now, since c̃ < β, we have:

a[t+ 1] ≤ c̃t(ca0 + b[0]) + αβt ≤ βt(ca0 + b[0] + α).

As β < 1, at converges to zero exponentially, i.e., for a normal agent i ∈ S2, ‖τi[t]−τL‖ converges
to zero exponentially.

Note that this result can be interpreted as follows: ‖τi − τL‖ for i ∈ N converges to zero
exponentially if ‖τj − τL‖ converges to zero exponentially for all its normal in-neighbours j ∈
Ki ∩N . Using this, we can state the following result for all normal behaving agents:

Theorem 2.4. Consider a digraph D which is an RDAG with parameter 3F + 1, where S0 = L
and A is an F -total set. Under the closed loop dynamics (2.29)-(2.32), ‖τi[t] − τL‖ converges to

zero exponentially for all agents i ∈ N .

Proof. We have proven this result for agents in S1 and S2 in Lemmas 2.5 and 2.6. We now consider
any node i ∈ Sp for arbitrary p. Observe that every agent i ∈ Sp satisfies the equation (2.38), where
a[t] represents the norm ‖τi[t]− τL‖ and bj[t] = ‖τj[t]− τL‖, where j ∈

⋃p−1
l=0 Sl. From Lemma

52

2.6, we have that ‖τi − τL‖ for normal agents in S2 converges exponentially to zero. Hence, it
follows that for each normal agent in S3, ‖τi − τL‖ converges to zero exponentially since all of its
normal behaving agents are from the set

⋃2
l=0 Sl. Repeating this logic shows that for each normal

agent i ∈ Sp, ‖τi − τL‖ converges exponentially to zero for each p ≥ 1.

2.4.4 Simulations

To demonstrate the methods presented in this section, we consider an RDAG of 80 agents with
parameter r = 16 and F = 5. There are 5 sub-levels, Sl with |Sl| = 16 for l ∈ {0, 1, 2, 3, 4}. The
set S0 is composed entirely of agents designated to behave as leaders. In the simulation, A is a
5-local model with 5 agents in each of the levels Sl becoming adversarial (including in S0). The
simulation treats a worst-case scenario in the sense that each agent i ∈ Sl, l ≥ 1, has in-neighbours
only in Sl−1 and no leader in-neighbors. The agents have states in R2. The vector ξ specifies the

formation as points on circle of radius 10 m centered at
[
0 10

]T
. The vectors pi(0), i ∈ L

are chosen such that τi(0) is at the origin for all i ∈ L. The vectors pj(0) for all other agents
j ∈ (Vi\L) are initialized such that their τj(0) values are randomly initialized values. We choose
the maximum allowed speed of the agents as uM = 1. These conditions are used for both the
continuous and discrete time simulations. For the continuous time case, the control parameter α is
chosen as α = 0.8.

Figure 2.10 shows a plot of ‖τi(t)−τL‖ versus time for a subset of the normal agents. It is clear
that all the normal agents converge to the point where their τ values are same as those of leader

in finite time. Figure 2.11 shows the path pi(t) =
[
xi(t) yi(t)

]T
of all the agents and a subset of

the adversarial agents. The paths of the adversarial agents are chosen to as random walks and are
not shown in the figure. In Figure 2.11 and Figure 2.14, it can be noted that while some normal
agents (belonging to set S1 move directly towards their desired locations, other normal agents first
move away from their desired locations. This is in agreement with our analysis; malicious agents
are able to exert a bounded influence on normal agents in Sl, l ≥ 2 which do not have any leaders
as in-neighbors, while convergence is still guaranteed in a finite time period.

For the case of the discrete system, Figure 2.13 shows the variation of ‖τi[k] − τL‖ with

number of steps. Figure 2.14 shows the path pi[k] =
[
xi[k] yi[k]

]T
of the agents. From both

the figures, it is clear that despite the 5-local adversarial model, each normal agent achieves the
desired formation.

From Figures 2.10 and 2.13, it can be seen that agents in Sl converge before agents in Sl+1,
which is consistent with our analysis for this particular worst-case scenario.

53

Figure 2.10: Norm ‖τi(t)− τL‖ of a subset of the normal agents in the continuous time case. For
sake of clarity, only a few normal nodes from each set Sp are shown.

54

Figure 2.11: Path of the agents in the continuous time case. All normal and adversarial agents start
from the centre of the circle marked by red dots. The leaders are denoted by the star points pL and
the non-adversarial agents are denoted by pN.

Figure 2.12: Norm ‖ui(t)‖ of a subset of the normal agents in the continuous-time case, demon-
strating that their input magnitudes never exceed the bound uM = 1. The rest of the network is not
shown for sake of clarity.

55

Figure 2.13: Discrete Time: Norm of formational position differences ‖τi[k] − τL‖ of a subset of
the normal agents in the discrete time case. For sake of clarity, only a few normal nodes from each
set Sp are shown.

-15 -10 -5 0 5 10 15

x [m]

-5

0

5

10

15

20

25

y
 [
m

]

Path of Agents in Discrete Time System

p
L
 (Leaders)

p
N

 (Normal)

Figure 2.14: Discrete Time: Path of the agents in the discrete time case. The leaders are denoted
by the star points pL and the non-adversarial agents are denoted by pN.

56

Figure 2.15: Discrete Time: Norm ‖ui[k]‖ of a subset of the normal agents in the discrete time
case. Again, the magnitude of each agents’ control input never exceeds the bound uM = 1 and
goes to zero as the agents converge to formation.

2.5 Resilient Finite-Time Consensus: A Discontinuous Systems
Perspective

As discussed in the Introduction to this chapter, there are few works in prior literature that consider
resilient leaderless consensus in the continuous-time domain. One of the challenges of considering
the continuous-time domain is proving existence of solutions to the resulting differential equations
describing the system dynamics. The earlier studies that do consider the continuous-time domain
make the assumption that adversarial signals sent to other agents are continuous. Some works
model the system as having switched system dynamics and make the assumption that there exists
a minimum dwell time between switching instances. This section relaxes these prior assumptions
and presents a novel class of controllers that guarantee resilient leaderless consensus in finite time
under an F -local or F -total adversarial model. No minimum dwell time to system dynamics is
assumed, and adversarial signals are only assumed to be Lebesgue measurable rather than contin-
uous. Discontinuous systems theory is used to rigorously demonstrate the finite-time convergence
of normally-behaving agents to a common consensus value in the convex hull of initial normal
agents’ states.

57

2.5.1 Problem Formulation

Consider a network of n agents with n ≥ 2 whose communication structure is modeled by the
digraph D = (V , E). Without loss of generality we assume an initial time of t0 = 0. Each agent i
has a scalar state xi : R→ R and continuous-time first-order dynamics

ẋi(t) = ui(t) (2.39)

where the form of ui(t) will be given in Algorithm 2.5. At all times t ≥ 0 each agent i is able to
send a signal to its out-neighbors containing a function of its state g(xi(t)), where g : R → R is
a strictly increasing function with domain equal to R. The function g(·) is the same for all agents
and is not required to be continuous.

Definition 2.14. The notation g(xij(t)), xij : R → R, denotes the signal received by agent i from

agent j at time t.

A normally-behaving agent is defined as an agent i that sends the function of its true state
value g(xi(t)) to all of its out-neighbors and updates its state according to the Finite-Time Resilient

Consensus Protocol (FTRC-P) defined in Algorithm 2.5. The set of all normal agents is denoted
N ⊂ V .

We consider the presence of adversarial adversaries in this problem setting, which are defined
as follows:

Definition 2.15. An agent k ∈ V is called adversarial if at least one of the following conditions

holds:

• There exists t ≥ t0 such that uk(t) is not equal to the input (2.40) defined by the FTRC

Protocol in Algorithm 2.5.

• There exists i ∈ Vout
k and t ≥ t0 such that g(xik(t)) 6= g(xk(t)); i.e. agent k sends an

out-neighbor a different value than its actual state value.

• There exists i1, i2 ∈ Vout
k and t ≥ t0 such that g(xi1k (t)) 6= g(xi2k (t)); i.e. agent k sends

different values to different out-neighbors.

The set of adversarial agents is denoted A ⊂ V .

Note that the definition of adversarial agents encompasses both Byzantine adversaries [83] and
faulty agents. All nodes in V are either normal or adversarial; i.e. A ∩ N = ∅ and A ∪ N = V .
The only assumption made on the signals g(xik(·)) originating from the adversaries is the following
condition:

58

Algorithm 2.5 FTRC PROTOCOL (FTRC-P):

1. At time t, each normal agent i receives values g(xij(t)) from its in-neighbors j ∈ Vi(t) and
forms a sorted list.

2. If there are less than F values strictly larger than i’s own value g(xi(t)), then i removes
all values that are strictly larger than its own. Otherwise i removes precisely the largest F
values in the sorted list.

3. In addition, if there are less than F values strictly smaller than i’s own value g(xi(t)), then i
removes all values that are strictly smaller than its own. Otherwise i removes precisely the
smallest F values in the sorted list.

4. Let Ri(t) denote the set of agents whose values are removed by agent i in steps 2) and 3) at
time t. Agent i applies the following update:

ui(t) = α sign

 ∑
Ji\Ri[t]

g(xij(t))− g(xi(t))

 (2.40)

where α > 0 and g : R → R is defined in Section 2.5.1. Note that since i ∈ Ji by
definition and agent i never filters out the function of its own state g(xi(t)), (2.40) is always
well-defined.

59

Assumption 2.2. For any k ∈ A and i ∈ N , the function g ◦ xik is Lebesgue measurable.

Remark 2.2. Assumption 2.2 widens the class of adversarial signals that can be considered as

compared to prior work. Prior work typically assumes that adversarial signals are continuous [83,

84] or have a finite number of discontinuities in any compact interval [86,88]. Under Assumption

2.2 however, the techniques in this section consider adversarial signals that may be discontinuous

and have possibly infinite discontinuities in a finite interval.

Naturally, Assumption 2.2 raises the question of what happens if one or more of the adversarial

signals are not Lebesgue measurable. The answer to this question hinges upon whether there exist

subsets of R that are not Lebesgue measurable, which in itself depends on which core axioms of

mathematics are assumed to hold (e.g. the axiom of choice). Further discussion on this point is

given in Section 2.5.5.

To quantify the number and distribution of adversarial agents in the network, we will use the
F -local model described in Definition 2.2. Recall that under the F -local model no agents are
assumed to be invulnerable to attacks or faults.

The objective of the normal agents is to achieve consensus in their state values despite the pres-
ence of an F -local adversarial set A. We ultimately are not concerned with the trajectories of the
adversarial agents’ states–we are only concerned with ensuring that the actions of the adversarial
agents do not prevent the consensus of the normal agents. In this light, we define the vector of
normal agents’ states as follows:

xN (t) =


xN1(t)

xN2(t)
...

xN|N|(t)

 , xN (t) ∈ R|N |, (2.41)

where Nj is the index of the jth agent in N according to any arbitrary fixed ordering of N , with
{N1,N2, . . . ,N|N |} = N . To give a brief example, in a network of n = 5 agents with the normal
agents being {2, 4, 5}, we have N1 = 2, N2 = 4, and N3 = 5 with xN (t) = [x2(t) x4(t) x5(t)]T .
Consensus of the normal agents is achieved when xN (t) ∈ span(1). However, note by the form
of (2.40) that each ui(·) is a function of both signals from normal agents and signals from any
adversarial agents that are in-neighbors of i. For all i ∈ N , the vector of adversarial signals sent
to i at time t is denoted xiA ∈ R|Vi∩A|. The dynamics of the normal agents are therefore written as

60

follows:

ẋN (t) =


uN1(xN (t), xN1

A (t)))

uN2(xN (t), xN2
A (t))

...

uN|N|(xN (t), x
N|N|
A (t))

 ,
= fN (xN (t), xNA (t)), (2.42)

where {N1, . . . ,N|N |} = N and

xNA (t) =
[
(xN1
A (t))T ··· (x

N|N|
A (t))T

]T
∈ R

∑
Nj∈N

|VNj∩A| (2.43)

is the vector of all adversarial signals at time t. By definition, the adversarial signals are arbitrary
functions of time and in general will not be functions of the normal agent state vector xN (t). The
adversarial signals in each vector xNiA can therefore be viewed as arbitrary, possibly discontinuous
inputs to the system of normal agents.

The objective of the normally-behaving agents is to achieve Finite-Time Resilient Consensus

(FTRC). To define FTRC, we first introduce the following functions:

M(xN) = max
i∈N

xi = max
j∈{1,...,|N |}

(ej)TxN

m(xN) = min
i∈N

xi = min
j∈{1,...,|N |}

(ej)TxN

V (xN) = M(xN)−m(xN) (2.44)

We also define the following sets to describe the agents with state values equal to M(xN) or
m(xN):

SM = {i ∈ N : xi = M(xN)}

Sm = {i ∈ N : xi = m(xN)} (2.45)

Definition 2.16. The normal agents i ∈ N achieve Finite-Time Resilient Consensus (FTRC) if all

of the following conditions hold:

(i) xi(t) ∈ [m(xN (0)),M(xN (0))] for all t ≥ 0 and for all i ∈ N .

(ii) ∃T : R|N | → R+ such that V (xN (t)) = 0 for all t ≥ T (xN (0)). Equivalently, xN (t) ∈
span(1) for all t ≥ T (xN (0)).

61

Remark 2.3. The notion of FTRC is based on the notion of Continuous-Time Resilient Asymptotic
Consensus (CTRAC) in [83], but imposes the stricter requirement that V (xN (t)) converges exactly
to zero in a finite amount of time and remains there for all future time.

Problem 2.2. Determine conditions under which FTRC is achieved by the normal agents i ∈ N
in the presence of a adversarial subset of agents A ⊂ V .

2.5.2 Justification for Discontinuous Systems Approach

This section uses discontinuous systems theory and nonsmooth analysis to prove that a network of
agents applying the FTRC-P achieves FTRC. There are two reasons for such an approach. First, the
form of ui(·) in (2.40) implies that the right hand side (RHS) of (2.42) is discontinuous. Note that
we cannot simply assume a minimum “dwell time” and treat the system as a switching system,
since cleverly designed adversarial signals may induce an arbitrary number of discontinuities in
any given time interval. To give a pathological example, suppose an agent i ∈ N receives an
adversarial signal xik(t) from k ∈ A defined as follows:

xik(t) =

a ∈ R if t ∈ I,

b ∈ R, b 6= a if t ∈ Q
(2.46)

where a and b are chosen appropriately, and I and Q represent the sets of irrational and rational
numbers in R, respectively. Both I andQ are dense in R, implying that no positive minimum dwell
time can be assumed for the system. The second reason for a discontinuous systems approach
is that the Lyapunov-like candidate V (xN (t)) from (2.44) which will be used for convergence
analysis is nonsmooth in general. Discontinuous systems theory allows for nonsmoothness and
discontinuities to be addressed in a mathematically precise manner while solving Problem 2.2.

2.5.3 Review of Discontinuous Systems Theory

This subsection gives a brief overview of several fundamental concepts from discontinuous systems
theory that are relevant to this paper. The reader is referred to [198, 205–207] for more detailed
information.

A differential inclusion is a system with dynamics

ẋ(t) ∈ F(t, x(t)), (2.47)

where x : R → Rd and F : Rd → P(Rd), where P(Rd) denotes the power set of Rd as defined
in Section 1.5. The set-valued map F indicates that at every time t there can be multiple possible

62

evolutions of the system state rather than just one. A Caratheodory solution of (2.47) defined on
[t0, t1] ⊂ [0,∞) is an absolutely continuous function x : [t0, t1] → Rd such that ẋ(t) ∈ F(t, x(t)

for almost all t ∈ [t0, t1] in the sense of Lebesgue measure. Existence of Caratheodory solutions
to (2.47) is guaranteed by the following proposition:

Proposition 2.1 ([198]). Suppose the set-valued mapF : [0,∞)×Rd → P(Rd) is locally bounded

and takes nonempty, compact and convex values. Assume that, for each t ∈ R, the set-valued map

x 7→ F(t, x) is upper semicontinuous, and for each x ∈ Rd, the set-valued map t 7→ F(t, x) is

measurable. Then, for all (t0, x0) ∈ [0,∞) × Rd there exists a Caratheodory solution of (2.47)
with initial condition x(t0) = x0.

For convenience, the definitions of locally bounded, upper semicontinuity, and local Lipschitz-
ness are given below.

Definition 2.17 (Locally bounded [198]). The set-valued mapF : [t0,∞)×Rd → P(Rd) is locally

bounded at (t, x) ∈ [t0,∞)× Rd if there exist ε, δ > 0 and an integrable function m : [t, t+ δ]→
(0,∞) such that ‖z‖2 ≤ m(s) for all z ∈ F(s, y), all s ∈ [t, t + δ], and all y ∈ B(x, ε) where

B(x, ε) is the unit ball of radius ε centered at x.

Definition 2.18 (Upper semicontinuity [198]). The time-invariant set-valued map F : Rd →
P(Rd) is upper semicontinuous at x ∈ Rd if for all ε > 0 there exists δ > 0 such that F(y) ⊆
F(x) +B(0, ε) for all y ∈ B(x, δ).

Definition 2.19 ([198]). The set-valued map F : [t0,∞) × Rd → P(Rd) is locally Lipschitz

at x ∈ Rd if there exists L(x), ε > 0 such that F(y) ⊂ F(z) + L(x) ‖y − z‖2 B̄(0, 1) for all

y, z ∈ B(x, ε). Note that a set-valued map being locally Lipschitz implies that it is also upper

semi-continuous [198].

Existence intervals for Caratheodory solutions to (2.47) can be extended forward in time using
the following result.

Theorem 2.5 ([208] Ch. 2 §7 Thm 2). Let F : Rd → P(Rd) satisfy the hypotheses of Proposition

2.1 in a compact domain D ⊂ R× Rd, and be upper semicontinuous in t and x on D. Then each

solution of (2.47) with
[t0
x(t0)

]
∈ D can be continued in time until

[
t

x(t)

]
reaches the boundary of

D.

Although there are multiple ways to define set-valued maps, the following method will be used
in this paper.

63

Definition 2.20 ([198]). Let f : Rd×U → R, where U ⊂ Rm is the set of allowable control inputs,

and let u : R→ U be a control signal. Consider the function ẋ(t) = f(x(t), u(t)), u(t) ∈ U . The

set-valued map G[f] : Rd → P(Rd) is defined as

G[f](x) , {f(x, u) : u ∈ U} . (2.48)

The notion of generalized gradient extends the notion of gradient to locally Lipschitz functions
that may not be continuously differentiable everywhere.

Definition 2.21 (Generalized Gradient [205,206]). Let V : Rd → R be a locally Lipschitz function

[209, Sec. 3.1], and let ΩV ⊂ Rd denote the set of points where V fails to be differentiable,8 and

let S ⊂ Rd denote any other set of measure zero. The generalized gradient ∂V : Rd → P(Rd) of

V is defined as

∂V (x) = co
{

lim
i→∞
∇V (xi) : xi → x, xi /∈ ΩV ∪ S

}
(2.49)

Computing generalized gradients can be difficult in general. However several useful results
exist in the literature that facilitate this calculation, including the following one.

Proposition 2.2 ([198]). For k ∈ {1, . . . ,m}, let gk : Rd → R be locally Lipschitz at x ∈ Rd,
and define the functions gmax : Rd → R and gmin : Rd → R as

gmax(y) , max{gk(y) : k ∈ {1, . . . ,m}} (2.50)

gmin(y) , min{gk(y) : k ∈ {1, . . . ,m}} (2.51)

Then all of the following statements hold:

1. fmax and fmin are locally Lipschitz at x

2. Let Imax(x) denote the set of indices k for which gk(x) = gmax(x). Then the function gmax is

locally Lipschitz at x, and

∂gmax ⊆ co
⋃
{∂gi(x) : i ∈ Imax(x)}. (2.52)

Furthermore, if gi is regular9 at x for all i ∈ Imax(x), then equality holds in (2.52) and gmax

is regular at x.
8Note that by Rademacher’s Theorem, a locally Lipschitz function is differentiable almost everywhere in the sense

of Lebesgue measure [205, Sec. 1.2].
9The precise definition of regular functions can be found in [205, Defn. 2.3.4] and [198]. Notably, all convex

functions are regular [205, Prop. 2.3.6].

64

3. Let Imin(x) denote the set of indices k for which gk(x) = gmin(x). Then the function gmin is

locally Lipschitz at x, and

∂gmin ⊆ co
⋃
{∂gi(x) : i ∈ Imin(x)}. (2.53)

Furthermore, if −gi is regular at x for all i ∈ Imin(x), then equality holds in (2.52) and

−gmin is regular at x.

The set-valued Lie derivative is used to analyze the stability of differential inclusions:

Definition 2.22 ([197, 198]). Given a locally Lipschitz function V : Rd → R and a set-valued

map F : Rd → P(Rd), the set-valued Lie derivative L̃FV : Rd → P(Rd) of V with respect to

(w.r.t.) F at x is defined as

L̃FV (x) = {a ∈ R : ∃v ∈ F(x) such that ζTv = a

for all ζ ∈ ∂V (x)} (2.54)

Given a locally Lipschitz and regular function f and a Caratheodory solution x(t) of (2.47),
the following result describes properties of the time derivative of the composition f(x(t)).

Proposition 2.3 ([197,198]). Let x : [0, t1]→ Rd be a solution of the differential inclusion (2.47)
with F(·) satisfying the hypotheses of Proposition 2.1, and let h : Rd → R be locally Lipschitz

and regular. Then the composition t 7→ h(x(t)) is differentiable at almost all t ∈ [t0, t1], and the

derivative of t 7→ h(x(t)) satisfies

d

dt
(h(x(t))) ∈ L̃Fh(x(t)) (2.55)

for almost every t ∈ [0, t1].

Lastly, the following result will be used to demonstrate finite-time convergence.

Theorem 2.6 ([197]). Let M = span(1). Consider a scalar function V (x) : Rd → R with

V (x) = 0 for all x ∈ M and V (x) > 0 for all x ∈ Rd\M. Let x : R → Rd and V (x(t)) be

absolutely continuous on [t0,∞) with d/dt(V (x(t))) ≤ −ε < 0 almost everywhere on {t : x(t) /∈
M}. Then V (x(t)) converges to 0 in finite time, implying that x(t) reaches the subspace M in

finite time.

65

2.5.4 Main Results

The first result of this section describes a differential inclusion for the total system in (2.42) under
the controller (2.40) and demonstrates that it satisfies all the conditions of Proposition 2.1. This
will guarantee existence of solutions despite the discontinuous nature of (2.40) and the possibly
discontinuous nature of the adversarial signals.

Lemma 2.7. Consider the system (2.42) where all normally-behaving agents apply the FTRC

Protocol (Algorithm 2.5). Then the dynamics of the system (2.42) satisfy the differential inclusion

ẋN (t) ∈ G[fN](xN (t)), (2.56)

where

G[fN](xN) = co {−α1, α1} . (2.57)

Furthermore, G[fN](xN) satisfies all the hypotheses of Proposition 2.1 and is locally Lipschitz for

all xN ∈ R|N | and for all t ≥ 0.

Proof. By the definition of the sign(·) function, observe that for all i ∈ N it holds that ui ∈
{−α, 0, α}. Note that this holds for all possible adversarial signals xNA defined in (2.43). Therefore
ẋi(t) ∈ [−α, α] for all i ∈ N , implying that ẋN (t) ∈ co {−α1, α1} = G[fN](xN) for all xN ∈
R|N |.

Next, we show that G[fN](xN) satisfies all the hypotheses of Proposition 2.1. Note that
G[fN](xN) takes nonempty, compact, and convex values. Since G[fN](xN) is time-invariant and
equal to the Cartesian product of intervals [−α, α]× . . .× [−α, α], it is measurable for all x ∈ R|N |

and for all t ≥ 0. To show local boundedness note that for all xN ∈ R|N |, for all t ≥ 0, and

for all v ∈ G[f](xN) we have ‖v‖2 =
(∑|N |

i=1 |vi|2
)(1/2)

≤
(∑|N |

i=1 |α|2
)(1/2)

=
√
|N |α. Let-

ting γ(t) =
√
|N |α, it follows that for all (t, x) ∈ [0,∞) × R|N | and for all ε, δ > 0 we have

‖v‖2 ≤ γ(s) for all v ∈ G[f](xN), for all s ∈ [t, t+ δ], and for all y ∈ B(x, ε).
Finally, G[fN](xN) can be shown to be locally Lipschitz by noting that since G[fN](xN) is

constant for all x ∈ R|N |, it holds that for all x|N | ∈ RN there exists L > 0, ε > 0 such that
G[fN](y) = co {−α1, α1} ⊆ co {−α1, α1}+L ‖y − z‖ B̄(0, 1) = G[fN](z)+L ‖y − z‖ B̄(0, 1)

for all y, z ∈ B(xN , ε). Since local Lipschitzness of G[fN](xN) implies upper semicontinuity of
G[fN](xN) [198], G[fN](xN) therefore satisfies all the hypotheses of Proposition 2.1.

We will next characterize the functions M(·), m(·), and V (·). These results will be necessary
to demonstrate that FTRC is achieved by the system of normal agents.

66

Lemma 2.8. Let the functions M : R|N | → R, m : R|N | → R, and V : R|N | → R be defined as in

(2.44). Then M(·), (−m(·)), and V (·) are all regular, locally Lipschitz, and absolutely continuous

on R|N |.

Proof. Recall that ei is the ith column of the |N | × |N | identity matrix. Observe that M(xN)

is the pointwise maximum over the functions (ei)TxN for i ∈ N , which are all locally Lipschitz
on R|N |. By Proposition 2.2, M(xN) is therefore locally Lipschitz on R|N |. In addition, each
function (ei)TxN is affine, and therefore convex and regular on R|N |. Since for all possible indices
i ∈ {1, . . . ,N} the functions (ei)TxN are regular on R|N |, by Proposition 2.2 M(xN) is regular
on R|N |.

Similarly, m(xN) is the pointwise minimum over the functions (ei)TxN for i ∈ {1, . . . ,N},
which are all locally Lipschitz on R|N |. By Proposition 2.2, m(xN) is therefore locally Lipschitz
on R|N |. Since each (ei)TxN is affine, each function −(ei)TxN is also affine and therefore convex
and regular on R|N |. Therefore by Proposition 2.2 the function (−m(xN)) is regular on R|N |.

Since V (xN) is equal to the sum of two locally Lipschitz and regular functions, it holds that
V (xN) is also locally Lipschitz and regular [198]. Finally, every locally Lipschitz function onR|N |

is absolutely continuous on R|N | [198], which implies that M(xN), (−m(xN)), and V (xN) are all
absolutely continuous.

Remark 2.4. We primarily consider the function (−m(·)) rather than m(·) because Proposition

2.2 only allows us to prove the regularity of (−m(·)). The property of regularity is required by

Proposition 2.3 to prove that the time derivative of (−m(xN (t)) exists for almost all t ∈ [0, t1),

which will be shown later in Theorem 2.7.

We next derive the Clarke generalized gradients forM(·) andm(·), which are defined in (2.44).

Lemma 2.9. Let M : R|N | → R and m : R|N | → R be defined as in (2.44). Let {N1, . . . ,N|N |}
be the indices of the normal agents, with Ni being the index of the ith agent in N . The Clarke

generalized gradients ∂M and ∂m are

∂M(xN) = co
⋃{

ei : Ni ∈ SM
}
, (2.58)

∂m(xN) = co
⋃{

ei : Ni ∈ Sm
}
. (2.59)

Proof. By Lemma 2.8, M(xN) is the pointwise maximum over the functions (ei)TxN for i ∈
{1, . . . , |N |}, which are all locally Lipschitz and regular on R|N |. Furthermore, each function

67

(ei)TxN is continuously differentiable at all xN ∈ R|N |, implying that the following holds [198]:

∂((ei)TxN) = ∇((ei)TxN) = ei.

By Proposition 2.2, we therefore have

∂M(xN) = co
⋃{

ei : i ∈ Imax(xN)
}
, (2.60)

where Imax(xN) denotes the indices j such that (ej)TxN = xNj = M(xN) (recall from (2.41) that
(ej)TxN = xNj , where Nj is the index of the jth normal agent in N). By equation (2.45), the
set of indices Nj such that xNj = M(xN) is precisely SM(xN), which by substitution into (2.60)
yields (2.58).

Similar arguments can be used to derive ∂m(xN). The function m(xN) is the pointwise min-
imum over the functions (ei)TxN for i ∈ {1, . . . , |N |} which are all locally Lipschitz, regular,
and continuously differentiable on R|N |. Observe that the functions −(ei)TxN are also locally
Lipschitz, regular, and continuously differentiable on R|N |. By Proposition 2.2, we therefore have

∂m(xN) = co
⋃{

ei : i ∈ Imin(xN)
}
, (2.61)

where Imin(xN) denotes the indices j such that (ej)TxN = xNj = m(xN). By Definition 2.45, the
set of indices Nj such that xNj = m(xN) is precisely Sm(xN), which by substitution into (2.61)
yields (2.59). As a final note, observe that since m(·) is locally Lipschitz by Lemma 2.8, by the
Dilation Rule [198] we can derive ∂(−m(xN)) = ∂((−1)m(xN)) = −(∂m(xN)).

Before presenting our next main result, we will first need the following Lemma.

Lemma 2.10. Let q ∈ Rm and let Θ = {θ ∈ Rm : θ � 0, 1T θ = 1}. Let a ∈ R. Then θT q = a

for all θ ∈ Θ if and only if q = a1.

Proof. Necessity: If q = a1, then for all θ ∈ Θ we have θT q = qT θ = a(1T θ) = a.
Sufficiency: We prove the contrapositive, i.e. q 6= a1 implies there exists θ∗ ∈ Θ such that

(θ∗)T q 6= a. If q 6= a1 then there exists j ∈ {1, . . . ,m} such that qj 6= a. Choose θ∗ = ej , where
ej is the jth column of the identity matrix. Clearly, we then have θ∗ � 0 and 1T θ∗ = 1, implying
θ∗ ∈ Θ. Then (θ∗)T q = eTj q = qj 6= a.

The next theorem proves that m(xN (t)) is nondecreasing on the interval t ∈ [0, t1) and that
M(xN (t)) is nonincreasing on the interval t ∈ [0, t1), where [0, t1) is the interval on which xN (t)

is a solution to (2.56). This will imply that the states of all agents remain within the invariant set
[m(xN (0)),M(xN (0))] for all t ≥ 0.

68

Theorem 2.7. Consider a digraph D = {V , E} with the system dynamics (2.56) under the FTRC

Protocol in Algorithm 2.5. Suppose that A is an F -local model and that D is (2F + 1)-robust.

Let m(xN (t)) and M(xN (t)) be defined as in (2.44). Then the derivatives d
dt

(M(xN (t))) and
d
dt

(m(xN (t))) exist at almost all t ∈ [0, t1) and satisfy

d

dt
(M(xN (t))) ∈ [−α, 0], (2.62)

d

dt
(m(xN (t))) ∈ [0, α], (2.63)

at almost all t ∈ [0, t1).

Proof. Where possible, we abbreviate xN (t) to xN for brevity. By Lemma 2.7, solutions xN (t) to
the differential inclusion (2.56) are guaranteed. By Lemma 2.8, the functions M(·) and (−m(·))
are both locally Lipschitz and regular on R|N |. Therefore by Proposition 2.3, the compositions
M(xN (t)) and (−m(xN (t))) are differentiable at almost all t ∈ [0, t1). In addition, by Proposition
2.3 we have d

dt
M(xN) ∈ L̃GM(xN) and d

dt
(−m(xN)) ∈ L̃G(−m(xN)) at almost all t ∈ [0, t1),

where L̃GM(xN) and L̃G(−m(xN)) represents the set-valued Lie derivatives of M(xN) and
(−m(xN)), respectively. The next part of the proof focuses on characterizing L̃GM(xN) and
L̃G(−m(xN)), from which we derive the range of possible values for d

dt
M(xN) and d

dt
m(xN).

We first consider L̃GM(xN). By definition,

L̃GM(xN) ={a ∈ R : ∃v ∈ G[fN](xN) such that

zTv = a ∀z ∈ ∂M(xN)} (2.64)

Define EM as a matrix with columns ei such that Ni ∈ SM .10 By the definition of ∂M(xN)

from Lemma 2.9, each z ∈ ∂M(xN) can be written as the convex combination z = Eθ, where
θ ∈ R|SM |, θ � 0 and 1T θ = 1. It therefore holds that a ∈ L̃GM(xN) if and only if there exists a
v ∈ G[fN](xN) such that zTv = (θTET

M)v = θT (ET
Mv) = a for all θ � 0, 1T θ = 1. Lemma 2.10

proves that this holds if and only ifET
Mv = a1. Recall thatEM is composed of the columns ei such

that Ni ∈ SM . By the form of G[fN](xN), choosing any v ∈ G[fN](xN) with vi = a ∈ [−α, α]

for all i such that Ni ∈ SM yields ET
Mv = a1, and therefore d

dt
M(xN) ∈ L̃GM(xN) = [−α, α].

We can further restrict the range of values for d
dt
M(xN) to the range [−α, 0] by consider-

ing the form of (2.40). We prove this by contradiction. Suppose there exists a t ≥ 0 such that
d
dt
M(xN (t)) > 0. This implies that there exists t ≥ 0 and Ni′ ∈ SM(t) such that uNi′ (t) =

α sign
(∑

JNi′ \RNi′ [t]
g(x

Ni′
j (t))− g(xNi′ (t))

)
> 0. However, for all Ni ∈ SM all normal in-

neighbors j ∈ Vi(t) have state values less than or equal to xNi(t) by the definition of SM . Since g(·)
10Recall that Ni is defined immediately after Eq. (2.41).

69

is strictly increasing, we have g(xNij)−g(xNi) ≤ 0 for all normal in-neighbors j ∈ VNi∩N . In ad-
dition, since A is F -local, any adversarial signals satisfying g(xNik (t)) > g(xNi(t)) for k ∈ (VNi ∩
A) are filtered out by Algorithm 2.5. Therefore we must have

∑
JNi\RNi [t]

g(xNij (t))−g(xNi(t)) ≤

0 for allNi ∈ SM , which implies that uNi(t) = (α)sign
(∑

JNi\RNi [t]
g(xNij (t))− g(xNi(t))

)
≤ 0

for all Ni ∈ SM . This contradicts the assumption that there exists an Ni′ ∈ SM with uNi′ (t) > 0.
Therefore d

dt
M(xN) ≤ 0 wherever it exists, which yields d

dt
M(xN) ∈ [−α, 0].

The preceding logic can be repeated to demonstrate that d
dt

(−m(xN)) ∈ [−α, 0] wherever this
derivative exists, from which we can conclude that d

dt
m(xN) ∈ [0, α].

The preceding result demonstrates that M(xN (t)) is nonincreasing and m(xN (t)) is nonde-
creasing for all t ≥ 0, and therefore all agents’ states remain within [m(xN (0)),M(xN (0))] for all
t ≥ 0. This implies that the hyperrectangle P (0) ⊂ R|N | defined as

P (0) =


[m(xN (0)),M(xN (0))]

...
[m(xN (0)),M(xN (0))

 (2.65)

is invariant for all t ≥ 0, which is precisely condition (i) of Finite-Time Resilient Consensus
(Definition 2.16).

Our next result will require the following Lemma.

Lemma 2.11. Under the conditions of Theorem 2.7, if d
dt
M(xN (t)) exists at t ≥ 0 then ui1(t) =

ui2(t) for all i1, i2 ∈ SM . Similarly, if d
dt
m(xN (t)) exists at t ≥ 0, then uj1(t) = uj2(t) for all

j1, j2 ∈ Sm.

Proof. We prove the contrapositive. If at some t ≥ 0 there exists i1, i2 ∈ SM such that ui1(t) 6=
ui2(t), then by (2.39) ẋi1(t) 6= ẋi2(t). Since M(xN (t)) is the pointwise maximum maxi∈N xi(t)

and xi1(t) = xj1(t) = M(xN (t)) by definition of SM , the derivative d
dt
M(xN (t)) is therefore

undefined at t. Similar arguments demonstrate the same result for d
dt
m(xN (t)).

The next result demonstrates that the time derivative of the composition V (xN (t)), wherever it
exists, is upper bounded by −α when xN (t) is not in span(1).

Theorem 2.8. Let V (·) be defined as in (2.44). Under the conditions of Theorem 2.7, the derivative
d
dt
V (xN (t)) exists at almost all t ∈ [0, t1). Furthermore, for all xN (t) /∈ span(1), the derivative

of V (xN (t)) satisfies

d

dt
(V (xN (t))) ≤ −α < 0 (2.66)

70

at almost all t ∈ [0, t1).

Proof. Where possible, we abbreviate xN (t) to xN for brevity. Recall from the definition of
the function V (xN (t)) that V (xN (t)) = M(xN (t)) − m(xN (t)), which implies d

dt
V (xN (t)) =

d
dt
M(xN (t)) − d

dt
m(xN (t)). Since d

dt
M(xN (t)) and d

dt
m(xN (t)) exist at almost all t ∈ [0, t1),

d
dt
V (xN (t)) exists at almost all t ∈ [0, t1).

Next, we show that for all xN /∈ span(1), there exists an agent i ∈ (SM ∪ Sm) such that either
ui(t) = −α or ui(t) = α. Observe that xN /∈ span(1) implies that SM and Sm are nonempty
and disjoint. By the definition of (2F + 1)-robustness (Definition 2.4), at least one of the sets
SM , Sm is (2F + 1)-reachable. Without loss of generality, suppose SM is (2F + 1)-reachable.
Then there exists i ∈ SM with |Vi\SM | ≥ 2F + 1. By the FTRC-P, agent i will filter out at
most 2F values. Since i ∈ SM , any normal values received by i will be less than or equal to
g(xi(t)). Since A is F -local, any adversarial values greater than g(xi(t)) will be filtered out as per
the FTRC-P. This implies that agent i will not filter out at least one value g(xij(t)) < g(xi(t)), and
that

∑
Ji\Ri[t] g(xij(t)) − g(xi(t)) < 0. Therefore ui(t) = −α. Similar arguments can be used to

show that if Sm is (2F + 1)-reachable, there exists i ∈ Sm with ui(t) = α.
Consider any t ≥ t0 such that xN (t) /∈ span(1) and d

dt
V (xN) exists. The existence of

d
dt
V (xN (t)) implies that both d

dt
M(xN) and d

dt
m(xN) exist. Since xN (t) /∈ span(1), by prior

arguments there either exists a iM ∈ SM with uiM (t) = −α or an im ∈ Sm with uim(t) = α. We
consider each case separately.

Case 1: Suppose there there exists an iM with uiM (t) = −α. Recall that we are considering
any t ≥ 0 such that xN (t) /∈ span(1) and d

dt
V (xN) exists, implying that d

dt
M(xN) exists. Since

d
dt
M(xN) exists at t, then by Lemma 2.11 we have uj(t) = −α at t for all j ∈ SM . This implies

that d
dt
M(xN) = −α. Since d

dt
m(xN) also exists at our chosen t and m(xN) ∈ [0, α], we have

d
dt
V (xN) ≤ −α < 0.

Case 2: Suppose there there exists an im with uim(t) = α Since d
dt
m(xN) exists at our choice

of t, then by Lemma 2.11 we have uj(t) = α at t for all j ∈ SM . This implies that d
dt
m(xN) = α.

Since d
dt
M(xN) also exists at our chosen t and M(xN) ∈ [−α, 0], we have d

dt
V (xN) ≤ −α < 0.

Since in each case we have d
dt
V (xN) ≤ −α < 0, for all xN (t) /∈ span(1) the equation (2.66)

holds at almost all t ∈ [0, t1).

Our final theorem completes this section by showing that FTRC is achieved by the system of
normal agents. In particular, this theorem demonstrates that solutions to the trajectories of the
normal agents exist on the time interval t ∈ [0,∞), and that there exists a time T ≥ 0 such that
xN (t) ∈ span(1) for all t ≥ T .

71

Theorem 2.9. Consider a digraph D = {V , E} with the system dynamics (2.56) under the FTRC

Protocol in Algorithm 2.5. Suppose that A is an F -local model and that D is (2F + 1)-robust.

Then the normal agents achieve FTRC as described in Definition 2.16.

Proof. By Theorem 2.7, all normal agents remain within the invariant set P (0) defined in (2.65),
satisfying condition (i) of FTRC. By Theorem 2.8, condition (ii) of FTRC is satisfied. To show
that condition (iii) of FTRC is satisfied, observe that by Lemma 2.8 V (·) is locally Lipschitz on
R|N |. Since Caratheodory solutions xN (t) of (2.56) are absolutely continuous, the composition
V (xN (t)) is therefore absolutely continuous [197, Appendix B]. By Lemma 2.7 G[f](xN) satis-
fies the hypotheses of Proposition 2.1 for all xN ∈ R|N | and for all t ≥ 0, implying that these
hypotheses are satisfied for the compact set Q = co(P (0) + B(0, ε)) for some ε > 0 (where addi-
tion is in terms of the Minkowski sum). Since P (0) is an invariant set and P (0) does not intersect
the boundary of Q, no solution xN (t) will reach the boundary of Q for all t ≥ 0. Consider any
domain D(t′1) = [−δ, t′1]×Q for δ, t′1 > 0. Each domain D(t′1) is therefore compact. By Theorem
2.5 this implies that all solutions xN (t) to (2.56) exist on t ∈ [0, t′1) for any t′1 > 0, which implies
that all solutions xN (t) to (2.56) exist on t ∈ [0,∞). By Theorems 2.6 and 2.8 V (xN (t)) converges
to span(1) in finite time, implying that xN (t) reaches consensus in finite time and condition (iii)
of FTRC is satisfied. Since by Theorem 2.8 we have d

dt
(V (xN (t))) ≤ −α at almost all t ∈ [0,∞),

the time of convergence satisfies T (xN (0)) = 1
α
V (xN (0)).

2.5.5 Discussion

We now discuss two aspects of the finite time resilient consensus approach presented in this section.
First, we briefly discuss the tradeoffs in choosing the α parameter in Algorithm 2.5. Second, we
discuss further the implications of Assumption 2.2; specifically, the possibility of the adversaries
sending signals that are not Lebesgue measurable.

The parameter α in Algorithm 2.5 controls the speed at which agents’ states move. The overall
effect of applying Algorithm 2.5 is that, intuitively speaking, the gap between the minimum and
maximum normal nodes will shrink at a rate of at least α. As per the proof of Theorem 2.9, the
time of convergence T (xN (0)) satisfies T (xN (0)) = 1

α
V (xN (0)). Therefore, the larger the value

of α the faster the normal agents will converge to consensus. When implemented in systems where
agents states represent physical systems, the maximum value of α will be limited by the control
input bounds for the agents. In addition, applying signum-type controllers in physical systems can
lead to chattering as agents approach the final consensus value [210–212]. The larger the value
of α, the more pronounced the chattering effects will be. Investigating the application of standard

72

chattering suppression methods [212] to the method presented in this section is left as an interesting
direction for future work.

We now discuss further the implications of Assumption 2.2 and the possibility of the ad-
versaries sending signals that are not Lebesgue measurable. To give a simple example of non-
Lebesgue-measurable function, the indicator function 1S : R→ R defined as

1S(x) =

1 if x ∈ S

0 otherwise

is not Lebesgue measurable if the subset S ⊂ R is not Lebesgue measurable. Note that by defini-
tion of measurability, the existence of a non-Lebesgue-measurable mapping from R to R implies
the existence of a subset of R which is not Lebesgue measurable. Contrapositively, the nonex-
istence of non-Lebesgue-measurable subsets of R implies that all functions mapping R to R are
Lebesgue measurable.

There are at least two schools of thought on this point. If one assumes that the axiom of choice
holds, then the axiom of choice can be used to demonstrate the existence of subsets of R that are
not Lebesgue measurable (e.g. Vitali sets [213]). However, the Solovay model [214] demonstrated
that the existence of a non-Lebesgue-measurable subset of R cannot be proven without using the
axiom of choice. Under the Solovay model, which does not assume the axiom of choice but instead
assumes the existence of an inaccessible cardinal, all subsets of R are Lebesgue measurable.

The question of whether the adversaries can send non-Lebesgue-measurable signals therefore
hinges upon which assumptions are made about the axiom of choice and the existence of an inac-
cessible cardinal. A full discussion of the merits of each approach is completely beyond the scope
of this dissertation, and so we conclude by simply asserting that the results of this section hold
under Assumption 2.2, i.e. when all adversarial signals are Lebesgue measurable.

2.5.6 Simulations

Finally, we present simulation results demonstrating our method for finite-time leaderless consen-
sus in continuous-time systems using possibly discontinuous control inputs. Our simulations are
for a system of n = 15 agents. The underlying communication graph is a k-circulant digraph with
k = 11, which can be shown to be at least 6-robust using results from [102]. The highest (integer)
value of F for which we can infer the graph is (2F + 1)-robust is therefore F = 2. Each agent’s
initial state xi(0) ∈ R, i ∈ V is a random value on the interval [0, 50]. Two agents are chosen at ran-
dom to be adversaries, resulting inA = {2, 13}. We emphasize that the normally-behaving agents

have no knowledge as to whether their in-neighbors are adversarial or normal. The adversarial
agents are malicious [2], meaning each adversary updates its state according to some arbitrary

73

0 0.5 1 1.5 2 2.5 3 3.5

Time 10 4

10

15

20

25

30

35

40

45

S
ta

te
 V

a
lu

e

Normal Agents

Misbehaving Agents

Figure 2.16: Simulation of a network of 15 agents appling the FTRC-P. The dotted red lines
represent the adversarial agents.

function of time but sends the same state value to all of its out-neighbors. All other agents are
normal and apply the FTRC-P from Algorithm 2.5 with α = 10. The function g : R → R in
(2.40) is chosen to be g(x) = (1/10)x3 + (1/1000)x5 + (1/10000)x7, which can be verified to be
a strictly increasing function. Figure 2.16 shows the results of this first simulation, with malicious
agents represented by red dotted lines and normally-behaving agents represented by solid colored
lines. The normal agents achieve consensus in a finite amount of time despite the influence of the
adversarial agents.

2.6 Discussion

The results in this section for resilient consensus based on MSR-type algorithms hinge upon the
F -totality or F -locality of the adversarial model, and the structure of the network communication
graph (i.e. r-robustness, strong r-robustness w.r.t. a set S, RDAG with parameter F). Some
discussion is warranted as to how realistic these conditions/assumptions are, and how they compare
to scenarios found in the real world.

Some readers may question the perceived assumption that the adversarial model will always

74

satisfy the condition of being F -total or F -local for a fixed F ∈ Z≥0. There are two things to
keep in mind in this regards. First, any consensus algorithm that is not designed to be resilient
to adversarial attacks makes a similar assumption; in particular, such an algorithm assumes that
the adversarial model is 0-total and 0-local (F = 0). Considering the proliferation of adversarial
attacks discussed in the Introduction to this dissertation, it is far more unrealistic to assume that
there will be exactly zero adversaries in a network than it is to assume that the adversaries form
an F -local or F -total set for some positive F . Second, instead of being viewed as an assumption,
the condition of F -totality or F -locality can instead be viewed as a quantification of resilience. In
other words, the parameter F precisely quantifies the number and distribution of adversaries that a
given network running an MSR-type algorithm can tolerate. This allows networks to be designed
and modified to be able to handle an appropriate value of F for which engineers and stakeholders
believe will mitigate the most likely threat model for the network.

The approach of modeling the adversary set as F -total or F -local is most appropriate in settings
where it is sufficiently difficult (although perhaps not impossible) for adversaries to attack and
compromise agents. In the particular case of mobile agents with proximity-based communication,
it is typically more appropriate to consider an F -total adversarial set since the set of adversaries
is able to collude by simultaneously entering the in-neighborhood of a common normal agent or
set of normal agents. The approach in this chapter does assume that agents are able to verify that
received information originates from actual agents in the network and not “spoofed” agents. In
this regards the methods presented in this chapter are not designed to be resilient against Sybil
attacks. However, alternate methods for extending MSR algorithms to mitigate such attacks have
been proposed in the literature [215].

We acknowledge that more work needs to be performed to understand the effects of violating
the F -total / F -local adversarial set assumptions on more general network configurations. The
results in Section 2.3.3 outline one particular scenario where violation of these assumptions leads
to the adversaries gaining full control over a leaderless network; however, studying more general
network topologies and even scenarios with normally-behaving leaders could also be investigated
more thoroughly.

We also point out that there is nothing preventing MSR-type algorithms from being combined
with other adversary mitigation techniques in a network to provide additional protection against
adversarial attacks. For example, MSR-type algorithms could be used in tandem with adversar-
ial detection techniques to allow the network to be able to withstand a particular attack without
negative effects until the adversaries’ identities could be identified.

Finally, with regards to the network notions of r-robustness, strong r-robustness w.r.t. a set S,
and RDAGs, prior work has studied the emergence of robustness properties in certain classes of
random graphs [97,99]. More work remains to be done in studying the emergence of robustness in

75

other classes of random graphs exhibited in real-world scenarios. However, when it is possible to
design or control the communication structure between agents in the network, there exist methods
to build or modify a network to satisfy these robustness conditions to a desired degree of network
resilience. Such methods are discussed in Chapter 3.

2.7 Conclusion

This chapter presented several novel contributions to the area of resilient consensus techniques.
We introduced conditions for agents with discrete-time dynamics to resiliently track a reference
signal propagated by a set of leader agents despite a bounded number of the leaders and followers
behaving adversarially. We also presented a novel continuous-time resilient controller that guar-
antees that normally-behaving agents can converge to a formation with respect to a set of leaders
in the presence of adversarial agents. This controller guarantees convergence in finite-time even
with bounded control inputs, and the resilient filtering method was also applied to a discrete-time
algorithm that guarantees exponential convergence of agents to formation in the presence of adver-
saries under bounded inputs. Finally, we presented conditions under which finite-time convergence
of normally-behaving agents in the presence of discontinuous, nonlinear adversarial signals is guar-
anteed. These final results introduce a novel and general class of MSR-type algorithms with the
ability to mitigate adversarial attacks that are Lebesgue measurable in time.

76

CHAPTER 3

Determining r- and (r, s)-Robustness for Design and
Analysis of Resilient Networks

3.1 Introduction

As discussed in Chapters 1 and 2 of this dissertation, many recent results in resilient consensus in
prior literature have been based on MSR-type algorithms. These results typically employ the graph
theoretical notions known as r-robustness and (r, s)-robustness [2, 71]. For example, r-robustness
and (r, s)-robustness are key notions included in the sufficient conditions for convergence of the
W-MSR [2], ARC-P [190], SW-MSR [79], DP-MSR [76] algorithms, and others. Given an upper
bound on the global or local number of adversaries in the network, the aforementioned resilient
algorithms guarantee convergence of normally behaving agents’ states to a value within the convex
hull of initial states if the integers r and s are sufficiently large. Determining the values of r and
s for which a graph is r- or (r, s)-robust is critical for knowing the maximum adversary model
that a network can tolerate while applying an MSR-type algorithm. Unfortunately, determining the
r- and (r, s)-robustness of arbitrary digraphs is an NP-hard problem in general [96]. The decision
problem of determining if an arbitrary graph is r-robust for a given integer r is coNP-complete [97].

The first algorithmic analysis of determining the values of r and s for arbitrary digraphs was
given in [96]. The algorithms proposed in [96] employ an exhaustive search to determine the max-
imum values of r and s for a given digraph, and have exponential complexity w.r.t. the number
of nodes in the network. Subsequent work has focused on methods to circumvent the complexity
of robustness determination including graph construction methods which increase the graph size
while preserving given values of r and s [2, 98]; lower bounding r with the isoperimetric con-
stant and algebraic connectivity of undirected graphs [99]; and demonstrating the behavior of r
as a function of certain graph properties [97, 100–104]. In particular, it has been shown that the
r-robustness of some specific classes of graphs can be exactly determined in polynomial time from

77

certain graph parameters. Examples include k-circulant graphs [102] and lattice-based forma-
tions [103,104]. Another recent approach has used machine learning to correlate characteristics of
certain graphs to the values of r and s [105], but these correlations do not provide explicit guaran-
tees. Despite the impressive results of prior literature, methods to either approximate or determine
exactly the r- and (r, s)-robustness of arbitrary digraphs remain relatively rare. Methods to deter-
mine the exact r- or (r, s)-robustness of arbitrary undirected graphs are also uncommon. Finding
more efficient or practical ways of determining the robustness of arbitrary graphs in general, and
digraphs in particular, remains an open problem.

In response to this open problem, this chapter first introduces a novel class of directed graphs
called k-circulant digraphs for which lower bounds on the maximum r-robustness and (r, s)-
robustness can be easily determined. The structure of these graphs is completely determined by the
number of agents n and the integer parameter k. We demonstrate that the r- and (r, s)-robustness
of k-circulant digraphs is a function of k regardless of the graph size n. This property makes it
possible to scale such graphs to an arbitrary value of agents while guaranteeing that the graph re-
mains r-robust for a particular r. In addition, we demonstrate that these graphs can also satisfy the
conditions of strong r-robustness with respect to a given subset, which has applications to resilient
leader-follower consensus scenarios. The results of this portion of the chapter are based on the
published works [102, 180].

Next, this chapter introduces novel methods for determining the r- and (r, s)-robustness of
digraphs and undirected graphs using mixed integer linear programming (MILP). These methods
only require knowledge of the graph Laplacian matrix and are zero-one MILPs, i.e. with all in-
teger variables being binary. To the best of our knowledge, this is the first time the robustness
determination problem has been formulated using an optimization framework. These results con-
nect the problem of graph robustness determination to the extensive and well-established literature
on integer programming and linear programming. More specifically, this second part of the chap-
ter presents a method to determine the maximum integer for which a nonempty, nontrivial, simple
digraph is r-robust using mixed integer linear programming. Next, we present a method which de-
termines the (r, s)-robustness of a digraph using linear programming. Here, the (r, s)-robustness
of a digraph refers to the maximal (r, s) integer pair according to a lexicographical order for which
a given digraph is (r, s)-robust, as first described in [96]. Furthermore, we show that our method
can also determine the maximum integer F for which a digraph is (F + 1, F + 1)-robust, which is
not considered in [96]. Finally, we present two mixed integer linear programs whose optimal val-
ues provide lower and upper bounds on the maximum r for which a nonempty, nontrivial, simple
digraph is r-robust. These two formulations exhibit a lower complexity than the method in the first
contribution described above. Formulating the r- and (r, s)-robustness determination problem in
an optimization setting provides several advantages. First, expressing the robustness determination

78

problem in MILP form allows for approximate lower bounds on a given digraph’s r-robustness to
be iteratively tightened using algorithms such as branch-and-bound. Lower bounds on the maxi-
mum value of s for which a given digraph is (r, s) robust (for a given nonnegative integer r) can
also be iteratively tightened using the approach in this chapter. Prior algorithms are only able
to tighten the upper bound on the maximum robustness for a given digraph or undirected graph.
Second, this formulation enables commercially available solvers such as Gurobi or MATLAB’s
intlinprog to be used to find the maximum robustness of any digraph. Finally, experimental results
using this new formulation suggest a reduction in computation time as compared to the centralized
algorithm proposed in [96]. The results of this portion of the chapter are based on the published
works [184, 186].

The chapter is organized as follows: the formulation for the r- and (r, s)-robustness determi-
nation problem is given in Section 3.2. Next, a description of k-circulant digraphs and a proof
that their robustness is a function of k is given in Section 3.3. Then, a framework for determining
r- and (r, s)-robustness of digraphs using mixed integer linear programming is given in Section
3.4. Finally, we present simulation results demonstrating the results of this chapter in Section 3.4.5
and give a brief conclusion in section 3.5. The first simulation demonstrates the efficacy of us-
ing k-circulant digraphs in a resilient leaderless consensus scenario. The final simulations present
a numerical analysis of the performance of the proposed mixed integer robustness determination
method as compared to prior state-of-the-art algorithms.

3.2 Problem Formulation

The notions of r- and (r, s)-robustness are graph-theoretical properties used to describe the in-
terconnections (e.g., communication topologies) in multi-agent networks. Examples of such net-
works include stations in a power grid, satellites in formation, or a group of mobile robots. In
these networks, edges model the ability for one agent i to transmit information to another agent
j. Prior literature commonly considers simple digraphs, which have no repeated edges or self
edges [2, 50, 216–218]. More specifically, simple digraphs satisfy (i, i) /∈ E ∀i ∈ V , and if the
directed edge (i, j) ∈ E , then it is the only directed edge from i to j. Prior work also commonly
considers nonempty and nontrivial graphs, where |V | > 1.

Assumption 3.1. This section considers nonempty, nontrivial, simple digraphs.

The property of r-robustness is based upon the notion of r-reachability. The definitions of
r-reachability and r-robustness are as follows:

Definition 3.1 ([2]). Let r ∈ Z≥0 and D = (V , E) be a digraph. A nonempty subset S ⊂ V is

r-reachable if ∃i ∈ S such that |Vi\S| ≥ r.

79

Definition 3.2 ([2]). Let r ∈ Z≥0. A nonempty, nontrivial digraph D = (V , E) on n nodes

(n ≥ 2) is r-robust if for every pair of nonempty, disjoint subsets of V , at least one of the subsets

is r-reachable. By convention, the empty graph (n = 0) is 0-robust and the trivial graph (n = 1)

is 1-robust.

The property of (r, s)-robustness is based upon the notion of (r, s)-reachability. The definitions
of (r, s)-reachability and (r, s)-robustness are as follows:

Definition 3.3 ([2]). Let D = (V , E) be a nonempty, nontrivial, simple digraph on n ≥ 2 nodes.

Let r, s ∈ Z≥0, 0 ≤ s ≤ n. Let S be a nonempty subset of V , and define the set X r
S = {j ∈ S :

|Vj\S| ≥ r}. We say that S is an (r, s)-reachable set if there exist s nodes in S, each of which has

at least r in-neighbors outside of S. More explicitly, S is (r, s)-reachable if |X r
S | ≥ s.

Definition 3.4 ([2]). Let r, s ∈ Z≥0, 0 ≤ s ≤ n. Let D = (V , E) be a nonempty, nontrivial,

simple digraph on n ≥ 2 nodes. Define X r
S = {j ∈ S : |Vj\S| ≥ r}, S ⊂ V . The digraph D is

(r, s)-robust if for every pair of nonempty, disjoint subsets S1, S2 ⊂ V , at least one of the following

conditions holds:

A) |X r
S1
| = |S1|,

B) |X r
S2
| = |S2|,

C) |X r
S1
|+ |X r

S2
| ≥ s.

The properties of r- and (r, s)-robustness are used to quantify the ability of several resilient
consensus algorithms to guarantee convergence of normally behaving agents in the presence of
Byzantine and malicious adversaries, collectively referred to in this section as misbehaving agents
[2,76,79,84,190]. Larger values of r and s generally imply the ability of networks applying these
resilient algorithms to tolerate a greater number of misbehaving agents in the network. For a more
detailed explanation of the properties of r-robustness and (r, s)-robustness, the reader is referred
to [2, 97, 216].

It should be clear from Definitions 3.2 and 3.4 that determining r and (r, s)-robustness for
a digraph D = (V , E) by using an exhaustive search method is a combinatorial problem, which
involves checking the reachabilities of all nonempty, disjoint subsets of V . For notational purposes,
we will denote the set of all possible pairs of nonempty, disjoint subsets of V as T ⊂ P(V)×P(V).
More explicitly, T is defined as

T =
{

(S1, S2) ∈ P(V)× P(V) : |S1| > 0, |S2| > 0, |S1 ∩ S2| = 0
}
. (3.1)

80

Figure 3.1: Depiction of all 12 possible (S1, S2) elements in T for a complete graphD of 3 agents.
Each graph represents a different possible way of dividingD into sets S1 and S2. In each individual
graph, yellow agents are in S1, blue agents are in S2, and white agents are in neither S1 nor S2.

It was shown in [96] that |T | =
∑n

p=2(np)(2p − 2).1 As a simple example, Figure 3.1 depicts all
elements of T for a graph of 3 agents, i.e. all possible ways to choose two nonempty, disjoint
subsets from the graph.

When considering a particular digraph D, there may be multiple values of r for which D is
r-robust. Similarly, there may be multiple values of r and s for which D is (r, s)-robust. The
following properties of robust graphs demonstrate this characteristic. Note that r-robustness is
equivalent to (r, 1)-robustness; i.e. D is r-robust if and only if it is (r, 1)-robust [96, Property
5.21] [2, Section VII-B].

Property 3.1 ([219], Prop. 5.13). Let D be an arbitrary, simple digraph on n nodes. Suppose D
is (r, s)-robust with r ∈ N and s ∈ {0, . . . , n}. Then D is also (r′, s′)-robust ∀r′ : 0 ≤ r′ ≤ r and

∀s′ : 1 ≤ s′ ≤ s.

Property 3.2 ([219], Prop. 5.20). Let D be an arbitrary, simple digraph on n nodes. Suppose D
is (r, s)-robust with r ∈ N and s ∈ {1, . . . , n}. Then D is (r − 1, s+ 1)-robust.

As an example, if a digraph D1 is 4-robust, it is (4, 1)-robust, and therefore by Property 3.1
it is also simultaneously 3-robust, 2-robust, and 1-robust. In addition, if a digraph D2 is (5, 4)-
robust, then it is simultaneously (r′, s′)-robust for all integers 0 ≤ r′ ≤ 5 and 0 ≤ s′ ≤ 4.
Moreover, by Property 3.2, D2 is also (4, 5)-robust, (3, 6)-robust, (2, 7)-robust, and (1, 8)-robust.
For notational purposes, we denote the set of all values for which a digraphD is (r, s)-robust as Θ,
where Θ ⊂ Z≥0 × Z≥0. By Definition 3.4, Θ is explicitly defined as

Θ = {(r, s) ∈ Z≥0 × Z≥0 : ∀(S1, S2) ∈ T , (|X rS1
| = |S1|) or (|X rS2

| = |S2|) or (|X rS1
|+ |X rS2

| ≥ s)}.
(3.2)

1Since (S1, S2) ∈ T =⇒ (S2, S1) ∈ T , the total number of unique nonempty, disjoint subsets is (1/2)|T |,
denoted as R(n) in [96].

81

Note that the conditions of (3.2) are simply an alternate way of expressing the conditions of
Definition 3.4.

To characterize the resilience of graphs however, prior literature has generally been concerned
with only a few particular values of r and s for which a given digraph is r- or (r, s)-robust. For
r-robustness, the value of interest is the maximum integer r for which the given digraph is r-robust.

Definition 3.5. We denote the maximum integer r for which a given digraph D is r-robust as

rmax(D) ∈ Z≥0.

Several resilient algorithms guarantee convergence of the normal agents when the adversary
model is F -total or F -local in scope,2 and the digraph is (2F + 1)-robust. The value of rmax(D)

therefore determines the maximum adversary model under which these algorithms can operate
successfully. Furthermore, all other values of r for which a digraphD is r-robust can be determined
from rmax(D) by using Property 3.1.

For (r, s)-robustness, there are two (r, s) pairs of interest. The authors of [96] order the ele-
ments of Θ using a lexicographical total order, where elements are ranked by r value first and s
value second. More specifically, (r1, s1) ≤lex (r2, s2) if and only if

[
r2−r1
s2−s1

]
∈ Vlex, where Klex is

the lexicographic cone defined in Section 1.5. The algorithm DetermineRobustness from [96]
finds the maximum element of Θ with respect to this order. For notational clarity, we denote this
maximum element as (r∗, s∗) ∈ Θ.

Definition 3.6. Let Θ be defined as in (3.2). The element (r∗, s∗) is defined as the maximum

element of Θ under the lexicographical order on R2.

The other (r, s) pair of interest is (Fmax + 1, Fmax + 1), where Fmax = max({F ∈ Z≥0 :

(F+1, F+1) ∈ Θ}). Several resilient algorithms guarantee convergence of the normally behaving
agents when the (malicious [2]) adversary model is F -total in scope and the digraph is (F +1, F +

1)-robust. The value Fmax determines the maximum malicious adversary model under which these
algorithms can operate successfully. The value of (Fmax + 1, Fmax + 1) does not always coincide
with the (r∗, s∗)-robustness of the digraph. A simple counterexample is given in Figure 3.2, where
the (r∗, s∗)-robustness of the graph is (2, 1) but the value of (Fmax + 1, Fmax + 1) is equal to (1, 1).

Finally, the values of r for which a digraph can be r-robust lie within the interval 0 ≤ r ≤
dn/2e [219, Property 5.19]. Since r-robustness is equivalent to (r, 1)-robustness, the values of r
for which a graph can be (r, s)-robust fall within the same interval. The values of s for which a
digraph can be (r, s)-robust lie within the interval 1 ≤ s ≤ n.3 However, we will use an abuse of
notation by denoting a graph as (r, 0)-robust for a given r ∈ Z≥0 if the graph is not (r, 1)-robust.

2An F -total adversary model implies that there are at most F ∈ Z≥0 misbehaving agents in the entire network. An
F -local adversary model implies that each normal agent has at most F misbehaving agents in its in-neighbor set.

3Footnote 8 in [2] offers an excellent explanation for restricting s to this range by convention.

82

Figure 3.2: An example of the elements of Θ for a digraph D1. Since |V| = 4, the possible values
of r and s for which the digraph is (r, s)-robust fall within the range 0 ≤ r ≤ 2, 1 ≤ s ≤ 4.
One possible pair of subsets S1 and S2 is depicted, which satisfies |X 2

S1
| 6= |S1|, |X 2

S2
| 6= |S2|,

|X 2
S1
| = 0 and |X 2

S2
| = 1. By Definition 3.4, D1 therefore cannot be (2, 2)-robust, (2, 3)-robust, or

(2, 4)-robust.

3.3 Robustness of k-Circulant Digraphs

As described previously, determining the r- or (r, s)-robustness of an arbitrary digraph (or undi-
rected graph) is NP-hard in general [96]. This makes it difficult in general to determine how many
adversaries a given network can tolerate under an MSR-type algorithm. It can also be difficult
to determine the robustness of a given graph after adding or removing nodes or edges, unless the
changes in the nodes or edges are limited to specific operations which allow robustness to be pre-
served from the initial graph to the final, altered graph [220]; however these operations assume
that the robustness of the initial graph is known. This section introduces a class of graphs called
k-circulant digraphs: digraphs whose structure and robustness can be calculated directly from two
integer parameters n and k. First, we give the definition of circulant undirected graphs:

Definition 3.7. An undirected graph of n nodes is called circulant if there exists a set

{a1, a2, . . . , al ∈ Z≥0 : a1 < a2 < . . . < al < n},

such that (i, [i± a1] modn) ∈ Eg, . . . , (i, [i± al] modn) ∈ Eg [221]. We call such a graph an

undirected circulant graph. It should be noted that these graphs are constructed over the additive

group of integers modulo n (the nodes n+ a and a are congruent modulo n).

A similar concept for directed graphs is given as follows:

Definition 3.8. A digraph of n nodes is called circulant if there exists a set

{a1, a2, . . . , am : 0 < a1 < a2 < . . . < am < n}, m ∈ Z≥0

83

such that (i, [i+ a1] modn) ∈ Ed, . . . , (i, [i+ am] modn) ∈ Ed. We denote such a graph as

Cn(a1, a2, . . . , am) = (V , Ed) and call it a directed circulant graph or circulant digraph.

The name circulant arises from the fact that the adjacency matrix for such a graph is a circulant
matrix; i.e. a matrix where each row is defined by cyclically shifting every entry of the previous row
one entry to the right. The matrix can therefore be defined by the entries of its first row [221,222].
In general the name “circulant” has nothing to do with a physical circle or the physical orientation
of its agents.



b0 b1 b2
. . . bn

bn b0 b1
. . . bn−1

bn−1 bn b0
. . . bn−2

.

b1 b2 b3
. . . b0


Figure 3.3: The general structure of a cir-
culant matrix. By defining the first row, the
rest of the matrix is determined. Circulant
digraphs have circulant adjacency matrices.

Figure 3.4: A 3-circulant digraph on 7
nodes, denoted C7{1, 2, 3}. Nodes are ar-
ranged in a circle for visual clarity; in gen-
eral the name “circulant” has nothing to do
with the physical arrangement of the nodes
or agents.

In this chapter, we analyze the robustness properties of a specific class of circulant digraphs
which we call k-circulant digraphs:

Definition 3.9. Let n ∈ Z, n ≥ 2 and let k ∈ Z : 1 ≤ k ≤ n − 1. A k-circulant digraph is any

circulant digraph of the form Cn(1, 2, 3, . . . , k) = (V , Ed).

This type of graph is fully determined by the number of nodes n and by the parameter k, which
determines the in- and out-neighbors of each node. In a graph without self-loops and without more
than one edge between any two nodes, 1 ≤ k ≤ n − 1. When k = n − 1, the graph becomes a
complete graph.

Prior work has demonstrated that if an undirected line or ring graph is 2p-connected, then it is
at least

⌊
p
2

⌋
-robust [97, Thm 4]. However, this theorem does not apply to directed graphs because

some ambiguity arises with the definition of vertex connectivity for digraphs. One possibility is to
define the connectivity of a digraph as the minimum number of vertices whose removal results in
the digraph’s underlying graph being either disconnected or a trivial single vertex [217].4 Under

4The underlying graph of a digraph is the undirected graph obtained by replacing all directed edges of the original
digraph with undirected edges.

84

Figure 3.5: Example of a directed graph whose underlying graph is p-connected, but which is not⌊
p
2

⌋
-robust. The graph shown has an underlying graph with vertex connectivity equal to 4. If the

nodes of the graph are divided into the two nonempty, disjoint sets denoted by the green and blue
colors, each node clearly only has one in-neighbor outside its set. This implies that the graph can
be no more than 1-robust. Note that the two arrangements are the exact same graph; the second
configuration is rearranged for clarity.

this definition, however, it can be shown that there exist digraphs which are not
⌊
p
2

⌋
-robust, but

whose underlying graphs are p-connected. For example, under the definition just described the
digraph in Figure 3.5 is 4-connected but is only 1-robust. Another measure of connectivity gen-
eralized to digraphs exists which involves the cardinality of a minimum vertex disconnecting set
(see [223] and the equivalent definition of cutset in [224]). It can be shown however that graphs
with arbitrarily large minimum vertex disconnecting sets are at most 1-robust, and therefore this
metric cannot be used to determine robustness. A specific example is shown in Figure 3.6. In
summary, neither of the aforementioned definitions allow [97, Thm 4] to be applied to digraphs; a
different proof is therefore required.

The following Theorem demonstrates that the r-robustness of k-circulant digraphs is a function
of the parameter k, regardless of the value of n.

Theorem 3.1. The circulant digraph Cn(1, . . . , k) = (V , Ed) is
⌈
k
2

⌉
-robust, where k < n. More-

over, if k = n− 1 the graph is
⌈
n
2

⌉
-robust.

Proof. From the definition of r-robustness it follows that if a graph is not σ-robust for some value
σ ∈ Z, then ∃S1, S2 such that ∀i ∈ S1, |Vi\S1| < σ and ∀j ∈ S2, |Vj\S2| < σ. No graph can be
less than 0-robust, hence σ ≥ 0.

Suppose that a k-circulant graph is not σ-robust. Without loss of generality, this implies that
there are S1 and S2 such that for any node i ∈ S1 there exists a b ∈ Z, 0 < b < σ such that node

85

Figure 3.6: Counterexample showing that there exist digraphs with an arbitrarily large minimum
vertex disconnecting set which are at most 1-robust. The class of digraphs in this figure are com-
posed of two cliques with p directed edges going from clique 1 to clique 2 as shown, and p more
directed edges going from clique 2 to clique 1. The size of a minimum vertex disconnecting set
is therefore p. However, by Definition 3.2 the digraph can be at most 1-robust since no agent in
either of the cliques has more than 1 in-neighbor outside its own clique.

86

i+ b ∈ S2 and nodes {i+ 1, . . . , i+ b− 1} 6∈ S2. This can be seen by noting that S2 is nonempty,
and if b ≥ σ then |Vi+b\S2| ≥ σ, contradicting our initial assumption.

We next establish a lower bound on the value σ. Note that the in-neighbor set of i is Vi =

{i − k, . . . , i − 1} and the in-neighbor set of i + b is Ki+b = {i + b − k, . . . , i + b − 1}. The
intersection of these two in-neighbors sets is Vi∩Vi+b = {i+ b−k, . . . , i−1} Denote the number
of S1 nodes and the number of S2 nodes in the set {i−k, . . . , i+b−k−1} as α1 and β1 respectively,
α1, β1 ∈ Z≥0. Let γ1 ∈ Z≥0 denote the nodes in {i−k, . . . , i+b−k−1} as α1 which are neither in
S1 nor S2. Similarly, denote the number of S1 nodes and S2 nodes in the set {i+ b− k, . . . , i− 1}
as α2 and β2 respectively, α2, β2 ∈ Z≥0. Let γ2 ∈ Z≥0 denote the nodes in {i + b− k, . . . , i− 1}
which are neither in S1 nor S2. Figure 3.7 presents a graphic depicting these sets and variables.

By our assumption that the graph is not σ-robust, observe that we must have

|Vi\S1| = β1 + β2 + γ1 + γ2 ≤ σ − 1, (3.3)

|Vi+b\S2| = α2 + γ2 + b ≤ σ − 1 (3.4)

The constant b appears in (3.4) since nodes since nodes {i, . . . , i + b − 1} 6∈ S2 as previously
discussed. Next, by definition of α2, β2, γ2 it holds that α2 + β2 + γ2 = k − b. Adding β2 to both
sides of (3.4) yields

α2 + γ2 + b+ β2 ≤ σ − 1 + β2,

k ≤ σ − 1 + β2,

k − σ + 1 ≤ β2. (3.5)

Substituting (3.5) into (3.3) yields

β1 + γ1 + γ2 + k − σ + 1 ≤ σ − 1,

β1 + γ1 + γ2 + k ≤ 2σ − 2.

Using the fact that β1, γ1, γ2 ≥ 0 yields

k ≤ 2σ − 2,

=⇒ k

2
+ 1 ≤ σ.

Since σ ∈ Z, this implies that the smallest value of σ for which a k-circulant graph is not σ-
robust is k

2
+1 for even k and

⌈
k
2

+ 1
⌉

for odd k. Therefore a k-circulant graph must be
⌈
k
2

⌉
-robust.

Lastly, the case when k = n−1 implies a complete graph. From [75] it can be shown that such

87

Figure 3.7: Visualization of the sets Vi and Vi+b, and the values α1, α2, β1, β2. Here, i ∈ S1

with S1 represented by the color blue. From the proof, there exists a node i + b ∈ S2, with S2

represented by the color yellow. Nodes i− k through i− 1 are either in S1 or S2, while nodes i+ 1
through i+ b− 1 are not in S2, i.e. either in S1 or neither in S1 nor S2.

graphs are
⌈
n
2

⌉
-robust.

Since the robustness is a function of k only and not of n, it is worth noting that the r-robustness
of circulant digraphs can be determined regardless of the size of the network. As a result these
graphs can easily be scaled to any number of nodes while maintaining a desired robustness level.
The main limitation is that k ≤ n− 1, implying that a graph with a desired robustness will require
a minimum number of nodes.

Next, we establish lower bounds on the values of r, s for which k-circulant digraphs are (r, s)-
robust. In [220] a connection between r-robustness and (r, s)-robustness was given:

Lemma 3.1. If D = (V , Ed) is (r + s− 1)-robust with r ∈ Z≥0, s ∈ N, and 1 ≤ r + s− 1 ≤
⌈
n
2

⌉
,

then D is (r, s)-robust.

The proof is outlined in [220]. It should be noted that this is a sufficient condition only, and so
the graph may actually have a higher (r, s)-robustness (e.g. consider a complete graph). We use this
lemma to demonstrate the relationship between a lower bound of (r, s)-robustness ofCn(1, . . . , k)-
circulant digraphs and the parameter k:

Corollary 3.1. The circulant digraph Cn(1, . . . , k) = (V , Ed) is at least (
⌊
k+2

4

⌋
,
⌊
k+2

4

⌋
)-robust if

k is even and at least (
⌊
k+3

4

⌋
,
⌊
k+3

4

⌋
)-robust if k is odd.

88

Proof. If k is even, then Cn(1, . . . , k) is at least k
2
-robust by Theorem 3.1. Since we are interested

in establishing an upper bound F on the number of adversaries in the network, we seek to find the
maximum value of F for which the network is (F + 1, F + 1)-robust. This implies r = s for the
network’s (r, s)-robustness. Hence by Lemma 3.1, and letting r = s,

r + s− 1 =
k

2

r + s =
k + 2

2

r = s =
k + 2

4

≥ bk + 2

4
c

If k is odd, then Cn(1, . . . , k) is at least dk
2
e-robust by Theorem 3.1. Hence

r + s− 1 = dk
2
e =

k + 1

2

r + s =
k + 3

2

r = s =
k + 3

4

≥ bk + 3

4
c

3.3.1 Strong r-Robustness of k-Circulant Graphs

In addition to exhibiting r- and (r, s)-robustness properties, k-circulant digraphs also may exhibit
the property of strong r-robustness. This additional characteristic is used, for example, by the
method in Chapter 2, Section 2.3 for resilient leader-follower consensus scenarios. The definition
of strong r-robustness was given in Chapter 2, Definition 2.5, but is repeated here for convenience:

Definition 3.10 (Strong r-robustness w.r.t. S [191]). Let r ∈ Z≥0, D = (V , E) be a digraph, and

S ⊂ V be a nonempty subset. D is strongly r-robust w.r.t. S if for any nonempty subset C ⊆ V\S,

C is r-reachable.

Intuitively speaking, strong r-robustness w.r.t S considers the reachability of all possible sub-
sets which are disjoint from the fixed subset S ⊂ V . This differs from r-robustness which consid-
ers all possible nonempty, disjoint subsets of the node set V . Another notable difference between
strong r-robustness w.r.t. S ⊂ V and r-robustness is that given the subset S, it can be verified

89

in polynomial time whether a digraph is strongly robust w.r.t. S [194]. As used in Chapter 2,
Section 2.3, the set S can represent a set of leaders propagating information to the remainder of
the network.

When the subset S is properly selected, k-circulant graphs are strongly r-robust w.r.t. S. We
now provide formal conditions on the set S under which these graphs are strongly r-robust. As per
the definition of circulant graphs, we assume all agents are indexed 1, . . . , n. In our next proof we
refer to sets of consecutive agents by index. An example is PS = {2, 3, 4, 5, . . . , 9} in a network
of n = 15 agents. Since the index numbers are defined on the set of integers modulo n, the set
PS = {14, 15, 1, 2} would also be a set of consecutive agents in a network of n = 15 agents.

Theorem 3.2. Let k, r, n ∈ Z≥0, k > 0. A k-circulant digraph D = Cn{1, 2, . . . , k} is strongly

r-robust with respect to S ⊂ V if D contains a set of consecutive agents by index PS ⊂ V such

that |PS| ≤ k and |PS ∩ S| ≥ r.

Proof. Suppose k ≥ |PS| and |PS ∩ S| ≥ r. Without loss of generality, let the first agent in PS be
labeled as agent (n−|PS|+1) and the last agent in PS as agent n. We must show that all nonempty
C ⊆ V\S are r-reachable. If agent 1 ∈ C then C is r-reachable since {(n−|PS|+1), . . . , n} ⊆ V1

which implies |V1 ∩ (V\C)| ≥ r. Next, suppose that agent 1 /∈ C and 2 ∈ C. Since {(n− |PS|+
2), . . . , 1} ⊆ V2, this implies that |V2∩(V\C)| ≥ |V1∩(V\C)| ≥ r and thereforeC is r-reachable.
This reasoning can be continued inductively by assuming {1, . . . p−1} /∈ C, p ∈ C, and observing
that |Vp ∩ (V\C)| ≥ |Vp−1 ∩ (V\C)|. Analyzing the remaining subsets of this form in the graph
yields the result. Note that if p is ever the number of an agent in S, then we need not consider it
ever being in C and the analysis can be continued with the next agent not in S.

Similar results also hold for undirected k-circulant graphs:

Theorem 3.3. Let k, r, n ∈ Z≥0, k > 0. An undirected k-circulant graph G = Cn{±1,±2, . . . ,±k}
is strongly r-robust with respect to S ⊂ V if G contains a set of consecutive agents PS ⊂ V such

that |PS| ≤ k and |PS ∩ S| ≥ r.

Proof. The same method as in Theorem 3.2 can be applied to prove the result.

3.3.2 Implementation of W-MSR Algorithm on k-Circulant Digraphs

To demonstrate the robustness of k-circulant digraphs, we present simulations of agents in a k-
circulant network running the W-MSR protocol. The network size is n = 15 nodes. Each agent in
the graph has state x[t] ∈ R, and each normal agent follows the W-MSR algorithm to update its

90

own state at each time step. The initial state value for each agent is a random value on the interval
[−50, 50].

Several models exist to describe the number and distribution of misbehaving nodes in a net-
work, including the F -total, F -local, and f -fraction local models (see [190, 225]). For our simu-
lations we consider an F -local model, meaning that any normal agent has at most F misbehaving
agents in the set of its in-neighbors. Theorem 2 and Corollary 4 of [75] establish that (2F + 1)-
robustness is a sufficient condition for a network using the W-MSR algorithm to achieve consensus
among its normal nodes under an F -local model of misbehaving agents.

We consider two graphs on 15 nodes, each with different values of k. The first graph D1 has
k = 6, implying D1 = C15(1, 2, . . . , 6). Figure 3.8 shows the communication topology of D1.
By Theorem 3.1 and Corollary 3.1, D1 is 3-robust, implying that consensus is guaranteed under a
F -local malicious adversary model with F = 1. Figure 3.9 shows our simulation with F = 1 and
with nodes 1 and 7 misbehaving. Note that any normal agent i has at most 1 misbehaving agent
in Vi.The red dotted lines represent the state values of misbehaving nodes, while the solid colored
lines represent the state values of normal nodes. The normal nodes are clearly able to achieve
consensus in the presence of the misbehaving nodes.

The second graph D2 has k = 9, and therefore is 5-robust which guarantees consensus under
an F -local malicious adversary model with F = 2. Agents 1, 7, and 13 are misbehaving, which
implies that any normal agent i has at most 2 misbehaving agents in its in-neighbor set Ki. Figure
3.10 shows the simulation results for the second graph with F = 2. Again, the normal agents are
clearly able to achieve consensus in the presence of the misbehaving nodes. This second simulation
also demonstrates the simplicity of changing the robustness of k-circulant digraphs. By varying k,
the network’s robustness can be increased or decreased to a desired level.

In summary, k-circulant digraphs allow for the creation of networks of arbitrary size whose
r-robustness and strong r-robustness w.r.t. a set S can easily be determined. This makes them
particularly useful in both resilient leaderless and leader-follower consensus scenarios such as
those outlined in Chapter 2 and the works [87,94,95,180]. The reader is referred to the simulations
in Chapter 2 for additional simulations which use k-circulant digraphs for resilient consensus.

91

Figure 3.8: The network topology of digraphs D1 and D2. For sake of clarity, only the edges
extending from one node are shown; in the actual graph, each node has the same pattern of edges
extending from it. The first graph simulated is a C15{1, . . . , 6} circulant digraph. The second is a
C15{1, . . . , 9} circulant digraph. In the first graph, nodes 1 and 7 are misbehaving. In the second,
nodes 1, 7, and 13 are misbehaving. The nodes are visualized in a circular manner for ease of
understanding rather than representing any kind of physical arrangement.

92

Figure 3.9: Simulation on the graphD1 = C15(1, 2, . . . , 6). The dotted red lines represent the state
trajectories of the misbehaving agents.

93

Figure 3.10: Simulation on the graph D2 = C15(1, 2, . . . , 9).

94

3.4 Determining r- and (r, s)-Robustness of Digraphs using
Mixed Integer Programming

Despite all of the prior work done on graph construction methods and finding specific classes of
graphs whose robustness is a function of graph parameters, there still exist a large number of di-
rected and undirected graphs whose robustness cannot be determined by these prior methods. The
algorithms in [96] were presented as a method to calculate the exact values of rmax, r∗, s∗, and
Fmax for arbitrary directed or undirected graphs by exhaustively checking the appropriate robust-
ness conditions for all nonempty, disjoint subset pairs (S1, S2) ∈ T . Although these algorithms are
guaranteed to find the exact values of these robustness properties, the lower bound on their runtime
is exponential in the number of nodes n.5 In addition, these algorithms are incapable of calculating
approximate lower bounds on rmax, r∗, s∗, and Fmax; the algorithms are only able to tighten upper
bounds on these values as all pairs in T are searched through.

The purpose of this section is therefore to present methods using mixed integer linear program-
ming to determine rmax(D), the (r∗, s∗)-robustness of D, and the (Fmax + 1, Fmax + 1)-robustness
of D for any nonempty, nontrivial, simple digraph D.

Problem 3.1. Given an arbitrary nonempty, nontrivial, simple digraph D, determine the value of

rmax(D).

Problem 3.2. Given an arbitrary nonempty, nontrivial, simple digraph D, determine the (r∗, s∗)-

robustness of D.

Problem 3.3. Given an arbitrary nonempty, nontrivial, simple digraph D, determine the (Fmax +

1, Fmax + 1)-robustness of D.

3.4.1 Determining r-Robustness using Mixed Integer Linear Programming

In this section we will demonstrate a method for solving Problem 3.1 using a mixed integer linear
program (MILP) formulation. An MILP will be presented whose optimal value is equal to rmax(D)

for any given nonempty, nontrivial, simple digraph D.
First, an equivalent way of expressing the maximum robustness rmax(D) of a digraph D is

derived. This equivalent expression will clarify how rmax(D) can be determined by means of an

5More precisely, for any graph with rmax > 0 or r∗ > 0 the algorithms in [96] will check all possible nonempty,
disjoint subsets before terminating. If a subset pair (S1, S2) ∈ T is found which demonstrates that rmax ≤ 0 or
r∗ ≤ 0, the search can be terminated immediately since rmax and r∗ are nonnegative by definition.

95

optimization problem. Given an arbitrary, simple digraph D = (V , E) and a subset S ⊂ V , the
reachability functionR : P(V)→ Z≥0 is defined as follows:

R(S) =

maxi∈S |Vi\S|, if S 6= {∅},

0, if S = {∅}.
(3.6)

In other words, the function R(S) returns the maximum r for which S is r-reachable. Using this
function, the following Lemma presents an optimization formulation which yields rmax(D):

Lemma 3.2. Let D = (V , E) be an arbitrary nonempty, nontrivial, simple digraph with |V| = n.

Let rmax(D) be defined as in Definition 3.5. The following holds:

rmax(D) = min
S1,S2∈P(V)

max (R(S1),R(S2))

subject to |S1| > 0, |S2| > 0, |S1 ∩ S2| = 0. (3.7)

Proof. Note that S1, S2 ∈ P(V) and the three constraints of the RHS of (3.7) imply that the
feasible set consists of all subsets S1, S2 such that (S1, S2) ∈ T , as per (3.1). In addition,
max (R(S1),R(S2)) = m implies R(S1) = m or R(S2) = m. Let (S∗1 , S

∗
2) be a minimizer of

(3.7). Then max (R(S∗1),R(S∗2)) ≤ max (R(S1),R(S2)) ∀(S1, S2) ∈ T . Therefore ∀(S1, S2) ∈
T , eitherR(S1) ≥ max

(
R(S∗1),R(S∗2)

)
orR(S2) ≥ max (R(S∗1),R(S∗2)). This satisfies the def-

inition of r-robustness as per Definition 3.2, therefore D is at least max (R(S∗1),R(S∗2))-robust.
This implies rmax(D) ≥ max (R(S∗1),R(S∗2)).

We next show that rmax(D) = max (R(S∗1),R(S∗2)). We prove by contradiction. Recall from
Definition 3.5 that rmax(D) is the maximum integer r for which D is r-robust, which means
D is rmax(D)-robust by definition. Suppose rmax(D) > max (R(S∗1),R(S∗2)). This implies
R(S∗1) < rmax(D) and R(S∗2) < rmax(D). Since the nonempty, disjoint subsets (S∗1 , S

∗
2) ∈ T

satisfy R(S∗1) < rmax(D) and R(S∗2) < rmax(D), by the negation of Definition 3.2 this implies
that D is not rmax(D)-robust. However, this contradicts the definition of rmax(D) being the largest
integer for which D is r-robust (Definition 3.5). This provides the desired contradiction; therefore
rmax(D) = max (R(S∗1),R(S∗2)).

Remark 3.1. Using the definition of T in (3.1), the constraints on the RHS of (3.7) can be made

implicit [189, section 4.1.3] as follows:

rmax(D) = min
(S1,S2)∈T

max (R(S1),R(S2)) . (3.8)

96

We demonstrate next that the objective function of (3.7) can be expressed as a function of the
network Laplacian matrix. Recall that n = |V| and that {0, 1}n represents a binary vector of
dimension n. The indicator vector σ(·) : P(V)→ {0, 1}n is defined as follows: for all S ∈ P(V),

σj(S) =

1 if j ∈ S

0 if j /∈ S
, j = {1, . . . , n}. (3.9)

In other words the jth entry of σ(S) is 1 if the node with index j is a member of the set S ∈ P(V),
and zero otherwise. It is straightforward to verify thatσ : P(V)→ {0, 1}n is a bijection. Therefore
given x ∈ {0, 1}n, the set σ−1(x) ∈ P(V) is defined by

σ−1(x) = {j ∈ V : xj = 1}. (3.10)

Finally, observe that for any S ∈ P(V), |S| = 1Tσ(S). The following Lemma demonstrates that
for any S ∈ P(V), the function R(S) can be determined as an affine function of the network
Laplacian matrix and the indicator vector of S:

Lemma 3.3. Let D = (V , E) be an arbitrary nonempty, nontrivial, simple digraph, let L be the

Laplacian matrix of D, and let S ∈ P(V). Then the following holds for all j ∈ {1, . . . , n}:

Ljσ(S) =

|Vj\S|, if j ∈ S,

−|Vj ∩ S|, if j /∈ S,
(3.11)

where Lj is the jth row of L. Furthermore,

R(S) = max
j
Ljσ(S), j ∈ {1, . . . , n}. (3.12)

Proof. The term σ(S) is shortened to σ for brevity. Recall that the entry in the jth row and ith
column of L is denoted Lj,i. The definition of L from (1.2) implies

Ljσ = (Lj,j)σj +
∑

q∈{1,...,n}\j

(Lj,q)σq

= |Vj|σj −
∑

q∈Vj∩S

σq −
∑

q∈Vj\S

σq. (3.13)

Since by (3.9), q ∈ S implies σq = 1, the term
∑

q∈Vj∩S σq = |Vj ∩ S|. In addition, since
q /∈ S implies σq = 0, the term

∑
q∈Vj\S σq = 0. By this, equation (3.13) simplifies to Ljσ =

|Vj|σj − |Vj ∩ S|.

97

The value of the term |Vj|σj depends on whether j ∈ S or j /∈ S. If j ∈ S, then σj = 1,
implying Ljσ = |Vj|− |Vj ∩S| = (|Vj ∩ S|+ |Vj\S|)−|Vj ∩S| = |Vj\S|. If j /∈ S, then σj = 0

implying Ljσ = −|Vj ∩ S|. This proves the result for equation (3.11).
To prove (3.12), we first consider nonempty sets S ∈ P(V)\{∅}. By the results above and

(3.6), the maximum reachability of any S ∈ P(V)\{∅} is

R(S) = max
j∈S
|Vj\S| = max

j∈S
(Ljσ(S)). (3.14)

By its definition, R(S) ≥ 0. Observe that if j ∈ S then Ljσ(S) = |Vj\S| ≥ 0, implying
maxj∈S Ljσ(S) ≥ 0. Conversely, if an agent j is not in the set S, then the function Ljσ(S) takes
the nonpositive value −|Vj ∩ S|. This implies maxj /∈S Ljσ(S) ≤ 0. By these arguments, we
therefore have maxj /∈S Ljσ(S) ≤ 0 ≤ maxj∈S Ljσ(S), which implies

max
j∈{1,...,n}

Ljσ(S) = max

(
(max
j∈S

Ljσ(S)), (max
j /∈S

Ljσ(S))

)
= max

j∈S
Ljσ(S). (3.15)

Therefore by equations (3.15) and (3.14), the maximum reachability of S is found by the expression

R(S) = max
j

(Ljσ(S)), j ∈ {1, . . . , n}. (3.16)

Lastly, if S = ∅, then by (3.6) we have R(S) = 0. In addition, σ(S) = 0, implying that
maxj Ljσ(S) = 0 = R(S), j ∈ {1, . . . , n}.

Using Lemma 3.3, it will next be shown that the objective function of (3.7) can be rewritten as
the maximum over a set of affine functions:

Lemma 3.4. Consider an arbitrary, nonempty, nontrivial, simple digraph D = (V , E). Let L be

the Laplacian matrix of D, and let Li be the ith row of L. Let T be defined as in (3.1). Then for

all (S1, S2) ∈ T the following holds:

max (R(S1),R(S2)) = max

(
max

i∈{1,...,n}
(Liσ(S1)) , max

j∈{1,...,n}
(Ljσ(S2))

)

Proof. By Lemma 3.3,R(S1) = maxi Liσ(S1) andR(S2) = maxj Ljσ(S2) for i, j ∈ {1, . . . , n}.
The result follows.

From Lemma 3.2, Lemma 3.4, and Remark 3.1, we can immediately conclude that rmax(D)

98

satisfies

rmax(D) = min
(S1,S2)∈T

max
(

max
i

(Liσ(S1)) ,max
j

(Ljσ(S2))
)
. (3.17)

Note that the terms σ(S1) and σ(S2) are each n-dimensional binary vectors. Letting b1 = σ(S1)

and b2 = σ(S2), the objective function of (3.17) can be written as

max
(

max
i

(
Lib

1
)
,max

j

(
Ljb

2
))
.

Every pair (S1, S2) ∈ T can be mapped into a pair of binary vectors (b1, b2) by the function
Σ : T → {0, 1}n × {0, 1}n, where Σ(S1, S2) = (σ(S1),σ(S2)) = (b1, b2). By determining the
image of T under Σ(·, ·), the optimal value of (3.17) can be found by minimizing over pairs of
binary vectors (b1, b2) ∈ Σ(T) directly. Using binary vector variables instead of set variables
(S1, S2) will allow (3.17) to be written directly in an MILP form. Towards this end, the following
Lemma defines the set Σ(T):

Lemma 3.5. Let D = (V , E) be an arbitrary nonempty, nontrivial, simple digraph, and let T be

defined as in (3.1). Define the function Σ : T → {0, 1}n × {0, 1}n as

Σ(S1, S2) = (σ(S1),σ(S2)), (S1, S2) ∈ T . (3.18)

Define the set B ⊂ {0, 1}n × {0, 1}n as

B =

{
(b1, b2) ∈ {0, 1}n × {0, 1}n : 1 ≤ 1Tb1 ≤ (n− 1), 1 ≤ 1Tb2 ≤ (n− 1), b1 + b2 � 1

}
.

(3.19)

Then both of the following statements hold:

1. The image of T under Σ is equal to B, i.e. Σ(T) = B

2. The mapping Σ : T → B is a bijection.

Proof. We prove 1) by showing first that Σ(T) ⊆ B, and then B ⊆ Σ(T). Any (S1, S2) ∈ T
satisfies |S1| > 0, |S2| > 0, |S1 ∩ S2| = 0 as per (3.1). Observe that

|S1| > 0 =⇒ 1Tσ(S1) ≥ 1,

|S2| > 0 =⇒ 1Tσ(S2) ≥ 1.

99

Because S1, S2 ⊂ V and |S1 ∩ S2| = 0, then |S1| < n. Otherwise if |S1| = n then either |S2| = 0

or |S1 ∩ S2| 6= 0, which both contradict the definition of T . Therefore |S1| < n, and by similar
arguments |S2| < n. Observe that

|S1| < n =⇒ 1Tσ(S1) ≤ n− 1,

|S2| < n =⇒ 1Tσ(S2) ≤ n− 1.

Finally, |S1 ∩ S2| = 0 implies that j ∈ S1 =⇒ j /∈ S2 and j ∈ S2 =⇒ j /∈ S1 ∀j ∈ {1, . . . , n}.
Therefore σj(S1) = 1 =⇒ σj(S2) = 0 and σj(S2) = 1 =⇒ σj(S1) = 0. This implies that

|S1 ∩ S2| = 0 =⇒ σ(S1) + σ(S2) � 1.

Therefore for all (S1, S2) ∈ T , (σ(S1),σ(S2)) = Σ(S1, S2) satisfies the constraints of the set on
the RHS of (3.19). This implies that Σ(T) ⊆ B.

Next, we show B ⊆ Σ(T) by showing that for all (b1, b2) ∈ B, there exists an (S1, S2) ∈ T
such that (b1, b2) = Σ(S1, S2). Choose any (b1, b2) ∈ B and define sets (S1, S2) as follows:

b1
j = 1 =⇒ j ∈ S1, j ∈ {1, . . . , n},

b1
j = 0 =⇒ j /∈ S1,

b2
j = 1 =⇒ j ∈ S2,

b2
j = 0 =⇒ j /∈ S2. (3.20)

For the considered sets (S1, S2), 1 ≤ 1Tb1 implies |S1| > 0 and 1 ≤ 1Tb2 implies |S2| > 0.
In addition since b1 + b2 � 1, we have b1

j = 1 =⇒ b2
j = 0 and b2

j = 1 =⇒ b1
j = 0.

By our choice of S1 and S2, we have b1
j = 1 =⇒ j ∈ S1, and from previous arguments

b1
j = 1 =⇒ b2

j = 0 =⇒ j /∈ S2. Similar reasoning can be used to show that b2
j = 1 =⇒ j /∈ S1.

These arguments imply that |S1 ∩ S2| = 0. Consequently, (S1, S2) satisfies all the constraints of
T and is therefore an element of T . Clearly, by (3.20) we have Σ(S1, S2) = (b1, b2), which
shows that there exists an (S1, S2) ∈ T such that (b1, b2) = Σ(S1, S2). Since this holds for all
(b1, b2) ∈ B, this implies B ⊆ Σ(T). Therefore Σ(T) = B.

We next prove 2). Since Σ(T) = B, the function Σ : T → B is surjective. To show that
it is injective, consider any Σ(S1, S2) ∈ B and Σ(S̄1, S̄2) ∈ B such that Σ(S1, S2) = Σ(S̄1, S̄2).
This implies (σ(S1),σ(S2)) = (σ(S̄1),σ(S̄2)). Note that (σ(S1),σ(S2)) = (σ(S̄1),σ(S̄2)) if
and only if σ(S1) = σ(S̄1) and σ(S2) = σ(S̄2). Since the indicator function σ : P(V)→ {0, 1}n

is itself injective, this implies S1 = S̄1 and S2 = S̄2, which implies (S1, S2) = (S̄1, S̄2). Therefore
Σ : T → B is injective.

100

Using this result, we now present the following mixed integer program which solves Problem
3.1:

Theorem 3.4. Let D be an arbitrary nonempty, nontrivial, simple digraph and let L be the Lapla-

cian matrix of D. The maximum r-robustness of D, denoted rmax(D), is obtained by solving the

following minimization problem:

rmax(D) = min
b1,b2

max

(
max
i

(
Lib

1
)
,max

j

(
Ljb

2
))

subject to b1 + b2 � 1

1 ≤ 1Tb1 ≤ (n− 1)

1 ≤ 1Tb2 ≤ (n− 1)

b1, b2 ∈ {0, 1}n.

(3.21)

Furthermore, (3.21) is equivalent to the following mixed integer linear program:

rmax(D) = min
t,b

t

subject to 0 ≤ t, t ∈ R, b ∈ Z2n[
L 0

0 L

]
b � t

[
1

1

]
0 � b � 1[
In×n In×n

]
b � 1

1 ≤
[
1T 0

]
b ≤ n− 1

1 ≤
[
0 1T

]
b ≤ n− 1

(3.22)

Proof. From Lemmas 3.2 and 3.4 we have

rmax(D) = min
S1,S2∈P(V)

max

(
max
i

(Liσ(S1)) ,max
j

(Ljσ(S2))

)
subject to |S1| > 0, |S2| > 0, |S1 ∩ S2| = 0,

for i, j ∈ {1, . . . , n}. As per Remark 3.1, the definition of T can be used to make the constraints
implicit:

rmax(D) = min
(S1,S2)∈T

max

(
max
i

(Liσ(S1)) ,max
j

(Ljσ(S2))

)
, (3.23)

101

for i, j ∈ {1, . . . , n}. Since Σ : T → B is a bijection by Lemma 3.5, (3.23) is equivalent to

rmax(D) = min
(b1,b2)∈B

max

(
max
i

(
Lib

1
)
,max

j

(
Ljb

2
))

, i, j ∈ {1, . . . , n}. (3.24)

Making the constraints of (3.24) explicit yields (3.21).
Next, we prove that (3.22) is equivalent to (3.21). The variables b1 and b2 from (3.21) are

combined into the variable b ∈ Z2n in (3.22); i.e. b = [(b1)T (b2)T]T . The first and third constraints
of (3.22) restrict b ∈ {0, 1}2n. Next, it can be demonstrated [189, Chapter 4] that the formulation
minx maxi(xi) is equivalent to mint,x t subject to 0 ≤ t, x � t1.

Reformulating the objective of the RHS of (3.21) in this way yields the objective and first two
constraints of (3.22):

min
t,b

t

subject to 0 ≤ t,[
L 0

0 L

]
b � t

[
1

1

]
.

(3.25)

The fourth, fifth, and sixth constraints of (3.22) restrict (b1, b2) ∈ B and are simply a reformulation
of the first three constraints in (3.21).

3.4.2 Determining (r, s)-Robustness using Mixed Integer Linear Program-
ming

In this section we address Problems 3.2 and 3.3, which involve determining the (r∗, s∗)-robustness
and (Fmax + 1, Fmax + 1)-robustness of a given digraph. To determine these values, we will use
the following notation:

Definition 3.11. For a digraph D and a given r ∈ Z≥0, the maximum integer s for which D is

(r, s)-robust is denoted as smax(r) ∈ Z≥0. If D is not (r, s)-robust for any 1 ≤ s ≤ n, we will

denote smax(r) = 0.

Using this notation, the (r∗, s∗)-robustness of a nonempty, nontrivial simple digraph satisfies
r∗ = rmax(D) and s∗ = smax(rmax(D)). This can be verified by recalling that r-robustness is
equivalent to (r, 1)-robustness [96, Property 5.21], and that (r∗, s∗) is the maximum element of Θ

according to the lexicographic ordering defined in Section 1.5. Since a method for determining
rmax(D) has already been presented, this section will introduce a method for determining smax(r)

for any given r ∈ Z≥0. This can then be used to find smax(rmax(D)) after rmax(D) is determined.

102

Recall that ∨ indicates logical OR. An equivalent definition of smax(r) can be given using the
following notation:

Definition 3.12. Let Θ be the set of all (r, s) values for which a given digraph D is (r, s)-robust,

as per (3.2). Let r ∈ Z≥0, and let X r
S be defined as in Definition 3.4. The set Θr ⊂ Θ is defined as

follows:

Θr = {s ∈ Z≥0 : ∀(S1, S2) ∈ T ,
(
|X r

S1
| = |S1|

) (
|X r

S2
| = |S2|

)
∨
(
|X r

S1
|+ |X r

S2
| ≥ s

)
}, (3.26)

In words, Θr is the set of all integers s for which the given digraphD is (r, s)-robust for a given
r ∈ Z≥0. By this definition, smax(r) = max Θr, i.e. smax(r) is simply the maximum element of
Θr.

As per (3.26), checking directly if an integer s ∈ Θr involves testing a logical disjunction for all

possible (S1, S2) ∈ T . This quickly becomes impractical for large n since |T | grows exponentially
with n. This difficulty can be circumvented, however, by defining the set

Θ̄r = Z≥0\Θr (3.27)

= {s̄ ∈ Z≥0 : s̄ /∈ Θr}

= {s̄ ∈ Z≥0 : ∃(S1, S2) ∈ T s.t. |
(
X r
S1
| < |S1|

)
∧
(
|X r

S2
| < |S1|

)
∧
(
|X r

S1
|+ |X r

S2
| < s̄

)
},

where ∧ denotes logical AND. The set Θ̄r contains all integers s̄ for which the given digraph is not

(r, s̄)-robust for the given value of r.

Definition 3.13. For a digraph D and a given r ∈ Z≥0, the minimum integer s̄ for which D is not
(r, s̄)-robust is denoted as s̄min(r) ∈ Z≥0.

As a simple example, consider a digraph D of 7 nodes where smax(3) = 2. This implies that
Θ3 = {1, 2}, i.e. the digraph is (3, 1)- and (3, 2)-robust. In this case, the set Θ̄3 = {3, 4, 5, . . .}
since D is not (3, 3)-robust, (3, 4)-robust, etc. Here we have s̄min(3) = 3. In general, observe that
by definitions 3.11 and 3.13 we have

smax(r) = s̄min(r)− 1. (3.28)

It is therefore sufficient to find s̄min(r) in order to determine smax(r). An illustration is given
in Figure 3.11. The methods in this section will solve for s̄min(r) using a mixed integer linear
program. Note that since possible values of smax(r) are limited to 0 ≤ smax(r) ≤ n (Definition
3.11), possible values of s̄min(r) are limited to 1 ≤ s̄min(r) ≤ n + 1. We point out that it is easier
to test if an integer s̄ ∈ Θ̄r than to test if an integer s ∈ Θr, in the sense that only one element

103

Figure 3.11: Illustration of how the (r∗, s∗)-robustness of a graph is found by the DetermineR-
obustness algorithm and the MILP method. Consider a digraph D of n = 6 nodes which satis-
fies (r∗, s∗) = (2, 3). DetermineRobustness begins with the maximum possible r and s values
(r = dn/2e and s = n), then iterates in a lexicographically decreasing manner. The MILP formu-
lation first determines rmax(D), then s̄min(rmax(D)), then finally infers smax(rmax(D)) (abbreviated
to s̄min(r) and smax(r) for clarity).

(S1, S2) ∈ T is required to verify that s̄ ∈ Θ̄r (as per (3.27)) whereas all (S1, S2) ∈ T must be
checked to verify that s ∈ Θr (as per (3.26)).

The following Lemma is needed for our main result. It shows that given any r ∈ Z≥0 and
S ⊂ V , the indicator vector of the set X r

S , denoted σ(X r
S), can be expressed using an MILP. Recall

that X r
S is the set of agents in S which have r in-neighbors outside of S, implying σj(X r

S) = 1 if
Ljσ(S) = |Vj\S| ≥ r.

Lemma 3.6. Let D = (V , E) be an arbitrary nonempty, nontrivial, simple digraph. Let L be the

Laplacian matrix of D, and let r ∈ N. Consider any subset S ⊂ V , |S| > 0 and let X r
S be defined

as in Definition 3.4. Then the following holds:

σ(X r
S) = arg min

y
1Ty

subject to Lσ(S)− (n)y � (r − 1)1

y ∈ {0, 1}n.

(3.29)

104

Proof. Recall that the entries of the indicator vector σ(X r
S) are defined as

σj(X r
S) =

1, if j ∈ X r
S ,

0, otherwise.
(3.30)

Let y∗ be an optimal point of the RHS of (3.29). To prove that y∗ = σ(X r
S), we demonstrate that

∀j ∈ {1, . . . , n}, σj(X r
S) = 1 ⇐⇒ y∗j = 1. Observe that this is equivalent to demonstrating

σj(X r
S) 6= 1 ⇐⇒ y∗j 6= 1 ∀j, which is equivalent to demonstrating σj(X r

S) = 0 ⇐⇒ y∗j = 0 ∀j.
This can be seen by noting σ(X r

S) ∈ {0, 1}n which implies σj(X r
S) 6= 1 ⇐⇒ σj(X r

S) = 0, and
y∗ ∈ {0, 1}n which implies y∗j 6= 1 ⇐⇒ y∗j = 0. Since proving σj(X r

S) = 1 ⇐⇒ y∗j = 1 for all
j ∈ {1, . . . , n} is equivalent to proving σj(X r

S) = 0 ⇐⇒ y∗j = 0 for all j ∈ {1, . . . , n}, and both
y∗ ∈ {0, 1}n and σ(X r

S) ∈ {0, 1}n, we therefore have (σj(X r
S) = 1 ⇐⇒ y∗j = 1 ∀j) if and only

if (y∗ = σ(X r
S)).

Sufficiency: Consider any j ∈ {1, . . . , n} such that σj(X r
S) = 1. This implies j ∈ X r

S and there-
fore |Vj\S| ≥ r by Definition 3.4. By Lemma 3.3, |Vj\S| = Ljσ(S), and therefore Ljσ(S) >

(r − 1). Since y∗ is an optimal point, it is therefore a feasible point. If y∗j = 0, the jth row of the
first constraint on the RHS of (3.29) is be violated since Ljσ(S) − (n)y∗j = Ljσ(S) � (r − 1).
Therefore we must have y∗j = 1. Note that |Vj\S| ≤ n ∀j ∈ S for any S ⊂ V .

Necessity: We prove by contradiction. Suppose y∗j = 1 and σj(X r
S) = 0. This implies that

Ljσ(S) = |Vj\S| < r. Consider the vector ỹ where ỹj = 0 and ỹi = y∗i ∀i 6= j, i ∈ {1, . . . , n}.
Since Ljσ(S) = |Vj\S| < r, then ỹ is therefore also a feasible point, and 1T ỹ < 1Ty∗. This
contradicts y∗ being an optimal point to (3.29); therefore we must have σj(X r

S) = 1.

The next Theorem presents a mixed integer linear program which determines s̄min(r) for any
fixed r ∈ Z≥0.

Theorem 3.5. Let D = (V , E) be an arbitrary nonempty, nontrivial, simple digraph. Let L be the

Laplacian matrix of D. Let r ∈ Z≥0, and let s̄min(r) be the minimum value of s for which D is not
(r, s)-robust. Then if s̄min(r) < n+ 1, the following holds:

105

s̄min(r) = min
s̄,b1,b2,y1,y2

s̄

subject to 1 ≤ s̄ ≤ n+ 1, s̄ ∈ Z

1Ty1 ≤ 1Tb1 − 1

1Ty2 ≤ 1Tb2 − 1

1Ty1 + 1Ty2 ≤ (s̄− 1)[
L 0

0 L

][
b1

b2

]
− (n)

[
y1

y2

]
� (r − 1)

[
1

1

]
b1 + b2 � 1

1 ≤ 1Tb1 ≤ (n− 1)

1 ≤ 1Tb2 ≤ (n− 1)

b1, b2,y1,y2 ∈ {0, 1}n.

(3.31)

Furthermore, for any r > 0, s̄min(r) = n + 1 if and only if the integer program in (3.31) is

infeasible.

Proof. Note that the theorem statement assumes r is a fixed integer. First, consider the case where
s̄min(r) < (n + 1). The value of s̄min can be found by solving the problem s̄min(r) = mins̄∈Θ̄r s̄.
Making the constraints explicit yields

s̄min(r,D) = min
s̄,(S1,S2)∈T

s̄

subject to |X r
S1
| ≤ |S1| − 1

|X r
S2
| ≤ |S2| − 1

|X r
S1
|+ |X r

S2
| ≤ s̄− 1.

(3.32)

To put this problem in an MILP form, we show that the terms |X r
S1
|, |X r

S2
|, |S1|, and |S2| can be

represented by functions of binary vectors. This can be done by first observing that for any S ⊆ V ,
|S| = 1Tσ(S). Therefore the following relationships hold:

|S1| = 1Tσ(S1), |X r
S1
| = 1Tσ(X r

S1
),

|S2| = 1Tσ(S2), |X r
S2
| = 1Tσ(X r

S2
).

106

Equation (3.32) can therefore be rewritten as

s̄min(r,D) = min
s̄,(S1,S2)∈T

s̄

subject to 1Tσ(X r
S1

) ≤ 1Tσ(S1)− 1

1Tσ(X r
S2

) ≤ 1Tσ(S2)− 1

1Tσ(X r
S1

) + 1Tσ(X r
S2

) ≤ s̄− 1.

(3.33)

By Lemma 3.5, the terms σ(S1), σ(S2) for (S1, S2) ∈ T can be represented by vectors (b1, b2) ∈
B. This yields

s̄min(r,D) = min
s̄,b1,b2

s̄

subject to 1Tσ(X r
S1

) ≤ 1Tb1 − 1

1Tσ(X r
S2

) ≤ 1Tb2 − 1

1Tσ(X r
S1

) + 1Tσ(X r
S2

) ≤ s̄− 1

(b1, b2) ∈ B.

(3.34)

Expanding the last constraint using the definition of B in (3.19) yields the sixth, seventh, and eighth
constraints in (3.31) as well as the constraint that b1, b2 ∈ {0, 1}n. In addition, the first constraint
of the RHS of (3.31) limits the search for feasible value of s̄ to the range of possible values for
s̄min(r).

The vectors y1,y2 are constrained to satisfy y1 = σ(X r
S1

) and y2 = σ(X r
S2

) as follows:
by Lemma 3.5, b1 = σ(S1) and b2 = σ(S2) for (S1, S2) ∈ T as per the sixth through ninth
constraints. Therefore by Lemma 3.6,

σ(X r
S1

) = arg min
y1

1Ty1

subject to Lb1 − (n)y1 � (r − 1)1

y1 ∈ {0, 1}n,

(3.35)

σ(X r
S2

) = arg min
y2

1Ty2

subject to Lb2 − (n)y2 � (r − 1)1

y2 ∈ {0, 1}n.

(3.36)

The constraints of (3.35) and (3.36) are contained in the fifth and last constraints of (3.31). Since
the fourth constraint of (3.31), 1Ty1 + 1Ty2 ≤ (s̄ − 1), simultaneously minimizes 1Ty1 and
1Ty2, the fourth, fifth, and last constraints of (3.31) ensure that y1 = σ(X r

S1
) and y2 = σ(X r

S2
).

107

Therefore 1Ty1 = |X r
S1
| and 1Ty2 = |X r

S2
|.

Now, by the above arguments, solving the RHS of (3.31) yields s̄min(r) when s̄min(r) < (n+1).
We now prove that for r > 0, s̄min(r) = n + 1 if and only if the RHS of (3.31) is infeasible. Note
that if r = 0, then it trivially holds by Definition 3.4 that smax(0) = n and therefore s̄min(0) = n+1.

Sufficiency: s̄min(r) = n + 1 implies that smax(r) = n. Recall that D is (r, smax(r))-robust by
Definition 3.11, since smax(r) is the largest integer s for which D is (r, s)-robust. By Definition
3.4, this implies that for all (S1, S2) ∈ T , at least one of the following three conditions holds:
|X r

S1
| = |S1|, or |X r

S2
| = |S2|, or |X r

S1
| + |X r

S2
| ≥ smax(r) = n. Given any (S1, S2) ∈ T , we

consider each condition separately and show that at least one constraint of (3.31) is violated if the
condition holds true:

• |X r
S1
| = |S1| being true implies that the second constraint of (3.31) is violated. This can

be shown using earlier arguments from this proof. Specifically, we have 1Ty1 = |X r
S1
| =

|S1| = 1Tb1 > 1Tb1 − 1. Therefore no feasible point can be constructed from the given set
pair (S1, S2) if |X r

S1
| = |S1|.

• |X r
S2
| = |S2| being true implies that the third constraint of (3.31) is violated. Specifically,

we have 1Tb2 = |S2| and 1Ty2 = |X r
S2
|. This implies that 1Ty2 = |X r

S2
| = |S2| = 1Tb2 >

1Tb2 − 1. Therefore no feasible point can be constructed from the given set pair (S1, S2) if
|X r

S2
| = |S2|.

• |X r
S1
| + |X r

S2
| ≥ n being true implies that both |X r

S1
| = |S1| and X r

S2
= |S2|. This follows

by observing that X r
S1
⊆ S1 and X r

S2
⊆ S2, S1 ∩ S2 = {∅} by definition of T in (3.1), and

therefore X r
S1
∩ X r

S2
= {∅}. Since S1, S2 ⊂ V and |V| = n, we have n ≤ |X r

S1
| + |X r

S2
| ≤

|S1| + |S2| ≤ |V| = n. We must therefore have |X r
S1
| = |S1| and |X r

S2
| = |S2|, which from

prior arguments both imply that a constraint of (3.31) is violated. Therefore no feasible point
can be constructed from the given set pair (S1, S2) if |X r

S1
|+ |X r

S2
| ≥ n

Since for all (S1, S2) ∈ T at least one of these three conditions holds, for all (S1, S2) ∈ T at least
one constraint of (3.31) is violated when smax(r) = n, which is equivalent to s̄min(r) = n + 1.
Therefore s̄min(r) = n+ 1 implies that (3.31) is infeasible.

Necessity: We prove the contrapositive, i.e. we prove that s̄min 6= n+1 implies that there exists
a feasible point to the RHS of (3.31). First, no digraph on n nodes is (r, n+1)-robust [2, Definition
13], and the contrapositive of Property 3.1 implies that if a graph is not (r̄, s̄)-robust, then it is also
not (r̄′, s̄′)-robust for all r̄′ ≥ r̄, and for all s̄′ ≥ s̄. Therefore s̄min 6= n+ 1 implies s̄min ≤ n. Next,
s̄min ≤ n implies n ∈ Θ̄r, which implies that there exists (S1, S2) ∈ T such that |X r

S1
| ≤ |S1| − 1

and |X r
S2
| ≤ |S2| − 1 and |X r

S1
| + |X r

S2
| ≤ n − 1, as per (3.27). Letting s̄ = n, b1 = σ(S1),

b2 = σ(S2), y1 = σ(X r
S1

), and y2 = σ(X r
S2

) yields a feasible point to (3.31).

108

The MILPs in Theorems 3.4 and 3.5 can be used to determine the (r∗, s∗)-robustness of any
digraph satisfying Assumption 3.1, thereby solving Problem 3.2. Recall from the beginning of
Section 3.4.2 that r∗ = rmax(D) and s∗ = smax(rmax(D)). Theorem 3.4 can first be used to
determine the value of rmax(D) = r∗. Using rmax(D), Theorem 3.5 can then be used to find the
value of smax(rmax(D)) = s∗.

More generally however, the MILP formulation in Theorem 3.5 allows for smax(r) to be de-
termined for any r ∈ Z≥0. Since (r, 1)-robustness is equivalent to r-robustness, the MILP in
Theorem 3.5 can also be used to determine whether a digraph D is r robust for a given r ∈ Z≥0. If
s̄min(r) ≥ 2, then smax(r) ≥ 1 which implies thatD is (r, 1)-robust. On the other hand, s̄min(r) = 1

implies that 1 ∈ Θ̄r and therefore D is not (r, 1)-robust (and not r-robust).
Finally, to solve Problem 3.3 Theorem 3.5 can be used to determine the (Fmax + 1, Fmax + 1)-

robustness of a nonempty, nontrivial, simple digraph. Recall that Fmax = max({F ∈ Z≥0 :

(F + 1, F + 1) ∈ Θ}). The value of Fmax is determined by Algorithm 3.1, presented below. In

Algorithm 3.1 DETERMINEFMAX

1: r′ ← rmax(D) from MILP in Theorem 3.4
2: while r′ > 0 do
3: s′ ← smax(r′) from MILP in Theorem 3.5
4: if s′ ≥ r′ then . Prop. 3.1 implies graph is (r′, s)-rob. ∀s ≤ s′,

therefore D is (r′, r′)-robust
5: Fmax ← (r′ − 1)
6: return Fmax

7: else
8: r′ ← (r′ − 1)
9: end if

10: end while
11: Fmax ← 0
12: return Fmax

essence, Algorithm 3.1 finds the largest values of r′ and s′ such that r′ = s′ and (r′, s′) ∈ Θ. It
begins by setting r′ ← rmax(D), and finding smax(r′) using Theorem 3.5. If smax(r′) ≥ r′, then
by Proposition 3.1 the digraph D is (r′, s)-robust for s = r′ and therefore (r′, r′)-robust. This
implies r′ = Fmax + 1. However, if smax(r′) < r′ then r′ is decremented, smax(r′) recalculated,
and the process is repeated until the algorithm terminates with the highest integer r′ such that D is
(r′, r′)-robust, yielding Fmax = (r′ − 1).

3.4.3 Approximate Bounds on rmax(D)

When solving a MILP with zero-one integer variables using a branch-and-bound technique, the
maximum number of subproblems to be solved is equal to 2n, where n is the dimension of the zero-

109

one integer vector variable. In Section 3.4.1, the MILP in Theorem 1 which solves for rmax(D)

has a binary vector variable with dimension 2n. In this section, we present two MILPs whose
optimal values provide upper and lower bounds on the value of rmax(D). Each MILP has a binary
vector variable with dimension of only n, which implies a lower complexity in terms of maximum
number of subproblems as compared to the MILP in Theorem 3.4.

3.4.3.1 A Lower Bound on Maximum r-Robustness

In [98], a technique is presented for lower bounding rmax(D) of undirected graphs by searching
for the minimum reachability of subsets S ⊂ V such that |S| ≤ bn/2c. We extend this result to
digraphs in the next Lemma.

Lemma 3.7. LetD = (V , E) be an arbitrary nonempty, nontrivial, simple digraph. Let Ψ = {S ⊂
V : 1 ≤ |S| ≤ bn/2c}. Then the following holds:

rmax(D) ≥ min
S∈Ψ
R(S). (3.37)

Proof. By Lemma 3.2 and Remark 3.1, proving (3.37) is equivalent to proving

min
S∈Ψ
R(S) ≤ min

(S1,S2)∈T
max (R(S1),R(S2)) . (3.38)

Denote S∗ = arg minS∈ΨR(S) and (S∗1 , S
∗
2) = arg min(S1,S2)∈T max(R(S1),R(S2)). We prove

by contradiction. Suppose R(S∗) > max(R(S∗1),R(S∗2)). Since S∗1 and S∗2 are nonempty, |S∗1 | ≥
1 and |S∗2 | ≥ 1. Since they are disjoint, we must have either |S∗1 | ≤ bn/2c, or |S∗2 | ≤ bn/2c, or
both |S∗1 | and |S∗2 | less than or equal to bn/2c. Therefore either S∗1 ∈ Ψ or S∗2 ∈ Ψ. This implies
that either R(S∗1) ≥ R(S∗) (if S∗1 ∈ Ψ) or R(S∗2) ≥ R(S∗) (if S∗2 ∈ Ψ), since S∗ is an optimal
point. But this contradicts the assumption thatR(S∗) > max(R(S∗1),R(S∗2)). Therefore we must
have

min
S∈Ψ
R(S) ≤ min

(S1,S2)∈T
max (R(S1),R(S2)) = rmax(D), (3.39)

which concludes the proof.

Using this result, a lower bound on rmax(D) can be obtained by the following optimization
problem:

Theorem 3.6. Let D be an arbitrary nonempty, nontrivial, simple digraph and let L be the Lapla-

cian matrix ofD. A lower bound on the maximum integer for whichD is r-robust, denoted rmax(D),

110

is found as follows:

rmax(D) ≥ min
b

max
i

(Lib)

subject to 1 ≤ 1Tb ≤ bn/2c

b ∈ {0, 1}n.

(3.40)

Furthermore, (3.40) is equivalent to the following mixed integer linear program:

rmax(D) ≥ min
t,b

t

subject to t ≥ 0, b ∈ Zn

Lb � t1

0 � b � 1

1 ≤ 1Tb ≤ bn/2c

(3.41)

Proof. To prove the result we show that the RHS of (3.40) is equivalent to the RHS of (3.37). By
Lemma 3.3,R(S) = maxi Liσ(S). Therefore (3.37) is equivalent to

rmax(D) ≥ min
S∈Ψ

max
i
Liσ(S). (3.42)

Next, we demonstrate that the set

BΨ = {b ∈ {0, 1}n : 1 ≤ 1Tb ≤ bn/2c} (3.43)

satisfies BΨ = σ(Ψ), where σ(Ψ) is the image of Ψ under σ : P(V) → {0, 1}n. Since 1 ≤
|S| ≤ bn/2c for all S ∈ Ψ, then by (3.9) we have 1 ≤ 1Tσ(S) ≤ bn/2c for all S ∈ Ψ. Also,
σ(S) ∈ {0, 1}n, and therefore σ(S) ∈ BΨ ∀S ∈ Ψ, implying that σ(Ψ) ⊆ B. Next, for any
b ∈ BΨ, choose the set S = σ−1(b) (recall from (3.10) that σ−1 : {0, 1}n → P(V)). Then clearly
σ(S) = σ(σ−1(b)) = b, and therefore BΨ ⊆ σ(Ψ). Therefore BΨ = σ(Ψ).

The function σ : Ψ → BΨ is therefore surjective. Since σ : P(V) → {0, 1}n is injective,
Ψ ⊂ P(V), and BΨ ⊂ {0, 1}n, then σ : Ψ → BΨ is also injective and therefore a bijection. This
implies that (3.42) is equivalent to

rmax(D) ≥ min
b∈BΨ

max
i
Lib. (3.44)

Making the constraints of (3.44) explicit yields (3.40). More specifically, since BΨ = {b ∈

111

{0, 1}n : 1 ≤ 1Tb ≤ bn/2c} by (3.43), equation (3.44) can be rewritten with explicit constraints
on b as follows:

rmax(D) ≥ min
b

max
i

(Lib)

subject to 1 ≤ 1Tb ≤ bn/2c

b ∈ {0, 1}n.

(3.45)

Equation (3.45) is the same as (3.40).
We next prove that (3.41) is equivalent to (3.40). As per the proof of Theorem 3.4, the objective

and first two constraints of (3.41) are a reformulation of the objective of the RHS of (3.40). The
first and third constraint ensure b to be in {0, 1}n, and the fourth constraint ensures b ∈ BΨ.

3.4.3.2 An Upper Bound on Maximum r-Robustness

This section will present an MILP whose solution provides an upper bound on the value of
rmax(D), and whose binary vector variable has a dimension of n. This will be accomplished
by searching a subset T ′ ⊂ T which is defined as

T ′ = {(S1, S2) ∈ T : S1 ∪ S2 = V}. (3.46)

In other words, T ′ is the set of all possible partitionings of V into S1 and S2. Considering only
elements of T ′ yields certain properties that allow us to calculate an upper bound on rmax(D) using
an MILP with only an n-dimensional binary vector.

Observe that |T ′| = 2n − 2, since neither T nor T ′ include the cases where S1 = {∅} or
S2 = {∅}. Similar to the methods discussed earlier, the partitioning of V into S1 and S2 can be
represented by the indicator vectors σ(S1) and σ(S2), respectively. Note that since S1 ∪ S2 = V
for all (S1, S2) ∈ T ′, it can be shown that σ(S1) + σ(S2) = 1 ∀(S1, S2) ∈ T ′. These properties
allow the following Lemma to be proven:

Lemma 3.8. Let D = (V , E) be an arbitrary nonempty, nontrivial, simple digraph. Let L be the

Laplacian matrix of D and let Lj be the jth row of L. Let T ′ be defined as in (3.46). Then for all

112

(S1, S2) ∈ T ′, the following holds:

Ljσ(S1) =

|Vj\S1|, if j ∈ S1,

−|Vj\S2|, if j ∈ S2.

Ljσ(S2) =

|Vj\S2|, if j ∈ S2,

−|Vj\S1|, if j ∈ S1.
(3.47)

Proof. Lemma 3.3 implies that Ljσ(S1) = |Vj\S1| if j ∈ S1, and Ljσ(S2) = |Vj\S2| if j ∈ S2.
Since (S1, S2) ∈ T ′ =⇒ σ(S1) + σ(S2) = 1, we have

Ljσ(S1) = Lj(1− σ(S2)) = −Ljσ(S2). (3.48)

This relation holds because, by the definition of L, 1 is always in the null space of L. Therefore
for j ∈ S2 we have Ljσ(S1) = −Ljσ(S2) = −|Vj\S2|, and for j ∈ S1 we have Ljσ(S2) =

−Ljσ(S1) = −|Vj\S1|.

An interesting result of Lemma 3.8 is that for any subsets (S1, S2) ∈ T ′, the maximum reach-
ability of the two subsets can be recovered using the infinity norm.

Lemma 3.9. Let D = (V , E) be an arbitrary nonempty, nontrivial, simple digraph and let L be

the Laplacian matrix of D. For all (S1, S2) ∈ T ′, the following holds:

‖Lσ(S1)‖∞ = ‖Lσ(S2)‖∞ = max(R(S1),R(S2)). (3.49)

Proof. Denote the nodes in S1 as {i1, . . . , ip} and the nodes in S2 as {j1, . . . , j(n−p)} with p ∈
Z, 1 ≤ p ≤ (n − 1). Note that since S1 ∪ S2 = V , we have {i1, . . . , ip} ∪ {j1, . . . , jn−p} =

{1, . . . , n}.
The right hand side of equation (3.49) can be expressed as

max(R(S1),R(S2)) = max(|Ni1\S1|, . . . , |Nip\S1|, |Nj1\S2|, . . . , |Nj(n−p)\S2|). (3.50)

Similarly, using Lemma 3.8 yields

‖Lσ(S1)‖∞ = max
(
|L1σ(S1)|, . . . , |Lnσ(S1)|

)
= max

(
|Ni1\S1|, . . . , |Nip\S1|, |Nj1\S2|, . . . , |Nj(n−p)\S2|

)
= max(R(S1),R(S2)). (3.51)

113

Finally, observe that

‖Lσ(S2)‖∞ = ‖L(1− σ(S1))‖∞ = ‖Lσ(S1)‖∞ , (3.52)

which completes the proof.

A mixed integer linear program yielding an upper bound on the value of rmax(D) is therefore
given by the following Theorem:

Theorem 3.7. Let D = (V , E) be an arbitrary nonempty, nontrivial, simple digraph. Let L be the

Laplacian matrix of D. The maximum integer for which D is r-robust, denoted rmax(D), is upper

bounded as follows:

rmax(D) ≤ min
b

‖Lb‖∞

subject to 1 ≤ 1Tb ≤ (n− 1)

b ∈ {0, 1}n.

(3.53)

Furthermore, (3.53) is equivalent to the following mixed integer linear program:

rmax(D) ≤ min
t,b

t

subject to 0 ≤ t, b ∈ Zn

− t1 � Lb � 1t

0 � b � 1

1 ≤ 1Tb ≤ (n− 1)

(3.54)

Proof. Consider the optimization problem

min
(S1,S2)∈T ′

max (R(S1),R(S2)) . (3.55)

Since T ′ ⊂ T , the optimal value of (3.55) is a valid upper bound on the value of rmax(D) as per
Remark 3.1. From (3.55) and Lemma 3.9 we obtain

rmax(D) ≤ min
(S1,S2)∈T ′

‖Lσ(S1)‖∞

= min
(S1,S2)∈T ′

‖Lσ(S2)‖∞ . (3.56)

114

Since S1, S2 are nonempty and S1 ∪ S2 = V for all (S1, S2) ∈ T ′, the set of all possible S1

subsets within elements of T ′ is (P(V)\{∅,V}). Similarly, the set of all possible S2 subsets within
elements of T ′ is also (P(V)\{∅,V}). For brevity, denote P∅,V = P(V)\{∅,V}.

Next, we demonstrate that the set B′ = {b ∈ {0, 1}n : 1 ≤ 1Tb ≤ (n−1)} satisfies σ(P∅,V) =

B′. Since 1 ≤ |S| ≤ (n− 1) for all S ∈ P∅,V , then by (3.9) we have 1 ≤ 1Tσ(S) ≤ (n− 1) for all
S ∈ P∅,V . Also, σ(S) ∈ {0, 1}n, and thereforeσ(S) ∈ B′ ∀S ∈ P∅,V , implying thatσ(P∅,V) ⊆ B′.
Next, for any b ∈ B′, choose the set S = σ−1(b). Then clearly σ(S) = σ(σ−1(b)) = b, and
therefore B′ ⊆ σ(P∅,V). Therefore B′ = σ(P∅,V).

The function σ : P∅,V → B′ is therefore surjective. Since σ : P(V) → {0, 1}n is injective,
P∅,V ⊂ P(V), and B′ ⊂ {0, 1}n, then σ : P∅,V → B′ is also injective. Therefore σ : P∅,V → B′ is
a bijection, implying that (3.56) is equivalent to

rmax(D) ≤ min
b∈B′
‖Lb‖∞ . (3.57)

Making the constraints of (3.57) explicit yields (3.53). We next prove that (3.54) is equivalent to
(3.53). It can be shown [189, Chapter 4] that minx ‖x‖∞ is equivalent to

min
t,x

t

subject to − t1 � x � t1.

Likewise, the objective and first two constraints of the RHS of (3.54) are a reformulation of the
objective of the RHS of (3.53). The first and third constraint restrict b ∈ {0, 1}n, and the fourth
constraint restricts b to be an element of B′. These arguments imply that the RHS of (3.54) is
equivalent to the RHS of (3.53).

3.4.4 Discussion

MILP problems are NP-hard problems to solve in general. As such, the formulations presented
in this chapter do not reduce the theoretical complexity of the robustness determination problem.
However, it has been pointed out that algorithmic advances and improvement in computer hardware
have led to a speedup factor of 800 billion for mixed integer optimization problems during the
last 25 years [226]. The results of this section allow for the robustness determination problem
to benefit from ongoing and future improvements in the active areas of optimization and integer
programming.

In addition, one crucial advantage of the MILP formulations is the ability to iteratively tighten
a global lower bound on the optimal value over time by using a branch-and-bound algorithm. The

115

reader is referred to [227] for a concise overview of how such a lower bound can be calculated.
In context of robustness determination, lower bounds on rmax(D) and smax(r) are generally more
useful than upper bounds since they can be used to calculate lower bounds on the maximum ad-
versary model that the network can tolerate. The ability to use branch-and-bound algorithms for
solving the robustness determination problem offers the flexibility of terminating the search for
rmax(D) and/or smax(r) when sufficiently high lower bounds have been determined. In this man-
ner, approximations of these values can be found when it is too computationally expensive to solve
for them exactly. In addition, unlike prior exhaustive search algorithms the MILP formulation
also allows for portions of the search space to be pruned via branch-and-bound and cutting plane
methods without needing to search them explicitly. This is currently the only method that can
prune the search space in the r-and (r, s)-robustness determination problem for general undirected
and directed graphs. The investigation of additional methods to efficiently find and approximate
solutions to the MILP formulations in this section is left for future work.

3.4.5 Comparison of MILP Robustness Determination with Prior Methods

This section presents simulations which demonstrate the performance of the MILP formulations
as compared to a robustness determination algorithm from prior literature called
DetermineRobustness [96]. Computations for these simulations are performed in MATLAB
2018b on a desktop computer with 8 Intel core i7-7820X CPUs (3.60 GHz) capable of handling 16
total threads. All MILP problems are solved using MATLAB’s intlinprog function.

Four types of random graphs are considered in the simulations: Erdős-Rényi random graphs,
random digraphs, k-out random graphs [228], and k-in random graphs. The Erdős-Rényi random
graphs in these simulations consist of n agents, with each possible undirected edge present inde-
pendently with probability p ∈ [0, 1] and absent with probability 1 − p. Three values of p are
considered: 0.3, 0.5, and 0.8. The random digraphs considered consist of n nodes with each possi-
ble directed edge present independently with probability p and absent with probability 1− p. The
values of p considered are again 0.3, 0.5, and 0.8. The k-out random graphs consist of n nodes. For
each vertex i ∈ V , k ∈ N other nodes are chosen with all having equal probability and all choices
being independent. For each node j of the k chosen nodes, a directed edge (i, j) is formed. k-in
random graphs are formed in the same manner as k-out random graphs with the exception that the
direction of the directed edges are reversed; i.e. edges (j, i) are formed. The values of k considered
are {3, 4, 5}.

Two sets of simulations are considered. The first set compares two algorithms which determine
the pair (r∗, s∗) for a digraph: theDetermineRobustness algorithm from [96] and Algorithm 3.3,
(r, s)-Rob. MILP, which is an MILP formulation using results from Theorems 3.4 and 3.5. Details

116

about the implementation of these algorithms can be found in the Appendix, section 3.6. The
algorithms are tested on the four types of graphs described above with values of n ranging from 7 to
15. In addition, the MILP formulation is tested on digraphs with values of n ranging from 17 to 25.
TheDetermineRobustness algorithm is not tested on values of n above 15 since the convergence
rate trend is clear from the existing data, and the projected convergence times are prohibitive
for large n. 100 graphs per graph type and combination of n and p (or n and k depending on
the respective graph type), are randomly generated, and the algorithms are run on each graph.
Overall, 10,800 total graphs are analyzed with DetermineRobustness and 16,800 total graphs
are analyzed with Algorithm 3.3. The time for each algorithm to determine the pair (r∗, s∗) is
averaged for each combination of n and p (for Erdős-Rényi random graphs and random digraphs),
and for each combination of n and k (for k-out and k-in random graphs). The interpolated circles
represent the average convergence time in seconds over 100 trials for each value of n, while the
vertical lines represent the spread between maximum convergence time and minimum convergence
time over trials for the respective value of n. Note the logarithmic scale of the y-axis.

To facilitate the large number of graphs being tested, a time limit of 103 seconds (roughly
17 minutes) is imposed on Algorithm 3.3 (the MILP formulation). However, out of the 16,800
graphs tested by Algorithm 3.3, there are only 62 instances where the algorithm did not converge
to optimality before this time limit. Instances where the time limit was violated are given the
maximum time of 103 seconds and included in the data. The graphs where optimality was not
reached by the time limit all have between 21 and 25 nodes, are either Erdős-Rényi random graphs
or random digraphs, and have edge formation probabilities of p = 0.8.

Several patterns in the data warrant discussion. It is clear that in some cases, the minimum
time of DetermineRobustness is less than that of (r, s)-Rob. MILP. DetermineRobustness
terminates if two subsets S1 and S2 which are both 0-reachable are encountered, since this implies
that the graph is at most (0, n)-robust. This can result in fast termination if such subsets are
encountered early in the search. Second, there are instances where the maximum time for the
(r, s)-Rob. MILP is much higher than that of the DetermineRobustness algorithm (e.g. for k-
out random digraphs with k = 4). It is not immediately clear why this is the case; future work
will investigate graph characteristics which affect the convergence time of the MILP formulations.
Finally, for small values of n (e.g. n ∈ {7, 8}) the average time for DetermineRobustness is
lower than the average time for the (r, s)-Rob. MILP. This likely reflects that it may be quicker to
simply test all unique nonempty, disjoint subsets in these cases (966 for n = 7, 3025 for n = 8)
than to incur computational overhead associated with solving the MILP formulations. We point
out that, with a few exceptions, the difference in this case is small: the average convergence time
for both algorithms is generally under 10−1 seconds for n ∈ {7, 8}.

The second simulation set compares the performance of four algorithms which determine

117

5 10 15 20 25

Number of nodes

10 -4

10 -2

10 0

10 2

10 4

E
rd

o
s
-R

e
n
y
i
G

ra
p
h
s

C
o

m
p

u
ta

ti
o

n
 t

im
e

 (
s
e

c
)

p =0.3

Det. Rob.

(r,s)-Rob. MILP

5 10 15 20 25

Number of nodes

10 -4

10 -2

10 0

10 2

10 4
p =0.5

5 10 15 20 25

Number of nodes

10 -4

10 -2

10 0

10 2

10 4
p =0.8

5 10 15 20 25

Number of nodes

10 -4

10 -2

10 0

10 2

10 4

R
a
n
d
o
m

 D
ig

ra
p
h
s

C
o

m
p

u
ta

ti
o

n
 t

im
e

 (
s
e

c
)

p =0.3

5 10 15 20 25

Number of nodes

10 -4

10 -2

10 0

10 2

10 4
p =0.5

5 10 15 20 25

Number of nodes

10 -4

10 -2

10 0

10 2

10 4
p =0.8

5 10 15 20 25

Number of nodes

10 -4

10 -2

10 0

10 2

10 4

k
-I

n
 R

a
n
d
o
m

 D
ig

ra
p
h
s

C
o

m
p

u
ta

ti
o

n
 t

im
e

 (
s
e

c
)

k =3

Det. Rob.

(r,s)-Rob. MILP

5 10 15 20 25

Number of nodes

10 -4

10 -2

10 0

10 2

10 4
k =4

5 10 15 20 25

Number of nodes

10 -4

10 -2

10 0

10 2

10 4
k =5

5 10 15 20 25

Number of nodes

10 -4

10 -2

10 0

10 2

10 4

k
-O

u
t
R

a
n
d
o
m

 D
ig

ra
p
h
s

C
o

m
p

u
ta

ti
o

n
 t

im
e

 (
s
e

c
)

k =3

5 10 15 20 25

Number of nodes

10 -4

10 -2

10 0

10 2

10 4
k =4

5 10 15 20 25

Number of nodes

10 -4

10 -2

10 0

10 2

10 4
k =5

Figure 3.12: Comparison ofDetermineRobustness to (r, s)-Rob. MILP (Algorithm 3.3). The in-
terpolating lines and circles represents the average computation time in seconds over 100 digraphs
for each value of n, the upper and lower lines represent the maximum and minimum computation
times, respectively, over the 100 trials for each n. Note that (r, s)-Rob. MILP actually solves two
MILPs sequentially: one to find rmax(D), and one to find smax(rmax(D)).

118

only the value of rmax(D) for digraphs. These include Algorithm 3.4, a modi fied version of
DetermineRobustness which determines rmax(D), the MILP formulation from Theorem 3.4
(denoted r-Rob. MILP), the lower bound MILP formulation from Theorem 3.6 (denoted r-Rob.

Lower Bnd), and the upper bound MILP formulation from Theorem 3.7 (denoted r-Rob. Upper

Bnd). These algorithms are tested on the four types of graphs described above with values of n
ranging from 7 to 15. Additionally, the MILP formulations are tested on digraphs with values of
n ranging from 17 to 25. Again, 100 graphs per graph type and combination of n and p (or n
and k, depending on the respective graph type) are randomly generated, and the algorithms are
run on each graph. Overall, 10,800 graphs are analyzed with Algorithm 3.4 and 16,800 graphs
are analyzed by each of the three MILP formulations. The time for each algorithm to determine
rmax(D) is averaged for each combination of n, p or k, and graph type. The average, minimum,
and maximum times per combination are plotted in Figure 3.13. A time limit of 103 seconds is
again imposed on all three of the MILP formulations, but out of the 16,800 graphs tested there are
no instances where this time limit was violated.

Some of the same patterns as in the first set of simulations (with the DetermineRobustness
and (r, s)-Rob. MILP algorithms) are evident in the second set of simulations. The Mod. Det.

Rob. algorithm also terminates if a pair of subsets S1 and S2 are found which are both 0-reachable,
which is likely the reason for the small minimum computation time of this algorithm for several
of the graphs. Mod. Det. Rob. generally has a lower average computational time for n ∈ {7, 8},
again likely due to the speed of checking the relatively low number of unique nonempty, disjoint
subset pairs as compared to solving the MILPs. It is not clear why the r-Rob. Upper Bnd MILP
exhibits high average and maximum computational times for the k-out random digraphs. Future
work will further analyze graph characteristics which negatively affect the convergence time of the
MILP formulations.

119

5 10 15 20 25

Number of nodes

10 -4

10 -2

10 0

10 2

10 4

E
rd

o
s
-R

e
n
y
i
G

ra
p
h
s

C
o

m
p

u
ta

ti
o

n
 t

im
e

 (
s
e

c
)

p =0.3
Mod. Det. Rob.

r-Rob. MILP

r-Rob. Lower Bnd

r-Rob. Upper Bnd

5 10 15 20 25

Number of nodes

10 -4

10 -2

10 0

10 2

10 4
p =0.5

5 10 15 20 25

Number of nodes

10 -4

10 -2

10 0

10 2

10 4
p =0.8

5 10 15 20 25

Number of nodes

10 -4

10 -2

10 0

10 2

10 4

R
a
n
d
o
m

 D
ig

ra
p
h
s

C
o

m
p

u
ta

ti
o

n
 t

im
e

 (
s
e

c
)

p =0.3

5 10 15 20 25

Number of nodes

10 -4

10 -2

10 0

10 2

10 4
p =0.5

5 10 15 20 25

Number of nodes

10 -4

10 -2

10 0

10 2

10 4
p =0.8

5 10 15 20 25

Number of nodes

10 -4

10 -2

10 0

10 2

10 4

k
-I

n
 R

a
n
d
o
m

 D
ig

ra
p
h
s

C
o

m
p

u
ta

ti
o

n
 t

im
e

 (
s
e

c
)

k =3

Mod. Det. Rob.

r-Rob. MILP

r-Rob. Lower Bnd

r-Rob. Upper Bnd

5 10 15 20 25

Number of nodes

10 -4

10 -2

10 0

10 2

10 4
k =4

5 10 15 20 25

Number of nodes

10 -4

10 -2

10 0

10 2

10 4
k =5

5 10 15 20 25

Number of nodes

10 -4

10 -2

10 0

10 2

10 4

k
-O

u
t
R

a
n
d
o
m

 D
ig

ra
p
h
s

C
o

m
p

u
ta

ti
o

n
 t

im
e

 (
s
e

c
)

k =3

5 10 15 20 25

Number of nodes

10 -4

10 -2

10 0

10 2

10 4
k =4

5 10 15 20 25

Number of nodes

10 -4

10 -2

10 0

10 2

10 4
k =5

Figure 3.13: Comparison of the Mod. Det. Rob. algorithm (Algorithm 3.4) which determines
rmax(D) to three MILP formulations. The first MILP formulation labeled r-Rob. MILP is an
implementation of Theorem 3.4 and calculates rmax(D) exactly. The MILP formulation labeled
r-Rob. Lower Bnd is an implementation of Theorem 3.6 and calculates a lower bound on rmax(D).
The MILP formulation labeled r-Rob. Upper Bnd is an implementation of Theorem 3.7 and cal-
culates an upper bound on rmax(D). The interpolating lines and circles represents the average
computation time over 100 digraphs for each value of n, the upper and lower lines represent the
maximum and minimum computation times, respectively, over the 100 trials for each n.

120

3.5 Conclusion

This chapter presents novel approaches for the problems of constructing robust graphs and deter-
mining the robustness of digraphs. It was demonstrated that the class of k-circulant digraphs has
robustness properties as a function of the parameter k, making it conducive to constructing scalable
networks with known levels of robustness. In addition, a method was presented for determining
the r- and (r, s)-robustness of digraphs using mixed integer linear programming (MILP). The ad-
vantages of the MILP formulations and branch-and-bound algorithms over prior algorithms are
discussed, and the performance of the MILP methods to the DetermineRobustness algorithm is
compared.

Much work remains to be done in the area of robustness determination. The results in this
chapter merely open the door for the extensive literature on mixed integer programming to be ap-
plied to the robustness determination problem. Future work will focus on applying more advanced
integer programming techniques to the formulations in this chapter to yield faster solution times.
In particular, the Laplacian matrix exhibits a high degree of structure and plays a central role in the
MILP formulations presented in this chapter. A promising direction for investigation is to explore
how to leverage this structure to determine the robustness of digraphs more efficiently.

3.6 Appendix: Description of Algorithm Implementations

This section gives additional details about the implementations of the algorithms tested in the
Simulation. Algorithm 3.2 provides the details about the implementation of the
DetermineRobustness algorithm implemented in the simulations. One modification was made
to the DetermineRobustness algorithm to ensure accuracy of results. In the first line of the
original DetermineRobustness algorithm, r is initialized with min

(
δin(D), dn/2e

)
. This yields

incorrect results however for directed spanning trees where the in-degree of the root node is zero.
Consider the digraph depicted in Figure 3.14. Here, δin(D) = 0, since the left agent has no
in-neighbors. This implies that the original DetermineRobustness algorithm would initialize
r ← 0 and return (0, n) as the values of (rmax(D), smax(rmax(D))). However, Figure 3.14 shows
that for all nonempty, disjoint subsets S1 and S2, at least one is 1-reachable. The depicted graph is
therefore (1, 1)-robust with rmax(D) = 1 and smax(rmax(D)) = 1. In fact, initializing r ← δin(D)

will always yield this error for any directed spanning tree where the in-degree of the root node is 0.
This happens because any digraph is 1-robust if and only if it contains a rooted out-branching [2,
Lemma 7], yet DetermineRobustness initializes r ← δin(D) = 0 which results in termination at
line 23. In Algorithm 3.2, r is instead initialized with min

(
max

(
δin(D), 1

)
,
⌈
n
2

⌉)
. This initializes

r ← 1 if δin(D) = 0, since it is still possible for the digraph to be 1-robust.

121

Algorithm 3.2 [96] DETERMINEROBUSTNESS(A(D))

1: comment: A(D) is the adjacency matrix of the graph.
2: r ← min

(
max

(
δin(D), 1

)
,
⌈
n
2

⌉)
3: s← n
4: comment: δin(D) is the min. in-degree of nodes in D
5: for each k ← 2 to n do
6: for each Ki ∈ Kk (i = 1, 2, . . . , (nk)) do
7: comment: Kk is the set of (nk) unique subsets of V
8: for each Pj ∈ PKi (j = 1, 2, . . . , 2k−1 − 1) do

9:
comment: PKi is set of partitions of Ki with

exactly two nonempty parts
10: comment: Pj = {S1, S2}
11: isRSRobust← ROBUSTHOLDS(A(D), S1, S2, r, s)
12: if (isRSRobust == false) and s > 0 then
13: s← s− 1
14: end if
15: while isRRobust == false and (r > 0) do
16: while isRSRobust == false and (s > 0) do
17: isRRobust
18: ← ROBUSTHOLDS(A(D), S1, S2, r, s)
19: if not isRSRobust then
20: s← s− 1
21: end if
22: end while
23: if isRSRobust == false then
24: r ← r − 1
25: s← n
26: end if
27: end while
28: if r == 0 then
29: return (r, s) . Implies rmax(D) = 0
30: end if
31: end for
32: end for
33: end for
34: return (r, s) . Returned values are (rmax(D), smax(rmax(D)))

122

Figure 3.14: (Left) Example of a digraph which has δin(D) = 0 but which is 1-robust. The graph
is depicted on the far left, and all possible (S1, S2) pairs in T are depicted on the close left. (Right)
Fig A.2. A rooted out-branching, where the in-degree of the root node (far left) is zero. All
digraphs containing a rooted outbranching are at least (1, 1)-robust [2].

To compare the MILP methodologies of this chapter with the DetermineRobustness algo-
rithm, Algorithm 3.3 was used which determines the values of (rmax(D), smax(rmax(D))). The first

Algorithm 3.3 (r, s)-ROB. MILP

1: r ← rmax(D) from MILP in Theorem 3.4
2: if r == 0 then
3: s← n
4: else
5: if δin(D) ≥ bn/2c+ r − 1 then . See Property 5.23 in [219]
6: s← n
7: else
8: s̄min(r)← from MILP in Theorem 3.5
9: s← s̄min(r)− 1

10: end if
11: end if
12: return (r, s)

part of Algorithm 3.3 uses the formulation in Theorem 3.4 to determine rmax(D). If rmax(D) = 0,
then s ← n and the algorithm returns (r, s). If rmax(D) > 0, then the algorithm determines in
line 5 whether the minimum in-degree of the graph δin(D) ≥ bn/2c + r − 1. By Property 5.23
in [219], if this is satisfied then the digraph is (r, s)-robust for all 1 ≤ s ≤ n. Since for r > 0 the
MILP in Theorem 3.5 is infeasible if and only if s = n, this test attempts to help the MILP solver
avoid a fruitless search for a feasible solution if s is indeed equal to n. This test works for graphs
with large minimum in-degrees (e.g. complete graphs), but since it is a sufficient condition only
it may not always detect when smax(r) = n. Determining a more rigorous test to determine when
smax(r) = n is left for future work. Finally, if the test in line 5 fails then the MILP formulation in
Theorem 3.5 is performed to determine s̄min. Since smax(r) = s̄min(r)− 1, the value of smax(r) is
stored in s and the algorithm returns (r, s).

123

The MILP algorithms in Section 3.4.1 consider r-robustness, which is equivalent to (r, 1)-
robustness [96, Property 5.21], [2, Section VII-B]. Since they effectively do not consider values
of s greater than 1, it is unfair to compare them directly with the DetermineRobustness al-
gorithm. Algorithm 3.4 is a modified version of DetermineRobustness which only considers
(r, 1)-robustness. This is accomplished by initializing s ← 1 in lines 2 and 20 instead of s ← n.
Algorithm 3.4 is labeled Mod. Det. Rob. in the simulation legends.

124

Algorithm 3.4 Modified version of DETERMINEROBUSTNESS

1: comment: A(D) is the adjacency matrix of the graph
2: r ← min

(
max

(
δin(D), 1

)
,
⌈
n
2

⌉)
3: s← 1 . (Different than Alg. 3.2 in [96])
4: comment: δin(D) is the min. in-degree of nodes in D
5: for each k ← 2 to n do
6: comment: Kk is the set of (nk) unique subsets of V
7: for each Ki ∈ Kk (i = 1, 2, . . . , (nk)) do
8: for each Pj ∈ PKi (j = 1, 2, . . . , 2k−1 − 1) do

9:
comment: PKi is set of partitions of Ki into S1

and S2

10: isRSRobust← ROBUSTHOLDS(A(D), S1, S2, r, s)
11: if (isRSRobust == false) and s > 0 then
12: s← s− 1
13: end if
14: while isRRobust == false and (r > 0) do
15: while isRSRobust == false and (s > 0) do
16: isRRobust
17: ← ROBUSTHOLDS(A, S1, S2, r, s)
18: if not isRSRobust then
19: s← s− 1
20: end if
21: end while
22: if isRSRobust == false then
23: r ← r − 1
24: s← 1 . (Diff. than Alg. 3.2 in [96])
25: end if
26: end while
27: if r == 0 then
28: return r
29: end if
30: end for
31: end for
32: end for
33: return r

125

CHAPTER 4

Resilient Broadcast

4.1 Introduction

As discussed in Chapter 1 of this dissertation, prior literature has studied the problem of resiliently
broadcasting information from a central source throughout a network [229–231]. This formulation
involves a leader (sometimes called a “dealer”) robot that seeks to propagate a static message
to all normally-behaving nodes in a network, despite the presence of faulty or adversarial nodes
that broadcast misinformation. Prior literature presents several algorithms and graph-theoretic
conditions under which the reference value is accepted by all normally-behaving agents in the
network in finite time.

A limitation of this approach is that the message being broadcast is inherently only able to
contain static information. This complicates the application to scenarios where the reference value
is inherently time-varying. An interesting question is whether the prior approaches to resilient
broadcast could be used to transmit information that is time-varying in nature, e.g., the information
about a time-varying center of formation moving along a trajectory. Another limitation to prior
work is that resilient broadcast algorithms often assume that there is a single leader who is trusted,
i.e. invulnerable to adversarial attacks or faults.

This chapter presents a method by which leaders can resiliently propagate complete knowl-
edge of entire time-varying trajectories to all followers in finite time, despite the presence of faulty
or adversarial agents. Specifically, we consider a network of mobile robots with the objective
to track a time-varying trajectory point in a formation. Initially only a set of leader robots have
knowledge of the trajectory. The structure of the trajectory, including the Bezier path parameters
and the timing law information, is encoded via static parameters that are propagated from the set
of normally-behaving leaders to the followers via the proposed algorithm. In addition to being
resilient against adversarial misinformation, we demonstrate that our method is robust to several
additional sources of errors including bounded clock synchronization errors and perturbations of

126

the trajectory parameters. Follower robots are then able to uniquely reconstruct their desired tra-
jectories, and track them using nominal control inputs that are computed onboard each individual
follower in a distributed fashion.

The contributions of this chapter are as follows: first, a novel method is presented for prop-
agating vector-valued messages within a finite time from a set of leaders to normally-behaving
followers. Under proper graph-theoretic conditions, the method is proven to be resilient to faults
and adversarial attacks, and can operate under asynchronous communication. Second, theoretical
bounds on the allowable error between leaders’ vector-valued messages are derived, which guar-
antee that the maximum error between normal leaders’ and followers’ reconstructed formational
trajectories are also bounded. The robustness of the proposed trajectory propagation method to
parameter perturbations and clock synchronization errors is analyzed.

This chapter is organized as follows: in Section 4.2 we give an overview of relevant concepts
from prior literature on resilient broadcasting. In Section 4.3 we present the notation and problem
formulation for the paper. In Section 4.4 we analyze the sensitivity of the proposed method to
perturbations in the trajectory data and clock synchronization errors. In Section 4.5 we present a
method for resiliently propagating vector-valued messages from normally-behaving leaders to all
normally-behaving followers in a multi-robot network. In Section 4.6 we present simulations of
our results in a scenario involving a leader-follower network subject to clock perturbations and
robots subject to adversarial attacks. In Section 4.7 we give a brief conclusion and directions for
future work.

4.2 Preliminaries on Resilient Broadcasting

This section gives a brief overview of the resilient broadcast problem and the Certified Propagation
Algorithm (CPA). We consider a network of N agents with a communication structure described
by a digraph D ∈ (V , E). One agent iL ∈ V is designated as the leader1 and possesses a message
m. For now we assume that the network is synchronous with time steps t ∈ Z≥0, t0 = 0. At each
time step t each agent i ∈ V is able to receive messages from its in-neighbors j ∈ Vi and send
messages to its out-neighbors j ∈ Vout

i . Agents may also choose to send no message at all at a
given time step.

Within the network, a subset of agents may behave adversarially, which is defined as follows:

Definition 4.1. An agent k ∈ V is defined as adversarial if there exists t′ ≥ 0 such that at least one

of the following conditions holds:

1. Agent k sends a value mk 6= m to at least one of its out-neighbors,
1The leader is sometimes called “dealer” in the literature

127

2. Agent k sends different values to different out-neighbors; i.e. there exist i1, i2 ∈ Vout
k such

that agent k sends message m1 to i1, message m2 to i2, and m1 6= m2.

The set of adversarial agents is denoted A ⊂ V . All agents that are not adversarial are called
normal agents, with the set of normal agents denoted N ⊂ V .

The objective of the normal agents is to ensure that the message m is propagated from the
leader iL to all normal agents in the network despite the behavior of the adversarial agents. The
Certified Propagation Algorithm was proposed towards this end, and is summarized as follows:

1. At t = 0, the leader sends m to all of its out-neighbors.

2. Any agent i ∈ N that is an out-neighbor of the leader, i.e. i ∈ Vout
iL

, accepts the message m,
sends the message to all its out-neighbors, and terminates.

3. Any agent that is not an out-neighbor of the dealer and that receives F + 1 copies of a
messagem′ from its in-neighbors accepts the messagem′, sendsm′ to its out-neighbors, and
terminates.

Under an F -total or F -local2 set A, the CPA prevents any normally-behaving agent i ∈ V from
accepting adversarial information since there will be no more than F adversaries in agent i’s in-
neighborhood. However, the condition that all normally-behaving agents accept the correct mes-
sage m from the leader depends upon the graph-theoretic structure of the communication links in
the network. A sufficient graph theoretic condition for undirected graphs that guarantees that CPA
is able to achieve resilient broadcast of m to all normally-behaving agent is given in [73]. More
specifically, if no F -partial-local-pair (F -plp) cut3 exists in the graph then CPA achieves resilient
broadcast from the leader to all normal followers. For general graphs determing if an F -plp cut
with respect to a chosen leader exists is NP-hard [73]. However, a specific class of directed graphs
called Mode Estimation Acyclic Directed Graphs (MEDAGs) introduced in [194] can be shown to
satisfy the required sufficient conditions for CPA to achieve resilient broadcast in the presence of
an F -local adversary set.

4.3 Notation and Problem Formulation

A summary of notation and the problem formulation are given in this section. The set of real
numbers and integers are denoted R and Z, respectively. The set of nonnegative reals and integers

2The concepts of F -total and F -local are outlined in Definitions 2.1 and 2.2.
3The terminology used in [73] is “t-plp” cut rather than “F -plp” cut. We use the variable name F to more closely

match terminology in prior chapters of this dissertation.

128

are denoted R+ and Z+, respectively. The cardinality of a set S is denoted |S|. The set union,
intersection, and set difference operations of two sets S1 and S2 are denoted by S1 ∪ S2, S1 ∩ S2,
and S1\S2 respectively. We denote

⋃n
i=1 Si = S1 ∪ S2 ∪ . . . ∪ Sn. We denote the ball of radius

r ∈ R centered at x ∈ R as B(x, r) = {z ∈ R : |x − z| ≤ r}. A digraph is denoted as
D = (V , E) where V is the set of vertices or robots, and E ⊂ V × V is the set of edges. An
edge from i to j, i, j ∈ V , denoted as (i, j) ∈ E , represents the ability of i to send information
to j. Note that for digraphs (i, j) ∈ E 6=⇒ (j, i) ∈ E . The set of in-neighbors of robot i is
denoted Vi = {j ∈ V : (j, i) ∈ E)}. The Lie derivative of a continuously differentiable function
h : Rn → R along a vector field f : Rn → Rn is denoted Lfh(x) , ∂h

∂x
f(x). The set of out-

neighbors of each robot i is denoted Vouti = {k ∈ V : (i, k) ∈ E}. The jth derivative of a function
f : R→ Rn with respect to its variable is denoted f (j)(·).

Given a digraph D = (V , E) and a nonnegative integer F ∈ Z+, a subset S ⊂ V is F -total if
|S| ≤ F . A subset S ⊂ V is F -local if for all i ∈ V\S it holds that |Vi ∩ S| ≤ F . It follows that
any F -total model is also simultaneously F -local.

4.3.1 Problem Formulation

We consider a network of N mobile robots. The robots are represented by the set of indexed nodes
V = {1, . . . , N}, and communication links between robots are represented by a directed graph
D = (V , E). The set of robots V is partitioned into a set of leaders, denoted L ⊂ V , and a set of
followers, denoted Sf ⊂ V , respectively, such that L ∪ Sf = V and L ∩ Sf = ∅.

The objective of the follower robots in the network is to track a reference trajectory in Rn that
is initially known only by the leaders. A common approach used in prior literature to accomplish
this objective is via a leader-follower asymptotic consensus approach [232, 233], where leaders
transmit their current states to the network and the followers achieve consensus to these states.
However, under this approach any communication delays or asynchrony between the leaders and
followers may have a negative effect on trajectory tracking. This chapter considers an alternative
approach in which leaders propagate full knowledge of the entire trajectory to followers as follows.
Each trajectory consists of a path and a timing law for traversing the path [234]. The trajectory
begins at some time ti ∈ R, ti ≥ 0 and ends at time tf ∈ R, tf > ti. We assume that each path is
expressed as a ηth order Bezier curve P : R → Rn with η ∈ Z+. More specifically, P (·) has the
form:

P (s) =

η∑
k=0

αkbk,η(s), (4.1)

where the points αk ∈ Rn, k ∈ {0, . . . , η} are the control points of the Bezier curve, and the

129

Figure 4.1: An overview of the trajectory propagation method using parameter vectors. Each leader
broadcasts a vector of static parameters representing a Bezier-curve-based trajectory. Followers
receive messages from both normally-behaving robots and misbehaving robots. From its received
information each follower accepts a parameter vector and uses it to reconstruct a trajectory locally.

functions bk,η : R → R are the Bernstein basis polynomials of degree η. More information about
Bezier curves and their properties can be found in the Appendix Section 4.8.1. Given initial and
final times ti, tf ∈ R, a general timing law s : R→ R is assumed to have the form

s(t) =


si if t < ti,

fs(t, ti, tf) if ti ≤ t ≤ tf ,

sf if t > tf ,

(4.2)

with fs : R × R × R → [si, sf] being non-decreasing in t. The timing law s(t) defines a unique
time-varying point x(s(t)), which traverses the path x(s). Different definitions of s(t) result in
different velocity profiles for this point. For purposes of presentation we will let si = 0 and sf = 1

unless otherwise noted. It is assumed that all leaders and followers share a common reference

130

frame and are able to locally compute the Bernstein basis polynomials bk,η(t). For simplicity, we
will initially assume that the timing law function fs(·, ·, ·) is known to all robots in the network,
but a relaxation of this assumption will be discussed later in the paper.

Under these assumptions, the reference trajectory can be uniquely represented by the following
vector of static parameter values:

vr =
[
ti tf αT1 · · · αTη

]T
. (4.3)

Given a vector of parameters, each follower is able to locally reconstruct the corresponding Bezier
curve and timing law s(t), yielding a corresponding trajectory. The trajectory reconstructed by
robot i ∈ V is denoted P i(t). Each robot imaintains an internal vector vi containing the parameters
from which it reconstructs P i(t). If vi = vr, the locally reconstructed polynomial satisfies P i(t) =

P (t), ∀ti ≤ t ≤ tf , and the robot then has access to P (t) and its time derivatives. We define the
pointwise trajectory error as:

eij(t) = P i(t)− P j(t), i, j ∈ V . (4.4)

To propagate the parameters for the desired trajectory to the remainder of the network, leaders
send vector messages vl, l ∈ L to their out-neighbors. Followers are able to send vector messages
to their out-neighbors, and receive vector messages from their in-neighbors. These communica-
tions need not be synchronous. The notation vij(t) represents the vector message received by robot
i from robot j at time t. An overview of this process is depicted in Figure 4.1.

Several sources of error are considered in this setting however. First, robots in the network may
be subject to misbehavior due to faults and adversarial attacks.

Definition 4.2. An robot k ∈ V is called misbehaving if at least one of the following conditions

holds:

1. Robot k sends arbitrary, unbounded messages vk to at least one of its out-neighbors

2. There exists a time t such that robot k sends different messages to different out-neighbors;

i.e. there exist i1, i2 ∈ V such that vi1k (t) 6= vi2k (t).

Note that both followers and leaders may be adversarial. The set of misbehaving robots is
denoted A ⊂ V . The set of normally-behaving robots is defined as N = V\A. The sets of normal
and misbehaving leaders are denoted as LN = L ∩ N and LA = L ∩ A, respectively. The sets of
normal and misbehaving followers are denoted as SNf = Sf ∩N and SAf = Sf ∩ A, respectively.

131

Second, the vector messages vl, l ∈ L, of the normally-behaving leader robots may not pre-
cisely agree due to noise or numerical errors. More specifically, the maximum normed error be-
tween the parameter vectors of the normal leaders is defined as:

εlp = max
l1, l2∈LN

‖vl1 − vl2‖∞ . (4.5)

When εlp = 0, all normal leaders possess exactly the same parameter vector; i.e., vl1 = vl2 ,
∀l1, l2 ∈ LN . This may not hold true in general however. Follower robots therefore need a method
to select a parameter vector that is “close enough” in some sense to the vectors of normal leaders in
LN . This becomes particularly difficult considering the presence of misbehaving robots as defined
above, which may propagate arbitrary, unbounded vector messages. The effect of differences
between robots’ Bezier control points is demonstrated in Figure 4.2.

Finally, due to jitter and clock synchronization errors, each robot i ∈ V may have a different
estimate of time ti(t). Differences in time estimates will result in a different estimate of the time-
varying reference point P (t). The supremum error between normal robots’ clocks is defined as
follows:

εt,sup = sup
t≥t0

max
i,j∈N

|ti(t)− tj(t)|. (4.6)

Given the aforementioned problem setting and sources of errors and attacks, this chapter ad-
dresses the problem of guaranteeing that the maximum pointwise error between all normal leaders’
and followers’ reconstructed trajectories is bounded under given upper bounds on the perturbation
and time errors εlp and εt,max, and in the presence of an F -local adversarial model.

Problem 4.1. Let δlp, δt > 0. Given εlp, εt,sup, and an F -local adversarial set A ⊂ V , ensure that

the maximum pointwise error between any two normal robots’ reconstructed trajectory emax(t) =

maxi,j∈N Pi(t)− Pj(t) satisfies

‖emax(t)‖ ≤ α

(∥∥∥∥∥
[
εlp

εt,sup

]∥∥∥∥∥
)
, (4.7)

where α(·) is a class-K function.

Remark 4.1. The ability to upper bound the pointwise trajectory error has applications in sce-

narios where it is critical for agents to maintain a specified formation within a given tolerance.

Examples of such scenarios include multi-agent cooperative payload transportation [235–237]

and multi-spacecraft interferometry missions [238]. Establishing a relationship between clock

132

Figure 4.2: Example of the effects of Bezier control point perturbation. The control points for each
Bezier curve are represented by the squares, with dotted connecting lines for visual clarity. The
actual Bezier trajectories are the solid blue and yellow lines. The magenta lines represent various
pointwise differences between points on the curves with corresponding s ∈ [0, 1] value.

133

errors, parameter errors, and the resulting reconstructed trajectory errors in the form of (4.7) en-

sures that the maximum resulting pointwise error between agents’ reconstructed trajectories can

be bounded by the magnitudes of clock and parameter errors.

4.4 Sensitivity Analysis

If the Bezier curve or timing parameters between any two agents differ, each agent’s reconstructed
trajectory for the center of formation will also differ. Since the leaders’ vector messages containing
the Bezier parameters for the desired trajectory do not precisely agree due to noise or numerical
error, there will therefore exist differences between the reconstructed trajectories of leaders and
followers. The key question to be answered is how the error in parameters affects the error in the
reconstructed trajectories.

Consider two Bezier-curve-based trajectories P1(s(t)) and P2(s(t)), with the error function
e12(t) = P1(s(t))−P2(s(t)). This section provides the relation of the normed error e12(t) between
two reconstructed trajectories with respect to the two sources of bounded errors considered in
Problem 4.1:

1. Clock error εt(t) = t1(t)− t2(t)

2. Parameter perturbation error εp(t) = ‖v1 − v2‖∞

The results in this section will be used later in the chapter to demonstrate that bounded error in the
initial leader Bezier trajectory parameters will result in a bounded error between the leaders’ and
followers’ reconstructed trajectories.

For simplicity of presentation and without loss of generality, this section will assume a normal-
ized timing law s(·) satisfying s0 = 0, sf = 1, s(t) = s0 ∀t ≤ ti, s(t) = sf ∀t ≥ tf for given
ti, tf ∈ R, ti < tf .

4.4.1 Sensitivity to Clock Synchronization Errors

Clock synchronization errors are first considered. Consider two robots j1, j2 with time measure-
ments tj1(t), tj2(t) related by the equation:

tj1(t)− tj2(t) = ε(t). (4.8)

The variable t represents the nominal “actual time”, which is not known to either robot and is used
solely for error analysis. For notational brevity, the dependence of tj1 and tj2 on the actual time
will be omitted.

134

The following result presents a bound on the normed error between a Bezier curve under two
different time laws. Before presenting this result we define the following quantities recursively:

∆0αi = αi

∆rαi = ∆r−1αi+1 −∆r−1αi

These expressions arise when discussing the derivatives of Bezier curves. More information on
this point is given in the Appendix, Section 4.8.1.

Lemma 4.1. Let P (s(t)) be an ηth order Bezier curve under the timing law s(·). Let tj1 and tj2

be two time sequences related by (4.8). The normed error ‖e(t)‖ = ‖P (s(tj1))− P (s(tj2))‖ is

bounded as

‖e(t)‖ ≤
η∑
j=1

(η − j + 1) max
k

∥∥∆j−1αk+1 −∆j−1αk
∥∥ (δmax(εmax))j

j!
(4.9)

where ε(t) ≤ εmax ∀t ∈ [ti, tf] and the term δmax(εmax) is defined as

δmax(εmax) = max
t∈[ti,tf]

(
max
|h|≤εmax

|s(t+ h)− s(t)|
)
. (4.10)

Proof. The error for a trajectory represented as an ηth order Bezier curve is

P (s(tj1))− P (s(tj2)) = P (s(tj2 + ε(t)))− P (s(tj2)) (4.11)

The influence of ε(t) can be made explicit by considering the Taylor series for the Bezier curve:

P (s(tj2 + ε(t))) = P (s(tj2)) +

η∑
j=1

(
dj

(dt)j
P (s(tj2))

)(
(ε(t))j

j!

)

Using an alternate form of the Taylor series [239, Eq 3.2], (4.12) can be equivalently written as

P (s(tj2 + ε(t))) = P (s(tj2)) +

η∑
j=1

P (j)(s(tj2))

j!

(
s(tj2 + ε(t))− s(tj2)

)j (4.12)

Substituting into (4.11) we obtain

P (s(tj2 + ε(t)))− P (s(tj2)) =

η∑
j=1

P (j)(s(tj2))

j!

(
s(tj2 + ε(t))− s(tj2)

)j (4.13)

135

For brevity of notation, define

δs(t, ε) = s(t+ ε)− s(t). (4.14)

This yields

P (s(tj2 + ε(t)))− P (s(tj2)) =

η∑
j=1

P (j)(s(tj2))

j!
(δs(t

j2 , ε(t)))j (4.15)

Recall that s(t) ∈ [0, 1] for t ∈ [t0, tf]. As outlined in the Appendix Section 4.8.1, this implies
that

∥∥P (r)(s)
∥∥ ≤ (n− r + 1) max

k

∥∥∆r−1αk+1 −∆r−1αk
∥∥ .

The magnitude of the right hand side of (4.15) can therefore be bounded as follows:∥∥∥∥∥
η∑
j=1

P (j)(s(tj2))

j!
(δs(t

j2 , ε(t)))j

∥∥∥∥∥ ≤
η∑
j=1

∥∥P (j)(s(tj2))
∥∥ ‖δs(tj2 , ε(t))‖j

j!

≤
η∑
j=1

(η − j + 1) max
k

∥∥∆j−1αk+1 −∆j−1αk
∥∥ ‖δs(tj2 , ε(t))‖j

j!

(4.16)

From equation (4.15) it follows that equation (4.16) is therefore an upper bound on the value of
‖P (tj1)− P (tj2)‖. Given the upper bound εmax on the magnitude of the error ε(t) in the interval
t ∈ [t0, tf], i.e. max

t∈[t0,tf]
|ε(t)| ≤ εmax, the maximum value of δs(·, ·) can be calculated as

δmax(εmax) = max
t∈[t0,tf]

(
max
|h|≤εmax

|δs(t, h)|
)

= max
t∈[t0,tf]

(
max
|h|≤εmax

|s(t+ h)− s(t)|
)
. (4.17)

This can be substituted into (4.16) to yield the following upper bound:

∥∥P (tj1)− P (tj2)
∥∥ ≤ η∑

j=1

(η − j + 1) max
k

∥∥∆j−1αk+1 −∆j−1αk
∥∥ (δmax(εmax))j

j!
,

which concludes the proof. �

Note that the bound in Lemma 4.1 is independent of time. In the particular case when s(·) is

136

linear, e.g., s = t−ti
tf−ti

, it is straightforward to calculate the value of δmax from the time derivative
d
dt
s(t) as δmax = εmax

tf−ti
.

The next two results will be useful for solving Problem 4.1. Corollary 4.1 demonstrates that
the upper bound (4.9) on the clock synchronization error is a class-K function of the clock error
εt(t).

Corollary 4.1. The right hand side of (4.9) is a class-K function with respect to the variable εmax.

Proof. From (4.9) we define the following notation for brevity:

gj(δ) = (η − j + 1) max
k

∥∥∆j−1αk+1 −∆j−1αk
∥∥ (δ)j

j!
,

j ∈ {1, . . . , η}.

It is straightforward to show that δmax(·) from (4.10) is a class-K function on the domain [0,∞)

(observe that δmax(0) = 0, ε1 < ε2 implies that δmax(ε1) < δmax(ε2) for ε1, ε2 > 0, and δmax(·)
is continuous in its argument). Next, consider each gj(·). Observe that gj(0) = 0. Furthermore,
observe that (1/j!)(η−j+1) ‖∆j−1αk+1 −∆j−1αk‖ > 0 for all 1 ≤ j ≤ η. Since for all j ≥ 1 we
have δ1 < δ2 implies (δ1)j < (δ2)j for δ1, δ2 ∈ [0,∞), each gj(·) is therefore a class-K function.
The result follows by observing that the right hand side of (4.9) is equal to

∑η
j=1 gj(δ(εmax))

and recalling that sums and compositions of class-K functions yield class-K functions [209, Sec
4.4].

Next, given two Bezier curves P 1(t), P 2(t) whose corresponding control points satisfy
maxk∈{1,...,η} ‖α1

k − α2
k‖ ≤ εα, the next question is whether it is possible to bound the timing

error ‖P 2(tj1)− P 2(tj2)‖ for trajectory 2 as a function of the timing error ‖P 1(tj1)− P 1(tj2)‖ for
trajectory 1. The following lemma proves the affirmative to this question.

Lemma 4.2. Consider two ηth order Bezier trajectories P 1(·) and P 2(·) with timing law s(·)
defined as in (4.2). Let tj1 and tj2 be two time sequences related by (4.8). Suppose the control

points for P 1(·), P 2(·) satisfy maxk∈{1,...,η} ‖α1
k − α2

k‖ ≤ εα, εα ∈ R+. Then the following holds:∣∣∣ ∥∥P 1(s(tj1))− P 1(s(tj2))
∥∥− ∥∥P 2(s(tj1))− P 2(s(tj2))

∥∥ ∣∣∣ ≤ 2εα.

137

Proof. By the reverse triangle inequality,∣∣∣ ∥∥P 1(s(tj1))− P 1(s(tj2))
∥∥− ∥∥P 2(s(tj1))− P 2(s(tj2))

∥∥ ∣∣∣ ≤∥∥(P 1(s(tj1))− P 1(s(tj2)))− (P 2(s(tj1))− P 2(s(tj2)))
∥∥ ,

≤
∥∥P 1(s(tj1))− P 2(s(tj1))

∥∥+
∥∥P 1(s(tj2))− P 2(s(tj2))

∥∥ ,
≤

∥∥∥∥∥
η∑
k=1

(α1
k − α2

k)bk,η(s(t
j1))

∥∥∥∥∥+

∥∥∥∥∥
η∑
k=1

(α1
k − α2

k)bk,η(s(t
j2))

∥∥∥∥∥ ,
≤

η∑
k=1

∥∥α1
k − α2

k)
∥∥ |bk,η(s(tj1))|+

η∑
k=1

∥∥α1
k − α2

k

∥∥ |bk,η(s(tj2))|.

Since maxk∈{1,...,η} ‖α1
k − α2

k‖ ≤ εα, we obtain

η∑
k=1

∥∥α1
k − α2

k)
∥∥ |bk,η(s(tj1))|+

η∑
k=1

∥∥α1
k − α2

k

∥∥ |bk,η(s(tj2))| ≤

εα

(
η∑
k=1

bk,η(s(t
j1))

)
+ εα

(
η∑
k=1

bk,η(s(t
j2))

)
,

= 2εα,

where the last line follows from the fact that the Bernstein basis polynomials bk,η(s) are nonnega-
tive and form a partition of unity on the interval s ∈ [0, 1].

Lemma 2 confirms the intuition that two Bezier trajectories that have similar control points will
have similar timing errors for the same clock synchronization error model ε(t).

4.4.2 Sensitivity to Differences in Parameters

As per (4.3) there are two types of parameters that can be perturbed: time parameters ti, tf and
control points α0, . . . , αn. We consider perturbations to each type separately.

First we consider perturbations to ti and tf . By (4.2), any changes to these parameters results
in a different s(·) function. We show in the next result that such perturbations can be modeled in
the same manner as a clock synchronization error. Consider two Bezier-curve-based trajectories
P1(s(t)), P2(s(t)) with the same control points α1, . . . , αη and timing law s(t), but different time
parameters t10, t

1
f and t20, t

2
f . Denote the resulting s(·) functions for each curve as s1 : R → [0, 1]

and s2 : R → [0, 1]. Furthermore we will use the following notation for the inverse image of the

138

time instant t under s(·):

s−1
i (t) , {τ ∈ R : si(τ) = t}, τ ∈ R. (4.18)

Lemma 4.3. The error between P1(t) and P2(t) with identical Bezier control points but different

time parameters t10, t
1
f and t20, t

2
f can be expressed as a timing error t+ ε1,2(t), where

ε1,2(t) ∈ s−1
1 (s2(t))− t. (4.19)

The right hand side is understood in terms of Minkowski subtraction. Furthermore, when s1 is

strictly increasing on [t0, tf] and t ∈ [t0, tf], (4.19) holds with equality.

Proof. Since s1 : R→ [0, 1] and s2 : R→ [0, 1] and are both continuous, for all t ∈ R there exists
an ε(t) ∈ R such that s1(t+ ε(t)) = s2(t). Rearranging, we have

t+ ε(t) ∈ s−1
1 (s2(t))⇒ ε(t) ∈ s−1

1 (s2(t))− t. (4.20)

By definition, both s1 : [ti, tf] → [0, 1] and s2 : [ti, tf] → [0, 1] are surjections. If s1(·) is strictly
increasing then the mapping s(t) : [t0, tf] → [0, 1] is a bijection, implying that s−1

1 (·) is a single-
valued function.

This result implies that the error caused by perturbations to the parameters t0, tf can be an-
alyzed using the same techniques presented previously for clock synchronization errors. For the
specific case when s(t) is linear, i.e. fs(t, ti, tf) = t−ti

tf−ti
, the error ε1,2(t) can be obtained explicitly

as a function of the variables t1i , t
1
f , t

2
i , t

2
f , which is shown in the following corollary.

Corollary 4.2. Consider the trajectories P1(t) with time parameters t1i , t
1
f and P2(t) with time

parameters t2i , t
2
f . If the function fs from the definition of s(t) in (4.2) is defined as fs(t, ti, tf) =

t−ti
tf−ti

, then the timing error ε1,2(t) satisfies:

|ε1,2(t)| ≤ max(|t1i − t2i |, |t1f − t2f |). (4.21)

Proof. Given the definition of fs and the parameters t1i , t
1
f , t

2
i , t

2
f , the timing laws for P1 and P2

satisfy

s1(t) =
t− t1i
t1f − t1i

, t ∈ [t1i , t
1
f],

s2(t) =
t− t2i
t2f − t2i

, t ∈ [t2i , t
2
f].

(4.22)

139

Consider the time interval [max(t1i , t
2
i),max(t1f , t

2
f)]. Choose two time instances t1, t2 such that

s1(t1) = s2(t2) = s∗ ∈ [0, 1]. Using (4.22) we obtain the following:

s1(t) = s∗ =
t1 − t1i
t1f − t1i

=⇒ t1 = s∗(t1f − t1i) + t1i . (4.23)

Similar arguments yield:

t2 = s∗(t2f − t2i) + t2i . (4.24)

Note that ε1,2(t) = t1 − t2. To find the maximum value of |ε1,2(t)|, we first calculate:

t1 − t2 = s∗
(
(t1f − t1i)− (t2f − t2i)

)
+ (t1i − t2i), (4.25)

s∗ ∈ [0, 1].

Observe that the difference t1 − t2 is a function of s∗. Taking the derivative with respect to s∗

yields:

d

ds∗
(t1 − t2) =

(
(t1f − t1i)− (t2f − t2i)

)
. (4.26)

Since this derivative is constant, by the extreme value theorem the maximum value of t1− t2 must
occur at one of the endpoints s∗ = 0 or s∗ = 1. This also holds for the minimum value of t1 − t2.
Substituting these values of s∗ into (4.25) and taking the absolute value yields:

|ε1,2(t)| ≤ max(|t1i − t2i |, |t1f − t2f |),

which completes the proof.

Next, we consider perturbations to the control points α1, . . . , αη. The following result shows
that the normed error between two Bezier trajectories P 1(t) and P 2(t) with different control points
can be upper bounded by the maximum normed difference between corresponding control points.

Lemma 4.4. Consider two trajectories represented as ηth order Bezier curves defined as P 1(s) =∑η
j=0 α

1
jbj,η(t) and P 2(s) =

∑η
j=0 α

2
jbj,η(t) under the timing law s(·), s ∈ [0, 1]. The maximum

normed pointwise error ‖e(t)‖ = ‖P1(t)− P2(t)‖ between the curves is bounded by

‖e(t)‖ ≤ max
j∈{1,...,η}

∥∥α1
j − α2

j

∥∥ . (4.27)

140

Proof. The error between P 1(s(t)) and P 2(s(t)) at any t ∈ [t0, tf] satisfies:

e(t) =

η∑
j=1

(α1
j − α2

j)bj,η(s(t)),

‖e(t)‖ =

∥∥∥∥∥
η∑
j=1

(α1
j − α2

j)bj,η(s(t))

∥∥∥∥∥ ,
≤

η∑
j=1

∥∥α1
j − α2

j

∥∥ |bj,m(s(t))|,

≤ max
j∈{1,...,η}

∥∥α1
j − α2

j

∥∥ η∑
j=1

|bj,η(s(t))|,

≤ max
j∈{1,...,η}

∥∥α1
j − α2

j

∥∥ . (4.28)

The last inequality follows from all Bernstein basis polynomials of degree η ≥ 1 being nonnegative
on s ∈ [0, 1] and forming a partition of unity; i.e.

∑η
j=1 bj,η(s) = 1 for all s ∈ [0, 1].

Notably, this error bound is independent of t. Since the coefficients of a Bernstein polynomial
can be represented as an nη × 1 vector, e.g. [αT1 ··· αTη]T , this upper bound on the error between
P 1(t) and P 2(t) can also be equivalently expressed as

‖e(t)‖ ≤

∥∥∥∥∥∥∥∥

‖α1

1 − α2
1‖

...∥∥α1
η − α2

η

∥∥

∥∥∥∥∥∥∥∥
∞

.

4.4.3 Combined Clock and Parameter Perturbation Errors

Finally, the question remains of what error bounds can be guaranteed when both clock errors and

parameter perturbations are present. The following lemma demonstrates that an upper bound on
the norm of this error can be calculated by separately considering clock errors and parameter errors,
then summing the independent error bounds.

Lemma 4.5. Consider two trajectories represented as ηth order Bezier curves defined as P 1(s) =∑η
j=0 α

1
jbj,η(t) and P 2(s) =

∑η
j=0 α

2
jbj,η(t) under the timing law s(·), s ∈ [0, 1]. Let tj1 and

tj2 be two time sequences related by (4.8). The maximum normed pointwise error ‖e(t)‖ =

‖P1(tj1)− P2(tj2)‖ between the curves is bounded by

‖e(t)‖ ≤ Et(t) + Ep(t), (4.29)

141

where Et(t), Ep(t) are defined as

Et(t) =

η∑
j=1

(n− j + 1) max
k

∥∥∆j−1αk+1 −∆j−1αk
∥∥ (δmax)j

j!

Ep(t) = max
j∈{1,...,η}

∥∥α1
j − α2

j

∥∥ . (4.30)

Proof. By using the elementary properties of norms, we obtain

∥∥P 1(tj1)− P 2(tj2)
∥∥ =

∥∥P 1(tj1)− P 1(tj2) + P 1(tj2)− P 2(tj2)
∥∥

≤
∥∥P 1(tj1)− P 1(tj2)

∥∥+
∥∥P 1(tj2)− P 2(tj2)

∥∥ . (4.31)

Observe that the first quantity on the right hand side of (4.31), ‖P 1(tj1)− P 1(tj2)‖, corresponds
to a clock synchronization error. It can therefore be upper bounded by using the results from
Lemma 4.1, equation (4.9). Also observe that the second quantity on the right hand side of (4.31),
‖P 1(tj2)− P 2(tj2)‖, corresponds to Bezier parameter perturbations between the two trajectories.
It can therefore be upper bounded by using the results from Lemma 4.4, equation (4.27). The result
follows.

4.5 Resilient Parameter Propagation

With expressions for the effects of clock errors and parameter perturbations on reconstructed tra-
jectories explicitly derived, we are now prepared to discuss a method to resiliently propagate tra-
jectory parameter vectors from the normally-behaving leaders to the normally-behaving followers
under clock errors, leader parameter perturbations, and misbehaving robots.

To clearly explain the key ideas underlying the proposed method, the following three scenarios
are considered in this section: synchronous propagation without parameter perturbations, asyn-
chronous propagation without parameter perturbations, and finally asynchronous propagation with
parameter perturbations.

4.5.1 Synchronous propagation without parameter perturbations

We first consider synchronous communication without parameter perturbations. It is assumed that
robots have access to a synchronized, discretized clock with time steps k ∈ Z+. To propagate the
parameter vector from leaders to followers, all normally-behaving robots apply the Synchronized

142

MS-RPA algorithm as described in Algorithm 4.1. A graphic depicting how Algorithm 4.1 operates
is given in Figure 4.4.

Algorithm 4.1 SYNCHRONOUS MS-RPA WITH PARAMETER F :

1. At each time step k ∈ Z+, each leader robot l ∈ L broadcasts vr to its out-neighbors.

2. At each time step k, each normal robot i ∈ SNf stores the most recently received message
vij(k) from each of its in-neighbors j ∈ Vi.

3. If an robot i receives the same vector v∗ from at least F + 1 of its in-neighbors at a time k,
robot i sets v̂i = v∗. Let k0

i be the first time k at which i receives the same vector from at
least F + 1 in-neighbors.

4. Each robot broadcasts v̂i to its out-neighbors j ∈ Vouti for all timesteps k ≥ k0
i .

Under an F -local adversarial model, the structure of the communication network must ensure
that a subset of the faulty or adversarial robots cannot cut off the flow of information from the
normally-behaving leaders to any subset of the normally-behaving followers. The notion of re-
silient directed acyclic graphs (RDAGs) will serve as a sufficient condition to ensure that such
information bottlenecks cannot occur. Recall from Section 4.3 that Vi is the in-neighbor set of
robot i.

Definition 4.3. A digraph D = (V , E) is a resilient directed acyclic graph (RDAG) with parameter

r ∈ Z+ if there exists a partitioning of V into subsets S0, . . . ,Sη ⊂ V , η ∈ Z+ where each subset

satisfies the following properties:

• For each i ∈ S0, Vi = ∅;

• For each i ∈ Sj , 1 ≤ j ≤ η, Vi ⊆
⋃j−1
k=0 Sk;

• For each i ∈ S1, . . .Sη, |Vi| ≥ r.

Given a digraph D which is an RDAG with parameter r having subsets Sj , 0 ≤ j ≤ j∗, the
integer j is called the subset index and the integer j∗ is called the maximum subset index.

RDAGs are a specific case of mode estimation directed acyclic graphs (MEDAGs) from [240].
The salient property of an RDAG with parameter r = (2F + 1) is that under the removal of any
F -local set, there exists at least F + 1 distinct directed paths from the set S0 to any remaining node
in the graph. An example of an RDAG is depicted in Figure 4.3.

143

Figure 4.3: An example of an RDAG with parameter r = 3.

Our first theorem considers the case when all normally-behaving leaders propagate the exact
same vector with synchronous communication. Although this theorem will not be the most prac-
tically applicable result in this paper, the proof will help introduce the main ideas and intuition
behind how the later algorithms operate.

Theorem 4.1. Consider a digraphD which is an RDAG with parameter 2F +1 with S0 = L under

an F -local misbehavior model. Suppose that all normally-behaving robots in the digraph apply

Algorithm 4.1 with parameter F . Then under synchronous communication, all robots in SNf accept

the vector vr in at most ρ time steps, where ρ ∈ Z+ is the maximum subset index in the RDAG.

Proof. Let k0 be the first time at which all normally-behaving leaders l ∈ LN broadcast the vector
vr. By the definition of an RDAG, each robot i1 in the subset S1 satisfies Vi1 ⊂ L and |Vi1| ≥
2F + 1. Since the misbehaving set is F -local, this implies that each normally-behaving robot
i1 ∈ SNf ∩S1 has at least F+1 normally-behaving leaders as in-neighbors; i.e., |Vi1∩LN | ≥ F+1.
Each normal robot i1 ∈ SNf ∩ S therefore accepts the vector vr and sets v̂i1 = vr at timestep k0 as
per Algorithm 4.1.

At timestep k0 + 1, each robot i1 ∈ S1 ∩ N broadcasts the value v̂i1 = vr, and each normally-
behaving leader l ∈ LN broadcasts the value vr to its out-neighbors. The definition of an RDAG
implies that each robot i2 ∈ S2 satisfies Vi2 ⊂ L∪ S1, and |Vi2| ≥ 2F + 1. Since the misbehaving
set is F -local, each i2 will receive the value vr from at least F + 1 normally-behaving in-neighbors

144

Figure 4.4: An illustration of how the MSRPA algorithm operates in a sychronous setting. The
graph depicted is an RDAG with parameter 3 under an F -local adversarial model with F = 1. The
set of leaders is indicated by the circles in the box on the left, adversarial agents are indicated by
the color red, and agents possessing the reference vector of parameters are indicated by the color
blue. Leaders begin by broadcasting the reference vector to their out-neighbors. At each time step,
any normal follower which receives the same vector message from at least F + 1 in-neighbors
accepts the vector message and begins rebroadcasting it to its out-neighbors at the next time step.

145

at time k0+1. By the synchronous MS-RPA algorithm, each normally-behaving robot i2 ∈ S2∩SNf
will accept the vector vr and set v̂i2 = vr at time step k0 + 1.

Continuing on in this manner it can be shown that given any p ≤ ρ (where ρ is the maximum
subset index in the RDAG), at timestep k0 + (p − 1) all normal leaders LN broadcast vr and all
normal robots j in the set (

⋃p−1
q=1 Sq) ∩N broadcast v̂j = vr to their out-neighbors. In addition, all

robots ip ∈ Sp satisfy Vip ⊂ L ∪
⋃p−1
q=1 Sq and |Vip| ≥ 2F + 1. Since the misbehaving set is F -

local, each ip will receive the value vr from at least F + 1 normally-behaving in-neighbors at time
k0 + (p−1). By the synchronous MS-RPA algorithm, each normally-behaving robot ip ∈ Sp∩SNf
will accept the vector vr and set v̂ip = vr at time step k0 + (p− 1).

Since the RDAG is comprised of subsets S0, . . . ,Sρ, all normally-behaving robots will there-
fore have accepted the vector vr by timestep k0 + (ρ− 1), which concludes the proof.

4.5.2 Propagation with Time-Varying Graphs

In practical conditions, communication between robots is commonly asynchronous; i.e., robot
transmission of information does not occur in sync with a common discretized clock. In addition,
the graph-theoretic structure of the underlying communication network may vary over time. We
model the effects of a time-varying graph and asynchronous communications as a time-varying
edge set for the network communication graph. The notation DT (t) =

⋃
τ∈[t−T,t]D[τ] denotes

the union of the digraph across the time interval [t − T, t] for T ∈ R+. We likewise define the
following quantities:

VT (t) =
⋃

τ∈[t−T,t]

V(τ)

VTi (t) =
⋃

τ∈[t−T,t]

Vi(τ)

ET (t) =
⋃

τ∈[t−T,t]

E(τ)

This method of considering the graph structure over a sliding time window will enable the analysis
of how quickly the normal leaders’ message will propagate to all normal followers in the network.

Algorithm 4.2 extends Algorithm 4.1 to handle asynchronous and time-varying communication
within the network. Algorithm 4.2 uses the following definition to denote the most recent time at
which an robot i receives a vector message from another robot j.

146

Definition 4.4. The time τ ij(t), t ∈ R, is defined as follows:

τ ij(t) = arg max
t′∈{t0,...,t}

{t′ : j ∈ Vi(t′)} (4.32)

Algorithm 4.2 ASYNCHRONOUS MS-RPA WITH PARAMETER F :

1. At each time instance t ≥ t0, each leader robot l ∈ L broadcasts vr to its out-neighbors.

2. Each normal robot i ∈ SNf stores the most recently received message vij(τ
i
j(t)) from each of

its in-neighbors j ∈ VTi (t).

3. If at or before time t an robot i has received the same vector v∗ from at least F + 1 of its
in-neighbors, robot i sets v̂i = v∗. Let t0i be the first time t at which i has received the same
vector from at least F + 1 in-neighbors.

4. Each robot broadcasts v̂i to its out-neighbors j ∈ Vouti for all time instances t ≥ t0i .

To summarize Algorithm 4.2 in words, each robot stores the most recently received vector
values from its in-neighbors over the time window T . If an robot i has received the same vector
from at least F + 1 in-neighbors, it accepts this vector and rebroadcasts it to its out-neighbors.
Intuitively speaking, under an F -local model this will ensure that robot i cannot accept any vector
other than the vector propagated by the normally-behaving leaders.

We now give a formal proof of conditions under which normally-behaving leaders are able to
propagate a vector message to followers using Algorithm 4.2.

Theorem 4.2. Consider a digraph D with S0 = L under an F -local misbehavior model. Let D∗

be an RDAG with parameter 2F + 1. Suppose that all normally-behaving robots in the digraph

apply Algorithm 4.2 with parameter F . If there exists a T > 0 such that DT (t) = D∗ with S0 = L
for all t ≥ t0 + T , then all robots in SNf will accept the vector vr by time t = t0 + ρT , where ρ is

the maximum subset index in the RDAG.

Proof. Consider time t = t0 + T . Since DT (t) = D∗ is an RDAG with parameter 2F + 1 for all
t ≥ t0 + T , it follows that for all i1 ∈ S1, we have VTi1 ⊆ S0 = L and |VTi1 | ≥ 2F + 1. Since the
misbehaving set is F -local, this implies that |VTi1(t)∩LN | ≥ F +1; i.e., each i1 received the vector
vr from at least F + 1 normally-behaving leaders in the interval [t0, t0 + T]. As per Algorithm
4.2, each normal follower i1 ∈ SNf ∩ S1 therefore accepts the vector vr, sets v̂i1 = vr, and begins
broadcasting v̂i1 to its out-neighbors no later than time t = t0 + T .

Next, consider time t = t0 + 2T . Since DT (t) = D∗ is an RDAG with parameter 2F + 1 each
robot i2 satisfies Vi2(t) ⊆ L ∪ S1 and |Vi2(t)| ≥ 2F + 1. Since the misbehaving set A is F -local,

147

this implies that |VTi2(t)∩N| ≥ F + 1. robot i2 therefore receives the vector vr from at least F + 1

robots, sets v̂i2 = vr, and broadcasts v̂i2 to its out-neighbors no later than time t = t0 + 2F .
To continue inductively, assume that at any time t = t0 + (p − 1)T , 2 ≤ p ≤ ρ, each robot

ip−1 ∈ L ∪ (
⋃p−1
k=1 SNk) satisfies v̂ip−1 = vr and is broadcasting v̂ip−1 to all of its out-neighbors.

Using prior arguments, at time t = t0 + pT , 2 ≤ p ≤ ρ+ 1 (where ρ is the maximum subset index
in the RDAG), each robot ip ∈ Sp satisfies VTip ⊆ (L ∪

⋃p−1
j=1 Sj) and |Vip1 | ≥ 2F + 1. Since the

misbehaving set is F -local, this implies that |Vip−1 ∩ N| ≥ F + 1, and therefore each ip receives
the vector vr from at least F + 1 normally-behaving robots in the interval [t0 + (p− 1)T, t0 + pT].
Each ip therefore receives the vector vr from at least F + 1 robots, sets v̂ip = vr, and broadcasts
v̂ip to its out-neighbors no later than time t = t0 + pF .

Since the RDAG consists of sublevel sets S0, . . . ,Sρ, it therefore holds that by time t = t0+ρT ,
all normal robots within the network have received the vector message vr, which concludes the
proof.

4.5.3 Incorporating Parameter Perturbations

To reiterate from Section 4.3, due to the nature of real-world conditions, the vector messages from
the leaders vl, l ∈ L may not be precisely equal due to, for instance, noise or numerical errors.
Given εlp, i.e., the maximum normed error between leaders’ parameter vectors defined in (4.5), we
seek to ensure that the maximum normed error between any two normal robots’ states, both leaders
and followers, is upper bounded by εlp. In other words, our objective is for

max
i,j∈N

‖vi − vj‖∞ ≤ εlp. (4.33)

To accomplish this, we consider the hyperrectangle formed by the elementwise convex hull of the
entries of a set of vectors. Let vj,k denote the kth entry of vector vj . The elementwise convex hull
is defined as follows:

coe{v1, . . . , vq} ,


co{minj vj,1,maxj vj,1}

...
co{minj vj,m,maxj vj,m}

 ,
v1, . . . , vq ∈ Rm.

(4.34)

From (4.5) it is straightforward to verify that any two vectors vi, vj ∈ coe{vl1 , . . . , vl|L|},
vl1 , . . . , vl|L| ∈ L satisfy ‖vi − vj‖∞ ≤ εlp. Therefore our objective will be to ensure that each
normal robot i selects a parameter vector vi such that vi ∈ coe{vl1 , . . . , vl|L|}.

148

To accomplish this objective, robots will augment an elementwise median approach to the
techniques presented previously. Given vectors v1, . . . , vq ∈ Rm, we denote the elementwise
median function as

MEDIAN{v1, . . . , vq} ,


median{v1,1, . . . , vq,1}

...
median{v1,m, . . . , vq,m}

 (4.35)

This elementwise median function is used by Algorithm 4.3 for the asynchronous case with pa-
rameter perturbations.

Algorithm 4.3 ASYNCHRONOUS PERTURBED MS-RPA WITH PARAMETER F :

• At each time instance t ≥ t0, each leader robot l ∈ L broadcasts vr to its out-neighbors.

• Each normal robot i ∈ SNf stores the most recently received message vij(τ
i
j(t)) from each of

its in-neighbors j ∈ VTi (t) in the set Γi(t) = {vij(τ ij1(t)), . . .}.

• Let tΓi be the first time such that |Γi(t)| ≥ 2F + 1. At time tΓi robot i sets v̂i =
MEDIAN{Γi(t)} and broadcasts v̂i to all of its out-neighbors.

• At each subsequent time τ ij(t) such that t ≥ tΓi , j ∈ Vi, robot i updates v̂i =
MEDIAN{Γi(t)} and broadcasts v̂i to all of its out-neighbors.

In words, similar to Algorithm 4.2 each robot i stores the most recent vector message it has
received from each of its in-neighbors. The set Γi(t) is this set of stored vectors. Unlike Algorithm
4.2 however, each robot i does nothing until it has received at least 2F + 1 messages from its
in-neighbors; i.e. |Γi(t)| ≥ 2F + 1. Once this has occurred, robot i takes the elementwise median
of the vectors in Γi(t) and accepts the resulting vector as v̂i. This vector is rebroadcasted to its
out-neighbors. If additional vectors are received, robot i stores them in the set Γi(t), recalculates
the elementwise median, updates v̂i, and broadcasts this new value.

The reason that each robot waits until |Γi(t)| ≥ 2F + 1 to take the elementwise median and
accept a vector value is demonstrated by the following Lemma:

Lemma 4.6. Let S1 = {v1
1, . . . , v

1
q1
}, |S1| = q1, and S2 = {v2

1, . . . , v
2
q2
}, |S2| = q2, with v1

i , v
2
j ∈

Rm ∀i, j. If q1 > q2, then the following holds:

MEDIAN(S1 ∪ S2) ∈ coe{S1} (4.36)

Proof. Follows from the definition of MEDIAN(·) and coe{·}.

149

More explicitly, when taking the elementwise median of two sets of vectors S1, S2 with |S1| >
|S2|, the resulting vector will lie within the elementwise convex hull of S1. Given an F -total or
F -local adversarial model, each robot i waiting until it has received at least 2F + 1 vectors ensures
that |Vi(t) ∩ N| > |Vi(t) ∩ A|; i.e. the set Γi(t) contains more vectors from normal in-neighbors
than adversarial in-neighbors.

We now present conditions under which Algorithm 4.3 guarantees that all normally-behaving
follower robots are able to accept a vector within the elementwise convex hull of the normally-
behaving leader robots’ vector messages in the presence of perturbations and an F -local adversarial
model.

Theorem 4.3. Consider a digraph D with S0 = L under an F -local misbehavior model. Let D∗

be an RDAG with parameter 2F + 1. Suppose all normally-behaving robots in the digraph apply

Algorithm 4.3 with parameter F . Suppose further that the misbehaving set A is F -local, and that

each normally-behaving leader lj ∈ LN , j ∈ 1, . . . , |LN | broadcasts the vector vlj ∈ Rm. If there

exists a T > 0 such that DT (t) = D∗ with S0 = L for all t ≥ t0 + T , all robots in SNf will accept

a vector v̂i ∈ coe{vl1 , . . . , vl|LN |} by time t = t0 + (ρ+ 1)T , where ρ is the maximum subset index

in the RDAG. Furthermore, for all i ∈ SNf it holds that v̂i ∈ coe{vl1 , . . . , vl|LN |} for all t ≥ tΓi .
4

Proof. Consider time t = t0 + T . Since DT (t) = D∗ is an RDAG with parameter 2F + 1 for
all t ≥ t0 + T , it follows that for all i1 ∈ S1 we have VTi1(t) ⊆ S0 = L and |VTi1(t)| ≥ 2F + 1.
This implies that tΓi1 ≤ t0 + T ; i.e., each i1 will have received at least 2F + 1 messages from its
in-neighbors at or before t = t0 + T . Denote the following:

ΓNi (t) = {j ∈ N : vij(τ
i
j(t)) ∈ Γi(t)}, (4.37)

ΓAi (t) = {j ∈ A : vij(τ
i
j(t)) ∈ Γi(t)}. (4.38)

The misbehaving set A being F -local implies that |ΓAi1(t)| ≤ F for all t ≥ 0. Since |VTi1(t)| ≥
2F + 1 by definition of an RDAG, we have |ΓNi1 (t)| ≥ F + 1. By Algorithm 4.3, each robot i1 sets
vi1 = MEDIAN(Γi(t)) at time tΓi1 . Observe that Γi1(t) = ΓNi1 (t) ∪ ΓAi1(t). Since at tΓi1 we have
|Γi1(tΓi1)| ≥ 2F + 1 and |A| ≤ F , it holds that |ΓNi1 (tΓi1)| ≥ |ΓAi1(tΓi1). It follows from Lemma
4.6 that MEDIAN(Γi1(tΓi1)) ∈ coe{ΓNi1 (tΓi1)} for t = tΓi . But since VTi (t) ⊆ L, this implies
that coe{ΓNi1 (tΓi1)} ∈ coe{vl1 , . . . , vl|LN |}, which implies that vi1(tΓi1) ∈ coe{vl1 , . . . , vl|LN |}. By
Algorithm 4.3, each i1 ∈ S∩N accepts this vi1 and begins broadcasting vi1 to its out-neighbors no
later than time tΓi1 ≤ t0 + T . Observe that since A is F -local and DT (t) = D∗ is an RDAG with
parameter 2F + 1, it will always hold that |ΓNi1 (t)| > |ΓAi1(t)| for all t ≥ tΓi1 . Since tΓi1 ≤ t0 + T ,
by Lemma 4.6 and the preceding logic vi1(t) ∈ coe{vl1 , . . . , vl|LN |} for all t ≥ t0 + T ∀i1 ∈ S1.

4Recall that tΓi
is defined in Algorithm 4.3.

150

To continue inductively, assume that at any time t0 + (q − 1)T , 2 ≤ q ≤ ρ, each robot
iq−1 ∈ L ∪ (

⋃q−1
k=1 SNk) satisfies viq−1 ∈ coe{vl1 , . . . , vl|LN |} and is broadcasting viq−1 to all of its

out-neighbors. Using prior arguments, at time t = t0 + qT consider any robot iq ∈ Sq. Since
DT (t) = D∗ is an RDAG with parameter 2F + 1, Viq(t) ⊆ L ∪ (

⋃q−1
k=1 Sk) and |VTiq(t)| ≥ 2F + 1.

This implies that tΓiq ≤ t0+qT . Since the misbehaving setA is F -local, |ΓAiq(t)| ≤ F for all t ≥ t0

which further implies that |ΓNiq (tΓiq)| ≥ F+1 and therefore |ΓNiq (tΓiq)| > |Γ
A
iq(tΓiq)|. By Algorithm

4.3, at time tΓiq robot iq sets viq = MEDIAN(Γi(tΓiq)). Since |ΓNiq (tΓiq)| > |Γ
A
iq(tΓiq)| it therefore

follows from Lemma 4.6 that MEDIAN(Γiq(tΓiq)) ∈ coe{ΓNiq (tΓiq)}. Since VTi (t) ⊆ L∪ (
⋃q−1
k=1 Sk

and each normal robot j ∈ L ∪ (
⋃q−1
k=1 will be broadcasting a a vector vj(t) ∈ coe{vl1 , . . . , vl|LN |}

for all t ≥ t0 + (q − 1)T , it follows that coe{ΓNiq (tΓiq)} ∈ coe{vl1 , . . . , vl|LN |} and therefore
MEDIAN(Γiq(tΓiq)) ∈ coe{vl1 , . . . , vl|LN |} for all iq ∈ Sq. Furthermore, sinceA is F -local, for all
t ≥ tΓiq we have that |ΓAiq(t)| < |Γ

N
iq (t)|, implying that viq(t) ∈ coe{vl1 , . . . , vl|LN |} for all t ≥ tΓiq

∀iq ∈ Sq. Since tΓiq ≤ t0 + qT we therefore have viq(t) ∈ coe{vl1 , . . . , vl|LN |} for all t ≥ t0 + qT

∀iq ∈ Sq. The result follows by noting that q = ρ is the maximum subset index in the RDAG,
implying that for all t ≥ t0 + ρT we therefore have vi(t) ∈ coe{vl1 , . . . , vl|LN |} for all i ∈ N .

Theorem 4.3 guarantees that within finite time each normal follower i will accept a vector vi
within the elementwise convex hull of the leader vector messages; i.e. vi ∈ coe{vl1 , · · · , vl|LN |}.
As per the statement of Problem 4.1, the final result of this chapter proves that under Algorithm 4.3
the maximum pointwise error between any normal robots’ trajectories is bounded by the sum of
class-K functions of the maximum clock error εt,max(t) and the maximum parameter perturbation
error εlp.

Theorem 4.4. Let εt,sup be defined as in (4.6), let εlp be defined as in (4.5), and let emax(t) =

maxi,j∈N Pi(t)−Pj(t) be the maximum normed pointwise trajectory error between any two normal

robots. Then under the conditions of Theorem 4.3, the following holds:

‖emax(t)‖ ≤ α

(∥∥∥∥∥
[
εlp

εt,sup

]∥∥∥∥∥
)
, (4.39)

where α is a class-K function.

Proof. Consider any two arbitrary normal robots i, j ∈ N and recall the definition of the error
eij(t) from (4.4). By Lemma 4.5, the normed error ‖eij(t)‖ can be upper bounded by the summa-
tion of the parameter error and the clock synchronization error.

We first consider the parameter error. By Theorem 4.3 and Lemma 4.6, each normal fol-
lower robot i ∈ SNf will accept a vector message within the elementwise convex hull of the
leader vectors, i.e. vi ∈ coe{vl1 , . . . , vl|LN }. By the definition of εlp in (4.5), this implies that

151

maxi,j∈N ‖vi − vj‖∞ ≤ εlp. By Lemma 4.4 we therefore have ‖eij(t)‖ ≤ εlp for all i, j ∈ N ,
where εlp is clearly a class-K function in εlp.

The clock synchronization error is considered next. The nominal supremum time error is εt,sup

as per (4.6). However, as per Lemma 4.3 and 4.2 the effects of the differences between any two
agents’ ti and tf variables is also treated as an additional source of clock synchronization error
satisfying |εj1,j2(t)| ≤ max(|tj1i −t

j2
i |, |t

j1
f −t

j2
f |), j1, j2 ∈ N . Since vj1 , vj2 ∈ coe{vl1 , . . . , vl|LN for

all j1, j2 ∈ N , we therefore have max(|tj1i −t
j2
i |, |t

j1
f −t

j2
f |) ≤ εlp which implies that |εj1,j2(t)| ≤ εlp.

The total clock synchronization error is therefore upper bounded by εt,sup + εlp. Observe that
since εt,sup > 0 and εlp > 0 by definition, it therefore holds that εlp + εt,sup = |εlp| + |εt,sup| =∥∥∥∥[εlp εt,sup

]T∥∥∥∥
1

. This total clock synchronization error holds for all normal agents.

By Corollary 4.1, given any specific robot j ∈ N the upper bound on the timing error for the
reconstructed trajectory P j(t) under the total clock synchronization error is

η∑
j=1

(η − j + 1) max
k

∥∥∆j−1αjk+1 −∆j−1αjk
∥∥
(
δmax

(∥∥∥∥∥
[
εlp

εt,sup

]∥∥∥∥∥
1

))j

j!
. (4.40)

By Corollary 4.1 this is a class-K function in
∥∥∥∥[εlp εlp

]T∥∥∥∥
1

. For brevity we denote the quantity

in (4.40) as Ej
t

(∥∥∥∥[εlp εlp

]T∥∥∥∥
1

)
. To obtain an upper bound which holds for all normal robots

j ∈ N , by Lemma 4.2 we have

Ei
t

(∥∥∥∥∥
[
εt,sup

εlp

]∥∥∥∥∥
1

)
≤ Ej

t

(∥∥∥∥∥
[
εt,sup

εlp

]∥∥∥∥∥
1

)
+ 2εlp, ∀i, j ∈ N .

Combining this with the parameter perturbation error upper bound εlp, we obtain

‖eij(t)‖ ≤ 3εlp + Ej
t

(∥∥∥∥∥
[
εlp

εt,sup

]∥∥∥∥∥
1

)
≤ 3

∥∥∥∥∥
[
εlp

εt,sup

]∥∥∥∥∥
1

+ Ej
t

(∥∥∥∥∥
[
εlp

εt,sup

]∥∥∥∥∥
1

)
, ∀i, j ∈ N .

(4.41)

The result follows by recalling the equivalence of norms and noting that the sum of any class-K
functions in

∥∥∥[εlp εt,sup

]∥∥∥T
1

is also a class-K function in
∥∥∥[εlp εt,sup

]∥∥∥T
1

.

152

4.6 Simulations

The simulations consider a network of N = 12 unicycle robots in the plane. Each robot i ∈ V has
the state pi =

[
xi yi θi

]
with dynamics defined as

ṗi =

cos(θi) 0

sin(θi) 0

0 1

[vi
ωi

]
. (4.42)

Each robot’s control inputs are bounded as follows:

|vi| ≤ vmax = 1

|ωi| ≤ ωmax = 2
(4.43)

robots are controlled using the following input-output linearization method [234, 241]: Given a
scalar b > 0, the outputs are defined as

zi,1 = xi + b cos(θi), (4.44a)

zi,2 = yi + b sin(θi). (4.44b)

The point
[
zi,1 zi,2

]T
∈ R2 defines a point at a distance of b along the forward axis of the robot

from the robot’s position
[
xi yi

]T
. Treating the dynamics of zi,1 and zi,2 as single integrators

yields the following dynamics:

żi,1 = ui,1, (4.45a)

żi,2 = ui,2, (4.45b)

θ̇ =
ui,2 cos(θ)− ui,1 sin(θ)

b
. (4.45c)

Using these dynamics, the transformation between the linearized control inputs
[
u1 u2

]T
and the

original control inputs
[
vi ωi

]T
can be shown to be as follows:

[
vi

ωi

]
=

[
cos(θi) sin(θi)

− sin(θi/b) cos(θi/b)

][
ui,1

ui,2

]
. (4.46)

Control of each robot is accomplished by designing the linearized control inputs ui,1, ui,2. These

resulting control commands are then transformed into the actual system commands
[
v ω

]T
via

153

(4.46). More specifically, given a desired time-varying reference point pri (t) ∈ R2, the following
control law is employed for robot i [234, Ch. 11]:

ui,1 = ṗri,1 + k1(pri,1 − pi,1),

ui,2 = ṗri,2 + k2(pri,2 − pi,2).
(4.47)

To incorporate collision avoidance between robots and other external obstacles, the nominal
control law (4.47) is minimally modified using control barrier function quadratic programming
techniques. More details on control barrier function techniques can be found in Chapter 5 of this
dissertation and [160]. The convex optimization solver used in these simulations is the Operator

Splitting Quadratic Program solver [242]. Given û(·) =
[
ui,1 ui,2

]T
, quadratic programming

(QP) methods can be used to compute a new control input u(·) ∈ R2 which minimally modifies
û(·) (in the sense of a desired norm ‖·‖) while ensuring forward invariance of a safe set S. When
the control input is constrained to lie within a convex polytope Auu ≤ bu, this minimally modified
controller can be computed by the following QP [160]:[

ui,1

ui,2

]
=arg min

u∈R2

‖u− û(x)‖2
2

subject to
∂hj(x)

∂x
u ≥ −α(hj(x))

Auu ≤ bu,

(4.48)

where Au ∈ Rq×m, bu ∈ Rq. Note that the formulation in the first constraint of (4.48) is with
respect to the dynamics of the linearized outputs zi,1, zi2 and not the original system. Each agent
solves a separate QP in the form (4.48) locally to compute its own minimally modified control
inputs.

The control input constraints in (4.43) are with respect to vi, ωi. The equivalent constraints for
the linearized inputs

[
ui,1 ui,2

]
can be derived as follows: (4.43) can be expressed in matrix form

as 
1 0

−1 0

0 1

0 −1


[
vi

ωi

]
�


vmax

vmax

ωmax

ωmax

 . (4.49)

However, equivalent input constraints on ui,1, ui,2 can be derived by substituting in the right

154

hand side of (4.46) into (4.49):
cos(θi) sin(θi)

− cos(θi) − sin(θi)

− sin(θi)/b cos(θi)/b

sin(θi)/b − cos(θi)/b


[
ui,1

ui,2

]
�


vmax

vmax

ωmax

ωmax

 ,

Au

[
ui,1

ui,2

]
� bu.

To incorporate collision avoidance between the robots, each robot is given the safety radius
R > 0. The functions hij(·) are defined as follows:

hij(zi, zj) =

∥∥∥∥∥
[
zi,1

zi,2

]
−

[
zj,1

zj,2

]∥∥∥∥∥
2

2

− (2R + b)2, (4.50)

where zi, zj are the outputs of the robots. Intuitively, h(pi, pj) ≥ 0 implies that
∥∥[xiyi]−

[xj
yj

]∥∥ ≥
2(R + b), which implies that the robots are at least twice the safety radius from each other. The
term 2R+ b reflects that collision avoidance for each robot i is being performed with respect to the
outputs

[
zi,1 zi,2

]
which is offset from the actual state

[
xi yi

]
by the distance b.

4.6.1 Incorporating Formational Offsets

Formations are specified as follows: the formation is defined in terms of a time-varying formation
reference point prf : R → R2, a set of offset vectors ξi ∈ R2, i ∈ V , and a formation frame of
reference Ff . Each robot i’s time-varying reference point is defined as pri (t) = prf (t) + ξi with
respect to the formation frame.

The formation reference point prf (t) is expressed as a C1 Bezier-curve-based trajectory with
parameter vector v and linear timing law fs(t, ti, tf) = t−ti

tf−ti
. The orientation of the formation

frame Ff is defined as having its x-axis parallel to the tangent vector of prf (t).5 Each leader
propagates its (possibly perturbed) vector vl, l ∈ L as described in this paper. Each robot i is
assumed to know its unique time-invariant formational offset vector ξi ∈ R2 specifying its desired
offset from prf (t) with respect to the formation frame. Once it accepts a parameter vector vi, each
robot reconstructs the corresponding trajectory, determines the orientation of Ff from the tangent
vector of the trajectory, and uses Ff and ξ to determine its local desired reference point pri (t).

5Note that for a C1 curve in R2 this orientation is unique.

155

Figure 4.5: Depiction of the method used to specify formational offsets in the simulations. The
x-axis of the formation frame Ff is defined to be colinear with the tangent vector to the Bezier
curve at the time-varying reference point prf (t).

156

4.6.2 Simulation 1

In all simulations, the value of b is set as b = 0.1, and the value of the safety distance R as R = 1.
All applicable units are SI.

In the first simulation, the set of leader robots is L = {1, 2, 3, 4, 5}. The set of misbehaving
robots is A = {2, 7}, which is an F -total model with F = 2. Note that the misbehaving set A
includes one leader and one follower. The misbehaving robots both propagate incorrect, arbitrary
vector messages vk, k ∈ A to their out-neighbors and physically misbehave by moving off to
infinity in arbitrary directions. Any deliberate attempts to collide with other robots would clearly
identify an robot as adversarial; therefore to avoid detection, the misbehaving robots apply the
nominal CBF modification in (4.48) to avoid collisions with other robots in this simulation.

The nominal graph structure is a 5-circulant digraph [180,243]. Under the given set of leaders,
it can be verified that this forms an RDAG with parameter r = 2F + 1 = 5. Message broadcasting
to out-neighbors is performed asynchronously with each robot i broadcasting its vector vi at time
instances t = qγi, q ∈ Z+, with γi being chosen randomly from the interval [0.2, 0.4] using the
uniform distribution. To simulate clock perturbations in each reconstructed trajectory P i(t), each
robot’s time estimate model is ti(t) = t+wti(t) where each wti(t), i ∈ V is a Gaussian noise vector
with zero mean and variance σ2 = 1× 10−6 sec2.

The nominally specified trajectory is visualized in Figure 4.6. The nominal parameter vector v
has the structure

v =
[
ti tf α0 · · · α6

]
, (4.51)

with the parameters being

ti = 0 α1 =
[
20 35

]T
α4 =

[
−20 65

]T
tf = 250 α2 =

[
20 −65

]T
α5 =

[
−20 −35

]T
α0 =

[
0 0

]T
α3 =

[
0 0

]T
α6 =

[
0 0

]T
.

Each normal leader’s parameter vector vl, l ∈ LN satisfies vl = v + wvl where each wvl , l ∈ L is
a Gaussian noise vector with zero mean and variance σ2 = 0.1. The maximum error εlp for the
leaders satisfies εlp = 0.3467.

Still frames from Simulation 1 are shown in Figure 4.7. Each robot is represented by a solid
circle with a dotted circle representing the collision avoidance radius. Each robot’s reconstructed
Bezier curve trajectory P i is represented with a dotted line representing the full path and a moving
diamond representing the robot’s current reconstructed P i(t) value at time t.

157

Figure 4.6: The nominal Bezier path for Simulation 1, shown as a solid blue line. The Bezier
control points are shown as squares, with dotted lines connecting the control points for clarity of
visualization. The exact trajectory is not known to any of the leaders or followers; leaders each
have parameter vectors perturbed from the nominal parameters for this trajectory.

Figure 4.8 depicts the maximum pointwise reconstructed trajectory error between any two
normal robots in the network. Note that 4.8 plots the data beginning at the first time instance where
all normal robots have accepted a parameter vector (t = 0.39 seconds). A plot of the minimum
interrobot distances is depicted in Figure 4.9, showing that collision avoidance was maintained for
the network. Figure 4.9 shows the minimum inter-robot distances over time and demonstrates that
collision avoidance was maintained between all robots.

4.6.3 Simulation 2

The second simulation runs under the same conditions as the first simulation with the following
exceptions. The set of malicious robots is {4, 9}. A different nominal Bezier trajectory is used,
which is shown in Figure 4.10. The parameters for this Bezier trajectory are

ti = 0 α4 =
[
−12.5, 0

]
tf = 250 α5 =

[
−12.5 12.5

]
α0 =

[
12.5 0

]
α6 =

[
0 −12.5

]
α1 =

[
12.5 12.5

]
α7 =

[
12.5,−12.5

]
α2 =

[
0 12.5

]
α8 =

[
12.5, 0

]
α3 =

[
−12.5 12.5

]
.

158

Figure 4.7: Still frames from the video of Simulation 1. The dotted lines represent the recon-
structed trajectories for normal robots. The diamonds on the dotted line trajectories represent each
robot’s reconstructed estimate of the formation reference point. The small x marks represent each
normal robots’ time-varying desired position pri (t). Two adversarial robots (red) move off towards
infinity while simultaneously propagating misinformation through the network.

159

Figure 4.8: Plot of the maximum pointwise error between all pairs of normal robot reconstructed
target trajectories for Simulation 1, along with the theoretical upper bound. The theoretical upper
bound derived in this chapter is quite conservative for the given problem data; future work will
investigate ways to tighten this bound.

160

0 50 100 150 200 250

Time (sec)

0

0.5

1

1.5

2

2.5

3

E
u

c
lid

e
a

n
 D

is
ta

n
c
e

Minimum Inter-robot Distance: Simulation 1

Min. inter-robot distance

Safe separation distance

Figure 4.9: Plot of the minimum inter-robot distances in Simulation 1. The red dotted line repre-
sents the minimum inter-robot distance required for safety to be maintained.

161

Figure 4.10: The nominal Bezier path for Simulation 2, shown as a solid blue line. The Bezier
control points are depicted as squares, with dotted lines connection the control points for clarity of
visualization. As in Simulation 1, this exact trajectory is not known to either leaders or followers.
Leaders each have parameter vectors perturbed from the nominal parameters representing this
trajectory.

Three large circular obstacles are included in this simulation, which are represented as black solid
circles in the still frames. The first has radius Ro1 = 20 and is centered at po1 = [0, 32.5]; the
second has radius Ro2 = 5 and is centered at po2 = [2.5, 0]; and the third has radius Ro3 = 10 and
is centered at po3 = [−15,−15]. Collision avoidance between each agent j and the obstacles is
incorporated by defining the functions

hjoi(zj, poi) = ‖zj − poi‖
2
2 − (R + b+Roi)

2, (4.52)

and incorporating these functions into the QP constraints for each agent as per (4.48).
The leader robots for this simulation are the same as in Simulation 1. Similar to Simulation 1,

each normal leader’s parameter vector vl, l ∈ LN satisfies vl = v + wvl where each wvl , l ∈ L is
a Gaussian noise vector with zero mean and variance σ2 = 0.1. The maximum error εlp for the
leaders for Simulation 2 satisfies εlp = 0.2894.

The nominal network formation is a circle of radius 8 with the formational reference point as
the center and each robot spaced equidistantly around the circle’s edge.

Each time a vector message is broadcasted, it is received successfully by the recipient with
probability p = 0.5, which models the effect of packet drops in the network [244].

Still frames from Simulation 2 are shown in Figure 4.11. A plot of the minimum interrobot dis-
tances is depicted in Figure 4.13, showing that collision avoidance was maintained for the network.
Figure 4.12 depicts the maximum pointwise reconstructed trajectory error between any two nor-

162

mal robots in the network. Note that Figure 4.12 plots the data beginning at the first time instance
where all normal robots have accepted a parameter vector (t = 2.88 seconds).

4.6.4 Hardware Experiments

In addition to the simulations presented previously, a preliminary version of the methods in this
chapter was implemented on a 6-robot hardware platform. The robots used were the AION R1
rover [] which used the NVidia Jetson TX2 as onboard computers and the ROS framework for com-
munication middleware. Experiments were run in the M-Air facility at the University of Michigan.

The network of 6 robots consisted of 3 leaders and 3 followers in an RDAG with parameter 3, as
depicted in Figure 4.15. The nominal formation for the system was a circle with a diameter of 3 me-
ters with agents distributed equidistantly about the edge. Each agent was given a local offset that,
when added to the time-varying center of formation described by the Bezier trajectory, resulted in
that agent’s local formational target point. The nominal trajectory for the center of formation was a
time-varying point moving along the edge of a circle with diameter 8 meters. The hardware exper-
iments implemented the equivalent of Algorithm 4.1. The adversarial set was 1-local, with one of
the leader agents misbehaving by sending arbitrary misinformation to its outneighbors. Collision
avoidance was accomplished by blending each agent’s nominal trajectory tracking controller with
a set of Lyapunov-like barrier functions [148, 150, 245]. A video of the demonstration can be ac-
cessed at https://youtu.be/PoMOhzbg3PI. All normally-behaving followers were able to
successfully reconstruct and track the formational trajectory broadcasted by the normally-behaving
leaders despite the misinformation being broadcast by the adversarial leader.

163

https://youtu.be/PoMOhzbg3PI

Figure 4.11: Still frames from the video of Simulation 2. The dotted lines represent the recon-
structed trajectories for normal robots. The diamonds on the dotted line trajectories represent each
robot’s reconstructed estimate of the formation reference point. The small x marks represent each
normal robots’ time-varying desired position pri (t). Both adversarial robots propagate misinfor-
mation throughout the network. One adversarial robots (red) moves off towards infinity while the
other remains in place for the entire simulation.

164

Figure 4.12: Plot of the maximum pointwise error between all pairs of normal robot reconstructed
target trajectories for Simulation 2, along with the theoretical upper bound. The plot begins at time
t = 1.33 seconds when all normal robots have accepted a parameter vector and reconstructed a
trajectory. Again, the theoretical upper bound derived in this chapter is quite conservative for the
given problem data; future work will investigate ways to tighten this bound.

165

Figure 4.13: Plot of the minimum interrobot distances in Simulation 2. The red dotted line repre-
sents the minimum inter-robot distance required for safety to be maintained.

166

Figure 4.14: Minimum value of hjoi(zj(t), poi), as defined in (4.52), over all agents j ∈ V and
obstacles o1, o2, o3 as a function of time in Simulation 2. A log scale is used in the x-axis for
greater clarity. This value never decreases below zero, which indicates there were no agent-obstacle
collisions for all agents and obstacles.

167

Figure 4.15: Depiction of the network structure for the hardware experiments. Agents 1 through 3
are leaders, and agents 4 through 6 are followers. Agent 2 is a misbehaving leader and propagates
misinformation to its out-neighbors.

4.7 Conclusion

In this chapter we presented a method for a multi-robot system to resiliently propagate a vector
of parameters from a set of normally-behaving leaders to all normally-behaving followers in the
presence of faulty or adversarial robots. The method is able to operate even with asynchronous
communication and perturbations to the data which represent a time-varying trajectory via static
parameters. An analysis of the effects of clock synchronization errors and parameter perturbations
on the trajectories reconstructed from the vector parameters was performed. Simulations were pre-
sented using Control Barrier Function quadratic programming techniques to achieve time-varying
formation tracking in a multi-robot system while preserving the safety of the robots. Future work
will incorporate distributed path planning methods into the framework presented in this chapter,
and will explore the resilient propagation of time-varying evolutions of formational offsets and
formational frame orientations from leaders to followers.

168

4.8 Appendix

4.8.1 Bernstein Polynomials and Bezier Curves

The Bernstein basis polynomials of degree n are defined as follows:

bj,n(t) =

(
n

j

)
tj(1− t)n−j, j = 0, . . . , n (4.53)

Bernstein basis polynomials of degree n form a basis for the vector space of all polynomials having
real coefficients and degree of at most n. Notably, these basis polynomials form a partition of unity:

n∑
j=0

bj,n(t) = 1 (4.54)

A Bezier curve is a linear combination of Bernstein basis polynomials. Given control points
α0, . . . , αn ∈ Rm, the corresponding Bezier curve P (t) is

P (t) =
n∑
j=0

αjbj,n(t) (4.55)

The rth derivative of a Bezier curve P (t) =
∑n

j=0 αjbj,n(t) with t ∈ [0, 1] is itself a Bezier
curve, and can be expressed as follows: define

∆0αi = αi (4.56)

∆rαi = ∆r−1αi+1 −∆r−1αi (4.57)

The rth derivative of P (t) is then given by the following equation [246, Sec 2.4], [247]:

P (r)(t) =
n!

(n− r)!

n−r∑
j=0

∆rαjbj,n−1(t) (4.58)

Several upper bounds on the value of
∥∥ d
dt
P (t)

∥∥ have been established in prior literature [248].
For a Bezier curve P (t) =

∑n
j=0 αjbj,n(t) with t ∈ [0, 1], a simple (although non-tight) upper

bound given in [249] is ∥∥∥∥ ddtP (t)

∥∥∥∥ ≤ nmax
i
‖αi+1 − αi‖ ∀t ∈ [0, 1]. (4.59)

Since higher-order derivatives of P (t) are themselves Bezier curves, it is straightforward to derive

169

the following expression from (4.59):

∥∥P (r)(t)
∥∥ ≤ (n− r + 1) max

i

∥∥∆r−1αi+1 −∆r−1αi
∥∥ ,

∀t ∈ [0, 1].

This can be seen by noting that P (r−1)(t) is an (n− r+ 1)th order Bezier curve with control points
∆r−1αi.

170

CHAPTER 5

Adversarial Resilience for Sampled-Data Systems
under High-Relative-Degree Safety Constraints

5.1 Introduction

Guaranteeing the safety of autonomous systems is a critical challenge in modern control the-
ory. Safety is frequently modeled by defining a safe subset of the state space for a given system
and generating control inputs that render this subset forward invariant. Control barrier function
(CBF) methods [160, 168, 171, 250, 251] that leverage quadratic programming (QP) techniques
have risen as a powerful framework for establishing forward invariance of a safe set. Both single-
agent [161, 165, 176, 252] and multi-agent systems [251, 253–256] have been considered, where
agents have control-affine dynamics. Multi-agent CBF techniques have been applied to a variety of
settings including collision avoidance for quadrotors [257] and mobile robots [258], accomplish-
ing spatiotemporal tasks [174, 250], forming or maintaining network communication topologies
between mobile agents [256, 259], and more.

Prior work on multi-agent CBF methods typically assumes that all agents apply the nominally
specified control law. This assumption does not encompass faulty or adversarial behavior of agents
within the system. Adversarial agents may apply control laws specifically crafted in an attempt to
violate set invariance conditions within given control constraints. Much recent work has considered
the accomplishment of control objectives in the presence of faulty or adversarial agents [180–182,
260, 261]. However, these prior works either do not consider safety bounds on the system or
do not provide explicit safety guarantees. CBFs are used in [256] to construct resilient network
communication topologies in finite time; however, all agents are assumed to apply the nominal
CBF-based controller without any adversarial misbehavior with respect to control actions.

In addition, the majority of prior work involving CBF methods considers a continuous-time
system with continuous inputs. Practical systems are often more appropriately modeled using
sampled-data dynamics, where state measurements and control inputs remain constant between

171

sampling times. Notable studies that have explicitly considered the effects of sampling in CBF
methods include [176,177]. However these papers do not consider multi-agent systems and do not
consider the presence of faulty or adversarial agents. Many systems also consider a CBF having
high relative degree with respect to agents’ dynamics, where the control input of the agents does
not appear in the expression for the first derivative of the function whose sublevel or superlevel
sets describe the safe set (e.g., systems with double-integrator dynamics). Methods to apply CBF
set-invariance methods to such systems have been presented in prior literature [252, 262]; how-
ever these methods do not consider sampled-data dynamics and do not consider the presence of
adversarial agents.

In this chapter, we present a framework for guaranteeing set invariance in sampled-data multi-
agent systems in the presence of adversarial agents. This framework considers a class of func-
tions describing the safe set that have high relative degree with respect to system dynamics. Un-
like [176], this chapter explicitly considers multi-agent systems, asynchronous sampling times
with clock disturbances, the presence of worst-case adversarially behaving agents, and functions
describing safe sets that have high relative degree with respect to (w.r.t.) the system dynamics. Our
specific contributions are as follows: First, we present a method under which a set of normally-
behaving agents in a system with sampled-data dynamics can collaboratively render a safe set
forward invariant despite the actions of adversarial agents. Our analysis considers asychronous
sampling times and distributed calculation of agents’ control inputs. Second, we present a method
under which a system of normally-behaving agents with sampled-data dynamics can render a safe
set forward invariant in the presence of adversarial agents when the safe set is described by a class
of functions with high relative degree with respect to agents’ dynamics. The class of functions will
be described in more detail in Section 5.5.

The organization of this chapter is as follows: Section 5.2 gives a brief overview of control
barrier function methods. Section 5.3.1 outlines the notation and problem formulation. Section 5.4
presents the main results for safe set functions having a relative degree of 1 with respect to system
dynamics. Section 5.5 presents the main results for a class of safe set functions having a relative
degree strictly greater than 1 with respect to system dynamics. Section 5.6 outlines simulations
demonstrating this chapter’s results. Section 5.7 gives a conclusion to this chapter.

5.2 Overview of Control Barrier Function Methods

This section briefly reviews control barrier function (CBF) methods for guaranteeing forward in-
variance of a safe set. There is an extremely large literature devoted to safety techniques using
CBFs; here we review only concepts related to the contributions of this chapter. For a more thor-
ough overview of CBFs, we refer the reader to [160].

172

We first consider a system consisting of a single agent with state x ∈ Rn having the following
nonlinear control affine dynamics:

ẋ(t) = f(x(t)) + g(x(t))u(t). (5.1)

The functions f, g are assumed to be locally Lipschitz onRn. Without loss of generality we assume
that t0 = 0. Control inputs u(t) are assumed to fall within a feasible control set u(t) ∈ U ⊆ Rm. In
many practical applications the feasible control set U is represented or approximated by a polytope
of the form {u ∈ Rm : Auu ≤ bu}, with Au ∈ Rm×p, bu ∈ Rp.

A subset of the state space S ⊆ Rn is designated as a safe set. Under the assumption that
x(0) ∈ S, one of the objectives of the system is to guarantee that the trajectory x(t) of (5.1)
remains in S for all forward time; i.e., x(t) ∈ S ∀t ≥ 0. The safe set S is often modeled as the
sublevel sets of a locally Lipschitz function h ∈ C1,1

loc as follows:1

S = {x ∈ Rn : h(x) ≤ 0},

∂S = {x ∈ Rn : h(x) = 0},

int(S) = {x ∈ Rn : h(x) < 0}.

(5.2)

Set invariance methods for more general set descriptions have been derived [251, 255, 263, 264],
but the above definition of S is commonly used in prior literature [161, 265].

Necessary and sufficient conditions on set invariance under general nonlinear system dynamics
were given by Nagumo in what is now called Nagumo’s Theorem [129]. Roughly speaking, the
theorem states that a set remains invariant under given system dynamics if and only if at every
point on the boundary of the set the system velocity points “inside the set”. The reader is referred
to [263, Thm. 3.1] for a general formulation of Nagumo’s Theorem. For purposes of this chapter
we give a version tailored to the problem setting at hand. Note that for this result we use the Lie
derivative notation Lfh(x) , ∂h(x)

∂x
f(x).

Theorem 5.1. Consider the system (5.1) and the set S defined by (5.2). Assume that x(0) ∈ S,

and for each initial x(0) ∈ S the system (5.1) admits a globally unique solution. Then x(t) ∈ S
for all t ≥ 0 if and only if

ḣ(x(t)) = Lfh(x(t)) + Lgh(x(t))u(t) ≤ 0, ∀x(t) ∈ ∂S. (5.3)

A more conservative form of Nagumo’s theorem is commonly used where the right hand side
(RHS) (5.3) is replaced by a condition involving an extended class-K∞ function α:

1The set S can also be equivalently defined in terms of superlevel sets.

173

Corollary 5.1. Under the conditions of Theorem 5.1, a sufficient condition for x(t) ∈ S for all

t ≥ 0 is the following:

ḣ(x(t)) = Lfh(x(t)) + Lgh(x(t))u(t) ≤ −α(h(x(t))), ∀x(t) ∈ S. (5.4)

Note that by the properties of extended class-K functions, h(x) = 0 for all x ∈ ∂S, which im-
plies that the conditions (5.4) and (5.3) are equivalent on the boundary of S. One reason condition
(5.4) is often used is as follows: if there exists a domain D ⊂ Rn with S ⊂ D such that (5.4) holds
for all x ∈ D, it can be shown that any trajectory with initial conditon x(0) ∈ D\S converges
asymptotically to the boundary of the set S. This property is useful when considering scenarios
where the initial condition of the state is outside of the set S or systems subject to disturbances that
may briefly push x(t) outside of S.

Control barrier functions were inspired by Control Lyapunov Functions [163], and are defined
as follows:

Definition 5.1 ([160]). Let S ⊂ D ⊂ Rn be the sublevel set of a function h ∈ C1,1
loc . The function h

is a Control Barrier Function (CBF) if there exists an extended class-K∞ function α such that for

the system (5.1),

sup
u∈U

[Lfh(x) + Lgh(x)u] ≤ −α(h(x)), ∀x ∈ D. (5.5)

For compact U , max may be used in (5.5) instead of sup. The existence of a CBF for a set
S serves as both a certificate that rendering a set forward invariant is possible, and as a means
to calculate control inputs that restrict x(t) to remain within S. If there exists a CBF for a given
safe set S, then at any state x ∈ D there exists at least one feasible control input satisfying the
sufficient condition (5.4) for forward invariance of S. The set of all such feasible control inputs
can be expressed as

K(x) , {u ∈ U : Lfh(x) + Lgh(x)u ≤ −α(h(x))} .

When u(·) is assumed to be applied in a continuous manner, any Lipschitz continuous control input
u(t) that lies within K(x(t)) for all t ≥ 0 will provably render the set S forward invariant. How-
ever, generalizations of this result have been made for control inputs u(·) that are only Lebesgue
measurable and possibly discontinuous [255, 266].

Computing an input u ∈ K(x) can be done efficiently by using convex optimization techniques.
Suppose there exists a nominal control input unom(t) computed for the purpose of accomplishing
an objective such as converging to a goal location, tracking a trajectory, etc. We seek to minimally

174

modify unom(t) in the sense of the Euclidean norm such that x(t) ∈ S is guaranteed for forward
time and the control input constraints u ∈ U are satisfied. More specifically, we seek to compute
a control input u ∈ K(x(t)) ∩ U such that the objective function ‖u− unom(t)‖2 is minimized.
Note that if unom(t) ∈ K(x(t)) ∩ U , then we trivially have u = unom(t) and we may simply apply
the nominal controller. This problem may be expressed as a convex quadratic program (QP) as
follows:

u(x) = arg min
u∈U

‖u− unom‖2

s.t. Lfh(x) + Lgh(x)u ≤ −α(h(x))

Auu ≤ bu

(5.6)

This QP is parametric in the state x, meaning that x is not an optimization variable but the entries
of the constraint equations may change as x changes. The optimization variable is u, the objective
is quadratic in u, and both constraints are affine in u. The first constraint ensures that the computed
u lies within K(x), and the second constraint ensures that the computed u lies within U = {u ∈
Rm : Auu ≤ bu}. Prior literature typically assumes that the resulting u(x) computed from (5.6)
is locally Lipschitz continuous in x. In practice however it is impossible for the QP (5.6) to be
solved infinitely often, and a more accurate model for the system dynamics is a sampled-data
approach such as zero-order-hold (ZOH) dynamics. Section 5.3 of this chapter will introduce such
an approach in more detail.

More general methods exist for computing safety-preserving controllers using CBFs and QP
methods, including combining CBFs with Control Lyapunov Functions to compute controllers
satisfying both safety and convergence to a goal set simultaneously. However these methods are
beyond the scope of this chapter; we refer the interested reader to [160] for further reading.

5.3 Adversarial Resilience in Sampled-Data Systems Under
Safety Constraints

As discussed in the Introduction to this chapter, no prior work on set invariance techniques using
CBF techniques has considered the presence of adversarial agents with the specific intent to violate
safety bounds. In addition, no prior work has considered multi-agent set invariance using CBF
techniques when the agents have sampled-data dynamics, which more accurately models the state
evolution in practice. We now present our framework for guaranteeing set invariance in sampled-
data multi-agent systems in the presence of adversarial agents.

175

5.3.1 Notation and Problem Formulation

The nonnegative and strictly positive integers are denoted Z≥0 and Z>0, respectively. We use the
notation h ∈ C1,1

loc to denote a continuously differentiable function h whose gradient ∇h is locally
Lipschitz continuous. Let xi ∈ Rni , ni ∈ Z≥1 for i = 1, . . . , N be a set of vectors, and let

n̄ =
∑N

i=1 ni. We let ~x =
[
xT1 , . . . , x

T
N

]T
denote the vector concatenating all xi vectors. The

partial Lie derivative of a function f(~x) with respect to xi is denoted Lfhxi(~x) = ∂h(~x)
∂xi

f(~x). The
n-ary Cartesian product of sets S1, . . . , SN is denoted×N

i=1
Si = S1 × . . .× SN . The Minkowski

sum of sets S1, S2 is denoted S1 ⊕ S2. The open and closed norm balls of radius ε > 0 centered at
~x ∈ Rn are respectively denoted B(~x, ε), B(~x, ε). The boundary and interior of a set S ⊂ Rn are
denoted ∂S and int(S), respectively.

5.3.2 Problem Formulation

Consider a group of N ∈ Z>0 agents, with the set of agents denoted by V and each agent indexed
{1, . . . , N}. Each agent i ∈ V has the state xi ∈ Rni , ni ∈ Z>0 and input ui ∈ Rmi , mi ∈ Z>0.
The system and input vectors ~x, ~u, respectively, denote the vectors that concatenate all agents’

states and inputs, respectively, as ~x =
[
xT1 , . . . , x

T
N

]T
, ~x ∈ Rn̄ and ~u =

[
uT1 , . . . , u

T
N

]
, ~u ∈ Rm̄,

n̄ =
∑N

i=1 ni, m̄ =
∑N

i=1mi. Agents receive knowledge of the system state ~x in a sampled-data
fashion; i.e., each agent i ∈ V has knowledge of ~x(·) only at times Ti = {t0i , t1i , t2i , . . .}, where tki
represents agent i’s kth sampling time, with tk+1

i > tki ∀k ∈ Z≥0. In addition, at each tki ∈ Ti the
agent i applies a ZOH control input u(tki) that is constant on the time interval t ∈ [tki , t

k+1
i). For

brevity, we denote xkii = xi(t
k
i) and ukii = ui(t

k
i). The sampled-data dynamics of each agent i ∈ V

under its ZOH controller on each interval t ∈ [tki , t
k+1
i) is as follows:

ẋi(t) = fi(xi(t)) + gi(xi(t))ui(t
k
i) + φi(t). (5.7)

The functions fi, gi may differ among agents, but are all locally Lipschitz on their respective
domains Rni . Note that under these definitions for any i ∈ V there exists a matrix Ci ∈ Rni × Rn̄

such that xi = Ci~x. We abuse notation by sometimes writing the expression f(xi) as f(~x). The
functions φi : R → Rni , i ∈ V , are locally Lipschitz in t and model disturbances to the system
(5.7). Each φi is bounded as per the following assumption:

Assumption 5.1. For all i ∈ V , the disturbances φi(t) satisfy ‖φi(t)‖ ≤ φmax
i ∈ R≥0, ∀t ≥ 0.

Since each control input ui(·) is piecewise constant, the existence and uniqueness of solutions
to (5.7) are guaranteed by Carathéodory’s theorem [267, Sec. 2.2].

176

Each agent i ∈ V has control input constraints that are represented by a nonempty, convex,
compact polytope, i.e. ui ∈ Ui(xi) = {u ∈ Rmi : Ai(xi)u ≤ bi(xi)}, where the functions Ai :

Rni → Rqi×mi , bi : Rni → Rqi are locally Lipschitz on their respective domains. Representation of
control input constraints as polytopes is common in prior literature [161,171,268]. Similar to prior
work, it is assumed there exists a nominal control law ~unom(·) that the system computes in order
to accomplish some nominal objective [160]. Examples of such a ~unom might include a feedback
control law to track a time-varying trajectory or to converge to a goal set. The nominal control
law is designed without any safety consideration, and therefore it is desired to minimally modify
~unom in order to render a safe set S ⊂ Rn̄ forward invariant under the dynamics (5.7). The set S is
defined as the sublevel sets of a function h : Rn̄ → R, h ∈ C1,1

loc as follows:

S = {~x ∈ Rn̄ : h(~x) ≤ 0},

∂S = {~x ∈ Rn̄ : h(~x) = 0},

int(S) = {~x ∈ Rn̄ : h(~x) < 0}.

(5.8)

Assumption 5.2. The set S is compact.

Assumption 5.3. For all i ∈ V and ∀~x ∈ S, the interior of Ui(~x) is nonempty and Ui(~x) is

uniformly compact near ~x.

Remark 5.1. Note that the conditions for Assumption 5.3 are trivially satisfied when Ai, bi are

constant and the interior set {u ∈ Rmi : Aiu < bi} is nonempty. For a specific example satisfying

Assumption 5.3 when Ui(·) is not constant, see (5.52) in Section 5.6 of this chapter.

We will refer to functions describing safe sets as simply “safe set functions” for brevity.
For multi-agent systems that apply continuous controllers ui(t) to the dynamics (5.7), forward
invariance can be collaboratively guaranteed by satisfying the sufficient condition ḣ(~x(t)) ≤
−α(h(~x(t))) based on Nagumo’s theorem [129], where α(·) is an extended class-K function and
locally Lipschitz onR. The dependence of ~x(t) on twill be omitted for brevity. For the multi-agent
system (5.7), expanding the term ḣ(~x) yields∑

i∈V

(Lfih
xi(~x) + Lgih

xi(~x)ui + Lφih
xi(~x)) ≤ −α(h(~x)), (5.9)

where the partial Lie derivative notation Lfih
xi(~x) is defined at the beginning of Section 5.3.1.

When all agents behave normally, methods exist for agents to locally solve for appropriate local
control inputs that together satisfy the condition in (5.9) (e.g. [250]).

177

In contrast to prior work, this chapter considers systems containing agents that exhibit adver-
sarial behavior. More specifically, this chapter considers a subset of agents A ⊂ V that apply the
following control input for all sampling times tkj , k ∈ Z≥0, j ∈ A:

umax
j (~xkj) = arg max

u∈Uj

[
Lfjh

xj(~xkj) + Lgjh
xj(~xkj)u

]
. (5.10)

The agents in A are called adversarial.

Remark 5.2. The control input (5.10) models adversarial intent in the sense that (5.10) maximizes

agent j’s contribution to the left-hand side (LHS) of (5.9). Violating the inequality in (5.9) removes

the forward invariance guarantee for the safe set S, and therefore the control law (5.10) represents

an adversarial agent’s best instantaneous control effort towards violating system safety.

Agents that are not adversarial are called normal. The set of normal agents is denoted N =

V\A. Dividing the left-hand side (LHS) of (5.9) into normal and adversarial parts yields the
following sufficient condition for set invariance in the presence of adversaries:∑

j∈A

(
Lfjh

xj(~x) + Lgjh
xj(~x)umax

j + Lφjh
xj(~x)

)
+ (5.11)∑

i∈N

(Lfih
xi(~x) + Lgih

xi(~x)ui + Lφih
xi(~x)) ≤ −α(h(~x)).

Again, the equation (5.11) being satisfied for all t ≥ 0 is equivalent to ḣ(~x(t)) ≤ α(h(~x(t)))

being satisfied for all t ≥ 0 which implies forward invariance of the set S. The form of (5.11)
reflects sampled-data adversarial agents seeking to violate the set invariance condition in (5.9) by
maximizing their individual contributions to the LHS sum. The problem considered in this chapter
is for the normal agents to compute control inputs that render the set S forward invariant using the
sufficient condition in (5.11) despite the worst-case behavior of the adversarial agents in A.

Problem 5.1. Determine control inputs for the normal agents i ∈ V which render the set S forward

invariant under the perturbed sampled-data dynamics (5.7) in the presence of a set of worst-case

adversarial agents A.

Remark 5.3. Since faulty or adversarial agents’ states are generally modeled as being uncontrol-

lable under the nominal system control law, the function h(~x) can be defined to consider only the

safety of normal agents.

Remark 5.4. This chapter assumes the identities of the adversarial agents are known to the normal

agents. Methods for identifying misbehavior are beyond the scope of this chapter.

178

5.4 Safe Set Functions with Relative Degree 1

We first present results for safe set functions h where the control inputs ui for all agents appear
simultaneously in the expression for the first time derivative ḣ(~x(t)). Such functions are said to
have relative degree 1 with respect to the system dynamics (5.7). Functions with relative degree
strictly greater than 1 are considered in Section 5.5.

5.4.1 Preliminaries

The results of this subsection will be needed for our later analysis. The minimum and maximum
value functions γmin

i (·), γmax
i (·) for i ∈ V are defined as follows:

γmin
i (~x) = min

ui∈Ui
[Lfih

xi(~x) + Lgih
xi(~x)ui] ,

γmax
i (~x) = max

ui∈Ui
[Lfih

xi(~x) + Lgih
xi(~x)ui] .

(5.12)

Each γmin
i (~x) and γmax

i (~x) can be calculated by solving a parametric linear program

min
ui∈Rmi

c(~x)Tui s.t. Ai(~x)ui ≤ bi(~x), (5.13)

where the vector c(~x)T = Lgih
xi(~x) when calculating γmin

i and c(~x)T = −Lgihxi(~x) when calcu-
lating γmax

i . Note that (5.13) is feasible for all ~x ∈ S under Assumption 5.3.
For an adversarial j ∈ A, the function γmax

j (·) represents the bound on the worst-case contri-
bution of j to the sum on the LHS of (5.11). Similarly, the function γmin

i (·) for a normal agent
i ∈ N represents the bound on agent i’s best control effort towards minimizing the LHS of (5.11).

Remark 5.5. Note that for any j ∈ A, for all uj ∈ Uj it holds that

Lfjh
xj(~x) + Lgjh

xj(~x)uj ≤ γmax
j (~x), ∀~x ∈ Rn̄. (5.14)

Due to this property, it will be demonstrated later in this paper that the results obtained by consid-

ering γmax
i will hold for any uj ∈ Uj for all j ∈ A.

The following result presents a sufficient condition under which γmin
i (·) and γmax

i (·) are locally
Lipschitz on the set S.

Lemma 5.1. If the interior of Ui(~x) is nonempty for all ~x ∈ S and Ui(~x) is uniformly compact

near ~x for all ~x ∈ S, then the functions γmin
i (·) and γmax

i (·) defined by (5.12) are locally Lipschitz

on S.

179

Proof. The proofs for γmin
i (·) and γmax

i (·) are identical except for trivially changing the sign of the
objective function; therefore only the proof for γmin

i (·) is given. Define the set of optimal points

Pi(~x) =

{
u∗i : u∗i = arg min

u∈Ui
Lfih

xi(~x) + Lgih
xi(~x)u

}
.

The result in [269, Thm. 5.1] states that if Ui(~x) is nonempty and uniformly compact near ~x ∈ Rn̄

and if the Mangasarian-Fromovitz (M-F) conditions hold at each u∗i ∈ Pi(~x), then γmin
i (·) is locally

Lipschitz near ~x (see [269] for the definition of the M-F conditions). The first two conditions hold
by assumption, and so we next prove that the M-F conditions hold at each u∗i ∈ P (~x). Let Ai,j(·)
denote the jth row of Ai(·) and bi,j(·) denote the jth entry of bi(·).

Consider any ~x ∈ S and u∗i ∈ Pi(~x). Define the set

Ji(~x) = {j ∈ {1, . . . , qi} : Ai,j(~x)u∗i − bi,j(~x) = 0} .

In words, Ji(~x) is the set of constraint indices where equality holds at u∗i . Note that by definition
of Ji(~x), for all j′ 6∈ Ji(~x) it holds that Ai,j′(~x) < 0. The interior int (Ui(~x)) being nonempty and
convex implies there exists an r ∈ Rmi such that for all j ∈ Ji(~x),

Ai,j(~x) (u∗i + r)− bi,j(~x) < 0,

=⇒ Ai,j(~x)r < bi,j(~x)− Ai,j(~x)u∗i = 0. (5.15)

This implies that there exists an r such that Ai(~x)r < 0. The point u∗i is therefore M-F regular.
Since this holds for any u∗i ∈ Pi(~x) and ∀~x ∈ S, by [269, Thm. 5.1] it holds that γmin

i (·) is locally
Lipschitz on S.

We briefly emphasize the difference between the min / max value functions γmin
i , γmax

i in (5.12)
and the min / max point functions defined as

umin
i (~x) = arg min

ui∈Ui
[Lfih

xi(~x) + Lgih
xi(~x)ui] , (5.16)

umax
i (~x) = arg max

ui∈Ui
[Lfih

xi(~x) + Lgih
xi(~x)ui] . (5.17)

In words, umin
i and umax

i represent the control actions such that, respectively, γmin
i (~x) = Lfih

xi(~x)+

Lgih
xi(~x)umin

i and γmax
i (~x) = Lfih

xi(~x)+Lgih
xi(~x)umax

i . Although the min / max value functions
γmin
i (·), γmax

i (·) are locally Lipschitz under the conditions of Lemma 5.1 and [269], the min / max
point functions umin

i and umax
i may not be locally Lipschitz in general.2

2We re-emphasize however that when (5.17) is applied in a ZOH manner, existence and uniqueness of solutions to
(5.7) is guaranteed by Carathéodory’s theorem [267, Sec. 2.2].

180

The following Lemma is based on results in [176], [209, Thm. 3.4]. It establishes an upper
bound on the difference between the sampled state ~xki and the state ~x(t) on a time interval t ∈
[tki , t

k
i + Γ), Γ ≥ 0.

Lemma 5.2. For any Γ ≥ 0, there exists a µ ≥ 0, L′ > 0 such that the following holds:

∥∥~x(t)− ~xki
∥∥ ≤ µ

L′

(
eL
′Γ − 1

)
∀t ∈ [tki , t

k
i + Γ).

Proof. Using the same method as [209, Thm. 3.4], define the functions

f(t, ~x) =0, (5.18)

g(t, ~x) =


f1(x1) + g1(x1)u1(t) + φ1(t)

...
fN(xN) + gN(xN)uN(t) + φN(t)

 (5.19)

Next, observe that

d

dt
~xki = 0 = f(t,~xki),

d

dt
~x(t) = f(t,~x)+g(t,~x).

Observe that S is compact by Assumption 5.2, each fi, gi is locally Lipschitz, and each φi(t)
is locally Lipschitz with ‖φi(t)‖ ≤ φmax

i . In addition, by Assumption 5.3, there exists an upper
bound uM ∈ R such that ‖ul‖ ≤ uM . Therefore there exists µ ∈ R ≥ 0 such that

sup
~x∈S

∥∥∥∥∥∥∥∥


f1(x1) + g1(x1)u1 + φ1(t)
...

fN(xN) + gN(xN)uN + φN(t)


∥∥∥∥∥∥∥∥ ≤ µ. (5.20)

Note that for t = tki we have
∥∥~x(t)− ~xki(t)

∥∥ = 0. Therefore by [209, Thm. 3.4], it holds that

∥∥~x− ~xki∥∥ ≤ µ

L′

(
eL
′(t−tki) − 1

)
, ∀t ∈ [tki , t

k
i + Γ), (5.21)

where L′ ∈ R>0 is any strictly positive constant.

181

For brevity, we define the function ε : R× R× R>0 → R as

ε(Γ, µ, L′) =
µ

L′

(
eL
′Γ − 1

)
. (5.22)

For fixed µ, L′, we abuse notation by writing ε(Γ) as a function of Γ only. It can be shown that for
fixed µ, L′, ε(·) is a class-K function in Γ.

5.4.2 Synchronous Sampling Times

To facilitate the presentation of the main results, we first consider the case where all agents in
the system have synchronous sampling times with a period of Γ, i.e., Ti = {kΓ : k ∈ Z≥0}
∀i ∈ N . This assumption is later relaxed to consider agents with asynchronous, nonidentical
sampling times. The Cartesian product of the admissible controls for all normal agents is denoted
UN =×i∈N Ui. Under Assumption 5.3, each Ui(~x) being uniformly compact near all ~x ∈ S

implies that UN is also uniformly compact near all ~x ∈ S. We will denote ~uN ∈ UN as the vector

containing only normal agents’ control inputs; i.e., ~uN =
[
uTi1 . . . uTi|N|

]T
, {i1, . . . , i|N |} ∈ N .

Our ultimate aim is to demonstrate that for all t ≥ 0,

ḣ(~x(t)) + α(h(~x(t))) ≤ 0. (5.23)

The dependence of ~x(t) on t will be omitted for brevity. Prior results have typically focused on
designing continuous u(·) functions that guarantee that (5.23) is satisfied. Satisfying (5.23) in
sampled-data systems for all intermediate times t ∈ [tk, tk+1), k ∈ Z≥0 is more challenging since
u(·) is constant on each interval t ∈ [kΓ, (k + 1)Γ). Inspired by [176], this challenge will be
addressed as follows: given the sampled state ~x(tk) and the state ~x(t), t ∈ [tk, tk+1), define the
error term

e(t, tk) =
(
ḣ(~x)− ḣ(~xk)

)
+
(
α(h(~x))− α(h(~xk))

)
.

From the LHS of (5.23) we obtain

ḣ(~x) + α(h(~x)) = ḣ(~xk) +
(
ḣ(~x)− ḣ(~xk)

)
+ α(h(~xk)) +

(
α(h(~x))− α(h(~xk))

)
,

= ḣ(~xk) + α(h(~xk)) + e(t, tk),

≤ ḣ(~xk) + α(h(~xk)) + sup
t∈[tk,tk+1)

∥∥e(t, tk)∥∥ .
By defining a function η(·) such that η(Γ) ≥ supt∈[tk,tk+1)

∥∥e(t, tk)∥∥, the inequality condition in
(5.23) is therefore satisfied for all times on the interval t ∈ [tk, tk+1) if for every tk ∈ T the

182

following condition holds:

ḣ(~xk) + α(h(~xk)) + η(Γ) ≤ 0. (5.24)

Satisfaction of (5.24) implies that ḣ(~x) + α(h(~x)) ≤ ḣ(~xk) + α(h(~xk)) + η(Γ) ≤ 0 for all t ∈
[tk, tk+1). To define such a function η(·), the following Lemma will be used.

Lemma 5.3. Consider the system (5.7). There exist constants cf , cg, cα, cγ, ch ∈ R such that for

all ~x1, ~x2 ∈ S, all of the following inequalities hold:∑
i∈N

∥∥Lfihxi(~x1)− Lfihxi(~x2)
∥∥ ≤ cf

∥∥~x1 − ~x2
∥∥ , (5.25)∑

i∈N

∥∥Lgihxi(~x1)− Lgihxi(~x2)
∥∥ ≤ cg

∥∥~x1 − ~x2
∥∥ , (5.26)∥∥α(h(~x1))− α(h(~x2))

∥∥ ≤ cα
∥∥~x1 − ~x2

∥∥ , (5.27)∑
j∈A

∥∥γmax
j (~x1)− γmax

j (~x2)
∥∥ ≤ cγ

∥∥~x1 − ~x2
∥∥ , (5.28)∥∥∥∥∥∑

l∈V

Lφlh
xl(~x1)

∥∥∥∥∥ ≤ ch
∑
l∈V

φmax
l (5.29)

Proof. The inequalities (5.25)-(5.28) follow from the fact that each fi, gi, α, and γmax
j are locally

Lipschitz, h ∈ C1,1
loc , and S is compact. To demonstrate that (5.29) holds, observe that S being

compact and h ∈ C1,1
loc implies

∥∥∥∂h(~x)
∂xl

∥∥∥ is bounded on S for all l ∈ V . Therefore, there exists a
constant ch ∈ R>0 such that for all t ∈ [tk, tk+1), ∀~x ∈ S,∥∥∥∥∥∑

l∈V

Lφlh
xl(~x1)

∥∥∥∥∥ ≤∑
l∈V

∥∥∥∥∂h(~x1)

∂xl
φl(t)

∥∥∥∥ ≤ ch
∑
l∈V

φmax
l

In addition to the inequalities in Lemma 5.3, observe that each set Ui being uniformly compact
implies that there exist a constant umax ≥ 0 such that

∥∥uki ∥∥ ≤ umax for all i ∈ N , k ≥ 0. Using
this definition of umax, the constants defined in Lemma 5.3, and the function ε· in (5.22) we define
the function η : R≥0 → R as follows:

η(Γ) = (cf + cgumax + cα + cγ) ε(Γ) + ch
∑
l∈V

φmax
l . (5.30)

183

The proof that η(Γ) ≥ supt∈[tk,tk+1)

∥∥e(t, tk)∥∥ will be given in Theorem 5.2. This definition of η(·)
is used to define the following safety-preserving controls set for the normal agents in N :

K(~x) =
{
~ukN ∈ UN :

∑
i∈N

[
Lfih

xi(~xk) + Lgih
xi(~xk)uki

]
+
∑
j∈A

γmax
j (~xk) + α(h(~xk)) + η(Γ) ≤ 0

}
(5.31)

Using this definition of K(·), the following Theorem presents conditions under which the set
S can be rendered forward invariant for the system (5.7) with synchronous sampling times despite
the actions of the adversarial agents.

Theorem 5.2. Consider the system (5.7) with synchronous sampling times. If ~xk ∈ S for k ≥ 0,

then for any control input ~uk ∈ K(~xk) the trajectory ~x(t) satisfies ~x(t) ∈ S for all t ∈ [kΓ, (k +

1)Γ).

Proof. First, denote ḣ′(~xk) = ḣ(~xk) −
∑

l∈V Lφlh
xl(~xk). In words, ḣ′(~xk) is equal to ḣ(~xk) with

all disturbance-related Lie derivatives subtracted out. Observe that

ḣ(~xk) +
(
ḣ(~x)− ḣ(~xk)

)
= ḣ′(~xk) +

∑
l∈V

Lφlh
xl(~xk) +

(
ḣ(~x)− ḣ′(~xk)−

∑
l∈V

Lφlh
xl(~xk)

)
,

= ḣ′(~xk) +
(
ḣ(~x)− ḣ′(~xk)

)
,

= ḣ′(~xk) +
(
ḣ′(~x)− ḣ′(~xk)

)
+
∑
l∈V

Lφlh
xl(~x).

From (5.7) and the definition of adversarial agents in (5.10), define the error term

e′(t, tk) =
(
ḣ′(~x)− ḣ′(~xk)

)
+
∑
l∈V

Lφlh
xl(~x) +

(
α(h(~x))− α(h(~xk))

)
,

=

(∑
i∈N

Lfih
xi(~x)− Lfih(~xk)

)
+
∑
l∈V

Lφlh
xl(~x) +

(∑
i∈N

[
Lgih

xi(~x)− Lgihxi(~xk)
]
uki

)
+∑

j∈A

(
γmax
j (~x)− γmax

j (~xk)
)

+
(
α(h(~x))− α(h(~xk))

)
Since tk+1 − tk = (k + 1)Γ− kΓ = Γ for all k ≥ 0, by Lemma 5.2 we have

∥∥~x− ~xk∥∥ ≤ ε(Γ) for
all t ∈ [tk, tk+1). Using Lemma 5.3 and the definition of η(·) in (5.30) yields the following upper

184

bound on
∥∥e′(t, tk)∥∥:

sup
t∈[tk,tk+1)

∥∥e′(t, tk)∥∥ ≤ (cf + cgumax + cα + cγ) ε(Γ) + ch
∑
l∈V

φmax
l ,

=⇒ sup
t∈[tk,tk+1)

∥∥e′(t, tk)∥∥ ≤η(Γ).

Therefore for all t ∈ [tk, tk+1), it holds that

ḣ(~x) + α(h(~x)) = ḣ′(~xk) +
(
ḣ′(~x)− ḣ′(~xk)

)
+
∑
l∈V

Lφlh
xl(~x) + α(h(~xk))

+
(
α(h(~x))− α(h(~xk))

)
,

= ḣ′(~xk) + α(h(~xk)) + e′(t, tk),

≤ ḣ′(~xk) + α(h(~xk)) + sup
t∈[tk,tk+1)

∥∥e′(t, tk)∥∥
≤
∑
i∈N

[
Lfih

xi(~xk) + Lgih
xi(~xk)uki

]
+
∑
j∈A

γmax
j (~xk) + α(h(~xk)) + η(Γ).

Choosing any ~ukN ∈ K(~x), observe from (5.31) that∑
i∈N

[
Lfih

xi(~xk) + Lgih
xi(~xk)uki

]
+
∑
j∈A

γmax
j (~xk) + α(h(~xk) + η(Γ) ≤ 0, (5.32)

=⇒ ḣ(~x) + α(h(~x)) ≤ 0. (5.33)

Therefore any ~ukN ∈ K(~xk) renders the set S forward invariant for all t ∈ [tk, tk+1). These
arguments hold for all k ∈ Z≥0, which concludes the proof.

Remark 5.6. Using Remark 5.5 observe that given any ~ukN ∈ K(~xk), for all uj ∈ Uj , j ∈ A it

holds that∑
i∈N

(
Lfih

xi(~xk) + Lgih
xi(~xk)ui

)
+
∑
j∈A

(
Lfjh

xj(~xk) + Lgjh
xj(~xk)uj

)
+ α(h(~x)) + η(Γ) ≤∑

i∈N

(
Lfih

xi(~xk) + Lgih
xi(~xk)ui

)
+
∑
j∈A

γmax
j (~xk) + α(h(~x)) + η(Γ).

Therefore the results of Theorem 5.2 hold for any feasible control inputs uj ∈ Uj of any agent

j ∈ A.

In other words, since the analysis of Theorem 5.2 uses the maximum upper bounds γmax
j (·) on

the contributions of the adversarial agents j ∈ A to the LHS of the safety condition (5.9), the

results of Theorem 5.2 hold for any feasible control inputs uj ∈ Uj of any agent j ∈ A. In this

185

sense the results of Theorem 5.2 can be applied to a broader definition of the set A than the one

given in Section 5.3.2.

When K(~x) defined in (5.31) is nonempty, a feasible ~u∗N ∈ K(~x) rendering S invariant while
minimally modifying ~unom can be computed by solving the following QP:

~u∗N (~xk) = arg min
~uN∈UN

‖~uN − ~unom‖2
2 (5.34)

s.t.
∑
i∈N

(
Lfih

xi(~xk) + Lgih
xi(~xk)ui

)
+
∑
j∈A

γmax
j (~xk) + α(h(~x)) + η(Γ) ≤ 0

Note that this QP requires the values of γmax
j (~xk), j ∈ A, which can be solved for via a separate LP.

Once ~u∗N (~xk) ∈ K(~x) has been obtained, each agent i ∈ N can then apply the local control input
ui(~x

k). By Theorem 5.2, safety of the entire system is guaranteed under the adversarial behavior
for all forward time. The case when K(~x) is empty is discussed in Section 5.4.4.

5.4.3 Asynchronous Sampling Times

The assumption of identical, synchronous sampling times typically does not hold in practice. In
addition, a distributed system may not have access to a centralized entity to solve the QP in (5.34) to
obtain ~uN . This subsection will therefore consider asynchronous sampling times and a distributed
method for computing local control inputs. Each agent i ∈ V is assumed to have a nominal
sampling period Γi ∈ R>0 and the perturbed sequence of sampling times

Ti = {t0i , t1i , . . .} s.t. tk+1
i − tki = Γi + δi(k), ∀k ∈ Z≥0, (5.35)

where δi(k) is a disturbance satisfying ‖δi(k)‖ ≤ δmax
i . The function δi can be used to model

time delays due to disturbances such as clock asynchrony or packet drops in the communication
network. We denote Γmax = maxi∈V Γi and δmax = maxi∈V δ

max
i . Recall from Section 5.3.2 that

we denote ~xki = ~x(tki) and ukii = ui(t
k
i).

Each agent i ∈ N updates its control input ukii at sampling times tki and also broadcasts ukii to
all other agents in the network. Each agent i stores the values of the most recently received inputs
from its normal in-neighbors l ∈ N . The notation ûkil denotes the most recently received input
value by agent i from agent l at time tki .

186

Using the definition of η(·) from (5.30) following feasible set is defined for each i ∈ N :

Ki(~x
ki) =

{
ui ∈ Ui : Lfih

xi(~xki) + Lgih
xi(~xki)ui +

∑
l∈N\{i}

[
Lflh

xl(~xki) + Lglh
xl(~xki)ûkil

]
+
∑
j∈A

γmax
j (~xki) + α(h(~xki)) + η(Γi + δmax) ≤ 0

}
Theorem 5.3 presents conditions under which forward invariance of the set S can be guaranteed
for the distributed, asynchronous system described in this subsection.

Theorem 5.3. Consider the system (5.7) with sampling times described by (5.35). If at sampling

time tki for k ≥ 0, i ∈ N it holds that ~xki ∈ S, then for any ukii ∈ Ki(~x
ki) the trajectory ~x(t)

satisfies ~x(t) ∈ S for all t ∈ [tki , t
k+1
i).

Proof. Choose any i ∈ N and consider the time interval t ∈ [tki , t
k+1
i). Recall that tk+1

i − tki ≤
Γi + δmax ∀k ∈ Z≥0 by virtue of (5.35) and the definition of δmax. In particular, this implies
ε(Γi + δi(k)) ≤ ε(Γi + δmax) for all k ∈ Z≥0 since ε(·) is a class-K function in Γ. For each i ∈ N
define the value e′i(t, t

k) in a similar manner as Theorem 5.2 and observe

sup
t∈[tki ,t

k+1
i)

∥∥e′i(t, tki)∥∥ ≤ (cf + cgumax + cα + cγ) ε(Γi + δmax) + ch
∑
l∈V

φmax
l ,

=⇒ sup
t∈[tki ,t

k+1
i)

∥∥e′i(t, tki)∥∥ ≤ η(Γi + δmax)

The same logic as in Theorem 5.2 can then be used to demonstrate that ḣ(~x) +α(h(~x)) ≤ 0 for all
t ∈ [tki , t

k+1
i).

Under the communication protocol described previously, each agent can use the most recently
received inputs ûkil from other normal agents to calculate a control input ukii ∈ Ki(~x

ki). Such a ukii
can be computed by solving the following QP:

ui(~x
ki) = arg min

ui∈Ui

∥∥ui − ukii,nom

∥∥2

2
(5.36)

s.t.
(
Lfih

xi(~xki) + Lgih
xi(~xki)ui

)
+

∑
l∈N\{i}

(
Lflh

xl(~xki) + Lglh
xl(~xki)ûkil

)
+

∑
j∈A

γmax
j (~xki) + α(h(~xki)) + η(Γi + δmax) ≤ 0.

Like the previous formulations, the values of γmax
j (·) for j ∈ A can be calculated via solving

a separate LP. By the results of Theorem 5.3, when each Ki(~x) is nonempty and each normal

187

agent applies the controller defined by (5.36) the multi-agent safe set is rendered forward invariant
despite any collective worst-case behavior of the adversarial agents.

5.4.4 Maximum Safety-Preserving Control Action

One of the required conditions of the foregoing results is the nonemptiness of the feasible setsK(~x)

and Ki(~x), which is also closely related to the feasibility of the QP (5.34). Conditions under which
such feasible sets remain nonempty for general systems remains an open question. Guaranteeing
both safety and the feasibility of the QP calculating the control input ui(~xki) has been a recent
topic of study [268, 270], and can depend on the choice of extended class-K function α(·).

In contrast, consider the sampled-data control law umin
i (·) defined in (5.16). Intuitively speak-

ing, (5.16) represents the strongest control effort agent i ∈ N can apply towards minimizing the
LHS of (5.9). This control input can be solved for by taking the arg min of the minimizing LP in
(5.13):

umin
i (~xki) = arg min

ui∈Rmi
Lgih

xi(~xki)ui

s.t. Ai(~x
ki)ui ≤ bi(~x

ki)

(5.37)

For any system satisfying Assumption 3, the set Ui(~x) = {u : Ai(~x)u ≤ bi(~x)} is nonempty
for all ~x ∈ S. This implies that (5.37) is always guaranteed to be feasible for ~x ∈ S. However
the question remains as to when the control action (5.16) can guarantee forward invariance of S.
Towards this end, define the set

∂Sε =

{
x ∈ S : min

z∈∂S
‖x− z‖ ≤ ε

}
, ε > 0. (5.38)

In words, ∂Sε is an “inner boundary region” of S that includes all points in S within distance ε of
∂S with respect to a chosen norm. An example is given in Figure 5.1.

The following theorem presents a sufficient condition for when the control umin
i (·) for each

normal agent renders the set S invariant in the presence of an adversarial set A.

Theorem 5.4. Let ε∗ = ε(Γmax +2δmax) and define the sets ∂Sε∗ , ∂S2ε∗ as per (5.38). Suppose that

each normal agent i ∈ N applies the control input umin
i (~xki) from (5.16) for all sampled states ~xki

satisfying ~xki ∈ ∂S2ε∗ . Then S is forward invariant if ~x(0) ∈ S\∂S2ε∗ and the following condition

holds:

max
~x∈∂S2ε∗

[∑
i∈N

max
~xi∈B(~x,ε∗)

[
γmin
i (~xi)

]
+
∑
j∈A

γmax
j (~x) + α(h(~x))

]
≤ −η(Γmax + 2δmax). (5.39)

188

Figure 5.1: An example of the sets S, ∂Sε∗ , and ∂S2ε∗ for a given ε∗ > 0. Note that each of the
three ellipses is a separate view of the same set S. The dotted blue line in the rightmost ellipse is
the inner boundary of ∂Sε∗ , highlighting the fact that ∂Sε∗ ⊂ ∂S2ε∗ .

Proof. The proof first demonstrates that the most recently sampled states of all agents always lie
within a closed ball of radius ε∗ = ε(Γmax + 2δmax). Next, it shows that ~x(0) ∈ S\∂Sε∗ implies
that ~x(t) cannot leave S without all agents sampling the state at least once within the region ∂Sε∗ .
Finally, it is shown that this fact combined with (5.39) implies that S is forward invariant.

Choose any i ∈ N and any sampling time tki for agent i. By the definition of Γmax and
δmax, the next sampling time tk+1

i satisfies tk+1
i − tki ≤ tki + Γmax + 2δmax. Since this holds

for all i ∈ V , given any i1, i2 ∈ N and interval [tki1 , t
k
i1

+ Γmax + δmax], there exists a sampling
time for i2 satisfying tk

′
i2
∈ [tki1 , t

k
i1

+ Γmax + 2δmax]. Using Lemma 5.2, this implies that the
maximum normed difference between any two most recently sampled states ~x(tk

∗
i1

) and ~x(tk
∗
i2

)

satisfies
∥∥~x(tk

∗
i1

)− ~x(tk
∗
i2

)
∥∥ ≤ ε(Γmax + 2δmax) = ε∗. Since this holds for all i1, i2 ∈ V at any tki1 ,

the most recently sampled states of all agents therefore always lie within a ball of radius ε∗.
Next, consider any agent i with sampling time tki such that ~x(tki) ∈ S\∂Sε∗ and ~x(tk+1

i) 6∈
S\∂Sε∗ . Since

∥∥~x(tk+1
i)− ~x(tki)

∥∥ ≤ ε∗ by previous arguments, this implies that ~x(tk+1
i) ∈ ∂Sε∗ .

Therefore ~x(0) ∈ S\∂Sε∗ implies that ~x cannot leave S without each agent i ∈ N having at least
one sampling time tki such that ~xki ∈ ∂Sε∗ . Note that ~x(0) ∈ S\∂S2ε∗ as per the Theorem statement
implies that ~x(0) ∈ S\∂Sε∗ since ∂Sε∗ ⊂ ∂S2ε∗ .

Define e′(t, tki) in a similar manner to Theorem 5.2. Observe that tk+1
i − tki ≤ Γmax + 2δmax for

all i ∈ N . In addition, for any i1, i2 ∈ N with most recent sampling times tki1i1 and tki2i2 , it can be
shown that |tki1i1 − t

ki2
i2
| ≤ Γmax + 2δmax. Therefore on any interval t ∈ [t

ki1
i1
, t
ki2
i2

), we have

189

sup
t∈[t

ki1
i1

,t
ki2
i2

)

∥∥∥e′(t, tki1i1)
∥∥∥ ≤

(cf + cgumax + cα + cγ) ε
∗ + ch

∑
l∈V

φmax
l ,

=⇒ sup
t∈[t

ki1
i1

,t
ki2
i2

)

∥∥∥e′(t, tki1i1)
∥∥∥ ≤ η(Γmax + 2δmax).

Choose the first sampling time tki1i1 such that tki1i1 ≥ Γmax + 2δmax and ~xki1 ∈ ∂Sε∗ ⊂ ∂S2ε∗ . Since
~x(0) ∈ S2ε∗ by the Theorem statement, it can be shown using prior arguments that such a sampling
time is guaranteed to exist. This choice of tki1i1 implies that all agents have sampled at least once at
or before tki1i1 . Let tki2i2 > t

ki1
i1

be the next normal agent sampling time strictly greater than tki1i1 , with
the associated agent denoted i2 ∈ N . Let ~xki1 , . . . , ~xki|N| denote the most recently sampled states
of all normal agents. By prior arguments ~xkil ∈ B(~xki1 , ε∗) for all l ∈ 1, . . . , |N |, and therefore by
(5.39) at time tki1i1 we have∑

p∈1,...,|N |

γmin
i (~xkip)−

∑
j∈A

γmax
j (~xki1) + α(h(~xki1))+

η∗(Γmax + 2δmax) ≤ 0.

From this it holds that for all t ∈ [t
ki1
i1
, t
ki2
i2

) we have

ḣ(~x) + α(h(~x)) ≤
∑

p∈1,...,N

γmin
i (~xkip)−

∑
j∈A

γmax
j (~xki1)+

α(h(~xki1)) + η∗(Γmax + 2δmax) ≤ 0.

It follows that S is forward invariant on the interval t ∈ [t
ki1
i1
, t
ki2
i2

). The preceding arguments can be
repeated for any subsequent adjacent sampling times t

kil
il
, t
kip
ip

, t
kil
il
< t

kip
ip

to show that S is forward

invariant on [t
kil
il
, t
kip
ip

), which concludes the proof.

5.5 Safe Set Functions with High Relative Degree

It has been demonstrated in prior literature that there exist safe set functions hwhere agents’ control
inputs do not appear in the expression for the time derivative ḣ(~x) [252, 262], i.e., ∂h(~x)

∂xi
gi(~x) = 0

for all ~x. These functions are said to have high relative degree with respect to the system dynamics.
In such cases, prior literature has considered methods for computing continuous-time controllers
that provably maintain forward invariance of the safe set. These prior results do not consider sys-

190

tems with sampled-data dynamics however, nor do they consider the presence of agents behaving
in an adversarial manner. In this section we extend our previous results to consider a class of safe
set functions having high relative degree w.r.t. system dynamics.

In prior work, safety of systems without disturbances and having continuous control inputs
using safe set functions having high relative degree w.r.t. system dynamics is typically considered
as follows: a function h : Rn̄ → R describing the safe set is used to define a series of functions
ψj : Rn̄ → R, j = 1, . . . , q in the following manner:

ψ0(~x) , h(~x),

ψ1(~x) , ψ̇0(~x) + α1(ψ0(~x)),

...

ψq(~x) , ψ̇q−1 + αq(ψq−1(~x)),

(5.40)

where each αj : R → R is an extended class-K∞ function and is locally Lipschitz continuous on
R. The integer q ∈ Z≥1 is chosen to be the smallest integer such that a control input ui for some
i ∈ V appears in the expression for ψq(~x). The integer q is called the relative degree of h w.r.t the
system dynamics. The functions in (5.40) are associated with the following series of sets:

S1 , {~x ∈ Rn̄ : ψ0(~x) ≤ 0}.

S2 , {~x ∈ Rn̄ : ψ1(~x) ≤ 0}.
...

Sq , {~x ∈ Rn̄ : ψq−1(~x) ≤ 0}.

(5.41)

For brevity, we denote SI ,
⋂p
r=1 Sr. The following result from prior literature applies to systems

with continuous control inputs:

Theorem 5.5 ([252]). Suppose ~x(t0) ∈
⋂p
i=1 Si. Then the set

⋂q
i=1 Si is rendered forward invari-

ant under any Lipschitz continuous controller ~u(t) that ensures the condition ψq(~x(t)) ≤ 0 for all

t ≥ t0.

However, this prior result considers continuous control inputs, does not account for the dis-
turbances ψi(t) in (5.7), and does not consider the presence of agents behaving in an adversarial
manner.

This section will extend the results in the previous section to present a method for normally-
behaving agents with the sampled-data dynamics (5.7) to maintain safety using a function h with
high relative degree w.r.t. (5.7) in the presence of adversarial agents. First, to address the presence
of the disturbances φi(t), i ∈ V , recall from Lemma 5.3 that there exists a constant ch ≥ 0 such

191

that
∥∥∑

i∈V Lφih
xi(~x)

∥∥ ≤ ch
∑

i∈V φ
max
i . We define the constant

ξ = ch
∑
i∈V

φmax
i . (5.42)

The function h(~x) and constant ξ are used to define a series of functions ψdj : Rn̄ → R, j = 1, . . . , q

in the following manner:

ψd0(~x) , h(~x),

ψd1(~x) ,
∑
i∈V

Lfih
xi(~x) + ξ + α1(ψd0(~x)),

ψd2(~x) , ψ̇d1(~x) + α2(ψd1(~x)),

...

ψdq (~x) , ψ̇dq−1 + αq(ψ
d
q−1(~x)),

(5.43)

where each αj : R→ R is an extended class K∞ function and is locally Lipschitz on R. We make
the following assumptions:

Assumption 5.4. The agent inputs ui for all i ∈ V appear simultaneously in ψdq (~x), q ∈ Z≥1, and

are all absent in all ψdj , 0 ≤ j < q.

Assumption 5.5. The function ψdq−1 satisfies ψdq−1 ∈ C
1,1
loc .

In particular, this section considers cases where the relative degree q > 1, since cases where
q = 1 can be treated by the results in the previous section. The sets Sd1 , . . . , S

d
q and SdI are defined

as

Sd1 , {~x ∈ Rn̄ : ψd0(~x) ≤ 0}.

Sd2 , {~x ∈ Rn̄ : ψd1(~x) ≤ 0}.
...

Sdq , {~x ∈ Rn̄ : ψdq−1(~x) ≤ 0}

SdI ,
q⋂

k=1

Sdk .

(5.44)

The following Lemma will be needed for our main result. It allows the analysis to consider
disturbances φi(t) that possibly cannot be differentiated q times with respect to time.

Lemma 5.4. Let h have relative degree q > 1 with respect to (5.7). Then it holds that ψ̇d0(~x) +

α1(ψd0(~x)) ≤ ψd1(~x) for all t ≥ 0.

192

Proof. Since q > 0, by Assumption 5.4 the time derivative of ψd0(~x) satisfies

ψ̇d0(~x) =
∑
i∈V

Lfih
xi(~x) + Lφih

xi(~x).

From Lemma 5.3 and equation (5.42) we have
∥∥∑

i∈V Lφih
xi(~x)

∥∥ ≤ ch
∑

i∈V φ
max
i = ξ. Using

(5.43) it follows that

ψ̇d0(~x) + α1(ψd0(~x)) ≤
∑
i∈V

(Lfih
xi(~x)) + ξ + α1(ψd0(~x)),

= ψd1(~x),

which concludes the proof.

By upper bounding the term Lφih
xi(~x) with the constant ξ, no time derivatives of φi(t) appear

in the functions ψ2, ...ψq.
Similar to Theorem 5.5, to achieve forward invariance of SdI under a ZOH control law the key

condition is to show that ψdq (~x(t), ~u(t)) ≤ 0 for all t ≥ t0. Using a similar method as the prior
section, for a ZOH ~uk we can define the error term

eψ(t, tk) =
(
ψdq (~x)− ψdq (~xk)

)
. (5.45)

For all t ∈ [tki , t
k+1
i) it therefore holds that

ψdq (~x(t)) = ψdq (~x
k) + eψ(t, tki)

≤ ψdq (~x
k) + sup

t∈[tki ,t
k+1
i)

∥∥eψ(t, tk)
∥∥ .

If it holds that ψdq (~x
k) + supt∈[tki ,t

k+1
i)

∥∥eψ(t, tk)
∥∥ ≤ 0, then for all t ∈ [tki , t

k+1
i) we therefore have

ψdq (~x) ≤ 0 for all t ∈ [tki , t
k+1
i).

Consider the asynchronous system with perturbed sampling times from section 5.4.3 such that
Assumption 5.4 is satisfied and the function h has relative degree q under (5.7). Using (5.7) and
(5.43), the function ψdq (~x) can be expanded into the expression

ψdq (~x) =ψ̇dq−1(~x) + αq(ψ
d
q−1(~x)),

=
∑
i∈N

Lfi(ψ
d
q−1)xi(~x) + Lgi(ψ

d
q−1)xi(~x)ui +

∑
j∈A

Lfj(ψ
d
q−1)xj(~x) + Lgj(ψ

d
q−1)xj(~x)uj

+ αq(ψ
d
q−1(~x)) (5.46)

193

Observe that the RHS of (5.46) is affine in ~u. This follows from (5.46) and the definition of the
relative degree q from Assumption 5.4. Similar to equation (5.12), define the functions

γ̂min
i (~x) = min

ui∈Ui

[
Lfi(ψ

d
q−1)xi(~x) + Lgi(ψ

d
q−1)xi(~x)ui

]
,

γ̂max
i (~x) = max

ui∈Ui

[
Lfi(ψ

d
q−1)xi(~x) + Lgi(ψ

d
q−1)xi(~x)ui

]
.

(5.47)

As in the previous section, the functions γ̂min
i , γ̂max

i can be shown to be locally Lipschitz on the set
SdI .

Lemma 5.5. If the interior of Ui(~x) is nonempty for all ~x ∈ SdI and Ui(~x) is uniformly compact

near ~x for all ~x ∈ SdI , then the functions γ̂min
i (·) and γ̂max

i (·) defined by (5.47) are locally Lipschitz

on SdI .

Proof. The result follows from Assumption 5.5 and by using similar arguments as in Lemma
5.1.

Similar to Section 5.4, the following result will be needed to define a function η′ : R≥0 → R
that will be used to upper bound the normed error term supt∈[tki ,t

k+1
i)

∥∥eψ(t, tk)
∥∥:

Lemma 5.6. Consider the system (5.7) and the function ψdq−1(~x). There exist constants
c′f , c

′
g, c
′
α, c
′
γ̂ ∈ R such that for all ~x1, ~x2 ∈ SdI , all of the following inequalities hold:

∑
i∈N

∥∥∥Lfi(ψdq−1)xi(~x1)− Lfi(ψ
d
q−1)xi(~x2)

∥∥∥ ≤ c′f ∥∥~x1 − ~x2
∥∥ ,

∑
i∈N

∥∥∥Lgi(ψdq−1)xi(~x1)− Lgi(ψdq−1)xi(~x2)
∥∥∥ ≤ c′g ∥∥~x1 − ~x2

∥∥ ,∥∥∥αq(ψdq−1(~x1))− αq(ψdq−1(~x2))
∥∥∥ ≤ c′α ∥∥~x1 − ~x2

∥∥ ,∑
j∈A

∥∥γ̂jmax(~x1)− γ̂jmax(~x2)
∥∥ ≤ c′γ̂ ∥∥~x1 − ~x2

∥∥ ,

Proof. Follows from ψq−1 ∈ C1,1
loc by Assumption 5.5, from αq being locally Lipschitz on R by

definition, and from γ̂min
i , γ̂max

i being locally Lipschitz by Lemma 5.5.

Using the constants defined in Lemma 5.6 and the function ε(·) in (5.22), we define the function
η′ : R≥0 → R as follows:

η′(Γ) =
(
c′f + c′gumax + c′α + c′γ̂

)
ε(Γ). (5.48)

194

This definition of η′(·) is used to define the following feasible sets for i ∈ V . Recall from Section
5.4.3 that ûkil denotes the most recently received input value by agent i ∈ N from agent l ∈ N at
time tki .

Kψ
i (~xki) =

{
ui ∈ Ui : ψdq (~x

ki) ≤ 0
}
,

=
{
ui ∈ Ui : Lfi(ψ

d
q−1)xi(~xki) + Lgi(ψ

d
q−1)xi(~xki)ui

+
∑

l∈N\{i}

[
Lfl(ψ

d
q−1)xl(~xki) + Lgl(ψ

d
q−1)xl(~xki)ûkil

]
+
∑
j∈A

γmax
j (~xki) + αq(ψ

d
q−1(~xki)) + η′(Γi + δmax) ≤ 0

}
.

The next Theorem demonstrates conditions under which the set S may be rendered forward invari-
ant for trajectories of the system (5.7).

Theorem 5.6. Consider the system (5.7) with sampling times described by (5.35). Let ψd1 , . . . , ψ
d
q

be defined as in (5.43). If at sampling time tki for k ≥ 0, i ∈ N it holds that ~xki ∈ SdI , then for any

ukii ∈ K
ψ
i (~xki) the trajectory ~x(t) satisfies ~x(t) ∈ SdI for all t ∈ [tki , t

k+1
i).

Proof. From (5.45) and (5.43), we have

eψ(t, tk) =
(
ψdq (~x)− ψdq (~xk)

)
,

=
∑
i∈N

(
Lfi(ψ

d
q−1)xi(~x)− Lfi(ψdq−1)xi(~xk)

)
+∑

i∈N

(
Lgi(ψ

d
q−1)xi(~x)− Lgi(ψdq−1)xi(~xk)

)
uki +∑

j∈A

(
γ̂max
j (~x)− γ̂max

j (~xk)
)

+

(
αq(ψq−1(~x))− αq(ψq−1(~xk))

)
(5.49)

Choose any i ∈ N and consider the time interval t ∈ [tki , t
k+1
i). Recall that tk+1

i − tki ≤ Γi + δmax

∀k ∈ Z≥0 by virtue of (5.35) and the definition of δmax. In particular, this implies ε(Γi + δi(k)) ≤
ε(Γi + δmax) for all k ∈ Z≥0 since ε(·) is a class-K function in Γ. Using equations (5.49), (5.48),
Lemma 5.6, and Lemma (5.2) observe that

sup
t∈[tki ,t

k+1
i)

∥∥eψ(t, tki)
∥∥ ≤ (c′f + c′gumax + c′α + c′γ̂

)
ε(Γi + δmax),

=⇒ sup
t∈[tki ,t

k+1
i)

∥∥eψ(t, tki)
∥∥ ≤ η′(Γi + δmax)

195

The same logic as in Theorem 5.2 can then be used to demonstrate that for any ui ∈ Kψ
i (~xki) it

holds that ψdq (~x(t)) ≤ ψdq (~x
k) + η′(Γi + δmax) ≤ 0 for all t ∈ [tki , t

k+1
i).

We next demonstrate that ψdq (~x) ≤ 0 for all t ∈ [tki , t
k+1
i) implies that ~x ∈ SdI ∀t ∈ [tki , t

k+1
i).

For brevity, denote Iki = [tki , t
k+1
i). Since ψdq (~x) ≤ 0 for all t ∈ Iki , from (5.43) this implies that

ψ̇dq−1(~x) + αq(ψ
d
q−1(~x)) ≤ 0 for all t ∈ Iki . By Nagumo’s Theorem, this implies that ψdq−1(~x) ≤ 0

for all t ∈ Iki . Continuing inductively, observe that for all 2 ≤ j ≤ q it holds that ψdj (~x) ≤ 0

∀t ∈ Iki , which implies ψ̇dj−1(~x) + αj(ψ
d
j−1(~x)) ≤ 0 ∀t ∈ Iki , which further implies by Nagumo’s

Theorem that ψdj−1(~x) ≤ 0 ∀t ∈ Iki . By this logic we therefore have ψdq (~x) ≤ 0 =⇒ ψdq−1(~x) ≤
0 =⇒ . . . =⇒ ψd1(~x) ≤ 0 ∀t ∈ Iki . By Lemma 5.4, ψd1(~x) ≥ ψ̇d0(~x) + α1(ψd0(~x)) for all
t ≥ 0. Therefore ψd1(~x) ≤ 0 ∀t ∈ Iki implies that ψ̇d0(~x) + α1(ψd0(~x)) ≤ 0 ∀t ∈ Iki , which implies
that ψd0(~x) ≤ 0 ∀t ∈ Iki . Using the definitions in (5.44), it follows that the trajectory ~x(t) satisfies
~x(t) ∈ SdI =

⋂q
j=1 S

d
j for all t ∈ Iki , which concludes the proof.

Under the communication protocol described in Section 5.4.3, each normal agent i ∈ N can
use the most recently received inputs ûkil from other normal agents to calculate a control input
ukii ∈ K

ψ
i (~xki). Such a ukii can be computed by solving the following QP:

ui(~x
ki) = arg min

ui∈Ui

∥∥ui − ukii,nom

∥∥2

2

s.t. Lfi(ψ
d
q−1)xi(~xki) + Lgi(ψ

d
q−1)xi(~xki)ui+∑

l∈N\{i}

(
Lfl(ψ

d
q−1)xl(~xki) + Lgl(ψ

d
q−1)xl(~xki)ûkil

)
+

∑
j∈A

γ̂max
j (~xki) + αq(ψ

d
q−1(~xki)) + η′(Γi + δmax) ≤ 0.

(5.50)

5.5.1 Discussion

This section has considered systems satisfying Assumption 5.4 where all agents’ inputs appear
simultaneously for the same relative degree q of h under (5.7). However, Assumption 5.4 may not
be satisfied in general for systems composed of agents with heterogeneous control-affine dynamics.
A simple example is a system composed of both single- and double-integrator agents with states in
R3. Only control inputs for the single integrators appear in the function ψ1(~x, ~u) from (5.43), while
the function ψ2(~x, ~u, ~̇u) = d

dt
(ψ1(~x, ~u)) + α2(ψ1(~x, ~u)) simultaneously contains single-integrator

inputs, time-derivatives of single-integrator inputs, and double-integrator inputs.
The extension of this chapter’s results to the general case does not immediately follow for

two reasons. First, the time derivatives of inputs ~̇u, ~̈u, . . . , ~u(r), r ∈ Z≥1 for ZOH controllers are
undefined at sampling instances. This necessitates a careful and rigorous mathematical analysis of

196

the behavior of each ψj(~x, ~u, ~̇u, . . .) to ensure that safety can indeed be guaranteed under a ZOH
control law. Second, when considering multi-agent safe set functions h(·) the functions ψj for
higher values of j are not guaranteed to be convex in ~u when Assumption 5.4 is not satisfied.
This nonconvexity inhibits the ability to efficiently compute safety-preserving control inputs. We
therefore leave the general case as an interesting direction for future investigation.

5.6 Simulations

Simulations were performed using a combination of MATLAB and the Julia programming lan-
guage [271]. The simulations used the OSQP optimization package [242] and the ForwardDiff
automatic differentiation package [272].

While forward invariance of the safe set is guaranteed for any control inputs in the feasible sets
Ki(·), Kψ

i (·), a key issue is guaranteeing that the feasible sets Ki(·), Kψ
i (·) remain nonempty for

all forward time. Due to the difficulty of calculating forward reachable sets for general nonlinear
systems subject to disturbances [273, 274], prior literature typically does not provide guarantees
on the forward nonemptiness of such feasible sets except in very specific cases (e.g. when control
input constraints are not considered). Even in the absence of obstacles, it is trivial to find examples
where forward invariance of the safe set is impossible. Two such examples are given in Figure
5.2 for single integrator agents in the plane R2, where adversaries surround a normal agent or pin
a normal agent against an obstacle. Proving the forward nonemptiness of sets Ki(·) and Kψ

i (·),
however, is beyond the scope of this work.

5.6.1 Unicycle Agents in R2

The first simulation involves a network of n = 5 agents with unicycle dynamics in R2. Agents
are nominally tasked with tracking time-varying trajectories defined by a Bezier curve, timing law,
and local formational offsets. The agents must also avoid static obstacles. Two agents misbehave
by each pursuing the respective closest normal agent. The state of each unicycle i ∈ V is denoted

xi =
[
xi,1 xi,2 xi,3

]T
. Each unicycle is controlled via an input-output linearization method [234,

Ch. 11] where each agent has the outputs

pi,1 = xi,1 + b cos(xi,3),

pi,2 = xi,2 + b sin(xi,3), b > 0.
(5.51)

The output pi =
[
pi,1 pi,2

]T
is treated as having single integrator dynamics

ṗi = ui =
[
ui,1 ui,2

]T
. Each agent i is controlled by first computing the output control input

197

Figure 5.2: Two examples of initial system states where it is impossible to guarantee forward
nonemptiness of the normal agent’s feasible controls set Ki(·). Agents have single integrator
dynamics; the normal agent is depicted in blue, and adversarial agents are depicted in red. The
line in the right image denotes an obstacle. Determining initial conditions for which nonemptiness
of the feasible sets is guaranteed for all forward time is intractable in general when considering
nonlinear control-affine systems.

ui and minimally modifying ui via the CBF-based QP method described previously. The final
unicycle control inputs

[
νi ωi

]
are then obtained via the transformation

[
νi

ωi

]
=

[
cos(θi) sin(θi)

−sin(θi)/b cos(θi)/b

][
ui,1

ui,2

]
.

At any timestep where the QP is infeasible, each normal agent applies the best-effort safety pre-
serving control (5.16) calculated via the LP (5.37). Infeasibility of the QP generating the control
inputs does not necessarily imply that safety cannot be maintained. Reasons why the QP may
go infeasible at particular time steps include the conservative nature of the form of η(·) and the
choice of α(·) function. The LP in (5.37) is applied whenever an agent’s QP is infeasible to ap-
ply the agent’s best control efforts towards maintaining safety. Given control bounds |νi| ≤ νmax

i

and |ωi| ≤ ωmax
i , it can be shown that the corresponding linear control bounds on ui,1, ui,2 are

Ai(xi)

[
ui,1

ui,2

]
≤ bi, with

Ai(xi) =


cos(θi) sin(θi)

− cos(θi) − sin(θi)

− sin(θi)/b cos(θi)/b

sin(θi)/b − cos(θi)/b

 , bi =


νmax
i

νmax
i

ωmax
i

ωmax
i

 (5.52)

For strictly positive νmax
i , ωmax

i , and b, the set Ui = {ui : Ai(xi)ui−bi ≤ 0} satisfies the conditions
of Assumption 5.3 for all xi ∈ R3. In this simulation each normal agent has νmax

i = 4, ωmax
i = 2,

198

i ∈ N . For purposes of this simulation, each adversarial agent has lower maximum linear and
angular velocities than the normal agents with νmax

j = 2, ωmax
j = 1, j ∈ A. The safe set S

is defined using a boolean composition of pairwise collision-avoidance sets for normal-to-normal
pairs, normal-to-adversarial pairs, and normal-to-obstacle pairs. More specifically, given i, i′ ∈ N
each safe set hi,i′(~x) is defined with respect to the linearized outputs (5.51) as hi,i′ = (Rc + 2b)2−
‖pi − pi′‖2

2, with partial derivative ∂hi,i′

∂pi
= −2(pi − pi′). The normal-to-adversarial and normal-

to-obstacle pairwise safe sets for i ∈ N , j ∈ A are defined in a similar manner. The pairwise
adversarial-to-adversarial and adversarial-to-obstacle safe sets are not considered (as per Remark
5.3), since the nominal control law by definition has no effect on adversarial agents. All pairwise
safe sets are composed into a single CBF htot via boolean AND operations using the log-sum-exp

smooth approximation to the max(·) function:

htot(~x) = LSE(
[
h1, . . . , hp

]
) = σ +

1

ρ
ln

(
p∑
i=1

eρ(hi−σ)

)
,

ρ ∈ R>0, σ ∈ R. (5.53)

The term σ is used to ensure numerical stability of (5.53). The term ρ controls how tightly LSE(·)
approximates max(·). The reader is referred to [172], [275, Eq (10)] for more details. Sampling
times in this simulation are asynchronous; each agent has a nominal time period of Γ = 0.01 with
a time-varying random disturbance satisfying δmax

i = .002. For each agent i ∈ V , the disturbance
bound satisfies φmax

i = 1.73, and the term η is set as η(Γ) = 8.0566. Several frames from the
simulation are shown in Figure 5.3. A plot of htot is given in Figure 5.4. As shown by Figure 5.4,
under the proposed resilient controller the safety bounds for normal agents are not violated for the
duration of the simulation. This is achieved despite the actions of the adversarial agents.

For comparison, Figure 5.5 shows the result of a simulation run under the same parameters but
with η(Γ) = 0 for all t ≥ 0; i.e., sampling, disturbances, and time delays are not taken into account
in the normal agents’ control actions. In this case Figure 5.5 shows that the safety of the normal
agents is not preserved—the value of htot is temporarily positive, indicating that one or more of the
composed safe sets was not invariant for the duration of the simulation.

5.6.2 Double Integrators in R3

The second simulation involves a network of n = 8 double integrator agents in R3. Four of
the agents behave normally and four are adversarial. Similar to the prior simulation, agents are
nominally tasked with tracking positions in a time-varying formation defined by a Bezier curve,
timing law, and local formational offsets. Each agent i ∈ V has the state

199

Figure 5.3: Still frames from the video of Simulation 1. Normal agents are represented by blue
circles and adversarial agents are represented by red circles. The dotted red lines around the blue
circles represent normal agents’ safety radii. The time-varying formation trajectory is represented
by the dotted magenta line; the magenta diamond represents the center of formation. Black crosses
represent agents’ nominal local time-varying formational points.

Figure 5.4: The value of the composed function htot representing the safe set S. Non-positive
values represent safety of the normal agents.

200

Figure 5.5: The value of the composed function htot representing the safe set S when η(Γ) = 0 for
all normal agents; i.e., sampling times and disturbances are not accounted for in the control input
calculations. The safety bound for the normal agents is violated.

201

Figure 5.6: Input values for (normal) agent 2. The blue solid line represents linear input value and
the green solid line represents angular input value. Dotted lines represent input bounds. Times at
which the worst-case LP is used are marked with red X’s on both the linear and angular input lines.

202

~xi =
[
xi,1 xi,2 xi,3 vi,1 vi,2 vi,3

]T
with the following dynamics:

~̇xi =

[
03×3 I3×3

03×3 −βI3×3

]
︸ ︷︷ ︸

A

~xi +

[
03×3

I3×3

]
︸ ︷︷ ︸

B

ui,1ui,2

ui,3

+ φi(t). (5.54)

Each agent i ∈ V has an identical input bound ‖ui‖∞ ≤ umax ∈ R>0, with umax = 2. The terms
βi ∈ R≥0 are chosen such that each agent has a velocity bound vmax

i ∈ R>0, with vmax
i = 3 ∀i ∈ V .

Specifically, βi =
vmaxi

umax .
Each normal agent i ∈ N seeks to track a time-varying formational state ~xdi ∈ R3. The

nominal formation states for all agents are equidistantly distributed around the edge of a circle of
radius 30 whose center translates along a time-varying trajectory described by a 3rd order Bezier
curve B(t) =

∑3
k=0

~βibi,3(s(t)) described by the timing law s(t) =
tf−t
tf−t0

for tf = 140 and t0 = 0,
Bernstein basis polynomials bi,3(s) and the vector coefficients

~β0 =

0

0

0

 ~β1 =

−25

25

30

 ~β2 =

125

75

−30

 ~β3 =

100

100

0

 . (5.55)

Letting the error ~ei be defined as ~ei = ~xdi − ~xi, each i ∈ N calculates the nominal control law
~ui,nom = −K~ei − ~̈xdi with K = [k1I3×3 k2I3×3], where ~̈xdi is the acceleration of ~xdi , k1 = 2, and
k2 = 2

√
k1. The nominal input ~ui,nom is minimally modified via the higher-order CBF-based QP

method described in 5.5. Similar to (5.37), at any timestep tki where the QP is infeasible each
normal agent i ∈ N applies the control action

umin
i (~xki) = arg min

ui∈Ui

[
Lfiψ

xi
q−1(~xki) + Lgiψ

xi
q−1(~xki)ui

]
.

The environment contains 10 spherical obstacles with radius 2 randomly distributed across the
volume containing the second half of the time-varying trajectory. Adversarial agents j ∈ A in
this simulation are each assigned a target agent to pursue, with one of the normal agents having
multiple pursuers. Each adversarial agent j ∈ A is assumed to have full knowledge of its target’s
current state, but does not have knowledge of its target’s control inputs. Defining the error term
~ei,j = ~xi−~xj , i, j ∈ V , each adversary j ∈ A applies the control law ~uj = −K~ei,j with the matrix
K defined as previously described but with k1 = 1. This control input is minimally modified using
a CBF QP method to avoid collisions with other adversaries and obstacles, but not with normal
agents.

203

The safe set S in this simulation is defined using a similar boolean composition of pairwise
collision avoidance sets as in the previous simulation. At each sampling instance, the normal agent
i considers all other agents whose positions lie within a neighborhood of radius 35 from agent
i’s position [xi,1 xi,2 xi,3]. All normal-to-normal, normal-to-adversarial, and normal-to-obstacle
pairwise safe sets are composed into a single CBF htot via boolean AND operations using the
log-sum-exp function. Sampling times in this simulation are asynchronous for normal agents; each
i ∈ N has a nominal time period of Γ = 0.07 with δmax

i = 0.03 for each normal agent. The
disturbance φi(t) for each agent i ∈ V (normal and adversarial) satisfies φmax

i = .4899. For each
normal agent i ∈ N the term η′ satisfies η′(Γi+ δmax) = 5, and the term ξ satisfies ξ = 39.19. Still
frames from the simulation are shown in Figure 5.7, and a plot of the value of htot vs time is given
in Figure 5.8. As shown by Figure 5.8, the safety bounds for the normal agents are not violated for
the duration of the simulation despite the actions of the adversaries.

204

Figure 5.7: Still frames from the video of Simulation 2. Normal agents are represented by blue
circles and adversarial agents are represented by red circles. For clarity, the safety radii of the nor-
mal agents has been omitted. The time-varying formation trajectory is represented by the dotted
magenta line; the magenta diamond represents the center of formation. Black crosses represent in-
dividual agents’ nominal local time-varying formational points. Black spheres represent randomly
placed obstacles.

205

Figure 5.8: The value of the composed function htot representing the safe set S for all normal
agents in the second simulation. Non-positive values represent safety of the normal agents. For the
entire duration of this simulation, the value of htot remains strictly negative, indicating that safety
is maintained for all normal agents.

206

Figure 5.9: Infinity norm of control input for (normal) agent 2. The control norm bound is plotted
in red, and the norm of agent 2’s control input is plotted in blue. Times when the backup LP is
used are marked with red X’s.

207

5.7 Conclusion

In this chapter, we presented a framework for normally-behaving agents to render a safe set for-
ward invariant in the presence of adversarial agents. The proposed method considers distributed
sampled-data systems with heterogeneous, asynchronous control affine dynamics, and a class of
functions with high relative degree that define the safe set. Directions for future work include
investigating how estimates of the forward reachable sets for each agent can be included in the
analysis, and cases where the control inputs of heterogeneous agents do not appear simultaneously
in higher derivatives of the function h.

208

CHAPTER 6

Conclusions and Future Work

6.1 Conclusions

This dissertation has presented several novel results regarding resilient consensus and safety main-
tenance in multi-agent systems.

We summarize these results below, outline opportunities for future work, and then give some
points of final discussion on the approach taken by this dissertation.

Chapter 2 presented novel results for several forms of resilient multi-agent consensus using
Mean-Subsequence-Reduced (MSR) algorithms. We first presented conditions under which re-
silient leader-follower consensus in the presence of adversaries can be achieved under time-varying
graphs in a discrete-time setting. This result was shown to also have an important adversarial
implication in cases where the assumption of an F -local adversarial set is violated. Second, we
presented a novel method for achieving resilient finite-time formational consensus in a continuous-
time system setting. A novel norm-based filtering method was introduced that ensures a mini-
mum dwell time to the system switching dynamics, and guarantees under proper conditions that
normally-behaving follower agents converge to formational positions defined by the locations of a
set of leaders. This method was shown to work with bounded control inputs, and a modified version
for a discrete-time setting was also presented. Third, we presented a method for resilient finite-time
leaderless consensus in a continuous-time setting under a novel nonlinear class of MSR-type con-
trollers. Our analysis uses discontinuous systems theory to rigorously demonstrate convergence,
and any Lebesgue-measurable adversarial signals for an F -local set of Byzantine adversarial agents
can be considered.

Chapter 3 presented novel results for constructing and analyzing the resilience properties for
communication graphs. These results focus on the graph theoretic notions of r-robustness and
(r, s)-robustness that are fundamental to the operation of many MSR-type algorithms. To mit-
igate the NP-hardness of determining the r- and (r, s)-robustness of arbitrary graphs, we first
presented results demonstrating a class of circulant digraphs whose structure, r-robustness, and

209

(r, s)-robustness is parameterized by an integer k. This class of digraphs can be scaled to abitrary
size and also exhibits the property of strong r-robustness with respect to (w.r.t.) a set S for a prop-
erly chosen subset S of the nodes in the graph. We also presented novel methods for determining
the r- and (r, s)-robustness of digraphs and undirected graphs using mixed integer linear program-
ming (MILP). These are the first results to demonstrate that robustness can be determined using
an optimization framework, and open the door for the extensive literature on integer programming
to be applied to the robustness determination problem. These results are also the first to enable
calculating an approximate lower bound on the robustness values of general directed graphs. Sim-
ulations were presented showing that in practice the MILP methods generally outperform prior
algorithms for robustness determination.

Chapter 4 presented a novel algorithm inspired by the Certified Propagation Algorithm (CPA)
for resilient broadcasting vector-valued information from a set of leaders to all followers within a
network. Prior work on resilient broadcast using the CPA algorithm typically assumed that there
exists a single leader that is immune to adversarial attacks to propagate a specified message to
a network. In contrast, the algorithm proposed in Chapter 4 used a multi-leader approach that
can tolerate both misbehaving leaders and followers, and that can operate under a time-varying
graph model for the network topology. Unlike prior works, the algorithm can operate even when
normally-behaving leaders’ vector messages do not exactly agree due to noise or perturbations,
and it was proven that bounded errors between the normal leaders’ vector messages results in
bounded maximum error between normally-behaving leaders’ and followers’ accepted values. It
was demonstrated that this algorithm could be used to resiliently propagate full-knowledge of time-
varying trajectories in the form of Bezier curve and timing law parameters from a set of leaders to
all normally-behaving followers in a network.

Chapter 5 presented a novel framework for resilient safety of multi-agent, distributed sys-
tems having sampled data dynamics using Control Barrier Function (CBF) techniques. Unlike
prior work which typically assumes continuous-time control inputs and the complete absence of
adversarial behavior, we presented conditions under which normally-behaving agents applying
zero-order-hold (ZOH) inputs are able to maintain safety despite the actions of an adversarial set
of agents seeking to violate safety conditions. Our analysis considered nonlinear control-affine
sampled-data dynamics with disturbances, and we presented a computationally tractable convex
quadratic programming formulation for normally-behaving agents to compute safety-preserving,
bounded control inputs in a distributed manner. The results presented in this chapter are the first to
consider the presence of adversarial agents in a CBF setting, and the first to consider multi-agent
CBFs having high relative degree with respect to system dynamics in a sampled-data setting.

210

6.2 Future Work

There are several opportunities for future work building upon the results in this dissertation. With
respect to MILP techniques for determining r and (r, s)-robustness of digraphs, as mentioned
previously one of the most promising directions is studying whether the structure of the Laplacian
matrix can be exploited to provide provably tractable methods for approximating a lower bound on
the values r and s. This could include using deep learning techniques to identify incumbent sets
with as low as an objective value as possible in order to more rapidly prune the search space when
applying branch-and-bound algorithms. Another possibility may be to explore whether there exist
operations on the Laplacian matrix that predictably change the optimal value. If such operations
exist, then given a Laplacian L1 of known maximum r1 and s1 values and a target Laplacian of
unknown r2 and s2 values, it might be possible to determing r2, s2 via the transformations required
to transform the matrix L1 into L2. Finally, perhaps the most straightforward direction for future
work would be to explore the vast existing literature on MILP solving methods to identify any
methods that would be particularly effective on the robustness determination MILP formulation.

With respect to resilient safety preservation via Control Barrier Function (CBF) methods, the
method proposed in this dissertation, like the majority of CBF methods proposed in prior literature,
is myopic in the sense that only the current velocity is considered in the conditions for safety and
the convex quadratic programs computing the control input. In particular, the method does not
take into account any projections over a future time window and does not take into account any
information (if available) about the forward reachable sets of the agents. An interesting question
is whether methods from techniques such as Model Predictive Control could be used in an adver-
sarial CBF setting to provide better guarantees on the forward nonemptiness of the feasible sets
of safety-preserving control inputs. Another direction for further research is to study methods for
identifying adversarial agents from observations. The proposed method assumes that the identities
of adversarial agents are known, but does not discuss how the adversaries are identified in the first
place. Given sufficiently accurate estimates of other agents’ states and control inputs, it may be
possible to use the Nagumo’s Theorem inequality condition to identify agents that are not applying
sufficient control effort towards minimizing the left-hand side term, and therefore can be classified
as behaving adversarially.

6.2.1 Final Discussion

Designing control algorithms resilient to faults and adversarial attacks is quite often a difficult
endeavor. Many of the problems associated with adversarial behavior are combinatorial or NP-
hard in nature, due to the inherent uncertainty of which agents will become faulty or adversarial.
One focus that would be beneficial for future work would be studying approximation algorithms

211

that could potentially find sufficiently satisfactory approximate solutions with lower complexity.
In addition, a pervading theme of this dissertation is the necessity of conservatism due to lack

of information. When agents lack information on the network structure and the identity of adver-
saries and leaders, they must apply conservative measures to ensure that accomplishment of control
objectives is ensured despite all possible adversarial attacks. An interesting question to consider
is how the introduction of addition information to normal agents would allow this conservatism
to be relaxed. As a simple example, methods to more intelligently identify adversarial agents in
MSR-type scenarios would possibly relax the requirement for agents to filter out much of their
information at each time step. Non-local knowledge of the network structure would also allow the
graph theoretic requirements for MSR-type consensus algorithms to be relaxed, as demonstrated
in prior computer science literature. In addition, the conservatism of the resilient safety methods
in CBF scenarios is due to the assumed lack of knowledge of agents’ forward reachable sets. The
introduction of computationally efficient approximation for these reachable sets might allow for
this conservatism to be relaxed, and for stronger guarantees on safety to be established.

Finally, due to time constraints this dissertation was not able to consider some aspects of prac-
tical systems such as stochasticity in communication topologies and in agents’ signals, proximity-
limited communication models, chattering in signum-based controllers, incorporation of state esti-
mators rather than direct access to system states, and imperfect knowledge of the system dynamics
models, among others. Such practical considerations are certainly a promising avenue for future
research enabling more accurate implementations in real-world control systems.

To conclude, the study of resilience in multi-agent autonomous systems is a critically important
area of research for the modern era. There are innumerable disciplines and angles from which this
area can be approached, but advances on this front will serve to solve many of the challenges that
multi-agent autonomous systems will face in the 21st century and beyond.

212

BIBLIOGRAPHY

[1] Berkun, S., The myths of innovation, O’Reilly Media, Inc., 2010.

[2] LeBlanc, H. J., Zhang, H., Koutsoukos, X., and Sundaram, S., “Resilient asymptotic con-
sensus in robust networks,” IEEE Journal on Selected Areas in Communications, Vol. 31,
No. 4, 2013, pp. 766–781.

[3] Dahlqvist, F., Rajko, A., and Shulman, J., “Growing Opportunities in the Internet of
Things,” July 2019,
https://web.archive.org/web/20201218193429/https://
www.mckinsey.com/industries/private-equity-and-principal-
investors/our-insights/growing-opportunities-in-the-
internet-of-things, Accessed 01-08-2020.

[4] Bethke, B., How, J., and Vian, J., “Multi-UAV persistent surveillance with communication
constraints and health mangement,” AIAA Guidance, Navigation, and Control Conference,
2009, p. 5654.

[5] Schmuck, P. and Chli, M., “Multi-UAV collaborative monocular SLAM,” 2017 IEEE Inter-
national Conference on Robotics and Automation (ICRA), 2017, pp. 3863–3870.

[6] Frew, E. W., Argrow, B., Lawrence, D., Elston, J., and Stachura, M., “Unmanned aircraft
systems for communication and atmospheric sensing missions,” 2013 American Control
Conference, 2013, pp. 1482–1487.

[7] Zhan, E., “3,051 Drones Create Spectacular Record-Breaking Light Show in China,”
October 2020,
https://web.archive.org/web/20201217100112/https://
www.guinnessworldrecords.com/news/commercial/2020/10/3051-
drones-create-spectacular-record-breaking-light-show-in-
china, Accessed 01-08-2020.

[8] Atherton, K., “LOCUST Launcher Fires a Swarm of Navy Drones,” May 2016,
https://web.archive.org/web/20201022160225/https://
www.popsci.com/navys-locust-launcher-fires-swarm-drones/, Ac-
cessed 01-08-2020.

[9] Simon, M., “Inside the Amazon Warehouse Where Humans and Machines Become One,”
June 2019,

213

https://web.archive.org/web/20201218193429/https://www.mckinsey.com/industries/private-equity-and-principal-investors/our-insights/growing-opportunities-in-the-internet-of-things
https://web.archive.org/web/20201218193429/https://www.mckinsey.com/industries/private-equity-and-principal-investors/our-insights/growing-opportunities-in-the-internet-of-things
https://web.archive.org/web/20201218193429/https://www.mckinsey.com/industries/private-equity-and-principal-investors/our-insights/growing-opportunities-in-the-internet-of-things
https://web.archive.org/web/20201218193429/https://www.mckinsey.com/industries/private-equity-and-principal-investors/our-insights/growing-opportunities-in-the-internet-of-things
https://web.archive.org/web/20201217100112/https://www.guinnessworldrecords.com/news/commercial/2020/10/3051-drones-create-spectacular-record-breaking-light-show-in-china
https://web.archive.org/web/20201217100112/https://www.guinnessworldrecords.com/news/commercial/2020/10/3051-drones-create-spectacular-record-breaking-light-show-in-china
https://web.archive.org/web/20201217100112/https://www.guinnessworldrecords.com/news/commercial/2020/10/3051-drones-create-spectacular-record-breaking-light-show-in-china
https://web.archive.org/web/20201217100112/https://www.guinnessworldrecords.com/news/commercial/2020/10/3051-drones-create-spectacular-record-breaking-light-show-in-china
https://web.archive.org/web/20201022160225/https://www.popsci.com/navys-locust-launcher-fires-swarm-drones/
https://web.archive.org/web/20201022160225/https://www.popsci.com/navys-locust-launcher-fires-swarm-drones/

https://web.archive.org/web/20201225104944/https://
www.wired.com/story/amazon-warehouse-robots/, Accessed 01-08-2020.

[10] Vincent, J., “Welcome to the Automated Warehouse of the Future,” May 2018,
https://web.archive.org/web/20201215073541/https://
www.theverge.com/2018/5/8/17331250/automated-warehouses-jobs-
ocado-andover-amazon, Accessed 01-08-2020.

[11] “Volvo Trucks Provides Autonomous Transport Solution to Brønnøy Kalk AS,” November
2018,
https://web.archive.org/web/20190604165140/https://
www.volvogroup.com/en-en/news/2018/nov/news-3126261.html, Ac-
cessed 01-08-2020.

[12] “U.S. States Are Allowing Automated Follower Truck Platooning While The Swedes May
Lead In Europe,”
https://web.archive.org/web/20210108225649/https://
www.forbes.com/sites/richardbishop1/2020/05/02/us-states-
are-allowing-automated-follower-truck-platooning-while-the-
swedes-may-lead-in-europe/?sh=d65d64cd7e8d, Accessed 01-08-2020.

[13] “M City: Fast Facts,” 2020,
https://mcity.umich.edu/our-vision/fast-facts/, Accessed 01-08-2020.

[14] “Partnership Against Cybercrime,” 2020,
https://web.archive.org/web/20201231023006/https://
www.weforum.org/projects/partnership-against-cybercime, Accessed
01-13-2020.

[15] “Cybercrime To Cost The World $10.5 Trillion Annually By 2025,” November 2020,
https://web.archive.org/web/20201224190034/https://
cybersecurityventures.com/cybercrime-damage-costs-10-
trillion-by-2025/, Accessed 01-13-2020.

[16] Langner, R., “Stuxnet: Dissecting a cyberwarfare weapon,” IEEE Security & Privacy,
Vol. 9, No. 3, 2011, pp. 49–51.

[17] “Drone Crash in Iran Reveals Secret U.S. Surveillance Effort,” December 2011,
http://web.archive.org/web/20201213124921/https://
www.nytimes.com/2011/12/08/world/middleeast/drone-crash-in-
iran-reveals-secret-us-surveillance-bid.html, Accessed 01-13-2020.

[18] Schellekens, M., “Car hacking: Navigating the regulatory landscape,” Computer law &
security review, Vol. 32, No. 2, 2016, pp. 307–315.

[19] Jafarnejad, S., Codeca, L., Bronzi, W., Frank, R., and Engel, T., “A Car Hacking Exper-
iment: When Connectivity Meets Vulnerability,” 2015 IEEE Globecom Workshops (GC
Wkshps), 2015, pp. 1–6.

214

https://web.archive.org/web/20201225104944/https://www.wired.com/story/amazon-warehouse-robots/
https://web.archive.org/web/20201225104944/https://www.wired.com/story/amazon-warehouse-robots/
https://web.archive.org/web/20201215073541/https://www.theverge.com/2018/5/8/17331250/automated-warehouses-jobs-ocado-andover-amazon
https://web.archive.org/web/20201215073541/https://www.theverge.com/2018/5/8/17331250/automated-warehouses-jobs-ocado-andover-amazon
https://web.archive.org/web/20201215073541/https://www.theverge.com/2018/5/8/17331250/automated-warehouses-jobs-ocado-andover-amazon
https://web.archive.org/web/20190604165140/https://www.volvogroup.com/en-en/news/2018/nov/news-3126261.html
https://web.archive.org/web/20190604165140/https://www.volvogroup.com/en-en/news/2018/nov/news-3126261.html
https://web.archive.org/web/20210108225649/https://www.forbes.com/sites/richardbishop1/2020/05/02/us-states-are-allowing-automated-follower-truck-platooning-while-the-swedes-may-lead-in-europe/?sh=d65d64cd7e8d
https://web.archive.org/web/20210108225649/https://www.forbes.com/sites/richardbishop1/2020/05/02/us-states-are-allowing-automated-follower-truck-platooning-while-the-swedes-may-lead-in-europe/?sh=d65d64cd7e8d
https://web.archive.org/web/20210108225649/https://www.forbes.com/sites/richardbishop1/2020/05/02/us-states-are-allowing-automated-follower-truck-platooning-while-the-swedes-may-lead-in-europe/?sh=d65d64cd7e8d
https://web.archive.org/web/20210108225649/https://www.forbes.com/sites/richardbishop1/2020/05/02/us-states-are-allowing-automated-follower-truck-platooning-while-the-swedes-may-lead-in-europe/?sh=d65d64cd7e8d
https://mcity.umich.edu/our-vision/fast-facts/
https://web.archive.org/web/20201231023006/https://www.weforum.org/projects/partnership-against-cybercime
https://web.archive.org/web/20201231023006/https://www.weforum.org/projects/partnership-against-cybercime
https://web.archive.org/web/20201224190034/https://cybersecurityventures.com/cybercrime-damage-costs-10-trillion-by-2025/
https://web.archive.org/web/20201224190034/https://cybersecurityventures.com/cybercrime-damage-costs-10-trillion-by-2025/
https://web.archive.org/web/20201224190034/https://cybersecurityventures.com/cybercrime-damage-costs-10-trillion-by-2025/
http://web.archive.org/web/20201213124921/https://www.nytimes.com/2011/12/08/world/middleeast/drone-crash-in-iran-reveals-secret-us-surveillance-bid.html
http://web.archive.org/web/20201213124921/https://www.nytimes.com/2011/12/08/world/middleeast/drone-crash-in-iran-reveals-secret-us-surveillance-bid.html
http://web.archive.org/web/20201213124921/https://www.nytimes.com/2011/12/08/world/middleeast/drone-crash-in-iran-reveals-secret-us-surveillance-bid.html

[20] Shahani, A., “Tesla Model S Can Be Hacked, And Fixed (Which Is The Real News),” Aug
2015,
https://web.archive.org/web/20201031083336/https://www.npr.org/
sections/alltechconsidered/2015/08/06/429907506/tesla-model-
s-can-be-hacked-and-fixed-which-is-the-real-news/, Accessed
01-08-2020.

[21] “How Russia Says It Swatted Down a Drone Swarm in Syria,”
http://web.archive.org/web/20201109003836/https://www.vice.com/
en/article/43qbbw/russia-says-it-swatted-down-drone-swarm-
syria-isis, Accessed 01-13-2020.

[22] Turek, J. and Shasha, D., “The many faces of consensus in distributed systems,” Computer,
Vol. 25, No. 6, 1992, pp. 8–17.

[23] Ren, W. and Beard, R. W., Distributed consensus in multi-vehicle cooperative control,
Vol. 27, Springer, 2008.

[24] Mesbahi, M. and Egerstedt, M., Graph theoretic methods in multiagent networks, Vol. 33,
Princeton University Press, 2010.

[25] Olfati-Saber, R., Fax, J. A., and Murray, R. M., “Consensus and cooperation in networked
multi-agent systems,” Proceedings of the IEEE, Vol. 95, No. 1, 2007, pp. 215–233.

[26] Gray, J. and Lamport, L., “Consensus on transaction commit,” ACM Transactions on
Database Systems (TODS), Vol. 31, No. 1, 2006, pp. 133–160.

[27] Popek, G., Walker, B., Chow, J., Edwards, D., Kline, C., Rudisin, G., and Thiel, G., “LO-
CUS a network transparent, high reliability distributed system,” ACM SIGOPS Operating
Systems Review, Vol. 15, No. 5, 1981, pp. 169–177.

[28] Cristian, F., “Probabilistic clock synchronization,” Distributed Computing, Vol. 3, 2005,
pp. 146–158.

[29] Olfati-Saber, R. and Shamma, J. S., “Consensus filters for sensor networks and distributed
sensor fusion,” Proceedings of the 44th IEEE Conference on Decision and Control, IEEE,
2005, pp. 6698–6703.

[30] Mitra, A. and Sundaram, S., “Distributed observers for LTI systems,” IEEE Transactions on
Automatic Control, Vol. 63, No. 11, 2018, pp. 3689–3704.

[31] Açıkmeşe, B., Mandić, M., and Speyer, J. L., “Decentralized observers with consensus
filters for distributed discrete-time linear systems,” Automatica, Vol. 50, No. 4, 2014,
pp. 1037–1052.

[32] Hui, Q., “Finite-time rendezvous algorithms for mobile autonomous agents,” IEEE Trans-
actions on Automatic Control, Vol. 56, No. 1, 2010, pp. 207–211.

215

https://web.archive.org/web/20201031083336/https://www.npr.org/sections/alltechconsidered/2015/08/06/429907506/tesla-model-s-can-be-hacked-and-fixed-which-is-the-real-news/
https://web.archive.org/web/20201031083336/https://www.npr.org/sections/alltechconsidered/2015/08/06/429907506/tesla-model-s-can-be-hacked-and-fixed-which-is-the-real-news/
https://web.archive.org/web/20201031083336/https://www.npr.org/sections/alltechconsidered/2015/08/06/429907506/tesla-model-s-can-be-hacked-and-fixed-which-is-the-real-news/
http://web.archive.org/web/20201109003836/https://www.vice.com/en/article/43qbbw/russia-says-it-swatted-down-drone-swarm-syria-isis
http://web.archive.org/web/20201109003836/https://www.vice.com/en/article/43qbbw/russia-says-it-swatted-down-drone-swarm-syria-isis
http://web.archive.org/web/20201109003836/https://www.vice.com/en/article/43qbbw/russia-says-it-swatted-down-drone-swarm-syria-isis

[33] Cortes, J., Martinez, S., and Bullo, F., “Robust rendezvous for mobile autonomous agents
via proximity graphs in arbitrary dimensions,” IEEE Transactions on Automatic Control,
Vol. 51, No. 8, 2006, pp. 1289–1298.

[34] Dimarogonas, D. V. and Kyriakopoulos, K. J., “On the Rendezvous Problem for Multiple
Nonholonomic Agents,” IEEE Transactions on Automatic Control, Vol. 52, No. 5, 2007,
pp. 916–922.

[35] Fax, J. A. and Murray, R. M., “Information flow and cooperative control of vehicle forma-
tions,” IEEE transactions on automatic control, Vol. 49, No. 9, 2004, pp. 1465–1476.

[36] Olfati-Saber, R., “Flocking for multi-agent dynamic systems: Algorithms and theory,” IEEE
Transactions on automatic control, Vol. 51, No. 3, 2006, pp. 401–420.

[37] Hu, J. and Feng, G., “Distributed tracking control of leader–follower multi-agent systems
under noisy measurement,” Automatica, Vol. 46, No. 8, 2010, pp. 1382–1387.

[38] Dörfler, F. and Bullo, F., “Synchronization in complex networks of phase oscillators: A
survey,” Automatica, Vol. 50, No. 6, 2014, pp. 1539–1564.

[39] Hatano, Y. and Mesbahi, M., “Agreement over random networks,” IEEE Transactions on
Automatic Control, Vol. 50, No. 11, 2005, pp. 1867–1872.

[40] Tahbaz-Salehi, A. and Jadbabaie, A., “A necessary and sufficient condition for consensus
over random networks,” IEEE Transactions on Automatic Control, Vol. 53, No. 3, 2008,
pp. 791–795.

[41] Xiao, L., Boyd, S., and Kim, S.-J., “Distributed average consensus with least-mean-square
deviation,” Journal of parallel and distributed computing, Vol. 67, No. 1, 2007, pp. 33–46.

[42] Huang, M. and Manton, J. H., “Stochastic consensus seeking with noisy and directed inter-
agent communication: Fixed and randomly varying topologies,” IEEE Transactions on Au-
tomatic Control, Vol. 55, No. 1, 2009, pp. 235–241.

[43] Fischer, M. J., “The consensus problem in unreliable distributed systems (a brief survey),”
International conference on fundamentals of computation theory, Springer, 1983, pp. 127–
140.

[44] Lamport, L., Shostak, R., and Pease, M., “The Byzantine generals problem,” ACM Transac-
tions on Programming Languages and Systems (TOPLAS), Vol. 4, No. 3, 1982, pp. 382–401.

[45] Dolev, D. et al., “The Byzantine generals strike again,” J. Algorithms, Vol. 3, No. 1, 1982,
pp. 14–30.

[46] Lamport, L., “The weak Byzantine generals problem,” Journal of the ACM (JACM), Vol. 30,
No. 3, 1983, pp. 668–676.

[47] Rabin, M. O., “Randomized byzantine generals,” 24th Annual Symposium on Foundations
of Computer Science (sfcs 1983), IEEE, 1983, pp. 403–409.

216

[48] Lamport, L. and Melliar-Smith, P. M., “Byzantine clock synchronization,” Proceedings of
the third annual ACM symposium on Principles of distributed computing, 1984, pp. 68–74.

[49] Fischer, M. J., Lynch, N. A., and Paterson, M. S., “Impossibility of distributed consensus
with one faulty process,” Journal of the ACM (JACM), Vol. 32, No. 2, 1985, pp. 374–382.

[50] Vaidya, N. H., Tseng, L., and Liang, G., “Iterative approximate byzantine consensus in arbi-
trary directed graphs,” Proceedings of the 2012 ACM symposium on Principles of distributed
computing, ACM, 2012, pp. 365–374.

[51] Vaidya, N. H. and Garg, V. K., “Byzantine vector consensus in complete graphs,” Proceed-
ings of the 2013 ACM symposium on Principles of distributed computing, ACM, 2013, pp.
65–73.

[52] Tseng, L. and Vaidya, N., “Iterative approximate byzantine consensus under a general-
ized fault model,” International Conference on Distributed Computing and Networking,
Springer, 2013, pp. 72–86.

[53] Tseng, L. and Vaidya, N. H., “Asynchronous convex hull consensus in the presence of crash
faults,” Proceedings of the 2014 ACM symposium on Principles of distributed computing,
ACM, 2014, pp. 396–405.

[54] Lamport, L., “The part-time parliament,” Concurrency: the Works of Leslie Lamport, 2019,
pp. 277–317.

[55] Lamport, L. et al., “Paxos made simple,” ACM Sigact News, Vol. 32, No. 4, 2001, pp. 18–25.

[56] Lamport, L., “Fast paxos,” Distributed Computing, Vol. 19, No. 2, 2006, pp. 79–103.

[57] Lamport, L., “Byzantizing Paxos by refinement,” International Symposium on Distributed
Computing, Springer, 2011, pp. 211–224.

[58] Lamport, L. and Massa, M., “Cheap paxos,” International Conference on Dependable Sys-
tems and Networks, 2004, IEEE, 2004, pp. 307–314.

[59] Wang, W., Hoang, D. T., Hu, P., Xiong, Z., Niyato, D., Wang, P., Wen, Y., and Kim, D. I.,
“A survey on consensus mechanisms and mining strategy management in blockchain net-
works,” IEEE Access, Vol. 7, 2019, pp. 22328–22370.

[60] Tschorsch, F. and Scheuermann, B., “Bitcoin and beyond: A technical survey on decentral-
ized digital currencies,” IEEE Communications Surveys & Tutorials, Vol. 18, No. 3, 2016,
pp. 2084–2123.

[61] Miller, A. and LaViola Jr, J. J., “Anonymous byzantine consensus from moderately-hard
puzzles: A model for bitcoin,” University of Central Florida Tech. Report CS-TR-14-01
(accessed 5 June 2019) https://socrates1024. s3. amazonaws. com/consensus. pdf , 2014.

[62] Garay, J., Kiayias, A., and Leonardos, N., “The bitcoin backbone protocol: Analysis and
applications,” Annual international conference on the theory and applications of crypto-
graphic techniques, Springer, 2015, pp. 281–310.

217

[63] Nakamoto, S., “Bitcoin: A peer-to-peer electronic cash system,” Tech. rep., Manubot, 2019.

[64] Mukhopadhyay, U., Skjellum, A., Hambolu, O., Oakley, J., Yu, L., and Brooks, R., “A brief
survey of cryptocurrency systems,” 2016 14th annual conference on privacy, security and
trust (PST), IEEE, 2016, pp. 745–752.

[65] Ølnes, S., Ubacht, J., and Janssen, M., “Blockchain in government: Benefits and implica-
tions of distributed ledger technology for information sharing,” 2017.

[66] Kuo, T.-T., Kim, H.-E., and Ohno-Machado, L., “Blockchain distributed ledger technologies
for biomedical and health care applications,” Journal of the American Medical Informatics
Association, Vol. 24, No. 6, 2017, pp. 1211–1220.

[67] Wang, S., Ouyang, L., Yuan, Y., Ni, X., Han, X., and Wang, F.-Y., “Blockchain-enabled
smart contracts: architecture, applications, and future trends,” IEEE Transactions on Sys-
tems, Man, and Cybernetics: Systems, Vol. 49, No. 11, 2019, pp. 2266–2277.

[68] Li, X., Jiang, P., Chen, T., Luo, X., and Wen, Q., “A survey on the security of blockchain
systems,” Future Generation Computer Systems, Vol. 107, 2020, pp. 841–853.

[69] Koo, C.-Y., “Broadcast in Radio Networks Tolerating Byzantine Adversarial Behavior,”
Proceedings of the Twenty-Third Annual ACM Symposium on Principles of Distributed
Computing, PODC ’04, Association for Computing Machinery, New York, NY, USA, 2004,
p. 275–282.

[70] Koo, C.-Y., Bhandari, V., Katz, J., and Vaidya, N. H., “Reliable broadcast in radio networks:
The bounded collision case,” Proceedings of the twenty-fifth annual ACM symposium on
Principles of distributed computing, ACM, 2006, pp. 258–264.

[71] Zhang, H. and Sundaram, S., “Robustness of information diffusion algorithms to locally
bounded adversaries,” American Control Conference (ACC), 2012, IEEE, 2012, pp. 5855–
5861.

[72] Litsas, C., Pagourtzis, A., and Sakavalas, D., “A graph parameter that matches the resilience
of the certified propagation algorithm,” International Conference on Ad-Hoc Networks and
Wireless, Springer, 2013, pp. 269–280.

[73] Pagourtzis, A., Panagiotakos, G., and Sakavalas, D., “Reliable broadcast with respect to
topology knowledge,” Distributed Computing, Vol. 30, No. 2, 2017, pp. 87–102.

[74] Kieckhafer, R. M. and Azadmanesh, M. H., “Reaching approximate agreement with mixed-
mode faults,” IEEE Transactions on Parallel and Distributed Systems, Vol. 5, No. 1, 1994,
pp. 53–63.

[75] LeBlanc, H. J., Zhang, H., Koutsoukos, X. D., and Sundaram, S., “Resilient Asymptotic
Consensus in Robust Networks,” IEEE Journal on Selected Areas in Communications,
Vol. 31, No. 4, 2013, pp. 766–781.

218

[76] Dibaji, S. M. and Ishii, H., “Resilient consensus of second-order agent networks: Asyn-
chronous update rules with delays,” Automatica, Vol. 81, 2017, pp. 123–132.

[77] Dibaji, S. M. and Ishii, H., “Consensus of second-order multi-agent systems in the presence
of locally bounded faults,” Systems & Control Letters, Vol. 79, 2015, pp. 23–29.

[78] Dibaji, S. M., Ishii, H., and Tempo, R., “Resilient randomized quantized consensus,” IEEE
Transactions on Automatic Control, Vol. 63, No. 8, 2017, pp. 2508–2522.

[79] Saldana, D., Prorok, A., Sundaram, S., Campos, M. F., and Kumar, V., “Resilient consensus
for time-varying networks of dynamic agents,” American Control Conference (ACC), 2017,
IEEE, 2017, pp. 252–258.

[80] Wang, Y. and Ishii, H., “Resilient Consensus Through Event-Based Communication,” IEEE
Transactions on Control of Network Systems, Vol. 7, 2020, pp. 471–482.

[81] Wang, Y. and Ishii, H., “An event-triggered approach to quantized resilient consensus,”
International Journal of Robust and Nonlinear Control, Vol. 30, No. 11, 2020, pp. 4188–
4204.

[82] Wang, Y. and Ishii, H., “A Distributed Model Predictive Scheme for Resilient Consensus
with Input Constraints,” 2019 IEEE Conference on Control Technology and Applications
(CCTA), 2019, pp. 349–354.

[83] LeBlanc, H. J., Zhang, H., Sundaram, S., and Koutsoukos, X., “Resilient continuous-time
consensus in fractional robust networks,” 2013 American Control Conference, IEEE, 2013,
pp. 1237–1242.

[84] LeBlanc, H. J. and Koutsoukos, X., “Resilient first-order consensus and weakly stable,
higher order synchronization of continuous-time networked multi-agent systems,” IEEE
Transactions on Control of Network Systems, 2017.

[85] Öksüz, H. Y. and Akar, M., “Resilient Nonlinear Consensus in Continuous Time Networks,”
2019 American Control Conference (ACC), IEEE, 2019, pp. 3764–3769.

[86] Shang, Y., “Consensus of hybrid multi-agent systems with malicious nodes,” IEEE Trans-
actions on Circuits and Systems II: Express Briefs, 2019.

[87] Usevitch, J. and Panagou, D., “Resilient finite-time consensus: a discontinuous systems
perspective,” 2020 American Control Conference (ACC), IEEE, 2020, pp. 3285–3290.

[88] Wu, Y. and He, X., “Secure consensus control for multiagent systems with attacks and com-
munication delays,” IEEE/CAA Journal of Automatica Sinica, Vol. 4, No. 1, 2017, pp. 136–
142.

[89] Li, Z. and Ding, Z., “Robust Cooperative Guidance Law for Simultaneous Arrival,” IEEE
Transactions on Control Systems Technology, , No. 99, 2018, pp. 1–8.

[90] Sundaram, S. and Gharesifard, B., “Distributed optimization under adversarial nodes,” IEEE
Transactions on Automatic Control, 2018.

219

[91] Kikuya, Y., Dibaji, S. M., and Ishii, H., “Fault tolerant clock synchronization over unreliable
channels in wireless sensor networks,” IEEE Transactions on Control of Network Systems,
2017.

[92] Dibaji, S. M., Ishii, H., and Tempo, R., “Resilient randomized quantized consensus,” IEEE
Transactions on Automatic Control, Vol. 63, No. 8, 2018, pp. 2508–2522.

[93] Wang, Y. and Ishii, H., “An event-triggered approach to quantized resilient consensus,”
International Journal of Robust and Nonlinear Control, Vol. 30, 2020, pp. 4188–4204.

[94] Fiore, D. and Russo, G., “Resilient consensus for multi-agent systems subject to differential
privacy requirements,” Automatica, Vol. 106, 2019, pp. 18 – 26.

[95] Fiore, D. and Russo, G., “Resilient and private consensus in multi-agent systems,” 2019
18th European Control Conference (ECC), 2019, pp. 3478–3483.

[96] LeBlanc, H. J. and Koutsoukos, X. D., “Algorithms for determining network robustness,”
Proceedings of the 2nd ACM international conference on High confidence networked sys-
tems, ACM, 2013, pp. 57–64.

[97] Zhang, H., Fata, E., and Sundaram, S., “A notion of robustness in complex networks,” IEEE
Transactions on Control of Network Systems, Vol. 2, No. 3, 2015, pp. 310–320.

[98] Guerrero-Bonilla, L., Prorok, A., and Kumar, V., “Formations for Resilient Robot Teams,”
IEEE Robotics and Automation Letters, Vol. 2, IEEE, 2017, pp. 841–848.

[99] Shahrivar, E. M., Pirani, M., and Sundaram, S., “Robustness and algebraic connectivity of
random interdependent networks,” arXiv preprint arXiv:1508.03650, 2015.

[100] Shahrivar, E. M., Pirani, M., and Sundaram, S., “Spectral and structural properties of ran-
dom interdependent networks,” Automatica, Vol. 83, 2017, pp. 234–242.

[101] Zhao, J., Yağan, O., and Gligor, V., “On connectivity and robustness in random intersection
graphs,” IEEE Transactions on Automatic Control, Vol. 62, No. 5, 2017, pp. 2121–2136.

[102] Usevitch, J. and Panagou, D., “r-Robustness and (r, s)-robustness of circulant graphs,” 2017
IEEE 56th Annual Conference on Decision and Control (CDC), Dec 2017, pp. 4416–4421.

[103] Guerrero-Bonilla, L., Saldana, D., and Kumar, V., “Design Guarantees for Resilient Robot
Formations on Lattices,” IEEE Robotics and Automation Letters, Vol. 4, No. 1, 2018, pp. 89–
96.

[104] Saldaña, D., Guerrero-Bonilla, L., and Kumar, V., “Resilient backbones in hexagonal robot
formations,” Distributed Autonomous Robotic Systems, Springer, 2019, pp. 427–440.

[105] Wang, G., Xu, M., Wu, Y., Zheng, N., Xu, J., and Qiao, T., “Using Machine Learning
for Determining Network Robustness of Multi-Agent Systems Under Attacks,” Pacific Rim
International Conference on Artificial Intelligence, Springer, 2018, pp. 491–498.

220

[106] Zhou, K. and Doyle, J. C., Essentials of robust control, Vol. 104, Prentice hall Upper Saddle
River, NJ, 1998.

[107] Dorato, P., “A historical review of robust control,” IEEE Control Systems Magazine, Vol. 7,
No. 2, 1987, pp. 44–47.

[108] Abdallah, C., Dawson, D. M., Dorato, P., and Jamshidi, M., “Survey of robust control for
rigid robots,” IEEE Control Systems Magazine, Vol. 11, No. 2, 1991, pp. 24–30.

[109] Kwakernaak, H., “Robust control and Hinf-optimization—tutorial paper,” automatica,
Vol. 29, No. 2, 1993, pp. 255–273.

[110] Chen, C., Lewis, F. L., Xie, S., Modares, H., Liu, Z., Zuo, S., and Davoudi, A., “Resilient
adaptive and Hinf controls of multi-agent systems under sensor and actuator faults,” Auto-
matica, Vol. 102, 2019, pp. 19 – 26.

[111] Pequito, S., Ramos, G., Kar, S., Aguiar, A. P., and Ramos, J., “The robust minimal control-
lability problem,” Automatica, Vol. 82, 2017, pp. 261 – 268.

[112] Ramos, G., Pequito, S., and Caleiro, C., “The robust minimal controllability problem
for switched linear continuous-time systems,” 2018 Annual American Control Conference
(ACC), IEEE, 2018, pp. 210–215.

[113] Cárdenas, A. A., Amin, S., and Sastry, S., “Research Challenges for the Security of Control
Systems.” HotSec, 2008.

[114] Teixeira, A., Pérez, D., Sandberg, H., and Johansson, K. H., “Attack models and scenarios
for networked control systems,” Proceedings of the 1st international conference on High
Confidence Networked Systems, 2012, pp. 55–64.

[115] Pasqualetti, F., Dörfler, F., and Bullo, F., “Cyber-physical attacks in power networks: Mod-
els, fundamental limitations and monitor design,” 2011 50th IEEE Conference on Decision
and Control and European Control Conference, IEEE, 2011, pp. 2195–2201.

[116] Pasqualetti, F., Bicchi, A., and Bullo, F., “Consensus computation in unreliable networks: A
system theoretic approach,” IEEE Transactions on Automatic Control, Vol. 57, No. 1, 2011,
pp. 90–104.

[117] Pasqualetti, F., Dörfler, F., and Bullo, F., “Attack detection and identification in cyber-
physical systems,” IEEE transactions on automatic control, Vol. 58, No. 11, 2013, pp. 2715–
2729.

[118] Shames, I., Teixeira, A., Sandberg, H., and Johansson, K. H., “Distributed fault detection for
interconnected second-order systems with applications to power networks,” First Workshop
on Secure Control Systems (SCS), Stockholm, 2010, 2010.

[119] Shames, I., Teixeira, A. M., Sandberg, H., and Johansson, K. H., “Distributed fault detection
for interconnected second-order systems,” Automatica, Vol. 47, No. 12, 2011, pp. 2757–
2764.

221

[120] Teixeira, A., Shames, I., Sandberg, H., and Johansson, K. H., “Distributed fault detection
and isolation resilient to network model uncertainties,” IEEE transactions on cybernetics,
Vol. 44, No. 11, 2014, pp. 2024–2037.

[121] Anguluri, R., Katewa, V., and Pasqualetti, F., “Centralized Versus Decentralized Detection
of Attacks in Stochastic Interconnected Systems,” IEEE Transactions on Automatic Control,
2019.

[122] Fawzi, H., Tabuada, P., and Diggavi, S., “Secure estimation and control for cyber-physical
systems under adversarial attacks,” IEEE Transactions on Automatic control, Vol. 59, No. 6,
2014, pp. 1454–1467.

[123] Candes, E. J. and Tao, T., “Decoding by linear programming,” IEEE transactions on infor-
mation theory, Vol. 51, No. 12, 2005, pp. 4203–4215.

[124] Pajic, M., Lee, I., and Pappas, G. J., “Attack-resilient state estimation for noisy dynamical
systems,” IEEE Transactions on Control of Network Systems, Vol. 4, No. 1, 2016, pp. 82–92.

[125] Chang, Y. H., Hu, Q., and Tomlin, C. J., “Secure estimation based Kalman filter for cyber–
physical systems against sensor attacks,” Automatica, Vol. 95, 2018, pp. 399–412.

[126] Shoukry, Y., Nuzzo, P., Puggelli, A., Sangiovanni-Vincentelli, A. L., Seshia, S. A., and
Tabuada, P., “Secure state estimation for cyber-physical systems under sensor attacks: A
satisfiability modulo theory approach,” IEEE Transactions on Automatic Control, Vol. 62,
No. 10, 2017, pp. 4917–4932.

[127] Manshaei, M. H., Zhu, Q., Alpcan, T., Bacşar, T., and Hubaux, J.-P., “Game theory meets
network security and privacy,” ACM Computing Surveys (CSUR), Vol. 45, No. 3, 2013,
pp. 1–39.

[128] Zhu, Q. and Basar, T., “Game-theoretic methods for robustness, security, and resilience of
cyberphysical control systems: games-in-games principle for optimal cross-layer resilient
control systems,” IEEE Control Systems Magazine, Vol. 35, No. 1, 2015, pp. 46–65.

[129] Nagumo, M., “Über die lage der integralkurven gewöhnlicher differentialgleichungen,” Pro-
ceedings of the Physico-Mathematical Society of Japan. 3rd Series, Vol. 24, 1942, pp. 551–
559.

[130] Isaacs, R., Differential games: a mathematical theory with applications to warfare and
pursuit, control and optimization, Courier Corporation, 1999.

[131] Friedman, A., Differential games, Courier Corporation, 2013.

[132] Botchkarev, O. and Tripakis, S., “Verification of hybrid systems with linear differential
inclusions using ellipsoidal approximations,” International Workshop on Hybrid Systems:
Computation and Control, Springer, 2000, pp. 73–88.

[133] Chutinan, A. and Krogh, B. H., “Computational techniques for hybrid system verification,”
IEEE transactions on automatic control, Vol. 48, No. 1, 2003, pp. 64–75.

222

[134] Chutinan, A. and Krogh, B. H., “Verification of polyhedral-invariant hybrid automata using
polygonal flow pipe approximations,” International workshop on hybrid systems: computa-
tion and control, Springer, 1999, pp. 76–90.

[135] Tomlin, C. J., Mitchell, I., Bayen, A. M., and Oishi, M., “Computational techniques for the
verification of hybrid systems,” Proceedings of the IEEE, Vol. 91, No. 7, 2003, pp. 986–
1001.

[136] Dabadie, C., Kaynama, S., and Tomlin, C. J., “A practical reachability-based collision avoid-
ance algorithm for sampled-data systems: Application to ground robots,” 2014 IEEE/RSJ
International Conference on Intelligent Robots and Systems, IEEE, 2014, pp. 4161–4168.

[137] Bansal, S., Chen, M., Herbert, S., and Tomlin, C. J., “Hamilton-Jacobi reachability: A
brief overview and recent advances,” 2017 IEEE 56th Annual Conference on Decision and
Control (CDC), IEEE, 2017, pp. 2242–2253.

[138] Mitchell, I. M. and Tomlin, C. J., “Overapproximating reachable sets by Hamilton-Jacobi
projections,” journal of Scientific Computing, Vol. 19, No. 1-3, 2003, pp. 323–346.

[139] Girard, A. and Le Guernic, C., “Zonotope/hyperplane intersection for hybrid systems reach-
ability analysis,” International Workshop on Hybrid Systems: Computation and Control,
Springer, 2008, pp. 215–228.

[140] Kochdumper, N. and Althoff, M., “Sparse polynomial zonotopes: A novel set representation
for reachability analysis,” IEEE Transactions on Automatic Control, 2020.

[141] Althoff, M. and Krogh, B. H., “Zonotope bundles for the efficient computation of reachable
sets,” 2011 50th IEEE conference on decision and control and European control conference,
IEEE, 2011, pp. 6814–6821.

[142] Althoff, M. and Krogh, B. H., “Reachability analysis of nonlinear differential-algebraic
systems,” IEEE Transactions on Automatic Control, Vol. 59, No. 2, 2013, pp. 371–383.

[143] Prajna, S. and Jadbabaie, A., “Safety verification of hybrid systems using barrier certifi-
cates,” International Workshop on Hybrid Systems: Computation and Control, Springer,
2004, pp. 477–492.

[144] Prajna, S., “Barrier certificates for nonlinear model validation,” Automatica, Vol. 42, No. 1,
2006, pp. 117–126.

[145] Prajna, S., “Barrier certificates for nonlinear model validation,” 42nd IEEE International
Conference on Decision and Control (IEEE Cat. No. 03CH37475), Vol. 3, IEEE, 2003, pp.
2884–2889.

[146] Prajna, S., Jadbabaie, A., and Pappas, G. J., “A framework for worst-case and stochas-
tic safety verification using barrier certificates,” IEEE Transactions on Automatic Control,
Vol. 52, No. 8, 2007, pp. 1415–1428.

223

[147] Prajna, S. and Rantzer, A., “On the necessity of barrier certificates,” IFAC Proceedings
Volumes, Vol. 38, No. 1, 2005, pp. 526–531.

[148] Panagou, D., Stipanović, D. M., and Voulgaris, P. G., “Distributed coordination control for
multi-robot networks using Lyapunov-like barrier functions,” IEEE Transactions on Auto-
matic Control, Vol. 61, No. 3, 2015, pp. 617–632.

[149] Panagou, D., Stipanovič, D. M., and Voulgaris, P. G., “Multi-objective control for multi-
agent systems using Lyapunov-like barrier functions,” 52nd IEEE Conference on Decision
and Control, IEEE, 2013, pp. 1478–1483.

[150] Han, D. and Panagou, D., “Robust Multitask Formation Control via Parametric Lyapunov-
Like Barrier Functions,” IEEE Transactions on Automatic Control, Vol. 64, No. 11, 2019,
pp. 4439–4453.

[151] Hernández-Martı́nez, E. G. and Aranda-Bricaire, E., Convergence and collision avoidance
in formation control: A survey of the artificial potential functions approach, INTECH Open
Access Publisher Rijeka, Croatia, 2011.

[152] Merz, A. W., “The homicidal chauffeur,” AIAA Journal, Vol. 12, No. 3, 1974, pp. 259–260.

[153] Bopardikar, S. D., Bullo, F., and Hespanha, J. P., “A cooperative homicidal chauffeur game,”
Automatica, Vol. 45, No. 7, 2009, pp. 1771–1777.

[154] Exarchos, I., Tsiotras, P., and Pachter, M., “On the suicidal pedestrian differential game,”
Dynamic Games and Applications, Vol. 5, No. 3, 2015, pp. 297–317.

[155] Sgall, J., “Solution of David Gale’s lion and man problem,” Theoretical Computer Science,
Vol. 259, No. 1-2, 2001, pp. 663–670.

[156] Mitchell, I. M., Bayen, A. M., and Tomlin, C. J., “A time-dependent Hamilton-Jacobi for-
mulation of reachable sets for continuous dynamic games,” IEEE Transactions on automatic
control, Vol. 50, No. 7, 2005, pp. 947–957.

[157] Oyler, D. W., Kabamba, P. T., and Girard, A. R., “Dominance in pursuit-evasion games with
uncertainty,” 2015 54th IEEE Conference on Decision and Control (CDC), IEEE, 2015, pp.
5859–5864.

[158] Oyler, D. W. and Girard, A. R., “Dominance regions in the homicidal chauffeur problem,”
2016 American Control Conference (ACC), IEEE, 2016, pp. 2494–2499.

[159] Oyler, D. W., Kabamba, P. T., and Girard, A. R., “Pursuit–evasion games in the presence of
obstacles,” Automatica, Vol. 65, 2016, pp. 1–11.

[160] Ames, A. D., Coogan, S., Egerstedt, M., Notomista, G., Sreenath, K., and Tabuada, P., “Con-
trol barrier functions: Theory and applications,” 2019 18th European Control Conference
(ECC), IEEE, 2019, pp. 3420–3431.

224

[161] Ames, A. D., Xu, X., Grizzle, J. W., and Tabuada, P., “Control barrier function based
quadratic programs for safety critical systems,” IEEE Transactions on Automatic Control,
Vol. 62, No. 8, 2016, pp. 3861–3876.

[162] Wieland, P. and Allgöwer, F., “Constructive safety using control barrier functions,” IFAC
Proceedings Volumes, Vol. 40, No. 12, 2007, pp. 462–467.

[163] Lin, Y. and Sontag, E. D., “A universal formula for stabilization with bounded controls,”
Systems & Control Letters, Vol. 16, No. 6, 1991, pp. 393–397.

[164] Ames, A. D., Grizzle, J. W., and Tabuada, P., “Control barrier function based quadratic
programs with application to adaptive cruise control,” 53rd IEEE Conference on Decision
and Control, IEEE, 2014, pp. 6271–6278.

[165] Hsu, S.-C., Xu, X., and Ames, A. D., “Control barrier function based quadratic programs
with application to bipedal robotic walking,” 2015 American Control Conference (ACC),
IEEE, 2015, pp. 4542–4548.

[166] Romdlony, M. Z. and Jayawardhana, B., “Uniting control Lyapunov and control barrier
functions,” 53rd IEEE Conference on Decision and Control, IEEE, 2014, pp. 2293–2298.

[167] Romdlony, M. Z. and Jayawardhana, B., “Stabilization with guaranteed safety using control
Lyapunov–barrier function,” Automatica, Vol. 66, 2016, pp. 39–47.

[168] Srinivasan, M., Coogan, S., and Egerstedt, M., “Control of multi-agent systems with finite
time control barrier certificates and temporal logic,” 2018 IEEE Conference on Decision
and Control (CDC), IEEE, 2018, pp. 1991–1996.

[169] Chen, Y., Singletary, A., and Ames, A. D., “Guaranteed obstacle avoidance for multi-robot
operations with limited actuation: a control barrier function approach,” IEEE Control Sys-
tems Letters, Vol. 5, No. 1, 2020, pp. 127–132.

[170] Borrmann, U., Wang, L., Ames, A. D., and Egerstedt, M., “Control barrier certificates for
safe swarm behavior,” IFAC-PapersOnLine, Vol. 48, No. 27, 2015, pp. 68–73.

[171] Garg, K. and Panagou, D., “Control-lyapunov and control-barrier functions based quadratic
program for spatio-temporal specifications,” 2019 IEEE 58th Conference on Decision and
Control (CDC), IEEE, 2019, pp. 1422–1429.

[172] Lindemann, L. and Dimarogonas, D. V., “Control barrier functions for signal temporal logic
tasks,” IEEE Control Systems Letters, Vol. 3, No. 1, 2018, pp. 96–101.

[173] Lindemann, L. and Dimarogonas, D. V., “Robust control for signal temporal logic specifi-
cations using discrete average space robustness,” Automatica, Vol. 101, 2019, pp. 377–387.

[174] Lindemann, L. and Dimarogonas, D. V., “Control barrier functions for multi-agent systems
under conflicting local signal temporal logic tasks,” IEEE Control Systems Letters, Vol. 3,
No. 3, 2019, pp. 757–762.

225

[175] Nguyen, Q., Hereid, A., Grizzle, J. W., Ames, A. D., and Sreenath, K., “3d dynamic walking
on stepping stones with control barrier functions,” 2016 IEEE 55th Conference on Decision
and Control (CDC), IEEE, 2016, pp. 827–834.

[176] Cortez, W. S., Oetomo, D., Manzie, C., and Choong, P., “Control barrier functions for
mechanical systems: Theory and application to robotic grasping,” IEEE Transactions on
Control Systems Technology, 2019.

[177] Singletary, A., Chen, Y., and Ames, A. D., “Control Barrier Functions for Sampled-Data
Systems with Input Delays,” arXiv preprint arXiv:2005.06418, 2020.

[178] Jankovic, M., “Robust control barrier functions for constrained stabilization of nonlinear
systems,” Automatica, Vol. 96, 2018, pp. 359–367.

[179] Kolathaya, S. and Ames, A. D., “Input-to-state safety with control barrier functions,” IEEE
control systems letters, Vol. 3, No. 1, 2018, pp. 108–113.

[180] Usevitch, J. and Panagou, D., “Resilient Leader-Follower Consensus to Arbitrary Reference
Values in Time-Varying Graphs,” IEEE Transactions on Automatic Control, Vol. 65, No. 4,
2019, pp. 1755–1762.

[181] Usevitch, J. and Panagou, D., “Resilient leader-follower consensus to arbitrary reference
values,” 2018 Annual American Control Conference (ACC), IEEE, 2018, pp. 1292–1298.

[182] Usevitch, J., Garg, K., and Panagou, D., “Finite-time resilient formation control with
bounded inputs,” 2018 IEEE Conference on Decision and Control (CDC), IEEE, 2018, pp.
2567–2574.

[183] Usevitch, J. and Panagou, D., “Resilient Leader-Follower Consensus with Time-Varying
Leaders in Discrete-Time Systems,” 2019 IEEE 58th Conference on Decision and Control
(CDC), IEEE, 2019, pp. 5432–5437.

[184] Usevitch, J. and Panagou, D., “Determining r- and (r,s)-robustness of digraphs using mixed
integer linear programming,” Automatica, Vol. 111, 2020, pp. 108586.

[185] Usevitch, J. and Panagou, D., “Determining r- and (r,s)-Robustness of Digraphs Using
Mixed Integer Linear Programming,” arXiv preprint arXiv:1901.11000, 2019.

[186] Usevitch, J. and Panagou, D., “Determining r-Robustness of Digraphs Using Mixed Integer
Linear Programming,” 2019 Annual American Control Conference (ACC), IEEE, 2019.

[187] Usevitch, J. and Panagou, D., “Adversarially Resilient Control Barrier Functions in
Sampled-Data Systems,” 2021 American Control Conference (ACC), IEEE, 2021, To ap-
pear.

[188] Usevitch, J. and Panagou, D., “Adversarial Resilience Using Control Barrier Functions with
High Relative Degree in Sampled-Data Systems,” 2021, Submitted.

[189] Boyd, S. and Vandenberghe, L., Convex optimization, Cambridge university press, 2004.

226

[190] LeBlanc, H. J., Zhang, H., Sundaram, S., and Koutsoukos, X., “Resilient continuous-time
consensus in fractional robust networks,” 2013 American Control Conference, 6 2013, pp.
1237–1242.

[191] Mitra, A. and Sundaram, S., “Secure distributed observers for a class of linear time invariant
systems in the presence of byzantine adversaries,” Decision and Control (CDC), 2016 IEEE
55th Conference on, IEEE, 2016, pp. 2709–2714.

[192] Zhang, H. and Sundaram, S., “A simple median-based resilient consensus algorithm,” 2012
50th Annual Allerton Conference on Communication, Control, and Computing, Allerton
2012, 2012, pp. 1734–1741.

[193] LeBlanc, H. J. and Hassan, F., “Resilient distributed parameter estimation in heterogeneous
time-varying networks,” Proceedings of the 3rd international conference on High confidence
networked systems, ACM, 2014, pp. 19–28.

[194] Mitra, A. and Sundaram, S., “Byzantine-resilient distributed observers for LTI systems,”
Automatica, Vol. 108, 2019, pp. 108487.

[195] Mitra, A. and Sundaram, S., “Secure Distributed State Estimation of an LTI System Over
Time-Varying Networks and Analog Erasure Channels,” 2018 Annual American Control
Conference (ACC), June 2018, pp. 6578–6583.

[196] Franceschelli, M., Giua, A., and Pisano, A., “Finite-time consensus on the median value by
discontinuous control,” 2014 American Control Conference, IEEE, 2014, pp. 946–951.

[197] Franceschelli, M., Giua, A., and Pisano, A., “Finite-Time Consensus on the Median Value
With Robustness Properties,” IEEE Transactions on Automatic Control, Vol. 62, No. 4, April
2017, pp. 1652–1667.

[198] Cortes, J., “Discontinuous dynamical systems,” IEEE Control Systems Magazine, Vol. 28,
No. 3, 2008, pp. 36–73.

[199] Bhat, S. P. and Bernstein, D. S., “Finite-time stability of continuous autonomous systems,”
SIAM Journal on Control and Optimization, Vol. 38, No. 3, 2000, pp. 751–766.

[200] Mitra, A., Richards, J. A., Bagchi, S., and Sundaram, S., “Resilient distributed state esti-
mation with mobile agents: overcoming Byzantine adversaries, communication losses, and
intermittent measurements,” Autonomous Robots, 2018, pp. 1–26.

[201] Wang, L. and Xiao, F., “Finite-time consensus problems for networks of dynamic agents,”
IEEE Transactions on Automatic Control, Vol. 55, No. 4, 2010, pp. 950–955.

[202] Garg, K. and Panagou, D., “New Results on Finite-Time Stability: Geometric Condi-
tions and Finite-Time Controllers,” 2018 Annual American Control Conference (ACC), June
2018, pp. 442–447.

[203] Olfati-Saber, R. and Murray, R. M., “Consensus problems in networks of agents with switch-
ing topology and time-delays,” IEEE Transactions on Automatic Control, Vol. 49, No. 9,
2004, pp. 1520–1533.

227

[204] Chen, G., Lewis, F. L., and Xie, L., “Finite-time distributed consensus via binary control
protocols,” Automatica, Vol. 47, No. 9, 2011, pp. 1962–1968.

[205] Clarke, F. H., Optimization and nonsmooth analysis, Vol. 5, Siam, 1990.

[206] Shevitz, D. and Paden, B., “Lyapunov stability theory of nonsmooth systems,” IEEE Trans-
actions on automatic control, Vol. 39, No. 9, 1994, pp. 1910–1914.

[207] Bacciotti, A. and Ceragioli, F., “Nonsmooth Lyapunov functions and discontinuous
Carathéodory systems,” IFAC Proceedings Volumes, Vol. 37, No. 13, 2004, pp. 841–845.

[208] Filippov, A. F., Differential equations with discontinuous righthand sides: control systems,
Vol. 18, Springer Science & Business Media, 2013.

[209] Khalil, H. K., Nonlinear systems, Vol. 3, Prentice hall Upper Saddle River, NJ, 2002.

[210] Utkin, V. and Lee, H., “Chattering problem in sliding mode control systems,” International
Workshop on Variable Structure Systems, 2006. VSS’06., IEEE, 2006, pp. 346–350.

[211] Bartolini, G., “Chattering phenomena in discontinuous control systems,” International jour-
nal of systems science, Vol. 20, No. 12, 1989, pp. 2471–2481.

[212] Lee, H. and Utkin, V. I., “Chattering suppression methods in sliding mode control systems,”
Annual reviews in control, Vol. 31, No. 2, 2007, pp. 179–188.

[213] Cichoń, J., Kharazishvili, A., and Weglorz, B., “On sets of Vitali’s type,” Proceedings of
the American Mathematical Society, Vol. 118, No. 4, 1993, pp. 1243–1250.

[214] Solovay, R. M., “A model of set-theory in which every set of reals is Lebesgue measurable,”
Annals of Mathematics, 1970, pp. 1–56.

[215] Renganathan, V. and Summers, T., “Spoof resilient coordination for distributed multi-robot
systems,” 2017 International Symposium on Multi-Robot and Multi-Agent Systems (MRS),
IEEE, 2017, pp. 135–141.

[216] LeBlanc, H. J., Zhang, H., Sundaram, S., and Koutsoukos, X., “Consensus of multi-agent
networks in the presence of adversaries using only local information,” Proceedings of the
1st international conference on High Confidence Networked Systems, ACM, 2012, pp. 1–10.

[217] LeBlanc, H. J. and Koutsoukos, X. D., “Low Complexity Resilient Consensus in Networked
Multi-Agent Systems with Adversaries,” Proceedings of the 15th ACM international con-
ference on Hybrid Systems: Computation and Control, 2012, pp. 5–14.

[218] Vaidya, N. H., “Iterative Byzantine vector consensus in incomplete graphs,” International
Conference on Distributed Computing and Networking, Springer, 2014, pp. 14–28.

[219] LeBlanc, H. J., Resilient cooperative control of networked multi-agent systems, Vanderbilt
University, 2012.

228

[220] LeBlanc, H. J., Resilient Cooperative Control of Networked Multi-Agent Systems, Ph.D.
thesis, Vanderbilt University, 2012.

[221] Boesch, F. and Tindell, R., “Circulants and their connectivities,” Journal of Graph Theory,
Vol. 8, No. 4, 1984, pp. 487–499.

[222] Elspas, B. and Turner, J., “Graphs with circulant adjacency matrices,” Journal of Combina-
torial Theory, Vol. 9, No. 3, 1970, pp. 297–307.

[223] Tindell, R., “Connectivity of Cayley Digraphs,” Combinatorial network theory, edited by
D.-Z. Du and D. F. Hsu, Springer US, Boston, Massachusetts, 1996, pp. 41–64.

[224] Hamidoune, Y. O., “On the Connectivity of Cayley Digraphs,” European Journal of Com-
binatorics, Vol. 5, No. 4, 12 1984, pp. 309–312.

[225] LeBlanc, H. J. and Koutsoukos, X., “Resilient asymptotic consensus in asynchronous ro-
bust networks,” 2012 50th Annual Allerton Conference on Communication, Control, and
Computing, Allerton 2012, 2012, pp. 1742–1749.

[226] Bertsimas, D. and Dunn, J., “Optimal classification trees,” Machine Learning, Vol. 106,
No. 7, 2017, pp. 1039–1082.

[227] Wolsey, L. A., “Mixed integer programming,” Wiley Encyclopedia of Computer Science and
Engineering, 2007, pp. 1–10.

[228] Bollobás, B., Models of Random Graphs, Cambridge Studies in Advanced Mathematics,
Cambridge University Press, 2nd ed., 2001, p. 34–59.

[229] Koo, C.-Y., Bhandari, V., Katz, J., and Vaidya, N. H., “Reliable broadcast in radio networks:
The bounded collision case,” Proceedings of the twenty-fifth annual ACM symposium on
Principles of distributed computing, 2006, pp. 258–264.

[230] Tseng, L., Wu, Y., Pan, H., Aloqaily, M., and Boukerche, A., “Reliable Broadcast in
Networks with Trusted Nodes,” 2019 IEEE Global Communications Conference (GLOBE-
COM), IEEE, 2019, pp. 1–6.

[231] Tseng, L., “Towards reliable broadcast in practical sensor networks,” 2017 IEEE 16th In-
ternational Symposium on Network Computing and Applications (NCA), IEEE, 2017, pp.
1–8.

[232] Loria, A., Dasdemir, J., and Jarquin, N. A., “Leader–follower formation and tracking control
of mobile robots along straight paths,” IEEE transactions on control systems technology,
Vol. 24, No. 2, 2015, pp. 727–732.

[233] Meng, Z., Lin, Z., and Ren, W., “Leader–follower swarm tracking for networked Lagrange
systems,” Systems and Control Letters, Vol. 61, No. 1, 2012, pp. 117 – 126.

[234] Siciliano, B., Sciavicco, L., Villani, L., and Oriolo, G., Robotics: modelling, planning and
control, Springer Science & Business Media, 2010.

229

[235] Mellinger, D., Shomin, M., Michael, N., and Kumar, V., “Cooperative grasping and trans-
port using multiple quadrotors,” Distributed autonomous robotic systems, Springer, 2013,
pp. 545–558.

[236] Michael, N., Fink, J., and Kumar, V., “Cooperative manipulation and transportation with
aerial robots,” Autonomous Robots, Vol. 30, No. 1, 2011, pp. 73–86.

[237] Rastgoftar, H. and Atkins, E. M., “Cooperative aerial payload transport guided by an in
situ human supervisor,” IEEE Transactions on Control Systems Technology, Vol. 27, No. 4,
2018, pp. 1452–1467.

[238] Beard, R. W., Lawton, J., and Hadaegh, F. Y., “A coordination architecture for spacecraft
formation control,” IEEE Transactions on control systems technology, Vol. 9, No. 6, 2001,
pp. 777–790.

[239] Johnson, W. P., “The curious history of Faà di Bruno’s formula,” The American mathemati-
cal monthly, Vol. 109, No. 3, 2002, pp. 217–234.

[240] Mitra, A. and Sundaram, S., “Byzantine-resilient distributed observers for LTI systems,”
Autom., Vol. 108, 2019.

[241] De Luca, A., Oriolo, G., and Vendittelli, M., “Control of wheeled mobile robots: An exper-
imental overview,” Ramsete, Springer, 2001, pp. 181–226.

[242] Stellato, B., Banjac, G., Goulart, P., Bemporad, A., and Boyd, S., “OSQP: an operator
splitting solver for quadratic programs,” Mathematical Programming Computation, Vol. 12,
No. 4, 2020, pp. 637–672.

[243] Usevitch, J. and Panagou, D., “r-Robustness and (r, s)-Robustness of Circulant Graphs,”
2017 IEEE 56th Annual Conference on Decision and Control (CDC), IEEE, 2017, pp. 4416–
4421.

[244] Mitra, A., Richards, J. A., Bagchi, S., and Sundaram, S., “Resilient distributed state esti-
mation with mobile agents: overcoming Byzantine adversaries, communication losses, and
intermittent measurements,” Autonomous Robots, Vol. 43, 2019, pp. 743–768.

[245] Panagou, D., Turpin, M., and Kumar, V., “Decentralized goal assignment and trajectory
generation in multi-robot networks: A multiple lyapunov functions approach,” 2014 IEEE
International Conference on Robotics and Automation (ICRA), IEEE, 2014, pp. 6757–6762.

[246] Prautzsch, H., Boehm, W., and Paluszny, M., Bézier and B-spline techniques, Springer Sci-
ence & Business Media, 2013.

[247] Sederberg, T. W., “Computer aided geometric design,” 2012.

[248] Jin, W., Deng, C., Li, Y., and Liu, J., “Derivative bound estimations on rational conic Bézier
curves,” Applied Mathematics and Computation, Vol. 248, 2014, pp. 113–117.

[249] Selimovic, I., “New bounds on the magnitude of the derivative of rational Bézier curves and
surfaces,” Computer Aided Geometric Design, Vol. 22, No. 4, 2005, pp. 321–326.

230

[250] Lindemann, L. and Dimarogonas, D. V., “Decentralized control barrier functions for cou-
pled multi-agent systems under signal temporal logic tasks,” 2019 18th European Control
Conference (ECC), IEEE, 2019, pp. 89–94.

[251] Glotfelter, P., Cortés, J., and Egerstedt, M., “Nonsmooth barrier functions with applications
to multi-robot systems,” IEEE Control Systems Letters, Vol. 1, No. 2, 2017, pp. 310–315.

[252] Xiao, W. and Belta, C., “Control barrier functions for systems with high relative degree,”
2019 IEEE 58th Conference on Decision and Control (CDC), IEEE, 2019, pp. 474–479.

[253] Li, A., Wang, L., Pierpaoli, P., and Egerstedt, M., “Formally correct composition of coordi-
nated behaviors using control barrier certificates,” 2018 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), IEEE, 2018, pp. 3723–3729.

[254] Wang, L., Ames, A. D., and Egerstedt, M., “Safety barrier certificates for collisions-free
multirobot systems,” IEEE Transactions on Robotics, Vol. 33, No. 3, 2017, pp. 661–674.

[255] Glotfelter, P., Cortés, J., and Egerstedt, M., “Boolean composability of constraints and con-
trol synthesis for multi-robot systems via nonsmooth control barrier functions,” 2018 IEEE
Conference on Control Technology and Applications (CCTA), IEEE, 2018, pp. 897–902.

[256] Guerrero-Bonilla, L. and Kumar, V., “Realization of r-Robust Formations in the Plane Using
Control Barrier Functions,” IEEE Control Systems Letters, Vol. 4, No. 2, 2019, pp. 343–348.

[257] Wang, L., Ames, A. D., and Egerstedt, M., “Safe certificate-based maneuvers for teams
of quadrotors using differential flatness,” 2017 IEEE International Conference on Robotics
and Automation (ICRA), IEEE, 2017, pp. 3293–3298.

[258] Pickem, D., Glotfelter, P., Wang, L., Mote, M., Ames, A., Feron, E., and Egerstedt, M.,
“The robotarium: A remotely accessible swarm robotics research testbed,” 2017 IEEE In-
ternational Conference on Robotics and Automation (ICRA), IEEE, 2017, pp. 1699–1706.

[259] Özkahraman, Ö. and Ögren, P., “Combining control barrier functions and behavior trees for
multi-agent underwater coverage missions,” 2020 59th IEEE Conference on Decision and
Control (CDC), IEEE, 2020, pp. 5275–5282.

[260] Park, H. and Hutchinson, S. A., “Fault-tolerant rendezvous of multirobot systems,” IEEE
transactions on robotics, Vol. 33, No. 3, 2017, pp. 565–582.

[261] Saulnier, K., Saldana, D., Prorok, A., Pappas, G. J., and Kumar, V., “Resilient flocking for
mobile robot teams,” IEEE Robotics and Automation letters, Vol. 2, No. 2, 2017, pp. 1039–
1046.

[262] Nguyen, Q. and Sreenath, K., “Exponential control barrier functions for enforcing high
relative-degree safety-critical constraints,” 2016 American Control Conference (ACC),
IEEE, 2016, pp. 322–328.

[263] Blanchini, F., “Set invariance in control,” Automatica, Vol. 35, No. 11, 1999, pp. 1747 –
1767.

231

[264] Clarke, F. H., Ledyaev, Y. S., Stern, R. J., and Wolenski, P. R., Nonsmooth analysis and
control theory, Vol. 178, Springer Science & Business Media, 2008.

[265] Xu, X., Tabuada, P., Grizzle, J. W., and Ames, A. D., “Robustness of Control Barrier Func-
tions for Safety Critical Control**This work is partially supported by the National Science
Foundation Grants 1239055, 1239037 and 1239085.” IFAC-PapersOnLine, Vol. 48, No. 27,
2015, pp. 54 – 61, Analysis and Design of Hybrid Systems ADHS.

[266] Usevitch, J., Garg, K., and Panagou, D., “Strong invariance using control barrier functions:
A clarke tangent cone approach,” 2020 59th IEEE Conference on Decision and Control
(CDC), IEEE, 2020, pp. 2044–2049.

[267] Grüne, L. and Pannek, J., “Nonlinear model predictive control,” Nonlinear Model Predictive
Control, Springer, 2017.

[268] Garg, K., Arabi, E., and Panagou, D., “Prescribed-time control under spatiotemporal and
input constraints: A QP based approach,” arXiv preprint arXiv:1906.10091, 2019.

[269] Gauvin, J. and Dubeau, F., “Differential properties of the marginal function in mathematical
programming,” Optimality and Stability in Mathematical Programming, Springer, 1982, pp.
101–119.

[270] Black, M., Garg, K., and Panagou, D., “A Quadratic Program based Control Synthesis under
Spatiotemporal Constraints and Non-vanishing Disturbances,” 2020 IEEE 59th Conference
on Decision and Control (CDC), IEEE, 2020.

[271] Bezanson, J., Edelman, A., Karpinski, S., and Shah, V. B., “Julia: A fresh approach to
numerical computing,” SIAM Review, Vol. 59, No. 1, 2017, pp. 65–98.

[272] Revels, J., Lubin, M., and Papamarkou, T., “Forward-Mode Automatic Differentiation in
Julia,” arXiv:1607.07892 [cs.MS], 2016.

[273] Chen, M., Herbert, S. L., Vashishtha, M. S., Bansal, S., and Tomlin, C. J., “Decomposi-
tion of reachable sets and tubes for a class of nonlinear systems,” IEEE Transactions on
Automatic Control, Vol. 63, No. 11, 2018, pp. 3675–3688.

[274] Liebenwein, L., Baykal, C., Gilitschenski, I., Karaman, S., and Rus, D., “Sampling-Based
Approximation Algorithms for Reachability Analysis with Provable Guarantees,” Robotics:
Science and Systems, 2018.

[275] Wurts, J., Stein, J. L., and Ersal, T., “Collision imminent steering at high speed using nonlin-
ear model predictive control,” IEEE Transactions on Vehicular Technology, Vol. 69, No. 8,
2020, pp. 8278–8289.

232

	Dedication
	Acknowledgments
	Table of Contents
	List of Figures
	Abstract
	Introduction
	Motivation
	Literature Review
	Origins of the Resilient Agreement Problem
	MSR Algorithms for Resilient Consensus
	Resilient Safety and Control of Dynamical Systems

	Contributions
	Outline
	Notation

	Resilient Consensus Algorithms
	Introduction
	Preliminaries on Resilient Consensus and MSR Algorithms
	Resilient Leader-Follower Consensus to Arbitrary Reference Values in Time-Varying Graphs
	Problem Formulation
	Resilient Leader-Follower Consensus in Time-Varying Graphs
	Adversarial Implications
	Simulations

	Finite-Time Leader-Follower Consensus: Formation Control
	Notation and Problem Definition
	Continuous-time System
	Filtering Algorithm and Control Law
	Convergence Analysis for Continuous-Time System

	Discrete-time System
	Filtering Algorithm and Control Law
	Convergence Analysis for Discrete-Time System

	Simulations

	Resilient Finite-Time Consensus: A Discontinuous Systems Perspective
	Problem Formulation
	Justification for Discontinuous Systems Approach
	Review of Discontinuous Systems Theory
	Main Results
	Discussion
	Simulations

	Discussion
	Conclusion

	Determining r- and (r,s)-Robustness for Design and Analysis of Resilient Networks
	Introduction
	Problem Formulation
	Robustness of k-Circulant Digraphs
	Strong r-Robustness of k-Circulant Graphs
	Implementation of W-MSR Algorithm on k-Circulant Digraphs

	Determining r- and (r,s)-Robustness of Digraphs using Mixed Integer Programming
	Determining r-Robustness using Mixed Integer Linear Programming
	Determining (r,s)-Robustness using Mixed Integer Linear Programming
	Approximate Bounds on rmax(D)
	A Lower Bound on Maximum r-Robustness
	An Upper Bound on Maximum r-Robustness

	Discussion
	Comparison of MILP Robustness Determination with Prior Methods

	Conclusion
	Appendix: Description of Algorithm Implementations

	Resilient Broadcast
	Introduction
	Preliminaries on Resilient Broadcasting
	Notation and Problem Formulation
	Problem Formulation

	Sensitivity Analysis
	Sensitivity to Clock Synchronization Errors
	Sensitivity to Differences in Parameters
	Combined Clock and Parameter Perturbation Errors

	Resilient Parameter Propagation
	Synchronous propagation without parameter perturbations
	Propagation with Time-Varying Graphs
	Incorporating Parameter Perturbations

	Simulations
	Incorporating Formational Offsets
	Simulation 1
	Simulation 2
	Hardware Experiments

	Conclusion
	Appendix
	Bernstein Polynomials and Bezier Curves

	Adversarial Resilience for Sampled-Data Systems under High-Relative-Degree Safety Constraints
	Introduction
	Overview of Control Barrier Function Methods
	Adversarial Resilience in Sampled-Data Systems Under Safety Constraints
	Notation and Problem Formulation
	Problem Formulation

	Safe Set Functions with Relative Degree 1
	Preliminaries
	Synchronous Sampling Times
	Asynchronous Sampling Times
	Maximum Safety-Preserving Control Action

	Safe Set Functions with High Relative Degree
	Discussion

	Simulations
	Unicycle Agents in R2
	Double Integrators in R3

	Conclusion

	Conclusions and Future Work
	Conclusions
	Future Work
	Final Discussion

	Bibliography

