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NOMENCLATURE 

A √2•RMS of measured displacement 

A* A/D 

c  is the total oscillator damping including bearing (cbearing) and harness (charness)  

CA Added mass coefficient 

CTo =FTo/kA; Coefficient of total force  

CAo =FAo/kA; Coefficient of force in phase with 𝑦̈(𝑡) 

CUo =FUo/kA; Coefficient of force in phase with 𝑦̇(𝑡) 

CRo =FRo/kA; Coefficient of residuary force 

D, L Cylinder diameter and length, respectively 

f* fosc/fn,vac 

FIO Flow-Induced Oscillation 

FSI Fluid-Structure Interaction 

fn* fn,water/fn,vac 

fn,vac Natural frequency of oscillator in vacuum 

fn,water Real (measured) natural frequency in water 
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fosc Measured frequency of oscillation 

FT(t)  Total force on cylinder in the FIO direction  

FA(t) Added-mass force in phase with 𝑦̈(𝑡) 

FU(t) Velocity-force in phase with 𝑦̇(𝑡) 

FR(t) Residuary force FR(t)=FT(t)-FA(t)-FU(t); Measure of how closely assumptions in eqs. (3-

10 to 3-14) are satisfied for a specific experiment. 

FTo, FAo, FUo, FRo Magnitude of force: Total, acceleration, velocity, residuary respectively. 

k Total spring stiffness 

LTFSW  Low Turbulence Free Surface Water 

MHK  Marine Hydrokinetic  

mosc Total oscillating equivalent body mass without mA  

mA Added mass 

md Displaced fluid mass  

𝑚𝑑 = 𝜌𝑓𝑙𝑢𝑖𝑑𝜋𝐷2𝐿 4⁄  

m* Dimensionless mass ratio 

𝑚∗ = 
𝑚𝑜𝑠𝑐

𝑚𝑑
 

SLT  Steady Lift Technologies  

St Strouhal number specifically used in VIV 

Stn Generic Strouhal number in N-S equations 
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U Flow velocity 

U* Generic reduced velocity in literature 

U*n,vac Reduced velocity used in this research;  

𝑈𝑛,𝑣𝑎𝑐
∗ = 

𝑈

𝐷𝑓𝑛,𝑣𝑎𝑐
 

VIV  Vortex Induced Vibration  

y(t) Displacement time history 

ζvac,  Damping ratio in vacuum  

vac =
𝑐

2√𝑘𝑚𝑜𝑠𝑐 

 

ζwater Damping ratio in water 

water =
c

2√𝑘(𝑚𝑜𝑠𝑐 + 𝑚𝐴)
 

ϕA ,ϕU ,ϕT Force phases: Acceleration, velocity, total, respectively; eqs. (3C) 

 

- - - - Theory using equations in Tables. (3A)-(3D)  

   Reconstructed based on theory and measured f* (circles) 

oooo Initial and upper VIV branches 

oooo Lower VIV branch and desynchronization 

oooo Transition VIV to galloping 

oooo Fully developed galloping 

   Measured experimentally (crosses) 

++++ Initial and upper VIV branches 

++++ Lower VIV branch and desynchronization 

++++ Transition VIV to galloping 

++++ Fully developed galloping 

 




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ABSTRACT 

Fluid-Structure Interaction (FSI) is a frequently occurring physical phenomenon in many 

applications and across various engineering disciplines including structural, offshore, aerospace, 

civil, mechanical and biomedical engineering. Suspension bridges, smoke-stacks, wind turbines, 

mooring lines, pipelines, heat exchangers, marine risers, and offshore platforms, are examples. 

The problem for Flow Induced Oscillation (FIO) is studied using experimental data and a novel 

analytical method revealing an eigen-relation at the fluid-structure interface. That is a relation 

between excitation and a dynamical system that has to be satisfied for a non-trivial solution to 

exist. Consistent rather than heuristic nondimensionalization of the fluid and oscillator dynamics 

in fluid-structure interaction, leads to decoupling of amplitude from frequency response. Further, 

recognizing that the number of governing dimensionless parameters should decrease, rather than 

increase, due to the fluid-structure synergy at the interface, an eigen-relation is revealed for a 

cylinder in Flow Induced Oscillations (FIO). It shows that, for a given dimensionless oscillation 

frequency f*, the ratio of real added-mass to oscillating-mass is fully defined. The primary 

assumption of this approach is that for the eigen-relation to hold, the FIO has to be monochromatic. 

This is a common assumption in VIV and galloping. For very low natural frequencies of the  

oscillator in vacuum this assumption does not hold.  

Amplitude decoupling and the eigen-relation, lead to explicit expressions for coefficients, phases, 

and magnitudes of the total hydrodynamic force, the force in phase with the acceleration of the 

oscillator (added-mass), and the force in phase with the velocity of the oscillator. Those reveal 

their dependence on the generic Strouhal number, damping, and Reynolds. Heuristic 

dimensionless parameters, used in VIV data presentation are not needed. Theoretical derivations 

and force reconstruction match nearly perfectly with extensive experimental data collected over a 

decade in the Marine Renewable Energy Laboratory (MRELab) at the University of Michigan 

using four different oscillator test-models. 
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Further, based on the above derivations the following analyses are presented: 

(a)  Single-cylinder experimental data in FIO are analyzed using the eigen-relation and derived 

force expressions.  The ranges of parameters are: mass ratio m* ∈ [1.007 to 2.0], spring stiffness 

k ∈ [400N/m to 1200N/m] and total system damping ratio ∈ [0.02 to 0.26]  

(b) Beyond the single frequency response model, the residuary force is derived by comparison 

to experiments. Using the theory, established facts regarding VIV and galloping and new important 

observations are readily explained:  

• The effects of Strouhal, damping-ratio, mass-ratio, Reynolds, reduced velocity, and stagnation 

pressure.  

• The cause of expansion/contraction of the VIV range of synchronization.  

• The corresponding slope-change in oscillation frequency with respect to the Strouhal 

frequency of a stationary-cylinder.  

• The critical mass-ratio implying perpetual VIV.  

• The significance of the natural frequency of the oscillator in vacuum.  

• The effect of vortices in VIV and galloping.  

• The magnitude of vortex forces divided into direct and indirect forces.   

(c) The derived eigen-relation is a first order solution to the VIV and galloping problems. The 

developed equations for the forces in-phase with the velocity and acceleration, when subtracted 

from the total force measured experimentally, yield a residuary force.  

(d)  Data obtained from the MRELab experimentally and with CFD are analyzed further to 

identify other force components likely related to vortex shedding directly. This is a step towards 

higher order theories for VIV and galloping beyond the eigen-relation.
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Chapter One 

Introduction 

1.1. Introduction  

According to the U.S Energy Information Administration EIA (2017) [32], the world energy 

consumption which currently stands at 140 QBTU (quadrillion British Thermal Units) will grow 

by 28% by 2040. Per the same report, renewable forms of energy are expected to be the fastest-

growing energy sources, with utilization increasing by an average of 2.3% per year between 2015 

and 2040. For the required world energy demand to be met and for the above projections to be 

accomplished, efforts must be channeled to utilizing renewable forms of energy. Deep-sea 

explorations, installations and productions of hydrocarbon energy via new technologies from the 

ocean should be considered as alternative source of energy on a large scale.  

Renewable energy is energy that is derived from renewable resources, such as wind, sunlight, rain, 

tides and currents, waves, rivers, and geothermal heat. Over the years, solar energy has been one 

of the common renewable sources. However, it is expensive to achieve and implement on a large 

scale albeit the progress made in the last decade. Hydropower on the other hand is a relatively 

cheaper technology to implement compared to most renewable sources.  

Hydrokinetic energy is defined as kinetic energy due to motion of the water body. The term marine 

renewable energy refers to energy generated by waves, tidal currents, open ocean currents, river 

currents, ocean thermal gradients, and salinity gradients. Hydrokinetic energy includes waves and 
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tides/currents/rivers. Technologies that make use of those renewable energy resources are known 

as Marine Hydrokinetic (MHK) energy technologies. 

Hydrokinetic energy is defined as kinetic energy due to motion of the water body. The term marine 

renewable energy refers to energy generated by waves, tidal currents, open ocean currents, river 

currents, ocean thermal gradients, and salinity gradients. Hydrokinetic energy includes waves and 

tides/currents/rivers. Technologies that make use of those renewable energy resources are known 

as Marine Hydrokinetic (MHK) energy technologies. It could either be horizontal hydrokinetic 

energy referring to hydrokinetic energy in tidal, open-ocean, and river currents; or vertical 

hydrokinetic energy referring to hydrokinetic energy in waves, even though there is some vertical 

energy in the other sources of marine renewable energy.  Ocean waves and currents, if adequately 

utilized, could be a major source of the world’s energy generation. As indicated by the US EIA, 

the theoretical annual energy potential of waves off the coasts of the United States is estimated to 

be as much as 2.64 trillion kilowatt-hours, or the equivalent of about 64% of U.S. electricity 

generation in 2018. [31]. 

MHK energy can be harnessed by Steady Lift Technologies (SLT) like turbines or by Alternating 

Lift Technologies (ALT) Bernitsas (2016) [11]. Edmund and Bernitsas (2010) [18] also studied 

the effect of passive tails on harnessing hydrokinetic Energy. MHK is a vast source of energy that 

is worth investigating by the development and improvement of innovative technologies.  In this 

research, we focus on harnessing horizontal hydrokinetic energy using an alternating lift 

technology (ALT) based on Flow Induced Oscillations (FIO’s). This technology simply employs 

alternating lift occurring naturally in Fluid Structure Interaction (FSI). For instance, fish utilize 

alternating lift to propel efficiently in water. Lifting surfaces, such as fish-fins, are used primarily 

for steering rather than propulsion. Fins may contribute to propulsion as part of their entire body 
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motion, which is alternating. Bodies with either slender cross-sections like hydrofoils or bluff 

cross-sections like cylindrical pipelines are typically subjected to FSI phenomena.  

1.2. Vortex Induced Vibration (VIV) 

In the last few decades, Fluid-Structure Interaction (FSI) has been studied since it is a frequently 

occurring physical phenomenon in many applications and across various disciplines including 

structural, offshore, aerospace, civil, mechanical and biomedical engineering. In civil, mechanical 

and ocean engineering, applications include the design of suspension bridges, wind turbines, 

pipelines and piping systems, thermal and refrigeration systems, and offshore platforms, just to 

mention a few. Ocean structures such as drilling risers, mooring lines, cables, undersea piping and 

tension-leg platforms are often subjected to strong ocean currents and waves, therefore such 

structures are in high risk from Vortex-Induced Vibrations (VIV's), where vortex shedding of the 

flow interacts with the structural properties, leading to large amplitude vibrations in both in-line 

and cross-flow directions. 

Vortex Induced Vibration (VIV) is a well-known phenomenon to both ocean and mechanical 

engineers.  It occurs anytime a sufficiently bluff (non-streamlined) body is exposed to a fluid flow 

that produces vortex shedding at, or near, a structural natural frequency of the body. When this 

occurs, the alternating vortex shedding induces fluctuation of pressure on the surface of the 

cylinder. In turn, this pressure fluctuation results in hydrodynamic forces exerted by the formation 

of the vortices in the immediate wake of the body. These forces induce vibration/oscillation of the 

structure. Thus, hydrokinetic energy from the flowing fluid is converted to body kinetic energy. 

The kinetic energy in the oscillating body can be converted into electrical energy through a Power 

Take Off (PTO) system; Lee 2009 [38]. As far as VIV is concerned, the interaction between 
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structures and fluids is important in studying elongated structures with bluff cross-sectional 

geometry. 

Ever since Leonardo da Vinci first observed VIV in 1504AD, in the form of “Aeolian Tones”, 

engineers have been trying to prevent or suppress VIV from damaging equipment and structures.  

Further, von Kármán (2005) [75] proved that the Tacoma Narrows bridge collapse in 1940 was 

due to the alternating nature of the vortex wake. He identified it as VIV; this was later labeled as 

flutter instability due to the slender cross-section of the bridge pavement and the two degrees of 

freedom of the bridge; rotational as well as translational. In fact, over the years, many experimental 

and numerical studies have been conducted to comprehend the underlying physical mechanisms. 

However, to date there is still limited theoretical understanding of the effect of oscillatory 

interactions between fluid flow and structural behavior though such interactions can cause large 

deformations. This research work contributes towards the understanding of the underlying 

phenomena. 

Vortex-Induced Vibration (VIV) of cylindrical structures is a common phenomenon in many 

engineering applications. Due to its significance in ocean and marine engineering, VIV has been 

extensively studied over the past decades. Comprehensive reviews of various aspects of VIV can 

be found in the publications by Williamson and Govardhan (2004) [78], Sarpkaya (2004) [57], 

Gabbai and Benaroya (2005) [22], Assi et.al. (2010)[2], Bearman (2011) [5], Païdoussis et al. 

(2011) [48], and Triantafyllou et al. (2016) [69], just to mention a few. According to [22] and [57], 

VIV is a self-regulated nonlinear phenomenon with six degree of freedom vibration which often 

is reduced to one degree of freedom in the transverse direction to the flow. There are few 

theoretical developments in the literature for one and two dimensional problems looking into the 

theoretical nature of the underlying forces. Complete expressions for the added mass terms in a 
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six-degree of freedom body motion in a three-degree of freedom fluid motion hare been derived 

by Foulhoux and Bernitsas (1993) [21].  

Mostly, to study the dominant equation of structural oscillation, the stiffness and damping 

coefficients are assumed to be linear. There have been a few experimental studies in the MRELab 

at the University of Michigan studying nonlinear spring stiffness [12,43,66,79] and nonlinear 

damping [67]. 

1.3.  Galloping 

Another important phenomenon of Flow Induced Oscillation (FIO), which is relevant in ocean and 

marine engineering, is galloping.  Galloping is a dynamic instability that can affect a slender 

structure subjected to a cross flow. It is a one degree of freedom instability, in transverse or 

torsional motion, for which the motion-induced fluid loading creates a negative added damping 

that triggers the instability beyond a critical velocity. Unlike VIV, where the amplitude is self-

limiting, galloping is known to be a single degree of freedom, high amplitude, low frequency 

oscillation typically experienced by non-circular cross-sectional bodies (Alonso, 2009) [1]. Assi 

et.al. (2014) [3] discussed galloping of circular cylinders fitted with solid and slotted splitter plates. 

Galloping is basically caused by induction of negative aerodynamic/hydrodynamic damping by 

which the total system damping falls below zero thereby generating motion-aiding forces 

destabilizing the system. The response would be motion in one direction if it were not for the 

elastic properties of the oscillator resulting in an oscillatory motion. The response of the oscillating 

body increases to very high amplitude motion as allowed by the frame of the oscillator. 

The driving mechanisms in VIV and galloping are completely different. In VIV, the alternating 

vortex shedding creates alternating pressure variation, which synchronizes with the oscillator 
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motion. But in galloping, the driving mechanism is an instability in a steady direction. Oscillation 

occurs only because there is a spring or some other elastic constraint, which reverses the direction 

of the cylinder motion, at which point the instability initiates from the opposite side of the cylinder. 

1.4. Research Motivation, Goal, and Scope 

For over a hundred years, there have been a lot of experimental testing and numerical simulations 

performed by researchers to understand, properly model, and predict the phenomena of VIV and 

galloping of different bodies in fluid-flows as would be discussed in Chapter two. However, there 

has been little success in developing generic theoretical solutions, even of first order, for flow 

induced oscillation problems. 

The main objective of the present research is to better understand the underlying concepts for VIV 

and galloping.  The developed eigen-relation and the corresponding force expressions for 

transverse Flow Induced Oscillations contribute towards modeling and understanding these 

phenomena. The derived expressions are validated by experiments conducted in the MRELab 

(Marine Renewable Energy Laboratory) at the University of Michigan. This theoretical 

development can explain results obtained over the years by various researchers in the ocean 

engineering field on VIV and galloping over more than 70 years.   

Furthermore, the VIVACE (Vortex Induced Vibrations Aquatic Clean Energy) Converter invented 

in the MRELab and patented through the University of Michigan is based on enhancing FIO and 

controlling the motion of the oscillating body to convert its energy to electricity [8-10,15].  

VIVACE is used to harness horizontal MHK energy form tides/river/ocean currents.  

This research work develops a first order rigorous mathematical framework to accurately predict 

VIV and galloping of a general elongated and elastic body with bluff cross-section like a cylinder. 
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While the FSI mechanism is a general process, this dissertation focuses on oscillatory interaction 

between moving structures and fluid flow in FIO. Such interactions cause large deformations and 

eventually failure. Alternatively, when FIO is controlled, it can generate energy as in the case of 

the VIVACE Converter. 

To achieve the above goals, the following research tasks are undertaken: 

• Derivation and development of the eigen-relation for linear oscillators with experimental 

confirmation using smooth cylinders and cylinders with passive turbulence stimulation. 

• Processing experimental data for linear oscillators in VIV and galloping collected at the 

MRELab of the University of Michigan based on the developed eigen-relation and the 

corresponding force expressions. 

• Validation of the eigen-relation and force expressions by comparing the theoretical results 

to the experimental ones for one-cylinder tests. 

• Explain experimental observations for both VIV and galloping using the developed theory. 

• Identifying limitations of the developed theory and verifying those experimentally. 

1.5. Thesis Organization 

This dissertation is arranged as follows. Chapter 1 is on the introduction of VIV and galloping, 

and the objective and motivation of this research. Chapter 2 provides a review of literature 

related to this research. In Chapter 3, the mathematical framework of this dissertation is 

developed and explained revealing an eigen-relation at the interface between fluid and 

structureas well as explicit expressions for the forces. Further it decouples the generic Strouhal 

number effects form the Reynolds effects. Chapter 4 shows some of the results obtained by 
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using the eigen-relation and the corresponding force relations derived in Chapter 3 to process 

experimental data obtained in the MRELab. The accuracy of the predictions when the 

assumptions are satisfied is nearly perfect. In addition, the residuary forces are from the 

experimental data and are shown to match the direct vortex forces. Based on the results in 

Chapter 4, more light is shed on as many experimental observations as we could find published 

in the VIV and galloping literature in Chapters 5 and 6, respectively. The conclusions of the 

dissertation and future research are presented in Chapter 7. Appendices A and B show more 

experimental results for smooth cylinder and cylinder with turbulence stimulation (PTC) 

compared to the derived eigen-relation and force expressions. Complete sets of data are 

presented in MRELab Report 13 [46]. Parametric presentation of the results for comparison 

are presented in Report 14 [47].
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Chapter Two 

Literature Review 

2.1.  Previous Research work on VIV  

Vortex Induced Vibrations (VIV) for flow past slender structures with bluff cross-sections, which 

are immersed into the fluid flow has been studied extensively and observed over a century. First 

observed by Leonardo da Vinci in 1504, the problem of Vortex Induced Vibration is still being 

studied experimentally, numerically, and with mathematical models. Since the discovery of 

formation of vortices produced by translating rods through air by Strouhal (1878) [63] and the 

analysis of stability of vortex street configurations by von Kármán (1912, 1938) [73,74], the 

problem of VIV has been studied extensively and is still being studied by experiments, simulations, 

and field-tests and observations. Some of the important work done in the field of VIV on normal 

incident and inclined rigid cylinder with only one degree of freedom (crossflow) are discussed in 

this chapter.   

Hartlen and Currie (1970) [30] provided a lift-oscillator model to approach the lock-in behavior of 

VIV when they studied structures and bodies such as a flexible cylinder in uniform flow. 

 For VIV under unsteady current, several experiments were carried out for structures under 

sinusoidal oscillatory flow or sinusoidal oscillating structures in still water. In order to properly 
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visualize the vortices pattern formed, Williamson (1985) [76], and Williamson and Roshko (1988) 

[77] used flow visualization techniques to capture the evolution of vortices in the wake of a 

structure. Keulegan and Carpenter (1958) [34], Feng (1968) [19], Sarpkaya (1976, 1986) 

[52,53,55,56] and Justesen (1989) [33] measured forces under oscillatory flow in the range of 1-

30 for KC number. Sumer and Fredsoe (1988) [64] described transverse vibrations of an elastically 

mounted cylinder exposed to oscillatory flow.  

For VIV of curved structures or inclined structures, some of the research that has been conducted 

up till now are described next. Bearman et al. (1984) [4] proposed a frequency varying forcing 

model for the harmonically oscillating flow. Triantafyllou (1991) [68] reported the dynamic 

response of flexible cable structures under added mass and drag force effects. Kozakiewicz et al. 

(1995) [37] studied the influence of oblique incidence of current flow. Ferrari and Bearman (2000) 

[20] modified the original model and carried out numerical simulations. Blevins (1990) [13] 

provided a thorough and compact resource for a variety of flow induced vibration topics. 

2.2. Background on Mass-Damping Parameter (m*ζ) 

Dimensionless parameters are needed to model and present experimental results. The mass-

damping parameter has been used for about 70 years and is a controversial parameter in the VIV 

research field. Most researchers believe that it is an important parameter for modeling the flow 

induced oscillation (FIO) of the body under consideration. Recently, the value of this heuristic 

parameter has been questioned Zdravkovich (1982) [80], Vandiver (2012) [70].  

First introduced by Scruton in 1955 [58], the mass-damping parameter was used for the purpose 

of characterization of flow induced vibration of cantilevered, flexible structures in wind. Not long 

after, many researchers adopted it and it was called the Scruton number. (Scruton, 1955, 1956, 

1965, 1966) [58-61], (Vickery and Watkins,1964) [71], (Zdravkovich, 1982) [80] 
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Sc = 2mδ ρD2⁄ =   π2m∗ζ     (2-1) 

The Scruton number was shown to work perfectly in collapsing maximum response amplitude data 

for high mass ratio cantilevers to a single curve of A*max versus Sc.  

Later in 1973, Griffin and colleagues decided to expand this application of mass-damping to 

predict the maximum response amplitude of a wide variety of flexible structures, including cables 

in water. (Griffin et al., 1973 [27]; Griffin and Skop, 1976 [28]; Griffin and Koopman, 1977 [29]). 

They came up with a new parameter, from a wake oscillator model which at the time was referred 

to as Ks [28]. Also the Scruton number became the Skop-Griffin parameter (SG) which is: 

SG = 2πSt2 (2mδ ρD2)⁄ =   2π3St2m∗ζ   (2-2) 

The symbol St is the Strouhal number for flow past a stationary cylinder and was intended by 

Griffin et al [28]. to be taken as a constant. Although, the Griffin plots showed general trends of 

agreement between maximum response amplitude and SG, there was lots of scatter to the data. This 

was in part due to mixing data from structures with different mode shapes and also because the 

dependence on Reynolds number had not yet been appreciated. 

By the late 1970s critics began to point out shortcomings of mass-damping parameters as 

predictors of VIV response amplitude, particularly at low mass ratios (Sarpkaya, 1979) [54]. 

Criticism continued to grow and increase, and in 1990 Zdravkovich recommended that mass-

damping parameters be used only for very high mass ratio cylinders, such as structures in air 

(Zdravkovich, 1990) [81]. In 1997, the classical plot was updated by Skop & Balasubramanian 

(1997) [62]. Later on, Sarpkaya gave a detailed analysis of the deficiencies of mass-damping 

parameters in [57]. 

However, Khalak, Govardhan and Williamson in their studies brought up again the use of the mass 

damping parameter. Khalak and Williamson (1999) [35], Govardhan and Williamson (2006) [26] 
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made significant progress in reducing the scatter in the Griffin plots. However, Vandiver (2012) 

[70], claimed that none of the previous damping parameters proposed were useful in organizing 

response at reduced velocities away from the peak-in response. He proposed another mass 

damping parameter called c* which may be used to characterize VIV at all reduced velocities in 

the lock-in range. Vandiver also claimed that the success of damping parameter(α) used by 

Govardhan and Williamson (2006) [26] was partly due to the way they eliminated the mode shape 

as a variable when the problem was simplified to that of understanding the Vortex induced 

vibration (VIV) of two dimensional spring-supported rigid cylinders in a uniform flow. 

This research work seeks to answer and shed more light to this controversially used parameter as 

would be discussed in Chapter five. 

2.3. Background on Amplitude of Oscillation (A*) 

The most important measurement in Flow Induced Oscillations (VIV and galloping) is the 

amplitude of cylinder oscillation A*=A/D. Khalak and Williamson in their experiments [35], 

involving the transverse oscillations of an elastically mounted rigid cylinder at very low mass and 

damping claimed that A* primarily depends on the mass ratio m*. Also the regime of 

synchronization depends primarily on the mass ratio, m*. According to Feng’s experiment [19],  

where m* = 248, ζ = 0.00103, m*ζ = 0.255 and Re between 104 to 5 x 104, he observed that there 

are two amplitude branches (the initial and the lower) in the response characteristics of a flexibly 

mounted circular cylinder in air. However, Khalak and Williamson (1999) [35] with a significantly 

smaller mass ratio (m*= 10), the same damping ratio but lower Reynold’s number (Re = 3500-

10000) observed three amplitude branches (initial, upper and lower), a larger peak amplitude with 

broader range of synchronization for a flexibly mounted circular cylinder in water. Govardhan and 
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Williamson (2000) [24], indicated that it is principally the parameter (m*ζ) which influences 

whether the upper branch will appear or not.  

According to (Williamson and Roshko 1988 [77]; Govardhan and Williamson 2000 [24]; Morse 

and Williamson 2008 [45]); A* is closely related to the vortex- shedding mode of the cylinder. 

[77] described extensively terminologies for each mode that is encountered in VIV. Each periodic 

vortex wake pattern has single vortices(S) and vortex pairs(P). Shedding modes such as 2S, 2P, 

P+S, even 2P + 2S have been reported by researchers in the literature. Most of the previous studies 

report amplitude values up to 1.13 diameters (Williamson and Govardhan 2004 [78]). However, 

studies conducted at a higher Reynolds numbers (TrSL3 regime according to the classification of 

flow by Zdravkovich (1990) [81]; TrSL3 regime is a high-lift regime) have yielded much higher 

amplitudes of oscillation reaching A*=1.9 (Raghavan (2007) [49]; Bernitsas et al. 2008 [6]). Hence 

whether the amplitude of oscillations is solely dependent on the mass ratio m* or the Reynold’s 

number or it indeed depends on some other parameters is yet to be fully understood and would be 

investigated using the eigen-relation that would be developed in this research work. 

2.4. Review on the VIVACE Converter 

Over the years, many attempts to utilize the ocean energy resources to generate power have been 

made. Vortex Induced Vibration for Aquatic Clean Energy Converter (VIVACE) is one of the 

promising concepts to generate clean renewable electricity from ocean currents without using 

blades and rotors (turbines). It is a hydrokinetic power generating device invented by Bernitsas 

and Raghavan in 2005 [6,9,10] and further developed by Bernitsas and his research group in the 

Marine Renewable Energy Laboratory (MRELab) of the University of Michigan (Bernitsas and 

Raghavan, 2009 [9]; Lee and Bernitsas, 2011 [40]; Lee et al., 2011 [41]; Raghavan and Bernitsas, 

2010 [50]; Chang et al., 2011 [16], Chang and Bernitsas, 2011 [15]). It is a device developed to 
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harness energy from water current by utilizing Vortex Induced Vibrations (VIV) while satisfying 

the requiring standards of all clean renewable energy in the United States; most important being 

fish friendly. Lee (2010) [39] reported that a single cylinder (D=3.5", L=36") VIVACE Converter 

successfully generated hydrokinetic power from a current as slow as 0.4m/s and a maximum power 

of 15.85W at low speed of 1.11m/s. Moreover, Chang (2010) [14] was able to harness 49.35W at 

the low speed of 1.45 m/s. The power-to-volume ratio (power density) was 341W/m3 at the low 

speed of 1.45 m/s by utilizing Passive Turbulence Control (PTC) on the single cylinder VIVACE. 

In 2016, Lin Ding et al (2016) [42] further investigated using numerical simulations and concluded 

that for a single cylinder with Passive Turbulence control the energy conversion efficiency reaches 

37% in simulations and 28% in experiments.  

As the years went by, seeing the success and great prospect of the single cylinder VIVACE system, 

multi-cylinder VIVACE converters were developed. This is to enhance the cylinders to work 

synergistically thereby harnessing more power and increase the power density. Kim (2013) [36] 

in his dissertation explained extensively the various factors and parameters that could enhance the 

synergy of multiple cylinders in flow induced motion for hydrokinetic energy harnessing. Some 

of his conclusions are as follows: 

• For multiple cylinders, there is increase in galloping, increased range of synchronization, 

and higher amplitude regardless of other parameters. 

• For tandem center-to-center spacing of 1.43D, FIM of two cylinders in tandem is distinct. 

He claimed that galloping starts earlier, and the amplitude of the 2nd cylinder is higher. The 

frequency of oscillation is lower for both cylinders and the energy conversion is 60% 

higher.  
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• Finally, he claimed that 2,3, and 4 cylinders synergistically operating in FIO can harness 

more marine hydro-kinetic energy than the same number of cylinders acting in isolation. 
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Chapter Three 

Mathematical Framework 

3.1. Introduction  

The mathematical approach and models used in this research are derived in this chapter. The 

discussions are restricted to the mathematical equations in fluid dynamics that are relevant to this 

research. The basic Navier-Stokes equation is presented along with the oscillator dynamic model.  

From those, the relevant dimensionless groups are derived. In Section 3.3, the oscillator dynamics 

is studied. The combination of fluid dynamics and oscillator dynamics in Fluid Structure 

Interaction (FSI) leads to an eigen-relation of the transverse flow induced oscillations in Section 

3.4. In the remaining of the chapter analytical force relations are derived. 

3.2. Fluid Dynamics 

Fluid Structure Interaction (FSI) problems are governed by the fluid dynamics equations and the 

oscillator equation. For fluid dynamics, satisfying continuity for an incompressible fluid does not 

provide any Π-group (dimensionless parameters). The Navier-Stokes equations in dimensionless 

vector form are:  

[
𝐷

𝑇𝑈∞
]
∂𝑉∗⃗⃗ ⃗⃗  

𝜕𝑡∗
+ [1](𝑉∗⃗⃗⃗⃗ . ∇∗⃗⃗⃗⃗ )𝑉∗⃗⃗⃗⃗ = [

𝑔𝐷

𝑈∞
2 ] 𝑓∗⃗⃗⃗⃗ − [

𝑝∞

𝜌𝑈∞
2 ] ∇∗⃗⃗⃗⃗ . 𝑝∗ + [

𝑣

𝐷𝑈∞
] ∆∗𝑉∗⃗⃗⃗⃗   (3-1) 

where "*" indicates dimensionless quantity, D is diameter, T is relevant time scale, =velocity 

vector, U∞ and p∞ are velocity and pressure at infinity. There are four Π-groups in square brackets  

in eq. (3-1), which are well-known hydrodynamic dimensionless parameters. From left to right, 
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these Π-groups are the Strouhal number, the Froude number, Euler number and Reynold’s number, 

respectively. In the absence of free-surface and cavitation, Fr and Eu numbers can be neglected. 

That leaves the Reynolds and Strouhal numbers as the two important dimensionless numbers for 

Flow Induced Oscillations (FIO) analysis. 

3.2.1. Reynolds Number 

The Reynolds number (Re), is the ratio of inertia forces to viscous forces in the fluid and is of 

crucial importance for a real-fluid problem. For bluff bodies like a cylinder, the integral of the 

normal pressure forces represents about 95% of the forces compared to the integral of the shear 

forces producing the skin friction which accounts for the remaining 5%. The indirect effect of 

viscosity of course is more important as the separated flow region and dead flow in the immediate 

wake of the cylinder are affected by the shear layer roll-up, which is stronger and closer to the 

cylinder in the TrSL3 flow-regime than in TrSL2, resulting in much higher lift and amplitude 

response [6,7,50]. The shear layers in TrSL3 are fully turbulent [81]. 

3.2.2.  Strouhal Number 

The ratio of the local inertia to convective inertia terms in the N-S equation (3-1), is the Strouhal 

number (Stn) and is most important and needs to be defined carefully. The reduced velocity U* and 

the Keulegan-Carpenter number KC are forms of Strouhal number. However, both are defined 

heuristically. The challenge here is due to the fact that FIO are typically studied in a steady uniform 

flow where no fluid reference acceleration (local or convective) is readily identifiable.  

Fluid dynamics is governed by N-S eq. (3.1), which reveals the four familiar Π-groups, for which 

the, Fr and Eu numbers are not applicable here, but the Re number adequately models the viscosity 

effects. Stn though, requires a careful definition. Un,vac
*  and KC, which are forms of Stn, are 
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heuristic and irrelevant, because they do not abide by the definition of the generic Strouhal number 

Stn as 

𝑆𝑡𝑛 =
𝐿𝑜𝑐𝑎𝑙_𝑖𝑛𝑒𝑟𝑡𝑖𝑎

𝐶𝑜𝑛𝑣𝑒𝑐𝑡𝑖𝑣𝑒_𝐼𝑛𝑒𝑟𝑡𝑖𝑎
   (3-2) 

Since a steady flow is characterized by constant velocity, U, to identify a reference acceleration, 

or some form of local and convective accelerations, one must look into the hydrodynamic forces 

exerted on the oscillator in greater details. Those can be found at the fluid-structure interface. 

Specifically, Foulhoux et.al (1993) [21] provides complete expressions for forces and moments on 

small bodies in six degree-of-freedom motion in a three-dimensional flow for an ideal fluid. In 

tensor notation, the two dimensional (x,y) force equations become (Fig 3.1), 

 

 

 

 

 

 

 

 

𝐹 𝑖𝑛𝑒𝑟𝑡𝑖𝑎 = 𝐹1𝑖̂ + 𝐹2𝑗̂     (3-3) 

 

𝐹𝑗 = 𝜌𝑉𝐵 {
𝜕

∂t
𝑈𝑗 + (𝑈𝑖 − 𝑢𝑖)

𝜕𝑈𝑗

𝜕𝑥𝑖
} + 𝑚𝑗𝑗 (

𝜕𝑈𝑗

𝜕𝑡
−

𝑑𝑢𝑗

𝑑𝑡
) + 𝑚𝑖𝑖(𝑈𝑖 − 𝑢𝑖)

𝜕𝑈𝑗

𝜕𝑥𝑖
  (3-4) 

 

 

Fig. 3.1: Oscillator in steady uniform 

flow 

 

U∞=U 

k/2 

k/2 

x [1] 

y [2] 
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where Uj=fluid velocity, uj=body velocity; mjj=added mass; VB=displaced fluid volume, and 

ρ=fluid density. For a circular cylinder mjj=m11=m22=mA. Expanding eq. (3-4), j=1,2, we have 

𝐹1 = 𝜌𝑉𝐵 {
𝜕

∂t
𝑈1 + (𝑈1 − 𝑢1)

𝜕𝑈1

𝜕𝑥1
+ (𝑈2 − 𝑢2)

𝜕𝑈1

𝜕𝑥2
} + {𝑚𝐴 (

𝜕𝑈1

𝜕𝑡
−

𝑑𝑢1

𝑑𝑡
) + (𝑈1 −

𝑢1)
𝜕𝑈1

𝜕𝑥1
+ (𝑈2 − 𝑢2)

𝜕𝑈1

𝜕𝑥2
}         (3-5) 

 

𝐹2 = 𝜌𝑉𝐵 {
𝜕

∂t
𝑈2 + (𝑈1 − 𝑢1)

𝜕𝑈2

𝜕𝑥1
+ (𝑈2 − 𝑢2)

𝜕𝑈2

𝜕𝑥2
} + {𝑚𝐴 (

𝜕𝑈2

𝜕𝑡
−

𝑑𝑢2

𝑑𝑡
) +

(𝑈1 − 𝑢1)
𝜕𝑈2

𝜕𝑥1
+ (𝑈2 − 𝑢2)

𝜕𝑈2

𝜕𝑥2
}       (3-6) 

 

For a cylinder in transverse FIO in steady flow, U1=U, U2=0; and u1=0, u2=Aωosccos(ωosct); where 

A and ωosc are the amplitude and frequency of the cylinder oscillation. Eqs. (3-5) and (3-6) reduce 

to (3-7) and (3-8), respectively. 

𝐹1 = 0       (3-7) 

𝐹2 = 𝑚𝐴𝐴𝜔𝑜𝑠𝑐
2 𝑠𝑖𝑛(𝜔𝑜𝑠𝑐𝑡)    (3-8) 

Thus, in the y-direction of the cylinder oscillation, the numerator of Stn in eq. (3-2) appears in eq. 

(3-8) while the denominator is not readily identifiable. This is so because eqs. (3-3) to (3-6) 

represent the far-field approximation of the forces, while the N-S eq. (3-1) is the exact flow 

momentum equation.  

To identify a relevant convective inertia term to properly define Stn, we need to delve into the near-

field flow particulars; without solving the N-S equation of course. Eqs. (3-5 to 3-6), albeit being a 

far-field force approximation, clearly show two groups of terms in brackets. One bracket is 

multiplied by the cylinder added mass, and the other by the displaced fluid mass. Within each 
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bracket, there are local accelerations, absolute and relative, and relative convective terms applied 

on absolute fluid velocities.     

Since there is a fluid-structure interface and the body is subjected to an added mass force, it is clear 

that fluid in the vicinity of the body is accelerated due to the body motion. That is, the variables in 

eqs. (3-5) and (3-6), which are not in eqs. (3-7) and (3-8), exist due to the unknown, near-field, 

fluid acceleration. The convective terms are due to spatial changes of the flow, such as vortex 

shedding in the immediate cylinder wake. Thus, the next step is to look for the correct time-scale. 

In this problem, there are two time-scales: One is D/U related to the x-direction of the flow as in 

the N-S eq. (3-1). This time-scale is actually irrelevant to the FIO study in spite of the fact that it 

is used in U*. The other time-scale is in the y-direction of cylinder FIO and is defined as 

Tn,vac=2π/ωn,vac=1/fn,vac, the natural period of the oscillator in vacuum. This is the only time-scale 

relevant to the FIO analysis, which, when coupled with eqs. (3-2) and (3-8), leads to the relevant 

Strouhal number as: 

𝑆𝑡𝑛 = 𝑓𝑜𝑠𝑐 𝑓𝑛,𝑣𝑎𝑐 = 𝑓∗⁄      (3-9) 

 

whose significance is solidified in the analysis presented in the rest of this chapter. The 𝑆𝑡𝑛 is 

denoted by f* and is used traditionally to present the dominant response-frequency in dimensionless 

form in the subsequent chapters. f* which is the Strouhal number serves the purpose of eq (3-2) 

making other forms of Stn questionable because they can be reproduced from Stn and Re. 
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3.3. Oscillator dynamics 

3.3.1. Equations 

The FIO of a rigid cylinder on springs is basically monochromatic – single frequency sinusoidal – 

both in VIV and in galloping. The linear oscillator model with linear viscous damping typically 

used is  

𝑚𝑜𝑠𝑐𝑦̈(𝑡) + 𝑐𝑦̇(𝑡) + 𝑘𝑦(𝑡) = 𝐹𝑌,𝑡𝑜𝑡𝑎𝑙(𝑡)    (3-10) 

Where displacement y and force FY,Total are perpendicular to the flow as shown in Fig. 3.1.  

𝑚𝑜𝑠𝑐    is the total oscillating mass including 1/3 of the spring mass and other components such as 

supporting struts, belts, and pulley equivalent masses;  

𝐹𝑌,𝑡𝑜𝑡𝑎𝑙 is total fluid force including potential and vortex forces exerted transversely to the direction 

of the flow, that is, in the direction of the oscillation of the cylinder; and 

c  is the total structural damping including bearing (cbearing) and harness (charness)  

k  is the total spring stiffness 

In steady-state, 

𝑦(𝑡) = 𝐴 𝑠𝑖𝑛(𝜔𝑜𝑠𝑐𝑡)     (3-11) 

𝑦̇(𝑡) = 𝐴𝜔𝑜𝑠𝑐 𝑐𝑜𝑠(𝜔𝑜𝑠𝑐𝑡)     (3-12) 

𝑦̈(𝑡) =  − 𝐴𝜔𝑜𝑠𝑐
2 𝑠𝑖𝑛(𝜔𝑜𝑠𝑐𝑡)    (3-13) 

𝐹𝑌,𝑡𝑜𝑡𝑎𝑙(𝑡) = 𝐹𝑇𝑜 𝑠𝑖𝑛(𝜔𝑜𝑠𝑐𝑡 + 𝜙𝑇)    (3-14) 

 

where y(t) is the displacement of the cylinder motion, 𝑦̇(𝑡) is the velocity, 𝑦̈(𝑡) is the acceleration 

and FTo is the coefficient of the total force and ϕT is the phase angle between the force and the 

displacement. 
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3.3.2. Added Mass 

Morison et.al (1950) [44] and Keulegan et.al (1958) [34] show that the force component in-phase 

with the cylinder acceleration (added-mass force) can be calculated from experimental force 

measurement or force reconstruction. Cunha et.al. (2006) [17] described the robustness of the 

added mass in VIV models. In order to best understand the added mass coefficient (CA), we will 

calculate CA using two different methods and show indeed that both CA expressions are identical. 

Vikestad (2000) [72] evaluated the added mass coefficient 𝐶𝑎 through an experimental setup 

intended to investigate the Vortex Induced Vibrations (VIV) in a multiple frequency environment. 

He claimed that the excitation frequency components depend on the velocity profile and local 

cylinder motion. The local cylinder motion typically has many frequency components. He adopted 

the following procedure for calculating 𝐶𝑎. 

Equation of dynamic equilibrium for the experimental setup is given by: 

𝑚𝑥̈ + 𝑐𝑥̇ + 𝑘𝑡𝑜𝑡𝑎𝑙𝑥 = 𝐹𝑣(𝑡) + 𝑘2𝑦(𝑡)    (3-15) 

where, 𝑚 is the effective dry mass of the cylinder, 𝑐 is the damping coefficient, 𝑘𝑡𝑜𝑡𝑎𝑙 is the total 

stiffness of the system, 𝑘2 is the stiffness of the oscillator support, 𝑦 is the motion of the support 

system, 𝑥 is the cylinder motion and 𝐹𝑣 is the cross-flow component of the total hydrodynamic 

force. Assuming harmonic response, 𝑥(𝑡) = 𝑥0 sin(𝜔𝑜𝑡) and 𝐹𝑣(𝑡) = 𝐹𝑡𝑜𝑡𝑎𝑙 = 𝐹0 sin(𝜔𝑜𝑡 + 𝜙), 

where 𝜔𝑜 represents the oscillation frequency. Substituting these expressions in eq. (3-15), we 

have 

𝑚(−𝜔𝑜
2𝑥0 sin(𝜔𝑜𝑡)) + 𝑐(𝜔𝑜𝑥0 cos(𝜔𝑡)) + 𝑘𝑡𝑜𝑡𝑎𝑙𝑥 = 𝐹0(sin(𝜔𝑜𝑡) 𝑐𝑜𝑠𝜙 +

cos(𝜔𝑜𝑡) 𝑠𝑖𝑛𝜙) + 𝑘2𝑦(𝑡)         (3-16) 

Rearranging and separating the sin (𝜔𝑜𝑡) from the cos (𝜔𝑜𝑡) terms we have 
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(−𝑚𝜔𝑜
2𝑥0 − 𝐹0𝑐𝑜𝑠𝜙)sin (𝜔𝑜𝑡) + (𝑐𝜔𝑜𝑥0 − 𝐹0𝑠𝑖𝑛𝜙)cos (𝜔𝑜𝑡) + 𝑘𝑡𝑜𝑡𝑎𝑙𝑥 =  𝑘2𝑦(𝑡)  

Multiplying and dividing the first and second terms with 𝑥̈ and 𝑥̇ respectively and rearranging the 

terms, we have  

(𝑚 +
𝐹0𝑐𝑜𝑠𝜙

𝜔𝑜
2𝑥0

)𝑥̈ + (𝑐 −
𝐹0𝑠𝑖𝑛𝜙

𝜔𝑜𝑥0
)𝑥̇ + 𝑘𝑡𝑜𝑡𝑎𝑙𝑥 =  𝑘2𝑦(𝑡)     (3-17) 

 

Next, we derive expressions for 𝐹𝑣𝑥̇ and Fvẍ as shown below: 

lim
𝑇→∞

∫ 𝐹𝑣𝑥̇ dt
𝑡+𝑇

𝑡

𝑇
= lim

𝑇→∞

1

𝑇
∫ 𝐹0(sin(𝜔𝑜𝑡) 𝑐𝑜𝑠𝜙 + cos(𝜔𝑜𝑡) 𝑠𝑖𝑛𝜙) ∗ (𝜔𝑜𝑥0 cos(𝜔𝑜t))dt

𝑡+𝑇

𝑡

  

= 𝑙𝑖𝑚
𝑇→∞

1

𝑇
(𝐹0𝜔𝑜𝑥0)∫ (𝑐𝑜𝑠(𝜔𝑜𝑡) 𝑠𝑖𝑛(𝜔𝑜𝑡) 𝑐𝑜𝑠𝜙 + 𝑐𝑜𝑠2(𝜔𝑜𝑡) 𝑠𝑖𝑛𝜙)𝑑𝑡

𝑡+𝑇

𝑡

 

= lim
𝑇→∞

1

𝑇
(𝐹0𝜔𝑜𝑥0) (𝑐𝑜𝑠𝜙 [

𝑠𝑖𝑛2(𝜔𝑜𝑡)

2𝜔𝑜
]
𝑡

𝑡+𝑇

+ 𝑠𝑖𝑛𝜙 [
𝑡

2
+

𝑠𝑖𝑛 2(𝜔𝑜𝑡)

4𝜔𝑜
]
𝑡

𝑡+𝑇

) 

= lim
𝑇→∞

1

𝑇
(𝐹0𝜔𝑜𝑥0) (𝑐𝑜𝑠𝜙 [

𝑠𝑖𝑛2(𝜔𝑜(𝑡+𝑇))−𝑠𝑖𝑛2(𝜔𝑜𝑡)

2𝜔𝑜
] + 𝑠𝑖𝑛𝜙 [

𝑇

2
+

𝑠𝑖𝑛 2(𝜔𝑜(𝑡+𝑇))−𝑠𝑖𝑛 2(𝜔𝑜𝑡)

4𝜔𝑜
])  

= lim
𝑇→∞

1

2
(𝐹0𝜔𝑜𝑥0)𝑠𝑖𝑛𝜙 =

1

2
𝐹0𝜔𝑜𝑥0𝑠𝑖𝑛𝜙       

i.e. lim
𝑇→∞

∫ 𝐹𝑣𝑥̇ dt
𝑡+𝑇
𝑡

𝑇
= 

1

2
𝐹0𝜔𝑜𝑥0𝑠𝑖𝑛𝜙       (3-18) 

 

Similarly, 

 

𝑙𝑖𝑚
𝑇→∞

∫ 𝐹𝑣𝑥̈ 𝑑𝑡
𝑡+𝑇
𝑡

𝑇
= 𝑙𝑖𝑚

𝑇→∞

1

𝑇
∫ 𝐹0(𝑠𝑖𝑛(𝜔𝑜𝑡) 𝑐𝑜𝑠𝜙 + 𝑐𝑜𝑠(𝜔𝑜𝑡) 𝑠𝑖𝑛𝜙) ∗ (−𝜔𝑜

2𝑥0 𝑠𝑖𝑛(𝜔𝑜𝑡))𝑑𝑡
𝑡+𝑇

𝑡
  

               

= 𝑙𝑖𝑚
𝑇→∞

1

𝑇
(−𝐹0𝜔𝑜

2𝑥0) ∫ (𝑠𝑖𝑛2(𝜔𝑜𝑡) 𝑐𝑜𝑠𝜙 + 𝑐𝑜𝑠(𝜔𝑜𝑡) 𝑠𝑖𝑛(𝜔𝑜𝑡) 𝑠𝑖𝑛𝜙)𝑑𝑡
𝑡+𝑇

𝑡
  

 = 𝑙𝑖𝑚
𝑇→∞

1

𝑇
(−𝐹0𝜔𝑜

2𝑥0) (𝑐𝑜𝑠𝜙 [
𝑡

2
−

𝑠𝑖𝑛 2(𝜔𝑜𝑡)

4𝜔𝑜
]
𝑡

𝑡+𝑇

+ 𝑠𝑖𝑛𝜙 [
𝑠𝑖𝑛2(𝜔𝑜𝑡)

2𝜔𝑜
]
𝑡

𝑡+𝑇

) 

= 𝑙𝑖𝑚
𝑇→∞

1

𝑇
(−𝐹0𝜔𝑜

2𝑥0) (𝑐𝑜𝑠𝜙 [
𝑇

2
−

𝑠𝑖𝑛 2(𝜔𝑜(𝑡+𝑇))−𝑠𝑖𝑛 2(𝜔𝑜𝑡)

4𝜔𝑜
] + 𝑠𝑖𝑛𝜙 [

𝑠𝑖𝑛2(𝜔𝑜(𝑡+𝑇))−𝑠𝑖𝑛2(𝜔𝑜𝑡)

2𝜔𝑜
])  
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= 𝑙𝑖𝑚
𝑇→∞

1

2
(−𝐹0𝜔𝑜

2𝑥0)𝑐𝑜𝑠𝜙 = −
1

2
𝐹0𝜔𝑜

2𝑥0𝑐𝑜𝑠𝜙       

i.e.          𝑙𝑖𝑚
𝑇→∞

∫ 𝐹𝑣𝑥̈ 𝑑𝑡
𝑡+𝑇
𝑡

𝑇
= −

1

2
𝐹0𝜔𝑜

2𝑥0𝑐𝑜𝑠𝜙       (3-19) 

 

Substituting equations (3-18) and (3-19) into (3-17) gives, 

 

(𝑚 − 𝑙𝑖𝑚
𝑇→∞

2

𝑇(𝜔𝑜
2𝑥0)2

∫ 𝐹𝑣𝑥̈ 𝑑𝑡
𝑡+𝑇

𝑡
)𝑥̈ + (𝑐 − 𝑙𝑖𝑚

𝑇→∞

2

𝑇(𝜔𝑜𝑥0)2
∫ 𝑥̇ 𝑑𝑡

𝑡+𝑇

𝑡
)𝑥̇ + 𝑘𝑡𝑜𝑡𝑎𝑙𝑥 =  𝑘2𝑦(𝑡)  (3-20) 

 

Considering the inertia term in equation (3-20), it is evident that the added mass term is given by: 

 

𝑚𝑎 = −𝑙𝑖𝑚
𝑇→∞

2

𝑇(𝜔𝑜
2𝑥0)2

∫ 𝐹𝑣𝑥̈ 𝑑𝑡
𝑡+𝑇

𝑡
        (3-21) 

 

Integrating over 𝑛 oscillation periods and over the length of the cylinder, the added mass 

coefficient can be calculated from experimental data as, 

𝐶𝐴 = −
1

𝜌𝜋𝐿𝐷2

4

∗
2

𝑛𝑇(𝜔𝑜𝑠𝑐
2𝐴)2

∫ 𝐹𝑣𝑦̈(𝑡) 𝑑𝑡
𝑡+𝑛𝑇

𝑡
= −

8

𝑛𝑇𝜌𝜋𝐿𝐷2(𝜔𝑜𝑠𝑐
2𝐴)2

∫ 𝐹𝑣𝑦̈(𝑡) 𝑑𝑡
𝑡+𝑛𝑇

𝑡
   (3-22) 

 

𝐶𝐴 = −
8

𝑛𝑇𝜌𝜋𝐿𝐷2(𝜔𝑜𝑠𝑐
2𝐴)2

∫ 𝐹𝑌,𝑇𝑜𝑡𝑎𝑙𝑦̈
𝑛𝑇

0
(𝑡)𝑑𝑡       (3-23) 

 

Eq. (3-23) is the added mass calculated using Vikestad’s method. On the other hand, [44] used the 

expression below for 𝐶𝐴 

 𝐶𝐴 =
2𝑈𝑚𝑇

𝜋3𝐷
∫

𝐹

𝜌𝐷𝑈𝑚
2

2𝜋

0
𝑠𝑖𝑛𝜃𝑑𝜃        (3-24) 

 

To show that (3-23) and (3-24) are identical, we work through the following mathematical 

manipulations. 



25 
 

Using the relations: y(t) = A sin θ, Um = Aωosc and T =
2π

θ
t, where θ = ωosct, and substituting 

into eqn. (3-22), we have 

 

𝐶𝐴 = −
2𝑈𝑚𝑇

𝜌𝐷𝑈𝑚
2𝜋3𝐷

∫ 𝐹𝑦̈
𝑇

0
(
2𝜋

𝑇
)𝑑𝑡 =  −

4

𝜌𝑈𝑚𝜋2𝐷2(𝜔𝑜𝑠𝑐
2𝐴)

∫ 𝐹𝑦̈(𝑡)
𝑇

0
𝑑𝑡 = −

4

𝜌𝜋2𝐷2(𝜔𝑜
3𝐴2)

∫ 𝐹𝑦̈(𝑡)
𝑡

0
𝑑𝑡   

 

Multiplying and dividing by T, and by the relation T =
2π

ωosc
, we have 

 

𝐶𝐴 = −
8

𝑇𝜌𝜋𝐷2(𝜔𝑜𝑠𝑐
2𝐴)2

∫ 𝐹𝑦̈
𝑇

0
(𝑡)𝑑𝑡          (3-25) 

 

Integrating the above equation over the length of the cylinder and over n oscillation periods, gives,  

 

𝐶𝐴 = −
8

𝑛𝑇𝜌𝜋𝐿𝐷2(𝜔𝑜𝑠𝑐
2𝐴)2

∫ 𝐹𝑦̈(𝑡)
𝑛𝑇

0
𝑑𝑡         (3-26) 

 

which indeed shows that the two equations (3-23) and (3-24) are identical. 

Substituting eq. (3-11) to (3.14) into (3.10) yields, 

 

[𝑚𝑜𝑠𝑐 +
𝐹𝑇𝑜𝑐𝑜𝑠𝜙𝑇

𝐴𝜔𝑜𝑠𝑐
2 ] ÿ(t) + [𝑐 −

𝐹𝑇𝑜𝑠𝑖𝑛𝜙𝑇

𝐴𝜔𝑜𝑠𝑐
] 𝑦̇(𝑡) + 𝑘𝑦(𝑡) = 0  (3-27) 

 

yielding another equivalent expression for mA [72] 

 

𝑚𝐴 = 𝑚𝑑𝐶𝐴 =
𝐹𝑇𝑜𝑐𝑜𝑠𝜙𝑇

𝐴𝜔𝑜𝑠𝑐
2       (3-28) 

Further manipulation of (3.27) yields 

 

(− 𝑚𝑜𝑠𝑐𝐴𝜔𝑜𝑠𝑐
2 − 𝐹𝑇𝑜𝑐𝑜𝑠𝜙𝑇 + 𝑘𝐴) 𝑠𝑖𝑛(𝜔𝑜𝑠𝑐𝑡) + (𝑐𝐴𝜔𝑜𝑠𝑐 − 𝐹𝑇𝑜𝑠𝑖𝑛𝜙𝑇) 𝑐𝑜𝑠(𝜔𝑜𝑠𝑐𝑡) = 0 

(3-29) 

Comparing coefficients gives, 
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𝐹𝑇𝑜𝑐𝑜𝑠𝜙𝑇 = 𝑘𝐴 − 𝑚𝑜𝑠𝑐𝐴𝜔𝑜𝑠𝑐
2      (3-30) 

𝐹𝑇𝑜𝑠𝑖𝑛𝜙𝑇 =  𝑐𝐴𝜔𝑜𝑠𝑐       (3-31) 

 

3.3.3. Total force coefficient and phase 

Substituting eq. (3-11) to (3.14) into (3.10) also yields, 

 

−𝑚𝑜𝑠𝑐𝐴𝜔𝑜𝑠𝑐
2 𝑠𝑖𝑛(𝜔𝑜𝑠𝑐𝑡) + 𝑐𝐴𝜔𝑜𝑠𝑐 𝑐𝑜𝑠(𝜔𝑜𝑠𝑐𝑡) + 𝑘𝐴 𝑠𝑖𝑛(𝜔𝑜𝑠𝑐𝑡)= 𝐹𝑇𝑜 sin(𝜔𝑜𝑠𝑐𝑡 + 𝜙𝑇)  

            (3-32) 

 

The critical step is to nondimensionalize eq. (3-32) consistently. This equation represents the 

balance of forces in the y-direction and consequently the stagnation pressure force in the x-

direction is irrelevant. Mathematically, the relevant factor is obviously kA; which is also the 

magnitude of the force as measured by the spring deformation. Thus, eq. (3.32) becomes       

[−
𝑚𝑜𝑠𝑐𝜔𝑜𝑠𝑐

2

𝑘
𝑠𝑖𝑛(𝜔𝑜𝑠𝑐𝑡)] + 

𝑐𝜔𝑜𝑠𝑐

𝑘
𝑐𝑜𝑠(𝜔𝑜𝑠𝑐𝑡) + 𝑠𝑖𝑛(𝜔𝑜𝑠𝑐𝑡) = [

𝐹𝑇𝑜

𝑘𝐴
] sin(𝜔𝑜𝑠𝑐𝑡 + 𝜙𝑇) (3-33) 

 

Expanding the right side of eq. (3-33) yields 

 

(1 −
𝑚𝑜𝑠𝑐𝜔𝑜𝑠𝑐

2

𝑘
) 𝑠𝑖𝑛(𝜔𝑜𝑠𝑐𝑡) +

𝑐𝜔𝑜𝑠𝑐

𝑘
𝑐𝑜𝑠(𝜔𝑜𝑠𝑐𝑡) = [

𝐹𝑇𝑜

𝑘𝐴
] 𝑠𝑖𝑛(𝜔𝑜𝑠𝑐𝑡)𝑐𝑜𝑠𝜙𝑇 + 𝑠𝑖𝑛𝜙𝑇 𝑐𝑜𝑠(𝜔𝑜𝑠𝑐𝑡) 

            (3-34) 

 

Separating the terms yields: 

𝐶𝑇𝑜𝑐𝑜𝑠𝜙𝑇 = 1 − [
𝑚𝑜𝑠𝑐𝜔𝑜𝑠𝑐

2

𝑘
]     (3-35) 

and 

𝐶𝑇𝑜𝑠𝑖𝑛𝜙𝑇 = [
𝑐𝜔𝑜𝑠𝑐

𝑘
]      (3-36) 
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where the total force coefficient CT0 and phase ϕT are the unknowns and amplitude A has vanished 

from the input quantities on the right side of eq. (3.35) and (3.36).   

3.3.4.  Velocity-force, coefficient, and phase 

Next, we split FY,Total into added mass force and the remaining component FU(t). 

𝐹𝑇(𝑡) = 𝐹𝐴(𝑡) + 𝐹𝑈(𝑡)    (3-37) 

Combining it with eq. (3-10) it yields: 

𝐹𝑇𝑜 𝑠𝑖𝑛(𝜔𝑜𝑠𝑐𝑡 + 𝜙𝑇) = −𝑚𝐴𝑦̈(𝑡) +𝐹𝑈(𝑡)    (3-38) 

Or 

(𝑚𝑜𝑠𝑐 + 𝑚𝐴)𝑦̈(𝑡) + 𝑐𝑦̇(𝑡) + 𝑘𝑦(𝑡) = 𝐹𝑈(𝑡)    (3-39) 

It should be noted that under the ideal conditions where all eq. (3-10 to 3-14) hold - that is, the 

oscillator response in FIO is a perfect single-frequency sinusoid - force FU(t) is the force 

component of the total force FT(t) in phase with velocity 𝑦̇(𝑡) as proven in the next section (3.3.5).  

In the actual experimental data, the difference FT(t)-FA(t)-FU(t) will not be zero as in eq. (3-37), 

but FR(t) accounting for nonlinear effects – such as the direct vortex effect. In fact, this value is 

plotted in Figures (4.1.n,4.3.n) and is referred to as FRo as will be seen in Chapter 4. 

Using eq. (3-39) and repeating the steps in Section 3.3.3 we have 

(𝑚𝑜𝑠𝑐 + 𝑚𝐴)𝑦̈(𝑡) + 𝑐𝑦̇(𝑡) + 𝑘𝑦(𝑡) = 𝐹𝑈𝑜 𝑠𝑖𝑛(𝜔𝑜𝑠𝑐𝑡 + 𝜙𝑈)  (3-40) 

[𝑚𝑜𝑠𝑐 + 𝑚𝐴 +
𝐹𝑈𝑜𝑐𝑜𝑠𝜙𝑈

𝐴𝜔𝑜𝑠𝑐
2 ] ÿ(t) + [𝑐 −

𝐹𝑈𝑜𝑠𝑖𝑛𝜙𝑈

𝐴𝜔𝑜𝑠𝑐
] 𝑦̇(𝑡) + 𝑘𝑦(𝑡) = 0  (3-41) 

𝐹𝑈𝑜𝑐𝑜𝑠𝜙𝑈 = 𝑘𝐴 − (𝑚𝑜𝑠𝑐 + 𝑚𝐴)𝐴𝜔𝑜𝑠𝑐
2      (3-42) 



28 
 

𝐹𝑈𝑜𝑠𝑖𝑛𝜙𝑈 =  𝑐𝐴𝜔𝑜𝑠𝑐        (3-43) 

Nondimensionalizing (3.41) by kA gives 

[−
(𝑚𝑜𝑠𝑐+𝑚𝐴)𝜔𝑜𝑠𝑐

2

𝑘
] 𝑠𝑖𝑛(𝜔𝑜𝑠𝑐𝑡) + [

cωosc

k
] 𝑐𝑜𝑠(𝜔𝑜𝑠𝑐𝑡) + 𝑠𝑖𝑛(𝜔𝑜𝑠𝑐𝑡) = [

𝐹𝑈𝑜

𝑘𝐴
] 𝑠𝑖𝑛(𝜔𝑜𝑠𝑐𝑡 + 𝜙𝑈) 

            (3-44) 

Expanding and matching 𝑠𝑖𝑛(𝜔𝑜𝑠𝑐𝑡)and 𝑐𝑜𝑠(𝜔𝑜𝑠𝑐𝑡)terms yields 

𝐶𝑈𝑜𝑐𝑜𝑠𝜙𝑈 = 1 − [
(𝑚𝑜𝑠𝑐+𝑚𝐴)𝜔𝑜𝑠𝑐

2

𝑘
]    (3-45) 

𝐶𝑈𝑜𝑠𝑖𝑛𝜙𝑈 = [
cωosc

k
]      (3-46) 

From eq. (3-41), it is observed that cadded is 

𝑐𝑎𝑑𝑑𝑒𝑑 =
𝐹𝑈𝑜𝑠𝑖𝑛𝜙𝑈

𝐴𝜔𝑜𝑠𝑐
= 

2

𝑛𝑇𝑜𝑠𝑐(𝐴𝜔𝑜𝑠𝑐)2
∫ 𝐹𝑌,𝑡𝑜𝑡𝑎𝑙(𝑡)𝑦̇(𝑡)

𝑛𝑇𝑜𝑠𝑐

0
𝑑𝑡   (3-47) 

 

3.3.5. Mandatory resonance 

Eq. (3-40) represents a dynamical system in steady state forced oscillation. Applying the well-

known response equations we have: 

• Natural frequency 

𝑓𝑛,𝑤𝑎𝑡𝑒𝑟 =
1

2𝜋
√

𝑘

𝑚𝑜𝑠𝑐+𝑚𝐴
     (3-48) 

Substituting eq. (3-28) into (3-48) gives 

𝑓𝑛,𝑤𝑎𝑡𝑒𝑟 =
1

2𝜋 √
𝑘

𝑚𝑜𝑠𝑐+
𝐹𝑇𝑜𝑐𝑜𝑠𝜙𝑇

𝐴𝜔𝑜𝑠𝑐
2

      (3-49) 

Substituting eq. (3-30) into (3-49) gives 
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𝑓𝑛,𝑤𝑎𝑡𝑒𝑟 =
1

2𝜋 √
𝑘

𝑚𝑜𝑠𝑐+
𝑘𝐴 − 𝑚𝑜𝑠𝑐𝐴𝜔𝑜𝑠𝑐

2

𝐴𝜔𝑜𝑠𝑐
2

     (3-50) 

𝑓𝑛,𝑤𝑎𝑡𝑒𝑟 =
1

2𝜋 √
𝑘

𝑚𝑜𝑠𝑐+
𝑘𝐴 

𝐴𝜔𝑜𝑠𝑐
2 −𝑚𝑜𝑠𝑐

   

𝑓𝑛,𝑤𝑎𝑡𝑒𝑟 = 
1

2𝜋
𝜔𝑜𝑠𝑐 = 𝑓𝑜𝑠𝑐       (3-51) 

 

From eq. (3-51) we can make an important inference. This process proves that when a dynamical 

system is in forced monochromatic oscillations in water and follows eq. (3-11) to (3-14), such as 

systems in FIO (VIV or galloping), the frequency of oscillation is its undamped natural frequency 

in water. 

This conclusion agrees with the experiments by [72] and the extensive data analysis by Garcia and 

Bernitsas (2018) [23]. It is also intuitively correct in FIO and leads to the eigen-relation in Section 

3.4.  

3.3.6. Phase-lead ϕU 

To confirm that eqs. (3-10) and (3-40) lead to mandatory resonance with variable added mass, 

when eqs. (3-11) to (3-14) are assumed, we must show that force FU(t) and 𝑦̇(𝑡) velocity are in 

phase, that is ϕU=π/2. Comparing eq. (3-41) to eqs. (3-27 & 3-28), shows cosϕU=0 or ϕU=π/2 . 

Alternatively, the phase for the forced system modeled by eq. (3-40) is 

𝑡𝑎𝑛𝜙𝑈 =
2ζ

𝜔𝑜𝑠𝑐
𝜔𝑛

1−
𝜔𝑜𝑠𝑐

2

𝜔𝑛
2

=
2𝜁𝑛,𝑤𝑎𝑡𝑒𝑟

𝜔𝑜𝑠𝑐
𝜔𝑛,𝑤𝑎𝑡𝑒𝑟

1−
𝜔𝑜𝑠𝑐

2

𝜔𝑛,𝑤𝑎𝑡𝑒𝑟
2

    (3-52) 

𝑡𝑎𝑛𝜙𝑈 = 
2

𝑐

√𝑘(𝑚𝑜𝑠𝑐+𝑚𝐴)

𝜔𝑛,𝑤𝑎𝑡𝑒𝑟
𝜔𝑛,𝑤𝑎𝑡𝑒𝑟

1−
𝜔𝑛,𝑤𝑎𝑡𝑒𝑟

2

𝜔𝑛,𝑤𝑎𝑡𝑒𝑟
2

    (3-53) 
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𝑡𝑎𝑛𝜙𝑈 = 

2
𝑐

√𝑘(𝑚𝑜𝑠𝑐 + 𝑚𝐴)
1

1 − 1
 

𝑡𝑎𝑛𝜙𝑈 =  ∞      (3-54) 

 

3.4. Eigen-relation at the FSI Interface 

In this section, we derive the eigen-relation which is indeed the crux of the mathematical derivation 

for this thesis. According to Section 3.2, fluid dynamics analysis confirmed that Stn (eq. 3-9) and 

Re are the only nondimensional groups required for modeling. Oscillator dynamics analysis 

revealed that consistent force nondimensionalization for FIO, based on kA and not on 0.5ρDLU2, 

results in decoupling A from the FIO problem leading to an eigen-relation. It is an eigen-relation 

as explained in Section 3.4.2. Further, equation (3-51) is an interface constraint that can be recast 

as the sought eigen-relation below.  

3.4.1. Eigen-relation  

Combining eqs. (3-9) and (3-51) yields  

𝑆𝑡𝑛 =
𝑓𝑜𝑠𝑐

𝑓𝑛,𝑣𝑎𝑐
= 𝑓∗ =

𝑓𝑛,𝑤𝑎𝑡𝑒𝑟

𝑓𝑛,𝑣𝑎𝑐
= 𝑆𝑡𝐹𝑆𝐼 = 𝑓𝑛

∗   (3-55) 

We use the symbol fn
* to indicate the ratio of the two natural frequencies in eq. (3-51). Using the 

definitions of fn,vac  and fn,water (eq. 3-51), and substituting into eq. (3-55), we have 

1

𝑓∗2
=

𝑓𝑛,𝑣𝑎𝑐
2

𝑓𝑛,𝑤𝑎𝑡𝑒𝑟
2 =

1
4𝜋2⁄  (𝑘 𝑚𝑜𝑠𝑐 

⁄ )

1
4𝜋2⁄  (𝑘 (𝑚𝑜𝑠𝑐 +

⁄ 𝑚𝐴))
      (3-56) 

1

𝑓∗2 = 
𝑚𝑜𝑠𝑐 + 𝑚𝐴

𝑚𝑜𝑠𝑐
      (3-57) 
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Dividing the right side of eq. (3-57) throughout by 𝑚𝑜𝑠𝑐 gives 

1

𝑓∗2
= 1 + 

𝑚𝐴

𝑚𝑜𝑠𝑐 
       (3-58) 

1

𝑓∗2 − 1 =
𝑚𝐴

𝑚𝑜𝑠𝑐 
       (3-59) 

Recall  

𝑚∗ = 
𝑚𝑜𝑠𝑐

𝑚𝑑
 

Dividing the right side of eq. (3-57) throughout by md gives 

1

𝑓∗2 = 
𝑚𝑜𝑠𝑐

𝑚𝑑
⁄ +

𝑚𝐴
𝑚𝑑

⁄
𝑚𝑜𝑠𝑐

𝑚𝑑
⁄

= 
𝑚∗+ 𝐶𝑎

m∗      (3-60) 

1

𝑓∗2 = 1 + 
𝐶𝑎

m∗       (3-61) 

1

𝑓∗2 − 1 = 
𝐶𝑎

m∗       (3-62) 

Equations (3-59) and (3-62) are equivalent. Combining both gives the eigen-relation as shown in 

eq. (3-63). In subsequent sections, the importance of eq. (3-63) is discussed. 

𝒎𝑨

𝒎𝒐𝒔𝒄
=

𝑪𝑨

𝒎∗
=

𝟏

𝒇∗𝟐
− 𝟏      (3-63) 

 In eq. (3-63), f* is the nondimensional frequency of cylinder oscillation. The eigen-relation is the 

black line in Fig. 3.2 shown along with the force coefficients and phases derived in Section  

3.5 below. Note that the eigen-relation is also independent of the system damping.  
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Table 3A. Eigen relation 
𝒎𝑨

𝒎𝒐𝒔𝒄
=

𝑪𝑨

𝒎∗
=

𝟏

𝒇∗𝟐
− 𝟏 

 

 

Fig. 3.2. Theoretical results for a cylinder (circular or not) in FIO (VIV, galloping). (a) Eigen-relation: CA/m* eq. (3-

63). (b) Added mass force coefficient CAo eq. (3-71). (c) Total force coefficient CTo eq. (3-78). (d) Total force phase 

lead ϕT [degree] eq. (3-79). (e) Velocity-force coefficient CUo eq. (3-75). 

 

3.4.2. Use of the term eigen-relation in this thesis 

Conventionally, eigenvalue problems are defined as follows: 

“Let T:V→V be a linear transformation from a vector space V to itself. We say that λ is 

an eigenvalue of T if there exists a nonzero vector v∈V such that T(v)=λv.” 

A 1x1 scalar matrix consists of a single element, whose determinant is simply the value of that 

element - therefore, such a matrix is invertible unless it is equal to the 1x1 zero matrix. Eigen 



33 
 

relation (3-63) derived above is as one such 1x1 scalar matrix, which like all non-zero square 

matrices is invertible and has an eigenvalue.  

In this research, the word “eigen-relation” is used in its generic form: It is a relation between 

forcing and system properties that has to hold for a nontrivial solution to exist. Such as the Euler 

linear bucking load equation, the dispersion relation in free surface linear wave theory, the natural 

frequency of a linear oscillator, etc. In the linear VIV and galloping oscillations eq. (3-63) is the 

eigen relation that has to hold for a single frequency response to exist.  

Equation (3-63) serves as a “characteristic or benchmark” equation for the solution to exist and  

from there other response of the oscillator (forces) are derived. It is a characteristic equation for 

FSI problems in the sense that we can pick an f* at any point of the oscillator and define the 

oscillator response at that point. The one response that cannot be defined – as in all linear eigen 

solutions – is the amplitude of oscillation. This would be discussed further in subsequent sections 

of this chapter.  

In summary, the term “eigen-relation” is used in its generic form, which means that a specific 

relation has to hold for a nontrivial solution to exist. 

3.4.3. The nature of eigen-relation (3A) 

There are several features of eq. (3-63) that require discussion.  

• For a given dimensionless frequency of oscillation f*, a property of the oscillator at the interface 

is defined. That is, CA/m* is set for FSI to occur at f*. Its value is independent of the amplitude of 

oscillation. The analogy of eq. (3-63) to the Eigen-relation of the free surface waves  

𝜔2 = 𝑘𝑔𝑡𝑎𝑛ℎ(𝑘𝑑)       (3-64) 
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where 𝑘 = 2𝜋 𝜆⁄  is the wave number, λ is wavelength, and d is water depth, can help illustrate the 

use of eq. (3-63) In both cases, the frequency of the oscillator at the interface is selected resulting 

in unique properties of the oscillator; λ for waves and CA/m* for the FSI oscillator. That is, in both 

cases, oscillations of different frequencies are dispersed. A cannot be defined by either Eigen-

relation. The linear wave-dispersion relation eq. (3-64) for waves (also valid to second order) does 

not include A.  

• A can be defined by external factors related to entry energy-level and energy-capacity of the 

oscillator. For waves, as wind transfers energy into the water-air interface, a minimum level is 

needed to initiate a longer wave, and too much energy will result in wave breaking and energy 

transfer to longer waves. In the FSI oscillator, a minimum energy level is needed to overcome the 

Coulomb friction, opposing tip-effects, and other damping of the oscillator with the specific CA/m* 

value and to initiate FSI at a specific f*. Excessive energy put into the oscillator will terminate the 

FSI as the vortex streets modify the driving force.  

• A most important point in this discussion is the involvement of damping in the Eigen-relation. 

The system damping does not appear in the Eigen-relation. Damping will be involved in the onset 

and termination of FIO.  

3.5. Force Coefficients 

Based on Section 3.3, explicit force coefficient equations are derived. Those are independent of 

amplitude A due to the consistent nondimensionalization of force by kA. These force coefficients 

are derived as shown in this section and their formulae are tabulated in table (3B). 
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3.5.1. Added-mass force coefficient CA0 

From eq. (3-38), we have  

𝐹𝐴(𝑡) = −𝑚𝐴𝑦̈(𝑡) = 𝑘𝐴𝐶𝐴𝑜 𝑠𝑖𝑛(𝜔𝑜𝑠𝑐𝑡)    (3-65) 

𝐹𝐴(𝑡) = −𝑚𝐴𝑦̈(𝑡) = 𝑚𝐴𝐴𝜔𝑜𝑠𝑐
2 𝑠𝑖𝑛(𝜔𝑜𝑠𝑐𝑡) = 𝑘𝐴𝐶𝐴𝑜 𝑠𝑖𝑛(𝜔𝑜𝑠𝑐𝑡) (3-66) 

From eq. (3-65), using the eigen-relation (3-63), we have 

𝐶𝐴𝑜 =
𝑚𝐴𝐴𝜔𝑜𝑠𝑐

2

𝑘𝐴
        (3-67) 

Recall from eq. (3-51) that 𝜔𝑜𝑠𝑐 = 𝜔𝑛,𝑤𝑎𝑡𝑒𝑟 , hence  

𝐶𝐴𝑜 =
𝑚𝐴𝐴𝜔𝑛,𝑤𝑎𝑡𝑒𝑟

2

𝑘𝐴
=

𝑚𝐴𝜔𝑛,𝑤𝑎𝑡𝑒𝑟
2

𝑘
     (3-68) 

Substituting 𝜔𝑛,𝑤𝑎𝑡𝑒𝑟
2 = 

𝑘

𝑚𝑜𝑠𝑐+𝑚𝐴
 into eq. (3-68) yields 

𝐶𝐴𝑜 =
𝑚𝐴

𝑚𝑜𝑠𝑐+𝑚𝐴
=

𝑚𝐴
𝑚𝑑

⁄
𝑚𝑜𝑠𝑐

𝑚𝑑
⁄ +

𝑚𝐴
𝑚𝑑

⁄
=

𝐶𝐴

𝐶𝐴+m∗    (3-69) 

From the eigen relation in eq (3-63),  

𝐶𝐴

𝑚∗ =
1−𝑓∗2

𝑓∗2         (3-70) 

Dividing eq (3-69) throughout by m∗ and substituting (3-70) into the expression, we have 

𝐶𝐴𝑜 = 

𝐶𝐴
𝑚∗⁄

𝐶𝐴
𝑚∗⁄ + m∗

m∗⁄
=  

1 − 𝑓∗2

𝑓∗2

1 − 𝑓∗2

𝑓∗2 + 1
=

1 − 𝑓∗2

𝑓∗2

1
𝑓∗2

⁄  

𝑪𝑨𝒐 = 𝟏 − 𝒇∗𝟐       (3-71) 
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CA0 (eq.3-71) is shown in Fig. 3.2 (green solid line) and is independent of damping like the FIO 

Eigen-relation relation. The added mass force is the dominant driver of FIO but not over the entire 

f* range. As Fig.3.2 shows, in the vicinity of f*=1 when the frequency of oscillation is near fn,vac, 

the added mass force is nearly zero and the dominant force is the velocity-force. The vortices, 

albeit applying small forces directly, modify the flow through the vortex street making the added 

mass force or the velocity-force dominant depending on f*. Vortices are the dominant player in 

VIV by modifying the flow, not by direct force application. We discuss this in greater details in 

chapter five where VIV and galloping characteristics are compared. 

3.5.2. In-phase-with-velocity force coefficient CUo 

From eq. (3-46), we derive CU0, which depends linearly on f* and on damping ratio ζvac as shown 

by the blue lines in Fig. 3.2. As can be seen from eq. (3B) and fig 3.2, CUo is in general the smaller 

component of CTo except in the vicinity of (CA/m*=0, f*=1). 

From (3-46) we have, 

𝐶𝑈𝑜𝑠𝑖𝑛𝜙𝑈 =
𝑐𝜔𝑜𝑠𝑐

𝑘
  

Since the velocity force Fu(t) is the force component of the total force in phase with the velocity , 

𝑠𝑖𝑛𝜙𝑈 = 1, also recall from (3-50) that at resonance, ωosc = ωn,water hence (3-46) becomes  

𝐶𝑈𝑜 =
𝑐𝜔𝑜𝑠𝑐

𝑘
=

𝑐𝜔𝑛,𝑤𝑎𝑡𝑒𝑟

𝑘
    (3-72) 

Substituting the expression for ωn,water into (3-72) yields 

𝐶𝑈𝑜 =
𝑐

𝑘
 √

𝑘

𝑚𝑜𝑠𝑐 + 𝑚𝐴
=

𝑐

√𝑘√𝑘
 

√𝑘

√𝑚𝑜𝑠𝑐 + 𝑚𝐴
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𝐶𝑈𝑜 =
𝑐

√𝑘(𝑚𝑜𝑠𝑐+𝑚𝐴)
= 2𝜁𝑛,𝑤𝑎𝑡𝑒𝑟    (3-73) 

Further manipulation of eq (3.73) gives, 

𝐶𝑈𝑜 =
𝑐

√𝑚𝑜𝑠𝑐𝑘
 √

𝑚𝑜𝑠𝑐

(𝑚𝑜𝑠𝑐+𝑚𝐴)
     (3-74) 

From eq. (3-57), 𝑓∗ = √
𝑚𝑜𝑠𝑐

(𝑚0𝑠𝑐+𝑚𝐴)
    and Recall that 𝜁𝑣𝑎𝑐 =

𝑐

2√𝑚𝑜𝑠𝑐 𝑘
 , Substituting these into 

eq (3.74) gives 

𝑪𝑼𝒐 = 𝟐𝜁𝒗𝒂𝒄𝒇
∗      (3-75) 

3.5.3. Total force coefficient CTo 

From eq. (3-35) and (3-36), we derive CT0, which is a function of f* and damping ratio ζvac. It is 

shown by the red lines in Fig. 3.2. As can be seen in equations in table (3B), depending on the 

value of ζvac, for f*≠0, CAo is the dominant CTo component. Below is the derivation for the total 

force coefficient. 

Squaring eq. (3-35) and (3-36) then adding them together gives 

𝐶𝑇𝑜
2 (𝑐𝑜𝑠2𝜙𝑇 + 𝑠𝑖𝑛2𝜙𝑇) = (1 − [

𝑚𝑜𝑠𝑐𝜔𝑜𝑠𝑐
2

𝑘
]) (1 − [

𝑚𝑜𝑠𝑐𝜔𝑜𝑠𝑐
2

𝑘
]) + ([

𝑐𝜔𝑜𝑠𝑐

𝑘
]) ([

𝑐𝜔𝑜𝑠𝑐

𝑘
]) (3-76) 

Recall that (𝑐𝑜𝑠2𝜙𝑇 + 𝑠𝑖𝑛2𝜙𝑇) = 1, hence eq (3-75) becomes 

𝐶𝑇𝑜 = √(1 − [
𝑚𝑜𝑠𝑐𝜔𝑜𝑠𝑐

2

𝑘
]) (1 − [

𝑚𝑜𝑠𝑐𝜔𝑜𝑠𝑐
2

𝑘
]) + ([

𝑐𝜔𝑜𝑠𝑐

𝑘
]) ([

𝑐𝜔𝑜𝑠𝑐

𝑘
])    (3-77) 

Substituting eq. (3-71,3-72 and 3-73) into (3-77), we have 

𝑪𝑻𝒐 = [(𝟏 − 𝒇∗𝟐)𝟐 + (𝟐𝜁𝒗𝒂𝒄𝒇
∗)𝟐]

𝟎.𝟓
   (3-78) 
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The force coefficients eqs. (3-71, 3-75, and 3-78) are summarized in table 3B below. 

Table 3B.  Force coefficients equations 

Added-mass force coefficient 𝐶𝐴𝑜 = 1 − 𝑓∗2 

In-phase-with-velocity force coefficient    𝐶𝑈𝑜 = 2𝜁
𝑣𝑎𝑐

𝑓∗ 

Total force coefficient 𝐶𝑇𝑜 = [(1 − 𝑓∗2)2 + (2𝜁
𝑣𝑎𝑐

𝑓∗)2]
0.5

 

 

 

3.6. Force Phases 

Based on eq. (3-66), ϕA=-π. From eq. (3-54) ϕU=π/2. From eqs. (3-35 and 3-36), we derive ϕT  

shown by the yellow lines in Fig 3.2 and equations in Table 3C. The derivation of ϕT  is shown 

below. 

Dividing eq. (3-35) by (3-36) gives 

𝐶𝑇𝑜𝑠𝑖𝑛𝜙𝑇

𝐶𝑇𝑜𝑐𝑜𝑠𝜙𝑇
= 

[
𝑐𝜔𝑜𝑠𝑐

𝑘
]

1 − [
𝑚𝑜𝑠𝑐𝜔𝑜𝑠𝑐

2

𝑘
]
 

Recall that  
𝑠𝑖𝑛𝜙𝑇

𝑐𝑜𝑠𝜙𝑇
⁄ = 𝑡𝑎𝑛𝜙𝑇. Substituting this and eqs. (3-71,3-72 and 3-75) into the above 

expression gives 

𝑡𝑎𝑛𝜙𝑇 =
𝟐𝜁𝒗𝒂𝒄𝒇

∗

𝟏−𝒇∗𝟐
=

𝐶𝑈𝑜

𝐶𝐴𝑜
     (3-79) 
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Table 3C. Force Phases 

Added-mass force phase                                 ϕA=-π 

In-phase-with-velocity force phase                                ϕU=π/2 

Total force phase 
𝑡𝑎𝑛𝜙𝑇 =

2𝜁
𝑣𝑎𝑐

𝑓∗

1 − 𝑓∗2
=

𝐶𝑈𝑜

𝐶𝐴𝑜
 

 

3.7. Force Reconstruction 

Based on the equations in Tables 3B and 3C, for a given amplitude of oscillation A, we can 

reconstruct the forces exerted on a cylinder in FIO as shown in Table 3D. 

 

Table 3D. Force Reconstruction 

Added-mass force 𝐹𝐴(𝑡) = 𝑘𝐴𝐶𝐴𝑜 sin(ωosct) 

In-phase-with-velocity force  𝐹𝑈(𝑡) = 𝑘𝐴𝐶𝑈𝑜 𝑐𝑜𝑠(𝜔𝑜𝑠𝑐𝑡) 

Total force 𝐹𝑇(𝑡) = 𝑘𝐴𝐶𝑇𝑜 sin(ωosct + 𝜙𝑇) 

 

The necessary steps involved in FIO calculations are summarized below: 

•  For a given oscillator, oscillating at fosc , eq. in Table 3A provides the oscillator added mass 

coefficient CA. 

•  The force coefficients can be calculated from eqs. in table (3B), which show their 

dependence on parameters eliminating speculations on forms of a mass-damping parameter. 

•  The force-phases are given by equations in Table 3C. 

•  The previous steps can be followed in Fig. 3.2.  
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•  The amplitude A can be specified from measurement or for modeling. This depends on the 

oscillating body mechanics and energy transfer; e.g., different oscillators may have different 

Coulomb friction, different tip-flow effects affecting the lift vs. drag length of the cylinder, etc. As 

long as FIO is initiated by energy transfer, eqs. In Tables 3A - 3C hold.  

•  Finally, the forces are reconstructed using equations in Table 3D.      
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Chapter Four 

Experimental Validation and Results 

4.1. Introduction 

This chapter validates the eigen-relation theory presented in Chapter three. Results from smooth 

cylinders and cylinders with passive turbulence stimulation are presented in this chapter in 

comparison to the theory presented in Chapter 3. 

In Section 4.2, some inferences were discussed based on the theory developed in Chapter three 

and the experimental data analyzed. 

Section 4.3 shows the results obtained experimentally for a PTC (Passive Turbulence Control) 

cylinder. One data set is presented in Section 4.3. More data are presented in Appendix B and the 

complete set of experiments are published in MRELab Report #13 and #14 [46,47].  

Section 4.4 shows the results obtained for a smooth cylinder experimentally. One data set is 

presented here. More data are presented in Appendix A and the complete set of experiments are 

published in the MRELab Report #13 [46].  

The results presented in this chapter demonstrate experimentally that an eigen-relation exists for 

transverse flow induced oscillations at the fluid structure interface. Furthermore, as seen in the 

results presented in Sections 4.3 and 4.4, these solutions are truly in alignment with experimental 

results for both VIV and galloping. 
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The theoretical formulas developed in Chapter 3, predict very accurately experimental results for 

FIO of a single cylinder on elastic supports. Both smooth cylinders and cylinders with turbulence 

stimulation (in the form of PTC) have been tested showing that the theoretical formulas collapse 

the VIV and galloping experimental results well. The theory developed in Chapter three, as 

validated by the experimental data in this chapter, is a totally novel approach to FIO and (a) 

explains all observations made experimentally on VIV and several on galloping, and (b) enables 

pursuing higher order terms in FIO which is briefly addressed in Section 5.10 but is beyond the 

scope of this thesis.  

The theory is proven to be accurate in the results shown in Sections 4.3, 4.4 and in the two 

appendices for Single Cylinders (Smooth and PTC). Several different sets of experimental results 

for linear oscillators are analyzed using the developed theory. Data sets for both smooth cylinder 

and cylinders with passive turbulence stimulation, with system damping ratio ranging from 0.02 

to 0.26, mass ratio from 1.007 to 1.984 and stiffness ranging from 400 to 1200N/m in the TrSL3 

flow regime, where the lift coefficient is high due to fully turbulent shear layers are analyzed for 

theory validation.  

4.2.  Conclusions Based on the Theory and Data Analysis 

4.2.1. Eigen-relation 

Equation in Table (3A) has been verified based on the data collected in the MRELab under the 

assumptions of the theory.  It is valid for any form of FIO as long as there is a predominant fosc. 

This is clear in VIV and galloping (Figs. 4.3 and 4.4). It is also clear in transition from VIV to 

galloping because in this dataset the onset of galloping occurs before the lower VIV branch and 

desynchronization are reached. Figures 4.1 and 4.2 show that for a cylinder which is smooth and 

consequently does not undergo galloping, the eigen-relation holds down to the last VIV oscillation. 
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4.2.2. Strouhal number Stn 

The equation in Table (3A) depends only on the generic and relevant Stn, which is equal to f*. 

Eq. (3-63) is independent of the response amplitude A and determines the ratio of the added mass 

coefficient to mass-ratio (CA/m*), which defines the oscillator properties. That is, the oscillator 

properties are decoupled from the response amplitude. Also, Re does not appear to define the 

oscillator in any way; it defines the energy into the oscillator as discussed next.  

4.2.3. Reynolds Number Re 

Along with the generic Strouhal number Stn, Reynold’s number Re fully defines the FIO. Re is not 

involved in the oscillator definition. It is obvious that it is coupled with A. Re, being proportional 

to velocity and body-size, defines the energy that can be transmitted from fluid to body, while 

amplitude defines the energy that can be absorbed by the oscillator at a given frequency. Indeed, 

as the fluid velocity increases and shear layers become fully turbulent (from TrSL2 to TrSL3 flow 

regime) the peak amplitude of oscillation A in VIV increases from about 1 to about 2, [50]. The 

lower branch gradually disappears; it is very broad in TrSL2 Govardhan, R.N., Williamson, 

C.H.K., (2006), Williamson, C.H.K., Govardhan,R,(2004) [26,78]; and it is barely noticeable in 

TrSL3 [6,7,11,16,40,65].     

4.2.4. FSI Interface 

The oscillator is the common boundary between the structure and the fluid. The boundary 

condition is the oscillator dynamics providing the eigen-relation to the FSI problem. The solution 

was revealed by consistent nondimensionalization of the oscillator dynamics by force kA rather 

than the irrelevant stagnation pressure force (0.5ρDLU2). In the VIV/transition/galloping problem, 

the eigen-solution is eq. (3A). Figs. 4.1d, 4.3d, and all graphs in Figs. 4.3-4.6 confirm it by 

comparison to experiments. 
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In the next chapter (five) of this thesis, several facts on VIV and galloping, that have been observed 

and established since the 1960’s, will be properly discussed and explained based on the developed 

theory. 

4.3. Comparison between Theory and Experiments for Cylinder with Turbulence 

Stimulation 

Figures 4.1 and 4.2 below show the results obtained by employing the eigen-relation discussed in 

Chapter 3 and the ensuing force expressions to analyze one set of experimental data on cylinders 

with passive turbulence stimulation. 

Corresponding to Fig. 4.1 are Figures B1, B3, B5, … B31 in Appendix B and Figures 4 in Report 

#13 [46].  

Corresponding to Fig. 4.2 are Figures B2, B4, B6, … B32 in Appendix B and Figures 5 in Report 

#13 [46]. 

The mass ratio m* for Figs 4.1 and 4.2 is 1.685 with stiffness of 400N/m. The theoretical results 

are marked as “--------“; the values calculated by theoretically at points where experimental data 

is available by “oooo”; and the corresponding experimental value by “++++”.  The different colors 

in the figures show the different stages of FIO. These stages are consistent with the way they have 

been defined in the literature over the years. For instance, in Feng (1968) [19], there were two 

amplitude branches, the ‘initial’ branch and the ‘lower’ branch. Later in 1999, Khalak and 

Williamson defined another branch, between the previous two branches called the ‘upper response 

branch’. Williamson and Govardhan (2004) [78] showed in their work the initial excitation stage, 

the upper branch, the lower branch, and the desynchronization region.  

All the figures in this thesis with the exception of those in chapter 3 use circles for theoretical 

predictions and crosses for experimental measurements and different colors (see Nomenclature)
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for different response branches to facilitate understanding the differences and limits between VIV, 

transition from VIV to galloping, and fully developed galloping stage. The blue colored points are 

the initial and upper VIV branches, the red colored points are the lower VIV branch and 

desynchronization region, the green colored points falls in the transition region between VIV and 

galloping, at this point the flow is partly turbulent and finally the black colored points are the fully 

developed galloping phase. The highest amplitude occurs in this region. 

Fig. 4.1 presents VIV and galloping data for a circular cylinder with turbulence stimulation. The 

time history of displacement y(t) is the only direct experimental measurement. Derived from y(t)  

are the dominant frequency fosc
* and the reconstructed total force FT(t).  

In Fig. 4.1, the important response properties of the oscillator are plotted versus f* or U*n,vac/U/Re 

as follows:  

• Fig. 4.1.a: Amplitude ratio A* vs. U*n,vac/U/Re. The various VIV branches, transition from VIV 

to galloping, and galloping are clearly visible. In transition, both mechanisms of VIV and 

galloping coexist and contribute to the fast increase in amplitude. In fully developed galloping 

vortex shedding desynchronizes and acts out of phase with the galloping mechanism – 

sometimes enhancing and sometimes opposing galloping. In fully developed galloping, the 

amplitude exhibits a plateau due to the limits of the facility. If the length of the oscillator rails 

was unlimited the amplitude would increase till a stop or spring were hit.  

• Fig. 4.1.b: f* vs. U*n,vac/U/Re. It shows the relation between the two variables which are used 

as independent variables for presenting the results. 

• Fig. 4.1.c: Amplitude ratio A* vs. f*. It shows how data collapse differently from Fig. 4.1.a. 

Particularly the data in the galloping region, collapse on a single f* point regardless of the flow 

velocity U. 
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• Fig. 4.1.d: Ratio of added mass coefficient and mass ratio vs f*. It shows the eigen relation eq. 

3A. The graph shows how closely the experimental results follow the eigen relation and that the 

ratio CA/m*=mA/md is constant.  

• Fig. 4.1.e: Added mass coefficient vs f*. This is a figure derived directly from the eigen-relation 

after multiplying CA/m* in Fig. 4.1.d by m*. It shows the dependence of CA on f*. From the 

beginning of VIV, CA starts decreasing in order to maintain the nonlinear resonance. At the end 

of synchronization, as the galloping mechanism starts becoming stronger, CA returns to non-

VIV values and reaches a constant value of 0.8 in fully developed galloping. That value stays 

constant in galloping. 

• Fig. 4.1.f: Theoretical added mass coefficient CAo vs f*. The next value to be calculated is that 

of the added mass force coefficient. The experimental values fall exactly inside the circles on 

the theoretical line. 

• Fig. 4.1.g: Added mass force magnitude FAo vs. f*. This shows the theoretical force in phase 

with the acceleration. As expected, following Fig. 4.1.f for CAo, FAo in Fig. 4.1.g also shows the 

experimental values falling exactly inside the circles on the theoretical line. 

• Fig. 4.1.h: Total force coefficient CTo vs. f*.  The total force coefficient is calculated from eq 

(3B) 

• Fig. 4.1.i: Total force phase ϕT vs. f*. It shows the phase angle between the total force and the 

displacement y(t). 

• Fig. 4.1.j: Total force magnitude FTo vs. f*. Here is where we would expect some differences 

accounting for the higher order terms. That is, FTo contains the two first order terms in phase 

with the velocity FUo and the acceleration FAo  plus the higher order terms or FRo. 
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• Fig. 4.1.k: Coefficient CUo of force in-phase with velocity vs. f*. This also exhibits excellent 

agreement between theory and experiments. 

• Fig. 4.1.l: Force in-phase with velocity FUo vs. f*. This also exhibits excellent agreement 

between theory and experiments as expected following the agreement of CUo with experiments. 

• Fig. 4.1.m: Residuary force coefficient CRo vs. f* 

• Fig. 4.1.n: Residuary force FRo vs. f* 

• Fig. 4.1.o: Ratio FRo/FTo [%] of vs. f* 

The last three figures include all the nonlinear terms which are beyond the eigen-relation and 

linear theory. This information is used to discuss the magnitude of the vortex force in Section 

5.10.  
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Figure 4.1. Circular cylinder with turbulence stimulation, m*=1.685, k=400N/m, ζvac=0.06; D=8.89cm (3.5"), 

L=90.17cm (35.5") Theoretical and experimental comparison of FSI (VIV) properties plotted vs. f*  

(a) ---- Theory using eqs. (3A)-(3D). (b) oooo Reconstructed based on theory and measured f*. (c) ++++ Measured experimentally 
 

   

Fig. 4.1.a. Amplitude ratio A*=A/D  Fig. 4.1.b. f*=fosc/fn,vac  Fig. 4.1.c. A*=A/D vs. f*  

   

Fig. 4.1.d. Eigen-relation CA/m*; ---Theory 

using eq. (3A). 

Fig. 4.1.e. Added mass coefficient CA vs. 

f*; ---Theory using eq. (3A) and m* 

Fig. 4.1.f. Added-mass force coefficient 

CAo; ---Theory using eqs. (3B) 

   

Fig. 4.1.g. Added mass force FAo vs. f* Fig. 4.1.h. Total force coefficient CTo vs. f* Fig. 4.1.i. Total force phase ϕT vs. f* 
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Fig. 4.1.j. Total force magnitude FTo vs. f* Fig. 4.1.k. Coefficient CUo of force in-

phase with velocity vs. f* 

Fig. 4.1.l. Force in-phase with velocity 

FUo vs. f* 

   

Fig. 4.1.m. Residuary force coefficient CRo 

vs. f* derived experimentally as FRo/kA 

Fig. 4.1.n. Residuary force FRo vs. f* 

derived experimentally using eq. (4-1) 

Fig. 4.1.o. Ratio FRo/FTo [%] of vs. f*; 

derived experimentally by eqs. (3D, 4-1) 
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A few more observations on the figures in Fig. 4.1. follow. The figures in the first row (Figs 4.1.a-

c) of fig 4.1 describe some interesting facts about the amplitude ratio A* in details. A closer look 

at them show that they are closely related. The maximum amplitude occurs at the last point as 

expected because at this point galloping is fully developed and flow is fully turbulent. A* is 

approximately 3.0 at this point (Fig 4.1a), and f* is approximately 0.85 (Fig 4.1b). Also, from Fig 

4.1b, it is interesting to note that f* increases steadily up to the final point of the initial and upper 

branch of VIV at which point its value is about 1.32. From lower branch, the value of f* starts 

decreasing steadily up until the point where galloping starts. f* remains constant at galloping 

region and it has approximately the same value as it does at the beginning of initial VIV excitation. 

This observation is more pronounced in fig 4.1c as all the black points falls on the same point on 

the f* axis. The question of f* value (f*=0.85) being the same at the onset of VIV and fully 

developed galloping would be discussed further in chapter 6. All the above observations described 

for the amplitude of oscillation can be verified as seen in the first row of all the odd numbered 

figures in Appendix B(for instance B1.a-c, B3.a-c,B5.a-c) and also in MRELab report #13 [46]. 

The same results hold even at higher damping values and higher stiffness. 

Figures in the next row 4.1d-f show the added mass coefficients. Fig 4.1f is directly derived from 

eq. (3-71). It shows the theoretical and derived added mass coefficient. Which is one of the 

variables used to derive the theoretical added mass force shown in fig 4.1g. Lastly, the residuary 

force FR derived experimentally is obtained as shown in eq. (4-1). Figs 4.1m and 4.1o show the 

residuary force coefficient and residuary force respectively. 
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Oscillator properties plotted in Fig 4.1 are replotted in Fig. 4.2 vs. U*
n,vac, U, Re since readers are 

more familiar with U*
n,vac as the independent variable. It should be reminded though that neither 

U*
n,vac nor KC are the primary Strouhal number Stn related to FIO which has been shown in chapter 

3.  

• Fig. 4.2.a: Added mass coefficient CA vs U*n,vac/U/Re. 

• Fig. 4.2.b: Theoretical added mass coefficient CAo vs U*n,vac/U/Re.  

• Fig. 4.2.c: Added mass force magnitude FAo vs. U*n,vac/U/Re. This shows the theoretical force 

in phase with the acceleration. 

• Fig. 4.2.d: Total force coefficient CTo vs. U*n,vac/U/Re. 

• Fig. 4.2.e: Total force phase ϕT vs. U*n,vac/U/Re. It shows the phase angle between the total force 

and the displacement y(t).  

• Fig. 4.2.f: Total force magnitude FTo vs. U*n,vac/U/Re. As discussed for Fig 4.1.j, we expect 

some sight differences between the theory and experiments here because higher order terms are 

being accounted for. That is, FTo contains the two first order terms in phase with the velocity 

FUo and the acceleration FAo  plus the higher order terms or FRo. 

• Fig. 4.2.g: Coefficient CUo of force in-phase with velocity vs. U*n,vac/U/Re. Theoretical CUo  

Obtained from eq. (3B), this exhibits excellent agreement between theory and experiments. 

• Fig. 4.2.h: Force in-phase with velocity FUo vs. U*n,vac/U/Re. This also shows excellent 

agreement between theory and experiments as expected following the agreement of CUo with 

experiments.  

• Fig. 4.2.i: Residuary force coefficient CRo vs. U*n,vac/U/Re. 

• Fig. 4.2.j: Residuary force FRo vs. U*n,vac/U/Re. 

• Fig. 4.2.k: Ratio FRo/FTo [%] of vs. U*n,vac/U/Re. 
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As mentioned earlier, the last three figures include all the nonlinear terms which are beyond the 

eigen-relation and linear theory. This information is used to discuss the magnitude of the vortex 

force in Section 5.10. 
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Figure 4.2. Circular cylinder with 

turbulence stimulation m*=1.685, 

k=400N/m, ζvac=0.06; D=8.89cm 

(3.5"), L=90.17cm (35.5") 

 

Theoretical and experimental comparison 

of FSI (VIV) properties plotted vs. 

U*n,vac,U and Re.  

(a) oooo Reconstructed based on theory 

using eqs. (3A) - (3D) and measured f*. (b) 

++++ Measured experimentally 

  
Fig. 4.2.a. Added-mass coefficient CA vs. 

𝑈𝑛,𝑣𝑎𝑐
∗ ; oooo Theoretical reconstruction by 

eq. (3A); ++++ Measured experimentally 

Fig. 4.2.b. Added mass force coefficient 

CAo vs. 𝑈𝑛,𝑣𝑎𝑐
∗ ; oooo Theoretical 

reconstruction using eq. (3B); ++++ 

Measured experimentally 

   
Fig. 4.2.c. Added mass force magnitude FAo 

vs. 𝑈𝑛,𝑣𝑎𝑐
∗ ; oooo Theoretical reconstruction 

by eqs.(3D); ++++Measured experimentally 

Fig. 4.2.d. Total force coefficient CTo vs. 

𝑈𝑛,𝑣𝑎𝑐
∗ ; oooo Theoretical reconstruction by 

eqs. (3B); ++++ Measured experimentally 

Fig. 4.2.e. Total force phase ϕT vs. 𝑈𝑛,𝑣𝑎𝑐
∗ ;    

oooo Theoretical reconstruction using 

eqs. (3C); ++++ Measured experimentally 
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Fig. 4.2.f. Total force magnitude FTo vs. 

𝑈𝑛,𝑣𝑎𝑐
∗ ; oooo Theoretical reconstruction by  

eqs. (3D); ++++ Measured experimentally 

Fig. 4.2.g. Coefficient CUo of force in-phase 

with velocity vs. 𝑈𝑛,𝑣𝑎𝑐
∗ ; oooo Theoretical 

reconstruction by eqs. (3B); ++++Measured 

experimentally 

Fig. 4.2.h. Force in-phase with velocity 

FUo vs.𝑈𝑛,𝑣𝑎𝑐
∗ ; oooo Theoretical 

reconstruction by eqs.(3D);++++Measured 

experimentally 

   

Fig. 4.2.i. Residuary force coefficient CRo vs. 

𝑈𝑛,𝑣𝑎𝑐
∗  derived experimentally as FRo/kA 

Fig. 4.2.j. Residuary force magnitude FRo 

vs. 𝑈𝑛,𝑣𝑎𝑐
∗  derived experimentally by eq. (4-

1) 

Fig. 4.2.k. Ratio FRo/FTo [%] of vs. 𝑈𝑛,𝑣𝑎𝑐
∗ ; 

derived experimentally by eqs. (3D, 4-1) 
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Fig. 4.2 clearly show the reduced velocities at which the different stages of FIO begin and 

terminates. 

From fig 4.2a, we can infer that galloping starts at a reduced velocity of about 11. This is not 

always the case as seen for the same stiffness and damping ratio but different mass ratio. for m* 

=1.007 (Fig. B2.a) galloping starts at about reduced velocity of 7.5. For m* = 1.34 (Fig B10.a), it 

starts at 10, while for m*= 1.89 (Fig B26.a) it starts at 12. Hence, we conclude that the higher the 

mass ratio m*, the later the reduced velocity at which initiation of galloping starts. More discussion 

on this in chapters 5 and 6. 

Both Fig 4.2a and Fig 4.2b show the calculated added mass. The difference though is that 4.2b is 

the theoretical calculated added mass derived directly from the formula. Eq (3-71) while 4.2a is 

derived as shown in Section 3.3.2. It is interesting to note that they both have the same trajectory 

despite the way they are calculated. 

Fig 4.2e shows the phase of the total force with the displacement. Looking closely, we see that the 

phase angle gets to about 170 degree at the upper VIV branch after which it starts to drop. 

According to eq. (3-37), the vector sum of the added mass force (Fig 4.2c) and force in phase with 

the velocity (Fig 4.2h) gives the total force FTo (Fig 4.2f). Note that even though some of the values 

in the added mass force fig 4.2c are negative, the added mass force phase is negative as shown in 

table 3C and hence when combined vectorially with Fig 4.2h, gives the total force as shown in Fig 

4.2f. This is in agreement with Fig 4.2f and fig 4.1j which shows that maximum total force (About 

32N) occurs at the galloping region. 
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Finally, for Fig 4.2, just as we discussed for Fig 4.1, the residuary force is calculated 

experimentally and derived as shown in eq. (4-1). 4.2k shows the ratio of the residuary force

compared to the total force. This would be discussed further when discussing direct vortex forces 

in Chapter 5.  

 

4.4 Comparison between Theory and Experiments for Smooth Cylinder 

Fig. 4.3 is the counterpart of Fig. 4.1 for a smooth circular cylinder, which unlike Fig 4.1, exhibits 

only VIV, not galloping. The figures below show the results obtained by analyzing one set of 

smooth cylinder experimental data.  In the figures presented below, the mass ratio m* is 1.595, 

stiffness k =400N/m and damping ratio is 0.06. All the figures show that the eigen relation matches 

the experimental results. Even the phase angle results (4.3.i) collapse well.  

Corresponding to Fig. 4.3 are Figures A1, A3, A5, … A15 in Appendix A and Figures 6 in Report 

#13 [46].  

Corresponding to Fig. 4.4 are Figures A, A4, A6, … A16 in Appendix A and Figures 7 in Report 

#13 [46]. 

As established in Chapter three, f* is an important dimensionless parameter, hence the oscillator 

properties are plotted versus f* or U*n,vac/U/Re as follows: 

• Fig. 4.3.a: Amplitude ratio A* vs. U*n,vac/U/Re. This figure shows that there are only two stages 

of FIO here compared to the four in Figs 4.1 and 4.2. As expected, galloping does not occur 

here since it is a smooth cylinder test result. 

•  Fig. 4.3.b: f* vs. U*n,vac/U/Re  to show the relation between the two variables which are used 

as independent variables for presenting the results. 

• Fig. 4.3.c: Amplitude ratio A* vs. f*. It shows how data collapse differently from Fig. 4.3.a. 
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• Fig. 4.3.d: Ratio of added mass coefficient and mass ratio vs f*. It shows the eigen relation eq. 

3A. The graph shows how closely the experimental results follow the eigen relation and that the 

ratio CA/m*=mA/md is constant.  

• Fig. 4.3.e: Added mass coefficient vs f*. 

• Fig. 4.3.f: Theoretical added mass coefficient CAo vs f*. The next value to be calculated is that 

of the added mass force coefficient. The experimental values fall exactly inside the circles on 

the theoretical line. 

• Fig. 4.3.g: Added mass force magnitude FAo vs. f*. This shows the theoretical force in phase 

with the acceleration. As expected, following Fig. 4.3.f for CAo, FAo in Fig. 4.3.g also shows the 

experimental values falling exactly inside the circles on the theoretical line. 

• Fig. 4.3.h: Total force coefficient CTo vs. f*. 

• Fig. 4.3.i: Total force phase ϕT vs. f*. It shows the phase angle between the total force and the 

displacement y(t). 

• Fig. 4.3.j: Total force magnitude FTo vs. f*. Total force magnitude FTo vs. f*. Here is where we 

would expect some differences accounting for the higher order terms. That is, FTo contains the 

two first order terms in phase with the velocity FUo and the acceleration FAo  plus the higher 

order terms or FRo. 

• Fig. 4.3.k: Coefficient CUo of force in-phase with velocity vs. f*. This exhibits excellent 

agreement between theory and experiments. 

• Fig. 4.3.l: Force in-phase with velocity FUo vs. f*. This also exhibits excellent agreement 

between theory and experiments as expected following the agreement of CUo with experiments.  

• Fig. 4.3.m: Residuary force coefficient CRo vs. f* 

• Fig. 4.3.n: Residuary force FRo vs. f* 
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• Fig. 4.3.o: Ratio FRo/FTo [%] of vs. f* 

Figs 4.3.m – 4.3.o derived from eqs. (3D and 4-1), include all the nonlinear terms which are beyond 

the eigen-relation and linear theory. This information is used to discuss the magnitude of the vortex 

force in Section 5.10.  

Lastly, as discussed in the previous section, the first row of Fig 4.3 shows some interesting things 

about the amplitude ratio A* in details. As Fig 4.3b shows, f* increases steadily from the first point 

of VIV initiation up to the last point of the lower branch. In fact, this same trend holds irrespective 

of the mass ratio, stiffness and damping ratio as seen from results in Appendix A. (Figs A1.b, A3.b, 

A5.b, and so on). On the other hand, Fig 4.3a shows that amplitude ratio A* increases from VIV 

initiation till a point where the reduced velocity is 5 after which it starts decreasing steadily up 

until the last point of lower branch.   
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Figure 4.3. Theoretical and experimental comparison of FSI (VIV) properties plotted vs. f*, for a smooth circular cylinder: D=3.5", 

L=35.5", m*=1.595, end-springs with k=400N/m, total damping-ratio in vacuo ζvac=0.06 

(a) ---- Theory using eqs. (3A)-(3D). (b) oooo Reconstructed based on theory and measured f*. (c) ++++ Measured experimentally  

 
  

Fig. 4.3.a. Amplitude ratio A*=A/D of 

measured displacement y(t). 

Fig. 4.3.b. f*=fosc/fn,vac determined by 

Discrete Fourier Transform of y(t) 

Fig. 4.3.c. A*=A/D vs. f*  

   

Fig. 4.3.d. Eigen-relation CA/m*; ---Theory 

using eq. (3A) 

Fig. 4.3.e. Added mass coefficient CA vs. 

f*; ---Theory using eq. (3A) and m* 

Fig. 4.3.f. Added-mass force coefficient 

CAo; ---Theory using eqs. (3B) 

   
Fig. 4.3.g. Added mass force FAo vs. f*  Fig. 4.3.h. Total force coefficient CTo vs. 

f*  
Fig. 4.3.i. Total-force phase ϕT vs. f* 
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Fig. 4.3.j. Total-force magnitude FTo vs. f*;  Fig. 4.3.k. Coefficient CUo0 of force in-

phase with velocity vs. f* 

Fig. 4.3.l. Force in-phase with velocity FUo 

vs. f* 

   
Fig. 4.3.m. Residuary force coefficient CRo 

vs. f* derived experimentally as FRo/kA 

Fig. 4.3.n. Residuary force magnitude FRo 

vs. f* derived experimentally by eq. (4-1) 

Fig. 4.3.o. Ratio FRo/FTo [%] vs. f*; derived 

experimentally using eqs. (3D, 4-1) 



61 
 

 

Oscillator properties plotted in Fig 4.3 are replotted in Fig. 4.4 vs. U*
n,vac, U, Re since readers are 

more familiar with U*
n,vac as the independent variable. Fig. 4.4 is the counterparts of fig. 4.2 for a 

smooth circular cylinder, which unlike Figs 4.2, exhibits only VIV, not galloping. 

• Fig. 4.4.a: Added mass coefficient CA vs U*n,vac/U/Re. 

• Fig. 4.4.b: Theoretical added mass coefficient CAo vs U*n,vac/U/Re.  

• Fig. 4.4.c: Added mass force magnitude FAo vs. U*n,vac/U/Re. This shows the theoretical force 

in phase with the acceleration. 

• Fig. 4.4.d: Total force coefficient CTo vs. U*n,vac/U/Re. 

• Fig. 4.4.e: Total force phase ϕT vs. U*n,vac/U/Re. It shows the phase angle between the total force 

and the displacement y(t).  

• Fig. 4.4.f: Total force magnitude FTo vs. U*n,vac/U/Re. As discussed for Fig 4.3.j, we expect 

some sight differences between the theory and experiments here because higher order terms are 

being accounted for. That is, FTo contains the two first order terms in phase with the velocity 

FUo and the acceleration FAo plus the higher order terms or FRo. 

• Fig. 4.4.g: Coefficient CUo of force in-phase with velocity vs. U*n,vac/U/Re. Theoretical CUo  

Obtained from eq. (3B), this exhibits excellent agreement between theory and experiments. 

• Fig. 4.4.h: Force in-phase with velocity FUo vs. U*n,vac/U/Re. This also shows excellent 

agreement between theory and experiments as expected following the agreement of CUo with 

experiments.  

• Fig. 4.4.i: Residuary force coefficient CRo vs. U*n,vac/U/Re. 

• Fig. 4.4.j: Residuary force FRo vs. U*n,vac/U/Re. 

• Fig. 4.4.k: Ratio FRo/FTo [%] of vs. U*n,vac/U/Re.
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Figure 4.4. Theoretical and experimental 

comparison of FSI (VIV) properties 

plotted vs. f*, for a smooth circular 

cylinder: D=3.5", L=35.5", m*=1.595, 

end-springs with k=400N/m, total 

damping-ratio in vacuo ζvac=0.06 

(a) oooo Reconstructed based on theory 

using eqs. (3A)-(3D) and measured f*. 

(b) ++++ Measured experimentally 

  

Fig. 4.4.a. Added-mass coefficient CA vs. 

𝑈𝑛,𝑣𝑎𝑐
∗ ; oooo Theoretical reconstruction by 

eq. (3A); ++++ Measured experimentally 

Fig. 4.4.b. Added-mass force coefficient CAo 

vs.𝑈𝑛,𝑣𝑎𝑐
∗ ; oooo Theoretical reconstruction 

by eqs.(3B);++++Measured experimentally. 

   

Fig. 4.4.c. Added-mass force magnitude 

FAo vs.𝑈𝑛,𝑣𝑎𝑐
∗ ; oooo Theoretical 

reconstruction by eqs. (3D); ++++ 

Measured experimentally 

Fig. 4.4.d. Total-force coefficient CTo vs. 

𝑈𝑛,𝑣𝑎𝑐
∗ ; oooo Theoretical reconstruction by 

eqs. (3B); ++++ Measured experimentally 

Fig. 4.4.e. Total-force phase ϕT vs. 𝑈𝑛,𝑣𝑎𝑐
∗ ; 

oooo Theoretical reconstruction by eqs. 

(3C); ++++ Measured experimentally 
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Fig. 4.4.f. Total-force magnitude FTo vs. 

𝑈𝑛,𝑣𝑎𝑐
∗ ; oooo Theoretical reconstruction 

by eq. (3D); ++++ Measured 

experimentally 

Fig. 4.4.g. Coefficient CUo of force in-

phase with velocity vs. 𝑈𝑛,𝑣𝑎𝑐
∗ ; oooo 

Theoretical reconstruction by eqs. (3B); 

++++ Measured experimentally 

Fig. 4.4.h. Residuary force magnitude FUo 

vs. 𝑈𝑛,𝑣𝑎𝑐
∗ ; oooo Theoretical reconstruction 

by eqs. 3(D); ++++ Measured 

experimentally 

   

Fig. 4.4.i. Residuary force coefficient CRo  

derived experimentally as FRo/kA 

Fig. 4.4.j. Residuary force FRo vs. 𝑈𝑛,𝑣𝑎𝑐
∗  

derived experimentally using eq. (4-1) 

Fig. 4.4.k. Ratio FRo/FTo [%] of vs. 𝑈𝑛,𝑣𝑎𝑐
∗ ; 

derived experimentally by eqs. (3D, 4-1) 
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Figs. 4.5 and 4.6 show the effect of m* and k on f* and ranges of synchronization in VIV and galloping. Both are discussed extensively 

in Section 5.7.  

To conclude this Chapter, it has been shown that the agreement between theory and experimental measurements is excellent for 

CA/m*, CA; CAo, ϕA, FAo; CTo, ϕT, FTo; and CUo, ϕU, FUo. The residuary force from the experiments is  

𝐹𝑅(𝑡) =  𝐹𝑇(𝑡) − 𝐹𝐴(𝑡)−𝐹𝑈(𝑡)            (4-1) 

calculated as the difference between experimental measurements and the single-frequency-response equations (3D). The results, 

constituting mostly the direct vortex force (further discussed in Section 5.8-5.10), are shown in Figs. 4.1.m-o; 4.2i-k; 4.3m-o; 4.4i-k. 
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Fig. 4.5. CA/m* vs. f* [FSI eigen-relation eq. (3A)] for different (m*, k) pairs. (a) ---- Theory using eq. (3A). (b) oooo Reconstructed 

based on theory and measured f*. (c) ++++ Measured experimentally 

VIV and galloping of a circular cylinder with turbulence stimulation; D=3.5", L=35.5", total damping ratio in vacuo ζvac=0.06 
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Fig. 4.6. CA/m* vs. f* [FSI eigen-relation eq. (3A)] for different (m*, k) pairs. (a) ---- Theory using eqs. (3A). (b) oooo Reconstructed 

based on theory and measured f*. (c) ++++ Measured experimentally 

VIV and galloping of a circular cylinder with turbulence stimulation; D=3.5", L=35.5", total damping ratio in vacuo ζvac=0.10 
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Chapter Five 

Discussion: VIV Facts – Old & New 

The theory developed in Chapter 3 was compared to the extensive experimental data collected 

in the MRELab over a decade. Since the first models of VIV by Strouhal (1878) [63] and Rayleigh 

Lord (1896) [51] were developed, thousands of papers have been published and experiments have 

been conducted. Over the years, those studies have established numerous experimental 

observations on VIV, which are studied in this Chapter. They are all explained based on the derived 

theory and some are corrected and interpreted properly. 

5.1. Is VIV lock-in or resonance?  

The lock-in phenomenon initiates when the frequency of vortex shedding is close to the natural 

frequency of the oscillating/vibrating structure. When this occurs, it can lead to a large and 

destructive oscillation/vibration causing the structure to fail. The lock-in phenomenon for the case 

of flexibly-mounted, rigid cylinders in uniform flow has been extensively studied and reviewed by 

Bearman, 1984 [4]; Sarpkaya, 2004 [57]; Williamson and Govardhan, 2004 [78].   

There is a long-standing argument among researchers of VIV whether VIV is a lock-in 

phenomenon [57] or a nonlinear resonance with variable added mass [78]. To answer this research 

question, let us go back to the basics by considering the modeling equations. The flow is in the x-

direction. The motion of the cylinder in the y-direction is modeled by equation (3-10). 

As eqs. (3-51) and (3-54) prove, the two are equivalent. A cylinder in VIV is under excitation 

due to the synchronization between body motion and vortex shedding. Even as Re increases and 
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vortex patterns change from 2S to 2P [69,78] and beyond [11], resulting in higher vortex shedding 

frequency, the wake frequency (groups of vortices) remains equal to the oscillator frequency. Per 

eq. (3-51), the oscillation frequency is equal to the undamped natural frequency of the oscillator 

in water with variable added mass as defined by the eigen-relation. Also, per eq. (3-54), the force 

is in phase with the oscillator velocity 𝑦̇(𝑡). That is, eqs. (3-51 and 3-54) proved that the basic 

modeling eqs. (3-10 to 3-14) lead to mandatory resonance.  

From the explanations above we can see that this controversy is unnecessary as both are simple 

modeling methods that cannot account for the range of synchronization of VIV or the self-limiting 

nature of the amplitude of oscillation. Both approaches model the response of the cylinder in FIM 

for a specific flow velocity and a given experiment. On the other hand, both approaches are useful 

in post-processing data and understanding the VIV phenomenon better.  

For better understanding of the complexity of the added mass expression in forces and 

moments on a small body moving in a 3-D unsteady flow, the reader is referred to the detailed 

analysis and derivation in [21]. The dependence of the inertia terms on absolute and/or relative 

velocity as well as the form of convective terms is explained thoroughly putting into perspective 

the simplistic nature of the inertia term used in Morison’s equation. 

In conclusion, the eigen-equation shows mandatory response in FIO. Eq. (3-51) proves that fosc 

is equal to the undamped natural frequency in water. That is, it is not affected by the system 

damping, which is an energy exchange mechanism at the interface between flow and oscillator. If 

it were a pure nonlinear resonance issue, the measured frequency of oscillation would match the 

damped natural frequency; not the undamped one. Figs. 5.1 and 5.2 show that oscillations occur 

on the eigen-relation regardless of damping ζvac. Furthermore, the eigen-relation holds for both FSI
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phenomena considered in this work, VIV and galloping, in spite of the fact that their driving 

mechanisms are fundamentally different. 

5.2. Is the mass-damping parameter m*ζ relevant? 

As discussed in Chapter two, the mass damping parameter is an important and controversial 

parameter in VIV research field. This parameter has been used by many researchers for different 

purposes over the years. For instance, Scruton in 1955 used it to characterize flow induced 

vibration of cantilevered flexible structures in wind [58]; Griffin 1973 [27]; Griffin and Koopman, 

1977 [29]. By the late 1970s to 1980s, critics started highlighting some failures of the mass-

damping parameters; Sarpkaya,1979 [54]. This made some researchers doubt the usefulness of this 

parameter, Khalak, Govardhan and Williamson underlined the use of this parameter again in 1999,  

[35]. Later on, in [70] Vandiver pointed out that none of the previous damping parameters proposed 

were useful at organizing response at reduced velocities away from the peak-in response so he 

came in with another parameter, called c*, which does not depend on the mass-damping parameter. 

                                                             𝑐∗ = 
2𝑐𝜔

𝜌𝑈2
                                                                                 (5 − 1) 

Where c is the structural system damping, 𝜔 is response or excitation frequency, 𝜌 is the fluid 

density and U is the flow speed. 

As we see from the mathematical equations derived in Chapter 3, we have explicit expressions for 

coefficients, phases, and forces, showing their explicit dependence on each parameter including 

m* and ζ, not on the product (m* ζ,). The mass damping parameter m* ζ was derived heuristically 

and we can conclude it’s of no relevance in accurately predicting VIV and galloping responses as 

some researchers believed. Hence, VIV and galloping results should not be presented or modeled 

in terms of any m*ζ  form.  Instead the exact expressions derived in Chapter 3 should be used. 
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5.3. Is the reduced velocity U* useful? 

 The reduced velocity U* is a form of the generic Strouhal number Stn, nondimensionalized by a 

different time scale and, consequently, is redundant. It’s use is limited to our familiarity with the 

onset and termination of VIV defined by U* between about 5 and 10 for m*=O(1). We know 

though, that this range changes with several parameters such as m* and k as we will see in the 

sections below. That is, the notion that VIV initiates when the oscillator’s natural frequency in 

quiescent (ideal) water is nearly equal to the Strouhal frequency fs, for a stationary cylinder, 

translates to U* between 5 and 10 only for m* on the order of O(1). As Figs. 5.1-5.5 show, the 

projection of the eigen-relation on the f*-axis changes with m* and k. Dependence of VIV on k 

and m* is discussed further in Section 5.6. 

5.4. Is the mass-ratio m* useful? 

This is also a heuristically derived parameter and it is not a governing hydrodynamic parameter; 

it is just a design parameter. Thus, m* is a useful parameter, but now its role is linked to CA by 

the eigen-relation (3A) and can be easily explained. It is also linked to k through fn,vac in the 

denominator of f*. It is discussed further in the next four subsections (5.5-5.8) 

 

5.5. Effect of m* on range of synchronization 

In 2000, Govardhan and Williamson [24] concluded that the mass ratio m* is the main parameter 

that predicts the range of synchronization. They also inferred the peak amplitude is primarily 

controlled by the mass damping parameter. Moreover, [25] established that once the mass ratio 

becomes less than a critical value of 0.54 (called critical mass), the VIV range of synchronization 

becomes infinite and referred to it as “resonance forever”. This means the oscillator will initiate 

resonance (initial VIV branch) near its natural frequency and never get out of resonance as the 
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flow velocity increases. This conclusion however was derived experimentally for the case of 

k=0N/m. The explanation and generalization of this phenomenon is provided in Section 5.7. They 

concluded that there is an infinitely wide regime of resonance and due to this, the cylinder 

resonates forever. This subsection of the discussion sheds light on the effect of m* on the range of 

VIV synchronization. 

Fig. 5.5a shows the effect m* has on CA through the eigen-relation. For high m*, the possible range 

of VIV, as projected on the f*-axis, is very narrow. The range is nearly as narrow as the bandwidth 

of linear resonance in air as Feng’s results showed in 1968 [19]. Also, a wider f* range of 

synchronization would require drastic change in CA. For low m*, the eigen-relation becomes nearly 

parallel to the f*-axis amplifying projection of a given CA segment on the f*-axis. By a small 

change in CA, which means little change in the real natural frequency in water, f* can change 

dramatically expanding the synchronization range as shown experimentally in [25].  

There is more to it though. Figure 5.5b shows experimental results on theoretical predictions for 

four m* values. The theoretical lines pivot around the (CA=0, f*=1) point, where the frequency of 

oscillation is equal to fn,vac. The experimental results move towards the steeper slope of f* (higher 

CA values) as m* decreases. Thus, we conclude that there are two counteracting ways in which m* 

affects the range of VIV synchronization:  

(a) Decrease in m* pivots the theoretical line towards paralleling the f*-axis expanding projection 

of a given CA on the f*-axis and, thus, the synchronization range.  

(b) On the other hand, decrease in m* pushes the VIV synchronization range towards the lower f* 

(= higher CA) values narrowing down the CA projection the f*-axis. This is due to the fact that m* 
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is in the denominator of fn,vac, which is in the denominator of f*; it is also confirmed by the 

experiments in Fig. 5.5b. 

In fact, the above conclusions have been proven to be true as can be seen in figures 5.1-5.4 and in 

the numerous experimental results processed shown in Appendices A and B. 

5.6. Effect of m* and k 

In this section, the importance of the mass ratio m* and spring stiffness k on the performance of 

the oscillator are investigated. Experimental results and the analytical expressions derived in 

Chapter 3 are compared and discussed. 

The following important observations are made related to m* and k: 

• For both smooth cylinders and cylinders with passive turbulence stimulation, A* increases 

as m* increases (Appendices A & B). 

• For the same mass ratio m*, maximum amplitude A* occurs at the highest stiffness 

(Appendices A & B). 

• For a constant spring stiffness k, amplitude A* increases with increasing mass ratio m*. 

Although this increment is more pronounced for the lower spring stiffness values k 

(Appendices A & B). 

• For a constant value of m*, the amplitude A* decreases with increasing stiffness k 

(Appendices A & B ). 

• The range of synchronization and transitioning from VIV to galloping becomes shorter as 

the stiffness k increases for a constant mass ratio m* (i.e the figures shrink and moves to 

the left) as shown in [47] 
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• As the mass ratio m* increases, galloping starts at a higher reduced velocity. It starts around 

U*=8 for the lowest mass ratio of 1.007 (Appendix B) and around U*=12 for the highest 

mass ratio of about 1.9 (Appendix B). For the same mass ratio though, galloping starts 

earlier as the stiffness increases. In fact, for the lowest mass ratio m* and highest stiffness 

k, galloping starts at U*=6. 

Based on the above highlighted observations, we say it is more appropriate to consider the 

effect of the combination of mass ratio m* and spring stiffness k as it appears in fn,vac in eq. (5-

2) 

𝑓𝑛,𝑣𝑎𝑐 = 
1

2𝜋
√

𝑘

𝑚𝑜𝑠𝑐
                                                        (5 − 2) 

since fn,vac is in the denominator of f*. Fig. (5.1) shows experimental results for constant ζvac=0.06 

as they fall along the theoretical eigen-relation. Fifteen sets of tests (three m* by five k values) are 

used. Figure (5.2) shows the corresponding data for ζvac=0.10. Clearly, high k and low m*, resulting 

in high fn,vac, push the range of synchronization to low f* - high CA/m*. Corresponding conclusion 

can be drawn for low k and high m*, resulting in low fn,vac, pushing the range of synchronization to 

high f* - low CA/m*  – because fn,vac is in the denominator of f*.  

Thus, low mass may result in narrower VIV synchronization range as explained also in Section 

(5.5). This conclusion appears to contradict the perpetual VIV observation in [25]. Actually, the 

observation was most likely correct but the interpretation that it is due to low m* is not necessarily 

correct. The observation was made under the limiting condition of k=0, which makes fn,vac=0 

regardless of the m* value. This pushes the synchronization range to the section of the eigen-

relation which is nearly parallel to the f*-axis, amplifying projection of a given CA segment on 
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the f*-axis. Figures (5.1) and (5.2) show that increasing (not decreasing) m* results in expansion 

of the projection of a VIV range of synchronization. Both, eigen-relation (3A) and the experimental 

results in Figs. (5.1) to (5.4), show that decreasing k has the same effect as increasing m*; both 

compress the range of synchronization (projection on the f*-axis) pushing it in the high f* end of 

eq. (3A) even at higher damping as seen in figs (5.3 and 5.4). 
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Fig. 5.1. CA/m* vs. f* [FSI eigen-relation eq. (3A)] for different (m*, k) pairs. (a) ---- Theory using eq. (3A). (b) oooo 

Reconstructed based on theory and measured f*. (c) ++++ Measured experimentally 

VIV and galloping of a circular cylinder with turbulence stimulation; D=3.5", L=35.5", total damping ratio in vacuo ζvac=0.06 
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Fig. 5.2. CA/m* vs. f* [FSI eigen-relation eq. (3A)] for different (m*, k) pairs. (a) ---- Theory using eq. (3A). (b) oooo 

Reconstructed based on theory and measured f*. (c) ++++ Measured experimentally 

VIV and galloping of a circular cylinder with turbulence stimulation; D=3.5", L=35.5", total damping ratio in vacuo ζvac=0.10 
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Fig. 5.3. CA/m* vs. f* [FSI eigen-relation eq. (3A)] for different (m*, k) pairs. (a) ---- Theory using eq. (3A). (b) oooo 

Reconstructed based on theory and measured f*. (c) ++++ Measured experimentally 

VIV and galloping of a circular cylinder with turbulence stimulation; D=3.5", L=35.5", total damping ratio in vacuo ζvac=0.22 
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Fig. 5.4. CA/m* vs. f* [FSI eigen-relation eq. (3A)] for different (m*, k) pairs. (a) ---- Theory using eq. (3A). (b) oooo 

Reconstructed based on theory and measured f*. (c) ++++ Measured experimentally 

VIV and galloping of a circular cylinder with turbulence stimulation; D=3.5", L=35.5", total damping ratio in vacuo ζvac=0.26 
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5.7. Critical mass-ratio m* 

In [25], Govardhan and Williamson reported that an m*≅0.52-0.54 exists, below which the end of 

the upper branch cannot be reached resulting in perpetual VIV. They measured this value 

experimentally for k=0N/m. They determined the end of the upper branch to be at fosc=fn,vac. Indeed, 

Figs. (5.1) and (5.2) show that for high k and low m*, f*= 1 (fosc=fn,vac) is not reached. Results 

show smaller range of synchronization because it is actually located to the left of f*= 1; not to the 

right where expanded synchronization occurs.  

In the absence of restoring force (k=0N/m), the cylinder will move with fosc=fs the Strouhal vortex 

frequency, thus, following the Strouhal curve (Figs. 4.1.b, 4.3.b). 

𝑓∗ =
𝑓𝑜𝑠𝑐

𝑓𝑛,𝑣𝑎𝑐
=

𝑓𝑠
𝑓𝑛,𝑣𝑎𝑐

=
0.2𝑈

𝐷
1
2π

√
k

mosc

 → ∞             𝐹𝑜𝑟 𝑆𝑡 = 0.2   𝑎𝑠 𝑘 → 0                        (5 − 3) 

 

This is the case when f* goes to infinity as the eigen-relation (3A) in Fig. 3-2 and Fig. 5.5a show. 

This occurs when CA+m*=0 or CA/m*=-1. That is, there is a critical point with coordinates (CA/m*=-

1,  f*=∞) where perpetual VIV occurs. That does not imply low m* since k=0, as discussed in 

Section 5.6 above. From eq. (5-3) we have 

𝑓∗ =
𝑓𝑜𝑠𝑐

𝑓𝑛,𝑣𝑎𝑐
=

𝑓𝑠
𝑓𝑛,𝑣𝑎𝑐

=
0.2𝑈

𝐷
1
2π

√
k

mosc

=
0.2𝑈

𝐷𝑓𝑛,𝑣𝑎𝑐
= 0.2𝑈𝑛,𝑣𝑎𝑐

∗ → ∞                                             𝐹𝑜𝑟 𝑠𝑡

= 0.2 𝑎𝑠      𝑘 → 0                                                                                                 (5 − 4) 
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Perpetual oscillation is apparent in terms of 𝑈𝑛,𝑣𝑎𝑐
∗ , but not true in terms of absolute velocity U, as 

the nondimensionalization in 𝑈𝑛,𝑣𝑎𝑐
∗  includes fn,vac in the denominator expanding the 𝑈𝑛,𝑣𝑎𝑐

∗  range 

for low k and/or high m* values.  

That is, the criterion for expanded synchronization range is CA+m*=0 and would occur for low 

fn,vac, that is, low k and/or high m*; not only for k=0 at low m*. 

This can easily be verified by looking at the oscillator eqn. (3-39). We can rewrite that equation as  

(𝑚𝑜𝑠𝑐 + 𝑚𝐴)𝑦̈(𝑡) + 𝑐𝑦̇(𝑡) + 𝑘𝑦(𝑡) = 𝐹𝑈(𝑡)~sin (2𝜋𝑓𝑠𝑡)    (5-5) 

 

Next, CA+m*=0 means (mA+mosc)/md=0, resulting in eqn. (5-6) 

𝑐𝑦̇(𝑡) + 𝑘𝑦(𝑡)~sin (2𝜋𝑓𝑠𝑡)      (5-6) 

 

Eqn. (5-6) is a first order linear equation whose solution shows that the oscillator oscillates at the 

frequency of vortex shedding. 

To solve eq. (5-6), we proceed by using the integrating factor method as shown  

                                    𝑦̇(𝑡) +
𝑘

𝑐
𝑦(𝑡) =

1

𝑐
sin(2𝜋𝑓𝑠𝑡)                                                                       (5 − 7) 

Next, we find the integrating factor 𝜇(𝑡) 

                                  𝜇(𝑡) = exp (∫
𝑘

𝑐
𝑑𝑡) = exp (

𝑘𝑡

𝑐
)                                                                (5 − 8) 

Multiplying eq. (5-7) throughout by the integrating factor gives 

                                 exp (
𝑘𝑡

𝑐
) 𝑦̇(𝑡) +

𝑘

𝑐
exp (

𝑘𝑡

𝑐
) 𝑦(𝑡) =

1

𝑐
exp (

𝑘𝑡

𝑐
) sin(2𝜋𝑓𝑠𝑡)                    (5 − 9) 
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                                 (exp (
𝑘𝑡

𝑐
) 𝑦(𝑡))

′

=
1

𝑐
exp (

𝑘𝑡

𝑐
) sin(2𝜋𝑓𝑠𝑡)                                                (5 − 10) 

Integrating both sides of eq. (5-10) with respect to t gives 

                                 (exp (
𝑘𝑡

𝑐
) 𝑦(𝑡)) =

1

𝑐
∫exp (

𝑘𝑡

𝑐
) sin(2𝜋𝑓𝑠𝑡) 𝑑𝑡 + 𝑎1                            (5 − 11) 

Recall that    ∫ exp(𝑎𝑥) sin(𝑏𝑥) 𝑑𝑥 =  
exp (𝑎𝑥)

𝑎2+𝑏2
[asin(𝑏𝑥) − 𝑏𝑐𝑜𝑠(𝑏𝑥)]                               (5 − 12)  

where a = 
𝑘

𝑐
 and b = 2𝜋𝑓𝑠, substituting these values into eq. (5-12) gives the right side of eq. (5-

11)  

1

𝑐
{[

exp (
𝑘𝑡
𝑐 )

𝑘2

𝑐2⁄ + 4𝜋2𝑓𝑠2
] [

𝑘

𝑐
sin(2𝜋𝑓𝑠𝑡) − 2π𝑓𝑠cos(2𝜋𝑓𝑠𝑡)] + 𝑎2} 

exp (
𝑘𝑡
𝑐
)

𝑐
{[

𝑐2

𝑘2 + 4𝜋2𝑐2𝑓𝑠2
] [

𝑘

𝑐
sin(2𝜋𝑓𝑠𝑡) − 2π𝑓𝑠cos(2𝜋𝑓𝑠𝑡)] + 𝑎2} 

exp (
𝑘𝑡

𝑐
) {[

1

𝑘2 + 4𝜋2𝑐2𝑓𝑠2
] [𝑘 sin(2𝜋𝑓𝑠𝑡) − 2π𝑐𝑓𝑠cos(2𝜋𝑓𝑠𝑡)] + 𝑎2} 

Finally,  

        𝑦(𝑡) =  {[
1

𝑘2 + 4𝜋2𝑐2𝑓𝑠2
] [𝑘 sin(2𝜋𝑓𝑠𝑡) − 2π𝑐𝑓𝑠cos(2𝜋𝑓𝑠𝑡)] + 𝑎2}                           (5 − 13) 

        𝑦(𝑡) =  {[
1

𝑘2 + (2𝜋𝑐𝑓𝑠)2
] [𝑘 sin(2𝜋𝑓𝑠𝑡) − 2π𝑐𝑓𝑠cos(2𝜋𝑓𝑠𝑡)]} + 𝑎3                            (5 − 14) 

 a1, a2, and a3 are constants of integration. 

This proves that the oscillator oscillates at the Strouhal frequency of vortex shedding. 
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Fig. 5.5.a. CA vs. f* with parameter m* as predicted by the eigen-

relation eq. (3A). If an oscillator with a given m* can ride on the 

corresponding m* line, the range of VIV or galloping will be a subset of 

the domain of the line depending on energy transfer. (Note: Darker/thicker 

color indicates larger m* (0.1~100) for CA) 

Fig. 5.5.b. CA vs. f* for k=400N/m, 

ζvac=0.06, and parameter m* as predicted 

by the eigen-relation eq. (3A). These lines 

correspond to the first row of lines in Fig. 

5.1. 

 

5.8. Is the Vortex Force Small? 

Feng [19] first reported that the vortex forces are small [57]. Several papers reported that the vortex 

force is the residuary force [78] under the assumption that the theoretical added-mass (CA=1 for a 

circular cylinder) can be separated from the total hydrodynamic force. Vortices shed nearly in 

synchronization with the force applied on the cylinder as they shed near the maximum 

displacement points, where the cylinder velocity is zero and the acceleration is maximum. That is, 

the vortex force is nearly in synchronization with the acceleration 𝑦̈(t) rather than the velocity  

𝑦̇(t). Thus, the residuary force under this definition cannot be the vortex force. Further, in the 

single-frequency model, after subtracting the force in phase with the acceleration 𝑦̈(𝑡) (added mass 

force) from the total force, the remaining force, FU(t)=FT(t)-FA(t), is in phase with the cylinder 

velocity 𝑦̇(𝑡), as eq. (3D) shows. 

A related question that we have been asked numerous times is: “How can the small vortex forces 

generate so much energy for harnessing by the VIVACE Converter?” Equivalently, “If the vortex 

force is not large how does it affect so strongly the oscillator dynamics?” To answer these questions 

we need to:  
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(a) Clarify the vortex effects on the fluid-structure interface. 

(b) Calculate the relative magnitude of the vortex force compared to the other force components.  

(c) Identify the parameter ranges where vortex effects are strong or weak.  

Based on the derived force expressions in equations in Table (3D) and the available experimental 

data in Figs. 5.7-5.9, these questions are addressed in the next two sections.  

 

5.9. How Do Vortices Affect the Interface? 

We propose that we classify vortex effects as indirect and direct and quantify them.  

The indirect vortex effect would be that of modifying the flow in the cylinder vicinity, thus, 

affecting the force FA(t) in phase with 𝑦̈(𝑡) and FU(t) in phase with 𝑦̇(𝑡). That can be clarified by 

comparison between VIV and galloping looking at the eigen-relation in Fig. 4.3.d. Specifically, 

galloping values are clustered around one f* point, which just in this case coincides with the onset 

of VIV. This is further observable in Figs. 4.3.b, 4.3.e, 4.4a and 5.6. That is, prior to the full 

formation of the von Kármán street and after the end of it in fully developed galloping, the added 

mass coefficient is nearly constant around 0.8. This is not a general conclusion. In these figures, 

during VIV and transition from VIV to galloping, CA varies between about +1 and -1. In other sets 

of data, CA reaches higher values up to 3 or 4 at the onset of VIV (Garcia & Bernitsas (2018) [23]. 

Indirect vortex effects are nearly perfectly captured by the single-frequency response model of eqs. 

(3-10 to 3-14) as shown in all the experimental results for the entire range of VIV, transition to 

galloping, and galloping.   

The direct vortex effect would be found in the residuary force FR(t) defined by eq. (4-1) as the 

difference between experiments and the remarkably accurate single-frequency response model as 
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a consequence of the eigen-relation derivation. In that case, FR(t) is primarily the “direct vortex 

force”. That is the vortex force exerted on the body at the moment of shedding. FR(t) is shown in 

Figs. 4.1.m-o, 4.2.i-k and Figs. 5.7-5.9 
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Figure 5.6. CA at onset of VIV and galloping is nearly the same. Theoretical and experimental comparison of CA vs. 𝑈𝑛,𝑣𝑎𝑐
∗ , for a 

circular cylinder with turbulence stimulation: D=3.5", L=35.5", m*=1.685, end-springs with total k=400N/m, damping ratio in vacuo 

ζvac∈[0.02-0.22]:  (a) oooo Reconstructed based on theory using eqs. (3A)-(3D) and measured f*. (b) ++++ Measured experimentally.  

  
 

 
 Fig. 5.6.a. ζvac=0.02 Fig. 5.6.b. ζvac=0.06 Fig. 5.6.c. ζvac=0.10 

  
 

 
 

Fig. 5.6.d. ζvac=0.14 Fig. 5.6.e. ζvac=0.18 Fig. 5.6.f. ζvac=0.22 
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Figure 5.7. Residuary force magnitude FRo as % of FTo for a circular cylinder with turbulence stimulation; D=3.5", L=35.5", 

m*=1.685, end-springs with k∈[400-800N/m], total damping ratio in vacuo ζvac=0.06. ++++ Measured experimentally 

  
 

 

Fig. 5.7.a. Peaks in VIV and transition 

collapse at f*=1  
Fig. 5.7.b. Only VIV peaks collapse at 

𝑈𝑛,𝑣𝑎𝑐
∗ ≅ 5 

Fig. 5.7.c. Only galloping onset points  

collapse at 𝑈 = 𝑈𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙  

 

Figure 5.8. Residuary force magnitude FRo as % of FTo for a circular cylinder with turbulence 

stimulation; D=3.5", L=35.5", m*=1.685, end-springs with k=400N/m; total damping ratio 

in vacuo ζvac∈[0.06-0.22]. ++++ Measured experimentally. 

  
Fig. 5.8.a. Peaks in VIV and transition collapse 

at f*=1; reduction with increased ζvac 
Fig. 5.8.b. Onset of galloping collapse at 

f*=1; reduction with increased ζvac 
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Figure 5.9. Residuary force magnitude FRo as % of FTo for a circular cylinder with turbulence stimulation; D=3.5", L=35.5", 

m*∈[1.007-1.890], end-springs with k=400N/m; total damping ratio in vacuo ζvac=0.06. ++++ Measured experimentally. 

   
Fig. 5.9.a. Peaks in VIV and transition 

collapse at f*=1 
Fig. 5.9.b. Only VIV peaks collapse at 

𝑈𝑛,𝑣𝑎𝑐
∗ ≅ 5* 

Fig. 5.9.c. Only galloping onset points 

collapse at 𝑈 = 𝑈𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙  
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5.10. Magnitude of Vortex Forces 

As discussed in Section 5.9, vortex effects are omnipresent. Their indirect effect on CAo (Fig. 4.4.b) 

and CUo (Fig. 4.4.g) can be seen by comparison between VIV and galloping over a wide range of 

𝜁𝑣𝑎𝑐. Their direct effect on CRo can be seen in Figs. 4.3.m-o, 4.4.i-k.  

Cumulatively, Figs. 5.7, 5.8, 5.9 show the relative magnitude of the residuary forces with 

parameter k, 𝜁𝑣𝑎𝑐, m*, respectively. In each figure, the ratio FRo/FTo is plotted vs. f* and the 

traditional U*n,vac. The latter shows collapse of data peaks in VIV but does not reveal the nature of 

the peaks in transition from VIV to galloping. On the contrary, plotting FRo/FTo vs. f* with respect 

to all three parameters shows consistent collapse of all peaks, at f*=1, regardless of the 

hydrodynamic range. That is at CA=0.  

Based on Figs. 3.2, 5.7a, 5.8a, and 5.9a, we can draw the following conclusion: 

In general, vortex effects are omnipresent both directly and indirectly affecting the flow by 

changing it drastically. It would not be correct to state that vortex forces are small. It could possibly 

be stated that the direct vortex effect as measured in FRo may be small compared to the maximum 

total force. Relatively to FTo, though, FRo reaches around 50%, at (f*=1, CA=0), that is at fosc=fn,vac, 

where FTo is minimum. Again, helpful is comparison to galloping, where vortices do not shed in 

synchronization with the cylinder motion; the direct vortex effect is about 20% and CA≅0.8.     

The following two figures help shed light into the concept of direct and indirect vortex forces by 

looking at the time history of the forces in two specific cases: one close and one away from f*=1. 

5.10.a: For the case of f*=0.5, the difference between the experimental/CFD results and the 

theoretical predictions are small and plotted in the last figure of the force cluster.  
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The peaks in the FR force coincide with the vortex shedding moments. Those show the magnitude 

of the direct vortex force in Fig. 5-10a and clearer in the magnified Fig. 5-10b. The direct vortex 

force is relatively small because the test point is located away from f*=1 where FA would be zero.  
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Figure 5.10a.  Time history of force components for a circular cylinder with turbulence stimulation 

m* = 1.685, k= 400N/m and ζvac = 0.06 at f* = 0.5 
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Figure 5.10b Magnified/zoomed time history of force components for a circular cylinder with 

turbulence stimulation m* = 1.685, k= 400N/m and ζvac = 0.06 at f*= 0.5 
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Figure 5.10c Kinematics components for a circular cylinder with turbulence stimulation m* = 

1.685, k= 400N/m and ζvac = 0.06 at f*=0.5 

 

 

25 30 35 40 45 50 55 60 65 70 75
-0.1

0

0.1

x

Exp/CFD

Theory

25 30 35 40 45 50 55 60 65 70 75
-5

0

5

x
r

10
-4

25 30 35 40 45 50 55 60 65 70 75
-0.5

0

0.5

x
d

o
t Exp/CFD

Theory

25 30 35 40 45 50 55 60 65 70 75
-5

0

5

x
d

o
t r

10
-3

25 30 35 40 45 50 55 60 65 70 75
-5

0

5

x
d
o

td
o

t

Exp/CFD

Theory

25 30 35 40 45 50 55 60 65 70 75

Time (sec)

-0.1

0

0.1

x
d

o
td

o
t r



99 
 

 

Figure 5.10d. Magnified/zoom-in kinematics components for a circular cylinder with turbulence 

stimulation m* = 1.685, k= 400N/m and ζvac = 0.06 at f*=0.5 
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5.10.b: For the case of f*=0.9, which is closer to f*=1, where the added mass force would be 

nearly zero, the direct vortex force is by comparison large. 

 

Figure 5.11a Magnified/zoomed Time history of force components for a circular cylinder with 

turbulence stimulation m* = 1.685, k= 400N/m and ζvac = 0.06 at f* = 0.9 
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Figure 5.11b Magnified/zoomed Kinematics of the Force components for a circular cylinder with 

turbulence stimulation m* = 1.685, k= 400N/m and ζvac = 0.06 at f* =0.9 
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Chapter Six 

Discussion (Continued): Galloping Facts – Old & New 

6.1. Introduction 

The driving mechanisms in VIV and galloping are different. In VIV, the alternating vortex 

shedding creates alternating pressure variation, which synchronizes with the oscillator, which then 

follows the eigen-relation (eq. 3A). VIV may occur even with k=0. Typically, k≠0 and the springs 

provide a restoring force. That is, there are two mechanisms that contribute to VIV; a 

hydrodynamic excitation and a mechanical restoring force.  

In galloping, the driving mechanism is an instability in a steady direction. Oscillation occurs only 

because there is a spring, or some other elastic constraint, which reverses the direction of the 

cylinder motion. At that point, the instability initiates from the opposite side of the cylinder. In our 

experiments, we use symmetric turbulence stimulation in the form of PTC. There is basically only 

a mechanical component that defines the natural frequency not a hydrodynamic one. Shedding 

vortices may be in-phase or out-of-phase with the galloping motion. In the firmer case they would 

enhance galloping; when vortex shedding is out-of-phase with the galloping motion it would 

oppose the galloping motion. Thus, the cylinder with turbulence stimulation oscillates below and 

near its fn,vac for all damping values. The value of the added mass remains about constant (Figs. 

4.1.e, 4.2.a, 5.6). 
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The eigen-relation eq. (3A) holds in both phenomena, VIV and galloping, as is well verified by 

the experiments as shown in (Figs. 4.1.d, 4.5, 4.6). Also, all forces follow equations in Tables. 

(3B-3D). Figs. 4.1, 4.2 and Appendix B show in different color the areas of VIV, transition 

between VIV and galloping, and fully developed galloping.  

6.2. Onset of galloping 

The onset of galloping is established in [11]. Since galloping follows eigen-relation eq. (3A), 

though, we may look at its onset from the point of view of f* vs. CA/m*. Galloping response is at 

a nearly constant f* a little below its fn,vac, indicating a nearly constant CA/m*. Comparing CA 

between VIV and galloping (Fig. 4.2.a) one can surmise the impact of vortex shedding on VIV. 

The vortex force is not everywhere small and particularly near f*=1 as discussed in section 5.8-

5.10. 

6.3. Unifying onset of instabilities 

Figs. 4.1b shows that VIV and galloping onsets occur experimentally nearly at the same f* 

resulting in nearly the same CA value (Fig. 4.2.a). Fig. 5.6 confirms this observation for damping 

values ζvac∈[0.02-0.22]. The logical explanation is that at the very moment of initiation of the VIV 

instability the wake due to lock-in has not fully developed. Thus, the motion is instability-driven 

and vortices had not had the time to modify the flow for the transverse FA(t) to dominate the total 

force (Fig. 3.2). Quickly, this situation changes in the VIV range with increasing f* and decreasing 

CA.  

6.4. How do vortices affect galloping? 

We know that galloping is instability driven in one direction and vortices do not affect the motion. 

They may actually oppose motion depending on their shedding phase. As a result, the mechanism 
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of instability does not change and f* and CA remain nearly constant. Further, transition between 

VIV and galloping provides an interesting perspective. In transition, in tests where the end of VIV 

and the onset of galloping overlap as in Figs. 4.1.a and 4.1.b, both driving mechanisms coexist. As 

amplitude increases due to galloping the VIV synchronization ends and galloping takes over. That 

is, the vortices, albeit present and in increased numbers, and FRo being about 20% do not affect the 

added mass and galloping.  

This issue requires further research for two reasons:  

• The galloping response has reached the limit of the Low Turbulence Free Surface Water 

(LTFSW) Channel of the MRELab by approaching the free surface at about A*=3; 

• The onset of VIV should be defined more accurately accounting for the Coulomb static 

friction. 
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Chapter Seven 

Conclusions 

7.1. Dissertation Summary 

Flow Induced Oscillations (FIO) is an important phenomenon in several engineering disciplines. 

In this dissertation, consistent rather than heuristic nondimensionalization of the fluid and 

oscillator dynamics in fluid-structure interaction, led to decoupling of amplitude from frequency 

response. Further, recognizing that the number of governing dimensionless parameters should 

decrease, rather than increase, due to the fluid-structure synergy at the interface, an eigen-relation 

is revealed for a cylinder in (FIO), including VIV and galloping: mA/mbod=CA/m*=1/f*2-1. Here the 

term “eigen-relation” stands for a relation between excitation and system properties that has to 

hold for a solution to exist. It was shown that, for a given dimensionless oscillation frequency f*, 

the ratio of real added-mass to oscillating-mass is fully defined. Amplitude decoupling and the 

eigen-relation, led to explicit expressions for coefficients, phases, and magnitudes of total, added-

mass, and in-phase-with-velocity forces; revealing their dependence on the generic Strouhal 

number (Stn=fn
*=fosc/fn,vacuuo), damping, and Reynolds number. Heuristic dimensionless 

parameters, (mass-damping, reduced velocity, mass-ratio, force coefficients) used in VIV data 

presentation are not needed. Theoretical derivations and force reconstruction match nearly 
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perfectly with extensive experimental data collected over a decade in the Marine Renewable 

Energy Laboratory (MRELab) at the University of Michigan using four different oscillator test-

models.  

In this thesis: 

(a) Single-cylinder experimental data in FIO with mass ratio in the range [1.34 to 2.0], spring 

stiffness [400N/m to 1200N/m], and total system damping [0.02 to 0.26] are analyzed 

using the derived eigen-relation and force expressions.  

(b) The developed theory is used to explain some age-long experimental observations and 

potentially controversial questions in VIV and galloping among researchers in this field. 

Beyond the single frequency response model, the residuary force is derived by 

subtracting the single frequency response from the experimental data. Established facts 

regarding VIV and galloping and new important observations some of which are listed 

below are readily explained:  

• The effects of Strouhal, damping-ratio, mass-ratio, Reynolds, reduced velocity, and 

stagnation pressure.  

• The cause of expansion/contraction of the VIV range of synchronization.  

• The corresponding slope-change in oscillation frequency with respect to the Strouhal 

frequency of a stationary-cylinder vs. reduced velocity.  

• The critical mass-ratio m* once considered to imply perpetual VIV.  

• The significance of the natural frequency of the oscillator in vacuo.  
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• The effect of vortices on VIV and galloping.  

• The magnitude of vortex forces.  

• The indirect and direct vortex effects.  

 

(c) The derived eigen-relation is a first order solution to the VIV and galloping problems. 

The developed equations for the forces in-phase with the velocity and acceleration, when 

subtracted from the total force measured experimentally, yields a residuary force.  

(d) Data obtained from the MRELab experimentally and with CFD are analyzed further to 

identify other force components likely related to vortex shedding directly. This is a step 

towards higher order theories for VIV and galloping beyond the eigen-relation.  

7.2. Closing remarks and Future Work 

An eigen-relation, Table. (3A), was revealed at the fluid-structure interface in Flow Induced 

Oscillations based on the single-frequency response model. This resulted in change in the 

interpretation and modeling of VIV and galloping. Based on consistent nondimensionalization, the 

problem was reduced to two governing hydrodynamic parameters the generic Strouhal and 

Reynolds numbers. Proper interpretation of the interface between fluid and structure revealed a 

constraint, which led to the eigen-relation. Frequency response was linked to Strouhal only and 

amplitude was decoupled from Strouhal and linked to Reynolds only. Explicit dependence of 

forces and phases on parameters were derived, Table. (3B-3D), showing that heuristic parameters, 

like mass-damping and reduced velocity, may be of little relevance to FIO. Agreement with 

extensive experimental data is exceptional, proving equations in tables. (3A-3D). 
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The residuary force FR(t), being primarily the direct vortex force, is derived from the 

experimental data after subtracting the forces in phase with velocity and acceleration. 

Development beyond the single-frequency response model using perturbation would apply on 

FR(t).  Direct vortex force is defined as the force exerted on the body at the moment of vortex 

shedding. This is not the force due to the vortex mass attached to the oscillating body which 

directly affects the added mass. 

The developed methodology provides direct and simple interpretation of experimentally 

established facts on VIV and galloping. Thirteen observations were discussed showing consistency 

fully supported by theory and experiments.   

Several research issues can be pursued immediately. More experimental observations can be 

verified and explained: 

(1) In the near future, more complex oscillators with nonlinear restoring forces and damping 

models already tested in the MRELab as shown in some papers [12,43,66] can be analyzed with 

the developed eigen-relation and force equations. Giving a further thought, the theoretical power 

harnessed by an oscillator in FIO can be calculated based on the force expressions developed in 

this research.  

(2) The developed methodology is general enough to be valid for: (a) FIO of any other shape – 

not just circular cylinders. (b) Other FSI phenomena, such as fluttering instabilities of foils, to 

reveal similar eigen-relations at the fluid-structure interface. (c) Two-dimensional cylinder and 

cable/pipeline FIO, where the modes can be defined for nondimensionalization. 

(3) The issue of energy transfer from fluid to structure can be addressed easier – albeit not easy 

– by relating energy transfer between fluid and structure to the interface conditions (eigen-relation 

and the selected amplitude A).  
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(4) The approach developed by Zueck (2019) [82] can show the energy that the structure can 

absorb satisfying the interface conditions, while energy transfer from fluid can be related to 

Reynolds without delving into small turbulence scales.  
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Appendix A 

Post Processing Results for VIV of Smooth Cylinder 

 

The figures in the next 16 pages show some of the results for data post-processing for a smooth 

cylinder in VIV for mass ratio ranging from 1.25 to 1.84. These results show how consistent the 

eigen relation theory is with the experimental data just as it was shown in Sections 4.3 and 5.6. 

For clarity and proper understanding of this appendix, the results are arranged in increasing 

stiffness, damping ratio, and mass ratio.  

The arrangement is as follows: 

m* = 1.25 - pages 2-9 of this appendix 

m* = 1.84 - pages 10-17 of this appendix 

Results in this appendix buttress further the claims in results presented in Sections 4.4 and 5.6. 

Results for stiffnesses (k =400N/m and 800N/m), and mass ratio (m* = 1.25 and 1.84) are presented 

here in order to conserve space.  

Complete sets of results are presented in the MRELab Report #13 and #14 [46,47] which has over 

300 pages of figures. 
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Figure A1. Theoretical and experimental comparison of FSI (VIV) properties plotted vs. f*, for a smooth circular cylinder: D=3.5", 

L=35.5", m*=1.25, end-springs with k=400N/m, total damping-ratio in vacuo ζvac=0.06 

(a) ---- Theory using eqs. (3A)-(3D). (b) oooo Reconstructed based on theory and measured f*. (c) ++++ Measured experimentally  

   
Fig. A1.a. Amplitude ratio A*=A/D of 

measured displacement y(t). 

Fig. A1.b. f*=fosc/fn,vac determined by 

Discrete Fourier Transform of y(t) 

Fig. A1.c. A*=A/D vs. f*  

   
Fig. A1.d. Eigen-relation CA/m*; ---Theory 

using eq. (3A) 

Fig. A1.e. Added mass coefficient CA vs. 

f*; ---Theory using eq. (3A) and m* 

Fig. A1.f. Added-mass force coefficient 

CAo; ---Theory using eqs. (3B) 

   
Fig. A1.g. Added mass force FAo vs. f*  Fig. A1.h. Total force coefficient CTo vs. 

f*  
Fig. A1.i. Total-force phase ϕT vs. f* 
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Fig. A1.j. Total-force magnitude FTo vs. f*;  Fig. A1.k. Coefficient CUo of force in-

phase with velocity vs. f* 

Fig. A1.l. Force in-phase with velocity FUo 

vs. f* 

   

Fig. A1.m. Residuary force coefficient CRo 

vs. f* derived experimentally as FRo/kA 

Fig. A1.n. Residuary force magnitude FRo 

vs. f* derived experimentally by eq. (4-1) 

Fig. A1.o. Ratio FRo/FTo [%] vs. f*; derived 

experimentally using eqs. (3D, 4-1) 
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Figure A2. Theoretical and experimental 

comparison of FSI (VIV) properties 

plotted vs. 𝑈𝑛,𝑣𝑎𝑐
∗  , for a smooth 

circular cylinder: D=3.5", L=35.5", 

m*=1.25, end-springs with k=400N/m, 

total damping-ratio in vacuo ζvac=0.06 

(a) oooo Reconstructed based on theory 

using eqs. (3A)-(3D) and measured f*. 

(b) ++++ Measured experimentally  
  

Fig. A2.a. Added-mass coefficient CA vs. 

𝑈𝑛,𝑣𝑎𝑐
∗ ; oooo Theoretical reconstruction by 

eq. (3A); ++++ Measured experimentally 

Fig. A2.b. Added-mass force coefficient 

CAovs.𝑈𝑛,𝑣𝑎𝑐
∗ ;ooooTheoretical 

reconstruction by eqs.(3B);++++Measured 

eexexperimentally. 

   
Fig. A2.c. Added-mass force magnitude 

FAo vs. 𝑈𝑛,𝑣𝑎𝑐
∗ ; oooo Theoretical 

reconstruction by eqs. (3D); ++++ 

Measured experimentally 

Fig. A2.d. Total-force coefficient CTo vs. 

𝑈𝑛,𝑣𝑎𝑐
∗ ; oooo Theoretical reconstruction by 

eqs. (3B); ++++ Measured experimentally 

Fig. A2.e. Total-force phase ϕT vs. 𝑈𝑛,𝑣𝑎𝑐
∗ ; 

oooo Theoretical reconstruction by eqs. 

(3C); ++++ Measured experimentally 
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Fig. A2.f. Total-force magnitude FTo vs. 

𝑈𝑛,𝑣𝑎𝑐
∗ ; oooo Theoretical reconstruction 

by eqs. (3D); ++++ Measured 

experimentally 

Fig. A2.g. Coefficient CUo of force in-phase 

with velocity vs. 𝑈𝑛,𝑣𝑎𝑐
∗ ; oooo Theoretical 

reconstruction by eqs. (3B); ++++ 

Measured experimentally 

Fig. A2.h. Residuary force magnitude FUo 

vs. 𝑈𝑛,𝑣𝑎𝑐
∗ ; oooo Theoretical reconstruction 

by eqs. (3D); ++++ Measured 

experimentally 

   

Fig. A2.i. Residuary force coefficient 

CRo derived experimentally as FRo/kA 

Fig. A2.j. Residuary force FRo vs. 𝑈𝑛,𝑣𝑎𝑐
∗  

derived experimentally using eq. (4-1) 

Fig. A2.k. Ratio FRo/FTo [%] of vs. 𝑈𝑛,𝑣𝑎𝑐
∗ ; 

derived experimentally by eqs. (3D, 4-1) 
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Figure A3. Theoretical and experimental comparison of FSI (VIV) properties plotted vs. f*, for a smooth circular cylinder: D=3.5", 

L=35.5", m*=1.25, end-springs with k=400N/m, total damping-ratio in vacuo ζvac=0.10 

(a) ---- Theory using eqs. (3A)-(3D). (b) oooo Reconstructed based on theory and measured f*. (c) ++++ Measured experimentally  

   

Fig. A3.a. Amplitude ratio A*=A/D of 

measured displacement y(t). 

Fig. A3.b. f*=fosc/fn,vac determined by 

Discrete Fourier Transform of y(t) 

Fig. A3.c. A*=A/D vs. f*  

   
Fig. A3.d. Eigen-relation CA/m*; ---Theory 

using eq. (3A) 

Fig. A3.e. Added mass coefficient CA vs. 

f*; ---Theory using eq. (3A) and m* 

Fig. A3.f. Added-mass force coefficient 

CAo; ---Theory using eqs. (3B) 

   
Fig. A3.g. Added mass force FAo vs. f*  Fig. A3.h. Total force coefficient CTo vs. 

f*  
Fig. A3.i. Total-force phase ϕT vs. f* 
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Fig. A3.j. Total-force magnitude FTo vs. f*;  Fig. A3.k. Coefficient CUo of force in-

phase with velocity vs. f* 

Fig. A3.l. Force in-phase with velocity FUo 

vs. f* 

   
Fig. A3.m. Residuary force coefficient CRo 

vs. f* derived experimentally as FRo/kA 

Fig. A3.n. Residuary force magnitude FRo 

vs. f* derived experimentally by eq. (4-1) 

Fig. A3.o. Ratio FRo/FTo [%] vs. f*; derived 

experimentally using eqs. (3D, 4-1) 
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Figure A4. Theoretical and experimental 

comparison of FSI (VIV) properties 

plotted vs. 𝑈𝑛,𝑣𝑎𝑐
∗ , for a smooth 

circular cylinder: D=3.5", L=35.5", 

m*=1.25, end-springs with k=400N/m, 

total damping-ratio in vacuo ζvac=0.10 

(a) oooo Reconstructed based on theory 

using eqs. (3A)-(3D) and measured f*. 

(b) ++++ Measured experimentally  
  

Fig. A4.a. Added-mass coefficient CA vs. 

𝑈𝑛,𝑣𝑎𝑐
∗ ; oooo Theoretical reconstruction by 

eq. (3A); ++++ Measured experimentally 

Fig. A4.b. Added-mass force coefficient 

CAo vs.𝑈𝑛,𝑣𝑎𝑐
∗ ; oooo Theoretical 

reconstruction by eqs.(3B); ++++ Measured 

experimentally. 

   
Fig. A4.c. Added-mass force magnitude 

FAo vs. 𝑈𝑛,𝑣𝑎𝑐
∗ ; oooo Theoretical 

reconstruction by eqs. (3D); ++++ 

Measured experimentally 

Fig. A4.d. Total-force coefficient CTo vs. 

𝑈𝑛,𝑣𝑎𝑐
∗ ; oooo Theoretical reconstruction by 

eqs. (3B); ++++ Measured experimentally 

Fig. A4.e. Total-force phase ϕT vs. 𝑈𝑛,𝑣𝑎𝑐
∗ ; 

oooo Theoretical reconstruction by eqs. 

(3C); ++++ Measured experimentally 
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Fig. A4.f. Total-force magnitude FTo vs. 

𝑈𝑛,𝑣𝑎𝑐
∗ ; oooo Theoretical reconstruction 

by eqs. (3D); ++++ Measured 

experimentally 

Fig. A4.g. Coefficient CUo of force in-phase 

with velocity vs. 𝑈𝑛,𝑣𝑎𝑐
∗ ; oooo Theoretical 

reconstruction by eqs. (3B); ++++ 

Measured experimentally 

Fig. A4.h. Residuary force magnitude FUo 

vs. 𝑈𝑛,𝑣𝑎𝑐
∗ ; oooo Theoretical reconstruction 

by eqs. (3D); ++++ Measured 

experimentally 

   

Fig. A4.i. Residuary force coefficient 

CRo  derived experimentally as FRo/kA 

Fig. A4.j. Residuary force FRo vs. 𝑈𝑛,𝑣𝑎𝑐
∗  

derived experimentally using eq. (4-1) 

Fig. A4.k. Ratio FRo/FTo [%] of vs. 𝑈𝑛,𝑣𝑎𝑐
∗ ; 

derived experimentally by eqs. (3D, 4-1) 
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Figure A5. Theoretical and experimental comparison of FSI (VIV) properties plotted vs. f*, for a smooth circular cylinder: D=3.5", 

L=35.5", m*=1.25, end-springs with k=800N/m, total damping-ratio in vacuo ζvac=0.06 

(a) ---- Theory using eqs. (3A)-(3D). (b) oooo Reconstructed based on theory and measured f*. (c) ++++ Measured experimentally  

   
Fig. A5.a. Amplitude ratio A*=A/D of 

measured displacement y(t). 

Fig. A5.b. f*=fosc/fn,vac determined by 

Discrete Fourier Transform of y(t) 

Fig. A5.c. A*=A/D vs. f*  

   
Fig. A5.d. Eigen-relation CA/m*; ---Theory 

using eq. (A) 

Fig. A5.e. Added mass coefficient CA vs. 

f*; ---Theory using eq. (3A) and m* 

Fig. A5.f. Added-mass force coefficient 

CAo; ---Theory using eqs. (3B) 

   
Fig. A5.g. Added mass force FAo vs. f*  Fig. A5.h. Total force coefficient CTo vs. 

f*  
Fig. A5.i. Total-force phase ϕT vs. f* 
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Fig. A5.j. Total-force magnitude FTo vs. f*;  Fig. A5.k. Coefficient CUo of force in-

phase with velocity vs. f* 

Fig. A5.l. Force in-phase with velocity FUo 

vs. f* 

   
Fig. A5.m. Residuary force coefficient CRo 

vs. f* derived experimentally as FRo/kA 

Fig. A5.n. Residuary force magnitude FRo 

vs. f* derived experimentally by eq. (4-1) 

Fig. A5.o. Ratio FRo/FTo [%] vs. f*; derived 

experimentally using eqs. (3D, 4-1) 
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Figure A6. Theoretical and experimental 

comparison of FSI (VIV) properties 

plotted vs. 𝑈𝑛,𝑣𝑎𝑐
∗ , for a smooth 

circular cylinder: D=3.5", L=35.5", 

m*=1.25, end-springs with k=800N/m, 

total damping-ratio in vacuo ζvac=0.06 

(a) oooo Reconstructed based on theory 

using eqs. (3A)-(3D) and measured f*. 

(b) ++++ Measured experimentally  

  

Fig. A6.a. Added-mass coefficient CA vs. 

𝑈𝑛,𝑣𝑎𝑐
∗ ; oooo Theoretical reconstruction by 

eq. (3A); ++++ Measured experimentally 

Fig. A6.b. Added-mass force coefficient 

CAo vs.𝑈𝑛,𝑣𝑎𝑐
∗ ; oooo Theoretical 

reconstruction by eqs.(3B); ++++ Measured 

experimentally. 

   

Fig. A6.c. Added-mass force magnitude 

FAo vs. 𝑈𝑛,𝑣𝑎𝑐
∗ ; oooo Theoretical 

reconstruction by eqs. (3D); ++++ 

Measured experimentally 

Fig. A6.d. Total-force coefficient CTo vs. 

𝑈𝑛,𝑣𝑎𝑐
∗ ; oooo Theoretical reconstruction by 

eqs. (3B); ++++ Measured experimentally 

Fig. A6.e. Total-force phase ϕT vs. 𝑈𝑛,𝑣𝑎𝑐
∗ ; 

oooo Theoretical reconstruction by eqs. 

(3C); ++++ Measured experimentally 
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Fig. A6.f. Total-force magnitude FTo vs. 

𝑈𝑛,𝑣𝑎𝑐
∗ ; oooo Theoretical reconstruction 

by eq. (3D); ++++ Measured 

experimentally 

Fig. A6.g. Coefficient CUo of force in-phase 

with velocity vs. 𝑈𝑛,𝑣𝑎𝑐
∗ ; oooo Theoretical 

reconstruction by eqs. (3B); ++++ 

Measured experimentally 

Fig. A6.h. Residuary force magnitude FUo 

vs. 𝑈𝑛,𝑣𝑎𝑐
∗ ; oooo Theoretical reconstruction 

by eqs. (3D); ++++ Measured 

experimentally 

   

Fig. A6.i. Residuary force coefficient 

CRo  derived experimentally as FRo/kA 

Fig. A6.j. Residuary force FRo vs. 𝑈𝑛,𝑣𝑎𝑐
∗  

derived experimentally using eq. (4-1) 

Fig. A6.k. Ratio FRo/FTo [%] of vs. 𝑈𝑛,𝑣𝑎𝑐
∗ ; 

derived experimentally by eqs. (3D, 4-1) 
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Figure A7. Theoretical and experimental comparison of FSI (VIV) properties plotted vs. f*, for a smooth circular cylinder: D=3.5", 

L=35.5", m*=1.25, end-springs with k=800N/m, total damping-ratio in vacuo ζvac=0.10 

(a) ---- Theory using eqs. (3A)-(3D). (b) oooo Reconstructed based on theory and measured f*. (c) ++++ Measured experimentally  

   

Fig. A7.a. Amplitude ratio A*=A/D of 

measured displacement y(t). 

Fig. A7.b. f*=fosc/fn,vac determined by 

Discrete Fourier Transform of y(t) 

Fig. A7.c. A*=A/D vs. f*  

   
Fig. A7.d. Eigen-relation CA/m*; ---Theory 

using eq. (3A) 

Fig. A7.e. Added mass coefficient CA vs. 

f*; ---Theory using eq. (3A) and m* 

Fig. A7.f. Added-mass force coefficient 

CAo; ---Theory using eqs. (3B) 

   
Fig. A7.g. Added mass force FAo vs. f*  Fig. A7.h. Total force coefficient CTo vs. 

f*  
Fig. A7.i. Total-force phase ϕT vs. f* 
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Fig. A7.j. Total-force magnitude FTo vs. f*;  Fig. A7.k. Coefficient CUo of force in-

phase with velocity vs. f* 

Fig. A7.l. Force in-phase with velocity FUo 

vs. f* 

   

Fig. A7.m. Residuary force coefficient CRo 

vs. f* derived experimentally as FRo/kA 

Fig. A7.n. Residuary force magnitude FRo 

vs. f* derived experimentally by eq. (4-1) 

Fig. A7.o. Ratio FRo/FTo [%] vs. f*; derived 

experimentally using eqs. (3D, 4-1) 
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Figure A8. Theoretical and experimental 

comparison of FSI (VIV) properties 

plotted vs. 𝑈𝑛,𝑣𝑎𝑐
∗ , for a smooth 

circular cylinder: D=3.5", L=35.5", 

m*=1.25, end-springs with k=800N/m, 

total damping-ratio in vacuo ζvac=0.10 

(a) oooo Reconstructed based on theory 

using eqs. (3A)-(3D) and measured f*. 

(b) ++++ Measured experimentally  
  

Fig. A8.a. Added-mass coefficient CA vs. 

𝑈𝑛,𝑣𝑎𝑐
∗ ; oooo Theoretical reconstruction by 

eq. (3A); ++++ Measured experimentally 

Fig. A8.b. Added-mass force coefficient 

CAo vs.𝑈𝑛,𝑣𝑎𝑐
∗ ; oooo Theoretical 

reconstruction by eqs.(3B); ++++ Measured 

experimentally. 

   

Fig. A8.c. Added-mass force magnitude 

FAo vs. 𝑈𝑛,𝑣𝑎𝑐
∗ ; oooo Theoretical 

reconstruction by eqs. (3D); ++++ 

Measured experimentally 

Fig. A8.d. Total-force coefficient CTo vs. 

𝑈𝑛,𝑣𝑎𝑐
∗ ; oooo Theoretical reconstruction by 

eqs. (3B); ++++ Measured experimentally 

Fig. A8.e. Total-force phase ϕT vs. 𝑈𝑛,𝑣𝑎𝑐
∗ ; 

oooo Theoretical reconstruction by eqs. 

(3C); ++++ Measured experimentally 
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Fig. A8.f. Total-force magnitude FTo vs. 

𝑈𝑛,𝑣𝑎𝑐
∗ ; oooo Theoretical reconstruction 

by eq. (3D); ++++ Measured 

experimentally 

Fig. A8.g. Coefficient CUo of force in-phase 

with velocity vs. 𝑈𝑛,𝑣𝑎𝑐
∗ ; oooo Theoretical 

reconstruction by eqs. (3B); ++++ 

Measured experimentally 

Fig. A8.h. Residuary force magnitude FUo 

vs. 𝑈𝑛,𝑣𝑎𝑐
∗ ; oooo Theoretical reconstruction 

by eqs. (3D); ++++ Measured 

experimentally 

   

Fig. A8.i. Residuary force coefficient 

CRo  derived experimentally as FRo/kA 

Fig. A8.j. Residuary force FRo vs. 𝑈𝑛,𝑣𝑎𝑐
∗  

derived experimentally using eq. (4-1) 

Fig. A8.k. Ratio FRo/FTo [%] of vs. 𝑈𝑛,𝑣𝑎𝑐
∗ ; 

derived experimentally by eqs. (3D, 4-1) 
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Figure A9. Theoretical and experimental comparison of FSI (VIV) properties plotted vs. f*, for a smooth circular cylinder: D=3.5", 

L=35.5", m*=1.84, end-springs with k=400N/m, total damping-ratio in vacuo ζvac=0.06 

(a) ---- Theory using eqs. (3A)-(3D). (b) oooo Reconstructed based on theory and measured f*. (c) ++++ Measured experimentally  

   
Fig. A9.a. Amplitude ratio A*=A/D of 

measured displacement y(t). 

Fig. A9.b. f*=fosc/fn,vac determined by 

Discrete Fourier Transform of y(t) 

Fig. A9.c. A*=A/D vs. f*  

   

Fig. A9.d. Eigen-relation CA/m*; ---Theory 

using eq. (3A) 

Fig. A9.e. Added mass coefficient CA vs. 

f*; ---Theory using eq. (3A) and m* 

Fig. A9.f. Added-mass force coefficient 

CAo; ---Theory using eqs. (3B) 

  
 

Fig. A9.g. Added mass force FAo vs. f* Fig. A9.h. Total force coefficient CTo vs. 

f* 
Fig. A9.i. Total-force phase ϕT vs. f* 
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Fig. A9.j. Total-force magnitude FTo vs. f* Fig. A9.k. Coefficient CUo0 of force in-

phase with velocity vs. f* 

Fig. A9.l. Force in-phase with velocity FUo 

vs. f* 

   
Fig. A9.m. Residuary force coefficient CRo 

vs. f* derived experimentally as FRo/kA 

Fig. A9.n. Residuary force magnitude FRo 

vs. f* derived experimentally by eq. (4-1) 

Fig. A9.o. Ratio FRo/FTo [%] vs. f*; derived 

experimentally using eqs. (3D, 4-1) 
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Figure A10. Theoretical and 

experimental comparison of FSI (VIV) 

properties plotted vs. 𝑈𝑛,𝑣𝑎𝑐
∗ , for a 

smooth circular cylinder: D=3.5", 

L=35.5", m*=1.84, end-springs with 

k=400N/m, total damping-ratio in vacuo 

ζvac=0.06 

(a) oooo Reconstructed based on theory 

using eqs. (3A)-(3D) and measured f*. 

(b) ++++ Measured experimentally    
Fig. A10.a. Added-mass coefficient CA vs. 

𝑈𝑛,𝑣𝑎𝑐
∗ ; oooo Theoretical reconstruction by 

eq. (3A); ++++ Measured experimentally 

Fig. A10.b. Added-mass force coefficient 

CAo vs.𝑈𝑛,𝑣𝑎𝑐
∗ ; oooo Theoretical 

reconstruction by eqs.(3B); ++++ Measured 

experimentally. 

   

Fig.A10.c. Added-mass force magnitude 

FAo vs. 𝑈𝑛,𝑣𝑎𝑐
∗ ; oooo Theoretical 

reconstruction by eqs. (3D); ++++ 

Measured experimentally 

Fig. A10.d. Total-force coefficient CTo vs. 

𝑈𝑛,𝑣𝑎𝑐
∗ ; oooo Theoretical reconstruction by 

eqs. (3B); ++++ Measured experimentally 

Fig. A10.e. Total-force phase ϕT vs. 𝑈𝑛,𝑣𝑎𝑐
∗ ; 

oooo Theoretical reconstruction by eqs. 

(3C); ++++ Measured experimentally 

   

Fig. A10.f. Total-force magnitude FTo vs. 

𝑈𝑛,𝑣𝑎𝑐
∗ ; oooo Theoretical reconstruction 

Fig. A10.g. Coefficient CUo of force in-

phase with velocity vs. 𝑈𝑛,𝑣𝑎𝑐
∗ ; oooo 

Fig. A10.h. Residuary force magnitude FUo 

vs. 𝑈𝑛,𝑣𝑎𝑐
∗ ; oooo Theoretical reconstruction 
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by eq. (3D); ++++ Measured 

experimentally 

Theoretical reconstruction by eqs. (3B); 

++++ Measured experimentally 

by eqs. (3D); ++++ Measured 

experimentally 

  
 

Fig. A10.i. Residuary force coefficient 

CRo  derived experimentally as FRo/kA 

Fig. A10.j. Residuary force FRo vs. 𝑈𝑛,𝑣𝑎𝑐
∗  

derived experimentally using eq. (4-1) 

Fig. A10.k. Ratio FRo/FTo [%] of vs. 𝑈𝑛,𝑣𝑎𝑐
∗ ; 

derived experimentally by eqs. (3D, 4-1) 
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Figure A11. Theoretical and experimental comparison of FSI (VIV) properties plotted vs. f*, for a smooth circular cylinder: D=3.5", 

L=35.5", m*=1.84, end-springs with k=400N/m, total damping-ratio in vacuo ζvac=0.10 

(a) ---- Theory using eqs. (3A)-(3D). (b) oooo Reconstructed based on theory and measured f*. (c) ++++ Measured experimentally  

   

Fig. A11.a. Amplitude ratio A*=A/D of 

measured displacement y(t). 

Fig. A11.b. f*=fosc/fn,vac determined by 

Discrete Fourier Transform of y(t) 

Fig. A11.c. A*=A/D vs. f*  

   
Fig. A11.d. Eigen-relation CA/m*; ---

Theory using eq. (3A) 

Fig. A11.e. Added mass coefficient CA vs. 

f*; ---Theory using eq. (3A) and m* 

Fig. A11.f. Added-mass force coefficient 

CAo; ---Theory using eqs. (3B) 

   

Fig. A11.g. Added mass force FAo vs. f* Fig. A11.h. Total force coefficient CTo vs. 

f* 
Fig. A11.i. Total-force phase ϕT vs. f* 
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Fig. A11.j. Total-force magnitude FTo vs. f* Fig. A11.k. Coefficient CUo0 of force in-

phase with velocity vs. f* 

Fig. A11.l. Force in-phase with velocity 

FUo vs. f* 

   

Fig. A11.m. Residuary force coefficient 

CRo vs. f* derived experimentally as FRo/kA 

Fig. A11.n. Residuary force magnitude 

FRo vs. f* derived experimentally by eq. 

(4-1) 

Fig. A11.o. Ratio FRo/FTo [%] vs. f*; 

derived experimentally using eqs. (3D, 4-

1) 
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Figure A12. Theoretical and 

experimental comparison of FSI (VIV) 

properties plotted vs. 𝑈𝑛,𝑣𝑎𝑐
∗ , for a 

smooth circular cylinder: D=3.5", 

L=35.5", m*=1.84, end-springs with 

k=400N/m, total damping-ratio in vacuo 

ζvac=0.10 

(a) oooo Reconstructed based on theory 

using eqs. (3A)-(3D) and measured f*. 

(b) ++++ Measured experimentally    

Fig. A12.a. Added-mass coefficient CA vs. 

𝑈𝑛,𝑣𝑎𝑐
∗ ; oooo Theoretical reconstruction by 

eq. (3A); ++++ Measured experimentally 

Fig. A12.b. Added-mass force coefficient 

CAo vs.𝑈𝑛,𝑣𝑎𝑐
∗ ; oooo Theoretical 

reconstruction by eqs.(3B); ++++ Measured 

experimentally. 

 
 

 

Fig. A12.c. Added-mass force 

magnitude FAo vs. 𝑈𝑛,𝑣𝑎𝑐
∗ ; oooo 

Theoretical reconstruction by eqs. (3D); 

++++ Measured experimentally 

Fig. A12.d. Total-force coefficient CTo vs. 

𝑈𝑛,𝑣𝑎𝑐
∗ ; oooo Theoretical reconstruction by 

eqs. (3B); ++++ Measured experimentally 

Fig. A12.e. Total-force phase ϕT vs. 𝑈𝑛,𝑣𝑎𝑐
∗ ; 

oooo Theoretical reconstruction by eqs. 

(3C); ++++ Measured experimentally 

   
Fig. A12.f. Total-force magnitude FTo vs. 

𝑈𝑛,𝑣𝑎𝑐
∗ ; oooo Theoretical reconstruction 

Fig. A12.g. Coefficient CUo of force in-

phase with velocity vs. 𝑈𝑛,𝑣𝑎𝑐
∗ ; oooo 

Fig. A12.h. Residuary force magnitude FUo 

vs. 𝑈𝑛,𝑣𝑎𝑐
∗ ; oooo Theoretical reconstruction 
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by eq. (3D); ++++ Measured 

experimentally 

Theoretical reconstruction by eqs. (3B); 

++++ Measured experimentally 

by eqs. (3D); ++++ Measured 

experimentally 

   

Fig. A12.i. Residuary force coefficient 

CRo  derived experimentally as FRo/kA 

Fig. A12.j. Residuary force FRo vs. 𝑈𝑛,𝑣𝑎𝑐
∗  

derived experimentally using eq. (4-1) 

Fig. A12.k. Ratio FRo/FTo [%] of vs. 𝑈𝑛,𝑣𝑎𝑐
∗ ; 

derived experimentally by eqs. (3D, 4-1) 
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Figure A13. Theoretical and experimental comparison of FSI (VIV) properties plotted vs. f*, for a smooth circular cylinder: D=3.5", 

L=35.5", m*=1.84, end-springs with k=800N/m, total damping-ratio in vacuo ζvac=0.06 

(a) ---- Theory using eqs. (3A)-(3D). (b) oooo Reconstructed based on theory and measured f*. (c) ++++ Measured experimentally  

   
Fig. A13.a. Amplitude ratio A*=A/D of 

measured displacement y(t). 

Fig. A13.b. f*=fosc/fn,vac determined by 

Discrete Fourier Transform of y(t) 

Fig. A13.c. A*=A/D vs. f*  

   
Fig. A13.d. Eigen-relation CA/m*; ---

Theory using eq. (3A) 

Fig. A13.e. Added mass coefficient CA vs. 

f*; ---Theory using eq. (3A) and m* 

Fig. A13.f. Added-mass force coefficient 

CAo; ---Theory using eqs. (3B) 

   
Fig. A13.g. Added mass force FAo vs. f* Fig. A13.h. Total force coefficient CTo vs. 

f* 
Fig. A13.i. Total-force phase ϕT vs. f* 
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Fig. A13.j. Total-force magnitude FTo vs. f* Fig. A13.k. Coefficient CUo0 of force in-

phase with velocity vs. f* 

Fig. A13.l. Force in-phase with velocity 

FUo vs. f* 

   

Fig. A13.m. Residuary force coefficient 

CRo vs. f* derived experimentally as FRo/kA 

Fig.A13.n. Residuary force magnitude FRo vs. 

f* derived experimentally by eq. (4-1) 

Fig. 6.o. Ratio FRo/FTo [%] vs. f*; derived 

experimentally using eqs. (3D, 4-1) 
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Figure A14. Theoretical and 

experimental comparison of FSI (VIV) 

properties plotted vs. 𝑈𝑛,𝑣𝑎𝑐
∗ , for a 

smooth circular cylinder: D=3.5", 

L=35.5", m*=1.84, end-springs with 

k=800N/m, total damping-ratio in vacuo 

ζvac=0.06 

(a) oooo Reconstructed based on theory 

using eqs. (3A)-(3D) and measured f*. 

(b) ++++ Measured experimentally    

Fig. A14.a. Added-mass coefficient CA vs. 

𝑈𝑛,𝑣𝑎𝑐
∗ ; oooo Theoretical reconstruction by 

eq. (3A); ++++ Measured experimentally 

Fig. A14.b. Added-mass force coefficient 

CAo vs.𝑈𝑛,𝑣𝑎𝑐
∗ ; oooo Theoretical 

reconstruction by eqs.(3B); ++++ Measured 

experimentally. 

   

Fig. A14.c. Added-mass force 

magnitude FAo vs. 𝑈𝑛,𝑣𝑎𝑐
∗ ; oooo 

Theoretical reconstruction by eqs. (3D); 

++++ Measured experimentally 

Fig. A14.d. Total-force coefficient CTo vs. 

𝑈𝑛,𝑣𝑎𝑐
∗ ; oooo Theoretical reconstruction by 

eqs. (3B); ++++ Measured experimentally 

Fig. A14.e. Total-force phase ϕT vs. 𝑈𝑛,𝑣𝑎𝑐
∗ ; 

oooo Theoretical reconstruction by eqs. 

(3C); ++++ Measured experimentally 

   

Fig. A14.f. Total-force magnitude FTo vs. 

𝑈𝑛,𝑣𝑎𝑐
∗ ; oooo Theoretical reconstruction 

Fig. A14.g. Coefficient CUo of force in-

phase with velocity vs. 𝑈𝑛,𝑣𝑎𝑐
∗ ; oooo 

Fig. A14.h. Residuary force magnitude FUo 

vs. 𝑈𝑛,𝑣𝑎𝑐
∗ ; oooo Theoretical reconstruction 
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by eq. (3D); ++++ Measured 

experimentally 

Theoretical reconstruction by eqs. (3B); 

++++ Measured experimentally 

by eqs. (3D); ++++ Measured 

experimentally 

  
 

Fig. A14.i. Residuary force coefficient 

CRo  derived experimentally as FRo/kA 

Fig. A14.j. Residuary force FRo vs. 𝑈𝑛,𝑣𝑎𝑐
∗  

derived experimentally using eq. (4-1) 

Fig. A14.k. Ratio FRo/FTo [%] of vs. 𝑈𝑛,𝑣𝑎𝑐
∗ ; 

derived experimentally by eqs. (3D, 4-1) 
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Figure A15. Theoretical and experimental comparison of FSI (VIV) properties plotted vs. f*, for a smooth circular cylinder: D=3.5", 

L=35.5", m*=1.84, end-springs with k=800N/m, total damping-ratio in vacuo ζvac=0.10 

(a) ---- Theory using eqs. (3A)-(3D). (b) oooo Reconstructed based on theory and measured f*. (c) ++++ Measured experimentally  

   
Fig. A15.a. Amplitude ratio A*=A/D of 

measured displacement y(t). 

Fig. A15.b. f*=fosc/fn,vac determined by 

Discrete Fourier Transform of y(t) 

Fig. A15.c. A*=A/D vs. f*  

   

Fig. A15.d. Eigen-relation CA/m*; ---

Theory using eq. (3A) 

Fig. A15.e. Added mass coefficient CA vs. 

f*; ---Theory using eq. (3A) and m* 

Fig. A15.f. Added-mass force coefficient 

CAo; ---Theory using eqs. (3B) 

   
Fig. A15.g. Added mass force FAo vs. f* Fig. A15.h. Total force coefficient CTo vs. 

f* 
Fig. A15.i. Total-force phase ϕT vs. f* 
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Fig. A15.j. Total-force magnitude FTo vs. f* Fig. A15.k. Coefficient CUo0 of force in-

phase with velocity vs. f* 

Fig. 6.l. Force in-phase with velocity FUo 

vs. f* 

   

Fig. A15.m. Residuary force coefficient 

CRo vs. f* derived experimentally as FRo/kA 

Fig. A15.n. Residuary force magnitude FRo vs. 

f* derived experimentally by eq. (4-1) 

Fig. A15.o. Ratio FRo/FTo [%] vs. f*; derived 

experimentally using eqs. (3D, 4-1) 
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Figure A16. Theoretical and 

experimental comparison of FSI (VIV) 

properties plotted vs. 𝑈𝑛,𝑣𝑎𝑐
∗ , for a 

smooth circular cylinder: D=3.5", 

L=35.5", m*=1.84, end-springs with 

k=800N/m, total damping-ratio in vacuo 

ζvac=0.10 

(a) oooo Reconstructed based on theory 

using eqs. (3A)-(3D) and measured f*. 

(b) ++++ Measured experimentally    

Fig. A16.a. Added-mass coefficient CA vs. 

𝑈𝑛,𝑣𝑎𝑐
∗ ; oooo Theoretical reconstruction by 

eq. (A); ++++ Measured experimentally 

Fig. A16.b. Added-mass force coefficient 

CAo vs.𝑈𝑛,𝑣𝑎𝑐
∗ ; oooo Theoretical 

reconstruction by eqs.(3B); ++++ Measured 

experimentally. 

   

Fig. A16.c. Added-mass force 

magnitude FAo vs. 𝑈𝑛,𝑣𝑎𝑐
∗ ; oooo 

Theoretical reconstruction by eqs. (3D); 

++++ Measured experimentally 

Fig. A16.d. Total-force coefficient CTo vs. 

𝑈𝑛,𝑣𝑎𝑐
∗ ; oooo Theoretical reconstruction by 

eqs. (3B); ++++ Measured experimentally 

Fig. A16.e. Total-force phase ϕT vs. 𝑈𝑛,𝑣𝑎𝑐
∗ ; 

oooo Theoretical reconstruction by eqs. 

(3C); ++++ Measured experimentally 

   
Fig. A16.f. Total-force magnitude FTo vs. 

𝑈𝑛,𝑣𝑎𝑐
∗ ; oooo Theoretical reconstruction 

Fig. A16.g. Coefficient CUo of force in-

phase with velocity vs. 𝑈𝑛,𝑣𝑎𝑐
∗ ; oooo 

Fig. A16.h. Residuary force magnitude FUo 

vs. 𝑈𝑛,𝑣𝑎𝑐
∗ ; oooo Theoretical reconstruction 
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by eq. (3D); ++++ Measured 

experimentally 

Theoretical reconstruction by eqs. (3B); 

++++ Measured experimentally 

by eqs. (3D); ++++ Measured 

experimentally 

   

Fig. A16.i. Residuary force coefficient 

CRo  derived experimentally as FRo/kA 

Fig. A16.j. Residuary force FRo vs. 𝑈𝑛,𝑣𝑎𝑐
∗  

derived experimentally using eq. (4-1) 

Fig. A16.k. Ratio FRo/FTo [%] of vs. 𝑈𝑛,𝑣𝑎𝑐
∗ ; 

derived experimentally by eqs. (3D, 4-1) 
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Appendix B 

Post Processing Results for VIV and Galloping of Cylinder with Turbulence Stimulation 

The figures in the next 32 pages show some of the results for data post processing for a cylinder 

with turbulence stimulation called passive stimulation control (PTC). Mass ratio ranging from 

1.007 to 1.89. These results show how consistent the eigen-relation theory is with the experimental 

data just as it was shown in Sections 4.4 and 5.6. 

For clarity and proper understanding of this appendix, the results are arranged in increasing 

stiffness, damping ratio, and mass ratio.  

The arrangement is as follows: 

m* = 1.007 - pages 2-9 in this Appendix B 

m* = 1.34 - pages 10-17 in this Appendix B 

m* =1.685 - pages 18-25 in this Appendix B 

m* =1.89 - pages 26-33 in this Appendix B 

Results in this appendix buttress further the claims in results presented in Sections 4.3 and 5.6. As 

in the first appendix, results for two stiffness values (k =400N/m and 800N/m) are presented here 

in order to conserve space. All other results are presented in the MRELab Report #13 and #14 

[46,47] which has over 300 pages of figures including results for higher damping ratios up to 0.26.
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Figure B1. Circular cylinder with turbulence stimulation, m*=1.007, k=400N/m, ζvac=0.06; D=8.89cm (3.5"), 

L=90.17cm (35.5") Theoretical and experimental comparison of FSI (VIV) properties plotted vs. f*  

(a) ---- Theory using eqs. (3A)-(3D). (b) oooo Reconstructed based on theory and measured f*. (c) ++++ Measured experimentally  

   
Fig. B1.a. Amplitude ratio A*=A/D  Fig. B1.b. f*=fosc/fn,vac  Fig. B1.c. A*=A/D vs. f*  

   
Fig. B1.d. Eigen-relation CA/m*; ---Theory 

using eq. (A). 

Fig. B1.e. Added mass coefficient CA vs. 

f*; ---Theory using eq. (3A) and m* 

Fig. B1.f. Added-mass force coefficient 

CAo; ---Theory using eqs. (3B) 

   

Fig. B1.g. Added mass force FAo vs. f* Fig. B1.h. Total force coefficient CTo vs. f* Fig. B1.i. Total force phase ϕT vs. f* 
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Fig. B1.j. Total force magnitude FTo vs. f* Fig. B1.k. Coefficient CUo of force in-

phase with velocity vs. f* 

Fig. B1.l. Force in-phase with velocity FUo 

vs. f* 

   

Fig. B1.m. Residuary force coefficient CRo 

vs. f* derived experimentally as FRo/kA 

Fig. B1.n. Residuary force FRo vs. f* 

derived experimentally using eq. (4-1) 

Fig. B1.o. Ratio FRo/FTo [%] of vs. f*; 

derived experimentally by eqs. (3D, 4-1) 
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Figure B2. Circular cylinder with 

turbulence stimulation m*=1.007 

k=400N/m, ζvac=0.06; D=8.89cm 

(3.5"), L=90.17cm (35.5") 

 

Theoretical and experimental comparison 

of FSI (VIV) properties plotted vs. 

U*n,vac,U and Re.  

(a) oooo Reconstructed based on theory 

using eqs. (3A)-(3D) and measured f*. (b) 

++++ Measured experimentally 

  
Fig. B2.a. Added-mass coefficient CA vs. 

𝑈𝑛,𝑣𝑎𝑐
∗ ; oooo Theoretical reconstruction by 

eq. (3A); ++++ Measured experimentally 

Fig. B2.b. Added mass force coefficient 

CAo vs. 𝑈𝑛,𝑣𝑎𝑐
∗ ; oooo Theoretical 

reconstruction using eq. (3B); ++++ 

Measured experimentally 

   

Fig. B2.c. Added mass force magnitude FAo 

vs. 𝑈𝑛,𝑣𝑎𝑐
∗ ; oooo Theoretical reconstruction 

by eqs.(3D); ++++Measured experimentally 

Fig. B2.d. Total force coefficient CTo vs. 

𝑈𝑛,𝑣𝑎𝑐
∗ ; oooo Theoretical reconstruction by 

eqs. (3B); ++++ Measured experimentally 

Fig. B2.e. Total force phase ϕT vs. 𝑈𝑛,𝑣𝑎𝑐
∗ ;    

oooo Theoretical reconstruction using 

eqs. (3C); ++++ Measured experimentally 

   



155 
 

Fig. B2.f. Total force magnitude FTo vs. 

𝑈𝑛,𝑣𝑎𝑐
∗ ; oooo Theoretical reconstruction by  

eqs. (3D); ++++ Measured experimentally 

Fig. B2.g. Coefficient CUo of force in-phase 

with velocity vs. 𝑈𝑛,𝑣𝑎𝑐
∗ ; oooo Theoretical 

reconstruction by eqs. (3B); ++++Measured 

experimentally 

Fig. B2.h. Force in-phase with velocity 

FUo vs.𝑈𝑛,𝑣𝑎𝑐
∗ ; oooo Theoretical 

reconstruction by eqs.(3D);++++Measured 

experimentally 

   

Fig. B2.i. Residuary force coefficient CRo vs. 

𝑈𝑛,𝑣𝑎𝑐
∗  derived experimentally as FRo/kA 

Fig. B2.j. Residuary force magnitude FRo vs. 

𝑈𝑛,𝑣𝑎𝑐
∗  derived experimentally by eq. (4-1) 

Fig. B2.k. Ratio FRo/FTo [%] of vs. 𝑈𝑛,𝑣𝑎𝑐
∗ ; 

derived experimentally by eqs. (3D, 4-1) 
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Figure B3. Circular cylinder with turbulence stimulation, m*=1.007, k=400N/m, ζvac=0.10; D=8.89cm (3.5"), 

L=90.17cm (35.5") Theoretical and experimental comparison of FSI (VIV) properties plotted vs. f*  

(a) ---- Theory using eqs. (3A)-(3D). (b) oooo Reconstructed based on theory and measured f*. (c) ++++ Measured experimentally  

   

Fig. B3.a. Amplitude ratio A*=A/D  Fig. B3.b. f*=fosc/fn,vac  Fig. B3.c. A*=A/D vs. f*  

   

Fig. B3.d. Eigen-relation CA/m*; ---Theory 

using eq. (3A). 

Fig. B3.e. Added mass coefficient CA vs. 

f*; ---Theory using eq. (3A) and m* 

Fig. B3.f. Added-mass force coefficient 

CAo; ---Theory using eqs. (3B) 

   

Fig. B3. Added mass force FAo vs. f* Fig. B3.h. Total force coefficient CTo vs. f* Fig. B3.i. Total force phase ϕT vs. f* 
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Fig. B3.j. Total force magnitude FTo vs. f* Fig. B3.k. Coefficient CUo of force in-

phase with velocity vs. f* 

Fig. B3.l. Force in-phase with velocity FUo 

vs. f* 

   

Fig. B3.m. Residuary force coefficient CRo 

vs. f* derived experimentally as FRo/kA 

Fig. B3.n. Residuary force FRo vs. f* 

derived experimentally using eq. (4-1) 

Fig. B3.o. Ratio FRo/FTo [%] of vs. f*; 

derived experimentally by eqs. (3D, 4-1) 
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Figure B4. Circular cylinder with 

turbulence stimulation m*=1.007 

k=400N/m, ζvac=0.10; D=8.89cm 

(3.5"), L=90.17cm (35.5") 

 

Theoretical and experimental comparison 

of FSI (VIV) properties plotted vs. 

U*n,vac,U and Re.  

(a) oooo Reconstructed based on theory 

using eqs. (3A)-(3D) and measured f*. (b) 

++++ Measured experimentally 

  
Fig. B4.a. Added-mass coefficient CA vs. 

𝑈𝑛,𝑣𝑎𝑐
∗ ; oooo Theoretical reconstruction by 

eq. (3A); ++++ Measured experimentally 

Fig. B4.b. Added mass force coefficient 

CAo vs. 𝑈𝑛,𝑣𝑎𝑐
∗ ; oooo Theoretical 

reconstruction using eq. (3B); ++++ 

Measured experimentally 

   

Fig. B4.c. Added mass force magnitude FAo 

vs. 𝑈𝑛,𝑣𝑎𝑐
∗ ; oooo Theoretical reconstruction 

by eqs.(3D); ++++Measured experimentally 

Fig. B4.d. Total force coefficient CTo vs. 

𝑈𝑛,𝑣𝑎𝑐
∗ ; oooo Theoretical reconstruction by 

eqs. (3B); ++++ Measured experimentally 

Fig. B4.e. Total force phase ϕT vs. 𝑈𝑛,𝑣𝑎𝑐
∗ ;    

oooo Theoretical reconstruction using 

eqs. (3C); ++++ Measured experimentally 
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Fig. B4.f. Total force magnitude FTo vs. 

𝑈𝑛,𝑣𝑎𝑐
∗ ; oooo Theoretical reconstruction by  

eqs. (3D); ++++ Measured experimentally 

Fig. B4.g. Coefficient CUo of force in-phase 

with velocity vs. 𝑈𝑛,𝑣𝑎𝑐
∗ ; oooo Theoretical 

reconstruction by eqs. (3B); ++++Measured 

experimentally 

Fig. B4.h. Force in-phase with velocity 

FUo vs.𝑈𝑛,𝑣𝑎𝑐
∗ ; oooo Theoretical 

reconstruction by eqs.(3D);++++Measured 

experimentally 

   

Fig. B4.i. Residuary force coefficient CRo vs. 

𝑈𝑛,𝑣𝑎𝑐
∗  derived experimentally as FRo/kA 

Fig. B4.j. Residuary force magnitude FRo 

vs. 𝑈𝑛,𝑣𝑎𝑐
∗  derived experimentally by eq. (4-

1) 

Fig. B4.k. Ratio FRo/FTo [%] of vs. 𝑈𝑛,𝑣𝑎𝑐
∗ ; 

derived experimentally by eqs. (3D, 4-1) 

 

 

 

 

 

 

 

 

 

 

 



160 
 

Figure B5. Circular cylinder with turbulence stimulation, m*=1.007, k=800N/m, ζvac=0.06; D=8.89cm (3.5"), 

L=90.17cm (35.5") Theoretical and experimental comparison of FSI (VIV) properties plotted vs. f*  

(a) ---- Theory using eqs. (3A)-(3D). (b) oooo Reconstructed based on theory and measured f*. (c) ++++ Measured experimentally  

   

Fig. B5.a. Amplitude ratio A*=A/D  Fig. B5.b. f*=fosc/fn,vac  Fig. B5.c. A*=A/D vs. f*  

   
Fig. B5.d. Eigen-relation CA/m*; ---Theory 

using eq. (3A). 

Fig. B5.e. Added mass coefficient CA vs. 

f*; ---Theory using eq. (3A) and m* 

Fig. B5.f. Added-mass force coefficient 

CAo; ---Theory using eqs. (3B) 

   
Fig. B5.g. Added mass force FAo vs. f* Fig. B5.h. Total force coefficient CTo vs. f* Fig. B5.i. Total force phase ϕT vs. f* 
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Fig. B5.j. Total force magnitude FTo vs. f* Fig. B5.k. Coefficient CUo of force in-

phase with velocity vs. f* 

Fig. B5.l. Force in-phase with velocity FUo 

vs. f* 

   

Fig. B5.m. Residuary force coefficient CRo 

vs. f* derived experimentally as FRo/kA 

Fig. B5.n. Residuary force FRo vs. f* 

derived experimentally using eq. (4-1) 

Fig. B5.o. Ratio FRo/FTo [%] of vs. f*; 

derived experimentally by eqs. (3D, 4-1) 
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Figure B6. Circular cylinder with 

turbulence stimulation m*=1.007 

k=800N/m, ζvac=0.06; D=8.89cm 

(3.5"), L=90.17cm (35.5") 

 

Theoretical and experimental comparison 

of FSI (VIV) properties plotted vs. 

U*n,vac,U and Re.  

(a) oooo Reconstructed based on theory 

using eqs. (3A)-(3D) and measured f*. (b) 

++++ Measured experimentally 

  
Fig. B6.a. Added-mass coefficient CA vs. 

𝑈𝑛,𝑣𝑎𝑐
∗ ; oooo Theoretical reconstruction by 

eq. (3A); ++++ Measured experimentally 

Fig. B6.b. Added mass force coefficient 

CAo vs. 𝑈𝑛,𝑣𝑎𝑐
∗ ; oooo Theoretical 

reconstruction using eq. (3B); ++++ 

Measured experimentally 

   
Fig. B6.c. Added mass force magnitude FAo 

vs. 𝑈𝑛,𝑣𝑎𝑐
∗ ; oooo Theoretical reconstruction 

by eqs.(3D); ++++Measured experimentally 

Fig. B6.d. Total force coefficient CTo vs. 

𝑈𝑛,𝑣𝑎𝑐
∗ ; oooo Theoretical reconstruction by 

eqs. (3B); ++++ Measured experimentally 

Fig. B6.e. Total force phase ϕT vs. 𝑈𝑛,𝑣𝑎𝑐
∗ ;    

oooo Theoretical reconstruction using 

eqs. 3(C); ++++ Measured experimentally 
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Fig. B6.f. Total force magnitude FTo vs. 

𝑈𝑛,𝑣𝑎𝑐
∗ ; oooo Theoretical reconstruction by  

eqs. (3D); ++++ Measured experimentally 

Fig. B6.g. Coefficient CUo of force in-phase 

with velocity vs. 𝑈𝑛,𝑣𝑎𝑐
∗ ; oooo Theoretical 

reconstruction by eqs. (3B); ++++Measured 

experimentally 

Fig. B6.h. Force in-phase with velocity 

FUo vs.𝑈𝑛,𝑣𝑎𝑐
∗ ; oooo Theoretical 

reconstruction by eqs.(3D);++++Measured 

experimentally 

   

Fig. B6.i. Residuary force coefficient CRo vs. 

𝑈𝑛,𝑣𝑎𝑐
∗  derived experimentally as FRo/kA 

Fig. B6.j. Residuary force magnitude FRo 

vs. 𝑈𝑛,𝑣𝑎𝑐
∗  derived experimentally by eq. (4-

1) 

Fig. B6.k. Ratio FRo/FTo [%] of vs. 𝑈𝑛,𝑣𝑎𝑐
∗ ; 

derived experimentally by eqs. (3D, 4-1) 
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Figure B7. Circular cylinder with turbulence stimulation, m*=1.007, k=800N/m, ζvac=0.10; D=8.89cm (3.5"), 

L=90.17cm (35.5") Theoretical and experimental comparison of FSI (VIV) properties plotted vs. f*  

(a) ---- Theory using eqs. (3A)-(3D). (b) oooo Reconstructed based on theory and measured f*. (c) ++++ Measured experimentally  

   
Fig. B7.a. Amplitude ratio A*=A/D  Fig. B7.b. f*=fosc/fn,vac  Fig. B7.c. A*=A/D vs. f*  

   
Fig. B7.d. Eigen-relation CA/m*; ---Theory 

using eq. (3A). 

Fig. B7.e. Added mass coefficient CA vs. 

f*; ---Theory using eq. (3A) and m* 

Fig. B7.f. Added-mass force coefficient 

CAo; ---Theory using eqs. (3B) 

   
Fig. B7.g. Added mass force FAo vs. f* Fig. B7.h. Total force coefficient CTo vs. f* Fig. B7.i. Total force phase ϕT vs. f* 
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Fig. B7.j. Total force magnitude FTo vs. f* Fig. B7.k. Coefficient CUo of force in-

phase with velocity vs. f* 

Fig. B7.l. Force in-phase with velocity FUo 

vs. f* 

   

Fig. B7.m. Residuary force coefficient CRo 

vs. f* derived experimentally as FRo/kA 

Fig. B7.n. Residuary force FRo vs. f* 

derived experimentally using eq. (4-1) 

Fig. B7.o. Ratio FRo/FTo [%] of vs. f*; 

derived experimentally by eqs. (3D, 4-1) 
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Figure B8. Circular cylinder with 

turbulence stimulation m*=1.007 

k=800N/m, ζvac=0.10; D=8.89cm 

(3.5"), L=90.17cm (35.5") 

 

Theoretical and experimental comparison 

of FSI (VIV) properties plotted vs. 

U*n,vac,U and Re.  

(a) oooo Reconstructed based on theory 

using eqs. (3A)-(3D) and measured f*. (b) 

++++ Measured experimentally 

  

Fig. B8.a. Added-mass coefficient CA vs. 

𝑈𝑛,𝑣𝑎𝑐
∗ ; oooo Theoretical reconstruction by 

eq. (3A); ++++ Measured experimentally 

Fig. B8.b. Added mass force coefficient 

CAo vs. 𝑈𝑛,𝑣𝑎𝑐
∗ ; oooo Theoretical 

reconstruction using eq. (3B); ++++ 

Measured experimentally 

   
Fig. B8.c. Added mass force magnitude FAo 

vs. 𝑈𝑛,𝑣𝑎𝑐
∗ ; oooo Theoretical reconstruction 

by eqs.(3D); ++++Measured experimentally 

Fig. B8.d. Total force coefficient CTo vs. 

𝑈𝑛,𝑣𝑎𝑐
∗ ; oooo Theoretical reconstruction by 

eqs. (3B); ++++ Measured experimentally 

Fig. B8.e. Total force phase ϕT vs. 𝑈𝑛,𝑣𝑎𝑐
∗ ;    

oooo Theoretical reconstruction using 

eqs. (3C); ++++ Measured experimentally 
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Fig. B8.f. Total force magnitude FTo vs. 

𝑈𝑛,𝑣𝑎𝑐
∗ ; oooo Theoretical reconstruction by  

eqs. (3D); ++++ Measured experimentally 

Fig. B8.g. Coefficient CUo of force in-phase 

with velocity vs. 𝑈𝑛,𝑣𝑎𝑐
∗ ; oooo Theoretical 

reconstruction by eqs. (3B); ++++Measured 

experimentally 

Fig. B8.h. Force in-phase with velocity 

FUo vs.𝑈𝑛,𝑣𝑎𝑐
∗ ; oooo Theoretical 

reconstruction by eqs.(3D);++++Measured 

experimentally 

   

Fig. B8.i. Residuary force coefficient CRo vs. 

𝑈𝑛,𝑣𝑎𝑐
∗  derived experimentally as FRo/kA 

Fig. B8.j. Residuary force magnitude FRo vs. 

𝑈𝑛,𝑣𝑎𝑐
∗  derived experimentally by eq. (4-1) 

Fig. B8.k. Ratio FRo/FTo [%] of vs. 𝑈𝑛,𝑣𝑎𝑐
∗ ; 

derived experimentally by eqs. (3D, 4-1) 
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Figure B9. Circular cylinder with turbulence stimulation, m*=1.34, k=400N/m, ζvac=0.06; D=8.89cm (3.5"), 

L=90.17cm (35.5") Theoretical and experimental comparison of FSI (VIV) properties plotted vs. f*  

(a) ---- Theory using eqs. (3A)-(3D). (b) oooo Reconstructed based on theory and measured f*. (c) ++++ Measured experimentally  

   
Fig. B9.a. Amplitude ratio A*=A/D  Fig. B9.b. f*=fosc/fn,vac  Fig. B9.c. A*=A/D vs. f*  

   
Fig. B9.d. Eigen-relation CA/m*; ---Theory 

using eq. (3A). 

Fig. B9.e. Added mass coefficient CA vs. 

f*; ---Theory using eq. (3A) and m* 

Fig. B9.f. Added-mass force coefficient 

CAo; ---Theory using eqs. (3B) 

   
Fig. B9.g. Added mass force FAo vs. f* Fig. B9.h. Total force coefficient CTo vs. f* Fig. B9.i. Total force phase ϕT vs. f* 
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Fig. B9.j. Total force magnitude FTo vs. f* Fig. B9.k. Coefficient CUo of force in-

phase with velocity vs. f* 

Fig. B9.l. Force in-phase with velocity FUo 

vs. f* 

   

Fig. B9.m. Residuary force coefficient CRo 

vs. f* derived experimentally as FRo/kA 

Fig. B9.n. Residuary force FRo vs. f* 

derived experimentally using eq. (4-1) 

Fig. B9.o. Ratio FRo/FTo [%] of vs. f*; 

derived experimentally by eqs. (3D, 4-1) 
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Figure B10. Circular cylinder with 

turbulence stimulation m*=1.34, 

k=400N/m, ζvac=0.06; D=8.89cm 

(3.5"), L=90.17cm (35.5") 

 

Theoretical and experimental comparison 

of FSI (VIV) properties plotted vs. 

U*n,vac,U and Re.  

(a) oooo Reconstructed based on theory 

using eqs. (3A)-(3D) and measured f*. (b) 

++++ Measured experimentally 
  

Fig. B10.a. Added-mass coefficient CA vs. 

𝑈𝑛,𝑣𝑎𝑐
∗ ; oooo Theoretical reconstruction by 

eq. (3A); ++++ Measured experimentally 

Fig. B10.b. Added mass force coefficient 

CAo vs. 𝑈𝑛,𝑣𝑎𝑐
∗ ; oooo Theoretical 

reconstruction using eq. (3B); ++++ 

Measured experimentally 

   
Fig. B10.c. Added mass force magnitude 

FAo vs. 𝑈𝑛,𝑣𝑎𝑐
∗ ; oooo Theoretical 

reconstruction by eqs.(3D); ++++Measured 

experimentally 

Fig. B10.d. Total force coefficient CTo vs. 

𝑈𝑛,𝑣𝑎𝑐
∗ ; oooo Theoretical reconstruction by 

eqs. (3B); ++++ Measured experimentally 

Fig. B10.e. Total force phase ϕT vs. 𝑈𝑛,𝑣𝑎𝑐
∗ ;    

oooo Theoretical reconstruction using 

eqs. (3C); ++++ Measured experimentally 
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Fig. B10.f. Total force magnitude FTo vs. 

𝑈𝑛,𝑣𝑎𝑐
∗ ; oooo Theoretical reconstruction by  

eqs. (3D); ++++ Measured experimentally 

Fig. B10.g. Coefficient CUo of force in-

phase with velocity vs. 𝑈𝑛,𝑣𝑎𝑐
∗ ; oooo 

Theoretical reconstruction by eqs. (3B); 

++++Measured experimentally 

Fig. B10.h. Force in-phase with velocity 

FUo vs.𝑈𝑛,𝑣𝑎𝑐
∗ ; oooo Theoretical 

reconstruction by eqs.(3D);++++Measured 

experimentally 

   

Fig. B10.i. Residuary force coefficient CRo 

vs. 𝑈𝑛,𝑣𝑎𝑐
∗  derived experimentally as FRo/kA 

Fig. B10.j. Residuary force magnitude FRo vs. 

𝑈𝑛,𝑣𝑎𝑐
∗  derived experimentally by eq. (4-1) 

Fig. B10.k. Ratio FRo/FTo [%] of vs. 𝑈𝑛,𝑣𝑎𝑐
∗ ; 

derived experimentally by eqs. (3D, 4-1) 
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Figure B11. Circular cylinder with turbulence stimulation, m*=1.34, k=400N/m, ζvac=0.10; D=8.89cm (3.5"), 

L=90.17cm (35.5") Theoretical and experimental comparison of FSI (VIV) properties plotted vs. f*  

(a) ---- Theory using eqs. (3A)-(3D). (b) oooo Reconstructed based on theory and measured f*. (c) ++++ Measured experimentally  

   
Fig. B11.a. Amplitude ratio A*=A/D  Fig. B11.b. f*=fosc/fn,vac  Fig. B11.c. A*=A/D vs. f*  

   
Fig. B11.d. Eigen-relation CA/m*; ---

Theory using eq. (3A). 

Fig. B11.e. Added mass coefficient CA vs. 

f*; ---Theory using eq. (3A) and m* 

Fig. B11.f. Added-mass force coefficient 

CAo; ---Theory using eqs. (3B) 

   
Fig. B11.g. Added mass force FAo vs. f* Fig. B11.h. Total force coefficient CTo vs. 

f* 
Fig. B11.i. Total force phase ϕT vs. f* 
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Fig. B11.j. Total force magnitude FTo vs. f* Fig. B11.k. Coefficient CUo of force in-

phase with velocity vs. f* 

Fig. B11.l. Force in-phase with velocity 

FUo vs. f* 

   
Fig. B11.m. Residuary force coefficient CRo 

vs. f* derived experimentally as FRo/kA 

Fig. B11.n. Residuary force FRo vs. f* 

derived experimentally using eq. (4-1) 

Fig. B11.o. Ratio FRo/FTo [%] of vs. f*; 

derived experimentally by eqs. (3D, 4-1) 
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Figure B12. Circular cylinder with 

turbulence stimulation m*=1.34, 

k=400N/m, ζvac=0.10; D=8.89cm 

(3.5"), L=90.17cm (35.5") 

 

Theoretical and experimental comparison 

of FSI (VIV) properties plotted vs. 

U*n,vac,U and Re.  

(a) oooo Reconstructed based on theory 

using eqs. (3A)-(3D) and measured f*. (b) 

++++ Measured experimentally 

  

Fig. B12.a. Added-mass coefficient CA vs. 

𝑈𝑛,𝑣𝑎𝑐
∗ ; oooo Theoretical reconstruction by 

eq. (3A); ++++ Measured experimentally 

Fig. B12.b. Added mass force coefficient 

CAo vs. 𝑈𝑛,𝑣𝑎𝑐
∗ ; oooo Theoretical 

reconstruction using eq. (3B); ++++ 

Measured experimentally 

   
Fig. B12.c. Added mass force magnitude 

FAo vs. 𝑈𝑛,𝑣𝑎𝑐
∗ ; oooo Theoretical 

reconstruction by eqs.(3D); ++++Measured 

experimentally 

Fig. B12.d. Total force coefficient CTo vs. 

𝑈𝑛,𝑣𝑎𝑐
∗ ; oooo Theoretical reconstruction by 

eqs. (3B); ++++ Measured experimentally 

Fig. B12.e. Total force phase ϕT vs. 𝑈𝑛,𝑣𝑎𝑐
∗ ;    

oooo Theoretical reconstruction using 

eqs. (3C); ++++ Measured experimentally 
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Fig. B12.f. Total force magnitude FTo vs. 

𝑈𝑛,𝑣𝑎𝑐
∗ ; oooo Theoretical reconstruction by  

eqs. (3D); ++++ Measured experimentally 

Fig. B12.g. Coefficient CUo of force in-

phase with velocity vs. 𝑈𝑛,𝑣𝑎𝑐
∗ ; oooo 

Theoretical reconstruction by eqs. (3B); 

++++Measured experimentally 

Fig. B12.h. Force in-phase with velocity 

FUo vs.𝑈𝑛,𝑣𝑎𝑐
∗ ; oooo Theoretical 

reconstruction by eqs.(3D);++++Measured 

experimentally 

   

Fig. B12.i. Residuary force coefficient CRo 

vs. 𝑈𝑛,𝑣𝑎𝑐
∗  derived experimentally as FRo/kA 

Fig. B12.j. Residuary force magnitude FRo vs. 

𝑈𝑛,𝑣𝑎𝑐
∗  derived experimentally by eq. (4-1) 

Fig. B12.k. Ratio FRo/FTo [%] of vs. 𝑈𝑛,𝑣𝑎𝑐
∗ ; 

derived experimentally by eqs. (3D, 4-1) 
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Figure B13. Circular cylinder with turbulence stimulation, m*=1.34, k=800N/m, ζvac=0.06; D=8.89cm (3.5"), 

L=90.17cm (35.5") Theoretical and experimental comparison of FSI (VIV) properties plotted vs. f*  

(a) ---- Theory using eqs. (3A)-(3D). (b) oooo Reconstructed based on theory and measured f*. (c) ++++ Measured experimentally  

   

Fig. B13.a. Amplitude ratio A*=A/D  Fig. B13.b. f*=fosc/fn,vac  Fig. B13.c. A*=A/D vs. f*  

   
Fig. B13.d. Eigen-relation CA/m*; ---

Theory using eq. (3A). 

Fig. B13.e. Added mass coefficient CA vs. 

f*; ---Theory using eq. (3A) and m* 

Fig. B13.f. Added-mass force coefficient 

CAo; ---Theory using eqs. (3B) 

   
Fig. B13.g. Added mass force FAo vs. f* Fig. B13.h. Total force coefficient CTo vs. 

f* 
Fig. B13.i. Total force phase ϕT vs. f* 
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Fig. B13.j. Total force magnitude FTo vs. f* Fig. B13.k. Coefficient CUo of force in-

phase with velocity vs. f* 

Fig. B13.l. Force in-phase with velocity 

FUo vs. f* 

   

Fig. B13.m. Residuary force coefficient CRo 

vs. f* derived experimentally as FRo/kA 

Fig. B13.n. Residuary force FRo vs. f* 

derived experimentally using eq. (4-1) 

Fig. B13.o. Ratio FRo/FTo [%] of vs. f*; 

derived experimentally by eqs. (3D, 4-1) 
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Figure B14. Circular cylinder with 

turbulence stimulation m*=1.34, 

k=800N/m, ζvac=0.06; D=8.89cm 

(3.5"), L=90.17cm (35.5") 

 

Theoretical and experimental comparison 

of FSI (VIV) properties plotted vs. 

U*n,vac,U and Re.  

(a) oooo Reconstructed based on theory 

using eqs. (3A)-(3D) and measured f*. (b) 

++++ Measured experimentally 

  

Fig. B14.a. Added-mass coefficient CA vs. 

𝑈𝑛,𝑣𝑎𝑐
∗ ; oooo Theoretical reconstruction by 

eq. (3A); ++++ Measured experimentally 

Fig. B14.b. Added mass force coefficient 

CAo vs. 𝑈𝑛,𝑣𝑎𝑐
∗ ; oooo Theoretical 

reconstruction using eq. (3B); ++++ 

Measured experimentally 

   

Fig. B14.c. Added mass force magnitude 

FAo vs. 𝑈𝑛,𝑣𝑎𝑐
∗ ; oooo Theoretical 

reconstruction by eqs.(3D); ++++Measured 

experimentally 

Fig. B14.d. Total force coefficient CTo vs. 

𝑈𝑛,𝑣𝑎𝑐
∗ ; oooo Theoretical reconstruction by 

eqs. (3B); ++++ Measured experimentally 

Fig. B14.e. Total force phase ϕT vs. 𝑈𝑛,𝑣𝑎𝑐
∗ ;    

oooo Theoretical reconstruction using 

eqs. (3C); ++++ Measured experimentally 
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Fig. B14.f. Total force magnitude FTo vs. 

𝑈𝑛,𝑣𝑎𝑐
∗ ; oooo Theoretical reconstruction by  

eqs. (3D); ++++ Measured experimentally 

Fig. B14.g. Coefficient CUo of force in-

phase with velocity vs. 𝑈𝑛,𝑣𝑎𝑐
∗ ; oooo 

Theoretical reconstruction by eqs. (3B); 

++++Measured experimentally 

Fig. B14.h. Force in-phase with velocity 

FUo vs.𝑈𝑛,𝑣𝑎𝑐
∗ ; oooo Theoretical 

reconstruction by eqs.(3D);++++Measured 

experimentally 

   
Fig. B14.i. Residuary force coefficient CRo 

vs. 𝑈𝑛,𝑣𝑎𝑐
∗  derived experimentally as FRo/kA 

Fig. B14.j. Residuary force magnitude FRo vs. 

𝑈𝑛,𝑣𝑎𝑐
∗  derived experimentally by eq. (4-1) 

Fig. B14.k. Ratio FRo/FTo [%] of vs. 𝑈𝑛,𝑣𝑎𝑐
∗ ; 

derived experimentally by eqs. (3D, 4-1) 
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Figure B15. Circular cylinder with turbulence stimulation, m*=1.34, k=800N/m, ζvac=0.10; D=8.89cm (3.5"), 

L=90.17cm (35.5") Theoretical and experimental comparison of FSI (VIV) properties plotted vs. f*  

(a) ---- Theory using eqs. (A)-(D). (b) oooo Reconstructed based on theory and measured f*. (c) ++++ Measured experimentally  

   
Fig. B15.a. Amplitude ratio A*=A/D  Fig. B15.b. f*=fosc/fn,vac  Fig. B15.c. A*=A/D vs. f*  

   
Fig. B15.d. Eigen-relation CA/m*; ---

Theory using eq. (3A). 

Fig. B15.e. Added mass coefficient CA vs. 

f*; ---Theory using eq. (3A) and m* 

Fig. B15.f. Added-mass force coefficient 

CAo; ---Theory using eqs. (3B) 

   
Fig. B15.g. Added mass force FAo vs. f* Fig. B15.h. Total force coefficient CTo vs. 

f* 
Fig. B15.i. Total force phase ϕT vs. f* 
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Fig. B15.j. Total force magnitude FTo vs. f* Fig. B15.k. Coefficient CUo of force in-

phase with velocity vs. f* 

Fig. B15.l. Force in-phase with velocity 

FUo vs. f* 

   
Fig. B15.m. Residuary force coefficient CRo 

vs. f* derived experimentally as FRo/kA 

Fig. B15.n. Residuary force FRo vs. f* 

derived experimentally using eq. (4-1) 

Fig. B15.o. Ratio FRo/FTo [%] of vs. f*; 

derived experimentally by eqs. (3D, 4-1) 
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Figure B16. Circular cylinder with 

turbulence stimulation m*=1.34, 

k=800N/m, ζvac=0.10; D=8.89cm 

(3.5"), L=90.17cm (35.5") 

 

Theoretical and experimental comparison 

of FSI (VIV) properties plotted vs. 

U*n,vac,U and Re.  

(a) oooo Reconstructed based on theory 

using eqs. (3A)-(3D) and measured f*. (b) 

++++ Measured experimentally 

  

Fig. B16.a. Added-mass coefficient CA vs. 

𝑈𝑛,𝑣𝑎𝑐
∗ ; oooo Theoretical reconstruction by 

eq. (3A); ++++ Measured experimentally 

Fig. B16.b. Added mass force coefficient 

CAo vs. 𝑈𝑛,𝑣𝑎𝑐
∗ ; oooo Theoretical 

reconstruction using eq. (3B); ++++ 

Measured experimentally 

   

Fig. B16.c. Added mass force magnitude 

FAo vs. 𝑈𝑛,𝑣𝑎𝑐
∗ ; oooo Theoretical 

reconstruction by eqs.(3D); ++++Measured 

experimentally 

Fig. B16.d. Total force coefficient CTo vs. 

𝑈𝑛,𝑣𝑎𝑐
∗ ; oooo Theoretical reconstruction by 

eqs. (3B); ++++ Measured experimentally 

Fig. B16.e. Total force phase ϕT vs. 𝑈𝑛,𝑣𝑎𝑐
∗ ;    

oooo Theoretical reconstruction using 

eqs. (3C); ++++ Measured experimentally 
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Fig. B16.f. Total force magnitude FTo vs. 

𝑈𝑛,𝑣𝑎𝑐
∗ ; oooo Theoretical reconstruction by  

eqs. (3D); ++++ Measured experimentally 

Fig. B16.g. Coefficient CUo of force in-

phase with velocity vs. 𝑈𝑛,𝑣𝑎𝑐
∗ ; oooo 

Theoretical reconstruction by eqs. (3B); 

++++Measured experimentally 

Fig. B16.h. Force in-phase with velocity 

FUo vs.𝑈𝑛,𝑣𝑎𝑐
∗ ; oooo Theoretical 

reconstruction by eqs.(3D);++++Measured 

experimentally 

   
Fig. B16.i. Residuary force coefficient CRo vs. 

𝑈𝑛,𝑣𝑎𝑐
∗  derived experimentally as FRo/kA 

Fig. B16.j. Residuary force magnitude FRo vs. 

𝑈𝑛,𝑣𝑎𝑐
∗  derived experimentally by eq. (4-1) 

Fig. B16.k. Ratio FRo/FTo [%] of vs. 𝑈𝑛,𝑣𝑎𝑐
∗ ; 

derived experimentally by eqs. (3D, 4-1) 
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Figure B17. Circular cylinder with turbulence stimulation, m*=1.685, k=400N/m, ζvac=0.06; D=8.89cm (3.5"), 

L=90.17cm (35.5") Theoretical and experimental comparison of FSI (VIV) properties plotted vs. f*  

(a) ---- Theory using eqs. (3A)-(3D). (b) oooo Reconstructed based on theory and measured f*. (c) ++++ Measured experimentally 
 

   

Fig. B17.a. Amplitude ratio A*=A/D  Fig. B17.b. f*=fosc/fn,vac  Fig. B17.c. A*=A/D vs. f*  

   

Fig. B17.d. Eigen-relation CA/m*; ---

Theory using eq. (3A). 

Fig. B17.e. Added mass coefficient CA vs. 

f*; ---Theory using eq. (3A) and m* 

Fig. B17.f. Added-mass force coefficient 

CAo; ---Theory using eqs. (3B) 

   

Fig. B17.g. Added mass force FAo vs. f* Fig. B17.h. Total force coefficient CTo vs. 

f* 
Fig. B17.i. Total force phase ϕT vs. f* 
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Fig. B17.j. Total force magnitude FTo vs. f* Fig. B17.k. Coefficient CUo of force in-

phase with velocity vs. f* 

Fig. B17.l. Force in-phase with velocity 

FUo vs. f* 

   

Fig. B17.m. Residuary force coefficient CRo 

vs. f* derived experimentally as FRo/kA 

Fig. B17.n. Residuary force FRo vs. f* 

derived experimentally using eq. (4-1) 

Fig. B17.o. Ratio FRo/FTo [%] of vs. f*; 

derived experimentally by eqs. (3D, 4-1) 
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Figure B18. Circular cylinder with 

turbulence stimulation m*=1.685, 

k=400N/m, ζvac=0.06; D=8.89cm 

(3.5"), L=90.17cm (35.5") 

 

Theoretical and experimental comparison 

of FSI (VIV) properties plotted vs. 

U*n,vac,U and Re.  

(a) oooo Reconstructed based on theory 

using eqs. (3A)-(3D) and measured f*. (b) 

++++ Measured experimentally 

  
Fig. B18.a. Added-mass coefficient CA vs. 

𝑈𝑛,𝑣𝑎𝑐
∗ ; oooo Theoretical reconstruction by 

eq. (3A); ++++ Measured experimentally 

Fig. B18.b. Added mass force coefficient 

CAo vs. 𝑈𝑛,𝑣𝑎𝑐
∗ ; oooo Theoretical 

reconstruction using eq. (3B); ++++ 

Measured experimentally 

   
Fig. B18.c. Added mass force magnitude 

FAo vs. 𝑈𝑛,𝑣𝑎𝑐
∗ ; oooo Theoretical 

reconstruction by eqs.(3D); ++++Measured 

experimentally 

Fig. B18.d. Total force coefficient CTo vs. 

𝑈𝑛,𝑣𝑎𝑐
∗ ; oooo Theoretical reconstruction by 

eqs. (3B); ++++ Measured experimentally 

Fig. B18.e. Total force phase ϕT vs. 𝑈𝑛,𝑣𝑎𝑐
∗ ;    

oooo Theoretical reconstruction using 

eqs. (3C); ++++ Measured experimentally 
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Fig. B18.f. Total force magnitude FTo vs. 

𝑈𝑛,𝑣𝑎𝑐
∗ ; oooo Theoretical reconstruction by  

eqs. (3D); ++++ Measured experimentally 

Fig. B18.g. Coefficient CUo of force in-

phase with velocity vs. 𝑈𝑛,𝑣𝑎𝑐
∗ ; oooo 

Theoretical reconstruction by eqs. (3B); 

++++Measured experimentally 

Fig. B18.h. Force in-phase with velocity 

FUo vs.𝑈𝑛,𝑣𝑎𝑐
∗ ; oooo Theoretical 

reconstruction by eqs.(3D);++++Measured 

experimentally 

   

Fig. B18.i. Residuary force coefficient CRo vs. 

𝑈𝑛,𝑣𝑎𝑐
∗  derived experimentally as FRo/kA 

Fig. B18.j. Residuary force magnitude FRo vs. 

𝑈𝑛,𝑣𝑎𝑐
∗  derived experimentally by eq. (4-1) 

Fig. B18.k. Ratio FRo/FTo [%] of vs. 𝑈𝑛,𝑣𝑎𝑐
∗ ; 

derived experimentally by eqs. (3D, 4-1) 
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Figure B19. Circular cylinder with turbulence stimulation, m*=1.685, k=400N/m, ζvac=0.10; D=8.89cm (3.5"), 

L=90.17cm (35.5") Theoretical and experimental comparison of FSI (VIV) properties plotted vs. f*  

(a) ---- Theory using eqs. (3A)-(3D). (b) oooo Reconstructed based on theory and measured f*. (c) ++++ Measured experimentally  

   

Fig. B19.a. Amplitude ratio A*=A/D  Fig. B19.b. f*=fosc/fn,vac  Fig. B19.c. A*=A/D vs. f*  

   

Fig. B19.d. Eigen-relation CA/m*; ---

Theory using eq. (3A). 

Fig. B19.e. Added mass coefficient CA vs. 

f*; ---Theory using eq. (3A) and m* 

Fig. B19.f. Added-mass force coefficient 

CAo; ---Theory using eqs. (3B) 

   

Fig. B19.g. Added mass force FAo vs. f* Fig. B19.h. Total force coefficient CTo vs. 

f* 
Fig. B19.i. Total force phase ϕT vs. f* 
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Fig. B19.j. Total force magnitude FTo vs. f* Fig. B19.k. Coefficient CUo of force in-

phase with velocity vs. f* 

Fig. B19.l. Force in-phase with velocity 

FUo vs. f* 

   
Fig. B19.m. Residuary force coefficient CRo 

vs. f* derived experimentally as FRo/kA 

Fig. B19.n. Residuary force FRo vs. f* 

derived experimentally using eq. (4-1) 

Fig. B19.o. Ratio FRo/FTo [%] of vs. f*; 

derived experimentally by eqs. (3D, 4-1) 
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Figure B20. Circular cylinder with 

turbulence stimulation m*=1.685, 

k=400N/m, ζvac=0.10; D=8.89cm 

(3.5"), L=90.17cm (35.5") 

 

Theoretical and experimental comparison 

of FSI (VIV) properties plotted vs. 

U*n,vac,U and Re.  

(a) oooo Reconstructed based on theory 

using eqs. (3A)-(3D) and measured f*. (b) 

++++ Measured experimentally 

  
Fig. B20.a. Added-mass coefficient CA vs. 

𝑈𝑛,𝑣𝑎𝑐
∗ ; oooo Theoretical reconstruction by 

eq. (3A); ++++ Measured experimentally 

Fig. B20.b. Added mass force coefficient 

CAo vs. 𝑈𝑛,𝑣𝑎𝑐
∗ ; oooo Theoretical 

reconstruction using eq. (3B); ++++ 

Measured experimentally 

   

Fig. B20.c. Added mass force magnitude 

FAo vs. 𝑈𝑛,𝑣𝑎𝑐
∗ ; oooo Theoretical 

reconstruction by eqs.(3D); ++++Measured 

experimentally 

Fig. B20.d. Total force coefficient CTo vs. 

𝑈𝑛,𝑣𝑎𝑐
∗ ; oooo Theoretical reconstruction by 

eqs. (3B); ++++ Measured experimentally 

Fig. B20.e. Total force phase ϕT vs. 𝑈𝑛,𝑣𝑎𝑐
∗ ;    

oooo Theoretical reconstruction using 

eqs. (3C); ++++ Measured experimentally 
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Fig. B20.f. Total force magnitude FTo vs. 

𝑈𝑛,𝑣𝑎𝑐
∗ ; oooo Theoretical reconstruction by  

eqs. (3D); ++++ Measured experimentally 

Fig. B20.g. Coefficient CUo of force in-

phase with velocity vs. 𝑈𝑛,𝑣𝑎𝑐
∗ ; oooo 

Theoretical reconstruction by eqs. (3B); 

++++Measured experimentally 

Fig. B20.h. Force in-phase with velocity 

FUo vs.𝑈𝑛,𝑣𝑎𝑐
∗ ; oooo Theoretical 

reconstruction by eqs.(3D);++++Measured 

experimentally 

   
Fig. B20.i. Residuary force coefficient CRo vs. 

𝑈𝑛,𝑣𝑎𝑐
∗  derived experimentally as FRo/kA 

Fig. B20.j. Residuary force magnitude FRo vs. 

𝑈𝑛,𝑣𝑎𝑐
∗  derived experimentally by eq. (4-1) 

Fig. B20.k. Ratio FRo/FTo [%] of vs. 𝑈𝑛,𝑣𝑎𝑐
∗ ; 

derived experimentally by eqs. (3D, 4-1) 
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Figure B21. Circular cylinder with turbulence stimulation, m*=1.685, k=800N/m, ζvac=0.06; D=8.89cm (3.5"), 

L=90.17cm (35.5") Theoretical and experimental comparison of FSI (VIV) properties plotted vs. f*  

(a) ---- Theory using eqs. (3A)-(3D). (b) oooo Reconstructed based on theory and measured f*. (c) ++++ Measured experimentally  

   
Fig. B21.a. Amplitude ratio A*=A/D  Fig. B21.b. f*=fosc/fn,vac  Fig. B21.c. A*=A/D vs. f*  

   
Fig. B21.d. Eigen-relation CA/m*; ---

Theory using eq. (3A). 

Fig. B21.e. Added mass coefficient CA vs. 

f*; ---Theory using eq. (3A) and m* 

Fig. B21.f. Added-mass force coefficient 

CAo; ---Theory using eqs. (3B) 

   
Fig. B21.g. Added mass force FAo vs. f* Fig. B21.h. Total force coefficient CTo vs. 

f* 
Fig. B21.i. Total force phase ϕT vs. f* 
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Fig. B21.j. Total force magnitude FTo vs. f* Fig. B21.k. Coefficient CUo of force in-

phase with velocity vs. f* 

Fig. B21.l. Force in-phase with velocity 

FUo vs. f* 

   
Fig. B21.m. Residuary force coefficient CRo 

vs. f* derived experimentally as FRo/kA 

Fig. B21.n. Residuary force FRo vs. f* 

derived experimentally using eq. (4-1) 

Fig. B21.o. Ratio FRo/FTo [%] of vs. f*; 

derived experimentally by eqs. (3D, 4-1) 
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Figure B22. Circular cylinder with 

turbulence stimulation m*=1.685, 

k=800N/m, ζvac=0.06; D=8.89cm 

(3.5"), L=90.17cm (35.5") 

 

Theoretical and experimental comparison 

of FSI (VIV) properties plotted vs. 

U*n,vac,U and Re.  

(a) oooo Reconstructed based on theory 

using eqs. (3A)-(3D) and measured f*. (b) 

++++ Measured experimentally 
  

Fig. B22.a. Added-mass coefficient CA vs. 

𝑈𝑛,𝑣𝑎𝑐
∗ ; oooo Theoretical reconstruction by 

eq. (3A); ++++ Measured experimentally 

Fig. B22.b. Added mass force coefficient 

CAo vs. 𝑈𝑛,𝑣𝑎𝑐
∗ ; oooo Theoretical 

reconstruction using eq. (3B); ++++ 

Measured experimentally 

   

Fig. B22.c. Added mass force magnitude 

FAo vs. 𝑈𝑛,𝑣𝑎𝑐
∗ ; oooo Theoretical 

reconstruction by eqs.(3D); ++++Measured 

experimentally 

Fig. B22.d. Total force coefficient CTo vs. 

𝑈𝑛,𝑣𝑎𝑐
∗ ; oooo Theoretical reconstruction by 

eqs. (3B); ++++ Measured experimentally 

Fig. B22.e. Total force phase ϕT vs. 𝑈𝑛,𝑣𝑎𝑐
∗ ;    

oooo Theoretical reconstruction using 

eqs. (3C); ++++ Measured experimentally 
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Fig. B22.f. Total force magnitude FTo vs. 

𝑈𝑛,𝑣𝑎𝑐
∗ ; oooo Theoretical reconstruction by  

eqs. (3D); ++++ Measured experimentally 

Fig. B22.g. Coefficient CUo of force in-

phase with velocity vs. 𝑈𝑛,𝑣𝑎𝑐
∗ ; oooo 

Theoretical reconstruction by eqs. (3B); 

++++Measured experimentally 

Fig. B22.h. Force in-phase with velocity 

FUo vs.𝑈𝑛,𝑣𝑎𝑐
∗ ; oooo Theoretical 

reconstruction by eqs.(3D);++++Measured 

experimentally 

   

Fig. B22.i. Residuary force coefficient CRo 

vs. 𝑈𝑛,𝑣𝑎𝑐
∗  derived experimentally as FRo/kA 

Fig. B22.j. Residuary force magnitude FRo 

vs. 𝑈𝑛,𝑣𝑎𝑐
∗  derived experimentally by eq. (4-

1) 

Fig. B22.k. Ratio FRo/FTo [%] of 

vs. 𝑈𝑛,𝑣𝑎𝑐
∗ ; derived experimentally by eqs. 

(3D, 4-1) 
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Figure B23. Circular cylinder with turbulence stimulation, m*=1.685, k=800N/m, ζvac=0.10; D=8.89cm (3.5"), 

L=90.17cm (35.5") Theoretical and experimental comparison of FSI (VIV) properties plotted vs. f*  

(a) ---- Theory using eqs. (3A)-(3D). (b) oooo Reconstructed based on theory and measured f*. (c) ++++ Measured experimentally  

   

Fig. B23.a. Amplitude ratio A*=A/D  Fig. B23.b. f*=fosc/fn,vac  Fig. B23.c. A*=A/D vs. f*  

   
Fig. B23.d. Eigen-relation CA/m*; ---

Theory using eq. (3A). 

Fig. B23.e. Added mass coefficient CA vs. 

f*; ---Theory using eq. (3A) and m* 

Fig. B23.f. Added-mass force coefficient 

CAo; ---Theory using eqs. (3B) 

   
Fig. B23.g. Added mass force FAo vs. f* Fig. B23.h. Total force coefficient CTo vs. 

f* 
Fig. B23.i. Total force phase ϕT vs. f* 
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Fig. B23.j. Total force magnitude FTo vs. f* Fig. B23.k. Coefficient CUo of force in-

phase with velocity vs. f* 

Fig. B23.l. Force in-phase with velocity 

FUo vs. f* 

   

Fig. B23.m. Residuary force coefficient CRo 

vs. f* derived experimentally as FRo/kA 

Fig. B23.n. Residuary force FRo vs. f* 

derived experimentally using eq. (4-1) 

Fig. B23.o. Ratio FRo/FTo [%] of vs. f*; 

derived experimentally by eqs. (3D, 4-1) 
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Figure B24. Circular cylinder with 

turbulence stimulation m*=1.685, 

k=800N/m, ζvac=0.10; D=8.89cm 

(3.5"), L=90.17cm (35.5") 

 

Theoretical and experimental comparison 

of FSI (VIV) properties plotted vs. 

U*n,vac,U and Re.  

(a) oooo Reconstructed based on theory 

using eqs. (3A)-(3D) and measured f*. (b) 

++++ Measured experimentally 
  

Fig. B24.a. Added-mass coefficient CA vs. 

𝑈𝑛,𝑣𝑎𝑐
∗ ; oooo Theoretical reconstruction by 

eq. (3A); ++++ Measured experimentally 

Fig. B24.b. Added mass force coefficient 

CAo vs. 𝑈𝑛,𝑣𝑎𝑐
∗ ; oooo Theoretical 

reconstruction using eq. (3B); ++++ 

Measured experimentally 

   
Fig. B24.c. Added mass force magnitude 

FAo vs. 𝑈𝑛,𝑣𝑎𝑐
∗ ; oooo Theoretical 

reconstruction by eqs.(3D); ++++Measured 

experimentally 

Fig. B24.d. Total force coefficient CTo vs. 

𝑈𝑛,𝑣𝑎𝑐
∗ ; oooo Theoretical reconstruction by 

eqs. (3B); ++++ Measured experimentally 

Fig. B24.e. Total force phase ϕT vs. 𝑈𝑛,𝑣𝑎𝑐
∗ ;    

oooo Theoretical reconstruction using 

eqs. (3C); ++++ Measured experimentally 
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Fig. B24.f. Total force magnitude FTo vs. 

𝑈𝑛,𝑣𝑎𝑐
∗ ; oooo Theoretical reconstruction by  

eqs. (3D); ++++ Measured experimentally 

Fig. B24.g. Coefficient CUo of force in-

phase with velocity vs. 𝑈𝑛,𝑣𝑎𝑐
∗ ; oooo 

Theoretical reconstruction by eqs. (3B); 

++++Measured experimentally 

Fig. B24.h. Force in-phase with velocity 

FUo vs.𝑈𝑛,𝑣𝑎𝑐
∗ ; oooo Theoretical 

reconstruction by eqs.(3D);++++Measured 

experimentally 

   

Fig. B24.i. Residuary force coefficient CRo 

vs. 𝑈𝑛,𝑣𝑎𝑐
∗  derived experimentally as FRo/kA 

Fig. B24.j. Residuary force magnitude FRo 

vs. 𝑈𝑛,𝑣𝑎𝑐
∗  derived experimentally by eq. (4-

1) 

Fig. B24.k. Ratio FRo/FTo [%] of 

vs. 𝑈𝑛,𝑣𝑎𝑐
∗ ; derived experimentally by eqs. 

(3D, 4-1) 
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Figure B25. Circular cylinder with turbulence stimulation, m*=1.89, k=400N/m, ζvac=0.06; D=8.89cm (3.5"), 

L=90.17cm (35.5") Theoretical and experimental comparison of FSI (VIV) properties plotted vs. f*  

(a) ---- Theory using eqs. (3A)-(3D). (b) oooo Reconstructed based on theory and measured f*. (c) ++++ Measured experimentally  

   
Fig. B25.a. Amplitude ratio A*=A/D  Fig. B25.b. f*=fosc/fn,vac  Fig. B25.c. A*=A/D vs. f*  

   
Fig. B25.d. Eigen-relation CA/m*; ---

Theory using eq. (3A). 

Fig. B25.e. Added mass coefficient CA vs. 

f*; ---Theory using eq. (3A) and m* 

Fig. B25.f. Added-mass force coefficient 

CAo; ---Theory using eqs. (3B) 

   
Fig. B25.g. Added mass force FAo vs. f* Fig. B25.h. Total force coefficient CTo vs. 

f* 
Fig. B25.i. Total force phase ϕT vs. f* 
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Fig. B25.j. Total force magnitude FTo vs. f* Fig. B25.k. Coefficient CUo of force in-

phase with velocity vs. f* 

Fig. B25.l. Force in-phase with velocity 

FUo vs. f* 

   
Fig. B25.m. Residuary force coefficient CRo 

vs. f* derived experimentally as FRo/kA 

Fig. B25.n. Residuary force FRo vs. f* 

derived experimentally using eq. (4-1) 

Fig. B25.o. Ratio FRo/FTo [%] of vs. f*; 

derived experimentally by eqs. (3D, 4-1) 
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Figure B26. Circular cylinder with 

turbulence stimulation m*=1.89, 

k=400N/m, ζvac=0.06; D=8.89cm 

(3.5"), L=90.17cm (35.5") 

 

Theoretical and experimental comparison 

of FSI (VIV) properties plotted vs. 

U*n,vac,U and Re.  

(a) oooo Reconstructed based on theory 

using eqs. (3A)-(3D) and measured f*. (b) 

++++ Measured experimentally 

  

Fig. B26.a. Added-mass coefficient CA vs. 

𝑈𝑛,𝑣𝑎𝑐
∗ ; oooo Theoretical reconstruction by 

eq. (3A); ++++ Measured experimentally 

Fig. B26.b. Added mass force coefficient 

CAo vs. 𝑈𝑛,𝑣𝑎𝑐
∗ ; oooo Theoretical 

reconstruction using eq. (3B); ++++ 

Measured experimentally 

   

Fig. B26.c. Added mass force magnitude 

FAo vs. 𝑈𝑛,𝑣𝑎𝑐
∗ ; oooo Theoretical 

reconstruction by eqs.(3D); ++++Measured 

experimentally 

Fig. B26.d. Total force coefficient CTo vs. 

𝑈𝑛,𝑣𝑎𝑐
∗ ; oooo Theoretical reconstruction by 

eqs. (3B); ++++ Measured experimentally 

Fig. B26.e. Total force phase ϕT vs. 𝑈𝑛,𝑣𝑎𝑐
∗ ;    

oooo Theoretical reconstruction using 

eqs. (3C); ++++ Measured experimentally 
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Fig. B26.f. Total force magnitude FTo vs. 

𝑈𝑛,𝑣𝑎𝑐
∗ ; oooo Theoretical reconstruction by  

eqs. (3D); ++++ Measured experimentally 

Fig. B26.g. Coefficient CUo of force in-

phase with velocity vs. 𝑈𝑛,𝑣𝑎𝑐
∗ ; oooo 

Theoretical reconstruction by eqs. (3B); 

++++Measured experimentally 

Fig. B26.h. Force in-phase with velocity 

FUo vs.𝑈𝑛,𝑣𝑎𝑐
∗ ; oooo Theoretical 

reconstruction by eqs.(3D);++++Measured 

experimentally 

   
Fig. B26.i. Residuary force coefficient CRo vs. 

𝑈𝑛,𝑣𝑎𝑐
∗  derived experimentally as FRo/kA 

Fig. B26.j. Residuary force magnitude FRo vs. 

𝑈𝑛,𝑣𝑎𝑐
∗  derived experimentally by eq. (4-1) 

Fig. B26.k. Ratio FRo/FTo [%] of vs. 𝑈𝑛,𝑣𝑎𝑐
∗ ; 

derived experimentally by eqs. (3D, 4-1) 
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Figure B27. Circular cylinder with turbulence stimulation, m*=1.89, k=400N/m, ζvac=0.10; D=8.89cm (3.5"), 

L=90.17cm (35.5") Theoretical and experimental comparison of FSI (VIV) properties plotted vs. f*  

(a) ---- Theory using eqs. (3A)-(3D). (b) oooo Reconstructed based on theory and measured f*. (c) ++++ Measured experimentally  

   

Fig. B27.a. Amplitude ratio A*=A/D  Fig. B27.b. f*=fosc/fn,vac  Fig. B27.c. A*=A/D vs. f*  

   
Fig. B27.d. Eigen-relation CA/m*; ---

Theory using eq. (3A). 

Fig. B27.e. Added mass coefficient CA vs. 

f*; ---Theory using eq. (3A) and m* 

Fig. B27.f. Added-mass force coefficient 

CAo; ---Theory using eqs. (3B) 

   
Fig. B27.g. Added mass force FAo vs. f* Fig. B27.h. Total force coefficient CTo vs. 

f* 
Fig. B27.i. Total force phase ϕT vs. f* 
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Fig. B27.j. Total force magnitude FTo vs. f* Fig. B27.k. Coefficient CUo of force in-

phase with velocity vs. f* 

Fig. B27.l. Force in-phase with velocity 

FUo vs. f* 

   

Fig. B27.m. Residuary force coefficient CRo 

vs. f* derived experimentally as FRo/kA 

Fig. B27.n. Residuary force FRo vs. f* 

derived experimentally using eq. (4-1) 

Fig. B27.o. Ratio FRo/FTo [%] of vs. f*; 

derived experimentally by eqs. (3D, 4-1) 

 

 

 

 

 

 



206 
 

Figure B28. Circular cylinder with 

turbulence stimulation m*=1.89, 

k=400N/m, ζvac=0.10; D=8.89cm 

(3.5"), L=90.17cm (35.5") 

 

Theoretical and experimental comparison 

of FSI (VIV) properties plotted vs. 

U*n,vac,U and Re.  

(a) oooo Reconstructed based on theory 

using eqs. (3A)-(3D) and measured f*. (b) 

++++ Measured experimentally 

  
Fig. B28.a. Added-mass coefficient CA vs. 

𝑈𝑛,𝑣𝑎𝑐
∗ ; oooo Theoretical reconstruction by 

eq. (3A); ++++ Measured experimentally 

Fig. B28.b. Added mass force coefficient 

CAo vs. 𝑈𝑛,𝑣𝑎𝑐
∗ ; oooo Theoretical 

reconstruction using eq. (3B); ++++ 

Measured experimentally 

   
Fig. B28.c. Added mass force magnitude 

FAo vs. 𝑈𝑛,𝑣𝑎𝑐
∗ ; oooo Theoretical 

reconstruction by eqs.(3D); ++++Measured 

experimentally 

Fig. B28.d. Total force coefficient CTo vs. 

𝑈𝑛,𝑣𝑎𝑐
∗ ; oooo Theoretical reconstruction by 

eqs. (3B); ++++ Measured experimentally 

Fig. B28.e. Total force phase ϕT vs. 𝑈𝑛,𝑣𝑎𝑐
∗ ;    

oooo Theoretical reconstruction using 

eqs. (3C); ++++ Measured experimentally 
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Fig. B28.f. Total force magnitude FTo vs. 

𝑈𝑛,𝑣𝑎𝑐
∗ ; oooo Theoretical reconstruction by  

eqs. (3D); ++++ Measured experimentally 

Fig. B28.g. Coefficient CUo of force in-

phase with velocity vs. 𝑈𝑛,𝑣𝑎𝑐
∗ ; oooo 

Theoretical reconstruction by eqs. (3B); 

++++Measured experimentally 

Fig. B28.h. Force in-phase with velocity 

FUo vs.𝑈𝑛,𝑣𝑎𝑐
∗ ; oooo Theoretical 

reconstruction by eqs.(3D);++++Measured 

experimentally 

   

Fig. B28.i. Residuary force coefficient CRo 

vs. 𝑈𝑛,𝑣𝑎𝑐
∗  derived experimentally as FRo/kA 

Fig. B28.j. Residuary force magnitude FRo 

vs. 𝑈𝑛,𝑣𝑎𝑐
∗  derived experimentally by eq. (4-

1) 

Fig. B28.k. Ratio FRo/FTo [%] of 

vs. 𝑈𝑛,𝑣𝑎𝑐
∗ ; derived experimentally by eqs. 

(3D, 4-1) 
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Figure B29. Circular cylinder with turbulence stimulation, m*=1.89, k=800N/m, ζvac=0.06; D=8.89cm (3.5"), 

L=90.17cm (35.5") Theoretical and experimental comparison of FSI (VIV) properties plotted vs. f*  

(a) ---- Theory using eqs. (3A)-(3D). (b) oooo Reconstructed based on theory and measured f*. (c) ++++ Measured experimentally  

   
Fig. B29.a. Amplitude ratio A*=A/D  Fig. B29.b. f*=fosc/fn,vac  Fig. B29.c. A*=A/D vs. f*  

   
Fig. B29.d. Eigen-relation CA/m*; ---

Theory using eq. (3A). 

Fig. B29.e. Added mass coefficient CA vs. 

f*; ---Theory using eq. (3A) and m* 

Fig. B29.f. Added-mass force coefficient 

CAo; ---Theory using eqs. (3B) 

   
Fig. B29.g. Added mass force FAo vs. f* Fig. B29.h. Total force coefficient CTo vs. 

f* 
Fig. B29.i. Total force phase ϕT vs. f* 
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Fig. B29.j. Total force magnitude FTo vs. f* Fig. B29.k. Coefficient CUo of force in-

phase with velocity vs. f* 

Fig. B29.l. Force in-phase with velocity 

FUo vs. f* 

   

Fig. B29.m. Residuary force coefficient CRo 

vs. f* derived experimentally as FRo/kA 

Fig. B29.n. Residuary force FRo vs. f* 

derived experimentally using eq. (4-1) 

Fig. B29.o. Ratio FRo/FTo [%] of vs. f*; 

derived experimentally by eqs. (3D, 4-1) 
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Figure B30. Circular cylinder with 

turbulence stimulation m*=1.89, 

k=800N/m, ζvac=0.06; D=8.89cm 

(3.5"), L=90.17cm (35.5") 

 

Theoretical and experimental comparison 

of FSI (VIV) properties plotted vs. 

U*n,vac,U and Re.  

(a) oooo Reconstructed based on theory 

using eqs. (3A)-(3D) and measured f*. (b) 

++++ Measured experimentally 
  

Fig. B30.a. Added-mass coefficient CA vs. 

𝑈𝑛,𝑣𝑎𝑐
∗ ; oooo Theoretical reconstruction by 

eq. (3A); ++++ Measured experimentally 

Fig. B30.b. Added mass force coefficient 

CAo vs. 𝑈𝑛,𝑣𝑎𝑐
∗ ; oooo Theoretical 

reconstruction using eq. (3B); ++++ 

Measured experimentally 

   

Fig. B30.c. Added mass force magnitude 

FAo vs. 𝑈𝑛,𝑣𝑎𝑐
∗ ; oooo Theoretical 

reconstruction by eqs.(3D); ++++Measured 

experimentally 

Fig. B30.d. Total force coefficient CTo vs. 

𝑈𝑛,𝑣𝑎𝑐
∗ ; oooo Theoretical reconstruction by 

eqs. (3B); ++++ Measured experimentally 

Fig. B30.e. Total force phase ϕT vs. 𝑈𝑛,𝑣𝑎𝑐
∗ ;    

oooo Theoretical reconstruction using 

eqs. (3C); ++++ Measured experimentally 
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Fig. B30.f. Total force magnitude FTo vs. 

𝑈𝑛,𝑣𝑎𝑐
∗ ; oooo Theoretical reconstruction by  

eqs. (3D); ++++ Measured experimentally 

Fig. B30.g. Coefficient CUo of force in-

phase with velocity vs. 𝑈𝑛,𝑣𝑎𝑐
∗ ; oooo 

Theoretical reconstruction by eqs. (3B); 

++++Measured experimentally 

Fig. B30.h. Force in-phase with velocity 

FUo vs.𝑈𝑛,𝑣𝑎𝑐
∗ ; oooo Theoretical 

reconstruction by eqs.(3D);++++Measured 

experimentally 

   

Fig. B30.i. Residuary force coefficient CRo 

vs. 𝑈𝑛,𝑣𝑎𝑐
∗  derived experimentally as FRo/kA 

Fig. B30.j. Residuary force magnitude FRo 

vs. 𝑈𝑛,𝑣𝑎𝑐
∗  derived experimentally by eq. (4-

1) 

Fig. B30.k. Ratio FRo/FTo [%] of 

vs. 𝑈𝑛,𝑣𝑎𝑐
∗ ; derived experimentally by eqs. 

(3D, 4-1) 
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Figure B31. Circular cylinder with turbulence stimulation, m*=1.89, k=800N/m, ζvac=0.10; D=8.89cm (3.5"), 

L=90.17cm (35.5") Theoretical and experimental comparison of FSI (VIV) properties plotted vs. f*  

(a) ---- Theory using eqs. (A)-(D). (b) oooo Reconstructed based on theory and measured f*. (c) ++++ Measured experimentally  

   
Fig. B31.a. Amplitude ratio A*=A/D  Fig. B31.b. f*=fosc/fn,vac  Fig. B31.c. A*=A/D vs. f*  

   
Fig. B31.d. Eigen-relation CA/m*; ---

Theory using eq. (3A). 

Fig. B31.e. Added mass coefficient CA vs. 

f*; ---Theory using eq. (3A) and m* 

Fig. B31.f. Added-mass force coefficient 

CAo; ---Theory using eqs. (3B) 

   
Fig. B31.g. Added mass force FAo vs. f* Fig. B31.h. Total force coefficient CTo vs. 

f* 
Fig. B31.i. Total force phase ϕT vs. f* 
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Fig. B31.j. Total force magnitude FTo vs. f* Fig. B31.k. Coefficient CUo of force in-

phase with velocity vs. f* 

Fig. B31.l. Force in-phase with velocity 

FUo vs. f* 

   

Fig. B31.m. Residuary force coefficient CRo 

vs. f* derived experimentally as FRo/kA 

Fig. B31.n. Residuary force FRo vs. f* 

derived experimentally using eq. (4-1) 

Fig. B31.o. Ratio FRo/FTo [%] of vs. f*; 

derived experimentally by eqs. (3D, 4-1) 
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Figure B32. Circular cylinder with 

turbulence stimulation m*=1.89, 

k=800N/m, ζvac=0.10; D=8.89cm 

(3.5"), L=90.17cm (35.5") 

 

Theoretical and experimental comparison 

of FSI (VIV) properties plotted vs. 

U*n,vac,U and Re.  

(a) oooo Reconstructed based on theory 

using eqs. (3A)-(3D) and measured f*. (b) 

++++ Measured experimentally 

  

Fig. B32.a. Added-mass coefficient CA vs. 

𝑈𝑛,𝑣𝑎𝑐
∗ ; oooo Theoretical reconstruction by 

eq. (3A); ++++ Measured experimentally 

Fig. B32.b. Added mass force coefficient 

CAo vs. 𝑈𝑛,𝑣𝑎𝑐
∗ ; oooo Theoretical 

reconstruction using eq. (3B); ++++ 

Measured experimentally 

   

Fig. B32.c. Added mass force magnitude FAo 

vs. 𝑈𝑛,𝑣𝑎𝑐
∗ ; oooo Theoretical reconstruction 

by eqs.(3D); ++++Measured experimentally 

Fig. B32.d. Total force coefficient CTo vs. 

𝑈𝑛,𝑣𝑎𝑐
∗ ; oooo Theoretical reconstruction by 

eqs. (3B); ++++ Measured experimentally 

Fig. B32.e. Total force phase ϕT vs. 𝑈𝑛,𝑣𝑎𝑐
∗ ;    

oooo Theoretical reconstruction using eqs. 

(3C); ++++ Measured experimentally 
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Fig. B32.f. Total force magnitude FTo vs. 

𝑈𝑛,𝑣𝑎𝑐
∗ ; oooo Theoretical reconstruction by  

eqs. (3D); ++++ Measured experimentally 

Fig. B32.g. Coefficient CUo of force in-

phase with velocity vs. 𝑈𝑛,𝑣𝑎𝑐
∗ ; oooo 

Theoretical reconstruction by eqs. (3B); 

++++Measured experimentally 

Fig. B32.h. Force in-phase with velocity 

FUo vs.𝑈𝑛,𝑣𝑎𝑐
∗ ; oooo Theoretical 

reconstruction by eqs.(3D);++++Measured 

experimentally 

   

Fig. B32.i. Residuary force coefficient CRo vs. 

𝑈𝑛,𝑣𝑎𝑐
∗  derived experimentally as FRo/kA 

Fig. B32.j. Residuary force magnitude FRo vs. 

𝑈𝑛,𝑣𝑎𝑐
∗  derived experimentally by eq. (4-1) 

Fig. B32.k. Ratio FRo/FTo [%] of vs. 𝑈𝑛,𝑣𝑎𝑐
∗ ; 

derived experimentally by eqs. (3D, 4-1) 

 


