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ABSTRACT

Estimating keff, a parameter that characterizes neutron-multiplying assemblies, is of

broad interest and paramount importance in the nuclear community including in applications

like nuclear criticality safety, nonproliferation and safeguards, and stockpile stewardship. A

keff equal to one represents a self-sustaining and stable chain reaction, and is often desirable

in energy-producing reactors. An uncontrolled/accidental keff greater than one can result

in criticality accidents, operator death, and catastrophic damage. Therefore, it is desirable

to be able to control and monitor the keff of an assembly; the value of keff can be modu-

lated and tailored by using reflector material. A challenge is that keff cannot be directly

measured; however, it can be inferred from the prompt neutron decay constant, α, and its

negative reciprocal, the prompt neutron period. Microscopic, time-correlated, neutron noise

techniques are used to measure α and the two most popular methods are the Rossi-alpha

and Feynman-alpha approaches. This dissertation advances the two methods by addressing

shortcomings in detectors, models, and uncertainty quantification.

In general, current measurements are performed with state-of-the-art 3He detectors that

are insensitive to fast assemblies (with prompt periods shorter than a microsecond). Fast

assemblies are pertinent to criticality safety applications and modern fast reactor designs, for

example. The measurements of this dissertation use and validate the new organic scintillator

array (OSCAR) system, which measured up to 15 kg of weapons-grade plutonium, 22 kg of

highly enriched uranium, and 6 kg of neptunium (0.45 < keff < 0.95). The data analysis

demonstrates that OSCAR exhibits capabilities beyond 3He systems. For instance, OSCAR

is sensitive to prompt neutron periods as fast as 8 ns, whereas 3He detectors are limited to

≈1 µs. Furthermore, the OSCAR exhibits much less noise and can achieve desired precisions
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faster than competing 3He systems by factors as great as 102.

The Rossi- and Feynman-alpha techniques were originally developed for bare cores of

fissionable material and the traditional one-region point kinetics model (a one-exponential

probability density function) is inadequate for reflected assemblies that requires a two-region

model. Since reflectors are of interest in the application space, new theory is required. New

theory is also required for uncertainty propagation and quantification from a single measure-

ment; currently, methods are either incorrect or rely on long, repeated measurements. This

dissertation extends traditional point kinetics from one-region to two-region and rigorously

derives uncertainty methods for both the Rossi- and Feynman-alpha methods. The new

theory is validated with the OSCAR and 3He measurements of reflected assemblies. The

results demonstrate that the new theory increases the accuracy of α estimates by over 10%

for highly-reflected cases and generalizes the existing models: the two-region approach will

reduce to the one-region model when greater generality is not needed. The two-region model

introduces new variables and it is shown that the parameters can potentially be exploited

as signatures of reflection. The two neutron noise techniques are compared and it is found

that the Feynman-alpha method is more precise than the Rossi-alpha method by one-to-two

orders of magnitude in relative uncertainty. In terms of accuracy, the Feynman-alpha ap-

proach outperforms the Rossi-alpha approach for keff < 0.92, whereas the opposite is true

for keff > 0.92. The uncertainty methods based on a single measurement are validated and

can reduce measurement times by a factor of 20 or more, therein reducing procedural and

operational costs associated with measurements.

Taken together, this dissertation advances microscopic, time-correlated neutron noise

techniques by introducing and demonstrating the use of a fast organic scintillator detection

system that has capabilities beyond the current state-of-the-art 3He systems, developing and

validating new measurement theory to account for experiments on reflected assemblies, and

developing and validating rigorous quantification of measurement uncertainty.
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CHAPTER I

Introduction

1.1 Motivation for Neutron Noise Measurements of the Prompt

Neutron Period

1.1.1 History, High-Level Motivation, Broad Challenge Statement

The study and application of nuclear fission and subsequent self-sustaining fission chains

that multiply neutron populations is simultaneously young and significant, defining modern

state postures and supplying approximately 20% of the civilian energy in the United States [7,

8, 9]. James Chadwick discovered the neutron in 1932 [10] and Enrico Fermi performed

the first fission experiment with uranium shortly thereafter by using neutrons to induce

the fission [11]. At the time, Fermi thought that they had created a larger radioactive

nucleus – a so-called element 93. Ida Noddack would refute Fermi’s interpretation in late

1934, suggesting that the possibility of the uranium splitting into smaller fragments was not

considered [12]. The refute lacked theoretical foundation and thus there was no follow-up to

the work until Hahn and Stassman found the first fission products in 1938 [13, 14], which

would enable Lise Meitner to explain our modern understanding of fission based on the

theory of the nucleus [15]. Otto Frisch is named as Meitner’s second author in the discovery

of fission and the first group leader of the critical experiments group at Los Alamos National

Laboratory – the group I belong to – during the Manhattan Project.
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After the discovery of fission, it was predicted that assemblies of fissionable material

could sustain energy-producing fission chains: a neutron could induce fission in a fissionable

nucleus, the fission would produce multiplets of neutrons, and these neutrons could continue

to cause further fissions and propagate the chain reaction. Enrico Fermi demonstrated the

first of such self-sustaining chain reactions with the Chicago Pile, a uranium-graphite pile in

a squash court underneath Stagg Stadium in 1942 [16]. Engineering efforts then commercial-

ized the physical phenomenon, producing and using the first nuclear weapons in 1945 and

producing the first electricity from nuclear energy in 1951. The discoveries and engineering

were not without criticality accidents (uncontrolled, rapidly growing fission chains) [17], with

the most famous being Louis Slotin’s experiment with the Demon Core that ended in Slotin’s

1946 death. The General Assembly of the United Nations met for the first time in January

of 1946; the first topic was nuclear disarmament and the second was the official language for

meetings, therein highlighting the international recognition of the impact of nuclear fission

chains. The main focus of the first resolution adopted by the General Assembly was the pro-

liferation of peaceful fission chain applications and the nonproliferation of nuclear weapons

(that are predicated on the uncontrollable energy release in rapidly growing fission chains).

Later, the United Nations would adopt resolutions that prohibited various nuclear weapons

activities including the Comprehensive Nuclear-Test-Ban Treaty. Taken together, major

challenges in modern nuclear engineering include monitoring the stockpile with-

out detonation-based testing, nondestructive detection for nonproliferation and

safeguards, monitoring of electricity-producing nuclear reactors, and ensuring

the safety of fission chain operations (criticality safety).

1.1.2 Microscopic, Time-Correlated Neutron Noise Measurements

The application space, a subset of nondestructive assay, of the challenge is restrictive in

that (1) fissile assemblies must be measured with minimal external influence (e.g., scrap-

ing off a sample is insufficient, disallowed, and changes assembly behavior) and (2) unique
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properties of the assemblies must be utilized (e.g., weighing a sample to estimate mass is

insufficient since fissile material may be replaced and spoofed with other materials). Time-

correlated neutrons are often used as a unique feature for characterization for a variety

of reasons, including their scarcity in the background radiation profile. Microscopic mea-

surements are based on the statistical fluctuations of the neutron population in time and are

differentiated from macroscopic measurements, which are based on aggregate behavior (e.g.,

temperature) [18, 19]. Experiments and measurements are typically performed to charac-

terize the propensity for a fissile assembly to sustain fission chains, which is summarized by

a parameter called the effective multiplication factor, keff. Non-multiplying neutron sources

such as PuBe, and AmLi emit neutrons randomly in time. Fission chains introduce fluctu-

ations and modulate the time-distribution of neutron detections relative to the start of the

chain (i.e., fission chains introduce noise). Therefore, microscopic, time-correlated neutron

noise measurements (henceforth called neutron noise techniques) are used to characterize

multiplying fission chain assemblies and represent one solution to the challenge presented in

the preceding subsection. An additional challenge is that keff cannot be directly measured;

however, it can be inferred from the prompt neutron decay constant, α, or its negative recip-

rocal the prompt neutron period. Thus, the Rossi-alpha method based on a suggestion from

Bruno Rossi [20, 21] and the Feynman-alpha method derived by Richard Feynman [22, 23, 24]

were developed between 1940-1970 to estimate α. In 1970 Robert Uhrig stated: “the early

theoretical work in this field was carried out by Feynman, Fermi, and de Hoffman, at Los

Alamos in about 1947 and led to the Rossi-alpha experiments on fast critical assemblies later

described by Orndoff” [18]. From 1950-1970, the theory evolved based on advancements in

instrumentation (leading to the ability to actually measure neutrons in short time gates)

and availability of material to measure (to validate theory).

Work from 1970 to the early 2000s had three main focuses: (1), applying the Rossi-alpha

and Feynman-alpha neutron noise techniques to the application space; (2), development of

similar techniques and utilization of various detectors; and (3), advancement in electronics

3



(leading to the availability of list mode data) [18, 19, 25, 26, 27]. The Rossi-alpha and

Feynman-alpha methods remained robust and prevailed among the most-commonly used

neutron noise techniques. In the span of 2000-2017, limits on the original derivation of the

two methods were identified: the Rossi- and Feynman-alpha methods were developed for bare

assemblies of fissile material, which are differentiated from reflected assemblies where fissile

material is surrounded by some material that can scatter otherwise lost neutrons back into

the assembly to continue fission chains (therein increasing keff) [28, 29, 30, 31]. The original

and current theory is insufficient to account for the additional time correlations and noise

introduced by a reflector and follow-up theory by Avery and Cohn was not fully propagated

to the fit models used in the measurement techniques [32, 33]. For various reasons, fission-

able assemblies use a reflector: it reduces the necessary critical mass, provides a mechanism

to modulate and control keff, and may be necessary for engineering reasons such as provid-

ing physical support. Certain applications interested in nuclear data (such as cross section

data) for a given materials may use the material as a reflector in multiple configurations and

the change in keff or other neutron noise measured parameters to improve the nuclear data.

Nuclear data is broadly used by practically the entire nuclear community and beyond, most

notably in predictive simulation codes, and is closely related to nuclear criticality safety.

Improvements to nuclear data and neutron noise techniques require accurate quantification

and propagation of measurement uncertainty. Shortcomings in the quantification of measure-

ment uncertainty were identified such as the reliance on many repeated measurements or the

absence of propagation, and preliminary treatment began [34, 35]. Thus, advances in the

Rossi- and Feynman-alpha neutron noise techniques are required for reflected

assemblies of fissile material and for adequate uncertainty quantification.

1.2 Thesis Overview and Contributions

In this dissertation, I begin by developing two-region point kinetics Rossi-alpha theory to

account for reflectors. Similarly, I develop rigorous quantification and propagation of mea-
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surement uncertainty for Rossi-alpha experiments. A current shortcoming of uncertainty

quantification is the reliance on long/repeated measurements to estimate uncertainty by

taking sample standard deviations. Therefore, as part of the uncertainty theory, an analytic

approach based on a single measurement is developed. All of the theory is validated with

measurements of weapons-grade plutonium and highly enriched uranium with various re-

flection. Furthermore, pulse-shape-discrimination-capable organic scintillation detectors are

used and validated, and it is shown that organic scintillators augment the capabilities of the

current state-of-the-art 3He detectors. The Rossi-alpha technique is for near- and delayed-

critical assemblies of fissile material, whereas the Feynman-alpha technique is preferred for

more deeply subcritical assemblies. Thus, I derive the two-region Feynman-alpha theory

from the two-region Rossi-alpha theory, validate the new equations, and derive the rigorous

measurement uncertainty quantification/propagation. The two methods are preliminarily

compared on the basis of accuracy as a function of criticality (keff). Taken together, I gen-

eralize and validate the theory for the Rossi-alpha and Feynman-alpha neutron

noise techniques, develop novel and rigorous quantification and propagation of

measurement uncertainty, and augment current capabilities by using novel or-

ganic scintillation detectors.

This dissertation is organized as follows; a brief summary of each chapter is given.

Chapter II describes nuclear fission and the proclivity of fissile material to sustain

neutron-multiplying chains. I then present some typical quantities and the transport

equation that describe multiplying assemblies, and present the derivation of the point

kinetics model. Lastly, I discuss the simulations used to obtain point kinetic parameters

that are often paired with measured quantities.

Chapter III describes the measurement systems – traditional detectors based on 3He-

gas proportional counters and novel detectors based on trans-stilbene organic scintil-

lators – used in this dissertation. The detectors are generally treated as off-the-shelf

tools used to obtain list mode data, a list of neutron detection times, which is required
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for the neutron noise analyses.

Chapter IV presents the existing theory of Rossi-alpha measurements for bare as-

semblies of fissile material and the newly developed theory for reflected assemblies.

Additionally, I present the new measurement uncertainty quantification and propaga-

tion theory.

Chapter V validates the new theory of Chapter IV with measurements of weapons-

grade plutonium and highly enriched uranium.

Chapter VI parallels the works of Chapters IV-V and apply the theory and validation

to Feynman-alpha methods. The chapter includes a preliminary comparison between

the two methods.

Chapter VII summarizes the work presented in this dissertation, draw conclusions

from each chapter, and propose avenues for future work.
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CHAPTER II

Nuclear Fission, Multiplication, and Point Kinetics

This chapter introduces nuclear fission and the propensity of some nuclear material to sus-

tain fission chains. The flux of neutrons within a neutron-multiplying assembly is described

by the seven-variable, integro-differential transport equation. Comprehensively solving the

full equation is often unnecessary and infeasible, thus it is condensed into an approxima-

tion called the point kinetics equations. The condensation is also presented in this chapter

since point kinetics is the theoretical foundation of the neutron noise measurements per-

formed to characterize multiplying assemblies. Lastly, the simulations that complement the

experiments and theory are discussed.

2.1 Nuclear Fission (Chains)

Nuclear fission is a violent reaction where a large nucleus splits into unstable, energetic

fragments [36]. The fission fragments initially approach stability by dissipating excitation en-

ergy and angular momentum [36, 37] by emitting multiplets of neutrons then photons. This

emission is virtually instantaneous in the context of the observation tools used in this work

with neutrons and photons being emitted on the femtosecond and picosecond scales, respec-

tively. These instantaneous prompt neutrons are differentiated from the delayed neutrons

emitted in further radioactive decays of the fission fragments on the larger-than-microsecond

scale; such fission fragments are called delayed neutron precursors and are sometimes grouped
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on the basis of time. Whereas some isotopes like 240Pu undergo fission spontaneously, other

isotopes like 235U and 239Pu do not at an appreciable rate and require that fission be in-

duced by, for example, a neutron. The fission fragments emit charged particles in addition

to the neutral photons and neutrons; however, they are generally neglected since they do

not penetrate to detectors and rarely induce fission as compared to neutrons.

Assemblies of fissionable isotopes may sustain neutron-multiplying fission chains and at

least facilitate chains that last for more than one generation: an initial neutron induces

fission, the fission results in the emission of neutron multiplets (ranging from zero to many,

with means between two and four for some common isotopes), and the resultant neutrons

may continue to induce further fissions. Such multiplying assemblies are characterized by

a parameter called the keff multiplication factor, defined (more rigorously in the following

sections and colloquially) as the average number of neutrons from one fission that cause

another fission. Assemblies that have a keff = 1 are called critical and assemblies that have

keff less/greater than one are called subcritical/supercritical. It is common to reparametrize

keff about zero in terms of reactivity ρ:

ρ = 1− 1

keff

. (2.1)

2.2 The Neutron Transport Equation

The neutron transport equation describes the balance of neutrons in space (tridimensional

~x), direction (bidimensional Ω), energy (monodimensional E), and time (monodimensional

t). The equation is a linearized form of the more-general Boltzmann equation, requiring the

following assumptions.

1. Material properties in the assembly are independent of time.

2. Materials are isotropic (e.g., cross sections do not depend on incident neutron direc-

tion).
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3. Quantum mechanical detail is neglected (e.g., momentum does not include nuclear

spin).

4. Particle energy is sufficiently high such that particles can be treated as classical point-

like objects with wave-like behavior neglected. The quantum mechanical aspects of

the transport are therefore exclusively in the collision dynamics, which occur at points

and are modeled using cross sections and probabilities. The effect of this assumption

is to decouple the transport of the particles from the collision physics. See Ref. [38]

for a full wuantum mechanical treatment.

5. Particles are only acted on by short-range forces and not by gravity or the Coulombic

force (which is sufficient for the treatment of neutrons).

6. The neutron density is sufficiently low relative to other materials such that neutron-

neutron interactions may be neglected, yet sufficiently high such that stochastic fluc-

tuations are negligible.

7. Collisions are instantaneous for prompt neutrons; delayed neutrons are separately han-

dled.

The balance is between production and loss. Production may be due to an external source

Q(~x, ~Ω, E, t), in-scattering from another region of phase space, or neutron-producing events

such as fission. Loss may be due to leakage, out-scattering to a different region of phase space,

or parasitic neutron reactions such as radiative capture, (n, γ). While many radioactive

balance equations (e.g., the Bateman equations for radioactive decay) describe the balance

of neutron density, N , the transport equation describes the balance of angular flux, which is

equal to product of density and neutron speed, v(E):

Ψ = Ψ(~x, ~Ω, E, t) = v(E)×N(~x, ~Ω, E, t) = vN. (2.2)
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Angular flux has units of number of neutrons per area, per solid angle, per energy, per time.

The time-dependent, seven-variate, integro-differential transport equation is given by:

1

v

∂Ψ

∂t
+ LΨ = MΨ +

1

4π

∑
i

χi(E)λiCi(~x, t) +Q(~x, ~Ω, E, t) (2.3a)

Ψb = Ψ(~x ∈ ∂V, ~Ω̇~n < 0, E) = 0. (2.3b)

Note that Eqn. (2.3b) defines the boundary condition (position on the boundary, ~x ∈ ∂V )

for incoming particles (~Ω̇~n < 0, where ~n is normal to the boundary surface). In the equation,

χi(E) is the energy distribution for delayed neutron precursor group i,

λi is the decay constant for delayed neutron precursor group i,

Ci(~x, t) is the spatial distribution for delayed neutron precursor group i,

L is the net loss operator, and

M is the prompt fission operator.

The loss operator includes migration and is given by

L = ~Ω · ∇+ Σt(~x,E)−
∫ ∫

Σs

(
E ′ → E, ~Ω′ → ~Ω

)
dE ′dΩ′ , (2.4)

where Σ is the macroscopic cross section and subscripts denote a particular reaction; s, f ,

and t correspond to scatter, fission, and total. In Eqn. (2.4), Σs is the double-differential

scattering cross section for neutrons of energy E ′ traveling in direction ~Ω′ scattering to

energy E in direction ~Ω. The prompt fission operator omits delayed neutrons and, assuming

isotropic prompt neutron emission with energy distribution χp(E
′ → E), is given by

M =
1

4π

∫ ∫
(1− β(~x,E ′))χp(E

′ → E)νΣf (~x,E
′)dE ′dΩ′ , (2.5)
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where ν is the number of neutrons emitted in a given fission event. The fraction of delayed

neutrons is denoted by β. Relatedly, the delayed neutron precursor concentrations are defined

by their own rate equations for each group i,

∂Ci
∂t

+ λiCi(~x, t) = BiΨ (2.6)

where the loss is due to radioactive decay (second term on the left-hand side) and production

(the right-hand side) is described by the group-specific delayed fission operator,

Bi =

∫ ∫
βi(~x,E

′)νΣf (~x,E
′)dΩ′dE ′. (2.7)

2.3 The k-Eigenvalue Transport Equation

When an assembly is in steady state (when neutron balance is achieved), it is the case

that

∂Ψ

∂t
=
dCi
dt

= 0. (2.8)

The effect of the steady state assumption represented in Eqn. (2.8) on the transport equation

in Eqn. (2.3a) is a convenient simplification,

LΨ(~x, ~Ω, E) = FΨ(~x, ~Ω, E) +Q(~x, ~Ω, E), (2.9)

assuming the source is not varying in time. The operator F is the total fission operator,

incorporating the delayed neutrons into M. The k-eigenvalue approximation is a common

form of Eqn. (2.9). Any boundary source and Q are set to zero (Ψb = 0), and the prompt

fission source is increased or decreased by a constant factor 1/k, resulting in:

LΨ(~x, ~Ω, E) =
1

k
FΨ(~x, ~Ω, E). (2.10)
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As long as Σf is nonzero somewhere in the assembly, there exist eigenvalues k0 > k1 >

k2 > . . . kj > . . . with nonzero eigenfunction solutions Ψj to Eqn. (2.10); of course, there

is always the zero solution Ψ = 0 that is not interesting in our application space. The

largest k eigenvalue, k0, corresponding to a nonzero Ψ is the fundamental mode and effective

multiplication factor: keff = k0. If keff = 1, the angular flux in the assembly is balanced

without adjustment and is said to be critical : the production of neutrons from fission balances

the loss due to leakage and capture. When Eqn. (2.10) is exactly balanced, a finite steady-

state neutron flux is possible; the value of keff can be adjusted to achieve such a balance.

If keff < 1, the fission term is being increased to balance the equation, thus more fission

is required to counteract domination by leakage and capture. Such an assembly is called

subcritical. If keff > 1, the fission term is being constrained and such an assembly is called

supercritical. Note that this model is perturbation-based and only has physical significance

when keff = 1. Otherwise, it is a useful mathematical construct for approximating behavior

at near-critical conditions: keff ≈ 1.

2.4 The α-Eigenvalue Transport Equation

The neutron flux in a given assembly is not necessarily constant in time; there exist

constants α (similar to k of the preceding section) that are eigenvalues describing the ex-

ponential time-dependent behavior of the flux. The α-eigenvalue problem is formulated by

assuming that time is separable from space, direction, and energy, and writing the angular

flux and delayed neutron concentrations as products of a shape function and an exponential

time function:

Ψ(~x, ~Ω, E, t) = ψ(~x, ~Ω, E) exp(αt), (2.11)

Ci(~x, t) = Ci(~x) exp(αt). (2.12)
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Equations (2.11) and (2.12) are substituted into Eqns. (2.3a) and (2.7) and the source term

is neglected to produce:

α

v(E)
ψ(~x, ~Ω, E) + Lψ(~x, ~Ω, E) = Mψ(~x, ~Ω, E) +

1

4π

∑
i

χi(E)λiCi(~x), (2.13)

αCi(~x) + λiCi(~x) = Bψ(~x, ~Ω, E). (2.14)

In some applications, the time scales of interest (milliseconds or much less) are much shorter

than delayed neutron precursor half-lives and delayed neutrons can therefore be neglected.

The α-eigenvalue problem is hence condensed to the prompt α-eigenvalue problem:

α

v
ψ + Lψ = Mψ. (2.15)

Note that the α/v term behaves similarly to the 1/k term in the k-eigenvalue equation. For

supercritical systems, α > 0. The α/v term acts as a 1/v absorber, which preferentially

removes slower neutrons. The preferential remover is interpreted as slow neutrons being too

slow to drive a supercritical transient. Similarly, α < 0 for subcritical systems. In this case,

the 1/v term enhances the slower neutrons, as they limit the rate of decrease of the transient.

There are many α eigenvalues (|<(α0)| > |<(α1)| > · · · > |<(αj)| > . . . ) that correspond to

nonzero eigenfunction solutions (and exist even if Σf = 0); the values may be complex, but

α0 is known to be real if it exists. Therefore the <(·) operator will henceforth be implicit.

By linear independence, the spanning solution to an eigenvalue problem is the sum of all

solutions. When the magnitude of α0 (ignoring complex eigenvalues) dominates all other α

magnitudes (|α0| � |α1|), the solution may be truncated from an infinite sum of exponential

time functions to just one based on α0 (this is an approximation). Such an α0 is called the

prompt neutron decay constant (discussed relative to other definitions in Sec. 2.7). It is

sometimes the case that α1 is not dominated by α0 and the solution must include a sum of

exponentials to adequately describe physical observations. Such cases motivate the work in
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later chapters of this dissertation. Another development of the α-eigenvalue problem comes

from writing the transport equation in terms of the neutron density and neglecting delayed

neutrons:

∂N

∂t
= (M− L)N, (2.16a)

∂N

∂t
= AN. (2.16b)

Assuming some initial source Q = Q(~x, ~Ω, E, t = 0), the Laplace transform results in

αN −Q = AN , (2.17a)

N = (α−A)−1Q, (2.17b)

and the solution is a sum of the product of time-independent functions Aj = Aj(~x, ~Ω, E)

and exponential time functions exp(αjt) with eigenvalue αj:

N(~x, ~Ω, E, t) =
∑
j

Aj exp(αjt). (2.18)

The Aj and αj can become messy in the context of application; however, such cases can be

ignored if long-time behavior driven by the fundamental mode (and sometimes the second

largest harmonic) is the focus and dominates all other modes. If the fundamental mode

dominates (|α0| � |α1| > . . . ) then

Ψ(~x, ~Ω, E, t) = Aeα0tΨ0(~x, ~Ω, E), (2.19)

and A is a scalar factor determined from initial conditions and source neutrons.
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2.5 The Adjoint Transport Equation

Suppose x and y are functions, and A and B are linear operators. If

〈Ax, y〉 = 〈x,By〉, (2.20)

where 〈·〉 indicates integration (or an inner product), A is said to be adjoint to B:

A† = B, (2.21)

where the † superscript indicates that it is the adjoint [39]. For a given operator (say A), if

〈x,A†y〉 = 〈y,Ax〉, (2.22)

then y is the adjoint function to x (Ref. [39]):

x† = y. (2.23)

The adjoint flux and adjoint transport equation (valid only when the boundary conditions

are zero) are useful tools when studying the neutron flux in an assembly. A detector –

whether practical or ideal and omniscient – is required to obtain information from the flux.

Given a detector response function (operator – a matrix) R†, the adjoint flux (Ψ† or ψ†)

can be interpreted as neutron importance relative to that detector. The adjoint transport

equation neglecting delayed neutrons is written as [40, 41]:

− 1

v

∂ψ†

∂t
+ L†ψ† = M†ψ† +Q†, (2.24)

15



where

L† = −~Ω · ∇+ Σt(~x,E)−
∫ ∫

Σs(~x, ~Ω→ ~Ω′, E → E ′)dΩ′dE ′, (2.25)

M† =
1

4π
νΣf (~x,E)(1− β(~x,E))

∫ ∫
χp(E → E ′)dΩ′dE ′. (2.26)

Note that the differential operators have flipped; radiation is transported backwards relative

to the lab frame of reference (e.g., from E to E ′) and time travels in the reverse direction.

It can be shown that the “backwards” source Q† must be nonzero to have nonzero solutions

and is analogous to detector response (Q† = R†). The keff-eigenvalue adjoint equation is

given by

L†ψ† =
1

keff

F†ψ†. (2.27)

Recall that F is the total fission operator and F† is the corresponding adjoint operator.

Note that the forward and adjoint 1/keff eigenvalues are the same. Similarly multiplying by

Ψ = ψn and integrating over position, direction, and energy, and using linear algebra results

in

〈ψ,L†ψ†〉n =
1

keff

〈ψ,F†ψ†〉n (2.28a)

〈ψ†,Lψ〉n =
1

keff

〈ψ†,Fψ〉n. (2.28b)

2.6 Point Kinetics

In practical application and diagnosis of neutron noise measurements, solving the full

transport equation is typically unnecessary and can be infeasible. Therefore, the problem

is sometimes simplified by condensing the equation from seven variables to just time and

the result is called the point kinetics equations. The differentiation between “kinetics”

and “dynamics” depends in nomenclature. The most popular nomenclature and the one

followed in this work defines kinetics as the subset of dynamics without feedback, maintaining
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aggregate behavior. Dynamics may allow feedback such as changing flux or temperature [42,

43].

This section develops the point kinetics equation from the transport equation defined in

Eqns (2.3a), (2.4), and (2.5). It is assumed that there is no external source, long-time criteria

are met such that that the assembly has reached steady state at a fundamental eigenvalue

of keff, time is separable from the other six variables, and that delayed precursor groups are

also in steady state.

Using the separability assumption,

Ψ(~x, ~Ω, E, t) = ψ(~x, ~Ω, E)n(t). (2.29)

The separation assumes that the shape of the neutron distribution does not significantly

change on the time scale of interest. When we are deeply subcritical and where higher

harmonics matter, the assumption is a poor one [43]. The transport equation in Eqn. 2.3a

becomes

1

v
ψ
dn

dt
+ Lψn = Mψn+

∑
i

χiλiCi (2.30)

using Ψ = ψn from Eqn, (2.29). Multiplying Eqn. (2.30) by the adjoint flux and integrating

over position, direction, and energy results in

〈ψ†, 1

v
ψ〉dn

dt
+ 〈ψ†, Lψ〉n = 〈ψ†,Mψ〉n+

1

4π

∑
i

〈ψ†, χiλiCi〉. (2.31)

Taking the difference between Eqns. (2.31) and (2.28b) results in

〈ψ†, 1

v
ψ〉dn

dt
= 〈ψ†,Mψ〉n+

1

4π

∑
i

〈ψ†, χiλiCi〉 −
1

keff

〈ψ†,Fψ〉n. (2.32)

It is convenient to add
(
0 = 〈ψ†,Bψ〉n− 〈ψ†,Bψ〉n

)
to the right hand side (RHS) of Eqn. (2.32),
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which results in

RHS = 〈ψ†,Mψ〉n+
1

4π

∑
i

〈ψ†, χiλiCi〉 −
1

keff

〈ψ†,Fψ〉n+ 〈ψ†,Bψ〉n− 〈ψ†,Bψ〉n

= 〈ψ†,Mψ〉n+ 〈ψ†,Bψ〉n− 1

keff

〈ψ†,Fψ〉n+
1

4π

∑
i

〈ψ†, χiλiCi〉 − 〈ψ†,Bψ〉n

= 〈ψ†,Fψ〉n− 1

keff

〈ψ†,Fψ〉n+
1

4π

∑
i

〈ψ†, χiλiCi〉 − 〈ψ†,Bψ〉n

=

(
1− 1

keff

)
〈ψ†,Fψ〉+

1

4π

∑
i

〈ψ†, χiλiCi〉 − 〈ψ†,Bψ〉n

and defining reactivity ρ by

ρ = 1− 1

keff

(2.33)

results in

〈ψ†, 1

v
ψ〉dn

dt
= ρ〈ψ†,Fψ〉n− 〈ψ†,Bψ〉n+

1

4π

∑
i

〈ψ†, χiλiCi〉. (2.34)

Dividing through by 〈ψ†, 1
v
ψ〉 and defining the effective delayed neutron fraction

βeff =
〈ψ†,Bψ〉
〈ψ†,Fψ〉

(2.35)

and the mean neutron generation time

Λ =
〈ψ†, 1

v
ψ〉

〈ψ†,Fψ〉
(2.36)

results in

dn

dt
=

(
ρ− βeff

Λ

)
n(t) +

∑
i

λici(t) (2.37)

with

ci(t) = 〈ψ†, χi(E)

4π
Ci(~x, t)〉. (2.38)
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The prompt neutron decay constant is defined by

α =
ρ− βeff

Λ
. (2.39)

Considering only prompt neutrons, np, and assuming some initial population, Eqn. (2.37) is

solved with

np(t) = A+Be−αt (2.40)

where A and B are constants; A corresponds to fixed sources from processes such as spon-

taneous fission and B is a coefficient on the exponentially decaying fundamental mode (for

sub-prompt critical assemblies) of the α-eigenvalue equation. The formulation in Eqn. (2.39)

motivates another definition of the prompt neutron decay constant in terms of the prompt

neutron multiplication factor kp (the component of keff due to prompt neutrons, only) and

the mean prompt neutron lifetime τ0 [44]:

α =
kp − 1

τ0

. (2.41)

The value of kp is defined [45] by regarding keff as sum of a prompt component, kp, and a

delayed component, kd,

keff = kp + kd. (2.42)

The prompt component is the ratio of number of prompt neutrons produced in the (n+ 1)th

generation to the number of (any) neutrons produced in the nth generation. The delayed

neutron component is obtained by summing over all delayed groups and

kd = βeffkeff. (2.43)
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Thus, the values of kp, keff, and βeff are related by

keff =
kp

1− βeff

. (2.44)

2.7 Definitions of the Prompt Neutron Decay Constant

This chapter gives rise to several definitions of the prompt neutron decay constant, α,

or its negative reciprocal (when α 6= 0), the prompt neutron period. The most correct

definition of α is based on the angular flux and is defined as the logarithmic rate of change

of the (prompt) neutron population in an assembly, which can be obtained by integrating

Ψ/v over all phase space. Relatedly, given the density of prompt neutrons as a function of

only time, np(t),

α(t) =
d (ln (np(t)))

dt
=

1

np(t)

d (np(t))

dt
. (2.45)

Solving the transport equation is often infeasible, thus less-precise but more-practical defi-

nitions are introduced. For example, the asymptotic form is developed in the α-eigenvalue

equations in Sec. 2.4 by assuming separability and describing the neutron population as a

series of harmonics. The lowest-order (yet often most practical) approximation presented in

this chapter is point kinetics, represented in Eqns. (2.39) and (2.41). Complete separability

of time is assumed and the definitions follow from perturbations of keff from a critical reactor;

thus, the model is limited as the absolute difference between keff and unity grows.

2.8 Two-Region Point Kinetics

In several historical measurements, measured results from the standard (one-region) point

kinetics models disagreed with numerical solutions to the multigroup, multidimensional dif-

fusion or transport equations. A famous case involved a measurement of a critical assembly

where the point kinetics model estimated a reactivity much greater than 1$ and Brunson

called this “inexplicable behavior” the dollar discrepancy [46, 47, 48]. The anomalous be-
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havior was later attributed to higher spatial harmonics, as alluded to in the α-eigenvalue

section above, particularly due to the presence of neutron reflectors. Characteristic fission

and neutron lifetimes are modulated when neutrons leak into a reflector region and, after

some time, are scattered back into the core and continue their fission chain lineage. It has

been observed that the second-largest-magnitude, real-valued α in such reflected cases is not

negligible, and thus a two-region point kinetic model required. Avery developed a complex

model based on the theory of coupled systems for arbitrarily many regions, each having

its own multiplication factor kj and mean neutron lifetime τj [32]. Avery’s theory was not

implementable in practice due to complexity; fitting a sum of exponentials (especially more

than two) to experimental data is a mathematically ill-posed problem. Cohn adapted Av-

ery’s model for reflected assemblies considering only two regions: a core and reflector with

kc and τc for the core and τr for the reflector [33]. It is assumed that only the core pro-

duces neutrons and therefore kr = 0. The models were still somewhat complex and relied

on partial fluxes and separating the total fission neutron source in each region into a series

of source components accounting for neutrons from one region inducing fission in another.

Spriggs simplified the Avery-Cohn model by replacing the source components by aggregate

cross-region leakage probabilities, fcr and frc, the probability of a neutron leaking from the

core/reflector to the reflector/core [49]. The point kinetic balance of neutrons in time and

across the two regions is then described by writing a system of first-order differential balance

equations for the neutrons in the core and reflector, Nc and Nr, in terms of fcr, frc, kc, τr,

and τc. The differential equations are presented in Chapter IV; the goal of this section is to

define the aforementioned terms in context of the angular flux. The two-region model has

been tested and demonstrated in the inhour equation and at critical, but not for off-critical,

general neutron noise measurements. The purpose of Chapter IV (and Chapter VI) is to

derive the two-region point kinetic measurement techniques. The Avery-Cohn and Spriggs

approaches are somewhat ad hoc and phenomenological, assume average values, and use

parameters that are not necessarily measurable of physically interpretable, rather they are
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mathematical constructs for convenience. These are engineering approximations that make

the validation work in Chapters V and VI very important and contextualize the ranges of

applicability of the two-region models.

The two-region differential equations are written in terms of the neutron population

instead of angular flux as was done above for the one-region model in Eqn. (2.37). Energy

in the angular flux, integrals, and inner products are reparametrized in terms of incoming

and outgoing neutron velocities, v and v′, for ease of units when defining time constants τc

and τr. The values of τc and τr are the effective adjoint-weighted neutron lifetimes in the

core and reflector regions. The effective system lifetime is

τs =
keff

∫
sys

∫ Ψ†(~x,v)Ψ(~x,v)
v

d~xdv∫
sys∪ref.

∫ ∫
Ψ†(~x, v)χ(v)νΣf (~x, v′)Ψ(~x, v′)d~xdv′dv

(2.46)

and, by analogy,

τc =
kc
∫

core

∫ Ψ†(~x,v)Ψ(~x,v)
v

d~xdv∫
core∪ref.

∫ ∫
Ψ†(~x, v)χ(v)νΣf (~x, v′)Ψ(~x, v′)d~xdv′dv

, (2.47)

τr =
kc
∫

refl

∫ Ψ†(~x,v)Ψ(~x,v)
v

d~xdv

fcr
∫

core∪ref.

∫ ∫
Ψ†(~x, v)χ(v)νΣf (~x, v′)Ψ(~x, v′)d~xdv′dv

. (2.48)

Note that it is assumed neutron multiplication happens in the core only, and thus τr is

defined with respect to the fraction of core neutrons leaking to the reflector. Further note

that the angular dependence is ignored (assumed to cancel). With total system neutron

population Ns = Nr +Nc, keff can be written as

keff =

∫
sys

∫
νΣf (~x, v)Ψ(~x, v)d~xdv

Ns
τs

(2.49)

and similarly,

kc =

∫
core

∫
νΣf (~x, v)Ψ(~x, v)d~xdv

Nc
τc

. (2.50)
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Again, since neutron multiplication only happens in the core,

keff

(
Ns

τs

)
= kc

(
Nc

τc

)
. (2.51)

The instantaneous loss rates (N/τ) can be related in terms of neutron utilization fractions,

(
Nc

τc

)
= (Pca + Pci + Pcr)

(
Ns

τs

)
, (2.52)

where Pca, Pci, and Pcr are the fraction of core neutrons that get absorbed in the core,

permanently leak out of the assembly (to infinity), and leak to the reflector. The neutron

utilization fractions can also be related to the cross-region leakage terms. First, as a thought

experiment, the mean number of reflections E[X] is calculated given fcr and frc. The tree

diagram for a neutron (originating in the core) is shown in Fig. 2.1.

Figure 2.1: Tree diagram of neutron reflection.

The expected number of reflections is then

E[X] = (1− fcr)(0) + (fcr)((1− frc)(0) + frc(1 + E[X]))

E[X] =
fcrfrc

1− fcrfrc

E[X] =
f

1− f
, (2.53)

where f = fcrfrc. A plot of the number of reflections as a function of f is shown in Fig. 2.2.
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Figure 2.2: The number of reflections as a function of f = fcrfrc. The limit as f → 1 is
infinity.

The neutron utilization factors are related to cross-region leakage terms by

Pca =
fca

1− f
(2.54)

Pci =
fci

1− f
(2.55)

Pcr =
fcr

1− f
(2.56)

where the fcx terms are single-pass probabilities. Note that fca + fci + fcr = 1 and therefore

keff =
kc

1− f
. (2.57)

2.9 Simulation: MCNP

Simulations are a useful tool that provide additional information and insight for measure-

ments; for example, the life of an individual neutron can be tracked. This work utilizes the
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Monte Carlo N-Particle (MCNP – version MCNP6.2 R©1, in particular) code [50, 51] and a

derivative, auxiliary version, MCNPX-PoliMi [52]. MCNP has been extensively validated and

benchmarked, and it one of the most widely-used transport codes in nuclear applications [53].

The code uses nuclear data from the Evaluated Nuclear Data File (ENDF/B-VII.1). This

work uses the codes in two ways: first, the codes are used to model experiments and verify

measured quantities. Second, the codes and the extra information they can track are used

to independently estimate the prompt neutron decay constant and keff to validate measured

results.

The KCODE subroutine of MCNP is used to invoke the MCNP6 criticality source to

determine keff. Initial guesses are made for keff and Ψ(0), and particle histories are followed

to solve for Ψ(n+1). Fission events during the histories are stored for the next iteration. A

new keff is computed by

keff
(n+1) = keff

(n)

∫
MΨ(n+1)d~x∫
MΨ(n)d~x

, (2.58)

and the process is repeated until Ψ(n+1) and keff
(n+1) converge. Occasionally, the iterated

fission probability process (activated by the KOPTS card) is used to estimate the effective

delayed neutron fraction βeff, mean neutron generation time Λ, and prompt neutron decay

constant at delayed critical αDC . The process uses adjoint-weighted tallies by determining

neutron importance in eigenvalue calculations by counting neutron progeny in a given future

generation. The future generation is considered an asymptotic generation. The fixed-source

subroutine SDEF is used to estimate neutron lifetimes, in particular, the mean neutron

lifetime in the core region τc. The value of τc is determined with cell flux tallies (F4) where

the fissile core must be defined as a single cell. The tally is inverse-velocity weighted to

convert track lengths to times and also configured to estimate the total number of neutrons

produced due to a seed neutron. The total lifetime is then normalized by the total neutron

1MCNP R© and Monte Carlo N-Particle R© are registered trademarks owned by Triad National Security,
LLC, manager and operator of Los Alamos National Laboratory. Any third party use of such registered
marks should be properly attributed to Triad National Security, LLC, including the use of the designation as
appropriate. For the purposes of visual clarity, the registered trademark symbol is assumed for all references
to MCNP within the remainder of this paper.
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progeny plus the initial seeds to estimate τc.
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CHAPTER III

Detection Systems: 3He and Organic Scintillators

This chapter provides background on two detection systems used in the measurements

of this dissertation: the Neutron Multiplicity Array Detector (NoMAD) based on 3He gas

proportional counters and the Organic Scintillator Array (OSCAR) based on trans-stilbene

crystal organic scintillation detectors (henceforth called stilbene). The chapter discusses

the detection mechanisms and system characteristics; additionally, initial data processing to

obtain neutron list mode data (a list of neutron detection times) is presented for the OSCAR.

The NoMAD has on-board electronics that output the list mode data. The detection systems

are considered off-the-shelf tools used to acquire data and are not a part of the fundamental

research and design of this dissertation.

The current state-of-the-art detectors for nuclear criticality safety and safeguards appli-

cations are based on moderated 3He for the high detection efficiency. Recent works have

shown that organic scintillators augment measurement capabilities. For example, neutron

crosstalk (the phenomenon where one neutron can register multiple detections) is exploited

to image radioactive sources [54, 55]. Organic scintillator systems typically do not use mod-

erating material, thus neutrons typically do not lose energy and change direction through

scattering prior to detection. Therefore organic scintillator systems are sensitive to direction

and emission anisotropy [56], a portion of the energy of an incident neutron (only some of

the neutron energy is deposited during detection scatters) [57], and the time resolution of
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detectors are a nanosecond or less (as compared to tens-of-microseconds for 3He) [58, 59].

The improved time resolution motivates the investigation of organic scintillators.

Portions of the work in this chapter were adapted from my journal article titled “Rossi-

alpha measurements of fast plutonium metal assemblies using organic scintillators” published

in Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrom-

eters, Detectors and Associated Equipment [3].

3.1 3He Detection System

3.1.1 3He-Gas Proportional Counters

Proportional counters are gaseous tube detectors that exploit gas multiplication to am-

plify the signal from a charge-producing reaction. The multiplicative properties are achieved

by applying a voltage to the tube such that an electric field causes electrons and ions to

respectively flow to the cathode and anode. The electrons proportionally multiply during

the drift when the applied voltage is sufficiently high; applying a too-low voltage results in

an ion counter, whereas a too-high voltage results in a Geiger-Mueller counter. The multi-

plication process is a Townsend avalanche: electrons collide with other atoms on the way to

the cathode, liberate more electrons in the collision, and liberated electrons perpetuate the

avalanche. The signal depends on the electron drift since the ions drift more slowly. In the

case of neutron detection with 3He, the reaction

1
0n + 3

2He → 1
1H + 3

1H + 764 keV (3.1)

produces two charged particles: a proton and a triton. Using a 3He fill gas for neutron

detection is popular since the cross section for the thermal capture reaction represented in

Eqn. (3.1) is 5330 barns [60] and higher than typical alternatives based on 10B and 6Li. The

cross section is much smaller for fast neutrons; thus, 3He tubes are typically embedded in a

matrix of hydrogenous moderating material like high density polyethylene (HDPE) [60].
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3.1.2 Neutron Multiplicity Array Detector (NoMAD)

The NoMAD comprises 15 3He detectors (Reuter-Stokes, RS-P4-0815-103) embedded in

an HDPE (0.96 g/cm3) matrix; a photo is shown in Fig. 3.1 and a schematic is shown in

Fig. 3.2. Each 3He tube is sealed in 0.079375-cm (1/32-inch) thick aluminum with a 2.54-cm

outer diameter and a 38.1-cm tall active region. The gas is pressurized to 150 psia to increase

density to increase detection efficiency. The NoMAD system has on-board electronics that

processes signals to produce list mode data with a 100-ns clock-tick length, a 1.5-µs dead

time per tube, and a known 35-40 µs thermalization (slowing-down) time.

Figure 3.1: Photograph of the NoMAD.
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Figure 3.2: Schematic of the NoMAD; figure taken from [1].

3.2 Organic Scintillator Detection System

Organic scintillator packages are sensitive to both neutrons and photons; neutrons scatter

on nuclei and photons Compton scatter on electrons [60, 61, 62]. Incident radiation transfers
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energy to the organic scintillator through the scatter reaction, molecules de-excite by scintil-

lating (emitting ultraviolet-to-visible light), and the scintillation photons are collected by a

photomultiplier tuber (PMT). The energy deposited in elastic scattering by a non-relativistic

neutron as constrained by conservation of energy and momentum is

Edeposited =
4A

(1 + A)2
(cos2 θ)En, (3.2)

where En is the initial neutron energy, θ is the angle between the incident neutron and the

recoil nucleus, and A is the ratio of the recoil nucleus mass to that of the neutron. Similarly,

the energy deposited by a photon of energy Eγ is

Edeposited = Eγ

(
1− 1

1 + Eγ
mec2

(1− cos θ)

)
, (3.3)

where mec
2 is the rest mass of the electron (511 keV) and θ is the angle between incident

and scattered photon. The PMT converts scintillation light to electrons via the photoelectric

effect in an optical window, and the electrons are multiplied by electric fields (induced by

an applied high voltage) accelerating electrons into dynodes. The electrons are collected at

the cathode and the voltage signal is sampled at regular time intervals by a digitizer [60].

The rest of this section will describe stilbene organic scintillators, which are used in the

OSCAR system, the OSCAR itself, and the data preprocessing required to produce neutron

list mode data.

3.2.1 Trans-Stilbene Detector

Stilbene organic scintillators are C14H12 crystals [63, 64]. Stilbene is chosen over other

commercial alternatives such as EJ-309 liquid organic scintillators for the excellent PSD

properties [64], further discussed in Sec. 3.2.2.1. The stilbene crystals (Inrad Optics) used

in this work are 5.08-cm thick × 5.08-cm diameter cylinders; a photo of a bare crystal is

shown in Fig. 3.3. Each crystal is wrapped in polytetrafluoroethylene (teflon), housed in
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aluminum, and coupled to a PMT. The housing includes open cell foam on the front face,

and the opposite face that is coupled to the PMT is a polished, fused silica window. The

PMTs are Electron Tubes 9214B, have an active divider base (TB1102BFN2), are wrapped

in mu metal magnetic shielding (MS52D), and encased in a custom 3D-printed plastic case.

A schematic of the detector is shown in Fig. 3.4.

Figure 3.3: Photograph of a stilbene organic scintillator; figure from Ref. [2].

Figure 3.4: Schematic of a stilbene organic scintillator coupled to a photomultiplier tube;
figure from Ref. [2].

The relationship between light output and energy deposition by a photon on an electron

is adequately modeled by a linear function, whereas the relationship between light output
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and neutron energy deposition on a nucleus is not. Hence, light output units (electronvolt-

electron-equivalent) are defined relative to energy deposition (electronvolt) of a photon on

an electron:

1 eV = 1 eVee. (3.4)

The relationship for neutrons follows the Birks distribution (Ref. [61]) given by

L(Edeposited,n) =

∫
a

1 + b
(
dE
dx

)dEdeposited,n, (3.5)

where dE
dx

represents the differential energy deposition and a and b are parameters, typi-

cally determined from a fit [61, 65]. The value of −dE
dx

is also called the stopping power,

proportional to the number of ionizations per path length, and describes the loss of energy

(typically by a charged particle) as a function of distance in a medium. Other literature

determined that a = 2.027 and b = 27.83 for 5.08-cm thick × 5.08-cm diameter stilbene

cylinders and a sample distribution is shown in Fig. 3.5 [2].
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Figure 3.5: Light output distribution for 5.08-cm thick × 5.08-cm diameter stilbene cylin-
ders; figure from Ref. [2]. Measured data points were obtained from measurements of quasi-
monoenergetic neutrons.

3.2.2 Organic Scintillator Array (OSCAR)

The OSCAR comprises 12 stilbene detectors arranged in a 3× 4 array; a photo is shown

in Fig. 3.6. The detectors are contained in a wire frame array and held in place with porous

foam (polyurethane, 0.021 g/cm3). The housing and foam have a negligible effect on the

neutron count rate.
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Figure 3.6: Photo of the OSCAR system, a 3 × 4 array of stilbene detectors; figure from
Ref. [3].

The PMTs are powered by CAEN high voltage supplies and the pulses are digitized by

CAEN v1730 digitizers. The digitizer has a 500 MHz sampling rate, recording voltages from

each detector every 2 ns. Constant fraction discrimination based on linear interpolation is

used to achieve finer timing samples [66, 59]. In this work, the system has a time resolution

of 1.34±0.04 ns between two detectors, virtually negligible dead time, and no thermalization

(slowing down) time like the NoMAD. Each pulse above a light output threshold of 35 keVee

is afforded 144 samples or 288 ns of acquisition; thus, the dead time is virtually negligible,

but multiple pulses in the same 288-ns window are discarded. The 35-keVee threshold is

used to reduce noise, low-energy background, and room-returned radiation, and it is a good
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threshold for determining detected particle type. Current and future works are using artificial

neural networks to recover these piled-up pulses, but such machine learning algorithms are

not used in this work [67, 68].

3.2.2.1 Data Preprocessing to Obtain List Mode Data

The pulse polarity is negative and the initial units are digitizer analog-to-digital con-

version (ADC) units versus sample. Samples are converted to time by multiplying by 2

ns/sample. The dynamic range of the digitizer is 0-2 V over 14 bits (214 channels), therein

defining the following conversion factor. Pulse polarity is inverted and units are converted

to volts by

(Signal [V]) = (Signal [ADC])×
(

2 [V]

214 − 1 [ADC]

)
. (3.6)

A sample of 100 raw pulses is shown in Fig. 3.7. The sample pulses include an example of

pulse pile-up (multiple pulses in the same 288 ns window); there is a second pulse between

200-250 ns. Pulses exhibiting pile-up and clipped pulses (those resulting in peak signals

greater than the dynamic range) are removed.
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Figure 3.7: A sample of 100 pulses from an OSCAR measurement of a 4.5-kg sphere of
weapons-grade plutonium reflected by 7.62 cm of tungsten.

The pulses detected in the OSCAR and the samples shown in Fig. 3.7 come from both

neutrons and photons. The pulses from each type of radiation exhibit different pulse shapes

– photon pulses decay more rapidly than neutron pulses as shown in Fig. 3.8 – and this

phenomenon may be exploited to discriminate particle types. The difference in pulse shapes

is due to different stopping powers for nuclei (protons) and electrons. The exploitation

process is called pulse shape discrimination (PSD) and a charge integration technique used

in this work. The ratio of the pulse tail and total integrals is compared to the total integral,

resulting in Fig. 3.9. A line is drawn between the bands and pulses above/below the band

are classified as neutrons/photons [69, 70, 71]. The total pulse integral (V-ns) is converted

to units of light output (MeVee) via a conversion factor. The high voltage is applied to each

PMT such that the pulse integral distribution Compton edge for a measurement of 137Cs

(corresponding to 0.478 MeVee) occurred at 1.6 V-ns, resulting in a total range of 0.035-2.389

MeVee.
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Figure 3.8: Mean, max-normalized, measured neutron and photon pulses.

Figure 3.9: A sample pulse shape discrimination plot for a measurement of a bare spherical
shell of highly enriched uranium. The top band corresponds to neutron detections, whereas
the bottom band corresponds to photon detections.
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One final correction is required for the OSCAR system to account for time differences due

to nonuniform source-to-detector distances and electronic time offsets. Having discriminated

the pulses, the photon data are used to create a time-coincidence plot between a reference

detector and all other detectors. In this work, the lower left detector when looking at the

front face of the OSCAR is the reference detector. A sample coincidence plot is shown in

Fig. 3.10. The peak should occur at zero; if it does not, a constant time shift is applied to

all neutron and photon times such that it does.

Figure 3.10: Sample photon-photon time-difference offset plot. The data peak at x = 0 is
the expected result when there is not timing offset.
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CHAPTER IV

Theory of Rossi-alpha Measurements

This chapter presents the existing theory for Rossi-alpha measurements, the new theory

for Rossi-alpha measurements of reflected assemblies, and the new theory for the propaga-

tion of measurement uncertainty. The work in this chapter comes from two of my works

titled “Derivation of the Two-Exponential Probability Density Function for Rossi-Alpha

Measurements of Reflected Assemblies and Validation for the Special Case of Shielded Mea-

surements” published in Nuclear Science and Engineering [72] and “Measurement uncertainty

of rossi-alpha neutron experiments” published in Annals of Nuclear Energy [73].

4.1 Theory of Rossi-alpha Probability Density Functions

In a neutron-multiplying assembly, neutrons having a common ancestor are correlated in

time [36, 24, 19]. One method of observing the correlation is by constructing a histogram

of the time differences between the time of detection of a single neutron and the times

of all subsequent neutron detections that are within a predetermined “reset time” of the

original detection time [4]. The resultant plot is known as the Rossi-alpha histogram. The

value of the prompt neutron decay constant, α, is experimentally determined by fitting the

Rossi-alpha histogram with a probability density function (PDF) and calculating α from

the fit parameters. A schematic of the time differences is shown in Fig. 4.1 and a sample

Rossi-alpha histogram with a one-exponential fit is shown in Fig. 4.2; explanation of the
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shape and significance of the one-exponential fit is discussed in the next subsection. Reset

times are selected by experimenters such that sufficient correlated behavior is captured in the

histogram for the fit to be applied. The reset time for measurements of a deeply subcritical

assembly is typically much longer than typical fission chain durations.

Figure 4.1: Schematic of time differences between any and all neutron detections (type-I
binning [4]).
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Figure 4.2: Sample Rossi-alpha plot for a NoMAD measuring a 4.5-kg sphere of weapons-
grade, alpha-phase plutonium (BeRP Ball) with the one-region probability density function
applied and annotated.

The derivation of the two-exp PDF will follow Orndoff’s derivation of the one-exp PDF

(see Reference [20]); the one-exp model is briefly summarized in Section 4.1.1. The derivation

of the PDF, p(t), begins with the number of prompt neutrons in a fissile core, N . In the

one-region (core-only) model, N = N1 is a single decaying exponential used to derive p1(t),

the one-exp PDF. Section 4.1.2 uses the two-region point kinetics model (core and reflector)

to derive N = N2, a two-exponential equation. Section 4.1.3 uses N2 (instead of N1) in

Orndoff’s derivation to obtain p2(t), the two-exp PDF.

4.1.1 Traditional, One-Exp Rossi-alpha Method

Recall from Chapter II that the prompt neutron decay constant α for an assembly is

given by (Ref. [20])

α =
kp − 1

τ0,1

, (4.1)

where kp is the prompt neutron multiplication factor and τ0,1 is the mean prompt neutron

lifetime in the one-region model [20, 18, 74]. The change in subscript in this chapter (τc �

τ0,1) is used to distinguish the one- and two-region definitions of τc until it is shown that

they are the same. This work focuses on prompt neutrons; delayed neutrons are considered
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chance coincidences that can be separately accounted for with a sum of exponentials [19].

Note that α in this definition is negative for sub-prompt-critical assemblies and −1/α is

the prompt neutron period [75]. The value of α is also defined as the negative asymptotic

logarithmic time derivative of the prompt neutron population in Eqn. (2.45) and (2.40) and

thus the population of prompt neutrons described by one-region point kinetics N1 at a time

t due to N(0) initial neutrons is mathematically described by

N1(t) = N(0)eαt. (4.2)

Equation (4.2) is used to derive the probability p1(t)dt of detecting a neutron between t and

dt after an initial neutron detection at t0 = 0. The one-exp PDF, p1(t), is given by

p1(t) dt = A dt+Beαt dt for t ≤ treset, (4.3)

where A and B are constants, and treset is the reset time; p1(t) = 0 for t > treset. The A term

represents the uniform probability of uncorrelated counts, while the Beαt term represents

counts due to correlated prompt neutrons.

4.1.2 Two-Region Point Kinetics Model

The two-region point kinetics model separately considers a fissile core and a reflector

region, whereas the one-region approach treats space as uniform. An aside: the reflector

is defined as anything that is not the core and other terminologies like moderator or shield

are considered subsets. Macroscopically, it may simple to define distinct reflector and core

regions (e.g., a uranium sphere, the core, in a tank of water, the reflector) as is the case

for most of the work in this dissertation. Microscopically, the regions are defined proba-

bilistically: a uranium atom that scatters and thermalizes a neutron behaves as a reflector

atom, whereas a uranium atom that absorbs a neutron and then fissions behaves as a core

atom. The macroscopic interpretation is a good approximation for many assemblies and the
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microscopic interpretation is like a quantum mechanical analog that is more accurate... fin

aside. From References [33, 76, 31] and Chapter II, the time dependent prompt-neutron

population in a reflected assembly is given by

dNc

dt
=
kp,c − 1

τc
Nc + frc

Nr

τr
(4.4a)

dNr

dt
= fcr

Nc

τc
− Nr

τr
, (4.4b)

where:

Nc is the number of prompt neutrons in the fissile core region,

Nr is the number of prompt neutrons in the reflector,

kp,c is the prompt multiplication factor in the fissile core region,

τc is the mean prompt neutron lifetime in the fissile core region,

τr is the mean prompt neutron lifetime in the reflector region,

fcr is the fraction of neutrons leaking from core to reflector, and

frc is the fraction of neutrons leaking from reflector to core.

Note that lifetime accounts for both leakage and absorption/capture (which may lead to

fission). The differential model above assumes neutrons are only capable of multiplication in

the fissile core. For small-volume (point-like) samples, the assumption generally holds and

any multiplying volume is considered a part of the fissile core. When the assumptions are

satisfied, all multiplication occurs in the core and thus, the total and core prompt neutron

multiplication factors are the same:

kp,c = kp. (4.5)
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It follows from Equation (4.5) that the prompt neutron decay constant of the core αcore is

given by

αcore =
kp − 1

τc
(4.6)

and algebraic manipulation of Equations (4.1) and (4.6) gives

αcoreτc = ατ0,1 ⇐⇒ αcore = α
τ0,1

τc
. (4.7)

τc is the prompt neutron lifetime in the core (and not the mean time to capture). In

one-region point-kinetics (a reduced-order model), the entire assembly is reduced into one

temporal group and time is separated from the rest of the variables. Therefore, the total

prompt neutron lifetime and the prompt neutron lifetime in the core are the same, i.e.,

τ0,1 = τc. (4.8)

In two-region analyses, the mean prompt neutron lifetime τ0,2 is a combination of the mean

lifetimes in each region, τc and τr; the reduced-order model is more sophisticated, allowing

for separate temporal behavior in the reflector and the core. The quantity τ0,2 is not a sum of

τc and τr due to cross-region leakage. The number of neutrons in the core is to be related to

the fission rate; α should describe only those neutrons in the core [20]. Therefore, combining

Equations (4.1) and ((4.5)-(4.8)),

α = αcore =
kp − 1

τ0,1

=
kp − 1

τc
. (4.9)

Assuming Nc(0) = N(0) and Nr(0) = 0, Reference [31] simultaneously solves Equa-

tions (4.4a) and (4.4b), yielding

Nc(t) = N(0)
[
(1−R)er1t +Rer2t

]
, (4.10)
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where

rj =
(−1)j

√
4τcτr(frcfcr + kp − 1) + (τc − τr(kp − 1))2 − τc + τr(kp − 1)

2τcτr
, (4.11)

and

R =
r1 − α
r1 − r2

. (4.12)

Note that N2 = Nc, which will be used in Sec. 4.1.3. The coefficient R is a positive real

number less than one. If a single exponential fit is adequate, R will equal one or zero, α will

be one of the rj, and Equation (4.10) reduces to a single exponential (Equation (4.3)). It

is useful to define f ′ = frcfcr/τc; as a result, the rj can be expressed as a function of three

variables instead of five variables as seen in Equation (4.11). Using the definition of f ′ and

Equation (4.9), Equation (4.11) simplifies to

rj = (−1)j

√
1

τr
(f ′ + α) +

1

4

(
1

τr
− α

)2

+
1

2

(
α− 1

τr

)
, where f ′ =

frcfcr
τc

. (4.13)

Having obtained Equation (4.10), the new two-exp PDF can be derived following a clar-

ification in definition. The mean neutron lifetime in the reflector region, τr, is an assembly

parameter equivalent to the mean neutron lifetime outside the core. A detection system is

not directly sensitive to neutrons it does not detect and thus measurements are not directly

sensitive to τr; there are biases such as energy-based thresholds and detection efficiency. In-

stead, measurements are sensitive to `ctd, the mean core-to-detection lifetime. For `ctd � τc

and `ctd � τr, `ctd is approximately the mean time to detection or the time between neutron

birth and detection, `ttd. This case is common for moderated 3He detectors measuring fast

(sub-microsecond) assemblies. In such a scenario, the dominant eigenmodes correspond to
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`ttd and a convolution of τr and τc. The functional dependences are

`ttd = `ttd(τc, τr, `D) and (4.14a)

`ctd = `ctd(τr, `D), and (4.14b)

the nomenclature is further shown in Figure 4.3. Henceforth, τr is implicitly replaced by `ctd.

Figure 4.3: Graphic depicting the nomenclature used to describe time constants in this
paper. Although only leakage is depicted, lifetimes τ also account for absorption/capture
(which may lead to fission).

A second clarification is required when αcore 6= α or such an assumption (negligible

multiple cross-region leakages) cannot be made. The measured αcore corresponds to core-
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only macroscopic quantities:

αcore =
kp,core − 1

τc
⇐⇒ kp,core = 1 + αcoreτc . (4.15)

The keff multiplication factor is calculated from kp,core and βeff by

keff,core =
kp,core

1− βeff

. (4.16)

The total/composite keff is calculated by considering cross-region leakage terms: fcr, the

fraction of neutrons leaking from the core to the reflector, and frc, the fraction of neutrons

leaking from the reflector to the core. Taken together,

keff =
keff,core

1− frcfcr
(4.17)

=
keff,core

1− f ′τc

=
kp,core

(1− f ′τc)(1− βeff)

=
1 + αcoreτc

(1− f ′τc)(1− βeff)
,

where αcore and f ′ are measured quantities, and βeff and τc are simulated or otherwise-

obtained quantities.

4.1.3 Two-Exp Rossi-alpha Method Accounting for Reflection

This section will follow the same PDF derivation in Reference [20], which was first pro-

posed in Reference [77]. The difference between Reference [20] and this work is Reference [20]

uses N = N1 (Equation (4.2)), whereas this work uses N = N2 (Equation (4.10)).

Suppose there are initially (t = 0)N(0) neutrons in a near-critical assembly. The probable

number of neutrons at a time t > 0 is given by Equation (4.10). Hence, the probable number
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of fissions produced in dt about t > 0 is given by

dF = N2
dt

τf
= Nc

dt

τf
= N(0)

dt

τf

[
(1−R)er1t +Rer2t

]
, (4.18)

where τf is the mean time to fission. The number of resulting neutrons is given by

dN2 = νdF = νN(0)
dt

τf

[
(1−R)er1t +Rer2t

]
(4.19)

where ν is the mean number of neutrons produced per fission. The goal is to obtain p2(t)dt,

the probability of a count in [t,t+dt] following a count at t = 0. For a purely random source

following Poisson statistics, the probability is uniform following

p(t) dt = A dt, (A dt� 1), (4.20)

which accounts for uncorrelated counts from (α,n) neutrons and background, for example.

For a (fission) source emitting correlated neutrons, p(t) dt is expected to increase by a

correlated term. To derive the correlated term, the following probabilities are needed:

I. the probability of a fission at some time t0 in dt0;

II. the probability of a count at t1 in dt1 as a result of a fission at t0;

III. the probability of a correlated (same ancestor) count at t2 in dt2 assuming a count at

t1; and,

IV. the combination of probabilities I-III integrated over all time t0 for occurrence of fission.

I is given in terms of the average fission rate in the assembly Ḟ0 as

I. =⇒ Ḟ0dt0. (4.21)
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Allowing ε to be efficiency in units of counts-per-fission, II and III can be expressed as

II. =⇒ εν
dt1
τf

[
(1−R)er1(t1−t0) +Rer2(t1−t0)

]
, and (4.22)

III. =⇒ ε(ν − 1)
dt2
τf

[
(1−R)er1(t2−t0) +Rer2(t2−t0)

]
, (4.23)

where ν is the number of neutrons emitted in the fission at t0 and (ν − 1) accounts for the

neutron branch resulting in the count at t1. “The final probability of a count at t1 and a

second count at t2 from a common ancestor (not at t1) is obtained by integrating the product

of I, II, and III over [−∞ < t0 < t1] and averaging over the distribution of neutrons emitted

per fission. . . . Performing the integration for sub-prompt critical” (Ref. [20]) assemblies

gives

εḞ0dt1p2(t1, t2)dt2 =

Ḟ0ε
2ν(ν − 1)

dt1dt2
τ 2
f

×

[
(1−R)2 e

r1(t2−t1)

−2r1

+ (R)2 e
r2(t2−t1)

−2r2

+
(1−R)(R)

(
er2(t2−t1) + er1(t2−t1)

)
−(r1 + r2)

]
.

(4.24)

“Reckoning time from t1 = 0 and including the” (Ref. [20]) uncorrelated probability (Eqn. (4.20))

yields

p2(t) dt = A dt− εν(ν − 1)

2τ 2
f

[
er1tρ1 + er2tρ2

]
dt (4.25)

= A dt−B
[
er1tρ1 + er2tρ2

]
dt (4.26)

where

ρ1 =
(1−R)2

r1

+
2(1−R)(R)

r1 + r2

, and (4.27a)

ρ2 =
R2

r2

+
2(1−R)(R)

r1 + r2

(4.27b)
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for t ≤ treset and p2(t) = 0 otherwise. Note that ρ1 and ρ2 are constants (not reactiv-

ity) with respect to t. Further note that Equation (4.25) does not satisfy normalization

requirements of a PDF, but is normalizable. Normalization is not necessary in practical

implementation since only r1, r2, and the ratio ρ1/ρ2 are needed to obtain α and `ctd; how-

ever, expressions have been derived in Reference [77, 73] and appear in Eqn. (4.44). Equa-

tions (4.25) and (4.26) are the desired results of this section: the two-exp PDF for fitting

Rossi-alpha histograms of reflected fissile cores. Using Equations (4.12) and (4.13), α and

`ctd can be obtained from the fit parameters by

α = r1(1−R) + r2(R) and (4.28)

`ctd =
−1

r1(R) + r2(1−R)
. (4.29)

Note that α and −1/`ctd are linear combinations of the rj exponents and, in particular,

α +

(
− 1

`ctd

)
= r1 + r2. (4.30)

In the case that f ′ is needed, it is calculated from the fit parameters by

f ′ =
(R)(1−R)(r1 + r2)(r2 − r1)

(R)(r1)− (1−R)(r2)
. (4.31)

4.2 Theory of Measurement Uncertainty Propagation for Rossi-

alpha Measurements

In this section, uncertainty propagation is analytically derived for Rossi-alpha measure-

ments and a quasi-analytic method for determining vertical error bars for the histogram is

developed. Currently, there are two main methods to estimate uncertainty.

method one. Repeat a single Rossi-alpha experiment many times to obtain many values

of the prompt neutron decay constant. Estimate the uncertainty by taking the sample
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standard deviation of the values.

method two. Use the standard deviation provided by the unweighted nonlinear least squares

fit algorithm.

Method one requires long total measurement times to precisely estimate the uncertainty.

This work develops uncertainty propagation from histogram error bars to the uncertainty in

the prompt neutron decay constant and a new analytic method to infer histogram error bars

that does not rely on repeated measurements. Inferring uncertainty from one measurement

reduces the total measurement time and therein results in reduced procedural and operational

costs.

Unlike method one, method two is different for the one- and two-exponential models. In

the one-exponential model, the prompt neutron decay constant is a fit parameter, whereas

the quantity is a combination of fit parameters in the two-exponential model. Thus, while

taking the fit uncertainty is straightforward for the one-exponential model, the uncertainty

must be propagated when the two-exponential model is used. Furthermore, simply taking the

fit uncertainty does not consider the uncertainty in the data unless the fit is weighted. The

uncertainty propagation developed in this work propagates uncertainty by way of weights

and propagates uncertainty from the two-exponential fit parameters to the prompt neutron

decay constant. We assume that the first-order Taylor series of the random variable about

the meas in sufficiently accurate of the range of variation to estimate the variance (and

covariance).

4.2.1 Uncertainty Propagation from Fit Parameters to Point Kinetics Param-

eters

The uncertainty in fit parameters is an output of many fitting algorithms; in this work,

a nonlinear least squares algorithm is used. When Rossi-alpha histograms are fit with the

one-exponential model (Eqn. (4.3)), α is a fit parameter and therefore σα is an output.

When Rossi-alpha histograms are fit with the two-exponential model (Eqn. (4.26)), α =
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α(r1, r2, Bρ1, Bρ2) is calculated from the fit parameters and therefore the uncertainties in

the fit parameters must be propagated to obtain σα. In this subsection, given variances in

and covariances between the fit parameters, equations are derived to propagate uncertainty

to α. For notational simplicity,

P1 = Bρ1 (4.32a)

and

P2 = Bρ2. (4.32b)

The value of α is expressed in terms of the fit parameters; namely, R is eliminated in

Eqn. (4.28) by independently solving for R and substituting. The measured values P1 and

P2 in Eqn. (4.32) depend on B, r1, and r2 by substituting in Eqns. (4.27a) for ρ1 and ρ2.

The values of r1 and r2 are known from the fit, thus an expression for R in terms of known

values is obtained by taking the ratio of Eqns. (4.32a) and (4.32b). Only one of Eqns. (4.32a)

and (4.32b) would be needed to determine R if the fitting algorithm returned values for ρ1

and ρ2; however, both are needed to eliminate the scaling term, B. The resulting equation

is

R =
−r2(r1P1 + r2P2)±

√
r1r2(r2P1 + r1P2)(r1P1 + r2P2)

(r1 − r2)(r1P1 + r2P2)
. (4.33)

Taking the + in ± results in the physical value of R between 0 and 1. Subsequently substi-

tuting Eqn (4.33) into Eqn. (4.9) results in

α = (r1 + r2) +

√
r1r2

(P2r1 + P1r2)

(P1r1 + P2r2)
. (4.34)
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Accounting for first-order covariance, the variance in α is:

σα
2 =

(
∂α

∂r1

)2

σr1
2 +

(
∂α

∂r2

)2

σr2
2 +

(
∂α

∂P1

)2

σP1

2 +

(
∂α

∂P2

)2

σP2

2

+ 2

(
∂α

∂r1

)(
∂α

∂r2

)
σr1r2 + 2

(
∂α

∂r1

)(
∂α

∂P1

)
σr1P1 + 2

(
∂α

∂r1

)(
∂α

∂P2

)
σr1P2

+ 2

(
∂α

∂r2

)(
∂α

∂P1

)
σr2P1 + 2

(
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The partial derivatives in Eqn. (4.35) are:

∂α

∂r1

= 1 +
P2r2(2P2r1r2 + P1(r1

2 + r2
2))

δ
(4.36a)

∂α

∂r2

= 1 +
P1r1(2P1r1r2 + P2(r1

2 + r2
2))

δ
(4.36b)

∂α

∂P1

=
P2r1r2(r2

2 − r1
2)

δ
(4.36c)

∂α

∂P2

=
P1r1r2(r1

2 − r2
2)

δ
(4.36d)

where

δ = 2
√
r1r2(P2r1 + P1r2)(P1r1 + P2r2)3. (4.36e)

Thus, given the uncertainties in the fit parameters, typically in the form of the variance-

covariance matrix, the uncertainty in α is obtained from Eqn. (4.35). Sec. 4.2.2 outlines how

to obtain the variance-covariance matrix.

4.2.2 Uncertainty in Fit Parameters

Suppose a fit with P number of parameters is applied to a histogram with N number of

bins/data points using least squares regression. The Jacobian, J , of the fit is an [N × P ]

matrix and is an available output of the fitting algorithm. If the fit is not weighted, the
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variance-covariance matrix, Σ, of the fit parameters is given by

Σ = (RMSE)2
[
JTJ

]−1
, (4.37)

where RMSE is the root mean square error [78]. The diagonal of the variance-covariance

matrix contains the variances of the fit parameters, and the off-diagonal terms contain the

covariances. If the fit is weighted by the [N ×N ] matrix

W =



w1,1 0 · · · 0

0 w2,2 · · · 0

...
...

. . .
...

0 0 · · · wN,N


=



1
σ2

1,1
0 · · · 0

0 1
σ2

2,2
· · · 0

...
...

. . .
...

0 0 · · · 1
σ2
N,N

,


(4.38)

where σ2
n,n is the variance of the nth bin (therefore σn,n is the error bar), then the variance-

covariance matrix is given by [78]

Σ =
[
JTWJ

]−1
. (4.39)

The choice to use inverse variance weights minimizes the variance in the weighted least

squares estimate [78]. Sec. 4.2.3 describes two methods to obtain the σn,n needed to construct

W and weight the fit.

4.2.3 Bin-by-Bin Error Bars for Rossi-alpha Histograms

Two ways to calculate vertical error bars, or the standard deviation of the number of

counts in each bin, are described in this section. The first, shown in Sec. 4.2.3.1, is the sample

variance method. The sample variance method uniformly divides a long measurement into

many sequential, smaller ones (or uses many identical measurements) and takes the variance

of the set of smaller measurements. The second method, called the analytic method, uses the
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fit to calculate an average time difference and standard deviation for each bin and applies

Gaussian smearing (horizontal spread) to infer the vertical error bars.

In this work, the total histogram has N bins, uniform bin widths ∆, left bin edges

t1, t2, . . . , tN , fit p(t) of the functional form described in Eqn. (4.26), and histogram values

H1, H2, . . . , HN .

4.2.3.1 Expressions for Sample Variance Method

The error bars in the sample variance method are calculated by taking a bin-by-bin

standard deviation between M many independent, identically distributed measurements.

The standard deviation in the nth bin (with bin edges tn, tn + ∆) σn is given by

σn =

√√√√ 1

M − 1

M∑
m=1

(
Hn,m −Hn

)2
, (4.40)

where

Hn =
1

M

M∑
m=1

Hn,m, (4.41)

and Hn,m is the histogram value in the nth bin of the mth repeated measurement. The

equations given in this subsection are standard definitions of sample mean and standard

deviation.

4.2.3.2 Expressions for Analytic Method

Heuristically, the analytic approach infers horizontal error bars (compounded uncertain-

ties in the time of neutron detections) from the fit and uses them to estimate vertical error

bars due to bin-to-bin spreading. A Gaussian-distributed spread is assumed with bin-specific

means and variances calculated from the bin-specific probability density function (obtained

from bin-specific normalizations of the fit). A Gaussian distribution is selected based on

the high number of counts in each bin and an approximate application of the central limit

theorem.
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The probability density function for the jth bin p(t; tj,∆) is given by

p(t; tj,∆) = η(tj,∆)p(t) for t ∈ [tj, tj + ∆), (4.42)

where η(tj,∆) is the normalization constant for the jth bin. The normalization constant is

obtained by solving

1 =

tj+∆∫
tj

η(tj,∆)
[
A+B

(
er1tρ1 + er2tρ2

)]
dt, (4.43)

which results in

η(tj,∆) =

[
A∆ +B

(
ρ1

r1

er1tj
(
er1∆ − 1

)
+
ρ2

r2

er2tj
(
er2∆ − 1

))]−1

. (4.44)

Given the probability density function, the mean and variance are calculated analytically.

The mean is given by

µ(tj,∆) =

tj+∆∫
tj

tp(t; tj,∆)dt

= η(tj,∆)
[
A∆

(
tj + 1

2
∆
)

+B(m1 +m2)
]
, (4.45)

where

mk =
ρk
rk2

(
erk(tj+∆) (rk(tj + ∆)− 1)− erktj(rktj − 1)

)
. (4.46)

The variance is given by

σ2(tj,∆) =

tj+∆∫
tj

t2p(t; tj,∆)dt− µ2

= η(tj,∆)[A∆(tj
2 + tj∆ + 1

3
∆2) +B(s1 + s2)]− µ2(tj,∆), (4.47)
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where

sk =
ρk
rk3

(
erk(tj+∆)

(
(rk(∆ + tj))

2 − 2rk(∆ + tj) + 2
)
− erktj

(
(rktj)

2 − 2rktj + 2
))

(4.48)

Using the mean and variance above, the random distribution for the time t in bin j is

assumed to be normally distributed as

G(t; tj,∆) =
1√

2π (xσ(tj,∆))2
exp

(
−(µ(tj,∆)− t)2

2 (xσ(tj,∆))2

)
, (4.49)

where x is the number of standard deviations; x = 1 and 3 correspond to 68.3% and 99.7%

confidence intervals, respectively. Note that larger values of x result in diminishing returns

by nature of the exponential decay of the Gaussian away from the mean and that any value

of x ≥ 3.5 are essentially equivalent. This work arbitrarily uses seven standard deviations,

twice the 3.5 limit, which corresponds to a (100 − 3 × 10−10)% confidence interval. Note

that these confidence intervals are only valid when considering a single bin since there is

correlation between different bins; by applying these confidence intervals to all bins in the

same measurement, we are making an approximation by ignoring the correlated effect and

could see deviations.

Heuristically, the probability of a bin j count belonging in bin i, qi(j), is equal to the area

under G(t; tj,∆) between the bounds of bin i, [ti, ti+∆) (note that G(t; tj,∆) is normalized).

The value of qi(j) is given by

qi(j) =

ti+∆∫
ti

1√
2πσ2(tj,∆)

exp

(
−(µ(tj,∆)− t)2

2σ(tj,∆)2

)
dt (4.50)

=
1

2

[
erf

(
(ti + ∆)− µ(tj,∆)√

2σ2(tj,∆)

)
− erf

(
ti − µ(tj,∆)√

2σ2(tj,∆)

)]
. (4.51)

The binomial theorem is applied to calculate the variance in bin i due to bin j and
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summed over all j to get the total variance βi
2 (and the error bar is βi). Taken together,

βi
2 =

N∑
j=1

p
(
µ(tj,∆)

)
× qi(j)

(
1− qi(j)

)
. (4.52)

4.2.4 Uncertainty in Error Bars for the Purpose of Validation

This section develops equations for the variance of the variance, Var[Var[X]], where X

is a random variable. Error bars from the sample variance and analytic methods will be

compared for validation, thus uncertainty or variance of the variance Var[Var[X]] is needed

(the content in this subsection is not required for the implementation of the uncertainty

analysis). In terms of the moments µi (defined by µi = E[X i]),

Var[Var[X]] = µ4 − 4µ3µ1 + 8µ2µ1
2 − µ2

2 − 4µ1
4. (4.53)

Note that Eqn. (4.53) is a biased estimate of the variance of the variance that is adequate

for large samples. To give Eqn. (4.53) meaning in the context of this work, the moments for

the sample variance and analytic methods must be calculated. The moments for the jth bin

in the sample variance method µsi (j) are

µs1(j) =
1

M

M∑
m=1

Hj,m, (4.54a)

µs2(j) =
1

M

M∑
m=1

H2
j,m, (4.54b)

µs3(j) =
1

M

M∑
m=1

H3
j,m, (4.54c)

and

µs4(j) =
1

M

M∑
m=1

H4
j,m. (4.54d)
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The first four moments for a binomial distribution with n trials and probability p are [79]

µ1(j) = np, (4.55a)

µ2(j) = np(1− p+ np), (4.55b)

µ3(j) = np(1− 3p+ 3np+ 2p2 − 3np2 + n2p2), (4.55c)

and

µ4(j) = np(1− 7p+ 7np+ 12p2 − 18np2 + 6n2p2 − 6p3 + 11np3 − 6n2p3 + n3p3). (4.55d)

The analytic method assumes a binomial model with n = p(µ(tj,∆)) and p = qi(j).
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CHAPTER V

Validation of New Rossi-alpha Theory

The work presented in this chapter comes from two of my publications titled “Validation

of the two-region Rossi-alpha model for reflected assemblies” published in Nuclear Instru-

ments and Methods in Physics Research Section A [6] and “Measurement uncertainty of

rossi-alpha neutron experiments” published in Annals of Nuclear Energy [73]. The purpose

of this chapter is to validate the two-region point kinetics model and associated uncer-

tainty quantification/propagation for Rossi-alpha experiments on reflected assemblies. The

two-region model and uncertainty theory (presented in Chapter IV) are validated with ex-

perimental data from uranium and plutonium by comparing measured values to simulated

values, which are treated as the reference in this work.

5.1 Introduction and Experimental Setups

The experiments described in this chapter were performed at the National Criticality

Experiments Research Center within the Device Assembly Facility at the Nevada National

Security Site. The apparatus arrangement are the same for all experiments; the differences

are the assembly (combination of fissionable material and reflector), the detector that is

used, and the objective of the experiment. There are three objectives: validate the two-

region Rossi-alpha theory presented in section 4.1.3, the analytic quantification of bin-by-

bin Rossi-alpha histogram uncertainty presented in section 4.2.3.2, and the propagation of
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measurement uncertainty presented in sections 4.2.1 and 4.2.2. A broad summary of the

assemblies, detectors from which data are analyzed, a link to the corresponding results

section, and reference are given in Tab. 5.1. Subsections in this experimental setups section

detail the assemblies in greater detail. The front face of each detection system was 47 cm

from the center of the radiation test object; the layout and detection systems are identical

to those of Ref. [3] and a photo is shown in Fig. 5.1. Two types of detection systems

were present during the experiments: two organic scintillator arrays (OSCARs) [3] and two

Neutron Multiplicity Array Detectors (NoMADs) [1], detailed in Chapter III.

Table 5.1: Tabulated list of experimental objectives and the associated assemblies that
were measured.

Objective SNM Reflector Detector Section References

Validate the Two-Region Rossi-
alpha Theory

BeRP Ball – Pu Cu OSCAR 5.3 [6]

Rocky Flats – U HDPE OSCAR

Validate bin-by-bin analytic uncer-
tainty quantification

BeRP Ball – Pu Cu OSCAR 5.5.1 [73]

BeRP Ball – Pu Poly and Cu NoMAD

Validate Uncertainty Propagation BeRP Ball – Pu Ni, Cu, or W OSCAR 5.5.2 [73]
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Figure 5.1: Annotated layout of detection systems and measurement setup.

The plutonium assemblies use a 4.5-kg sphere of weapons-grade (93% 239Pu), alpha-phase

plutonium encased in stainless steel known as the BeRP Ball [80, 81]. The BeRP Ball has

recently been used in several benchmark measurements that comprehensively specify the

object and provide detailed MCNP input files [82, 83, 1]. The measured uranium radiation

test object is made from shells of highly enriched uranium (HEU, 93.16% 235U) known as the

Rocky Flats shells [84]. The composite shell contains Rocky Flats shells 3-30, is encased in

aluminum for contamination control, has inner and outer HEU diameters of 4.02 and 13.34

cm, and totals a mass of 21.6 kg.

5.1.1 Assemblies for the Validation of the Two-Region Rossi-alpha Model

The measurements for this first objective replicate the copper-only configurations of the

subcritical copper-reflected α-phase plutonium (SCRαP) benchmark [1], where the BeRP

Ball is reflected by tight-fitting copper shells with thicknesses ranging from 1.27 cm to 10.16

cm in 1.27 cm increments. Photos of the configurations are shown in Fig. 5.2. Each con-
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figuration was measured for 20 minutes. These configurations were selected since the fissile

core remains constant and the amount of reflector is modulated to attain keff values ranging

from 0.8278 - 0.9394 as calculated from MCNP KCODE simulations (see section 5.2.1) and

in agreement with the SCRαP benchmark [1].

Figure 5.2: Photos of the BeRP Ball reflected by various copper thicknesses; the other half
of the reflector shells are affixed during measurement.

A rendering of the unencased HEU Rocky Flats shells that form the fissile core is shown

in Fig. 5.3. A total of three configurations were measured: the core (shown in Fig 5.4), the

core reflected by 3.81 cm of high-density polyethylene (HDPE), and the core reflected by 6.35

cm of HDPE. The assembly was driven by a 252Cf source that was taped to the bottom of the

assembly; the source-to-sample distance changes between configurations. Each configuration

was measured for 30 minutes. These configurations were again chosen for the fixed fissile

core and varying reflector that achieves keff values between 0.7325 - 0.9508 as calculated from

MCNP KCODE simulations (see section 5.2.1).
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Figure 5.3: Three-dimensional rendering of Rocky Flats shells 3-30 with inner and outer
diameters of 4.02 and 13.34 cm.
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Figure 5.4: A photo of the measurement setup for the Rocky Flats experiment; in partic-
ular, the bare case is shown.

5.1.2 Assemblies for the Validation of Rossi-alpha Measurement Uncertainty

Quantification and Propagation

The experiments for uncertainty validation also used the BeRP Ball. The BeRP Ball [81]

was used in several benchmarks with the tungsten [83], nickel [85, 82], copper, and hetero-

geneous reflectors [1], all containing comprehensive details on the apparatus and materials;

the keff of the assemblies were 0.948, 0.916, 0.932, and 0.951, respectively [3, 1]. Photos of

the assemblies with half of the hemishells removed are shown in Fig. 5.5; note that the nickel

reflector in Fig. 5.5b is completed with cylindrical slugs [85, 82].
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(a) (b)

(c) (d)

Figure 5.5: Configurations used in the experiments. The BeRP ball is reflected by 7.62
cm of tungsten, nickel, or copper shown in Figs. 5.5a, 5.5b, and 5.5c, respectively. Fig. 5.5d
shows the BeRP ball reflected by 3.81 cm of polyethylene and 5.08 cm of copper.

The copper-reflected case was measured by an OSCAR for 20 minutes (the same mea-

surement as the 7.62-cm case of Sec. 5.1.1) and the tungsten and nickel cases were measured

by an OSCAR for 30 minutes. The heterogeneously-reflected BeRP Ball with high-density

polyethylene and copper was measured for 75 minutes with two NoMADs. The front face of

the NoMAD detectors were 50 cm from the center of the assembly and the optional cadmium
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liners were not used; the detection system and setup are identical to the one used in Ref. [1].

A photo of the heterogeneous-reflector case is shown in Fig. 5.6, since it differs from all other

configurations in this section.

Figure 5.6: Photo of the experimental setup for the 3He measurements.

5.2 Data Analysis

The output of the NoMAD is list mode data, a list of neutron detection times. Prelim-

inary pulse processing to obtain list mode data for the OSCAR assemblies is described in

Chapter III. Pulse shape discrimination (PSD – see Chapter III) is performed to separate

neutron and photon pulses since organic scintillators are sensitive to both types of radiation.

Sample PSD plots for copper-reflected plutonium and bare HEU are respectively shown in

Figs. 5.7 and Figs. 5.8.

68



Figure 5.7: Pulse shape discrimination plot for the organic scintillator measurement of the
copper-reflected plutonium.
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Figure 5.8: Sample pulse shape discrimination plot for the bare HEU assembly.

Time differences less than a given reset time – 1 µs for the OSCAR and 80 µs for the

NoMAD – are calculated between any and all neutron detections (type-I binning [4]) and a

histogram of resultant values is constructed for each configuration. The organic scintillator

array uses 1-ns bin widths, whereas the NoMADs use 100-ns bin widths. Each histogram

is constant-subtracted by subtracting the mean of the tail and the first 2b + 1 points are

omitted in the fit, where b is the index of the bin with the most counts. The 2b+1 lower time-

difference threshold accounts for dead time and short time-correlated effects such as neutron

cross talk [3]. Nonlinear least squares fitting is used to fit Eqn. (4.26) (without the A term,

which is accounted for in the constant subtraction) to the histograms and Eqn. (4.28) is used

to calculate α = αcore. The keff multiplication factor is calculated using Eqn. (4.17). Unless
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otherwise noted, the methodologies described in Chapter IV are used to inverse-variance

weight fits (when applicable) and calculate uncertainties; the sample method is used in this

work. All error bars shown in this work are one standard deviation, σ.

5.2.1 Simulations to Obtain Reference Values

There are three simulated parameters from the simulations of the experiments: keff, βeff,

and τc. The KCODE subroutine of MCNP6.2 is used to simulate the keff values, which are

considered ground truth reference values in this work. A three-dimensional rendering of the

simulation geometry is shown in Fig. 5.9.

Figure 5.9: Three-dimensional rendering of the simulation geometry that emulates the
photo shown in Fig. 5.2.

The KOPTS option of the KCODE subroutine was used to invoke calculation of βeff.

An F4 track-length tally for the fissile core cell (multiple cells were combined into a single
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cell) weighted by inverse velocity and separately configured to calculate total progeny is used

in a fixed-source calculation (SDEF subroutine) to estimate τc. A simulated value of α is

calculated using the three simulated values, and a quasi-measured value of keff is calculated

using the measured α and simulated βeff and τc.

5.3 Validation of the Two-Region Rossi-alpha Theory

The simulated reference values and measured values for the prompt neutron period for

the copper-reflected plutonium assemblies are tabulated in Tab. 5.2. Table 5.2 also includes

a column for the number of standard deviations for the means to overlap. The tabulated

data are plotted in Fig. 5.10, and the table and figure are reproduced for keff instead of α in

Tab. 5.3 and Fig. 5.11; however, the comparative column for keff shows relative error. The

agreement between measurement and reference simulation improves as keff approaches unity;

the trend is expected since the point kinetics models assume keff ≈ 1. The measured and

reference α values agree within one standard deviation for keff values above 0.9; similarly,

the keff values agree in less than 5% error for keff values greater than 0.8831.

Table 5.2: Tabulated plutonium prompt neutron lifetime estimates −α−1 from measure-
ment and reference values from simulation for validation.

Copper Thickness [cm]
Simulated [ns] Measured [ns]

σ-Separation−α−1 σ−α−1 −α−1 σ−α−1

1.27 7.6 0.2 13.4 1.0 4.91
2.54 12.5 0.4 19.5 1.0 4.97
3.81 17.9 0.9 27.6 4.0 1.99
5.08 25.0 2.3 32.1 4.9 1.00
6.35 33.7 3.5 40.8 7.4 0.65
7.62 40.5 6.2 43.6 5.1 0.28
8.89 60.7 4.8 68.8 3.6 0.96
10.16 73.4 8.6 75.6 4.5 0.17
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Figure 5.10: Simulated and measured prompt neutron periods for the BeRP Ball reflected
by various amounts of copper.

Table 5.3: Tabulated plutonium keff estimates from measurement and reference values from
simulation for validation.

Copper Thickness [cm]
Simulated Measured Error
keff σkeff

keff σkeff
(M-S)/S

1.27 0.8278 0.0003 0.9045 0.0085 9.27%
2.54 0.8604 0.0003 0.9136 0.0071 6.18%
3.81 0.8831 0.0003 0.9271 0.0133 4.97%
5.08 0.9005 0.0003 0.9254 0.0168 2.77%
6.35 0.9137 0.0003 0.9309 0.0182 1.88%
7.62 0.9239 0.0003 0.9306 0.0176 0.73%
8.89 0.9322 0.0003 0.9411 0.0070 0.95%
10.16 0.9394 0.0003 0.9415 0.0093 0.22%
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Figure 5.11: Comparison of quasi-measured keff to simulated reference values of keff for the
copper-reflected plutonium measurements.

The prompt neutron period generally increases in a bare fissile core that increases keff by

increasing in volume. A decreasing prompt neutron period (16.3, 13.3, 11.7 ns) as keff in-

creased (0.7325, 0.9087, 0.9508) due to increased amounts of HDPE reflector (0.00, 3.81, 6.35

cm) was observed when analyzing the uranium data of this work. The trend was investigated

by simulating the measured assemblies in MCNPX-PoliMi, observing the volumetric density

of induced fission, and simulating track lengths/mean core lifetimes, which are summarized

in Fig. 5.12. Photos of the assemblies are shown in Figs. 5.12a, 5.12b, and 5.12c; area-

normalized heat maps of induced-fission density are shown in Figs. 5.12d, 5.12e, and 5.12f;

and volume-normalized heat maps of induced-fission density are shown in Figs. 5.12g, 5.12h,

and 5.12i. The area-normalized plots project the y-dimension data onto the x-z plane via
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summing, thus the void in the center of the assembly is visible. As the HDPE thickness and

keff values increase from Fig. 5.12d-5.12f, the bulk of induced fissions move from the center

towards the cusp of the shell. The same transition is shown in the volume-normalized plots,

which include annotations for τc and the mean track length in the core, λc, that decrease

with increasing HDPE and keff. The trend is due to increased moderation of neutrons in the

reflector (outside of the core) and, despite the neutrons being slower, ultimately shorter life-

times in the core after reentry since the probability of induced fission significantly increases

for moderated neutrons. The reducing prompt neutron period is therein verified. Further-

more, the reduction shows that increasingly thermal assemblies have faster core lifetimes and

prompt neutron periods.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5.12: Photos of the aluminum-encased Rocky Flats shells (5.12a) bare, (5.12b)
reflected by 3.81 cm of HDPE, and (5.12c) by 6.35 cm of HDPE; the other half of the
reflector shells are affixed during measurement. The heat maps in the second and third
row show the density of induced fission locations per area and per volume, respectively.
Subfigs. (5.12d and 5.12g) correspond to the bare configuration, (5.12e and 5.12h) to the
3.81-cm-reflected configuration, and (5.12f and 5.12i) to the 6.35-cm-reflected configuration.

The verified prompt neutron periods, simulated effective delayed neutron fractions βeff,

and simulated prompt neutron lifetimes in the core τc were used to calculate quasi-measured

keff values. The measured values of α were validated by comparing the quasi-measured keff to

simulated reference values of keff, shown in Fig. 5.13 and tabulated in Tab. 5.4 with relative
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error. The relative error is again shown to decrease as keff tends to unity.

Figure 5.13: Comparison of quasi-measured keff to simulated reference values of keff for the
HDPE-reflected HEU measurements.

Table 5.4: Tabulated uranium keff estimates from measurement and reference values from
simulation for validation.

HDPE Thickness [cm]
Simulated Measured Error
keff σkeff

keff σkeff
(M-S)/S

0.00 0.7325 0.0002 0.7947 0.0066 8.49%
3.81 0.9087 0.0004 0.9580 0.0018 5.43%
6.35 0.9508 0.0004 0.9603 0.0043 0.99%
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5.4 Additional Signatures of Validated Two-Region Model

The two-region point kinetics model resulting in the two-exponential fits presents new

measurable parameters, including the exponent-weighting parameter R. The purpose of this

section is to study R with simulations of a moderated uranium assembly with MCNP6.2 [50]

and MCNPX-PoliMi [52]. The simulated uranium assemblies are made from alternating

spherical-shell layers of HEU (pure 235U) and HDPE (0.97 g/cm3) with an air-filled 2.25-

cm sphere in the center. The total thicknesses of HEU and HDPE are 4.25 cm and 4.00

cm, respectively, and the HEU is always interior to the HDPE for a given layer. The

configurations are designed to maintain a keff of 0.95 and vary the amount of reflection by

increasing the number of alternating layers, N . The value of N is varied from 1 to 60 in

addition to a homogeneous case (N → ∞), and a constant keff is maintained by changing

the HEU density (the HDPE density as well in the homogeneous case). Two-dimensional

renderings of the simulation geometry for N = 1, 2, . . . , 5 are shown in Fig. 5.14 and keff

and density values are tabulated in Tab. 5.5. Fission chains were driven by an exterior,

inward-facing, spherical-surface 252Cf source.

Figure 5.14: Two-dimensional rendering of sample geometries for the simulation study
where N indicates the number of repeated HEU-HDPE layers. The blue layers are HEU and
the green layers are HDPE.
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Table 5.5: Approach-to-homogeneity simulation specifications and results. Densities are
for the HEU regions only (HDPE density is fixed at 0.97 g/cm3) except for the homogeneous
case where there is one 235U atom per CH2. Values for < En > are the mean neutron energy
inducing fissions.

N keff σkeff
HEU Density [g/cm3] R 〈En〉 [MeV]

1 0.9496 0.0005 19.10 0.05 1.11
2 0.9497 0.0005 17.00 0.07 0.90
3 0.9499 0.0005 16.60 0.07 0.85
4 0.9499 0.0005 16.50 0.10 0.82
5 0.9489 0.0005 16.48 0.13 0.81
7 0.9497 0.0006 16.50 0.18 0.80
11 0.9501 0.0005 16.52 0.24 0.79
15 0.9500 0.0005 16.53 0.27 0.79
20 0.9496 0.0005 16.54 0.29 0.79
25 0.9497 0.0004 16.56 0.32 0.79
30 0.9495 0.0005 16.57 0.32 0.78
40 0.9494 0.0005 16.58 0.33 0.78
50 0.9502 0.0005 16.60 0.35 0.78
60 0.9501 0.0005 16.60 0.36 0.78
∞ 0.9499 0.0006 8.75 0.39 0.75

In Eq. (4.9), R balances the two exponents of the fit to calculate α. As R approaches

0.5, the two-region model is more important; thus, between similar configurations, R could

be an indicator of the type and amount of reflection for like assemblies. In the approach

to homogeneity, the amount of reflection increases to maintain the same keff. A Rossi-alpha

histogram was constructed for each N and treated with the two-exponential analysis to

calculate R. The value of R as a function of the number of layers in the simulated assembly

is shown in Fig. 5.15. Note that the order of the exponents can be switched such that R is

always less than 0.5. The values of R asymptotically increase with the amount of reflection,

approaching R = 0.39.
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Figure 5.15: R parameter as a function of N , the number of alternating layers.

5.5 Validation of the Quantification and Propagation of Rossi-

alpha Measurement Uncertainty

5.5.1 Validation of the bin-by-bn analytic uncertainty quantification

For a normal distribution, 68.3% and 99.7% of data are expected to fall within the 1-

and 3-σ confidence intervals, respectively. Such confidence intervals were calculated using

the sample variance method (20 estimates corresponding to independent 1-minute measure-

ments) for the copper-reflected organic scintillator data, shown in Fig. 5.16; 67.2% and 99.8%

of data were respectively contained within the 1- and 3-σ confidence intervals, verifying the

sample variance method for bin-by-bin error bars.
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(a)

(b)

Figure 5.16: Rossi-alpha histograms for the organic scintillator measurement of the copper-
reflected plutonium with error bars calculated from the sample variance method. The solid,
blue line through the center of the red data points is the mean histogram value of the 20
measurements, and the blue region about the center line represent one or three standard
deviation error bars. Fig. 5.16a shows one standard deviation error bars, whereas Fig. 5.16b
shows three.

The analytic bin-by-bin error bars are validated by comparison to those of the sample
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variance method. The relative uncertainties from both methods are shown in Fig. 5.17

for both detection systems, using the copper-reflected data for organic scintillators (every

20 data points) and copper- and polyethylene-reflected data for 3He. The analytic error

bars overlap the sample method error bars for the organic scintillators and overestimate

the relative uncertainty. Even better agreement is shown in the 3He data and the analytic

method again estimates relative uncertainties greater than the center of the sample error

bars. Note that the overestimation increases for larger time differences; the trend could

be due to accidental counts contributing more uncertainty than the correlated counts are,

though further investigation is the subject of future work. Further note that analytic error

bars are less noisy than those of the sample method and that relative uncertainty scales

as (measurement time)−1/2, as shown in Fig. 5.18. If there was greater noise, the shape of

relative uncertainty in time would include an additional +B term to account for asymptotic

noise limits. The relative uncertainties in the 3He data are much lower than those of the

organic scintillator data; the 3He system had double the measurement time and an efficiency

10-100 times greater than that of the organic scintillator system. Precise efficiency ratios

are not available because the organic scintillator system did not measure the heterogeneous

assembly.
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(a)

(b)

Figure 5.17: Direct comparisons of bin-by-bin relative uncertainty estimates between the
sample variance and analytic methods for the (a) organic scintillator system measuring the
copper-reflected BeRP Ball and (b) 3He system measuring the copper-and-polyethylene-
reflected BeRP Ball.
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Figure 5.18: Relative uncertainty as a function of measurement time in three bins,
y = Ax−.5 fits for each data series, and R2 values for the fits for the organic scintillator
measurement of the copper-reflected BeRP Ball.

5.5.2 Validation of Uncertainty Propagation

Weights are calculated such that uncertainty from the histograms can be propagated

to the estimate of α and such that the fitting is more accurate. Weights for the organic

scintillator measurements of the copper-reflected BeRP Ball are shown in Fig. 5.19. If the

weights are noisy, a fit of the weights can be used instead. A sample fit is also shown in

Fig. 5.19. Fig. 5.20 shows the improvement in accuracy due to weighting; note that this

work chooses to take the simulated values of the prompt period from Ref. [3] as the reference

value.
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Figure 5.19: Sample weights with a fit for the organic scintillator measurement of the
copper-reflected BeRP Ball.
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Figure 5.20: Estimates of the prompt period with unweighted and weighted fits, and the
simulated reference value.

The analytic error bars were used to construct weights, weighted fits were applied to

the organic scintillator data, and uncertainty was propagated from the fit parameters to

obtain an analytic standard deviation on the estimate of the prompt period, 1/α. A sample

standard deviation of the prompt period is also obtained by taking the standard deviation of

the prompt periods calculated from 20 one-minute measurements for the copper case, and 30

one-minute measurements for the tungsten and nickel cases. The two methods are compared

in Fig. 5.21 and agree within one standard deviation.
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Figure 5.21: Standard deviations of the prompt-period estimates obtained from the sample
variance and analytic methods.

5.6 Summary, Conclusion, and Future Work

The two-exponential probability density function for Rossi-alpha experiments on reflected

assemblies from two-region point kinetics is validated with organic scintillator measurements

of copper-reflected plutonium and HDPE-reflected uranium. The agreement between mea-

surement and simulation, which is used as the reference in this work, improves as keff ap-

proaches unity and is notably good above keff = 0.9. The trend in agreement for large keff

is expected since point kinetics assumes keff ≈ 1. The disagreement for small keff is also

observed when directly comparing the prompt neutron periods, which is again expected.

It is preferential to use the Rossi-alpha method when evaluating near- or delayed-critical

assemblies and methods such as neutron multiplicity counting or the Feynman-Y method

87



for deeply subcritical assemblies. The transition between methods is the subject of future

work and the upcoming Measurement of Uranium Subcritical and Critical (MUSiC) bench-

mark [86, 87]. The transition between Rossi-alpha and Feynman-alpha are preliminarily

investigated for reflected assemblies in Chapter VI.

Helium-3 detectors utilizing moderation cannot be used for two-region Rossi-alpha mea-

surements unless the prompt neutron period of the core is larger than tens of microseconds

and these large times cannot be achieved by making a system more thermal; the results show

that increasingly thermal assemblies have shorter prompt neutron periods. Sufficiently large

prompt neutron periods may occur for high keff multiplication factors; however, depending on

the assembly, the associated large neutron fluxes may oversaturate and otherwise disqualify

3He detectors. Future work will compare 3He and organic scintillator systems for assemblies

between delayed- and prompt-critical.

The mean neutron generation time Λ is traditionally used to infer keff in the one-region

model. In the two-region model, either Λ of the core must be simulated (currently only Λ

of the composite assembly is available in standard tools) to be paired with α of the core,

α of the composite assembly must be measured (currently unavailable) to be used with the

standard composite Λ, or the simulation of the mean neutron lifetime in the core τc approach

of this work must be used. An experimentalist approach to measure a composite α may be

to introduce a time constant (such as slowing down time) to the detection process (that

does not affect the time correlations or behavior of the assembly) that is larger than both

α and τr for detected neutrons. The data would then be treated with the two-exponential

analysis and the smaller time constant that is calculated would correspond to the composite

α. If assembly-decoupled moderator is added around the detectors for this approach, organic

scintillators could not be used due to practical limits on detection threshold and the use of

3He detectors may be preferential. This experimental approach is a hypothesis only and the

subject of future feasibility tests.

A simulation study was performed to evaluate a newly available weighting parameter,
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R, that varies between zero and one. It was shown that R gets closer to 0.5 as reflection

increases. The correlated behavior indicates that R could be used as a signature to infer

reflector properties such as type and amount for similar assemblies. The value of R cannot

necessarily be compared between substantially different assemblies since R is biased by the

detected neutrons.

The analytic method for estimating bin-by-bin histogram uncertainty is validated by

comparison to the sample variance method. Note that the analytic estimate of the uncer-

tainty is less noisy and more stable than that of the sample variance method. Therefore,

it may be preferential to use the analytic method when long, redundant measurements are

infeasible and hence when the sample variance method is unreliable. In general, reducing

the number of repeated measurements will reduce procedural and operational costs.

The validation is shown for both an organic scintillation detector-based system and a 3He-

based system, demonstrating that the analytic method is detection-system-agnostic. The

histogram error bars are propagated to the uncertainty in the fit parameters by weighting the

fit. In addition to correctly propagating uncertainty, weighting the fit improves the accuracy

of prompt neutron decay constant estimates. Thus, fit algorithms should be weighted.
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CHAPTER VI

Theory of Feynman-alpha Measurements and

Validation for New Theory

The work in this chapter comes from my work titled “On the Feynman-alpha method for

reflected fissile assemblies” published in Annals of Nuclear Energy (accepted for publication

on 11 December 2020) [88].

6.1 Introduction

The Feynman-alpha method utilizes time correlations between neutron detections to

estimate the prompt neutron period of fissile assemblies [22, 23, 24, 18]. The prompt neutron

period is itself interesting in the context of applications and it is also used to infer derivative

values such as the keff multiplication factor.

The Feynman-alpha method was originally developed for bare cores of fissile material and

shortcomings in adequacy have been identified when reflectors are introduced [29]. Therefore,

it is desirable to extend the traditional one-region point kinetic models to two-region point

kinetics to account for the region introduced by reflector, which has been addressed in greater

generality by existing literature [30, 89]. This work simplifies the equations and follows a

different derivation based on the double integration of the Rossi-alpha method [90, 91].

The Rossi-alpha-integration approach is selected to utilize recent two-region point kinetic
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generalizations to the Rossi-alpha equations [72], which have been validated [6].

Beyond the derivation, this work develops rigorous first-order propagation of measure-

ment uncertainty similar to Refs. [73, 92]. The propagation involves weighting a fit to the

Feynman histogram data, which results in a more accurate fit that adequately incorporates

measurement uncertainty with fit uncertainty to estimate a composite uncertainty in the fit

parameters. The prompt neutron period is a function of the fit parameters in the two-region

model (whereas it is a fit parameter in the one-region model), thus the uncertainty in fit

parameters is propagated to a final estimate of the prompt neutron period. Two methods of

determining the uncertainty in the Feynman histogram data, analytic and sample methods,

are presented.

The theory is validated with experimental data and simulations to determine reference

values. An organic scintillator array (OSCAR) is used to measure a 4.5-kg sphere of weapons-

grade, alpha-phase plutonium reflected by various amounts of copper to attain different

levels of reflection and multiplication. Additionally, the one- and two-region estimates of the

prompt neutron period are compared.

The structure of this chapter is as follows. The derivation of the two-region Feynman-

alpha theory based on the double integration of the Rossi-alpha equations is presented in

Sec. 6.2. Associated uncertainty propagation is discussed in Sec. 6.3, the experimental setups

are shown in Sec. 6.4, and the analysis of data is discussed in Sec. 6.5. Results are presented

in Sec. 6.6 and subsequent conclusions are made in Sec. 6.7.

6.2 Feynman-alpha Method

The number of neutron counts c in a given window τ (note that τ here is a time window

and not a physical lifetime associated with the assembly) deviates from a Poisson random

variable due to multiplication/fluctuations in the prompt neutron population [22, 23, 24, 19].

The deviation is used as a signature to estimate the prompt neutron decay constant α; the
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signature Y is called “excess variance” and is related to c by

Y =
variance

mean
− 1 =

〈c2〉 − 〈c〉2

〈c〉
− 1, (6.1)

where 〈c2〉 is the second moment of the counting distribution for a given window τ . In the

one-region point kinetics model, Y is related to α by

Y = γ

(
1− 1− e−ατ

ατ

)
, (6.2)

where γ is a scaling constant and both γ and α are determined by fitting Y as a function of τ .

The probability density function for the two-region Rossi-alpha distribution in Eqn. (4.25)

can be integrated twice and algebraically manipulated [90, 89, 91] to obtain the two-region

point kinetics model. Note that other methods of derivation exist in greater generality [30].

The double integration is related to c by

〈c2〉 − 〈c〉
2

=

∫ τ

0

dt2

∫ t2

0

dt1pR(t2 − t1), (6.3)

where τ = t2 − t1. Performing the integrations results in

〈c2〉 − 〈c〉
2

=
F0

2ε2τ 2

2
−B′F0ε

2τ

(
ρ1

r1

(
1 +

1− er1τ

r1τ

)
+
ρ2

r2

(
1 +

1− er2τ

r2τ

))
, (6.4)

where B′ is treated as an arbitrary constant. Noting that 〈c〉 = F0ετ , multiplying both sides

of the equation by 2/〈c〉, and rearranging terms further results in

Y =
〈c2〉 − 〈c〉2

〈c〉
− 1 = −B′ε

(
ρ1

r1

(
1 +

1− er1τ

r1τ

)
+
ρ2

r2

(
1 +

1− er2τ

r2τ

))
. (6.5)

The equation can be condensed into

Y = γ1

(
1 +

1− er1τ

r1τ

)
+ γ2

(
1 +

1− er2τ

r2τ

)
(6.6a)
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for practical fitting applications, where

γ1 = −B′′ ρ1

r1
(6.6b)

γ2 = −B′′ ρ2

r2
(6.6c)

such that there are only four fit parameters: γ1, γ2, r1, and r2. Note that B′′ absorbs the

efficiency variable to define a new arbitrary constant. The value of R is calculated by taking

the ratio of γ1 and γ2; the ratio eliminates B′′ and results in an equation relating numeric

values, R, r1, and r2. Since r1 and r2 are known from the fit, R may be calculated. Then,

the numeric values for R, r1, and r2 are used to calculate α by Eqn. (4.9). Hence, using

Eqns. (4.27a), (4.9), and (6.6), α is expressed in terms of the fit parameters as:

α = (r1 + r2) + r1r2

√
γ1 + γ2

γ1r1
2 + γ2r2

2
. (6.7)

6.2.1 In Terms of Factorial Moments

Equation (6.6) can be applied to the Y2 parameter, which in turn can be expressed in

terms of factorial counting moments by [93, 94]

Y2(τ) =
1

2

m1(τ)

τ
Y (τ) =

1

τ

(
m2(τ)− 1

2
m1

2(τ)

)
. (6.8)

The factorial moments m2 and m1 are calculated as a function of τ from list mode data (a

sorted list of neutron detection times) and the random gate generation technique is used in

this work [93]. Mathematically,

mµ(τ) ≈
∞∑
x=µ

(
x

µ

)
bx

+(τ), (6.9)

where

bx
+(τ) =

Bx(τ)

K
(6.10)
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and Bx(τ) is, after looking in K inspection windows, the number of windows containing

exactly x neutron detections. A histogram is constructed by calculating Y2 as a function of

τ (and α is determined from a fit of this histogram).

6.3 Propagation of Measurement Uncertainty

Rigorous quantification of measurement uncertainty for the Feynman-alpha method that

propagates histogram uncertainty (uncertainty in Y2) through the fitting algorithm to α is

needed. Furthermore, whereas α is a fit parameter in the one-region model, it is a function of

the fit parameters in the two-region model. Therefore, uncertainty must be propagated from

the fit parameters to the final estimate of α. Subsection 6.3.1 presents two methodologies

for estimating histogram uncertainty, subsec. 6.3.2 describes the process for propagating

histogram and fit uncertainty to the fit parameters, and subsec. 6.3.3 propagates uncertainty

from the fit parameters to the final estimate of α. The collective process is adapted from

Refs. [73, 92].

6.3.1 Uncertainty in the Feynman Histogram

The first method of determining histogram uncertainty, called the sample method, divides

a total measurement into multiple smaller measurements, calculates a histogram for each

submeasurement, and then calculates the error bars by taking bin-by-bin standard deviations.

The second method – an analytic approach – calculates the bin-by-bin standard deviation

using up to the fourth factorial moment (see Eqn. (6.9)) and is given by [94, 95]

σY2 =
1

τ

√
1

K − 1
(6m4 − 6m3m1 + 6m3 −m2

2 + 4m2m1
2 − 4m2m1 +m2 −m1

4 +m1
3).

(6.11)

The analytic method is preferential to the sample method so long as the calculation of the

fourth factorial moment is reliable and, relatedly, so long as K is sufficiently large. For a 20-

minute measurement with a maximal gate width of 10 µs (for an organic scintillator system
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measuring fast assemblies as in this work, for example), K is sufficiently large at 1.2×108

such that statistical biases are negligible. Reliability also depends on a variety of variables

such as accidentals rate, detector efficiency, assembly multiplication, and measurement time;

if the accidentals rate is comparable to the fourth factorial moment, the uncertainty in the

latter may become unbounded.

6.3.2 Uncertainty Propagation through Fitting Algorithm to Fit Parameters

Weighting the nonlinear least-squares fit to experimental data reduces fit uncertainty,

results in greater accuracy, and appropriately propagates experimental uncertainty through

the fit algorithm. Inverse-variance weighting – weighting bin i by 1/σi
2 – optimally reduces

the uncertainty. The uncertainties in the fit parameters are given by the covariance matrix,

Σcovar = [JTWJ ]−1 =



σγ1
2 σγ1γ2 σγ1r1 σγ1r2

σγ2γ1 σγ2
2 σγ2r1 σγ2r2

σr1γ1 σr1γ2 σr1
2 σr1r2

σr2γ1 σr2γ2 σr2r1 σr2
2


, (6.12)

that has variances on the diagonal and covariances on the off-diagonal terms. The Jacobian

matrix J is an output of the fitting algorithm and an [N ×P ] matrix where N is the number

of histogram bins and P is the number of fit parameters (P = 4 when fitting with Eqn. (6.6)).

The weighting matrix W is [N×N ], zero on off-diagonal terms, Wi,i = 1/σi
2 on the diagonal,

and given by

W =



1
σ1

2

1
σ2

2

. . .

1
σN 2


. (6.13)

Note that off-diagonal covariance terms may also be included; the increased complexity

and comprehensiveness, which was discussed in Ref. [35], provides an even better estimate of
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uncertainty on the prompt neutron period and other calculated values. The covariance terms

are omitted in this work for simplicity and thus the chi-squared normalization condition of

the nonlinear least-squares fitting algorithm is equal to the degrees of freedom of the fit

function.

6.3.3 Uncertainty Propagation from Fit Parameters to α

The first order uncertainty in α is determined by propagating the uncertainty in the fit

parameters through Eqn. (6.7) via

σα
2 =

(
∂α

∂r1

)2

σr1
2 +

(
∂α

∂r2

)2

σr2
2 +

(
∂α

∂γ1

)2

σγ1

2 +

(
∂α

∂γ2

)2

σγ2

2

+ 2

(
∂α

∂r1

)(
∂α

∂r2

)
σr1r2 + 2

(
∂α

∂r1

)(
∂α

∂γ1

)
σr1γ1 + 2

(
∂α

∂r1

)(
∂α

∂γ2

)
σr1γ2

+ 2

(
∂α

∂r2

)(
∂α

∂γ1

)
σr2γ1 + 2

(
∂α

∂r2

)(
∂α

∂γ2

)
σr2γ2

+ 2

(
∂α

∂γ1

)(
∂α

∂γ2

)
σγ1γ2 . (6.14)

The partial derivatives are given by

∂α

∂γ1

=
γ2(γ1 + γ2)(r1r2)4(r2

2 − r1
2)

2δ3
(6.15a)

∂α

∂γ2

=
γ1(γ1 + γ2)(r1r2)4(r1

2 − r2
2)

2δ3
(6.15b)

∂α

∂r1

=
(γ1 + γ2)(r1r2)2(γ2r2

4r1(γ1 + γ2) + δ(γ1r1
2 + γ2r2

2))

δ3
(6.15c)

∂α

∂r2

=
(γ1 + γ2)(r1r2)2(γ1r1

4r2(γ1 + γ2) + δ(γ1r1
2 + γ2r2

2))

δ3
(6.15d)

where the common term δ is given by

δ =
(
(γ1 + γ2)(r1r2)2(γ1r1

2 + γ2r2
2)
)1/2

. (6.15e)
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6.4 Experimental Setup

Experimental data were obtained at the National Criticality Experiments Research Cen-

ter within the Device Assembly Facility at the Nevada National Security Site to validate the

two-region model. The fissile material was a 4.5-kg sphere of weapons-grade, alpha-phase

plutonium encased in stainless steel (to prevent contamination) known as the BeRP Ball,

which has been extensively detailed in integral benchmark experiments [81, 85, 82, 83, 96, 1].

The BeRP Ball was reflected by various amounts of copper ranging from 1.27 cm to 10.16

cm in 1.27-cm increments for a total of eight configurations with a simulated keff multipli-

cation factor ranging between 0.8278 and 0.9394; these configurations are the same as the

copper-only cases of the subcritical copper-reflected α-phase plutonium (SCRαP) bench-

mark. Three-dimensional renderings with the bottom half of the hemishells and a two-

dimensional schematic of the copper-reflected BeRP Ball assemblies are shown in Fig. 6.1.

The 10.16-cm copper configuration measurement was repeated with the BeRP Ball replaced

by a 252Cf source; a photo of the open-face assembly is shown in Fig. 6.2. All measurements

were 20 minutes long.

The assemblies were measured with an organic scintillator array (OSCAR [6]). Previous

works have also used organic scintillators to perform Feynman-alpha measurements [97, 98,

99], although 3He detectors are traditionally used. A photo of the experimental setup is

shown in Fig. 6.3.
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(a) (b)

(c) (d)

Figure 6.1: (Subfigs. 6.1a, 6.1b, and 6.1c) three-dimensional renderings of the BeRP Ball
reflected by 2.54, 5.08, and 7.62 cm of copper. A two-dimensional engineering drawing of
the 10.16-cm configuration detailing individual hemishells is shown in Subfig. 6.1d.

98



Figure 6.2: Photo of the 252Cf source in 10.16 cm of copper.
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Figure 6.3: Annotated photo of the measurement setup including two organic scintillator
arrays (OSCARs) and two Neutron Multiplicity 3He Array Detectors (NoMADs) all 47 cm
from the center of the assembly. The assembly comprises 10.16 cm of copper reflector.

6.5 Data Analysis

The data analysis is performed in two steps: the analysis of raw data to obtain the list

mode data (a list of neutron detection times) and the Feynman-alpha analysis that creates

and fits a Feynman histogram from the list mode data. The latter is discussed in subsec. 6.5.1

and the former in Chapter III.

6.5.1 Feynman-α Analysis

The Feynman histograms are constructed by calculating Y2 from Eqn. (6.8) as a function

of τ . The analysis of the BeRP Ball data used 200 values of τ logarithmically distributed
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between 102 and 104 ns, and the analysis of the 252Cf data used 200 values of τ distributed

between 101 and 104. The resultant histograms are shown in Figs. 6.4 and 6.5, respectively.

The histograms are fit by Eqn. (6.6) with a nonlinear least squares algorithm and weighting,

with weights determined by the analytic method. The histograms were also fit with the

one-exponential model in Eqn. (6.2) for comparison.

Figure 6.4: Feynman histograms for the BeRP Ball reflected by various amounts of copper.
Error bars (one standard deviation) are smaller than the markers.
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Figure 6.5: Feynman histogram and fit value for the measurement of 252Cf in 10.16 cm of
copper.

6.6 Results and Discussion

The two-region Feynman-alpha model is validated by comparing measured values of the

prompt neutron period to simulated reference values for identical measurements given in

Ref. [6]; Ref. [6] validated the two-region Rossi-alpha model. The simulated values from

MCNP represent an independent determination of the prompt neutron periods, not a simu-

lation of the detector response. Three parameters were obtained from simulation: keff, βeff

(the effective delayed neutron fraction), and τc (the mean lifetime of a neutron in the fissile

core region). The KCODE subroutine of MCNP was used to calculate keff and βeff while two

F4 track-length tallies weighted by inverse velocity were used to calculate τc in the SDEF
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subroutine. The prompt neutron period was then obtained from keff, βeff, and τc.

Raw Feynman-alpha analysis produced prompt periods that were greater than the ref-

erence values by a constant time offset; the uniform mean difference was 21.37 ns and the

inverse-variance-weighted mean difference was 20.13 ns. The time offset is due to lifetimes not

associated with the multiplication kinetics such as detector dead time or neutron cross talk

wherein one neutron registers multiple detections by scattering in multiple detectors [55, 100].

The mean lifetime due to non-multiplication kinetics, τother, is determined by measuring

a 252Cf source and repeating Feynman analysis; samples are typically small powders in which

multiplication is negligible. The 252Cf measurement in this work for the 10.16-cm copper

reflector case yielded τother = 20.44±0.04 ns, as annotated in Fig. 6.5. Similar measured data

for the other configurations are not available, so the measured τother is verified with simulated

results. The measurement was simulated using MCNPX-PoliMi and included all detection

systems, tables, stands, shielding, and the floor. The simulation models detector response

for 20-minute measurements of the 2.54, 5.08, 7.62, and 10.16 cm cases, and respective

values are shown in Tab. 6.1. The mean non-multiplicative time constant from simulation

is 〈τother〉sim = 19.83 ± 0.45 ns, consistent with the measured value. A measured value for

each configuration is generally preferred; in this work, the measured τother will be used for

all configurations since there is no apparent trend shown in the simulated values.

Table 6.1: Simulated τother values for the 2.54, 5.08, 7.62, and 10.16 cm cases and a measured
value for the 10.16 cm case.

Cu Thickness [cm] Simulated τother [ns] Measured τother [ns]

2.54 20.00 ± 0.03 –
5.08 18.44 ± 1.79 –
7.62 19.88 ± 0.11 –

10.16 21.02 ± 0.03 20.44 ± 0.04

The raw Feynman-alpha, corrected Feynman-alpha (raw values minus τother), and simu-

lated reference values are shown in Fig. 6.6. The values are also summarized and compared

to the Rossi-alpha values in Tab. 6.2. There is excellent absolute agreement between the
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corrected Feynman-alpha and reference values; additionally, the Feynman-alpha values are

more precise than the Rossi-alpha values (by one to two orders of magnitude) with one-

standard-deviation measurement uncertainties less than 1%. The error is calculated relative

to the simulated values (error = (measured−simulated)/simulated) since the simulations are

used as reference in this work (whereas if the simulations were being validated instead of the

measurements, the error would be calculated relative to the measured values). The corrected

Feynman-alpha values are more accurate than the Rossi-alpha values below keff ≈ 0.92, while

the opposite is generally true above; the error for the more-accurate prompt neutron period

estimate for each assembly is presented in blue in Tab. 6.2.

The now-validated two-region model is compared to the one-region model to determine

regimes of applicability. Note that the two-region model is a generalization of the one-region

model and that R in Eqn. (4.9) reduces to zero or unity when reflector is negligible [6]. There-

fore, the two-region model can always be used and is not prohibitively more computationally

expensive. The relative deviation between the one- and two-region models ((α1−α2)/α2) is

shown in Fig. 6.7. It is shown that the models deviate by more than 10% as the reflector and

reflection increase, and are nearly identical when there is only a small amount of reflector.
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Figure 6.6: Comparison of measured and simulated prompt neutron periods, treating the
simulated values as reference. The ‘Feynman-alpha’ data are pre-correction, whereas the
‘Corrected Feynman-alpha’ data are subtracted by the non-multiplication time constant
determined from analysis on non-multiplying 252Cf data.
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Table 6.2: Prompt neutron period (−α−1) values for the Feynman-alpha, Rossi-alpha,
and simulation approaches with one-standard-deviation uncertainties as a function of cop-
per thickness (tCu). The error = (measured − simulated)/(simulated) for the measured
approaches is given and the error for the more accurate measured approach is displayed in
blue for each configuration. The simulated and Rossi-alpha values come from Ref. [6].

Assembly Simulation Feynman-alpha Rossi-alpha
tCu [cm] keff −α−1 [ns] −α−1 [ns] Error [%] −α−1 [ns] Error [%]

1.27 0.8278 7.6 ± 0.2 6.28 ± 0.04 -17% 13.4 ± 1.0 76%
2.54 0.8604 12.5 ± 0.4 12.06 ± 0.05 -3% 19.5 ± 1.0 57%
3.81 0.8831 17.9 ± 0.9 19.95 ± 0.06 11% 27.6 ± 4.0 54%
5.08 0.9005 25.0 ± 2.3 27.93 ± 0.05 12% 32.1 ± 4.9 28%
6.35 0.9137 33.7 ± 3.5 36.03 ± 0.05 7% 40.8 ± 7.4 21%
7.62 0.9239 40.5 ± 6.2 47.95 ± 0.07 18% 43.6 ± 5.1 8%
8.89 0.9322 60.7 ± 4.8 59.25 ± 0.13 -2% 68.8 ± 3.6 13%

10.16 0.9394 73.4 ± 8.6 69.27 ± 0.17 -6% 75.6 ± 4.5 3%

Figure 6.7: Relative deviation of the one-region model estimate of the prompt neutron
period from that of the two-region model.
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6.7 Summary and Conclusion

The two-region Feynman-alpha model was derived from the two-region Rossi-alpha model,

rigorous propagation of measurement uncertainty was developed, and the two-region Feynman-

alpha model was validated with organic scintillator measurements of copper-reflected, weapons-

grade plutonium. The uncertainty propagation in this work should be used to improve fit

accuracy and to properly propagate uncertainty, as demonstrated by other works [73, 92, 101].

Having validated the two-region model and demonstrated accuracy over the one-region

model, the two-region model should be used over the one-region model. If the two-region

model is unnecessary, it will reduce to the traditional case of the one-region model. In

special circumstances, the two-region model may find two α eigenmodes if they dominate

reflector-induced modes; modal effects are the subject of future work.

The copper-reflected plutonium measurements were complemented by a 252Cf measure-

ment to correct for non-multiplicative time correlations such as neutron cross talk or dead

time. The method was effective since the 252Cf is non-multiplying, thus this approach is

recommended. One 252Cf measurement was used as a representative for all cases and cop-

per thicknesses since simulated values for the other cases were similar. Future work will

further study the corrective 252Cf measurement and investigate alternative cross talk and

non-multiplicative corrections.

The Feynman-alpha approach offers better precision than the Rossi-alpha approach as

well as improved accuracy for keff < 0.92, whereas the Rossi-alpha method is generally

more accurate for larger multiplications. The trends are expected since the Feynman-alpha

approach is an integral of the Rossi-alpha approach, though the Feynman-alpha approach

is expected to struggle as keff approaches unity (whereas the Rossi-alpha approach improves

as keff approaches unity). More fission chains overlap as keff increases, which can obfuscate

accidentals and associated uncertainties in the Feynman-alpha method. Therefore, there is

an optimization between Feynman-alpha and Rossi-alpha for regimes of preference, which is

the subject of future work through the upcoming Measurement of Uranium Subcritical and
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Critical (MUSiC) benchmark [86, 87].
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CHAPTER VII

Conclusions and Future Work

7.1 Summary, Conclusions, and Future Work

Chapter I describes the historical foundation and motivation for the work accomplished

in this dissertation and Chapter II derives the point kinetics simplification from the trans-

port equation, the theoretical foundation for the neutron noise techniques used in this work.

Chapter III presents the two types of detection systems: the current state-of-the-art 3He-

based Neutron Multiplicity Array Detector (NoMAD) and particle-discrimination-capable

organic scintillation detectors that I introduce in the Organic Scintillator Array (OSCAR)

for Rossi-alpha measurements. I demonstrate that organic scintillators augment the capa-

bilities of 3He detectors: the OSCAR has fewer accidental counts than the NoMAD and

the OSCAR is sensitive to prompt neutron periods as fast as nanoseconds, whereas the No-

MAD is limited to microseconds. Therefore, the OSCAR should be used for fast assemblies.

Organic scintillators are generally less efficient than 3He detectors. Thus, it may be prefer-

ential to use the NoMAD for slow, low-power assemblies that leak very few neutrons. The

NoMADs can also be used for fast assemblies, not with the Rossi-alpha approach, but with

other approaches such as those proposed in the Hage-Cifarelli formalism [93, 102]. In this

work, I show that hydrogenous moderating material does not necessarily make the prompt

neutron period slower; rather, it makes it shorter since neutrons spend less time in the core

(the mean path to fission is shorter due to higher cross sections for moderated neutrons).
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Chapter IV presents the two-region point kinetics theory that extends one-region models

for Rossi-alpha measurements and then Chapter V validates the theory. The two-region

model is a generalization of the one-region model and the validation shows that the two-

region analysis reduces to that of the one-region model when negligible reflector is present.

Therefore, the two-region model should always be used. A potential limitation of this conclu-

sion is the presence of more than one detectable α-eigenmode (the fundamental mode is the

prompt neutron decay constant) and the subject of future work. The two-region extension

introduces new parameters such as f ′, which can be used with a simulated mean neutron

lifetime in the core τc to estimate the number of cross-region leakages, and R, the linear

interpolation parameter that weights the exponents from the two-exponential fit to estimate

α. When R is zero or one, the two-region model reduces to the one-region model. It is shown

that the minimum absolute difference between R and the extremes is a measure of reflection

between similar assemblies.

The Feynman-alpha method is similarly generalized from one- to two-region point kinet-

ics. In fact, the two-region Feynman-alpha analysis is derived from a double integration of

the Rossi-alpha method. The Feynman-alpha method is also validated with measurements

of weapons-grade plutonium.

The validation shows that the Rossi-alpha estimate of the prompt neutron period im-

proves as keff approaches units, as expected and forecast by the assumptions taken to sim-

plify the transport equation to point kinetics. Therefore, Feynman-alpha analysis was per-

formed for the same assemblies and the compared. For all cases (0.8278 ≤ keff ≤ 0.9394),

the Feynman-alpha method yielded better precision than the Rossi-alpha method. The

trend is expected for subcritical, low-flux assemblies since the Feynman-alpha method is

an integral analogy to the Rossi-alpha method, reducing histogram noise prior to fitting.

The performance is expected to deteriorate more greatly for the Feynman-alpha method at

higher multiplications due to overlapping fission chains and accidental counts. Similarly, the

Feynman-alpha method (including correction) is more accurate than the Rossi-alpha method
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for 0.8278 ≤ keff ≤ 0.9137, whereas the Rossi-alpha method is generally more accurate for

0.9137 < keff ≤ 0.9394. A comparison between the two methods as a function of keff for bare

assemblies is planned future work as part of the Measurement of Uranium Subcritical and

Critical integral benchmark measurement campaign.

Rigorous propagation and quantification of measurement uncertainty are developed for

both neutron noise techniques. A novel quasi-analytic method is developed and validated to

estimate histogram uncertainty from a single measurement as compared to taking a sample

standard deviation over many repeated measurements. When measurement time is limited

or measurements of different assemblies are desired, the analytic method or other statistical

methods (bootstrap or Bayesian) should be used in lieu of the sample method. The vali-

dated theory shows how to use histogram uncertainty to estimate a final uncertainty in the

prompt neutron period, including weighting the nonlinear least squares fitting algorithm.

The measured results show that weighting the fit not only properly accounts for uncertainty,

but also improves accuracy.

The point kinetics models used in this work come from eliminating six (all but the

time) variables from the transport equation. The truncation of the three spatial variables is

slightly relaxed by considering more than one region. Organic scintillators do not inherently

use reflector, hence neutrons do not scatter and lose energy prior to detection. Thus, such

detection systems are sensitive to a portion of detected neutron energies and directional

information, the three other truncated variables. Therefore, future work should consider

further (differential) generalizations to the point kinetic models with variables that organic

scintillators are sensitive to. A caveat is that detection systems are only sensitive to the

information of detected neutrons that may be biased due to in-assembly scattering. There-

fore, the f ′ parameter may need to be used to characterize scattering. The Rossi-alpha and

Feynman-alpha methods are just two of many neutron noise techniques. Other neutron noise

techniques should be compared and reevaluated with organic scintillators. Additionally, one

could investigate combining several independent neutron noise techniques to increase the
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number of degrees of freedom.

In the application space, organic scintillators requiring shorter measurement times than

3He to achieve the same precision translates to being able to measure more assemblies and

conduct comprehensive surveys, whereas current measurements/assays may select a random

subset of samples and hope for accurate representation. In a fixed measurement time, organic

scintillators are more precise (some times by factors as great as two or three orders of

magnitude). Such drastic improvements to precision could, for example, improve nuclear

data. Beyond improving the accuracy of data analysis, the new theory developed in this

dissertation results in exploitable parameters (e.g., the R parameter) and tools/methods

for optimizing current techniques (e.g., error and uncertainty minimization by selection of

analytic-uncertainty-informed histogram parameters).
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Appendix A

Comparison of OSCAR and NoMAD Rossi-α

Measurements

This appendix compares the OSCAR and NoMAD detection systems in Rossi-alpha mea-

surements. The work in this appendix comes from my conference paper “Fast Ross-alpha

Measurements of Plutonium using Organic Scintillators” a Proceeding of the American Nu-

clear Society’s 2020 Physics of Reactors Meeting [58] and my paper titled “Rossi-alpha

measurements of fast plutonium metal assemblies using organic scintillators” published in

Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrome-

ters, Detectors and Associated Equipment [3].

A.1 Assembly Specification and Experimental Setup

A.1.1 Assembly Specifications

In this work, the bottom layer of the Comet critical assembly – lead-moderated, copper-

reflected plutonium (93 wt% 239Pu) – was measured. A 3D rendering of the assembly is

shown in Fig. A.1; the layout of the bottom layer of copper or plutonium boxes is shown in

Fig. A.2, and a sample plutonium box is shown in Fig. A.3 [5]. The total mass of plutonium

was approximately 15 kg.
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Figure A.1: 3D rendering of the Comet critical assembly [5].

Figure A.2: Bottom layer box layout [5].
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Figure A.3: Photo of a plutonium box [5].
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A.1.2 Simulation of the Assembly

Figure A.4: Sample plot of the time-binned surface tally (F1) used to estimate the Rossi-
alpha.

To estimate the prompt neutron decay constant, α, the measurement was simulated using

MCNP6 R©. The KCODE option estimated keff ≈ 0.624. To determine α, surface (F1) and

point-detector (F5) tallies were time-binned, and the tails (linear on a semilog plot) were fit.

A sample time-bin tail-fit plot is shown in Fig. A.4 and α = 52.3± 2.5 ns. The uncertainty

comes from the fit uncertainty.

A.1.3 Experimental Setup and Detection System Details

In the measurement of the assembly, two organic scintillator arrays (OSCARs) and one

Neutron Multiplicity 3He Array Detector (NoMAD) were used. An OSCAR comprises 12

5.08 cm × 5.08 cm diameter trans-stilbene organic scintillators coupled to photomultiplier

tubes [63, 64]. The NoMAD is similar to the MC-15 detection system [?], comprising 15 3He

detectors embedded in a polyethylene matrix. The systems were placed 50 cm from the edge
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Figure A.6: Photo of detection systems.

of the assembly; a schematic is shown in Fig. A.5 and a photo of the systems side-by-side

is shown in Fig. A.6. For this work, only 21 of the 24 OSCAR detectors were operational.

Based on neutron detection rates, the NoMAD (in the given configuration) is 3.34 times

more efficient than the OSCARs.

Figure A.5: Schematic of detector placement.
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A.2 Results and Discussion

Unnormalized, non-constant-subtracted Rossi-alpha histograms generated from two hours

of data for each detection system are shown in Fig. A.7. The OSCAR has fewer acciden-

tals than that of the NoMAD: the constant value of the tail for the NoMAD is 95% of the

maximum value, whereas the constant value of the tail for the OSCAR is only 0.7% of the

maximum value. In some cases, the high proportion of the accidentals in the case of the

NoMAD may obscure the second exponential. Obscuring the second exponential would re-

duce the fit model to a single exponential fit; however, since the parameters of interest are

a linear combination of the two exponentials, α and `ctd cannot be determined.

Fit metrics plotted as a function of measurement time (and bin width for the NoMAD)

are shown in Fig. A.8. The root mean square error (RMSE) is normalized by the asymptotic

values of the respective data series such that the y-axis is a measure of convergence. It

takes the OSCAR less than 30 minutes to be within 50% of its asymptotic value, while

it takes the NoMAD approximates 120 minutes (note that RMSE is fairly independent of

the bin width, as expected). It takes the OSCAR less than 20 minutes to achieve an R2

value greater than 0.90, whereas the the NoMAD with 2 µs bins requires approximately 70

minutes. The NoMAD’s R2 convergence could be improved by increasing the bin widths;

however, 2 µs bin widths are already large compared to the time-decay constant (52.3 ± 2.5

ns) the NoMAD is trying to observe. Reducing the bin widths to increase sensitivity to the

physical phenomenon the system is trying to measure results in increases in the time is takes

the NoMAD to achieve R2 > 0.90; bin widths of 1 µs require 140 minutes and bin widths of

500 ns require 280 minutes (the relationship is approximately linear).

From simulation, the “true” value of α for the assembly is taken to be 52.3 ± 2.5 ns.

Fitting the OSCAR data with a two exponential, α is estimated to be 47.4 ± 2.0 ns. The

error is 9.37% and, qualitatively, the values are similar since the 1.09σ-confidence intervals

overlap. The NoMAD estimate of α is ≈ 37 µs. The NoMAD has a known slowing down

time of 35-40 µs and, because α� 35 µs, the NoMAD is likely only sensitive to the neutron
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moderation time.

Figure A.7: Unnormalized, non-constant-subtracted Rossi-alpha histograms.

Figure A.8: Fit metrics as a function of measurement time for the NoMAD at different
bin widths and the OSCAR.

A.3 Conclusions and Future Work

In this work, the organic scintillator array (OSCAR), comprising 21 total operational

trans-stilbene detectors, and the Neutron Multiplicity 3He Array Detector (NoMAD), com-

prising 15 3He tubes embedded in a polyethylene matrix, simultaneously measured 15 kg

of plutonium (93 wt% 239Pu) moderated by lead and reflected by copper with keff = 0.624

and α = 52.3±2.5 ns. It was found that the OSCAR converged on its estimate of α faster
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than the NoMAD, which translates to reduced procedural and operational costs in practical

implementation. The convergence needs to be investigated further for assemblies where α

is much larger (α ∝ 10 − 100s of µs). Because neutrons are moderated in the polyethylene

matrix of the NoMAD (and moderation is not inherent to the OSCAR), the OSCAR is an

inherently faster detection system. The entire Rossi-alpha histogram (reset time) is less than

100 ns for the OSCAR (1 ns bins), whereas 100 ns is the clock tick length for the NoMAD.

Therefore, for fast assemblies (α ∝ 1 − 100s of ns), it is more suitable to use the OSCAR

that estimated the true α within 1.09 standard deviations and an error of 9.37% (on the

order of uncertainty in nuclear data). Larger accidental contributions are more likely to

wash out time information; the NoMAD has a large accidental contribution and the OSCAR

has a negligible accidental contribution. Future work involves determining when each sys-

tem is more suitable to a given measurement. Furthermore, gamma-ray and mixed-particle

Rossi-alpha will be investigated with the organic scintillators.
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Appendix B

Simulation of the Nondestructive Assay of 237Np using

Active Neutron Multiplicity Counting

This appendix describes an initial investigation into a well-counter-type detection sys-

tem customized for the active neutron multiplicity counting of 237Np; neutron multiplicity

counting is another neutron noise technique that is typically applied to safeguards applica-

tions. The work in this section comes from my work titled “Simulation of the Nondestructive

Assay of 237 using Active Neutron Multiplicity Counting” published in Nuclear Science and

Engineering.

B.1 Introduction and Motivation

The goal of nondestructive assay in safeguards applications is to precisely measure (ver-

ify) the mass of an unknown sample in a reasonable amount of time [103, 7]. The capability

to effectively assay 237Np, a potentially weapons-usable isotope, is currently a missing piece

in the verification and safeguards toolbox. This study focuses on radiation transport simu-

lations of both the 3He-based epithermal neutron multiplicity counter (ENMC) in the active

configuration, the flagship system used for the assay of 235U, as well as an organic scintillator-

based multiplicity counter (OSMC). Consistent with 3He-based active neutron correlation

counter capabilities when measuring 235U, it is desirable to distinguish 10 grams of 237Np in
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a 20-minute measurement [103, 104].

The United States (US) Department of Energy (DOE) classifies 237Np as “other nuclear

material,” which is a class of potentially weapons-usable material. The international commu-

nity also recognizes the possibility for 237Np-based nuclear weapons [105]. The bare sphere

critical mass for 237Np is 40-60 kg, which in metal form corresponds to a 10 cm radius sphere

[106, 107]. Los Alamos National Laboratory estimates the critical mass of 237Np at 57 ± 4

kg [108].

Due to the relatively small size of a critical 237Np sphere and the relative stability of 237Np

(2.144 × 106 years), a 237Np-based weapon is potentially feasible. Typical attributes that

make a nuclear material unattractive for use in a nuclear weapon, such as heat generation,

spontaneous fission, and self-protecting dose rate are nearly nonexistent for 237Np [109]. The

US DOE has recognized the possibility of 237Np-based weapons and has declared it within its

safeguards metrics as “equivalent to 235U” and reportable in gram quantities. Furthermore,

3,000 kilograms of 237Np are produced per year in the US. 237Np is a byproduct of the

nuclear fuel cycle and has commercial applications such as 238Pu production via 237Np target

irradiation [110, 111]. The feasible utilization of 237Np in nuclear weapons and its production

makes it desirable to have an adequate 237Np assay system.

B.2 Background

B.2.1 Active Interrogation of 237Np

Active interrogation must be used to estimate the mass of an assay sample of 237Np in

hours or less. Passive assays are infeasible due to 237Np having a low gamma-ray emission

rate (2.6×107 gammas/s/g), low gamma-ray energies (97% of gammas are less than 100

keV), and a spontaneous fission rate of 2×10−12 fissions per decay [112]. The decay product

of 237Np, 233Pa (half-life of 27 days), is of limited use due to all of the prominent gamma

rays consisting of relatively low energy: 300.1 keV (6.6% yield), 311.9 keV (38.5% yield)
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and 340.5 keV (4.4% yield). Due to the energies, 233Pa gamma rays are easily shielded by

dense, high-atomic mass materials (including the self-shielding from the 237Np). The “infinite

thickness” for 340.5 keV gamma rays in 237Np metal (20.2 g/cm3) is 1.025 cm [103]. The

decay product of 233Pa is 233U, which has a half-life of 1.6 × 105 years, thus stopping the

decay chain for practical purposes.

AmLi is a popular neutron source for active interrogation (a source producing neutrons to

induce fission in a sample), which emits neutrons with an average energy of 0.59 MeV [113];

however, induced fission in 237Np occurs with a threshold of approximately 0.8 MeV. Thus,

instead of using AmLi, AmBe is a good choice for the interrogation of the 237Np samples

in the simulations. For AmBe, the mean neutron energy is approximately 5.0 MeV and the

maximum energy is approximately 11.0 MeV [103].

B.2.2 Active Neutron Multiplicity Counting

The theory of active neutron multiplicity counting is summarized in this section, based on

the more-comprehensive discussion by Ensslin et al. in Ref. [114]. With current capabilities,

in the context of neutron multiplicity counting, it is generally not possible to determine

the origin of neutrons on a case-by-case basis. For example, three neutrons detected in

a given coincidence window (or gate) could be a three-neutron multiplicity, double-and-

single-neutron multiplicities at the same time (which can happen in three possible ways

from three coincident neutron detections), or three single-neutron multiplicities at the same

time. Because there are multiple, indistinguishable, possible multiplicity realizations, all

possibilities are considered by way of factorial moment counting and the multiplicity shift

register binning technique [93, 74]. The multiplicity shift register binning technique treats

each neutron detection as a gate trigger, opens a gate after the trigger in which factorial

moment counting is performed, and opens a second, identical gate after a fixed long delay

to perform factorial moment to subtract accidental/chance coincidences [74]. Using the

factorial moments, the singles, doubles, and triples multiplicity rates are calculated [102].
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Note that the singles, doubles, and triples multiplicity rates are not the rates of one, two,

and three counts in a gate, but rather the first, second, and third factorial moments of the

distribution.

The output of the initial data processing includes the neutron doubles (D) and triples (T )

multiplicity rates and the doubles and triples gate fractions, fd and ft. The doubles/triples

gate fractions are the fraction of doubles/triples that are actually counted in the gate of the

multiplicity shift register. For detectors having a die-away time characterized by a single-

exponential model (with decay constant τ),

fd = e−P/τ
(
1− e−G/τ

)
and (B.1)

ft = fd
2, (B.2)

where P is the shift register pre-delay and G is the gate width. The gate fractions may also

be calculated experimentally and usually are since the single-exponential model is inadequate

for real detectors [114].

The outputs are related to the induced fission rate (F ), system parameters, and nuclear

data by

D =

[
Fεf

2fdνs2
2

]
Cd and (B.3)

T =

[
Fεf

3ftνs3
6

]
Ct, (B.4)

where εf is the efficiency for detecting induced-fission neutrons; νs2, νs3 are the second and

third reduced factorial moments for interrogation source-induced fissions in 237Np; and Cd, Ct

are correction factors for self-multiplication of doubles and triples.

The Cd and Ct correction factors are functions of nuclear data and M , the neutron
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self-multiplication, given by

Cd = M2

[
1 +

(M − 1)νs1νi2
νs2(vi1 − 1)

]
, and (B.5)

Ct = M3

[
1 +

(M − 1)(3νs2νi2 + νs1νi3)

νs3(νi1 − 1)
(B.6)

+
(M − 1)2(3νs1)(νi2)2

νs3(νi1 − 1)2

]
,

where νi1, νi2, νi3 are the first, second, and third reduced factorial moments for subsequent

generations of fission neutron-induced fissions in 237Np. When D and T are nonzero, it is

possible to solve for M independent of F by taking the ratio of Eqns. (B.3) and (B.4). The

resultant polynomial is a cubic in M , which means there are three possible values for M . Of

the calculated values, typically only one is physical. Having calculated M and F , the sample

mass is calculated with

m =
F

CY
, (B.7)

where C is the coupling term and Y is the total output of the interrogation source in neutrons

per second. Note that the variance in estimated sample mass, σm
2, varies as (assuming no

uncertainty in Y and independence between F and C)

σm
2 =

(
1

CY

)2

σF
2 +

(
F

Y

1

C2

)2

σC
2. (B.8)

The coupling term, C, is unique to active multiplicity counting to account for coupling

between source neutrons and the sample; F for active multiplicity counting is the source

neutron-induced fission rate, whereas F in passive multiplicity counting is the spontaneous

fission rate. The value of C is a function of M and the values are empirically determined,

typically with known-mass standards. Using the standards, D and T are measured and

subsequently used to calculate M and F . Using the known values of m,F , and Y , C is

calculated and paired with the respective value of M . After obtaining a collection of C and
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M pairs, the data are fit with

C = a− b(M − 1)

1 + c(M − 1)
, (B.9)

where a, b, and c are fit parameters. Originally, the trend was fit with a model (CY = a0 +

b0m
−1/3) such that F was proportional to sample mass and surface area (F = a0m+b0m

2/3).

Later work resulted in Eqn. (B.9), which is desirable since it is independent of mass and

density (shown for the case of 235U) [114].

B.3 Simulation and Detection System Specifications

Two simulation series were performed in this study. MCNP6 [50] was used to simulate

the ENMC, which comprises 121 3He gas proportional counters embedded in a polyethylene

matrix [115, 116]. MCNPX-PoliMi ([52, 117]) was used to simulate an OSMC, which, in

this design, comprises 24 trans-stilbene detectors [63, 2]. The 237Np samples are square

plates with a 2 cm × 2 cm cross-section; the density is 20.45 g/cm3 and the thickness of the

plates is varied to obtain the desired mass. A total of 20 masses logarithmically distributed

between 10 and 1000 grams is used in the simulations for this work. Note that the relative

uncertainty needed to differentiate two sequential sample masses is 12%.

B.3.1 The Epithermal Neutron Multiplicity Counter (ENMC)

The ENMC utilizes 121 3He tubes pressurized to 10 atm and embedded in polyethylene

moderator. ENMC dead times are on the order of tens of nanoseconds and neutron die-away

times are on the order of tens of microseconds. For active-interrogation measurements, the

ENMC contains two cavities to hold interrogation sources [116]. In this work, an AmBe

source (4.671 × 105 neutrons per second, based on a previous measurement at the Joint

Research Centre in Italy [118]) was placed in each cavity. An annotated, two-dimensional

rendering of the simulation geometry is shown in Fig. B.1, and a three-dimensional rendering
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is shown in Fig. B.2. The ENMC was designed for AmLi sources that have been replaced

with AmBe; this work does not attempt to optimize the source cavity for the swap. Previous

published work investigating the use of higher energy neutron sources with 3He well counters

has had limited scope at changing the end plug geometry or composition [119, 120]. Previous

work has shown that simple changes such as moving the interrogation source further from the

sample (and the 3He tubes) results in an overall increase in doubles count rate uncertainty

[119]. The reduction in accidental doubles counts is less than the reduction in induced fissions

in the sample.

Figure B.1: Two-dimensional annotated rendering of the ENMC.
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Figure B.2: Three-dimensional partial rendering of the ENMC; the moderating polyethy-
lene is not shown.

B.3.2 An Organic Scintillator-based Multiplicity Counter (OSMC)

The OSMC used in this work is based on the fast-neutron multiplicity counter used by

Di Fulvio et al. to actively assay uranium samples, which had a system die-away time of

approximately 40 ns and virtually no dead time [121]. Instead of using 8 trans-stilbene and 8

EJ-309 organic scintillators, this work simulates 24 5.08 cm long × 5.08 cm diameter stilbene

detectors. It is desirable to have one detector type for uniformity and the trans-stilbene

detectors were chosen for superior pulse-shape discrimination capabilities in comparison to

the EJ-309 detectors [64]. Similar to the ENMC simulations, the samples of 237Np were

interrogated with two AmBe sources emitting 4.671×105 neutrons per second and collimated

by 7.11 cm of borated-polyethylene encased in 1.00 mm of bismuth (inspired by Ref. [122]).

The AmBe were simulated as point sources positioned at far edges of the borated polyethylene

portion of the collimator. A two-dimensional rendering of the geometry is shown in Fig. B.3.
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Figure B.3: Two-dimensional rendering of the OSMC. The thickness of the bismuth is not
to scale for illustrative purposes.

B.4 Data Analysis

B.4.1 Data Analysis for the ENMC

The singles, doubles, and triples multiplicity rates are obtained with an F8 tally using

the CAP parameter. The pre-delay is 1.5 µs and the gate width is 24 µs. No long delay

is included because MCNP6 does not use this input in its calculations. The output of the

simulations includes the multiplicity rates and uncertainty based on Monte Carlo counting

statistics. Using Ref. [123], the expected uncertainty from a physical measurement is cal-

culated, accounting for factors including the long delay and background contribution. The

input parameters include the multiplicity rates, measurement time, gate width, pre-delay,

and die-away time (which is 21.8 µs [116]).

B.4.2 Data Analysis for the OSMC

The output of the MCNPX-PoliMi simulations is a collision file detailing the interactions

that occurred in the detector cells. The MPPost post-processing code is then used to de-

termine if a detection is registered above a given threshold (75 keVee, which corresponds to

approximately 600 keV neutron energy deposition on a proton) and the output is a list of
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neutron detection times [124, 2]. In this work, the multiplicity shift register binning tech-

nique is used with a 100 ns gate width and a long delay of 500 ns. There is no pre-delay

and it is assumed that ft = fd
2 = 1 due to the fast response of organic scintillators. Using

analytic uncertainty equations, the output of the initial data analysis is the multiplicity rates

with uncertainty and the gate fractions [95, 94].

Once the doubles and triples rates are extracted, Eqns. (B.3) and (B.4) are simultaneously

solved to obtain M and F . While M has three possible solutions, only one solution is physical

for the data simulated in this work. Finally, mass (m) would be calculated using Eqn. (B.7)

and the coupling term, C, would be obtained from a system-specific fit, C = C(M). Since

the mass is known (specified in the simulation) and the coupling term is not, this work

calculates C instead. The fit is calculated using nonlinear least squares fitting with the

model defined by Eqn. (B.9). The nuclear data constants and detection system parameters

used for the OSMC calculations are tabulated in Tables B.1 and B.2. Note that the values

in Table B.1 are expected to change significantly as nuclear data for 237Np improves and are

included for illustrative purposes only.

Table B.1: 237Np nuclear data constants used in the OSMC calculations.

νs1 νs2 νs3 νi1 νi2 νi3
3.2631 7.5170 10.2409 2.9601 5.8517 5.8783

Table B.2: Detection system constants for the OSMC.

εf fd ft
0.0577 1 1

B.5 Results and Discussion

B.5.1 Results for the ENMC

The ENMC doubles and triples multiplicity rates with estimated (Ref. [123]) error bars

are shown in Figs. B.4a and B.4b, respectively, for a 20-minute measurement.
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As seen in Fig. B.4b, the uncertainty in the triples rate is large for the ENMC given a

20-minute measurement; at best, the relative standard deviation is 59.3% (≈ 1×106±6×105

triples counts per second for the 1 kg sample). With such high uncertainties, active neutron

multiplicity counting is infeasible with the ENMC using AmBe interrogation sources. Using

the estimated measurement uncertainty equations from Croft et al. in Ref. [123], the ENMC

requires approximately 30 minutes to resolve the triples rates between the two largest masses

(785 and 1,000 g), 1 day and 18 hours to resolve 10.0 and 20.7 g, and approximately 6

days to resolve the two smallest masses (10.0 and 12.7 g). One primary cause of the large

uncertainties is the high singles count rate of approximately 2.8× 105 counts per second. If

three of these singles counts occur within the gate width (24 µs), the set will be counted as

an accidental triples count. The active configuration of the ENMC was designed to minimize

three singles in the same gate width for AmLi interrogation sources. However, the higher

energy AmBe neutrons are often not absorbed before reaching the 3He tubes, which results

in approximately 30% of the interrogation neutrons being detected. Based on Fig. B.4a,

doubles rate-based calibration is feasible for bulk sources; however, large measurement times

are required to resolve sample masses less than 100 g. A measurement time of 1.5 hours

(calculated the same way as for the triples rates) is required to resolve the doubles rates

between 10.0 and 12.7 g. It should be noted that as sample mass approaches zero, the

doubles counts do not approach zero in Fig. B.4a. The nonzero behavior is due to (n,2n)

reactions with beryllium in the AmBe sources. Induced fission with 241Am in the AmBe

sources does occur, but this reaction rate is approximately 0.1% of that of (n,2n) in the

beryllium. The discussion regarding the nonzero contributions to the doubles counts is

supported by the fact that the triples counts approach zero in Fig. B.4b as the sample mass

approaches zero; (n,2n) reactions do not contribute significantly to the triples counts.
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(a) (b)

(c) (d)

Figure B.4: Neutron doubles and triples multiplicity rate results for the ENMC and OSMC.
The doubles and triples multiplicity rates for the ENMC are shown in Figs. B.4a and B.4b,
respectively. The doubles and triples multiplicity rates for the OSMC are shown in Figs. B.4c
and B.4d, respectively. All insets show the smaller masses, and all error bars are one standard
deviation.

B.5.2 Results for the OSMC

The OSMC doubles and triples multiplicity rates with calculated error bars are shown in

Figs. B.4c and B.4d, respectively, for a 20-minute measurement.

Similar to the ENMC, the OSMC is capable of doubles rate-based calibration assays. For
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a fixed measurement time, the OSMC is able to achieve greater precision in the estimate

of D than the ENMC; the error bars are smaller than the markers with the largest being

10% for the 10.0 g sample. The OSMC also achieves greater precision than the ENMC for

the estimates of T ; as seen in Fig. B.4d, the OSMC is capable of resolving the triples rates

between the 10.0 and 12.7 g samples in 20 minutes.

The precisions in D and T demonstrate active neutron multiplicity counting is feasible

with the OSMC. To calculate the sample mass, the goal of assays for safeguards applications,

the missing component is the coupling term, C. Since the mass is known from the simulation

input files, Eqn. (B.7) is used to calculate C, then the (C,M) pairs are fit with Eqn. (B.9).

The fit and data are shown in Fig. B.5; the fit parameters are a = −3.8×10−6, b = 7.6×10−4,

and c = −1.9× 102. The R2 value for the fit is 0.98 and the RMSE is 4.9× 10−9. Note that

the fit is specific to a given system and would require measurements with physical standards

(or simulations using nuclear data from benchmark experiments) in practice. Errors in

the points shown in Fig. B.5 could be due to errors in the nuclear data. The purpose of

calculating the fit in this work is solely for demonstration of concept and to show that the

fit for 237Np has some similarity to the commonly accepted shape for 235U [114].
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Figure B.5: Coupling term, C, as a function of sample self-multiplication, M , fit with
Eqn. (B.9).

B.6 Summary and Conclusions

This work investigates the feasibility of the active nondestructive assay of 237Np using

active neutron multiplicity counting. Two measurement systems are compared using Monte

Carlo simulations: the flagship 3He-based multiplicity counter – the epithermal neutron mul-

tiplicity counter (ENMC) – and an organic scintillator-based multiplicity counter (OSMC).

It is shown that, for a fixed measurement time, the OSMC achieves greater precision than

the ENMC. The superior precision of the OSMC is expected since the gate width of the

OSMC is smaller than that of the ENMC (meaning the OSMC generally has more observa-

tion windows or sub-measurements for a fixed measurement time and lower accidentals rate

compared to the ENMC). In a 20-minute measurement (per sample), the OSMC resolves

the 237Np metal samples (20 masses logarithmically distributed between 10 and 1000 g). To
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achieve the same discrimination capabilities, the ENMC requires approximately 6 days of

measurement time per sample, where the limiting factor is the precision of the triples mul-

tiplicity rate. Taken together, OSMC multiplicity-counting assays are more than 400 times

faster than those of the ENMC.

Doubles multiplicity rate-based calibration is another assay modality, which does not rely

on the triples rate. In this modality, the OSMC is still faster than the ENMC by a factor

of at least 4.5. When both assay modalities are available, doubles calibration is less robust

than multiplicity counting since calibration-based assays require a-priori knowledge of the

sample. While active neutron multiplicity counting uses the empirically-obtained coupling

term, it has been shown that the coupling term is independent of the form factor, sample

geometry, mass, and density for uranium samples [114]. Future work includes determining

if the coupling term is similarly independent for neptunium samples.

The OSMC offers additional capabilities when compared to the ENMC. One of the ca-

pabilities is improved timing characteristics due to the lack of moderating material be-

tween the 237Np-fission neutrons and the detectors (which can directly detect fast neutrons)

in the OSMC. Another potential capability is independent estimates of the sample self-

multiplication by way of neutron anisotropy measurements [56]. Independent estimates of

self-multiplication allow more degrees of freedom. Currently, two measured quantities (the

neutron double and triple rates) are used to calculate two sample parameters (the neutron

self-multiplication and fission rate), while measurement parameters (e.g. efficiency) and nu-

clear data are assumed/determined from simulation. If the multiplication is determined with

different analysis, one of the assumed quantities may be calculated instead of assumed/de-

termined a priori.

B.6.1 Future Work

The simulations and data analysis rely on nuclear data. Future work includes improving

the estimates on nuclear data parameters. Furthermore, Fig. B.5 requires validation with
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measured standards in multiple form factors (e.g. metal and oxide powder). Los Alamos

National Laboratory has begun measurements to improve the nuclear data for 237Np in the

Neptunium Subcritical Observation (NeSO), an integral benchmark measurement [125, 126].

Future work also includes decomposing the components of the coupling term, C. One

contribution to C present in the OSMC, but not the ENMC is neutron cross talk. In the

ENMC, neutrons are detected via capture reactions and are thus removed from the system

after detection. In the OSMC, neutrons are detected via scattering reactions and thus remain

in the system after a detection. Therefore, a single neutron may deposit energy above

threshold in multiple detectors, resulting in multiple detections; this phenomenon is known

as neutron cross talk. Corrections for neutron cross talk for passive neutron multiplicity

counting were shown by Shin et al. in Ref. [55], and similar corrections could be future work

for active neutron multiplicity counting.
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Appendix C

Measured Nondestructive Assay of 237Np Using

Organic Scintillators and Active Neutron Multiplicity

Counting

This appendix is future work to the preceding appendix and presents preliminary mea-

surement comparisons between 3He and organic scintillator systems in the assay of 237Np by

active neutron multiplicity counting. The work in this appendix comes from my conference

paper “Measured Nondestructive Assay of 237Np Using Organic Scintillators and Active Neu-

tron Multiplicity Counting” a Proceeding of the Institute of Nuclear Materials Management

Annual Meeting.

C.1 Introduction and Motivation

The purpose of sample assay for nuclear safeguards is to verify operator-declared masses

of nuclear material in noninhibitive measurement times [103, 7]. Nondestructive assay tra-

ditionally focuses on special nuclear material; however, 237Np is also a proliferation concern.

The United States Department of Energy classifies 237Np as other nuclear material and sub-

jects the isotope to the same safeguards as uranium. It is desirable to investigate detection

systems capable of adequately assaying 237Np because 3000 kg are annually produced, the ca-

pacity to assay the material is a missing piece of the nuclear nonproliferation and safeguards
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toolbox, and typical characteristics that make an isotope unattractive for use in a nuclear

weapon (e.g., heat generation and high spontaneous fission rate) are nearly nonexistent for

237Np [127, 105]. Previous simulation work compared currently-deployed 3He systems to an

organic-scintillator-based prototype and concluded that the latter system is capable of assay-

ing 237Np, whereas the state-of-the-art 3He systems were incapable in tenable measurement

times [127]. The purpose of this work is to confirm the results of the simulation study with

measured results.

C.2 Measurement Specifications

The measurement was performed at the National Criticality Experiments Research Cen-

ter within the Device Assembly Facility. The radiation test object (RTO) in this work is

a 6-kg sphere of 237Np, the largest known, single sample of the isotope. The RTO has im-

purities that are not uniformly distributed throughout the sample due to mass-separation

during the cooling process when the sphere was cast. The sprue attached to the sphere

was removed and chemical analysis was performed, yielding the biased isotopic composition

shown in Tab C.1; note that the weight percentages do not sum to 100% due to uncertainty,

although 100% is contained within a 95% confidence interval [128]. The 237Np sphere is

reflected by 7.874 cm of nickel; the nickel comprises several nesting hemishells that assem-

ble into a spherical reflector [125, 126]. The 237Np sphere and bottom half of the nickel

hemishells are shown in Fig. C.1.
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Figure C.1: Photograph of the 6-kg 237Np sphere nested in the bottom half of the nickel
hemishells.

Table C.1: Isotopic composition of the 6-kg neptunium sphere.

Isotopes Weight Percent

237Np 98.8000
233U 0.0035
234U 0.0006
235U 0.0276
236U 0.0002
238U 0.0031
238Pu 0.0016
239Pu 0.0314
240Pu 0.0023
241Pu 0.0001
242Pu 0.0003
241Am 0.0007
243Am 0.1822

Two types of measurement systems are used in this work: the Neutron Multiplicity 3He

Array Detector (NoMAD) and a prototype of the Organic Scintillator Array (OSCAR) shown

in Figs. C.2 and C.3. The NoMAD detector comprises 15 3He-gas proportional counters
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embedded in a polyethylene matrix having a minimum clock-tick length of 100 ns, a dead

time of 1.5 ± 0.3 µs, and a neutron slowing-down-time of 35-40 µs (detailed in benchmark-

quality in Ref. [1]). The OSCAR prototype comprises 12, 5.08 cm × 5.08 cm diameter trans-

stilbene crystals coupled to photomultiplier tubes [63, 64, 2], suspended in powder-coated

iron wire meshes and held in place with porous polyurethane foam [3]. The detectors are

powered with high voltage and pulses are digitized with a CAEN v1730 waveform digitizer

(16 channels, 500-MHz sampling rate, 14-bit resolution, 2-V dynamic range). Constant

fraction discrimination is used to obtain a time-resolution of 1.34±0.04 ns, the system has

negligible dead time, and each detector is calibrated by adjusting the applied voltage while

measuring a 137Cs source such that 1.6 V-ns pulse integrals correspond to 0.478 MeVee light

output. Two NoMADs and two OSCARs are used in this work; the center-front-faces of each

system were 47 cm from the center of the RTO and arranged as shown in Fig. C.4. Note that

Fig. C.4 shows tin-copper graded shielding in front of the OSCARs. The shielding was used

for measurements of plutonium on the same day and were not removed for the measurement

of neptunium. The shields are designed to preferentially shield 60 keV photons from 241Am

and have negligible effect on neutron detection and thus the results of this measurement.

Figure C.4 indicates that an AmBe source is used to interrogate the 237Np sphere. Inter-

rogation is needed because the rate of spontaneous fission in 237Np is low. Typically, AmLi

sources are used to interrogate 235U samples; however, neutron from AmLi have a mean

energy of 0.59 MeV that is lower than the 237Np-induced-fission threshold of 0.8 MeV. Thus

AmBe, which has a mean neutron energy of 5.0 MeV and a maximum of approximately 11.0

MeV, is used instead. The OSCARs measured the RTO assembly for 18 minutes, and the

NoMADs measured the RTO assembly for 20 minutes (the last 18 minutes of the NoMAD

measurements coincide with the time of OSCAR measurements) [103, 127, 113].
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Figure C.2: Photograph of the Neutron Multiplicity 3He Array Detector (NoMAD).
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Figure C.3: Photograph of the Organic Scintillator Array (OSCAR) prototype.
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Figure C.4: Annotated photo of the measurement setup of the nickel-reflected, 6-kg 237Np
sphere interrogated by AmBe and measured by two NoMAD, 3He detection systems and two
OSCAR, organic-scintillator detection systems.

C.3 Data Analysis

List-mode data (sorted lists of neutron detection times) are analyzed with factorial mo-

ment counting and random trigger intervals; successive intervals of time are inspected for

neutron multiplets, which are converted to the neutron double-multiplicity count rate [93,

102, 104]. The OSCAR uses 100-ns intervals and the NoMAD uses 1-µs intervals based on

Fig. 17 in Ref. [129]. In practice, the doubles-multiplicity rate is used with a calibration

curve to determine sample mass [114]. Statistical uncertainty is propagated analytically [94].

One of the NoMAD outputs is the list-mode data. After initial data pre-processing, the out-
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put of the OSCARs is list-mode data including the total pulse integral and the integral of

the pulse tail (24 ns after the pulse peak until the end of the pulse). The integrals are

needed to discriminate neutron and photon pulses (since the OSCARs are sensitive to both

types of radiation) based on a charge integration technique called pulse shape discrimination

(PSD) [71]. The PSD plot for this work is shown in Fig. C.5. The output of the PSD

algorithm is list-mode data for neutrons, only. The list-mode data were combined between

measurement systems of the same type.

Figure C.5: Pulse shape discrimination plot based on a charge integration technique.

C.4 Results and Discussion

The relative uncertainty was calculated based on the double-multiplicity rate and as-

sociated uncertainty for each type of measurement system as a function of measurement

time. The results are shown in Fig. C.6. It is observed that the uncertainty decreases as
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(measurement time)−1/2; the organic scintillator data is fit by

(Relative Uncertainty)OSCAR = 2.131(measurement time)−0.5, (C.1)

whereas the 3He data is fit by

(Relative Uncertainty)NoMAD = 53.58(measurement time)−0.5. (C.2)

The unit for relative uncertainty is percent and the unit for measurement time is minute in

Eqns (C.1) and (C.2). Interpolating for the OSCAR and extrapolating for the NoMAD, the

OSCAR requires 4.54 minutes to attain 1% relative uncertainty while the NoMAD requires

approximately 2 days to achieve the same. Extrapolating for both systems, the OSCAR

requires 2.72 seconds to attain 10% relative uncertainty while the NoMAD requires approx-

imately 28.7 minutes to achieve the same. Solving Eqns (C.1) and (C.2) shows that the

NoMAD requires a measurement time 632 times longer than the OSCAR.
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Figure C.6: Relative uncertainty as a function of measurement time for the NoMAD, 3He
system and the OSCAR, organic scintillator system.

Note that the uncertainty shown is for statistical uncertainty, only. Although the NoMAD

has greater neutron detection efficiency (13.7 times more based on total neutron counts) than

the OSCAR, the total number of inspection intervals/gates is less by four orders of magnitude

because the same measurement time is divided by a much larger interval. The shorter time

intervals of the OSCAR are due to the negligible dead time and because time-correlated

neutrons are not temporally smeared in moderating material such as the polyethylene in the

NoMAD.

A potential source of nonstatistical uncertainty in the OSCAR system is particle mis-

classification (e.g., classifying a photon as neutron) and neutron crosstalk (a single neutron

rendering multiple detections, though this phenomena has been analytically addressed in

Ref. [55]). A source of uncertainty for both detection systems is the chemical makeup of the

RTO. Due to the nonuniform distribution of impurities, it is believed that Tab. C.1 is incom-
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prehensive and notably omits curium [126]. Curium has a specific spontaneous fission rate,

therein emitting neutron multiplets that are misattributed to the neptunium. Los Alamos

National Laboratory has plans to perform further chemical analysis.

The beryllium in the AmBe interrogation source has a cross section for (n,2n) interactions,

which was observed in previous work [127]. This correlated signal from AmBe could dominate

the desired signal from neptunium from smaller samples and uncertainty in this double rate

could define a nonzero, asymptotic uncertainty. In the former case, higher-order multiplicity

rates (such as the triples rate) could be used; however, longer measurement times would be

required to attain the same precision as the doubles rate.

C.5 Conclusions

The 3He-based NoMAD and organic-scintillator-based OSCAR detection systems, which

are similar in form factor, are compared in their capacity to assay a 6-kg sphere of 237Np

by way of multiplicity counting. The systems are principally compared on precision and

the time it takes to achieve the same relative uncertainty in the double-multiplicity count

rate; the NoMAD is 632 times slower than the OSCAR. Besides relative comparisons, the

OSCAR can achieve excellent precision in under five minutes and moderate precision in under

three seconds, making the prototype highly reasonable for field deployment. The reduced

measurement times will, for example, enable inspectors to inspect more samples in lieu of

randomly selecting a hopefully representative subset. Reduced measurement times will also

reduce procedural and operational costs. Thus, it is recommended that organic-scintillator-

based systems be considered as upgrades to currently deployed 3He systems.

The OSCAR prototype has not been optimized for efficiency, yet the rapid-assay capa-

bility lends the system to applications beyond verification of operator-declared masses. For

example, the OSCAR could be reconfigured to affix to a pipe and assay moving material

as it passes, depending on the mass flow rate. Future work includes simulated studies of

pipe-monitoring applications, efficiency optimizations, and testing in field-like conditions.
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