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ABSTRACT

In this dissertation, I explore several aspects of Rydberg physics with laser spec-

troscopy. The experiments center around the use of a very deep, cavity-generated,

one-dimensional optical lattice in a cold atom sample. The optical lattice produces

elongated clouds of dense, cold atoms via dipole trapping and is able to generate

extreme light shifts in the atoms due to its high intensity. I describe experiments

which may be divided into two main classes. In the first, I use the dipole trap to

prepare a dense sample of atoms for photoassociation of Rb atom pairs into diatomic

Rydberg molecules. The Rydberg molecules are formed by low-energy scattering of

the Rydberg electron of one atom from the other atom, which is a ground-state atom.

This novel binding mechanism also has relevance for chemical physics. I present bind-

ing energy measurements for eight different cases of Rydberg molecules. The binding

energies reveal information about electron-atom collisions, such as their scattering

lengths, and about the spin couplings present within the molecular system. In the

second class of experiments, I introduce two proposed measurements in which the

optical lattice is ramped to very high intensity during the laser excitation, creating

AC Stark shifts in the transition frequencies. In one measurement, low-lying atomic

states are probed. Measurements of the light shifts are expected to yield data on

the dynamic polarizability and the photoionization cross section of the 5D3/2-state

in rubidium in a 1064-nm light field. I show corresponding preliminary experimen-

tal data. The polarizability and photo-ionization cross-section measurements will

provide tests of atomic structure theory, which is important both at a fundamental

level and for applications such as atomic clocks. In another proposed measurement,

xix



Rydberg atoms in the lattice experience ponderomotive shifts and strong mixing of

their angular-momentum states, allowing direct optical excitation of the lattice-mixed

high-angular-momentum states. I describe the theoretical basis and experimental

preparation for spectroscopically characterizing the lattice-mixed states. The ability

to optically excite selected high-angular-momentum states without the use of static

or RF fields may be useful for quantum information processing and simulation.
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CHAPTER I

Introduction

“If you’re an atom, moving along, singing your song...”

– Paul Berman

1.1 A model atom

The work in this thesis is centered on Rydberg atoms. Rydberg atoms are highly-

excited atoms, in which one of the electrons occupies a state with a very high principal

quantum number. Although Rydberg atoms have likely existed since not long after

the universe began [1], they were not discovered until the late 19th century. They were

predicted through the work of Johann Balmer and subsequently Johannes Rydberg

to explain absorption spectra [2, 3], building on the concepts introduced by Bohr’s

model of hydrogen.

Rydberg atoms are giant in size; they can be hundreds or thousands of times

larger than atoms in non-excited (i.e. ground) states, with observed sizes as large as

bacteria. They have many other unusual properties [4] including long decay times

and extreme sensitivity to electric fields [5] (and also to magnetic fields, for certain

Rydberg states [6]). Because the Rydberg electron is shielded from the nucleus by the

core electrons, Rydberg states closely resemble those of hydrogen regardless of the

atomic species. Their resemblance to hydrogen, which is the element with the closest
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to a fully analytical solution to its quantum mechanical description, makes them far

simpler to model and analyze. The long lifetimes of Rydberg atoms allow them to

be considered metastable states in many contexts. The simple atomic structure, long

lifetime, and exaggerated sensitivities of a Rydberg atom make it a model atom for

a wide variety of experiments.

The ultra-high sensitivities of Rydberg atoms to their environment opens up nu-

merous possibilities for technological applications as well as for their utilization as

sensitive probes of experimental physics. I elaborate on the former category in the

beginning of Chapter III; applications include atomic clocks, quantum sensing and

communications, and quantum information processing. The research here relates

to the latter category; it includes the examination of two situations in which the

loosely-bound Rydberg electron acts as a probe of some underlying physics. In the

Rydberg molecule experiment, a Rydberg electron probes a second atom that is in

its ground-state by scattering from it. The energies of the bound molecular states

contain information about the properties of electron-atom collisions. In the experi-

ment involving Rydberg atoms in an optical lattice, the Rydberg electron probes light

intensities that are spatially and periodically modulated over the same scale as the

size of the electron orbital.

1.2 Thesis framework

In this dissertation, I present three primary experiments. While the physics

probed by each of experiments is somewhat different, their experimental and the-

oretical “building blocks” overlap significantly; they all involve the study of Rydberg

states and/or light shifts, the preparation of cold atom samples, and the measuring of

ion counts as one of the excitation lasers is scanned over ∼0.5 GHz or more. I begin

in Chapter II by briefly describing some of the physics governing the methods I use

to optically cool and trap atoms in their ground-state. In Chapter III, I introduce
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Rydberg atoms and Rydberg molecules, noting some of their unusual properties and

abilities. I describe the central features of the experimental setup in Chapter IV,

including a near-concentric cavity generating an optical lattice dipole trap, a vari-

ety of laser systems, methods employed for atom detection, and optical phase-locked

loop (PLL) setups that are used for highly precise frequency control for two of the

excitation lasers.

The subsequent three chapters (V, VI, and VII) correspond to the three primary

experiments. The introductory information and motivations that are specific to each

experiment are discussed in the beginning of each chapter, such that these chapters

are largely self-contained. In Chapter V, I investigate rubidium (Rb) (24DJ+5S1/2)

Rydberg molecules bound by scattering of Rydberg electron and a neutral ground-

state atom. I measure and compare binding energies for eight combinations of spins

that are coupled within the molecular system, and discuss how the spin couplings af-

fect the binding energies. I explain an adapted theoretical model and use it with the

binding energy data to extract the four electron-atom scattering lengths describing

the scattering interactions. In Chapter VI, I discuss a measurement of the dynamic

polarizability and photoionization cross section of the Rb 5D3/2 state. Measuring

two atomic transitions that are light-shifted by a high-intensity 1064-nm dipole trap

reveals a relation of the polarizabilities of the three states involved; when two polar-

izabilities are known, the third may be solved for without having precise knowledge

of the 1064-nm intensity. The spectra linewidths will also allow a photoionization

cross-section measurement to be extracted. The experiment in Chapter VII builds

upon the polarizability experiment by extending the excitation scheme with a third

step, this time reaching Rydberg states. For Rydberg states, the shifts from optical

lattices are caused by the ponderomotive energies of the Rydberg electron instead of

the electric dipole interaction with the atom. I explain how the ponderomotive in-

teraction in an optical lattice causes mixing of the angular-momentum states at high
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optical intensities. The goal of the proposed experiment is to observe the lattice-

mixed state. To guide the design of the experiment, I consider calculated results of

adiabatic potential energy curves across one lattice period, as well as of line strengths,

photoionization rates and corresponding spectra, for a variety of possible excitation

schemes and principal quantum numbers. Finally, in Chapter VIII, I summarize the

main findings of the presented work and outline future directions.
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CHAPTER II

Manipulating Atoms with Light

“You should have learned this in kindergarten.”

– Paul Berman, on various parts of atomic physics theory

Laser light offers the most precise tools to excite and control matter at the level of

isolated atoms and molecules. In this chapter I provide brief, basic descriptions of sev-

eral light-matter interactions that are commonly used in atomic physics experiments,

including those presented in this thesis. I focus on the applications to rubidium (Rb)

because it is the primary element studied in this work. For comparison to an alternate

element, I also reference strontium (Sr).

2.1 Electronic structure

Each atomic species has its own signature structure of excited electronic states due

to its unique nuclear core and number of electrons. The differences in electronic struc-

ture among atomic species are the most dramatic in their low-energy states, where the

outermost electron(s) have significant spatial overlap with the regions of the nucleus

and lower-lying electrons. Highly-excited states (discussed in the next chapter), on

the other hand, tend to have more similarities than differences—especially for alkali

atoms—because the outermost electron shell largely occupies free space.
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2.1.1 Rb and Sr

Rubidium is an alkali metal, which means it has a single valence electron, and has

many similarities to hydrogen. In contrast, strontium is an alkaline-earth metal, with

two valence electrons and a level structure that is akin to helium. The two valence

electrons may be in either antiparallel or parallel alignment, which give singlet S = 0

or triplet S = 1 states.

Of the 32 Rb isotopes that can exist, only 2 are naturally occurring and relatively

stable. The composition of naturally occurring Rb is about three-quarters 85Rb and

one-quarter 87Rb, with respective nuclear spins of I = 5/2 and I = 3/2. While

85Rb is inherently stable, 87Rb is very slightly radioactive, decaying into 87Sr with

a half-life of about 50 billion years. Strontium has four stable, naturally occurring

isotopes. Three (84Sr, 86Sr, 88Sr) are bosonic, which together with their having two

valence electrons, implies that their nuclear spins are zero. The fermionic isotope,

87Sr, has a nuclear spin of I = 9/2. A summary of the isotopes of Rb and Sr is shown

in Table 2.1.

Isotope Natural abundance Fermionic/Bosonic Nuclear spin
85Rb 72.2% bosonic 5/2
87Rb 27.8% bosonic 3/2
84Sr 0.56% bosonic 0
86Sr 9.86% bosonic 0
87Sr 7.00% fermionic 9/2
88Sr 82.58% bosonic 0

Table 2.1: Isotopes of Rb and Sr.

2.2 Atoms in static or oscillating electric fields

This section draws equations and insights from Refs. [7–11], and I recommend

them for more in-depth analyses of the topics presented here.
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“You can all do this in your head. . . or your neighbor’s head.”

– Paul Berman

2.2.1 Static electric field

An external electric field interacts with and shifts atomic energy levels, a phe-

nomenon called the Stark effect. We first consider an atom in initial state i in a

weak static electric field ~E (i.e. the field is weak enough such that the energy shift

caused by the field is small relative to the level spacing of the atom). Non-degenerate

perturbation theory gives a first order correction to the energy of:

∆E
(1)
i =

〈
ψi

∣∣∣~d · ~E∣∣∣ψi〉

where ~d = e~r is the electric dipole moment of the atom. Because only ∆l = ±1

transitions are allowed, this term is zero for low-l, non-hydrogenic states because

these do not have degenerate states with different parities. Thus, for these states the

lowest-order nonvanishing energy correction is the second order term, known as the

quadratic Stark effect:

∆E
(2)
i =

∑
f 6=i

∣∣∣〈ψf ∣∣∣e~r · ~E∣∣∣ψi〉∣∣∣2
E

(0)
i − E

(0)
f

= −1

2
α0E2 (2.1)

where α0 is the static polarizability of the atomic state i (α := dz/Ez), and the

subscript f refers to the identity of a perturbing atomic state.

2.2.2 Oscillating electric field

In an oscillating electric field ~E(t) = ~E0 cos(ωt), an atomic state experiences a

second-order energy shift when the field frequency is far from resonance with every

other atomic state f , i.e. when |δf | � ΩR for all f states, where the Rabi frequency
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is ΩR = 〈ψf |e~r · ~E0|ψi〉 /~, the detuning is δf = ω − ωf , and the resonance frequency

is ωfi = (Ef − Ei)/~.

In the dressed-atom picture, the unperturbed eigenstates are

φn,k = ψne
−ikωt, (2.2)

where k is the number of photons exchanged between the atom and the field.

The energy shift is similar to equation (2.1), except the matrix element now con-

tains a time-dependent field. A time-average over one oscillation period selects only

transitions where k = ±1 and yields a factor of 1/2 compared to a static field, that

is,

〈〈φf,k|φi,0〉〉 =
ω

2π

2π/ω∫
0

〈
ψf

∣∣∣e~r · ~E0 cos (ωt)
∣∣∣ψieikωt〉 dt (2.3)

=


1

2

〈
ψf

∣∣∣e~r · ~E0

∣∣∣ψi〉 , if k = ±1

0, otherwise.

(2.4)

Now the energy shift is

∆E
(2)
i =

∑
f 6=i

1
4

∣∣∣〈ψf ∣∣∣e~r · ~E∣∣∣ψi〉∣∣∣2
E

(0)
i − E

(0)
f − ~ω

+

1
4

∣∣∣〈ψf ∣∣∣e~r · ~E∣∣∣ψi〉∣∣∣2
E

(0)
i − E

(0)
f + ~ω

=
∑
f 6=i

~ |ΩR|2

4

(
1

ωfi − ω
+

1

ωfi + ω

)

=
∑
f 6=i

~ |ΩR|2

4

(
2ωfi

ω2
fi − ω2

)
.

(2.5)

When the laser is much closer to one resonance than any others, the atom may be

approximated as a two-level system (with state i and a single state f). The detuning,

i.e. the driving field angular frequency relative to the transition angular frequency,

is now defined as simply δ. Note that the assumption |δ| � ΩR has already been
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made previously. If the detuning is small compared to the transition frequency (i.e.

|ω − ωfi| � ω + ωfi), the rotating-wave approximation may be made, and Eq. 2.5

becomes [7, 9]

∆E ≈ ±~ |ΩR|2

4δ
= ±~Γ2

8δ

I

Isat
, (2.6)

where the upper sign (+) is for the ground state (i) and the lower sign (-) is for the

excited state (f), and I and Isat are the actual intensity and saturation intensity,

respectively. The saturation intensity of an atomic transition is a useful intensity

scale; when the laser intensity is equal to it and the system is in steady state, the

excited population is 1/4 and an atom has an equal chance of decay by stimulated

emission as by spontaneous emission. The saturation intensity depends on the atomic

transition properties; for circularly-polarized light, Isat = 2π2~cΓ/(3λ3).

2.2.3 Dynamic polarizability

The polarizability due to an oscillating electric field is known as the dynamic po-

larizability (sometimes also referred to as AC polarizability). Eq. 2.5 may be written

alternatively in terms of dynamic polarizability as

∆E
(2)
i = −1

4
α(ω)E2

0 , (2.7)

where

α(ω) = −
∑
f 6=i

∣∣∣〈ψf ∣∣∣~d∣∣∣ψi〉∣∣∣2( 1

E
(0)
i − E

(0)
f − ~ω

+
1

E
(0)
i − E

(0)
f + ~ω

)
. (2.8)

The polarizability α(ω) depends on the m quantum numbers of the i and f states.

It is convenient to find an isotropic (rotationally invariant) polarizability, which is [8,
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11]

αI(ω) =
2

3~
∑
f 6=i

|〈f ||e~r||i〉|2ωfi
ω2
if − ω2

, (2.9)

where |〈f ||e~r||i〉| is the reduced matrix element.

For resonances to higher energy states, the sign of the polarizability is positive

for red-detuned frequencies (i.e. ω < ωfi for all f) and negative for blue-detuned

frequencies. For states with multiple transitions, the sign depends on the total con-

tributions from all of them. For positive polarizabilities, the AC Stark effect allows

one to optically trap atoms with a simple Gaussian beam, as discussed in the following

section.

2.3 Cooling and trapping

Because the main trapping tools in this work are an optical dipole trap and a

magneto-optical trap (MOT), I briefly summarize their underlying physics here.

2.3.1 Far-off resonance optical dipole trap (FORT)

The energy shift due to the AC Stark effect is the basis of the trapping forces in

an optical dipole trap. In a two-level system and in the limit of large detuning, the

energy potential for the initial state is, from Eq. 2.6,

U ≈ ~Γ2

8δ

I

Isat
(2.10)

The dipole force is simply the gradient of the potential [7],

F = −∇U ≈ −~Γ2

8δ

∇I
Isat

(2.11)

In this way, a gradient of intensity of far-off-resonant light I corresponds to a force.

A simple Gaussian beam has an intensity distribution that is maximum at the center,

10



which means that, depending on the sign of the detuning, the atom experiences

either repulsion or attraction to the radial center of the beam. A single uncollimated

beam with negative detuning provides trapping only along the radial direction. A

three-dimensional trap may be formed by using a tightly focused beam (as in optical

tweezers), a pair of crossed beams, or a retroreflected beam forming a one-dimensional

lattice.

In the experiments in this thesis, a 1064-nm one-dimensional lattice is used to

trap ground-state Rb atoms. For the Rb atoms in the ground-state (5S1/2), the

light is attractive because it is red-detuned from the primary transitions available

(780nm and 795nm). For the higher-lying levels used in the work here (5P , 5D, and

low-n Rydberg states), transitions of both positive and negative detunings must be

considered, but ultimately, all of these states are repulsed by the 1064-nm light.

2.3.2 Magneto-optical trap (MOT)

A MOT is formed by three pairs of counterpropagating beams that are circularly-

polarized opposite to each other and slightly-red-detuned from an atomic transition,

along with a quadrupole magnetic field.

The counterpropagating beams produce a friction force on the atoms via Doppler

cooling and a restoring force via the magnetic gradient. For a MOT operating on

a J = 0 to J = 1 transition, the total force of the MOT on an atom along the

z-direction is (see Ref. [7])

FMOT (z) =

[
4~k

I

Isat

2δ/Γ

[1 + (2δ/Γ)2]2

](
kv +

gµB
~

dB

dz
z

)
, (2.12)

where k = 2π/λ is the magnitude of the wavevector of the cooling light, I is the

intensity, Isat is the saturation intensity of the transition, δ is the laser detuning from

the transition, Γ is the transition rate, gµB is the magnetic sensitivity of the sublevel
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of the excited state, and dB/dz is the gradient of the magnetic field.

“If [Doppler cooling] were the only force, [the atom] would keep getting colder

and colder, till it needed a muffler.”

– Paul Berman

The maximum velocity an atom may have to be captured in the MOT is about

vc = Γ/k, which corresponds to a temperature on the order of Tc = Γ2m/(k2kB).

Two temperature cooling limits may be relevant. The Doppler cooling limit is the

minimum temperature achievable by Doppler cooling alone, TD = ~Γ/(2kB). If other

types of cooling are performed (e.g. polarization gradient cooling), an even lower

temperature may be reached. The minimum temperature achievable by laser cooling

with continuous interaction of the atoms with the light is the one half of the recoil

limit Tr, which is given by Tr = ~2k2/(kBm). The three temperatures Tc, TD, and Tr

are given for several cooling transitions of Sr [12] and Rb in Table 2.2.

Transition Γ/2π λ Isat Tc vc TD Tr
(MHz) (nm) (mW/cm2) (K) (m/s) (K) (K)

(a) 6.07 780 3.6 0.230 4.7 1.5×10−4 3.6×10−7

(b) 30.5 461 40.7 2.1 14.1 7.2×10−4 1.0×10−6

(c) 0.0074 689 0.0030 2.7×10−7 0.0051 1.8×10−7 4.6×10−7

Table 2.2: Some relevant parameters for MOT cooling transitions in Rb and Sr:
(a) Rb, 2S1/2 −2 P3/2; (b) Sr, 1S0 −1 P1; (c) Sr, 1S0 −3 P1.

In 85(87)Rb, the main cooling transition is 5S1/2[F = 3(2)] → 5P3/2[F = 4(3)].

The transition is not closed, i.e. a few atoms are excited from the same initial state

to 5P3/2[F = 3(2)], and then may escape the cooling cycle by decaying to the lower

hyperfine ground state, 5S1/2[F = 2(1)]. Therefore, a repumper beam on the tran-

sition 5S1/2[F = 2(1)] → 5P3/2[F = 3(2)] is also needed. Creating a MOT for Sr is

significantly more complicated because of the electronic structure of the species. For

the best cooling and retaining of atoms in the trap, two cooling transitions and one
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or more repumping transitions must be used.
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CHAPTER III

Rydberg Atoms and Molecules

“Here you are, happy little atom, sitting in the medium. All of a sudden,

a pulse comes by and briefly excites you...”

– Paul Berman

3.1 Rydberg atoms

A Rydberg atom is an atom with a valence electron in a highly-excited state.

The expanded volume of empty space between the valence electron’s shell and the

nuclear core has earned them the nickname “fluffy atoms,” and their creation has

been likened to microwaving popcorn. Because of the small overlap between the far-

out Rydberg electron and the inner atomic core, Rydberg atoms are hydrogen-like

systems and their energies and wavefunctions can be derived analytically by making

small corrections to the corresponding solutions of the hydrogen atom.

Rydberg atoms have a number of interesting and useful properties arising from

the large separation between the nucleus and Rydberg electron. They are extremely

sensitive to external fields and to each other, making them a prime candidate for

DC [5, 13] and radio frequency (RF) electric-field sensors [14, 15] and for imaging

tools [16]. The wide selection of Rydberg states available, their relatively close energy

spacing, and the fact that external fields can fine-tune their properties, makes Rydberg
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atoms impressively versatile and leads to their sensitivity over an extremely wide range

of frequencies including the entire RF band [17]. Such high and tunable responsivity

to RF fields has generated rapidly-growing interest in exploiting Rydberg atoms for

quantum technologies [18] such as quantum communications [19–21], which for a

given application may offer various advantages over corresponding classical-based

technologies such as superior security, better sensitivity, and smaller physical sizes of

the systems. Rydberg atoms are also noteworthy candidates for qubits for quantum

information processing (QIP) [22, 23]. It remains to be seen in the coming years and

decades how the unique set of advantages and disadvantages of Rydberg atoms for

QIP will fare in the race to develop fully-functioning quantum computers.

Besides having direct applications, Rydberg atoms also offer an excellent quan-

tum playground for testing various theories of fundamental physics and exploring

novel physics. For the most part, the experiments in this thesis fall in this category.

Improving physics knowledge not only spurs the development and new growth of

theories, but also indirectly benefits existing technologies (e.g. knowledge of polariz-

abilities can improve atomic clock performance) and opens doors to imagine entirely

new ones.

In a Rydberg atom, the outer electron is much farther away from the nucleus

than the other electrons are, which allows the nucleus and electrons to be treated

collectively as a singly-charged core. The Rydberg electron energies are then given

approximately by a modified Bohr formula where the principal quantum number is

replaced by an effective principal quantum number n∗:

ER(n, `) = −hc R
n∗2

where R is the mass-corrected Rydberg constant, R = R∞ [M/(me +M)], where

me and M are the respective masses of the electron and the inner ionic core, and
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the Rydberg constant R∞ is defined as hcR∞ = (e2/4πε0)2me/2~2. For Rb, R =

109736.605cm−1 [4]. The effective principal quantum number n∗ = n− δn`j accounts

for the distortion of Rydberg electron wavefunction by the core. The quantum defect

δn`j depends primarily on the atomic species and `, but also slightly on n and j. The

higher the `, the less the Rydberg electron penetrates the core, and the closer the

energies (and wavefunctions) are to those of hydrogen. The Rydberg-Ritz formula

gives an expansion for δn`j:

δn`j = δ0 +
δ2

(n− δ0)2
+

δ4

(n− δ0)4
+

δ6

(n− δ0)6
+

δ8

(n− δ0)8
+ . . .

For example, the quantum defects of 85Rb are listed in Table 3.1.

n`j ns1/2 np1/2 np3/2 nd3/2 nd5/2 nfj
δ0 3.1311804 2.6548849 2.6416737 1.3480917 1.3464657 0.016312
δ2 0.1784 0.2900 0.2950 -0.6029 -0.5960 -0.064007
δ4 -1.8 -7.904 -0.97495 -1.50517 -1.50517 -0.36005
δ6 − 116.4373 14.6001 -2.4206 -2.4206 3.239
δ8 − -405.907 -44.7265 19.736 19.736 −

Table 3.1: 85Rb quantum defects [24, 25]

The exaggerated properties of Rydberg atoms are reflected in how they scale with

n∗. Table 3.2 lists some of the most important scaling laws.

Orbital radius n∗2

Radiative lifetime (low-`) n∗3

Radiative lifetime (high-`) n∗5

Fine structure splitting (low-`) n∗−3

Fine structure splitting (high-`) n∗−5

Kepler frequency n∗−3

Ionization electric field (low-`) n∗−4

DC polarizability n∗7

Transition dipole moment n∗2

Van der Waals interactions n∗11

Electric dipole interactions n∗4

Table 3.2: Scaling Rydberg atom properties with effective principal quantum number.
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3.2 Rydberg state excitation and detection

Rydberg atoms may be created by charge exchange, electron impact, and pho-

toexcitation [4]. In this work, the latter method is used. Optical excitation with

lasers allows a specific target Rydberg state to be reached by controlling the energy

of the incident photon. The cross section σ(n) for optical Rydberg excitation is [4]:

σ(n) =
σPI

∆Wn3

where ∆W is the energy resolution of the excitation. For Rb, σPI = 0.10×10−18cm2.

In most of the experiments presented here, I detect Rydberg atoms using field

ionization, i.e. stripping away the loosely-bound Rydberg electron and collecting the

resulting positive ion on a microchannel plate (MCP). Most cold atom experiments

similarly field ionize the Rydberg atoms in order to detect them. Some alternative

and non-destructive methods are optical and based on electromagnetically induced

transparency (EIT), which can allow detection of the Rydberg level structure [26] or

of the Rydberg state population [27].

3.2.1 Rydberg atoms in optical lattices

Rydberg atoms behave differently in optical lattices than ground-state atoms be-

cause their sizes are comparable with optical wavelengths. In this regime, the light

shift comes from the ponderomotive potential VP of the quasi-free electron that is

driven by the far-off-resonant light to rapidly oscillate. The ponderomotive potential

is

VP =
e2|E|2

4meω2
. (3.1)

The potentials experienced by Rydberg atom are a spatial average of the position-

dependent ponderomotive energy over the spatial extent of the Rydberg electron.

When VP is large compared to the energy separation between states of different `
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and the Rydberg atom diameter is on the same scale as the lattice periodicity (such

that the potential varies significantly over the span of the Rydberg electronic wave-

function), the lattice mixes the ` states. For high-angular-momentum states, whose

electronic wavefunctions are of different shapes, the lattice breaks the state degener-

acy and creates a rich structure.

3.3 Rydberg molecules

Rydberg molecules [28] are molecules in which one or more of the atoms is in a

Rydberg state. They have binding mechanisms that are unique compared to any other

type of molecule, and have exotic properties including extremely long bond lengths

and large dipole moments. Several classes of Rydberg molecules exist, including those

bound by the scattering interaction of a Rydberg atom’s electron with a ground-state

atom, multiple Rydberg atoms bound by a long-range multipolar interaction, and

molecules consisting of Rydberg atoms and ions. The first class are the earliest-

discovered [28, 29] and have received the most attention. A nice review is given in

Ref. [30]. They are the type I summarize here and experimentally investigate in

Chapter V.

The Rydberg molecule system formed by a Rydberg atom and a ground-state

atom consists of three bodies: an ionic core with a Rydberg electron that mediates

the interatomic bond by its local interaction with the ground-state atom. The ground-

state atom perturbs the Rydberg electron wavefunction, which leads the molecular

potential energy curves to be oscillatory and correspond to the wavefunction density

of the Rydberg electron. The strength of the interaction depends on the relative ki-

netic energy of the electron and atom, as well as their relative spin orientation. This

class of Rydberg molecules can further be divided into three subclasses: 1) trilobite

molecules [31], in which the Rydberg electron occupies a superposition of hydrogenic

states, 2) butterfly molecules [32], whose potentials arise from the p-wave shape res-
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onance present in alkali-metal atoms, and 3) low-` Rydberg molecules [29]. Trilobite

and butterfly Rydberg molecules possess electric dipole moments on the order of

1 kilodebye, while for low-` Rydberg molecules they are on the order of 1 debye.
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CHAPTER IV

Experimental Setup

“Now you have all the tools you need in Life!”

– Paul Berman

The following chapter details the experimental setup and techniques. A key feature

of the experimental apparatus is its in-vacuum optical cavity, which sustains a 1064-

nm one-dimensional optical lattice. At the center of the lattice region, a magneto-

optical trap (MOT) is produced and provides the initial cooling and collection of the

atoms before they are loaded into the lattice. The lattice trap forms an elongated,

dense atomic cloud [full-width half-maximum (FWHM) of the density distribution

about 18 µm, length up to 1.6 mm].

The optical lattice serves multiple purposes for the experiments described in this

work. In the Rydberg molecule experiment, though the lattice is off during the

excitation, the lattice increases the atomic density in the excitation region, which is

necessary for the photo-association rate to be large enough such that molecular states

become observable. Additionally, unlike some setups for studies of Rydberg molecules,

this setup facilitates either Rb isotope to be cooled and trapped, and allows high

repetition rate for the experimental cycle (100 Hz). In the lattice-mixed-Rydberg-

state experiment and polarizability experiment, the lattice light is on during excitation
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and induces massive (∼GHz) light shifts. In the former experiment, the light shifts

mix Rydberg F character into the hydrogenic manifold, so that the hydrogenic states

may be reached with a three-photon transition and no additional fields. For the

polarizability experiment, the relative difference in light shifts in the 5P and 5D

levels allows an extraction of the 5D polarizabilities.

Much of the setup has been described in a previous thesis [33] and is only briefly

reviewed here, while the more recent additions and improvements are described in

more detail. The primary changes consist of 1) a frequency-tracking mechanism with

improved accuracy for spectroscopic measurements, 2) an avalanche photodiode for

sensitive measurements of light absorption, and 3) the addition of five new laser

systems and corresponding setups for their frequency control.

4.1 Magneto-optical trap

In each of the three experiments, a Rb atom reservoir is heated to produce an

atomic vapor which then fills the connected vacuum chamber. The atoms are prepared

in MOT and loaded into a spatially overlapping 1-D optical lattice.

The MOT light source is an amplified distributed Bragg reflector (DBR) laser sys-

tem (linewidth ∼ 1 MHz), operating close to the 5S1/2 → 5P3/2 transition. The MOT

repumper is a homemade external cavity diode laser (ECDL). A second, identical

amplified DBR laser system is used for absorption imaging of the atoms and also for

coupling the 5S1/2 and 5P3/2 levels when performing two-photon Rydberg excitation.

Each of the three aforementioned 780-nm lasers may be locked at a frequency

close to the respective atomic resonance using saturation absorption spectroscopy on

a reference Rb vapor cell.
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4.2 Intracavity, near-concentric optical lattice

The central component of the setup is an in-vacuum, 1064-nm, 1-D optical lattice

in a near-concentric cavity. The cavity was designed and built by Yun-Jhih Chen and

is well-described in her thesis [33].

4.2.1 1064-nm laser

The light used in the cavity is produced by a cw narrow-band laser (IPG Photonics

YLR-10-1064-LP-SF) at wavelength λ = 1064 nm. I repaired the laser unit once,

when one of its internal power modules failed and caused the laser to completely stop

functioning.

Though the laser has a short-term linewidth of 100 kHz, it has large fluctuations on

the timescale of seconds and of minutes. Instead of stabilizing the 1064-nm frequency,

the cavity length is actively controlled to match the fluctuating frequency, as will be

described in more detail.

4.2.2 Design of the cavity

The cavity is a near-concentric design, meaning that the locations where each of

the two mirrors focus are both nearly at the midpoint between the mirrors, i.e. the

distance between the mirrors L is about equal to twice the radius of curvature of

the mirrors r. The mirror locations are intentionally offset slightly closer together

in order to make the cavity stable (i.e. robust against small angular misalignment)

so that L = 2(r − δ). The concentric type of cavity was chosen because it has the

highest intensity contrast between the intensity at the center, where the atoms are

located (and thus the benefit of intensity is maximal), and the intensity at the mirror

surfaces, where there is a risk of damage.

A pair of coupling lenses focuses the 1064-nm beam at the center of the cavity.

The focal length of the lenses (40 mm) was selected to best match the waist of the
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incoming beam.

An estimate of the displacement δ and of other cavity parameters was made by

measuring the splitting between a Hermite-Gaussian (HG) mode and the HG mode

closest in frequency (∆νA−∆νT ) compared to the splitting between two of the same

HG modes at sequential orders (∆νA). Their ratio (∆νA−∆νT/∆νA) approximately

equals 2
π

√
δ
r
. Since the mirror radius r is assumed to be as specified by the man-

ufacturer, a value of δ (or equivalently, L) may be extracted. The measured ratio

of 0.030 ± 0.014 translates to δ ≈ 0.056mm and L ≈ 49.9mm. When r and δ are

known, the free spectral range (FSR) and beam waists at various locations may also

be derived. The relations are shown in Table 4.1 (see also Ref. [33]).

Notation Relation(s) Value

Mirror radius r − 25 mm

Axial-transverse ratio ∆νA−∆νT
∆νA

− 0.030(14)

Displacement of each
mirror relative to
position for perfect
concentric-cavity

δ r
2 + r

2 cos
[
π
(

1− ∆νA−∆νT
∆νA

)]
0.06(5) mm

Free spectral range; FSR; c/2nL ≈ c/4r 3.0 GHz

Axial mode spacing ∆νA

Axial mode spacing
minus transverse
mode spacing

∆νA −∆νT

c
2nL

[
1− 1

π cos−1
(

1− L
r

)]
90(42) MHz

≈ c

2rπ

√
δ

r
Beam waist

at cavity center
w0

√
Lλ
nπ

√
r

2L −
1
4 ≈

√
rλ
π

√
δ
r

20(5) µm

Beam waist
at cavity mirrors

w1

√
Lλ
nπ

√
r2

2Lr−L2 ≈
√

rλ
π

√
r
δ

420 µm

(+160/-70)µm

Optimal beam waist
at input (outside
of focusing lenses)

w′1 2.411w1 1020µm

(+380/-180)µm

Table 4.1: Cavity geometric parameters
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The performance of cavity depends on the optical properties of the mirrors. The

absorption and transmission of the mirrors were measured to predict the finesse and

coupling efficiency, as well as the optical circulating power, which is useful for estimat-

ing optical intensity. These parameters are compiled in Table 4.2 (see also Ref. [33]).

Notation Definition Value

Reflection, specified R > 99.5%

Absorption, measured Ameas 0.28%

Transmission, measured Tmeas 0.14%

Finesse, F
theoretical π

√
R/(1−R) > 630

actual 600

Coupling Efficiency,

for perfect beam mode T 2
meas/(Ameas + Tmeas)

2 11%

typical measured < 11%

Circulating-power-to-
transmitted-power ratio

P0

Ptrans

for lossless mirrors & optics F/π 200

accounting for losses ∼ (0.9 · Tmeas)−1 790

Table 4.2: Cavity optical parameters

The optical intensity is a very important metric, as it determines the light shifts of

the trapped atoms; however, it cannot be measured directly. A good estimate of the

intensity at a given time can be made by using the approximate beam waist at the

trap center (w0) along with the ratio of the circulating power to the transmitted power

(P0/Ptrans), and measuring the transmitted power. The ratio of powers, although it

has some uncertainty, is particularly helpful because it is a fixed relation and enables

the transmitted power to be used as an intensity reference. In contrast, the coupling

efficiency is not fixed because it is sensitive to the alignment of the beam into the

cavity.

The maximum optical intensity at the location of the trapped atoms is twice the

average intensity which is in turn twice the circulating intensity, since the sinusoidal
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electric field (standing wave) of the light doubles at its antinodes, such that:

Imax = 2Iavg = 4Icir = 4× 2P0

πw2
0

The ratio of Imax to the power that is transmitted through the cavity is then:

Imax
Ptrans

=
8

πw2
0

× P0

Ptrans

Using the values in Tables 4.1 and 4.2, Imax is estimated to be about 5.0(+4.4/ −

1.6)× 109 W/m2 per mW of transmitted power.

An alternative method to estimate the optical intensity at the atoms is to use the

atoms themselves. The trapped atoms experience a light shift proportional to their

state polarizability and the light intensity at the location of the atoms. The ratio of

the ground-state light shift to the transmitted power is estimated to be 18 MHz/mW.

Using the theoretical value of the ground-state polarizability at 1064nm (687.3(5)

×4πε0a
3
0 [34]), this translates to 9.9 × 108 W/m2 per mW of transmitted power.

The biggest uncertainty contribution is that of axial mode spacing. There is also

uncertainty in the transmission of the cavity mirror and the subsequent optics (lenses

and vacuum chamber windows) that the beam passes through before being measured,

and uncertainty in the power measurement itself.

The maximum achievable intensity in the cavity is primarily limited by the reflec-

tivity of the cavity mirrors. Absorptive and scattering losses limit circulating power

for an input beam of fixed power and geometry, and absorptive loss also effectively

restricts the power the cavity is likely to sustain without damage. The intensity could

be improved by replacing the mirrors with ones that have extremely low absorptive

loss. For example, the recently-developed technology of single crystal dielectric coat-

ings are quoted to have absorptive and scattering losses less than a few ppm [35],

which is nearly three orders of magnitude better than the mirrors in the existing
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setup. The coupling efficiency of the input light could also be improved by using a

spatial light modulator to correct the phase front of the beam.

4.2.3 Control of the cavity

The cavity mirrors are mounted on piezos for fine control of the cavity alignment.

The top mirror of the vertical cavity is mounted on a ring piezo, and the bottom

mirror is mounted on a set of three piezos, in a tripod configuration, with different

surfaces (one with a flat surface, one with a V-shaped groove, and one with three

sapphire balls). The ring piezo is used for active stabilization of the cavity length so

that a Gaussian cavity mode frequency matches the laser frequency while the laser

frequency passively drifts. One of the tripod piezos is used to manually adjust the

cavity mode to be near the appropriate laser frequency before the ring-piezo lock is

turned on.

4.2.4 Atomic density in the lattice

The atomic density in an optical dipole trap loaded from a MOT depends on many

factors including the dipole trap waist and depth, the MOT background density, the

intensities and detunings of the MOT primary and repumper light, and the loading

time [36]. The lattice loading becomes very inefficient when the depth exceeds about

50 MHz. The atomic density in the lattice trap here is estimated via absorption

imaging. The observed area density and diameter of the atomic cloud are used to

calculate the volume density assuming cylindrical symmetry. An optimized density

using a trap at a shallow, constant depth (∼30 MHz) was found with this method

to be ≈ 2× 1011cm−3 [33] in the center of the trap. The actual maximum density is

expected to be about 4 times higher due to the longitudinal compression in the lattice

sites, which is not resolvable with the absorption imaging. When the light intensity

of the dipole trap is dynamically ramped for tens of microseconds before the atoms
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are probed, even higher densities may be acquired [33].

4.3 Lasers for Rydberg excitation

4.3.1 Laser wavelengths and basic designs

Two different schemes for Rydberg excitation are used for the experiments de-

scribed in this thesis (shown in Fig. 4.1). The first is a two-photon excitation through

the intermediate state 5P3/2, by which nS or nD Rydberg states are accessible with a

480nm laser. The second is three-photon excitation through the intermediate states

5P1/2 and 5D3/2 and reaches nP or nF states via light around 1260-1290nm. The first

scheme is logistically simpler since it requires one laser fewer, and had already been

set up for previous experiments. The second scheme was implemented particularly

with the lattice-mixed-Rydberg-state experiment in view, since in Rb, the nF states

lie closer to the nearest hydrogenic manifold than the nS or nD states do and are

mixed more strongly with them (as explained in more detail in Chapter VII). Further-

more, whereas the 5P3/2 state has already been measured [37], the second scheme will

allow a polarizability measurement and photoionization cross-section measurement of

a new state, i.e. 5D3/2; this is discussed in Chapter VI.

5P1/2

5D3/2

D
780

5S1/2

~480 nm

780 nm

762 nm

795 nm

D
762

5P3/2

nDJ

5S1/2

nFJ~1260 nm

(a) (b)

Figure 4.1: Level diagrams of two schemes used for Rydberg excitation in Rb.
(a) Two-photon excitation used for the Rydberg molecule experiment. (b) Three-
photon excitation used for the lattice-mixed-Rydberg-state experiment.
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For the two-photon Rydberg excitation, the 780-nm light is provided by a DBR

laser that has the same design as the 780-nm MOT laser. The 480-nm light comes

from a tunable 960-nm laser that is amplified with a tapered amplifier (TA) and

subsequently frequency-doubled in a second-harmonic-generation (SHG) cavity. The

780-nm light is typically detuned from the intermediate state by 500-1000 MHz in

order to diminish scattering-induced heating.

For the three-photon scheme, the two red lasers (795nm and 762nm) used for

excitation are compact ECDLs. Two additional 795nm and 762nm ECDLs are used as

frequency references. The four lasers are also used in the polarizability measurement

experiment, in which there are no Rydberg excitations. The 1260-nm laser provides

excitation light for the final step to the Rydberg states in the lattice-mixed-Rydberg-

state experiment. It is a widely tunable (1230-1290nm) ECDL with a cateye design.

In the lattice-mixed-Rydberg-state experiment, the 795nm is at or near resonance

with the first intermediate state (5P1/2), which is AC-Stark shifted by the high in-

tensity 1064-nm light. The 762-nm light is kept off-resonance from the second inter-

mediate state (5D3/2) to prevent population in it. Avoiding population of the 5D3/2

state is desired since the atoms would ionize easily via both Penning ionization and

photoionization from the 1064-nm light.

4.3.2 Locking and scanning the laser frequencies

The primary experiments described in this thesis are spectroscopy experiments, in

which one of the excitation laser frequencies is scanned, and a signal—in the present

case, typically ion counts—is recorded. To adequately explore the physics in view,

the frequency scans must be at least several hundreds of MHz, and in some cases

multiple GHz. Adjusting a laser frequency over this range with high precision (both

of the scanning steps and of the absolute frequency), can prove to be a significant

experimental challenge.
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On a similar note, even the frequency locking of the excitation lasers that are

not scanned requires extra consideration. In a typical setup for laser excitation,

the lasers are stabilized at or near the resonances of the atomic transitions, which

usually makes it straightforward to use the atomic transitions as absolute frequency

references (for example, performing saturation absorption spectroscopy in separate

vapor cells). Acousto-optic modulators (AOMs) may provide an offset of at most a

few hundred MHz from the transition and a scanning range of tens of MHz. However,

for the polarizability and lattice-mixed-Rydberg-state experiments, the transitions of

the atoms in the experiment chamber are shifted on the order of GHz from the field-

free transitions, which means that the lasers must be stabilized at a greater offset

than usual from the field-free transitions.

4.3.2.1 Locking and scanning with Fabry-Pérot interferometers (FPIs)

Several FPIs are used in the experiments.

Fixed-FSR FPI for 780nm In the long-range Rydberg molecule experiment, the

atoms are not AC Stark shifted, but a large detuning from the intermediate state is

still desired. To accommodate this, the red lower excitation (5S1/2 → 5P3/2) laser

is locked to a reference signal from an FPI cavity. The FPI has no mechanism for

tuning its FSR (except on long timescales by changing the temperature of the system).

To estimate the absolute frequency offset, the FPI resonances are compared to the

atomic transitions. The same FPI has been used for the 795-nm and 762-nm lasers

previously, but their frequency control has since been replaced with a more versatile

method (see subsection 4.3.2.2).

Pressure-tuned FPI for 960nm The 960-nm laser for the blue upper-transition

(5P3/2 → 24DJ) is locked to a separate FPI, which is constructed such that its reso-

nances may be tuned by controlling the internal air pressure using a motorized linear
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stage. The FPI’s tunability and calibration are of critical importance to the Rydberg

molecular binding energy measurements that were made, and they are explained in

detail in Appendix B.

FPI with fiber electro-optic modulator (EOM) for 1260nm The 1260nm

uses a third FPI. A portion of the beam is split off and sent through a fiber EOM,

which adds frequency sidebands via an RF signal generator. The EOM is capable

of modulating the 1260nm beam up to 20 GHz (in first order; higher orders are

also produced). One of the sidebands of the modulated beam is locked to the FPI.

When the RF is scanned, the frequency of the sideband stays constant while the

unmodulated beam frequency follows the scan. As an alternative to the FPI, an

electromagnetically induced transparency (EIT) lock with a Rb vapor cell (similar to

the scheme in Ref. [38] may be used.

Limitations Using FPI resonances for locking the lasers has a few potential draw-

backs in general. The absolute frequency offset information takes a few minutes to

obtain. FPIs are subject to small temperature fluctuations (having already been

diminished by active temperature stabilization), which can cause the resonances to

fluctuate within ∼1 MHz. Perhaps the most significant limitation is that the two

FPIs that are usable for the red and 1260-nm lasers are not tunable. Fortunately, all

of these factors are negligible for the Rydberg molecule experiment and manageable

for the others.

4.3.2.2 Locking and scanning with optical phase-locked loops (PLLs) for

795nm and 762nm

Optical phase-locked loops (PLLs) offer the ability to lock and scan a laser to a

second laser with GHz offset frequencies and extremely high precision. A tradeoff is

that each PLL requires an extra laser and as well as extra electronics and significant
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time to set up. I use two PLLs, one for 795nm and one for 762nm.

A diagram of setup of the phase-locked loops is shown in Fig. 4.2. In each master-

slave system, a beam is split off from each of the two lasers. The two split-off beams

are aligned to spatially interfere on a photodiode (PD). The AC component of the PD

signal is amplified and sent to an offset phase lock servo (OPLS) and compared to a

RF signal that is at a controlled frequency. The output of the OPLS is attenuated and

fed to the current control of the slave laser. The master lasers are also each locked

to atomic vapor cell references. The 795-nm master laser uses a typical saturati

on absorption spectroscopy scheme, while the 762-nm laser is referenced to an EIT

signal where the stabilized 795-nm laser is used as a fixed-frequency EIT probe on

the 5S1/2 → 5P1/2 transition. The EIT coupler (762-nm laser) is locked on the EIT

resonance. To allow for peak locking, each of the atomic references are modulated

through an oscillating magnetic field that is produced by modulating the current

through wires coiled around the vapor cells.

Figure 4.2: Setup of phase-locked loops (PLLs) and atomic frequency locks. Green
semi-spheres denote photodiodes. AOM, Acousto-optic modulator; FL, focusing lens;
λ/2, half-wave plate; λ/4, quarter-wave plate.

The level diagram of the two isotopes and the transitions accessed by the four

lasers are shown in Fig. 4.3. The available scan ranges of the offset phase lock servos
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(D2-135, Vescent Photonics) have minimum offsets of hundreds of MHz. In order

for the slave lasers to be able to access the field-free resonances as well as the whole

range of light-shifted resonances, the master lasers are locked to transitions of the

other Rb isotope (87Rb). The 795-nm master laser is locked to a transition lower in

frequency than the primary ones to be accessed by the slave laser, and the 762-nm

to a higher-frequency one. In this way, each laser may respectively access its entire

relevant range without ever requiring its PLL offset frequency to be too small.

Figure 4.3: Level diagram and laser locking scheme of excitation master and slave
lasers. The master lasers are locked to atomic vapor cells on 87Rb lines. The slave
lasers are PLL-locked to the master lasers, and passed to the atoms in the lattice
via AOMs, as shown in Fig. 4.2. The slave lasers drive transitions in 85Rb and are
scanned via scanning the RF sources in the PLLs. Numbers in gray are hyperfine
splitting frequencies in MHz. Each relative frequency between a master laser and a
slave laser is the PLL offset frequency plus an offset from an AOM. The relations
between the PLL frequency offsets and the detunings of the slave lasers from the
field-free resonances, accounting for the isotope differences and the AOM offsets, are
shown in the box. The relative frequencies are mainly derived from Ref. [39] as well
as Ref. [40–43].
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The laser detunings ∆1 and ∆2 should be chosen to be able to access the transitions

up to the expected maximum light shifts (∼ +1.5 GHz for 795nm and ∼ −0.5 GHz for

762nm), and for transitions through both intermediate hyperfine states (5P1/2 F
′ = 2

and F ′ = 3), which are 360 MHz apart. Then the target PLL offset frequencies may

be found using the relation in Fig. 4.3. Accordingly, we find:

∆1 = 0 to +1.86 GHz −→ ∆PLL1 − fAOM1 = +1.52 to + 3.38 GHz

∆2 = 0 to − 0.86 GHz −→ ∆PLL2 − fAOM2 = −0.39 to − 1.25 GHz

The 16x multiplier setting on the OPLSs permits a range of 480− 3840 MHz, which

fully covers both of the PLL offset frequency ranges. At this setting, the RF generators

should be set at 1/16th of the target frequencies, i.e. 85-201 MHz for 795 nm and

54-108 MHz for 762 nm.

4.3.3 Summary

Table 4.3 shows a summary of the ten lasers used in the primary experiments.

4.4 Electric field control

Six independent electrode rods around the perimeter of the 1064-nm cavity allow

control of electric fields in the two dimensions transverse to the lattice. The electrodes

serve several purposes. First, they compensate for small stray electric fields (to which

Rydberg atoms are very sensitive). Ref. [33] explains how the compensation voltages

are found in this setup using Stark spectroscopy. Secondly, the electrodes can apply

fields up to about 130 V/cm. The fields can be applied during laser excitation (e.g.

for studying dipole moments of Rydberg molecules), and/or the fields can ionize

some Rydberg states post-excitation (for example, fields at the specified strengths

can ionize low-angular-momentum states with principal quantum numbers ranging
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from the 40s and above). Thirdly, the electrodes help to steer the ions toward the

MCP detector.

4.5 Detection Methods

For the experiments in this thesis, the primary ways of making quantitative assess-

ments of the atoms and molecules are by counting the ions originating from excited

states and sometimes by measuring the absorption of on-resonance light. It is also

useful to monitor the atoms by imaging their fluorescence in the MOT, but this signal

is generally more complicated to interpret quantitatively.

4.5.1 Ion detection and time of flight imaging

The primary data signal is an ion count rate, which destructively measures some

atomic and molecular states. It usually corresponds to the number of Rydberg prod-

ucts (atoms or molecules) that had been present previously, because the Rydberg

electrons have energies close to the ionization threshold and in most cases ionize very

easily compared to lower-energy states. The 5D3/2 states, whose valence electrons

already have about 75% of the energy needed for ionization, also ionize fairly easily

and are detected via ion counts in the polarizability experiment (Chapter VI). De-

pending on the details of the scenario, the ions from Rydberg or 5D3/2 states may

be formed through a variety of physical processes. Ionization may be induced by

applying external fields, i.e. electric-field ionization (for Rydberg states) or 1064-nm

photoionization. It can also happen spontaneously through black-body photoioniza-

tion or through collisions of excited atoms (via processes such as Penning ionization,

Hornbeck-Molnar ionization, or ion pair formation [44–46]).

An MCP detector [47] pulls in the positive ions by the very large negative voltage

on its front plate. The collision of an ion on the plate releases a large number of

electrons, which create an electric field pulse. The high-frequency component of the
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pulse is detected and counted by a photon counter as a single event. If desired,

further information about the Rydberg state that generated the ion and/or about

the ionization process can be gained from the spatial location of the ion collision

on the MCP front plate [48] and/or from the timing of its collision. The timing of

the ions’ arrivals is used to distinguish Rb+ from Rb +
2 , for example, in the Rydberg

molecule experiment (see Fig. 5.2). The timing information also has the potential to

be used in combination with a ramped field-ionization pulse to discriminate among

Rydberg states of different quantum numbers [49].

4.5.2 Absorption detection

To perform absorption imaging, light on resonance with 5S1/2 → 5P3/2 (780nm)

or 5S1/2 → 5P1/2 (795nm) is sent through the atom cloud and the exiting intensity I

is monitored. The initial probe intensity I0 is set to be low compared to saturation

intensity of the transition, Isat.

The area density nA may be found from the relation [33]

nA =
2Isat
Γhν

ln
I0

I
, (4.1)

where Γ is the decay rate of the transition and hν is the transition energy. The volume

density may be estimated by estimating the depth (in length units) of the atom cloud

(for example, by making use of its observed geometry in the plane of the camera).

4.5.2.1 Absorption imaging with cameras

One camera views the side of the experimental region (i.e. transverse to the

dipole trap), and another views the lattice longitudinally from above. Images from

the side camera such as those in Fig. 4.4 are used to qualitatively monitor the atomic

densities in real-time or to quantitatively estimate them. The top camera shows the
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position of the dipole trap within the MOT. It may be used for absorption imaging,

or more interestingly, to probe radiation guiding effects of the elongated cloud [33].

An absorption image from the top camera is also shown in Fig. 4.4.
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Figure 4.4: Absorption imaging of 780nm with cameras. (a) A typical absorption
image of the dipole trap (and MOT) from the side view [(x, z) plane] of the dipole
trap. The large dark region shows atoms in the MOT, while the even darker, narrow
vertical strip shows atoms in the optical lattice dipole trap. (b) A series of absorption
images of the dipole trap from the top view [(x, y) plane] such as the image at the top
are recorded at various detunings spanning −520 MHz to +480 MHz. To illustrate
how the images vary with detuning, the horizontal strip of pixels at y = 0 for each
detuning are joined together to form new picture (lower right). Each horizontal strip
corresponds to an image with a pattern of concentric rings of various brightness and
darkness.

4.5.2.2 Absorption spectroscopy with avalanche photodiode (APD)

An avalanche photodiode (APD) is placed along the path in which the red exci-

tation beams exit the chamber. The APD can detect light at very low powers with

excellent sensitivity. It is convenient for optimizing the overlap between the excita-

tion beams and the dipole-trapped atoms, because the high density of atoms in the

dipole trap cause higher absorption of the light. It is also useful as a way to probe
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the AC Stark shifts caused by the dipole trapping light without requiring excitation

to higher energy levels or the use of the MCP. Example spectra recorded by the APD

are shown in Fig. 4.5.
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Figure 4.5: Absorption spectra of the atoms in the chamber using a 795nm beam
shifted by 80 MHz from an AOM, and the APD (top row). Signals from saturation
absorption spectroscopy are shown in the bottom row. During the excitation, the
1064-nm lattice is off (left column) or on at low power (right column). The extra
peaks in the top right spectrum originate from atoms trapped in the lattice, which
experience AC Stark shifts. In all cases, the frequency is changed by scanning the
voltage of the laser piezo (positive change in voltage corresponds to negative change
in frequency) but has been similarly done using the 795nm PLL.
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CHAPTER V

Long-Range Rydberg Molecules

“You’re a happy little atom. A pulse comes by, it’s the highlight of your day.”

– Paul Berman

5.1 Overview and motivation

In this chapter, I describe an experiment in which I examined Rydberg molecules

for eight different spin couplings. The experiment forms a core part of this thesis.

Much of the material in this chapter has been published in Ref. [50]. Here, I provide

more details. In particular, I expound further upon the methods we used to extract

scattering length functions from the molecular resonance measurements, and upon

the relevance of atom cloud temperature in photoassociation in this experiment.

The Rydberg molecules studied here are bound by the scattering of a Rydberg

electron and a neutral ground-state atom. The ground-state atom is embedded in the

electron orbital of a Rydberg atom, and the scattering interaction “happens” as the

Rydberg electron repeatedly collides with it. This is a unique mechanism of forming

a molecular bond [28]; it is fundamentally different from the covalent, ionic, or van

der Waals bonds which form all other molecules. The molecular states are most

accurately termed “resonances” instead of “vibrational states” because the molecules

undergo tunneling-induced decay where the ground-state atom crosses through the
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potential barrier to the Rydberg-atom nucleus. Thus, the states have an energy width

and Breit-Wigner resonance.

The molecular binding energies depend on very-low-energy electron-atom scat-

tering properties (in the sub-50-meV range). Measurements of the binding energies

can validate calculations of the scattering phase shifts and the structure of negative-

ion resonances [51–54]. Studying low-energy-electron scattering using electron and

molecular beams is difficult due to inherent energy spreads and space-charge elec-

tric fields. Rydberg molecules present an attractive, experimentally accessible alter-

native [29, 55–63], in which electric fields can be eliminated using Rydberg Stark

spectroscopy [4]. Thus these molecules emerge as a testbed for low-energy electron-

atom scattering [64–69]. Low-energy electron scattering is also of broad interest.

For instance, it can cause DNA strand breaks through the formation of negative-ion

resonances [70–74].

I probed (24DJ+5S1/2) molecular resonances for 85Rb and 87Rb and measured

binding energies up to 440 MHz with fractional uncertainties as low as 0.2% for the

most deeply-bound states. Compared to standard molecules, these binding energies

are extremely small (by a factor of about a million), but compared to other Rydberg-

ground molecules they are large due to the low principal quantum number selected

for the Rydberg state (n = 24). The 0.2% uncertainty compares favorably with

other experiments in the field, and small uncertainties map into the ability to better

estimate the underlying electron-atom scattering phase shifts.

In Rydberg-ground molecules, there are four coupled spins: the spin and the

angular momentum of the Rydberg electron, the electron spin of the ground-state

atom, and the nuclear spin of the ground state atom. Because there are two isotopes

of Rb that are experimentally accessible (in contrast to cesium, for example), twice

the number of spin coupling conditions are available. I observe isotopic effects in the

binding energies arising from the different nuclear spins as well as from the slightly
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different nuclear masses.

Because diatomic Rb Rydberg molecules are two-electron systems (one valence

electron from each of the two atoms), there are both singlet and triplet scattering

channels, which are very different because of the exchange interaction. In the present

case as well as the typical one, only the l = 0 and l = 1 partial waves of the scattering

matter for Rydberg molecules. Thus, there are a total of four relevant scattering

phase shifts functions because higher-order partial waves (l ≥ 2) may usually be safely

neglected. Two interesting exceptions are i) when the perturber has a d-wave or f -

wave shape resonance [75] and ii) a predicted class of Rydberg molecules where the

internuclear distances are significantly smaller than the size of the Rydberg electronic

wavefunction [76]).

In this work, a semi-empirical model is developed relating the scattering phase

shift functions to the binding energies. By tuning the scattering phase shift pa-

rameters, the observed binding energies are fit to 3.8 MHz rms deviation. Because

the vibrational molecular resonances involve different spin configurations and cover

a wide range of internuclear separations, the resonances have different dependencies

on the s-wave and p-wave scattering phase shifts for singlet and triplet scattering.

Consequently, fitting the spectroscopic data enables comprehensive determination of

all four scattering phase shift functions over the relevant energy range as well as the

zero-energy scattering lengths (directly related to the scattering phase shifts) of the

two s-wave channels.

Compared to other Rydberg molecule experiments, in this setup the atom tem-

perature is unusually high (180 µK) and the density is unusually low (1 × 1011 cm−3).

The production of Rydberg molecules in these conditions suggest that the molecule

excitation occurs through photo-assisted collisions (discussed in section 5.5).
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Figure 5.1: (a) Potential energy curves for Rb (24DJ + 5S1/2) molecules for J=5/2
(top) and J=3/2 (bottom). The “deep” potentials (solid black) are virtually the same
for both hyperfine ground-states (F> and F<) and isotopes (87Rb and 85Rb). The
“shallow” potentials (solid gray for 87Rb, and dashed black for 85Rb) depend signifi-
cantly on hyperfine ground-state and slightly on isotope. Inset shows wavefunctions
of vibrational resonances in potential A (vertical offset shows resonance energy). (b)
Excitation level diagram. The figure is from my paper [50].

5.2 Theory

A theoretical framework is presented here in order to give a qualitative under-

standing of the origin and nature of the molecular resonances that are measured.

The concepts will be revisited again in section 5.4, where they are used together with

the experimental data to extract electron-atom scattering length functions.

5.2.1 Fermi pseudopotential model

The Rydberg-ground molecular interaction may be described by a Fermi pseu-

dopotential [77, 78] in which the ground-state atom is modeled as a point per-

turber. The perturbation strength is determined by energy-dependent scattering

lengths al(k), which are related to the scattering phase shifts ηl(k) by al(k)2l+1 =
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− tan ηl(k)/k2l+1, where k is the electron momentum and l is the scattering partial-

wave order (s, p, ...). We note that with this definition of the scattering, al(k) always

has the units of length regardless of l, which is why we sometimes refer to ap(k) as a

scattering length. The p-wave scattering volume is just ap(k)3. In the reference frame

of the Rydberg ionic core, the scattering interaction is [78]:

V̂ (r;R) = 2πas(k)δ3(r−Rẑ)

+ 6π[ap(k)]3δ3(r−Rẑ)
←−
∇ ·
−→
∇

(5.1)

where r and Rẑ are the positions of the Rydberg electron and perturber atom.

The full Hamiltonian for the system is [79]:

Ĥ(r, R) = Ĥ0 +
∑
i=S,T

V̂i(r, R)P̂i + AHFS Ŝ2 · Î2 (5.2)

where Ĥ0 is the Hamiltonian of the unperturbed Rydberg electron (including its

fine structure). The second term sums over both spin-dependent singlet (i=S) and

triplet (i=T) scattering channels, using the projection operators P̂T = Ŝ1 · Ŝ2 + 3/4,

P̂S = 1 − P̂T (Ŝ1 and Ŝ2 are the electronic spins of the Rydberg and ground-state

atom, respectively). The last term represents the hyperfine coupling of Ŝ2 to the

ground-state-atom nuclear spin Î2, with hyperfine parameter AHFS. In Rb, AHFS is

comparable to the scattering interactions (on the order of GHz), and Î2 becomes

coupled in second order to Ŝ1 through P̂T and P̂S. The singlet potentials disappear

and are replaced with mixed singlet-triplet potentials [58, 79]. These, in addition

to the (nearly-pure) triplet potentials, sustain molecular bound states, as has been

observed in Cs [56], Rb [59, 63], and Sr [80].
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5.2.2 Adiabatic potential energy curves

We obtain the potential energy curves (PECs) by solving the Hamiltonian on a

grid of intermolecular distances R, [28, 29], as shown in Fig. 5.1(a). Following the

Born-Oppenheimer approximation, the PECs describe the vibrational motion. The

hyperfine-mixed singlet-triplet potentials (“shallow” potentials) have shallower wells

and vary significantly depending on whether the ground-state-atom is in its upper or

lower hyperfine state, F2 = F> or F<. The shallow potentials for F< are deeper than

those for F>. The triplet potentials (“deep” potentials) are virtually unaffected by

hyperfine mixing, and therefore independent of I2 and F2.

5.2.3 Molecular resonances

The narrow molecular resonances in each PEC are found by solving the Schrödinger

equation for the vibrational motion [79], as explained further in subsection 5.4.2. The

result is a spectrum of quasibound vibrational states, the majority of which are mostly

contained in the outermost potential wells [inset of Fig. 5.1(a)].

5.3 Experiment

5.3.1 Procedure

The Rydberg molecules are photoassociated from cold Rb atoms. The atoms

are first prepared in the one-dimensional lattice loaded from the MOT in the setup

described previously. While the setup is an atypical one to create Rydberg molecules,

it has several advantages. It facilitates either isotope to be cooled and trapped in

either hyperfine ground state, which makes possible a direct comparison of each case.

The setup also allows a high repetition rate (100 Hz), which is conducive to obtaining

good signal-to-noise in spectroscopic experiments.

Pairs of atoms are excited through a two-photon transition to a (24DJ+5S1/2) pair
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state as shown in Fig. 5.1(b). The lower-transition laser (780 nm) frequency is 0.5-1

GHz blue-detuned from the 5P3/2 intermediate state to mitigate scattering-induced

heating, while the upper transition laser (480 nm) frequency is scanned from the

Rydberg atomic line to several hundred MHz below. Rydberg molecules are produced

when the detuning from the Rydberg atomic line matches a molecular binding energy.

Time (ms)

Field extraction

Lattice

MOT

9.92 9.93 9.94 9.95 9.96 9.97 9.98 9.99    0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

780nm

480nm
Rb

2

+

Rb
+

(c)

(a) (b)

Atom 

area density

Figure 5.2: Experimental sequence: (a) Atoms are first trapped in a MOT (red beams)
and loaded into the vertical 1-D lattice trap (yellow). (b) The traps are switched off,
and overlapping 780-nm and 480-nm beams excite a Rydberg atomic or molecular
state. After excitation, voltages applied to six metal rods steer spontaneously gen-
erated Rb+ and Rb+

2 ions to the MCP detector, where they arrive in time-resolved
clusters. (c) Timing sequence. Data rate is 100 Hz. The insets show a qualitatively-
representative atom area density of the lattice-trapped atoms and surrounding MOT
(left) and an ion time-of-flight signal (upper right). The figure is from my paper [50].

Figure 5.2 shows the experimental geometry and timing. The lattice trap loads

∼2×104 atoms from an overlapping MOT (Fig. 5.2(a)) with a trap depth of ∼40 MHz

for Rb 5S1/2. It generates an atom cloud of about 18 µm diameter, 700 µm length,

transverse temperature ∼180 µK, and central volume density ∼1.6×1011 cm−3. While

the longitudinal temperature could not be directly measured, we believe that it should
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be approximately the same. The measured temperature is considerably higher than

the temperature in other photoassociation experiments of Rydberg molecules, which

are usually done from Bose-Einstein Condensate (BEC) or near-BEC clouds. I explain

in section 5.5 how this scenario differs conceptually from the “frozen gas” picture

commonly applied to related experiments, and how photoassociated molecules are still

produced despite the relatively high atom temperatures. Before photoassociation, the

MOT and the lattice trap are turned off to avoid light shifts. Several µs afterward,

a 20-µs pulse of 780-nm and 480-nm light excites atoms to Rydberg atomic and

molecular states. The 780-nm and 480-nm beams have respective waists of 20 µm

and . 100 µm and overlap with the 1064-nm trap, creating an oblong excitation

volume in the densest region of the cloud.

The molecules are probed for eight cases of spin combinations: ground-state atom

nuclear spin, I2; the hyperfine state of the ground-state atom, F2; and the fine state

of the Rydberg atom J . To observe the isotope (I2) dependence, we adjust our MOT

lasers to trap either isotope. To observe the hyperfine (F2) dependence, the ground-

state atoms are prepared in either the upper (F>) or lower (F<) hyperfine state by

turning off the repumper laser either at the same time as the cooling laser or 150 µs

earlier. The 780-nm laser frequency is adjusted according to the choice of I2 and F2.

Finally, to observe 24D J = 3/2 or 5/2 Rydberg-ground molecules, the 480-nm laser

frequency is changed by the Rydberg fine-structure splitting (913 MHz).

The Rydberg-ground molecules yield either Rb+
2 via Hornbeck-Molnar autoioniza-

tion or ion-pair formation, or Rb+ via black-body photoionization or ion-pair forma-

tion [44, 81–83]. The ions detected by the microchannel plate [MCP; see Fig. 5.2(b)]

constititute the signal. Rydberg-Rydberg molecules are also produced [84–86], but

only a small fraction ionize spontaneously. Since the ion extraction electric field here

is too weak to field-ionize either type of Rydberg molecule, Rydberg-ground molecules

are preferentially detected.
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5.3.2 Spectroscopic data of molecular binding energies

The ion counts produced from scanning the upper-transition laser, shown in

Fig. 5.3, reveal the molecular state resonances. In Appendix A, I show a different

dataset recorded for the same spectra, whose better signal-to-noise ratio more clearly

exhibits the weaker resonances. I do not record or fit the resonance energies from the

data, however, because the calibration of the x-axis values has lower accuracy than

what is presented in this figure. The data is used later for the linewidth analysis in

subsection 5.5.6.

The resonances in Fig. 5.3 are different for each (I2, F2, J) combination. The

upward trend of the background signal at small detunings is attributed to Rydberg-

Rydberg molecules [84]. I assign the most prominent peaks to the deep or shallow

potentials of Rydberg-ground molecules, A/C or B/D in Fig. 5.1, respectively, by

comparison with the resonances predicted by the model, described in the following

section. The binding energies, determined by Gaussian fits to the peaks, are marked

with vertical lines and listed in Table 5.1.

The identified peaks, with the exception of peaks Dx, arise from the first or second

vibrational resonances in the outer region of the PECs (R ≈ 800–1000a0, see Fig. 5.1).

We observed no other prominent resonances up to 150 MHz below the deepest peaks

in Fig. 5.3. The Dx peaks correspond to resonances in the inner well at R ≈ 710a0;

they have weaker signals due to the reduced likelihood of finding atoms at smaller

internuclear separations. Most unidentified peaks in Fig. 5.3 are higher resonances in

the deep potentials. They can be identified more clearly in the data in Appendix A,

which has cleaner spectra but with lower accuracy in the detuning frequencies. The

peaks’ low signal strength may be attributed to the rapid oscillations in their vibra-

tional wavefunctions [see the inset of Fig. 5.1(a)], leading to small Franck-Condon

factors, and their short tunneling-induced lifetimes. The spin-mixing also plays a

role in signal strength; a method for computing line strengths of vibrational spectra
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Figure 5.3: Detected ions vs. detuning relative to the 24DJ atomic state, for the
eight (I2, F2, J)-combinations. The spectra are normalized by the height of the A1

or C1 resonance. A selection of resonances is marked with vertical lines and labeled
according to their corresponding potential in Fig. 5.1(a). Filled (open) triangles
denote resonances in the deep (shallow) potentials predicted with our model. Faded
triangles are additional predicted resonances not used in the fitting procedure. The
figure is from my paper [50]. A different dataset recorded for the same spectra is
shown in Appendix A.

Pair potentials A1 A2 B1 B2
87Rb (24D3/2 + 5S1/2 F<) -439.1(10) -387.0(10) -261.2(8) -205.4(8)
87Rb (24D3/2 + 5S1/2 F>) -439.9(10) -388.2(10) -173.9(7)
85Rb (24D3/2 + 5S1/2 F<) -436.1(9) -385.3(9) -252.7(8) -201.2(7)
85Rb (24D3/2 + 5S1/2 F>) -437.2(9) -385.5(9) -177.7(7)

Pair potentials C1 C2 Dx D1 D2
87Rb (24D5/2 + 5S1/2 F<) -294.1(8) -272.7(8) -314.0(8) -222.6(7) -193.6(7)
87Rb (24D5/2 + 5S1/2 F>) -294.1(8) -274.2(7) -238.3(7) -167.5(7)
85Rb (24D5/2 + 5S1/2 F<) -293.7(8) -274.1(8) -317.2(8) -221.0(7) -196.7(7)
85Rb (24D5/2 + 5S1/2 F>) -293.2(8) -273.7(8) -237.2(7) -171.8(7)

Table 5.1: Molecular binding energies in MHz, relative to the atomic lines, corre-
sponding to the labeled peaks in Fig. 5.3.
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of Rydberg molecules including the hyperfine- and spin-dependence is presented in

Ref. [87].

The starkest difference among the spectra in Fig. 5.3 is between J=5/2 (right)

and J=3/2 (left); the deepest resonances differ by up to 150 MHz. The depths of the

molecular potential wells and the fine structure scale as n−6 [60] and n−3, respectively.

At low n, the molecular binding interaction strength exceeds the fine-structure split-

ting. When this happens, the molecules are classified as Hund’s case (a) [88, 89]. In

this limit, the molecular potentials that asymptotically connect to J=5/2 approach

and repel from the adiabatic potentials that connect to the J=3/2 atomic level. As a

result, in the Hund’s case (a) regime, the J=3/2 adiabatic potentials become deeper

than the fine-structure coupling, with their depths scaling as n−6, whereas the J=5/2

potentials are limited in depth by the fine structure splitting; hence their depths

scales as n−3. Molecules in Rb 24DJ are far into the Hund’s case (a) regime. The

relevance of Hund’s cases to Rydberg-ground molecules has been discussed in detail

in Ref. [79].

The largest difference among the rows in Fig. 5.3 and Table 5.1 is between the

states in the shallow potentials (i.e., the B and D peaks) for F< and F>, which differ

by up to 70 MHz. The strong dependence on F2 is expected from the PECs in Fig. 5.1.

The B and D peaks also exhibit isotopic differences up to ∼10 MHz, which originate

from the different hyperfine-coupling strengths AHFS, nuclear spins I2, and masses.

The A peaks are similar for F> and F< but vary slightly between the two isotopes

(see Fig. 5.3 and Table 5.1). As the A-PECs are virtually identical, the variation is

likely due to the isotopic mass difference. The heavier isotope has deeper binding

energies because of its smaller vibrational frequencies within the same potential. The

two unlabeled resonances immediately to the right of A2 (at -370 to -330 MHz) show

a pronounced difference between isotopes, suggesting that they correspond to states

of the inner PEC wells at R ≈ 710a0 in Fig. 5.1, where a mass difference has a greater
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quantitative effect because of the larger spacings between vibrational states.

5.3.3 Uncertainty analysis

The largest uncertainty arises from the 480-nm laser frequency calibration (typ-

ically 0.6-0.9 MHz), followed by statistical uncertainties caused by fluctuations in

signal strength and the peak-fitting. The resultant relative uncertainties of the listed

binding energies range between 0.2%, for the lowest states found, and 0.4%. To our

knowledge, these values are lower than previously reported ones.

5.3.4 Preliminary data on very deeply bound Rydberg-ground molecules

In this subsection, I report some additional experimental spectra that were not

used for the extraction of scattering lengths but may offer additional physical insight

or support future studies.

I observed several peaks in the ion signal about 1500 MHz below the 24D3/2

atomic line, shown in Fig. 5.4. They did not consistently appear in the spectra. This

characteristic was also seen with the molecular signals previously found, because they

are sensitive to fluctuations in the quality of the MOT and dipole trap. The peaks’

inconsistent appearance suggests that they are less likely to be caused by systematic

effects associated with the AOMs and the laser spectrum transmitted to the atoms.

The previously observed molecules with binding energies around 440 MHz and smaller

are noticeably absent, which may be due to poor trap qualities that were present

initially or that developed in the middle of the laser scan.

The features in the rightmost region of the spectrum have causes that are well-

understood but mundane. An alternate order of AOM-deflected excitation light leaks

into the primary beam and results in a copy of the atomic line with diminished

amplitude at 80±0.2 MHz below the true atomic line. (The copy is marked by an

arrow in Fig. 5.4.) At some point during the laser scanning between the atomic line
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Figure 5.4: Ion counts as a function of laser detuning from the 24D3/2 atomic line
(see text for more details).

copy and the true atomic line, I dramatically reduce the excitation light (in order to

keep the ion counts low to protect the MCP detector), which manifests as a sharp

drop-off in the spectrum and greatly diminishes the amplitude of the atomic line

signal.

The three (or possibly four) peaks around 1500 MHz, assuming they are genuine

signatures of the molecular resonances in the very deep inner potential wells, have sev-

eral possible explanations. They may reflect the J-splitting of the p-wave scattering

that is due to relativistic effects, as recently observed in Ref. [90]. Alternatively, they

may originate from multiple inner potential wells that exist at different internuclear

separations and/or that are from a combination of triplet and mixed singlet/triplet

potentials. It is less likely that all of them are different vibrational resonances from

the same inner potential well, because their frequency spacing is much closer than

theoretical models predict.

Future work will be required to confirm the reproducibility of the peaks. In

addition, studying the dependence of their resonance energies on principal quantum

number may provide valuable insight into the underlying physics.
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5.4 Extraction of scattering length functions from data

To model the observed molecular resonances based on Eqs. 5.1 and 5.2, four

scattering-length functions ail(k) are required. In order to fit the functions from the

data, a way to parameterize them is needed. To summarize our approach, for each

scattering-length function, we use the short-range potential provided in Ref. [68], and

integrate the radial Schrödinger equation using a single tuning parameter equiva-

lent to a wavefunction phase shift near the atomic core. We evaluate the scattering

wavefunctions at a specified distance from the ground-state atom perturber. The

scattering lengths then follow from textbook equations [91]. The modeled resonances

based on the scattering lengths are compared with the experimental data and the dif-

ferences are used to adjust the aforementioned tuning parameters for the subsequent

iteration of calculating the scattering length functions. The process is shown in a

high-level outline in Fig. 5.5 and explained in the following.

5.4.1 Rydberg electron scattering and radial Schrödinger equation

The Rydberg electron is treated as a plane wave incident upon a perturbing poten-

tial that causes an outgoing spherical wave through elastic scattering. The difference

in phase between the incoming wave and the outgoing wave at a distance far away

from the interaction are referred to as a scattering phase shift, and it characterizes

the interaction for each order of the scattering angular momentum (l = 0, 1, . . .) and

channel (singlet or triplet). Because the electron energies are very low and the inter-

nuclear distances are high, the l ≥ 2 orders are neglected. The phase shift appears in

the solution to the radial Schrödinger equation for the electronic wavefunction.

The radial component of the wavefunction may be expanded in terms of Legendre

polynomials:

Ψ(r) =
∞∑
l=0

Rl(r)Pl(cos θ) (5.3)
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Figure 5.5: Outline of iterative fitting procedure to fit electron-atom scattering lengths
using molecular resonance data. The feedback process is explained in section 5.4.3.
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The radial part of the Schrödinger equation, relative to the ground-state perturbing

atom, may be written as:

{
r2 d

2

dr2
+ 2r

d

dr
+
[
k2r2 − l(l + 1)

]
− 2mr2

~2
V (r)

}
Rl(r) = 0 (5.4)

5.4.1.1 Outer boundary condition and derivation of scattering phase shifts

At very far distances, the scattering potential V (r) approaches zero. We choose

an arbitrary evaluation distance from the perturbation d where we approximate that

V (r) ' 0 when r ≥ d. In this region, the most general solution to the Eq. 5.4 is then:

Rl(r ≥ d) = eiηl [cos ηl jl(kr)− sin ηl yl(kr)] (5.5)

where jl and yl are l-th order spherical Bessel functions of the first and second kind.

To find the scattering phase shift ηl, we first take the logarithmic derivative of Eq. 5.5

evaluated at d and define it as β (see also Ref. [91, 92]):

β ≡ 1

Rl

d

dr
Rl(r)

∣∣∣∣
r=d

= kd

(
cos ηl j

′
l(kd)− sin ηl y

′
l(kd)

cos ηl jl(kd)− sin ηl yl(kd)

)
(5.6)

The above equation may be rearranged to solve for the phase shift ηl(k):

ηl(k) = tan−1

(
kd j′l(kd)− β jl(kd)

kd y′l(kd)− β yl(kd)

)
(5.7)

The scattering lengths are then related to the scattering phase shifts by

ãl(k)2l+1 = −tan ηl(k)

k2l+1
. (5.8)

The values of the resulting scattering length functions ãil(k) at very low k are ar-

tificial because they depend on the evaluation distance d, whereas the true scattering

length functions ail(k), obtained in the limit d → ∞, are independent of d. Here,
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we choose d = 150a0, corresponding to the typical width of the outermost lobe of

the Rydberg-electron wavefunction for 24D. Our approach of using a finite value

of d avoids the problem that for k → 0 the p-wave scattering lengths diverge [93],

which would cause an unphysical divergence in the adiabatic potentials at the classi-

cal turning point of the Rydberg electron when using the Fermi method. Due to the

localization of the Rydberg electron within the lobes of its wavefunction, the proba-

bility of finding it at very low k is negligible, allowing us to use ãil(k) to calculate the

potentials.

The scattering lengths may be calculated numerically when Rl(d) and d
dr
Rl(d)

are known. To find these, we assume a potential for V (r) in Eq. 5.4 and an inner

boundary condition, which are discussed in the following, and then integrate Eq. 5.4.

5.4.1.2 Electron-atom interaction potential

We use a model developed by Bahrim et al. [94, 95] for the interaction potential for

an electron with an alkali-metal atom in its ground-state. The interaction potential

is

V (r) = Vls(r) +
1

2c2r

dVls(r)

dr
(~L · ~S), (5.9)

where r is the electron-atom separation, l and s denote the angular momentum and

spin of the two electrons relative to the ground-state atom, L and S are the angular

momentum and spin of the Rydberg electron. The forms of Vls are taken to be

V0s(r) = −A
r
e−γr − α

2r4
(1− e−(r/rc)6) (5.10)

and V1s(r) = −Zc
r
e−λr − Ae−γr − α

2r4
(1− e−(r/rc)6). (5.11)

Here Zc is the nuclear charge (Zc = 37 for Rb), λ is the nuclear screening param-

eter, α if the ground-state-atom polarizability, and A, γ, and rc come from the fit
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that reproduces the low-energy scattering eigenphases for J ≤ 2 from Dirac R-matrix

calculations [52–54] and negative ion binding energies. We use the parameters for

Rb given in Ref. [68] (except for an updated value of polarizability, α = 319.8 a.u.),

which are:

λ state A γ rc
7.4975 1S 4.5642 1.3438 1.8883

3S 68.576 9.9898 2.3813
1P 24.2625 1.0055 1.8869
3P 21.4523 4.8733 1.8160

Table 5.2: Parameters for the e−-Rb(5s) interaction potential.

5.4.1.3 Inner boundary condition with adjustable zero-crossing

We find Rl(d) and d
dr
Rl(d), needed to evaluate Eq. 5.6, by first choosing a loca-

tion near r = 0.01a0 (near the center of the perturber atom) where Rl(r) is set to

zero. Then we integrate the radial Schrödinger equation (Eq. 5.4) outward using the

interaction potentials defined in Eq. 5.9-5.11. The zero-crossing in the inner region is

the parameter we fine-tune for each of the scattering length functions ãil(k) to fit the

modeled molecular resonances to our data. Adjusting these parameters is equivalent

to adjusting the wavefunction phases at a fixed position near 0.01a0, and it essentially

provides short-range corrections to the Rb− scattering potentials.

5.4.2 Vibrational resonances from scattering lengths

Once the scattering length functions are defined, the Hamiltonian of Eq. 5.2 is

solved to find the adiabatic PECs of the system as a function of internuclear distance.

The PECs exhibit several potential wells near the outer edge of the Rydberg electronic

wavefunction that are capable of supporting quasibound vibrational states. The states

are only quasibound, as opposed to truly time-independent, because the PECs have

a steep decline on the inner side of the potential wells, into which the vibrational
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resonances slowly “leak” to form Rb2 molecules of the conventional type. The energies

of the resonances are found by solving the Schrödinger equation for a series of energies

and examining the phase of the vibrational wavefunction at a fixed point in the inner

region (that is chosen to be several hundred a0 from the core). The phase as a

function of energy exhibits increases of π with slopes of varying steepness. The

resonance energies are centered where the phase change has local maxima, and for

each resonance the energy range over which the phase changes by π is the energy

width ∆E. The resonance line shapes follow the Breit-Wigner formula [91], where

the resonance lifetime is proportional to the inverse of ∆E, i.e. τ = h/(4∆E).

The vibrational resonances and their corresponding adiabatic potentials are shown

in Fig. 5.6. The resonances used for the fitting were chosen based on how well they

meet two criteria, namely that their respective peaks in the recorded ion signal are

sufficiently high to be observed clearly, and secondly, that the resonance to which

each data peak belonged can be assigned with a high degree of certainty, even while

the scattering length parameters used in the calculations are adjusted. Such criteria

favor resonances whose wavefunction is approximately a symmetrical, single lobe in

the first or second outermost potential well (that is, what would be the vibrational

ground-state of the well if the wavefunction were completely confined to that well

alone). These resonances tend to have the highest photoassociation rate and thus

more distinguished spectral peaks. The wavefunctions of higher-order resonances,

which have antisymmetry and/or more oscillations, are less likely to have good over-

lap with the lower-state wavefunction (i.e. the Franck-Condon factors are generally

worse) and thus such resonances have lower photoassociation rates. The ion peaks

from resonances in the inner potential wells are likewise smaller in amplitude because

they are often broadened from higher tunneling-induced decay rates, and because

there is comparatively less time during the excitation pulse when two atoms have the

appropriate (smaller) separation distance. These postulated trends are corroborated
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Figure 5.6: Vibrational wavefunctions for triplet (solid) and mixed singlet-triplet
(dashed) molecular resonances and their adiabatic PECs for the 8 cases in Fig. 5.3.
The wavefunctions have arbitrary vertical scaling and are vertically offset by their
respective resonance energies. The wavefunctions for the resonances selected for fit-
ting are emphasized by being colored and marked with black or open red triangles to
facilitate comparison with Fig. 5.3. The other vibrational wavefunctions are shown
in gray.
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when comparing the shapes of the simulated wavefunctions in Fig. 5.6 with their

corresponding peaks in the data presented in Fig. 5.3. Higher-order and inner-well

resonances do not meet the second criterion well either because they are more sensi-

tive to the exact shape of the potentials, which makes it more difficult to conclusively

match the observed peaks with the simulated ones. Furthermore, the relative depen-

dence of these resonances is overly weighted on the four single tuning parameters that

we adjust, instead of other details such as the additional parameters that would be

needed to more precisely characterize the scattering length functions over an energy

range. Thus, even though in Fig. 5.3 there are many observable peaks in addition

to the labeled ones, and most even have probable correspondence with the simulated

resonances (see depressed, light-shaded triangles in Fig. 5.3), we do not find them to

be very useful for our modeling approach here.

5.4.3 Fitting procedure

In our fitting procedure, we begin with the inner-region zero-crossings that yield

scattering length functions matching those given in Ref. [68]. Every set of four ãil(k)

yields eight PECs through solving Eq. 5.2. From the PECs we obtain the vibrational

resonances and determine their rms deviation from the 32 measured values in Ta-

ble 5.1. The four adjustable zero-crossings are varied and the procedure is repeated

until the rms deviation is minimized.

The process of fitting the modeled resonances to the data by adjusting the zero-

crossings can be somewhat time-consuming and laborious. To reduce the number of

iterations by making better-informed guesses, we invoked the following method. We

make a crude assumption of linear dependence of each resonance on the zero-energy

values of each scattering function, i.e.

b =
∑
j

Ajxj for j = ãTs , ã
S
s , ã

T
p , ã

S
p , (5.12)
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where b is the frequency shift in a particular resonance due to shifts in zero-energy

values of each of the four scattering length functions (xj), and each Aj is a constant

to be determined. For a set of n resonances, we extend Eq. 5.12 to the matrix form

Ax = b, (5.13)

or explicitly,



A1α A1β A1γ A1δ

A2α A2β A2γ A2δ

...
...

...
...

Anα Anβ Anγ Anδ





xα . . .

xβ . . .

xγ . . .

xδ . . .


=



b1 . . .

b2 . . .

...
...

bn . . .


, (5.14)

where the Greek subscripts indicate the four types of scattering functions. We run

the simulations (i.e. find the molecular resonances) for an initial set of zero-energy

scattering values as a reference and for four test cases, labeled a-d, in which the zero-

energy value offset vectors are varied in independent ways. By using the arbitrary

input chosen for the four cases {xa,xb,xc,xd} as x and the output {ba,bb,bc,bd} as

b, we may compute A via the relation A = bx−1. Ideally, we would like to find the

vector solution for Eq. 5.13 when b is the experimental dataset vector, which I denote

by b̂. However, a unique solution does not necessarily exist, and is unlikely when A

is not invertible. In our particular situation, where we use n = 32 resonances in b̂, it

is not possible for A to be invertible because it is not square. Instead, as long as A

is full column rank, we may use its Moore-Penrose pseudoinverse to find the solution

x̂ where Ax̂ has the least squares error from b̂. The solution is

x̂ = (ATA)−1ATb̂. (5.15)

Because the assumption of linearity (Eq. 5.13) is only an approximation, x̂ does not
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necessarily provide the optimal zero-energy scattering length offsets from the initial

case, but it is a good guess. We iterate the procedure with the new initial reference

case as the former one shifted by x̂, and we gradually decrease the step sizes in

{xa,xb,xc,xd} as x̂ becomes vanishingly small.

Besides increasing efficiency, an additional benefit of this approach is that the cal-

culated A explicitly offers insight on the dependencies of each resonances on the four

scattering length functions. For example, the A matrix elements for the dependence

of the A and C resonances (refer to Fig. 5.3) are found to be nonzero only for the

two triplet scattering-length functions, whereas the B and D resonances have nonzero

elements for all four scattering-length functions. The way the dependency strengths

vary among the set of 32 resonances is what leads A to be full column rank and makes

possible the simultaneous fitting of the four scattering length functions.

5.4.4 Scattering length results

The rms deviation of the resonances is found to be minimized at 3.8 MHz. The

corresponding calculated resonances are shown as triangles in Fig. 5.3.

To estimate the zero-energy values of the true scattering length functions, we also

calculate the functions ais(k) using an evaluation distance d = 2× 104a0. Figure 5.7

shows the four extracted scattering length functions ãil(k) and their corresponding

ail(k). As expected, ãil(k) and ail(k) match at k & 0.015 (E = ~2k2/2m & 3 meV).

We anticipate the predicted scattering lengths to be the most useful in the range k =

0.012−0.030 (shaded vertical strip in Fig. 5.7), which corresponds to E = 2−12 meV

and R = 700 − 960a0, because this is the region probed by the measured molecular

bound states.

We quantify the uncertainty in ãil(k) and ail(k) by varying several parameters in

our procedure. First, we perform the fitting procedure for three Rydberg-state basis

sets 21.1 − j ≤ n* ≤ 24.1 + j, with effective principal quantum number n*, for j =
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Figure 5.7: Scattering length functions for the ail(k) (solid lines; d = 2 × 104a0)
and ãil(k) (dashed lines; d = 150a0) that correspond to the predicted resonances
in Fig. 5.3. Shaded backdrops behind the curves show the uncertainties. Vertical
gray strip corresponds to the experimentally relevant energy range; the four inscribed
rectangles correspond to the zoom-ins shown in the four panels on the right. Black
circles indicate the two zero-energy values included in Table 5.3 for this work. The
figure is from my paper [50].

aTs (0) aSs (0) Ref.
Theory -16.1 0.627 [53]

-16.9 0.63 [96]
Experiment -15.7(1) neglected [60]

-15.7(1)* -0.2(5) [59]
-14.0(5) neglected [58]
-15.2(5) neglected [90]
-14.7(3) 0.0(3) This work

Table 5.3: Zero-energy scattering lengths in a0. *aTs (0) was fixed while aSs (0) was
fitted.

0, 1 and 2. In Fig. 5.3, the j = 2 basis size is used. Secondly, we include or omit

resonances in the inner potential well at R = 710a0 (see Fig. 5.1). Thirdly, we increase

or decrease the measured resonance values by the experimental frequency uncertainty

(∼ 0.2%). We use the combination of the three sources as the estimated uncertainty

(in Fig. 5.7 and Table 5.3).

We are able to simultaneously fit the four scattering lengths because we analyze a

large set of binding energies on PECs for a variety of spin cases, which have different

sensitivities to the singlet and triplet s-wave and p-wave scattering-length functions.
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For instance, the inner-well resonances at 710a0 (e.g., Dx) and 820a0 (e.g., A2, B1,

C2, D1) depend strongly on ãTp (k) (whose shape resonance is responsible for the steep

drop-off in Fig. 5.1(a) at 600a0) and weakly on ãTs (k), while outer-well resonances

show the opposite trend. Meanwhile, substantial dependencies on ãSs (k) and ãSp (k) are

only found in the B and D resonances. Some small codependencies of the scattering

lengths remain. For instance, fixing ãSs (k) would significantly decrease the uncertainty

in ãSp (k).

We are quoting an experimental result for aSp (k) [and for ail(k) for E = 2−12 meV]

derived from a fitting procedure applied in a Rydberg-ground molecule experiment.

In Table 5.3, we show our median values (within the uncertainty bounds) of aTs (0)

and aSs (0) for comparison with other published zero-energy values.

5.4.5 Relation to other work

Previous measurements of vibrational energies of low-angular-momentum diatomic

Rydberg-ground molecules have spanned principal quantum numbers n = 26-45, an-

gular momentum S, P , and D states, and atomic species rubidium, cesium, and stron-

tium [29, 55–60, 80]. For Sr, the s-wave and p-wave zero-energy scattering lengths,

as(0) and ap(0), were extracted from S-state data [55]. In Rb and Cs electron-

scattering, there are two relevant electrons. For Cs, the corresponding singlet and

triplet s-wave scattering lengths, aSs (0) and aTs (0), were extracted from mixed singlet-

triplet resonances in P -states [56] using a model developed in Ref. [79]. In Rb, aTs (0)

was extracted from S- and D-state molecular resonances [29, 57, 58] and aTp (0) from

S-state resonances [57]. Mixed singlet-triplet resonances in Rb S-states [59] allowed

an extraction of aSs (0) after determining aTs (0) from previous data [29, 60]. Subse-

quent to this work, aSs (0) and the p-wave shape resonance energy were extracted for

Rb in S-states [90]. To our knowledge, aSp (k) at any k has not been measured.
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5.4.6 Discussion

We note several deficiencies of the method we have used for extracting electron-

atom scattering lengths. First, the choice of basis size used to calculate the adiabatic

potentials affects the depth of the potentials. We explored the convergence behavior

of the adiabatic potentials as a function of basis size, ranging from 21.1 ≤ n* ≤ 24.1

to 17.1 ≤ n* ≤ 28.1 (i.e. we varied the range in n* from about 3 to 11). Over this

substantial variation in n* range, we found that the outer potential wells increased

in depth by 13% over the entire range, and that they do not seem to converge with

growing basis size (but the incremental changes decrease). This is problematic and

raises the question of which basis choice leads to the most accurate potentials. The

issue of non-convergence has also been noted elsewhere and discussed in comparison

to alternative techniques for calculating the adiabatic potentials [75, 97–99], and

the topic has been described as controversial. A second deficiency of our method is

that the Fermi model may have fundamental inaccuracies at low n, where the size

of the perturber atom relative to the Rydberg wavefunction increases. This could

possibly be addressed by using a Green’s function calculation [68]; however, in a

recent subsequent work where a Green’s-function-based approach was used [90], a

similar value for aTs (0) was found with no improvement in uncertainty.

The minor discrepancies between our quoted zero-energy scattering lengths and

previous results have several possible causes. Methods for calculating the k-dependence

of ail(k) vary. The inaccuracy of the Fermi model at low n may contribute. We also

note that the previously-quoted experimental scattering lengths did not account for

p-wave scattering, which may have caused the extracted s-wave values to be overly

negative. Finally, we note that in Ref. [57] two values for aTs (0) are presented, -16.05a0

and -19.48a0, along with a zero-energy p-wave scattering length aTp (0) of -21.15a0.
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5.5 Photoassociation in the 180µK regime

Previously it has been suggested that, to observe photoassociation of low-` Ryd-

berg molecules, low temperatures are necessary in order to avoid collisions during

excitation [29]. Prior experimental efforts have used atomic samples of only several

tens of µK at most. Here, the reported results are obtained with atoms prepared at a

temperature of ∼180 µK, densities of only & 1011 cm−3, and a quantum state as low

as n = 24. The ability to photoassociate Rydberg-ground-state molecules whose con-

stituent atoms are prepared using only a standard MOT and a single-axis dipole trap

(without using a BEC, magnetic trap or a compressed MOT) greatly simplifies the

experimental requirements, making their observation accessible with a wider variety

of experimental setups.

The strongest molecular signal we observe is about 1% of the signal on the atomic

line (not shown in Fig. 5.3). This is surprising because under the given conditions the

instantaneous probability of finding a second ground-state atom within a Rydberg-

atom radius of an atom is only about 0.01%. This discrepancy may be resolved by

interpreting the molecule excitations as photo-assisted collisions. The estimates we

make in the following subsections show that the excitation pulse duration, Rydberg-

excitation Rabi frequency, thermal velocities and atom density are such that during

the excitation pulses the fraction of atom pairs that undergo collisions at distances of

the typical vibrational bond length (∼1000a0) is sufficient to explain the molecular-

signal strength. In a photo-assisted collision, in contrast to the concept of a frozen

Rydberg gas, the molecule excitation can be considered a non-adiabatic transition of

atomic wave-packets between intersecting dressed-atom ground-ground and ground-

Rydberg PEC’s that are coupled by the Rydberg Rabi frequency. Our analysis not

only explains how photoassociation is not prohibited by the thermal motion, but also

suggests that the higher temperature actually enhances the photoassociation rate

when the atomic density is low, and the optical Rabi frequency is sufficiently high.
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5.5.1 Photo-assisted collision picture of molecular excitation

In the following, we describe a simple kinematic model of photoassociation in a

warm atomic vapor. The fraction of atoms excited to molecules in a single experi-

mental cycle (2Nm/Na) is equal to the rate per atom of photoassociation “attempts”

R (i.e. instances when the atom is within the appropriate separation distance of

a second atom rm), times the excitation pulse length Tp, times the efficiency η (or

success rate) of photoassociation when the atoms are at the right separation, i.e.,

2Nm

Na

= RTp η. (5.16)

The rate per atom at which photoassociation attempts are made is

R =
√

2nV π r
2
mv, (5.17)

where nV is the volume density, πr2
m is the cross-section of the Rydberg molecular

state with internuclear separation rm, and v is the thermal velocity (mean magnitude

of the velocity). Therefore, the molecular photoassociation probability is

2Nm

Na

=
√

2nV π r
2
mv Tp η. (5.18)

The subsequent subsections are dedicated to evaluating various parameters in Eq. 5.18

in order to estimate Nm, with a particular emphasis on how the atom temperature

may influence the parameters directly or limit the validity of the equation.
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5.5.2 Role of temperature in photoassociation rate

First, we consider the efficiency η. We regard the excitation to a molecular state

as a fraction of an incomplete Rabi oscillation, and write the efficiency as

η = η0 sin2

(
Ωeff t

2

)
, (5.19)

where η0 accounts for the imperfect Franck-Condon overlap of the ground atomic and

excited molecular states, Ωeff is the effective Rabi frequency of the optical excitation,

and t is the time during which an atom pair experiences the excitation light and has

a separation distance of about rm. The t is the time it takes for an atom to traverse

the span of the outer well ∆w (assuming that this time is short in comparison to the

excitation pulse time), and its value is about ∆w/(
√

2v). If the optical intensities of

the excitation beams are not a limitation, the efficiency may be maximized by setting

the intensities such that Ωeff/(2π) ≈ 1/(2t) ≈ v/(
√

2∆w). The optimal value of Ωeff

then depends on temperature, but the maximal value of η does not, with the tentative

assumption that η0 is temperature-independent. In any case, the maximal value of η

is η0, or equivalently η/η0 ≤ 1. The value of η/η0 in our experiment is discussed in

subsection 5.5.4.

For a fixed atomic density and target molecular state and a maximized η, the only

tunable parameters remaining in Eq. 5.18 are v and Tp. The maximum effective Tp is

practically limited by the decay time of the molecular states (usually tens or hundreds

of µs). The remaining v is proportional to the square root of the temperature. Thus,

if the optical excitation intensities are not a practical limitation, then increasing

the temperature actually improves the molecular photoassociation rate until v ∼

(
√

2nVπr
2
mTp)

−1.

Our experimental parameters are listed in Table 5.4. For our atomic density

and Tp = 20µs, the temperature at which v ∼ (
√

2nVπr
2
mTp)

−1 is about 2 K, and
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for BEC densities (∼ 1014 cm−3) it is about 7 µK. Of course, the atoms must also

remain within the excitation volume during the pulse, which imposes a maximum

temperature restraint of several mK or more, depending on the dimensions of the

excitation volume.

Independent Na atom number ∼ 2× 104 atoms
parameters nV volume density 1.8× 1011 cm−3

n∗ effective principal q. number 22.7
T atom temperature 180 µK
Tp excitation-pulse duration 20 µs

Derived or rm internuclear separation (∼ 2n∗2) ∼ 1000a0 (see Fig. 5.6)
contingent ∆w width of outer potential well 150a0 (see Fig. 5.6)

parameters v thermal velocity [
√

8kBT/(πm)] 0.21 m/s
t atom traversal time (≈ ∆w/v) 38 ns

R rate of PA attempts (
√

2nVπr
2
mv) 470 Hz

η efficiency of PA attempts ≤ 1

Table 5.4: Experimental parameters and molecular characteristics for estimating
photoassociation (PA) rates

5.5.3 Thermal effects on molecular bond stability

If the atom cloud temperature is very high, a typical atom pair is not able to

sustain a Rydberg molecular bond because of the relative momentum between the

two atoms. At the time of photoassociation, the kinetic energy corresponding to

relative momentum is transferred to vibrational and rotational energies of the di-

atomic molecule. We note that the quantization of vibrational energies, as already

demonstrated in Fig. 5.6, is on the order of 30 MHz and thus resolvable with our

∼ 1 MHz-linewidth excitation light. In contrast, the rotational energy quantization

is on the order of ~/(4πmr2) ≈ 20 kHz.

For an atom pair to remain intact after photoassociation despite vibrational mo-

tion, the initial thermal energy of the atoms should be less than the binding energy

E, i.e. T < Eh/kB ≈ 20mK for E = 400MHz. The maximum allowed rotational
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energy for the centrifugal force to not pull the atoms apart corresponds to a temper-

ature that is at least as high. The centrifugal force Fc should be less than the force

corresponding to the maximum slope of the adiabatic potential on the outer edge,

which is about the binding energy over a small fraction of the separation distance ∆r,

so Fc < E/∆r. For two atoms of mass m with equal and opposite velocities perpen-

dicular to their internuclear axis, and separated by a distance r, the centrifugal force

is Fc = 2mv2/r. Assuming kBT = mv2/2, then Fc = 4kBT/r and the temperature

requirement is T < (Eh/kB) · r/(4∆r). The factor r/(4∆r) will in practice always be

somewhat greater than one (in our case it is about 2.5), so the temperature limit is

higher for the ability to contain rotational energy in the molecular bond. The atom

temperature in our experiment is two orders of magnitude less than both temperature

limits, so it should not prohibit photoassociation.

Although Fc and Fmax are separated in scale in our experiment, both are extremely

weak. For (24DJ+5S1/2) Rydberg molecules and our atomic temperature of 180µK,

Fc is about 2× 10−19 N and Fmax is about 5× 10−17 N. For perspective, typical forces

in a biological environment or to rupture weak conventional molecular bonds are on

the order of 10−12 N.

5.5.4 Rabi frequencies

We estimate the optical Rabi frequency for the two-photon transition between the

ground-state atom pair state to the molecular state in order to compare the timescales

of excitation and atomic motion, and to roughly estimate η/η0 from Eq. 5.19.

The Rabi frequency for a field of strength E and polarization ε̂, resonantly driving

the transition |a〉 → |b〉 is

Ω =
~dab · E ε̂

~
=
µab E
~

, (5.20)

where µab is the scalar value of the effective transition dipole moment. Using
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the intensity relations I = cε0E2/2 = 2P/(πw2) gives E = 2
√
P/(πw2cε). The Rabi

frequency for a Gaussian beam of power P and waist w is then

Ω =
2µab
~

√
P

πw2cε0
. (5.21)

According to the Wigner-Eckhart theorem, the effective transition dipole moment

may be separated into a factor characterizing the relevant |mj〉 → |m′j〉 transitions

and light polarization, and the reduced dipole moment (which is independent of mj,

m′j, and polarization). For the latter, we use the convention

〈α j||d||α′ j′〉 =
∑
m′q

〈α j m|dq|α′ j′ m′〉〈j m|j′ m′; 1 q〉. (5.22)

For π-polarized and far-detuned light, the effective transition dipole moment in-

cludes all |mj〉 → |m′j〉 transitions and equals

µab =
1√
3
〈α j||d||α′ j′〉. (5.23)

The estimated powers and waists of the excitation beams, along with the effective

transition dipole moments and calculated single-beam Rabi frequencies, are shown in

Table 5.5.

Transition Power Beam Effective dipole Rabi frequency,
|a〉 → |b〉 (P ) waist (w) moment (µab) single (Ω)

|5S1/2〉 → |5P3/2〉 ∼ 20µW ∼ 43µm 2.44ea0 [43] 2π × 71 MHz
|5P3/2〉 → |24D5/2〉 ∼15mW ∼ 70µm 0.037ea0 (see [100]) 2π × 18 MHz

Table 5.5: Experimental parameters, theoretical effective dipole moments, and Rabi
frequencies for both of the transitions relevant to the molecule excitation process.

For large detunings ∆ from the intermediate state, the effective 2-photon Rabi

frequency Ωeff is

Ωeff =
Ω1Ω2

2∆
. (5.24)
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For the intermediate-state detuning we use, ∆ ≈ 700 MHz, we have Ωeff ≈ 2π ×

11 MHz. With Eq. 5.19, this leads to η/η0 = 0.88, though we note that this is likely

an overestimate since the width of a vibrational wavefunction lobe also matters and

is substantially shorter than ∆w.

We consider the timescales of the excitation Rabi frequency and atom interaction

time. An atom with velocity vrms = 0.21 m/s interacting with on-resonant light

experiences an effective π-pulse over ∼180 a0. Despite this being much shorter than

the distance traveled by the atom during the length of the 20-µs pulse (8.6 ×104 a0),

it is slightly longer than the span of the typical vibrational wavefunction for 24D-

ground molecules (∆w ≈ 150a0). Thus, the long excitation pulse does not cause Rabi

oscillations in a resonant atom pair because of the brevity of one single pair encounter.

Nevertheless, the length of the pulse provides more opportunities for photoassociation

by allowing more atom pair encounters to occur, for any given atom.

5.5.5 Estimated photoassociation rates

We estimate the photoassociation rates using Eq. 5.18, the previously derived

η/η0 = 0.88, and the values in Table 5.4, including the atom number Na ∼ 2 × 104,

which we estimate from absorption imaging of the atoms in the dipole trap. We

obtain 2Nm/Na = 0.008η0 and Nm = 80η0 ≤ 80. We typically observe the ion signals

from the molecules to be a little less than 1 ion count. The factor of ∼ 100 difference

is easily accounted for by probable overestimations and significant uncertainties. In

the first place, the observed Nm should be less than the predicted Nm/η0 because η0

should be somewhat less than 1, the ion detection efficiency of our system is limited

(∼ 30%), η may have been overestimated, and possible slight misalignment of the

excitation beams would lead to a smaller effective Na. Secondly, there are substantial

uncertainties introduced from uncertainties in our beam intensities and atom number,

and from our simplification of the physical picture of the photo-assisted collisions.
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The strongest support for the photo-assisted collision analysis is that the predicted

ratio Nm/Na . 0.004 for η0 . 1, which is independent of excitation beam overlap and

ion detection efficiency, is quite close to our observation that Nm/Na (where Na is

the ion count from the Rydberg atom resonance) is on the order of 0.01. In contrast,

Nm/Na based on the frozen gas approximation would be (4π/3)(r3
mnV/2) = 6× 10−5.

5.5.6 Analysis of resonance linewidths

The linewidths of the molecular resonances vary from about 4 to 17 MHz. To ac-

count for these linewidths, we consider several sources of line broadening. Some broad-

ening mechanisms which affect all resonances similarly are the combined linewidth

of the excitation lasers (∼1 MHz), the Doppler broadening (∼0.3 MHz), and the

thermal broadening due to stored mechanical energy such as discussed in subsec-

tion 5.5.3 (< kBT/h = 3.8MHz). The linewidths due to tunneling decay vary sig-

nificantly among the resonances but are typically in the range 1-100 kHz. Because

none of these broadening sources account for the observed linewidths, I additionally

consider broadening due to the short interaction time of an atom pair undergoing

photoassociation.

The short interaction time comes from the relative velocity
√

2v of the two atoms

being photoassociated and limited width of the potential well ∆w, i.e. the time

t = ∆w/(
√

2v) mentioned in subsection 5.5.2. The interaction-time broadening ∆νi

adds to the broadening from all other sources ∆ν0 in quadrature to compose the total

linewidth ∆νt = , i.e.

(∆νt)
2 = (∆νi)

2 + (∆ν0)2. (5.25)

To examine whether the magnitude and variance of observed linewidths may be due

to interaction-time broadening, I use several crude approximations to relate the res-

onance linewidth, the vibrational wavefunction linewidth and the temperature. I
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estimate that the interaction time broadening is

∆νi =

√
2v

2π∆w

, (5.26)

with a ∆w proportional to the width of the largest peak in the vibrational wave-

function. For vibrational states that approach ground states of an isolated potential

well, the wavefunctions are a single smooth peak. Higher vibrational states in a well

have multiple peaks with narrower individual widths, and wavefunctions of states

spanning multiple potential wells have more complex shapes. In the real ensemble of

atoms undergoing random collisions, there is a distribution of path lengths traveled

by the atom pair during which they are have the separation distance necessary for

photoassociation, or in other words, during which they are in an imaginary spherical

shell of a certain thickness and diameter. For an outer radius R and inner radius

r, the path length is R − r for a trajectory perpendicular to the shell and spans

from 0 to 2
√
R2 − r2 for an atom glancing the shell. For the present scenario where

(R− r)/R ≈ 5− 10%, the average path length for trajectories spread uniformly over

the shell’s cross-section, the average path length is about 2.5(R − r). I assume this

to be representative of path length distribution and use 2.5 times the vibrational

wavefunction peak width for ∆w.

I use the thermal velocity v2 = 8kBT/(πm) and Eq. 5.26 together with Eq. 5.25

to arrive at the linear equation

(∆νt)
2 =

4kBT

π3m

(
1

∆w

)2

+ (∆ν0)2. (5.27)

I sample the observed linewidths and calculated vibrational wavefunction central

widths for the resonances that are both observable in the spectra and able to be as-

signed to predicted resonances with reasonable certainty. For the observed linewidths,

I use the data in Appendix A because the better signal quality allows a greater variety
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of resonance widths to be included. The squares of the linewidths and of the inverse

vibrational wavefunction widths are plotted in Fig. 5.8. The aggregate plot suggests

that there may be an overall linear trend. The extracted linear slope and intercept

(shown in the figure) correspond respectively to T = 120µK and ∆ν0 = 6 MHz.

Figure 5.8: Observed linewidths from molecular resonances and inverse estimated
effective widths of their corresponding vibrational wavefunctions.

The extracted temperature agrees surprisingly well with the measured tempera-

ture of 180µK, given the large uncertainties in the slope, the rudimentary nature of

this model, and the fact that the linewidths were recorded on different days (allowing

the possibility of different temperatures and Rabi frequencies). The extracted ∆ν0

value, reflecting the broadening from other sources, also has large uncertainty. The

true value may be more similar to that estimated for broadening due to stored me-

chanical energy (. 3.8 MHz), or it may be higher due to power broadening. While

the analysis presented here is clearly insufficient to completely explain the variance in

linewidths, it provides basis for the postulation that the primary source of broadening

could be the short interaction times.

A proper estimation of the linewidth broadening from interaction times would

involve a fully quantum mechanical calculation. It would account for the dynamic
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Franck-Condon overlap of the traveling atomic wavepackets, comprising the ground

state of the system, with the vibrational wavefunction of the excited (i.e. photo-

associated) state. Interestingly, because the laser light’s excitation of the two-atom

system is coherent, it effectively entangles the center-of-mass dynamics with the in-

ternal state of the system.

5.5.7 Conclusion

Overall, we find reasonable agreement between our experimental observations and

estimates made based on a simple kinematic model using a collisional picture. The

estimates suggest—and the experiment confirms—that even with atom cloud temper-

atures and densities far from BEC conditions, photoassociation of Rydberg molecules

may be readily observable.

5.6 Summary and outlook

In this chapter, I presented an experiment in which I probed long-range Ryd-

berg molecules formed by a Rydberg atom and a ground-state atom. Three coupled

angular momenta exist in the Rydberg molecule system presented here, and differ-

ent combinations of their orientations correspond to molecular adiabatic potentials

that vary, sometimes dramatically. I particularly focused on comparing the molecular

binding energies resulting from each possible combination, and on using the binding

energies to extract electron-atom scattering length functions. I outlined one of the

standard ways to model the molecular potentials arising from such scattering, i.e. the

Fermi pseudopotential together with diagonalization of the perturbed Hamiltonian of

the Rydberg atom in a finite Rydberg basis, and showed how we adapted this model

for translating the measured binding energies into scattering length functions. Fi-

nally, I discussed our experimental observation of substantial photoassociation rates

despite, relative to BEC conditions, the significantly higher temperature and lower
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density of the atom cloud. I considered several ways in which atom temperature could

affect photoassociation, and showed how a simple photo-assisted collision picture can

account for the observed rates, which are several orders of mag greater than those

predicted from a frozen gas model.

Some tangible results of our experiment are as follows. We have measured 32

binding energies of (24DJ+5S1/2) Rydberg-molecular states on PECs for both Rb

isotopes. The low value of n leads to sub-% relative uncertainties and pronounced

sensitivities to p-wave scattering. We have simultaneously fitted the s-wave and

p-wave singlet and triplet scattering length functions aSs (k), aTs (k), aSp (k), and aTp (k),

and we have highlighted the range of k for which the scattering length functions are

most probed in this set of molecular resonances. These results as well as much of the

content of this chapter have published in Ref. [50], which has garnered 14 citations

according to Google Scholar as of August 2020.

The electron-atom scattering interaction may be characterized with a model as

simple as a Fermi pseudopotential with considerable success; the model well-reproduces

the qualitative features of the observed (albeit indirectly) molecular potentials in our

experiment as well as those in many others [29, 56–61]. However, the model’s relia-

bility for making quantitative predictions is less clear. At small enough internuclear

separations, it becomes fundamentally inaccurate to characterize the electron-atom

interaction with scattering lengths because the electron can no longer be treated as a

plane wave. Furthermore, even if the Fermi model were a perfect description, the di-

agonalization methods used in conjunction with it have convergence issues which limit

the ultimate accuracy of the predicted potentials [97, 99]. Achieving accuracies on par

with or better than the measurements of some experiments may be possible with the

development of alternative approaches such as using R-matrix methods [96, 101–103],

Greens-function-based models [68] that are adapted to account for spin interactions,

or generalized local frame transformation theory (GLFT) [104].

76



The behavior of aTp (k) near a shape resonance has a strong effect on states in the

multiple-GHz-deep, inner wells around 610a0 and 710a0. Resonances of some of the

shallowest of these wells, the wells at 710a0 for the (24D5/2 + 5S1/2, F<) potential,

have small enough binding energies to be within the energy range we explored and

appear in our data. The potential wells from resonances of the 24D3/2 are much deeper

and even more strongly influenced by triplet p-wave scattering. In subsection 5.3.4,

we show preliminary data that might be signatures of resonances in these potential

wells. Additional studies could be done to verify the identity of the observed peaks

and explore their properties—for example, by observing their dependence on n.

There are several interesting avenues to explore using the Rb molecular resonances

that are strongly affected by p-wave scattering. First, the fine-structure splitting of

the 3PJ=0,1,2 state of the Rb− resonance can be probed with the molecular reso-

nances [90, 105]. Along the same line, the resonance energies can be useful for esti-

mating the location of the p-wave shape resonance or conversely, testing the models

which predict resonances from scattering lengths. The J-averaged value of the p-wave

shape resonance has been theoretically estimated to be about 22 meV [52, 54], while

experimental studies have made estimates of < 50 meV using electron transmission

spectroscopy [106], and most recently, 26.6 meV using spectroscopy of the deep inner

potential wells in nS Rydberg molecules [90]. While our fitting procedure has not

been designed to estimate the p-wave shape resonance nor do we necessarily expect

it to do so accurately, it is possible to extract a value from our fitted functions. We

note that it is about 37 meV (see Fig. 5.7), which significantly deviates from most

of the aforementioned values given in the literature and may merit further investiga-

tion. Another intriguing possible application of molecular states with strong p-wave

dependence, such as the ones discussed here, is to use them as an intermediate step

in the creation of heavy-Rydberg states through stimulated emission [107].

Our experiment demonstrates successful photoassociation of Rydberg molecules
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from an atom cloud at a temperature significantly higher than other experiments. We

have constructed a basic picture for understanding how the thermal atomic motion

contributes to higher count rates than would be expected from a frozen gas model,

and may cause broadening of the resonance spectra that is dependent on the shape

of each vibrational wavefunction. This effort paves the way to investigate dynamical

processes in long-range Rydberg molecules, a subject which is full of exciting prospects

but yet unexplored [30].
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CHAPTER VI

Polarizability Measurement of Rb 5D3/2-State

“This is interesting stuff, but we can get even more interesting stuff.”

– Paul Berman

6.1 Overview

The 5D3/2 dynamic polarizability and photoionization (PI) cross-section are pro-

posed to be measured using double resonance spectroscopy in a ladder-type 3-level

system, where the system is perturbed by the high-intensity 1064-nm dipole trap de-

scribed in chapter IV, which induces substantial AC Stark shifts (“light shifts”) on the

levels. The method is similar to the one in Ref. [108] in that the upper-transition fre-

quency is scanned for a set of various detunings of the lower-transition frequency, and

the resulting ionization spectra give a ratio of the state polarizabilities that are inde-

pendent of the 1064-nm intensity. It is difficult to extract a polarizability value from

measuring the light shift of a single resonance relative to the light intensity because

the light intensity is typically difficult to measure precisely. The technique of using

double resonance spectroscopy circumvents this difficulty by relying on knowledge of

other state polarizabilities instead of the light intensity. We expand and develop the

earlier method by incorporating PI to extract a cross-section measurement from the

spectra linewidth, and using a more sophisticated setup for laser frequency control
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with improved precision.

6.2 Motivation

Atomic dynamic polarizabilities characterize the shift of atomic energy levels in

response to an external alternating electric field. The polarizabilities depend on the

atomic state and frequency of the external field. In optically trapped atoms, the

state dependence leads to differential light shifts in the atomic transition frequen-

cies. Thus precise knowledge of the dynamic polarizabilities becomes crucial in many

applications such as in optical atomic clocks [109], magnetometers [110], atom in-

terferometers [111, 112], and neutral-atom qubits [23, 113], where the differential

light shifts must be either very well known or eliminated using carefully determined

“magic” wavelengths for the dipole trap [114, 115].

If the frequency of the external electric field exceeds the ionization threshold,

the light induces photoionization (PI) in addition to the atomic transition frequency

shift. PI plays a role in a large variety of physical systems including astrophysi-

cal [116–118], ultracold [119, 120] and laser plasmas [121–123]. Experimental tests

of PI cross-sections and of polarizabilities are both useful for refining fundamental

theory of atomic structure calculations. The former reveal information about the

coupling of the atomic wavefunctions to the continuum free states. The latter con-

tain information mainly on bound-to-bound state matrix elements, which determine

fundamental properties such as oscillator strengths, state lifetimes, and van der Waals

C6 coefficients. These topics are discussed in a number of publications, most notably

in works by Safronova et. al. in which theoretical values are rigorously calculated

[124–126] and in which experimental measurements have directly informed and refined

the theoretical derivations [127–130].

Measurements of PI cross-sections have typically relied on the saturation technique

[131] or the trap loss (or loading) technique [132]. Experimental challenges include
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calibrating metrics for determining the absolute values of the photoionizing light

intensity, the number of initial atoms, and the number of ions collected. In Rb,

cross-sections (at various frequencies) have been measured for 5S1/2 [132–134], 5P3/2

[134–136], 6P1/2 and 6P3/2 [131], and 5D5/2 [137]. PI cross-sections for Rydberg states

have also been measured in Rb [138, 139] and Cs [140].

The experimental determination of the dynamic polarizability of 5D3/2 is the

primary goal of our experiment. No theoretical or experimental estimate has been

made for this state at any wavelength. However, the static polarizabilities have been

investigated [10, 141–143], as well as the dynamic polarizability at 778.1nm for 5D5/2

[144].

The Rb 5D states in particular are appealing to study for several reasons. First,

there has been continued interest ranging from earlier decades [39, 145, 146] to recent

years [147–149] in using the two-photon transition 5S1/2 →5DJ as an optical frequency

reference, which necessitates precise calculation or cancellation of the relevant light

shifts [150, 151]. The transition is favorable because it is narrow (natural linewidth

< 1 MHz), stable, relatively strong, and can be Doppler-free without using laser cool-

ing. At the same time, the transition wavelength (778 nm) is both experimentally

convenient and a second harmonic of 1556 nm, which falls within the telecommunica-

tion band. The 5S1/2 →5D5/2 transition is also one of the recommended transitions

by the Consultative Committee of Length (CCL) for the practical definition of the

meter [152]. A further advantage of probing a Rb 5D state is that the PI rate by

1064nm light is the same order of magnitude as the shift in transition frequency,

which means that, using the method described here, information about the state’s

polarizability and PI cross-section is accessible simultaneously.
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6.3 Principles of experiment

6.3.1 Lattice-induced AC Stark Shifts

The experiment probes a stepwise two-photon-transition 5S1/2 →5P1/2 →5D3/2 of

Rb atoms trapped in the 1064-nm one-dimensional lattice dipole trap. The electric

field of the linearly-polarized dipole trap is E = ε̂E0(ρ, z) cos (ωt), where E0 is the

amplitude, ω = 2πc/1064nm, and (ρ, z) denote the spatial coordinates of the center-

of-mass of an atom. In the presence of the dipole trap, each of the atomic energy

levels experiences a light shift proportional to the square of the electric field amplitude

[or alternatively, to light intensity, since E2
0 = 2I/(cε0)]. To establish the conceptual

framework, we first consider the light shifts neglecting hyperfine structure and later

expand the analysis to incorporate hyperfine structure. Without hyperfine structure

included, the level shifts are:

∆i(ρ, z) = −1

4
αi(ω)E2

0(r, z), i = 5S, 5P, 5D (6.1)

where αi(ω) is the total dynamic polarizability of state |i〉. For ease of notation, we

will refer to the states 5S1/2, 5P1/2, and 5D3/2 as simply 5S, 5P , and 5D. Note,

however, that the polarizabilities for states of different J are not equivalent. It is also

noteworthy that Eq. 6.1 is only applicable when the size of the atoms is small enough

in comparison to the spatial variation of the electric field so that only the electric

field at the location of the center of the atom is relevant. This condition is not the

case, for example, for Rydberg atoms in an optical lattice.

6.3.2 Dynamic polarizabilities

Polarizabilities have at least an mJ -independent scalar component, and, for some

values of J and light polarizations, vector components and/or rank-2 tensor compo-

nents with mJ -dependent factors. For linear polarization (as in the present case),
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there is no vector component. The total polarizability is then:

αi(ω) = α
(0)
i (ω) + η(mJ)α

(2)
i (ω) (6.2)

where α
(0)
i (ω) and α

(2)
i (ω) are the scalar and rank-2 tensor components respectively,

and mJ -dependence is contained in η. First, we concentrate on the scalar component

and neglect hyperfine structure, leaving the tensor component and hyperfine structure

for further discussion in section 6.4.

The scalar component α(0)(ω) is a sum of transition matrix elements from state

|i〉 to all other states |k〉 with factors related to the energy difference between states:

α
(0)
i (ω) =

2

3

∑
k

ωki|〈i ‖ d ‖ k〉|2

~(ω2
ki − ω2)

(6.3)

where ωki = (Ek − Ei)/~, Ei and Ek are the energies of states |i〉 and |k〉, and

〈i ‖ d ‖ k〉 is the reduced electric dipole matrix element between states |i〉 and |k〉.

Note that in general, the sum over k should include an integration over the continuum

states in addition to the summation of the bound ones. This increases in importance

when the photon energy exceeds the ionization energy, as is the case for |i〉 = 5D3/2

at ω = 2πc/1064nm.

The sign and magnitude of the polarizability values for each state may be intu-

itively understood from considering the strong transitions from that state. For 5S1/2,

the dominant contributions to the polarizability are from transitions to 5P1/2 and

5P3/2. Because these are higher-energy states and blue-detuned from ω (ωki > 0,

ω2
ki > ω2), the polarizability is positive (corresponding to a negative light shift). For

Rb 5P1/2, the transitions to 4D3/2, 6S1/2, and 5S1/2 contribute strongly. For all three

of these, the transitions are either red-detuned and positive (ωki < 0, ω2
ki > ω2) or

blue-detuned and negative (ωki > 0, ω2
ki < ω2), leading to a large negative polariz-

ability (positive light shift).
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The quantitative values of the dynamic polarizabilities of 5S1/2 and 5P1/2 at

1064nm have been theoretically estimated to be 687.3(5) [34] and -1226(18) [153].

We use these values in determining the 5D3/2 polarizability from the measurement.

The value we determine can be adapted with improved values of 5S1/2 and 5P1/2 at

any time, if and when they become available. For 5S1/2, an experimental estimate

[154] and earlier theoretical estimate [155] have also been made.

Before collecting experimental data, an initial estimate of the polarizability was

made in order to guide the experimental setup. The estimated contributions from var-

ious transitions are summarized in Table 6.1 and explained as follows. In Refs. [125,

126], the listing of either the dipole matrix elements themselves or the contributions

of each transition to other polarizabilities allow the calculation of the equivalent con-

tribution for the dynamic polarizability at an arbitrary frequency, using Eq. 6.3. In

this way, I estimated most of the important contributions to get an approximate

value of the dynamic polarizability. Some transitions that are important for 1064nm

but not for the static case are missing from the published data, requiring alternative

methods of estimation with greater uncertainty. In Table 6.1, the contribution from

5D3/2 →6F5/2 was estimated using the contribution to the static tensor polarizability

and the J-dependent factors which relate the scalar and tensor contributions. The

(7≤n≤30)F5/2 and (9≤n≤13)PJ contributions were found using the reduced dipole

matrix elements given using an online atom calculator [156]. The contributions from

high-n bound transitions were approximated by observing the trend of the contribu-

tions with increasing n. The core contribution was estimated to be of a comparable

value as that at 778nm [144]. The continuum contribution was not estimated but may

be significant since it is integrated across the point where the difference of the square

frequencies ω2
ki−ω2 (the denominator in Eq. 6.3) equals zero. The sum of the contri-

butions has a high degree of uncertainty, which makes an experimental determination

the more important.
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The rank-2 tensor polarizability of 5D3/2 is estimated to be small, on the order of

20. Because this is comparable to the uncertainty we expect in the scalar polarizability

measurement, it may be too small to measure with our current experiment.

6.3.3 Intensity profile of lattice

Spatially, the light shifts follow the Gaussian profile of the intensity in the radial

direction and sine-squared lattice pattern in the longitudinal direction. The squared

electric field (proportional to intensity) is:

E2(ρ, z) = E2
0e
−(2ρ/w0)2 (1 + cos 2kz)

2
, k =

2π

λ
(6.4)

where w0 is the lattice waist diameter (23 µm), and λ is the trapping laser wavelength

(1064 nm).

6.3.4 Measuring polarizability from atomic transition shifts

The transition shifts are, using Eq. 6.1:

∆5S→5P (ρ, z) = ∆5P (ρ, z)−∆5S(ρ, z) = −1

4
E2(ρ, z)(α5P − α5S) (6.5)

∆5P→5D(ρ, z) = ∆5D(ρ, z)−∆5P (ρ, z) = −1

4
E2(ρ, z)(α5D − α5P ) (6.6)

Because of the spatial distribution of the atoms in the lattice, there is a range

of transition shifts available within the atomic sample. A lower-transition laser at

a certain detuning from the unperturbed transition frequency will interact with a

select fraction (if any) of the atoms, i.e. the ones which happen to be located at the

appropriate intensity that makes the lower-transition resonant. The upper-transition

laser in turn will only be able to excite the same fraction of atoms and at a specific

detuning. In this way, the upper-transition shift is directly related to the lower-

transition shift regardless of the intensity class that is being probed.
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Contribution Dipole reduced Contribution to
State 2πc/ωki to static matrix element 1064nm dynamic
|k〉 (nm) polarizability 〈J ‖d‖ J ′〉 polarizability

(a3
0) (a.u.) (a3

0)
6P1/2 −5037 −6100(59)a 284.9
7P1/2 4685 1910(91)a −103.9
6P3/2 −5241 −1291(9)a 55.5
7P3/2 4609 356(18)a −20.0
4F5/2 9161 21546(95)a −294.6
5F5/2 2795 898(54)a −152.1
5P1/2 −762.1 1.616b −14.9
8P1/2 2419 2.463a −12.9
5P3/2 −776.2 0.787b −3.8
8P3/2 2408 1.096a −2.6
6F5/2 2029 −73.9c

7F5/2 1742 0.985d −44.8
8F5/2 1595 0.529d −29.7
9F5/2 1508 0.321d −21.1
10F5/2 1452 0.212d −15.7
11F5/2 1412 0.148d −12.1
12F5/2 1384 0.108d −9.5
13F5/2 1362 0.082d −7.6

(14-30)F5/2 −40.3e

(n>30)F5/2 ∼ −7f

(9-13)P1/2 −11.6e

(9-13)P3/2 −2.3e

(n>13)PJ ∼ −3f

Core ∼ 10g

Continuum ?
Sum ∼ −533

a Safronova et. al. PRA 83(5) 052208, 2011.
b Safronova et. al. PRA 69(2) 022509, 2004.
c Calculated from tensor polarizability given in:

Safronova et. al. PRA 83(5) 052208, 2011.
d https://atomcalc.jqc.org.uk/.
e Calculated from reduced dipole matrix elements given by:

https://atomcalc.jqc.org.uk/.
f Estimated from trend of reduced dipole matrix elements given by:

https://atomcalc.jqc.org.uk/.
g Guess based on core contribution to dynamic polarizability at 778nm:

Martin et. al. PRA 100(2) 0234117, 2019.

Table 6.1: Initial estimate of 5D3/2 scalar polarizability at 1064nm, using published
theoretical values of static polarizability contributions and dipole matrix elements.
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The stepwise two-photon excitation and transition shifts are illustrated in Fig. 6.1.

Outside the lattice, when ρ � w0, the levels are unshifted and the transitions have

resonance frequencies ω1, ω2 equal to the field-free resonance frequencies ω∗1, ω∗2.

Within the lattice, the atomic levels are shifted according to their positions, and the

resonance frequencies become ω1 = ω∗1 + ∆5S→5P (ρ, z) and ω2 = ω∗2 + ∆5P→5D(ρ, z).

Figure 6.1: Illustration of the AC Stark shifts of the relevant energy levels as a function
of radial position with respect to the 1064-nm dipole trap, at a fixed longitudinal
position z that does not coincide with a node, and corresponding shifts in resonance
frequencies.

The ratio of Eqs. 6.5 and 6.6 relate the two transition shifts to the state polariz-

abilities independently of the intensity at the atom location. The pairs of upper- and

lower-transition detunings that correspond to a doubly-resonant excitation may be

found experimentally, as will be described. Then, if two of the three polarizabilities

are known (in this case, α5S and α5P ), the third may be solved for:

α5D =

(
∆5P→5D(ρ, z)

∆5S→5P (ρ, z)

)
(−α5S + α5P ) + α5P (6.7)

We define the detunings of the lower- and upper-transition lasers from the field

free resonances as ∆795 and ∆762. Finding a single pair of laser detunings (∆795, ∆762)

that are doubly resonant with a pair of level shifts (∆5S→5P , ∆5P→5D) is in principle
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sufficient to deduce a polarizability estimate, but the experimental uncertainty can

be improved by obtaining a series of spectra at various detunings. In the experiment,

we create a 2-dimensional map of the spectra (as a function of the ∆795 and ∆762)

and extract the slope of the dominant spectral feature, which is then used in Eq. 6.7.

For the available 1064-nm intensity of Imax ∼ 1.7×107 W/cm2 and the previously

estimated polarizabilities, the anticipated maximum shifts are about ∆5S→5P,max =

+1.5 GHz and ∆5P→5D,max = −0.5 GHz. It is important to know these approximate

ranges while designing the experiment in order to ensure that the excitation lasers

can be locked and scanned in the appropriate ranges.

We note that a second peak should appear in the spectra when both transitions

5S1/2 →5P1/2(F ′ = 1)→5D3/2 and 5S1/2 →5P1/2(F ′ = 2)→5D3/2 are possible. This

means that there may be two values of E2
0/4 present where the lower excitation is on

resonance:

E2
0

4
=



∆795

−α5S1/2
+ α5P1/2

∆795 + ∆HF

−α5S1/2
+ α5P1/2

.

(6.8)

We use the fact that a resonance with 5D requires that, regardless of the intermediate

state,

∆795 + ∆762 = ∆5D −∆5S

= −E
2
0

4
(α5D − α5S).

(6.9)

Combining this relation with Eq. 6.8, and assuming a fixed detuning for ∆795 gives
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two values for ∆762 where there are doubly-resonant transitions,

∆762 =



(α5D − α5S)

(
∆795

−α5S + α5P

)
−∆795

(α5D − α5S)

(
∆795 + ∆HF

−α5S + α5P

)
−∆795 ,

(6.10)

which give a difference in ∆762 of

[∆762 ]1 − [∆762 ]2 = ∆HF

(
−α5S + α5D

−α5S + α5P

)
. (6.11)

Using values of ∆HF = 361.6 MHz (for 85Rb), the theoretically calculated polariz-

abilities α5S1/2
= 687.3(5) and α5P1/2

= −1226(18), and our rough estimate α
(S+T )
5D3/2

=

−533, we estimate the separation to be about 230 MHz.

6.3.5 Photoionization cross section

The photoionization (PI) rate is:

RPI =
I

~ω
σ(ω) (6.12)

where I and ω are the intensity and frequency of the photoionizing light, and σ(ω) is

the PI cross-section. The expected contribution of the PI to the resonance linewidth

is, in frequency units:

WPI =
RPI

2π
=

Iλ

(2π)2~c
σ(ω) (6.13)

The PI cross section of 5D3/2 at λ = 1064 nm is expected to be similar to that of

5D5/2, which has been measured to be 18 Mb [137]. Using this value as an estimate

and an intensity of 1.7 × 107 W/cm2, the expected broadening is ∼260 MHz. The

expected PI broadening is smaller but of the same order of magnitude as the transition
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light shifts, which is a good experimental scenario for being able to measure both the

polarizability and the PI cross-section. The PI linewidth is small enough so that the

linecenters of the shifted spectra may still be determined with good precision, but

also large enough so that it can be distinguished from other broadening mechanisms.

6.4 AC Stark shifts in high and low optical intensities

Dynamic polarizabilities of an atomic state encapsulate the relation between the

energy shift of the state due to an optical field, and the intensity of the field. First,

I present an analytical derivation of the polarizabilities and light shifts neglecting

hyperfine structure. Subsequently I discuss how to include the hyperfine structure,

and how the Hamiltonian may be diagonalized in different bases depending on whether

the optical intensity is high or low in comparison to the hyperfine coupling strength.

6.4.1 AC Stark shifts neglecting hyperfine structure

The basic procedure for deriving the scalar, vector, and rank-2-tensor polarizabil-

ities in terms of dipole matrix elements is outlined here. An even more thorough

derivation and analysis may be found in Ref. [9].

We begin with a monochromatic optical field of general polarization and propa-

gating in the z-direction,

E =
1

2
E0(ρ, z)ε̂ei(kz−ωt) +

1

2
E0(ρ, z)ε̂∗e−i(kz−ωt), (6.14)

where ε̂ is the complex unit vector ε̂ = cosφ êx + i sinφ êy, and φ is related to

the polarization of the beam. For the case of linear polarization (which we will

assume later), φ is an integer multiple of π/2. For linear polarization in an arbitrary

direction, the field is E(lin) = ε̂E0(ρ, z) cos (kz − ωt) where ε̂ is a real-valued unit

vector transverse to ẑ. We define the angles θk and θp in relation to the quantization
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axis for the atomic angular momentum, êM , as

cos θk = êz · êM

cos2 θp = |ε̂ · êM |2;

these angles will be used in our final result for the energy shift for the general case

of any polarization and choice of quantization axis, in Eq. 6.32. The atom-field

interaction Hamiltonian in the electric dipole approximation is

HAF = −d · E = −1

2
E0(d · ε̂ei(kz−ωt) + d · ε̂∗e−i(kz−ωt)). (6.15)

For non-hydrogenic states (where the state is not degenerate) and when the dipole

approximation has been made, there is no energy shift due to first-order perturbation.

In second-order perturbation theory, the time-averaged energy shift in the atomic

state of interest |i〉 by perturbing states |k〉 is

∆Ei = −|E0|2

4

∑
k

[
〈i|d · ε̂∗|k〉〈k|d · ε̂|i〉

Eki − ~ω
+
〈i|d · ε̂|k〉〈k|d · ε̂∗|i〉

Eki + ~ω

]
= −|E0|2

4

∑
k

〈i|dµ|k〉〈k|dν |i〉
~(ω2

ki − ω2)

[
ε∗µεν(ωki + ω) + εµε

∗
ν(ωki − ω)

]
,

(6.16)

where Eki = Ek −Ei, ωki = Eki/~, Ei and Ek are the respective energies of states |i〉

and |k〉, µ and ν are Cartesian coordinates, and the Einstein summation convention

is used.

Here, we will consider the |J mJ〉 basis, which is applicable when neglecting hyper-

fine structure, or when the field-induced AC shifts far exceed the hyperfine structure.

The equivalent solution for the |F mF 〉 basis may be found by substituting J and mJ
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with F and mF . Now, Eq. 6.16 is

∆EJ,mJ
= −E

2
0

4

∑
J ′

1

~(ω2
J ′J − ω2)

SµνQµν , (6.17)

where Sµν and Qµν are the rank-2 tensors

Sµν =
∑
m′

J

〈J mJ |dµ|J ′ m′J〉〈J ′ m′J |dν |J mJ〉 (6.18)

Qµν = ε∗µεν(ωJJ ′ + ω) + εµε
∗
ν(ωJJ ′ − ω). (6.19)

Any rank-2 tensor Tµν may be decomposed into irreducible parts as

Tµν =
1

3
T (0)δµν +

1

4
T (1)
σ εσµν + T (2)

µν , (6.20)

where εσµν is the Levi-Civita symbol and the scalar T (0), the vector T (1) and the

rank-2 tensor T (2) are Cartesian tensors,

T (0) = Tµµ (6.21)

T (1)
σ = εσµν(Tµν − Tνµ) (6.22)

T (2)
µν =

(Tµν + Tνµ)

2
− 1

3
Tσσδµν . (6.23)

Using Eq. 6.20 for Sµν in Eq. 6.17 yields

∆Ei = −E
2
0

4

∑
J ′

1

~(ω2
J ′J − ω2)

(
1

3
S(0)δµν +

1

4
S(1)
σ εσµν + S(2)

µν

)
Qµν . (6.24)

Using the Wigner-Eckhart theorem allows us to write each of the scalar, vector,
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and tensor components of Sµν in terms of reduced dipole matrix elements, as

S(0) = Sµµ = |〈J ‖ d ‖ J〉|2 (6.25)

S(1) = (−1)J+J ′
(−i)

√
24(2J + 1)

J(J + 1)

1 1 1

J J J ′

 |〈J ‖ d ‖ J〉|2mJδq0 (6.26)

S(2) = (−1)J+J ′

√
5(2J + 1)

J(J + 1)(2J − 1)(2J + 3)

1 1 2

J J J ′

 (6.27)

× |〈J ‖ d ‖ J〉|2[m2
J − J(J + 1)]δq0,

where q is the qth component in the spherical basis of a tensor T
(k)
q , and the spherical

basis is defined such that q = 0 corresponds to the axis of quantization êM . Here,

the reduced dipole matrix elements are written according to the convention defined

by [9, 157]:

|〈αj ‖ T(k) ‖ α′j′〉|2 =
∑
m′q

|〈αjm|T (k)
q |α′j′m′〉|2 =

∑
m′

|〈αjm|T(k)|α′j′m′〉|2 (6.28)

There is a common alternate convention that leads to a difference in the square

reduced matrix elements by a factor of (2J + 1).

Now we turn to Qµν and the other remaining tensors in Eq. 6.24. The rank-0 part

is

δµνQµν = Qµµ = (ε · ε∗) 2ωJ ′J = 2ωJ ′J . (6.29)

Since the rank-1 and rank-2 parts each include δq0 from the results of S(1) and S(2),

we convert the remaining tensor components to the spherical basis in order to apply
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it.

δq0 [εσµνQµν ] = δq0 [(ε∗ × ε)(ωJ ′J + ω) + (ε× ε∗)(ωJ ′J − ω)]

= 2ωδq0 [(ε∗ × ε)]

= 2ωδq0

[√
2i(ε∗ε)(1)

q

]
= 2ω(ε∗ × ε) · êM

= 2ω(i sin 2φ) êz · êM

= 2ω(i sin 2φ cos θk)

(6.30)

δq0
[
Q(2)
µν

]
= (Qµν)

(2)
0

= (Qνµ)
(2)
0

= 2ωJ ′J(εµε
∗
ν)

(2)
0

= 2ωJ ′J
(3ε0ε

∗
0 − ε · ε∗)√

6

= 2ωJ ′J
(3|ε · êM |2 − 1)√

6

= 2ωJ ′J
(3 cos2 θp − 1)√

6

(6.31)

Now we use Eq. 6.25-6.31 in Eq. 6.24 to obtain:

∆E(J,mJ ;ω) = −E
2
0

4

[
α(0)(J ;ω) + sin 2φ cos θk

(mJ

2J

)
α(1)(J ;ω)

+

(
3 cos θ2

p − 1

2

)(
3m2

J − J(J + 1)

J(2J − 1)

)
α(2)(J ;ω)

]
,

(general polarization and quantization axis) (6.32)
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where the last term equals zero when J = 1/2 and

α(0)(J ;ω) =
∑
J ′

2ωJ ′J |〈J ‖ d ‖ J ′〉|2

3~(ω2
J ′J − ω2)

(6.33)

α(1)(J ;ω) =
∑
J ′

(−1)J+J ′

√
6J(2J + 1)

J + 1

1 1 1

J J J ′

 2ω|〈J ‖ d ‖ J ′〉|2

~(ω2
J ′J − ω2)

(6.34)

α(2)(J ;ω) =
∑
J ′

(−1)J+J ′

√
10J(2J + 1)(2J − 1)

3(J + 1)(2J + 3)

1 1 2

J J J ′

 2ωJ ′J |〈J ‖ d ‖ J ′〉|2

~(ω2
J ′J − ω2)

.

(6.35)

When the light polarization is linear, which implies that φ is an integer value of π/2,

the vector (rank-1 tensor) term becomes zero. Choosing the quantization axis to be

perpendicular to the direction of the light (i.e. cos2 θp = 1) then leads to the energy

shift

∆E(J,mJ ;ω)(lin) = −E
2
0

4

[
α(0)(J ;ω) +

(
3m2

J − J(J + 1)

J(2J − 1)

)
α(2)(J ;ω)

]
.

(linearly polarized, quantization axis êM ⊥ êz) (6.36)

Thus we see that, for this case, the relation between energy shift and the field is

contained in only two parameters, α(0) and α(2), which represent contributions from

many dipole matrix elements (according to Eqs. 6.33 and 6.35) between bound-bound

states |i〉 and |k〉 and should also include contributions from transitions to the contin-

uum states.. The polarizabilities should also include contributions from transitions to

the continuum free states. Our objective is to measure these polarizability parameters

for the 5D3/2 state, as well as its photoionization cross-section.
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6.4.2 Hamiltonian including hyperfine structure

The Hamiltonian for an atom interacting with a linearly polarized light field E(t) =

E0 cos(ωt), including the atomic hyperfine structure, is

H = −d(ω) · E(ω) + AHFSÎ · Ĵ +BHFS

3(Î · Ĵ)2 + 3
2
Î · Ĵ− I(I + 1)J(J + 1)

2IJ(2I − 1)(2J − 1)
(6.37)

where d(ω) is the induced dipole of the atomic state with polarizability α (d(ω) =

α(ω)E(ω)), AHFS and BHFS are the magnetic-dipole and electric-quadrupole hyperfine

constants of the atom.

In general, the polarizabilities depend on all of the angular momentum couplings

present in the system; the Hamiltonian is not necessarily diagonal in either of the

|JImJmI〉 or |γJmJ〉 bases. We use Eq. 6.37 to numerically model of the system

at arbitrary optical intensities, but further insight can be gained from considering

two scenarios of optical intensities: when the AC Stark shift is much higher than the

hyperfine coupling strength, and when it is much lower.

6.4.3 High-optical-intensity (strong field) regime

When the AC Stark shift is larger than the hyperfine coupling strength (but still

smaller than the fine structure coupling), the Hamiltonian is approximately diagonal

in the |JImJmI〉 basis. Assuming that the light is linearly polarized in a direction

perpendicular to the quantization axis, we may follow the same method as in sec-

tion 6.4.1 an atom in state |γJmJ〉 experiences the approximately the same energy

shift as that in Eq. 6.36, i.e.

∆EγJmJ
(ω) ≈ 1

2
αγJmJ

(ω)E2
0

= −1

4
(α(0)

γ (ω) + ηJmJ
α(2)
γ (ω))E2

0

(6.38)

96



where α
(0)
γ and α

(2)
γ are the scalar and tensor components of the total polarizability

αγJmJ
(ω), and ηJmJ

is:

ηJmJ
=


3m2

J − J(J + 1)

J(2J − 1)
, for J ≥ 1

0, otherwise

6.4.4 Low-optical-intensity (weak field) regime

When the light field is negligible compared to the hyperfine splitting, the eigen-

states of the system will be the |F,mF 〉 states instead of the |J, I,mJ ,mI〉 states. The

analysis in section 6.4.1 may be followed to get results that are identical to Eqs. 6.32-

6.36 except with each instance of J and mJ are replaced by F and mF respectively.

The new scalar and rank-2 tensor polarizabilities α(0)(F ;ω) and α(2)(F ;ω) are related

to their J-based counterparts by [9]

α(0)(F ;ω) ≈ α(0)(J ;ω) (6.39)

and

α(2)(F ;ω) ≈ 3X(X − 1)− 4F (F + 1)J(J + 1)

(2F + 3)(2F + 2)(2J − 1)
α(2)(J ;ω), (6.40)

where

X := F (F + 1)− I(I + 1) + J(J + 1). (6.41)
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6.5 Experiment

6.5.1 Procedure

The atoms are prepared in the MOT and optical lattice while the optical lattice

is at low intensity. Before excitation, the optical intensity is ramped to a value about

20 times higher. The atoms are then two-photon excited into the 5D3/2 state; the

drive pulses are below saturation intensity and have durations of about 10 µs for the

795nm and 200 ns for the 762nm. In a simplified picture, atoms become excited when

they are located at or move through (because of thermal motion) positions where

both lasers are resonant on the potential landscape. Multiple spectra are recorded in

which the upper-transition laser is scanned while the lower-transition laser is fixed,

for a set of lower-laser detunings. The ionization signal is collected on an MCP.

6.5.2 Frequency locking and scanning of excitation lasers

In this experiment, the excitation lasers must be locked and scanned over a wide

range far from the field-free atomic resonance, and the detunings must be precisely

known for an accurate measurement of the polarizability. Common methods for laser

frequency control rely on using AOMs, which have comparatively small offsets and

scanning ranges; scanning the grating or current of the laser, a method which suffers

from low precision in the frequency; and/or using a reference cavity, which can be

susceptible to frequency drifts caused by temperature fluctuations in its environment,

and sometimes has too large of a spectral range to be useful. A PLL setup is much

more involved to construct and to use, but allows large scanning ranges with high

precision.

Without a frequency reference (preliminary data) For the first set of prelim-

inary data we collected, we initially let the 795-nm laser frequency float, i.e. instead

of locking it to anything. While the data visually appears promising, the significant
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variance of times at which the scans were taken (especially for the scans with the

biggest difference in 762-nm detuning) is such that the uncertainty in 795-nm drift is

very large and precludes extracting polarizability values with reasonable uncertainty.

With Fabry-Pérot interferometer (FPI) references The FPI spectra of the

795-nm and 762-nm light may each be recorded together with the ion spectra in order

to provide relative frequency references. The FPI is temperature-controlled to sta-

bilize the resonance spectrum against temperature fluctuations. Small fluctuations

remain; however. These were found to be within 1 MHz within the span of a cou-

ple of hours. This stability is expected to be sufficient for making a polarizability

measurement with good uncertainty.

With PLL references Even better performance is offered by using the PLLs dis-

cussed in Chapter IV (layout shown in Fig. 4.2). In this scheme, the scans of the

795-nm and 762-nm excitation lasers are each phase-locked to an additional laser

that is nearly the same wavelength and locked to an atomic reference (see Fig. 4.3).

The frequency offsets between each pair are determined by an RF signal generator,

whose frequency may be held constant or scanned. When locked, the beat note be-

tween the two lasers was found to be <10 Hz, which is far smaller than the absolute

precision of the laser locked to the atomic reference (estimated to be ∼1 MHz). The

scheme allows large, multi-GHz detunings (accommodating the expected maximum

light shifts given in subsection 6.3.4) and with high absolute precision. It is planned

to collect future data for the polarizability measurement using this method. Though

the precision will still be limited by the reference laser to ∼1 MHz, using the PLLs

will allow the detuning frequencies to be known on an absolute scale, to be controlled

easily, and to be recorded automatically in the collected data.
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6.5.3 Preliminary data

The initial dataset is shown in Fig. 6.2. The two main regions of ion signal come

from transitions through either of the hyperfine levels of the 85Rb 5P3/2 intermediate

state (F = 3, left region; F = 2, right region). They correspond to each other with

one shifted from the other by +362 MHz in 795-nm frequency and -362 MHz in the

762-nm frequency. At a fixed 795-nm frequency, the splitting between them is related

to the hyperfine splitting and the polarizabilities of all of the states (Eq. 6.11). In the

data, it is similar to the value we estimated earlier (230 MHz). The lengths of the

lines reflect the distribution of atoms across different regions of lattice intensity. For

a given hyperfine level of the intermediate state, the upper left signal corresponds to

higher intensity regions. The lines become broader at higher intensities because the

PI rate increases. In principle, the rate linewidth of increase can be used to determine

the PI cross-section. The slope of the lines may be used to extract a value for the

5D3/2 polarizability using Eq. 6.7. In the preliminary data here, the uncertainties

from the laser drifts are too wide to make the slope extraction useful (the slopes

suggest a value around −600 with an uncertainty of around 30%). At the same time,

it demonstrates potential for much better precision. By using frequency references

and collecting similar data, we anticipate an uncertainty around 5− 10%.

6.6 Outlook

The immediate next step for this experiment is to repeat the collection of data

corresponding to Fig. 6.2 but while using one or more frequency references for the

excitation lasers. Since acquiring the preliminary data, we have built two PLL setups

(including the installation of two additional laser systems to use as references) for

improved control of the excitation laser frequencies. We have tested and confirmed

the ability to phase-lock each pair, and to scan the excitation lasers (the slave lasers)
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Figure 6.2: Ion counts from excitation of atoms to 5D3/2 while in the high-intensity
optical-lattice dipole trap, as a function of the excitation laser detunings. The right
side shows the same data but with the most important features annotated. The
frequency detuning scales in the graph are not absolute; they are related to ∆795 and
∆795 by small offsets that are approximately fixed.

by changing the frequencies of the RF generators. With these developments, we

expected that new data for a new measurement will be able to be collected in the

near future.

On the theoretical side, a model should be developed for fitting the whole data set

with polarizability and PI cross-section values. The simple relations between basic

features in the experimental data and the PI rates and polarizabilities is useful to guide

the experiment and to develop insights, but the real physical system has several layers

of complexities that solicit more sophisticated models. The atoms are multi-level

quantum-mechanical systems—with hundreds of levels, if the magnetic sublevels are

included—and with coherent couplings by the excitation lasers. The excited states

have many decay paths, and the 5D3/2 states may be irreversibly excited into the

continuum by photoionization. Further, the atoms may move over the timescale of

the pulse, which is complicated by the fact that they experience different dipole forces

from the optical lattice depending on their internal state (and the 5PJ - and 5D3/2-
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states are repulsed from the light intensity). In principle, this scenario is treatable

with Tullys surface hopping method [158, 159], which accounts for center-of-mass

forces on vibrational wavepackets without requiring a full quantum treatment of the

center-of-mass motion. Finally, the model should account for the distributions in

atom location and thermal velocity, lattice intensity, and excitation beam intensities.
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CHAPTER VII

Spectroscopy of Lattice-Mixed Rydberg States

“Here you are, a happy little atom. If you’re in a standing wave, what

do you see, moving around?”

– Paul Berman

7.1 Overview

This chapter describes the basis and design of an experiment to optically excite

and spectroscopically observe “hydrogenic” Rydberg states mixed by a high-intensity

optical lattice. I discuss how, in an optical lattice of comparable spacing, Rydberg

atoms experience light shifts based on ponderomotive potentials instead of the typical

dipole-interaction-based AC Stark shifts. Because the electron quiver motion corre-

sponding to the ponderomotive interaction is many orders of magnitude faster than

the timescale of the Rydberg atomic center-of-mass motion, the Rydberg atom expe-

riences an adiabatic potential. In such a scenario, the optical lattice is referred to as a

ponderomotive optical lattice (POL). At high-intensities, POLs mix the high-angular-

momentum (also known as hydrogenic) states with themselves and with small portions

of low-angular-momentum states. The lattice-mixed high-angular-momentum states,

which were previously energetically degenerate within a given n-manifold, develop a

rich structure and become accessible to excite from low-angular-momentum states.
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The proposed experiment is to spectroscopically probe the lattice-mixed high-

angular-momentum states. In order to inform the experimental design, I examine

several design parameters and compare how they affect the quality of the conditions

for observing the states. I describe the experimental setup and progress toward

making the measurement.

7.2 Motivation

High-angular-momentum (high-`) states of Rydberg atoms have attracted interest

over the decades for several reasons. Their exceptionally long lifetimes often make

them the candidate of choice for applications where long probe times are beneficial,

such as in cavity quantum electrodynamics [160], quantum sensing [5, 6], and quantum

simulations of spin systems [161]. Because of the absence of atomic core penetration

by the Rydberg electron, they closely resemble the corresponding states of hydrogen.

They deviate due to the long-range effect of the core polarizability [162] and thus

may be used to sensitively probe it [162–164]. Additionally, high-`-character states

in a dense gas can form Rydberg molecules [28] of exotic types [32, 61, 76].

The production of high-` states is not straightforward; in accordance with the

optical dipole selection rule ∆` = ±1, either i) many photons must be supplied for

stepwise excitation, or ii) `-mixing must be present. The former has been done, par-

ticularly for “aligned circular states,” through combined optical and RF excitations

and a time-varying electric field using the rapid adiabatic passage method [165, 166]

or derivatives of it, and is also possible to do with specially-designed optical traps

[167]. Aligned circular states are those with maximal ` and magnetic quantum num-

ber m, i.e. the states |n, ` = n− 1, |m| = n− 1〉. These states have often been favored

because they have been the easiest to produce with high-purity, which, for many ap-

plications, is a necessary condition to be useful. In the second case, `-mixing collisions

and recombination processes have explained the population of high-` states after ini-
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tial optical excitation to low-` states [168–171] and have been exploited accordingly

[172], though these processes result in a mixture of high-` states as opposed to a pure

state. In addition, `-mixing induced by electric, magnetic, and/or RF fields during or

following the optical excitation has allowed production of circular states with tech-

niques such as the crossed-fields method [173, 174], as well as high-`, low-m states

[162, 175–180].

Purely optical mixing of Rydberg angular momenta has also been proposed by

means of short, intense laser pulses. In one such proposal [181], it was suggested that

the ultra-strong couplings between Rydberg states could allow the nondegenerate

states to be `-mixed by a non-resonant optical pulse of sufficient intensity, such that

high-` states could be directly photoexcited from a ground-state with only a single

laser pulse and no external static fields. The proposal sparked a flurry of papers in

which the nature of couplings between Rydberg states in strong optical fields was

vigorously debated [182–197]. Theoretical progress eventually made clear that the

electric dipole approximation fails for couplings between Rydberg states (n > 10)

[193–197] and that a calculation using the full electric operator must be done in

order to correctly evaluate angular momentum distributions. Nevertheless, such a

calculation [194] indicated that the generated wave packet indeed consists of multiple

angular momenta, and that there is some degree of preferential parity depending on

the intensity and duration of the pulse (results which appear to be confirmed in recent

experimental results [198]). The angular momentum distributions generated with

short, intense laser pulses continues to be an area of active research, especially in their

relation to excited-state population in strong field ionization through multiphoton

processes and tunneling ionization [198–205], and for their use in quantum information

processing [206].

Mixing of high- and low-angular-momentum states has also been studied in the

context of accelerating excited-state decay [207] and is thus relevant for deexcitation
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of antihydrogen for improved collection ability [208].

Here, we demonstrate a method that allows for all-optical excitation of states with

high-` character without the use of quasistatic field ramps. It is based on the `-mixing

induced by ponderomotive light shifts from a high-intensity, far-off-resonant optical

lattice [209, 210]. A ponderomotive light shift originates from the kinetic energy

imparted to the quasi-free Rydberg electron by the off-resonant optical field [209].

Inside an optical lattice, the effective light shift depends not on the field at the point

location of the atomic center of mass, but on the intensity distribution in the whole

spatial extent of the electron wavefunction, which, for Rydberg atoms, is typically of a

comparable size to the lattice periodicity. At sufficiently high intensities, the variation

of the optical field within the electron wavefunction induces `-mixing, such that the

hydrogenic manifold is optically accessible without additional fields and exhibits a rich

structure with features reminiscent of rotor, vibrational, and Stark states. Because

m is conserved during the lattice mixing (due to the cylindrical symmetry of the 1-D

lattice), the excited states have low-m. This high-`, low-m character is a property

shared with the electronic wavefunctions of Rydberg molecular states, particularly

for the high-` class of molecules (e.g. ”trilobite” molecules [28]) but also for the low-`

class. Rydberg molecules are a core part of this work and are discussed in detail in

Chapter V.

Because the method requires only optical excitations, the excitation region may

in principle be in the range of microns, which would allow single-site addressability

and wave packet engineering. Alternative methods relying on microwave and ramped

fields, however, require RF antennas, magnetic field coils, and/or electrodes. Use of

these leads to an excitation volume in the range of cubic centimeters or more and

therefore prohibits site selectivity.

The method presented here is in contrast to the previously discussed scenario

of optical `-mixing (see several paragraphs before), primarily because the `-mixings
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have different origins. In the present case, it arises from the spatial variation of

ponderomotive potential within the electron wavefunction. The mixing is induced

by cw laser light that is far from any atomic resonance and whose intensity (∼ 107

W/cm2) is lower than those of the other optical `-mixing schemes, in most cases by

several orders of magnitude. Furthermore, as opposed to generating a dynamical wave

packet or a distribution of states, selective excitation to a single stationary eigenstate

is possible.

7.3 Ponderomotive light shifts in optical lattices

The light-shift of a PEC of a Rydberg atom in an optical lattice is fundamentally

different than a conventional light shift of an atomic ground or low-lying excited state.

The latter is due to a field-induced dipole-moment arising from state-couplings that

are (typically) in the frequency range of the optical field, i.e. the A · p term in the

minimal coupling Hamiltonian of the electron:

H =
[p + eA(r, t)]2

2me

, (7.1)

where p is the electron momentum, me is the electron mass, and A(r, t) is the vector

potential of the field. In the case of a Rydberg atom, transitions to nearby Rydberg

states are strong but very far from optical field frequencies, and for the frequency

chosen here of c/1064nm, the transition strengths to the states nearest resonance

are extremely weak. Thus, these do not contribute significantly to the light shift.

Instead, the shift is predominantly from the ponderomotive potential of the Rydberg

electron, which results from the often-neglected A2 term. The quasi-free electron is

driven by the oscillating electric field (quiver motion), and the resulting time-averaged

kinetic energy of the electron is equivalent to a change in the potential energy of

the Rydberg atom. Treating the electron quiver motion as a static time-averaged
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potential is appropriate because the timescale of the quiver motion (∼ 1015 Hz) is

orders of magnitude faster than that of the Kepler frequency (∼ 1011 Hz for n ∼ 40),

which is the fastest orbital motion of the electron about the atomic core. The intensity

gradient of the optical lattice exerts a force on the Rydberg electron, and the ionic

core of the atom experiences the force mediated by its tenuous bond to the electron.

Figure 7.1: (a) Three coordinates of motion, adapted from Ref. [209]. (b)-(d) Illus-
trations of the timescales of each of the three types of motion. Within the timescale
of each motion, other motions of vastly different timescales appear static; if slower,
their positions appear fixed, and if faster, they appear time-averaged.

Besides the electronic quiver motion and motion relative to the atom, a third type

of motion is at play, which is that of the atomic center-of-mass. The three types of

motion are represented by three coordinates, ρ, r, and R, respectively (Fig. 7.1a).
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The quiver motion (Fig. 7.1b) and motion relative to the atomic core (Fig. 7.1c)

may always be separated from each other, and the atomic center-of-mass motion

(Fig. 7.1d) may sometimes be treated separately from the others, as will be discussed

in the following.

7.3.1 Nondegenerate case of ponderomotive shifts

We consider two particular cases of ponderomotive shifts of Rydberg atoms. In the

simpler case, the perturbation from the external field is sufficiently small compared

to the energy difference between the considered state and states of other angular

momenta. This is true, for example, for Rydberg Rb atoms with ` < 3 and pondero-

motive shifts of tens of MHz, because the ` < 3 quantum defects δ have non-integer

parts that are large and well-separated from each other (δs = 3.13, δp = 2.65, and

δd = 1.34). The slowest frequencies of the electronic motion about the atom, the

precession frequencies, are orders of magnitude faster than the center-of-mass atomic

motion. This allows the Born-Oppenheimer approximation to be applied, which is

that the electronic motion and the nuclear motion can be treated separately.

For low-` Rydberg atoms with low-enough n to be small compared to the lattice

period, nondegenerate first-order perturbation theory may be applied. The perturba-

tive shifts in the atom’s adiabatic energy levels are simply equal to the ponderomotive

energy, VP = e2|E|2/(4meω
2). For moderate- to large-sized Rydberg atoms, the opti-

cal field varies substantially within the Rydberg electron wavefunction and a spatial

average must be taken to find the adiabatic lattice potential at the point-like location

of the atom,

Vad(R) =

∫
d3rVP (r + R) |ψ0(r)|2, (7.2)

where R is the atomic center-of-mass coordinate, r is the relative coordinate of the
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Rydberg electron, VP (r + R) is the free-electron ponderomotive potential, and ψ0(r)

is the unperturbed Rydberg electronic wavefunction.

The transition between the regime where the atom’s adiabatic potential energy

levels follow the shape of the lattice intensity, to the regime where they are modified

according to a spatial average weighted by the electronic wavefunction, is shown

by example in Fig. 7.2(a)-(c). Adiabatic potential energy levels are shown for D5/2

states with effective principal quantum numbers n∗ ≈ 20, 40 and 60 in a λ = 1064nm

optical lattice. For increasing Rydberg atom sizes (diameter ∼ 4n∗2), the adiabatic

potentials become flatter and show dependence on the mj value (which is conserved

because of the azimuthal symmetry of the lattice potential). For n∗ ≈ 60, more

than one lattice spacing (λ/2) is spanned by the Rydberg wavefunction, and the

potential becomes inverted for some mj-states. The low-mj state wavefunctions are

elongated along the z-axis, meaning that the spatial averaging in Eq. 7.2 is more

widespread. As n increases, their corresponding potentials flatten and invert earlier

than higher mj states. In contrast, the high-mj state wavefunctions are donut-shaped

with comparatively short spread along the z-axis, so their adiabatic potentials retain

the shape of the lattice potential up to much higher values of n. Similar trends are

seen in adiabatic potentials for the degenerate case [Fig. 7.2(d)-(f)], which is discussed

in the next section.

7.3.2 Degenerate case of ponderomotive shifts

In the second case, which is when i) the perturbation is large with respect to the

energy separation between a low-` state and the high-` states and ii) the Rydberg

atom diameter is on the scale of the lattice periodicity, mixing of high-` and low-`

states occurs. The adiabatic lattice potential,

Vad(R) =

∫
d3rVP (r + R) |ψ(r)|2, (7.3)
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has the same appearance as Eq. 7.2, but there is a critical difference: the electron

wavefunction ψ(r) may no longer be approximated as the unperturbed wavefunction

ψ0(r). Thus, the integral may not be immediately evaluated because ψ(r) is not

known. Instead, finding the potential energy curves and wavefunctions requires redi-

agonalization of the electronic Hamiltonian, including the atomic fine structure. The

Hamiltonian in atomic units is:

H =
p2

2
− 1

r
+ Vc(r) + VLS + VP (z + z0) (7.4)

where Vc(r) is a short-range core potential, VLS is the fine structure, z is the z-

coordinate of the electron, z0 is the z-coordinate of the atomic center-of-mass, the

axis of the one-dimensional lattice is oriented along ẑ, and it is assumed that the

lattice potential varies slowly in the transverse direction.

The ponderomotive potential of the lattice is a sinusoidal standing wave that may

be expanded in a Taylor series of z = r cos θ about z = 0, that is,

VP (z + z0) =
1

2
V0(1 + cos(2k(z + z0))) =

1

2
V0

∞∑
p=0

Kp(2kr cos θ)p, (7.5)

where V0 is the free electron ponderomotive potential V0 = e2E2
0/(meω

2) for the

single-beam electric field E0, and Kp are Taylor coefficients given by [210, 211]

Kp =
1

p!


(−1)p/2 cos(2kz0) + δp,0, p even

(−1)(p+1)/2 sin(2kz0), p odd.

(7.6)

In general, there are nonzero matrix elements for a wide range of |n, `, j,mj〉 ↔

|n′, `′, j′,mj〉 couplings. In practice, due to the (2kr)p factor in Eq. 7.5, the number

of terms that matter depend on the size of the atom relative to the lattice period.
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The angular matrix elements from the cospθ factors depend on `, j and mj, and have

selection rules that depend on p.

Diagonalization of the electronic Hamiltonian with the additional lattice potential

(Eq. 7.4) leads to the hydrogenic states mixing with each other and also, for strong

enough lattice potentials, with low-` states. The presence of low-` character in the

hydrogenic states allows the usually dipole-forbidden excitation from low-` states.

The adiabatic potentials of several hydrogenic manifolds and the transition strengths

from 5P3/2 are shown in Fig. 7.2(d)-(f). The shape of the hydrogenic manifold does

not significantly depend on V0 because the levels are already degenerate; it is very

similar for V0 = 0.05− 5 GHz (not shown) and the depth of the pattern merely scales

with VP . More significant is the fact that mixing with low-` states is present for lat-

tice depths in the GHz range because the gaps between the hydrogenic manifold and

the nearest low-` states are of that range (see headline of Fig. 7.2). In frames (d)-(f),

The transition strengths are proportional to the area of the red circles, multiplied by

a scaling factor γscale that varies by frame. In this example, where the excitations

are out of the 5P3/2 state, the excitation strength depends on the amount of S- and

D-character mixed into the Rydberg states. The rapidly increasing strength of the

mixing with n, which is reflected in γscale, is due to multiple factors: the atomic

size (4n2) growing to be comparable with lattice period (λ/2), the energy gaps be-

tween the hydrogenic manifold and the closest low-` states decreasing, and stronger

intrashell coupling among states in the same hydrogenic manifold.

7.3.3 Effective electric and magnetic fields

Further insights into the structure of the lattice-mixed adiabatic potentials may

be gained by considering their similarities with Rydberg states in effective electric

and magnetic fields. We consider the case when the Rydberg wavefunction spread

along the lattice direction ẑ, which depends on both n and mj, is sufficiently small
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Figure 7.2: Examples of adiabatic potentials for nondegenerate and degenerate cases
in a λ = 1064 nm lattice for n∗ ≈ 20, 40, and 60. (a)-(c): For V0/h = 50 MHz,
the n∗D5/2 states have no `-mixing. The adiabatic potentials are proportional to
the optical lattice intensity for n∗ ≈ 20 and become flatter for n∗ ≈ 40 and 60 due
to the spatial averaging in Eq. 7.2. (d)-(f): At V0/h = 5 GHz, the n∗H hydrogenic
manifolds acquire low-` character, allowing them to have nonzero transition strengths
from 5P3/2. The transition strengths are proportional to the area of the red circles,
multiplied by the displayed scaling factor γscale.

compared to the lattice period. The effective electric and magnetic fields are discussed

in detail in Ref. [210], whose main findings are summarized here.

The gradient of the optical potential exerts a force on the Rydberg atom as does

an electric field on an electron. The maxima and minima of a slope gradient occur

at the inflection points. For the potential of Eq. 7.5, the inflection points are at

z0 = λ/8 ± Nλ/4, for which the gradient values are ±V0k. This corresponds to
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“effective electric fields” of

Eeff (λ/8±Nλ/2) = +
V0k

e
, (7.7)

and Eeff (3λ/8±Nλ/2) = −V0k

e
. (7.8)

For example, a lattice depth of V0/h = 2 GHz has a corresponding field of Eeff =

490 mV/cm at the lattice inflection points. For perspective, when using optical spec-

troscopy, the sensitivity level of Rydberg states to electric fields is about 1-10 mV/cm.

When the effective-electric-field comparison is valid, the splitting between adjacent

adiabatic potentials is equivalent to those of the effective electric field, which is

3nEeff (a.u.). In Ref. [210], a numerical comparison of the splittings showed that,

for λ = 1064nm, the comparison is approximately valid for n . 37 for mj = 2.5, and

likely valid for n up to ∼ 250 for mj = n− 2.5.

The concept of the effective magnetic field is most useful at the lattice maxima

and minima because the potentials are approximately quadratic. The diamagnetic

interaction term of a Rydberg atom in a magnetic field is (e2B2/8me) r
2 sin2 θ. The

lattice potential of Eq. (7.5) in the second-order Taylor expansion, at the lattice

minima and maxima, is

V =
V0

2
±
(
V0

2
+ V0k

2r2 sin2 θ − V0k
2r2

)
, (7.9)

where the positive and negative signs apply for the lattice maxima and minima,

respectively. Because of the term proportional to r2 sin2 θ, the lattice potentials have

a resemblance to the energy levels induced by a magnetic field. Equating the r2 sin2 θ

terms directly leads to an expression for an “effective magnetic field” experienced by
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the Rydberg atom at the lattice maxima,

Beff (z0 = 0,±λ/2,±λ, . . .) =
2
√

2E0

c
, (7.10)

where E0 is electric field amplitude of a single laser beam forming the POL. The

Beff for V0/h = 1 GHz and λ = 1064nm is 0.081 teslas. A Rydberg atom in a

strong magnetic field has a combination of vibrator-like states, where the energy level

spacing is constant, and rotor-like states, where the energy level spacing progressively

increases. At the lattice minima, the sign of the potential is flipped, leading to a

reverse ordering of vibrational and rotational states. This explains why the same

qualitative behavior can be seen in POLs at the lattice maxima and minima.

Near the lattice maxima and minima, one may also include the presence of an ef-

fective linearly-varying electric field. The force, which is the derivative of the potential

in Eq. 7.5, is −V0k sin(2kz0)). In the small-angle approximation, it is −2V0k
2z0, so

that Eeff = −2V0k
2z0/e. In comparison to Rydberg states in actual parallel electric

and magnetic fields [212], the structure of the lattice potentials at the antinodes is

remarkably similar.

7.4 Experiment

7.4.1 Experimental considerations for lattice-mixed-Rydberg-state spec-

troscopy

The goal of this experiment is to obtain the first conclusive spectra of atoms

excited to Rydberg hydrogenic states in an optical lattice with ponderomotive in-

teraction. This requires sufficient excitation strengths, energy separations between

adjacent states, and detection rates, warranting careful consideration of related ex-

perimental design parameters.
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7.4.1.1 Excitation scheme

In principle, a number of different optical excitation paths to hydrogenic states

are possible. We define the launch state as the penultimate state of the stepwise

multiphoton transition to the hydrogenic states. The specific angular momentum of

the launch state is perhaps the most significant parameter influencing the strength of

the transition to the high-angular-momentum state. The transition strengths largely

depend on the `′ = `±1 character of the field-mixed hydrogenic states, which depends

on the number of steps between `′ and ∼4 (the angular momentum at which the

Rydberg states become approximately degenerate), and the proximity in energy of

each of the n′`′′ Rydberg states for `′′ = `′, `′ + 1, . . . ∼4 to the nearest hydrogenic

manifold (or equivalently, the non-integer part of their quantum defects), as well

as the n` → n′`′ dipole matrix elements. In rubidium, both the amount of ` ± 1

character contained in the mixed hydrogenic states and the dipole matrix elements

tend to increase for higher values of `.

The significant dependence of transition strength on ` may be seen by example.

Let us consider the transition strengths to the n′ = 50 hydrogenic manifold for four

different launch states in Rb: 5S1/2, 5P3/2, 5D3/2, and 4F5/2. Examples of excitation

schemes with these launch states are shown in Fig. 7.3. The adiabatic potentials,

which are independent of launch state, are shown in Fig. 7.4 for a free-electron pon-

deromotive shift of 1 GHz. The transition strengths of the adiabatic potentials,

which vary by launch state, are represented by colored circles. The relative transition

strengths are assigned colors on a logarithmic scale and, within a given panel, are

proportional to the areas of the colored circles. Among the panels, the scale of the

circle areas is varied by the factor γscale in order to keep them in a visible range.

The scaling factors (and similarly, the colors) give indications of how the transition

strengths from different launch states compare overall. For example, the 5P3/2 launch

state transition strengths are about 500 times larger than those for 5S1/2, and those
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Figure 7.3: Examples of excitation schemes with launch states of 5S1/2, 5P3/2, 5D3/2,
and 4F5/2. The red arrows show the transitions from the 4 choices of launch states to
the same Rydberg hydrogenic manifold. How the excited launch states are populated
is not significant; the dashed arrows show possible paths. Also shown are the Rydberg
levels that have `′ = `± 1 and are energetically close to the hydrogenic manifold.

of the 5D3/2 are about 104 times larger than those of 5P3/2.

The increase in excitation rates with increasing ` for low ` can be understood by

considering the energy proximity of the `′ Rydberg states for which `′ = `±1, as illus-

trated in Fig. 7.3. For example, a D- launch state couples to the Rydberg F -states,

which mix strongly with the hydrogenic manifold because they are energetically close

(having a non-integer part of the quantum defect of only 0.016) compared to the states

coupled to a P launch state, namely S- and D-states, whose respective non-integer

parts of the quantum defects are 0.13 and 0.35 and have higher-order couplings to the

hydrogenic manifold. To explain what is meant by higher-order coupling, an S-launch

state would require third- or fourth-order coupling (S → P → D → F → nH). Ad-

ditionally, the first three couplings have a large energy denominator because of the

quantum defects. Both the high-order couplings and the large energy separations

serve to make the excitation strength from an S-launch state much smaller than

using, for a contrasting example, F -launch states.

Initial probing of the hydrogenic states with the same deep optical lattice setup was

attempted previously (to this work) with two-photon excitation to the Rydberg states,
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Figure 7.4: Adiabatic potentials, transition strengths, and excitation spectra for the
n = 50 hydrogenic manifold with 1 GHz free-electron POL depth, shown for four
different launch states. Each vertical strip (a)-(d) corresponds to a different launch
state. Within each strip, the lowest panel shows the adiabatic potentials and transi-
tion strengths over large scale that extends low enough below the hydrogenic manifold
to include the 50F -states. The upper left panel shows a close-up version of the same
plot. The spectrum in the upper right panel show the relative excitation rates for
atoms located at the maximum lattice intensity (z0 = 0) for a fixed intensity and
pulse length of the excitation laser. The circles in the potential plots are colored by
transition strength (transition matrix element squared) according to the scale on the
right. The areas of the colored circles are proportional to the transition strengths
and, in each panel, are scaled by the factor γscale displayed near the top of each strip.
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using 5P3/2 as the launch state [33]. The signal-to-noise ratio was too low to reveal

much structure or to conclusively indicate hydrogenic state detection. As exemplified

in Fig. 7.4, D- launch states are expected to have extremely high excitation rates to

the lattice-mixed hydrogenic manifold, compared to P - launch states. This motivated

our implementation of an excitation scheme with 5D as the launch state, specifically

5S1/2 → 5P1/2 → 5D3/2 → nH. We expect to be able to achieve sufficient signal

with this scheme with the significantly increased excitation rates predicted by the

calculations.

A caveat of using the 5D3/2 state in the excitation scheme is that it has a large

photoionization cross-section at the wavelengths of the dipole trap (1064nm) as well

as the red excitation beams (795nm and 762nm). To avoid photoionization before the

Rydberg excitation, the hydrogenic states must be excited off-resonantly through the

5D3/2 state with a detuning (i.e. from the light-shifted resonance) somewhat greater

than the 5D3/2 photoionization rate at the chosen lattice intensity. The expected

photoionization broadening and natural linewidth of the state are about 0.5 GHz

and 0.6 MHz. The anticipated factor of improvement from 5P3/2 to 5D3/2 is thus

significantly reduced from 10,000. In principle, it’s possible to make cases where

photoionization of intermediate state does not occur, e.g. by changing the launch

state or the lattice wavelength. One can also devise schemes where atoms are excited

at the lattice minimum and therefore the PI rates are low.

The 5S → 5P and 5P → 5D transitions have substantial differential light shifts

(hundreds of MHz or more) in the presence of the strong 1064-nm field. In the radial

direction, they vary according to the Gaussian profile of the lattice trap.

We choose 5P1/2 as the first intermediate state instead of 5P3/2 because of its

simpler hyperfine structure and absence of tensor polarizability. Tensor polarizabil-

ity would cause an intensity-dependent splitting of the hyperfine levels, which would

complicate the spectra. We note that the tensor polarizability of the 5D3/2 is very
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small and matters less anyway because of the earlier choice to use a significant de-

tuning from that state. On-resonance excitation of a 5P state is not prohibited by

photoionization effects because, among other reasons, the 5P levels are too low in

energy to be photoionized by 1064nm light. Furthermore, because of the 5S → 5P

differential light shift, on-resonance excitation critically provides selectivity of atoms

in spatial regions whose local 1064-nm intensities are within a narrow range, instead

of the wider range corresponding to the spatial distribution of the thermal atomic

ensemble. Exciting only atoms within a narrow intensity range yields cleaner, more

well-defined spectra.

The 3-step excitation scheme and relevant hyperfine structure is shown in Fig. 7.5.

Implementing the 3-step excitation involved setting up new lasers for each of the

three wavelengths of the new transitions (795nm, 762nm, and 1260nm). To facilitate

better frequency control and precision, a second pair of 795nm and 762nm lasers was

installed. The excitation lasers are phase-locked to them while the each of the second

pair is locked to an atomic frequency reference. The phase-locking is explained in

much greater detail in Section 6.5.2.

7.4.1.2 Principal quantum number of hydrogenic-state manifold

The choice of principal quantum number n influences several factors relevant to

the desired qualities of the lattice-mixed-Rydberg-state spectra. On one hand, lower

values of n correspond to greater transition dipole moments for the field-free transi-

tions from low-lying to Rydberg states, and the POL-shifted hydrogenic manifolds for

n ≤ 50 exhibit a simpler pattern because the Rydberg electronic wavefunction spans

less than a single lattice period. On the other hand, at higher n values, the energy gap

decreases between the hydrogenic manifold and the low-angular-momentum Rydberg

states, leading to stronger mixing between them and additionally to generally wider

separations between sequential hydrogenic states within a single manifold.
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Figure 7.5: (a) Excitation scheme, with AC Stark shifts dependent on the radial
position of the atom. (b) Hyperfine structure and natural linewidths of the lower
energy levels.

To appraise the n-scaling of the transition rates, several factors must be consid-

ered. The dipole matrix element from the launch state to an unperturbed Rydberg

state scales as n−3/2. The strength of the hydrogenic mixing scales as the intrashell

coupling and as the inverse of the energy gap between the hydrogenic manifold and

the nearby Rydberg state that is dipole-allowed from the launch state (in the present

case, nF ). In the electric dipole approximation (EDA), the intrashell couplings scale

as n
√
n2 − `2 = n1.5−2; however, the EDA is known to overestimate the true intrashell

couplings in a strong optical field [193, 194]. The inverse energy gap scales as n3. Sum-

ming all of the scaling factors and doubling the result gives a rough estimate for the

transition-rate scaling of n6−7. Not accounted for is the fact that the lattice potential

gradient changes within the Rydberg wavefunction and also varies significantly with

n. Numerical calculations yield an estimate of n4−11 depending on n, launch state,

and potential depth. In any case, in the current experimental regime, the effect on the

transition strength due to the increase in hydrogenic state mixing with n is found to
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outweigh that due to the diminishing dipole moments of transitions from the launch

state.

7.4.1.3 Lattice intensity

High lattice intensity creates stronger mixing of the hydrogenic manifold with

proximal states, and also increases the separation between sequential mixed hydro-

genic states such that they are more easily resolvable. At the same time, it broadens

the photoionization linewidth of the 5D3/2 state, necessitating increasing detuning

from the state and thus a loss in signal for fixed excitation power. At high lattice

intensities and high n, the manifolds of different principal quantum numbers may

become coupled, complicating the physics. Further, it is unclear how much the power

may be increased before the optical cavity incurs permanent damage from burning,

and this risk must be considered when increasing the lattice intensity.

7.4.1.4 Method of detection of lattice-mixed Rydberg hydrogenic states

For Rydberg state detection, we ionize the Rydberg states and subsequently collect

the ions with a micro-channel plate (MCP). At least two ionization methods are

potentially available in the current experimental setup: ionization by application of a

strong static electric field, or photoionization using the high-intensity 1064nm light.

Concerning the first method, it is feasible to apply a static electric field up to about

135 V/cm in the existing setup, corresponding to 370 V applied at the electrode with

highest voltage. This field strength can ionize Rydberg states of any ` and m for

effective principal quantum numbers n∗ ≥ 56 (low-` and/or m = 0 states may be

ionized with n∗ ≥ 40). Photoionization should happen for any n∗ in the Rydberg

regime. The rates depend on the angular momenta and also are proportional to the

local intensity of the light at the atomic center-of-mass location. The relative rates

are shown in Fig. 7.6.
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Figure 7.6: Photoionization rates for the n = 50 hydrogenic manifold in a λ =
1064 nm lattice with V0/h = 1 GHz, represented by the areas of the blue circles.
Here, the rates for the highest-energy hydrogenic states are about 5 mHz, while for
the F -states they are about 100 mHz. The rates are calculated based on methods
developed in Ref. [213].

At the high estimated intensity in our experiment, the photoionization rates for

high-` states are so slow (1-10 mHz) that only about 10−7 of the populated Ryd-

berg states would be photoionized. We conclude that for our initial trial of probing

hydrogenic states, we should use the field ionization method and choose n∗ in the

range of 56 − 70, where field ionization is possible and also the Rydberg electronic

wavefunction is not considerably larger than the lattice spacing (it is twice the lattice

spacing at n = 70).

7.4.1.5 Configurations of excitation beams

The 1260nm laser is sent into the chamber propagating perpendicularly to the

lattice axis. A cylindrical lens (f=150mm) is used to focus the beam in the horizon-

tal dimension such that the beam has a highly-elliptical shape and overlaps better

with the lattice-trapped atoms. The 795nm and 762nm beams are combined using

a dichroic, after which they pass through a fiber. They are then combined with the
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orthogonally-polarized 1064nm beam using a polarizing beam splitter. The beam

configuration at the location of the lattice-trapped atoms is illustrated in Fig. 7.7.

Figure 7.7: Excitation beam configuration relative to lattice-trapped atoms in the
1064-nm optical cavity. The 1260-nm beam is focused in the horizontal direction to
a roughly 40µm for improved overlap with the atoms collected in the lattice.

7.4.2 Experiment preparation and timing sequence

The 795-nm and 762-nm lasers may be locked and frequency controlled using

the PLLs described in Chapter IV and also used for the polarizability experiment

in Chapter VI. First, the 795-nm laser frequency is calibrated to the lattice-shifted

transition. When frequency is be scanned while the transmitted light though the

atoms trapped in the lattice is monitored, the signal exhibits two dips in absorption

for each of the 5P1/2 F = 1, 2 levels (see, for example, Fig. 4.5). A narrow peak

corresponds to absorption from atoms outside the lattice, and a broad, blue-shifted

peak results from interaction with atoms trapped in the lattice. The breadth in the

blue-shifted peak arises from the distribution of atoms at different locations (and thus

experiencing different lattice light intensities) within the lattice potential.

124



The 762-nm laser frequency is set to be a few hundred MHz blue-detuned from

the light-shifted 5P1/2 → 5D3/2 transition in order to suppress photoionization from

5D3/2 by the 1064-nm lattice. Next, the 1260-nm laser is scanned using the fiber

EOM near the predicted region of the hydrogenic state manifold. The excitation of

atoms outside the lattice region to the nearby F -state can be used as a reference line.

As in the polarizability experiment, the lattice loading is be accomplished through

adiabatic compression, i.e. loading the lattice at low intensity and then adiabatically

ramping up the power so as to retain most of the atoms in the trap [33]. The excitation

pulses are applied while the lattice is at high intensity. The experimental progress

is ongoing. The scanning of the 1260nm beam and the detection of nF -states have

already been demonstrated.
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CHAPTER VIII

Conclusion and Outlook

“That’s the good news; there are still plenty of things to figure out.”

– Paul Berman

In this thesis, I have presented several experiments to probe unusual Rydberg

states and states in the presence of a deep optical lattice. The near-concentric cavity

used in all of the experiments enables not only ground-state-atom trapping but also

the generation of very high optical intensities, which induce AC Stark shifts in low-

lying atomic states and ponderomotive shifts in Rydberg atomic states.

In the first experiment, I have investigated binding energies of long-range Rydberg

molecules. Binding energy measurements test low-energy electron-atom scattering

interactions, on which the novel binding mechanism for this molecule is based, and

which are relevant for fundamental processes in chemical physics. The two spins of the

ground-state- and Rydberg-atom valence electrons, which are already coupled to other

angular momenta within their respective atoms, become coupled with each other by

the molecular scattering interaction, forming a chain of four angular momenta linked

by three couplings. In this work, the differences in molecular binding energy spectra

from varying each of the couplings have been directly observed. An initial effort

has been made to model the data and extract electron-atom scattering information.
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While the model is moderately successful, it has significant inherent shortcomings and

also does not fully agree with the measurements. The measurements thus motivate a

new model and may serve in the development of one.

Several new avenues of experimental research to explore, as discussed in Chap-

ter V, include the molecular resonances in the multi-GHz-deep wells of the same

molecular potentials, which are likely to show evidence of the J-splitting of the triplet

p-wave scattering, and dynamical processes of long-range Rydberg molecules. Regard-

ing the latter, for example, photoassociation beyond the frozen gas model could be

explored by numerically simulating the photoassociation with long laser pulses in

warm atom clouds.

The latter two experiments, which are yet in progress, aim to examine the re-

sponse of atoms in high optical intensities at 1064nm. Measurements of the width of

the 5D3/2 state and its shift relative to lower levels will allow estimations of its dy-

namic polarizability and photoionization cross-section, which will provide tests atomic

structure theory and has applications for atomic clocks [109], magnetometers [110],

and atomic interferometers [111, 112]. Rydberg atoms in the same high-intensity op-

tical lattice are predicted [210] to exhibit a new type of potential energy curves that

mix a large number of Rydberg states and are yet to be observed.

We have completed the construction of the setup for these two experiments. A

significant achievement was the installation of new excitation lasers and the imple-

mentation of systems to precisely control their frequencies. We also have performed

basic theoretical analyses to inform the experimental design parameters and our ex-

pectations of the anticipated data. These efforts have provided a solid foundation

for the next step, which is to perform the experiments and collect data. For the

polarizability measurement, initial data has already been obtained; though it lacks

usability, it demonstrates that the experiment is feasible with our setup.

The near-concentric-cavity optical lattice [108] offers many possibilities for new
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experiments beyond the ones outlined here. Potential topics include Rydberg-atom-

ion molecules (e.g. detection, binding energy spectroscopy, study of vibrational

wavepacket dynamics) [214], Rydberg EIT effects, and light propagation guided through

elongated atomic clouds [33]. One could also make use of the optical cavity’s ability

to sustain higher-order modes, which would trap multiple parallel, elongated clouds

of cold atoms. These would allow interesting experiments using Rydberg polaritons

and the Rydberg blockade effect [33].
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APPENDIX A

Additional Data for Long-Range

Rydberg Molecules

“We make profits the old-fashioned way.”

– Paul Berman

The initial data of the molecular spectra corresponding to those in Fig. 5.3 is

shown here in Fig. A.1. Because of highly favorable experimental conditions, it has

a much better signal-to-noise ratio. However, frequency uncertainty of the detuning

was several MHz due to mechanical imperfections in the system used to scan the

upper-transition laser frequency, and thus did not allow conclusive determination of

whether some differences among the 8 cases were indeed present. In Fig. 5.3, the data

is recorded using a new scanning system with improved precision, though the high

quality of the initial experimental conditions was not able to be matched.

The high signal-to-noise in Fig. A.1 reveals broad resonances that are not clearly

resolvable in Fig. 5.3—for example, the three peaks in the detuning region of -300 to

-200 MHz in the left bottom panel. The better resolution of the broad peaks allows

some of them to be used in the linewidth analysis of subsection 5.5.6 such that a

wider diversity of resonances may be considered.
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Figure A.1: Detected ions vs. detuning relative to the 24DJ atomic state, for the
same eight (I2, F2, J)-combinations as Fig. 5.3.
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APPENDIX B

Calibration and Uncertainty Analysis

for 960-nm Laser Frequency Scanning

“Would you rather use 200 equations, or 3 equations? It depends on your

personality.”

– Paul Berman

One objective in the long-range Rydberg molecule experiment was to measure

the binding energies with the best precision that was reasonably possible. Higher

precision makes the measurements more useful for refining the underlying theory

and also discernment of smaller differences among the spectra for different cases of

angular momentum coupling. For instance, in the end, the model used to fit the

binding energy resonances was able to fit them within 3.8 MHz. The redesign and

analysis described here ultimately reduced the detuning uncertainties from 4 MHz

to 1 MHz or less, which means that the data is much better-suited for improving

the models. As a second example, the leftmost lines in the molecular resonance

data (see Figs. 5.3 and A.1) vary between the those of different isotopes by ∼3 MHz

and, probably, between the those of different ground-state hyperfine orientations by

∼1 MHz. The frequency uncertainty of the initial data was small enough to hint
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at differences but too large to conclusively verify them; whereas the latter frequency

uncertainty confirmed the existence of the 3 MHz differences.

Achieving better precision required careful work, both to improve and to char-

acterize the uncertainty of the upper-transition-laser detuning frequency. I initially

determined the frequency uncertainty to be roughly 4 MHz. I reduced this to 1 MHz

maximum (for the most deeply-bound resonances that were observed) by redesigning

the mechanical control of the scanning system, developing a model for the frequency

shift, and calibrating the system experimentally.

The upper-transition laser is locked and scanned using a pressure-tun ed Fabry-

Pérot interferometer (FPI) as a frequency reference, shown in Fig. B.1 and based on

the design presented in Ref. [215]. A portion of the 960-nm light from the laser is

split off to use for locking, while the rest is frequency-doubled to 480nm for exciting

Rb atoms from the 5P3/2 state to a Rydberg state (for excitation scheme, refer to

Fig. 5.1). The FPI cavity mirrors are glued on either end of a hollow rod made of

ultralow-expansion (ULE) material. The rod sits inside in a sealed chamber with

windows allowing the laser light to pass through the FPI cavity. The ULE rod has

a hole in its side which allows the air pressure between the cavity mirrors to be

at equilibrium with the surrounding air in the chamber. A compressible bellows

connected to one end of the chamber allows control of the air pressure inside.

The linear motion of the bellows was originally controlled by a stepper motor

rotating a micrometer screw. I found that the rotational motion of the screw produced

periodic oscillations in the ratio of linear displacement per step with an amplitude on

the order of ten microns, changing the FPI resonances by a few MHz. I replaced the

micrometer screw and stepper motor system with a motorized linear stage (Newport

model VP-25XA), which is controlled in steps of 0.1µm and reportedly has a linear

positioning accuracy of 1.0µm or less. The model and data collection for calibrating

the change in resonance frequency to change in step number of the linear stage is
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described in the following sections.

Figure B.1: Picture of the chamber containing the FPI cavity. The 960-nm light
passes horizontally through the segment at the top of the picture. The segment at
the bottom left is pushed with motorized control (not shown) and linearly compresses
or extends the bellows shown in the bottom center. The setup is contained in a
styrofoam box so that the ambient temperature of the FPI can be stabilized.

B.1 Theory of pressure-tuned FPI-based frequency scanning

mechanism

During a spectroscopic scan, the 960-nm laser is locked to some peak of a FPI.

The FPI has a series of resonances that are equally spaced in frequency, such that

a resonance has a frequency f = qν, where q is a positive integer (on the order of

105 in the present case) and ν is the free spectral range (FSR) of the FPI. When

the laser is locked to a FPI resonance, the q will remain fixed, and the frequency

will change proportionally to the FSR, so that f = f0ν/ν0, where f0 and ν0 are the

original frequency and FSR respectively.

In general for the FSR of a FPI, ν = c/(2n`), where c is the speed of light, n is the

index of refraction of the material through which the light is traveling, and ` is the
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distance in steps between the two cavity mirrors of the FPI. In the scanning system

used here, ` remains fixed, but n changes due to the change of air pressure inside the

cavity. Thus, we have

f =
f0n0

n
, (B.1)

where n and n0 are the new and original indices of refraction of the air, respectively.

The index of refraction of air may be approximated as

nair = 1 + 0.000293

(
PT

P0T0

)
= 1 + α

(
PT

P0T0

)
(B.2)

where P and T are the pressure and temperature, P0 and T0 are standard atmospheric

pressure and room temperature, and we set α = 0.000293.

Changing the length of the bellows changes the pressure inside the sealed chamber.

We use the gas law PV/T = P0V0/T0, and note that the entire volume of the air may

be considered as a cylinder with equivalent volume and a constant cross-sectional area

times a length L, as long as the cross-sectional area is constant in the region where

the length is changed. Assuming no variations in temperature, we obtain the relation

P/P0 = L0/L, which leads to

nair = 1 + α

(
L0

L

)
. (B.3)

Combining Eq. B.3 and Eq. B.1 to find the relationship between two frequencies f1

and f2 gives

f2 = f1

(
n1

n2

)
= f1

1 + α
(
L0

L1

)
1 + α

(
L0

L2

)
 . (B.4)

The difference in these two frequencies is

∆f960 = f2 − f1 = f1

1 + α
(
L0

L1

)
1 + α

(
L0

L2

) − 1

 . (B.5)
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Using ∆L = L2 − L1, Eq. B.5 may be rearranged to get

∆f960 = f1

(
αL0 ∆L

L1(L1 + ∆L+ αL0)

)
(B.6)

To control the length of the bellows, we use a linear stage that moves in steps of

fixed size. The length of the equivalent cylinder containing the volume of air is

L = D(x + B), where D is a length of a single step (fixed), x is the step number at

which the linear stage is set, and B is a constant accounting for the arbitrary length

offset of the linear stage. Eq. B.6 becomes

∆f960 = f1


(
αL0

D

)
∆x

(x1 +B)

(
x1 +B + ∆x+

(
αL0

D

))


=
f1 A ∆x

(x1 +B) (x1 +B + ∆x+ A)
,

(B.7)

where the constant A is defined as αL0/D. The values of A and B are constant and

correlate to physical properties of the system, so they may be roughly estimated or

experimentally determined for better precision, as described in the subsequent section.

The absolute frequency of the 960nm light f1 is presumably known to reasonable

accuracy. Thus, this equation relates the change in frequency of the light that is

locked to the FPI to the change in step size of the linear stage (∆x), for a given

starting position of the linear stage x1.

The change in 480-nm frequency is double the change in 960-nm frequency,

∆f480 =
2f1 A ∆x

(x1 +B) (x1 +B + ∆x+ A)
. (B.8)

Several significant conclusions about the effective calibration factor ∆f480/∆x fol-

low from Eq. B.8 that previously had not been immediately obvious. One is that, not
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only is the effective calibration factor not constant across the span of the scanning

range (i.e., not constant with respect to the scan starting position x1)—which had

been noticed earlier—but it is also not linear (although it appears so in the relevant

region), and it depends on ∆x in addition to x1. Secondly, the effective calibration

factor also depends on the frequency of the 960-nm light. This frequency may change

on the order of one percent when probing Rydberg states of different principal quan-

tum numbers, which could lead to errors of several MHz (scanning over hundreds of

MHz) if it is not accounted for.

B.2 Experimental calibration

The calibration process for the Newport linear stage was done in the following

way. I did spectroscopy of a Rydberg atomic line (26S) by scanning the linear stage

of the FPI to which the 960-nm light is locked. The 780-nm (lower-transition) light

travels through an AOM in a double-pass configuration. I take advantage of an

initially unintended feature of the light, which is that a small fraction includes other

frequency-orders that are shifted by 0, 1, or 3 times the driving RF instead of 2 times.

The multi-frequency light results in the appearance of copies of the primary line that

are shifted from it by multiples of the RF (in the present case, about 79.8 MHz).

The presence of multiple lines at relatively small and well-known frequency spacings

provides data that is convenient for calibrating the linear stage. I recorded spectra

by locking the 960-nm laser at different frequencies relative to the stage position such

that (∆f480, ∆x, x1) triads could be found for a wide range of x1 values.

B.2.1 Data collection

Part of the data I collected for calibration consists of groups of 6 scans that were

taken at 10 different regions of the linear stage’s range. Three satellite lines and one

main line were observed for each of the scans (see Fig. B.2), but only the main line

and the two satellite lines to the blue-detuned side of it were used. The satellite line
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to the left was ultimately neglected because its calibration showed a systematic shift

in comparison with the others, which we believe to be due to the greater Rydberg-

molecule background counts to red side of the main line than to the blue side.

Figure B.2: An example of a 960-nm-laser frequency scan probing the 26S state and
used for calibration. The tallest peak (indicated by +2) is from light that is frequency-
shifted twice due to its double passage through the AOM. Three small components
of light are from other AOM orders and produce copies of the atomic line that are
offset from main line by well-known frequencies. These peaks are labeled according
to their AOM order. In the step number region from 19000 to 21500, the power is
dramatically reduced to protect the MCP. As a consequence, there is an extra peak
at step #19000, and only a small contrast in ion counts between the main line and
the satellite lines.

The line centers were fitted (using OriginPro8.5), and the distance between se-

quential lines was calculated for each scan—three lines used gives a total of two

distances ∆x per scan. For each of the 10 regions, the first distance and second dis-

tance were each averaged over the 6 scans, resulting in 2× 10 = 20 data points, each

containing (∆f480, ∆x, x1) values.

Additional data points were generated by comparing the 4 spectral lines of single

scans to the 4 spectral lines of other scans in which the 780-nm frequency was locked

to different peaks of a separate FPI. In other words—instead of finding the step

sizes for peak separations +2 → +1 and +1 → 0, and comparing it with the AOM

driving frequency—the step sizes for peak separations −1 → −1, 0 → 0, +1 → +1,

+2 → +2 were compared with the FSR frequency. Four sets were able to be used,

138



which together contribute 4× 4 = 16 data points.

B.2.2 Fitting data to extract model parameters

I used MATLAB to fit the 36 three-dimensional data points to model. I used

f1 ' 309.752 THz for fitting the data from the 26S lines to create the calibration

curve. Later, when making use of the calibration curve to calculate the detuning

frequency for the 24D molecules, I used f1 ' 309.692 THz. Note that these numbers

correspond to the non-doubled frequencies of the laser. By error, I used Eq. B.7

to fit the data points instead of Eq. B.8, which means that the fitted parameters

I obtained, A∗ and B∗, were not the same as the true A and B that are based on

Eq. B.8. However, comparing Eqs. B.7 and B.8, it is most likely that A is very close

to A∗ and B is similar to
√

2B∗. I obtained A∗ = 1556.104 steps and B∗ = 3643921

steps, so I estimate:

A ≈ 1556 steps

B ≈ 5.15× 106 steps

Note that the A and B given here correspond to the convention of using x1 as the

lower-frequency/red-detuned step number, and x2 (for ∆x = x2 − x1) is the higher-

frequency step number; the same convention should be followed when using these

parameters to find a frequency detuning. Also, I note that my using A∗, B∗ and

Eq. B.7 for calculating the molecular resonances does not invalidate the values and

uncertainties I extracted. While it’s possible that the calibration uncertainties may

have grown by a small amount, their values are already incorporated in the uncertainty

estimations.

Using the motorized-stage specifications of D = 0.1µm per step and the previously

given definition A = αL0/D, we may calculate L0 = 0.53m = 20.9 inches. This value

would be the length of a cylinder with the same cross-section of the bellows and the

same volume of air as the chamber. Considering the visual size of the chamber, this is
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a very reasonable result. We may also estimate that L0 ≈ BD, which should be the

case if x1 = 0 when the internal pressure is the same as atmospheric pressure. The

above estimation of B gives BD ≈ 0.515m. The closeness of these results suggests

that a rough calibration could be achieved fairly well with only a single-parameter

fit.

B.3 Uncertainty analysis of molecular binding energies

Once the calibration curve and fitting parameters had been established, they could

then be used for finding the molecular binding energies. The molecular binding

energies are subject to three types of uncertainties:

1. The first is given by the calibration uncertainty of the 480-nm laser scan, which

was found when fitting the calibration data to the model, and reflects only uncer-

tainty in the fitting parameters. The calibration and corresponding uncertainty

are a function of two variables (∆x and x1). In Fig. B.3, I show an example

of ∆f480 and its uncertainty, for a fixed ∆x. Across the range of possible x1

values, the uncertainty is about 0.8 MHz. For one of the most deeply bound

resonances observed (i.e. the “A1” resonance of the 87Rb 24D3/2 + 5S1/2 F< at

439.1 MHz), the uncertainty was found to be 0.93 MHz.

2. A second type is due to the statistical uncertainty of the Gaussian peak fits

to the molecular and atomic lines. In a typical case, the uncertainty in line

separation amounts to about 0.23 MHz.

3. Another uncertainty, which is systematic, arises from line pulling due to MOT

intensity fluctuations while scanning across the spectroscopic lines. This is

found by subtracting (in quadrature) the fit uncertainties from the standard

deviation in line separations among multiple scans of the same peaks, and di-

viding by the square root of the number of scans. This uncertainty is found to
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Figure B.3: Sample calibration curve (solid blue) for determining ∆f480 from a fixed
∆x of 11500 steps, and 95% confidence intervals (dashed red).

be 0.15 MHz.

The three uncertainties are summed in quadrature for each molecular line to find

the net uncertainty of its detuning from the atomic line. For the aforementioned

“A1” resonance, the total uncertainty was found to be 0.97 MHz. the differences in

the resonances corresponding to 0.22% of the binding energy. For less-deeply bound

states, the absolute uncertainty drops because the scanning range is shorter; at very

small separation distances the first source approaches zero such the net uncertainty

becomes 0.27 MHz.

As a result of using the linear stage and the calibration method described here,

all of the measured molecular binding energies had 1.0 MHz uncertainty or less.

This facilitated pushing the accuracy limits of the model we used and allowed us to

conclusively observe isotope-dependent differences in triplet-state binding energies.
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[188] R Parzyński, M Sobczak, and A Wójcik. Photoionization indicators of optical
mixing of different-parity degenerate rydberg states. Physical Review A, 61(2):
023413, 2000.
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