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Abstract
This thesis presents two topics: a search for rare dimuon decay of the Standard Model

Higgs boson and a search for new physics with non-resonant phenomena at the TeV mass scale
with dilepton final states. Both studies investigate data recorded by the ATLAS experiment
from

√
s = 13 TeV proton-proton collisions produced during the second of the Large Hadron

Collider at CERN. This data corresponds to an integrated luminosity of 139 fb−1.
The first study is the search for the Standard Model Higgs boson decaying to two muons.

This decay is used to study the Higgs boson Yukawa couplings to the second generation
fermions as part of a field-wide effort to study the properties of the Higgs boson. Identifying
events produced by this decay is complicated by the small Higgs boson branching fraction to
muons and the large irreducible background from other Standard Model processes. Previous
studies selected events using criteria that targets Higgs production through gluon-gluon
fusion and vector-boson fusion mechanisms. To increase sensitivity to Higgs produced events,
new selections are added targeting vector boson associated (VH) production with a leptonic
decay from the vector boson. Multivariate analysis methods are used to identify events for
different categories. The limits set on signal production in the new phase spaces explored in
this analysis are the first of their kind. The strongest expected (observed) limit on leptonic
VH production excludes signals down to 13.2 (22.6) times the Standard Model prediction.
The combination of VH with the other major production modes results in a signal significance
of 2.0σ over the background hypothesis.

The second study is a search for non-resonant phenomena in the dielectron and dimuon
final states. One possible source for this is quark and lepton compositeness at energy scales
beyond direct access at the LHC. These would lead to contact interactions that produce non-
resonant enhancement in dilepton production at the TeV mass scale. This search introduces
several novel methods including a background model derived from data and a formalism to
parameterization of the associated uncertainties. In this search, no significant deviation in
data is observed with respect to the expected background. Upper limits on the visible cross-
section times branching ratio are set in this search. These, along with benchmark CI signal
efficiencies, can be interpreted as limits in terms of a variety of signal models. The lower
limits on the energy scale of CI, Λ, reach 35.8 TeV, indicating the quarks and leptons are still
point-like particles at 10−20 m. These are the strongest limits on qq`+`− contact-interactions
to date.

xxvi



Chapter 1

Introduction

The Universe consists of particles, the space they inhabit, and the interactions between
them. Fundamental particles are the most basic unit of matter, with observable proper-
ties including mass, charge couplings, spin, and lifetime. Particles with integer spins are
called bosons, while particles with half-integer spins are called fermions. Particles may be
composite, such as the proton, or elementary, as is assumed for the electron. Particles
and the interactions between them together form the physical world. The most complete
mathematical description of these building blocks, based on experimental knowledge, is the
Standard Model (SM) of particle physics. This theory has evolved and expanded since origi-
nal development in 1974, with each iteration encompassing the consensus view of the physics
community.

This dissertation presents research on the nature of particle physics conducted at the
Large Hadron Collider with the ATLAS experiment. The basic principles of particle physics
are introduced in this chapter, followed by the particular research topics of this thesis.

A Particles, Space, and Interactions

Each type of fermion exists in a pair, consisting of particles and anti-particles with equal
mass and opposite electric charges. The fermions are further divided into leptons with
integer electric charge and quarks with fractional electric charges. There are three flavors of
charged leptons. In ascending mass these are the electron, the muon, and the tauon. There
are also three flavors of neutral leptons, corresponding to each charged lepton flavor, called
neutrinos. Recent measurements provide an indication that the neutrino masses are ordered
similarly to the order of charged leptons [5]. The leptons are arranged into three generations
based on the approximate conservation of the number of leptons minus the number of anti-
leptons belonging to each generation in a given interaction. There are six quarks, divided
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into up-type quarks and down-type quarks. The up-type quarks are the up, charm, and top
quarks. The down-type quarks are the down, strange, and bottom quarks. Like the leptons,
up- and down-type quarks are paired together in generations of ascending mass. Quarks
commonly exist in bound-states consisting of two (meson) and three (baryon) quarks. The
bosons mediate forces between the particles. The most familiar boson, the photon, mediates
the electromagnetic force between charged particles. The gluons carry the strong nuclear
force, binding quarks inside multi-quark composite particles called hadrons. The W± and
Z bosons carry the weak nuclear force, responsible for nuclear beta decays. These bosons
are called vector gauge bosons because of their association with gauge groups. Finally, the
recently discovered scalar particle, the Higgs boson, mediates a momentum exchange between
massive particles. These particles are summarized in Table 1.1.

Table 1.1: Particles of the Standard Model listed along with their symbol
and several properties [2]. (∗ The graviton is not considered part of the
SM.)

Name Symbol Generation Charge Spin Mass [MeV/c2]

Fe
rm

io
ns

Le
pt

on
s

Electron e 1st -1 1/2 0.511
Muon µ 2nd -1 1/2 105.7
Tau τ 3rd -1 1/2 1776.8
Electron Neutrino νe 1st 0 1/2 < 2 × 10−6

Muon Neutrino νµ 2nd 0 1/2 < 2 × 10−6

Tau Neutrino ντ 3rd 0 1/2 < 2 × 10−6

Q
ua

rk
s

Up u 1st 2/3 1/2 2.2 ± 0.5
Charm c 2nd 2/3 1/2 1.275 ± 0.035 × 103

Top t 3rd 2/3 1/2 173.0 ± 0.4 × 103

Down d 1st -1/3 1/2 4.7 ± 0.5
Strange s 2nd -1/3 1/2 95 ± 9
Bottom b 3rd -1/3 1/2 4.18 ± 0.04 × 103

B
os

on
s

Photon γ 0 1 < 1 × 10−24

Gluon g 0 1 0
Z boson Z 0 1 91.1876 × 103

W boson W ± ±1 1 80.39 × 103

Higgs boson H 0 0 125.18 × 103

Graviton∗ g 0 2 < 1 × 10−38

While the Standard Model has been successful in the description of particles and their
interactions, it is an incomplete description of the Universe. The most visible shortcoming is
the lack of a description of gravity; the quantum effects of gravity are expected to manifest
themselves at energy scales that are inaccessible to modern particle experiments. Other
absences in the theory include particles that explain the phenomena of dark matter and dark
energy. The theory also lacks a single broadly accepted explanation for the mass of neutrinos,
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although several plausible mechanisms have been proposed [6]. Ongoing experiments are
investigating discrepancies between predicted and observed quantities, such as the anomalous
magnetic moment of the muon. Despite these absences the present version of the Standard
Model is a remarkably predictive theory.

Spacetime is the four-dimensional manifold that particles inhabit at a microscopic scale.
Three of these are spacial dimensions, and one is time: 3+1-dimensional spacetime. The
special theory of relativity describes the distinction between the dimensions: rotations from
one spacial dimension to another take place in Euclidean space, while rotations from a
spatial dimension into time take place in a hyperbolic space. None of this should be taken
at face value, or as posed by Ehrenfest in 1917, in what way does it become manifest in
the fundamental laws of physics that space has three dimensions? One point to consider is
the stability of elliptical orbits in a two-body system. If the number of space dimensions
exceeds three, then stable circular orbits under gravity are impossible. This result holds for
the quantum orbits of electrons around a nucleus as well. Therefore if one is to find oneself
in a universe with atoms, chemistry, and planets, then the number of spatial dimensions in
which these take place is limited to three [7]. This limit on space dimensions suggests the
question: why one time dimension? In the case of multiple time dimensions, solutions to
partial differential equations such as those that describe the laws of physics are ambiguous.
This is analogous to the situation in 3+1-dimensional spacetime wherein predictions outside
the lightcone are impossible. It has been argued by Tegmark that this precludes observers,
as the lack of predictability renders reality incomprehensible [8].

Until the discovery of the Higgs boson, there were four known fundamental forces through
which particles might interact: gravity, the electromagnetic force, the weak nuclear force,
and the strong nuclear force. An interaction between two or more particles entails the
exchange of momentum between the participants. For each force, the momentum exchange
is mediated by a boson. Gluons mediate the strong nuclear force. The weak nuclear force is
mediated by the W+, W−, and Z bosons. Photons mediate the electromagnetic force. It is
expected that gravity is mediated by a hypothetical particle called a graviton; however, this
has not been observed. The gravitational interaction strength is more than an order of 40
magnitude smaller compared to the electromagnetic interaction. At the microscopic level,
the interaction of the gravity could be ignored and is not included in the Standard Model.

In 2012, the ATLAS and CMS experiments at the Large Hadron Collider at CERN
discovered the Higgs boson. Like the vector bosons associated with the four canonical forces,
the scalar particle, Higgs boson, mediates a momentum exchange between particles. The
interactions with fermions are not universal, proportional to fermion’s mass.
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Table 1.2: Interactions in experienced by particles. The strength of the
force depends on the energy scale at which it is measured, so approximate
values are given [3]. In the case of Gravity, which is not included in the
Standard Model, the coupling strength is assumed to be on the order of the
gravitational constant [4].

Interaction Force Carrier Relative Strength Range [m]
Strong Gluon 1 10−15

Electromagnetic Photon 10−2 ∞
Weak W±, Z 10−5 10−18

Higgs Higgs < 10−5 10−19

Gravity Graviton 10−39 ∞

B Energies and Measures

Enormous energy concentrations are required to enable the production of massive par-
ticles and facilitate rare interactions. In order to study these processes, it is convenient to
define units of measurements using energy as the basic unit to describe the particle mass,
momentum, lifetime, and travel distance.

Energies are measured in units of electron-volts, eV. This is equal to the energy required to
move an electron through one volt of electric potential. One eV is a small amount of energy,
equivalent the amount needed to move a single electron from one terminal of a AA battery
to the other. In the scope of discovered particles and interactions, eV are often presented
along with metric prefixes. One mega-electronvolt (MeV) is one million eV, and is the energy
scale reached by the earliest circular particle accelerators with fixed magnetic fields called
cyclotrons. One giga-electronvolt (GeV) is one billion eV, and became accessible with the
development of synchrotron accelerators that gradually increased their fields to reach higher
energies. One tera-electronvolt (TeV) is one trillion eV. The stack of AA batteries required
to accelerate an electron to 1 TeV would reach from Earth to Mars at its closest approach.
Although the Tevatron at Fermilab came close, the TeV scale was first reached at the Large
Hadron Collider (LHC) at CERN. The energy at the LHC subsequently accelerated protons
to energies of 7 TeV. The particular energy scales of interest in this thesis range from tens
of GeV to tens of TeV.

Several quantities are useful in describing interactions between particles: energy, mass,
momentum, distance, and time. The unit of eV already describes quantities of energy. In
standard international (SI) units, energy is measured in units of joules (J) equal to kgm2

s2 .
Mass is, therefore, expressible as energy divided by velocity squared. A convenient velocity
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to use is the speed of light, c. In this case, mass is expressed in units of GeV/c2. Likewise,
momentum, which is measured in SI units as kgm

s , can be expressed in units of GeV/c.
Distance and time can be expressed with the aid of the reduced Planck’s constant ~ =
6.58 × 10−25 GeV·s. Using ~, distance is measured in units of ~c/GeV, and time is measured
in units of ~/GeV. These are referred to as Planck units and are commonly used throughout
this thesis along with SI units following the field’s standard practice. In cases where their
presence can be inferred from the quantity, the SI units are replaced such that the constants
~ and c have numerical values of 1, leaving powers of GeV. These units are summarized in
Table 1.3.

Table 1.3: Description of the units used to describe dimensions in this thesis.
Each row lists equivalent quantities.

Dimension SI Units Planck Units Natural Units
c = 1, ~ = 1

Energy 1.602×10−10J GeV GeV
Mass 1.783×10−27kg GeV/c2 GeV
Momentum 5.344×10−19kg·m/s GeV/c GeV
Distance 1.973×10−16m ~c/GeV GeV−1

Time 6.582×10−25s ~/GeV GeV−1

The probability that two marbles rolled towards each other will collide is proportional
to their respective cross-sectional areas, called cross-sections. Likewise, the probability of a
particular interaction between particles is measured in units of area. The unit barn is defined
such that 1b=10−28m2. It was named during the Manhattan Project by Marshall Holloway
and C. P. Baker; the two rejected the idea of naming the unit after John Manley due to
the “use of the term for purposes other than the name of a person” [9]. As the progenitors
remark, the barn is quite a large area to describe particle interactions. Therefore prefixed
versions like picobarn (1pb = 10−12b) and femptobarn (1fb = 10−15b) are commonly used in
colliding beam experiments. The barn is essentially an SI unit. If it were to be expressed in
the natural units of Table 1.3, it would be approximately equal to 2568 ~2c2

GeV2 .
Throughout this thesis numerous quantities are calculated from observations. Perhaps

the most central quantity is invariant-mass, defined as the squared energy minus the squared
momentum of a system. For a system containing a single particle, the invariant-mass mea-
sured in any inertial reference frame of motion is identical to the particle’s mass measured at
rest. This thesis is primarily concerned with systems of two component particles, such as the
dielectron and dimuon systems. In such systems the energy, E is defined by the scalar sum
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of the components’ energy and the momentum, ~p, as the vectorial sum. The invariant-mass
of dielectron, dimuon, or dilepton systems is denoted as mee, mµµ, or m`` depending on the
context. Other common quantities refer to transverse measurements perpendicular the path
of colliding beams, ẑ. The first is transverse momentum, ~pT, which is a 2-vector defined as a
system’s momentum perpendicular ẑ. The magnitude of ~pT is labeled pT. Other transverse
quantities include transverse mass, ET ≡

√
E2 − p2

z, and the vectorial transverse energy,
~ET ≡= E ~pT

|~p| .

C Two Analyses

This thesis presents two studies based on data collected by the ATLAS experiment at the
Large Hadron Collider based at CERN. These studies analyze data recorded from collisions
of proton beams with a center-of-mass energy of

√
s = 13 TeV. Each collision of interest, or

event, is recorded and studied in order to extract information about the underlying interac-
tions involved with the collision. The first study is concerned with the predicted interaction
of the Higgs boson with pairs of muons. The second study searches for enhancements in the
production of energetic pairs of leptons (dileptons) as predicted by extended theories beyond
Standard Model.

The unifying theme of these analyses is their focus on the production of leptons in their
final state. In both cases the final discriminant variable, from which a measurement is
extracted, is the invariant-mass of a dilepton pair. The similarity ends here, with different
physics goals and theoretical models distinguishing each effort.

C.1 Search for the Higgs decay to Two Muons

The first study presented in this thesis relates to the Higgs boson. The Higgs boson
was discovered in 2012 by the ATLAS and CMS collaborations [10, 11]. This discovery
provided the impetuous for subsequent study of the new particle. A concerted effort has been
made to measure the properties of the Higgs boson, with a particular focus on measuring
its interactions with the rest of the Standard Model particles. The first interactions were
measured using the Higgs coupling to the gauge bosons and the heaviest fermions. This
work is aided by the relatively large coupling to heavier particles than to lighter particles.
At the time of writing, the lightest particle for which there is evidence of its direct coupling
to the Higgs is the tau lepton (mτ = 1.8 GeV).

The first focus of this thesis is to search for a presently unobserved interaction of the
Higgs boson with muons. This interaction is interesting from two perspectives. First, unlike
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previously measured Higgs interactions, this coupling involves second generation fermions.
This is important as a test of Higgs properties with a new sector of particles. Second,
this interaction is produces fermion mass and is consequently an important property of the
muon. The muon, with a mass of mµ = 0.1 GeV, is a relatively light fermion. As a result,
the strength of its coupling to the Higgs boson is relatively weak.

The search for evidence of the H → µµ process has attracted significant attention since
the Higgs discovery. Despite the efforts of both the ATLAS and CMS collaborations, it has
yet to be detected with a significance meeting the threshold of 3σ. These searches focuses
on the decay of the Higgs boson to a muon/anti-muon pair (H → µµ). They consider events
that produce two oppositely charged muons in their final state. The previous work by both
collaborations has investigated partial datasets produced before the completion of Run 2.
These studies set upper limits on the strength of the interaction, but are not sensitive enough
to report significant evidence [12,13].

The study presented in this thesis offers an iteration on these past efforts, as well as
the first examination of the full Run 2 dataset. A major challenge faced in this analysis is
the separation of signal events producing a Higgs boson from background events that lack
a Higgs. Several strategies are employed that distinguish this iteration from prior results.
The first improvement is to expand the scope of the analyzed data to include Higgs bosons
produced by previously unconsidered processes. The most significant of these is “Higgs pro-
duced in association with a vector boson” (VH); this mechanism produces a vector boson
in addition to the Higgs. The additional vector boson is useful to help discriminate the
VH process from background processes. A new categorization scheme is employed to study
these events. Many of the event topologies produced by these new production mechanisms
have never been studied before. A second improvement is in the use of multivariate dis-
criminants to label events as signal-like or background-like. The type of discriminant used
is an ensemble of decision trees, called a boosted decision tree, that categorize events based
on quantities measured by the detector. This iteration of the analysis expands the use of
multivariate discriminants and introduces robust model validation techniques to constrain
biases introduced by their use.

For each event that is considered, the invariant-mass of the Higgs candidate dimuons is
calculated based on measured energies and momenta of selected two muons. These form sev-
eral spectra of invariant-mass, with each spectrum corresponding to a particular selection of
events. Background production mechanisms produce a monotonically decreasing spectrum,
while events produced by a H → µµ process produce a narrow resonant shape in the spec-
trum. Statistical tests are performed to measure the size and significance of this resonance
above the smoothly falling background.
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The results of this analysis are significant for two reasons. First, they represent the first
observations of phase spaces related to the newly considered Higgs production mechanisms.
Second, they represent the complete result for H → µµ using the ATLAS Run 2 dataset.
Together this an analysis provides a blueprint for subsequent studies based on anticipated
data from a future Run 3. The results will also be combined with other studies of the Higgs
boson to produce a more complete understanding of the boson’s properties.

C.2 Search for Non-resonant Signatures and Contact Interactions

The second study presented in this thesis searches for the production of dileptons beyond
the Standard Model prediction. This strategy stands in contrast to the search for H → µµ,
which targets a signal predicted by the SM. The analysis searches for broad non-resonant
phenomena in the dilepton invariant-mass spectrum without constraining the specific source
of the production. The target of this study is distinguished from the narrow spectral reso-
nances, such as those searched for in the H → µµ analysis.

A wide variety of new physics models predict non-resonant phenomena. A particularly
interesting group of theories are contact interactions; these describe the effective behavior
of new energetic interactions at a relatively low energy. These new interactions can be
facilitated by a yet-undiscovered heavy boson. Contact interactions may also be an indication
of unexpected sub-structure within fermions. For these varied reasons, contact interactions
have attracted substantial experimental interest for decades [14–16].

The search presented in this thesis expands on previous results by the ATLAS collabo-
ration [17–20]. It is carried out in two channels: a dielectron channel and a dimuon channel.
The final discriminant variable is the dilepton invariant-mass in each respective channels.
The search focuses on the highest mass events in the dilepton invariant-mass spectra. As a
result, the focus of the analysis is the description of the spectrum tails and the associated
uncertainties of those descriptions.

As in the case of the search for H → µµ, this study benefits from the unprecedented
size of the full Run 2 dataset. Further improvements offer a dramatic departure from prior
efforts. A new method is introduced to describe the expected invariant-mass spectrum based
on a functional form fit to the observed data in a low invariant-mass control region. This
function is then extrapolated to higher invariant-mass to describe the background. This novel
background model necessitated the development of new types of systematic uncertainty.

Perhaps the most impactful development of this analysis is the identical treatment of
events above a certain invariant-mass thresholds. These are counted without reference to
their energy. As a result, the observed yield of events can be interpreted in terms of a
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wide variety of signal models that predict differently shaped contributions to the dilepton
invariant-mass spectra. A detailed comparison of the sensitivity expected from including
and ignoring the spectral shape found no significant cost to adopting this strategy.

The observations of the analysis are interpreted both in terms of contact interactions
and from a signal model-independent perspective. The contact interaction results probe an
enormous energy scale at tens of TeV. The model-independent results represent the first such
results for a non-resonant search in the high-mass spectrum.

D Organization

The topic of this thesis is two studies related to the production of dilepton events. Both
studies are informed by the theoretical predictions of the Standard Model. Furthermore,
both are conducted using the data recorded by the ATLAS experiment at the LHC. In light
of these commonalities, the first chapters of this thesis present the common background
for each study. Chapter 2 presents the Standard Model. Chapter 3 describes the ATLAS
experiment, the LHC, and the data collection. Chapter 4 discusses the phenological basis
for studying physics at the LHC. Chapter 5 describes the details of the datasets used for
both studies. Next, separate chapters present the specific details of each study. Chapter
6 presents the study of the Higgs boson’s interaction with muons. Chapter 7 presents the
search for contact interactions and related phenomena. Finally, Chapter 8 summarises the
results of both studies and discusses the prospect for future work.
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Chapter 2

The Standard Model of Particle
Physics

This chapter presents the theoretical background of this thesis through the introduction
of the Standard Model of particle physics. The Standard Model is a quantum field theory
description of Nature, based on the elegant foundation of group theory and abstract algebra.
These concepts are beyond the scope of this thesis, but not beyond the scope of its appen-
dices. A description of groups, Lie algebras, and related concepts is provided with minimal
overhead in Appendix A.

The Standard Model describes many of the interactions and particles that make up the
Universe. It is formulated as a quantum field theory based on operator valued fields that
operate on states belonging to a multi-dimensional Hilbert space. It is also formulated as
a gauge theory, such that the physical predictions of the theory are invariant under trans-
formations belonging to a particular group. These transformations are representations of
a Lie algebra, g, and are specified by continuous group parameters. This is the algebra of
the Standard Model Lie group GSM. The group GSM is direct product of several subgroups.
These subgoups are introduced in this chapter, while a more detailed definition is provided
in Appendix B.

The first subgroup is the Poincaré group P of rank ten that contains translations, ro-
tations, and boosts through spacetime. The Poincaré group itself is the semidirect product
of a translation group, T(4), and the Lorentz group, SO(1;3). The inclusion of this group
means that the predictions of Standard Model are invariant under these transformations
through spacetime. This enforces its compatibility with special relativity. The invariance
under Poincaré group transformations is called a global symmetry because it is external to
the fields that comprise the theory. It forms the group of external symmetries, Gexternal

SM .
The invariances under the remaining subgroups are called internal symmetries, Ginternal

SM ,
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because they describe rotations of fields through abstract mathematical space. There are
three such subgroups in the Standard Model: U(1), SU(2), and SU(3). The algebra of U(1)
is represented by 1×1 complex unitary matrices. These are invertible and have determinants
equal to ±1. The algebra of SU(2) is represented by 2 × 2 complex unitary matrices with
determinants equal to +1. These describe rotations through the abstract mathematical
space of a complex 2-sphere that preserve distance. The algebra is spanned by the three
Pauli matrices. Finally the algebra of SU(3) is represented by 3×3 complex unitary matrices
with determinants equal to +1. The algebra is spanned by the eight Gell-Mann matrices.
The group of internal symmetries is the direct product of these three subgroups as shown in
Equation 2.1.

Ginternal
SM ≡ SU(3) × SU(2) × U(1) (2.1)

The theory is defined in order to be invariant under the group GSM = Gexternal
SM ×Ginternal

SM . The
result of these symmetries is approximate invariance under charge×parity (CP) inversion,
and exact invariance under charge×parity×time (CPT) inversion.

The dynamics of the theory are determined through the Lagrangian formulation. A
Lagrangian density, L, is written in terms of operator valued fields that correspond to various
particles. The dynamics of these fields are then determined by the Euler-Lagrange equation.
Further predictions of particle scattering and decay probabilities are derived from the time
dependant Schrödinger equation. An explanation as to how such measurable quantities arise
from the theory is provided in Appendix C. Since the Lagrangian density is a singlet under
GSM transformations, so too are the predictions derived from it.

The subgroups of Ginternal
SM give rise to the dynamics of the Standard Model. The SU(3)

group is associated with the strong force and the SU(2) × U(1) is associated with the elec-
troweak force. These are described by individual field theories because the associated with
these forces manifest at very different energy scales. Strong interactions are described by
Quantum Chromodynamics as defined in Section A. Electroweak interactions are described
by Electroweak Theory as defined in Section B.

A Quantum Chromodynamics

The quantum field theory of Quantum Chromodynamics (QCD) describes interactions
between gluons and fermions carrying color charge. There are two types of elements of
the theory: eight massless gluons and six quarks. Each of these can carry color charges:
quarks carry one charge, while gluons carry two. There are three charges: red/anti-red,
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green/anti-green, and blue/anti-blue.
Quarks are described by Dirac fields with three components,

q =
(
qred qblue qgreen

)T
. (2.2)

The fields transform under SU(3) transformations,

SU(3): q →eiθa(x)T a

q, (2.3)

where T a ≡ 1
2λ

a are eight generators based on the Gall-Mann matrices λa. The Dirac field
transforms under SU(3) with eight generators. The functions θa(x) are eight group parameter
functions of spacetime that identify the transformation.

The derivative of the field q introduces eight terms corresponding to each gauge parame-
ter. In QCD, eight gluon gauge fields, Aa

µ, are introduced which carry a lower spacetime index
µ ∈ {0, 1, 2, 3}, and an upper representation index a ∈ {1, ..., 8}. The fields Aa

µ transform
under the adjoint representation of SU(3) as a connection:

SU(3): Aa
µ →Aa

µ − 1
gs

∂µθ
a − fabcθbAc

µ. (2.4)

Here, fabc are the SU(3) structure constants, θa are group parameters that define the trans-
formation, and gs is a coupling constant.

The QCD Lagrangian can be written through combinations of these fields that are in-
variant under SU(3) transformations. The covariant derivative is defined with the help of
the eight gluon fields,

Dµ ≡ ∂µ + igsA
a
µT

a. (2.5)

An antisymmetric field strength tensor is defined as F a
µν ≡ ∂µA

a
ν − ∂νA

a
µ + gsf

abcAb
µA

c
ν . The

product F µν,aF a
µν includes terms with two, three, and four Aa

µ fields. Terms with two fields
are part of the free Lagrangian, while terms with more fields describe multi-gluon vertices
in the interaction Lagrangian. The Lagrangian is given in Equation 2.6 with indices on the
fermion fields i and j summed over the six quarks.
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L0 = − 1
4(∂µA

a
ν − ∂νA

a
µ)(∂µAaν − ∂νAaµ) free Lagrangian

+ qi(i/∂ −m)qi;

LAqq = − gsqi /A
a
T a,j

i qj;

LAAA = − gs

4 f
ab′c′(∂νA

a
µ − ∂µA

a
ν)Ab′µAc′ν)

+ gs

4 f
abc(Ab

µA
c
ν)(∂νAaµ − ∂µAaν);

LAAAA = − g2
s

4 (fabcAb
µA

c
ν)(fab′c′

Ab′µAc′ν);

LQCD =L0 + LAqq + LAAAA + LAAA; full Lagrangian (2.6)

Feynman slash notation denotes the product of a four-vector with the γ matrices: /A ≡
γµAµ. Through LAqq, this Lagrangian includes terms that describe three-point interactions
between two quarks and a gluon. The terms LAAA and LAAAA describe a three- and four-
point interactions involving only gluons, respectively. A more compact version of the QCD
Lagrangian that makes use of the field strength tensor is shown in Equation 2.7.

LQCD = −1
4F

µνaF a
µν + iqi /Dqi −mqiqi (2.7)

The coupling constant gs is related to the bare coupling constant αs = g2
s

4π
; however, this

is not the full physical picture. There is a particularly significant impact on the observed
coupling as a result of vacuum polarization. This is due to the gluon self-interaction terms
LAAA and LAAAA. The value of the effective coupling αs(Q2) is a function of the momen-
tum transfer Q of an interaction, with the functional dependence given to leading order in
Equation 2.8.

αs(Q2) = αs(Q0)
1 + αs(Q0)β0 ln Q2

Q2
0

(2.8)

Here, αs(Q0) has been measured at a particular momentum transfer Q0. The number of
quark flavors accessible at the energy scale Q is Nf , and β0 = 33−2Nf

12π
. As Q2 gets smaller

than Q2
0, the coupling αs(Q2) blows up. This leads to the confinement of quarks and gluons in

strongly bound states and explains the difficulty in observing free quarks. Conversely, at low
energy scales, the coupling constant decreases. This leads to the phenomena of asymptotic
freedom, wherein the effective strength of the strong force becomes asymptotically weak.

While QCD predicts the functional form of αs(Q) with respect to the energy scale, it
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does not predict the absolute value. Instead, experiments have measured αs(Q) at various
energy scales. This work provides a powerful test of the theory, along with a significant
input. Measurements at energy scale of the Z find αs(MZ0) = 0.1184 ± 0.0007. Additional
measurements range from 1.88 GeV to 209 GeV [21]. Below approximately 1 GeV, the cou-
pling exceeds unity, and perturbative expansion in terms of the coupling no longer converges.
This poses a challenge for simulating hadronization, which takes place at this scale.

B Electroweak Theory

Electroweak theory (EW) is a field theory that describes the interactions between charged
fermions and bosons. Its predictions are invariant under SU(2)×U(1) group transformations.
The charges are weak isospin, associated with the eigenvectors of the SU(2) generators, and
weak hypercharge, associated with U(1). As is the case in QCD, the groups’ generators
are associated with bosons that help define covariant derivatives. The three generators of
SU(2), labeled T a for a ∈ {1, 2, 3} are associated with three bosons W 1

µ , W 2
µ , and W 3

µ . The
U(1) generator is associated with a boson Bµ. Each boson is a matrix valued 4-vector with a
spacetime index µ, and transforms SU(2)×U(1) group transformations as shown in Equation
2.9. The EW Lagrangian describes the interaction of these bosons with appropriately charged
fermions.

For simplicity, the matrix field W̃µ ≡ σa

2 W
a
µ is defined where σa are the Pauli matrices.

In this case, the transformations of the bosons under SU(2) × U(1) are given in Equation
2.9.

SU(2) × U(1) : Bµ → Bµ + 1
g′∂µβ

SU(2) × U(1) : W̃ a
µ → ULW̃µU

†
L − i

g
∂µULU

†
L

(2.9)

Here the transformation matrix is UL = exp
{
iσi

2 α
i(x)

}
. The four parameters specifying the

gauge transformations are spacetime functions αa(x) for a ∈ {1, 2, 3} and β(x).
The electroweak force acts on the chiral components of Dirac fermion fields. These

components, called left-handed and right-handed states, are defined from the projection of
the parity operators:

PL = 1 − γ5

2 and PR = 1 + γ5

2 . (2.10)

While these interactions are different for quarks and leptons, they share some similarity.
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The fermion field can be decomposed into left- and right-handed component states which are
denoted by L and R subscripts respectively. The theory contains doublets under SU(2)×U(1)
that consist of the left-handed projections of the fermions, given in Equation the left side
of Table 2.1, and represented by ψ1. It also contains singlets that consist of the right-
handed projections, represented by ψ2 and ψ3, which are given on the right side of the table.
The behavior of QCD may be discussed in terms of ψ1, ψ2, and ψ3 before finally making

Table 2.1: Definitions of ψ1 as left-handed doublets, and ψ2 and ψ3 as right-
handed singlets, for different generations of fermion. To avoid confusion, it
should be noted that there are no couplings to the right-handed neutrino
fields in the Standard Model.

Generation Doublet Singlets

Quark 1 ψ1 =
(
u
d

)
L

ψ2 = uR, ψ3 = dR

Quark 2 ψ1 =
(
s
c

)
L

ψ2 = sR, ψ3 = cR

Quark 3 ψ1 =
(
t
b

)
L

ψ2 = tR, ψ3 = bR

Lepton 1 ψ1 =
(
νe

e

)
L

ψ2 = νeR, ψ3 = eR

Lepton 2 ψ1 =
(
νµ

µ

)
L

ψ2 = νµR, ψ3 = µR

Lepton 3 ψ1 =
(
ντ

τ

)
L

ψ2 = ντR, ψ3 = τR

reference to quarks, leptons or generations at the end. These fields transform under group
transformations as shown in Equation 2.11.

SU(2) :ψ1 → e−iαa σa

2 ψ1

SU(2) :ψ2,3 → ψ2,3

U(1)Y :ψ1,2,3 → e−iyβψ1,2,3

(2.11)

This introduces the conserved hypercharge, denoted y.
As was done in the previous field theories, a covariant derivative acting on the lepton

fields is defined:

Dµ ≡

∂µ − ig′yBµ − igT aW a
µ Acting on ψ1

∂µ − ig′yBµ Acting on ψ2,3

(2.12)
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The derivative acts differently on the left-handed doublets then on the right-handed singlets.
Here, g′ is the coupling associated with the U(1) subgroup, while g is associated with the
SU(2) subgroup. Keep in mind there is still an implicit sum over the index a, and T a = σa

2 .
A field strength tensor for each of the four boson fields is defined and given in Equation 2.13.

W a
µν =∂µW

a
ν − ∂νW

a
µ − gεabcW b

µW
c
ν ; a ∈ {1, 2, 3}

Bµν =∂µBν − ∂νBµ

(2.13)

Here, εabc is the SU(2) structure constant. An analogous term vanishes in the definition
of Ba

µν because U(1) is Abelian with structure constants of zero. Again for simplicity, the
definition W̃µν ≡ σa

2 W
a
µν is made.

The field strength tensors combine to contract to produce the product −1
4W

a,µνW a
µν −

1
4B

µνBµν . The covariant derivative in Equation 2.12 produces terms iψj /Dψj for each field
ψ in the theory. Combined, these terms form the EW Lagrangian given in Equation 2.14.

LEW = −1
4W

a,µνW a
µν − 1

4B
µνBµν +

3∑
j

iψj /Dψj (2.14)

Here, the form of the covariant derivative reveals two things. First, noting the covari-
ant derivative’s dependence in Equation 2.12, there are no terms containing right-handed
fermions and either W 1

µ or W 2
µ . Since these form the basis for the W± bosons, this produces

no interaction with the right-handed component of fermion fields. This is consistent with the
lack of experimental evidence for right-handed neutrinos. Second, while left-handed fermions
appear in terms with both Bµ and W 3

µ , right-handed fermions appear only in terms with Bµ.
Therefore the Z boson interacts differently with the left- and right-handed fields. Together,
these facts show that EW theory is a chiral theory in that it treats the left- and right-handed
components of fields differently.

The fermion mass term mψψ is conspicuously missing from Equation 2.14. This is
because the left (doublet) and right (singlet) components of the fermion fields transform
differently under SU(2) gauge transformations, as shown in Equation 2.11, therefore the
product transforms as a doublet. The EW Lagrangian cannot include such terms and remain
a singlet, and so these are forbidden. The fermions will instead gain their mass through the
Brout-Englert-Higgs mechanism described in Section B.1.

Linear combinations of Bµ, W 1
µ , W 2

µ , and W 3
µ produce the observed Aµ, Z, and W±

bosons. The mixing of Bµ and W 3
µ described by the Weinberg angle cos θW = MW/MZ , and
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is given in Equation B.

Zµ = cos θWW
3
µ − sin θWBµ

Aµ = sin θWW
3
µ + cos θWBµ

(2.15)

The Weinberg angle is measured to be sin2 θW =0.231 at Z mass scale. Meanwhile the fields
W 1

µ and W 2
µ combine to yield the charged W± bosons as shown in Equation 2.16.

W±
µ = 1√

2
(W 1

µ ∓ iW 2
µ) (2.16)

The EW Lagrangian can eventually be re-written in terms of these mass eigenstates. Since
Feynman diagrams are usually drawn in that context, the Feynman rules will be defined
after this. There are a few useful points to be made meanwhile about the coupling strengths.
Plug Equations solution for Bµ into the right-handed covariant derivative in Equation 2.12’s
reveals that the right-handed lepton fields have a coupling to the Aµ field of −g′ cos θW .
Meanwhile a comparison with electrodynamics identifies this as the electric coupling strength.
Requiring these to be equal necessitates g = e/ cos θW = 0.357. An analogous requirement
for electrically neutral neutrinos yields g′ = g/ tan θW = 0.652. 1

Before continuing, an electromagnetic charge operator Qi is defined for each ψi. Q2 and
Q3 are simply the electromagnetic charges of ψ2 and ψ3. Q1 is a diagonal matrix diag{a, b}
where a and b are the electromagnetic charges of the upper and lower components of the
ψ1 doublet. This allows the definition of hypercharge yi each state ψi following the Gell-
Mann-Nishijima formula: Y/2 = Q− T3. T3 is the weak isospin of the left-handed fermions,
corresponding to their position in the doublet. It is zero for the right-handed fermions. [22]

The Lagrangian in Equation 2.14 contains interaction terms between fermions and the
charged and neutral bosons. These can be seen by expanding the covariant derivative and
plugging in the inverse of Equations B and 2.16. The charged current takes the form in
Equation B.2.

LCC = − g√
2
W+

µ [ν`γ
µ`L + uγµdL] (2.17)

Here there is an implicit sum over lepton and quark generations, with u and dL corresponding
to up and down type quarks from each generation.

The Lagrangian in Equation 2.14 also contains interactions between fermions and the
neutral bosons Aµ and Zµ. These are similarly identified by plugging equations Equations B

1The coupling e is related to the fine-structure constant α ≈ 1/137 via α = e2/4π.
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and 2.16 (inverted) into the covariant derivative in Equation 2.12. Grouping the terms with
Aµ and Zµ yields the Lagrangian of neutral current in Equation 2.18.

LNC =
3∑
j

ψjγ
µ [Aµ(gT3 sin θW + g′yj cos θW ) + Zµ(gT3 cos θW − g′yj sin θW )] (2.18)

The neutral current Lagrangian can be broken down further to reveal the QED interactions.
The constraints on the Weinberg angle, and the definition Y ≡ Q − T3 allow the term
containing Aµ to produce a Lagrangian describing fermion-photon interactions:

LAff = −eAµ

∑
j

ψjγ
µQjψj. (2.19)

The latter part of Equation 2.18 describes fermion-Z boson interactions, and is written:

LZff = − g

2 cos θW

Zµ

∑
f

ψjγ
µ(σ3 − 2Qj sin2 θW )ψj. (2.20)

In summary, the QCD Lagrangian contains terms describing three-point interactions
between a each vector boson and two fermions. Further interactions appear in the following
section.

B.1 Electroweak Symmetry Breaking

In the previous three subsections, the QED, QCD, and EW Lagrangians are invariant
under U(1), SU(3), and SU(2) × U(1) group transformations respectively. All are invariant
under Poincaré group transformations as well. The physical state of a system, however, is
not necessarily invariant under these transformations. A classic example of this is found in
a cooling magnet. Above the Curie temperature, the component atoms’ magnetite dipole
moments are oriented isotropically, and hence the system is invariant under rotations. When
the material cools, the spins align in a particular direction, thereby breaking this invariance.
The physical laws remain invariant, but the state of the system has removed rotational
invariance. This situation is referred to as symmetry breaking: the mechanism by which a
low energy system can exhibit the behavior with a subset of the invariance found at high
energy.

A new doublet under SU(2) is introduced, with complex scalar components φ+ and φ0:
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Φ =
(
φ+ φ0

)T
. This field transforms under the EW guage transformations as:

SU(2)L Φ(x) → Φ′(x) =e−iθa(x)σa/2Φ(x)

U(1) Φ(x) → Φ′(x) =e−iθa(x)/2Φ(x).
(2.21)

Along with Φ, a potential energy is added to the system as a function of the field:

V (Φ,Φ†) = m2Φ†Φ + λ(Φ†Φ)2, (2.22)

where m2 and λ are undetermined constants. If m2 < 0 and λ > 0 then the potential
V (Φ,Φ†) is minimized when Φ†Φ = −1

2m
2/λ. This defines the vacuum expectation value, or

VEV, of the field Φ as v =
√

−m2/λ. By convention, the VEV is allocated to the neutral
field φ0 by a choice of an SU(2) gauge transformation: 〈0|Φ|0〉 =

(
0 v/

√
2
)T

.
The four degrees of freedom of Φ can be described by real scalar fields h and Ga with

a ∈ {1, 2, 3}, as shown in the first line of Equation 2.23. The field h is called the Higgs field.
The fields Ga are pseudo Nambu-Goldstone bosons, and can be removed by a gauge choice
θa = −Ga(x)/v from Equation 2.21. This is shown in the second line of Equation 2.23.

Φ(x) =eiGa(x)σa/2v

 0
v+h(x)√

2


Φ(x) =

 0
v+h(x)√

2

 ; After gauge choice
(2.23)

The new field Φ allows new terms in the EW Lagrangian. First, a covariant derivative is
defined:

DµΦ = 1√
2

 0
∂µh

+ i√
2

[
g′

2 Bµ + g

2W
a
µσ

a

] 0
v + h

 (2.24)

This defines an invariant kinetic term for Φ, which is expanded in the first line of Equation
2.25.

DµΦ†DµΦ =1
2∂µh∂

µh+ (v + h)2

2
(
0 1

) [g′

2 Bµ + g

2W
a
µσ

a

]2
0

1


=1

2∂µh∂
µh+ (v + h)2

4

[
g2W+

µ W
−µ + 1

2(g2 + g′2)ZµZ
µ
] (2.25)

In the second line, the fields B and W a
µ are replaced with the vector fields from Equations B
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and 2.16. In this form, three things become apparent after expanding (v + h)2 and looking
at terms, including h. First, terms involving two vector fields and one Higgs field appear,
leading to three-point vertices. Second, terms involving two vector fields and two Higgs field
appear, leading to four-point vertices. Third, no term appears linking the photon field Aµ

directly to the Higgs field.
Next, expanding (v + h)2 includes terms proportional to v2, including only W+

µ W
−µ or

ZµZ
µ fields. The Higgs mechanism has provided invariant mass terms for the Z and W±

bosons. The masses are easily ready from the coefficients:

m2
W ± =v

2

4 g
2

m2
Z =v

2

4 (g2 + g′2)
(2.26)

No mass term appears for the photon field.
The Higgs field also appears in the potential energy V (Φ,Φ†). Noting m2 = −v2λ and

inserting the form for Φ from Equation 2.23 into the equation for the potential yields:

V (Φ,Φ†) = λv2h2 + λvh3 + λ

4h
4. (2.27)

This identifies three and four point Higgs self interaction vertices. Additionally, the potential
includes a mass term for the Higgs boson: mh =

√
2λv.

The final result is the origin of leptonic mass. The mass term that appears in the QED
Lagrangian (mΨΨ) is not an SU(2) singlet. Instead, consider the Yukawa coupling between
left (L` =

(
ν` `L

)
) and right-handed (R` = `R) leptons i with the scalar field Φ.

LYukawa = − yiLiΦRi

= − yi

(
ν` `L

)φ+

φ0

 `R

= − yiv√
2
``− yi√

2
``h

(2.28)

The step from the second line to third line corresponds to the gauge choice in Equation
2.23. This term is invariant under SU(2) transformations, because the exponential term in
Equation 2.21 is canceled by the analogous term for the doublet in Equation 2.11. As a
result of the Yukawa coupling, a mass term has appeared for the lepton i:

m` = yiv√
2
. (2.29)
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In addition, a three point interaction between the lepton and Higgs appears, with a coupling:

gh`` = yi√
2
. (2.30)

The other fermions, excluding neutrinos, gain their mass through similar Yukawa couplings2.
Equations 2.29 and 2.30 are particularly relevant to the subject of this thesis. The former
shows that the muon gains its mass due to the scalar field Φ, and the latter is the topic of
measurement in Chapter 6.

B.2 Cabibbo-Kobayashi-Maskawa Mixing

The Yukawa Lagrangian in Equation 2.28 can be expanded in a compact form for the
nine charged fermions, shown in Equation 2.31

LYukawa = −
(

1 + h

v

) [
`′i

L[m`]ji `′
Rj + u′i

L[mu]jiu′
Rj + d′i

L[md]jid′
Rj

]
(2.31)

Here, the leptons, up-type quarks, down-type quarks are grouped into vectors `′, u′, and d′

containing fields for each generation. These are the mass-eigenstate fields f , and are related
to the primed fields f ′ by multiplication by unitary matrices UL and UR: f ′

L = ULfL and
f ′

R = URfR. The 3 × 3 matrices [m`], [mu], and [md] by analogy to Equation 2.28 represent
the masses fermions. The unitary matrices in f ′

L and f ′
R are chosen, such that the mass

matrices are diagonal through the multiplication U †
L[m]UR. The result is that Equation 2.31

is simplified such that mass terms appear as in Equation 2.31.
The electroweak Lagrangian in Equation of the form 2.14 is nearly unchanged with the

substitution of the mass-eigenstate fields. The exception is the term for interactions between
W± bosons and quarks, as given in Equation . The change to mass-eigenstates introduces
the product between two unrelated unitary matrices U and U ′ that correspond to the up-
type and down-type quarks. The product U †U ′ is not one, but instead defines the unitary
Cabibbo-Kobayashi-Maskawa (CKM) matrix V . Instead of the choice of a unitary matrix
f ′

L = ULfL and f ′
R = URfR that is used to define the mass-eigenstates for leptons, an

analogous definition for quarks is made: q′
L,i = V j

i qL,j. The Lagrangian may be rewritten in
2Quarks benefit from additional mass from chiral symmetry breaking.
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terms of the mass-eigenstates with the use of the CKM matrix:

L = − g√
2
V j

i Wµu
i
LγdL,j. (2.32)

The global measurement of the CKM matrix parameters, along with unitary within
generations, is given in Equation 2.33 [23].

V =


0.97446 ± 0.00010 0.22452 ± 0.00044 0.00365 ± 0.00012
0.22438 ± 0.00044 0.97359+0.00010

−0.00011 0.04214 ± 0.00076
0.00896+0.00024

−0.00023 0.04133 ± 0.00074 0.999105 ± 0.000032

 (2.33)

C Summary

The Standard Model Lagrangian is built from the fields and interactions introduced in
this chapter. The first component is the QCD Lagrangian, repeated in Equation 2.34. Here,
the index i is summed over all fermions. The covariant derivative D acts differently on
different fields, as noted in the prior sections.

LQCD = −1
4F

µνaF a
µν + iqi /Dqi −mqiqi (2.34)

This is followed by the EW Lagrangian, repeated in Equation 2.35. Here the indices on Ψi are
mapped each left-handed doublet and right-handed singlet fermion fields in each generation.

LEW = −1
4W

a
µνW

a,µν − 1
4BµνB

µν + iΨi /DΨi (2.35)

The next term given in Equation 2.36 summarizes the Yukawa coupling facilitated by the
Higgs field Φ. Again, Ψi include the relevant left-handed and right-handed fields. The
Yukawa coupling constants are described compactly by 3 × 3 matrices, yij =

√
2

mv
, that

correspond to the masses from Equation 2.31.

LYukawa = ΨiyijΨjΦ (2.36)
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Finally the Higgs sector Lagrangian is defined in Equation 2.37. This consists of a kinetic
term and the Higgs potential defined in Equation 2.27.

LHiggs = DµΦDµΦ − V (Φ,Φ†) (2.37)

The sum of these Lagrangians comprise the complete Standard Model Lagrangian, given in
Equation 2.38.

LSM = LQCD + LEW + LYukawa + LHiggs (2.38)

Table 2.2: Gauge couplings for the subgroups in the Standard Model. The
running strong coupling gs and the weak couplings g and g′ are calculated
using the MS renormalization scheme. Both are calculated at the energy
scale of the Z boson.

Group Coupling Value
U(1) g′ 0.357
SU(2) g 0.652
SU(3) gs 1.220

There are 19 free parameters of the Standard Model that are determined by measure-
ments. These include the masses of the six quarks and three charged leptons defined in
Table 1.1. Four parameters, (three Euler angles and a CP-violating phase) are used to de-
fine the CKM matrix given in Equation 2.33. The three gauge couplings are listed in Table
2.2. The two free parameters introduced by electroweak symmetry breaking are the vacuum
expectation value v = 246.2 GeV and the Higgs boson mass mH = 125.1 GeV. The final
parameter, θQCD ≈ 0, is the coefficient to a CP violating term in QCD. The breadth and
depth of the phenomena described by the mathematical formulation of the Standard Model
are a testament to its success as a descriptive theory.
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Chapter 3

Experimental Apparatus

A High Energy Particle Colliders

The study of high energy particle physics requires laboratory conditions where high
densities of energy are concentrated into a miniscule volume. One method to produce such
an environment is with a particle collider. This section discusses some of the principles that
allow colliders to enable the study of otherwise unreachable aspects of our universe.

In general, a collider has the purpose of steering two beams of charged particles such that
their constituent particles collide with high energy. Several subsystems are required to do
this. First, an accelerator must boost the beams to high energy with the use of electric fields.
Next, a series of magnets bend and focus the beam. A common geometry for a collider, and
one employed by the LHC, is a circular arrangement where two counter-rotating beams are
guided by dipole magnets around in a circular orbit. Along the orbit, various magnets will
focus and defocus the beam, and alter its trajectory to keep the beam close to a reference
orbit. Finally, the beams are steered to collide with each other in an interaction point

Accelerators are machines designed to accept particles with a given energy and output
particles with a higher energy. A common device to achieve this is the radiofrequency
(RF) cavity: a conductive cavity containing an oscillating electric field driven by a periodic
potential. The dimensions of the cavity are selected such that the driving potential produces
a resonating standing electromagnetic wave within its volume. A packet of beam particles
(a bunch) passing through the cavity will be accelerated by the electric field EEE, as described
by the relativistic Lorentz force in Equation 3.1.

dppp

dt
= q(EEE + vvv ×BBB) (3.1)

Here BBB is the magnetic field and vvv is the bunch velocity. Particles leading or trailing the
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bunch are pushed back into it.

(a) Dipole magnetic field (b) Quadrupole magnetic field (c) Sextupole magnetic field

Figure 3.1: Illustrations of the idealized fields of magnets used commonly in
colliders. The poles of fields are shown in red (north) and blue (south). The
density of the field lines indicates the strength while the arrows indicate the
direction of the magnetic field. In a collider, the fields are orientated such
that a particle beam’s direction would be into the page.

A number of magnets are used for a variety of purposes in a collider. The most prevalent
are dipole magnets used to guide the trajectory of the beam around the machine. Dipole
magnets have a nearly uniform magnetic field, BBB, as illustrated in Figure 3.1a This leads to
the circular motion of an incident particle with charge q, as described by Equation 3.1.

In addition to dipole magnets, quadrupole magnets are used to focus and defocus the
beam profile. An illustration of a quadrupole field is given in Figure 3.1b. A beam passing
through a quadrupole is simultaneously focused in one plane and defocused and the per-
pendicular plane. Quadrupole magnets are usually grouped in order to provide an overall
focusing or defocusing effect on the beam. A group of two quadrupoles, the second rotated
90 degrees from the first, have the effect of focusing a beam in both planes.

A third magnet configuration is the sextupole, consisting of an arrangement of three
dipoles. A sextupole is useful for adjusting the momentum dependant behavior of the beam.
This is helpful in maintaining the stability and lifetime of the beam as it circulates the
machine. The field of a sextupole is illustrated in Figure 3.1c.

The final task of a collider, after it reaches a stable beam energy, is to steer the beams
into collisions. As the particles making up the beam collide, they interact and transform the
incident energy into an explosion of outgoing particles. The locations of the collisions are
such that the outgoing particles can be detected by an experiment.
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B CERN Accelerator Complex

LINAC 2
PSB PS

SPS

LHC

H2
750 keV 50 MeV 1.4 GeV

25 GeV

450 GeV450 GeV

6.9 km6.9 km

27 km

628 m

157 m36 m

Figure 3.2: A schematic view of the path taken by protons through CERN
accelerator complex in order to produce beams at the LHC. The energy of
the beam is labeled between each accelerator. The length or circumference
of the accelerators are labeled, however the beam makes many orbits in each
circular accelerator.

The LHC requires input beams with high intensity and energy. The LHC injector chain
is tasked with providing this beam. Four accelerators make up the chain: the Linac 2, the
PS Booster, the PS, and the SPS. The output of the chain is a proton beam with an energy
of 450 GeV. This section describes each of these machines and the proton beams that they
produce [24]. The CERN accelerator complex, as it relates to the production of proton
beams, is illustrated in Figure 3.2.

The first accelerator in the injector chain is the Linac 2. Protons are sourced from a
canister of hydrogen gas and separated by a 90 keV duoplasmatron ion source1. The protons
enter a 1 m RF quadrupole and are accelerated to 750 keV. This beam enters the Linac 2, a
linear accelerator which dates to 1978. The Linac 2 accelerates protons to 50 MeV over the
course of 36 m using a series of increasingly long RF cavities.

The beam output of the Linac 2 is transferred to the first in a series of synchrotrons called
1A cathode emits electrons which ionize H2 gas, separating the atoms, which are then accelerated elec-

trostatically towards an anode.
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the Proton Synchrotron Booster (PSB). Synchrotrons are accelerators where the magnetic
field strength is synchronized to the energy of the beam as it accelerates. The PSB, which
began construction in 1968, is a circular synchrotron with a circumference of 157 m. The
incoming beam from the Linac 2 is split vertically by an electrostatic deflector to four levels.
At this stage, the beams are divided into bunches of protons, separated by empty space.
These four beams enter four circular rings stacked on top of each other, quadrupling the
capacity of the PSB 2 [25]. The original PSB was renovated to provide beams for the
LHC, and the output energy was increased from 800 MeV to 1.4 GeV. This helped reduce
instabilities related to producing denser beams. [24]

The four beamlines of the PSB are recombined and extracted to the Proton Synchrotron
(PS)3. The PS is a circular synchrotron with a circumference of 628 m, four times the
circumference of each PSB ring. The PS was commissioned in 1959. Significant effort was
undertaken to prepare the PS to supply the beam for the LHC. This included squeezing
four bunches from each PSB ring into one half of the PS and filling the PS with two PSB
cycles. Once the PS has been filled and accelerated its beams to 25 GeV, the spacing between
bunches is adjusted to match the LHC’s requirements [24].

The final accelerator before the LHC is the Super Proton Synchrotron (SPS). The SPS
was completed in 1976 with a circumference of 6.9 km. From 1981 to 1990, it provided beams
to the UA1 and UA2 experiments, with which UA1 discovered the W and Z bosons. As with
the other CERN accelerators, the SPS underwent upgrades to provide beams to the LHC. A
total of 800 vacuum pumping ports were given Faraday shields to reduce interference caused
by the interaction of the beam particles with the wall of the beamline [24]. Two new transfer
tunnels were constructed as well to carry the beam from the SPS to ring of the LHC. These
lines carry two beams (clockwise and counter-clockwise) to the LHC, where they are injected
into the main rings.

C The Large Hadron Collider

Located in the Lemanic basin, straddling the border between Switzerland and France, the
Large Hadron Collider is the largest machine built by humans. There are seven experiments
around the circumference of the LHC: four large experiments named CMS, ALICE, LHCb,
and ATLAS, as well as three small experiments named TOTEM, MoEDAL, and LHCf.
The LHC provides the unique laboratory conditions required by ATLAS to investigate the

2The PS is designed to accept five bunches from each PSB ring for a total of 20 bunches. For LHC
operation, it accepts one bunch from each PSB ring.

3Originally named the CERN Proton Synchrotron (CPS).
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fundamental nature of the Universe. The construction, maintenance, and operation of the
LHC are part of an enormous effort carried out by thousands of dedicated scientists and
engineers. Without their ongoing endeavors, the achievements of ATLAS and the other
LHC experiments would be impossible.

The LHC is impressive not just in absolute terms, but also in comparison to previous
accelerators. The three other large superconducting accelerators, the Tevatron4, HERA5, and
RHIC, all operate with magnetic fields of approximately 5 T. The main dipole magnets of
the LHC surpass this with fields of 8 T. The machine is also enormous; it has a circumference
of 26.7 km. The LHC, designed to reach collision energies of 14 TeV, is also the first hadron
accelerator with enough synchrotron radiation to affect the design of the cooling and vacuum
systems [26].

The LHC is composed of several subsystems, each of which is complex and essential in
its own right. The magnet system bends and focuses the beam to maintain its stability
over multiple hours. The accelerator system uses radio-frequency chambers to accelerate the
beams. Various control systems monitor, collimate, and adjust the kinematics of the beam.
Finally, either in the event of a problem or once the beam has lost sufficient intensity, the
beam is carefully disposed in the by the abort system. This section describes how these
systems collectively provide colliding beams inside the ATLAS experiment.

The LHC is a machine under continuous development; the only place to study improve-
ments for the LHC is at the LHC itself. As a result, the history of the LHC development is
also the history of the experimental environment of the ATLAS detector. This story begins
with the tunnel and infrastructure that houses the LHC.

C.1 Civil Engineering

The first step in building a collider is to construct civil infrastructure for it to inhabit.
This takes the form of a buildings that house services for the accelerator and a space for the
machine itself. For economic reasons, much of the infrastructure for the LHC is reused from
the earlier LEP project.

The largest piece of infrastructure is the tunnel built to house LEP. The Tevatron is
buried less than 10 m deep in the flat expanse of the Illinois prairie. This shallow tunnel
could be constructed with a cut-and-fill approach. RHIC is primarily built at surface level
in a tunnel that was later covered with dirt. Neither of these approaches was suitable in
the context of the local geology in the region. The land near CERN consists of a layer of
moraine (loose unconsolidated rock) resting atop a layer of molasse (soft sedimentary rock).

4Decommissioned in 2011.
5Decommissioned in 2007
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Figure 3.3: Layout of the LHC, consisting of eight curved sections (blue)
and eight straight sections (red) buried at a depth of 45-170 m. The location
of SPS (yellow) and the injection lines (green) from the SPS are indicated.

LEP was buried in the sedimentary layer for stability, but this is too deep for excavation.
Instead, beginning in 1985, the tunnel was dug using tunnel bores and explosives. In the
Cenozoic molasse of the Lemanic basin, tunnel bores were used. The bores were unsuitable
for the fractured Mesozoic limestone beneath the Jura mountain and more costly explosives
were used instead. The resulting tunnel’s internal diameter is 3.8 m, and it is buried at a
depth of 45-170 m. The tunnel slopes downward at 1.42 degrees in the direction of Lake
Leman, in order to remain within the molasse layer.

The tunnel has eight curved arcs, separated by eight straight sections with length 528 m
[26]. Four straight sections house the ATLAS, CMS, ALICE, and LHCb experiments. The
eight straight sections, called points, are arrayed as shown in Figure 3.3 and numbered pi
with i ∈ {1, ..., 8}. The primary uses of each point is given in the following table.

Location Use

p1 Hosts the ATLAS experiment
p2 Clockwise beam injection, and the ALICE experiment
p3 Hosts momentum collimation systems
p4 Hosts RF systems for acceleration
p6 Hosts beam abort, and beam dump
p5 Hosts the CMS and TOTEM experiments
p7 Hosts betatron collimation
p8 Counter-clockwise beam injection, and the LHCb experiment

The eight curved sections host magnets with the purpose of bending the beam around the
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path of the machine. The collider itself is built along the outer edge of the tunnel. In several
locations, concentric outer tunnels house services for the accelerator.

After below-ground infrastructure, the next largest infrastructure for the LHC is surface
buildings. Every LEP building has been reused for the LHC, and some new infrastructure
was built to accommodate the LHC. First, a major expansion of the tunnels was undertaken
to carry the beam from the SPS to the LHC injection points. Two new tunnels with an
internal diameter of 3.75 m and a length of 2.5 km were dug to connect points p2 and p8 to
the SPS. While ALICE and LHCb reuse existing LEP era caverns, new caverns were built to
house ATLAS and CMS. In the cavern for CMS, the waterlogged moraine above the cavern
had to be frozen with liquid nitrogen before excavation could be completed. To avoid further
flooding,6 existing draining tunnels were enlarged, and new tunnels were added.

In total, the construction of new infrastructure lasted five years. 7 Eight new surface
buildings were constructed to hold offices and experimental equipment. Work at p1 for the
three ATLAS caverns began in April of 1998 [27]. Four new shafts, two over the experimental
cavern and one over each service cavern, were excavated. The ATLAS experiment cavern
is built 92 m below ground. To house the large experiment, 300,000 tonnes of rock were
removed to clear an area 53 m long, 30 m wide, and 35 m tall. The walls and ceiling are
constructed from 2 m thick concrete, and the floor is 5 m thick to support the 7,000 tonne
detector.

C.2 Accelerator Design

The heart of the LHC is the accelerator. The purpose of this system is to accelerate
beams to their collision energy and then maintain their energy to compensate for losses over
time. The circular design of the LHC means that beams repeatedly pass through the same
acceleration section. As a result, the acceleration system need only impart 3.7 kW/beam
rotation.

The principle of acceleration is based on radio-frequency (RF) cavities. Independent RF
systems control the acceleration of each beam circulating in opposite directions. Cavities are
made of copper, sputtered with niobium.8 This is advantageous over solid niobium for its
thermal conductivity and its superconductivity to enhance the RF performance [26]. The

6LEP flooded twice, at one time filling with 20 cm of sediment. A plan to waterproof the tunnel with a
steel tube called “the submarine” was rejected.

7The CMS cavern construction was delayed past five years due to archaeological discoveries and the high
water content of the soil. Eventually liquid nitrogen was pumped through tunnels dug through the soil to
solidify it.

8In magnetron sputtering used for this process, niobium is vaporized by particle bombardment and bound
to the copper substrate of the cavity resulting in a thin - and inexpensive - 1-2 micron coating.
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operation of the superconducting cavities requires temperatures of 4.5 k, so cavities are
enclosed in cryomodules with their own helium tanks [28]. The resonant properties of the
cavities can be adjusted during operation by mechanically distorting their shape.

Each cavity operates with a voltage of 2 MV (5.3 MV/m) and is powered by a 500 kW
klystron. The klystrons are coupled to the cavities by a waveguide of adjustable length.
Adjusting the length of the waveguide, in turn, adjusts the quality factor9 of the cavity. The
cavity is kept at a 3 kV bias to reduce the rate of electron avalanches (multipactor effect).
During normal operation, the klystrons drive the cavities at 400 MHz and supply 200 kW.

Figure 3.4: Schematic side-view of an LHC accelerating module showing
two of the four cavities (blue). The cylindrical vacuum tank is shown in
black. Inside, the beamline is shown in blue. The cavities are housed inside
helium-filled cryomodules (dark green) fed by liquid helium baths (purple).
Quench valves attached to the helium baths are shown in light green. Each
super conducting cavity is driven by the variable power couplers shown in
orange. Two other couplers control the higher order resonance modes in the
cavity: a broadband HOM coupler (red) and a narrow band HOM coupler
(brown). The resonance of each cavity is tuned by elastic deformation of
the chamber by a motor system (pink).

There are eight single-cell cavities per beam. Four cavities are grouped to share a single
cryostat, which maintains their superconducting temperature. The resulting total voltage

9Peak energy lost per cycle, which can be used to adjust the peak voltage in the cavity.

31



gradient is 16 MV per beam. A schematic of the accelerator system is shown in Figure
3.4. The driving frequency is supplied through the couplings on top of the cryostat. The
cryostats are too large to sit next to each other in the tunnel, so they are staggered.

C.3 Magnet Design

If the accelerator is the heart of the LHC, the magnets compose its body. Magnets serve
multiple purposes in handling the beam. A total of 1,232 dipole magnets bend the beam
around the circumference of the collider. Quadrupole magnets focus and defocus the beam
as it travels. Each quadrupole simultaneously focuses in one direction and defocuses in an
orthogonal direction. There are 392 quadrupoles throughout the curved arcs. Sextupole
magnets correct beam characteristics including chromaticity introduced by the quadrupoles.
There are 2464 sextupole magnets in total. Finally, other magnets such as octupole and
decapole correctors fill in the remaining 7000 superconducting magnets of the LHC. Together
these magnets steer the beam into the LHC and maintain the beam’s orbit during collisions.
At the end of the beam’s lifetime, kicker magnets steer the beam safely into the beamdump.

The dipole magnets perform the job of bending the beam around the LHC. Because the
counter circulating beams are both positively charged, magnetic fields of opposite directions
are needed to steer them. In the dipole magnets, two sets of superconducting coils are
wound from flat cables with trapezoidal cross sections. Each cable is made from 28-36
strands of ≈ 1 mm diameter stranded niobium-titanium (Nb-Ti) alloy wires. 10 The coils
are arranged in inner and outer layers, as shown in Figure 3.5a. This configuration produces
a homogeneous, purely dipole field. The coils for each beam are positioned side-by-side, such
that the field of one can augment that of the other. These coils share a common yoke made
from low carbon steel with high magnetic permeability, chosen to conduct the magnetic flux
between the coils. This is illustrated by the black arrows in Figure 3.5b. The coil and yoke
assembly is held in place by collar plates of austenitic (low permeability) steel. The resulting
magnetic field has an incredible strength of 8.3 T. Each of the main dipole magnets has a
length of 14.2 m (15 m, including connections between the magnets).

In order to operate at superconducting temperatures, the magnets are housed elaborate
inside cryosystems that regulate their temperature. These are challenging systems: during
the LHC’s Run 1, the cryosystem was responsible for 25-30% of fault time [29]. It is the
task of the cryosystem to maintain the magnet at 1.9 K using superfluid helium. A total of
100 tons is used throughout the LHC. Helium is used because its low viscosity allows it to

10Although niobium-tin (Nb3Si) has many desirable advantages over Nb-Ti, it is brittle and requires many
hours of heat treatment at a temperature of ≈970 k. Alternatively, Nb-Ti has a low heat capacity at 1.8 k,
so it is susceptible to rapid heating and quenching

32



(a) Coil winding (b) Dipole magnet

Figure 3.5: (a) Cross section of the coils made from superconductive cables
wound around the beamline to produce a homogeneous dipole magnetic
field. Each rectangle represents a flat Nb-Ti cable. These are grouped in
a configuration that produces a smooth internal magnetic field, indicated
by the arrows. The cables are separated by layers of copper. The cables
are color coded: red(blue) cables carry current into(out of) the page. (b)
Cross section of the main bending dipole magnets. Two beamlines (black)
and coils (blue/red) are are encased by austenitic steel collars (light grey).
The collar is embedded in a large iron yoke (dark grey) and submerged in
a liquid helium vessel (dark blue). The arrangement is held in a cryostat.
For scale, the centers of the beamlines are separated by 19 cm.

permeate the coil insulation and contact directly with the superconducting wire. Superfluid
helium has a specific heat roughly 2,000 times that of the Nb-Ti; this has the important
benefit of increasing the system’s total specific heat. Helium is also effective at quickly
transporting heat away from the wire. The magnets are submerged in a bath of 1 bar liquid
helium. A pipe is pumped with low pressure 15 mbar liquid helium to pull heat away from
the bath. This is done to prevent vapor bubbles from developing in the bath, leading to the
coil heating and subsequent quenching. In the event of a quench, a capacitor bank is fired
into series with the coil’s circuit to quickly add resistivity. The current is diverted through
a diode while the power is ramped down.

Magnets are grouped into “periods” with identical magnetic properties. Each period is
106.9 m long and consists of six main dipoles and two 6.6 m “short straight sections” (SSS).
Each SSS contains quadrupole magnets that re-focus the beam after being steered by the
dipoles. Additionally, each SSS also contains sextupoles that control chromaticity and small
dipoles for orbit corrections. Some SSS also contain octupoles and trip/skew quadrupoles
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for fine-tuning the beam characteristics. Perturbations in the trajectory of the beam are
introduced by the magnets and are called dispersion. After completing one of the eight arcs,
the magnet of the dispersion suppressor system cancels the horizontal dispersion introduced
during the bending.

C.4 Beam Structure and Design

The achievement of building the LHC pales in comparison to the achievement of pro-
ducing and maintaining its beams. The LHC was designed to collide two counter-rotating
beams, at precise locations, with the enormous instantaneous luminosity of 1034cm−2s−1.
The energy of each beam exceeds that of a large truck traveling at highway speeds. This is
more than one hundredfold the stored beam energy of any previous machine [26]. The beam
is an object of enormous energy and surpassing delicacy. Numerous technical considerations
must be addressed in order for the beam to be useful for the experiments. The beams at the
LHC are characterized by several parameters that describe their stability and utility. These
parameters are described in this section.

The first parameter to consider is the emittance, ε, defined in Equation 3.2. It is a
measure of the distribution of the particles in a beam in position-momentum phase space.
The emittance is defined as

ε ≡ 6π
B

w2 −D2
(
dp

p

)2
 , (3.2)

where w is the RMS beam width, D is the dispersion, B ≈ (w/ε) is the beta function, and
dp
p

is the relative momentum spread. The emittance is often divided into longitudinal and
transverse components. If the emittance is too small, then intra-beam interactions destabilize
the beam. During injection, the beam has a longitudinal emittance of 0.6-1 eV, and this is
increased to 2.5 eV during acceleration for stability. Conversely, if the transverse emittance
is too large, colliding beams pass through each other without interacting. [26,28,30]

Related to the transverse emittance are betatron oscillations: harmonic motion in the
transverse plane as the beam makes an orbit [30]. This is a problematic source of intra-
beam scattering of protons through coulomb forces. The frequency of betatron oscillations
is higher than that of the orbit. The number of vertical or horizontal betatron oscillations
made during one orbit is called the vertical or horizontal tune, respectively. The horizontal
and vertical tunes must be carefully picked using a tune diagram, as exemplified in Figure
3.6. Resonances are illustrated as lines, and the tunes must be selected together to avoid
disruptive resonances. The beam density, N , as well as emittance and β modify the tune
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Figure 3.6: Tune diagram for the LHC. The horizontal and vertical tunes
are displayed. First order resonances shown in red, second order resonances
shown in blue, and higher order resonances shown in black. Figure from
Tune and Chromaticity Diagnostics [31]

tune Q:

δQ ∝ − N

βγ2ε∗ . (3.3)

For example, when the PSB was renovated the emittance was reduced, and the energy (γ) was
increased to compensate for the impact on tune. In practice, tunes are adjusted continually
by adjusting these parameters throughout beam injection, ramping up beam energy, and
eventual collisions.

Related to the longitudinal emittance are synchrotron oscillations: longitudinal oscilla-
tions along the direction of the beam. This takes place at a much lower frequency than
that of betatron oscillations: at the LHC it is less than one oscillation per orbit. As with
betatron oscillations, the synchrotron oscillation frequency must be carefully controlled to
limit intra-beam scattering and maintain beam stability [30].

Chromaticity describes the dependence of the tune on a change of momentum. In optics,
light rays of different wavelengths are focused differently by a glass focusing lens. There is
a persistent analogy between optics and beam dynamics (often called beam optics). Like
light, beams are bent and focused by magnets. Particles with large momentum experience
weaker focusing strength from focusing quadrupoles, a process called chromatic aberration.
Chromaticity quantifies this momentum dependence. To put it explicitly, chromaticity Q′ is
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the tune change ∆Q caused by a relative momentum change ∆p/p [32].

∆Q = Q′ ∆p
p
, (3.4)

where

∆p
p

= ∆f/f
η

; and η = 1
γr

− αc. (3.5)

Here, ∆f is change in RF frequency, and f is the nominal frequency 11 γr is relativistic
gamma function, and αc is momentum compaction factor equal to 3.225 × 10−4 at the LHC.
Chromaticity is unitless as it defines a change in the tune. At the LHC, sextupoles control
the beam’s correct chromatic aberration after passing through focusing quadrupoles and
dispersion suppression [33] [34]. The chromaticity is visualized on a tune diagram, such as
Figure 3.6, as the area occupied by the beam. Reducing the beam’s chromaticity makes
it easier to find a stable setting for the tune. However, beams with a chromaticity that
is too small suffer from instability related interaction with the beampipe. The momentum
spread of a beam with high chromaticity makes it more efficient to absorb reflected EM fields
without perturbing the beam. An important task is to find a balance for the chromaticity
in order to maximize the useful life of the beam.

Because the RF cavities produce alternating field gradients, the beam is naturally orga-
nized into occupied bunches and empty space. The time interval between these, the bunch
spacing, is a multiple of the RF frequency. At the LHC the nominal bunch spacing is 24.96 ns,
or ten times the RF frequency. The corresponding bunch length is 7.5 cm [28]. Bunches are
collected into trains, patterns of occupied and empty bunches. Several trains comprise the
beam. Several bunches are always left unoccupied, called the abort gap. The length of the
gap corresponds to the ramp time of the extraction kicker magnet. The bunch design choice
depends on the function of the beam. Some patterns are useful for cleaning the beampipe
of electron clouds, while others are useful for optimizing physics collisions.

From a physics perspective, the most important beam characteristic is the instantaneous
luminosity of collisions. This is defined as L ≡ N/σpp, where N is the collisions per second
and σpp is the poorly defined proton-proton collision cross-section12 [26] More precisely in

11400,788,860 Hz at the LHC.
12This is poorly defined because in some sense protons always scatter off each other, so the definition

depends on what constitutes a collision. Traditionally, values of σpp ∼ 1014fb are used.
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the context of the LHC, the luminosity is defined in Equation 3.6 [26].

L = N2
b nfrγ

4πεnβ∗ (3.6)

Here, Nb is number of particles per bunch, and n is the number of bunches per beam. fr is is
revolution frequency, which is 11.245 kHz for the LHC. The other terms are the previously
mentioned relativistic γ, the transverse emittance εn, and the beta function at the collision
point β∗. The two beams must be steered into each other at a crossing angle of θc. This
results in a luminosity reduction factor,

F = 1/
√

1 + θcσZ

2σ∗ (3.7)

where σz is the RMS bunch length, and σ∗ is the transverse RMS beam size at the interaction
point. In fact, σ∗ is specifically minimized by focusing the beam before the collisions and
defocusing it afterward.

The central challenge during the operation of the LHC is to keep the beam in a stable
orbit for many hours. Several effects may purturb the stability of the beam during this
time [26]. Beam-beam interaction is the force from the electromagnetic field from one beam
on another. It can be reduced by increasing the crossing angle of θc at the cost of reducing the
luminosity, as shown in Equation 3.7. Coulomb scattering during betatron and synchrotron
oscillations is called intra-beam interaction. Protons migrate within a bunch and can knock
other protons into new betatron orbits. At the LHC, intra-beam leads to a growth in hori-
zontal emittance of 0.3-0.5 µm/hour. Coherent instabilities occur when the beam interacts
with its environment, inducing electromagnetic fields, that reflect back to the beam. The
induced fields are mitigated by smoothing the beampipe as much as possible, to the extent
where interconnects are shielded by smooth covers. The impact of coherent instabilities on
the beam is mitigated by increasing chromaticity. Finally, electron clouds (e-clouds) are
the accumulation of electrons in beam pipe. The primary sources are ionizing the residual
gas in the beam pipe and excitation from synchrotron radiation knocking electrons off the
beam pipe. The issue is that the beam can collide with these free electrons and accelerate
them. The energetic electrons collide with the surrounding material and produce an electron
shower, leading to an exponential growth of the cloud. This is especially problematic if the
mean drift time for electrons is resonant with beam bunch spacing. E-clouds are a large
source of heat for the cryogenic equipment. They are combatted by improving the vacuum
and picking bunch structures that do not resonate with the clouds. As a further measure,
warm chambers (including in the detectors) are coated with TiZrV, a “getter” material that
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passively pumps vacuum and absorbs electron clouds.
The beam travels through vacuum chambers shown in black in Figure 3.5b. The vacuum

is held by a cryogenic beampipe that is in contact with the superconducting dipole cables.
The beam effects listed in the previous paragraph produce heat loss by the beam on the
order of 0.2 W/m. This heat would be transferred to the 1.9 K superconductors if not for
the insulation by the beam screen. The beam screen is a perforated copper coated layer held
at an intermediate temperature of 5-20 K. Two cooling tubes run inside the beampipe in
contact with the beam screen to maintain its temperature. The result is that heating of the
superconductors from synchrotron radiation and other effects is limited to 0.05 W/m [35].

C.5 Beam Abort

Figure 3.7: The trace of a 450 GeV proton beam across the beam dump
TDE. The beam structure of bunches and trains is visible along the bath of
the sweep. Figure from A Large Diameter Entrance Window for the LHC
Beam Dump Line [36].

When the beam has degraded to the point where it is no longer useful, it must be disposed
of safely. Over the course of several hours, the beam loses intensity to the point where it is
more efficient to dump the beam and replace it. Occasionally an error in one of the LHC
subsystems will be detected, and the beam is dumped as a precaution. In both cases, the
beam dump system is used to remove the beam from the machine while minimizing damage
to its components.
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There are three steps in disposing of the beam. The first is to extract the beam from
its orbit. The second is to dilute the beam’s density. Finally, the beam is absorbed in
a material, where its energy is converted to radiation and heat [37]. When an abort is
triggered, the procedure depends on the state of the beam. If the beam is in a safe state, the
abort system will wait until the abort gap arrives to ramp up the extraction kicker magnets
(MKD). If the beam needs to be dumped immediately, the MKDs can ramp up outside the
abort gap with minimal damage to the system. The 15 copper wound magnets are powered
by a bank of capacitors that can quickly energize the magnets in under 3.0 µs to produce
a field of 0.34 T. Once energized, the MKDs deflect the beam horizontally out of the ring.
The magnets remain on for 90 µs to allow the full beam to exit the ring.

Next, the diluter kicker magnets (MKB) sweep out the beam in an “e” pattern, as shown
in Figure 3.7. This spreads out the area where the beam will deposit its energy. The diluter
is built from four horizontal and six vertical magnets powered by a sinusoidal current to
produce the shape. Like the MKDs, the MKBs are non-superconducting low-oxygen copper
wound magnets.

The Extraction Septum Magnets (MSD) have a septum (gap) for the extracted beam. A
low-field hole is drilled through the yoke to allow the passage of the circulating beam. The
MSDs are responsible for deflecting the beam vertically.

Finally, the beam comes to the Beam Dump Absorber Block (TDE). This consists of
carbon cylinders due to its high melting temperature and thermal shock resistance. In
particular, alternating layers of solid polycrystalline graphite cylinders and flexible graphite
are used to balance solidity and flexibility. The total length of the carbon material is 7.7 m
long. The TDE is kept at atmospheric pressure. This raises the question: how is the
TDE isolated from the vacuum of the beamline? A low-Z carbon composite layer is used to
separate the two, while a thin layer of vacuum insulation prevents small leaks [36]. The TDE
jacket is cooled by water pipes to help reduce the thermal stress on the carbon. Finally, the
assembly is surrounded shielding made from old dipole yokes filled with concrete.

The MKD and MSD magnets used in the beam abort share a design with the magnets
used to steer the beam into the rings during injection. At the beam dump, the MKDs deflect
horizontally while the MSDs deflect vertically. At the injection points, it is reversed, and
the MKDs steer the beam horizontally while the MSDs steer it vertically.

C.6 LHC Operation

The operation of the LHC is divided into two periods: Run 1 and Run 2. During Run
1, the physics discovery was made that motivates the search for V (H → µµ) reported in
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Chapter 6. Crucial machine developments were also made in Run 1 that lead to energy
and luminosity increases during Run 2, enhancing the precision of the non-resonant search
reported in Chapter 7. During Run 2, the machine provided collisions based on the data
used for this thesis. The beam energy reached 6.5 TeV for all proton-proton collisions used
in this analysis. A detailed narrative of the drama and intrigue of both runs is provided in
Appendix D.
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Figure 3.8: The total luminosity of pp collisions delivered by the LHC in
Run 2, shown in green. The recorded luminosity by ATLAS is shown in yel-
low, and the portion of this recorded during good operation of the detector
is shown in blue [38].

Run 2 took place during the years from 2015 to 2018. Each year consists of a period
during which the LHC provides collisions to ATLAS and a period during which maintenance
and machine research are conducted. The operation during each year was influenced by the
problems of previous years and the solutions and improvements developed to enhance the
machine’s performance.

Several parameters related to the LHC performance are given in Table D.1. The instanta-
neous luminosity increased over time from 0.5 × 1034 cm−2s−1 past the original design target
of 1.0 × 1034 cm−2s−1 to 2.1 × 1034 cm−2s−1. The general stability of the machine improved
and the total number of delivered collisions per year increased. The number of commis-
sioning days at the start of each year dropped from 58 down to 17, as the LHC was better
understood and magnet configurations could be reused from year to year. These performance
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improvements were achieved despite a number of persistent challenges to the operation, in-
cluding magnet short circuits, growing e-clouds, and a mysterious object trapped inside the
beam screen.

Table 3.1: Summary of the beam conditions during Run 2 [1].

Parameter 2015 2016 2017 2018
Maximum bunches per beam 2244 2220 2556 2556
Emittance (µm) 3.5 2.2 2.2 1.9
β∗ (cm) 80 40 30-40 25-30
Total beam energy (MJ) 280 270 330 320
Average stable beam (hours) 6.8 11.2 8.2 8.3
Delivered integrated luminosity (fb−1) 4.2 38.5 50 66
Instantaneous luminosity (1034 cm−2s−1) 0.5 1.4 2.1 2.1
Average pile-up 13 25 38 37
Stable beam efficiency (%) 35 49 49 49

The performance of the LHC during Run 2 enabled the machine to deliver a total of
156 fb−1 of collision data. The total delivered integrated luminosity and that recorded by
ATLAS are shown in Figure D.3.

D ATLAS Detector

This thesis uses data collected by the ATLAS (A Large Toroidal Lhc ApparatuS) detector.
ATLAS is a multipurpose experiment designed built around an interaction point at the LHC.
Two overarching goals influenced the design of the experiment: to cover as much of the solid
angle surrounding the collisions and to precisely measure the particles exiting a collision.
An enormous amount of equipment is required to achieve these goals: the experiment has a
cylindrical geometry 46 m in length and 25 m in diameter.

The detector subsystems perform various tasks, ranging from measuring charge tracks
left by particles to measuring their energy and momentum. Some detectors specialize in
precisely recording the effects of particles (hits), while others focus on quickly identifying
patterns of interest for analysis (triggers).

Throughout the design of the various systems, a key concern is the amount, or budget, of
material that each introduces. Particles may lose energy, be absorbed, or produce secondary

13Joao Pequenao. Computer generated image of the whole ATLAS detector, 2008. https://cds.cern.
ch/record/1095924
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Figure 3.9: Computer generated image of ATLAS with a section of the
barrel removed for visibility. Illustration by Joao Pequenao13.

particles through interactions as they pass through these materials. With few exceptions, it
is advantageous to reduce the total material that particles pass through.

Four systems comprise the experiment and serve different purposes in the measurement
of particles leaving the collisions. The ATLAS magnet system immerses the detector in
a strong magnetic field that bends charged particles proportionally to their momentum.
Three cylindrical coaxial systems interact with both charged and neutral particles to collect
information. The first is the inner detector, which precisely measures the tracks of charged
particles. Next, the calorimeters measure the energies of particles. Finally, the muon system
helps to identify muons and measure their momentum. The organization of these systems is
illustrated in Figure 3.10.

Three coordinate systems are commonly used to describe different aspects of ATLAS
and its operation. A Cartesian coordinate system is defined with its origin at the center of
the detector. The longitudinal z axis runs parallel to the beamline in the counter-clockwise
direction when viewed from above. The y axis points towards the top of the detector, and
the x axis points towards the center of the LHC ring. A cylindrical coordinate system is also
defined as sharing the same z axis as the Cartesian system. The azimuthal angle φ is defined
with respect to the Cartesian x axis, and the radius ρ is defined from the z axis. Since the
detector is nearly symmetric under reversing the z axis, it is helpful to refer to the detector’s
side with positive z coordinates as the A side and the opposite side as the C side. The main
body of the experiment, the Barrel, is located between the A and C side end-caps. Both
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Figure 3.10: Layout of the ATLAS detector with subsystems coded by color.
Top: a view of the barrel looking along the beamline in the z direction.
Bottom: a view of the detector from the side looking in the x direction.
Red: muon system with CSC (light), MDT (medium), and trigger (dark)
chambers. Blue: calorimeter system with tile (light), LAr (medium), and
FCal (dark) calorimeters. Green: inner detector with pixel (light), strip
(medium), and TRT (dark) detectors. Grey: magnet system with ECT
(light), BT (medium), and CS (black) magnets.
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of these systems are used in describing the positions of detectors and components within
ATLAS. In particular, the cylindrical system is used to describe the locations of collisions
and impact parameter displacements from the beam.

Spherical coordinates are more natural than Cartesian and cylindrical when describing
the physical interactions. This system shares an origin with the previous two systems and
shares the azimuthal angle with the cylindrical system. The radius r is defined from the
center of the detector. The polar angle θ is defined with respect to the z axis. It is common
to map polar angles onto pseudorapidity defined as η ≡ − ln

(
tan θ

2

)
. The pseudorapidity is

conveniently calculated from the longitudinal component pL of a particle’s total momentum
p as η = arctan pL

|p| .
While detectors in ATLAS measure the location of, and energy deposited by, particles,

it is the arrangement of detectors that allows the experiment to identify the particle type.
Electrons, photons, muons, and other particles interact differently with various layers of the
detector. Certain idiosyncratic patterns are compatible with different particle types. For ex-
ample, charged particles leave tracks of energy deposited in the inner detector, while neutral
particles pass directly through. Electrons are stopped with a shower of electromagnetic radi-
ation in first calorimeter, while muons penetrate out to the muon spectrometer. Examples of
these patterns are shown in Figure 3.11. The various patterns left by different particles are
evident. A charged hadron bends in the magnetic field, leaving a curved track in the inner
detector, before depositing its energy in the outer hadronic calorimeter. A neutral hadron
leaves no track before producing a hadronic shower. Electrons are similarly differentiated
from photons by their track in the inner detector as well as the shape of their electromagnetic
showers in the inner calorimeter. The direction that particles bend helps determine their
electric charge, while the radius of their curved track helps determine their momentum.

This section will describe the experiment’s design, beginning with the four systems that
make up the ATLAS. Following this, the systems for identifying interesting collisions and
recording them will be presented.

D.1 Inner Detector

The ATLAS Inner Detector (ID) is the innermost detector system. Its purpose is to
precisely measure the locations of energy deposits left by particles leaving a collision. To
this end, it is comprised of three subsystems: the pixel detector, the silicon-strip tracker,
and the transition radiation tracker. These are shown in Figure 3.12. These are positioned
in coaxial cylindrical arrangements around the region of the beam pipe where collisions take

14Joao Pequenao. Computer generated image of the ATLAS inner detector, 2008. https://cds.cern.
ch/record/1095926
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Figure 3.11: A cross section of ATLAS looking along the beamline. The
detectors are color coded: green for the inner detector, blue for the calorime-
ter, and red for the muon spectrometer. Several particle paths are shown in
blue. Dashed lines represent a particle passing through the detectors with-
out interacting. Yellow areas indicate electromagnetic or hadronic showers
in the calorimeters and other interactions with the detector. Outside the
inner solenoid, the muon is bent parallel to the beamline by a toroidal mag-
netic field.

place. The cylinders arrange detectors in a barrel covering |η| < 1 and bookended by two
mirrored end-caps. The total length of the ID is 7 m and the diameter is 2.3 m, which enables
the full coverage of |η| < 2.5. The data from the ID subsystems (hits) are used to identify
tracks left by particles as they transverse the detector. In this regard, it helps measure
the impact parameter of particles with a precision that enables the identification of decay
products of bottom quarks and tau leptons that travel short distances before decaying [39].

Both the pixel detector and the silicon-strip tracker belong to the category of solid-
state silicon detectors in that they detect ionizing particles through their interaction with
a semiconductor. These use a semiconductor layer doped with an element with an electron
affinity (p-type) and a semiconductor layer doped with an electron donor element (n-type).
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Figure 3.12: Computer generated image of the inner detector with a section
removed for visibility. Illustration by Joao Pequenao14.

At the interface between these two layers, electrons equilibrate from the n-type material to
the p-type material, producing a depletion region and an electric field. A positive voltage bias
is applied to the n-type side of the juncture to expand the depletion region and strengthen
the field. When a charged particle passes through the depletion region, it ionizes atoms and
liberates electron-hole pairs. Under the influence of the electric field, these drift to either
end of the depletion region and produce a measurable current. Drift does not occur outside
the depletion region in the absence of an electric field [40].

The first subsystem that particles pass through is the pixel detector. Here, the silicon is
subdivided into a grid of many isolated pixels that may be read out individually. Each pixel
is 256 µm thick with a typical surface area of ∼ 50×400µm2. In the barrel, these are grouped
into arrays of 24×160 pixels for readout. Sixteen arrays are located on a “module”, which
serves as the repeating basis of the various pixel layers. Four layers of detectors are arranged
in the barrel, with the inner most layer located inside the beampipe, with radii of 2.9 cm,
5.1 cm, 8.9 cm, and 12.3 cm. In each end-caps, four disks are arranged between z=11 cm
and z=20 cm [39, 41]. The next subsystem that particles interact with is the silicon-strip
tracker (SCT). The SCT barrel consists of four cylindrical layers, while the end-caps each
consist of nine disk layers. Each barrel layer is built from modules that host two layers of
silicon wafers divided into lines of microstrips that are 126 mm long. The strips are oriented
differently in the barrel depending on their layer, with some running parallel to the beam
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axes and others offset at an angle of 40 mrad [42].
Finally, particles interact with the transition radiation tracker (TRT) positioned outside

the SCT. This is a system of 4 mm diameter gaseous proportional-mode drift tubes. The
tubes, or “straws”, are made from wound Kapton with a gold-plated 31 µm wire in the
center. The straws are filled with a drift gas mixture of xenon (70%), carbon dioxide (27%),
and oxygen (3$). During operation, the Kapton is kept at a -1.5 kV. When a charged particle
passes through a straw, it ionizes the gas and the resulting free electrons drift towards the
grounded wire. The induced current is amplified and read out by front end electronics. The
space between the straws is filled with polymer and foil materials so that charged relativistic
particles produce transition radiation when they pass through material interfaces. This is
strongest for electrons (∝ E/m) and is useful for their identification against pions. The
TRT complements the silicon detectors by providing a large number of tracking points while
adding very little to the material budget. As a result, the 73 layers of tubes are used in the
barrel, while 160 layers make up the end-caps. A charged particle passing through the barrel
will produce hits in ∼ 30 TRT straws. Additionally, the fast readout rate of 80-100 kHz
compensates for the relatively slow readout possible with the silicon detectors [43].

In total, 1.5×108 data channels are read out from the ID, with the majority of these
coming from the pixel detector. The ID is used to measure tracks left by muons and electrons,
to identify displaced vertices from b-jet decays, and measure to overall momentum expelled
from collisions.

D.2 Calorimeters

The ATLAS Calorimeter System is comprised of two subsystems: the Liquid Argon
Calorimeter (LAr), the Tile Calorimeter. The LAr is designed to measure energy deposited
through electromagnetic interactions. The Forward Calorimeter is part of the LAr and is
positioned in the large-η region and provides additional calorimeter coverage. Wrapped
around the exterior of LAr, the Tile Calorimeter is designed to measure the energies of
hadronic jets. Together, these make up the calorimetry system shown in Figure 3.14. This
is particularly useful in determining the energies of photons and electrons, and to a lesser
extent, muons.

The calorimeters in ATLAS are divided into electromagnetic and hadronic types. The
electromagnetic calorimeters measure the energy lost by electrons through bremsstrahlung
radiation and the energy lost by photons through electron-positron pair production. Both
processes occur at a rate related to the thickness of material they travel through in terms of

15Joao Pequenao. Computer Generated image of the ATLAS calorimeter, 2008. https://cds.cern.ch/
record/1095927
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Figure 3.13: Computer generated image of the calorimeters with a section
of the removed for visibility. Illustration by Joao Pequenao15.

radiation length X0. 16 Electrons with energy E loose their energy while traveling through
a material per length x at a rate:

−dE

dx
= E

X0
. (3.8)

Photons undergo pair production with a probability based on their frequency:

−dw

dx
= 1
λpair

e−x/λpair ; λpair = 9
7X0. (3.9)

Both processes produce secondary electrons and photons that in turn produce their own
showers of lower energy particles. If the radiation length of the material is enough, most of
the initial particle’s energy will be deposited in the material. This energy can be converted
into scintillation light or into the ionization of an active material, both of which may be used
for detection [40].

Hadronic calorimeters work along with similar principles to electromagnetic calorimeters,
except the primary interactions are nuclear instead of electromagnetic. They measure the
energy of hadrons, which is particularly useful at ATLAS to measure the energy of colum-
nated jets of hadrons produced by collisions. The radiation length is replaced with the
average nuclear interaction length λI ≈ 35g/cm2A1/3, where A is the atomic mass number.
The instead of pair production and bremsstrahlung, hadrons traveling through a calorimeter

16X0 ≡ A

4αNAZ2r2
e ln
(

183Z−1/3
) , where Z and A are the atomic number and weight, re ≡ 1

4πε0
e2

mec2 is the

classical electron radius, NA is Avogadro’s number, and α is the familiar fine structure constant.
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lose their energy through momentum exchanged through nuclear interactions. This results
in a cascade of light hadrons and, to the detriment of all of physics, neutrinos produced from
the initial incoming hadron. These can be distinguished from an electromagnetic shower by
their broad width that begins deeper within the calorimeter. The charged products of the
cascade can produce detectable scintillation light that may be used for detection [40].

For homogeneous calorimeters such as those in ATLAS, the energy measured in the
shower can be used to estimate the energy of the original particle. This is limited by sev-
eral uncertainties: the point of the first interaction, leakage of the shower out through the
calorimeter. The measurement of energy by the calorimeters is specified by a resolution of
the form in Equation 3.10.

∆E
E

= σa√
E

⊕ σb

E
⊕ σc. (3.10)

Here, the term σa is a stochastic uncertainty in photoelectric statistics. The term σb has a
value of ≈ 0 at ATLAS. The term of constant relative uncertainty, σc, is due to uncertainty
in the calibration. For high-energy events, the constant term dominates.

Liquid Argon Calorimeter

The Liquid Argon Calorimeter is situated outside of the inner detector. It is divided into
subsystems for the barrel region and end-cap regions. The barrel consists of two symmetric
half-cylinder electromagnetic calorimeters. In the end-cap regions, the LAr electromagnetic
end-cap (EMEC) is followed by the LAr hadronic end-cap (HEC) and then the Forward
Calorimeter (FCal). The electromagnetic calorimeters cover |η| < 3.2. The combined cover-
age with the HEC and FCal covers |η| < 4.8

The primary purpose of the barrel and EMEC calorimeters is to measure the energy of
photons and electrons. Both systems share a similar construction. Accordion shaped elec-
trodes made of copper etchings on polyimide substrates are held at a voltage of 2 kV. Between
the electrodes, grounded steel-clad lead absorbers interact with primary incident particles
and produce showers of electrons and photons. Both the electrodes and the absorbers are
submerged in cryogenic liquid argon that acts as the active material. The primary and sec-
ondary particles ionize the argon, which produces showers of electrons that drift towards the
electrodes. The electrodes are organized into narrow strip towers, square sampling towers,
and wide trigger towers. Signals are read out from individual towers. These are illustrated
in Figure 3.14b. A particle passes through a series of towers in the calorimeter. The first are
the strip towers, which form a presampler that helps correct for the amount of energy lost
before reaching the calorimeter. After the presampler, a particle enters the sampling towers.
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Figure 3.14: (a) A module in the TileCal consisting of staggered scintillator
(blue) and steel (grey) layers read out on both sides by fiber optics connected
to photomultipliers. Source tubes in the TileCal allow radioactive sources
to be inserted for calibration. (b) A section from the LAr, consisting of
towers (red) composed of accordion shaped electrodes submerged in liquid
argon.

With a radiation length of approximately X0 = 20, these are longer than the presampler and
consequently absorb the majority of the energy from electron or photon showers. Finally, the
shower reaches the trigger towers on the outer layer of the LAr. The total radiation length
in the barrel is over X0 = 22. The design of the barrel and EMEC calorimeters provides a
relative energy resolution σa = 10% and σc = 0.7% [44].

The HEC wheels consist of alternate copper absorbers and electrodes. The electrodes
have the same design as those from the electromagnetic calorimeters but are flat instead of
accordion-shaped. The radiation length of the HEC is X0 = 10. This design provides a
resolution with σa = 50% and σc = 3%. The FCal is located within the HEC at a higher η.
It has a very different geometry, consisting of a copper layer followed by two tungsten layers.
These are perforated by circular holes, in which slightly smaller rods are inserted. The gap
between the layer and the rod serves as the drift volume. The FCal design measures energies
to a resolution with σa = 100% and σc = 10% [44].
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Tile Calorimeter

The ATLAS Tile Calorimeter (TileCal) is built surrounding the LAr calorimeters and
designed to measure the energies of hadronic jets. Its relative position is illustrated in Figure
3.14. It makes use of sheets of steel as the absorbing material and scintillating plates as the
active material. The TileCal consists of three barrel segments and, unlike the previously
discussed detectors, no end-cap components. The central barrel is 5.6 m long, while the two
outer “extended” barrels are 2.9 m long. The barrels have an inner radius of 2.3 m and
an outer radius of 4.2 m. The central barrel covers a pseudorapidity of |η| < 1 and the
extended barrels provide coverage up to |η| < 1.7. The energy resolution of the Tile design
is σa = 50% and σc = 7% [45].

As a hadronic calorimeter, the operating principle of the TileCal is similar to the LAr
calorimeters. Each module of the TileCal consists of stacks of absorber and scintillator
tiles, as shown in Figure 3.14a. These are staggered in radial layers and perpendicular to
the beamline. Incident hadrons interact with the absorbers and produce hadronic cascades.
These, in turn, scintillate as they pass through the 3 mm plastic scintillator tiles. Two fiber
optic cables collect scintillation light from each tile, transform its wavelength, and carry it
to a bank of photomultiplier tubes, where it is digitized. The effective hadronic depth of the
TileCal is ∼ 7λI [46].

D.3 Muon System

Monitored drift tubes

Thin gap chambers Resistive plate chambers

Cathode strip
chambers

Monitored drift tubes

Figure 3.15: ATLAS muon system, with chambers of various types labeled.

The outermost detector system, the ATLAS Muon Spectrometer (MS), is the largest
muon spectrometer ever constructed. The MS can identify muons and measure their trans-
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verse momentum, especially for those with pT > 300 GeV. In this task, it shares a similar
geometry to the ID. The spectrometer is comprised of a barrel region with cylindrical layers
of detectors at radii of 5, 7.5, and 10 m. The symmetrical end-cap regions consist of four lay-
ers located at z of 7, 10, 14, 21-23 m. All layers have 16-fold symmetry in azimuth. The MS
uses four subsystems in different regions of pseudorapidity and for different tasks. To provide
fast hits to the trigger system in order to identify events containing muons, the Resistive
Plate Chambers operate in the barrel (|η| < 1.05), and the Thin Gap Chambers operate in
the end-cap wheel (1.05 < |η| < 2.7). Precision tracking data for muons is provided by the
Monitored Drift Rubes in the barrel (|η| < 2.7) along with the Cathode Strip Chambers in
the region from 2.0 < |η| < 2.7. The various systems are shown in Figure 3.15 [47].

The function of the MS is to measure transverse momentum using a track of hits left by
a muon as it bends in a strong magnetic field. The hits directly determine the sagitta s of
the track, which is related to the angle of magnetic deflection θ and the radial coordinate by
s = ρ(1 − cos θ/2). In a perpendicular magnetic field and for small θ,

s = eBL2

8p , (3.11)

where B and L are the strength and length of the magnetic field. This is limited by the mea-
surement precision of the track, as well as the relatively constant uncertainty from multiple-
scattering. This results in a relative resolution that grows linearly at high momentum. The
total momentum of the muon can then be measured using the polar angle (with attendant
uncertainty), p = pT/ sin θ [40]. The MS is required to measure muon momentum with a
resolution,

∆pT

pT
< 1 × 10−4 × p/GeV. (3.12)

This requires hit locations to be measured with an accuracy of 50 µm. Hits are registered
using cylindrical coordinates in the r − z plane. The z coordinate is measured in the barrel
region, where the toroidal magnetic field bends muons in the longitudinal direction. Mean-
while, r coordinate is measured in the end-caps, where the magnetic field pushes muons in
the radial direction [47].

MDT

The Monitored Drift Tubes (MDT) are the single wire chambers that provide precision
muon measurements in the majority of the MS. An MDT consists of a 30 mm aluminum
tube cathode with a central 50µm gold-plated tungsten-rhenium wire anode. The tube is
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Figure 3.16: (a) Cross section of a MDT with a muon track illustrated.
Ionizing radiation leaves a track of electrons in the drift gas, which drift
towards the positive anode wire and induce a signal. (b) Arrangement of
MDTs into multi layers, which are then attached to a support structure to
build a chamber.

filled with a mixture of argon (91%), nitrogen (4%), and methane (5%) pressurized to 3 bar.
Charged particles passing through the tube ionize the gas, freeing a track electrons to drift
towards the 3.08 kV wire over the course of ≈ 750 ns. The spatial resolution of a single MDT
is 80 µm. This is shown in Figure 3.16b. The radial displacement of the track is determined
from the total drift time. Layers of MDTs are laminated together with glue and affixed to
a support frame that holds them precisely in positions. This is shown in Figure 3.16. The
central cross plate is adjustable to bend the outer aluminum tubes to match the gravitational
sag of the anode wires. The deformation of the chamber is monitored by built-in optical
systems.

As shown in Figure 3.15, the MDT chambers are used throughout ATLAS except in the
very high pseudorapidity region where particle flux exceeds their measurement rate. In the
barrel (|η| < 1), chambers are rectangular and arranged into three layers beginning outside
the calorimeters. In the end-cap (|η| > 1), chambers are trapezoidal and positioned radially
on either an inner or outer wheel. The MDT system is comprised of 1194 precision chambers,
with a total of 370,000 output channels [47].
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Figure 3.17: Cross section of a CSC, showing multiple anode wires and
cathode strips.

The Cathode Strip Chambers (CSC) are multiwire proportional chambers that provide
precision muon measurements in the region close to the interaction point and the beamline
(2 < |η| < 2.7). The CSCs are designed to have short drift times (< 30 ns) to avoid
saturation from the high particle flux in this region. Like the MDTs, the spacial resolution
of CSCs is 80 µm. They consist of anode wires strung perpendicularly to cathode strips,
as shown in Figure 3.17. The wires in the CSCs are 30 µm versions of those used in the
MDTs, and the cathode strips are copper adhered to glass-reinforced epoxy. Four of these
constructions are stacked on top of each other, separated by a closed-cell foam, to complete
a CSC chamber. The intermediate area is filled with a mixture of carbon dioxide (50%),
argon (30%), and carbon tetrafluoride (20%).

When an ionizing particle passes through the CSC, it produces an electron avalanche
onto adjacent anode wires. This induces a charge on the cathode strips, which in turn
is amplified and read out. Long cathode strips provide coarse information, while short
segmented cathodes provide precision hit data. The CSC system is comprised of 32 precision
chambers, with a total of 67,000 output channels [47].

Trigger Chambers

The MDT and CSC chambers are supported by additional chamber types that provide
rapid data for the trigger decision. These are the Resistive Plate Chambers (RPC) in the
barrel, and the Thin Gap Chambers (TGC) in the end-caps. These are positioned in close
proximity to a corresponding precision chamber. The RPCs consist of two resistive plates
coated in thin layers of graphite, held at 8.9 kV. A 2 mm gap between the plates is filled
with gas (tetrafluoroethane with 3% isobutane). An ionizing particle passing through the
gap instigates an electron avalanche, which is read out by conductive strips on both sides of
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the gap. The strips are orthogonal to each other. Two RPC layers are combined in a station,
separated by a 6 mm support. The RPC system is comprised of 596 trigger chambers, with
a total of 355,000 output channels. The TGCs are multiwire proportional chambers with a
small 2.8 mm gap. The 50 µm anode wires are held at 3.1 kV, and the chamber is filled with
carbon dioxide (55%) and n-pentane (45%). The TGC system is comprised of 192 trigger
chambers, with a total of 440,000 output channels [47].

D.4 Magnet System

(a) (b) (c)

Figure 3.18: Illustration of the geometry of the magnet system field coils
showing (a) the endcap, (b) perspective, and (c) the side view. The Central
Solenoid (green) is inside the eight windings of the Barrel Toroid (red).
End-Cap Toroids (blue) appear on either side.

The ATLAS Magnet System is composed of three superconducting magnet systems: the
Central Solenoid, the Barrel Toroid, and the two End-Cap Toroids. The arrangement of
these magnets is shown in Figure 3.18. The purpose of these magnets is to produce a
strong magnetic field to enable the measurement of momenta of charged particles. Each coil
that makes up the magnets is effected not only by gravity but also by magnetic forces. To
support them, each coil is enclosed in a mechanical structure that also houses cooling circuits
and cryostats to maintain its operating temperature of ∼ 4.5 K. The coils are wound with
superconducting niobium-titanium in a copper-aluminum matrix. When the four magnets
are fully energized, the magnet fields store an energy of 1.3 GJ. 17

The large Barrel Toroid (BT) magnet is one of the most visible features of the experiment.
The magnet is the largest in ATLAS and spans 26 m along the beamline with a diameter of
20 m. It consists of eight air-cooled coils surrounding parts of the muon spectrometer. The

17This is equivalent to the energy released by an explosion of 300 kg of TNT
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coils each contain 120 turns, and the coils are wired in series. At its strongest, the field of
the BT reaches 3.9 T. Finally, two air-cooled End-Cap Toroids (ECT) provide a magnetic
field for the MS wheels. These have a length of 5 m and an outer diameter of 10.7 m. An
inner diameter of 1.65 m is left empty to allow passage of the beam. Like the BT, both ECTs
consist of eight coils, but with 116 turns. All 16 ETC coils are wired together in series. The
fields of the ETC reach a peak of 4.1 T. Both toroids are operated with a current of 20 kA.
Tubes carrying 4.5 K helium are welded onto the casings of the windings to keep them at
superconducting temperatures.

The innermost magnet is the cylindrical Central Solenoid (CS), which is 5.3 m long and
2.4 m in diameter. The CS produces a magnetic field of 2.0-2.6 T in the region of the inner
detector. The coil consists of a single layer coil wound 1173 times around a cylinder. To
reduce the amount of material that particles can interact within the inner detector, the CS
shares a vacuum vessel and cryostat with the Liquid Argon Calorimeter [48].

D.5 Trigger System
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Figure 3.19: Flow of data through the trigger system. Trigger decisions are
indicated in yellow.

The nominal 24.96 ns bunch spacing for LHC beams results in 40 million bunch crossings
per second. A beam with a luminosity of 1.5 × 1034cm−2s−1 produces approximately 30
collisions per bunch crossing. This results in approximately 1.2 billion collisions per second.
Data is read from approximately one hundred million electronic output channels across
approximately three million meters of cables during operation. The data recorded from a
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typical event is 1.5 MB, resulting in 156 EB worth of data generated by ATLAS per day. 18

The Trigger System is responsible for rapidly sorting through this data and selecting events to
record and events to discard. It takes hit information from the ID, MS, and calorimeters and
searches for signatures of interesting collisions. The trigger decision is made by computers
in the nearby underground service area (USA15), so data must first be transmitted to these.
A schematic of the trigger system is shown in Figure 3.19.

The first rejection of events reduces the event rate from ≈ 1.2 GHz to ≈ 100 kHz is
performed by the Level-1 (L1) Trigger. This selects searches for the signatures of interesting
particles (high-pT muons, electrons, jets, and others) in a subset of the detectors. When
an event passes the L1 trigger, it sends an “accept” signal is sent back to the detector.
Meanwhile, various front-end electronics have stored precision hit data. When they receive an
L1 accept, they transmit this data off the detector to USA15. Since the front-end electronics
must store hit information while waiting for a possible L1 Trigger decision, the target time
frame for this is 2 µs [49].

The data is sent from the detector into readout buffers (ROB) for temporary storage
while the Level-2 (L2) Trigger evaluates the event with a broader set of criteria. The L2
trigger reduces the event rate down to ≈ 1.2 kHz. It works by searching regions-of-interest
(ROI) constructed by the preliminary L1 trigger information. Based on the η−φ location of
the ROI, the trigger logic accessed the precision data stored in the ROBs. This process takes
longer than the L1 decision, on the order of 10 ms. With the precision data available, the L2
trigger can make strict requirements on the kinematics of various objects. For example, this
analysis uses muon and electron triggers that require leptons passing certain thresholds of
pT or ET, respectively. Events passing the L2 trigger are passed along for full reconstruction
and storage [50].

18For comparison, this volume of collected and processed data is a sizable fraction of humanity’s existing
storage and roughly 30,000 times the total data collected by the Event Horizon Telescope project.
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Chapter 4

Phenomenology of Proton Collisions

A Physics at Hadron Colliders

The LHC collides protons with the highest center-of-mass-energy,
√
s, ever achieved by

particle colliders. During a collision, the constituents of the proton may interact directly
and exchange a substantial fraction of their proton’s momentum, in a process called hard-
scattering. The hard-scattering interaction may be quark-quark, quark-gluon, or gluon-gluon
scattering events. These scattering amplitudes may be predicted theoretically and compared
to experimental measurements. This is a messy process and is complicated by the composite
nature of the protons. This section describes how colliding protons may produce events that
are of interest to the physics analyses in this thesis.

A.1 Parton distribution function

The protons that make up the colliding beams at the LHC are bound states of quarks
and gluons, collectively called partons. These consist of three valance quarks (uud), and a
sea of virtual quark/anti-quark pairs. When two protons collide with sufficient energy 1, two
types of qualitative processes take place. First is hard-scattering, an interaction mediated by
a large momentum exchange between typically two partons. Second is soft-scattering, where
the remaining partons interact through the low energy mediators. While both processes
are interesting, hard-scattering interactions are of particular interest in this thesis, as these
provide access to particularly high energy interactions.

When two partons interact each carries a fraction of their respective proton’s total energy,
√
s/2. The longitudinal component of the momentum fraction, x. When a high energy

probe particle collides with a proton, the probe will hard-scatter off of one of the proton’s
1On the scale of ΛQCD ≈ 218 MeV.
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Figure 4.1: Parton distribution functions xfi(x,Q) calculated using
NNPDF3.0 with energy scale Q2 = 10 GeV2 (left) and Q2 = 104 GeV2

(right). This figure is from [51].

constituents, be it a quark or gluon. In pp collisions, the probe is a parton selected randomly
from a proton in the opposing beam. The probability of the probe to scatter off a particular
parton i depends both on its momentum fraction x and on the momentum exchange Q2.
This differential probability function, fi(x,Q2), is called the parton distribution function
(PDF). Hence, fu(x,Q2) gives probability the that the probe will interact with an up quark,
while fs(x,Q2) gives the corresponding probability for an interaction with an anti-strange
quark.

The proton dynamics that determine PDFs occur at low Q2, where calculations are com-
plicated by the large QCD coupling from Equation 2.8. Instead of analytic calculations,
PDFs functions are fit to experimental measurements. The resulting PDF shapes as a func-
tion of x is shown in Figure 4.1 for each parton. The valence quarks (u and d) are seen to
have probability peaks between x = 0.1 and x = 0.2, indicating a relatively high frequency
that these carry a large portion of the proton’s momentum. In contrast, the sea quarks (u,
d, s/s, and c/c) typically carry a much smaller momentum fraction. The u and d quarks
contribute to the sea as well, and Figure 4.1 separates the valance component from the sea
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component for these. The PDFs of the sea u and d quarks and anti-quarks are identical since
these are produced in virtual pairs. The PDFs for gluons are shown scaled down by a factor
of 10, as nearly half the proton’s momentum is carried by gluons [52].

The differential cross sections of an 2 → X interaction (given in appendix Equation A.39)
depend on the initial state particles. When two protons collide, the initial state particles of
a hard-scattering process are selected randomly from each proton according to the parton
distribution functions. Consequently, the total cross-section of a pp collision corresponds to a
sum over partons i, j in each proton, respectively, and an integral over momentum fractions.
The pp version of the differential cross section is given in Equation 4.1.

dσ(pp → X) =
∑

i

∑
j

∫ 1

0
dxi

∫ 1

0
dxj dσ(ij → X)fi(xi)fj(xj) (4.1)

This sum tallies the cross sections dσ(ij → X) for each possible configuration of initial
states, weighted by the likelihood of the initial state ij.

A.2 Parton Luminosity

Figure 4.2: Comparison of gg luminosity for different
√
s, plotted as a ratio

to the luminosity at
√
s =14 TeV. Figure from [53].

The luminosity defined in Equation 3.6 is defined in terms of the pp cross section σpp.
A more specific parton luminosity Lij may be defined for particular species of parton i and
j with center-of-mass energy

√
ŝ <

√
s. The “hatted” variables correspond to values in the
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partonic center-of-mass frame.

τ

ŝ

dLij

dτ
≡ τ

ŝ(1 + δij)

∫ 1

τ

dx

x
fi(x)fj(τ/x) + fj(x)fi(τ/x)] (4.2)

This definition supposes the beam consists of partons rather than protons, and each parton
combination has an associated luminosity that is a function of the fraction τ = ŝ/s. This
luminosity depends on the beam energy via the presence of the PDFs and x. The total cross
section for pp → X is defined by with a sum over parton species,

σpp→X(s) =
∑

i

∑
j

dτ

τ
· τ
ŝ

dLij

dτ
· [ŝσij→X(ŝ)]. (4.3)

As indicated by the shapes of PDF curves, the parton luminosity for a beam of energy
√
s

drops off as a function of
√
ŝ. [53]

Consequently, although the LHC collides beams with
√
s =13 TeV, the practical lumi-

nosity of collisions with
√
ŝ =13 TeV essentially vanishes. This limits the energy available in

hard scattering to a fraction of
√
s. For example, the invariant-mass of the most energetic

two-jet event recorded by ATLAS in Run 2 is just mjj = 8 TeV. A second consequence of
Equation 4.2 arises from its dependence on the proton-proton collision center-of-mass energy
√
s via τ . Increasing the

√
s greatly expands the parton luminosity at large

√
ŝ. Both of

these effects are illustrated in Figure 4.2, which plots the ratio of gg parton luminosities at
the different center-of-mass energies to the LHC design value.

B Dilepton Production

Both the H → µµ and non-resonant analyses measure the dilepton invariant-mass spectra
to search for a signal. As such, the backgrounds for these analyses share a similar composition
predicted by the SM. The dominant hard-scattering processes that produce events with
dilepton pairs in the high invariant-mass region at the LHC are described in this section.

q

q

`−

`+

γ∗/Z

Figure 4.3: Feynman diagram for the leading order Drell-Yan process.
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The most significant lepton pair production mechanism in hadronic collisions was pro-
posed in 1970 by Sidney Drell and Tung-Mow Yan. The process is described as the annihila-
tion of quark-antiquark pairs from opposing protons to produce a massive intermediate state
that carries the momentum exchange of the collision [54]. For collision energies below the Z
mass, this intermediate state is an off-shell photon. Above the Z mass, both photons and Z
bosons mediate Drell-Yan production, as illustrated in Figure 4.3. The predicted differential
cross-section falls sharply as the produced dilepton pair’s invariant mass grows. Although
this prediction is inaccurate near the Z mass where resonant production dominates, in the
kinematic regions of interest for this thesis, it describes the background to the first order.

q

q

Z

Z

(a)

W

q

Zq′

W

(b)

Z

q

W−q

W+

(c)

Figure 4.4: Representative Feynman diagrams for leading order diboson
production for ZZ (a) WZ (b) and WW (c).

The next leading source of dilepton events come from diboson production. These are
described by diagrams, including those in Figure 4.4, with two vector bosons W± or Z in
their final state. The leading order production of these events is through the qq initial state.

g

tg

t

(a)

t

t

g

g

(b)

q

tq

t

(c)

Figure 4.5: Representative Feynman diagrams for leading order tt produc-
tion.

Figure 4.5 shows diagrams for the production of pairs of top quarks: tt. The leading order
diagrams produce top quarks through interactions with gluons. Figure 4.6 shows diagrams for
single-top production. This primarily takes place through production with a lighter quark.
At the LHC, the t-channel production shown in Figure 4.6 (b) is most prevalent, since the
s-channel diagram requires a bottom quark initial state [55]. Additional production exists in

62



q q′

b t

(a)

W

q

tq′

b

(b)

g

tb

W

(c)

b W

g t

(d)

Figure 4.6: Representative Feynman diagrams for leading order single-top
production. Subfigures (a) and (b) show s-channel and t-channel diagrams
respectively. Subfigures (c) and (d) show the leading order bg → Wt dia-
grams.

conjunction with a W± boson, which also requires an initial state bottom quark [56]. After
being produced, the top quarks rapidly decay to a W± and lighter quark (bottom, strange, or
down) final state. Most (96 ± 3%) top quarks decay to a final state with a bottom quark [2].
The result is, in some cases, a final state with multiple leptons.

[55,56]

C Higgs Production Mechanisms
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Figure 4.7: The cross sections of various Higgs production mechanisms
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The total production cross-section for Higgs bosons at in
√
s = 13 TeV proton-proton

collisions at the LHC is 55.7 pb [57]. 2 Higgs bosons are produced through several distinct
mechanisms at the LHC. These are distinguished by both their initial states and the topology
of their final states. The leading production process, responsible for 89% of all Higgs, is
through gluon-gluon fusion (ggF). Although there is no direct coupling between gluons and
the Higgs, the interaction is mediated by a quark loop. The large coupling of the Higgs
to the top quark means this loop is primarily composed of top quarks. The next leading
production mechanism is vector boson fusion (VBF), with roughly 9% of the cross-section as
ggF. In this process, the Higgs is produced through a “collision” of either W± or Z bosons
that are radiated from the initial state quarks. The final state includes the Higgs, along with
two quarks that rapidly hadronize to form jets. The presence of two jets in the final state
help distinguish VBF events from background processes and ameliorates the challenge of its
low cross-section. The weakest production mechanisms are ttH and bbH, where the Higgs is
produced in conjunction with a top or bottom quark pair.

The production mechanisms with the third-largest cross-section are collectively called
“Higgs produced in association with a vector boson”, or VH. These are the primary focus for
the H → µµ search presented in this thesis. There are several “sub-mechanisms” that con-
tribute to VH. Of these, the one with the largest cross-section is the s-channel production
with initial state quarks whimsically called Higgs-strahlung in analogy to Bremsstrahlung
radiation. When the mediator boson is a W±, then Higgs-strahlung is responsible for the
leading order WH production mechanism. As a result of the corresponding parton lumi-
nosities, the cross-section of WH depends on the charge of the mediating W boson: the
production positively charged W+ benefits from the enhanced PDF of valance u-quarks seen
in Figure 4.2. The cross section for WH production is given in Equation 4.4.

σ(qiqj → WH) = πα2|Vij|2

36 sin4 θW

2k√
s

k2 + 3m2
W

(s−m2
W )2 (4.4)

Here Vij are the CKM matrix elements, k is the center-of-mass momentum of the Higgs, and
θW is the Weinberg angle defined in Section B.

When the mediator boson is a Z, then Higgs-strahlung is the leading production mecha-
nism for ZH as well. The cross section for ZH production in pp collisions is given in Equation

2This cross-section is calculated to N3LO precision, which calculates contributions from processes repre-
sented by Feynman diagrams that include up to three loops.
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4.5.

σ(ff → ZH) =
πα2`2

fr
2
f

48Nc sin4 θW cos4 θW

2k√
s

k2 + 3m2
Z

(s−m2
Z)2 (4.5)

Here, r ≡ −2QxW , ` ≡ 2(T3 − QxW , T3 is the third component of weak isospin for the
left-handed f , Q2 is its electric charge, and xW ≡ sin2 θW . While Equation 4.5 describes the
qq → ZH cross-section, it is also applicable to `+`− collisions that might take place in future
lepton colliders. This makes this process of particular interest for precision measurements of
Higgs properties in, for example, future e+e− colliders.

Unlike with WH production, the sub-leading mechanisms are not negligible for ZH pro-
duction. These consist of interactions with two initial state gluons where the Higgs is pro-
duced via a heavy quark loop. There are two diagrams to consider: a “box” diagram and
a “triangle” diagram. Together, these represent ≈ 10% of the total ZH production cross-
section.

Table 4.1: Vector boson leptonic decays include τ . Higgs mass at 125
GeV [57].

Production Cross section [pb] Uncertainty (theory) [%] Uncertainty (PDF/αs) [%]

Gluon-gluon fusion (ggF) 48.6 +4.6, -6.7 ±3.9
Vector boson fusion (VBF) 3.78 +0.5, -0.3 ±2.1
Associated W (WH) 1.37 +0.4, -0.7 ±1.8
↪→ W + → `+ν ↪→ 0.0943 ↪→ +0.5, -0.7 ↪→ ±1.8
↪→ W − → `−ν ↪→ 0.0583 ↪→ +0.4, -0.7 ↪→ ±2.0
Associated Z (ZH) 0.839 +3.8, -3.1 ±1.6
↪→ Z → `+`− ↪→ 0.0298 ↪→ +3.8, -3.1 ↪→ ±1.6
ttH 0.507 +5.8, -9.2 ±3.6

The diagrams for VH processes, along with the other leading production mechanisms,
are shown in Table 4.2. The cross-sections and the associated theoretical uncertainties, are
given in Table 4.1. As mentioned earlier, these cross sections depend on the Higgs mass. The
Numbers in Table 4.1 are calculated with mH =125 GeV, and the functional dependence is
shown in Figure 4.7a.

The partial width of the Higgs boson decaying to two fermions is given by Equation 4.6.

Γ(H → ff) =
GFm

2
fmHNc

4π
√

2

(
1 − 4

m2
f

m2
H

)3/2
(4.6)

65



Table 4.2: The leading order Feynman diagrams for the dominant Higgs
production mechanisms at the LHC. Together, Higgs-strahlung and the two
ZH diagrams comprise VH.

Higgs Production Diagram

Gluon-gluon fusion
H

g

g

t/b

Vector boson fusion
H

q′

q

q′

q

Higgs-strahlung ZH/WH
q

q′/q

H

W/Z

W/Z

Gluon-originated ZH
(box diagram)

g

g

H

Z

t/b

Gluon-originated ZH
(triangle diagram)

H

Z

g

g

Top associated production
H

t

tg

g
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Table 4.3: Leptonic decay branching fractions Γi/Γ for W±, Z, and Higgs
[2].

Decay Mode BR=Γi/Γ [%]
Z → e+e− 3.36± < 0.01
Z → µ+µ− 3.37 ± 0.01
W+ → e+νe 10.86 ± 0.09
W+ → µ+νµ 10.71 ± 0.16
H → µ+µ− 2.18 × 10−2 (predicted)

Here, the Nc = 1 for leptons (and 3 for quarks) and GF = 1.166 × 10−5 GeV−2 is the
Fermi coupling constant. The total width, Γ, is defined as the number of decays per time,
per particles present. It is the sum of all partial widths, such as the fermionic width in
Equation 4.6. The total width is equivalent to the reciprocal lifetime of the particle τ , which
subsequently defines the particle’s half-life as τ ln 2. The partial width also dictates the
branching ratio that describes the fraction of decays to a particular final state. For H → µµ

decays, the branching ratio is therefore

BR(H → µµ) = Γ(H → µµ)
Γ . (4.7)

This equation illuminates the central challenge when studying H → µµ. The total
width of the Higgs is expected to be 4.1 MeV and has been indirectly constrained to be
Γ = 3.2+2.8

−2.2 MeV [58]. The quadratic dependence on the muon mass mf = mµ in the partial
width Γ(H → µµ) leads to a small branching ratio in the case of the light muon, given in
Table 4.3. The partial widths also depend on mH. This is illustrated in Figure 4.8 for the
branching ratios, including and larger than H → µµ.

Experimentally, Higgs production and decay to two muons manifests itself in the dimuon
invariant-mass spectrum as a resonance above a smoothly falling background. The resonance
width is determined by the total width, Γ, by making use of the uncertainty principle in
natural units. A free particle of mass m with some likelihood to decay to a lower energy
state can be described by a simple time dependant wave function,

ψ(t) = ψ(0)e−imte− Γ
2 t. (4.8)

Here, the first exponential represents a stable particle’s time evolution, while the second
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Figure 4.8: Branching ratios of the Higgs boson to several final states as a
function of mH with H → µµ shown in yellow at the bottom.

represents the decreasing probability that the particle has not decayed. The Γ is the decay
rate and also inverse of the exponential time constant. The fourier transform of the wave
equation describes the particle in energy space,

ψ(E) =
∫
ψ(t)eiEtdt ∝ 1

(E −m) − iΓ/2 . (4.9)

The energy dependant cross section to observe a decay is proportional to |ψ(E)|2, or

σ(E) ∝ 1
(E −m)2 + Γ2/4 . (4.10)

Equation 4.10 gives the relativistic Breit-Wigner function, which describes resonant features
in energy spectra. The resonance width corresponds to the decay rate; therefore, particles
with long lifetimes τ produce narrow resonances.

These principles determine the phenomenology of H → µµ. The Higgs boson decays
with a width Γ and the probability distribution of energies described by the Breit-Wigner
function. In H → µµ decays, this energy is converted into the dimuon pair’s invariant-mass
and results in a narrow resonance in the dimuon invariant mass spectrum. In practice, the
energy and momentum resolutions of ATLAS are insufficient to resolve the ≈ 4 MeV width of
the Breit-Wigner shape. Instead, a distribution described approximately a Gaussian function
with a width corresponding to the invariant-mass resolution is observed.

The final state W± or Z in a VH event offers an opportunity to help identify Higgs events
in the same way that the jets in VBF are useful. This is particularly true when the W±

or Z decays leptonically since these additional leptons offer a clean signal to help remove
events from background production mechanisms. In the case of W± decays to `±ν` represent
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≈ 11% of decays for each lepton flavor. Equation 4.11 gives the partial width for leptonic
W± decays,

Γ(W → `ν) =
√

2GFm
3
W

12π . (4.11)

The total width of the W± boson is Γ = 2.085 ± 0.042 GeV. The leptonic branching fraction
is smaller in the case of Z. The partial width for Z decays to fermions is given in Equation
4.12.

Γ(Z → ff) = Nc

√
2GFm

3
Z

6π × [(T3 −Qf sin2 θW )2 + (Qf sin2 θW )2] (4.12)

The total width of the Z boson is Γ = 2.495 ± 0.002 GeV, and the leptonic width is Γ(Z →
``) = 83.984 ± 0.086 MeV per lepton flavor. The result is a leptonic branching ratio of 3.4%
per flavor [2]. The measured values of these branching fractions are given in Table 4.3.

D Contact Interactions and Compositeness

Contact interactions are a phenomenological description of new physics interactions above
the energy scale accessible directly in collisions. Such interactions lead to increases in the
event rate of high mass events in the dilepton invariant-mass spectra. A broad assortment
of models predicts such excesses. Of particular interest are models that propose composite
quarks and leptons. Even within the space of compositeness models, there is great diversity
and no consensus about the plausibility of a single model. It is beneficial to consider the
predictions in common with all compositeness models rather than a particular model. The
putative components of fermions are called preons, and they are expected to interact through
a new strong gauge interaction called metacolor. As is the case of the strong force, metacolor
would be infrared confining and asymptotically free. Below a characteristic energy scale Λ,
the interaction binds preons together metacolor singlets observed as quarks and leptons.
While Λ remains unknown, it is clear that it exceeds the fermion masses. The fermions
remain massless relative to Λ through ’t Hooft’s mechanism [59]. Early theoretical limits
were set by Bhabha-scattering measurements that exclude Λ below 1-2 TeV for electrons [59].
Subsequent experimental efforts have raised the limits by an order of magnitude, reflecting
the interest of the field in searches for fermion compositeness. 3

The particular interest of this thesis is in flavor-diagonal contact interactions. These
3Flavor-changing contact interactions are highly constrained through experiment, with limits on Λ ex-

cluding values up to hundreds or thousands of TeV [59].

69



models allow either one or both of the fermion’s chiral components (fL and fR) to be com-
posite. The presence of parity-violating in the standard model motivates the treatment of fL

and fR as distinct species. This leads to the general parity violating Lagrangian in Equation
4.13 which describes a general contact interaction,

L = g2

2Λ2 [ ηLL (fLγµfL) (f ′
Lγ

µf ′
L)

+ηRR (fRγµfR) (f ′
Rγ

µf ′
R)

+ηLR (fLγµfL) (f ′
Rγ

µf ′
R)

+ηRL (fRγµfR) (f ′
Lγ

µf ′
L) ].

Here ηij for i, j ∈ {L,R} are parameters dictating which species are composite: |ηLL| = 1
describes composite left-handed fermions, while |ηLR| = 1 indicates both fR and fL are
composite and share common constituents. In the form given here, a distinction is made
between the initial state fermion species (f) and final state species (f ′) because the present
interest is in qq`+`− contact interactions. This contact interaction Lagrangian describes an
approximation of fermion compositeness in the ŝ � Λ regime.

q

q

`−

`+

γ∗/Z

(a)

Λ

q

q

`−

`+

(b)

Figure 4.9: Feynman diagrams representing (a) Drell-Yan, which dominates
the standard model contribution to high invariant-mass dilepton production,
and (b) a contact interaction of energy scale Λ corresponding to one of the
composite models described in Equation 4.13.

Contact interactions necessarily modify cross-sections of fermion elastic scattering, such
as the qq collisions at the LHC. In the SM, the gauge coupling αf controls high-mass processes
through Drell-Yan production. In their seminal work of 1983, Eichten, Lane, and Peskin
showed that if αf � 1, then the Lagrangian in Equation 4.13 produces interference of
the order ŝ/αfΛ2 with the standard model processes [14]. The diagrams for the dominant
standard model process and a generic contact interaction are shown in Figure 4.9. The
blob in the diagram for the contact interaction emphasizes the generality of Equation 4.13.
A particular physics model may replace this blob with, for example, an s-channel diagram
mediated by the bound state of two component prions. Two possible diagrams to replace
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the blob are given, for illustrative purpose, in Figure 4.10.
Since these interactions depend on qq initial states, the relevant parton luminosities that

determine the event rates are those of uu and dd. Unfortunately, as illustrated in Figure 4.1,
proton PDFs for u and d are relatively small since these are produced as virtual sea quarks.
This suppresses the production of qq initial states, and consequently, of this type of contact
interaction. If the LHC had been designed to use pp collisions of equal intensity, it would
greatly enhance the qq luminosities.

q

q

(a)

q

q

(b)

Figure 4.10: Feynman diagrams for two possible high-energy processes that
may result from fermion compositeness. The solid lines represent the preons
composing the fermions. (a) An interaction mediated by the bound state of
two prions, which is only possible when the leptons and quarks share com-
mon constituents. (b) An interaction between quarks and leptons mediated
by metacolor gluon exchange, represented by curly lines in analogy to SU(3)
gluons.

This thesis focuses on qq`+`− contact interactions, a subset of those described by Equa-
tion 4.13. Such models replace the unprimed f with quarks, and the primed f ′ with leptons.
This interaction is possible if the quarks and leptons share common constituents, in which
case interactions mediated by the constituents are possible, as shown in Figure 4.10 (a). This
interaction is also possible if the fermions do not share common constituents, as shown in
Figure 4.10 (b).

The Drell-Yan differential cross-section is modified in the case of left-left compositeness,
ηLL = ±1 and ηLR = ηRL = ηRR = 0.

dσ̂

dt̂
(qiqi → ``) =πα

2

ŝ2

Ai(ŝ)
(
û

ŝ

)2

+Bi(ŝ)
(
t̂

ŝ

)2
(4.13)
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Here, the coefficients are defined as functions of ŝ.

Ai(ŝ) =
[
Qi − LiLl

4xW (1 − xw)
ŝ

ŝ−M2
Z + iMZΓZ

− ηLLŝ

αΛ2

]2

+[
Qi − RiRl

4xW (1 − xw)
ŝ

ŝ−M2
Z + iMZΓZ

]2

Bi(ŝ) =
[
Qi − RiLl

4xW (1 − xw)
ŝ

ŝ−M2
Z + iMZΓZ

]2

+[
Qi − LiRl

4xW (1 − xw)
ŝ

ŝ−M2
Z + iMZΓZ

]2

(4.14)

In these equations, i, j ∈ {u, d} stand for quark flavors. As was defined when discussing
Higgs production in Section C, Li = T3 − 2QixW , Ri = −2QixW , and xW = sin2 θW . Qi is
the electric charge of the corresponding quark flavor [59].

Despite their verbosity, these equations readily illuminate the phenomenology relevant
to the contact interaction search. First, when setting ηLL = 0, the standard model Drell-Yan
production is recovered. Expanding the first power term in Ai(ŝ) yields a direct term that
contributes to the total cross-section and scales as Λ−4. Removing the Λ defines the contact
interaction form factor FC ,

FC(ŝ) ≡ πû2

ŝ2 .
(4.15)

Since FC is strictly positive, it enhances the total qq`+`− cross section regardless of the sign
of ηLL. The cross-terms in the expansion dictate the interference of the contact interaction
with Drell-Yan. Again removing the Λ factor defines the interference form factor FI ,

FI(ŝ) ≡ −2
[
Qi − LiLl

4xW (1 − xw)
ŝ

ŝ−M2
Z + iMZΓZ

]
παû2

ŝ3 . (4.16)

The sign of FI depends on the sign of ηLL. For ηLL = −1, FI contributes constructively to
the total cross-section, while for ηLL = +1 it leads to destructive interference that reduces
the overall cross-section.

Together, FI and FC describe the effect of contact interactions as functions of collision
energy, without referring to the particular manifestation of fermion compositeness. The func-
tional dependence on ŝ leads to the expression of the interference form factor FI at relatively
low energies than the direct form factor FC . Experimentally, this results in interference effects
altering dilepton spectra at lower invariant-mass and direct production always enhancing the
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spectra in the high mass tail. These effects are broad in the invariant-mass spectra instead
of the narrow resonance expected from H → µµ production. The modification to the total
cross section has the form,

dσ
dm``

= dσDY

dm``

− ηij
FI

Λ2 + FC

Λ4 . (4.17)

Although various compositeness models predict variations on these results, there are two
points to consider. First, the functional dependence on the energy ŝ is common for all
contact interactions [59]. Second, the modification to the effect on the total cross-section is
of the same magnitude regardless of the form of compositeness. Combined, these make the
described formalism an attractive framework to study compositeness without reference to
the particular model.

E Physics Modeling with Simulation

The dataset collected by the ATLAS experiment is both of limited size and of opaque
nature. It is limited because of the enormous effort required to run the LHC and operate
the experiment. It is opaque because many aspects of the collision are inaccessible to obser-
vation; from the initial state of the protons, to the intermediate physics processes, and to
the kinematics of final state neutrinos, some observations are not technically feasible. Even
the collision’s final state is imperfectly known due to the limited acceptance and detection
efficiency of the experiment. In light of these challenges, it is helpful to simulate collisions
computationally and the resulting detector response to produce simulated datasets.

Simulated datasets are used for several purposes. Because events are simulated based
on particular Feynman diagrams, it is possible to explore how those diagrams contribute to
the dataset. This is particularly helpful when considering kinematic distributions, such as
the dilepton invariant-mass spectra. In these, the simulation illuminates the composition of
both signal and background distributions. With this information, choices may be made to
improve the sensitivity of the analysis to new physics signatures. These include choices of the
criteria that define the fiducial region of a search, or choices of the functional form that well
describes the shapes of the background distributions. In the H → µµ analysis, simulated
datasets are used to develop a multivariate discriminant tuned to identify signal-like events.
The simulated signal dataset is also useful to model the shape and amplitude of the signal
when performing hypothesis tests. This provides a map from a signal hypothesis’s theoreti-
cal descriptions to experimentally testable predictions about event yields and distributions.
Finally, simulated events provide a means to understand the performance and systematic
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uncertainties of the ATLAS detector itself.
Since they share many aspects, this section describes how simulated datasets are produced

for both the H → µµ and non − resonant analyses. The procedure begins with event
simulation, where a particular set of interactions are represented based on their matrix
element. This step is performed by an event generator program. The matrix element only
describes the immediate interaction, or hard-scatter process, and the associated underlying
event. The event generation produces a particle description of the immediate aftermath of
a collision. This is described in Section E.1. After this, strongly charged quarks and gluons
undergo parton showering and hadronization. The next step in the simulation describes
these processes and results in a set of long-lived particles. This is described in Section E.2.
The final step is the propagation of these particles through the magnetic field and detectors
of the experiment. This is performed with a simulation of the detector’s materials described
in Section E.3.

E.1 Event Generation

An event generator is a program that randomly samples several probability density func-
tions (PDFs)4 in order to describe a set of possible collision events. In its present usage,
they are concerned with producing events corresponding to the hard-scattering processes
corresponding to a set of Feynman diagrams, but not the long-term evolution of the final
state particles. The PDFs sampled include the parton distribution functions that describe
the initial state of interactions. They also include the normalized matrix elements under
consideration, which describes the likelihood for particular final states to occur. Through
repeated sampling, the Monte-Carlo method, the set events begin to represent the events
one might expect from a particular set of initial state conditions.

Different event generators are available with various strengths and weaknesses. The work
of this thesis uses samples produced primarily by Sherpa [60] and Powheg-Box [61, 62].
In two instances, Pythia [63] and MadGraph5_aMC@NLO [64] are selected to produce
signal events.

The parton distribution function also varies depending on the process being simulated.
Most simulated datasets are produced with NNPDF3.0NLO [51], and CT10 [65]. In some
cases, variations such as NNPDF23LO [66] or NNLOPS [67] are used. When unavoidable,
PDF4LHC [68] is used.

4Care must be taken to avoid confusion of probability density functions with parton distribution functions.
In the remaining text, the abbreviation PDF refers to the former.
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E.2 Showering and Hadronization

The hard-scattering process describes a final state, including strongly charged and un-
stable particles. These can radiate photons, quarks, and gluons in a process called parton
showering (PS). In principle, the initial state partons may also radiate and contribute to PS
in an event. The PS calculation focuses on soft radiation, while the matrix element is used
to describe hard radiation. This division is necessary since the matrix element tends toward
infinity as the radiation becomes increasingly soft. A mixing scheme is used to blend these
to produce an accurate description of PS.

Eventually, the final-state quarks and gluons separate and hadronize into color-neutral
states. Since this process is difficult to model from physical principles, it is based on a
statistical sampling of the phase space available to the final state particles. Programs make
use of PDFs that have been adjusted to match experimental observation.

There are several programs capable of modeling PS and hadronization. The event gener-
ator Pythia is also capable of modeling both and is used to process most simulated datasets.
The program EvtGen [69] complements Pythia by modeling bottom and charm hadron
decays. The event generator Sherpa is also used in some cases for PS. The result of these
steps is events of relatively stable (cτ > 1 cm) particles, including photons, leptons, and
hadrons. Before reconstruction, such an event is referred to as the truth event and con-
sists of truth particles. Truth events are useful in order to evaluate the performance of the
detector, as well as the accuracy of the following analysis.

E.3 Detector Simulation

The final step is to simulate the response of ATLAS to the simulated events. This is
the closest approximation to the measured dataset. It is also the most computationally
intensive step, as it necessitates a full simulation over time of particle interactions within
ATLAS. The simulation is based on Geant4 [70], and is part of the ATLAS simulation
infrastructure [71]. The Geant4 model of ATLAS consists of nearly five million simulated
volumes of both detectors and supporting structures in which particles may interact. An
illustration of the components of the simulation is shown in Figure 4.11. A three-dimensional
map of the magnetic field within ATLAS is included in the simulation as well. The simulation
transports truth particles through the magnetic field and detector volumes. When a particle
enters a detector volume, its interactions with the detector and the corresponding readout
electronics are simulated. The output of the readout electronics simulation is of the same
format as the physical detector’s output. After this point, the simulated events can be routed
through reconstruction identically to data.
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(a)

Figure 4.11: Graphical representation of the ATLAS detector in the
Geant4 simulation, with a section of the barrel removed for visibility. The
muon system is shown in green, the calorimeters are shown in purple, and
the ID is shown in blue. Material that is not part of the detector systems,
such as the support structures and magnets, are included in the simulation
as well.
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Chapter 5

Datasets and Objects

The two studies described in this thesis are based on data recorded during Run 2 between
2015 and 2018. This chapter lists the details of these datasets in Section A, as well the
simulated datasets used in Section B. Section C describes the physical objects reconstructed
from the events in these datasets.

A Recorded Dataset

Both searches use the full dataset collected by ATLAS during the Run 2 of the LHC.
Only events recorded during good operation of the detector are used. The Good Run Lists
(GRL) identify the data taking periods during which the data used for analysis was collected.
Table 5.1 summarizes the datasets and luminosities for each year.

Table 5.1: Data luminosities for events delivered to ATLAS and for events
passing the GRL requirement with the corresponding uncertainty, by year
[38].

Year Delivered Recorded [fb−1 ] Uncertainty [fb−1 ]

2015-16 42.5 36.2 0.8
2017 50.2 44.3 1.0
2018 63.4 58.5 1.2

Total 156.1 139.0 2.4

The luminosity is measured using the ATLAS calorimeters and two dedicated Cherenkov
radiation detectors, LUCID2, located 17 m from the interaction point in the A and C sided.
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The collision luminosity is determined on a bunch-by-bunch basis using the signal strength
from LUCID2 and the calorimeters. The combined luminosity of the Run 2 collisions recorded
and passing the GRL requirement is 139.0 fb−1±1.7% [38].

B Simulated Datasets

Simulated datasets serve a variety of roles in both analyses. Both analyses deal with rel-
atively weak mechanisms of signal production and relatively voluminous processes of back-
ground production. If present, the signal processes contribute to the ensemble of events
produced in collisions. Simulation is used to quantitatively understand the effect of a signal
process. The result is a dataset of simulated events produced by a particular mechanism.
This is useful in modeling the distributions of kinematic variables in signal events in order
to carefully select a phase-space in which to search for signal events. Signal simulation is
also useful to predict the expected multiplicity of signal events. Simulation is also used to
understand the background processes. In the case of the H → µµ search, background pro-
cesses include all production mechanisms in the Standard Model except for those involved
in Higgs boson production. In the case of the non− resonant search, background processes
are defined more broadly to include any mechanism except for the contact interactions that
are the target of the search. In each case, simulated background datasets provide insight
into the particular production mechanisms expected to contribute to the observed dataset.
Empirical models are developed and tested on the background datasets.

The simulation relies on a number of input parameters that are known to varying degrees.
Different values of these parameters leads to different predictions in the simulation, which
corresponds to uncertainty in the predictions derived from the simulated datasets. The
impact of these uncertainties differers between the H → µµ and non − resonant searches,
and is described in their respective chapters.

The simulations are produced by a series of programs, as described in Section E. The
first program is a matrix element Generator, which uses the input of a particular parton
density function (PDF). Different event generators are available with various strengths and
weaknesses. The work of this thesis uses samples produced primarily by Sherpa [60] and
Powheg-Box [61, 62]. In two instances, Pythia [63] and MadGraph5_aMC@NLO [64]
are selected to produce signal events. The parton distribution function also varies depending
on the process being simulated. Most simulated datasets are produced with NNPDF3.0NLO
[51], and CT10 [65]. In some cases, variations such as NNPDF23LO [66] or NNLOPS [67]
are used. When unavoidable, PDF4LHC [68] is used. Next are programs that calculate the
parton shower and hadronization. In nearly all cases, Pythia and EvtGen are used to
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compute these effects.
The simulations are classed based on the precision to which the matrix element (ME)

is calculated. The exact evaluation of the ME corresponds to the evaluation of an infinite
perturbative expansion of the Hamiltonian that governs the transition of the initial state
to the final state. This expansion can be made in terms of the coupling strengths of the
interactions involved. The degree of precision of the simulation corresponds to the number of
terms, equivalently Feynman diagrams, included in the perturbative expansion. This begins
with the leading order (LO) calculation, which includes the set of Feynman diagrams with
no closed loops. Higher order calculations are performed beginning with next-to-leading
order (NLO) which includes one-loop diagrams, and next-to-next-to-leading order (NNLO)
with two loops. The choice of precision depends on both the relative cross-section of the
mechanism and how the simulation is to be used. Mechanisms with a large cross-section
are simulated with to high order to achieve a level of precision in the final prediction of the
dataset. Mechanisms with a low cross-section can be simulated to lower order and retain a
similar level of precision.

The list of simulated datasets used in this work is provided in Table 5.2.

Table 5.2: Samples in the top are used in the non − resonant analysis,
while samples in the bottom are used for the H → µµ search. The dilepton
production via Drell-Yan processes (ee and µµ) are calculated to NLO pre-
cision with additional LO contributions from diagrams with three or four
final state jets.

Process QCD EW ME Generator PS and Hadronization

n
on

−
re
so
n
a
n
t

Drell-Yan NNLO NLO Powheg-Box, CT10 Pythia +EvtGen
Drell-Yan LO Powheg-Box, NDPDF23LO Pythia +EvtGen
tt NLO Powheg-Box, NDPDF3.0NLO Pythia +EvtGen
Single top NLO Powheg-Box, NDPDF3.0NLO Pythia +EvtGen
Diboson NLO Sherpa, CT10 Sherpa

H
→

µ
µ

Drell-Yan NLO NLO Sherpa, NNPDF30NNLO
tt NNLO Powheg-Box, NNPDF3.0LO Pythia +EvtGen
Single top NNLO Powheg-Box, NNPDF3.0LO Pythia +EvtGen
Diboson NLO Sherpa, NNPDF3.0LO Pythia +EvtGen
ggH NNLO Powheg-Box, PDF4LHC15 Pythia +EvtGen
VBF NLO Powheg-Box, NNPDF3.0 Pythia +EvtGen
qq/qg → WH NLO Powheg-Box, NNPDF3.0 Pythia +EvtGen
qq/qg → ZH NLO Powheg-Box, NNPDF3.0 Pythia +EvtGen
gg → ZH LO LO Powheg-Box, NNPDF3.0 Pythia +EvtGen
ttH NLO NLO MadGraph5_aMC@NLO, NNPDF3.0LO Pythia +EvtGen

Kinematic variables are calculated from the reconstructed final states in simulated events.
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These variables form probability density distributions that reflect the likelihood of measuring
a particular kinematic variable in an event from a given production mechanism. Statistical
fluctuations become less important as the number of the simulated events increases which
makes the distributions more informative. In general the event multiplicity in the simulated
datasets exceeds that of the observed data by an order of magnitude. To represent the
observation, the simulated distributions are normalized to match a theoretically predicted
cross section. For ggF Higgs production simulation this normalization is based on three-loop
(N3LO) QCD calculations and NLO EW calculations. For other Higgs signals the QCD
precision reduced to NNLO [57]. The cross section of Drell-Yan is calculated to NNLO
precision. The cross section of diboson processes is calculated to NLO precision. The tt
cross section is available at NNLO precision, while the smaller single-top cross sections are
calculated to NLO precision. For the purpose of the non − resonant analysis, after the
samples have been normalized to their predicted cross section, a common factor scales all
the simulations to match the multiplicity of observed data in a control region.

C Physics Object Reconstruction

The analyses presented in this thesis view the data collected by the ATLAS experiment
through the abstraction of physics objects. It is worth noting that physics objects are not
exactly isomorphic to the actual physical entities emanating from the collision. These are
patterns of detector hits and energy deposits that are construed to have some physical
meaning. In some cases, these patterns are clearly identified with particles like muons or
electrons passing through the detector. In other cases, the identification is more pragmatic
for the purpose of analysis, as is the case when describing missing transverse momentum
(Emiss

T ) as an object. Somewhere in between these are clusters of energy deposits called jets,
which are identified as the result of the hadronization of quarks and gluons.

The difference between the “physics object” of a jet and the quark or gluon it is presumed
to describe is clear. Different definitions of “cluster” lead to different jet energies, and even
different numbers of jets. This subtlety in definition also applies to muons, electrons, and
of course, Emiss

T . The following section describes the choices made in defining the physics
objects used in this thesis.

There are three steps in choosing what physics objects to use. The first step is in
the reconstruction algorithm, which arranges the data recorded in an event into reasonable
approximations of particles and jets. Next, some of these candidates are accepted or rejected
based on identification criteria. Finally, a secondary requirement of isolation is imposed on
the objects to isolate objects originating directly, or promptly, from the collision. This final
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step is particularly important in the context of this thesis, where prompt leptons are of
primary interest.

C.1 Electrons

Electrons are reconstructed from data collected by the inner detector and electromagnetic
calorimeter. An electron passing through the ID typically produces four hits in the pixel
layers and eight hits in the Silicon Tracker (SCT) layers, from which the track and impact
parameter are established. After passing through the silicon detectors, the electron produces
transition radiation surrounding the Transition Radiation Tracker (TRT). This helps identify
electrons as relativistic charged particles. Next, the electron enters the electromagnetic
calorimeter, where it deposits most of its energy. The segmented structure of the calorimeter
measures both the energy deposited directly by the electron and subsequent showers of
secondary particles.

The search for electron candidates begins with a scan of energy deposits in the calorime-
ter, searching for localized clusters in η − φ space. Next, the hits in the inner detector
pixel and SCT layers are grouped first by layer and then between layers to form tracks.
Calorimeter clusters with azimuth φcalo and ID tracks with azimuth φtrack are matched with
a fitting procedure. A restriction −0.10 < ∆φ < 0.05 where ∆φ = −q × (φcalo − φtrack) and
q is the charge of the track is made, and the asymmetric range accounts for bremsstrahlung
effects [72].

Identification

The choice of which electron candidates to consider for analysis is made using a likeli-
hood (LH) identification. This quantifies the probability for a candidate electron to have
been produced by a physical electron passing through the detector. The goal is to identify
prompt electrons (signal) from jets, photon conversion electrons, and hadronic decay elec-
trons (background). Fourteen quantities, ~x, are measured for the candidate electron. These
quantities describe the distribution of energy in the calorimeter layers, the impact parameter
from the ID, the momentum lost by the track over time, the TRT response, and the η − φ

match between the track and calorimeter cluster. The PDFs for their values, ~PS(B), are
measured from simulation for signal and background.

The likelihood for a candidate to be signal (background) is given in Equation 5.1.

LS(B)(~x) =
14∏

i=1
PS(B),i(xi) (5.1)
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The discriminant dL is defined in Equation 5.2 and peaks near one for signal, and zero for
background.

dL = LS

LS + LB

(5.2)

Electron candidates passing increasingly restrictive thresholds of dL comprise the VeryLoose,
Loose(AndBLayer), Medium, and Tight LH identification working points. In this thesis, the
LooseAndBLayer and Medium LH identifications are used. Both additionally require at least
two pixel hits and seven total hits in the silicon ID. At least one pixel hit is required in the
innermost working pixel layer. These have efficiencies of 88% and 80% for electrons with ET

=40 GeV, respectively.
Electrons that are reconstructed with a path traveling directly through a broken calorime-

ter cell are marked with the label BADCLUSELECTRON. It is helpful to exclude such
electrons from consideration due to their poor ET measurement.

Isolation

The signal models of interest for this thesis lead to electrons produced in isolation from
other particles. These electrons originate promptly from the interaction point. In order
to identify such electrons, the activity within a η − φ cone of ∆R =

√
(∆η)2 + (∆φ)2 is

quantitatively by measures of charged tracks and calorimeter energy deposits. A variable
cone size of ∆R = min(0.2, 10GeV/pT) is used to count tracks with pT > 1 GeV around the
electron. The pT of the tracks within this cone, excluding the electron’s tracks, are summed
to define pvarcone20

T . The electron’s “tracks” is plural to account for bremsstrahlung radiation
converting to secondary electrons. These are counted as part of the electron candidate
if the extrapolated track falls within ∆η + ∆φ = 0.05 × 0.1 of the primary calorimeter
cluster. Meanwhile, a fixed cone size of ∆R = 0.2 is used to sum up the activity in the
calorimeters. First, the energy from the electron is subtracted within an area of ∆η+ ∆φ =
0.125 × 0.175. Energy from pileup effects is subtracted, and the remaining ET is summed to
define Etopocone20

T .
Two isolation schemes are used in this thesis. The first, FixedCutLoose, enforces a

requirement that Etopocone20
T /ET < 0.20 and pvarcone20

T /pT < 0.15. The efficiency, εiso, of this
requirement for prompt electrons is ≈ 99%. These cuts perform well in the relatively narrow
kinematic region of interest for H → µµ, but the search for high-mass phenomena needs a
more flexible scheme. A dynamic isolation, Gradient, is defined as a function of the electron
ET. It is defined such that the efficiency εiso = 0.1143 × ET + 92.14% is constant across
η. [72]
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C.2 Muons

Data from both the inner detector and muon spectrometer can be used to reconstruct
muons. In the former case, a similar procedure to that used to reconstruct ID electrons is
used. In the latter case, an algorithm searches data from MS chambers for hits that follow
plausible muon paths, called segments. Then, starting from segments, candidate tracks are
built by combinatorially including hits from tracks in other layers. The best tracks are
selected based on the χ2 fit quality and number of hits used. Each track must contain at
least two segments. 1

Identification

Four types of muons are reconstructed. Combined muons (CB), which are reconstructed
using tracks in the ID and MS.

• Segment-tagged muons (ST), which are built from ID tracks extrapolated to match
MS hits.

• Calorimeter-tagged muons, which are built using ID tracks extrapolated to match
calorimeter energy deposits.

• Extrapolated muons (ME), which are reconstructed using only the MS and the location
of the interaction point.

Five criteria define the commonly used identifications: Loose, Medium, Tight, Low-pT,
High-pT. These working points admit or reject muons based on several variables:

• The absolute difference between the charge to momentum ratio measured in the MS
versus the ID, as a fraction of the sum in quadrature of the corresponding MS and ID
uncertainties. This is the q/p significance.

• The absolute difference between the pT measured in the MS vs the ID, as a fraction of
the combined pT. This is the p′ variable.

• The normalized χ2 of the combined track fit.

The baseline identification for ATLAS searches is Medium, which begins with CB and ME
muons. CB muons are required to use at least three hits in two MDT layers, or one MDT
layer and no more than one missing layer within |η| < 0.1. The later allowance is made

1There is an exception in the transition region between the barrel and endcap where one segment is
sufficient, however such muons are excluded from consideration in this thesis.
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due to lost coverage in the barrel. ME muons are required to use at least three MDT/CSC
layers and fall within 2.5 < |η| < 2.7, where the ID loses coverage. For all muons, the q/p
significance must be less than seven. [73]

The choice of identification depends on the requirements of the analysis. The searches
in this thesis are performed using both expanded and restricted muon identifications. The
H → µµ search is concerned with small yields of low-pT muons; therefore, the Loose working
point is used to maximize reconstruction efficiency. The Loose identification is a superset of
the Medium identification. Additional CT and ST muons are allowed in |η| < 0.1. This adds
approximately 2.5% more muons in the barrel region. [73]

In contrast, the high-mass non-resonant search is concerned with more energetic muons.
For these, a subset of the Medium identification, the High-pT identification, is used to re-
duce incorrectly reconstructed muons. CB muons otherwise passing the Medium criteria
must have three hits in three MS stations. Some regions of the MS are excluded based
on their alignment accuracy. This restriction trades efficiency to improve pT resolution by
approximately 30% for muons with pT > 1.5 TeV. It reduces the reconstruction efficiency by
≈20% but improves pT resolution above 1.5 TeV by ≈30%. [73]

Isolation

As is the case for electrons, the muons of interest in this thesis originate promptly from
the interaction point, either from the decay of a Higgs boson or through a contact interaction.
Both types of processes are expected to produce muons that are isolated from other particles
in the event. In contract, semi-leptonic decays and hadronic decays produce muons in close
proximity to other particles. To identify the muons of interest, the concept of isolation
is quantified by the sum of tracks in a variable size cone around the muon. Four related
variables are defined. First variable is pvarcone30

T , which is defined as the scalar sum of pT

for tracks within a cone size ∆R = min(0.3, 10GeV/pT). Only tracks with pT > 1 GeV are
counted, and the muon pT is excluded. The second and third variables are Etopocone20

T and
pcone20

T , which are defined as the scalar sum of ET or pT, respectively, within a cone size of
∆R = 0.2. The fourth variable, pneu20

T , is similar to Etopocone20
T . It is the sum of neutral ET

within a cone size of ∆R = 0.2.
These variables are used to define the three isolation working points used in this thesis.

The first, FixedCutTightTrackOnly, simply required pvarcone30
T /pT < 0.06. The second is

FixedCutPflowLoose, which requires both pvarcone30
T + 0.4pneu20

T )/pT < 0.16 and pcone20
T +

0.4pneu20
T )/pT < 0.16. The third is FixedCutLoose, which requires both pvarcone30

T /pT < 0.15
and Etopocone20

T /pT < 0.30. While the efficiency of these isolation requirements varies with
pT, in general, fewer than 1% of prompt muons are lost. [73]
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Bad Muon Veto

In the high-pT regime, it becomes difficult to accurately reconstruct muons due to the
small bending radius in the magnetic field. A criteria named Bad Muon Veto (BMV) is
used to address this by ignoring poorly reconstructed muons in the tails of the relative pT

resolution distributions, σpT/pT, given in Equation 5.3.

σ(p)
p

= ( p0

pT
⊕ p1 ⊕ p2 × pT) (5.3)

The parameters p0, p1, and p2 are measured for the MS and ID in different η regions. The
first term describes uncertainty in energy loss as a muon travels through detector material
and becomes less impactful at higher pT. The second term covers multiple scattering and
irregularities in the magnetic field. The third term dominates at high-pT and describes the
intrinsic spacial resolution of the muon detectors, including the accuracy of their alignment
[73]. A cut is made on the relative uncertainty:

σ(q/p)
(q/p) < C(pT) · σexp

rel . (5.4)

Here C(pT) is a pT-dependent coefficient which is equal to 2.5 when pT < 1 TeV and decreases
linearly above this. The application of the BMV reduces efficiency by 7% for high-pT muons,
while removing poorly reconstructed muons that should not be considered for analysis.

C.3 Jets

Strongly charged quarks and gluons exiting a collision hadronize, producing to a col-
limated jet of heavier particles. Since none of the final states under consideration in this
thesis include quarks or gluons, it is helpful to exclude their presence in some cases. To this
end, jets are reconstructed such that events that contain them may be excluded. Charged
tracks from the ID are associated to calorimeter regions to remove associated deposits using
the PFlow algorithm [74]. The remaining energy is grouped using together by considering
pseudo-distance measure between two energy deposits i and j,

dij =min(p−2
Ti , p

−2
Tj )

∆2
ij

R2 ,
(5.5)

where kTi and pTj are the cluster energies, ∆ij =
√

(∆y)2 + (∆φ)2 is their separation in
rapidity and azimuth, and R is a parameter set to 0.4. The proceeds by finding the minimum

85



of the set {dij, p
−2
Ti } for all clusters i and j. If dij is the minimum, clusters i and j are combined

into one. If p−2
Ti is the minimum, then cluster i is considered to be a jet and is removed from

the set. Minima are found and removed until none remain. This defines all the jets in the
event [75].

Jets originating from bottom quarks and the decay of B-hadrons (b-jets) are of partic-
ular interest for the H → µµ analysis. A multivariate discriminant, MV2c10, is helps to
distinguish b-jets from other light jets [76]. This separates the b-jets from light flavor jets
based on the characteristic displaced vertices of their associated tracks. An identification
that tags 85% of b-jets defines the “b-tag working point” that proves useful to reject events,
including b-jets.

C.4 Missing transverse momentum

The final “object” to consider in events is the missing transverse momentum, Emiss
T . The

transverse momenta of muons, electrons, and the remaining tracks in the ID are summed
to produce the total measured pT of the event. Since the total pT of the initial state is
close to zero, the negative of this pT sum represents the pT of objects that have not been
reconstructed [77]. The Emiss

T of an event is a helpful proxy for high-pT neutrino, which
carry pT without detection. This makes Emiss

T useful in the H → µµ search when identifying
the decay of W± to leptons and neutrinos. In events with high-pT muons, mis-measured
muon pT also appears in the Emiss

T sum. This makes Emiss
T useful in the search for high-mass

phenomena to study such muons.
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Chapter 6

Higgs Decays to Two Muons

The joint observation of the Higgs boson by ATLAS [10] and CMS [11] in 2012 initiated
an era of studies of this particle and its interactions. One of the reasons that the Higgs
boson is interesting is that the Englert-Brout-Higgs (BEH) mechanism generates the mass
of fermions by means of Yukawa couplings to the Higgs boson. The most direct way to study
these couplings is through the fermionic decay of the Higgs, described in Section C. As the
fermion branching ratios given Equation 4.6 indicate, the Yukawa coupling is proportional
to the fermion mass squared. The H → tt decay is kinematically forbidden because the
top quark mass, mt ≈ 173 GeV, exceeds the mass of the Higgs boson. Consequently, the
most probable decay path is to bottom quark pairs due to their large mass mb = 4.2 GeV.
Despite this, the Htt coupling can be measured through the ttH process described in Table
4.2. The Hbb coupling was observed at the ATLAS experiment using the VH production
channels [78]. The next most massive fermion after the bottom quark is the tau lepton,
with mτ = 1.8 GeV, which has been studied by ATLAS [79] and CMS [80]. Although the
charm quark with follows with a mass mc = 1.3 GeV, the messy hadronization of final state
proves difficult to identify and study. Searches for H → cc remain insensitive even to Hcc
couplings ∼ 100 times the Standard Model expectation. This leaves the muon and the Hµµ
coupling, where the muon’s mass of µµ = 0.1 GeV results in a challengingly small branching
fraction. However, unlike the case with the charm quarks, the final state of two muons is
easily identified by a clear experimental signature. The result is that the Hµµ is the third
and most challenging Higgs Yukawa coupling that is feasible to study at ATLAS.

The Hµµ coupling also provides a unique opportunity as both the Hbb and Hττ couplings
are to third-generation fermions. This means that the H → µµ measurement adds a valuable
point to the global picture of Higgs couplings, as illustrated in Figure 6.1. Measuring this
coupling provides a test of the Standard Model and also insight into the nature of the muon’s
mass.
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Figure 6.1: Summary of ATLAS measurements of various fermion (t, b, τ ,
and µ) and gauge bosons. The plot shows the “reduced coupling strength
moderators”, where κ is the deviation relative to the Standard Model pre-
diction, compared to the particle’s mass. The SM prediction for both cases
is also shown as a dotted line. The contribution of this study appears in
the bottom left corner of this plot.

Detecting the decays of Higgs to two muons is particularly challenging on two counts.
First, the Higgs branching fraction to muons is tiny (2.18×10−4). Second, there is a sizeable
irreducible dimuon background from Drell-Yan and Diboson processes. Together these evoke
the idiomatic needle-in-a-haystack to describe the search for H → µµ. It is only with the
enormous number of events collected by ATLAS during the Run 2 data-taking campaign
that it became feasible to perform this search.

Of particular interest in this thesis are Higgs bosons produced through the VH produc-
tion mechanisms. These mechanisms are listed in Table 4.2 as Higgs-strahlung and gluon-
originated ZH. They result in final states with a Higgs boson as well as an associated W±

or Z vector boson. These events offer both a chance to look at a new, unstudied phase
space, as well as a contribution to the overall sensitivity in the search for H → µµ. The
events where the vector boson decays leptonically are particularly useful. The additional
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leptons help differentiate VH events from the Drell-Yan background and provide kinematic
information for further discrimination.

The cross-section of WH is 1.36 pb in center-of-mass collisions with energy
√
s = 13 TeV,

while the ZH cross-section is just 0.88 pb.

Table 6.1: Expected numbers of events from 139 fb−1
√
S = 13 TeV data

for WH and ZH. The first column shows the number of VH events, while
the second column scales this by BR(H → µµ) and the third column addi-
tionally multiplies by BR(V → ``) where ` is e or µ.

Vector Boson VH VH(H → µµ) VH(H → µµ, W →`ν
Z→`` )

V=W± 189,040 41.5 9.14
V=Z 122,320 26.9 1.83

Studying H → µµ with VH produced events introduces several challenges and opportu-
nities. First the tiny VH cross-section produces relatively few events to study. Second is the
question of how to use the new information from the leptonic vector boson decay products
to separate the background from diboson production processes. This information is particu-
larly important to remove diboson (ZZ and WZ) backgrounds. Careful choices are made in
the selection criteria targeted at VH production in order to capture as many VH/H → µµ

events as possible. A multivariate analysis (MVA) discriminant is used to take advantage of
the kinematic information in the W± and Z decays. Steps must be taken to understand and
to limit the level of bias that these techniques introduce to the results. This is necessary to
avoid invalidating the final measurements.

q

q′/q

H

W/Z

W/Z

Figure 6.2: VH production originating from quarks

The VH production mechanisms, WH and ZH, exemplified in Figure 6.2, are the third
and fourth leading Higgs boson production mechanisms at the LHC. The cross-section of WH
is 1.36 pb in center-of-mass collisions with energy

√
S = 13, while the ZH cross-section is

just 0.88 pb. The cross-section, combined with the branching ratio of H → µµ, results in the
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number of expected events per 139 fb−1 shown in the first column of Table 6.1. In addition to
the quark originating ZH shown in figure 6.2, gluon originating ZH events contribute ≈ 10%
to the total ZH cross-section.

W±

`±

ν

(a)

Z

`+

`−

(b)

Figure 6.3: Leptonic decays of the W± (a) and Z (b) bosons.

The search for H → µµ is conducted in several categories of phase space defined based
on the kinematics of the event. Two inclusive categories are defined first: a 4-lepton selection
targeting ZH produced events and a 3-lepton selection optimized for WH produced events.
These target leptonic ZH events with µµµµ or eeµµ final states, and leptonic WH events
with µνµµ or eνµµ. In the case of leptonic decays of the W±, only the charged lepton
is reconstructed, while a neutrino may be inferred from the scale and direction of missing
transverse energy Emiss

T . A further set categories are derived from these inclusive categories.
In the case of the 3-lepton selection, two sub-selections are defined with high WH yields
and low background yields. In the case of the 4-lepton selection, one high purity sub-
selection is defined. The delimitation of these exclusive categories from within the inclusive
selections is based on the MVA discriminant. This MVA is a function that maps various
kinematic variables calculated from each event onto a spectrum related to the likelihood that
an event is produced by a VH mechanism. The search is performed in the dimuon invariant-
mass spectrum across these two inclusive and three exclusive categories. A combination
is performed using an additional seventeen categories that target other Higgs production
mechanisms listed in Table 4.2. The observations of this analysis were made public in June
2020 [81].

This chapter describes the search for H → µµ using the VH production channels with
the full Run 2 dataset collected by ATLAS. Section A describes the selection of data used
for the search, followed by Section B that describes the MVA based categorization. Sections
C and D present the signal and background models, respectively. Next Section E discusses
the systematic uncertainties used in the result. Section F details the statistical analysis of
the data. Finally Section G presents the results of the analysis.
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A H → µµ Event Selection

The search for H → µµ is concerned with events containing at least two muons. This
section details the event selection, data, and simulation used in the analysis.

A.1 Event Selection

All data events are required to pass several criteria before they are considered for analysis.
Events are considered only if they were recorded while the ATLAS detector was in full
operation. The events meeting this requirement comprise the Good Run List, as summarized
in Section A.

Only a small fraction of the many events observed by ATLAS are useful to study. The
trigger system decides on an event-by-event basis whether to record an event. Since H → µµ

events have muons in their final state, the analysis uses a trigger selection that requires at
least one high-pT muon. The pT threshold varies based on the year of data taking, depending
on the trigger system’s configuration. In 2015 the minimum threshold was pT > 20 GeV,
while in other years, it was pT > 26 GeV. Muons with a pT below 50 GeV are required to
have isolated tracks in the ID to reduce the background event rate. The efficiency of the
trigger requirement is ≈ 90%.

After passing the trigger requirement, the physics objects that comprise the event are
tabulated. The most important objects for leptonic VH H → µµ are muons and electrons,
but jets and Emiss

T are also used to reduce the background. The definitions of the objects
make use of identification and isolation requirements defined in Section C.

The muons considered in an event meet the requirements listed in Table 6.2. These can
come from the Higgs decay, as well as the leptonic W± and Z decays. These are selected to
be relatively inclusive due to the rarity of H → µµ decays. All four types of muons are used:
CB, CT, ST, SA. A particularly low pT threshold of 6 GeV is selected with the four-muon
ZH events in mind since one of the four muons often has a low pT.
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Table 6.2: Muon selection criteria.

Type CB, CT, ST, SA
Identification Loose
Isolation FixedCutPflowLoose
pT pT > 6 GeV
η |η| < 2.7

Impact parameters
|dBL

0 /σdBL
0

| < 3
|zPV

0 · sin θ| < 0.5 mm

The electrons are considered next, as these are produced by leptonic W± and Z decays.
With a similar motivation to the muons, this selection is relatively lenient to maximize the
selection’s efficiency. Several criteria are included to retain as many prompt electrons as
possible while reducing the inclusion of fake electrons. These are listed in Table 6.3.

Table 6.3: Electron selection criteria.

Identification Medium LH
Isolation FCLoose
pT pT > 7 GeV
η |η| < 1.37 or 1.52 < |η| < 2.47
Quality Not "BADCLUSELECTRON"

Impact Parameters
|dBL

0 significance| < 5
|zPV

0 · sin θ| < 0.5 mm

Jets are reconstructed in order to remove background events from the VH selection. The
VH leptonic events are expected to produce small jet multiplicities. Furthermore, jets are
used to reduce the presence of ttH events in the selection, by vetoing events that a b-jet.
The criteria for jet selection are given in Table 6.4.
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Table 6.4: Jet selection criteria. Additionally, a combination of track-based
variables are used suppress jets from other collisions in the same bunch
crossing, called jet-vertex-tagger [82].

Algorithm AntiKt R=0.4 PFlow
η |η| < 4.5
pT pT > 25 GeV for |η| < 2.4, pT > 30 GeV for 2.4 < |η| < 4.5

Finally, the missing transverse momentum, Emiss
T , is calculated for the event. The Emiss

T

is calculated from the pT of all reconstructed muons, electrons, and tracks not identified with
one of these. This serves as a proxy for the undetected neutrino from leptonic W± decays.

Table 6.5: Overlap removal criteria adopted for object selection, applied
sequentially. The jet removal against muons is applied for jets satisfying
NT rk(jet) < 3, or (pjet

T /pµ
T < 2 and pµ

T/ΣT rkP t > 0.7)

Reject Against Condition
Jet Electron ∆(e, jet)R < 0.2
Jet Muon ∆(µ, jet)R < 0.2
Electron Electron lower pT electron of shared track
Electron Muon share track
Electron Jet 0.2 < ∆(e, jet)R < 0.4
Muon Electron is calo-muon and shares track
Muon Jet 0.2 < ∆(µ, jet)R < 0.4

An overlap removal scheme is applied to avoid treating the same detector signature as
multiple objects when two objects are reconstructed in close proximity. This scheme removes
objects according to the priorities listed in Table 6.5.

Once the objects within an event have been determined, the next step is to identify events
with objects matching the final state of leptonic VH processes. All events are required at
least one oppositely-charged muon pair that can serve as a candidate for H → µµ. Two
parallel selections are carried out: 3-lepton events are selected targeting the WH process,
while 4-lepton events are selected targeting the ZH process.

In events with two exactly two muons, these are required to be oppositely charged. In
events with more than two muons, later charge requirements are applied, as described in
table 6.6. The leading pT muon is required to have pT > 27 GeV. The sub-leading pT
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muon is required to have pT > 8 GeV. The threshold for the sub-leading muon is lowered
compared to the ggF/VBF selection to increase the signal yield efficiency. This change, in
conjunction with the lower pT threshold for all muons and the loosening of the opposite
charge requirement, increases WH signal yield by 16.9% and ZH signal yield by 63%.

Two selections are used to target VH production: a 3-lepton category that targets WH
production where the W decays leptonically (electrons or muons), and a 4-lepton category
that targets ZH production where the Z decays leptonically (electrons or muons). The
overall signal efficiency of the WH event selection is 45%. The signal efficiency of the ZH
event selection is 37%. Both of the efficiencies are calculated with respect to the W±/Z
bosons decaying into electrons or muons.

The leptonic VH production does not produce many b-jets, in contrast to the top back-
grounds and ttH signal production. A veto of events containing b-jets helps reduce these
backgrounds and also enhances the purity of the signal selection. Section C.3 describes how
b-jets are identified with several working points that specify the efficiency of identifying a
b-jet. The loosest working point, 85%, is selected based on its reaction of the background.
Figure 6.4 illustrates signal and background yields in a comparison between vetoes using the
60% and 85% working points. The looser 85% working point constitutes a stricter veto, and
it is seen to reduce the background yields in both the 4-lepton and 3-lepton selections. The
signal yields are not substantially affected.

Table 6.6: Cutflow for 4-lepton and 3-lepton selection. Lepton pairs are
opposite charge.

Step 4-lepton 3-lepton
1 No 85% WP btag jets (b-jet veto)
2 At least 4 leptons Exactly 3 leptons
3 (Nµ+ >0 and Nµ− >0) (Nµ+ >0 and Nµ− >0)
4 A dimuon pair ∃ ∈ [110,160] GeV A dimuon pair ∃ ∈ [110,160] GeV

5 (Nµ+ >1 and Nµ− >1) or (Nµ+ >1 or Nµ− >1) or
(Ne− >0 and Ne+ >0) (Ne− >0 or Ne+ >0)

6 @ two Z→ µµ candidates @ Z→ µµ candidate
7 Higgs candidate ∈ [110,160] GeV Higgs candidate ∈ [110,160] GeV

8 Kinematic cuts 27/15/8/6 GeV > pT Kinematic cuts 27/10/15(10) GeV > pT

for e(µ)
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Figure 6.4: Illustration of the impact on signal and background yields of
using different btag working points (WP) for the b-jet veto. This is shown
for the 4-lepton selection (a) and 3-lepton selection (b). Each bar shown
the number of simulated signal or background events passing the selection
when using the WP marked on the x-axis. For both selections, using the
looser 85% WP reduces the background yields compared to the tighter 60%
WP. At the same time, the signal yield is relatively unchanged.

The steps of the cutflow are shown in table 6.6, which defines the 4-lepton and 3-lepton
VH candidate categories. This cutflow defines “Z candidates” to be oppositely charged
dimuon pairs an invariant-mass in [80, 105] GeV. The selection of oppositely charged muons
for the Higgs candidate, and of additional leptons for the Z (W±) candidates is based on
minimizing a χ2 calculation related to the invariant-mass (transverse-mass) and correspond-
ing resolutions of the candidates. This is shown in equations 6.1 and 6.2. Here, for each
candidate pairing, χ2,cand is calculated from the Higgs candidate mass M cand

H . For 4-lepton
events, the Z candidate mass M cand

Z is used, and for 3-lepton events the transverse-mass of
the W candidate lepton and Emiss

T , M cand
T , is used. Only pairings with oppositely charged

muons are considered for M cand
H , while all oppositely charged same flavor pairs are considered

for M cand
Z . Leptons of both flavors and charges are considered for M cand

T . The pairing with
the smallest χ2,cand is selected.

χ2,cand
W ± = (M cand

H − 125 GeV)2

(3.0 GeV)2 + (M cand
T − 70 GeV)2

(20 GeV)2 (6.1)

χ2,cand
Z = (M cand

H − 125 GeV)2

(3.0 GeV)2 + (M cand
Z − 91.1 GeV)2

(3.0 GeV)2 (6.2)
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The χ2 pairing is used to improve the pairing efficiency. Other pairing procedures were
considered but were rejected based on their performance. For example, in 4-muon events,
selecting the highest pT opposite sign muon pair is 63.4% less efficient than the χ2 pairing
described above. Selecting the pair such that the Z candidate is closest to the Z mass is
8.7% less efficient.

The cuts described in table 6.6 define two categories of events, 3-lepton and 4-lepton,
which are referred to as inclusive categories in relation to the subsequent division into smaller
categories. The kinematic distributions of the leptons in these categories are illustrated in
Section A.3.

A.2 Simulation

Simulated datasets play a central role in the search strategy. All simulated datasets are
scaled to match their corresponding cross-section [57]. First, the simulated background and
signal datasets allow an exploration of the efficiency of various event selection criteria. This
eventually leads to the criteria listed in Table 6.6. Next, probability density distributions
are constructed from simulated events that describe the probability to observe variables
at a given value. This is done both both for background and signal productions. This
allows the development of a multivariate discriminant function that separates signal and
background events based on these variables. The background rates as a function of mµµ

are used to measure systematic uncertainties and to validate the performance of several
empirical background models. The signal shape is used for these purposes as well, and
most importantly, it provides the signal component in the hypothesis test performed on the
observed data. Finally, several theoretical and experimental variations on the signal shape
are used to measure the impact of these uncertainties on the final result.

The primary background production in the region of interest comes from Drell-Yan (DY),
Diboson, and top production mechanisms described in section B. The dominant background
mechanism, DY, primarily produces events with two leptons in the final state. This is
reduced through the requirement of more than two leptons in the event selection. Processes
involving tt and single-top production form a large background component as well. Since the
top quark always produces a bottom quark through decay, these backgrounds are mitigated
by use of the b-jet veto in the event selection. After this are diboson productions of ZZ or
WZ with leptonic decays. The diboson is topologically the most similar to the VH signal,
making this the most challenging process to reject. Diboson events are reduced with the help
of a discriminant function based on several kinematic observables, but these events remain
the dominant background after all selections are complete.
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The DY simulations are generated with Sherpa 2.2.1 using the NNPDF3.0 PDF. The
DY mµµ spectrum falls exponentially. To generate sufficient numbers of high-mass events,
these are simulated in ranges of x, where x is the maximum of the mediator pT and the
scalar parton pT sum, HT. These simulations are produced to NLO for diagrams, including
fewer than three jets and LO for diagrams, including three or four jets.

The tt and single-top simulations are produced with Powheg-Box v2 and the NNPDF3.0NLO
PDF. The mass of the top quark is set to mt = 172.5. The tt cross section is calculated to
NNLO using Top++2.0 [83]. The leading order tt Feynman diagrams are shown in Figure
4.5. The cross-sections of single-top production channels are calculated to NNLL accuracy
following the standard procedure [55,56]. The leading order single-top Feynman diagrams are
shown in Figure 4.6. Different simulations are generated for s-channel and t-channel produc-
tion through the exchange of a W± boson. A sample is produced for single-top production
in association with a W± as well.

The final background simulations are composed of the diboson processes WZ and ZZ

with leptonic decays. These are produced with Sherpa 2.2.1 (for quark decays) and Sherpa
2.2.2 (for fully leptonic decays) and the NNPDF3.0 PDF. Some number of fully or partially
leptonic decays of the diboson final state are simulated in order to be considered as an
additional background. One set of simulations simulates ZZ → qq`` and WZ → qq``

events, while a second set simulates events with ````, ```ν, and ``νν final states [84]. The
purely leptonic ```` originates from two Z decays. This is the primary background in the
4-lepton categories and shares a very similar topology to ZH. For completeness, the ZZ

decay to ``νν is simulated as well. The production of WZ ```ν is the primary background
for several 3-lepton categories. The leading order diboson Feynman diagrams are shown in
Figure 4.4.

Signal simulations are produced based on the dominant Higgs production mechanisms
listed in Table 4.1. Most simulations are simulated with a Higgs mass set to 125 GeV using
Powheg-Box v2 and the PDF4LHC15 PDF. The exception is ttH, which is produced with
MadGraph5_aMC@NLO and the NNPDF3.0NLO PDF. The precision ranges from NNLO
in QCD for the ggF, to NLO for the VBF, VH, and ttH mechanisms. The contribution of
gg → ZH is simulated at LO.

A.3 Kinematic Distributions

The pre-cut categories defined in Section A.1 are illustrated here with the aid of the simu-
lated signal and background simulations. The mass distributions are presented in Figure 6.5.
These provide an illustration of the composition of the background and signal contributions
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to these categories, as well as the general agreement between data and simulation.
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Figure 6.5: Distributions of mµµ in the 4-lepton (left) and 3-lepton (right)
categories. The binning is adjusted based on the multiplicities of the cat-
egories. The signal distributions, shown in colored lines, are scaled by a
factor of 50 for visibility.

Other kinematic distributions (pT , η, φ) for the selected leptons are illustrated in Figures
6.6 to 6.9. The muon candidates for the Higgs are called µ1 and µ2 in descending order of
pT . Likewise, for the 4-lepton category, the selected leptons for the Z candidate are named
`1 and `2 again in descending order of pT .
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Figure 6.6: Kinematic plots showing pT , η, and φ distributions for the H
candidate muons from the 3-lepton selection.
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Figure 6.7: Kinematic plots showing pT , η, and φ distributions for the
additional lepton/W candidate for the 3-lepton selection.
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Figure 6.8: Kinematic plots showing pT , η, and φ distributions for the H
candidate muons from the 4-lepton selection.
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Figure 6.9: Kinematic plots showing pT , η, and φ distributions for the Z
candidate leptons from the 4-lepton selection.
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B Multivariate Categorization

The events belonging to the inclusive 3-lepton and 4-lepton categories are further divided
into exclusive sub-categories. The definition of the exclusive categories is based on a multi-
variate discriminant that is a function of several kinematic variables. The discriminant for
classification is calculated using a boosted decision tree (BDT). This is a function of event
kinematics that is defined to identify signal-like events from the larger set of background-
like events. It is derived based on the available information about signal and background
kinematics from simulation. This derivation, or training, is performed by fitting the free
parameters of the BDT to the available information.
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vi>avj<b
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B
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(a)

vi>a

vi>a

f1(xi) f2(xi) f3(xi)
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vi>a

...++

(b)

Figure 6.10: Figure (a) schematizes an individual decision tree, where in
boolean splits based on the value of variables v result in a categorization
of signal or data as output. In a CART, the output is replaced by a con-
tinuous weight encoding “signal-like” versus “background-like”. Figure (b)
schematizes an ensemble of trees with different topologies, each defining an
output function.

The information available for the training consists of datasets of n entries and m variables
The multi-dimensional entries xi i ∈ [1, ..., n] are labeled as either signal or background with
yi. The elements of xi are variables vj j ∈ [1, ...,m]. The BDT is composed by of ensemble
of decision trees. A decision tree maps an entry of the dataset xi onto a discrete output
space, such as a signal-vs-background likelihood. Each node of the tree may represent a
binary decision, or split, based on the variables of the entry. Alternatively, the nodes with
no children (leaves) may represent a decision, as illustrated in Figure 6.10a. A generalization
of a decision tree that assigns continuous weights to each leaf is a classification and regression
tree (CART). A tree can be trained to map a set of input entries xi onto their corresponding
labels yi by treating the distributions of input variables as PDFs and selecting splits (a, b,
...) that result in the highest output fidelity. A single CART tends to struggle to represent
the complexity of simulated physics datasets succinctly. This performance can be augmented
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by an ensemble of CARTs labeled k, each with an output function fk(xi) as illustrated in
Figure 6.10a. The output functions act as a model of the provided dataset. The sum of the
CART output functions defines a new ensemble output function f(xi) = ŷi, also called the
discriminant score.

The training strategy is to develop an ensemble whose output functions accurately predict
the corresponding label yi for unseen events. This is quantified by a regularized loss function,

L(φ) =
∑

i

l(ŷi, yi), (6.3)

where l measures the difference between ŷi and yi. A process is defined to select trees, splits,
and weights to minimize Equation 6.3.

The algorithm of boosting is employed to minimize such loss functions by improving
on the capability of a single CART. It consists of iteratively expanding an ensemble of
trees, with each addition addressing the mis-categorization of the previous ensemble. One
algorithm, AdaBoost, performs this task by iteratively reweighting poorly categorized entries
to be more important to the following tree. Another algorithm, Gradient Boosting, instead
adds trees that are trained on the previous ensemble’s poorly categorized entries. Both of
these algorithms played a role in the development of the analysis. A descendent of AdaBoost
and Gradient Boosting is XGBoost, which introduces a modified loss function,

L(φ) =
∑

i

l(ŷi, yi) +
∑

k

Ω(fk). (6.4)

In Equation 6.4, Ω is a measure of the complexity a tree. The XGBoost algorithm iteratively
adds trees of diminishing weights, shrinking their importance by a constant factor. It also
introduces procedures to more quickly add and remove branches from trees while fitting the
loss function. These result in an accurate and reliable output function that can be trained
quickly. The XGBoost algorithm was selected to construct the multivariate discriminant
functions that are used in this analysis. [85]

It is a general goal to understand the underlying probability distributions that have
produced a dataset, rather than of the dataset itself. This applies to tasks such as training
BDTs to discriminate signal from background, as well as fitting a functional form to data
to model a background distribution. In both cases, the analytic model is interpreted as
knowledge of these underlying distributions. When solving an optimization problem such
as those posed in Equations 6.3 and 6.4, the minimization algorithm has only the dataset
at its disposal. This can lead to over-training or over-fitting, where the optimization of
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the loss function tunes the discriminant to the features of a particular dataset rather than
the features of the underlying distributions. This problem tends to grow in step with the
complexity of the model. It is combatted, in part, by penalizing the optimization by the
complexity of the model; the Ω function of Equation 6.4 is one such example.

Over-training may have two important and detrimental effects. The first is to reduce
the efficacy of the discriminant when applied to a new dataset. Although this impacts the
performance of the analysis, it does not necessarily invalidate the results by the introduction
of bias. The greater danger to the integrity of the analysis arises when the performance of
the discriminant is inaccurately measured. This second effect is illustrated in the following
example. Suppose a BDT is trained to identify signal events from a simulated dataset, and
the same dataset is used to predict the number of signal events to expect in observed data.
A signal-rich category is defined based on the discriminant score for events. In this case,
simulated signal events tend to be over-represented in the category. The BDT will identify
simulated signal events with higher efficiency compared to signal in the data, leasing to an
unconstrained uncertainty on the expected signal. Unlike the first effect, this type of error
invalidates the double use of the training simulation for further measurements.
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Figure 6.11: The top row, p0, shows an schematization of a dataset divided
into five subsets with k-fold split with k = 5. The blue boxes represent sets
to be used for training, the green boxes for validation, the red boxes for
testing. Five permutations of these assignments, pi, are shown for the same
dataset. In cross-validation, a separate MVA is fit to each permutation, such
that each entry of the full dataset belongs to the testing set for a particular
MVA.

The problem of over-training is mitigated by introducing a k-fold split of the available
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simulated datasets into a number, k > 2, of subsets of similar multiplicity. One subset is
labeled as the “testing” set, and another is labeled as a “validation” set. The remaining
subsets are combined as a “training” set. This is illustrated in the top of Figure 6.11. The
BDT algorithm is deployed on the training set, and further predictions with respect to the
simulation are performed with the testing set. Since the testing set has not been exposed to
the BDT during training, there is no direct risk of over-training of the discriminant scores
in the testing set. There remains the issue of selecting thresholds that define the signal-rich
category to optimize, for example, the expected sensitivity. This choice is subject to the same
concerns about over-training as the selection of trees during the training phase. A third set,
the validation set, is defined orthogonally to both the training and testing sets. This set is
used to study the convergence of the training process, check for over-training effects that may
reduce sensitivity, and, most importantly, to choose the discriminant thresholds for further
categorization.

The final consideration is to inefficiency that such a division of the simulation set entails.
Simulated events are computationally expensive to produce. A cross-validation scheme calls
for the permutation of each of the k subdivisions, such that each event appears once in a test
set, available for further analysis. This is shown in Figure 6.11. A separate BDT is trained
with the training set from each permutation. This means that each event in the full dataset
has one discriminant score from a BDT for which it is in the testing set, one for which it
is in the validation set, and k − 2 for which it was in the training set. The scores from the
BDT for which an event was in the testing and validation sets are the testing and validation
scores, respectively.

B.1 Configuration

Separate classifiers are trained for 3-lepton and 4-lepton categories, but there are many
similarities between these. A 5-fold splitting of the available signal and background simu-
lation is used. It is important to note that the testing set remains blinded until all choices
related to the categorization channels have been fixed. The output of the BDT on the testing
set is final, and it is essential to refrain from making choices related to the procedure based
on the testing set. A cyclic permutation of the 5-fold splitting is used, such that a separate
BDT is trained for each fifth of the total simulation.

Each BDT is trained using the simulated background, in which all background com-
ponents are included. The signal for the 4-lepton BDTs are the qqZH samples, while the
signal for the 3-lepton BDTs are the W±H samples. The per-event weights arising from
scale factors and reweighing, along with the event corresponding to the campaign luminos-
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ity, cross-section, are provided to the BDT. Negatively weighted events are removed, and
the signal and background weights are both normalized. The numbers of available simulated
events for training are shown in table 6.7.

Table 6.7: Numbers of simulated events available for training, both in the
full simulation, and the 3/5 training sets statistics.

Simulation Total Events Training Events
4-lepton signal 20700 12508
4-lepton background 88314 53081
3-lepton signal 134936 80962
3-lepton background 185286 111107

The set of variables provided as input for the BDT was chosen from a broader set of
candidate variables with physical motivations. This set was reduced in the order of ascending
feature importance, defined as the number of times the variable is used for a decision node,
weighted by the number of events categorized by the node during training. The reduction
continued until the performance of the BDT began to decline. Different variables are defined
based on the different final state topologies in the inclusive 4-lepton and 3-lepton categories.
The variables for each are listed in Table 6.8.

The feature importances for each training case are listed in Tables 6.9 and 6.10. In the 4-
lepton case, the most important variable is the mass of the Z candidate, which helps identify
the signal. In the 3-lepton case, the most important variable is the number of jets, which
helps especially to separate out top quark backgrounds.

The performance of a BDT is measured using the validation scores of the receiver oper-
ator curve (ROC). The ROC is a parametric function of the BDT discriminant, plotted as
the rate of correct signal categorizations (true positive rate) compared to the rate of false
categorization of background as signal (false positive rate). This is plotted in Figure 6.12 for
a number of discriminant thresholds that define signal versus background. A figure of merit
used to evaluate the ROC is area-under-curve (AUC). These show comparable performance
for the BDTs of both categories and the impact of the relatively limited statistics of the
4-lepton sample. As a cross check, the ROC curve for the training set is plotted along with
the validation set. The agreement between these, within statistical uncertainty, does not
indicate clear over-training effects. The signal and background samples shown in the ROC
plots correspond to the same samples used for the training; only WH and ZH signals are
used in the definition of the ROC.
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Table 6.8: Variable names and definitions used training the 3-lepton (3`)
and 4-lepton (4`) BDTs. The second column indicates the BDT in which
the variable was used, based on the lepton category number.

Variable Used for BDT Definition
mT (Emiss

T , l1) 3` Transverse mass of the W candidate lepton and Emiss
T

∆φ(Emiss
T , H) 3` φ between Emiss

T and the H candidate
Emiss

T 3` Missing transverse momentum
pl1

T 3` W candidate lepton pT

∆φ(l1, H) 3` ∆ φ between H candidate and W candidate lepton
∆η(l1, H) 3` ∆ η between H candidate and W candidate lepton
pj1

T 3` and 4` pT of leading jet (if present)
Njets 3` and 4` Number of jets
pj2

T 4` pT of subleading jet (if present)
∆φ(l1, l2) 4` ∆ φ between the leptons paired for the Z candidate
∆φ(Z,H) 4` ∆ φ between H candidate and Z candidate
∆η(Z,H) 4` ∆ η between H candidate and Z candidate
mZ 4` Z candidate mass
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Figure 6.12: 4 lepton (left) and 3 lepton (right) ROC curves for representa-
tive BDT’s. Shown in black is the curve for the training set, while red shows
the curve for the validation set (labeled test set). Error bars are statistical
uncertainties due to the size of the training and validation datasets. The
AUC is labeled on each plot.
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Figure 6.13: Training variables provided as input for the for the 3-lepton
classifier. The signal distribution shown in red is comprised of the sim-
ulated WH signal dataset, while the background distribution contains all
background production modes shown in blue. Data distributions are in-
cluded in black. Each distribution is normalized, and the error bars on each
histogram are statistical only.
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Figure 6.14: Training variables provided as input for the for the 4-lepton
classifier. The signal distribution shown in red is comprised of the sim-
ulated ZH signal dataset, while the background distribution contains all
background production modes shown in blue. Data distributions are in-
cluded in black. Each distribution is normalized, and the error bars on each
histogram are statistical only.
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Table 6.9: Feature importance for the 3-lepton BDTs. The values shown
are the feature importances normalized to the highest-importance variable.
Values are given for individual BDTs along with a combined weight based on
the sum across BDTs. The most important variable is the jet multiplicity.

Variable BDT1 BDT2 BDT3 BDT4 Combined
N Jets 1.00 1.00 1.00 1.00 1.00
pj1

T 0.38 0.42 0.34 0.31 0.36
∆η(l1, H) 0.16 0.18 0.16 0.15 0.17
pl1

T 0.12 0.13 0.14 0.13 0.14
Emiss

T 0.14 0.13 0.13 0.12 0.13
∆φ(Emiss

T , H) 0.09 0.08 0.10 0.10 0.09
m

l1,Emiss
T

T 0.08 0.09 0.09 0.09 0.09
∆φ(l1, H) 0.08 0.06 0.06 0.07 0.08

Table 6.10: Feature importance for the 4-lepton BDTs, in the format of
table 6.9. The most important variable is the Z candidate mass.

Variable BDT1 BDT2 BDT3 BDT4 Combined
mZ 1.00 0.79 0.67 0.78 1.00
N Jets 0.99 1.00 1.00 1.00 0.89
pj1

T 0.78 0.44 0.19 0.25 0.60
∆η(Z,H) 0.45 0.39 0.37 0.51 0.55
pj2

T 0.12 0.41 0.49 0.58 0.31
∆φ(l1, l2) 0.30 0.19 0.18 0.23 0.29
∆φ(Z,H) 0.28 0.19 0.19 0.21 0.23
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Figure 6.15 shows the BDT discriminant calculated in different categories and scaled by
the samples cross-section and luminosity. The signal and background composition is more
apparent in these plots: primarily, the target signal production mechanism is separated from
other signals. The top backgrounds are particularly well separated owing in part to the high
statistics available for these samples in the training sets.
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Figure 6.15: 4-lepton (left) and 3-lepton (right) distributions of the BDT
discriminant, using the final test scores. The simulated background is shown
in shaded grey, while the signal distributions are drawn as lines in red for
ZH and orange for WH. The remaining non-VH production mechanisms
(ggF, VBF, and ttH) are combined and plotted as a dark grey line. All the
signal histograms have been scaled by a factor of 50 to enhance visibility.
It is observed that the score separates the signal to the left and background
to the right. Of similar importance is that it specifically isolates the VH
signal of interest and not the other signal productions. For 4-lepton this
is the ZH signal and for 3-lepton this is the WH signal. Vertical dotted
lines indicate the values that delineate which events belong in which final
categories. The full dataset is included as well, which is used to fix the
normalization of the background.
The 3-lepton discriminant separates signal from background to a higher
degree than does the 4-lepton discriminant. This is due in part to the stricter
4-lepton event selection, which can remove many more “easily” separable
background events. The remaining events are more similar, topologically,
to the ZH signal.
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B.2 Categorization

The event selection results in two inclusive categories distinguished by lepton number:
the 4-lepton and 3-lepton categories. These selections are further divided into exclusive
categories based on the relative purity of the signal. This subsequent division is based on
the BDT discriminant scores for each event. The 4-lepton category is divided once into low-
purity and high-purity categories. The 3-lepton category, with a greater event multiplicity,
is divided into low-, medium-, and high-purity categories.

Each event belongs to both a validation dataset and a testing dataset, each of which has
an associated discriminant score. The validation scores are considered when selecting the
score thresholds delineating categories. The testing scores are used for the final hypothesis
test and limit setting. An optimization scan over various thresholds of the expected signifi-
cance determines the threshold values. The thresholds are selected in order to produce the
highest expected significance, based on the validation scores. These thresholds are specified
in Table 6.11.

Table 6.11: Category definitions based on the ranges of the discriminant
value O. The output of the BDT is scaled such that O ∈ [0, 1], with higher
numbers corresponding to VH-like events.

Inclusive Category Exclusive Category Criteria

4-Lepton High-purity O ≥ 0.12
Low-purity O < 0.12

3-Lepton
High-purity O ≥ 0.72

Middle-purity 0.10 ≥ O < 0.72
Low-purity O < 0.10

To first choose the thresholds using the testing set and then perform a hypothesis test
in categories defined by that threshold would lead to a misleading signal and background
expectation in those categories. The choice of threshold would be biased to the statistical
fluctuations in the test dataset. This results in categories biased to contain more simulated
signal events and fewer simulated background events than would be expected in the data.
Since the analysis of the data includes the signal model based on simulation, such a method
is unacceptable.
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Figure 6.16: Distributions of mµµ in the 4-lepton (top) and 3-lepton (bot-
tom) selections after categorization based on a cut on the BDT discriminant
score.
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The high and middle-purity categories are considered for further analysis. The low-purity
events, containing few expected signal events, are only analyzed in the inclusive categories
defined prior to BDT cut. The distributions of mµµ are shown in Figures 6.5 and 6.16.
The former shows the inclusive distribution before further categorization with the BDT
discriminant. The latter shows the distributions in the categories defined in Table 6.11. The
motivation to use the discriminant becomes apparent in these plots when compared to Figure
6.5. In both the 4-lepton and 3-lepton high-purity categories, Drell-Yan production has been
virtually removed. The background remaining is primarily from diboson sources. The signal
selection purity is also evident in the high-purity categories: these produce homogeneous
selections of events from ZH or WH productions, depending on their target.

C Background Modeling

The results of this analysis are based on a comparison between signal and background
hypotheses. The simulated background distributions provide a powerful tool to understand
the composition and kinematics of the backgrounds in each category. These also provide a
possible definition for a background hypothesis, but this definition imports many theoreti-
cal assumptions. Instead, an analytic background is developed from the data by fitting a
functional form to the observation.

The Figures 6.5 and 6.16 show the mµµ shapes of the simulated background distributions
in the pre-cut and post-cut categories respectively. In all cases, the background is character-
ized by a steeply falling mµµ distribution with substantial contributions from Z processes.
This motivates the inclusion of a Breit-Wigner shape in the functional form with the param-
eters of the Z boson. It is also important for the form to be flexible enough to describe the
underlying background distribution without being flexible enough to describe the observed
dataset’s statistical fluctuations. This motivates the inclusion of an exponential term that
introduces only one flexible parameter. The function chosen is defined in Equation 6.5.

fB(mµµ) = (1 − a) × [fBW,Z ⊗ Gaus()] + a× exp
{
b× mµµ − 110 GeV

160 GeV

}
(6.5)

Here, mµµ is the invariant-mass of the Higgs candidate dimuon, in GeV. The Breit-Wigner
function, fBW,Z (defined in Equation 4.10), uses the Z mass mBW = 91.2 GeV and width
ΓBW = 2.49 GeV. It is convolved with a Gaussian, the product of which is a Voigtian shape.
The Gaussian helps describe detector resolution effects and is centered at mµµ with a width
2 GeV. Two parameters are left to be determined by their agreement to the data. The
first, a ∈ [0, 1], represents the fraction of the background made of Breit-Wigner compared
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to the exponential term. The second, b, determines the decent of the exponential term.
Equation 6.5 is used to define a probability density function (PDF) over m`` from which
observed events may have been sampled. When it is used to model the dataset, the PDF is
normalized to the number of events in the dataset by a coefficient. Since this coefficient is a
function of a and b, and it does not impact the shape of the distribution, it is suppressed.

The procedure to determine the free parameters is referred to as fitting the functional
form to the observed data. The minuit algorithm [86] is used to adjust the free parameters
in order to maximize the likelihood that the observed data could be generated by the PDF.
This is performed in each category, and the resulting parameters are given in Table 6.12.

Table 6.12: Values of a and b fitted to the data in pre-cut (top) and post-cut
(bottom) categories. Uncertainties are the statistical constraint of the fit. In
the case of the lower multiplicity 4-lepton categories, the constraints on the
parameters are ∼ 60% correlated, and one of them could be fixed. However
this results in a biased estimate of the signal contribution, described in the
following section.

Category a b

3-lepton 0.96±0.13 -5.08±0.61
4-lepton 1.00±1.00 -5.75±1.17
4-lepton High Purity 0.36±0.66 -4.53±15.06
3-lepton High Purity 1.00±0.15 -6.13±1.01
3-lepton Low Purity 0.95±0.15 -4.99±0.68

The functional form in Equation 6.5 along with the numbers in Table 6.12 define the
background hypotheses for each category. One prediction of these hypotheses are frequencies
of events with respect to invariant-masses mµµ ∈ [110, 160] GeV. This is derived from the
fitted PDF, normalized to data normalized to the number of observed events in sideband
invariant-mass regions; the sidebands consist of events with invariant-masses that fall in
[110, 120] GeV or [130, 160] GeV. Another prediction is the number of events with invariant-
masses that fall in a restricted signal region, mµµ ∈ [120, 130] GeV. This is derived from the
PDF, normalized to the side-band data, and integrated in the signal region.

D Signal Modeling

This section describes the signal contribution to the various categories defined in Section
B. The expected signal contribution in each category is modeled in the mµµ distribution
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with the simulated datasets described in Section A.2. As the production mechanism is
essentially indistinguishable in terms of signal shape, no further effort is made to separate
events originating from VH mechanisms from ggF, VBF, or ttH mechanisms. From this
point, the ensemble of production mechanisms is combined and referred to as signal.

An empirical functional form is used to parameterize the shape of the signal distribution.
The natural width of the Higgs decay (ΓH ≈ 4 MeV) is too small to resolve at ATLAS. The
signal shape is consequently determined by the momentum resolution for muons. As such, a
reasonable choice of function is the double sided Crystal Ball (CB) given in Equation 6.6.

fS(mµµ) =

CBhigh(αhigh, nhigh, σ, x̄) for mµµ > x̄

CBlow(αlow, nlow, σ, x̄) for mµµ <= x̄
(6.6)

Here, αlow and αhigh values are the cross-over value for the high and low CB functions. The
other parameters are the shared mean and width of the CB functions, x̄ and σ, while nlow

and nhigh are the powers for the power-law tails of the high and low CB functions. The CB
function itself is defined in Equation 6.7.

CB(x, α, n, x̄, σ) =

exp
{
− (x−x̄)2

2σ2

}
for (x−x̄)

2σ
> −α(

n
|α|

)n
exp

{
− |α|

2

} (
n

|α| − |α|
)−n

otherwise
(6.7)

The CB function is normalized when treated as a PDF. In the signal model, the normalization
is scaled to match the expected number of signal events.

The following diagrams in Figure 6.17 show fits of the signal model to the simulated
distribution, both before and after categorization with the BDT score. The corresponding
fitted values of signal model parameters parameters are listed in Table 6.13.

D.1 Signal+Background Model

It is helpful to define the predictions of various “signal+background” (S+B) hypothe-
ses. This combines the signal prediction from Equation 6.6 with the background prediction
in Equation 6.5. The Standard Model predicts a particular signal multiplicity, NSM . The
relative amplitude of the signal compared to the prediction of the Standard Model is de-
fined as the signal strength, µS. A range of S+B hypotheses are possible, labeled by the
signal strength. For example, µS =1 describes a hypothesis with the Standard Model signal
strength, while µS =0 describes a “background-only” (B) hypothesis.

The S+B hypothesis predicts the relative frequency of events as a function of mµµ. It is
defined in Equation 6.8 as the sum of the normalized signal shape PDF fS(mµµ), and the
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Figure 6.17: Fits of the signal model to the simulated signal in each cate-
gories. On top, (a) shows 3-lepton and (b) shows 4-lepton inclusive cate-
gories. Below, (c and d) show 3-lepton HP and MP, and (e) shows 4-lepton
LP. The blue line shows the fitted signal function, while the black dots show
the simulation with statistical errors.

Table 6.13: Parameters of the signal model fit to simulation.

Parameter 4-lepton 3-lepton 4-lepton HP 3-lepton LP 3-lepton HP

αlow 1.11 1.32 1.15 1.36 1.33
nhigh 15.65 26.93 13.68 23.92 58.46
x̄ 124.5 124.5 124.4 124.5 124.5
αhigh 1.43 1.48 1.51 1.50 1.41
σ 2.79 2.91 2.84 2.88 2.92
nlow 4.59 2.67 4.94 2.04 2.94
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normalized background PDF fB(mµµ).

fS+B(mµµ) = NS × fS(mµµ) +NB × fB(mµµ) (6.8)

There are three free parameters in Equation 6.8: the shape parameters a and b that describe
the background, and NS ≡ µS × NSM where µS is free. Each of these may be adjusted
by minuit to fit the data distribution in each category. The overall normalization of the
function, when treated as a PDF, is normalized as was the case with the background-only
function.

In the case that a strong signal is not observed in the data, it is still possible to consider
which S+B hypotheses are compatible and incompatible with the observation. In this case,
some set of hypotheses are considered excluded to a particular confidence level. To this end,
an S+B hypothesis is defined by a fixed µS, and free parameters a and b.

E Uncertainties

E.1 Uncertainty of background model

The background model fB(mµµ) described in Section C provides an estimate of back-
ground multiplicity in mµµ ∈ [120, 130] GeV based on a fit to data. This estimate is subject
to particular statistical sampling that has produced observed data, impacting the resulting
fitted function. The degree to which such fluctuations result in changes to the estimated
background defines an uncertainty σb on that estimate.

The procedure to estimate σb is based on fits to an ensemble of pseudo-datasets. First,
the data distribution is fit following the procedure in Section C in order to produce a nominal
PDF shape. Then, the nominal PDF is randomly sampled to produce a pseudo-dataset of
observations with the same multiplicity as the observed data. Each pseudo-dataset is fit
by the fB(mµµ), and the background expectation is computed. The standard deviation of
background expectations from all the pseudo-datasets is a measure of σb.

The uncertainty σb is measured for each of the inclusive and exclusive categories under
analysis. The size of the ensemble of pseudo-toys used is one thousand for each measurement.
The resulting values are listed in Table 6.14.

E.2 Reweighted Background Shape

The division of the inclusive categories into sub-categories based on the MVA discriminant
reduces the number of expected background events in those categories. Simultaneously, this
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Table 6.14: Uncertainties on the number of background events with
invariant-mass in mµµ ∈ [120, 130] GeV.

Category σb [%]
3-Lepton 5.61
4-Lepton 7.80
4-Lepton High-Purity 10.06
3-Lepton High-Purity 8.95
3-Lepton Middle-Purity 6.06

reduces the number of simulated background events that appear in those categories. When
this happens, statistical fluctuations in the simulated background become more significant
compared to the overall size of the dataset, resulting in bumpy mµµ distributions. This
undermines this approximation that the simulated background models the underlying PDF
that generates background events. To counteract this, a reweighting procedure is used to map
the background simulation shape from the inclusive categories onto the exclusive categories
defined after the MVA cuts.

The reweighting procedure is concerned with the differential mµµ shape of the background
in the inclusive categories, Bincl(mµµ), and the exclusive categories, Bexcl(mµµ). The ratio is
defined between these in each of the exclusive categories, R = Bincl(mµµ)

Bexcl(mµµ) . A second degree
polynomial is used to define the PDF in Equation 6.9.

fR(x) =1 + x ∗ c0 + c1 ∗ (x)2

x =mµµ − 110
50

(6.9)

Here, mµµ is measured in GeV. This polynomial has two free parameters c0 and c1, as well
as the overall normalization. The Equation 6.9 is fit to the ratio R for each of the exclusive
categories.

Figure 6.18 shows the reweighting procedure applied to the simulated diboson background
in each category. First the polynomial of Equation 6.9 is fit to the ratio R in each category.
These ratios are shown in the lower half of the figures in red. The inverse of the polynomial
is then convolved with the exclusive distribution, shown in red, to produce a shape similar
to the exclusive distribution, shown in blue. The reweighted shape, shown in black dots,
conforms to the shape of the exclusive distribution. The reweighted shape is also smoother
than the exclusive simulation shape due to the larger number of events present in its dataset.
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Figure 6.18: Illustration of the steps of the reweighting procedure shown for
the exclusive categories: 4-lepton high-purity (a), 3-lepton high-purity (b),
and 3-lepton high-purity (c).

This feature will be helpful in the subsequent measurements of uncertainties.

E.3 Spurious Signal Uncertainty

When the S+B model of Equation 6.8 is fit to a dataset, the fitted value of µS is the
signal strength for which the dataset is most likely. This is interpreted as a measure of the
signal strength found in that dataset. 1 When fit to the underlying background PDF, it is
ideal for signal strength to be measured at µS =0. A deviation from this corresponds to the
spurious measurement of signal in a dataset in which it does not exist. This bias is named
spurious signal, or Nss, and is the dominant uncertainty associated with this analysis.

It is not a straightforward task to measure the spurious signal associated with a model
because the underlying background distributions are unknown. An approximation of Nss may
be made from the µS measured when fitting the S+B model to the simulated background
dataset. This makes the implicit assumption that the discretely simulated dataset accurately
represents the true underlying background PDF. Statistical fluctuations in the simulated
background limit the accuracy of this assumption. Instead, fits of the model to the simulated
background shape are interpreted as upper limits on the size of Nss, since the recovered µS

includes both the true Nss as well as a measurement of the statistical power of the simulation.
Therefore instead of measuring Nss, a procedure is designed to constrain the size of the
spurious signal.

The result of fitting the S+B model to the background simulation depends strongly on the
number of events simulated with invariant mass mµµ =125 GeV. This is because the signal

1The distinction is subtle, but essential in frequentest statistics.
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Figure 6.19: Measurements of the spurious signal relative to the statistical
uncertainty on that measurement, Nss/dS, shown as a function of signal
mass mµµ. The measurements are shown in three exclusive categories: 4-
lepton high-purity (a), 3-lepton high-purity (b), and 3-lepton high-purity
(c). The measurements are made both on the smoothed reweighted back-
ground distributions (blue), and the fully simulated background distribu-
tions (red). The improvement when using the reweighted distribution is
evident in the smaller measured spurious signals.

component of that model peaks sharply in that region. Since this number of events is subject
to statistical fluctuations, the measured Nss is subject to these. The statistical fluctuations
may act to counterbalance the true Nss, resulting in an underestimate of the spurious signal.
A series of alternative S+B models are defined with identical signal components offset by
some invariant mass to avoid this. These are produced with peaks in the range mµµ ∈
[120, 130] GeV. Each S+B model is fit to the same background distribution, which exposes
the signal component to different statistical fluctuations. The relative spurious signal Nss/dS

is defined as the measured µS as a fraction of the statistical constraint on µS. This is plotted
as a function of signal mass mµµ in Figure 6.19. A smooth evolution of the relative spurious
signal is an indication that the Nss is measured consistently.

The plots in Figure 6.19 show the relative spurious signal measured from the simulated
background exclusive categories, using both the fully simulated datasets and the reweighted
datasets described in Section E.2. Here the benefit of using the smoother background rep-
resentation is seen since, in general, the Nss/dS measured on the reweighted distribution
has a smaller magnitude than the fully simulated distribution. The result with the fully
simulated dataset is included for illustration but is not used further. The maximum abso-
lute value of Nss measured in the range mµµ ∈ [120, 130] GeV is taken to define the limit
on the spurious signals. This measurement is performed both in the inclusive and exclusive
categories. These are given in Table 6.15. Together these define the leading uncertainties on

122



the measured signal strength, µS.

Table 6.15: Estimates of the spurious signal in each category. First
max(|Nss/ds|) is the absolute value of the spurious signal divided by the sta-
tistical uncertainty on the measurement, maximized amongst signals with
invariant masses in the range mµµ ∈ [120, 130] GeV. Next max(Nss) provides
the same number without the denominator.

Category max(|Nss/ds|) max(Nss)
3-Lepton 0.391 1.674
4-Lepton 0.114 1.354
3-Lepton High-Purity 0.114 0.458
3-Lepton Middle-Purity 0.357 2.145
4-Lepton High-Purity 0.117 1.108

E.4 Experimental and Theoretical Uncertainties

Uncertainty on the signal simulation arises from limited knowledge of theoretical and
experimental that determine it. The primary consequence of this uncertainty is that the
number of events expected to be reconstructed from the Standard Model VH signal processes
is not precisely known. Theoretical uncertainties cause it to be uncertain how many events
the Standard Model may predict. Experimental uncertainties lead to uncertainty in how
many events may be reconstructed, given the standard model’s prediction. In each case, the
impact on the amplitude of the signal shape in each category is estimated with a comparison
to a signal simulated under a variation corresponding to the theoretical and experimental
uncertainties.

The primary sources of theoretical uncertainty on signal production are well studied
[57]. The largest is on the scale of the strong coupling αs, which leads to changes in the
signal amplitude ranging from 3.1-3.5%. Next is uncertainty due to the choice of the parton
distribution function, with amplitude effects that range from 2.1-2.8%. The uncertainty
on the branching ratio of the Higgs decaying to two muons is 1.23% [57]. These are all
significantly smaller than the spurious signal uncertainty. This analysis is formulated to
make distinctions between signal+background and background-only hypotheses. In this
formulation, there is no uncertainty on the signal model itself, but instead, these uncertainties
describe a range of alternative signal models that may be tested independently.

Experimental uncertainty on signal production dictates the uncertainty in efficiency to

123



reconstruct signal events. Although this is primarily due to systematic uncertainties related
to muon detection, systematics related to election, jet, and Emiss

T are also considered.
The primary uncertainties are related to muon reconstruction. Muon momentum scale

and resolutions are measured by three systematics: MUON_SCALE, MUON_MS, and
MUON_ID. The latter two are uncertainties on the resolutions from the MS and ID mea-
surements. There is also uncertainty on the efficiency of isolation, reconstruction, trigger,
and the track-to-trigger-association (TTVA) [73]. These efficiencies are measurements in
their own right, and the corresponding uncertainties are broken down into systematic (SYS)
and statistical (STAT) uncertainties. Measurements of energy and resolution are modeled
in simulated signal samples based on careful studies [72]. The uncertainties on both energy
and resolution lead to small uncertainties on the signal amplitude. The simulated dataset is
scaled by a factor that reflects the efficiency loss due to pileup effects in data. This intro-
duces a systematic uncertainty called Pile Up Reweighting. Uncertainties on the scale and
resolution of Emiss

T are measured as well. The uncertainties related to jets impact signal yields
primarily through the b-jet veto. These depend on b-tagging efficiency, the uncertainty in
the number of tracks associated with the jets, and the jet reconstruction efficiency, energy
scale, and resolution. These are summed in quadrature and counted as a combined “jet”
systematic.

These are summarized in Table 6.16. Each number describes the impact on the signal
amplitude due to a 1σ shift in the corresponding experimental quantity in the simulation.
The combined experimental uncertainties are substantially smaller than the spurious signal
uncertainty.

Finally, the uncertainty on the integrated luminosity of the dataset is 2.7% [87].
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Table 6.16: Experimental systematic uncertainties on the fractional change
induced by a systematic on the signal yield in a specific category.

Systematic Uncertainty 4-Lepton
High-Purity [%]

3-Lepton
High-Purity [%]

3-Lepton
Middle-Purity [%]

Muon ISO Efficiency STAT 0.04 0.04 0.03
Muon ISO Efficiency SYS 0.41 0.42 0.42
Muon RECO Efficiency STAT 0.18 0.18 0.18
Muon RECO Efficiency SYS 0.78 0.78 0.72
Muon Trigger Efficiency STAT 0.09 0.12 0.12
Muon Trigger Efficiency SYS 0.16 0.21 0.23
Muon TTVA Efficiency STAT 0.04 0.04 0.04
Muon TTVA Efficiency SYS 0.01 0.01 0.01
Muon ID -0.00 -0.04 -0.04
Muon MS -0.04 -0.00 -0.01
Muon SCALE -0.08 -0.11 -0.07

Electron Resolution 0.04 -0.07 0.09
Electron Scale 0.06 -0.07 0.13

Jet 0.64 5.06 1.80
Emiss

T 0.03 0.30 0.11
Pile Up Reweighting -0.64 -1.16 0.34

Total 1.30 5.28 2.05
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F Statistical Analysis

This section details the statistical framework used to evaluate various hypotheses given
the observed data. The basis for the concepts discussed here is more precisely defined in
Section F. The background-only (B-only) model described in Section C and the signal+back-
ground model (S+B) described in Section D can be used to make predictions about the mµµ

distribution and multiplicity of observed events. Each prediction defines a hypothesis whose
plausibility may be evaluated, given its agreement with the observation. These hypotheses
are used for two purposes: measuring significances and setting limits on a parameter of
interest (POI). A slightly different type of hypothesis is defined for each purpose.

The first type of hypothesis predicts the event multiplicity in the invariant-mass range
mµµ ∈ [120, 130] GeV where the VH signal is expected to be present. The prediction is based
on the B-only function described in Equation 6.5, normalized to the observed data outside
the [120, 130] GeV window. The integral of the function within [120, 130] GeV defines the
number of background events Nb predicted with masses in that region. The uncertainty
on this prediction is σb as specified in Table 6.14. This hypothesis is a background-only
hypothesis without a signal component. The likelihood to observe a particular number of
events in this region is determined by the PDF given in Equation 6.10.

PDFb(~θ) =Pois((1 + θb) ×Nb) × Gaus(θb, σb)
(6.10)

The function Pois(Nexp) is the Poisson probability distributions with medians Nexp. The
number of expected events is modified by the nuisance parameter θb that is fit to the obser-
vation. The Gaussian term provides a constraint on the values that θb can take, determined
by the corresponding uncertainty σb.

The shape of the PDF is calculated numerically. For a given number of observed events,
the integral of the PDF for values above the observation is defined as observation’s p-value.
The background significance of a p-value is defined as the inverse of the cumulative distri-
bution function of the upper tail of the normal distribution. Together, the p-value and the
significance calculation reflect on the probability of having made a particular observation
given the B-only hypothesis. If this probability is below an arbitrary threshold, then the
B-only hypothesis is said to be incompatible with the observation to that threshold.

The second type of hypothesis predicts the differential mµµ shape in the invariant-mass
range mµµ ∈ [110, 160] GeV. First, a B-only hypothesis is defined based on the differential
shape of the B-only function. Additionally, an S+B hypothesis is defined based on the
corresponding shape of the S+B model described in Equation 6.8. The signal strength µS in
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the S+B model is the POI and defines a set of S+B hypotheses of varying signal amplitudes.
In addition to the POI signal strength µS, the spurious signal uncertainty from Table 6.15
and the experimental uncertainty from Table 6.16 constrain nuisance parameters that may
enhance or reduce the signal component in the model. A comparison is made between the two
hypotheses using the CLs method described fully in Section F. This produces a likelihood
of the S+B model relative to the B-only model. Limits are set on the POI at the point
where the corresponding S+B model has been found to be incompatible with the observed
data. The incompatibility threshold is defined by convention when the S+B model has been
rejected with 95% confidence.

G Results

G.1 Significance

The observed data is fit with the B-only and S+B models. The event multiplicity in the
invariant-mass range mµµ ∈ [120, 130] GeV is of principle interest, as this region contains the
majority of the VH produced events. The observed yields are provided in Table 6.17. The
number of expected background events, based on the B-only model fit in the invariant-mass
sidebands mµµ ∈ [110, 120]∪[130, 160], is listed as well. The first observation is of the excesses
of observed events over the expected events in the inclusive 4-lepton and 3-lepton categories.
These excesses are preserved in the post-cut exclusive categories, with a particular excess in
the 4-lepton high purity category. It is interesting to note that the subsequent measurement
by CMS found a similar excess in leptonic VH events [88].

Table 6.17: Yields of data and expected background counted in invariant-
mass range mµµ ∈ [120, 130] GeV, corresponding to 139 fb−1 of integrated
luminosity. The uncertainties on the background estimate are described in
Section E.1.

Category Data Background
4-Lepton 51 44.5±2.7
3-Lepton 437 402.3±21.0
4-Lepton High-Purity 34 19.1±1.5
3-Lepton High-Purity 41 34.2±2.3
3-Lepton Middle-Purity 358 329.7±18.7

The significances of these observations under the background-only hypothesis are given
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in Table 6.18. The top of the table shows these for the inclusive categories, while the bot-
tom shows values for the exclusive categories. The exclusive and inclusive significance are
separated to emphasize that these observations are correlated. Also listed are the probabil-
ities (p-values) to observe a result more incompatible than the observation, supposing the
background-only hypothesis. The p-values are calculated with a frequentist approach. An
ensemble of 100,000 statistical toys are used to estimate the likelihood of observations under
the background-only hypothesis with ensembles of statistical toys.

Table 6.18: Significance and p-values of the observed data yield in mµµ ∈
[120, 130] GeV given the expected background.

Category Significance σ p-value
3-Lepton 0.75 0.23
4-Lepton 0.70 0.24
4-Lepton High Purity 2.47 0.01
3-Lepton High Purity 0.83 0.20
3-Lepton Middle Purity 0.69 0.25

The largest significance is that of the observation in the 4-lepton High-Purity category,
approaching 2.5σ. The combined significance of observations in the inclusive 4-lepton and
3-lepton categories is 1.03σ. As a result of the higher sensitivity of the exclusive categories,
the exclusive observations have a combined significance of 2.70σ. These observations can
be compared to two similar observations. First, the CMS collaboration has reported a
significance in their leptonic VH H → µµ observation with a significance of 2.02σ [88].
Other observations by the ATLAS experiment have been made for VH production in different
Higgs boson decay channels: γγ, ZZ, and bb. These previous observations all report a
modest excesses of events that is compatible at a level of ≈ 1σ with the Standard Model
prediction [10].

G.2 Limits

The observed invariant-mass distributions are shown in Figures 6.20. The S+B model
(Equation 6.8) and B-only (Equation 6.5) models, fit to the data, are shown. The excesses
of events shown in Table 6.17 results in positive measurements of the signal strength, µS, in
each category.

The observed data shown in these figures restrict the plausibility of signal production
mechanisms that predict events produced in the range mµµ ∈ [110, 160]. Exclusion limits are
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Figure 6.20: The S+B (red) and B-only (blue) models fit to data (black).
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set on the largest signal mechanisms that retain compatibility with the data. The Standard
Model VH H → µµ production, scaled by a coefficient µS, is used as a set of benchmark
signal models for this purpose. These limits are set in the fiducial volume defined in Section
A.1, in the invariant-mass range mµµ ∈ [110, 160]. They apply to the production of Higgs-like
signal events in the inclusive and exclusive categories.

Table 6.19: Upper limits set at 95% confidence levels on the signal strength
µS in each of the inclusive (top) and exclusive (bottom) categories. The
signal strength corresponds to a number of signal events NS, and these are
provided as well. These frequentist limits are set with ≈ 50,000 toys.

Category
Upper limit on Nsig Upper limit on µS

Expected Observed Expected Observed

3-Lepton 52.9 110.3 10.7 22.2
4-Lepton 17.1 30.1 24.3 42.6

4-Lepton High Purity 12.7 29.0 20.3 46.1
3-Lepton High Purity 16.0 29.7 9.3 17.3
3-Lepton Middle Purity 47.0 92.4 14.9 29.2

The top half of Table 6.19 reports limits set at 95% confidence level in the inclusive
categories. The fiducial volumes for the inclusive categories specify a multi-lepton phase
space but do not detailed further requirements on the kinematic character of a potential
signal. This makes these limits relatively model-independent and interpretable in terms of
other signal production mechanisms. For this purpose, the limits are provided both on the
signal strength µS for the Standard Model VH, and in terms of the number of signal events,
Nsig.

The bottom half of the Table 6.19 presents limits set in the exclusive categories. The
use of the MVA discriminant in the case of the exclusive categories means that these limits
are only applicable to signal models with the same kinematic distributions as the Standard
Model Higgs. For these, the limits on the Standard Model signal strength are most relevant.

The limits on the Nsig are equivalent to limits on the visible cross-section times branching
ratio, σvisible × BR, times the dataset luminosity. In all cases, the excesses reported in Table
6.17 result in weaker observed limits than expected. The particularly large excess observed
in the 4-lepton high purity category raises the observed limit to over twice the expected
limit.
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G.3 Other production mechanisms

The observations made in the three exclusive VH categories are included in a combined
search for H → µµ that includes categories targeting additional production mechanisms.
In particular, a superset of the VH event selection identifies events with at least dimuon
pair. Events with a b-jet are identified as ttH candidates. Events with two jets and a
kinematic profile that matches simulated VBF production are identified as VBF candidates.
The remaining events are ggH candidates and are separated into zero, one, and two jet
categories. Each category is separated into four sub-categories using an MVA discriminant.
The composition and purity of these categories are illustrated in Figure 6.21. [81]

The combined categories are used to set limits at 95% confidence on the Standard Model
production of H → µµ events. The observed (expected) limit is 2.0 (1.7) times the Standard
Model cross-section times branching ratio, reflecting an overall excess of observed events over
the background prediction in the signal region. This provides a strong hint of the H → µµ

production at the LHC.

G.4 Summary

This chapter presented a search for the rare decay of the Standard Model Higgs boson to
two muons using the VH production channels. This search is challenging on two accounts.
First, tiny branching fraction of the Higgs boson to muons limits the production of events
from such production mechanisms. Second, the large irreducible background of dimuon
events serves to mask the rare signal events. A new strategy is adopted to use the leptonic
final state of VH production. The additional leptons in the final state are used to separate
VH events from the Drell-Yan, diboson, and top backgrounds. This particular phase space
previously had not been investigated by either the ATLAS or CMS collaborations.

Identifying events from V (H → µµ) production is complicated by the small leptonic
branching ratio of the W± and Z bosons. However, making use of the additional kinematic
information from the leptons yields a powerful lever to further reduce backgrounds. A new
set of selection criteria captures as many VH events as possible. Machine-learning methods in
the form of a multivariate analysis discriminant are used to take advantage of the kinematic
information from the W/Z decays. Careful use of k-fold splitting and test/validation/train
designations are introduced to avoid introducing uncontrolled bias.

Moderate excesses are seen above the expected number of events in the three and four
lepton categories. In the inclusive categories the observations remain compatible with the
background-only hypothesis. The combined significance of the inclusive observations is 1.03σ.
In the more sensitive exclusive categories, tension is observed in the 4-lepton high purity
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category and not in the others. Limits are set on VH Higgs-like signal hypotheses. The
strongest expected (observed) limit on leptonic VH production excludes signals down to
10.8 (22.3) times the Standard Model prediction. These limits are the first to be set in this
particular phase space. Limits are set on the numbers of signal events in 3-lepton and 4-
lepton fiducial volumes. These exclude the visible cross-section times branching ratio those
regions above σvisible × BR =0.39 fb and σvisible × BR =0.22 fb, respectively.
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Chapter 7

Search for Non-resonant Signatures
and Contact Interactions

Observations of pairs of leptons, both of electron and muon flavors, offer a clear window
into the dynamics of high energy collisions. The clarity of this window is due to the long
lifetime and ease of detection offered by those leptons. Of particular use is the invariant-mass
spectra of dilepton pairs, which elucidates the possible mechanisms of their production by
means of local enhancements, or resonances. This has proved a useful tool that has been
exploited throughout the history of experimental particle physics. In 1974, a group working
at Brookhaven National Laboratory [89] and another group working at the Stanford Linear
Accelerator Center [90] used the dielectron mass spectrum to independently discover the
J/ψ resonance at mee =3.1 GeV. In 1977, a group working at Fermilab used the dimuon
mass spectrum to discover the Υ resonance at mµµ =9.5 GeV [91]. In 1983, the UA1 group
working at the SPS collider at CERN used both dielectron and dimuon events to detect the
decay of the Z boson at a mass of m`` ≈ 95 GeV [92]. Later in the same year, the UA2
group used dielectron events to produce a measurement of mee =91.9 GeV. The utility of
the dilepton final state is derived from the fact that the final state consisting of two leptons
is fully reconstructible.

The discoveries made with the invariant-mass spectra associate enhancement in rate of
observed events with new mechanisms responsible for the enhancement. These enhancements
may be localized, as is the case for narrow resonances produced by J/ψ decay. Alternatively,
broad enhancements are possible as well; such enhancements, termed non-resonant, are the
focus of this search. 1 The investigation presented in this chapter contemplates the dielectron

1Broad deficits are possible as well; one example is the observations of negative (positive) interference
between γ∗ and Z that changes the forward-backward charge symmetry below (above) the Z mass peak in
electron-positron experiments [93].
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Figure 7.1: The invariant-mass spectra around the Z boson mass peak from
one million collisions with two muons.

and dimuon invariant mass spectra in search for new and broad excesses appearing in the
high mass tail.

Many new physics models beyond the Standard Model predict broad enhancements in
dilepton production. A particularly interesting cause of a non-resonant signature is a contact
interaction (CI) between quarks and leptons at an energy scale exceeding that of the collision
energy. Although direct resonant production is inaccessible, a new contact interaction would
lead to off-shell production and interference with the SM production. This can be caused
by a mediator particle with a mass far above the

√
s =13 TeV collision energies offered by

the LHC. A qq`+`− CI is also interesting because it is a necessary outcome of quarks and
leptons sharing a common substructure [14].

Many new physics models outside the Standard Model predict non-resonant excesses.
To maintain a degree of generality and model independence, the products of this search are
designed to be agnostic as to the underlying mechanism behind the feature. As a result,
when possible, the procedure used to produce results tends to limit or exclude the role played
by signal models. Due to the nature of the chosen analysis strategy, several choices must be
made with respect to the region of date in which the search is conducted. In these cases,
the analysis is designed in order to optimize sensitivity to a generic formulation of contact
interaction that serves as a benchmark. This model dependant optimization remains, for the
greater part, separate from the final results.

This search for contact interactions is carried out using the dielectron and dimuon
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Figure 7.2: A schematic example of the dilepton invariant mass spectrum.
The monotonically falling total background shape is shown by the solid black
line, while the dotted red line shows an example of a CI signal plus the total
background shape. A background model is fit to the data it in a low-mass
control region (shaded blue area) where a potential bias from the presence
of a signal is negligible. The resulting background shape is extrapolated
from the control region into the high-mass signal region (shaded red area).

invariant-mass spectra. Since CI produce final states of the same topology as some SM
backgrounds, the signal production interferes either constructively or destructively with
these backgrounds. In the constructive case, the CI strictly enhances the spectra with a
broad non-resonant shape. In the destructive case, the interference modifies the background
spectra as illustrated in Figure 7.2. Both types of interference are considered in this analysis.

This search is complicated by both experimental and phenomenological challenges. It
involves probing the highest energy regimes and smallest length scales ever accessed by
observation. The first challenge results from the width of the non-resonant shape of interest,
as shown in the red line of Figure 7.2. This shape is qualitatively similar to the shape of the
background, so care must be taken to avoid interpreting an existing signal as background,
thereby losing sensitivity to new physics. The second challenge is the focus on new CI signals
that may manifest themselves in the tail of the invariant-mass spectra. Attention must be
paid to systematic uncertainties in this regime, as well as to the relevant resolution of the
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measured spectra. The third challenge is in modeling statistical knowledge of the background
in signal regions with very low occupancy. The sensitivity of the analysis is similarly impacted
by statistical and experimental uncertainties on the background expectation, as these are of
similar magnitude of the background itself. New techniques are required to properly address
these challenges.

This analysis introduces a number of changes that depart from previous searches. The
result presented here is the first non-resonant dilepton search at the LHC to use a functional
form fit to data to estimate the background, rather than a background estimate derived from
simulated events. This choice removes the dependence of the background on the theoretical
assumptions involved in the simulation process. This is important because these assumptions
are both significant and poorly constrained in the high-mass regime.

The contact interactions that provide a benchmark model predict deviations from the
expected gradient of the high-mass tail of the dilepton mass spectrum; the subtlety of this
effect could easily be masked by a background description of sufficient flexibility to match the
data. Therefore, the background event distribution at high masses is estimated based on a
low-mass control region (CR) where the contribution of the benchmark signals are negligible.
A functional form is fit to the observed data in the CR, and extrapolated to higher masses
to model the production rate of background events. The search is then performed in a
high-mass signal region (SR); here, event production by the benchmark signals is predicted
to dominate over the background production. The arrangement of these mass ranges is
illustrated in Figure 7.2. The extrapolation from CR to SR avoids fitting the data in the
regime where CI signals could potentially perturb the fit. This strategy reduces the impact
of a signal shape, if present in the data, on the fitted background model.

ATLAS measures electron transverse energy, ET, and muon transverse momentum, pT.
Consequently the invariant-mass resolution of dielectron pairs depends on ET resolution.
For high-ET electrons, this grows as a constant fraction of ET. Meanwhile, the invariant-
mass resolution of dimuon pairs depends on pT. As a result, the fractional muon resolution
grows linearly with pT. Both of these resolutions propagate to their respective invariant-
mass spectra. A single-bin SR is used to combat the effects of these resolutions, which are
particularly impactful in the high-mass regime. All events falling within the SR are counted
identically, which mitigates the importance of ET and pT resolution. This approach has the
additional benefit of removing shape information in the signal region, making the results
readily reinterpretable for signal models predicting different non-resonant shapes.

A key part of this analysis is the statistical treatment of the observations. The Bayesian
statistics used in previous ATLAS and CMS searches for CI has been replaced frequentist
statistical framework. This removes the dependence of the result on prior probabilities to
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observe a signal. If the interference between signal and SM processes is not negligible, as is
the case for CI, the choice of one prior over another is poorly motivated [17,94].

Finally, the transition to a background estimation from the data exchanges the systematic
uncertainties in theoretical predictions for statistical uncertainties in data. There are three
new uncertainties that arise from this approach. The dominant uncertainty in the expected
background is due to statistical fluctuations in the CR. Next in importance is the uncertainty
in the degree to which the extrapolation from the CR can produce a background estimate
different from the underlying distribution. Such a difference leads to a signal-like deflection
in the SR. This uncertainty is quantified using the simulated background and the associated
uncertainties. The third and smallest uncertainty describes the impact of potential signal
contamination in the CR.

Two signal regions are considered for each lepton flavor, leading to four signal regions
in total. For each flavor, the first SR extends to relatively lower invariant-mass and targets
CI that interfere constructively with the SM. The second SR remains at relatively high
invariant-mass and targets CI that interfere destructively with the SM. For the latter case,
a gap is left between the CR and SR in order to avoid counting the destructive interference
in the SR, as illustrated in Figure 7.2.

A statistical analysis is performed on the observation in each SR. The first results of
the analysis are limits on the σvisible × BR in each SR, which can readily be reinterpreted in
terms of various new physics models, without limitation to contact interactions. This result
is the first of its kind, and is a new development for non-resonant searches at the LHC. The
second result uses these four signal regions to set limits on CI models. These are produced
to be reinterpretable in terms of arbitrary CI models [95]. The results of this analysis were
published on November 4, 2020 [96].

This chapter describes the ATLAS search for contact interactions using the Run 2 dataset.
Section A discusses the theoretical motivation. Section B describes the selection of data used
for the search. Sections D and C present the signal and background models, respectively.
Next Section E discusses the systematic uncertainties used in the result. Section F details
the statistical analysis of the data. Finally Section G presents the results and Section H
summarizes the analysis.

A Theoretical Motivation for Non-resonance Signatures

The effects of a new interaction may be observed at an energy much lower than that
required to produce direct evidence of the existence of a new gauge boson. The charged weak
interaction responsible for nuclear β decay provides such an example. A non-renormalizable
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description of this process was formulated by Fermi in the form of a four-fermion contact
interaction [97]. A CI can also describe deviations from the SM in proton–proton scattering
due to quark and lepton compositeness, where a characteristic energy scale Λ corresponds
to the binding energy between fermion constituents. The following Lagrangian can describe
a generic qq`+`− contact interaction, including fermion compositeness [14,59];

L = g2

2Λ2 [ ηLL (qLγµqL) (`Lγ
µ`L)

+ηRR (qRγµqR) (`Rγ
µ`R)

+ηLR (qLγµqL) (`Rγ
µ`R)

+ηRL (qRγµqR) (`Lγ
µ`L) ] ,

where g is a coupling constant chosen by convention2 to satisfy g2/4π = 1, Λ is the contact
interaction scale, and qL,R and `L,R are left-handed and right-handed quark and lepton fields,
respectively. The parameters ηij, where i and j may be left (L) or right (R), define the chiral
structure of the new interaction. Different chiral structures are considered by choices of
the coefficients ηij. For example, the left-right model is obtained by setting ηLR = ±1 and
ηRL = ηLL = ηRR = 0. Likewise, the left-left (LL), right-left (RL), and right-right (RR)
chirality models are correspond to Lagrangians with the corresponding ηij set to ±1, and
the remaining ηij = 0. The sign of ηij determines the sign of interference: ηij = −1 results
in constructive interference, while ηij = +1 results in destructive with the Standard Model.

Equation 7.1 becomes more specific in the context of qq`+`− CI searches in dilepton
final states at the LHC. The terms take the form ηij (q̄iγµqi)

(
¯̀
jγ

µ`j

)
, where qi and `j are the

quark and lepton fields respectively. The differential cross-section for the process qq̄ → `+`−,
in the presence of CI, can be separated into the SM DY term plus terms involving the new
contact interaction.

dσ
dm``

= dσDY

dm``

− ηij
FI

Λ2 + FC

Λ4 (7.1)

In Equation 7.1, the first term accounts for the DY process, the second term corresponds
to the interference between the DY and CI processes, and the third term corresponds to
the pure CI contribution. The latter two terms include FI and FC, respectively, which are
functions of the differential cross-section with respect to m`` with no dependence on Λ [59].
The interference may be constructive or destructive, and it is determined by the sign of ηij.

Contact interactions have motivated a rich set of searches. Numerous searches for CI
have been carried out in neutrino–nucleus and electron–electron scattering [98], as well as
electron–positron [99,100], electron–proton [101], and proton–antiproton colliders [102,103].
Searches for CI have also been performed by the ATLAS and CMS Collaborations [104,

2The interested reader may note that this convention, followed in all ATLAS results, may be adjusted by
consistent multiplication of Λ.
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Figure 7.3: Leading-order production mechanism for Drell-Yan with addi-
tional contact term with scale Λ in the dilepton final state.

105]. The strongest exclusion limits for qq`+`− CI come from the previous ATLAS non-
resonant dilepton analysis conducted using 36.1fb−1 of

√
s=13 TeV proton–proton data [106].

Other ATLAS studies of note include the 2012/2014 search for contact interactions using
√
s =7/8 TeV collisions at ATLAS [19,20].

B Dilepton Event Selection

The present search is concerned with collisions that produce pairs leptons. This section
lists selection criteria used to identify such events. The observed dataset, which consists
of the events collected by ATLAS during Run 2 of the LHC, is detailed along with the
corresponding simulated background and signal datasets.

B.1 Event Selection

During Run 2, roughly 1016 proton collisions took place inside the ATLAS experiment.
The majority of these events are uninteresting for the purpose of this analysis, so only events
meeting appropriate criteria are considered. This reduces the total number of data events
considered for the analysis to 754,870 dimuon events and 883,594 dielectron events.

Only events recorded during good operation of the detector are used. The events meeting
this requirement comprise the Good Run List, summarized in Section A.

The first requirement for an event to be considered is the trigger: only events identified
as interesting by the ATLAS trigger system are recorded. The triggers used during data col-
lection differ from year to year. In the dielectron channel, the following trigger requirements
are applied.

• 2015: Two electrons with ET > 12 GeV,
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• 2016: Two electrons with ET > 17 GeV,

• 2017 and 2018: Two electrons with ET > 24 GeV.

Although events passing these triggers are expected to contain two electrons, both may not
be reconstructed after the event is fully processed. Therefore, subsequent criteria require at
least two electrons to be reconstructed.

In the dimuon channel, the following trigger requirements are applied.

• 2015: One isolated (pcone30
T /pT < 0.06) muon with pT > 26 GeV, or any non-isolated

muon with pT > 50 GeV,

• 2016, 2017 and 2018: The same requirement, except the isolation uses pvarcone30
T .

These trigger on events with single isolated muons. These triggers are used, rather than
a muon equivalent to the electron triggers, to increase the trigger’s efficiency for dimuon
events; the requirement for an event to have two muons is enforced in the later.

After passing the trigger requirement, events are evaluated under selection criteria. In
events where multiple vertices are reconstructed, the vertex with the largest ∑ p2

T defines the
primary vertex. Events are required to have at least two Inner Detector tracks associated
with the primary vertex. The first step is to define requirements for which physical objects
are to be considered in each event. This step follows the object definitions from Section C.

Further requirements are made as to where the objects were reconstructed in the detector.
This defines the fiducial region in which the search is carried out. This definition differs for
electrons and muons.

Electrons are defined using the Medium likelihood identification. They are required to
pass Gradient isolation. Additionally, they must not be from a dead calorimeter cluster.
An additional loose selection for electrons is defined to study the background from objects
falsely reconstructed as electrons. For these electrons, the LooseAndBLayer LH identification
replaces the Medium LH. This is otherwise the same as the nominal electron selection. The
kinematic criteria for both electron selections are listed in Table 7.1.

Muons are defined using the High-pT selection working point and must pass the isolation
requirement FCTightTrackOnly. An additional cut, the bad muon veto, is used to reject
muons with poorly measured pT. The remaining kinematic criteria for muons are given in
Table 7.2.

Occasionally, the interaction of a single particle with detectors results in the reconstruc-
tion of two particles. To limit this occurrence, an overlap removal scheme removes particles
that are suspiciously close to each other. The criteria are listed in Table 7.3. Further rejec-
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Table 7.1: Selection criteria for electrons. Parameters d0 and z0 are the
transverse and longitudinal displacements of the track associated with the
electron, and the vertex.

Feature Criteria
Pseudorapidity range (|η| < 1.37) || (1.52 < |η| < 2.47)
Transverse momentum pT > 30 GeV
Track impact parameter significance |dBL

0 |
σ

< 5
Track z displacement |∆zBL

0 sin θ| < 0.5 mm

Table 7.2: Selection criteria for muons. Parameters d0 and z0 are the trans-
verse and longitudinal displacements of the track associated with the muon,
and the vertex.

Feature Criteria
Transverse momentum pT > 30 GeV
Pseudorapidity range |η| < 2.5
Track impact parameter significance |dBL

0 |
σ

< 3
Track z displacement |∆zBL

0 sin θ| < 0.5 mm

tion of muons and electrons takes place if a jet is reconstructed within an angular distance
∆R < 0.4. This helps reduce the presence of secondary leptons.

These criteria reduce the full set of recorded events to a subset to consider, and within
each event a set of physical objects to analyze. It remains to determine whether the event
is interesting for the purpose of this dilepton analysis. Only events containing either two
electrons or two muons meet this threshold. Of the same-flavor leptons in the event, the
leading and subleading ET (pT) pair are selected in the electron (muon) channel. In the muon
channel, only pairs of oppositely charged muons are considered. In the electron channel, the
charge is ignored because bremsstrahlung emission of photons. Such photons can alter the
track of an electron, leading to the mis-identification of its charge. Finally, a preliminary
invariant mass cut of m`` > 130 GeV is required. In the case where both a dielectron and
dimuon candidate meet these requirements, the dielectron is selected, and the dimuon is
discarded. This choice is made due to the superior resolution for high-ET electrons.
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Table 7.3: Overlap removal

Reject Against Criteria
Electron Electron Shared ID track, p1

T < p2
T

Muon Electron Is calo-muon and shared ID track
Electron Muon Shared ID track

B.2 Data and Simulation

The data used in this analysis were collected during the LHC Run 2 from
√
s =13 TeV

proton-proton collisions. The recorded integrated luminosity of the collisions is 139.0 ±
2.4 fb−1 [38].

Despite the reliance on background estimates derived from data, this analysis uses simu-
lated invariant-mass distributions for three purposes. The first use is to model the CI signal.
This is done using simulated DY events, reweighted to include interference and direct pro-
duction from a contact interaction. The second use is to test a variety of choices made
during the analysis. In particular, the simulation informs the choice of a functional form
that matches the expected background shape. Simulation is also used to optimally select the
control and signal regions to maximize expected sensitivity while avoiding potential biases.
The third use is to measure the impact of experimental and theoretical uncertainties on the
results.

All simulation-based background contributions are scaled by their respective cross-sections
and summed to obtain the simulated background invariant-mass distribution. The main
backgrounds in decreasing order of contribution to the full mass spectrum are the Drell–Yan
(DY) process, top-quark pair production (tt̄), single-top-quark production, and diboson pro-
duction. The multi-jet and W+jets processes in the dielectron channel are estimated from
the data using the matrix method [17]. The contribution of such processes to the analysis
is estimated using a likelihood fit, and is later treated as an uncertainty in the simulated
background. The same processes in the dimuon channel, as well as processes with τ -leptons
in both channels, have been measured to have a negligible impact and consequently are not
considered. The event generators for the hard-scattering process and the programs used for
parton showering are listed in Table 7.4 with their respective parton distribution functions
(PDFs). Afterburner generators such as Photos [107] for the final-state photon radiation
(FSR) modeling, MadSpin [108] to preserve top-quark spin correlations, and EvtGen [69]
for the modeling of c- and b-hadron decays, are also included in the simulation.

The DY [109] and diboson [110] samples were generated in slices of dilepton mass to in-
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Table 7.4: The programs and PDFs used to generate the hard-scatter
matrix element (ME) and to simulate parton showering (PS) in the signal

and background processes. The top-quark mass is set to 172.5 GeV.

Background Process ME Generator and ME PDFs PS and non-perturbative effect with PDFs
NLO Drell–Yan Powheg-Box , CT10 , Photos Pythia v8.186 , CTEQ6L1 , EvtGen1.2.0
tt̄ Powheg-Box, NNPDF3.0NLO Pythia v8.230, NNPDF23LO , EvtGen1.6.0
Single top s-channel, W t Powheg-Box, NNPDF3.0NLO Pythia v8.230, NNPDF23LO, EvtGen1.6.0
Single top t-channel Powheg-Box, NNPDF3.04fNLO, MadSpin Pythia v8.230, NNPDF23LO, EvtGen1.6.0
Diboson (W W , W Z and ZZ) Sherpa 2.1.1 , CT10 Sherpa 2.1.1, CT10
Signal Process
LO Drell–Yan Pythia v8.186, NNPDF23LO Pythia v8.186, NNPDF23LO, EvtGen1.2.0
LO CI Pythia v8.186, NNPDF23LO Pythia v8.186, NNPDF23LO, EvtGen1.2.0

crease the sample statistics in the high-mass region. Next-to-next-to-leading-order (NNLO)
corrections in QCD and next-to-leading-order (NLO) corrections in EW were calculated and
applied to the DY events. The corrections were computed with VRAP v0.9 [111] and the
CT14 NNLO PDF set [112] in the case of QCD effects, whereas they were computed with
MCSANC [113] in the case of quantum electrodynamic effects due to initial-state radiation,
interference between initial- and final-state radiation, and Sudakov logarithm single-loop cor-
rections. These are calculated as mass-dependent scale factors that are applied to simulated
events before reconstruction. The top-quark samples [114] are normalized to the cross-
sections calculated at NNLO in QCD, including resummation of the next-to-next-to-leading
logarithmic soft gluon terms using Top++2.0 [83].

All fully simulated event samples include the effect of multiple proton interactions in the
same or neighboring bunch crossings. These effects are collectively referred to as pile-up.
The simulation of pile-up collisions was performed with Pythia v8.186 using the ATLAS A3
set of tuned parameters [115] and the NNPDF23LO PDF set, and weighted to reproduce the
average number of pile-up interactions per bunch crossing observed in data. The generated
events were passed through a full detector simulation [71] based on Geant 4 [70].

The simulated data is weighted by several scale factors (SF) to improve its representation
of the observed data. Pile-up weights are used to describe the effects multiple collisions per
beam crossing. Mass dependant K-factors account for differences in the total cross-section
if higher-order calculations are available for a given process compared to the order available
for simulation. In the case of the LO and NLO DY samples, the SFs provide corrections
for higher-order QCD, EW, and photon-induced (PI) effects. Experimental scale factors for
leptons are considered. For electrons, reconstruction, trigger, isolation, and identification
scales factors are applied. For muons, reconstruction, trigger, isolation, and track-to-vertex
association (TTVA) scale factors are applied. Trigger scale factors according to the specific
channel.

To reduce statistical uncertainties, a large additional DY sample is used where the detec-
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tor response is modeled by smoothing the dilepton invariant-mass with mass-dependent ac-
ceptance and efficiency corrections, instead of using the computationally expensive Geant 4
simulation. The relative dilepton mass resolution used in the smearing procedure is defined
as (m`` −mtrue

`` )/mtrue
`` , where mtrue

`` is the generated dilepton mass at Born level before final-
state radiation. The mass resolution is parameterized as a sum of a Gaussian distribution,
which describes the detector response, and a Crystal Ball function composed of a secondary
Gaussian distribution with a power-law low-mass tail, which accounts for bremsstrahlung
effects and for the effect of poor resolution in the muon momentum at high-pT. The param-
eterization of the relative dilepton mass resolution as a function of mtrue

`` is determined by
a fit of the function described above to simulated DY events at NLO. A similar procedure
is used to produce a mass-smeared tt̄ sample. These two samples replace the equivalent
ones produced with the full detector simulation wherever applicable in the remainder of the
analysis. These samples are composed of over 55 times the number of events in the observed
dataset.

Signal m`` distribution shapes are obtained by a matrix element reweighting of the
leading-order (LO) DY samples generated in slices of dilepton mass [17]. This reweight-
ing includes the full interference between the non-resonant signal and the background DY
process. The weight function is the ratio of the analytical matrix elements of the full contact
interaction (including the DY component) and the DY process only, both at LO precision.
It takes as an input the generated dilepton mass at Born level before FSR, the flavor of the
incoming quarks, and the CI model parameters (Λ, chirality states, and the sign of interfer-
ence). These weights are applied to the LO DY events to transform these into the CI signal
shapes, in steps of 2 TeV between Λ = 12 TeV and Λ = 100 TeV. Mass-dependent higher-
order QCD production corrections for the signals are computed with the same methodology
as for the DY background, correcting from LO to NNLO precision. Similarly, electroweak
corrections for the signals are applied in the CI reweighting along with the interference ef-
fects, correcting from LO to NLO precision. These signal shapes are used for optimizations
as well as for calculations of the cross-section and acceptance times efficiency.

The invariant-mass distributions of the simulated datasets, and of the observed data are
shown in Figure 7.4. Several representative contact interaction shapes imposed on top of
the background yields for reference. These plots clearly show the relative composition of the
background in the simulated distributions. The plots of the ee selection additionally include
the multi-jet and W+jets background.
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Figure 7.4: Invariant-mass distributions in the ee channel (top) and µµ
channel (bottom). Plots on the left show selected constructive CI signal
shapes imposed on top of the simulated distribution, while plots on the
right show the same for destructive CI signal shapes.
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C Background Modeling

An expectation of the number of events under the background-only hypothesis is needed
for each of the four signal regions. This raises the question of what exactly is meant by
background. In the full mass range, the observed data are considered to have been produced
according to some PDF. If the PDF does not contribute from a signal-like production mecha-
nism, then this is a background-PDF. This is emphatically not the same thing as the physical
truth-PDF that has generated the collected data. The background-only hypothesis predicts
that the event yield in each signal region equals the yield predicted by the background-PDF,
normalized to match the integrated luminosity. Of course, this background-PDF is not ex-
plicitly known, and therefore a methodology for estimating it’s predicted yield is needed.
This section describes how this is done using an estimate in the CR.

This search uses a functional form fit to the shape of the data in a low mass control
region and extrapolated into the high mass signal region, where it is integrated. In principle,
any functional form is acceptable, as long as the uncertainties on the background estimate
in the SR are properly measured. In practice, to produce competitive results, it is necessary
to select a functional form that well models the underlying distribution that has generated
the background component of the data.

The functional form was chosen from an extensive list of candidates, drawn from sim-
ilar studies, for its stability during extrapolations and the ability to model the simulated
background. Here, stability refers to the function not to tend to behave nonphysically. The
procedure to determine the functional form of the background is as follows. The smooth
functional form used to model the background is chosen from about 50 candidate functions.
Each function is fit to the dilepton mass background template, consisting of the sum of all the
simulated background contributions, in a variety of CRs, and extrapolated to the respective
SRs. The data and simulation are both fit using a binned-likelihood maximization with a
bin width of 1 GeV. The distribution of the pulls, defined as (fit–simulation)/fit for each bin,
is obtained for each potential configuration of CR and SR. A function that results in pulls
below three across all the ranges considered (CRs and SRs) is marked as acceptable. This
requirement is particularly important in the SRs to veto functions that exhibit unphysical
behavior at the tail. Additionally, it is important to ensure a good description of the simu-
lated background template in the CRs. Out of about 50 initial functions, five are found to
satisfy this requirement equally well. The residual mis-modeling by the selected function is
measured later and taken as an uncertainty. The functions that were found to best satisfy
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these criteria are given in Equations 7.3 and 7.4 for ee and µµ channels respectively.

fb(mee) = fBW,Z(mee) · (1 − x)b · x
∑3

i=0 pi log(x)i (7.3)

fb(mee) = fBW,Z(mee) ·
(
1 − x1/3

)b
· x
∑3

i=0 pi log(x)i (7.4)

Here, x = m``/
√
s. The first term, fBW,Z(m``), is a non-relativistic Breit–Wigner function

with mZ = 91.1876 GeV and ΓZ = 2.4952 GeV. This primarily dictates the function shape in
the low-mass regime of the control region. The second term, (1 −xc)b, shapes the high-mass
behavior of the function by ensuring that the background shape evaluates to zero at x → 1.
The parameter b is fixed to values obtained from fits to the simulated background. In the
third term, the parameters pi with i = 0, .., 3 are left free in the fits. The function fb(m``)
is treated as a probability density function in the fits performed in the CR. This function is
then normalized in the CR to NCR, the number of events in the CR in data (or simulation
where applicable), where it is assumed that the CR is completely dominated by background
events.

The fits are performed using a binned likelihood maximization using the MINUIT algo-
rithm [116]. The functional forms of Equations 7.3 and 7.4 are fit to a template, which may is
a histogram filled by either data or simulated data. In this process, the total log-likelihood of
the template is calculated as the sum of the log-likelihood of each template bin to have been
generated by the functional form. Then, each of the flexible parameters of the functional
forms is adjusted with MINUIT until the total log-likelihood has reached a maximum. The
functional form with these parameter fitted values is the function with the highest likelihood
to generate the observed data.

It is worth explicating some nomenclature. The normalized and fitted functions of Equa-
tions 7.3 and 7.4 describe well the differential shape of the data in each CR. To a lesser
extent, these forms also describe the differential shape of the data in each SR. The back-
ground estimate that is used for the purpose of this analysis, however, is the integral of these
functions in the SR.

This number is interpreted as the mean number of events to expect in the SR under the
background-only hypothesis. This differs from the true prediction of that hypothesis on three
counts. First, the assumption of particular forms of Equations 7.3 and 7.4 implicitly assumes
these match the shape of the background-PDF. Second, the fits are performed to the finite

148



data in the CR, not to the underlying PDF. This means that statistical fluctuations in the
CR influence the shape of the fitted function, and therefore background estimate. Third, the
fit performed in the CR is data generated by the truth-PDF, not the background-PDF. This
implicitly assumes that no signal process contributes to the events in the CR. These three
assumptions mean that the background estimate described here is, in fact, an approximation
of the true underlying background yield in each SR. The accuracy of this approximation is
described by systematic uncertainties on the background estimate.

D Signal Modeling

Although the results of this search can be interpreted for multiple signal models, the
model of most interest is that of the qq`+`− contact interactions. Contact interactions are
described by the Lagrangian in Equation 7.1. There are five free parameters: the character-
istic energy scale Λ, and the parameters ηLL, ηRR, ηLR, and ηRL. The model is simplified by
selecting one ηij = ±1 for i, j ∈ [L,R], and setting the rest as zero. This describes a model
where only one chiral coupling is present, dubbed “ij”. Furthermore, if ηij = −1 then the
interference of the coupling with the Standard Model is constructive, while if ηij = +1, it is
destructive. Therefore, eight signal models are considered: four chiral combinations, times
two interference patterns, as shown in the table below.

Lepton channel Interference Chirality

ee Constructive LL, RL, LR, RR
ee Destructive LL, RL, LR, RR
µµ Constructive LL, RL, LR, RR
µµ Destructive LL, RL, LR, RR

Signal shapes for the full m`` distribution are modeled using a matrix-element reweight-
ing [17] of the leading-order (LO) DY samples. This reweighting includes the full interference
between the non-resonant signal and the background DY process. The weight function is the
ratio of the analytical matrix-elements of the full CI (including the DY component) and the
DY process only, both at LO. It takes as an input the generated dilepton mass at Born level
before FSR, the incoming quarks’ flavor and the CI model parameters (Λ, chirality states,
and the interference structure). These weights are applied to the LO DY events to transform
these into the CI signal shapes, in steps of 2 TeV between Λ = 12 TeV and Λ = 100 TeV.
Dilepton mass-dependent higher-order QCD production corrections for the signals are com-
puted with the same methodology as for the DY background, correcting from LO to NNLO.
Similarly, electroweak corrections for the signals are applied in the CI reweighting along
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with the interference effects, correcting from LO to NLO. The CI component of the signal
shape (direct production and interference) is referred to as the signal. This is produced by
subtracting the LO DY shape from the combined DY+CI shape. The full m`` signal shapes
are shown along with the background function in Figure 7.5.

The CI signal samples are generated in discrete steps, but it is useful to have a continuous
signal description for arbitrary Λ. Several RooFit classes were developed to interpolate
between the generated CI samples smoothly.

• A PDF class handles the shape, depending on Λ. This takes a number of input his-
tograms. It interpolates between the histograms’ bins to the nearest m`` and between
the closest histograms to a particular Λ.

• A normalization class handles the normalization of the signal shape, depending on Λ.

The advantage of this implementation is that the signal model is compatible with all the
fitting and limit setting operations performed with RooFit. The Λ parameter can be adjusted
by RooFit, resulting in a smoothly changing PDF and normalization.

The PDF class performs two interpolations. First, a linear interpolation is made between
the histogram bin values. This is used to prevent RooFit from getting stuck while calculating
the integral of the PDF (when RooFit sees a discontinuity, it tends to get stuck looking for a
delta function). The second interpolation is between Λ values for different histograms. This
procedure is called morphing.

As opposed to a model with a floating signal strength µ, the utility of this morphed
model is clear in these plots. For constructive cases, the signal shapes are roughly the same
for different Λ. In this case, there is an approximate relationship between µ and Λ, so a fit
using a fixed Λ = 20 TeV where µ is adjusted could represent, for example, Λ = 30 TeV. This
is not the case for the destructive case, as seen in the figures. The cross over where the signal
contribution becomes negative changes with Λ, while it would not change when scaling a
given model by µ. In fact, there are also subtle differences between the constructive signal
shapes. Using the model in terms of Λ makes the constructive signal model more accurate.

Another motivation for using Λ as the parameter-of-interest (POI) in the S+B model
is that this maps more directly onto the physics of the problem. When searching for a
resonance, it is natural that the POI be the signal strength µ. This is both the parameter
dictating the strength of the signal and the parameter on which limits are set. Likewise,
when searching for a contact interaction, the signal’s strength is determined by Λ, and the
analysis interest is in setting limits on Λ. There is no physical motivation for a Λ = 20 TeV
model scaled by µ > 1 to try to represent Λ = 10 TeV. Instead, the morphed signal model
allows limits to be set on Λ directly.
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Figure 7.5: Signal and background only shapes for the ee channel (top) and
µµ channel (bottom). Constructive signal shapes are shown on the left, and
destructive signal shapes are shown on the right. The background shape is
derived from a fit of the background model’s functional form to the data
in the control region. The signal shapes are signal shapes described in the
text, added to the background model fit to data.
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Several examples of the morphed signal model are shown in Figures 7.6 and 7.7, for
constructive and destructive interference patterns respectively.

The full signal shape is used in an extension of the background functions, Equations 7.3
and 7.4. A signal shape, based on the morphed CI signals, is added to the background-only
shape, producing an S+B functional form:

fs+b(m``,Λ) = Nb · fb(m``) +Ns(Λ) · fs(m``,Λ), (7.5)

where fs(m``,Λ) is the signal probability density function and Ns(Λ) is the number of signal
events in the CR. Both fs(m``,Λ) and Ns(Λ) are determined by the morphed CI signals. The
parameterNb is the number of background events in the CR with the constraintNb+Ns(Λ) =
NCR. The functional form of Equation 7.5 is useful because, even in when a large signal
is present in the CR, the Ns(Λ) · fs(m``,Λ) term absorbs it. This leaves the background
component undeflected by the presence of a signal. This property is validated through signal-
injection tests detailed in Appendix C. This makes Equation 7.5 a useful tool to constrain
the degree to which the background-only functions (7.3 and 7.4) have been deflected by the
presence of a signal in the CR. This will be further discussed, along with other systematic
uncertainties, in Section E.

The signal model described up until this point is the differential signal shape in the
invariant-mass distribution. However, the analysis of signal regions considers only the num-
ber of events in the region as a function of Λ. Figure 7.8 shows the number of events in each
signal region, predicted by various interference and chirality models. Of particular interest,
the RR and LL models predict more events than the LR and RL models in the constructive
case. This pattern is reversed for constructive models. This is due to the projection of the
two chirality operators (Equation 2.10) hidden in the left and right-handed fermion fields of
the Lagrangian (Equation 7.1). The pattern of varying multiplicity seen in Figure 7.8 will
later manifest itself in the strength of limits on various CI models.

E Uncertainties

For each hypothesis test performed in this analysis, the null hypothesis is termed “background-
only,” and the alternative hypothesis is termed “signal+background”. Both of these hypothe-
ses predict an event yield in a signal region. The background-only hypothesis is derived from
the background model described in Section D. The uncertainties corresponding to its pre-
diction are the uncertainties on the background model and are described in Section E.2.
Alternatively, the signal+background hypothesis also predicts a contribution to the event
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Figure 7.6: Comparison between the morphed signal model (colored) and
the simulated distributions (black) they are based on. These are shown
for the ee channel (top) and µµ channel (bottom) constructive interference
signals.
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Figure 7.7: Comparison between the morphed signal model (colored) and
the simulated distributions (black) they are based on. These are shown
for the ee channel (top) and µµ channel (bottom) destructive interference
signals. The absolute scale of the vertical axis causes a sharp plotting feature
when the interference becomes predominantly destructive.
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Figure 7.8: The number of signal events using the morphed model of signal
events in each of the four SR’s used in the analysis: ee-const, ee-dest, µµ-
const, µµ-dest in a, b, c, d respectively. Each plot shows the number of
signal events as a function of Λ for the four chiralities.
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Figure 7.9: Signal templates for the CI LL model with constructive (left) and
destructive (right) interference for the dielectron channel is presented for 4 Λ
values. The reweighted templates are produced from the same DY sample,
therefore the same statistical fluctuations of the underlying DY show up in
the plots for each Λ. Also, while the ratio tends to blow up at high mass,
this is due to the small number of events in the denominator (DY). In the
destructive case, the Λ = 30 TeV signal is still primarily destructive at 2
TeV, but it also has a constructive component at ≈ 2.5 TeV.
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yield from a signal process. The uncertainties corresponding to its prediction come both
from the background model and the signal process; these are described in Sections E.2 and
E.3 respectively. The groundwork for these uncertainties is described first in Section E.1.

E.1 Simulated Background Variations

A number of experimental and theoretical variations on the background shape are used
in constructing the uncertainties on the background model and the signal processes. The
variations considered are due to theoretical and experimental uncertainties in the simulated
background, as well as those due to the uncertainties in the backgrounds from multi-jet
and W+jets processes. The largest source of uncertainty in the simulated background is
theoretical, and it is particularly large at the high end of the dilepton mass spectrum. The
second largest source of uncertainty in the simulated background is experimental and is
mostly due to high-pT muon identification in the dimuon channel. The third largest source
is the uncertainty in the multi-jet and W+jets background components and is estimated
from the data. Together, these uncertainties are referred to as systematic variations and are
used to study the signal and background uncertainties.

Theoretical Simulated Systematics

The following variations are considered for the theoretical uncertainties for the DY com-
ponent only: the eigenvector variations of the nominal PDF set, variations of PDF scales,
the strong coupling (αS(MZ)), electroweak corrections, photon-induced corrections [117], as
well as the effect of choosing different PDF sets. For all PDF variations, the modified DY
component is used along with the other nominal background components. These theoretical
uncertainties are the same for both dilepton channels at generator level, but they result in
different uncertainties at reconstruction level due to the different resolutions of the dielectron
and dimuon channels. The size of these uncertainties in the total simulated background is
≤ 19% (≤ 15%) below 4000 GeV for the dielectron (dimuon) channel.

The theoretical systematic uncertainties are used to produce variations on the invariant-
mass spectra. These are illustrated in Figure 7.10.

Experimental Uncertainty

Uncertainty about the response and performance of the detector leads to systematic
experimental uncertainties. Among the experimental uncertainty sources in the dielectron
channel, the dominant ones are the electron identification at low dielectron masses (≤ 5%,
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Figure 7.10: Illustration of theory variation shapes, shown as a ratio to the
nominal MC, for ee channel (a) and µµ channel (b). Two things are clear
from these plots: the impact of the uncertainty in the PDF on mll, and that
the impact grows with mass.

below ∼ 2000 GeV) and the uncertainty in the electromagnetic energy scale at higher dielec-
tron masses (≤ 15%). In the muon channel, the dominant experimental uncertainties arise
from the muon reconstruction efficiency at low dimuon masses (≤ 20%, below ∼ 4000 GeV)
and from the identification of high-pT muons at higher dimuon masses (≤ 50%). The full
set of experimental uncertainties are illustrated for the each channel in Figure 7.11.

Multijet Electron Background

The relative uncertainty of the simulated background due to the multi-jet and W+jets
component rises from ∼ 1% at 1 TeV to ∼ 10% at 4 TeV. For the multi-jet and W+jets
component variations, the modified shape is used each time along with the other nominal
background components from the simulation. This contribution is the smallest amongst all
other variations in the CR.

E.2 Background Estimate

The background estimate described in Section C predicts an event yield in the signal
region, based on a functional form fit to the events observed in a control region. Several
assumptions are made in order to interpret this estimate as the prediction of the background
hypothesis. Each assumption is made with a degree of uncertainty. This is quantified by
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the three systematic uncertainties described here: the extrapolation uncertainty, the induced
spurious-signal (ISS) uncertainty, and the function bias (FB) uncertainty.

The extrapolation and ISS uncertainties are the dominant uncertainties on the back-
ground estimate. These are both measured using statistical ensembles.

Extrapolation Uncertainty
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Figure 7.12: Distributions of the differences between fits to the nominal
dataset, and the toy datasets, for each SR.

The leading uncertainty on the estimated background is named the extrapolation uncer-
tainty. The functional form is fit in the CR to data collected in that region. Since many
events occupy each CR (≈72k muons and ≈54k electrons), the shape of the m`` data dis-
tribution approximates the shape of the underlying truth-PDF that generated it. However,
this approximation is not perfect due to statistical fluctuations in the CR. The extrapola-
tion uncertainty quantifies the degree to which statistical fluctuations in the CR may lead
to varying background estimates in the SR.

This sort of uncertainty is present in other searches and is sometimes called a “function
choice” uncertainty. Previously this has been estimated by comparing the result of choosing
different functional forms to fit to the data [118]. It is also possible to estimate this impact
by looking at the constraints on and covariance of individual parameters of the functional
form. The procedure detailed here forgoes these estimates for a more direct measurement of
the impact of statistical fluctuations on the estimated background.

To measure this impact, the background functional form is fit to the data in each CR.
This produces a smooth, nominal-PDF that is the best available estimate of truth-PDF.
The background estimate from this fit in the SR defines NFit Nominal

bkg . The nominal-PDF is
used to generate an ensemble of pseudo-experiments: toy datasets in the CR invariant-mass
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region with a multiplicity matching the dataset. 3 Each toy dataset is then fit using the
background functional form and the resulting function is extrapolated to the SR to provide a
toy background estimate NFit Toy

bkg,i . A comparison is made between the background estimate
from the fit to the toy dataset and the nominal fit for each toy i:

∆stat
i = NFit Toy

bkg,i −NFit Nominal
bkg .

This defines the degree, ∆stat
i , to which statistical effects in the CR have altered the back-

ground estimate.
This procedure is repeated with an ensemble of 2,000 toy datasets. The distribution of

∆stat
i values is built from each fit. These are shown in Figure 7.12 for each SR. The standard

deviation of these distributions is taken to define the systematic error on the background
expectation due to the extrapolation uncertainty.

Induced Spurious-Signal

The sub-leading uncertainty on the background estimate is called the induced spurious-
signal (ISS) uncertainty. This quantifies the systematic difference between the background
model and the true underlying background-only distribution in the SR. The ISS how well
the background model can be expected to model the underlying physical distribution from
which the data has been sampled. If the background functional form were to fit the true
background-PDF, then the difference between the fitted function and normalized PDF in
the CR is the ISS. Since any mis-modeling of the background, on average, leads to the
identification of a signal even in the background-only scenario, this mis-modeling is called a
spurious-signal.

The ISS can not be measured directly, since the background-PDF is unknown. Fur-
thermore, it is inaccurate to use the simulated background-only dataset to measure the
ISS because this makes the improper assumption that the nominal simulation matches the
shape of the true background-PDF. Instead, a new methodology called the statistical back-
ground ensemble was developed to measure the ISS. The general theoretical motivation for
the methodology is described in Appendix B. The method seeks to measure the ISS from
an ensemble of possible background shapes, each weighted by a prior likelihood. The prior
likelihoods are derived from the systematic variations discussed in Section E.1.

3There is no uncertainty as to the multiplicity of the actual dataset, and so this exactly determines the toy
dataset multiplicity. An alternative option would be to allow

√
N fluctuation of the multiplicity of each toy.

In this case, the toy datasets correspond to the thought experiment: “if Run 2 had been repeated, lasting
for the same duration, what dataset may have been collected?” This is not the precise thought experiment
of interest. Instead, because a fixed number of events have already been sampled from the truth-PDF, it is
asked: “if an alternative sampling of the truth-PDF had taken place, what dataset may have been collected?”
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The space of all plausible background shapes is described by linear combinations of the n
systematic variations. Each of these is identified by a corresponding n-vector ~θ. Each choice
of ~θ corresponds to a background shape B′:

B′(m``, ~θ) = BNominal(m``) +
n∑

i=1
ωi(m``) ∗ θi, (7.6)

where ωi correspond to the shapes of the systematic variations. The ωi shapes can be
normalized to correspond to 1σ deviations from the nominal shape. In this case, θi = 1
corresponds to a +1σ deviation, while θi = −1 corresponds to a −1σ deviation. Several toy
background shapes are illustrated in Figure 7.13.

If the systematic variations are taken to define prior probabilities for nuisance parameters
θi, then the prior probability of ~θ corresponding to the true background shape is:

P (~θ) =
n∏

i=1
G(θi), (7.7)

where G(θi) are standard normal functions.
In many cases, the systematic uncertainty shape is measured separately for upward and

downward fluctuations. For these systematics, the two shapes ω+
i and ω−

i are used as ap-
propriate depending on whether θi is positive or negative.

Ideally, the ISS could be measured across the full space of ~θ. This can be approximated
numerically using an ensemble of backgrounds drawn from space of ~θ randomly weighted
by their prior likelihood. For each of the n systematic variations, a standard Gaussian
PDF is sampled to determine the corresponding element of ~θ. 4 The result is that each
~θ of the ensemble is drawn with a probability proportional to the prior probability of the
corresponding background shape. Then, the background shapes B′(m``, ~θ) and B′(m``,−~θ)
are constructed. The use of both ~θ and −~θ forces a symmetric sampling of the space of ~θ.
This reduces the size of the ensemble required to sample the vector space.

This process is repeated to build an ensemble of background shapes used to create 2,000
Asimov toy datasets. Each toy dataset is fit with the nominal background functional form.
A comparison is made between SR yields of the fitted function and the Asimov dataset for
each toy i:

∆ISS
i = NFit

bkg,i −NAsimov
bkg .

The distribution of ∆ISS
i is built up through 2,000 background shape toys for each SR, as

shown in Figure 7.14. The mean of these distributions defines the measurement of the ISS
4At the request of the ATLAS Publications Committee, the Gaussians are restricted to [−1, 1]. This

restriction is not impactful.
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Figure 7.13: Illustration of four toy backgrounds, B′, for the ee (a) and µµ
(b) channel systematics. The nominal background is shown in black, while
two toys corresponding to ~θ and −~θ are shown in red and blue. In the upper
frames, these are offset by a shift to distinguish the lines.
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Figure 7.14: Distributions of the Induced Spurious-Signal measured by en-
ables of 2,000 pseudo-experiments. The grey lines show the envelope that
contains all spurious-signals measured on individual systematic variations.

of the background model in each SR. The width of these distributions is the uncertainty
corresponding to that measurement. The mean and standard deviation of the distribution
are added in quadrature as the estimate of the ISS for the underlying background-PDF.
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Function Bias Uncertainty

The remaining uncertainty on the background estimate is the function bias (FB) uncer-
tainty. This uncertainty describes the degree to which a signal, if present in the CR, may
potentially bias the background expectation in the SR. The function bias uncertainty is mea-
sured using the background expectations derived from the S+B functional form Equation
7.5. This is compared to the analogous background expectation from the B-only functional
form from Equations 7.3 and 7.4. Each functional forms is fit to the observed data in each
control region. The difference between the background estimates from the S+B and B-only
fits defines the function bias uncertainty. For each lepton flavor channel and CI interfer-
ence combination there are four S+B functional forms corresponding to the LL, LR, RL,
and RR chiralities. Since the FB uncertainties measured for each chirality are observed to
have similar magnitudes, the largest FB is used for each lepton channel and interference
combination.

The motivation for the FB uncertainty is based on the flexibility of the S+B model to
adapt to cases where a signal is present in the CR. This property is illustrated in Appendix
C. As a result, the FB uncertainty is taken to constrain the degree to which, if present in
the CR, a signal shape may distort the background expectation from the B-only functional
form.

The FB uncertainty is small by construction. If, when measured on data for a given con-
trol region, the value had been significant compared to extrapolation and ISS uncertainties,
then this would have invalidated the choice of CR by indicating the presence of a signal-like
feature. A procedure was defined before any observation of data to handle this eventuality.
The high-mass limit of the CR would be lowered until the bias vanished, with no adjustment
to the SR. Because the non-resonant signals of interest vanish towards low-mass, reducing
the upper limit of the CR would eventually remove the contribution from such a signal.

In the observed data, none of the function bias measurements are significant compared to
the dominant uncertainties on the background model. Indeed, the impact on the expected
sensitivity is under 2%. This uncertainty is only considered for the limits on the contact
interaction energy scale Λ since it depends on the shape of those signals.

E.3 Signal Model

The signal models used in this analysis are more traditional than the background model,
and therefore the corresponding systematic uncertainties are fairly standard. There are
both experimental and theoretical uncertainties to consider. The experimental uncertain-
ties, described in Section E.3, are applied similarly to the CI signal model and the model-
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independent signal production. The theoretical uncertainties, described in Section E.3, must
be considered differently. The hypothesis test performed by this analysis compares the back-
ground hypothesis to the signal+background hypothesis. The choice of the signal model
unambiguous: there is no uncertainty in which signal model is being tested. Theoretical
variations, like the PDF choice and αs scale, are part of this signal model choice. Different
theoretical choices describe different signal models. Therefore, these different signal models
are tested for in separate hypothesis tests.

Experimental

The experimental uncertainties under consideration are described in Section E.1. These
are produced as functions of invariant-mass m``. The impact of each systematic on the CI
signal model is the convolution of the CI shape in m`` and the systematic shape in m``,
but this is relatively independent of the signal shape. For different contact interactions, the
impact of experimental systematics generally varies by less than 1%. Thus, for simplicity,
these are calculated for the LO DY shape in the CR and applied equally for each CI model.
The experimental uncertainties are listed for the ee channel in Table 7.6 and the µµ channel
in Table 7.7. The sum in quadrature of the experimental uncertainties is used to constrain
the signal prediction. The experimental uncertainties of the signal are ≤ 9% for the electron
channel and ≤ 22% for the muon channel.

Theoretical Uncertainty

The theoretical uncertainties under consideration are described in Section E.1. These are
useful to provide alternative signal models that correspond to the 1σ limits on theoretical
parameters. The impact of the theoretical uncertainties on the signal yield is calculated in
each SR. It is equal to the sum in quadrature of the convolution of the theory systematic
shapes with the LO DY shape.

E.4 Summary of Uncertainties

The numerical values of the uncertainties are given in Table 7.5. For all cases, the
relative uncertainties in the destructive SRs are larger than those in the constructive SRs.
This is due to both the smaller size of the SR leading to less background and larger relative
uncertainty and the smaller size of the CR, leading to a weaker constraint on the background
model. For the background estimates, the leading uncertainty in each SR is the extrapolation
uncertainty, followed by the ISS uncertainty. Many of the experimental and theoretical
systematics are measured separately for upward and downward fluctuations.

165



Table 7.5: Summary of the relative uncertainties in the background estimate
and signal in each SR, where EU is the ‘extrapolation uncertainty’, ISS
is the ‘induced spurious-signal uncertainty’ and FB is the ‘function bias
uncertainty’. Experimental and theoretical uncertainties are shown as well,
with the latter averaged across CI chirality scenarios and quoted for Λ =
30 TeV only.

Channel Interference
Background uncertainties Signal uncertainties

σEU
b σISS

b σFB
b σExperiment

s σTheory
s

ee Constructive 14% 4% 2% 8% +11
–10

%
%

ee Destructive 34% 7% 1% 8% +14
–13

%
%

µµ Constructive 21% 6% 2% +20
–17

%
%

+10
–9

%
%

µµ Destructive 58% 24% 4% +27
–22

%
%

+13
–12

%
%
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Table 7.6: Impact of experimental uncertainties on NLO DY yield in CI
signal regions. The total is calculated as the sum in quadrature including
contributions from sources of impact ≥ 1%.

SR Source Uncertainty

ee
D

es
tr

uc
tiv

e

EG_RES ∼ 0.0% ∼ 0.0%
EG_SCALE +5.9% − 5.8%
EL_ChargeID ∼ 0.0% ∼ 0.0%
EL_ID +5.9% − 5.8%
EL_Iso +0.8% − 0.8%
EL_Reco +0.4% − 0.4%
EL_TRIG_EFF ∼ 0.0% ∼ 0.0%
EL_TRIG_TOTAL ∼ 0.0% ∼ 0.0%
PRW ∼ 0.0% − 0.1%
Total +8.4% − 8.2%

ee
C

on
st

ru
ct

iv
e

EG_RES ∼ 0.0% ∼ 0.0%
EG_SCALE +5.2% − 4.9%
EL_ChargeID ∼ 0.0% ∼ 0.0%
EL_ID +5.9% − 5.8%
EL_Iso +0.8% − 0.8%
EL_Reco +0.4% − 0.4%
EL_TRIG_EFF ∼ 0.0% ∼ 0.0%
EL_TRIG_TOTAL ∼ 0.0% ∼ 0.0%
PRW ∼ 0.0% ∼ 0.0%
Total +7.9% − 7.6%
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Table 7.7: Impact of experimental uncertainties on NLO DY yield in CI
signal regions. The total is calculated as the sum in quadrature including
contributions from sources of impact ≥ 1%.

SR Source Uncertainty
µ
µ

D
es

tr
uc

tiv
e

MUON_BADMUON_STAT ∼ 0.0% ∼ 0.0%
MUON_BADMUON_SYS +7.8% − 7.6%
MUON_ISO_STAT +0.3% − 0.3%
MUON_ISO_SYS +0.4% − 0.4%
MUON_RECO_STAT +0.6% − 0.6%
MUON_RECO_SYS +21.7% − 19.4%
MUON_TTVA_STAT ∼ 0.0% ∼ 0.0%
MUON_TTVA_SYS ∼ 0.0% ∼ 0.0%
MUON_TRIG_STAT ∼ 0.0% ∼ 0.0%
MUON_TRIG_SYS +0.1% − 0.1%
MUON_ID +1.0% − 1.1%
MUON_MS +4.6% − 3.7%
MUON_SAGITTA_RESBIAS +12.8% + 5.5%
MUON_SAGITTA_RHO ∼ 0.0% ∼ 0.0%
MUON_SCALE −0.4% + 0.3%
PRW ∼ 0.0% ∼ 0.0%
Total +26.7% − 21.9%

µ
µ

C
on

st
ru

ct
iv

e

MUON_BADMUON_STAT ∼ 0.0% ∼ 0.0%
MUON_BADMUON_SYS +4.0% − 3.8%
MUON_ISO_STAT +0.3% − 0.2%
MUON_ISO_SYS +0.5% − 0.3%
MUON_RECO_STAT +0.6% − 0.5%
MUON_RECO_SYS +17.9% − 16.1%
MUON_TTVA_STAT +0.1% ∼ 0.0%
MUON_TTVA_SYS ∼ 0.0% ∼ 0.0%
MUON_TRIG_STAT +0.2% ∼ 0.0%
MUON_TRIG_SYS +0.2% ∼ 0.0%
MUON_ID +0.7% − 0.7%
MUON_MS +2.7% − 2.2%
MUON_SAGITTA_RESBIAS +8.0% + 1.8%
MUON_SAGITTA_RHO ∼ 0.0% ∼ 0.0%
MUON_SCALE −0.4% + 0.4%
PRW ∼ 0.0% + 0.2%
Total +20.2% − 16.8%
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F Statistical Analysis

Statistical methods are used to distill two types of information from the collected dataset.
First, to determine the probability that the observed data is incompatible with the background-
only (B-only) hypothesis. Second, to determine the smallest putative signal such that, if
extant, would produce a signal+background (S+B) hypothesis that is incompatible with the
observed data. The former is answered by a significance test, described in Section F.3, while
the latter is answered by setting a limit, described in Section F.4.

F.1 Likelihood Ratio and CLs Method
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Figure 7.15: PDFs predicted by S+B and B-only hypotheses of test statistics
(a) Ntext and (b) the likelihood ratio. Note the log scale of (b). In each
case, the shaded regions mark the set of test statistic values for which each
hypothesis would be more incompatible then with the observed value shown
in grey.

The fundamental tool used to compare two hypotheses is the test statistic, a quantity
calculated from the observed data. Each hypothesis predicts a probability density function
(PDF) that describes the probability to observe values of the test statistic. The PDF of the
B-only hypothesis, L(Ntext), is a function of the test statistic Ntext. Composite hypotheses
are more useful and are defined by additional parameters, θ, that may be estimated from
the observation. In general, a B-only hypothesis defined by θ0 predicts a PDF of L(Ntext|θ0),
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while an S+B hypothesis defined by θ1 predicts a PDF of L(Ntext|θ1). For example, a B-
only hypothesis may predict a Gaussian PDF with a mean that is smaller than the average
predicted by an S+B hypothesis. An illustration is shown in Figure 7.15a. Here, the B-only
hypothesis is more compatible with an observation of Ntext =500 than Ntext =1,000, while
the converse is true of the S+B hypothesis. The choice to accept or reject a hypothesis is
made by a comparison of their respective PDFs.

While the test statistic may be any quantity calculated from data, an optimal choice
for the test statistic may be made to resolve the difference between the two hypotheses. A
common choice is to use the ratio of the S+B and B-only hypotheses to define the likelihood
ratio in Equation 7.8.

Λ(Ntext) = L(Ntext|θ1)
L(Ntext|θ0)

, (7.8)

The Neyman-Person lemma states that the likelihood ratio test is the most likely to reject
the B-only hypothesis, given that the S+B hypothesis is true [119]

An example of the PDFs of the likelihood distributions, produced under the assumption
of either the S+B or B-only hypotheses, is shown in figure 7.15b. Measurements of the
likelihood ratio test statistic, Λ(Ntext), can fall at different points on the horizontal axis. As
in the case of the earlier illustration, the two compatibility of the two hypothesis with the
observation may then be assessed. Data measured at larger values of Λ(Ntext) are less com-
patible with the background-only hypothesis. Likelihood ratios can complicated functions;
in practice they usually need be estimated computationally.

The CLs method is a statistical convention used in particle physics to compare hypotheses.
Taking first the PDF under the B-only hypothesis, Λ(Ntext|θ0). The integral of the test
statistic Λ(Ntext|θ0) above a given observed value of Ntext defines the p-value, p0, of the
observation. This is the probability, according to the B-only hypothesis, to observe a value
of the test statistic that is less likely than the actual observed value. The p-value is illustrated
in the shaded blue areas of the plots in Figure 7.15. The complement of the p-value, shown
as the unshaded region under the blue curve, defines the value CLb ≡ 1 − p0. An analogous
value, CLs+b, is defined for the likelihood ratio under the S+B hypothesis, using the PDF
Λ(Ntext|θ1). The value p1 is the defined as the integral of Λ(Ntext|θ1) above the observed
value, and CLs+b ≡ 1−p1. Finally, the ratio of these two values defines the arbitrarily named
value CLs ≡ CLs+b/CLb. This ratio is interpreted as the confidence in the S+B hypothesis
compared to the B-only hypothesis [120].

170



F.2 Statistical Model

Each statistical question is answered through the comparison of B-only and S+B hy-
potheses. Three related tests are performed;

1. the background-only hypothesis versus a generic model-independent hypothesis of sig-
nal events;

2. the background-only hypothesis versus a contact interaction hypothesis involving either
lepton channel;

3. the background-only hypothesis versus a contact interaction hypothesis involving both
lepton channels.

Each of these hypotheses is described by one of the following likelihood functions. The
likelihood converts the hypothesis into an expression of the probability to observe a yield in
an SR. In each case, a parameter of interest (POI) is used to define the signal hypothesis.
For the model-independent hypothesis of a generic signal production, the POI is the number
of signal events produced in the SR, Ns. For the contact interaction model, the POI is the
energy scale Λ. Different values of Λ correspond to different S+B hypotheses. Figure 7.8
shows that, in the case of CI models, the number of signal events produced is a function
of Λ: Ns(Λ). Comparisons of the model-independent results with the CI results provide a
useful cross-check.

The first likelihoods describe the background-only hypothesis and a hypothesis predicting
some number of signal events, Ns, to be reconstructed in the SR. In this model, the POI is
Ns. The PDFs of the number of events to observe in the SR for each hypothesis are given
in Equations 7.9 and 7.10.

PDFb(~θ) =Pois((1 + θb) ×Nb) × Gaus(θb, σb) (7.9)

PDFs+b(~θ) =Pois(Ns + (1 + θb) ×Nb) × Gaus(θb, σb) (7.10)

The functions Pois(Nexp) are Poisson probability distributions with medians Nexp. In this
case, Nexp = (1 + θb) × Nb, where Nb is the expected background in the SR from the
extrapolation procedure. The parameter θb is a nuisance parameter that is fit to the data
and corresponds to the measured uncertainty on Nb. The functions Gaus(θb, σb) are Gaussian
constraints on the nuisance parameter θb. These have means centered at θb = 0, and standard
deviations σb. For these PDFs, which are constructed to be agnostic as to the form of the
signal model, the uncertainty σb is the sum in quadrature of the extrapolation uncertainty
and the ISS.
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Next are the PDFs for hypotheses describing contact interactions, limited to individual
lepton channels. Equations 7.11 and 7.12 give the probability distributions for B-only and
S+B hypotheses, respectively.

PDFb(~θ) =Pois((1 + θb) ×Nb) × Gaus(θb, σb) (7.11)

PDFs+b(~θ) =Pois((1 + θs) ×Ns(Λ) + (1 + θb) ×Nb)×

Gaus(θb, σb) × Gaus(θs, σs) (7.12)

The standard deviations of the Gaussian constraints correspond to the uncertainties de-
scribed in Section E. σs is the experimental uncertainty on the signal yield. σb is the total
uncertainty on the background yield, which consists of the sum in quadrature of the extrap-
olation, ISS, and the function bias uncertainties. Each of these numbers is given in Table
7.5. The nuisance parameters are seen to modify the signal and background expectations
in the Poisson function via (1 + θ) terms. In these models, the parameter of interest, Λ, is
used to determine the number of signal events expected in the SR. This is performed with
a smooth interpolation between the generated CI shapes to provide Ns(Λ). For each of the
four signals, a set of PDFs is constructed for each chirality combination, leading to 16 total
models.

Last are the hypotheses dealing with CI models in both lepton channels. These hy-
potheses predict signal production in both ee and µµ channels. For each constructive or
destructive SRs, the observations in both ee and µµ SRs are mutually independent. There-
fore the combined likelihood is the product of the individual likelihoods for each lepton
channel corresponding to Equations 7.11 and 7.12. The observations in the constructive and
destructive SRs of the same lepton channel are not mutually independent and therefore are
not combined. Consequently, for each interference pattern, the likelihoods of observations in
the two leptonic SRs are combined to produce a total likelihood. This is repeated for each
chirality, resulting in eight pairs of hypotheses.

For each B-only and S+B (PDFb or PDFs+b) PDF given here, a corresponding likelihood
(L(Ntext|θ0) or L(Ntext|θ1)) exists. In this form, the likelihood expresses the probability of
observing Ntext events given some nuisance parameters θ.

It is helpful in computing CLs values to have PDF shapes, under both B-only and S+B
hypotheses, for the likelihood ratio test statistic given in Equation 7.8. The PDF’s shape
is determined straightforwardly from the B-only and S+B PDF shapes with a frequentist
Monte-Carlo procedure. A number of pseudo-observations are generated from each hypoth-
esis PDF (PDFb or PDFs+b). The nuisance parameters are allowed to vary corresponding
to the width of their corresponding Gaussian constraint. The number of observed events is
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sampled from the Poisson term.
The test statistic is calculated for each pseudo-observation. This is simply a matter of

fitting nuisance parameters of the appropriate likelihood (L(Ntext|θ0) or L(Ntext|θ1)) to the
pseudo-observation, and noting the probability of that observation. This leads to distribu-
tions of the test statistic under each hypothesis, as shown in Figure 7.15b.

F.3 Significance test

(a) (b) (c) (d)

Figure 7.16: Predictions of the B-only hypotheses estimated using ensembles
of pseudo-experiments. The p-value is indicated in the shaded red region of
the distribution. (a) and (b) show ee constructive and destructive predic-
tions, while (d) and (e) show µµ constructive and destructive predictions.

The significance of the data, given the background-only hypothesis, is evaluated by con-
sidering the p-value. While it is possible to use the likelihood test statistic in Equation 7.8,
the signal dependence is undesirable. Instead, the number of events yielded in the SR, Ntext,
is used as the test statistic. The corresponding p-value is the probability of observing a yield
at least as large as that seen in data. Figure 7.16 shows the distributions of the event yields
predicted by the background-only hypotheses in each SR. The observed number of events is
illustrated, and the integral corresponding to the p-value is highlighted.

The PDF distributions of Ntext is produced using a frequentist approach. The shape
is approximated with one hundred thousand pseudo-experiments drawn from the B-only
hypothesis likelihood given in Equation 7.11.

Probabilities of observations are often cited in terms of standard deviations from the
mean with respect to the normal distribution. The background significance of a p-value is
defined as the inverse of the cumulative distribution function of the upper tail of the standard
normal distribution. This is illustrated for each SR in Figure 7.16.
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F.4 Limit test

Limit tests are a generalization of the significance test. In this context, the B-only
hypothesis is taken to be the signal+background hypothesis, and the S+B hypothesis is
defined as the background-only hypothesis PDFb. The hypothesis test then seeks to reject
the signal+background hypothesis in favor of the background-only hypothesis due to their
incompatibility with the observed data. Values of the POI describe the set of signal+back-
ground hypotheses to be considered. For the purpose of this analysis, this means the goal
of the limit setting procedure is to find the limiting POI value that predicts the smallest
non-rejected signal contribution to the SR. This is done using a series of hypothesis tests
scanned over a range of POI values. 5 This value is reported as the limit on the POI. Values
of the POI that predict larger signal contributions to the SR describe excluded signal models,
while values of the POI that predict fewer signal events in the SR remain admissible.

The compatibility of hypotheses with respect to the observation is measured using the
CLs method. The value of CLs plays a similar role as would a p-value. For a particular
value of the POI, if the CLs value exceeds 0.95, then the signal+background hypothesis is
considered rejected, and the value of the POI is considered excluded.

There are two types of hyperparameters of the limit setting procedure. First is the
range and resolution of values to consider in a scan over the POI. A broader range with
finer resolution adds accuracy but also computational expense to the resulting limit. This
reaches a point of diminishing returns when the accuracy of the limit exceeds the second-
order uncertainties on the systematics. When the limiting value of the POI falls between
steps in the POI scan, an interpolation is performed between the steps. In general, 30 to 50
steps are sufficient for the results reported here.

The second type of hyperparameters defines the number of pseudo-observations, or toys,
to calculate the PDF shapes for the test statistic. The likelihood ratio (Equation 7.8) serves
as the test statistic for all limit setting. The reliability of the results is quite sensitive to
the number of toys. Noting the log scale of Figure 7.15b illustrates this point; many toys
are needed to sample the tails of the likelihood distributions smoothly. In this analysis, the
limits were found to converge to a relative accuracy of 10−2 between one and two hundred
thousand toys. This For the results of this analysis, four hundred thousand toys were used
for each POI step.

5An animated illustration of these scans may be found: http://hg8i.com/thesis/likelihoods/.

174

http://hg8i.com/thesis/likelihoods/


G Results

This analysis inspects the high-mass tails of the ee and µµ invariant mass spectra. Four
signal regions are considered, two each for ee and µµ selections. For each signal region, the
differential mass distribution in a lower mass control region is fit to produce a background
estimate in the signal region. This section presents the statistical investigation performed
on the observation in each signal region and their physical interpretation.

G.1 Data

The data collected and analyzed is presented here for each signal region. First Ta-
ble 7.8 presents the data and background expectations, along with the significance of the
background-only hypothesis in each SR.

SR Data Estimated Background Significance

ee Constructive 19 12.4±1.9 1.28
ee Destructive 2 3.1±1.1 – 0.72

µµ Constructive 6 9.6±2.1 – 0.99
µµ Destructive 1 1.4±0.9 – 0.58

Table 7.8: The dielectron and dimuon event yields for the data, the expected
background and the respective significance in the different SRs used in the
analysis. The p-value of each observation is defined as the probability,
given the background-only hypothesis, of an observation at least as large as
that seen in the data. The significance is the Gaussian cumulative density
function of the p-value, and negative significances correspond to deficits.

Small deficits compared to the expected background, are seen in the µµ SRs and the
ee destructive SR. A moderate excess is observed in the ee constructive SR. None of these
significances are judged to be significant enough to reject the background-only hypothesis.

The signal regions and control regions are illustrated in the plots of Figure 7.18. Several
observations follow. First, the agreement between the fitted background function and the
data is consistent in each CR. The agreement is also reasonable in the gap between the CR
and destructive SRs. Next, the excesses and deficits listed in Table 7.8 appear in the signal
regions of the plots. For comparison, the predictions of several CI signal models are imposed
on top of the background estimate.

The parameters of the fitted background shape are given in Table 7.9.

175



Table 7.9: Parameters for the functional form given in Equations 7.3 and
7.4. The uncertainties are statistical only.

Parameter ee Constructive ee Destructive µµ Constructive µµ Destructive

Normalization (6.17 ± 0.02) × 10-3 (7.87 ± 0.03) × 10-3 (6.90 ± 0.03) × 10-6 (4.39 ± 0.02) × 10-7

b (fixed) 6.1 6.1 1.3 1.3
p0 -12.2±0.1 -12.1±0.1 -14.9±0.2 -17.0±0.2
p1 -4.14±0.02 -4.16±0.03 -4.42±0.04 -4.70±0.04
p2 -0.948±0.005 -0.945±0.006 -0.927±0.008 -0.846±0.008
p3 -0.0840±0.0008 -0.082±0.001 -0.081±0.001 -0.064±0.001
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Figure 7.17: Distributions of the invariant mass of dielectron pairs in the
constructive (top) and destructive (bottom) interference CR/SR pairs. The
observed data is shown in black, and the fit to the data in the CR is shown
in red. Simulated benchmark CI signal shapes with LL chirality are shown
superimposed on top of the empirical fit. The data points are plotted at the
center of each bin as the number of events divided by the bin width, which is
constant in log (m``). The rightmost bin in each plot shows the SR, with the
background expectation and uncertainty shown in red, and the observation
with Poisson statistical fluctuations shown in black. The differences between
the data and the fit results in units of standard deviations of the statistical
uncertainty are shown in the bottom panels.
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Figure 7.18: Distributions of the invariant mass of dimuon pairs in the
constructive (top) and destructive (bottom) interference CR/SR pairs. The
observed data is shown in black, and the fit to the data in the CR is shown
in red. Simulated benchmark CI signal shapes with LL chirality are shown
superimposed on top of the empirical fit. The data points are plotted at the
center of each bin as the number of events divided by the bin width, which is
constant in log (m``). The rightmost bin in each plot shows the SR, with the
background expectation and uncertainty shown in red, and the observation
with Poisson statistical fluctuations shown in black. The differences between
the data and the fit results in units of standard deviations of the statistical
uncertainty are shown in the bottom panels.
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Although the background expectations from the simulation are not used explicitly for
hypothesis tests, they are provided in Table 7.10 along with the nominal background expec-
tations. The systematic uncertainty on the simulated Nbkg takes into account experimental
and theoretical uncertainties, however, and these are not well known in the SR. No signif-
icant difference is observed between the nominal background estimate and the simulated
background estimate.

Table 7.10: Comparison between the background estimate in the SR, as de-
rived from fitting the data (Nfit), and the estimation from simulated back-
ground (Nsim). The yields observed in data (Nobs) are also given. All
systematic uncertainties are included.

SR Nsim ± σsim Nfit ± σfit Nobs

ee Constructive 13.3 ± 1.9 12.4 ± 1.9 19
ee Destructive 2.9 ± 0.6 3.1 ± 1.1 2
µµ Constructive 11.9 ± 2.8 9.6 ± 2.1 6
µµ Destructive 3.3 ± 1.0 1.4 ± 0.9 1

A further comparison of the background differential shapes made in Figure 7.19. These
plots show a comparison between the fitted background function and the simulated back-
ground distribution in both the CR and SR. The fitted background function is produced
using the fit to data, not the simulation.

G.2 Limits on signal events

In the absence of significant deviations of the data from the background expectation,
the observations are used to set limits on signal production in each SR. The limits in this
section use the hypotheses defined in Equations 7.9 and 7.10. The parameter of interest is
the number of signal events to pass the event selection, Nsig. This is trivially converted to
limits on the visible component of a signal production mechanism, σvisible × BR, with the
division by the integrated luminosity. The expected and observed upper limits on both Nsig

and σvisible × BR at 95% confidence level are given in Table 7.11. Because these limits do
not make strict assumptions about the signal production mechanism, they can be directly
reinterpreted for different new physics models that predict dilepton production in the SRs.

The results in Table 7.11 are illustrated and complemented by Figure 7.20. This plot
shows the observed limits on Nsig in each SR. The expected limits, which are the limits
expected when the observed yield equals the background expectation, are shown. Bands of
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Figure 7.19: Fits performed on data (red) are compared to the background
simulation. The background simulation is used only to study performance
and systematics. The uncertainties on the background simulation are theory
only, and are provided as a rough estimate. Shown for ee constructive (a),
ee destructive (b), µµ constructive (c), and µµ destructive (d).
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Figure 7.20: Limits on the number of signal events in the respective signal
region for each model.

Table 7.11: The observed model-independent upper limit at 95% CL on the
visible cross-section times branching fraction σvisible ×BR and the number of
signal events (Nsig) in the dielectron and dimuon SRs used in the analysis.

SR Limit on σvisible × BR [fb] Limit on Nsig
Exp. Obs. Exp. Obs.

ee Constructive 0.067 0.115 9.3 16.0
ee Destructive 0.036 0.032 5.0 4.4
µµ Constructive 0.057 0.042 8.0 5.8
µµ Destructive 0.029 0.027 4.0 3.8

±1σ and ±2σ intervals are drawn around each expected limit, which contain 68% and 95%
of the expected limits generated by pseudo-observations.

The excesses and deficits from Table 7.8 are seen to manifest themselves in this plot. The
excess of ee events in the constructive SR has weakened the corresponding observed limit.
In the other limits, the deficits of events are seen to have allowed slightly stronger limits
than expected. None of the observed limits differ significantly from the expected limits. 6

The limits in Table 7.11 are placed in context with the signal yields for CI models in
Table 7.12. The signal models that predict signal event yields above the corresponding limits

6This statement is, in fact, distinct from the statement given earlier that none of the observations are
significantly different from the expected background. The limits are computed using CLs, while the earlier
statement considers only the p-value of the background-only hypothesis. In any case, both statements share
a consistent message.
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Table 7.12: The expected yields for a few CI signal points (LL chirality
only) are listed along with the signal acceptance times efficiency A × εsig
values for reference.

SR Λ = 20 TeV Λ = 30 TeV Λ = 40 TeV
Nsig A × εsig Nsig A × εsig Nsig A × εsig

ee Constructive 39.1 0.69 10.3 0.69 4.4 0.69
ee Destructive 9.6 0.70 1.0 0.70 -0.1 0.69
µµ Constructive 28.5 0.43 7.7 0.43 3.4 0.43
µµ Destructive 7.1 0.43 0.6 0.42 -0.2 0.44

on Nsig in Table 7.11 are excluded. Next to each Nsig yield is the product of the detector
acceptance and efficiency: the fraction of produced signal events expected to be reconstructed
in the SR. Although these values are provided for CI signal shapes, an inspection of their
variance shows that these are relatively shape-independent. The number of Nsig events to
appear in an SR for a new physics model may be approximated by multiplying the number
of events produced according to the model by the corresponding σvisible × BR fraction given.
Then, this Nsig can be compared to the limits on Nsig to determine whether the observed
data is incompatible with the model under consideration.

G.3 Limits on Λ

The observations in the signal regions are incompatible with many contact interaction
models. The following tables assess which signal models may be counted as excluded. To
this end, the hypotheses defined in 7.11 and 7.12 are compared to the observed data. Both
the single lepton channel hypotheses (ee and µµ), as well as the dilepton combination (``),
are considered. The observed and expected limits set at 95% confidence level on the contact
interaction scale Λ are shown in Table 7.13. The highest limit is the exclusion of Λ below
35.8 TeV for `` constructive CI with left-left chirality. This is an incredible energy scale,
equivalent to the energy needed to transport an electron through a stack of AA batteries
reaching from the earth to the sun, and then on past Jupiter. Also notable is the exclusion
of Λ below 28.8 TeV for `` destructive CI with left-right and right-left chiralities.

The limits shown in table 7.13 are set without theoretical uncertainty on the signal
model. The choice of the signal model corresponds to the choice of the signal+background
hypothesis, and consequently, there is no uncertainty related to that definition. Alternative
signal models, corresponding to possible theoretical variations, may also be used to set limits
on Λ. These alternative models predict either enhanced or diminished signal event yields to
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Table 7.13: Expected and observed lower limits at 95% CL on Λ in TeV for
the dielectron and dimuon channels separately and the combined dilepton
channel and for CI signal hypotheses with constructive and destructive in-
terference and different chiralities.

Int. Channel Exp./Obs. LL LR RL RR

C
on

st
ru

ct
iv

e ee
Expected 31.1 28.9 28.7 30.9
Observed 26.1 24.7 24.6 26.0

µµ
Expected 29.2 27.1 27.0 29.0
Observed 32.7 30.0 29.8 32.6

``
Expected 37.6 34.0 33.7 37.3
Observed 35.8 32.5 32.3 35.5

D
es

tr
uc

tiv
e ee

Expected 23.0 24.4 24.4 23.2
Observed 23.5 25.1 25.1 23.7

µµ
Expected 22.0 23.6 23.6 22.2
Observed 22.3 23.9 23.9 22.5

``
Expected 25.6 28.0 28.0 25.9
Observed 26.0 28.8 28.8 26.5

the SR. Two models are considered: one with +1σ theoretical increase to the event yield, and
one with −1σ theoretical reduction to the event yield. The limits set on these alternative
models are given in Table H for +1σ Table 7.15 for −1σ.

The limits on Λ shown in Table 7.13 are shown in the plots of Figure 7.21. The plots
(a) and (b) show the limits set in the ee and µµ channels. Four limits, corresponding to the
four chirality combinations, are set in each SR. Since each of these limits relies on the same
observation, the pattern of the observed limits with respect to the expectation is the same
in each SR. For example, the excess of dielectron events in the ee constructive SR leads to
lower limits on the left side of Figure 7.21 (a). The deficits in the other SRs lead to slightly
stronger limits on destructive Λ in plot (a), and also stronger µµ limits in plot (b).

Next, Figure 7.21 (c) shows the limits on dilepton models using the statistical combination
of both ee and µµ channels. The combination leads to higher expected limits for all chiralities
and interferences. Since both ee and µµ destructive limits are stronger than expected, the
dilepton combination for destructive limits is stronger as well. This is not the case for the
combined constructive limits, where the excess in the ee SR works against the deficit in
the µµ SR. Here, the combined limit is weaker than the expectation. This is a result of
the relatively small systematic uncertainties for the ee channel, which cause the dielectron
observation to dominate the combination.
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Table 7.14: Expected and observed lower limits at 95% CL on Λ in TeV
where the CI signal hypothesis has been increased by +1σTheory

s .

Int. Channel Exp./Obs. LL LR RL RR

C
on

st
ru

ct
iv

e ee
Expected 31.9 29.4 29.4 31.7
Observed 26.8 25.2 25.2 26.6

µµ
Expected 31.1 28.8 28.6 30.9
Observed 35.1 31.8 31.6 34.7

``
Expected 39.6 35.6 35.4 39.3
Observed 38.6 34.7 34.4 38.2

D
es

tr
uc

tiv
e ee

Expected 23.3 24.9 24.9 23.5
Observed 23.8 25.5 25.5 24.0

µµ
Expected 23.2 25.2 25.1 23.5
Observed 23.5 25.4 25.4 23.7

``
Expected 26.5 29.2 29.2 26.9
Observed 26.9 29.9 29.9 27.3

Table 7.15: Expected and observed lower limits at 95% CL on Λ in TeV
where the CI signal hypothesis has been reduced by −1σTheory

s .

Int. Channel Exp./Obs. LL LR RL RR

C
on

st
ru

ct
iv

e ee
Expected 30.3 28.1 28.0 30.0
Observed 25.5 24.0 24.0 25.3

µµ
Expected 26.7 25.1 25.0 26.6
Observed 30.3 27.9 27.7 30.0

``
Expected 35.4 32.1 31.9 35.0
Observed 32.7 30.1 30.0 32.5

D
es

tr
uc

tiv
e ee

Expected 22.5 23.9 23.9 22.7
Observed 23.0 24.5 24.5 23.3

µµ
Expected 18.7 18.3 18.3 18.7
Observed 20.7 21.8 21.7 20.8

``
Expected 24.5 26.5 26.5 24.8
Observed 25.1 27.4 27.4 25.4
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Figure 7.21: Limits on the contact interaction scale Λ for the (a) the ee
channel, (b) the µµ channel, and (c) the statistical combination of both
channels.. For each interference and chiral model shown in the bottom axis,
the expected and observed limits are shown. The dotted line shows the
expected limits, and the green and yellow error bars show the 1σ and 2σ
uncertainty bands on the expectation. The black points show the observed
limits.
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H Summary

A search for new physics in non-resonant dilepton production via the dielectron and
dimuon invariant-mass spectra has been presented. This search made use of the full 139
fb−1 of proton–proton collision data collected by ATLAS during Run 2 of the LHC at

√
s =

13 TeV. No significant excess in the collected data is observed above the expected background.
Upper limits are set on the σvisible × BR of new signal processes and lower limits on the CI
scale Λ. The limits on σvisible × BR are easily reinterpreted in terms of new physics models.
This is the first time such results have been made available. 7 The limits on Λ are the most
robust frequentist limits ever set on contact interaction models.
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Figure 7.22: Comparison the new observed limits on Λ, shown in black,
with similar `` observations by ATLAS and other experiments. The ATLAS
results listed use datasets

√
s = 13 TeV 36.1 fb−1 [17],

√
s = 13 TeV 3.1

fb−1 [18],
√
s = 8 TeV 20 fb−1 [19], and

√
s = 7 TeV 5.0 fb−1 [20]. The

most recent CMS result
√
s = 13 TeV 36 fb−1 is shown in red [121]. Several

older studies set limits on combined LR+RL chirality models, which are not
comparable to those set in this work. The older ZEUS [15] and ALEPH [16]
results appear at the bottom.

A number of new techniques were developed in order to enable the production of this
result. Most significantly, the results make use of a background estimate derived from the
data in a low mass control region. This approach replaces theoretical and experimental
uncertainties with well studied statistical uncertainties on the background estimate. These

7Precise values for the limits are publicly accessible: https://www.hepdata.net/record/ins1802523.

186

https://www.hepdata.net/record/ins1802523


uncertainties are measured directly and robustly. In particular, a new method for measuring
spurious signal has been introduced with the ISS procedure. Additionally, the limits on both
σvisible × BR and Λ are set using a frequentist approach. This eliminates arbitrary prior
probabilities on signal models. These techniques, along with the integrated luminosity of
the full Run 2 dataset, allow this search to probe unprecedented energy and length scales.
The strongest limits are set on the combined left-left chirality constructive model. These
observed (expected) limits exclude this model for Λ up to 35.8 (27.6) TeV at 95% CL.

The results of this analysis are placed in a broader context with other studies in Figure
7.22. This plot shows the most recent observed limits along with earlier results by the
ATLAS, CMS, ZEUS, and ALEPH collaborations from the past two decades. The new
limits on Λ use new techniques and statistical interpretation to replicate prior exclusions.
The excluded region, illustrated by the shaded grey region, has been expanded and pushes
the limit on Λ higher than any previous comparable limit.
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Chapter 8

Summary

This thesis has presented two analyses of the proton-proton collision data collected by
ATLAS during the LHC Run 2. This data was produced in proton-proton collisions at
center-of-mass energy of 13 TeV at the LHC. The full dataset was collected by the ATLAS
experiment between the years 2015 and 2018 and corresponds to an integrated luminosity of
139 fb−1. The focus of both analyses is on collision events containing two charged leptons in
the final state. The clean experimental signature and fully reconstructable nature of these
events make them a particularly appealing window into the nature of fundamental particles.

The search for the Higgs decay to two muons investigates events with dimuon pairs in the
final state. Central to this study is the Yukawa coupling, Hµµ, that is thought to provide
the muon with its mass. This coupling is interesting from two perspectives. First, as the
source of the muon’s mass, the coupling differentiates the muon from the lighter electron and
heavier tau. It is a fundamental characteristic of the muon. Different Yukawa couplings have
only been observed with heavier third-generation fermions. Second, studying the coupling
is part of a broader project to measure the properties of the Higgs boson.

Presently no observation of the coupling has reached a significance of 3σ. The significance
of theH → µµ signal strength measured by ATLAS using Run 2 data is 2σ, which exceeds the
sensitivity predicted at the start of the run by over 30%. This improvement is primarily due
to the highly optimized use of multivariate analysis categorization. Future operation of the
LHC promises to enable more detailed study. The upcoming LHC Run 3 will likely provide
enough collision data to allow an observation at the level of “evidence” (≈ 3σ significance). In
the coming decades, planned luminosity upgrades to the LHC should allow for a measurement
to exceed the level of 7σ significance. These precise measurements will form an interesting
test of the predictions of the Standard Model.

The analysis of the complete Run 2 dataset with respect to H → µµ is part of a series
of related analyses that extends to the past, and is expected to continue in the future. The
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strategies adopted in each iteration reflect both the amount of data available to analyze and
the lessons learned from previous work. Future iterations may expand their focus to include
bbH production, the bottom quark analog to ttH. These studies may also reduce their
reliance on simulation in order to isolate their results from theoretical and experimental
uncertainties. Precautions should be taken in the broader H → µµ analysis to train the
multivariate discriminant in the same phase space in which it will be used, as was done in
the VH analysis. A blinding strategy, similar to that used in the VH analysis, could be
adopted more broadly. In this case the parameters defining the analysis categorization and
background modeling are frozen before observing the measured data. This helps avoid a
major source of bias.

A major focus of this thesis has been on the VH production mechanism in conjunction
with the H → µµ process. This is the first investigation of the previously unexplored multi-
leptonic phase spaces of V H → `(`/ν)µµ. Newly introduced model-independent limits
are set in this phase space using an inclusive categorization for VH-like events. Modern
statistical techniques related to the multivariate categorization, including the use of cross-
validation, result in robust exclusive categories with reduced bias. Small excesses of events
are observed in the VH signal regions. These results were published on January 2021 in
Physics Letters B [81]. After the publication of these results, the CMS Collaboration released
their observation showing a similar excess in VH-like events [88]. New limits are set on the
Higgs production in these inclusive categories.

Future iterations of the VH analysis may consider the quark decays of the vector bosons,
resulting in final state jets. Another promising inclusion is the Z → νν decay mode identified
by Emiss

T signatures. These approaches were found to be insensitive at present when compared
to considering these events together with ggH and VBF events. Improvements in Emiss

T and jet
reconstruction and resolution could make such these challenging VH categories competitive.

The search for new physics with non-resonant features in the high-mass tail of the dilepton
invariant-mass spectra complements the search for H → µµ. The strategy taken in this
analysis offers a stark departure from previous studies. In addition to using a background
estimate derived from data, the statistical treatment of the observation is strengthen by the
use of frequentist methods. The analysis exchanged theoretical uncertainties for experimental
and statistical uncertainties. Additionally, a new method for estimating the sensitivity of the
result to mis-modeling effects was developed and introduced. These improvements parted
with the tradition of ATLAS, and it took a nearly year of detailed investigation for them
to be accepted by the collaboration. These results were published on November 2020 in the
Journal of High Energy Physics [96]. The publication of this result paves the way for future
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analyses based on these methods. 1
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Figure 8.1: Comparison of the `` constructive (blue) and destructive (red)
LL chirality limits with previous ATLAS results. For results with Bayesian
limits, the Λ−4 prior is used. (

√
s = 13 TeV 36.1 fb−1 result: [17],

√
s =

13 TeV 3.1 fb−1 result: [18],
√
s = 8 TeV 20 fb−1 result: [19],

√
s = 7 TeV

5.0 fb−1 result: [20].)

The search for new physics with non-resonant features takes a different approach than the
H → µµ search. Despite the inclusive results, the target of H → µµ search is the particular
dimuon resonant signature produced by specific mechanisms in the Standard Model. The
model-independent results play an auxiliary role. In contrast, the analysis of the high-mass
dilepton spectra searches for unexpected deviations regardless of their source. The key
result are the limits on the σvisible × BR in each signal region, which are agnostic as to the
production mechanism. These limits are the first of their kind. They are provided along
with the necessary information to interpret them in terms of new hypotheses that predict
non-resonant event production in the analysis signal regions.

More conventional limits are set on the energy scale, Λ, of contact interactions. Such
interactions are of particular interest because they enable probes of enormous energy scales
that are not directly accessible at the LHC. Contact interactions are intriguing as the signa-

1Currently a study of the clockwork mechanism a search for large extra dimensions have moved in this
direction.
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ture of composite fermions. The exclusion of contact interactions necessarily limits fermion
binding energy if they are composite. It is for these reasons that contact interactions have
held the interest of particle physicists for so long, as illustrated in Figure 8.1. Here the
evolution of ATLAS results is shown using various collision energies and luminosities. The
results are arranged chronologically based on their publication. The steady progression of
the search sensitivity can be seen over time by the evolution of the expected limits; the left-
left chirality results produced by this analysis appear in the right-most bin. These eventually
reach the staggering energy scales of 35.8 TeV and 28.8 TeV for constructive and destructive
CI respectively.

It is somewhat subjective to predict the future performance of non-resonant searches.
Unlike the search for H → µµ, where the result is limited statistically by the availability of
data, this search is carried out in the tail of the invariant-mass spectra. The extent of the
tail is influenced more by the center-of-mass energy than event multiplicity. Nevertheless a
simple extrapolation predicts that, with

√
s = 13 TeV collisions and the predicted integrated

luminosity of 300 fb−1 of Run 3, the sensitivity may reach 43 TeV and 29 TeV for constructive
and destructive CI respectively. These improvements would be enhanced by the anticipated
arrival of

√
s = 14 TeV collisions.

The model-dependant results for CI are sensitive to systematic uncertainties on the ex-
pected event multiplicity for a given value of Λ. These uncertainties, especially those with
experimental origins, can be reduced by a better understanding of the performance of the
ATLAS detector.

• • •

The strategy of the H → µµ and non-resonant searches represent very different ap-
proaches with a similar goal: to advance our knowledge of Nature at its most fundamental
scales. The H → µµ analysis focuses on a specific prediction, and is designed with a singular
vision of searching a narrow phase space for a well defined signal predicted by the Stan-
dard Model. This approach benefits from its concentrated focus and suffers from its lack of
generality. The non-resonant analysis eschews a signal model and searches for unexpected
phenomena beyond the predictions of the Standard Model, only to interpret the results in
terms of a broad description of contact interactions. This approach benefits from its unre-
stricted scope and suffers from its lack of optimization to a specific signal. These strategies
complement each other, making up for the others shortcomings, and together comprise the
armamentarium of methods used to study the Universe.
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Appendix A

Group Theory and Particle Physics

The extent to which these components are described by mathematics is the profound,
and historically unintuitive, foundation on which the field of physics is based. This appendix
describes the mathematical foundation of the Standard Model from the humble perspective
of an experimentalist graduate student. The casual reader is encouraged to follow the broad
strokes rather than the fine details. The experimentalist reader is encouraged to consult the
included references. The theorist reader is requested to proceed with a sense of humor.

A Mathematical Structures

A mathematical structure consists of objects and the relations between them. This
statement is made with the highest degree of abstraction. The mathematical structure is
defined without regard to what the objects are. Despite the degree of abstraction, the
concept of a mathematical structure is useful in the study of physical systems. There often
exists a mathematical structure that exhibits, through analogy, the same components and
interactions as a physical system. In this case, by studying the mathematical structure, it is
possible to study the physical system. This combination of abstraction and analogy makes
mathematics a powerful tool for the study of physical systems.

A broad selection of mathematical structures falls into the category of Groups. This class
will be the focus of the remainder of this section.

Several resources were invaluable in the preparation of this chapter. The books Elemen-
tary Particles and Their Interactions by Ho-Kim and Pham [122], The Lie Algebras su(N)
by Pfeifer [123] and Transformation Groups and Lie Algebras by Ibragimov [124] provide a
basis for the mathematics underlying the Standard Model. Further details are informed by
the series of papers, A Simple Introduction to Particle Physics by Robinson et al. [3].
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A.1 Groups and their Properties

Group Definition

A Group is comprised by a set of elements, G = {gi, gj, ...}, and a relation between them,
“◦”. As mentioned earlier, the elements and their relations are completely abstract notions.
While the relation is often called a product rule, any suitable function ◦(gi, gj) ≡ gigj = gk

that maps two Group members onto a third Group member is acceptable.
There are four requirements of the Group elements and product rule.

1. Closure: the product of any two elements in the Group yields an element that is also
in the Group. Concisely, gigj = gk ∈ G, ∀gi, gj ∈ G.

2. Associativity: the sequence of the application of the product rule does not change the
result. In other words, gi(gjgk) = (gigj)gk, ∀gi, gj, gk ∈ G.

3. Identity: There is a unique element, e, in the Group whose product with any other
element results in the latter. Explicitly, ∃!e ∈ G such that egi = gie = gi, ∀gi ∈ G.
The element e is labeled the identity element, or the identity.

4. Invertibility: For every element in the Group, there also exists an element whose
product with the first element yields the identity element. Symbolically, ∀gi ∈ G,
∃gj ∈ G such that gigj = e. The element gj is called the inverse of gi and is denoted
as g−

i .

This short set of requirements is all that is needed to define the concept of a Group.
Several terms are useful when discussing groups. A Group is called Abelian if a product

of elements yields the same result regardless of their order: gigj = gjgi, ∀gi, gj ∈ G. Likewise,
a Group is called non-Abelian if gigj 6= gjgi for any elements of the Group. These definitions
hint at the utility of the commutator function [gi, gj], which will gain an explicit form when
square matrices represent gi and gj.

The set of elements that makes up the group can be finite or infinite. In both cases, the
number of elements in the group is called the group’s order. Furthermore, the elements of a
Group can be discrete or continuous. In the continuous case, the label i in gi is a continuous
variable that identifies the Group element. Such Groups form a class called Lie Groups. If
a Group is parameterized by one real continuous variable i within a given interval and a
unique value of i = i0 corresponding to the identity element, this group is a one-parameter
group. One-parameter Groups are of particular interest in particle physics. The number of
parameters needed to specify an element in the group is the group’s dimension.
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The definition given here is sufficient to investigate the nature of Groups. The tables
in Figure A.1 show the relations between the elements of several Groups. The relations are
shown for the Groups of order 1 (Table A.1a), order 2 (Table A.1b), and order 3 (Table
A.1c), which all happen to be uniquely defined by their order. These tables are generalized
versions of arithmetic multiplication tables. They specify the two components of a Group:
the elements along with the row/column headers, and the relations between them.

◦ e
e e

(a) One element group

◦ e g2
e e g2
g2 g2 e

(b) Two element group

◦ e g2 g3
e e g2 g3
g2 g2 g3 e
g3 g3 g3 g2

(c) Three element group

Figure A.1: Cayley tables for the first three Groups by their order. These
tables show the result of the product between each element of the group.
Since the first three Groups are Abelian, the order of the column and row
elements in the product does not change the result. These Groups are
uniquely defined by their order, without mention of the product rule. The
first (a) group contains only the identity due to the third Group property
listed in the text. The second (b) and third (c) Group structures are derived
from the requirements for invertibility of the elements. Groups of higher
order are identified by their product rule as well.

Representations

A Group, consisting of a set of elements G and a product rule ◦, is denoted (G, ◦). The
elements gi ∈ G are not numbers, or matrices, or any other concrete object. Nevertheless,
sets of concrete objects and associated product rules can be found that satisfy the same
relationships as the elements of group (G, ◦). In such a case, the concrete set and product
rules form a representation of the corresponding group. It can be said that a representation
is isomorphic to the group that it represents.

◦ e g2
e e g2
g2 g2 e

(a) Two element group

+%2 0 1
0 0 1
1 1 0

(b) Representation under
addition

× 1 -1
1 1 -1
-1 -1 1

(c) Representation under
multiplication

Figure A.2: Cayley tables for the group with two elements (a), and for two
different representations (b) and (c).
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Groups have infinite numbers of representations. For example, consider the group of
order 2, sometimes called the cyclic group C2, from Table A.1b. One representation of this
group is real numbers under addition modulo 2. This representation has elements {0, 1},
and the product rule “addition modulo 2” (+%2), and can be labeled ({0, 1},+%2). The
identity element under addition in this representation is 0. This representation is illustrated
in the Cayley Table A.1. Here, the abstract Group elements and product rule have been
replaced with the elements and rule of the representation:

◦ → +%2; e → 0; g2 → 1 (A.1)

Another representation of C2 is the set of integers {−1, 1} under multiplication, or ({1,−1},×).
In contrast to the first representation, the identity element for multiplication is 1. This rep-
resentation is illustrated in Table A.2c. Here, the mapping between group components and
representation components is different:

◦ → ×; e → 1; g2 → −1 (A.2)

This comparison illustrates several essential points. First, groups can have multiple represen-
tations. While Figure A.2 shows two mathematical representations, Table clearly describes
the idealized behavior of a logical XOR gate, another representation of C2. Second although
representations ({0, 1},+%2) and ({1,−1},×) express themselves differently, their isomor-
phism to C2 means that knowledge of C2 can be applied to each representation. These
points are true for every group and every representation, including those that will become
physically meaningful later on.

If each element of one Group, Gb, is also an element of another Group, Ga, then Gb is
called a subgroup of Ga. Immediately it is clear that every group has at least two trivial
subgroups: the group itself and the single element identity group shown in Table A.1.

Finally, two groups Ga and Gb can be combined to form a third group Gc called a
product group. This group simply has elements (ga, gb) ∈ Gc for all ga ∈ Ga and gb ∈ Gb.
The elements of Gc transform independently according to their parent group. This product
is denoted Gc = Ga ⊗ Gb. A similar concept is that of the semidirect product between two
subgroups of Gc. Gc is the semidirect product Ga and Gb if for every element g ∈ Gc, there
are unique elements of Ga and Gb whose product is g.
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Algebras

The elements of a Group G of order(G) = n can be associated with orthonormal unit
vectors. For every element gi ∈ G, there is an associated unit vector |gi〉. The space spanned
by basis vectors |gi〉 is called an algebra of the group:

C[G] ≡
{

n−1∑
i=0

ci |gi〉 |ci ∈ C∀i
}

(A.3)

Where ci are complex numbers. The dimension of the algebra is the dimension of the vector
space.

The algebra of a Lie Group is referred to as a Lie algebra. Conceptually, the Lie algebra is
a vector space whose product satisfies the Jacobi identity (Eqn. A.4). The explicit definition
of a Lie algebra has four requirements for the elements of its vector space g:

1. The commutation [a, b] ∈ g for all elements a, b ∈ g.

2. The commutation relationship [a, b] = −[b, a] holds for all elements a, b ∈ g. 1

3. The linearity of commutators: [c1a+ c2b, c] = c1[a, c] + c2[b, c].

4. The elements satisfy the Jacobi identity,

[a, [b, c]] + [b, [c, a]] + [c, [a, b]] = 0, (A.4)

for all elements a, b, c ∈ g.

Because the Lie algebra is a vector space, the linear combination of two elements remaining
in the space (c1a+ c2b ∈ g ∀a, b ∈ g and ∀c1, c2 ∈ R) is implied.

Lie algebras are particularly useful due to Ado’s Theorem, which makes two important
statements. First, every Lie algebra of finite dimension is isomorphic to a Lie algebra of
matrices. Second, the commutation relationship is:

[a, b] = ab− ba; (∀a, b ∈ g). (A.5)

These statements motivate the subsequent use of square matrices as the primary represen-
tation of groups. It follows matrices form a basis for their algebras.

It is useful to consider an explicit example of a Lie Group and algebra. Unlike the discrete
groups specified in Section A.1, such Groups are parameterized by one or more continuous

1In general, there is an explicit requirement that [a, a] = 0. However for the Lie algebras under consider-
ation here this has been implied by [a, b] = −[b, a]. [123]
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variables. The number of parameters needed to specify an element is synonymous with the
group’s rank. Because the parameters are continuous, they identify an infinite number of
elements within the group. The General Linear Group GL(1,R) over reals is represented
by reals numbers under addition, or (R,+). This can be thought of as translations along a
single dimension. For any two elements of the representation x, a ∈ R, their sum is also in
the representation: x+ a ∈ R. This defines a transformation,

x → x′ = x+ a, (A.6)

which is identified as a translation through space.
The Lie algebra of GL(1,R) is all the real numbers. Equation A.3 expresses this set of

real numbers as the set of all possible sums of real numbers. Working with this particular
expression of the set is complicated. First, this definition contains many duplicate entries.
Additionally, this means that the group’s order matches the infinite number of the set of
real numbers. 1 However, the dimension of R is 1, and all the elements of the space can
be represented by a single basis vector |x〉. In this trivial example, any real number can be
selected as a basis vector. Equation A.3 can be rewritten:

C[GL(1,R)] =
{ ∞∑

i=0
ci |gi〉

∣∣∣∣ci ∈ R∀i
}

={i |x〉 |∀i ∈ R}.
(A.7)

Hence the Lie algebra of a group with infinite elements can be described by a finite basis.
The following section makes use of this fact.

The square n×n matrices of a Lie algebra can form a product with 1×n vectors, resulting
in a new vector. The vector is said to transform due to the element of the algebra. This is
apparent in the group SO(2), whose representations describe rotation on a two-dimensional
plane. This group is a one-parameter group, with θ ∈ [0, 2π). Elements of the group, gθ are
mapped to a representation through a function function D(gθ). In this instance, D(gθ) maps
group elements onto a representation of 2 × 2 matrices:

D(gθ) =
cos θ − sin θ

sin θ cos θ

 . (A.8)

1As a side note, this means that a Cayley table such as those in Figure A.1 impractical to write down.
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Matrices such as g(θ) can both act on other elements of the representation,
cos θ1 − sin θ1

sin θ1 cos θ1

cos θ2 − sin θ2

sin θ2 cos θ2

 =
cos(θ1 + θ2) − sin(θ1 + θ2)

sin(θ1 + θ2) cos(θ1 + θ2)

 , (A.9)

as well as on 1 vectors, cos θ − sin θ
sin θ cos θ

a
b

 =
a cos θ − b sin θ
a sin θ + b cos θ

 . (A.10)

In the first case, an 2 matrix element of the representation transformed a second element of
the representation into a third element of the representation. In the second case, an element
of the representation transformed a corresponding vector into a different vector. Linear
combinations of the objects that can be transformed by a given representation also form a
vector space called a module.

The elements of a module for the singlet representation are called, ambiguously, singlets.
If 2 × 2 matrices are used for a representation, the module elements are called doublets.
Likewise, in the case of 3 × 3 matrices, the elements are called triplets.

An invariant subspace is a region of a larger space with closure under any transformation
in a group: points in the space can only transform into other points in the space. A rep-
resentation is labeled as reducible when its module contains a subspace in which elements
transform only into themselves. Likewise, a representation is irreducible if this is not the
case. A module Ma corresponding to a reducible representation, with two subspaces Mb and
Mc, is denoted as the direct sum Ma = Mb ⊕ Mc. The same is true for the elements of
groups.

There are three commonly named representations. These are named here and defined
in the following sections. The first is the trivial or singlet representation. In this case, the
map D(g) = I for all group elements, with multiplication as the product rule. The next
is the fundamental representation, which is based on infinitesimal changes in the algebra.
This representation will be defined in Section A.1. The third is the adjoint representation,
which is based on the relationships between elements of the fundamental representation. The
adjoint is defined in Section A.1.

Generators

The definition of algebras as a vector space naturally raises the question of what basis
vectors span the algebra. For a particular representation, it is convenient to define the basis
infinitesimally close to the identity, I. Here representation is defined by the map D(gθ),

209



where gθ is an element of a one-parameter Lie Group. The parameter is defined such that
D(gθ) |θ=0. Expanding the representation for a parameter δθ close to the identity via a Taylor
series yields:

D(gδθ) ≈I + δθ
∂D(gθ)
∂θ

∣∣∣∣
θ=0

+ ...

≈I + iδθT + ...

(A.11)

With the definition

T ≡ − i
∂D(gδθ)
∂θ

∣∣∣∣
θ=0

. (A.12)

This gives an approximation of the representation, for small divergences δ from the identity.
The term T is identified as an infinitesimal generator, or commonly generator, for the rep-
resentation. The generators are used to build a basis to span the algebra. This is readily
generalized to groups with multiple parameters by expanding for one parameter at a time.

The generators defined in Equation A.12 define infinitesimal transformations. The gen-
erators are, in fact, tangent vectors to the direction that a succession of infinitesimal trans-
formations will carry a point in the algebra. This corresponds to a small deviation from
the identity element. In this case, a matrix representation is the diagonal identity matrix
I. Within a representation, the matrix corresponding to an infinitesimal transformation is
(I + iδT ). It is useful to represent not just infinitesimal transformations, but finite ones as
well. This can be achieved by in the large limit of N infinitesimal transformations. First,
small parameter δθ is redefined as a fraction of a finite parameter θ as δθ = θ/N . Then,
multiple successive transformations close to the identity, (I + iδθT )N , take the form in the
limit of large N :

lim
N→∞

(I + i
θ

N
T )N ≡ eiθXi . (A.13)

Therefore, the transformation corresponding to any parameter θ can be represented with a
generator T in the form eiθXi .

The SO(2) representation presented in Section A.1 provides a concrete example of how
generators work. Taking the derivative of Equation A.8 as suggested in Equation A.12 yields

the generator T = −i

0 −1
1 0

. The representation eiθXi can then be expanded in a Taylor
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series:

eiθXi =
1 0

0 1

+
0 −θ
θ 0

+ 1
2!

−θ 0
0 −θ

+ 1
3!

 0 θ

−θ 0

+ 1
4!

θ 0
0 θ

+ ..., (A.14)

which is simply the Taylor expansion of the representation in Equation A.8.
While the group SO(2) has one parameter, this process is readily generalized for groups

with multiple parameters. Each parameter will result in a distinct generator. The number
of generators for a representation is equivalent to the dimension of a group. The generators
defined in Equation A.12 form a representation designated the fundamental representation.

In practice, the representation contains n × n matrices, which act on elements of the
representation and its module, through a function of matrix multiplication. The action
gj · gi is Ai → BjAi for an elements of the representation D(gi) = Ai and D(gj) = Bj.
Likewise, the module transforms under a function of the n× n matrix representation on the
module’s n-vector element. In the fundamental representation this function is normal matrix
multiplication.

Structure Constants and Adjoint

According to the first requirement listed for Lie algebras, the group elements’ commuta-
tion yields a result in the group. Without making any further assumption, the commutator
can be expressed as a linear combination of the basis vectors of the algebra. In Section A.1
the generators T i were selected as a suitable basis for a representation with rank n, with the
label i running through i ∈ {0, 1, ..., n− 1}. Consequently, 2

[T i, T j] =
n−1∑
k=0

ifijkT
k. (A.15)

The numbers fijk are structure constants. The structure constants depend on the given
basis of the Lie algebra, and so must be defined together. The basis vectors and structure
constants, together, uniquely identify their group. It can also be noted that in the case of
Abelian groups, with zero commutators, the structure constants vanish.

Once a suitable choice of matrices to represent the generators has been made, the values
fijk are fixed. For non-Abelian groups, the structure constants do not vanish and can define
the adjoint representation. This entails defining the n × n elements of n matrices. For a

2Later, the position of the indices will be meaningful, but that is not the case here.
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matrix Ai, it’s elements are defined

[Ai]jk ≡ −ifijk (A.16)

Since there is an adjoint representation matrix for each structure constant, the adjoint rep-
resentation has a dimension equal to the rank of the group.

Finally, the action of the adjoint elements is not normal matrix multiplication, as was
the case with the fundamental representation. Instead, the action gj · gi is Ai → BjAiBj†

for an elements of the representation D(gi) = Ai and D(gj) = Bj. Likewise, the module of
the adjoint representation consists of n× n matrices, which transform in the same way.

Root Space

A subset of generators of a representation can be simultaneously diagonalized. As a
result, these diagonal generators commute with each other and form the basis for an Abelian
Cartan subalgebra. The generators are called Cartan generators H i with i ∈ {1, ..., n}. The
remaining generators are non-Cartan generators Ei with i ∈ {1, ...,m}. Each generator T a

for the algebra has an eigenvector, and each Cartan generator H i has an eigenvalue for the
eigenvector of T a. For each of the m + n eigenvectors, a weight vector is defined with a
component for each Cartan generator. The values of the components are the eigenvalues of
the Cartan generator for the vector’s corresponding eigenvector. For example, the weight
vector ti is defined for eigenvector i ∈ {1, ...,m+ n}:

ti ≡
(
t1i t2i t3i ... tni

)
(A.17)

B Groups in Particle Physics

This section presents the groups that are relevant to studying particles. The groups can
be divided conceptually into two sets. First are the groups related to spacetime. These are
groups that describe rotations, translations, and boosts. Together, these spacetime groups
form the Poincaré Group. Next are the groups related to particles and their interactions,
named SU(3), SU(2), and U(1). The Group product of these is the basis of the Standard
Model. All of these groups will be defined and described in this section.

The general linear group GL(n) is the group of all n-dimensional transformations. It is
represented by all non-singular n× n matrices. All of the groups shown here are subgroups
of GL(n). The first set of groups shown Section B.1 are subgroups of the real n×n matrices
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of GL(n), which itself defines the subgroup GL(n,R). The second set of groups presented in
the Sections B.2 and B.3 are represented by complex matrices.

B.1 Poincaré Group

The Poincaré group is composed of several subgroups, which are described here.
The three-dimensional translation group, T (3), describes displacements in three-dimensional

space. Representations of the one-dimensional version of this group, T (1), was presented as
an example in Equation A.6. A 4 × 4 matrix representation of T (3) exists:


x

y

z

1

 →


1 ax

1 ay

1 az

1




x

y

z

1

 =


x+ ax

y + ay

z + az

1

 (A.18)

The invariant quantity under translations is the displacement between two vectors x1 − x2.
Since T(3) elements are identified by three continuous angles, T(3) has rank 3. Since trans-
lations commute, the group is Abelian and hence does not have an adjoint representation.

The orthogonal group, O(3), describes transformations in three-dimensional space that
preserve distance. Such transformations include both rotations as well as reflections. This is
made clear by introducing an invariant quantity, a squared distance x2 = xT ·x = x2

1 +x2
2 +x2

3

where x is a 3-vector representing distance in space. Any inner product between two vectors
could be considered, but for illustration x2 is used. Of course, this requirement can also be
generalized for groups O(n), where x becomes an n-vector. In a matrix representation, the
algebra of O(3) is composed of 3 × 3 rotation/inversion matrices. The vectors x ∈ R3 form
the module for the representation. These and their transpose transform under the elements
of the algebra, R, as:

xT →x′T = xTRT

x →x′ = Rr
(A.19)

Therefore the squared quantity transforms as x2 → xTRTRr. For this to be invariant,
RTR = I, meaning the elements of the algebra R are orthogonal matrices with determinant
equal to ±1. Since O(3) elements are identified by three continuous rotation angles and
a discrete parity index, O(3) has rank 4. Since rotations do not commute, the group is
non-Abelian.

A subgroup of O(3) is the special orthogonal group SO(3). This group only contains
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the subset of O(3) elements with representations having determinant equal to +1. Matrices
with determinants −1 invert parity, so SO(3) describes only rotations, while O(3) describes
rotations and reflections.

The Euclidean group, E(3) is the semidirect product of the two subgroups O(3) o T(3).
E(3) is an intermediate step towards building the Poincaré group. This group describes
translations, reflections, and rotations. It has rank seven and is non-Abelian.

While the Euclidean group is concerned with three space dimensions, the Lorentz group
is additionally concerned with time. The Lorentz group, also called O(1;3), is a general-
ization of the O(3) group. While a group O(n) keeps the quantity x2 = x2

1 + x2
2 + ... + x2

n

invariant under transformations, the transformations under group SO(m,n) keep the quantity
x2 = −x2

1 − ...− x2
m + x2

m+1 + ...+ x2
m+n unchanged. This is simplified by the introduction

of the metric tensor,

ηµν ≡


1

−1
−1

−1

 . (A.20)

The metric tensor defines xµ = ηµνxν .
Transformations under O(1;3) are represented by 4×4 matrices L. In the representation’s

module, a 4-vector x transforms as xµ → x′µ = Lµ
νx

ν , where repeated indices are summed
under Einstein notation. In the defining used here, the first element of the 4-vector represents
the time dimension, and the remaining represent space dimensions. Using the tensor in
Equation A.20, the inner product between two vectors is then xµy

µ = xµη
µ
ν y

ν . This inner
product transforms as xµy

µ → xα[ηµνLα
µL

β
ν ]yβ = xαη

αβyβ. Then the constraint on matrices
L is that the quantity in the square brackets is:

ηµνLα
µL

β
ν = ηαβ. (A.21)

Two matrices that satisfy this requirement are ηµν and −ηµν . The former inverts the space
dimensions and represents a parity transformation; the latter inverts the time dimension and
represents time reversal.

A further restriction can be made that the transformation matrix’s determinant is pos-
itive, which excludes parity transformations. This restriction defines a subgroup of O(1;3)
called SO(1;3), which will replace the Lorentz group from now on. Another group of matri-
ces that satisfy Equation A.21 are the matrices that also represent rotations in the SO(3)
Group. These 3 × 3 matrices RRR will satisfy Equation A.21 embedded into 4 × 4 matrices
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1
RRR

. Finally, a new set of matrices that satisfy Equation A.21 can be represented with

the general form shown in Equation A.22.

Lµν =


cosh ρi ... sinh ρi ...

... 1 ...

sinh ρi ... cosh ρi ...

... ... 1

 (A.22)

Where “...” indicates that the non-zero terms are arranged at the vertices of a square. In-
spection of Equation A.22 reveals that three parameters ρi can be used to identify any
transformation. For physical transformations, the parameters will be defined by the corre-
sponding Lorentz factor, γ, via γ = cosh−1(ρ). Applying the matrix specified in Equation
A.22 corresponding to i = 1 to a 4-vector yields the familiar Lorentz transformations.

x0

x1

...

 →


cosh ρ1 sinh ρ1 ...

sinh ρ1 cosh ρ1 ...

... ... ...



x0

x1

...

 =


x0 cosh ρ1 + x1 sinh ρ1

x1 cosh ρ1 + x0 sinh ρ1

...

 (A.23)

Elements of the Lorentz group can be identified as rotations, described by three continuous
angles, boosts, described by three continuous parameters ρ. Therefore, the rank and the total
parameters to specify an element of the Lorentz Group are six. The group is non-Abelian.

The Poincaré Group is the semidirect product of the translations T(4) and the Lorentz
group SO(1;3): T(4) o SO(1; 3). Following the definition of semidirect products, every
element of the Poincaré group is equivalent to successive translations and Lorentz trans-
formations. T(4) is used instead of T(3) discussed earlier, because the Lorentz group has
introduced time as an additional dimension in which translations are allowed, bringing the
total to four. Since the rank of T(4) is four, and the rank of SO(1;3) is six, the total rank of
the Poincaré group is ten.

The Poincaré group leaves quantities expressed as inner products of 4-vectors, xµy
µ,

invariant. This is the fundamental symmetry of space and time.

B.2 Unitary Groups U(n)

The Unitary Groups U(n) are more abstract than the groups previously introduced. It
is more straight forward to define them based on their n× n square matrix representations.
Elements of a group U(n) representation are complex unitary matrices, obeying the condition
U †U = UU † = I The elements of a U(n) representation consequently are invertible and have

215



determinants with a magnitude of 1. As is the case for all unitary matrices, representations
U of U(n) can be written in exponential form: eiα where α is a Hermitian matrix.

Some meaning can be gleaned by comparison to the invariant quantity found for O(n)
illustrated in Equation A.19. For an element of the U(n) representation U , elements of the
O(n) module x transform

x† →x′† = x†U †

x →x′ = Ur

x2 →x†U †Ur

(A.24)

The unitary condition for U(n) representations keeps the quantity x2 is invariant under U(n)
transformations.

The first unitary group, U(1), is represented by complex scalar numbers. This fact means
that U(1) is an Abelian group by definition. Looking ahead, the module of U(1) will act on
will be physical states, ψ. It will transform these states under ψ → eiαψ. It is worth defining
the U(1) generators since this group will ultimately be physically meaningful. Consulting
Equation A.12, and evaluating for the representation eiα close to α = 0, it is apparent that
the generator is simply T = 1.

B.3 Special Unitary Groups SU(n)

The unitary condition on U(n) requires these matrices to have a determinant ±1. A
subgroup of each U(n) is represented by the matrices with positive determinants. This is
the complex analog to the SO(n) groups discussed earlier. While defining the SU(n) groups
should be done in the abstract, it is helpful to consider their most intuitive representation.
Like the special orthogonal groups, the special unitary groups have representations that
describe rotations around an n-sphere that preserve a distance. While SO(n) representations
describe rotations in an n-dimensional real Euclidean space, SU(n) describes rotations in a
complex n-dimensional apace, or a 2n real Euclidean space.

The algebra of SU(n) is a real subalgebra of U(n). Two SU(n) groups are of interest here.
SU(2) will be discussed first, and then SU(3).

B.4 Special Unitary Group SU(2)

SU(2) describes a broad range of physical systems, from the weak force, to strong isospin,
to angular momentum. SU(2) is the complex analog to SO(2), represented by rotations in
two-dimensional Euclidean space.
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As in all cases, the generators of an SU(2) depend on the representation. The represen-
tation consisting of 2 × 2 matrices is the fundamental representation, and has generators
related to the Pauli matrices, given in Equation B.4.

σ1 =
0 1

1 0

 ; σ2 =
0 −i
i 0

 ; σ3 =
1 0

0 −1

 ; (A.25)

To maintain unitary, a normalization is used, hence the definition of the generators T a = 1
2σ

a,
where a = (1, 2, 3). Equation reveals that one generator, T 3 is diagonal. It has eigenvalues of
-1

2 and 1
2 . When the spin of spin-1

2 fermion states is the module for an SU(2) representation,
these eigenvalues correspond to the measurable spin of the particles: -1

2 and 1
2 . This identifies

quantum spin and other quantum numbers governed by SU(2), as a rotation through an
abstract spinor space. The number of simultaneously diagonalizable generators is equal to
the group’s rank. Therefore the rank of SU(2) is one. The module of the fundamental
representation is vectors with two elements.

Since SU(2) is non-Abelian, it has non-zero structure constants fijk. These can be cal-
culated by inserting the matrices of Equation B.4, with normalization, into Equation A.15.
The result is the totally antisymmetric three dimension Levi-Civita tensor εijk shown in
Equation A.26.

fijk = εijk ≡


+1 if (i,j,k)=(1,2,3) and cyclic permutations

−1 if (i,j,k)=(3,2,1) and cyclic permutations

0 otherwise.

(A.26)

The adjoint representation can be derived from the structure constants with Equation A.16.
The result is the set of anti-Hermitian matrices 3:

J1 =


0 0 0
0 0 i

0 −i 0

 ; J2 =


0 0 −i
0 0 0
i 0 0

 ; J3 =


0 i 0

−i 0 0
0 0 0

 ; (A.27)

These matrices form a basis for the adjoint representation of SU(2). The module of the
adjoint representation is vectors with three elements.

B.5 Special Unitary Group SU(3)

The final group of interest is SU(3).
3These differ from a commonly shown basis J ′ by a unitary transformation J ′a = −(1/

√
2)U†JaU .
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The fundamental representation of SU(3) is the set of 3 × 3 matrices. In total, 3 × 3
complex matrices have 18 free parameters. The unitary condition restricts the number of
free parameters to nine. Finally, the requirement of a positive determinant constrains a
parameter, leaving eight free parameters. The space spanned by these matrices is eight-
dimensional, and therefore is spanned by eight matrices. These generators are T a = λa

2

where λa are the Gell-Mann matrices given in Equation A.28.

λ1 =


0 1 0
1 0 0
0 0 0

 ; λ2 =


0 −i 0
i 0 0
0 0 0

 ; λ3 =


1 0 0
0 −1 0
0 0 0

 ; λ4 =


0 0 1
0 0 0
1 0 0

 ;

λ5 =


0 0 −i
0 0 0
i 0 0

 ; λ6 =


0 0 0
0 0 1
0 1 0

 ; λ7 =


0 0 0
0 0 −i
0 i 0

 ; λ8 = 1√
3


1 0 0
0 1 0
0 0 −2

 .
(A.28)

As can be seen from the two diagonal matrices, the SU(3) group has rank 2.
The upper left hand 2 × 2 block of λ1, λ2, and λ3 reveals that they are identical to the

Pauli matrices in Equation B.4. This is not a coincidence, but a consequence of the fact that
SU(2) is a subgroup of SU(3), just as SO(2) is a subgroup of SO(3). Indeed there are three
independent SU(2) subgroups of SU(3).

As was the case with SU(2), SU(3) is non-Abelian, and the structure constants can be
calculated by inserting the matrices of Equation A.28 into A.15, with the normalization of
1
2 . The result is the anti-symmetric tensor given in Equation A.29.

fijk = −fkji =



+1 if (i,j,k)=(1,2,3) and cyclic permutations (CP)
1
2 if (i,j,k)=(1,4,7), (1,6,5), (2,4,6), (2,5,7), (7,6,3), or (3,4,5) and CP
√

3
2 if (i,j,k)=(4,5,8), or (6,7,8) and CP

0 otherwise.
(A.29)

The adjoint representation is constructed from Equation A.29, but to conserve space, these
8 × 8 matrices are left to the readers imagination.
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B.6 Summary

This section has described the mathematical foundation of groups. The next step is
to identify a group with properties that reflect, to an approximate degree, the properties
observed in particles and their interactions. To this end, interactions are described by repre-
sentations of Lie groups. The group’s generators describe the particles that mediate forces.
The diagonalizable Cartan generators are particularly interesting, as their eigenvectors are
identified as particles and their eigenvalues as charges. It is a remarkable and subtle discov-
ery that the mathematical objects defined by groups, generators, and eigenvectors exhibit
precise homomorphisms to our world of forces, interactions, and particles [3].

C Particle physics with Lagrangians

The previous section dealt with the abstract notions of groups and relations. Represen-
tations of these groups provide a useful description of the physical world. This section will
discuss how these representations are used in particle physics theory. The task is to build a
map between the mathematical structures, which are stripped of physical meaning, and the
physical model. This is done through the framework of Quantum Field Theory (QFT).

The connection between the abstract words of groups and symmetries and the more
concrete world of QFT is as follows. The fields of fermions correspond to the modules of
certain representations, on which the members of the algebra can act. Charges, the physical
characteristics of particles that are conserved, correspond to the eigenvalues of the group’s
generators. The number of charges described by a group is equal to the dimension of the
representation. Physical interactions through a force are described by the eigenvectors of the
earlier defined Cartan generators of the group. The generators of the group describe parti-
cles that mediate forces to particles charged under the group. The force-carrying particles
described by the Cartan generators do not change the corresponding charge of a particle.
Non-Cartan generators, however, can change charge.

Hamilton’s Principle

Hamilton’s principle of least action considers a system defined by a field, φ, and its four-
dimensional derivatives ∂µφ. The state evolves between two points in spacetime, x0 and x1.
The action is a functional of the path taken by φ between x0 and x1:

S[φ] =
∫ x1

x0
d4xL(φ, ∂µφ). (A.30)
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The action is defined as a path integral between these points of a function of the path,
L(φ, ∂µφ). L is a functional of the full path, and is called the Lagrangian density, often
shortened to a Lagrangian. Hamilton’s principle states that action S is minimized when the
fields φi(x) follow their equation of motion. This minimization results in the Euler-Lagrange
equation:

∂L
∂φi

− ∂µ

(
∂L

δ(∂µφi)

)
= 0 (A.31)

Solving Equation C for a given Lagrangian density yields the equations of motion for each
field.

This raises the issue of what the fields φ(x) are. In QFT, operators are introduced for
each point in spacetime x. These operators, φ, are labeled by their corresponding point as
φ(x). As in quantum mechanics, operators can intuitively be thought of as representing a
measurement. In this case, they represent a measurement of a corresponding field strength.
The operators act on state vectors that represent the physical system. For example, the
operator φ can act on the vector representing the vacuum state, |0〉, at location x. The
vacuum state represents the system in its lowest energy state, such that the eigenvalue of
the Hamiltonian operating on the vacuum state is zero. This operation is denoted as φ(x) |0〉.
The Lagrangian describes the behavior of fields.

A commonly used type of field is the scalar field. Scalar fields are scalar-valued, having a
single value at all spacetime points x. The Higgs boson is an example of particles represented
by a scalar field. Another commonly used type of field is the Dirac field. These fields are
four-component, represented by 4-vectors. Fermions are an example of particles represented
by Dirac fields. Finally, a commonly used type of field is the vector field. An example is
the electromagnetic potential from electromagnetism, Aµ = (V, ~A), which consists of the
electric potential V and the magnetic potential ~A. In the following paragraph, Lagrangians
containing each of these fields are shown, along with the corresponding result of Equation .

The equations of motion for each field are derived from the Lagrangian. As an example,
a scalar field ψ described by a simple Lagrangian given in Equation A.32.

Lscalar =1
2∂µφ∂

µφ− 1
2m

2φ2 (A.32)

Plugging equation Equation A.32 into the Euler-Lagrange Equation yields the Klein-Gordon
equation of motion. An analogous Lagrangian can be written for Dirac fields, Ψ, and is given
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in Equation A.33.

LDirac = iΨγµ∂µΨ −mΨΨ (A.33)

Where Ψ = Ψ†γ0 is the Hermitian conjugate. Taking the derivatives in Equation yields the
Dirac equation of motion. Finally a Lagrangian for the vector field Aµ can be constructed
with the definition of the field tensor F µν∂µAν − ∂νAµ, as shown in Equation A.34.

Lvector = − 1
4FµνF

µν (A.34)

Which yields the equation of motion is identical to Maxwell’s equations with zero electric
current. The fields and their equation of motion are summarized in Table A.1.

Field Symbol Equation of motion

Scalar φ(x) ∂µφ∂µφ + m2φ = 0
Dirac Ψ(x) iγµ∂µΨ − mΨ = 0
Vector Aµ(x) ∂µF µν = 0

Table A.1: Summary of fields, along with examples of their equations of
motion derived from the Euler-Lagrange equation for free fields.

The Lagrangians of Equations A.32, A.33, and A.34 all describe freely propagating par-
ticles; scalar, Dirac, and vector particles respectively. Interactions between particles compli-
cate the Lagrangian with terms containing more than two fields.

The Matrix Element

The Lagrangian formalism set out in Section C allows the definition of a model. The next
step is to extract the observable predictions of the model. Nearly all observations of particles
relate to the question: “given some initial state, what is the probability of observing a final
state”. In a particle collider, the initial state may be the colliding beams, and the final state
may include some number of electrons. The task is to predict the probability of the initial
state to evolve to the final state, given the dynamics of a given model. This probability is
labeled Pi→f . In quantum mechanics, the time evolution of a state |Φ〉 is given by the time
dependant Schrodinger equation,

i~
d

dt
|Ψ〉 = H |Ψ〉 , (A.35)
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where the energy of the system is described byH, its Hamiltonian operator. The Hamiltonian
is derived from a given Lagrangian through a process called canonical quantization. The
details of this procedure are given in Appendix . To find the probability that an initial state
with two particles |p1; p2〉 to evolve into a final state with multiple particles |k1; ...; kn〉, the
projection of the latter onto the former is calculated in the distant future.

〈i|f〉 = 〈k1; ...; kn|p1; p2〉 |t=∞ =t=∞| 〈k1; ...; kn| eitH |p1; p2〉 |t=−∞

=|M|(2π)4δ(4)
(
p1 + p2 −

n∑
i=1

ki

) (A.36)

Here, the complexities of the Hamiltonian’s action on the initial state |p1; p2〉 has been
conveniently rolled into the matrix element, |M|.

Equation A.36 shows a projection of one state onto another. The proper probability of
evolving from the initial state to the final state must be normalized. Again, the canonical
quantization is used to calculate 〈i|i〉 = 4Ep1Ep2V

2 and 〈f |f〉 = ∏n
i=1 2Eki

V where V is the
volume of the box in which the experiment takes pace over time T . The full probability is

Pi→f = 〈f |i〉2

〈i|i〉 〈f |f〉
= |M|2(2π)4TV δ(4)(p1 + p2 −∑n

i=1 ki)
4Ep1Ep2V

2∏n
i=1[2Eki

V ] . (A.37)

In practice it is difficult to arrange for a single interaction, such as the one presented in
Equation A.36. Additionally, the volume V is poorly defined for an experiment.

Instead, beams of Nb particles spread out over area A are made to collide. The total
number of collisions N then defines an effective cross-sectional area σ for the interaction is

N = N2
b σ

A
= σ

∫
Ldt = N2Pi→f (A.38)

The second and third terms define the instantaneous luminosity L ≡ N2
b /A as the number of

potential collisions per time, per area. The cross-section σ is commonly cited in convenient
units of barns, with an exact definition of b ≡ 10−24cm2. Instantaneous luminosity benefits
from no such useful shorthand, and is commonly cited in units of s−1cm−2.

The cross-section replaces Pi→f as the measurable prediction of the model. The fourth
term in Equation A.38 connects the cross-section back to the subject of the matrix element
|M|. It is useful to calculate the differential contribution to the cross-section dσ given in
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Equation A.39.

dσ = |M|2

4Ep1Ep2|~p1||~p1|
dΦn

dΦn =(2π)2δ(4)
(
p1 + p2 −

n∑
i=1

ki

)
n∏

i=1

 d3~ki

(2π)32Ei

 (A.39)

The volume terms in Equation A.37, which arose from the integrating the projections of
states over all space, have canceled with volume terms that arose from integrating Pi→f over
all space. Equation A.39 defines dσ in terms of the differential phase space dΦn. In a simple
2 → 2 process with center of mass energy E ′, the differential phase space is greatly simplified
as dΦ2 = k1

(4π)2E′dφd(cos θ).

Particle Decay

A useful corollary to the prediction of the cross-section described in Section C is the
description of particle decays derived from a model. Most massive particles are able to decay
to lower mass final states. This process takes place in a characteristic mean lifetime, τ ,
within the particle’s rest frame. The probability for a particle to have decayed after a time
t, and moving in a frame with Lorentz factor γ, is given in Equation A.40.

P (t) =1 − e−γt/τ (A.40)

The reciprocal of the lifetime is the decay width or decay rate, Γ. The fraction of initial state
i decays resulting in a particular final state f is called the branching fraction, and is denoted
BR(i → f).

The final state, 〈f | is projected onto the initial state |i〉 evolved to the same time. For a
particular particle with mass mi, its differential width is derived following the same procedure
described in Section C. The result is the analog to Equation A.39 with one particle in the
initial state shown in Equation A.41.

dΓ = 1
2mi

|M|2dΦn

dΦn =(2π)4δ(4)(p−
∑

i

ki)
n∏

i=1

 d3~ki

(2π)32Ei

 (A.41)

For a two-body decay, with two particles in the final state with masses mf,1 and mf,2, the
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expression for dΓ is simplified.

dΓ = K

32π2mi

|M|2dφ1d(cos θ1)

dΦ2 = K

16π2mi

dφ1d(cos θ1)
(A.42)

Where K is the momentum of the final state such that energy is conserved. The decays
relevant to this thesis have two decay products with equal mass, mf,1 = mf,2 ≡ mf . In this
case, a further simplification of dΓ can be made, giving

dΓ = |M|2

64π2m2
i

√√√√1 − 4
m2

f

m2
i

dφ1d(cos θ1) (A.43)

This result allows the calculation of two-body decays. The details of the model are contained
in the matrix element M.

Feynman Rules

The calculations of cross-sections and differential widths in the preceding sections are, in
principle, carried out through the expansion of the involved fields into expressions of creation
and annihilation operators. The Hamiltonian from Equation A.36 is, in turn, expressed in
terms of these operators. The non-commuting relationships between the creation/annihi-
lation operators lead to a non-zero matrix element in Equations for the differential cross-
section (Equation A.39) and partial width (Equation A.41). This process is complicated,
but, fortunately, particular leading terms of the matrix elements can often be abstracted
and represented graphically with Feynman diagrams. These diagrams consist of vertices
that correspond to interactions between more than two particles, and lines that correspond
to the free propagation of an individual particle.

The Feynman rules can be determined for a particular Lagrangian. A general an inter-
action term containing n different types of fields Φi

j, each repeated mi times (i ∈ {1, ..., n},
j ∈ {1, ...,mi}) can be written:

Lint = − λ∏n
i=1(mi!)

n∏
i=1

mi∏
j=1

Φi
j. (A.44)

The part of the Hamiltonian Hint that corresponds to the interaction is Hint = −
∫

Lintd
3~x.

The coupling constant in Equation consequently appears in the Hamiltonian along with
combinatorial factors that cancel the denominator. This is used to calculate the Feynman
rule for the interaction term’s contribution to the matrix element is −iλ. Interactions are
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represented graphically in a Feynman diagram by a vertex showing the intersection of lines
corresponding to each field Φi

j.
A term in a Lagrangian is called a free term if it includes the same field Φ exactly twice.

A general free term for a complex field may be written with an implicit sum over repeated
indices.

Lfree = (Φ†)iPijΦ (A.45)

Here, indices represent the components of the field Φ. The matrix P includes constants
and spacetime derivatives. A one dimensional example for scalar fields is P = −∂µ∂µ −m2.
Free terms describe the free propagation of a field, without interactions. The part of the
Hamiltonian H0 that corresponds to the free term acts on the states in Equation A.36, which
are eigenvectors of H0. The eigenvalues of H0 combine to form what is called the propagator.
The Feynman rule for the contribution of a free term to the matrix element is i(P−1)ij,
where spatial derivatives ∂µ are replaced with the particle’s momentum −ipµ. Propagators
are represented by lines in Feynman diagrams, connected to vertices on either side. The
vertices are labeled with i and j, respectively.

Finally, the fields in the Lagrangian are expanded in terms of creation and annihilation
operators. When these operators in the expansion of Hint act on the initial or final states
(depending on the operator), the coefficient is introduced into the matrix element. These
coefficients form a basis for the equation of motion. A coefficient is introduced corresponding
to each particle in the initial and final state. In Feynman diagrams, these are represented
by external lines that do not connect to a vertex on one end.
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Appendix B

Estimating Model Bias with the
Ensemble Technique

This note discusses a strategy for estimating the spurious signal. This analysis uses a
background estimation defined with a fit to data. This note describes how the spurious
signal is estimated for this data-driven background. This procedure is described in detail,
however the essential idea is as follows: the spurious signal is measured from an ensemble of
plausible background shapes that are informed by systematic uncertainties.

Challenge

We define our expected background using a PDF, f(m``), fit to a dataset ~D with dimen-
sion Ndata. The full analysis procedure of fitting the dataset and obtaining a background
estimate is described by the function F ( ~D), with a range of dimension Nbkg and domain
of dimension Ndata. The output of F ( ~D) is the expected background, given the provided
dataset ~D. The remainder of this procedure is agnostic with regard to the particular defini-
tion of F ( ~D). In the case of the Non-Resonant search, F ( ~D) is the fitting and extrapolation
procedure, where Ndata is the number of bins in the Control Region, and Nbkg is the single
bin of the Signal Region.

A main uncertainty on F ( ~D) is the spurious signal σspur. We define σspur as the number
of signal events measured via F ( ~D), given ~D is a background-only Asimov dataset. As with
F ( ~D), we consider σspur( ~D) to be a function of a potential background shape ~D. To discuss
this, let’s define the potential background-only distributions on which F ( ~D) can operate:

1. ~DMC, the nominal simulated background, with enough events to mitigate statistical
fluctuations.
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2. ~Dsyst
i , a set of simulated systematic variations on the nominal background.

3. ~Ddata, the recorded dataset which will be used for the final background estimation. We
consider this recorded data to be randomly sampled from a “true” PDF, f truth(m``).

4. ~Dtruth, the Asimov dataset generated by f truth(m``). In practice, this is not known.

For illustration purposes, examples of these are shown in figure B.1.

(a) (b) (c)

Figure B.1: Examples of ~DMC (a), ~Ddata (b), and ~Dtruth (c). ~DMC is shown
to diverge from the true underlying distribution that has generated the data.

It is trivial to measure the σspur that corresponds to ~DMC, denoted σspur( ~DMC). This is
usually done by computing F ( ~DMC), and measuring the number of signal events spuriously
recovered from the procedure. However if we want to measure σspur( ~Ddata) and use it in the
analysis, we are faced with three main concerns:

1. ~Ddata may not be a background-only distribution, and we certainly do not want to
assume that it is before making a measurement.

2. Due to limited statistics, ~Ddata is not an Asimov dataset, and therefore F ( ~Ddata) will
be influenced by the statistical fluctuations of the recorded data.

3. The most fundamental issue is that the σspur measured from F ( ~Ddata) is essentially
our signal measurement.

If we want to use F ( ~Ddata) for the expected background, we need an alternative way to
estimate σspur. We cannot use σspur estimated from F ( ~Ddata) for the reasons listed above.
We prefer not to simply use σspur estimated from F ( ~DMC), since this makes the assumption
that ~DMC was sampled from a PDF matching f truth(m``). Instead, we would like to use σspur

measured from F ( ~Dtruth). Since we do not know ~Dtruth, we use the procedure described here
to obtain our best estimate of ~Dtruth given our available prior knowledge.
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Approach

The exact form of ~Dtruth is not known. While our best theoretical estimate of the exact
shape of ~Dtruth may be ~DMC, this does not encompass our all of our information. Since
~Dtruth is a Nbkg dimensional vector, we know that ~Dtruth ∈ RNbkg . Likewise, ~DMC ∈ RNbkg .
Going further, we have a strong suspicion that ~Dtruth is “close” to ~DMC within RNbkg . One
could consider the systematic uncertainties ~Dsyst

i as a description of how close ~Dtruth is to
~DMC. Instead, we would like to use ~Dsyst

i to define a PDF h(RNbkg) 7→ R corresponding to
the estimated likelihood of finding ~Dtruth to be at a particular point in RNbkg . In the future,
we would like to rework this Bayesian reasoning to a more frequentist one.

For each systematic variation ~Dsyst
i , we define a nuisance parameter θi ∈ R. For simplicity,

consider that θi are defined such that have 1σ confidence that the value of θ̂i measured on
~Dtruth is ∈ [−1, 1], and θi = 0 corresponds to ~DMC. This allows us to define Standard
Gaussian priors for each systematic, G(θi). (If the upward and downward variations are
measured separately, G(θi) can still be a Standard Gaussian and the impact of θi > 0 can
be treated differently than θi < 0.) Taken together, θi define a vector ~θ ∈ RNsyst . This leads
to a simplification wherein we now consider the dimensionally smaller ~θ ∈ RNsyst instead
of the full ~D ∈ RNbkg , as long as Nsyst < Nbkg. The measured shapes of the systematics,
{ ~Dsyst}, are used to map choice of ~θ onto a full background shape: g(~θ|{ ~Dsyst}) 7→ RNbkg .
An example of this map is shown later in Equation B.7.

Each choice of ~θ ∈ RNsyst has a prior expected probability of:

p(~θ) =
Nsyst∏
i=0

G(θi). (B.1)

We should also keep in mind that we are essentially assigning a prior probability to each
choice of ~D ∈ RNbkg :

p( ~D) =
∮
RNsyst

p(~θ) δ(g(~θj) − ~D) d~θ (B.2)

This p( ~D) is zero for many non-physical choices of ~D, since these cannot be represented by
a choice of nuisance parameters.

Now we can return to the goal of approximating σspur( ~Dtruth). As a substitute, we propose
to calculate σspur( ~D) for every ~D ∈ RNbkg . These are then weighted by the corresponding
probability p( ~D):

∆D( ~D) = p( ~D) × σspur( ~D). (B.3)

The resulting distribution of ∆D represents the spurious signal for every possible background
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shape ~D, weighted by the likelihood that each the ~D = ~Dtruth. We consider the mean of
this distribution, E[∆D], to be our best estimate of σspur( ~Dtruth), and the width of this
distribution, var[∆D], to be our uncertainty on that estimate.

Every choice of ~θ maps onto a ~D. Therefore, we can measure the spurious signal as
σspur(~θ) = σspur(g(~θ)), and define a quantity analogous to Equation B.3:

∆θ(~θ) =p(~θ) × σspur(~θ). (B.4)

The value of E[∆D] is measured over the volume of potential values of ~D. The denomi-
nator of the mean is

∮
RNbkg p( ~D) = 1. A couple of substitutions show that we can calculate

E[∆θ] instead of E[∆D].

E[∆D] =
∮
RNbkg

p( ~D) σspur( ~D) d ~D

=
∮
RNbkg

(∮
RNsyst

p(~θ) δ(g(~θ) − ~D) d~θ
)
σspur( ~D) d ~D

=
∮
RNsyst

p(~θ) σspur(~θ) d~θ

E[∆D] =E[∆θ]

(B.5)

The value of var[∆D] can be replaced with var[∆θ] using similar substitutions from Equa-
tion B.5:

var[∆D] =
√

E[(∆D)2] − (E[∆D])2

=
√

E[(∆θ)2] − (E[∆θ])2

var[∆D] =var[∆θ]

(B.6)

Based on Equations B.5 and B.6, we will measure E[∆θ] and var[∆θ] as an estimate of
σspur( ~Dtruth).

Implementation

Our goal is to compute E[∆θ] and var[∆θ]. Since ∆θ is weighted by a probability p(~θ),
we take the straight forward approach of obtaining the distribution of ∆θ via a Monte-Carlo
random sampling of the possible values of ~θ ∈ RNsyst . We choose values for ~θ selected ran-
domly based on the priors G(θi) for each nuisance parameter θi. Each choice of ~θ corresponds
to a “toy” dataset ~D, where the probability of being selected corresponds to p(~θ).

For each toy ~θj, we calculate σspur(~θj). The distribution of σspur(~θj) toy measurements,
in the limit of many toys, approaches the distribution of ∆θ. The enumerated procedure to
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build a distribution of σspur(~θj) is as follows:

1. For each θi a random value is sampled from the PDF G(θi). This selects a point ~θj.

2. Using the information from ~DMC and { ~Dsyst}, ~θj determines a toy background shape
~Dj. For example,

~Dj = ~DMC +
Nsyst∑
i=0

( ~Dsyst
i − ~DMC) × (~θj)i. (B.7)

3. Compute σspur( ~Dj), the spurious signal measured on the toy dataset ~Dj.

Next, we measure the mean and standard deviation of the toy measurements, as an ap-
proximation of E[∆θ] and var[∆θ] respectively. We then use these to approximate σspur( ~Dtruth)
with a corresponding uncertainty. This allows us to estimate our background from the data
using F ( ~Ddata), and with this use a σspur that we believe corresponds to the underlying PDF
that generated ~Ddata.

Caveats

The following is a brief discussion about some of the complexities that arise when imple-
menting this procedure.

The 1σ approximation

In this procedure, we represent our systematic uncertainties as prior PDFs. Ideally, these
PDFs would be measured for many different confidence intervals. In practice, these are often
measured as the ±1σ intervals in which the systematic variation is expected. We then make
the assumption that the ±nσ interval is n-times the size of the ±1σ interval. In doing this,
we are making the assumption that the shape of the prior PDF is Gaussian. In some cases
this assumption may be unreasonable; for example if the −3σ pT variation is negative.

Asymmetric systematics

Equation B.7 shows one form of g(~θ|{ ~Dsyst}), a map from ~θ to a background shape.
In practice, a more nuanced version should be used because systematics are measured in
different ways. A subset of systematics with indices A ∈ {1, 2, ..., Nsyst} may be measured
separately to produce upper, ~D+syst

i , and lower, ~D−syst
i , uncertainty bands. We still consider

these to be described by one nuisance parameter θi with a Standard Gaussian prior:

p(θi) = G(θi).
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To handle the asymmetry of ~D+syst
i and ~D−syst

i , we modify the impact of θi on each toy (j)
template ~Dj. We are sculpting the impact of θi on the toy shape in order to preserve the
symmetrical Gaussian prior. Equation B.7 is expanded to treat symmetric and asymmetric
systematics separately:

~Dj = ~DMC +
∑
i∈ B

( ~D+syst
i − ~DMC) × (~θj)i +

∑
i∈ C

( ~D−syst
i − ~DMC) × (~θj)i +

∑
i∈ D

( ~Dsyst
i − ~DMC) × (~θj)i

(B.8)

B ={i ∈ A|(~θj)i > 0}

C ={i ∈ A|(~θj)i < 0}

D ={i /∈ A}

.

Here, symmetric systematics are treated as before, while asymmetric systematics use the
uncertainty band corresponding to whether (~θj)i is positive or negative. This is straightfor-
wardly implemented with conditionals when building the toy template ~Dj.

Envelope uncertainties

In the Non-Resonant search, the many dominant systematics (PDC_Choice, Bad-Muon-
Veto, etc.) are measured as envelopes. These are statements that ~Dtruth falls within a
particular range. This formulation of systematic uncertainty does not lend itself easily to a
simple description of a prior on a corresponding nuisance parameter. One choice of the prior
G′ be a flat step function:

G′(θi) =

1/2 if |θi| ≤ 1

0 otherwise
.

This choice does not reflect our belief that the nominal ~DMC is more likely than the extreme
bounds of the envelope. Another choice of the prior would be a Gaussian, such as is appro-
priate for Gaussian distributed nuisance parameters. This leads to an enlarged impact from
the envelope systematics, since now large deviations corresponding to θi > 1 are allowed.
This is in conflict with the statement of the envelope, that such shapes are excluded (though
to what level is not clear). The third option is a compromise is a Gaussian prior restricted
to the confines of the envelope:

G′(θi) =


G(θi)

erf(
√

0.5) if |θi| ≤ 1

0 otherwise
.
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While this choice of PDF is not ideal (as mentioned above, we would prefer to measure
the PDF at a number of intervals when assessing the impact of the systematic), it is a
compromise between our physical intuitions and the requirement that the allowed variation
fall within the measured envelope.
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Appendix C

Linearity of the CI S+B Model

The shape of the non-resonant contact interaction signals, are broad and extend even
into the low-mass region. If such a signal is present, it would appear in a low-mass CR and
has the potential to effect the shape of the background model fit. The signal injection study
described in this section is used to ensure that this doesn’t happen.

fB(pi,mll) = Nbkg ∗B(pi,mll) (C.1)

fSB(pi,mll,Λ′) = Nbkg ∗B(pi,mll) +Nsig(Λ′) ∗ S(Λ′,mll) (C.2)
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Figure C.1: Illustration of the linearity test for the S+B background model
(a) and the B-only background model (b). Both show fits of the respective
models to B-only simulation with signal shapes added on top. The B-only
model becomes increasingly deflected as more signal is injected. The S+B
model does not get deflected when injecting signal.

In the case that a contribution to the mll spectra is present in the control region, this
signal may deflect fit of a background only model, such as fB in equation C.1. Here Nbkg is
the normalization of the PDF, and B(pi,mll is the background model, described in Section
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C. Instead, a signal+background model such as fSB in equation C.2 has been developed in
order to not deflect in the presence of an injected signal. Here, Nsig(Λ′) is the normalization
expected from signal simulation described in D. The normalization has been linearly inter-
polated between the generated signal simulation, and is a function of Λ′. Likewise, S(Λ′,mll)
is the signal shape linearly interpolated between signal simulation shapes. The purpose of
the term Nsig(Λ′) ∗ S(Λ′,mll) is to absorb a signal shape if it is present in spectrum. In this
case, the background component of the model, Nbkg ∗ B(pi,mll) can model the background
component with minimal deflection from the signal shape.

Signal injection tests are used to validate the requirement that fSB can provide an ac-
curate background estimate, regardless of whether a signal is present or not. The primary
criteria is that the background model not be deflected by the injected signal, thereby chang-
ing the expected background in the SR. This is tested by checking that the “signal recovered”
scales proportionally with the “signal injected” in the SR. This is done using a background-
only simulation, and adding the signal contributions described in Section D to make an
S+B simulation. The signal recovered is simply the difference in the SR of the number of
observed events from the S+B simulation, and the number of expected background events
from Nbkg ∗ B(pi,mll) in equation C.2. The signal injected is the integral in the SR of the
signal histogram added to the template.

An illustration of the linearity of the S+B model in comparison to the B-only model is
shown in figure C.1.

The results of the test are shown in Figures C.3 (µµ) and C.2 (ee) for models of various
Λ signal models injected.

The performance of the injection tests are checked. The injection curves should intersect
with the origin, indicating a small spurious signal recovered from the background only case.
The curves should also be strait lines, indicating the background model is consistent over
the range of Λ of interest present in the CR.
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Figure C.2: Constructive LL (a), LR (b), LL (c), and LR (d) and destructive
LL (e), LR (f), LL (g), and LR (h) S+B injection tests for the ee channel.
Signal Injected corresponds to the number of signal events in the SR injected
by that model. Signal Recovered corresponds to the number of events in the
SR above the background expectation. Each point on the plot is labeled for
a different Λ scale, and corresponds to that particular model being injected.
The error bands are the 1σ and 2σ errors on the background only estimate.
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Figure C.3: Constructive LL (a), LR (b), LL (c) and, LR (d) and destructive
LL (e), LR (e), LL (f), and LR (g) S+B injection tests for the µµ channel.
Signal Injected corresponds to the number of signal events in the SR injected
by that model. Signal Recovered corresponds to the number of events in the
SR above the background expectation. Each point on the plot is labeled for
a different Λ scale, and corresponds to that particular model being injected.
The error bands are the 1σ and 2σ errors on the background only estimate.

A Linearity from Theoretical Variations

This signal injection studies used to establish the linearity of the S+B model follow a
similar pattern: different contact interactions are injected onto an simulation background.
These studies use the nominal background estimate which makes an implicit assumption
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about the background form. To remove this bias, this study checks that the linearity mea-
sured from each theoretical variation does not significantly differ from the linearity of the
nominal background. A large Λ = 18 TeV injected signal was used. This creates signal
plus background templates where the background is varied under different theoretical as-
sumptions. The figure of merit for the linearity is the distortion, D, which is defined as the
difference between the expected yield from a fit and simulated yield from each systematically
varied sample. The difference between nominal D and the D measured on the varied sample
is considered. This is chosen to isolate the impact on the linearity coming from the variation.
The distributions of the measured distortions are shown in Figure C.4.
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Figure C.4: Distributions of the distortion of the background estimate for
constructive ee (a), destructive ee (b), (c) constructive µµ, and (d) destruc-
tive µµ. Shown is the significance of the distortion, where the significance is
measured from the background estimate uncertainties added in quadrature.
The distribution is centered around the nominal distortion, which has been
studied in the previous section. The red dot indicates the nominal distor-
tion at zero.
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Appendix D

History of the LHC

The history of physics runs of LHC is the description of the laboratory conditions under
which ATLAS collected data. It is also an interesting narrative of a tightly coupled process
of developing and testing collider engineering principles. The dramatic improvement of the
machine’s performance over the years of its operation is a testament to the efficacy of this
strategy.

This section will first describe the LHC’s first round of operation, Run 1. Crucial ma-
chine developments were also made in Run 1 that lead to energy and luminosity increases
improvements. This section proceeds to describe the second round of operation, Run 2.
During Run 2, the machine provided collisions at unprecedented energy and intensity that
haven enabled searches for new phenomena as well as precision measurements.

A Run 1

The first run of the LHC took place between 2010 and 2013. Collisions took place with
beam energies between 3.5 and 4 TeV. [29] Run 1 provided the collision data in which the
Higgs boson was discovered. [10] It also provided the basis for the steady improvement of
the LHC. For example, as a result of the experience gained from operating the machine, it
was possible to gradually decrease the bunch spacing from 150 ns (2010), to 75 ns (2011)
finally to 50 ns (2011/2012). [29]

The run began in 2010 with counter-rotating beams of energy 1.2 TeV. This energy, which
is below the design energy of 7 TeV per beam, was selected due to earlier damage during
operation in 2008. After verifying the stability of the machine, the energy was gradually
increased to 3.5 TeV per beam. The first physics ready collisions began on February 27,
with just two bunches per beam and containing relatively few protons each. Over several
months, the number of bunches and the number of particles per bunch were increased. The
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operation was not without difficulty: throughout the run, unidentified falling objects (UFOs)
within the beam-pipe disrupted the beam and resulted in 60 beam dumps. The UFO events
are speculated to be caused by water vapor solidifying on the top of the beam-pipe and later
fall through the beam. Furthermore, unexplained and mysterious oscillations in the beam
tune (called the “hump”) plagued operators. [29] The year ended with significant gains in
the beam energy, bunch spacing, and bunch density.

The second year of the run began on February 19, 2011, with three weeks of recommis-
sioning. The first physics beams began on March 13 at 3.5 TeV and 32 bunches per beam.
This was gradually increased to 200 bunches, with 75 ns spacing. The bunch density was
also increased to 1.34×1011 ppb. On April 21, the LHC reached an instantaneous luminosity
of 4.6×1033 cm−2s−1, which broke the previous record from the Tevatron. It is at some time
during 2011 that the hump disappeared from the tune plots, leaving the mystery unresolved.
Overall, the second year was the first to provide productive physics data. The mean stable
beam time was 6.1 hours, which corresponds to 33% efficiency. In total, 5.6 fb−1 of data was
provided. [29]

In the years 2012 and 2013, the investment in carefully developing the LHC paid off with
a wealth of physics data. The beam energy was increased to 4 TeV in order to increase the
Higgs production cross-section. The first stable beams at 4 TeV, holding only three bunches,
were circulated on April 5, 2012. After a month of commissioning, the first physics beams
were provided on May 4. The nominal beam design was 1374 bunches with 50 ns bunch
spacing1. The bunch intensity was also increased to 1.7×1011 ppb, and the run stable beam
efficiency was improved to 36.5%.

The performance of the LHC during Run 1 enjoyed dramatic improvement over time.
This is evident in Figure D.1, which shows the integrated luminosity for various years, as
recorded by ATLAS. The rate at which the machine delivered data grew steadily due to the
iterative study and tuning that took place during Run 1. However, the machine operation
was far from perfect, and the cryogenic system was most problematic, causing 25-30% of all
downtime, followed by the injector systems. Resolving these issues was a major goal for Run
2. [29]

1Due to the arrangement of the bunches, only 1368 bunches collided inside ATLAS. At the time, there
was also a plan to have private bunches colliding only in LHCb.
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Figure D.1: The recorded luminosity by ATLAS during Run 1. The dra-
matic year-to-year improvement is clear from the slopes of the curves, indi-
cating the rate at which data was recorded.

B Run 2

The second operation of the LHC took place between 2015 and 2018. This run is charac-
terized by higher beam energy: 6.5 TeV per beam throughout the run. This is a monstrous
amount of energy to concentrate into the protons that make up the beam. To perform this
feat with AA batteries, a proton would have to be transported down a stack that reached from
Earth to the sun and then on to Mercury. It is also characterized by innovative strategies
to increase the delivered luminosity. Key among these improvements are a small emittance
and β∗ and reduced 20 ns bunch spacing.

The machine cycle begins with threading: the beam is injected with low bunch intensity
and stopped on collimators at stages throughout the rings. The trajectory is adjusted at each
stop before proceeding to the next one. Threading takes place primarily at the beginning of
the year since fewer corrections are needed when the machine is in a steady state. When a
complete orbit can be made by a 12-bunch beam, the position of several orbits is averaged,
and then adjusted, in a process called steering. When the orbits are stable, the rest of the
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beam is injected 2. When the complete beam has been injected, it undergoes a combined ramp
and squeeze3. During ramp, the beam is accelerated while the dipole magnets simultaneously
ramp up their fields. The standard ramp time is 1210s. The ramping pattern is parabolic-
exponential-linear-parabolic and takes approximately 20 minutes. During the squeeze, the
beam optics are adjusted in steps to reach a particular β∗ ≈ 30 cm target in the interaction
regions. The squeeze continues after the ramp. Once it is complete, the beams are steered
to collide.

During the whole process, the beam tune and chromaticity are delicately adjusted. For
example, the chromaticity is controlled to ±2 during filling and has typical values of +20 dur-
ing filling and +15 during operation. [1] The positive chromaticity enhances beam stability,
in particular head-tail instability within bunches.

It is desirable to maintain a target luminosity (1.5×34cm−2s−1), with a process called
luminosity leveling. This is accomplished by adjusting the crossing angle θc (introduced in
2017), and the value of β∗ (introduced in 2018). Since the beam is extremely sensitive to
perturbation, these adjustments are made in small steps of 10 micro radians, and ≈ 3 cm.
The beam is so sensitive to external sources that tidal effects, earthquakes, and HL-LHC
civil engineering have all been observed in the radial orbit evolution over time, as shown in
Figure D.2.

The first 6.5 TeV beams with 25 ns bunch spacing arrived on April 5, 2015. After a
brief commissioning period, the first stable beams were delivered on June 3. The run began
with a conservative β∗ = 80 cm. Luminosity increased throughout the year, with beams of
2244 bunches per beam contributing to a peak instantaneous luminosity of 5.0×1033cm−2s−1

by the end of the year. In all, the LHC delivered 4.2 fb−1 of physics collisions to ATLAS
during 88 days in 2015. This was constrained by a large heat load due to unexpectedly
intense electron clouds, which saturated the cryosystems’ cooling ability. The e-clouds are
problematic and lead to an emittance growth of 0.6 µm/hour. Low-intensity beams were used
in an effort to push the e-clouds out of the beam pipe (scrubbing), but these were ineffective.
A particularly bad incident took place in Beam 2 (15R8), where a UFO blocked a large
portion of the beam pipe. It was suspected that this was a piece of ice, so the beamscreen
was heated to 80 k, but again this was ineffective. Eventually, the beam was steered around
the object (called the ULO, or unidentified lying object). The object remained in place for
the full duration of Run 2, occasionally changing shape. Eventually, when the machine was
opened at the end of the run, the ULO was discovered to be a piece of plastic wrapping,

2This is done sequentially, rather than simultaneously, for each beam. This is because simultaneous
injection heated the injection collimators, causing them to off-gas.

3Combining ramp and squeeze was an innovation to increase the beam-on efficiency. Previously the
squeeze was performed after ramping.
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Figure D.2: Illustration of the evolution of the radial orbit, dp/p. The LHC
ring distorts under tidal forces, which is seen in the long period oscillation.
The effect of an earthquake is illustrated near 13:00, based on an actual
earthquake in New Zealand. Figure adapted from the Operation and Con-
figuration of the LHC in Run 2 [1]

possibly from installation.
Beams arrived the following year on March 25, 2016, with an ambitious target of β∗ =

40 cm and 25 ns bunch spacing. During commissioning, the number of bunches per beam
was steadily increased to 2220. Physics beams arrived on June 26, and with that, the LHC
finally delivered its design instantaneous luminosity of 1.0×1034cm−2s−1. Improvements over
the year include a new bunch preparation and reduced transverse beam size, leading to a
peak luminosity of 1.4×1034cm−2s−1. [1] Unfortunately, CMS received 5-10% more collisions
due to the collision geometry. 4 The year concluded with the only major problem being an
August 10 short circuit in a sector 12 dipole magnet, which required replacement5. A record
38.5 fb−1 of physics collision was delivered during 146 days to ATLAS in 2016.

One of the key improvements introduced during 2016 was the new bunch preparation,
Batch Compression Merging and Splitting (BCMS). The beam from Linac 2 is continuous,
but the subsequent machines, starting with the PSB, accelerate bunches of protons. [125]
To increase the throughput of the PSB, each of its four rings can be overfilled by injecting
the Linac 2 beam in different positions. Overfilling increases emittance, which limits the
output luminosity that can be achieved with this strategy. The “nominal” scheme to fill

4The crossing plane for ATLAS is vertical, while for CMS, it is horizontal. The early 2016 beams
were oblong with low vertical emittance, leading to a more favorable luminosity reduction factor for CMS
(Equation 3.7).

5This is aside from the problem where a beech marten chewed through a transformer cable at p8, leading
to several days of shutdown.
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the PS from the PSB was to inject six bunches. Each bunch is longitudinally split into
three bunches, then by two, and again by two, resulting in a total 72 bunches. [125] The
BCMS scheme changes two things. First, the overfilling of the PSB is reduced to two cycles.
Next, 8 (instead of 6) bunches are injected into the PS. This reduces the emittance in the
PSB, since the required intensity is lower, and injection is spread out over fewer turns. The
eight bunches are merged to four, then split by three, then two, then two. This totals in 48
bunches, which means more cycles are needed to fill LHC. This is offset by the gain from
reducing transverse emittance and therefore increased luminosity. [125]

The next year began with additional commissioning due to the replaced dipole. The first
beams were injected on April 29, and physics beams were delivered on May 23 with 2556
bunches per beam. During commissioning, a problem in 16L2 lead to losses and unusual
background radiation caused by e-clouds. This was caused by air that had leaked into the
vacuum and condensed during the magnet replacement. An attempt was made to evaporate
the gas by heating the beam screen to 80 k, but this exacerbated the problem. Eventu-
ally, a bunch pattern (8b4e: eight bunches, four empty) designed to scrub the e-cloud was
adopted with acceptable results. Beginning in August, a full luminosity version of 8b4e was
adopted. [1] Despite this setback, a more aggressive squeeze down to β∗ = 30 cm resulted in
a luminosity record of 2.1 × 1034cm−2s−1. This is too high for ATLAS data collection, so it
was leveled to 1.5 × 1034cm−2s−1. A new record of 50 fb−1 of collisions was delivered over
140 days in 2017. [1]

An essential improvement introduced in 2017 is luminosity anti-leveling by adjusting the
crossing angle. The beam crosses the interaction point at an angle of θc. This leads to a
30-40% loss in luminosity. [126] Prior to 2017, the beam angle was set based on the initial
intensity of the beams. [126] Reducing the crossing angle as the beam intensity decays can
help recover some of the delivered luminosity. A study was conducted during a machine
development period, using standard physics setup and few bunches. [126] The leveling is
performed slowly over the course of several minutes in steps of 20-85 microradians. This
resulted in a gain of 3-4% integrated luminosity per fill.

The first beams of 2018 were injected on April 30, and physics beams arrived ahead
of schedule on May 17. Despite efforts to heat the beam pipe during the shutdown, the
16L2 problem persisted6. As the year progressed, low intensity 900 bunch beams were used
after a fill to reduce the e-clouds. It is also remarkable to note that β∗ reached 25 cm
during collisions. This final year of Run 2 benefited from previous years’ development and
successfully delivered 66 fb−1 of collisions during 145 days.

6In fact, heating the pipe seems to have enhanced the problem. An estimated 0.1 gram of water vapor
remained in each beam line.
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Table D.1: Summary of the beam conditions during Run 2. [1]

Parameter 2015 2016 2017 2018
Maximum bunches per beam 2244 2220 2556 2556
Emittance (µm) 3.5 2.2 2.2 1.9
β∗ (cm) 80 40 30-40 25-30
Total beam energy (MJ) 280 270 330 320
Average stable beam (hours) 6.8 11.2 8.2 8.3
Delivered integrated luminosity (fb−1) 4.2 38.5 50 66
Instantaneous luminosity (1034 cm−2s−1) 0.5 1.4 2.1 2.1
Average pile-up 13 25 38 37
Stable beam efficiency (%) 35 49 49 49

Month in Year
Jan '15

Jul '15
Jan '16

Jul '16
Jan '17

Jul '17
Jan '18

Jul '18

-1
fb

T
ot

al
 In

te
gr

at
ed

 L
um

in
os

ity
 

0

20

40

60

80

100

120

140

160
ATLAS
Preliminary

LHC Delivered

ATLAS Recorded

Good for Physics

 = 13 TeVs

-1 fbDelivered: 156
-1 fbRecorded: 147

-1 fbPhysics: 139

2/19 calibration

Figure D.3: (from: https://twiki.cern.ch/twiki/bin/view/AtlasPublic/Lu-
minosityPublicResults)

The performance of the LHC during Run 2 enabled the machine to deliver a total of
156 fb−1 of collision data. The total delivered integrated luminosity and that recorded by
ATLAS are shown in Figure D.3. The number of commissioning days at the start of each year
dropped from 58 down to 17, as the LHC was better understood. Local optical corrections
could be reused from year to year. The maximum of bunches increased from 2244 up to 2556
per beam, and the stable beam efficiency increased from 35% to 49%. During the run, UFO
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events occurred at rates of 1-20 per hour. These and other run parameters are summarized
in Table D.1.
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