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ABSTRACT 

 Immunoassays are a vital tool for clinical quantification of relevant biomarkers, 

which often lead to diagnostic utility. Plate-based enzyme-linked immunosorbent assays 

(ELISAs) are a gold-standard technique for quantitatively measuring a variety of 

biomarkers. However, sample consumption, time-to-result, laborious handling, biological 

matrix effects, and analyte plexity limitations hinder novel applications in disease 

diagnostics. While many diagnostic tests focus on a single analyte, multiplexed analyses 

can contribute a signature profile that can differentiate disease states. Commercialization 

of multiplexable technologies has led to their increase in clinical relevance. Therefore, 

analytical advancements, in the form of technology commercialization and multiplexing, 

are vital for productive clinical translation. 

 In my doctoral dissertation, I present the validation, development, and 

implementation of custom microring sensor-based multiplexed immunoassays for a 

variety of clinical challenges. Chapter 1 reviews current technologies where multiplexed 

analyses have been applied to clinical samples, focusing on examples used within clinical 

workflows. Current limitations of these technologies are examined, including sample type 

accessibility and multiplexity challenges.  

 Chapters 2 and 3 describe distinct clinical evaluations within latent tuberculosis 

infection (LTBI) diagnostics, an asymptomatic form of TB. Through multiplexed cytokine 

measurements in cell supernatant, I examined immunoprofiles of interest and was able 
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to make accurate predictions regarding risk of reactivation. This study evaluates a panel 

of thirteen cytokines across six stimulation conditions, including a peptide pool with 300 

Mtb-derived T cell epitopes, utilizing normalization strategies to account for basal cytokine 

levels. Random Forest feature selection identified correlative cytokine signatures from 

normalized stimulation conditions. Receiver Operator Characteristic curves revealed 

predictive accuracies of greater than 80% for both LTBI+ and High Risk designations.  

Chapter 3 uses this LTBI analysis workflow to incorporate the current clinical 

pipeline, wherein QuantiFERON testing (QFT) stimulated plasma samples for TB 

evaluation. Our results show predictive accuracy of 90% for detection of LTBI and >80% 

for risk of reactivation. I successfully designed a combinatorial technique that can be 

implemented into the clinical workflow to predict LTBI and risk of reactivation using patient 

QFT samples.  

Chapter 4 describes a multiplexed panel for neonates, evaluating basal immune 

signatures at different gestational ages and the effects of chorioamnionitis. This analysis 

shows important changes in immature immune responses for unstimulated serum and 

indicates that there are distinctive profiles for healthy and chorio-exposed preterm infants. 

Statistical analyses revealed significance for CCL2, TNF-α, IL-1β, IL-6, IL-8, and IL-10. 

Biomarkers of interest were identified across 23-36 weeks of corrected gestational age. 

These findings indicate that exposure to chorioamnionitis has long-lasting immune 

consequences, which may alter their ability to respond to infections. Through this rapid 

(<1hr) immunoassay, relevant measurements can be made to directly affect treatment 

options and clinical outcomes.  
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Chapter 5 establishes a diverse panel for immunoassay implementation, with a 

total of 15 cytokines for SARS-CoV-2 related analyses. Following the workflow 

established in Chapter 2, stimulated conditions are utilized to understand how COVID 

infection produces and (dys)regulates host response. Statistical analyses were utilized to 

distinguish biomarkers of importance for COVID+ individuals, which include absolute and 

normalized levels of CCL3, GM-CSF, IFN-λ1, IL-1β, IL-2, and IL-7. Although currently 

sample limited, multiple cytokines show promise for continued evaluation and potential 

clinical utility.  

Finally, Chapter 6 summarizes the current diagnostic space created, and the future 

implementations in longitudinal LTBI diagnostics, co-infections in neonatal subjects, and 

the potential for vaccine immunity evaluation in COVID. 
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Abstract 

Immunoassays are a vital tool for clinical quantification of relevant biomarkers, 

which often lead to diagnostic utility. While many diagnostic tests focus on a single 

analyte, multiplexed analyses can contribute a signature profile that can differentiate 

disease states, as well as severity of disease. Multiplexed immunoassays are uncommon 

due to their complexity, prohibitive cost, and their often nonintuitive outputs. 

Commercialization of multiplexable technologies, including examples such as Quanterix, 

Luminex, and sensor technologies, has led to recent increases in clinical relevance. This 

chapter reviews current available technologies where multiplexed analyses have been 

applied to clinical samples, focusing on examples used within the clinical workflow. It also 

examines the current limitations of these technologies, including sample type 

accessibility, analysis complications, and multiplexity challenges. Finally, it discusses 

recent developments to implement biosensor-based technologies in a clinical setting. 
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An Introduction to Diagnostic Assays: Considerations and Challenges 

 Diagnostic assays are a foundational element of clinical evaluation, spanning 

importance in academic understanding of biological pathways1 to determining disease 

severity2, clinical outcomes, and treatment feasibility for individuals.3 In particular, 

molecular diagnostics are a powerful tool to assist clinicians in investigating causes of 

infection and clinical outcomes by quantifying a specific antigen in a biological sample.4 

For these diagnostic assays to be useful, multiple considerations are necessary and the 

translational application must always be prioritized. 

 Assay considerations are as numerous as they are complex. The first step in assay 

development is determining a clinical problem to address, and that correlates to finding 

the proper biomarkers of interest. These can include ion concentrations5, proteins6, RNA7, 

DNA8, whole cells (host or foreign), and complexes, among others. The target analyte is 

the primary concern since all subsequent analytical assay metrics are directly related to 

this decision. For example, if your target of interest is DNA, there may be steps necessary 

to ensure there is no enzymatic loss of sample, or samples may need to be treated to 

convert dsDNA to ssDNA for detection. Once an analyte has been selected, the proper 

assay format is determined, whether that be sandwich immunoassay, PCR, ion-selective 

electrodes (ISEs), etc. These will all come with differences in sensitivity, selectivity, 

robustness, accessibility, and general usability.  

 Indirect to these analytical considerations are clinical aspects of the assay.9 The 

sample type of interest can vary widely and drastically affect the assay formats and 

analytes possible. Samples can range from whole blood10 to plasma and serum, saliva11, 

sweat12, nasal swabs13, bronchoalveolar lavage (BAL)14, urine15, cerebrospinal fluid 
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(CSF)16, and more. Complications from ionic strength, protein content, cross-reactive 

species, enzymatic degradation, expected analyte concentrations, and matrix effects on 

assay feasibility all need to be carefully evaluated to ensure that a reproducible and 

clinically translatable system is created. Finally, understanding what output metrics are 

required (time-to-result, portability, technical knowledge required, etc.) to perform this 

assay are vital to final use. 

 However, this workflow is generally done for one analyte of interest. For example, 

plate-based enzyme-linked immunosorbent assays (ELISAs) are a workhorse for clinical 

laboratories. ELISAs generally utilize specific antibodies for an analyte to create a 

sandwich complex that can enzymatically amplify the signal from a small amount of 

analyte into a detectable response. As each well in the plate is specific for one target, it 

takes time, reagents, and excess sample to look at other targets that could be important 

for a given application.17 In addition, biological processes are inherently complex, and it 

is almost assured that one analyte will not accurately describe a disease, infection, or 

pathological system. Therefore, multiplexed analyses are moving to the forefront of 

clinical methodologies. To truly “multiplex”, the goal is to measure multiple analytes within 

the same sample volume simultaneously. This adds even more complexity to assay 

development, with cross-reactivity, distinct response readouts, possible number of 

analytes measured, and matrix (background) effects being the foremost issues. 

These challenges have been met recently by technological advances in the clinical 

diagnostics space. Commercialized instrumentation, accessible assay formatting, and 

useful time-to-results have become commonplace and therefore clinically viable. Methods 

for single-molecule detection (Quanterix)18, multiplexed PCR (Luminex)19, and sensor-
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based (Genalyte)20,21 assays have all been developed and used in a clinically relevant 

setting. Of these commercialized systems, each takes a unique focus and approach to 

solving challenging analytical and clinical problems. 

Quanterix 

Quanterix is a commercialized platform based around the Single Molecule Array, 

or SiMOA, assay. The SiMOA assay utilizes functionalized beads, generally with 

antibodies, to capture targets of interest. A sandwich immunocomplex, much like in plate 

ELISAs, is created using secondary antibodies that generate added specificity and an 

enzymatic complex to create an amplified fluorescent readout. These beads are then 

loaded into femtoliter microwell arrays, where there is a high probability of only one bead 

per well. Upon enzymatic turnover, wells can be analyzed digitally, and the number of 

positive wells correlates to a molecular count and therefore concentration of analyte 

(Figure 1-1).22 This system is incredibly sensitive, leading to near single molecule 

detection limits. However, in multiplexing, cross-reactivity can be a major issue, and this 

system can be expensive and technically laborious. Nonetheless, Quanterix has made 

itself applicable to clinical audiences in several applications.  

One such instance focuses on cytokine levels in inflammatory responses. For this 

study Rosenthal et al utilized a 9-plex assay to investigate primarily interleukins and 

chemokines in cardiopulmonary bypass surgery. Dried blood spots from subjects who 

underwent cardiopulmonary bypass surgery were analyzed for IL-1β, IL-6, IL-8, IL-16, IL-

18, MCP-1, CCL3, CCL4, and IAM-1.23 Looking at samples post-surgery, significant 

cytokine level differences were identified for all 9 biomarkers. This study, while sample 

limited, shows the utility, both in multiplexing and temporal evaluations, for Quanterix 
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diagnostics. We also see more general protein markers being evaluated in a clinical 

space. Two brief examples are preliminary studies on traumatic brain injury biomarkers. 

Initially, Korley et al created a 4-plex panel to diagnose TBI from blood biomarkers. From 

a panel of GFAP, UCH-L1, NF-L, and tau, comparisons were analyzed between healthy 

and abnormal CT scans. Promisingly, discriminative ability from these markers 

individually and in combination were shown as AUC results, which resulted in 90% 

accuracy for the latter.24 This used a custom designed multiplexed immunoassay, 

indicating the need and utility of novel panels for clinical analyses. Other researchers took 

this a step further, by utilizing this panel for a 504-subject cohort. McCrea et al 

hypothesized that this panel could reveal underlying pathophysiological mechanisms for 

concussions, further concluding that the ability to use combinatorial assays is clinically 

important.25 

Luminex 

Luminex is another bead-based commercialized technology that specializes in 

multiplexed analyses. While originally focused on protein analyses, Luminex has recently 

reoriented their clinical implementation towards semi-quantitative multiplexed PCR 

measurements. In this system, beads or microspheres are functionalized with a capture 

probe for a given pathogen genomic sequence. A sample mixture of beads, clinical 

sample, and complementary probe are incubated and if pathogen DNA/RNA is found, the 

capture and complementary probes are ligated together. From this combined sequence, 

universal primers can be utilized to amplify a fluorescent tag, and a two-laser 

instrumentation platform identifies both the bead for capture identification and the 

fluorescence readout (Figure 1-2).26 These multiplexed measurements are mainly limited 
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by fluorescence background in terms of sensitivity and distinct bead combinations for 

captures but can reach meaningful multiplexity in clinical applications. 

Luminex has made great strides in pathogen detection, particularly with their xTAG 

pathogen panels. Two prominent examples are for gastrointestinal and respiratory 

infections, which prove initial clinical use. Huang et al compared the Luminex platform to 

two other clinically viable multiplexed assays for gastrointestinal pathogens. While all 

showed sensitivities above 75%, Luminex showed the most promise for high throughput 

stool samples screening, with 24 samples run in 5 hours.27 It is important to note the use 

of stool samples, since this is an incredibly complex matrix, and shows the possibilities 

available for xTAG systems. We also find studies focusing on respiratory pathogens, 

which are particularly important currently. Tang et al evaluated the FDA-approved 17-plex 

Luminex NxTAG Respiratory Pathogens Panel for sensitivity and specificity across 404 

clinical samples. Assays results showed sensitivities and specificities of 80.0% to 100.0% 

and 98.9% to 100.0%, respectively. Of note, influenza A genotyping was correct 95.5% 

of the time, which is of particular utility in a clinical setting.28 Another study by Chen et al 

shows similar results, and therefore clinical reproducibility.29 Finally, customized 

multiplexed assays are also viable. Yin et al developed a novel multiplexed PCR TRIOL 

(Tuberculosis-Rifampicin-Isoniazid-Ofloxacin-Luminex) analysis using Luminex to 

measure first- and second-line anti-tuberculosis drug resistance. This assay reached an 

impressive 100% sensitivity and specificity for identifying Mtb.30 The authors confirmed 

that this system was higher throughput and less labor intensive than PCR-sequencing 

assays, and that the flexibility of assay parameters could allow for inclusion of additional 

primers to identify uncommon mutations. 
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Genalyte Microring Resonators 

Outside of bead-based diagnostics, sensor technologies have made substantial 

advances. Through CMOS batch fabrication and simple functionalization, sensors, and in 

particular silicon photonic sensors, have reach commercialized potential. One such 

system is produced by Genalyte, where high sensor density (128 sensors) that can be 

interrogated simultaneously within a small chip footprint has led to recent improvements 

in multiplexing capabilities.31 These microring resonators can be functionalized in a 

variety of methods for different analytes of interest, including miRNA, phosphorylated 

proteins, DNA, and cytokines. In principle, the universal sensors are functionalized with 

a capture agent, normally ssDNA or antibodies. Samples are flown across the sensor 

surface using integrated fluidics, and as binding occurs on the surface, a change in the 

resonance condition on the sensors is recorded. Secondary and tertiary binding can lead 

to multiple customizable avenues for amplification and therefore quantitative outputs 

(Figure 1-3).21 While not as sensitive as Quanterix, or as potentially multiplexable as 

Luminex (since a maximum of 32 distinct captures are possible per chip), the Genalyte 

platform is versatile and quantitative, with the ability to approach a number of assay 

formats in a reasonable time-to-result of less than 2 hours, with the added advantage of 

real-time monitoring of assay steps and results. The Genalyte system is currently being 

used for autoantibody diagnostics in clinical settings, and has a variety of other 

applications developed from the Bailey Lab. 

The Bailey Lab has utilized the Genalyte platform for many multiplexed analyses 

that could produce clinical utility. Scheler et al used the 32-ring resonator system, 

measuring primary binding of Streptococcus pneumoniae tmRNA against 4 captures of 
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different bacterial species. Detection of as low as 53 fmol was achieved, with high 

specificity shown by monitoring off target rings. Additionally, this was done with primary 

binding, which is fast and reproducible.32 This is one of the first publications to show that 

the real-time monitoring of the assay has many benefits, from troubleshooting, to binding 

profile fitting, to endpoint results. Wade et al showed the multiplexed utility of the Genalyte 

platform in a clinical direction, measuring phosphoproteins in both cell line lysate and 

tumor samples. The updated platform used 128 microrings, functionalized for 12 separate 

biomarkers. This study also used an ELISA sandwich assay format, which on the rings 

can be both monitored continuously and be used as an end-point analysis from enzymatic 

turnover. By measuring both basal levels for the glioblastoma cell lines, as well as 

expression responses from treatment in culture, they were able to create expression heat 

mapping, showing fold changes of phosphoproteins due to potential treatments.33 They 

were also able to use this panel to distinguish between glioma tissue homogenates and 

isolated primary glioma stemlike cell samples. With the assay-to-result being under 2 

hours, this could be a viable strategy to inform pathologists in making surgical decisions. 

Graybill et al showed the versatility of the biosensor platform by performing a multiplexed 

assay for miRNA profiling using label-free asymmetric PCR. Eight miRNAs were 

measured simultaneously from 20 glioblastoma samples, showing the clinical utility of this 

panel.34 And while mainly focused on biomarker discovery, this paper highlights the utility 

of the platform, as well as the low samples inputs that can be utilized for analyses.  

More recently, Robison et al moved the closest to clinical translation, using a 7-

plex cytokine panel for analysis of stimulated cell supernatant for LTBI signatures. 

Tuberculosis (TB) is a pervasive and devastating infectious disease, which can manifest 
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as an asymptomatic infection known as latent tuberculosis (LTBI). Among this population, 

5-10% are estimated to develop an active, transmissible, and potentially lethal TB 

infection, and so distinguishing LTBI and risk of reactivation from healthy individuals is 

vital for proper disease management. Measuring cytokine levels in isolated Peripheral 

Blood Mononuclear Cells (PBMC) samples from 50 subjects across 6 stimulation 

conditions, both absolute levels and basally controlled levels could be obtained and 

correlated to clinical information. PBMCs are leukocytes that should contain the immune 

systems current immunological profile for infection protection and immunity, and by 

investigating this cell population, direct results to host response challenges can be 

obtained. This works moved ever closer to clinical importance using bioinformatics and 

the Boruta method, wherein they identify cytokine and stimulation condition combinations 

of most importance to distinguish LTBI and risk of reactivation.35 

To continue these advancements into clinical applications, Genalyte has 

implemented a new platform known as the Matchbox. This instrument utilizes injection-

molded thermoplastic devices for disposable, plug-and-play fluidic handling and sensor 

placement. With increased precision in flow cell geometries across the chip, assays can 

be developed that use minimal samples volumes (50-350uL) in under an hour to result. 

This positions these disposable cartridges as a crucial step towards clinical 

implementation. Currently, Genalyte Matchbox systems are being used in hospitals to 

measure multiplexed autoimmune antibodies from whole blood in as little as 15 minutes 

from primary binding of antigen to specific capture species.36 Furthermore, the universal 

sensor platform is amenable to custom multiplexed clinical diagnostics for precision 

medicine diagnostics. 
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These technologies are summarized in Table 1-1. In short, there are many 

considerations necessary for developing clinically usable assays and instrumentation. 

And while each technology has its unique strengths and weaknesses, ultimately the 

application of interest will drive the final decisions for necessary capabilities. For the 

purposes of this thesis, I will be focusing on the Genalyte microring technology for 

applications in clinical evaluations of disease and infection. 

Development of Custom Immunoassays for Clinical Translation 

The Genalyte platform is a chip-integrated silicon photonic microring resonator 

system which is used for sensitive and quantitative multiplexed immunoassay detection 

with analytical capabilities comparable or better than traditional enzyme-linked 

immunosorbent assays. The versatility of this refractive index-based platform is in the 

ability to functionalize rings with multiple capture agents to detect antigens in solution in 

a concentration-dependent manner. Each chip has 128 individually addressable refractive 

index sensors that are coupled to a linear waveguide. Under certain resonance 

conditions, defined by: 

𝑚𝑚𝑚𝑚 = 2𝜋𝜋𝜋𝜋𝑛𝑛𝑒𝑒𝑒𝑒𝑒𝑒 

where the resonant wavelength is dependent upon the microring radius (r), the effective 

refractive index at the surface of the ring (neff), and the input wavelength of light (λ). When 

the proper resonance conditions are met, a characteristic drop in transmission occurs. As 

the effective refractive index changes on the surface of the ring, based on changes in 

solvent, adsorption to the surface, binding events, etc., the transmission drop shifts in 
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wavelength. The corresponding wavelength shift is monitored over time to reveal surface 

interactions in a quantitative manner. 

 For the purposes of utilizing immunoassay amplification with this technology, the 

sensor arrays are functionalized with antibodies covalently tethered to the ring surface 

via aminosilane chemistry and amine linker chemistries. During the assay, target protein 

is flown across the sensor surface. For specificity and amplification, secondary antibody 

modified with biotin is flown to interact with protein bound to the surface. Streptavidin-

Biotin interactions are used to tether a horseradish peroxidase (HRP) to the sandwiched 

protein, and HRP then turns 4-chloronapthol to 4-chloronapthon, an insoluble product, 

and quantification is accomplished by measuring the magnitude shift in the local refractive 

index. This amplification strategy allows for analyte quantification at or below pg/ml 

ranges in an almost identical format as traditional ELISAs, and is outlined on the microring 

platform in Figure 1-3. Thoughtful analytical validation is necessary for proper 

implementation, including optimization of saturating conditions, reagent concentrations, 

calibrations and metrics thereof, and matrix effects. This assay can be multiplexed for the 

robust detection of multiple protein targets within the same sample through careful cross-

reactivity validation and continued multiplexed assay optimization. 

 The research performed herein focuses on my continual analytical validation, 

development, and implementation of cytokine multiplexed immunoassays for a variety of 

clinical needs. In Chapter 2, I continued the development of LTBI diagnostics within the 

lab, expanding the immunoassay panel, stimulation conditions, and sample cohort size 

for latent tuberculosis infection (LTBI). The current iteration of this study focuses on 

identifying normalized cytokine signature profiles within stimulated supernatant samples 
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and creating predictive model ROC curves for LTBI infection evaluation and risk of 

reactivation. The biosensor platform is vital to this high-plexity analysis since it would be 

incredibly laborious and time-consuming to attempt with traditional immunoassay formats 

across this many biomarkers. It is also important to note the analytical validation and 

development within this clinical study, as diagnostic metrics within this work are 

impossible without rigorous analytical evaluation in a multiplexed and matrix relevant 

fashion. 

In Chapter 3 I extended my studies from Chapter 2 but focused on creating a truly 

clinical workflow for LTBI diagnostics. While supernatant analyses are vital for 

understanding the physiological mechanisms associated with TB latency and 

reactivation, clinical relevance is most efficient when utilizing the current clinical workflow. 

QuantiFERON Tests (QFT) are commonly used blood tests within clinics for TB 

diagnosis, which include 3-4 stimulation conditions depending on the kit available. Plasma 

samples are stimulated using protein cocktails pertinent to basal immune responses and 

TB specifically, and IFN-γ is measured using standard ELISA methods. The main 

hinderance within this workflow is the final step analyzes only  IFN-γ production, and is 

therefore underpowered for LTBI diagnostics, as recent literature indicates this pathway 

could be  IFN-γ independent.37 We reevaluated the analytical metrics for our 13-plex 

assay in plasma conditions, which can be problematic for immunoassays at low dilution 

factors. Utilizing the same informatics workflow from Chapter 2, we show clinical efficacy 

with predictive accuracies of >85% for both LTBI and risk of reactivation with minimal 

cytokine profiles. The additional merits of this approach are in available sample matrices 

for analysis, clinical workflow feasibility, and potentially quick time-to-result of under an 
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hour. With proper training and equipment, a multiplexed assay similar to this could be 

used within clinics to replace the single-plex  IFN-γ ELISA and create additional 

immunoprofiling data for evaluation. 

In Chapter 4, I shift focus to utilizing these custom biosensor immunoassays for 

unstimulated, longitudinal immune response analyses within neonatal subpopulations. 

Preterm birth affects approximately 11% of all live births globally, and these earlier 

gestational times can be attributed to conditions such as diabetes, genetic 

predispositions, and infection. Among the most prominent issues is chorioamnionitis, an 

often-undiagnosed fetal membrane infection, which accounts for many preterm instances. 

Current understanding of neonatal immature immune response to chorioamnionitis is 

limited and diagnostic testing is difficult due to low sample volumes. The present study 

used a custom 7-plex immunoassay to measure cytokines in unstimulated neonatal waste 

serum samples. Mann-Whitney analyses compared cytokine levels for healthy and 

chorioamnionitis-positive preterm infants, and biomarkers of interest were identified 

across 23-36 weeks of gestational age. This assay demonstrates not only the ability to 

create custom assays for a given application, but also the feasibility of our endpoint 

analyses to be implemented in more traditional clinical metrics, such as non-parametric 

comparisons. With the fully assay lasting 38 minutes, this approach brings near real-time 

measurements to an underserved and vital clinical space where temporal dynamics could 

change potential clinical outcomes, disease progression, and treatments.  

Finally, in Chapter 5 I focus on one of our most pressing world events, the COVID-

19 pandemic. While most analytical focus has been in SARS-CoV-2 detection strategies, 

and pharmaceutical companies have been preparing viable vaccines, there continues to 
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be the issue of therapeutics designed to treat COVID infection, and subsequently 

understanding the pathophysiological underpinnings attributed to disease severity and 

immunity. However, overall understanding of this infection and its outcomes and long-

term effects are limited. Therefore, we need to investigate diagnostic metrics to 

understand disease severity and the host-pathogen response, so that proper care can be 

met. While most infected individuals develop only mild disease, a subset of patients 

progress to develop severe COVID-19, which is associated with high morbidity and 

mortality. Currently, disease severity has been linked to dysregulated and excessive 

immunity in COVID-19 and the early pathophysiologic drivers of this immune 

dysregulation has yet to be further defined. Unfortunately, though early identification of 

patients with COVID-19 likely to develop critical illness is of enormous importance, 

reliable biomarkers to identify these patients are lacking. 

Chapter 5 is similar to what I accomplished in Chapter 2, but using a 15-plex 

cytokine panel on our microring resonator platform to analyze stimulated PBMC serum 

samples from COVID patients to define immunological parameters of disease severity 

and longitudinal immunity. These cytokines provide a broad immunoprofile, consisting of 

chemokines, pro- and anti-inflammatory cytokines, as well as immune growth factors, all 

with potential significance to COVID-19. From stimulation conditions for SARS-CoV-2 

spike protein subunits and off-target responses, we interrogated PMBC cytokine levels 

using precision medicine approaches. Mann-Whitney analyses were utilized to 

distinguish biomarkers of importance for COVID+ individuals, which at this time include 

absolute and normalized levels of CCL3, GM-CSF, IFN-λ1, IL-1β, IL-2, and IL-7. And 

while we are sample limited in this preliminary phase, initial significances are promising 
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for continued evaluation. By implementing a known workflow that we have evaluated 

previously, we can investigate important biomarkers for infection response, disease 

progression, severity, and recovery. 

Through each chapter, the central goal has been to create interdisciplinary 

solutions to clinically relevant problems. Stemming from analytical validation, calibration, 

and multiplexing, through completion of sample analysis and bioinformatics evaluation, 

we have developed robust and efficient customized immunoassay methods to identify 

biomarkers of interest, investigate disease severity, and implement clinical strategies for 

real world applications. 
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Figure 1-1. Example workflow of the Quanterix SiMOA platform. Beads functionalized 
with an antibody of interest are incubated with a mixture of sample and detection 
antibodies. These beads are loaded into femtoliter microwells where fluorescence 
turnover can occur and each well can be digitally read. In the case of multiplexing, multiple 
fluorophores would be implemented. 
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Figure 1-2. Example workflow for Luminex PCR Analysis. Bead coupled capture 
sequences and detection sequences are incubated with the sample of interest. If a 
pathogenic sequence is detected, the capture and detection sequences ligate. 
Subsequent universal PCR primers can be used to turnover fluorescent product. In a 
multiplexed format, beads would be dyed such that each dye corresponded to a capture 
sequence, and the two-laser system would read out bead ID and fluorescent count. 
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Figure 1-3. Example of the Genalyte mircoring resonator sensors and ELISA assay. All 
readout occurs on the 4mmx6mm chip, containing 128 microrings for evaluation. Rings 
are functionalized with relevant capture antibodies (1) before use. Automated fluidic 
assays consist of sample (2), secondary biotinylated antibodies (3), Streptavidin-
Horseradish Peroxidase (SA-HRP) (4), and 4-CN turnover (5), which will sequentially lead 
to changes in local refractive index due to mass deposited on the ring surface. In a 
multiplexed assay, clusters of 4 rings are spotted with identical captures, and a cocktail 
of all pertinent secondary antibodies is used to produce antigen-specific results from the 
spatially arrayed sensors. 
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Table 1-1. A summary of important metrics for clinical utility across Quanterix, Luminex, 
and Genalyte systems. 

 Quanterix Luminex Genalyte 
Sample 
Volume 

(uL) 
10-50 50-200 50-350 

Analyte 
Plexity 

4 
(commercially) 50 (commercially) 16 per channel 

Sensitivity Single 
molecule pg-ng/mL pg-ng/mL 

Limitations 
Technical 
knowledge 

needed, plexity 

Reproducibility 
issues, cross-

reactivity 

Sensor biofouling, maximum 
plexity of 32 targets 
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Selection 
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Abstract 

 Latent tuberculosis infection (LTBI) is a quiescent and asymptomatic infection in 

which the immune system cannot fully eradicate the tuberculosis (TB) pathogen. Existing 

diagnostics for TB are strongly indicative of prior and active infection but hold limited 

predictive value for LTBI progression or reactivation risk. We previously utilized 

multiplexed immunoassays to profile cytokines from peripheral blood mononuclear cells 

stimulated with TB-derived and non-specific antigens to identify signatures for LTBI status 

and reactivation risk. As an extension of this work, this study evaluates a panel of thirteen 

cytokines across six stimulation conditions, including a peptide pool with 300 Mtb-derived 

T cell epitopes (MTB300). Random Forest feature selection and data reduction methods 

identified correlative cytokine signatures from normalized stimulation conditions. Receiver 

Operator Characteristic curves revealed predictive accuracies of greater than 80% for 

both LTBI+ and High Risk designations. This approach provides rich biomarker 

signatures for a disease framework of enormous global need.  
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Introduction 

 Tuberculosis (TB) is a pervasive and devastating infectious disease that led to 1.5 

million deaths in 2018.1 Beyond the acute morbidity of the disease, it also can manifest 

as an asymptomatic infection known as latent tuberculosis (LTBI), which greatly 

complicates disease management. Approximately 1.7 billion people are estimated to have 

this quiescent infection state.1-3 Among this population, 5-10% are estimated to develop 

an active, transmissible, and potentially lethal TB infection.4-6 LTBI is treatable with 

prolonged antibiotic regimens, but potential drug-related toxicities and treatment non-

adherence issues obviate the need to identify patients most likely to benefit from these 

therapies. To properly diagnose individuals with LTBI, and more specifically those with 

high reactivation potential, improved diagnostic tools are needed. While current assays 

for TB, including the Tuberculin Skin Test (TST) and Interferon-Gamma Release Assays 

(IGRAs), reveal previous exposure to TB, they offer limited benefit for LTBI diagnosis and 

reactivation risk stratification.7 There is a growing consensus that this latent infection and 

the conditions that foster reactivation include complex changes in the immunological 

landscape that may be independent of the pathogen itself.8-14 Therefore, multiparameter 

strategies that probe immune (dys)regulation in response to TB-specific and non-specific 

antigen challenge may provide new diagnostic insights into not only the status of LTBI 

infection, but also the risk of reactivation. 

 Previously, our groups described an approach to multiplexed cytokine profiling of 

supernatants from stimulated peripheral blood mononuclear cells (PBMCs) using arrays 

of silicon photonic microring resonators.15 This workflow involved five different TB-specific 

and non-specific stimulation conditions, and the quantification of seven cytokines. Using 
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a precision normalization approach to correct for individual patient heterogeneity and a 

bioinformatic feature selection approach, we identified multi-biomarker signatures that 

preliminarily correlated with LTBI status and elevated reactivation potential. This study 

suggested relevant biomarkers beyond interferon-gamma (IFN-γ), which is the cytokine 

detected in IGRAs, and also highlighted the importance of precision normalization using 

non-TB-related antigen challenges as a way of accounting for differences in basal 

immune response. However, this was only a first proof-of-concept study towards the 

development of a new LTBI detection paradigm as it focused on a limited number of 

cytokines and a relatively small population of research subjects. 

 Building upon this previous study, we have now expanded to a larger panel of 

cytokines (13) as suggested by experimental studies in immunity to TB, again detected 

using silicon photonic microring sensor arrays, and enrolled a larger research cohort (75 

subjects). We also have added a new antigen condition with the MTB300 reagent, which 

is a comprehensive “megapool” of M. tuberculosis (Mtb) peptides that captures a large 

fraction of the Mtb-specific T cells.16 Cytokine concentrations were determined for each 

stimulation condition and normalized by pairwise subtraction of levels from other 

stimulation conditions. The resulting normalized cytokine levels were then subjected to 

Random Forest feature selection to identify biomarker signatures correlating with LTBI+ 

status and High Risk of reactivation (the entire workflow is illustrated in Figure 2-1). 

Statistically-driven thresholding was then applied to identify the most relevant biomarkers 

having the highest predictive accuracy for these clinical designations. Receiver-Operator 

Characteristic (ROC) curves were generated for both full and reduced data sets with 

Area-Under-the-Curve (AUC) analyses revealing predictive accuracies exceeding 80% 
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for reduced biomarker signatures. These studies suggest that multiplexed analyses and 

precision cytokine normalization can generate highly predictive signatures for LTBI status 

and reactivation potential that may find utility in clinical management of patients with LTBI 

through a personalized medicine approach. 

Methods 

Reagents and buffers 

Reagents, including Dulbecco’s phosphate buffered saline (PBS), bovine serum 

albumin (BSA), (3-Aminopropyl)triethoxysilane, glycerol, bis(sulfosuccinimidyl)suberate, 

starting block blocking buffer, Pierce high sensitivity streptavidin-HRP (SA-HRP), 4-

chloronaphthol (4-CN), and Drycoat assay stabilizer were purchased from commercial 

vendors as listed in Table 2-1. Vendors and catalog numbers for antibodies against all 

cytokines and the mouse IgG isotype control are summarized in Table 2-2. Running buffer 

for all assays was 0.5% BSA in 1X PBS, pH 7.4.  

Cell Culture and Antigen Stimulations 

Cell culture and antigen stimulation methods have been described previously.15 

Briefly, PBMCs were separated by from whole blood by Ficoll separation and the pellets 

frozen with 10% DMSO in liquid nitrogen. Thawed PBMC pellets (viability ≥85%) were 

stimulated for 40–48 h with either TB-relevant or off-target antigens. Supernatants from 

stimulated PBMCs were stored at −80°C and shipped on dry ice for cytokine 

measurements using the 13-plex antigen immunoassay on the microring resonators. 

Samples were thawed and vortexed prior to loading into a 96-well plate for microring 

assays. Each sample was analyzed undiluted and after a 10-fold dilution in running buffer.  
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Clinical Category Determination 

This study was approved by the Mayo Clinic Institutional Review Board and 

Olmsted County Public Health Services. All study participants signed an informed written 

consent and were enrolled in Rochester, MN between July 2017 and December 2018. 

Study subjects included unexposed individuals and subjects with various risk for TB 

infection, including untreated LTBI patients and patients with having had LTBI therapy 

and thus at low risk of reactivation. Risk factors for TB infection, TB progression, and/or 

TB reactivation were extracted through a validated questionnaire and review of medical 

records as previously described.15,17 LTBI diagnoses were made per the Center for 

Disease Control and Prevention (CDC) criteria and based on TB risk factors, and by prior 

TST and QuantiFERON®-TB Gold In-Tube (QFT) results.18 A modified multifactorial 

predictive modeling platform (i.e. ‘Online TST/IGRA interpreter’), adjusted by LTBI 

treatment effect, was also applied to estimate the cumulative risk of TB reactivation in all 

subjects as previously described.19,20 Table 2-3 details all clinically relevant cohort 

information. 

Multiplexed immunoassay instrumentation and assay design 

 Microring immunoassays were performed on the Maverick Matchbox system 

(Genalyte, Inc., San Diego, CA) as previously described.21 This platform utilizes injection-

molded microfluidic devices to introduce fully automated flow for all assay steps across 

functionalized sensor arrays. These devices are disposable, to ensure no contamination 

between assays.22,23 Microring arrays were batch functionalized via spotting to yield a 13-

plex array of capture antibodies covalently immobilized on sensor substrates. After 

flowing the sample across the chip, a cocktail containing all the tracer antibodies was 
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flowed across the array followed by signal enhancement reagents. Antibody capture and 

tracer concentrations used are listed in Table 2-4. Shifts in resonance wavelength from 

the signal enhancement step are directly correlated to the concentration of target analytes 

in solution. Immunoassays were performed with a consistent 30µl/min flow rate for all 

steps. There was an initial rinse of 5 minutes with the running buffer to ensure equilibration 

of the chip prior to sample analysis. The assay included steps as follows: 1) running buffer 

(2min); 2) sample (7min); 3) running buffer rinse (2min); 4) biotinylated tracer antibodies 

(7min); 5) running buffer rinse (2min); 6) SA-HRP (7min); 7) running buffer rinse (2min); 

8) 4-CN (7min); 9) running buffer rinse (2min). The total assay time was 38 minutes. 

Figure 2-2 shows a real-time trace of resonance wavelength shifts during a representative 

multiplexed immunoassay. 

Calibrations and Sample Analyses 

 Immunoassays were simultaneously calibrated for all antigens in a multiplexed 

format. Serial dilutions from a saturating antigen concentration for each multiplexed 

immunoassay yielded eight-point calibrations relating relative resonance shifts to 

standard concentrations. To quantify relative shifts, the signal during the buffer rinse 

before the assay enhancement step (t=29min) was subtracted from the final assay rinse 

step (t=38min). Net resonance wavelength shifts (∆𝑝𝑝𝑚𝑚) were plotted as a function of 

standard concentration and fit to a four-parameter logistic function as described 

previously21 via the following equation: 

∆𝑝𝑝𝑚𝑚 = 𝐴𝐴2 +  (𝐴𝐴1− 𝐴𝐴2)

1+� [𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎]
[𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎]0.5

�
𝑝𝑝                                              [1] 
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where 𝐴𝐴1 is the lower resonance shift bound, 𝐴𝐴2 is the upper resonance shift bound, 

[𝑎𝑎𝑛𝑛𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑛𝑛]0.5 is the concentration yielding 50% of maximum signal, and 𝑝𝑝 is the power 

parameter affecting the slope at [𝑎𝑎𝑛𝑛𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑛𝑛]0.5. Limits of detection (LOD) and quantification 

(LOQ) were defined as the blank signal plus 3 times and 10 times the standard deviation 

of the blank, respectively. Each calibration was performed in triplicate for each sample 

dilution (Figure 2-3) as measured with 4 sensors per technical replicate. 

 Samples were analyzed undiluted (1X) and diluted (0.1X) into running buffer. 

Cytokine concentrations within supernatant samples were determined from 

corresponding serum calibrations (10% and 1% serum, respectively, matching the serum 

content in supernatant samples). Final concentrations were measured using the most 

appropriate dilution/calibration as determined by how close the value came to the 

midpoint of the calibration. Precision normalization was achieved by separately 

subtracting the control or off-target cytokine concentration from that measured at the other 

stimulation conditions. 

Random Forest and ROC Curve Analyses 

Random Forest methods24 were utilized to determine the biomarker features 

associated with both LTBI+ and High Risk clinical designations. Random Forest is an 

ensemble classification algorithm that can detect nonlinear effects of covariate features. 

Moreover, it provides a ranking of importance of each covariate, while the importance is 

identified by their effect on classification of either LTBI or risk of reactivation. Using these 

randomized decision tree outputs, a ROC curve can be established that indicates the 

predictive accuracy the variables hold for a given classification. 
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 Feature importance analysis was done for all variables available (143 total), and 

ROC curves were produced. Utilizing the important features from those analyses, a 

secondary Random Forest algorithm was produced for further enhancement of predictive 

accuracy by removing unimportant or noisy features. This was done identically for both 

LTBI+ and High Risk clinical designations. Mann-Whitney plots were utilized to evaluate 

each important variable in the signature. All informatics and plotting were performed using 

R coding language.25,26 

Results 

Study subjects 

 We sequentially enrolled a total of 75 subjects, including 32 subjects with diagnosis 

of LTBI by QFT and/or TST results and 5 immunosuppressed patients for various medical 

conditions (Table 2-3). All HIV-tested subjects were non-reactive by ELISA (45 out of 75). 

The majority of study participants were health care workers (73%) with various risks of 

TB exposure, and 23 unexposed subjects with negative QFT and a predicted annual risk 

of zero. There were no significant age differences across the study clinical designations.  

Full vs Reduced Random Forest Feature Selection 

 The initial Random Forest analysis was performed using all possible normalized 

features from the full dataset (13 cytokines x 11 normalized, pairwise conditions), 

identifying 143 features viable for the LTBI+ clinical designation. Based on all possible 

features, a ROC curve for LTBI+ was produced, yielding an AUC of 0.767 (76.7% 

predictive value). From this full feature analysis, a reduced random forest validation 

containing all the important features from the full analysis was created using the statistical 
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variance of each feature and establishing a threshold based on predictive accuracy 

improvement. Therefore, the 19 identified features after data reduction, which span a 

variety of cytokines and normalized conditions, can be considered as the most relevant 

to the ROC curve’s predictive power. A ROC curve constructed using only these reduced 

features yielded an AUC of 0.874. Mann-Whitney analyses of the statistical significance 

of variables included in the reduced analysis are detailed in Table 2-5.  

Importance of MTB300 Stimulation Condition 

 To assess the added benefit of the MTB300 stimulation condition, which 

specifically targets a large fraction of Mtb-specific CD4+ and CD8+ T cell populations, 

separate Random Forest feature selection and data reduction algorithms were performed 

for LTBI+ in the absence of any normalized conditions that included the MTB300 

stimulation. A quantitative comparison between the previous reduced feature set for LTBI 

and the further reduced analysis without MTB300 shows a loss of 5.3% in prediction 

accuracy (AUC changed from 0.874 to 0.821), indicating a valuable role for MTB300 in 

improving LTBI diagnostic utility. 

Stratification of Subjects Based upon High Risk of Reactivation 

 Reduced Random Forest analysis was performed using the entire normalized 

dataset as input for the High Risk of reactivation clinical designation. Though this 

subpopulation is smaller than the LTBI+ pool, it is still large enough for robust feature 

identification. The full data set analysis for High Risk used all 143 features with a resulting 

AUC of 0.715. Upon performing the statistical feature reduction, 14 features were 

identified as most relevant, and these reduced features yielded a predictive accuracy of 
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0.855. Mann-Whitney analyses of the statistical significance of these reduced biomarkers 

is detailed in Table 2-6. 

Discussion 

 LTBI is a persistent and quiescent infection that has proven difficult to identify 

accurately using conventional diagnostic methods. The added stratification of progression 

and/or reactivation potential has further been a diagnostic challenge that limits the ability 

to robustly identify patients most likely to benefit the most from antibiotic treatment. 

Utilizing our 13-target multiplexed cytokine panel and powerful bioinformatic approaches, 

we have identified multi-biomarker signatures that show strong correlations to clinical 

designations of LTBI+ and High Risk of reactivation with an approach that only uses input 

biomarker levels to achieve these diagnoses. 

 Based upon our previous study, we found that precision normalization revealed a 

richer biomarker signature compared to feature selection using non-normalized cytokine 

levels within stimulated PBMC supernatants. We attributed this to elimination of patient-

to-patient heterogeneities in basal immune responses, which were corrected by 

subtracting non-TB control levels. Therefore, we utilized normalized cytokine levels 

obtained by subtracting control and off-target antigen stimulation conditions from other 

supernatant solutions. Using these normalized values as input, iterative feature selection 

methods were applied as described to identify biomarkers that first correlated with the 

LTBI+ designation, as determined via extensive clinical chart review. Using all 143 

possible features from the full dataset (Figure 2-4A), a ROC curve was generated and 

found to have an AUC of 0.767, or a 76.7% predictive accuracy (Figure 2-4C). Realizing 

that some features might have more overall significance than others, a statistical data 
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reduction routine was performed, identifying 19 features that most strongly correlated with 

LTBI+ (Figure 2-4B). Biomarkers in the reduced set included IL-2, IFN-γ, IP-10, CCL8, 

CCL2, IL-6, and CCL3 under varying normalized stimulation conditions. The ROC/AUC 

analysis using just the reduced feature showed a predictive accuracy of 87.4%, which 

was a 10.7% improvement over the full feature set (Figure 2-4C). We hypothesize that 

some of the features in the full data set feature reduction, while weakly correlated with 

LTBI+, contained higher levels of biological variance that reduce the overall predictive 

potential across the diverse LTBI+ cohort. Application of this thresholding approach to 

data reduction focused the biomarker signature on those features most relevant, thereby 

increasing the predictive accuracy of the ROC curve and diagnostic efficacy. For future 

studies, this realization is also important as it will allow for the development of more 

focused and simplified cytokine panels that do not require non-essential biomarkers. 

 Beyond the inclusion of more cytokines in this updated panel, we also included the 

MTB300 stimulation condition, so as to probe the relative value of this stimulation 

condition in more accurately diagnosing LTBI. MTB300 is a mixture of 300 Mtb-derived T 

cell epitopes that specifically targets a large fraction of Mtb-specific CD4+ and CD8+ T 

cells.16,27 Both Purified Protein Derivative (PPD) and CFP-10/ESAT-6 (CE) have 

traditionally been used in TST and QFT testing, respectively. While these stimulations 

can elucidate an immune response that is indicative of tuberculosis exposure, they are 

potentially insufficient to differentiate LTBI or reactivation risk. In addition, the majority of 

the human response to peptide antigens from Mtb is not contained in the peptide mixtures 

of IGRAs.16 In this context, the use of the MTB300 “megapool” of peptides in our immune 

profiling method may theoretically confer a better sensitivity over IGRA methods by 
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targeting a larger fraction of the Mtb-specific T cells. Importantly, MTB300 contains 300 

primarily MHC class II restricted T cell epitopes from 90 different antigens in Mtb. While 

these epitopes are derived from Mtb many of these epitopes are also conserved in the M. 

bovis bacillus Calmette-Guérin (BCG) and also non-tuberculous mycobacteria. To verify 

that the new stimulation condition adds value to our multiplexed cytokine profiling 

approach, we performed identical feature selection and data reduction methods omitting 

all normalized features that contained the MTB condition. Focusing just on the reduced 

feature sets for LTBI+ for comparison (Figure 2-5), we found that AUCs fell by 5.3% upon 

the removal of the MTB condition, indicating the importance of MTB300 for improved 

diagnostic accuracy. 

Similarly to the LTBI+ designation, we also performed identical feature selection of 

both the full normalized feature set and after data reduction for the High Risk clinical 

designation (Figure 2-6). Again, the reduced data set yields an improved predictive value 

(85.5% reduced vs 71.5% full). Additionally, we find a similar number of relevant 

biomarker features for High Risk and LTBI+ designations, with IFN-γ, IP-10, IL-2, IL-6, 

CCL3, and CCL8 appearing in both designations. These targets are important in T cell 

recruitment, granuloma formation, and inflammatory regulation,28-32 and so the 

overlapping relevance for these biomarkers is not unsurprising.9,10,33 Interestingly, we also 

find some markers that are unique between the designations. Specifically, the 

chemotactic marker CCL2, which is induced by tissue injury or infection,34 was identified 

as relevant for LTBI+, but not for High Risk. Conversely, the cytokines TNF-α, IL-17, and 

IL-15 were found to be uniquely relevant for the High Risk designation.35-38 Given that 

LTBI reactivation is thought to occur due to global changes to host immune regulation, it 
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is intriguing that cytokines not typically associated with the acute TB infection response 

to have diagnostic utility in reactivation risk stratification. As a corollary, patients on anti-

TNF-α therapies are known to have higher risk of reactivation, which suggests the 

potential for diagnostic monitoring of multiple immune regulatory factors when surveilling 

for reactivation risk. 

 Overall, we found that this multiplexed, precision normalization approach to 

diagnosing LTBI and stratifying high reactivation potential resulted in multi-biomarker 

signatures with AUCs in excess of 0.80 for reduced feature sets. This study highlights the 

critical value in moving beyond single biomarker-based methods, such as IGRAs that just 

analyze for IFN-γ. Furthermore, we found that MTB300 provides a measurable 

improvement in the predictive accuracy of the LTBI+ diagnostic signature. 

 Our study does have some potential limitations. Specifically, there is no diagnostic 

gold standard for LTBI, and available diagnostic tests are imperfect. However, our study 

subjects were carefully selected to minimize heterogeneity in the study groups and to 

align with current clinical diagnostic standards.18 In addition, most of our study cohort 

included non-HIV immunocompetent individuals, which could limit the applicability of our 

study findings to immunosuppressed subjects and people with HIV infection. Another 

potential limitation is the use of the ‘Online TST/IGRA interpreter,’ which has not been 

prospectively validated. However, we decided to use this predictive tool for research 

purposes in absence of any other unbiased clinical tool that theoretically quantifies 

cumulative risk of TB reactivation in LTBI using TST and/or IGRA results plus evaluation 

of an individual’s most relevant epidemiologic and clinical characteristics.20 Moreover, the 

annual risk of infection estimated by the ‘Online TST/IGRA interpreter’ is based on long-
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term longitudinal data of TB reactivation.39 Lastly, nine study subjects participated twice 

several months after their initial study participation; however, we decided to include their 

study data since some of them had changes their follow-up QFT results, and thus their 

LTBI diagnostic designation. These immune profiling changes probably represent the 

dynamic nature of LTBI in some of these subjects, which we wanted to also capture during 

this study.  

Conclusion 

 Using this expanded 13-plex cytokine immunoassay biosensor panel, we have 

demonstrated the ability to better identify complex biomarker signatures for LTBI 

diagnosis and to elucidate targets of interest for reactivation risk assessment. Our 

bioinformatics approach using Random Forest feature selection has shown excellent 

utility in determining important biomarkers and normalized conditions vital for clinical 

discrimination between subjects. Furthermore, the feature reduction leads to an improved 

predictive accuracy and the potential to optimize the multiplexed panel to its most 

essential components for simplified assay development. We found multiple markers that 

are essential for both LTBI and reactivation risk, including IFN-γ, IP-10, IL-2, IL-6, CCL3, 

and CCL8, which represents a broader immunological profile than single target assays. 

Conversely, distinctive targets such as CCL2 reveal subjects at higher risk of reactivation 

from the greater LTBI+ cohort. We also revealed the value of the peptide pool MTB300 

for future stimulated cell-based analyses through data reduction methods. Predictive 

accuracies for both designations were above 80%, which indicates the potential for 

improved patient monitoring and clinical care. This biosensor technique, combined with 
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robust bioinformatics, supports this unique strategy for biomarker-only signatures yielding 

reliable evidence-based clinical decisions for LTBI and the reactivation risk. 
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Figure 2-1. Workflow for LTBI supernatant sample analysis. A) Subject PBMCs are 
stimulated under multiple on- and off-target conditions. B) Samples are analyzed using 
the Genalyte Matchbox system, which uses plug-and-play chip and device interfaces to 
measure cytokine concentrations quickly and reproducibly in a multiplexed assay format. 
The resonance shift output is recorded and converted to concentrations based on 
individual cytokine calibrations in the sample matrix. C) Random Forest bioinformatics 
determine what clinical features are important for categorical distinctions and predictive 
accuracy, with statistical data reduction methods employed to identify biomarker 
signatures most highly correlated with given clinical determinants. 
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Table 2-1. Reagents for buffers, chip functionalization and storage, and immunoassay 
steps. 

Reagent Source Catalog Number 

Dulbecco’s phosphate 
buffered saline Millipore Sigma D5573 

Bovine serum albumin Millipore Sigma A2153 

(3-Aminopropyl)triethoxysilane Millipore Sigma 440140 

Glycerol Thermo Fisher 
Scientific BP229 

bis(sulfosuccinimidyl)suberate Thermo Fisher 
Scientific A39266 

starting block blocking buffer Thermo Fisher 
Scientific 37538 

Pierce high sensitivity 
streptavidin-HRP 

Thermo Fisher 
Scientific 21130 

4-chloronaphthol Thermo Fisher 
Scientific 34012 

Drycoat assay stabilizer Virusys 
Corporation AG066 
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Table 2-2. Antibodies and recombinant standard proteins used in the multiplexed 
immunoassay. 

Target Role Source Catalog Number 

CCL2 
Capture 
Antigen 
Tracer 

Thermo Fisher 
Thermo Fisher 
Thermo Fisher 

14-7099 
14-8398 
13-7096 

CCL3 
Capture 
Antigen 
Tracer 

R&D Systems 
R&D Systems 
R&D Systems 

MAB670-100 
270-LD-010 
MAB270-100 

CCL4 
Capture 
Antigen 
Tracer 

R&D Systems 
R&D Systems 
R&D Systems 

CUSTOI702-AZY021708A 
271-BME-010 

CUSTOI702-IGH021710A 

CCL8 
Capture 
Antigen 
Tracer 

R&D Systems 
R&D Systems 
R&D Systems 

MAB281-100 
281-CP-010 

BAF281 

 IFN-γ 
Capture 
Antigen 
Tracer 

Mabtech 
Thermo Fisher 

Mabtech 

3420-3-250 
BMS303 

3420-6-250 

IL-1β 
Capture 
Antigen 
Tracer 

Thermo Fisher 
Thermo Fisher 
Thermo Fisher 

14-7018-85 
RIL1BI 

13-7016-85 

IL-2 
Capture 
Antigen 
Tracer 

BD Biosciences 
Thermo Fisher 
BD Biosciences 

555051 
14-8029 
555040 

IL-6 
Capture 
Antigen 
Tracer 

Thermo Fisher 
Thermo Fisher 
Thermo Fisher 

16-7069 
14-8069 
13-7068 

IL-10 
Capture 
Antigen 
Tracer 

Thermo Fisher 
Thermo Fisher 
Thermo Fisher 

16-7108 
14-8109-80 

13-7109 

IL-15 
Capture 
Antigen 
Tracer 

R&D Systems 
R&D Systems 
R&D Systems 

MAB647 
247-ILB-005 

BAM247 

IL-17 
Capture 
Antigen 
Tracer 

Mabtech 
Mabtech 
Mabtech 

3520-3-250 
3520-10 

3520-6-250 

IP-10 
Capture 
Antigen 
Tracer 

BD Biosciences 
BD Biosciences 
BD Biosciences 

555046 
551130 
555048 

TNF-α 
Capture 
Antigen 
Tracer 

Biolegend 
Biolegend 
Biolegend 

502802 
570102 
502904 
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Table 2-3. Clinical characteristics for the study cohort. 

Group All TST+* QFT+** LTBI+*** High 
Risk+ 

N (%) 75 (100) 37 (49.3) 32 (42.7) 32 (42.7) 24 (32) 

Male, N (%) 24 (32) 16 (43.2) 13 (40.6) 14 (43.8) 11 (45.8) 

Female, N (%) 51 (68) 21 (56.8) 19 (59.4) 18 (56.2) 13 (54.2) 

HCW, N (%) 55 (73.3) 37 (100) 26 (81.3) 27 (84.4) 18 (75) 

Age (mean years ± SD) 53.2 ± 
17.5 

49.6 ± 
18.4 

46.3 ± 
17.0 

48.6 ± 
19.1 

45.7 ± 
18.6 

Predicted Risk (mean ± 
SD) 2.7 ± 7.3 2.9 ± 3.0 4.8 ± 10.6 3.0 ± 2.5 6.3 ± 11.9 

(*) Cohort includes 4 subjects with unavailable TST results. 

(**) Cohort includes 2 subjects with indeterminate QFT results. 

(***) LTBI clinical designation was based on current diagnostic guidelines with positive 
QFT and/or TST results.18  

Abbreviations – N (number), HCW (health care worker), SD (standard deviation), TST 
(Tuberculin Skin Test), QFT (QuantiFERON Gold TB In-Tube™ test). Cumulative 
predicted risk of TB reactivation was based on a modified multifactorial modeling platform 
(i.e. ‘Online TST/IGRA interpreter’) applied to all subjects as previously described.19,20 All 
clinical variables are aggregated by positive tests or indications. Study subjects included 
5 patients with non-HIV immunosuppressed conditions (one on methotrexate for 
rheumatoid arthritis, one on sirolumus for lymphangioleiomyomatosis, one with history of 
chemotherapy and stem-cell transplantation for angioimmunoblastic lymphoma, one on 
50 mg daily of prednisone for bullous pemphigoid, and one on hydroxychloroquine and 
low-dose prednisone for lichenoid mucositis). The total sample set is 75 samples, 
encompassing 65 unique subjects and 10 additional time points separated by 5-11 
months in testing, representing unique samples. 
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Table 2-4. Antibody concentrations used for capture and tracer pairs. Captures were 
spotted in 1xPBS, 5% glycerol. All tracers were diluted in running buffer. Streptavidin-
Horseradish Peroxidase (SA-HRP) was diluted to 4μg/mL for all experiments. 

Target Capture (mg/mL) Tracer (μg/mL) 

CCL2 0.25 2 

CCL3 0.25 1 

CCL4 0.25 2 

CCL8 0.25 2 

 IFN-γ 0.25 2 

IL-1β 0.25 2 

IL-2 0.25 2 

IL-6 0.25 2 

IL-10 0.25 2 

IL-15 0.25 2 

IL-17 0.25 2 

IP-10 0.25 2 

TNF-α 0.25 2 
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Figure 2-2. Real-time resonance wavelength shifts for a representative multiplexed 
immunoassay. Two-minute buffer rinses occur between each reagent step. Shaded areas 
represent the standard deviation across four sensors per target in a single assay. Net 
shifts are calculated as the difference in signal between the end of the assay (2) and the 
running buffer rinse signal before amplification (1).  
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Figure 2-3. Simultaneous multiplexed calibrations on the Genalyte Matchbox platform for 
A) 1% serum samples and B) 10% serum samples. Error bars represent standard 
deviation and are from n=3 calibrations, n=4 rings per target. LODs were calculated for 
each target in each matrix dilution as the blank signal plus three times the standard 
deviation of the blank. *Values were calculated from the asymptotic minimum of the fit, 
due to the LOD calculation falling below the fit parameters. 
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Table 2-5. Mann-Whitney tests for significant features from the reduced random forest 
analysis of the LTBI clinical category. 

Condition Target P Value 

PPD-CD3 CCL2 0.007 

CE-CD3 CCL3 0.2 

PPD-CD3 CCL8 0.001 

PPD-MED CCL8 0.005 

MTB-CD3 CCL8 0.001 

CE-MED CCL8 0.005 

MTB-MED IFN-γ 0.0002 

PPD-CAN IFN-γ 0.5 

PPD-MED IFN-γ 0.0001 

CE-MED IFN-γ 0.01 

MTB-CAN IFN-γ 0.03 

CD3-MED IFN-γ 0.08 

MTB-CD3 IL-2 0.0004 

MTB-CAN IL-6 0.07 

CE-MED IP-10 0.0004 

MTB-CD3 IP-10 0.002 

MTB-CAN IP-10 0.003 

PPD-CAN IP-10 0.8 

MTB-MED IP-10 0.01 
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Table 2-6. Mann-Whitney tests for significant features from the reduced random forest 
analysis of the High Risk clinical category. 

Condition Target P Value 

MTB-CAN CCL3 0.03 

PPD-CD3 CCL8 0.02 

CE-MED CCL8 0.1 

MTB-MED IFN-γ 0.0002 

CE-MED IFN-γ 0.04 

CE-MED IL-15 0.2 

PPD-CD3 IL-17 0.1 

MTB-CD3 IL-2 0.0003 

MTB-MED IL-6 0.2 

CE-MED IP-10 0.0006 

MTB-CD3 IP-10 0.003 

MTB-MED IP-10 0.01 

PPD-CAN IP-10 0.4 

PPD-MED TNF-α 0.6 
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Figure 2-4. Comparison of A) full random forest feature and B) the threshold-based 
reduced random forest feature analysis for the LTBI+ clinical category. Features for 
the reduced analysis are determined by Variable Importance (VIMP) metrics. C) ROC 
Curves for full and reduced analysis represent the predictive power of each method, with 
AUC values corresponding to the percent predictive accuracy. Notably, the reduced 
biomarker set offers improved predictive accuracy. Abbreviations – MED (cell media), 
CAN (Candida), CD3 (anti-CD3), PPD (purified protein derivative), CE (CFP-10/ESAT-6), 
MTB (MTB300). Normalized conditions are denoted as Condition 1 minus Condition 2 
(i.e. PPD-MED is the PPD condition minus the negative control cell media condition). 
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Figure 2-5. A) Reduced random forest feature analysis for the LTBI+ clinical designation 
when the MTB stimulation is removed. B) ROC curve comparison of LTBI+ reduced 
random forest with and without MTB stimulation condition. This indicates an improved 
predictive accuracy through the inclusion of the MTB stimulation condition. 
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Figure 2-6. Comparison of A) full random forest feature and B) the threshold-based 
reduced random forest feature analysis for the High Risk clinical designation. C) 
ROC Curves for full and reduced analysis show an increase in predictive accuracy for the 
reduced feature set.  
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CHAPTER 3 

Improved Multiplexed Cytokine Diagnostics for Latent Tuberculosis Signatures in 

QuantiFERON Plasma through Bioinformatics 
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Abstract 

Latent tuberculosis infection (LTBI) is an asymptomatic infection that manifests 

when mycobacterium tuberculosis pathogen is not cleared by the host immune system. 

Current blood-based diagnostics are specific to detecting active tuberculosis infection, 

but blood-based detection of LTBI is lacking. To improve the clinical outcome of LTBI 

positive patients, we have developed a 13-plex cytokine panel immunoassay utilizing a 

microring resonator platform and a random forest bioinformatics approach to predict 

patient LTBI status and the risk of reactivation from latent to active TB. Previous work 

used stimulated cell supernatant for analysis; herein, we show this to be successful using 

stimulated QFT plasma direct from the LTBI clinical workflow. Our results show predictive 

accuracy of 90% for detection of LTBI and >80% for risk of reactivation. We successfully 

designed a combinatorial technique that can be implemented into the LTBI clinical 

workflow to predict LTBI and risk of reactivation using patient QFT samples. 
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Introduction 

Tuberculosis (TB) continues to be one of the most fatal diseases in the world, 

totaling 1.5 million deaths in 2018.1 Areas with high population densities, low sanitation 

infrastructure, and sparse healthcare services incur the most TB burden. The main 

complicating factors are both biological and clinical in nature. Upon infection, the host 

immune response will attempt to clear the TB bacteria, but under most circumstances, 

only succeeds in sequestering the bacteria in granulomas, primarily in the lungs. This 

latent infection (LTBI) accounts for 80% of all infections worldwide, totaling an expected 

1 billion individuals.2,3 Of this population, 10% are expected to reactivate to the 

transmissible, and often fatal, infectious form. Therefore, one way to eradicate TB is to 

treat any active cases and also determine which individuals will reactivate and treat them 

preventatively.  

 To reach this ambitious goal, diagnostics of high performance are needed. Current 

testing for active TB includes the Tuberculin Skin Test (TST) and the QuantiFERON-Gold 

Test (QFT). The TST is a simple test that takes a purified protein derivative and injects it 

under the skin, which elicits an immune response if an individual has been in contact with 

the bacteria. However, the metrics for this test include the height and size of the resulting 

welt, and is severely limited in precision, as even individuals that have been tested 

previously can develop an immune response.4,5 The QFT is a blood-based diagnostic, 

which takes plasma and stimulates monocytes under multiple conditions for subsequent 

assay analysis for interferon-gamma.6 While this QFT is highly accurate for TB, it along 

with the TST, have almost no predictive accuracy for LTBI.7 Therefore, diagnostics are 
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needed that can work within the current clinical pipeline to elucidate the asymptomatic 

disease state, as well as understand the potential for reactivation. 

 Multiplexed assays are an area of intense interest in clinical diagnostics. While 

research has often focused on single biomarkers for any given disease, it has become 

clear that the complex biological processes at play in the immune system give rise to 

diverse signature profiles.8-13 This is especially true for LTBI, as recent research has also 

shown that outside of TB, there are subpopulations of LTBI that are  IFN-γ independent, 

indicating that current clinical testing would never identify such individuals.14 Many 

multiplexed methods are based on enzyme-linked immunosorbent assays (ELISAs), 

which utilize antibody captures to pulldown targets of interest and through amplification 

create an endpoint concentration readout. Plate-based ELISAs are labor intensive and 

limited in plexity and suffer from reduced dynamic ranges and troubling background 

signals from more complicated sample matrices. Therefore, alternative methodologies 

and technologies utilizing capture agents, much like ELISA, have found some success. A 

promising field of possible point-of-care methods are biosensors. These platforms utilize 

spectroscopic techniques to interrogate sensor surfaces, limited largely by biological, 

rather than technical, restraints. Multiplexed microring resonators have been shown to be 

an incredibly powerful technique for diagnostic applications in multiple disease states.15-

17 Our lab utilizes the commercialized Genalyte platform to continue to push the 

application space necessary for truly useful clinical needs, and the technology is currently 

deployed in multiple hospitals for ANA testing18, proving their POC viability. 

 Previous research in our lab has focused on proving the utility of our multiplexed 

assay platform in stimulated cell supernatants, as well as the ability for personalized 
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subject responses, through informatics approaches, to lead to signature discovery.19 

Furthermore, we have demonstrated recently that we can create profiles that are not only 

biologically driven, utilizing diverse immune markers directly related to TB infection, but 

also lead to predictive accuracies through ROC curves that indicate the potential for 

clinical value. However, these studies utilized peripheral blood mononuclear cells 

(PMBCs) that were cultured and stimulated, which is technically laborious and time 

consuming.  

To create a more rapid profiling technique, we present the potential for our 13-plex 

cytokine assay to interrogate markers including and beyond  IFN-γ using QFT plasma. 

The assay was performed in under an hour and through the same random forest 

informatics workflow, has established signatures for both LTBI and those at high risk for 

TB reactivation. Through this implementation, we show the viability of our platform to be 

used in the current clinical pipeline to elucidate LTBI and subpopulations thereof. 

Methods 

Clinical Designations and QFT Sample Collection 

 This study was approved by the Mayo Clinic Institutional Review Board and 

Olmsted County Public Health Services. All study participants signed an informed written 

consent and were enrolled in Rochester, MN. Risk factors for TB infection, TB 

progression, and/or TB reactivation were obtained through a questionnaire and review of 

medical records as previously described.20-22 LTBI diagnoses were made per the Center 

for Disease Control and Prevention (CDC) criteria and based on TB risk factors, and by 

prior TST and QuantiFERON®-TB Gold In-Tube (QFT) results.22 A modified multifactorial 
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predictive modeling platform (i.e. ‘Online TST/IGRA interpreter’), adjusted by LTBI 

treatment effect, was applied to estimate the cumulative risk of TB reactivation in all 

subjects as previously described.23,24 Blood samples were collected for immediate 

exposure to QFT stimulations as per clinical guidelines. Stimulated plasma was frozen 

and stored at -80 C to be thawed when necessary for multiplexed cytokine analyses. 

Assay Reagents 

Dulbecco’s phosphate buffered saline (PBS), bovine serum albumin (BSA), (3-

Aminopropyl)triethoxysilane, glycerol, bis(sulfosuccinimidyl)suberate, starting block 

blocking buffer, Pierce high sensitivity streptavidin-HRP (SA-HRP), 4-chloronaphthol (4-

CN), and Drycoat assay stabilizer were purchased from commercial vendors as listed in 

Table 3-2. Vendors and catalog numbers for antibodies for all cytokines and the mouse 

IgG isotype control are detailed in Table 3-3. Running buffer for all assays was 0.5% BSA 

in 1X PBS, pH 7.4. 

Multiplexed immunoassay instrumentation and assay design 

 Microring immunoassays were performed on the Maverick Matchbox system 

(Genalyte, Inc., San Diego, CA) as previously described.16 This platform utilizes injection-

molded microfluidic devices to introduce fully automated flow for all assay steps across 

functionalized sensor arrays. These devices are disposable, to ensure no contamination 

between assays.17,18 Microring arrays were batch functionalized via spotting to yield a 13-

plex array of capture antibodies covalently immobilized on sensor substrates. After 

flowing the sample across the chip, a mixture of all the tracer antibodies was flowed 

across the array followed by amplification reagents. Antibody capture and tracer 



65 
 

concentrations are listed in Table 3-4. Immunoassays were performed with a consistent 

30μl/min flow rate for all steps. There was an initial rinse of 5 minutes with the running 

buffer to ensure equilibration of the chip prior to sample analysis. The assay included 

steps as follows: 1) running buffer (2min); 2) sample (7min); 3) running buffer rinse (2min); 

4) biotinylated tracer antibodies (7min); 5) running buffer rinse (2min); 6) SA-HRP (7min); 

7) running buffer rinse (2min); 8) 4-CN (7min); 9) running buffer rinse (2min). The total 

assay time was 38 minutes. 

Calibrations and Sample Analyses 

 Immunoassays were simultaneously calibrated in a multiplexed format. Serial 

dilutions from a saturating analyte concentration for each immunoassay yielded eight-

point calibrations relating standard concentrations to relative resonance shifts. To quantify 

relative shifts, the signal during the buffer rinse before the assay amplification step 

(t=29min) was subtracted from the final assay rinse step (t=38min). Net resonance 

wavelength shifts (∆pm) were plotted as a function of standard concentration and fit to a 

logistic function as described previously.21 Limits of detection (LOD) and quantification 

(LOQ) were defined as the blank signal plus 3 times and 10 times the standard deviation 

of the blank, respectively. Each calibration was performed in triplicate for each sample 

dilution (Figure 3-1) as measured with 4 sensors per technical ring replicate. 

 Samples were analyzed at 2 dilutions (2X and 10X) into running buffer. Cytokine 

concentrations determined from corresponding plasma calibrations (50% and 10% 

plasma, respectively). Final concentrations were measured using the most appropriate 

dilution/calibration as determined by proximity to the inflection point of the calibration. 

Precision normalization was achieved through subtracting media (MED) and pan-
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stimulation (MIT) cytokine concentrations from the TB-specific stimulation (AG), as well 

as looking at overall immunocompetency (MIT-NIL). 

Random Forest and ROC Curve Analyses 

Random Forest methods25 were used to determine the biomarker features 

associated with both LTBI+ and High Risk clinical designations as described previously. 

Briefly, Random Forest is an ensemble classification algorithm that can detect nonlinear 

effects of covariate features. It creates a ranking of importance for each variable, while 

the importance is identified by their effect on classification of either clinical designation. 

Utilizing these randomized decision tree results, a ROC curve can be formed that 

evaluates the predictive accuracy the covariates hold for a given classification. 

 Feature importance analysis was done for all variables available (39 total), and 

ROC curves were created. Utilizing the important features from these analyses, a 

secondary Random Forest algorithm was produced for further enhancement of predictive 

accuracy by removing unimportant features, as described previously. This was done 

identically for both LTBI+ and High Risk clinical designations. Mann-Whitney plots were 

utilized to evaluate each important variable in the signature. All informatics and plotting 

were performed using R coding language.26,27 

Results/Discussion 

Assay Development and Matrix Evaluations 

 Our goal was to investigate what cytokines are stimulated from isolated PBMCs 

using our 13-plex cytokine immunoassay panel.28 10% and 50% plasma dilutions were 

chosen for our analysis, to both minimize sample needed and to cover suggested 
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literature ranges for the range of cytokines in our multiplexed panel. Figure 3-1 details the 

calibrations under these conditions, as well as the calculated LODs and LOQs for each 

target. While some targets, such as CCL4, produce worse limits of detection in the more 

complicated matrix, biomarkers such as IP-10 see almost no change from our serum 

analyses previously published. Utilizing the inflection points of each calibration, the most 

appropriate dilution factor for each sample run was chosen, and the dilution factor applied. 

Therefore, we could not only quickly analyze these 13 targets using 210uL of plasma, but 

also account for sample concentrations that skewed towards either asymptotic calibration 

ranges. These selected concentrations were used for further bioinformatic analysis. 

Plasma Stimulations and Normalization 

 Analyses were performed on two clinical designations of interest (LTBI and High 

Risk of reactivation) to understand the immunological signatures relevant to each class. 

Three stimulation conditions were utilized from the QFT, including a negative control 

(NIL), positive control (MIT), and the CFP-10/ESAT-6 peptide mixture for antigen 

stimulation (AG). These conditions were used to create normalized values specific to 

each subject; AG-NIL, MIT-NIL, and AG-MIT. These conditions account for the potential 

maximum range of immune responses (MIT-NIL) as well as changes in immune response 

with respect to an individual’s basal immune levels. Normalized immune responses were 

categorized into either LTBI+ or LTBI- for the LTBI category, or as High Risk+ or High 

Risk- for the High Risk category. These clinical distinctions were evaluated through 

random forest and subsequent predictive accuracy evaluations from AUCs. 

Random Forest Analyses 
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 The random forest analyses for the subject cohort utilized the 3 normalized 

conditions across the 13-plex panel, yielding 39 possible features. Using all 39 cohort 

features (Figure 3-2), a ROC curve was established for the LTBI clinical designation, 

producing an AUC of 0.86. A reduced random forest analysis was then performed, as 

described previously. In brief, the goal of this feature reduction is to remove any 

unimportant condition/biomarker combinations to minimize biological noise from our 

analyses. It also tends to remove false negatives from our prediction, which also parallels 

our informatics analyses in cell supernatant. This reduced set revealed 9 of 39 as 

important features, and a marginally increased AUC of 0.896 (Figure 3-3). Biomarkers of 

interest include chemokines such as CCL429 and CCL830, early response interleukins, 

such as IL-231 and IL-1732,33, and directly interferon-induced markers like IP-10.34 All three 

stimulations conditions are present in the reduced analysis, indicating that they all 

contribute to the overall clinical profile. Mann Whitney analyses of all relevant features 

are conglomerated in Table 3-5. Through this analysis, we produced a nearly 90% 

predictive accuracy for LTBI, using 25% of our total feature pool. This highlights not only 

the importance of multiplexed assays for clinical use, but also the potential to make an 

impactful contribution to clinical classifications through minimal modifications to the 

current workflow. 

It is imperative that we also understand an individual’s risk to reactivate. If that risk 

is high, antibiotic regiments would most likely be recommended, while low risk would likely 

indicate that longitudinal monitoring is more viable. Therefore, we looked at a 

subpopulation of the LTBI category that were deemed clinically high risk. Identical 

analyses from the LTBI clinical designation were applied to this High Risk category. The 
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resultant full analysis (Figure 3-4) produced a ROC curve with an AUC of 0.76. The 

reduced analysis included 8 features and AUC of 0.827 (Figure 3-5). The biomarkers of 

interest overlap those of LTBI, utilizing CCL4, CCL8, IP-10, and IL-2 for the reduced 

analysis, which cover monocyte and leukocyte attraction, inflammation induced cell 

recruitment, and microbial infection response.29-31,34 Mann Whitney analyses of all 

relevant features are in Table 3-6. While this analysis produces a lower predictive 

accuracy for risk, it is still successful in distinguishing this category from the general cohort 

population. 

When the QuantiFERON Test specifically focuses on IFN-γ, it is surprising that we 

did not find it present in and of our reduced analyses. IFN-γ is a strong predictor of active 

TB, as  IFN-γ is one of the drivers of inducing or clearing granuloma formation.2 However, 

recent literature details specific instances where LTBI equilibrium is  IFN-γ independent, 

with all other immunological elements within comparable ranges. Interestingly, when 

analyzing the full random forest results, we see that all normalized combinations of  IFN-

γ are deemed unimportant (Figures 3-2 and 3-4). There are multiple factors which could 

account for this quintessential TB biomarker not attributing to our LTBI clinical 

significance. Biologically, one explanation could be that the dynamic equilibrium that is 

yielding the latent infection state and the propensity for it to shift towards tuberculosis 

proliferation either doesn’t rely on  IFN-γ levels, or that other peripheral immune pathways 

contribute more to this dynamic shift.35 Another could be that there are distinct differences 

in blood diagnostics and localized sample types, such as Bronchoalveolar Lavage (BAL), 

as localized conditions of latency may not directly correlate to a blood-based test. An 

additional explanation could be attributed to the clinical designations themselves, where 
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LTBI is not only determined by the QFT IFN-γ results, and therefore heterogeneous 

populations in both clinical categories lead to an insignificant contribution. 

This finding also highlights drastic differences in the QFT  IFN-γ and multiplexed 

platform assays. The current protocol uses 3 standards and a blank, ranging from 0-4 

IU/mL (0-200pg/mL) for  IFN-γ. Values are determined from 0-8 IU/mL in diluted samples 

(between 1:100 and 1:1000 dilutions), and above 10 IU/mL are marked as >10.7 

Therefore, the dynamic range to measure  IFN-γ is small and not necessarily indicative 

of actual biomarker levels. The multiplexed platform has both viable performance in much 

higher plasma content, as well as an increased dynamic range which could elucidate 

more distinct population differences. It could also show that for LTBI and High Risk, these 

populations are similar. Furthermore, the  IFN-γ analysis could be done solely with our 

multiplexed panel, further reducing the analysis workflow.  

This work has some clear limitations. The sample cohort is preliminary, with only 

45 subjects. This is insufficient to create robust predictive models for either LTBI or risk 

of reactivation. It can only suggest that this workflow could be used in clinical application 

with more rigorous testing. We also find that some assays suffer in plasma, mainly in 

terms of limits of detection and dynamic ranges. These variable metrics could obfuscate 

markers of interest that show minimal, but distinct changes in transient levels. 

Conclusions 

 We have demonstrated the viability for multiplexed plasma diagnostics to be 

implemented withing the current clinical pipeline to distinguish LTBI and the risk of 

potential reactivation using random forest analyses. From our initial cohort, was have 
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achieved predictive accuracies approaching 90% for LTBI, using only 5 biomarkers. 

These cytokines show that extensive profiling is necessary to identify this highly 

complicated immune system and pathogen equilibrium. We can also achieve appreciable 

accuracies of more than 80% for high risk of reactivation using an overlapping pool of 

biomarkers. This is a vital population to identify if there is hope to fully eradicate 

tuberculosis. We have also identified that  IFN-γ as a lone biomarker is insufficient to 

stratify these clinical populations, and therefore fuller diagnostics are essential in 

resolving these cohorts. From this study, we believe there is an accomplishable clinical 

workflow to be instituted, such that LTBI and reactivation can be readily determined at a 

point-of-care quickly and accurately. 

Further work could include using this assay as a one analysis protocol to determine 

active TB, LTBI, and High Risk without clinical pipeline complications. Since QFT 

analyses are routine in most hospitals, supplementation of the  IFN-γ ELISA with our 

multiplexed biosensor panel could be accomplished. Currently, there are Genalyte 

instruments that are deployed in core facilities focusing on ANA testing.18 However, 

functionalized chips would be easy to supply for analyses. Simple combined mixtures of 

standards and tracer antibodies could be made available to create a minimal preparation 

analysis. Combined with the low sample volume input demonstrated, and the use of our 

current patient cohort as a training set, distinctions could be made rapidly in a point of 

care setting. While additional work is needed to expand sample numbers to ensure 

reproducibility across n+1 subject analyses, this current work show a high degree of 

promise in tackling a clinically challenging population, and to influence clinical outcomes 

for at-risk LTBI subjects.  
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Table 3-1. Clinical characteristics for the plasma sample cohort. 

Group All TST+ QFT+ LTBI+ High Risk 

N (%) 45 (100) 24 (53) 16 (36) 28 (62) 14 (31) 

Male, N (%) 15 (33) 9 (20) 8 (18) 10 (22) 7 (16) 

Female, N (%) 30 (67) 15 (33) 8 (18) 18 (40) 7 (16) 

HCW, N (%) 32 (71) 24 (53) 14 (31) 24 (53) 10 (22) 

Age (Mean 
years ± SD) 53 ± 18 51 ± 18 44 ± 18 49 ± 17 45 ± 20 

Predicted 
Risk (mean + 
SD) 

3.1 ± 9.0  2.6 ± 2.2  2.8 ± 2.4  4.9 ± 11.1  8.3 ± 14.8  

 

Abbreviations – N (number), HCW (health care worker), SD (standard deviation), TST 
(Tuberculin Skin Test), QFT (QuantiFERON Gold TB In-Tube™ test). Cumulative 
predicted risk of TB reactivation was based on a modified multifactorial modeling platform 
(i.e. ‘Online TST/IGRA interpreter’) applied to all subjects as previously described.23,24 All 
clinical variables are aggregated by positive tests or indications. 
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Table 3-2. Reagents for buffers, chip functionalization and storage, and immunoassay 
steps. 

Reagent Source Catalog Number 

Dulbecco’s phosphate 
buffered saline Millipore Sigma D5573 

Bovine serum albumin Millipore Sigma A2153 

(3-Aminopropyl)triethoxysilane Millipore Sigma 440140 

Glycerol Thermo Fisher 
Scientific BP229 

bis(sulfosuccinimidyl)suberate Thermo Fisher 
Scientific A39266 

starting block blocking buffer Thermo Fisher 
Scientific 37538 

Pierce high sensitivity 
streptavidin-HRP 

Thermo Fisher 
Scientific 21130 

4-chloronaphthol Thermo Fisher 
Scientific 34012 

Drycoat assay stabilizer Virusys 
Corporation AG066 
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Table 3-3. Antibodies and recombinant standard proteins used in the multiplexed 
immunoassay. 

Target Role Source Catalog Number 

CCL2 
Capture 
Antigen 
Tracer 

Thermo Fisher 
Thermo Fisher 
Thermo Fisher 

14-7099 
14-8398 
13-7096 

CCL3 
Capture 
Antigen 
Tracer 

R&D Systems 
R&D Systems 
R&D Systems 

MAB670-100 
270-LD-010 
MAB270-100 

CCL4 
Capture 
Antigen 
Tracer 

R&D Systems 
R&D Systems 
R&D Systems 

CUSTOI702-AZY021708A 
271-BME-010 

CUSTOI702-IGH021710A 

CCL8 
Capture 
Antigen 
Tracer 

R&D Systems 
R&D Systems 
R&D Systems 

MAB281-100 
281-CP-010 

BAF281 

 IFN-γ 
Capture 
Antigen 
Tracer 

Mabtech 
Thermo Fisher 

Mabtech 

3420-3-250 
BMS303 

3420-6-250 

IL-1β 
Capture 
Antigen 
Tracer 

Thermo Fisher 
Thermo Fisher 
Thermo Fisher 

14-7018-85 
RIL1BI 

13-7016-85 

IL-2 
Capture 
Antigen 
Tracer 

BD Biosciences 
Thermo Fisher 
BD Biosciences 

555051 
14-8029 
555040 

IL-6 
Capture 
Antigen 
Tracer 

Thermo Fisher 
Thermo Fisher 
Thermo Fisher 

16-7069 
14-8069 
13-7068 

IL-10 
Capture 
Antigen 
Tracer 

Thermo Fisher 
Thermo Fisher 
Thermo Fisher 

16-7108 
14-8109-80 

13-7109 

IL-15 
Capture 
Antigen 
Tracer 

R&D Systems 
R&D Systems 
R&D Systems 

MAB647 
247-ILB-005 

BAM247 

IL-17 
Capture 
Antigen 
Tracer 

Mabtech 
Mabtech 
Mabtech 

3520-3-250 
3520-10 

3520-6-250 

IP-10 
Capture 
Antigen 
Tracer 

BD Biosciences 
BD Biosciences 
BD Biosciences 

555046 
551130 
555048 

TNF-α 
Capture 
Antigen 
Tracer 

Biolegend 
Biolegend 
Biolegend 

502802 
570102 
502904 
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Table 3-4. Antibody concentrations used for capture and tracer pairs. Captures were 
spotted in 1xPBS, 5% glycerol. All tracers were diluted in running buffer. Streptavidin-
Horseradish Peroxidase (SA-HRP) was diluted to 4μg/mL for all experiments. 

Target Capture (mg/mL) Tracer (μg/mL) 

CCL2 0.25 2 

CCL3 0.25 1 

CCL4 0.25 2 

CCL8 0.25 2 

 IFN-γ 0.25 2 

IL-1β 0.25 2 

IL-2 0.25 2 

IL-6 0.25 2 

IL-10 0.25 2 

IL-15 0.25 2 

IL-17 0.25 2 

IP-10 0.25 2 

TNF-α 0.25 2 
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Figure 3-1. Multiplexed plasma calibrations for A) 10% plasma samples and B) 50% 
plasma samples. Error bars represent standard deviation from n=3 calibrations, n=4 ring 
replicates per target. LODs were calculated for each target in each matrix dilution as the 
blank signal plus three times the standard deviation of the blank.  
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Figure 3-2. Full Random Forest analysis of variables for LTBI+ designation. 
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Figure 3-3. A) Reduced Random Forest features for the LTBI clinical designation. 
Features were determined by Variable Importance (VIMP) metrics. B) ROC Curves for 
full and reduced analyses. AUCs indicate the predictive accuracy of each curve. 
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Table 3-5. Mann-Whitney tests for significant features from the reduced random forest 
analysis of the LTBI clinical category. 

Condition Target P Value 

AG-MIT CCL4 0.0009 

MIT-NIL CCL4 0.006 

AG-MIT CCL8 6e-05 

AG-NIL CCL8 0.006 

MIT-NIL CCL8 0.03 

MIT-NIL IL-17 0.3 

AG-NIL IL-2 0.0008 

AG-MIT IP-10 0.004 

AG-NIL IP-10 0.009 
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Figure 3-4. Full Random Forest analysis of variables for High Risk designation. 
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Figure 3-5. A) Reduced Random Forest features for the High Risk clinical designation. 
Features were determined by Variable Importance (VIMP) metrics. B) ROC Curves for 
full and reduced analyses. AUCs indicate the predictive accuracy of each curve. 
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Table 3-6. Mann-Whitney tests for significant features from the reduced random forest 
analysis of the High Risk clinical category. 

Condition Target P Value 

AG-MIT CCL4 0.003 

MIT-NIL CCL4 0.01 

AG-MIT CCL8 0.0007 

AG-NIL CCL8 0.001 

MIT-NIL CCL8 0.09 

AG-NIL IL-2 0.0003 

MIT-NIL IL-2 0.06 

AG-NIL IP-10 0.09 
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CHAPTER 4 

Evaluation of Preterm Neonatal Immature Immune Responses to 

Chorioamnionitis Using Multiplexed Cytokine Diagnostics 
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Abstract 

 Preterm birth affects approximately 11% of live births globally.  Preterm infants are 

at increased risk of sepsis, thought to be related to prematurity of the immune system and 

specifically, a decreased pro-inflammatory cytokine response compared to term infants 

when a secondary infectious is encountered. Furthermore, exposure to intrauterine 

infection of the fetal membranes, termed chorioamnionitis, results in an initial pro-

inflammatory cytokine response, though it appears to alter the development of the 

immune system.  It is unknown how long chorioamnionitis-induced dampened immune 

responses persist. The present study used a 7-plex immunoassay panel to measure 

cytokines in 49 subjects across 330 unstimulated neonatal waste serum samples. Mann-

Whitney analyses compared cytokine levels between healthy and chorioamnionitis-

exposed preterm infants at corrected gestational age intervals. Statistical analysis 

revealed significance for six out of seven cytokines in the multiplexed assay: CCL2, TNF-

α, IL-1β, IL-6, IL-8, and IL-10. Biomarkers of interest were identified across 23-36 weeks 

of corrected gestational age. Qualitative results demonstrated immunosuppression in 

infants exposed to maternal chorioamnionitis. These findings indicate that exposure to 

chorioamnionitis has long-lasting immune consequences for preterm neonates, which 

may alter their ability to respond to infections. 
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Introduction 

 Preterm birth, defined as delivery that occurs prior to 37 weeks’ gestation, 

complicates approximately 11% of births globally.1 Neonates born prior to 32 weeks of 

completed gestation are considered very preterm and are at risk for numerous 

morbidities, including sepsis. Up to 5% of very preterm neonates develop culture positive 

sepsis during their initial NICU stay compared to 0.1% of term neonates.2 This infection 

risk is often attributed to immaturity of the preterm immune system, particularly the innate 

immune system. Preterm neonates are known to have decreased pro-inflammatory 

cytokine responses when compared to term neonates, although this is context dependent. 

For example, umbilical cord blood monocytes from preterm neonates express less IL-1β, 

IL-6, and TNF-α when stimulated with either lipopolysaccharide (LPS) or Staphylococcus 

epidermidis, but express equivalent levels of these cytokines when stimulated with group 

B streptococcus.3-5 These decreased cytokine responses are thought to contribute to a 

preterm neonate’s heightened susceptibility to infection because appropriate cytokine 

responses are necessary to guide the clearance of microorganisms.6 

There are multiple causes of preterm delivery, but intrauterine infection is the most 

common.1,7 Chorioamnionitis is characterized by inflammation and infection of the 

chorion, amnion and placenta8, and is present in up to 70% of preterm deliveries.9-11 

Chorioamnionitis leads to an initial fetal pro-inflammatory response, including increased 

expression of the pro-inflammatory cytokines IL-1β, IL-6, IL-8, and TNF-α in the plasma.12 

This fetal inflammatory response alters the developing immune system, resulting in 

decreased pro-inflammatory cytokine expression when umbilical cord blood monocytes 

from chorioamnionitis-exposed neonates undergo a secondary challenge with either LPS 
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or Staphylococcus epidermidis.13,14 Chorioamnionitis exposure is known to increase the 

risk of developing both early and late onset neonatal sepsis, and this is thought to be at 

least partially due to these dampened monocyte responses.15,16 It is currently unclear how 

long this chorioamnionitis-induced immune hypo-responsiveness persists, which could 

impact susceptibility to infection outside of the immediate neonatal period and may have 

long-term immune phenotype implications for the development of chronic disease.  

 In order to better understand how inflammatory mediators change over time in 

chorioamnionitis-exposed and unexposed preterm neonates, we performed longitudinal 

cytokine and chemokine profiling. To be useful in a clinical setting such as the NICU, we 

need fast multiplexed testing strategies that rely on small sample volumes. We have 

previously developed silicon photonic microring resonator bioassays for implementation 

in clinical evaluations.17-19 With 128 sensors that can be simultaneously interrogated on 

a commercialized platform, we can measure multiple targets of interest quickly, with 

minimal sample volumes.  For this study, we developed a 7-plex cytokine and chemokine 

assay to measure concentrations of CCL2, CCL3, IL-1β, IL-6, IL-8, IL-10, and TNF-α in 

neonatal serum samples. Using less than 200 μL of residual serum from clinically 

indicated routine blood tests, this assay produced time-to-result measurements in 38 

minutes. Using this platform, we compared cytokine and chemokine levels at pre-defined 

corrected gestational age intervals to determine how long chorioamnionitis-induced 

dampened pro-inflammatory cytokine and chemokine expression persisted in preterm 

neonates.  

Methods 

Patient Recruitment and Blood Collection 
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 After institutional IRB approval and informed parental consent was 

obtained, residual serum was collected from clinically indicated lab draws in 18 

chorioamnionitis-exposed and 29 unexposed preterm neonates born at ≤32 weeks 

gestational age from birth through NICU discharge. Sample collection occurred from April, 

2019 through March, 2020. Histopathologic examination of the placenta was used to 

diagnose chorioamnionitis.14,20 Samples were collected from 47 patients from birth 

through 36 weeks postmenstrual age or discharge, whichever occurred first.  The blood 

volume collected with each sample varied, as the serum available for testing was what 

remained after all clinically ordered testing was performed.  As 200 µL was required for 

performance of the cytokine assay, samples were pooled if collected within three days of 

one another and the subject had no significant change in clinical status.  A total of 330 

residual serum samples were collected. Samples were excluded if the subject had a 

suspected or confirmed infection and was being treated with antibiotics at the time of 

sample collection (sepsis, urinary tract infection, pneumonia, necrotizing enterocolitis, or 

spontaneous intestinal perforation), excluding 75 samples from analysis. A total of 255 

serum samples were included in the final analysis. Samples were frozen and stored in a 

-80° C freezer prior to use. A summary of clinical information is included in Table 4-1 

Reagents and Buffers 

Dulbecco’s phosphate buffered saline (PBS, catalog # D5573), bovine serum 

albumin (BSA, catalog # A2153), and (3-Aminopropyl)triethoxysilane (catalog # 440140) 

were purchased from Millipore Sigma (3050 Spruce Street, St. Louis, MO 63103). 

Glycerol (catalog # BP229), bis(sulfosuccinimidyl)suberate (catalog # A39266), starting 

block blocking buffer (catalog # 37538), Pierce high sensitivity streptavidin-HRP (SA-
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HRP, catalog # 21130), and 4-chloronaphthol (4-CN, catalog # 34012) were purchased 

from Thermo Fisher Scientific (168 Third Avenue, Waltham, MA USA 02451). Drycoat 

assay stabilizer (catalog # AG066) was obtained from Virusys Coproration (PO Box 56, 

Taneytown, MD 21787). Vendors and catalog numbers for antibodies for all multiplexed 

assay components are summarized in Table 4-2. Running buffer for all assays was 0.5% 

BSA in 1X PBS, pH 7.4. 

Multiplexed Immunoassays 

Microring resonator immunoassays were validated and performed on the Maverick 

M1 and Matchbox systems (Genalyte, Inc., San Diego, CA), respectively, as previously 

described.17-19 The Maverick systems use multiple microfluidic system designs, with the 

M1 focusing on reusable cartridge devices and the Matchbox using injection-molded plug-

and-play devices.19 These both introduce automated flow for all assay steps for validation, 

calibration, and sample analysis on the multiplexed sensor arrays. Microring chips were 

functionalized through spotting to create a 7-plex cytokine and chemokine capture array, 

with duplicate sensor clusters per channel. After introducing the sample to the chip 

surface, a mixture of all tracer antibodies was flowed across the chip, followed by 

streptavidin-tagged enzymes for signal amplification. Assays were performed at a 

30μl/min flow rate for all steps. There was an initial rinse of 5 minutes with the running 

buffer to ensure equilibration of the chip prior to sample analysis. The assay included 

steps as follows: 1) running buffer (2min); 2) sample (7min); 3) running buffer rinse (2min); 

4) biotinylated tracer antibodies (7min); 5) running buffer rinse (2min); 6) SA-HRP (7min); 

7) running buffer rinse (2min); 8) 4-CN (7min); 9) running buffer rinse (2min). The total 

assay time was 38 minutes (Figure 4-1).  
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 The 7-plex immunoassay was simultaneously calibrated for all analytes in a 

multiplexed format, as described previously.17 Serial dilutions from a mixed saturating 

analyte sample for all multiplexed targets created eight-point calibrations correlating 

relative sensor shifts to standard concentrations. To quantify relative shifts, the signal 

during the buffer rinse before the assay enhancement step (t=29min) was subtracted from 

the final assay rinse step (t=38min).  

Net resonance wavelength shifts (∆pm) were plotted as a function of standard 

concentration and fit to a four-parameter logistic function (Figure 4-2 and 4-3) as 

described previously.17 Limits of detection (LOD) and quantification (LOQ) were defined 

as the blank signal plus 3 times and 10 times the standard deviation of the blank, 

respectively (Table 4-3). Each calibration was performed at least in triplicate for each 

sample dilution as measured with 8 sensors per technical replicate. 

Sample Evaluation 

 All samples contained at least 200μl of residual serum.  Neonatal residual serum 

samples were analyzed at two dilutions (0.5X and 0.1X) in running buffer. Cytokine and 

chemokine concentrations were determined by using the corresponding serum 

calibrations (50% serum and 10% serum, respectively matching the serum content of the 

residual serum samples). Final concentrations were determined using the most 

appropriate dilution/calibration by comparing the closeness of the relative shift to the 

inflection point in the calibration dynamic range. 

Data Analysis 
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 All analyses and plotting were done using R coding language. Mann-Whitney tests 

were done for all modified gestational age bins, comparing chorioamnionitis-exposed and 

unexposed subpopulations. p<0.05 was considered statistically significant. Statistically 

significant populations were evaluated for cytokine and chemokine level relative 

differences. 

Results/Discussion 

Neonatal infections are a cause of significant morbidity and mortality in preterm 

neonates during their stay in the NICU.2 Factors that increase a preterm neonate’s 

susceptibility to infection and shape their ability to mount an effective immune response 

have not yet been fully elucidated. It is known that preterm neonates exposed to 

chorioamnionitis have an increased risk of developing early-onset sepsis (blood stream 

infection that occurs within the first 72 hours of life).13,16,21 It is unclear if this infection risk 

is due to a common pathogen causing both conditions or alterations in the neonatal 

immune response following chorioamnionitis exposure, or both. Multiple studies have 

shown that exposure to chorioamnionitis impacts the neonatal immune system by altering 

gene transcription and innate immune responses.12-14 These altered immune responses 

include dampened pro-inflammatory cytokine expression when a second pathogen is 

encountered.13,14 Appropriate pro-inflammatory cytokine expression is necessary for the 

clearance of microorganisms, so these chorioamnionitis-induced changes to neonatal 

immune responses are thought to be at least partially responsible for this increased risk 

of infection.  However, it is unclear how long chorioamnionitis-induced dampened 

cytokine expression persists, as studies are conflicting about whether chorioamnionitis 
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exposure protects against or increases the risk for developing late onset sepsis (blood 

stream infection that presents after 72 hours of life).16,22-24 

 To assess the persistence of chorioamnionitis-induced dampened pro-

inflammatory cytokine expression in preterm neonates, we performed longitudinal 

cytokine and chemokine profiling in very preterm neonates from birth to NICU discharge. 

We chose a panel of cytokines and chemokines known to be significant contributors to 

neonatal immune responses.  Neonates primarily rely upon the innate immune system 

early in life to protect against infections due to limited antigen exposure in utero and major 

deficiencies in adaptive immune responses.25,26 Innate immune cells, including 

monocytes, macrophages, and neutrophils, require signaling from cellular messengers 

such as cytokines and chemokines in order to mount a coordinated response to an 

infectious pathogen.27  CCL2 and CCL3 are chemokines that recruits monocytes, 

macrophages, and neutrophils to local sites of infection and are necessary for prominent 

signaling pathways in the neonatal immune system.28 IL-8 shows similar chemotactic 

affinity for neutrophils and stimulates bacterial phagocytosis.29  IL-6, IL-1β, and TNF-α 

are pro-inflammatory cytokines important to the acute phase response necessary to 

assist in the clearance of microorganisms.30-32 IL-10 is an immunoregulatory cytokine 

important for immune homeostasis that also suppresses autoinflammation.30,33 We 

believe this panel of cytokines and chemokines provides a broad overview of neonatal 

innate immune reactivity.  

 We found that preterm neonates exposed to chorioamnionitis had decreased 

expression of most of the cytokines and chemokines measured at some point during their 

NICU stay compared to unexposed preterm neonates (Figure 4-4). The exception to this 
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was CCL3, which was equivalent between chorioamnionitis-exposed and unexposed 

preterm neonates. Interestingly, the differences observed in cytokine and chemokine 

expression seemed to be temporally distinct. IL-1β and TNF-α were only decreased in 

the extremely preterm chorioamnionitis-exposed neonates (23-28 weeks and 23-25 

weeks postmenstrual age respectively), with equivalent expression at later postmenstrual 

ages. Conversely, IL-10 was only decreased in chorioamnionitis-exposed preterm 

neonates at later postmenstrual ages (35-36 weeks postmenstrual age). CCL2, IL-6, and 

IL-8 were decreased in chorioamnionitis-exposed preterm neonates across most 

gestational age bins. The most striking result from this study was that chorioamnionitis-

exposed preterm neonates demonstrated decreased expression of CCL2, IL-6, and IL-8 

until 34-36 weeks postmenstrual age. The persistence of chorioamnionitis-induced 

dampened cytokine and chemokine expression throughout a preterm neonate’s NICU 

stay provides insight into immune-related complications experienced by chorioamnionitis-

exposed neonates, including late onset sepsis, persistent wheezing, and asthma.23,24,34 

These findings suggest that exposure to early life inflammation has long-lasting 

consequences for preterm neonates that increases their risk for immune-related diseases 

well beyond the neonatal period.  

 Our 7-plex cytokine microring resonator assay was robustly validated for all targets 

simultaneously to ensure reproducible results across all samples analyzed. Each assay 

was 38 minutes to result, creating a quick method for analyzing important clinical 

samples. Using this multiplexed immunoassay, we were able to collect large amounts of 

immunological data quickly and with very little starting sample volume. This technology 
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can provide clinically relevant information quickly for the most vulnerable patients, which 

has to potential to markedly impact bedside patient care. 

 While the Mann-Whitney analyses are the most statistically robust results, our 

analysis can continue on an individual level by tracking cytokines for a subject over time 

to help interpret treatment outcomes and results. We plotted longitudinal levels by subject 

and compared them to clinical treatment information available. For subjects with the 

longest longitudinal samples, we were able to correlate drops in cytokine levels with 

treatments associated with co-infections that had been removed for the MW analysis. 

Figure 4-5 is one such example, where we were able to identify spikes and subsequent 

drops in cytokine levels at each major treatment (A-C). Other instances of this correlation 

include that of late onset neonatal sepsis (Figure 4-6) and necrotizing enterocolitis (Figure 

4-7). While not statistically robust, these correlates indicate the clinical importance of 

rapid and robust testing. With our 38-minute assay, clinically relevant information could 

be available to evaluate treatment options and change outcomes. 

 This study has several limitations. All samples were collected from clinically 

indicated laboratory tests, so the timing of sample collection varied between patients and 

was not standardized. There were differences between the exposure groups, and 

chorioamnionitis-exposed subjects were more likely to be born earlier, be African 

American and be born by vaginal delivery than unexposed subjects. It is unclear if these 

differences impacted cytokine and chemokine expression, but degree of prematurity and 

mode of delivery have been shown to impact immune responses in prior studies.3,4,35 

Samples were excluded from subjects who had a suspected or confirmed infection and 

were receiving antibiotics at the time of sample collection. However, samples were 
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included from these patients later during their NICU course once the infection was treated. 

It is unclear if the suspected or confirmed infections influenced future cytokine and 

chemokine expression. Consistent with previous reports, chorioamnionitis-exposed 

preterm neonates in this study had an increased incidence of early onset sepsis.13,16,21 It 

is unclear what impact this had on subsequent cytokine or chemokine responses and if 

the presence of early onset sepsis further compounded dampened cytokine and 

chemokine expression. The numbers in this study are not large enough to directly address 

this, but future studies containing more subjects would be of benefit. 

Conclusions 

 We identified that very preterm neonates exposed to chorioamnionitis had 

decreased expression of the cytokines and chemokines CCL2, IL-1β, IL-6, IL-8, IL-10, 

and TNF-α at some point during their NICU stay compared to unexposed very preterm 

neonates.  The differences in IL-1β and TNF-α only appeared at very early postmenstrual 

ages while the difference in IL-10 presented much later. There was relatively consistent 

decreased expression of CCL2, IL-6 and IL-8 in very preterm chorioamnionitis-exposed 

neonates from birth to 34-36 weeks postmenstrual age. The persistent dampened 

immune responses seen in chorioamnionitis-exposed very preterm neonates may explain 

their increased risk for immune-mediated complications outside of the immediate 

neonatal period, including late onset sepsis, persistent wheezing, and asthma. Finally, 

the multiplexed immunoassay used in this study provides rapid immunologically relevant 

results with small sample volumes, which has the potential to improve the care of preterm 

infants in real time.  
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Table 4-1. Study group characteristics. *p<0.05. Quantitative variables were compared 
using the student’s t-test and categorical variables were compared using the Chi-square 
test. 

 
Chorioamnionitis-exposed 

Preterm Neonates 
(n=18) 

Unexposed 
Preterm Neonates 

(n=29) 

p-value 

Birth gestational 
age in weeks 
(mean ± SD) 

27 ± 2.86 29.86 ± 2.86 0.025* 

Birth weight in 
grams (mean ± 

SD) 

954 ± 507 1167 ± 612 0.23 

Male sex 7 (39%) 17 (59%) 0.19 
Ethnicity 

- Caucasian 
- African 

American 
- Other 

 
12 (66%) 
3 (17%) 

 
3 (17%)  

 
24 (83%) 

0 
 

5 (17%) 

 
0.18 

0.023* 
 

0.96 
C-section 11 (61%) 28 (97%) 0.002* 

Antenatal steroids 
at least 12 hours 
prior to delivery 

16 (89%) 19 (66%) 0.07 

Multiple gestation 8 (44%) 20 (69%) 0.1 
1 minute Apgar 

score (mean ± SD) 
4 ± 2 5 ± 2 0.67 

5 minute Apgar 
score (mean ± SD) 

7 ± 2 7 ± 2 0.36 

Early onset sepsis 
(blood culture 

positive within 72 
hours of birth) 

4 (22%) 1 (3%) 0.042* 

Late onset sepsis 
(blood culture 

positive after 72 
hours of life) 

3 (17%) 6 (21%) 0.73 

Ventilator 
associated 
pneumonia 

1 (6%) 2 (7%) 0.85 

Urinary tract 
infection 

2 (11%) 6 (21%) 0.4 

Necrotizing 
enterocolitis 

(Bell’s stage II or 
greater) 

2 (11%) 5 (17%) 0.57 

Spontaneous 
intestinal 

perforation 

2 (11%) 1 (3%) 0.3 
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Table 4-2. Antibodies and recombinant standard proteins, along with tracer antibody 
concentrations, used in the multiplexed immunoassay. 

Target Role Source Catalog Number 
Tracer 

Concentrations 
(µg/mL) 

CCL2 
Capture 
Antigen 
Tracer 

Thermo Fisher 
Thermo Fisher 
Thermo Fisher 

14-7099 
14-8398 
13-7096 

2 

CCL3 
Capture 
Antigen 
Tracer 

R&D Systems 
R&D Systems 
R&D Systems 

MAB670-100 
270-LD-010 

MAB270-100 
1 

IL-1β 
Capture 
Antigen 
Tracer 

Thermo Fisher 
Thermo Fisher 
Thermo Fisher 

14-7018-85 
RIL1BI 

13-7016-85 
2 

IL-6 
Capture 
Antigen 
Tracer 

Thermo Fisher 
Thermo Fisher 
Thermo Fisher 

16-7069 
14-8069 
13-7068 

2 

IL-8 
Capture 
Antigen 
Tracer 

BD Biosciences 
BD Biosciences 
BD Biosciences 

554716 
554609 
554718 

2 

IL-10 
Capture 
Antigen 
Tracer 

Thermo Fisher 
Thermo Fisher 
Thermo Fisher 

16-7108 
14-8109-80 

13-7109 
2 

TNF-α 
Capture 
Antigen 
Tracer 

Biolegend 
Biolegend 
Biolegend 

502802 
570102 
502904 

2 
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Figure 4-1. Example microring trace of a multiplexed immunoassay for neonatal residual 
serum. All flow steps are automated and sequential with running buffer rinses between 
reagents. Net shifts are calculated from subtracting the relative shift at t=29min from the 
relative shift at t=38min.  
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Figure 4-2. Multiplexed serum calibrations for 50% serum samples. Error bars represent 
standard deviation from n=4 calibrations, n=8 ring replicates per target.  
 

 

 

 

 

 

 

 

 



104 
 

 

Figure 4-3. Simultaneous multiplexed calibrations on the Genalyte Matchbox platform for 
10% serum samples. Error bars represent standard deviation and are from n=4 
calibrations, n=8 rings per target. 
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Table 4-3. Limits of Detection (LOD) for 50% and 10% serum calibrations, calculated from 
the signal of the blank plus three times the standard deviation of the blank. 

Target 50% Serum LODs 10% Serum LODs 
CCL2 211.4 pg/mL 223.1 pg/mL 

CCL3 64.5 pg/mL 41.8 pg/mL 

IL-1β 124.0 pg/mL 185.4 pg/mL 

IL-6 83.2 pg/mL 37.1 pg/mL 

IL-8 10.4 pg/mL 8.5 pg/mL 

IL-10 4.0 pg/mL 6.8 pg/mL 

TNF-α 86.2 pg/mL 73.7 pg/mL 
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Figure 4-4. Significant Mann-Whitney analyses comparing healthy and chorio-infected 
preterm infants for all multiplexed cytokines. Box plots represent the 25th and 75th 
percentile, median, and mean. Subpopulations for each box plot range from 8-33 sample 
points. *p<0.05, **p<0.01, ***p<0.001 
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Figure 4-5. Longitudinal analyses of a neonatal subject. Grey areas are correlated to 
clinical events, including A) early onset neonatal sepsis, B) ventilator associated 
pneumonia, and C) urinary tract infection and treatment thereof. Error bars are from n=8 
technical ring replicates. 
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Figure 4-6. Example of longitudinal cytokine profiling with cytokine levels correlating to 
LONS treatment. Error bars are from n=8 technical ring replicates. 
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Figure 4-7. Example of longitudinal cytokine profiling with cytokine levels correlating to 
NEC treatments. Error bars are from n=8 technical ring replicates. 
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CHAPTER 5 

COVID-19 Cytokine Levels in Stimulated Patient Samples: A Multiplexed Assay 

For Immunoprofiling Disease Severity and Vaccine Efficacy 
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Abstract 

The COVID-19 pandemic is a global health emergency, with almost 70 million 

cases and 1.6 million deaths as of December 2020. Currently, disease severity has been 

linked to dysregulated and excessive immunity and the early pathophysiologic drivers of 

this immune dysregulation has yet to be further defined. Though early identification of 

patients with COVID-19 likely to develop critical illness is of enormous importance, 

reliable biomarkers to identify these patients are lacking. In the context of the ongoing 

COVID-19 pandemic, prediction of disease susceptibility, disease severity, re-infection 

risk, and protective long-term immunity are essential. We have developed a 15-plex 

cytokine panel on our microring resonator platform to analyze stimulated PBMC serum 

samples from COVID patients to define immunological parameters of disease severity 

and longitudinal immunity. These cytokines provide a broad immunoprofile, consisting of 

chemokines, pro- and anti-inflammatory cytokines, as well as immune growth factors, all 

with potential significance to COVID-19. From stimulation conditions for SARS-CoV-2 

spike protein subunits and off-target responses, we interrogated PMBC cytokine levels 

using precision medicine approaches. Mann-Whitney analyses were utilized to 

distinguish biomarkers of importance for COVID+ individuals, which at this time include 

absolute and normalized levels of CCL3, GM-CSF, IFN-λ1, IL-1β, IL-2, and IL-7. 
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Introduction 

 The COVID-19 pandemic is a global health emergency of unparalleled proportions. 

With almost 70 million cases and 1.6 million deaths globally as of December 2020, the 

SARS-CoV-2 virus has crippled healthcare systems worldwide.1-3 COVID-19 causes 

symptoms similar to that of the flu, but with more severe outcomes including respiratory 

failure, cytokine storms, septic shock, blood clots and pneumonia. Collectively, the clinical 

and scientific community has come together to focus on the pandemic, spanning 

diagnostic research to detected infections, understanding physiologically how the virus is 

spreading and affecting patients, finding optimal treatment strategies, and developing 

vaccines for implementation. As this research is progressing, SARS-CoV-2 continues to 

infect and mutate, and so there is an imperative to study quickly but robustly all aspects 

of the virus. 

 The first line of defense for this infection has been detection, and therefore 

diagnostics. Over the past year, diagnostic solutions have steadily become more 

sophisticated and quicker. A wide variety of options are available, from PCR and 

neutralizing antibody blood tests to nasal swab and saliva tests.4 These diagnostics are 

at the stage where we are accurately and rapidly identifying sick individuals and 

attempting to mitigate spread. However, overall understanding of this infection and its 

outcomes and long-term effects are limited.5-8 Therefore, we need to pivot our diagnostic 

focus towards sick individuals and investigate the host-pathogen response, so that proper 

care can be met. 

 While most infected individuals develop only mild disease, a subset of patients 

progress to develop severe COVID-19, which is associated with high morbidity and 
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mortality.9-11 Currently, disease severity has been linked to dysregulated and excessive 

immunity in COVID-19 and the early pathophysiologic drivers of this immune 

dysregulation has yet to be further defined.6,12-14 Unfortunately, though early identification 

of patients with COVID-19 likely to develop critical illness is of enormous importance, 

reliable biomarkers to identify these patients are lacking.10,16,17 Furthermore, studies in 

SARS-CoV-1 and human studies in COVID-19 indicate that antibody responses can be 

potentially short-lived, while the presence of specific antigens could be associated with 

the establishment of long-term protection in SARS-CoV-1.17-23 In the context of the 

ongoing COVID-19 pandemic, prediction of disease susceptibility, disease severity, re-

infection risk, and protective long-term immunity are essential for individualized patient 

management, optimal allocation of health care resources, safe operation of the society, 

and for vaccine design, testing, and deployment. 

 From this prospective profile of COVID-19 from ongoing research and 

understanding of SARS-CoV-1, a focus on host immune response is vital. Cytokine 

analyses are a directed way to understand the immune response to infection, not only in 

the short-term clearance of pathogens, but also in revealing aspects of potential long-

term conferred immunity.24-30 Therefore, in collaboration with Mayo Clinic, we have 

developed a 15-plex cytokine panel consisting of TNF-α, IFN-λ1,  IFN-γ, TGF-α, GM-CSF, 

IP-10, IL-10, IL-7, IL-6, IL-2, IL-1β, CCL7, CCL4, CCL3, and CCL2 on the Genalyte 

microring resonator platform to analyze stimulated PBMC serum samples from COVID 

patients. These cytokines provide a broad profile of immune system responses, 

consisting of chemokines, pro- and anti-inflammatory cytokines, as well as immune 

growth factors, al with potential significance to COVID-19.9,16,31-44 From seven stimulation 
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conditions (Spike protein S1 and S2, SARS-CoV-1 spike protein, tetanus toxoid, 

myoglobin, anti-CD3 antibody, and cell media), we plan to interrogate PMBC cytokine 

levels from conditions both directly related to COVID-19 as well as off-target metrics. 

Previous research in our lab has shown the utility of this approach to understand absolute 

cytokine levels and basally normalized conditions. From these stimulation conditions and 

cytokines, we hope to identify biomarkers that indicate disease severity, potential clinical 

outcomes, and long-term vaccine efficacy. 

Methods 

Reagents and buffers 

Dulbecco’s phosphate buffered saline (PBS, catalog # D5573), bovine serum 

albumin (BSA, catalog # A2153), and (3-Aminopropyl)triethoxysilane (catalog # 440140) 

were bought from Millipore Sigma (3050 Spruce Street, St. Louis, MO 63103). Glycerol 

(catalog # BP229), bis(sulfosuccinimidyl)suberate (catalog # A39266), starting block 

blocking buffer (catalog # 37538), Pierce high sensitivity streptavidin-HRP (SA-HRP, 

catalog # 21130), and 4-chloronaphthol (4-CN, catalog # 34012) were bought from 

Thermo Fisher Scientific (168 Third Avenue, Waltham, MA USA 02451). Drycoat assay 

stabilizer (catalog # AG066) was bought from Virusys Corporation (PO Box 56, 

Taneytown, MD 21787). Vendors and catalog numbers for antibodies for all multiplexed 

assay components are summarized in Table 5-1. Running buffer for all assays was 0.5% 

BSA in 1X PBS, pH 7.4. 

Cell Culture and Antigen Stimulations 



120 
 

 Whole blood samples were collected from convalescent donors who had 

recovered from COVID infection. PBMCs were separated by from whole blood by Ficoll 

separation and the pellets frozen with 10% DMSO in liquid nitrogen. Thawed PBMC 

pellets were stimulated for 40 hours with either COVID-relevant or off-target antigens. 

Supernatants from stimulated PBMCs were stored at −80°C and shipped on dry ice for 

cytokine measurements using the 15-plex antigen immunoassay on the microring 

resonators. A total of 16 subjects were collected and stimulated, including 6 Healthy and 

16 COVID+ individuals. 

Multiplexed immunoassay instrumentation and assay design 

Microring resonator immunoassays were validated and performed on the Maverick 

M1 and Matchbox systems (Genalyte, Inc., San Diego, CA), respectively, as previously 

described.45-47 The Microring chips were functionalized through spotting to create a 15-

plex cytokine capture array, with 4 sensors per target per channel. After introducing 

sample to the chip surface, a mixture of all tracer antibodies was flowed across the chip, 

followed by streptavidin-tagged enzymes for signal amplification. Assays were performed 

at a 30µl/min flow rate for all steps. There was an initial rinse of 5 minutes with the running 

buffer to ensure equilibration of the chip prior to sample analysis. The assay included 

steps as follows: 1) running buffer (2min); 2) sample (7min); 3) running buffer rinse (2min); 

4) biotinylated tracer antibodies (7min); 5) running buffer rinse (2min); 6) SA-HRP (7min); 

7) running buffer rinse (2min); 8) 4-CN (7min); 9) running buffer rinse (2min). The total 

assay time was 38 minutes (Figure 4-1).  

Calibrations and Sample Analyses 
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The 15-plex immunoassay was simultaneously calibrated for all analytes in a 

multiplexed format.45 Serial dilutions from a mixed saturating analyte sample for all 

multiplexed targets created eight-point calibrations correlating relative sensor shifts to 

standard concentrations. To quantify relative shifts, the signal during the buffer rinse 

before the assay enhancement step (t=29min) was subtracted from the final assay rinse 

step (t=38min). 

Net resonance wavelength shifts (∆pm) were plotted as a function of standard 

concentration and fit to a four-parameter logistic function (Figure 5-2 and 5-3). Limits of 

detection (LOD) and quantification (LOQ) were defined as the blank signal plus 3 times 

and 10 times the standard deviation of the blank, respectively (Table 5-2). Each 

calibration was performed at least in triplicate for each sample dilution as measured with 

4 sensors per technical replicate. 

Results/Discussion 

 There are many unknowns currently in understanding the immune response to 

Sars-CoV-2 infection, particularly what responses are leading to the disease severity. 

One of the most severe symptoms is that of cytokine storms, a similar overreaction to 

infection as that of sepsis. And while diagnostic work towards detection of COVID 

infections has been diverse, plentiful, and successful in a clinical setting, more work is 

needed to identify which biomarkers are leading changes in symptom severity. Here we 

created a custom panel with guidance from Mayo clinicians to profile 15 cytokines across 

a variety of subfamilies to investigate immune responses based on relevant stimulation 

conditions to Sars-CoV-2. 
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 The custom multiplexed panel was carefully validated target by target, to 

understand the representative calibrations in buffer before multiplexing or sample matrix 

effect introduction. All immunoassays were optimized for tracer concentrations, dynamic 

ranges, and necessary buffer conditions. Once individually calibrated, the captures were 

machine spotted by Genalyte for multiplexed analyses. Primary and secondary binding 

experiments were tested sequentially for each immunoassay to ensure distinct and cross-

reactivity free signals per corresponding capture. Calibrations were created 

simultaneously for all assays in expected serum concentrations needed for analysis 

(Figure 5-2, 5-3). LOD/LOQ calculations indicated the feasibility of this 15-plex panel for 

sample quantitation (Table 5-2). 

 We have currently analyzed 22 subjects for our preliminary analysis, 6 healthy, 

and 16 COVID+ individuals. PBMCs were isolated from all convalescent samples and 

used for cell culture and subsequent 40-hour stimulation. There were seven stimulations 

(including a cell media control) used for the cytokine panel analyses. The two positive 

stimulation conditions were SS1 and SS2, which are recombinant subunits of the SARS-

CoV-2 spike protein, which should elicit a strong response from PMBCs exposed to 

COVID infection. SARS-CoV-1 spike protein (SARS), tetanus toxoid (TET), myoglobin 

(MYO) and anti-CD3 (CD3) conditions were all utilized as controls for basal stimulation 

responses, and cell media (MED) was used as a negative control. From these stimulation 

conditions, we can interrogate both absolute cytokine levels, as well as normalized results 

specific to each subjects’ basal immune responses. In brief, control conditions are 

subtracted per cytokine target from both positive stimulation conditions, creating a total 

of 150 potential normalized features (15 cytokines x 10 normalized conditions) in addition 
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to the 105 absolute features (15 cytokines x 7 stimulations). This precision normalization 

has been shown previously to account for variability in biological responses across 

subjects. With only 22 subjects total, some trends and preliminary results can be 

obtained. Mann-Whitney comparisons were made between healthy and COVID+ 

subjects, looking for significant population differences (p<0.05). From our 15-plex panel, 

6 cytokines show preliminary promise across both absolute and normalized conditions 

with a total of 16 features. 

 CCL3 is the sole target to show only absolute cytokine level significance in the 

Mann-Whitney results, where we see significantly higher levels for COVID subjects in 

TET and CD3 stimulation conditions (Figure 5-4). These conditions could be interesting 

for understanding general immune response to COVID, since CD3 is a pan-stimulation 

that should indicate overall immune response health, and the tetanus toxoid could 

suggest the impact of foreign antigen presentation. With CCL3 activating an acute 

inflammatory response and fever most cases, this could be relevant in further evaluations 

of COVID response.9 However, we do not see normalized results in this target, most likely 

due to large population heterogeneities in control conditions. This would lead to larger 

population distributions from normalization and more general overlap between COVID+ 

and healthy individuals. This would suggest that CCL3 might not be truly indicative of 

COVID infection or severity, since normalization, and therefore basal immune responses, 

reduces its significance. 

 In all other significant cytokines, we see both absolute and normalized 

significances. These targets include GM-CSF, IFN-λ1, IL-1β, IL-2, and IL-7. GM-CSF had 

significantly higher results in COVID+ compared to healthy subjects for SS2 (Figure 5-5) 
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and SS2_MED (Figure 5-6). SS2 is a positive, infection-specific stimulation, and to see it 

both in absolute and normalized conditions implies that GM-CSF response is related to 

the present of spike protein for viral infiltration. GM-CSF is important for macrophage 

proliferation, and so could be indicative of direct COVID infection mechanisms.36 We also 

see IFN-λ1 show multiple significant conditions, including absolute values of SS2 and 

TET (Figure 5-7) and normalized values of SS2_MED, SS2_MYO, and SS2_SAR (Figure 

5-8). In all instances, IFN-λ1 levels were lower in COVID subjects compared to the healthy 

cohort. IFN-λ1 is a type III interferon that is important for viral clearance, and regulation 

of this antigen might play a unique role in COVID infection clearance and potential 

severity.32,33 

 Multiple interleukins resulted in significant distinctions for COVID+ subjects. IL-1β 

proved significant in absolute levels for CD3 (Figure 5-9) and normalized levels for 

SS1_SAR and SS2_MED (Figure 5-10). These conditions are mixed with CD3 and 

SS2_MED showing lower cytokine levels in COVID, and higher levels in SS1_SAR. This 

could describe differences in the immune response to the different spike protein subunits. 

As a mediator of inflammation, IL-1β has a variety of uses in the immune response to 

infection, including cell differentiation and apoptosis, and would indicate the importance 

of its regulation.41 IL-2 showed importance for SS2 (Figure 5-11) and SS2_MED (Figure 

5-12) conditions. IL-2 regulates general activation of leukocytes, and provides a route for 

immunity, and seems to show diminished cytokine production post-COVID.40 IL-7 also 

showed lower levels for SS2 (Figure 5-13) and SS2-TET in COVID subjects (Figure 5-

14). Since IL-7 is important for T-cell development, a decrease in IL-7 levels could prove 

problematic for long term immunity.39 
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Conclusions/Future Directions 

 Our study is currently in preliminary stages. We are severely sample limited, and 

therefore our statistical power is low. The cytokines presented are the most responsive 

results so far from our small sample cohort. It is highly promising that we are seeing six 

of our fifteen cytokine markers showing distinct cytokine level differences in COVID+ 

subjects. We hope that with continuing sample enrollment and analysis we will continue 

to establish biomarker significance for COVID-19. 

 Future directions are numerous. With our method being quick, 15-plexed, and 

results produced from minimal sample input, we hope to interrogate not only markers of 

host response in general, but also response based on infection severity. Long-term 

adverse recovery events are a serious issue in COVID+ individuals and monitoring 

specific cytokine levels might produce clinically implementable results. We also hope to 

work in continuing collaboration with Mayo Clinic to understand immune profiling for those 

treated with neutralizing antibodies and those who are vaccinated in the future. It is 

imperative that we understand both recovery and long-term immunity metrics, and our 

multiplexed panel facilitates a path towards that goal. 
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Table 5-1. Antibodies and recombinant standard proteins used in the multiplexed 
immunoassay, as well as concentrations for tracers used. 

Target Role Source Catalog Number Tracer (μg/mL) 

CCL2 
Capture 
Antigen 
Tracer 

Thermo Fisher 
Thermo Fisher 
Thermo Fisher 

14-7099 
14-8398 
13-7096 

2 

CCL3 
Capture 
Antigen 
Tracer 

R&D Systems 
R&D Systems 
R&D Systems 

MAB670-100 
270-LD-010 

MAB270-100 
1 

CCL4 
Capture 
Antigen 
Tracer 

R&D Systems 
R&D Systems 
R&D Systems 

MAB271-100 
271-BME-010 

CUSTOI702-IGH021710A 
2 

CCL7 
Capture 
Antigen 
Tracer 

R&D Systems 
R&D Systems 
R&D Systems 

MAB282-100 
282-P3-010 

BAF282 
1 

 IFN-γ 
Capture 
Antigen 
Tracer 

Mabtech 
Thermo Fisher 

Mabtech 

3420-3-250 
BMS303 

3420-6-250 
1 

IFN-λ1 
Capture 
Antigen 
Tracer 

R&D Systems 
R&D Systems 
R&D Systems 

MAB15981-100 
1598-IL-025 

BAF1598 
1 

IL-1β 
Capture 
Antigen 
Tracer 

Thermo Fisher 
Thermo Fisher 
Thermo Fisher 

14-7018-85 
RIL1BI 

13-7016-85 
2 

IL-2 
Capture 
Antigen 
Tracer 

BD Biosciences 
Thermo Fisher 
BD Biosciences 

555051 
14-8029 
555040 

2 

IL-6 
Capture 
Antigen 
Tracer 

Thermo Fisher 
Thermo Fisher 
Thermo Fisher 

16-7069 
14-8069 
13-7068 

2 

IL-7 
Capture 
Antigen 
Tracer 

R&D Systems 
R&D Systems 
R&D Systems 

MAB207-100 
207-IL-010 

BAF207 
1 

IL-10 
Capture 
Antigen 
Tracer 

Thermo Fisher 
Thermo Fisher 
Thermo Fisher 

16-7108 
14-8109-80 

13-7109 
2 

IP-10 
Capture 
Antigen 
Tracer 

BD Biosciences 
BD Biosciences 
R&D Systems 

555046 
551130 
BAF266  

0.5 

TNF-α 
Capture 
Antigen 
Tracer 

Biolegend 
Biolegend 
Biolegend 

502802 
570102 
502904 

2 

TGF-α 
Capture 
Antigen 
Tracer 

R&D Systems 
R&D Systems 
R&D Systems 

AF-239-100 
239-A-100 
BAF239 

1 

GM-CSF 
Capture 
Antigen 
Tracer 

R&D Systems 
R&D Systems 
R&D Systems 

MAB615-100 
7954-GM-010/CF 

BAM215 
1 
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Figure 5-1. Example microring trace of a multiplexed immunoassay for neonatal waste 
serum. All flow steps are automated and sequential with running buffer rinses between 
reagents. Net shifts are calculated from subtracting the relative shift at t=29min from the 
relative shift at t=38min.  
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Figure 5-2. Multiplexed serum calibrations for 5% serum samples. Error bars represent 
standard deviation from n=3 calibrations, n=4 ring replicates per target.  
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Figure 5-3. Multiplexed serum calibrations for 0.5% serum samples. Error bars represent 
standard deviation from n=3 calibrations, n=4 ring replicates per target.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 



130 
 

Table 5-2. Limits of Detection (LOD) and Quantitation (LOQ) for 5% and 0.5% serum 
calibrations in pg/mL, calculated from the signal of the blank plus three times the standard 
deviation of the blank. 

Target 
5% Serum 0.5% Serum 

LOD LOQ LOD LOQ 
CCL2 5.8 11.9 129.4 487.7 

CCL3 238.5 707.7 295.4 656.5 

CCL4 104.2 479.2 329.6 1202 

CCL7 31.8 141.3 103.2 315.1 

GM-CSF 14.2 47.8 46.0 185.8 

 IFN-γ 2.4 9.0 8.0 39.3 

IFN-λ1 1004 2415 1588 5410 

IL-10 4.9 23.1 11.8 44.1 

IL-1β 92.8 419.9 146.9 477.2 

IL-2 19.2 91.4 90.7 327.5 

IL-6 7.1 28.2 16.9 70.1 

IL-7 5.4 26.2 26.9 135.2 

IP-10 5.5 28.0 48.4 155.7 

TGF-α 21.8 83.5 43.0 164.3 

TNF-α 102.9 466.2 538.7 1808 
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Figure 5-4. Mann-Whitney analyses for absolute CCL3 levels. Box plots represent the 
25th and 75th percentile, median, and mean. *p<0.05 
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Figure 5-5. Mann-Whitney analyses for absolute GM-CSF levels. Box plots represent the 
25th and 75th percentile, median, and mean. *p<0.05 
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Figure 5-6. Mann-Whitney analyses for normalized GM-CSF levels. Box plots represent 
the 25th and 75th percentile, median, and mean. *p<0.05 
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Figure 5-7. Mann-Whitney analyses for absolute IFN-λ1 levels. Box plots represent the 
25th and 75th percentile, median, and mean. *p<0.05, **p<0.01 
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Figure 5-8. Mann-Whitney analyses for normalized IFN-λ1 levels. Box plots represent the 
25th and 75th percentile, median, and mean. *p<0.05, **p<0.01 
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Figure 5-9. Mann-Whitney analyses for absolute IL-1β levels. Box plots represent the 
25th and 75th percentile, median, and mean. *p<0.05 
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Figure 5-10. Mann-Whitney analyses for normalized IL-1β levels. Box plots represent the 
25th and 75th percentile, median, and mean. *p<0.05 

 

 

 

 

 

 

 

 

 

 



138 
 

 

Figure 5-11. Mann-Whitney analyses for absolute IL-2 levels. Box plots represent the 
25th and 75th percentile, median, and mean. *p<0.05 
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Figure 5-12. Mann-Whitney analyses for normalized IL-2 levels. Box plots represent the 
25th and 75th percentile, median, and mean. *p<0.05 
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Figure 5-13. Mann-Whitney analyses for absolute IL-7 levels. Box plots represent the 
25th and 75th percentile, median, and mean. *p<0.05 
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Figure 5-14. Mann-Whitney analyses for normalized IL-7 levels. Box plots represent the 
25th and 75th percentile, median, and mean. **p<0.01 
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Conclusions and Future Directions 
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Dissertation Summary 

 This work summarized multiple clinically relevant projects, all stemming from an 

analytical challenge: what considerations are necessary to create a robust and applicable 

multiplexed immunoassay of blood analytes, particularly for clinical deployment? Chapter 

1 discussed analytical factors vital to this process, including targets of interest, sample 

processing, viable assay formats, sensitivity, selectivity, and general usability. 

Compounding these analytical considerations are clinical factors, such as sample types, 

sample correlation to disease, matrix effects, cross-reactivity from off-target species, 

expected analyte concentrations, and clinical feasibility. Furthermore, multiplexing adds 

new concerns including background signal from assay reagents, assay-to-assay cross-

reactivities, and potential number of analytes measured. Commercialized systems, such 

as Quanterix1, Luminex2, and Genalyte3 were discussed as potential platforms for 

multiplexed clinical analyses. 

 Chapter 2 and 3 described innovations in analytical development and 

bioinformatics implementation to investigate cytokine profiling for latent tuberculosis 

infection (LTBI) and reactivation risk. Chapter 2 was a successor to previous work in the 

lab4, where we have expanded our analyses to 13 cytokines, seven stimulation conditions 

in cell supernatant, and turned to Random Forest informatics to determine relevant 

cytokine signatures. We utilized ROC curves to present clinical predictive accuracies 

greater than 80% for both LTBI and reactivation risk. Chapter 3 focused on progressing 

this immunoassay panel into a clinical pipeline, where we used plasma from QFT 

analyses for cytokine detection in plasma. From the 3 stimulation conditions available, we 

were able to distinguish LTBI and risk of reactivation at similar or better levels compared 
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to our supernatant study. Overall, the direction of the LTBI project is promising for further 

work within the clinical workflow, where instrumentation and assays could be adapted to 

replace and enhance cytokine profiling. 

 Chapter 4 described a more fundamental application of clinical immunoassays in 

the form of neonatal immune response evaluation. Analyses for both basal immune 

responses in unstimulated, healthy preterm infants were compared to those infected with 

chorioamnionitis, a common cause of preterm birth. The 7-plex panel showed 

significances for multiple targets across 23-36 weeks of gestational age, indicating the 

importance of temporal measurements to understand changes in clinical status. 

Additionally, the time to result for the multiplexed assay (38 minutes) provided a potential 

for direct clinical use, as rapid assay results would change treatment options and 

outcomes. 

 Finally, Chapter 5 showed the preliminary results of translating the LTBI workflow 

towards urgent profiling needs in SARS-CoV-2 infection and recovery. Stimulated 

samples for COVID-specific and off-target conditions were used to create normalized 

features that could be compared between healthy and COVID+ subjects. While sample 

limited, significances were found for multiple targets from the custom 15-plex 

immunoassay panel we validated and developed. Furthermore, these preliminary results 

showed promise for continued analysis for disease severity and vaccine efficacy through 

immune correlates. 

Future Directions 
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 We now have almost 20 available cytokines that are validated and calibrated, and 

most are cross-validated for multiplexed cytokine immunoassay detection schemes. 

Additional targets can easily be validated as needed for clinical problems, and available 

multiplexed assay panels are currently in use for clinical samples in a variety of matrices. 

There are potential avenues for further work in LTBI, COVID, and neonatal analyses, with 

planned directions already underway. 

 LTBI diagnostics will continue using the current workflow. The next phase of 

clinical analysis will include samples in collaboration with Mayo Clinic, focusing on 

temporal studies of health care workers (HCW) from Tijuana, Mexico. The rate of TB 

prevalence in Tijuana far exceeds that of the US population, and therefore creating a 

viable and easily trackable population to understand dynamic immunoprofile changes 

over time is vital. Mayo Clinic will enroll 300 HCWs for which samples will be collected 

approximately every six months for analysis from our multiplexed panel. With longitudinal 

sampling, we hope to evaluate changes in risk of reactivation, and potentially predict 

when someone might reactivate. Using the previous studies from Chapter 2 and 3 as 

training sets, new samples can be compared in both supernatant and plasma samples 

for clinical designations. We believe that from this new cohort, we will create a more 

complete cytokine profile for LTBI and reactivation risk within the clinical workflow for true 

diagnostic use. 

Beyond continued studies within the current pipeline, we can also consider 

refocusing our efforts into addressing clinical limitations. Unfortunately, it is not 

necessarily accurate to describe LTBI as a binary classifier. Since LTBI is directly related 

to a dynamic host-pathogen equilibrium, it more closely resembles a spectrum of changes 
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that correlate to reactivation risk. Therefore, we need to realize new strategies for 

stratifying risk within the LTBI population. Concurrently, we want to move towards more 

actionable results from our bioinformatics approaches that could produce tangible clinical 

directives.  To this end, supervised learning methods may provide additional information, 

at the potential loss of some accuracy.  For example, linear discriminant analyses (LDA) 

have been used in clinical analyses for cytokine profiling, and specifically for 

understanding complex feature comparisons.5,6 LDA produces linear combinatorial 

outputs of relevant features, generally from a reduced selection of most important targets, 

that in clinical applications can be directly related to biomarker concentrations. Through 

this analysis, we could conceivably create interpretable equations that could differentiate 

these LTBI spectrum differences. For example, a linear combination of biomarkers such 

as IP-10, CCL2, and IL-6, along with a statistical equation, could create a profile where 

dynamic changes in cytokine levels (i.e. IP-10 and IL-6 being high, and CCL2 being low) 

directly correlate to risk. While this method creates a linear combination, which is 

commonly less accurate as the number of features increases, we could utilize that 

ambiguity to “stratify” the binary discrimination into multiple categories. In this instance, 

the variation of binary classifications for LDA could be used to identify patients that land 

within a moderate risk category. And as we accumulate temporal samples, we could 

watch the classifier drift towards one group or the other, indicating change is risk of 

reactivation. If a patient were to consistently track towards higher risk, we would 

implement treatment strategies to mitigate the potential for active infection. This method 

is outlined in Figure 6-1 and is a possible avenue to create applicable stratification that 



153 
 

could be easily implemented in the clinic through direct concentration measurements and 

risk stratification. 

 Similarly, COVID cytokine evaluations will focus on increasing sample cohort size 

and planning for longitudinal work. The COVID panel has been rigorously validated and 

tested, but cohort size limits its effectiveness presently. More subjects would help 

evaluate what cytokines are necessary for further studies. Additionally, analyses in 

COVID severity and vaccine efficacy will improve current understanding of host-pathogen 

interactions, disease progression, and necessary conditions for clearance, immunity, and 

survival.5-7 Furthermore, we can continue to refine our method as clinical strategies adapt 

over time. For example, it may be pertinent for us to analyze Bronchoalveolar Lavage 

(BAL) or nasal swab samples, as these could be more directly related to the localized 

cytokine responses we expect from COVID. And as with the LTBI workflow, we could 

consider building quick and applicable discriminatory analyses to stratify disease severity. 

Work will be continued with Mayo Clinic to enroll subjects and establish an analytical-

clinical workflow for proper analysis and useable output metrics. 

 Finally, neonatal work will most likely pivot to focus on understanding co-infections 

within the preterm neonatal population. Continuing work with Dr. Jennifer Bermick, who 

is now at the University of Iowa, we expect to expand out 7-plex panel into other markers 

of interest and bin subpopulations by their gestational age and co-infection designations. 

While current work within this thesis showed the importance of basal immune responses 

and understanding (dys)regulation temporally, we had a substantial number of samples 

that were necessary to exclude from analysis due to their co-infection statuses. These 

conditions included early onset neonatal sepsis (EONS), late onset neonatal sepsis 



154 
 

(LONS), necrotizing enterocolitis (NEC), pneumonia, and urinary tract infections (UTI). 

Understanding how these conditions complicate and are complicated by chorioamnionitis, 

and how in combination they affect neonatal immunes responses will be vital for positive 

clinical outcomes, and therefore need to be studied in earnest.8 Finally, longitudinal 

profiling will need to extend beyond the NICU for true clinical utility. Understanding 

outcomes and basal levels as neonates reach term and move into pediatric care will be 

important for both healthy and chorio-exposed individuals, as chronic disorders and 

immunosuppression are of primary concern. 

Concluding Remarks 

 In summary, this work has contributed to the field of multiplexed diagnostics, 

focusing on clinical utility within disease evaluation. By integrating common immunoassay 

formats with silicon photonics and a multi-sensor commercialized system, we were able 

to establish cytokine panels for projects spanning preliminary studies, longitudinal 

evaluations, and clinical designations. All these clinical results, from simple population 

comparisons to extensive bioinformatics, are impossible without a fundamentally 

analytical approach, which provides robust and valuable clinical insight. Future 

implementation and translation of this sensor-based work will continue to improve 

immunodiagnostic capacity and clinical usability, potentially to a level of routine point-of-

care evaluations. 
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Figure 6-1. An example of Linear Discriminant Analysis (LDA) within the LTBI reactivation 
risk assessment workflow. Through a linear classifier system that accounts for variance, 
temporal dynamics of reactivation risk could be directly mapped from biomarker 
measurements. 
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