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Abstract

Direct ink write (DIW) additive manufacturing (AM) is a material extrusion process
characterized by depositing viscous liquids through fine nozzle tips. The process is used to make
three-dimensional objects with a wide range of materials. In this dissertation, a new impeller
spiral static mixer (SSM) is designed and tested, and a transient fluid model and control method
for DIW of two-part silicone with mixing is developed.

An important aspect of the DIW of two-part silicone is in-situ mixing using static mixing,
that enables continuous printing mixed silicone. A new SSM design, called the Impeller SSM
(ISSM), inspired by centrifugal pump impeller blades and fabricated by AM is presented. The
pressure drop reduction and mixing of an ISSM is compared to the standard SSM, both are
measured experimentally and validated by computational fluid dynamics analysis. Compared to a
standard SSM of the same size, the ISSM demonstrated a pressure drop and power reduction up
to 18.2%. Experimental results also show the ability of AM to fabricate the custom ISSM
without using costly fabrication techniques.

Using an understanding of the in-situ mixing from the ISSM, the transient flow inside a
DIW system is characterized using the continuity and momentum equations. New frictional
models describing fluid flow for a viscous non-Newtonian fluid through the combined ISSM and
tapered nozzle are created for the momentum equation. The continuity and momentum equations
describing a DIW system are numerically solved using the CM. The transient response of the

DIW output volumetric flowrate in the CM model is validated using a doppler volumetric flow

XiX



sensor and two pressure sensors. CM is also used to predict the corner swelling of a 90-degree
corner DIW tool path with accelerations of 100, 250, 500, 1000, 1500, and 2000 mm/s2. The
predicted corner swelling is matched with the actual corner swelling found using image
processing of a 90-degree corner. Across the tested accelerations the corner swell ranged from
0.76 to 0.37 mm, matching CM predictions. Demonstrating that the CM can accurately predict
the transient response of the DIW volumetric flowrate.

With the validated CM model, the transient fluid deposition for DIW is controlled using
feedforward error correction control (FECC). FECC combines the trapezoidal motion planning,
CM, machine learning, and iterative linear quadratic regulator (iLQR) controller to create new
extrusion flow paths to improve the deposition accuracy for DIW. FECC is applied to two tool
paths: a 90-degree corner and a U-turn. With FECC, the 2-norm error between the output
volumetric flow rate and desired volumetric flow rate of the 90-degree turn is reduced from 0.32
to 0.16 mL/min, while the measured size of the 90-degree corner swell was reduced from
0.63+£0.03 mm to 0.48+0.03 mm. For the U-turn, the 2-norm error between the output volumetric
flow rate and desired volumetric flow rate is reduced from 0.43 to 0.18 mL/min and the
measured width was reduced from 0.98+0.04 mm to 0.82+0.03 mm. The total reduction in the
deposition error was 25-40%. The FECC tool paths were used with a test part containing 5000
90-degree turns and 8500 U-turns. With FECC, the test part had significant improvements to
reduce bulging at the corners, material build up at the edges of infill, and gaps in the infill. This
study demonstrates that FECC can correct errors in DIW deposition and be applied to improve

the part quality.

XX



Chapter 1.  Introduction

Material extrusion (MEX) is a type of additive manufacturing (AM) defined by ASTM as a
process where the material is selectively dispensed through a nozzle or orifice and is one of the
most common forms of AM [1,2]. Direct ink write (DIW) is a type of MEX characterized by
depositing a viscous liquid through a fine nozzle to 3D-print shapes layer-by-layer [3]. DIW can
use a wide range of materials, including silicones, epoxies, urethanes, bio-inks, and ceramic
pastes to produce AM parts [4-9]. MEX machines typically consist of a gantry system that
moves a print head with a fine tip nozzle delivering high-viscosity fluid line-by-line and layer-
by-layer on a build plate [10]. For DIW, there are two main types of extrusion systems used to
deposit viscous liquid: syringes and positive displacement pumps (PDP). Syringes use a plunger
driven by pneumatics or pistons to force the viscous fluid through a fine tip nozzle [11]. PDPs
use fixed cavities to transform a motor or piston's cyclic motion into a precise volumetric flow
and are preferred for accurate delivery of the fluid at desired locations [12-14].

In 2004 the first major DIW paper was published by Lewis and Gratson, though earlier
examples of DIW can be traced back to the 1990’s [3,15]. Despite almost two decades of
research there are significant gaps in how the mechanics 3D printing with fluids works[15].
When developing a DIW process, the current best practice is to determine printing parameters
using experimental trial and error [15-19]. Some limited examples of work developing an
analytical methodology to DIW parameter generation can be seen in Plott et al. [20] and Yuk and

Zhao [16]. Plott et al. [20] conducted experiments designed to measure the forces applied during



DIW, quantify their effect, and relate them to volumetric flowrate, print height, and layer width.
The results showed that forces created by DIW are dependent on the interaction between the
printing material and nozzle. Using these insights Plott et al. demonstrated how tall objects could
be printed by minimizing tangential forces [20]. Yuk and Zhao [16] demonstrated how there are
multiple behaviors of viscoelastic materials being deposited during DIW based on the ratio of
nozzle speed, print height, and volumetric flow rate. With a normalized print height and print
speed Yuk and Zhao [16] were able to predict the shape viscoelastic materials will take during
deposition.

This dissertation will focus on another problem that affects DIW, transient fluid flow. The
extrusion nozzle movement used to build the DIW parts can be split into two phases; 1) steady-
state: when the extrusion nozzle is moved at a constant velocity, and 2) transient state: when the
extrusion nozzle is experiencing acceleration or deceleration [10]. During the steady-state, the
volumetric flowrate of syringes and PDPs can be finely controlled through pressure or pump
speed adjustments respectively, to achieve the desired deposition rate [21]. During the transient
state, material extrusion is nonlinear and cannot be assumed to match the gantry dynamics using
linear control [22]. As a result, geometric defects occur from the excess fluid deposited during
the transient state of DIW. Figure 1.1(a) for a 90-degree turn and Figure 1.1(b) for the bulging

corner of a thin wall part are examples of defects created by this behavior.



Figure 1.1:(a) Excess material deposition at a 90-degree corner produced by DIW where the
material deposition was not matched with machine dynamics and (b) bulging corners on a DIW
part.

The solution transient fluid flow put forth in this dissertation requires a detailed
understanding of the DIW system behavior and fluid behavior. The DIW system described in
more detail in Section 3.5 uses a two-part silicone with in-situ mixing performed by a static
mixer, Chapter 2, designed to reduce the pressure drop of the static mixer, making it more
efficient for DIW. Next a model of transient fluid flow during DIW, Chapter 3, is derived and
validated to quantify the effects transient fluid flow has on DIW. Lastly the transient fluid flow

model is used with an optimal control law to create a feedforward controller for the DIW

process, Chapter 4.

1.1. Static mixing
Mixing is an industrial process to create a homogenous blend for applications such as
chemical reactors and heat exchange [23]. Some standard methods for mixing include the static

mixing, stirred vessels, impellers, and manual stirring [24]. Static mixing, commonly used in



chemical and food processing, utilizes pipes with internal elements and fluid momentum to
induce flow, which traverses the primary flow direction, creating a homogeneous blend without
any moving parts [25]. The advantages of static mixing over other mixing methods include the
short mixing time, small profile, continuous mixing, and high repeatability, all desirable
properties for processes that require continuous production in a compact space[24].

Four of the most common types of static mixers are the: 1) spiral static mixers (SSM) such
as the Kenic KVM™ (Chemineer, Dayton Ohio, USA) and Chemineer HEV™ (Chemineer,
Dayton Ohio, USA) 2) corrugated static mixers such as the Koch-Sulzer SMV™ (Sulzer,
Winterthur, Switzerland), 3) guide vane static mixers such as the Koch-Glitsch SMX™ (Koch-
Glitsch, Wichita Kansas, USA), and 4) crossed elliptical mixers such as the Komax™ mixer
(Komax Systems Inc, Huntington Beach California, USA) [24,26]. The SSM is widely used in
industry and an active area of research [24,26]. Advantages of SSM are: 1) its versatility in the
types of mixing for both laminar and turbulent flows of liquid-liquid, liquid-gas, liquid-solid, and
solid-solid mixing [24,26,27], 2) the laminar flow mixing design for liquids [2], 3) the low-
pressure drop in comparison to other types of static mixers, such as the SMV™ SMX™  and
Komax™ [24,26,27], and 4) the degree of mixing is proportional to the length of the mixer
[24,27].

Experimental studies on mixer performance have led to an extensive data set for the
pressure drop and mixing of various static mixer designs [24,26,28-31]. As computer simulation
has improved, computational fluid dynamics (CFD) has demonstrated its capability to accurately
predict pressure drop and mixing of static mixers in single-phase and multiphase flows using
techniques such as particle tracking and volume of fluid (VOF) solvers [25,26,32-37]. A

plethora of static mixer designs used CFD for their development. Hobbs and Muzzio [38] found



that a slight reduction in the standard twist of 180° in SSM results in a significant increase in
performance, such as the extent of mixing per element and energy efficiency. Cheng et al. [39]
applied CFD to study static mixer designs that increased cell circulation between light and dark
zones in a photobioreactor. Soman [40] showed that the inclusion of small perforations in an
SMX™ style mixer design leads to an improvement in the reaction rate of the
homopolymerization of acrylamide. Zhang et al. [41] designed a toroidal helix pipe that achieves
mixing without any internal elements.

Advancements in additive manufacturing (AM) have enabled the creation of new features
in novel static mixer designs. For example, Armbruster et al. [35] utilized AM to fabricate eight
new static mixer geometries with turbulence promoters to increase the turbulence flow and
prevent fouling of membrane filters. Li et al. [42] applied AM to fabricate a high flow rate
microfluidic mixing chamber for the extraction of copper from a sulfite solution. Nguyen et al.
[43] studied AM to build an SMX™ style mixer made of nickel so that the static mixer could not
only mix but act as a catalyst for chemical processes reducing the size of a tubular production
reactor. Th