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7.1 Introduction

Molecular simulation is a crucial pillar in the investigation of scientific phenomena. In-
creased computational resources, better algorithms, and new hardware architectures have
made it possible to simulate complex systems over longer timescales than ever before [6, 27,
115, 116, 167]. The sheer volume of data necessitates computationally efficient analysis
tools, while the diversity of data requires flexible tools that can be adapted for specific
systems. Additionally, to support scientists with limited prior computing experience, tools
must be usable without extensive knowledge of the underlying code.

Numerous software packages that satisfy these requirements have been developed in
recent years. Tools such as MDTraj [179], MDAnalysis [180], LOOS [181], MMTK [182],
and VMD [177] provide efficient implementations of various standard analysis methods.
Although powerful, such tools are generally limited in scope to all-atom simulations, par-
ticularly biomolecular simulations. This focus is manifested not only through the features
these tools provide, but also in their general design philosophies.

Perhaps the most pronounced characteristic of such tools is a strong emphasis on
trajectory management, which includes parsing trajectory files and supporting extensive
topology selection features to enable, for instance, selecting all residues or atoms in a
protein backbone. Although such tools are crucial for working with topologies in atomistic
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simulations, they are frequently cumbersome for working with coarse-grained simulation
data where the trivial selection (all particles in the system) is the most common selection
for various analyses. Moreover, such topology selection tools make assumptions that are
inappropriate for non-atomistic systems: “bonding” in colloidal systems, for instance, is
typically based on whether two particles are found to be in the same neighborhood by
some distance-based metric, not by the presence of a true chemical bond. Since such
determination of nearest neighbors is highly dynamic and parameter-dependent, it must be
calculated on-the-fly and cannot be stored in a trajectory.

Another inconvenient but almost universal implementation choice is to directly tie
analysis methods to trajectories by writing code that acts directly on some in-memory
representation of a trajectory. This direct linkage is generally inflexible because it inhibits
pre-processing of the data before running the analysis, which is often crucial to analyzing
more specialized systems. More importantly, existing tools emphasize implementations of
highly specific analyses involving, for instance, hydrogen bonding and protein secondary
structure (using, e.g., DSSP [183]), which are far less useful for analyzing non-biomolecular
systems. The predominant analyses of coarse-grained, colloidal-scale, or nanoparticle
simulations usually involve measurements like numbers of nearest neighbors, diffraction
patterns, or bond-orientational order parameters. These analyses bear little relation to
the analyses performed for atomistic systems. These considerations suggest a need for a
different type of analysis package that offers different methods than most existing tools.

In this paper we introduce freud, an open-source simulation analysis toolkit that
addresses these needs. All inputs to and outputs from freud are numerical arrays of
data, and the package makes no reference to predefined notions of atoms or molecules. As
a result, freud can analyze particle-based data from both experiments and simulations
regardless of the specific tools, methods, or software that were used to generate it. The
package provides a Python API for accessing fast methods implemented in C++, and it
implements numerous specific methods such as radial distribution functions and correlation
functions that are common in the field of soft-matter physics (see fig. 7.1). Prior works have
used freud for: determining spatial correlation functions and PMFTs in two dimensions
[167]; calculating Steinhardt order parameters for identifying solid-like particles [184,
185]; computing spherical harmonics for machine learning on crystal structures [186];
optimizing pair potentials for designing complex crystals [187]; calculating strain fields by
finding neighbors of particles against a uniform grid [188]; finding PMFTs in depletion-
mediated self-assembly of hard cuboctahedra [54]; measuring rotational degrees of freedom
in entropically ordered systems [189]; umbrella sampling of solid-solid phase transitions
using Steinhardt order parameters [190]; evaluating PMFTs in analysis of two-dimensional
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Figure 7.1 | The freud library is capable of computing a number of characteristics of a system of particles.
Here, we demonstrate some of those features on a 2D Monte Carlo simulation of polygons that exhibits hexatic
ordering [167]. a) Phase separation is clearly evident in this system of 5122 pentagons colored by local density
�; the system is divided into denser (blue) and less dense (red) regions. b) Zooming into a particularly dense
region shows that the hexatic ordering (left half) is generally uniform across the region. The Voronoi diagram
of the system (right half) is also largely defect-free, with just a few pentagons having more or fewer than 6
nearest neighbors. c) The spatial correlation of the hexatic order parameter C 6(r) is nearly constant for a
nearly perfect crystal of pentagons (orange), whereas it decays very quickly in a fluid (blue). For a comparable
system of hexagons, however, we see a power-law decay (green) in the hexatic order parameter due to the
presence of a hexatic phase between the solid and fluid phases. d) The radial distribution function g(r) for the
system of pentagons shows the expected sequence of neighbor shells as a function of distance.

shape allophiles [191]; and more. The freud library is designed to work well with coarse-
grained particle models, such as those used in simulations of anisotropic nanoparticles,
colloidal crystals, and polymers, and its methods are particularly useful for studies of phase
transitions and critical phenomena in such systems. The package is likely to be of greatest
interest to scientific communities in materials science, chemical engineering, and physics,
though many of its analysis methods would be useful in generic particle systems. The
freud library also integrates well into the scientific Python ecosystem, especially in data
pipelines for machine learning and visualization [192].

The paper is organized as follows. We first address the core design principles that went
into building freud in section 7.2. Section 7.3 focuses more specifically on the details
of the code, including information on class structures. Section 7.4 describes the various
analysis methods in freud and details their uses. Finally, in section 7.5 we provide some
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example code demonstrating the usage of freud1. The figures in this paper are rendered
using Matplotlib [85] unless otherwise noted.

7.2 Design

Many of the best known tools for analyzing molecular simulations are built into either
simulation toolkits (such as LAMMPS [175], GROMACS [176], or the cpptraj [193] plugin
to Amber [194]) or visualization toolkits (such as VMD [177], PyMOL [195], or OVITO
[63]). Although most of these have introduced varying degrees of scripting support over
the years, the analyses built into simulation toolkits are primarily focused on performing
one-shot analyses on trajectory files directly from the command line. The visualization
toolkits tend to have more full-featured scripting interfaces, but they are frequently difficult
(if not impossible) to use outside their own sandboxed environments, complicating or even
prohibiting integration with other tools. More recently, many newer tools such as MDTraj
[179], MDAnalysis [180], LOOS [181], and Pteros [196] have aimed to decouple analysis
from simulation and visualization, making scriptability a primary focus to increase flexibility.
Among such tools, Python is the most common language of choice due to its ease of use and
the fact that it can be naturally extended with high performance languages like C, C++, and
FORTRAN.

freud follows in the footsteps of these tools, providing a full-featured Python API to
access all of its routines. However, while most other tools focus on calculating properties
involving molecular topologies, freud is fundamentally designed for analyzing the local
neighborhoods of particles, particularly where such local analyses provide global insight
about the system. Such analyses are typically far more varied and system-dependent than
the standard analyses of molecular topologies and therefore require more flexible tools. To
meet this need, freud eschews any form of trajectory object encoding system topology
and is instead designed such that each analysis method is an independent Python class that
performs computations directly on NumPy arrays [137] of data.

This design makes it possible to use a far wider range of data with freud than is
possible with tools that are tied to simulation trajectories. For instance, calculating Voronoi
diagrams and computing spatial correlation functions with freud is possible for essentially
arbitrary spatial data, not just the result of a molecular simulation. Another major benefit is
that NumPy arrays (the de facto standard for numerical data in Python) can be easily passed
between multiple tools, making freud equally easy to use for one-off analyses or as part

1The code for these examples and many others is available at https://github.com/glotzerlab/
freud-examples and in our online documentation.
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of a larger analysis pipeline involving many steps and using various software packages. As
a result, freud is a much more flexible choice both for analyzing disparate sources of data
and for incorporating into Python workflows. For example, most of freud’s analyses can
be used within the OVITO visualization environment for real-time visualization with almost
no noticeable performance cost.

Producing such array data from simulation trajectories for input to freud is straight-
forward because high quality file parsers with Python APIs already exist for all common
trajectory file formats. Through integration with tools like MDAnalysis, GSD [197], and
garnett [198], freud can be used with data from over 25 different file formats, including
common formats like DCD, XTC, and TRJ files. freud integrates with the trajectory
objects produced by many of these tools, but if necessary, users can read trajectories into
arrays and modify them before passing the data to freud for analysis. By using data read
by other tools, freud’s analyses can be made aware of molecular topology if needed, but
only when the analysis method requires such information. Similarly, since the outputs of
freud’s analyses are also NumPy arrays, they can be passed to almost any tool in the
scientific Python software stack. For example, constructing a Pandas [83] DataFrame
from the outputs of any freud analysis requires just one line of code, and it immediately
enables writing the output to text, CSV, or HDF5, or saving into an SQL database.

Beyond differences in trajectory and data handling, the most significant design choice in
freud stems from the most common pattern followed by its many analysis methods. Since
the first task in characterizing local neighborhoods is often the identification of neighboring
particles, freud provides efficient methods for finding neighbors in arbitrary system
geometries. The nearest-neighbor finding routines are designed to be as fast and flexible as
possible, supporting various algorithms optimized for different system configurations and
offering different criteria for neighbor selection. In general, queries can be based on either
a cutoff distance or a desired number of nearest neighbors. These tools are optimized to
provide cheap access to neighbors even in highly performance-critical loops in C++ analysis
routines, but the package’s system box representation and neighbor finding tools also have
Python APIs, so users can implement custom analyses directly in Python (for an example,
see section 7.5.4).

The analysis methods in freud are essentially independent tools that make use of these
objects to efficiently perform various calculations. These features are all presented with a
common API, easing the transition between the different types of analyses needed for differ-
ent simulations. All methods in freud are accelerated through extensive parallelization.
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7.3 Implementation

The freud package is entirely object-oriented, with two core C++ classes: the Box

class, which encapsulates all logic associated with periodicity in arbitrary triclinic boxes
(boxes with 3 linearly independent basis vectors); and the NeighborQuery class, which
facilitates efficiently finding, storing, and iterating over nearest neighbors. In keeping
with the Python ethos, box objects in freud may be constructed from a variety of inputs.
Any method in freud that accepts a box object also accepts a number of objects that
can be interpreted as a box, such as a 3 ⇥ 3 NumPy array of box vectors or a list of
three numbers representing the edge lengths of an orthorhombic box. There are two
subclasses of NeighborQuery in freud that each implement different neighbor search
algorithms: one implements a bounding volume hierarchy (BVH) [79], while the other
implements a cell list [114]. The NeighborList class is a lightweight storage mechanism
for NeighborQuery results that accelerates performing multiple analyses on the same
set of neighbor pairs.

The analysis methods in freud are encapsulated by Compute classes, which are loosely
defined as classes providing a compute method that populates class attributes after per-
forming some computation. Compute classes, such as the density module’s RDF class,
are usually configured with constructor arguments, after which they can be used multiple
times to perform distinct calculations. Some classes in freud (e.g. the RDF, PMFT, or
bond-orientational order diagram) represent histogram-like quantities, and therefore allow
the user to specify reset=False as an argument to compute in order to accumulate and
average data over many calls.

Compute classes can be divided into two groups, those that depend on finding neighbors
and those that do not. A majority of calculations in freud require neighbors, and the
compute methods of such classes all share two arguments, system and neighbors (in
addition to analysis-specific arguments like particle orientations for PMFTs; such arguments
are also typically NumPy arrays). The system parameter accepts a NeighborQuery
or any object that can be interpreted as a tuple (box, points), where the box is any
valid box-like object (as described above) and the points argument is anything that can be
interpreted as an N ⇥ 3 NumPy array of positions. Valid systems include simulation frame
objects from tools such as MDAnalysis, GSD, garnett, OVITO, or the particle simulation
engine HOOMD-blue [77–79].

When performance is critical, providing a NeighborQuery object is advantageous
because many compute methods can reuse these neighbor search data structures. For all
other system inputs, freud internally constructs a NeighborQuery if the compute
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box
• freud.Box
• 3×3 array of box vectors
• tuple of (Lx, Ly, Lz, xy, xz, yz)
• dict of {'Lx': Lx, 'Ly': Ly,
        'Lz': Lz}

points, query_points
• N×3 NumPy array
• N×3 list of lists

NeighborQuery
system = NeighborQuery(box, points)
system.query(query_points, query_args)

neighbors
• dict of query_args
• NeighborList

Compute
com = Compute(**params)
com.compute(system, neighbors)

system
• NeighborQuery
    • AABBQuery
    • LinkCell
• tuple of (box, points)
• MDAnalysis Timestep
• GSD Snapshot
• OVITO DataCollection
• HOOMD Snapshot

Example of Usage
Construct system:
  system = freud.AABBQuery(
    box, points)

Create Compute:
  ql = freud.order.Steinhardt(l=6)

Analyze the system:
  ql.compute(system, neighbors={
    'num_neighbors': 12})

Get data:
  output = ql.particle_order

Figure 7.2 | Here we show the flow of various types of inputs into freud. Boxes can be constructed based on
a variety of inputs, all of which can also directly be provided anywhere a box object is required. Similarly,
any object that can be interpreted as an N ⇥ 3 array can be provided where particle positions are required. Any
valid pair of box and points can be used to construct a NeighborQuery object, which is one of the types of
systems that freud accepts. In addition to a NeighborQuery, freud can also interpret raw tuples of
boxes and points as system objects, or use simulation frames from numerous external tools (a subset are
shown in the figure). Any computation that involves finding nearest neighbors also requires a specification of
neighbors, which can be a NeighborList or a dictionary of query arguments. The Example of Usage
on the right shows a typical use case of freud that combines these concepts.

method requires neighbor pairs. The neighbors argument is a dictionary of query
arguments, such as dict(num_neighbors=12) or dict(
r_max=3.0) (the complete specification for freud’s Query API is provided in the
documentation). Alternatively, users may precompute a NeighborList and provide it
as the neighbors. In this case, whether system is a NeighborQuery or not has no
impact on performance because the calculation will be carried out directly on the provided
set of neighbor pairs and no additional spatial searches are required. Figure 7.2 shows a
flowchart demonstrating how these classes and data structures are used.

Some methods in freud do not operate on neighboring pairs of particles. For those
that still depend on particle positions (such as GaussianDensity), the first argument is
still any valid system, but no neighbors are provided. Some methods do not depend
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on positions at all; for instance, the Nematic order parameter only requires particle
orientations. In such cases, the user can simply pass that quantity alone to the calculation.
This mode of operation is particularly useful when performing high-throughput analysis
of large files; using file formats like GSD that permit reading only certain properties of
the trajectory, users can minimize I/O operations by only reading the required arrays from
memory.

All Compute classes use efficient, thread-parallel C++ implementations for performance-
critical components. The Python bindings for these C++ classes are generated using Cython
[199], and the C++ methods are mirrored in Python using thin Cython classes that dispatch
calls to the underlying C++ class instances. The Cython classes have limited responsibilities:
managing the memory of the underlying C++ instances, sanitizing inputs when necessary,
and providing transparent access via memory views on C++ arrays.

The main exception to this design is the msd module, which is implemented in pure
Python in freud. The MSD is a measure of, on average, how far particles move in a given
window of time. In a simulation trajectory of Nf frames, the MSD of particle i over a
window of length m frames is given by:

MSD(i,m) =
1

Nf �m

Nf�m�1X

k=0

k(~ri(k +m)� ~ri(k))k
2 (7.1)

Therefore, the total MSD is given by:

MSD(m) =
1

Np

NpX

i=1

MSD(i,m) (7.2)

Direct computation of the MSD is an O(NpN2
f ) operation, but by using a FFT this cost can

be reduced to O(NpNf log(Nf )) [200]. When using this approach, the FFT is responsible
for most of the computation time, and since packages like NumPy [137] and SciPy [201]
already expose fast C and FORTRAN FFT routines to Python, freud simply leverages
them directly and implements the rest of the MSD in pure Python.

Calculations in freud are generally parallelized over particles (e.g. the Nematic
order parameter class) or over pairs of particles (e.g. computing inter-particle distances
for an RDF with the RDF class). Both the number of particles and the number of particle-
particle pairs increase with system size, ensuring that the work is load-balanced well among
threads because the number of threads is much less than the number of particles or pairs.
Parallelism in freud is accomplished using TBB [202]. Analysis routines are written as
lambda functions operating on a particle or a pair of particles; freud provides wrappers that
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then automatically parallelize these functions appropriately using TBB. Modern compilers
aggressively inline such lambda functions, thereby optimizing away any additional cost
that could arise from the extra function calls. freud uses thread-local storage extensively
to avoid any parallel writes to data containers. For histograms that accumulate over many
frames of simulation data, freud performs reduction over thread-local containers lazily.

Currently, freud is at version 2.1.0 and supports Python versions 3.5.0 or greater.
The package is distributed through PyPI and the conda-forge channel of the Anaconda
package manager [203], making it easy to install on any Unix-based operating system
(e.g. Linux or macOS). Builds for the Windows operating system are also available on
conda-forge. freud depends on NumPy and TBB libraries, which are automatically
installed with freud. The library can also be compiled from source using a C++11
compliant compiler. Compilation requires NumPy and TBB headers as well as a Cython
installation. Code documentation is written using Google-style docstrings rendered using
Sphinx and hosted on ReadTheDocs. The freud library is released open source under
the BSD 3-Clause License, and the source code is available in a GitHub repository [204].
Continuous integration testing is performed using CircleCI.

7.4 Features

7.4.1 General Utilities

The general utilities in freud are contained in two modules: box and locality.
The box module contains the core Box class. The locality module contains
the NeighborQuery abstract class, which defines the standardized query API.
NeighborQuery results (neighboring particle pairs) can be obtained dynamically or
stored in the NeighborList class provided by the locality module.

Box periodicity is built in at the lowest level of the NeighborQuery subclasses,
which are highly optimized for this use case. The AABBQuery subclass implements a tree
data structure of Axis-Aligned Bounding Boxes (AABBs), a type of BVH which greatly
accelerates the process of finding particles’ neighbors [79, 185]. A second approach is
implemented in the LinkCell subclass [114], which uses linked cell lists to find particle
neighbors. Both of these classes can find neighboring particle pairs based on a distance
cutoff or a desired number of neighbors, and both were adapted from HOOMD-blue.

As a performance benchmark, we compare freud’s AABBQuery class with the
cKDTree implementation in SciPy [201]. As part of SciPy, this implementation is the most
readily available alternative to AABBQuery. Figure 7.3 shows that freud’s AABBQuery
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Figure 7.3 | Here we benchmark the AABBQuery implementation in freud against the cKDTree im-
plementation in SciPy. We construct randomly generated sets of points such that each particle would
have, on average, 12 neighbors within a distance of 1. We then measure the performance of finding all
neighbors within this distance using both SciPy’s cKDTree and freud’s AABBQuery. The benchmarks
were performed on a system with an Intel® Xeon® CPU E5-2680 v2 @ 2.80GHz. The AABBQuery

implementation in freud scales much better than SciPy’s cKDTree for larger system sizes. We do
not report error bars due to the extremely low variance in the data. The exact details are available at
https://github.com/glotzerlab/freud-examples.

routines clearly outperform the cKDTree as system sizes increase to thousands of points.
Moreover, we note that while freud supports general triclinic boxes, SciPy’s cKDTree
only supports periodic orthorhombic boxes (i.e. a cuboid, a rectangular prism where all
angles are right angles).

In addition to these performance gains, the NeighborQuery objects in freud are
designed to interoperate seamlessly with analysis routines. Since analyses in freud are
written in C++, using a Python API to find neighbors and then pass them into other C++
routines would waste time in unnecessary memory transfers. Furthermore, while a Python
API should make certain promises, such as sorting the order of the resulting neighbors, the
analyses using neighbors simply loop over all pairs and therefore do not require any such
extra work. To avoid this cost, the features of the NeighborQuery classes are directly
accessible in C++ in the form of iterators that lazily produce neighbors. In practice, using
the NeighborQuery classes in this manner speeds up computations by a factor of two or
more depending on the system size. To make use of these iterators, developers implement
analysis methods as lambda functions that are passed as arguments to freud’s internal
TBB wrappers that apply these functions to neighbor pairs in parallel.

The final feature of the locality module is the Voronoi class, which uses the
voro++ library [205] to generate Voronoi diagrams for systems of particles. Voronoi
diagrams are a standard method for characterizing the local geometric arrangements in
the system, and they also provide a parameter-free method for defining nearest-neighbor
relationships [206]. The Voronoi class produces a NeighborList object that can then
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be used as the neighbors argument for other compute classes.

7.4.2 Analysis Modules

The remaining modules in freud are independent of one another and contain groups of
classes that implement related features. While some of freud’s features are unique, many
others are standard techniques. However, implementations of these methods commonly lack
support for periodicity. For example, the SciPy library [201] has functions for computing
Voronoi diagrams and correlation functions, but these are restricted to aperiodic systems.

The cluster module of freud can be used to find clusters of particles—where
cluster membership is defined by neighbor bonds—and then compute properties of these
clusters such as gyration tensors. The density module contains features for calculating
radial distribution functions as well as spatial correlation functions of arbitrary quantities.
Additionally, the density module can estimate local particle density and interpolate
particle density onto a regular grid suitable for, e.g., computing discrete Fourier transforms.
The interface module provides a quick tool for identifying interfaces between two
mutually exclusive sets of points (e.g. a solid and a liquid phase). The msd module enables
the calculation of mean squared displacements of particles over the course of a trajectory.

The order module is the most extensive one in freud, containing a large number of
different order parameters commonly used to measure ordering and identify phase transitions
in crystalline systems. Of particular note are the bond-orientational order parameters Ql and
Wl [208] and the cubatic order parameter [209] (see fig. 7.4). The module also contains the
nematic order parameter for identifying orientationally ordered, translationally disordered
phases, as well as a solid-liquid order parameter for identifying generic ordered phases
[210].

The other features of freud are analysis methods developed by researchers in our
group and not yet implemented anywhere else. In particular, the pmft and environment
modules implement features unique to freud that we now discuss in greater detail.

7.4.3 Potentials of Mean Force and Torque

The potential of mean force and torque (PMFT) is a generalization of the classical PMF
that was recently developed to quantify directional entropic forces that emerge in crowded
systems [56, 80]. Given the canonical partition function as a function of particle positions
{q} and particle orientations {Q}, ref. [56] derives the PMFT by separating out a component
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a)

b)

MC Steps (×104)

Figure 7.4 | Various order parameters can be used to characterize the degree of ordering in a system. The
per-particle order parameter values eventually converge to a uniform global value as the system becomes
globally well-ordered. These plots show the evolution of two order parameters over the course of a Monte
Carlo simulation of hard particles, which over time rearrange into an ordered phase under compression.
Simulation snapshots are colored by the per-particle order parameter and rendered with fresnel [207]. a)
The Steinhardt Q6 order parameter is an appropriate scalar descriptor for systems forming a BCC (cI2-W)
structure. Systems of cuboctahedra in the fluid phase show a distinctly different characteristic value of the
order parameter than in the solid phase. b) The cubatic order parameter K⌦4 is useful for characterizing
ordering in these systems of octahedra.

corresponding to the relative coordinates of a pair of particles �⇠12:

Z =

Z
d�⇠12J(�⇠12)e

��U(�⇠12)

Z
[dq̃][dQ̃]e��U({q̃},{Q̃},�⇠12) (7.3)

=

Z
d�⇠12J(�⇠12)e

��U(�⇠12) e��F̃12(�⇠12) (7.4)

where J is the Jacobian transforming to the local coordinate system and F̃12 is the free
energy of the other particles, which have been integrated over in eq. (7.4). The PMFT F12 is
defined by the relation

Z ⌘

Z
d�⇠12e

��F12(�⇠12) (7.5)

Combining eqs. (7.4) and (7.5) gives an expression for the PMFT

�F12(�⇠12) = �U(�⇠12)� log J(�⇠12) + �F̃12(�⇠12) (7.6)
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In hard particle systems governed exclusively by excluded volume interactions, the potential
energy term becomes an infinite Heaviside function H and the PMFT can be simplified to

F12(�⇠12) = �kBT log(H(d(�⇠12))J(�⇠12)) + F̃12(�⇠12) (7.7)

b)a)

Figure 7.5 | The PMFT is related to the probability of finding particles at a given position and orientation
relative to one another. a) The PMFT of an ordered system of hexagons [191], where the locations of the wells
indicate that particles are much more likely to sit next to the edges of their neighbors than the corners. In
two-dimensional systems, the full PMFT is 3-dimensional, since it also must account for the orientation of the
second particle relative to the first; for clarity, in this figure we have integrated out that degree of freedom. b)
A PMFT computed from a system of rhombicosidodecahedra shows distributions of neighboring particles
in three dimensions (figure rendered using Mayavi [211]). There are six degrees of freedom in 3D systems,
three translational and three rotational. This PMFT only shows the three translational degrees of freedom. The
wells representing the deepest energy isosurfaces of the PMFT align with the largest (pentagonal) facets of the
polyhedron.

To contextualize the PMFT, we note that if in eq. (7.3) we redefine �⇠12 to only
include the center-to-center distance of the pair of particles and otherwise follow the same
steps, the resulting potential F12 reduces to the classical PMF with the usual RDF relation
g(r) = e��F12(r). This suggests that although the PMFT is a function of all degrees of
freedom required to characterize the relative configuration of a pair of particles, examining a
more limited coordinate system can still be informative. Figure 7.5 shows two examples of
PMFTs that contain more information than a PMF without containing all available degrees of
freedom. In the 2D PMFT in the left panel, the orientation of the second particle is ignored,
but its angular position relative to the reference particle is sufficient to illustrate the clear
preference for facet-to-facet alignment. Similarly, the right panel ignores the orientation
of the second particle (which encodes three degrees of freedom in 3D, as represented by
e.g. Euler angles), but once again the preference for facet-to-facet alignment is clear. For an
example of a case where analyzing the full, high-dimensional PMFT is necessary, see ref.
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Figure 7.6 | This benchmark compares the performance of the 2D PMFT to that of an RDF on the same
two-dimensional system of hexagons used in fig. 7.5. This computation was performed with a randomly
generated trajectory of consisting of 10 frames of 20000 particles. Particle positions were constructed such that
each particle would have, on average, 12 neighbors within a distance of 1. The benchmarks were performed
on a system with an Intel® Xeon® CPU E5-2680 v2 @ 2.80GHz. Both methods have essentially the same
performance characteristics, with the PMFT approximately three times slower than the RDF. We do not report
error bars due to the extremely low variance in the data.

[212].
freud calculates the PMFT by accumulating a histogram of the configurations of

all other particles and then taking the negative logarithm of the counts. PMFTs may be
accumulated over many frames to generate smoother energy surfaces. This method of
computing the PMFT is very similar to that of computing an RDF, so we compare their
scaling behavior in a two-dimensional system in fig. 7.6. The calculations scale almost
identically to many threads, with a constant scaling factor between them. There are two
components contributing to the absolute difference in their performance: 1) the extra
operations required to compute the orientation of the local coordinate system in the PMFT,
and 2) the extra cost of binning in multiple dimensions.

We also tested performance as a function of the parameters of these two methods, namely
the number of bins and the maximum interparticle distance. In the latter case, both methods
show the expected quadratic growth, since the number of particles included in the calculation
increases as the square of this cutoff distance. The behavior with respect to the number
of bins is more interesting: this parameter has no effect on performance until it becomes
sufficiently large, at which point performance begins to degrade. This degradation can
be understood as the result of two things: 1) poor cache performance as the histograms
become too large to fit in memory, and 2) increasing costs of reduction, which can eventually
affect performance. Since the PMFT shown is a two-dimensional histogram, the number of
bins that can be used along each dimension before experiencing this performance drop is
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commensurately smaller than can be used with the RDF; this effect would be even more
pronounced for a three-dimensional PMFT.

7.4.4 Local Environments

The environment module provides methods for characterizing the local environments of
particles that we now illustrate in greater detail.

7.4.4.1 Bond-Orientational Order Diagrams

The BondOrder class enables the calculation of bond-orientational order diagrams
(BOODs) [14, 213–216]. Inspired by the bond-orientational order parameters defined
by Steinhardt et al. [208], BOODs characterize the local ordering of systems by calculating
the vectors between all neighboring particles in a system and then projecting these vectors
onto a sphere. One example of how BOODs can be used is to identify n-fold ordering in a
system; in simple crystal structures with n-fold coordination, the BOOD will show n peaks
corresponding to the average location of nearest neighbors.

In addition to the standard BOOD calculation, the class offers some additional modes of
operation that can be useful in specific cases. One mode involves finding the positions of
nearest neighbors in the local coordinate system of a given particle rather than the global
coordinate system, which can prevent misidentifying systems with multiple grains [14].
Another mode modifies the BOOD to help identify plastic crystals, which appear crystalline
due to having translational order but lack orientational ordering. In this mode, the positions
of the nearest neighbors of each particle are modified by the relative orientations of the
neighboring particles, creating a BOOD in which positional ordering will no longer appear
except when orientational ordering is also present.

7.4.4.2 Spherical Harmonic Descriptors

The BOOD is closely related to the Steinhardt order parameters Ql and Wl, which measure
rotational order in a system using spherical harmonics [208]. While the BOOD is essentially
a histogram of nearest-neighbor bonds, the Steinhardt order parameters take this one step
further, measuring l-fold order by constructing scalar quantities from rotationally invariant
combinations of spherical harmonics of degree l calculated from the locations of nearest-
neighbor bonds. However, spherical harmonic representations can also be used in a variety
of different ways. For example, distinguishing different grains of the same crystal structure
could be done using descriptors that are not rotationally invariant. Alternatively, we can
often obtain rotationally-invariant descriptions of local environments for crystal structure
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b)a) c)

Figure 7.7 | Spherical harmonic descriptors can be used to identify the nucleation and growth of tP30-CrFe
(Frank-Kasper � phase). a–c) As time progresses, crystallites nucleate and grow. Solid-like particles (blue) are
identified via a feedforward artificial neural network using spherical harmonic descriptors (described in more
detail in [186]).

identification via the principal axes of the moment of inertia tensor of the environments,
or by using particle orientations of anisotropic particles [186, 209, 217]. To support
such spherical harmonic analyses, the LocalDescriptors class in freud computes
spherical harmonics characterizing particle neighborhoods. These harmonics can then be
combined in arbitrary ways to generate custom descriptors of local particle environments.
Such descriptors have proven useful in identifying multiple complex crystals (see fig. 7.7).
One method for identifying these structures is to use the information contained in this array
of spherical harmonics as a set of per-particle features in an artificial neural network (ANN)
for structure classification [186].

7.4.4.3 Environment Matching

Methods like the spherical harmonic descriptors and the BOOD characterize order-
ing in systems by calculating system-averaged quantities from neighbor bonds. The
EnvironmentCluster class takes a different approach by defining environments ac-
cording to the nearest neighbors of each particle and performing point set registration to
identify and cluster similar environments [76]. This type of analysis is particularly use-
ful because it emphasizes local information for each particle. As a result, it can be used
for tasks such as identifying different Wyckoff positions in a crystal. The complemen-
tary EnvironmentMotifMatch class can be used to match clusters to specific motifs,
allowing deeper analysis of a given structural motif.

Since this method performs a direct pairwise comparison of all motifs, it is substantially
more expensive than common methods used for structure identification. For instance, the
performance is at least an order of magnitude slower than the implementation of Polyhedral
Template Matching in OVITO and Common Neighbor Analysis. Unlike these methods,
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Figure 7.8 | Environment matching allows us to detect variations in the local environments of particles.
a) The presence of grain boundaries in this system (rendered with fresnel) is clearly visible due to the
different coloring according to local environments. b) The two distinct domains (blue and grey particles) are
clustered separately, but we can see that they both exhibit FCC-like (cF4-Cu) ordering in their stacking pattern
(upper-right). The environment matching method can also detect the different environments of the stacking
faults themselves (mauve and orange), which exhibit an ABA stacking pattern instead of the expected ABC
pattern (lower-right).

however, the environment matching algorithm does not depend on previous knowledge
of possible structures, and instead infers possible structures entirely from the local motifs
present in a system. Moreover, it can be tuned much more finely than the other methods,
allowing not only the identification of crystal structures present, but also the precise identifi-
cation of stacking faults like those found in fig. 7.8. As a result, it is a good complement to
existing methods for identifying crystal structures in various systems.

7.4.4.4 Angular Separation

The AngularSeparation classes provide a way to characterize typical particle ori-
entations in a system. The AngularSeparationGlobal class allows comparison of
particle orientations to a set of reference orientations, which can be used to characterize
orientational order relative to the reference input. This metric can be used as an order param-
eter for measuring orientational disorder in plastic crystals, which exhibit translational order
and orientational disorder [218]. Alternatively, the AngularSeparationNeighbor
computes minimum separation angles between neighboring particles, allowing a more
fine-grained analysis of the orientational ordering in local motifs. Both of these methods
account for symmetry by accepting an array of equivalent quaternions corresponding to all
symmetry-preserving transformations of the particle (i.e. the particle’s point group).
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7.4.5 Data Generation and Plotting

For the purposes of teaching via code examples and testing freud’s analyses, freud
includes the freud.data module. It includes the UnitCell class for representing
arbitrary unit cells with user-provided box vectors and basis positions. The UnitCell
class includes class methods that generate common crystal structures like face-centered
cubic, body-centered cubic, and simple cubic. The data module also includes a method for
generating a random system with uniformly distributed points in a periodic box.

Many analysis modules in freud implement a plot() method, which can be used for
rapid data visualization. The Compute classes (e.g. instances of freud.density.RDF)
also define a _repr_png_() method that allows their data to be automatically plotted in
IPython environments (such as Jupyter notebooks) using Matplotlib [85], when the last line
in a code cell returns that analysis object.

7.5 Examples

In this section, we demonstrate the use of freud in conjunction with the broader scientific
software ecosystem. The code for these examples and many others is available at https:
//github.com/glotzerlab/freud-examples.

7.5.1 RDF and MSD from LAMMPS simulation

Here, we consider the problem of calculating the RDF and the MSD of a system simulated
using LAMMPS (version 5 Jun 2019) [175]. LAMMPS is a standard tool for particle
simulation used in many fields, and it supports multiple output formats, including those
used by other simulation codes (e.g., the DCD format from CHARMM [219] and the XTC
format from GROMACS [176]). In this case, we demonstrate the case of using the output of
a custom dump format in LAMMPS, which allows users to dump selected quantities into a
text file. Although the default XYZ file format lacks sufficient information to calculate an
MSD, the necessary particle image information can be included as shown.

import numpy as np
import freud

# For the MSD we also need images, which can be dumped

# using the LAMMPS dump custom command as follows:

# dump 2 all custom 100 output_custom.xyz x y z ix iy iz

101

https://github.com/glotzerlab/freud-examples
https://github.com/glotzerlab/freud-examples


# We read the number of particles, the system box, and the

# particle positions into 3 separate arrays.

N = int(np.genfromtxt(

'output_custom.xyz', skip_header=3, max_rows=1))

box_data = np.genfromtxt(

'output_custom.xyz', skip_header=5, max_rows=3)

data = np.genfromtxt(

'output_custom.xyz', skip_header=9,

invalid_raise=False)

# Remove the unwanted text rows

data = data[~np.isnan(data).all(axis=1)].reshape(-1, N, 6)

box = freud.box.Box.from_box(

box_data[:, 1] - box_data[:, 0])

# We shift the system by half the box lengths to match the

# freud coordinate system, which is centered at the origin.

# Since all methods support periodicity, this shift is

# simply for consistency but does not affect any analyses.

data[..., :3] -= box.L/2

rdf = freud.density.RDF(bins=100, r_max=4, r_min=1)

for frame in data:

rdf.compute(system=(box, frame[:, :3]), reset=False)

msd = freud.msd.MSD(box)

msd.compute(

positions=data[:, :, :3], images=data[:, :, 3:])

# The object contains all the data we need to plot the RDF.

from matplotlib import pyplot as plt

plt.plot(rdf.bin_centers, rdf.rdf)

plt.title('Radial Distribution Function')

plt.xlabel('$r$')

plt.ylabel('$g(r)$')

plt.show()

If our trajectory was stored in a DCD file, we could modify our code above to read the
input data using MDAnalysis (version 0.20.1):

reader = MDAnalysis.coordinates.DCD.DCDReader(

'output.dcd')

rdf = freud.density.RDF(bins=100, r_max=4, r_min=1)

for frame in reader:
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rdf.compute(system=frame, reset=False)
...

7.5.2 On-the-fly analysis with HOOMD-blue

A major strength of freud is that it can also be used for on-the-fly analysis. For example,
freud can be used to terminate a simulation based on some additional condition, or to
log a quantity at a higher frequency than we want to save the full system trajectory. In our
previous example, we demonstrated the calculation of an RDF using freud. An RDF can
be noisy when calculated with limited data, so we would like to average it over a large
number of simulation frames; however, storing many frames can lead to unreasonably large
simulation trajectory files. Using the simulation engine HOOMD-blue (v2.9.0), we can
accumulate RDF data during a simulation without storing the entire output. Additionally,
we show that we can log an order parameter over the course of the simulation:

import hoomd
from hoomd import hpmc

import freud
import numpy as np

hoomd.context.initialize()

system = hoomd.init.create_lattice(

hoomd.lattice.sc(a=1), n=10)

mc = hpmc.integrate.sphere(seed=42, d=0.1, a=0.1)

mc.shape_param.set('A', diameter=0.5)

rdf = freud.density.RDF(bins=50, r_max=4)

q6 = freud.order.Steinhardt(l=6)

def calc_rdf(timestep):

snap = system.take_snapshot()

rdf.compute(system=snap, reset=False)

def calc_Q6(timestep):

snap = system.take_snapshot()

q6.compute(system=snap,

neighbors={'num_neighbors': 12})

return np.mean(q6.particle_order)

# Equilibrate the system before accumulating the RDF.

hoomd.run(1e4)
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hoomd.analyze.callback(calc_rdf, period=100)

logger = hoomd.analyze.log(filename='output.log',

quantities=['q6'],

period=100,

header_prefix='#',

overwrite=True)

logger.register_callback('q6', calc_Q6)

hoomd.run(1e4)

# Store the computed RDF in a file.

np.savetxt('rdf.csv',

np.vstack((rdf.bin_centers, rdf.rdf)).T,

delimiter=',', header='r, g(r)')

7.5.3 Analyzing Atomistic Trajectories from GROMACS

As discussed in sections 7.1 and 7.2, freud’s design focus differs from that of many similar
tools in the lack of focus on trajectory management. The example below is based on a
simulation trajectory of water molecules in a box generated using GROMACS (version
2020) [176]. We use MDTraj (version 1.9.3) [179] to read in an XTC trajectory file and
then compute an RDF of the oxygen atoms in the water molecules using freud. In the
process, we demonstrate how the sophisticated subsetting functionality offered by tools like
MDTraj can be replicated with Python code, which is very useful when such subsets must
be computed from coarse-grained trajectories with highly customized topology definitions
that standard trajectory management tools cannot handle.

import mdtraj
import freud
import numpy as np

traj = mdtraj.load_xtc(

'output/prd.xtc', top='output/prd.gro')

bins = 300

r_max = 1

r_min = 0.01

# Expression selection, a common feature of analysis tools
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# for atomistic systems, can be used to identify all

# oxygen atoms.

oxygen_pairs = traj.top.select_pairs('name O', 'name O')

# We can directly use the above selection in freud.

oxygen_indices = traj.top.select('name O')

# Alternatively, we can subset directly using Python logic.

# Such selectors require the user to define the nature of

# the selection, but can be more precisely tailored to a

# specific system.

oxygen_indices = [atom.index for atom in traj.top.atoms

if atom.name == 'O']

freud_rdf = freud.density.RDF(

bins=bins, r_min=r_min, r_max=r_max)

for system in zip(np.asarray(traj.unitcell_vectors),

traj.xyz[:, oxygen_indices, :]):

freud_rdf.compute(system, reset=False)

# We can plot these RDFs to verify that they are equivalent.

from matplotlib import pyplot as plt

fig, ax = plt.subplots()

ax.plot(freud_rdf.bin_centers, freud_rdf.rdf, 'o',

label='freud', alpha=0.5)

ax.plot(*mdtraj_rdf, 'x', label='mdtraj', alpha=0.5)

ax.set_xlabel('$r$')

ax.set_ylabel('$g(r)$')

ax.set_title('Radial Distribution Function')

ax.legend()

7.5.4 Common Neighbor Analysis

Common Neighbor Analysis (CNA) [220] is a standard technique for analyzing the local
neighborhoods of particles in a crystal. The method involves a classification of local
neighborhoods based on a number of features. Using freud’s NeighborList, however,
the method is straightforward to implement in Python.

We first consider the simpler problem of identifying all common neighbors between any
pair of points. This is equivalent to searching for the second-nearest neighbor pairs, which
can be done using freud as follows (note that this code is primarily written for clarity and
could easily be optimized):
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import freud
import numpy as np
from collections import defaultdict

# Use a face-centered cubic (fcc) system.

box, points = freud.data.UnitCell.fcc().generate_system(4)

aq = freud.AABBQuery(box, points)

query = aq.query(

points, {'num_neighbors': 12, 'exclude_ii': True})
nl = query.toNeighborList()

# Get all sets of common neighbors.

common_neighbors = defaultdict(list)

for i, p in enumerate(points):

selection1 = nl.query_point_indices == i

for j in nl.point_indices[selection1]:

selection2 = nl.query_point_indices == j

for k in nl.point_indices[selection2]:

if i != k:

common_neighbors[(i, k)].append(j)

Our dictionary common_neighbors now contains lists of common neighbors j for
every pair of points (i, k). This information could itself be useful for performing some
analysis on the system. If we are interested in actually implementing CNA, then we need to
use this information to build local graphs, which we can do with the networkx (version
2.4) [221] Python package. Combined with the code above, the CNA algorithm can be
implemented as follows:

import networkx as nx
from collections import Counter

diagrams = defaultdict(list)

particle_counts = defaultdict(Counter)

for (a, b), neighbors in common_neighbors.items():

# Build up the graph of connections between the

# common neighbors of a and b.

g = nx.Graph()

for i in neighbors:

for j in set(nl.point_indices[

nl.query_point_indices == i]

).intersection(neighbors):
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g.add_edge(i, j)

# Define the four identifiers for a CNA diagram:

# 1. 1 if particles are bonded, 0 if not.

# 2. Number of shared neighbors.

# 3. Number of bonds between shared neighbors.

# 4. Index guaranteeing diagram uniqueness.

diagram_type = 2 - int(

b in nl.point_indices[nl.query_point_indices == a])

key = (diagram_type, len(neighbors),

g.number_of_edges())

# If we've seen any neighborhood graphs with this

# signature, we explicitly check if the two graphs are

# identical to determine whether to save this one.

# Otherwise, we always add the new graph.

if key in diagrams:

isomorphs = [

nx.is_isomorphic(g, h) for h in diagrams[key]]

if any(isomorphs):

idx = isomorphs.index(True)
else:

diagrams[key].append(g)

idx = diagrams[key].index(g)

else:
diagrams[key].append(g)

idx = diagrams[key].index(g)

cna_signature = key + (idx,)

particle_counts[a].update([cna_signature])

In this code, we are looping over all pairs of previously identified second neighbor shells,
and finding bonds between the common neighbors of these pairs. The graph of these bonds
then uniquely identifies a new environment.

7.6 Conclusion

freud is a high-performance Python library for analyzing particle simulations. Among
simulation analysis packages, freud is unique due to its emphasis on coarse-grained
simulations and its flexibility. Its high-performance C++ back-end makes freud a suitable
solution for large-scale, high-throughput simulation analysis, while its simple, compact API
is highly amenable to integration with other tools for, e.g., machine learning applications.
The package’s API also promotes the prototyping of new analyses directly in Python, and
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the intuitive design of freud’s internals ensures that translating such analyses into C++ is
a relatively painless process.

The package’s design is general enough to work with any particle-based system. How-
ever, freud is primarily targeted at communities of materials scientists, chemical engineers,
and physicists analyzing molecular dynamics and Monte Carlo for which existing tools are
too specialized to be convenient. Since it makes no assumptions about the types of its input
data or the system topology, freud can be used with arbitrary simulation outputs based
on topologies defined by the user. As a result, freud can find wide use in these areas to
simplify workflows that require consideration of periodic systems without the complexity
associated with specific atomistic features. Contributions to this open-source toolkit are
highly encouraged as new methods are developed in future research applications.
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CHAPTER 8

Conclusions and Future Work

8.1 Summary

In review, this dissertation considered the best ways to represent shape in various types of
colloidal and nanoparticle systems. By covering a range of systems in both experiment and
simulation, we demonstrated that hard particle approaches can indeed be a suitable means
for efficient and accurate study of certain classes of particles. We also demonstrated ways
to move beyond the limitations of the hard particle model, including the use of machine
learning methods to inform more complex compound models based on many interactions as
well as the development of anisotropic pair potentials consistent with classical approaches
to such simulations. These results provided valuable information for future studies where
simple hard particle models may not be appropriate, but where such models may be adapted
to generate suitable high-fidelity minimal representations of the relevant physics.

In chapter 2, we discussed how the hard particle model could be used in concert with
well-established physical models of the depletion interaction to capture the self-assembly
behavior of systems of hard ATTs. We placed these results in the context of various recent
computational studies that study ATTs in various contexts, focusing on the effects of the
depletion force and particle rounding, and we showed how these results can be applied in this
experimental system that provides a model for their study. Additionally, we demonstrated
some cases where the particular idiosyncrasies of this system lead to results that differ from
those of previously well-studied systems.

In chapter 3, we moved on to using a hard nonconvex polyhedron with embedded point
charges to represent a supercharged protein. We discussed how this model provides useful
stability results but fails to capture the physics of the system well enough to model its the
assembly of these proteins into a protomeric structure. In this light, we discussed how
machine learning approaches may be used to augment molecular simulations to predict
protein structures from the vast array of data available in the PDB. We proposed a deep
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learning approach to elucidate the protein-crystal structure relationship, discussing the
challenges and benefits to its implementation and some results.

In chapter 4 we take an alternate approach: instead of building directly on top of
hard shapes to create more complex models, we considered a generalization of classical
isotropic pair potentials that allows shape anisotropy to be encoded within a pair potential
function. We advanced a theory that systematically generalizes isotropic pair potentials via
a mean-field approximation to an anisotropic field, and we developed a high-performance
implementation within HOOMD-blue. We provided performance comparisons of this
method to current best-in-class solutions for specific subclasses of shapes, demonstrating
that our implementation provides substantial accelerations over existing methods. Finally, we
validated the thermodynamic behavior of this model for the purpose of studying assembled
morphologies.

Chapter 5 used this new potential to rigorously evaluate the effect of shape on particle
dynamics, exploiting the analytical shape representation to perform dynamic simulations
that would previously have been prohibitively expensive. Focusing on a model system of
2D regular polygons, we showed that particle anisotropy introduces additional modes into
time correlation functions like the MSD that govern intermediate-time behavior in between
the classical ballistic and diffusive regimes. Although increasing the numbers of sides
of a regular polygon leads to monotonic changes in its moment of inertia, we found that
other characteristic behaviors in fact do not change monotonically in this context, and we
developed a collision-theory framework to explain this phenomenon. Ultimately, we found
that nontrivial translation-rotation coupling is responsible for modifying particle dynamics
in ways that cannot be observed from isotropic systems.

Chapters 6 and 7 described software development done to facilitate the research in
chapters 2 to 5. Chapter 6 described a heuristic for optimizing research output via proper
software development, an approach used not only in the development of the freud tool
discussed in chapter 7, but also in the development of a number of other packages I have
developed or contributed to in various ways. These chapters highlighted the critical role of
not only writing code, but writing code well, in conducting computational research today.

8.2 Outlook and Future Work

8.2.1 Deep Learning of Protein Features

The work in chapter 3 offers an effective strategy for handling the large quantities of data
that must be streamed through any machine learning model for proteins that does not attempt
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an a priori feature reduction. Since the development of a sufficiently efficient strategy was a
roadblock to actually building out the machine learning model, the current versions of the
model are functional but provide highly inaccurate predictions. One significant challenge
with these models is that space groups are a complex property to predict that may not have
a simple relationship to the provided inputs. As a result, future work in this area should
attempt to predict a simpler property of the assembly. Such models would have a greater
chance of at least partial success, permitting iterative refinement that would also provide
greater insight into the relative importance of protein shape, electrostatics, hydrophobicity,
and perhaps other descriptors as well.

One natural candidate is binding sites for protein dimers, which recent ML models have
had success in predicting [105]. These other models have employed alternate strategies
for deep learning models of protein properties that exploit different features of the data
for efficiency and embed shape in less explicit ways, suggesting that direct comparison
with these approaches may also provide an additional means of evaluating the role of shape
[105]. Adapting the existing models to predict dimerization sites would be relatively simple
and would likely help to refine the model. Once the model has been shown to successfully
predict a known feature, the resulting refined model could then be reapplied to the space
group question to see what additional changes must be made to successfully predict the
space group from a protein surface.

8.2.2 Evaluating Methodologies for Simulating Anisotropic Particles

As discussed in chapter 4, the dominant means of simulating anisotropic particles to date
has been HPMC simulation, which provides information only about equilibrium (or more
precisely, sufficiently long-lived) states in a simulation and includes no dynamic information.
The advent of the ALJ and other related potentials provides a route to evaluate what
information could be missing from MC simulations and whether studies of kinetic pathways
using MC are reliable indicators of the true intermediate states in structure formation. Such
studies would also permit rigorous investigation of exactly what features are necessary for
two pathways to be considered “the same”. More precisely, such studies can answer whether
MC and MD methods can be used interchangeably for a study depending on a specific set of
physical properties.
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APPENDIX A

Supplementary Information for Chapter 2

Supplementary Figure 1

Fig. S1. Top: Cubic diamond structure assembled from truncated tetrahedra. 
Bottom: Hexagonal diamond structure assembled from truncated tetrahedra.
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Figure A.1 | Cubic diamond and hexagonal diamond structures. Top: Cubic diamond structure assembled
from truncated tetrahedra. The cubic diamond structure is obtained by the convolution of a face-centered cubic
(FCC) lattice with a motif of oppositely-oriented tetrahedra. Particles form layers that stack in an ABCA...
sequence. Bottom: Hexagonal diamond structure assembled from truncated tetrahedra. The hexagonal
diamond structure is obtained by the convolution of a hexagonal close-packed (HCP) lattice with a motif of
oppositely-oriented tetrahedra. Particles form layers that stack in an ABA... sequence.
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Supplementary Figure 2
Fig. S4 a, A SEM image of double-layered random hexagonal close-packed structure 
assembled in capillary; b, Zoomed-in SEM images of the rhcp structure clearly 
showing co-existence of two types of stacking: staggered and eclipsed. 
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Figure A.2 | Eclipsed and staggered inter-layer conformations in depletion-driven assembly. (a) SEM
image of a double-layered random hexagonal close-packed structure assembled in a capillary. Scale bar: 5 µm
. (b) Zoomed-in SEM images of the random hexagonal close-packed structure showing co-existence of two
types of inter-layer stackings: staggered (S) and eclipsed (E). Scale bars: 1 µm .

Supplementary Figure 3
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Figure A.3 | Electrostatic contribution to the self-assembly. Differences in electrostatic potential energy
between different stackings follow from differences in contact area between the two layers. Holes in the top
surface of the bottom layer are colored in blue. Holes in the bottom surface of the top layer are colored in
yellow. In eclipsed stacking, holes are aligned. The resulting hexagonal diamond has higher contact area (in
white) between layers than the cubic diamond. Since it is possible to translate the top layer keeping the same
contact area as cubic diamond, it is a degenerate energy state.
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Supplementary Figure 4

Recovery
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deformation of satellite particles 
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???? Time lapse ???? of a deformed cluster along deformation pathway and scanning electron microscopy (SEM) images of its corresponding 
cluster (second row) and tetrahedral core (third row).  

Figure A.4 | From tetrahedral cluster to core-shell particle. As the latex satellites are increasingly deformed,
the core particles change shape from a concave truncated tetrahedra to a convex tetrahedra with sharp tips,
to a sphere forming the core of a fully liquid core-shell particle. First row shows typical optical microscope
images of the tetrahedral clusters along the deformation. Second row shows typical scanning electron images
of the tetrahedral clusters acquired after fixing the core via radical polymerization. Third rows shows typical
scanning electron images of the inner core particle recovered by dissolving the latex satellites.

Figure A.5 | Fast swelling of polystyrene colloids in THF. Probability distribution functions of the diameter
of polystyrene colloids 0 min, 2 min, and 30 min after dispersion in 20 v% THF. Changes in particle volume
is fast and happen in less than 2 min. Consequently, satellites properties (viscosity, surface tensions) can be
considered constant over the course of the tetrahedral cluster deformation. Size measurements are performed
with xSights from Spheryx, Inc. by holographic characterization.
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Supplementary Figure 6
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Fig. S1 a, Surface tension of coalesced TPM emulsion droplets as a function of cross-linking time in 25mM ammonia solution; b, shape of pendant droplet of coalesced TPM in 
20%v./v. THF/water mixture changes as the droplet gets more cross-linked.

Figure A.6 | Surface tension of TPM with change in cross-linking. (a) Surface tension of TPM for increasing
condensation time. (b) Pictures of the TPM droplets in 20 wt% THF water used to estimate the surface tension.
Measurements were done with the commercial apparatus Attension Theta Optical Tensiometer, Biolin Scientific.
The volume of the droplet is ⇠3.3 µL.
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Supplementary Figure 7
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Figure A.7 | Quantitative characterization of the morphology of colloidal tetrahedra. (a) Measurements
of the truncation t are performed on scanning electron images of tetrahedra pointing up. (b) Estimation of the
face curvature is performed by steresoscopic reconstruction using the commercial software MountainsMap by
Digital Surf and custom Matlab codes. Two scanning electron microscope images of the same particle are
taken to a 10° angle. The elevation map of the surface is reconstructed from the correlations of the two images.
We approximate the face by a spherical cap for which each point of the elevation map gives an estimate of the
curvature. The most probable value gives a characteristic value of the face curvature.
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Supplementary Figure 8

concave to flat colloidal tetrahedra crystallize convex colloidal tetrahedra do not crystallize

Figure A.8 | Sedimentation of tetrahedra with various face curvatures. Scanning electron images (black
and white images) of various colloidal tetrahedra and corresponding confocal horizontal slices of their sediment
(green images). Left: colloidal tetrahedra with concave to flat faces crystallize via sedimentation. Right:
colloidal tetrahedra with convex faces do not crystallize via sedimentation. Scale bars: 2 µm .

Figure A.9 | Free energy differences without depletion. A negative value on the y axis indicates a lower,
and therefore thermodynamically preferable, free energy for cubic diamond.
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(a) The diffraction pattern projected onto the
(100) plane, which exhibits 4-fold symmetry.

(b) The diffraction pattern projected onto the
(111) plane, which exhibits 6-fold symmetry.

Figure A.10 | Diffraction patterns of sedimented structure from simulation. (a) The 4-fold diffraction
pattern is commonly associated with the diamond structure. (b) Since the sedimentation-driven assembly leads
to growth in the (111) direction, we also include the diffraction pattern projected along this axis, which is a
6-fold pattern corresponding to the hexagonal ordering observed.

(a) The difference in free energies be-
tween CD and HD for a depletant 10%
the size of the tetrahedra.

(b) The difference in free energies be-
tween CD and HD for a depletant 15%
the size of the tetrahedra.

(c) The difference in free energies be-
tween CD and HD for a depletant 20%
the size of the tetrahedra.

Figure A.11 | Free energy differences in the presence of depletants. For a given �r
dep, smaller depletants

have a much larger nr
dep, resulting in a much stronger effect on the assembly behavior as predicted by FVT.

As shown in panel (c), sufficiently large depletants have a negligible effect ( 0.1kBT ) except at very high
packing fractions well beyond the assembly regime. The solid black line indicates the coexistence boundary,
while the dashed green line indicates the boundary of the region where ↵-arsenic is the thermodynamically
preferred structure. Note that panel (a) is identical to Fig. 4f in the main text, but is reproduced here for
comparison.
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Figure A.12 | Phase diagram for depletants with q = 0.2, larger than those shown in the main text.
Depletants of this size have a very minimal effect on the free energies of different structures as shown in
fig. A.11. As a result, the phase diagram shows that phase boundaries between different crystal structures are
effectively unaffected by �r

dep. Some widening of the coexistence regime is observed at higher �r
dep, but the

effect is muted relatively to that observed for smaller depletants.
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Figure A.13 | Examples of common tangent construction application. To find regions of phase coexistence,
for a given depletant size (given by ↵ = rdep/rtet) and packing fraction we compute the free energy density
for the fluid and a range of structures (left). We then compute derivatives to get the pressure (middle) and
chemical potential (right). The coexistence condition for a fluid and a particular crystal structure is then given
by a pair of packing fractions where both the pressure and the chemical potential are equal; equivalently, by the
pair of packing fractions where a common tangent exists between the free energy density curves. The phase
boundaries in the phase diagrams in the main text can be determined by repeating this process for a range
of depletant packing fractions. (a) The construction in the absence of depletants. (b) The results for a small
depletant representative of the ones in experiment; even at the low packing fraction shown, the free energy
curves are clearly dramatically shifted. (c) The results for larger depletants; despite having a depletant packing
fraction four times higher than in (b), the depletant effect is muted because the depletants are too large.
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Figure A.14 | Effect of particle rounding on cubic diamond (CD)/hexagonal diamond (HD) competition.
We consider the relative free energy densities of CD and HD for varied levels of tetrahedron rounding within a
narrow range of packing fractions where systems are dense enough to easily facilitate nucleation without being
so dense as to introduce kinetic traps. Using a depletant size representative of that in experiment (q = 0.05),
we find that the primary effect of rounding is to decrease the magnitude of the free energy difference between
CD and HD while otherwise retaining most of the same qualitative features in the �f map. This result is
consistent with the fact that for spheres (the q ! 1 limit) FCC and HCP have nearly identical free energies,
and CD and HD are, respectively, the decorations of these lattices with two particles. Therefore, at high
rounding we expect CD and HD to become nearly indistinguishable from a thermodynamic perspective.
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APPENDIX B

Supplementary Information for Chapter 5

B.1 Derivation of Anisotropic Langevin Equation

Here, we present a derivation of our proposed Langevin equation, specialized for hard
anisotropic particles. We start from the generalized Langevin equation as derived using
standard projection formalism:

@

@t
A (t)� i⌦ ·A+

Z t

0

M (t� s) ·A (s) ds = f (t) (B.1)

where A is a multivariate vector containing various properties of interest (position, velocity,
angular momentum etc. . . ), ⌦ is the frequency matrix, t is time, and M and f are the
corresponding memory kernel and random force of the parameters in A, respectively. For
hard, anisotropic particles, the relevant parameters describing their dynamics are the position
(r), velocity (v), and angular velocity (l). We then define A as A = [r,v, lp], where lp is the
projected form of l defined as followed to ensure orthogonality: lp = l� (r, l)(r, r)�1r.

Assuming a Maxwell-Boltzmann distribution for both linear and angular velocities,
we now evaluate each term in Eq. B.1 based on our definition of A. While tedious, it
is straightforward to evaluate each term within the correlation matrix, frequency matrix,
memory kernel, and fluctuating force. We, therefore, report only the final result for each. For
ease of notation, we will introduce the subscript o to indicate the zero-time limit: Ao ⌘ A(0)

(Ao,Ao) =

2

664

Ro 0 0
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NkT
m 0

0 0 F
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R2
l,o
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775 (B.2)

where F is the degrees of freedom in the system, Ro is defined as (ro, ro), and R2
l,o

represents (ro, lo)
2 (ro, ro)

�1. Using Eq. B.2, we can evaluate the frequency matrix ⌦ =

(Ao, Ȧo) (A,A)�1.
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where we defined Rs =
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for ease of notation. Eq. B.3 can now be

used to evaluate the fluctuating force matrix f defined as f = Ȧ� i⌦A, giving
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Lastly, the memory kernel M is defined as M = (fo, f(t))(Ao,Ao)�1, plugging in Eq.
B.2 and B.4 gives
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(B.5)

where the elements fij defines the ij th element of the inner product (fo, f(t)). Analogous
to the original Lagevin equation, we are specifically interested in the velocity component of
Eq. B.1, giving us the following differential equation

@

@t
v(t)� i [⌦21r(t) +⌦23lp(t)] +

Z
M22(t)v(t� s)ds+

Z
M23(t)lp(t� s)ds = f2(t)

(B.6)
Eq. B.6 is a very general result that readily comes out of evaluating different terms of

the generalized Langevin equation (Eq. B.1). Since we are interested in the hard shape
limits, we now make some simplifying assumptions inspired by the seminal Langevin
equation developed for Brownian motion of hard spheres. Firstly, we select for only the
real component. This allows us to drop terms in ⌦. Secondly, similar to hard spheres, we
assume no coupling between the memory kernel and the dynamical parameters, enabling us
to drop the convolutional integration terms. Combining both assumptions gives

@

@t
v(t) +M22(t)v(t) +M23(t)l(t) = f2(t) (B.7)
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Our first approximation involves the term l(t) via treating an anisotropic shape as a first
order perturbation about an isotropic particle. Namely, we wish to interchange angular and
translation velocities via the relation v = rcl, where rc is an radius of the effective sphere
with which we wish perturb about. In this limit, consider the case of a polygon whose area
is equal to that of a circle of size rc. We can write ⇡r2c = na2 tan(⇡/n), where a is the
polygon’s apothem. Rearranging gives

⇣rc
a

⌘2
=

n tan (⇡/n)

⇡
(B.8)

While this is specific for regular polygons, we can generalize our approximation to
all shapes via recasting the right hand side of Eq. B.8 into a more convenient moment of
inertia shape metric. For a regular polygon, the moment of inertia has the following scaling
relation I ⇠ s2, where s is the side length. Additionally s = 2a tan(⇡/n), resulting in
I1/2 ⇠ 2a tan(⇡/n). Plugging into Eq. B.8 gives
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where we have collected terms so that ↵ = (2 ⇤ ⇡a/n)2. Eq. B.9 suggests that recasting
the anisotropic problem into a perturbation relative to an isotropic counterpart overestimates
the core shape by a ratio of (I/↵)1/4. To correct for this excess, we write v ⇠ (I/↵)�1/4l,
which rearranges into l ⇠ (↵/I)�1/4v. Plugging into Eq. B.7 gives
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v(t) +M22(t)v(t) +M23(t)(↵/I)

�1/4v(t) = f2(t) (B.10)

Our next step now involves providing approximate forms for M22 and M23. As indicated
by Eq. B.5, we need to explicitly evaluate the inner product defined by (fo, f(t)) – specifically
f22 and f23. By inspection, f22 has two components: traditional translational term and a new
rotational term
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(B.11)
where f22,T defines the first two terms of Eq. B.11 and f22,R describes the term in lp.

The inner product then expands to four terms:

123



(f22o , f22(t)) = (f22,To , f22,T (t)) + (f22,To , f22,R(t)) + (f22,Ro , f22,T (t)) + (f22,Ro , f22,R(t))

(B.12)
(f22,To , f22,R(t)) and (f22,Ro , f22,T (t)) are imaginary, allowing us to drop those terms

using the same assumption employ for ⌦. (f22,To , f22,T (t)) is the traditional translational
inner product commonly approximated via a drag coefficient ⇠22. The only term remaining
of interest is (f22,Ro , f22,R(t)). Taking a similar conversion used to obtain Eq. B.10, we can
write

(f22,Ro , f22,R(t)) ⇠ �22 (↵/I)
�1/2 v(t) (B.13)

where �22 is defined as �22 =
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. Inspection

of this term indicates that it is a coupling between the angular and translational terms.
Therefore, we interpret �22 as a coupling constant between the angular and translation
components of anisotropic dynamics. Like the iner product corresponding to ⇠22, �c depends
on quantities like @vo

@t and lo that depend on properties of the system; therefore, analogous to
⇠ we must estimate it via a
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Combining these results, we can then approximate M22 as M22 = ⇠22 +

�22 (↵/I)
�1/2 v(t), where the additional constant
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⇤�1 is grouped into ⇠22 and �22.
An analogous analysis for M23 yields M23 = ⇠23 + �23 (↵/I)

�1/4 v(t). Plugging M22 and
M23 into Eq. B.10 gives
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v(t) + ⇠v(t) + �c(↵/I)

�1/2v2(t) = f2(t) (B.14)

where ⇠ = ⇠22 + ⇠23 and �c = �22 + �23. Eq. B.14 is the differential equation employed
in the main text.

B.1.1 Frequency Correction

Within the main text, we discussed a first-order extension of Eq. B.14 to include the effect
of the frequency term i⌦ ·A in Eq. B.1. The relevant term from the frequency matrix is
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Adding to Eq. B.14, performing a similar transformation for lp, and grouping gives
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where we have defined
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We can then use Eq. B.15 – B.17 and their analytical solution to approximate the relaxation
times employed in the main text.

B.2 General Solution of Anisotropic Langevin Equation

We now present our approximate solution to our derived anisotropic Langevin equation.
Starting from the the presented equation in the main text

m
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Similar to the solution approach for the traditional Langevin equation, we first multiply
Eq. B.18 by r(t) and average to give
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where, similar to the main text, we define � = �c (↵/I)
�1/2 for ease of notation. Eq.

B.19 is an inhomogeneous, second order, nonlinear ordinary differential equation. Using
standard approaches for solving such ODEs, we first solve the homogeneous ODE of the
form
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Eq. B.20 has the known general solution
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where C1 and C2 are integration constants that we will later define and W is the Lambert
W function. Recognizing that the long time behavior of hr2(t)i is linear in time, we guess
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the particular solution to be hr2p(t)i = ht+ k. Solving for h and k with boundary conditions
hr2(0)i = 0 and @hr2(0)i/@t = 0 results in
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The last step involves solving for the constants C1 and C2 in Eq. B.23. For convenience,
we define the functional inside the Lambert W function as q(t) = 1

⇠

h
C1�2

e + e�⇠(t+C2)�1
i
.

By inspection, q(t) contains the exponential functional that we know exists in the limit
of spherical Brownian motion. In the isotropic limit, the characteristic behavior of the
exponential term goes to 1 as t ! 0. In order to enforce a similar limit for Eq. B.23,
we must have W(q(t)) ! 0. This happens when q(t) = 0, making it a natural point for
Taylor expansion of the Lambert W function in order to simplify Eq. B.23. Performing the
expansion
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where tr indicates the value of t where q(t) = 0. Noting that the derivative terms are
constants, we define  1 = W (q(tr)),  2 =
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Evaluation of the integrals in Eq. B.27 is straightforward, albeit tedious. The final result

of evaluating all terms in Eq. B.27 is
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where we have grouped the constants C1 and C2 into a composite set of constants B1 and
B2 incorporating the various  terms that arise from expansion of the Lambert W functional.
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Plugging Eq. B.28 into Eq. B.23 gives
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Using boundary conditions hr2(0)i = 0 and @hr2(0)i/@t = 0, the constants B1 and B2

is can then be evaluated as
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Eq. B.31 and B.32 are the major results reported in the main text.
In order to obtain the relaxation times, we expand the first exponential in Eq. B.31 and drop
terms of O (t2) and higher, leaving two terms linear in t and one exponential in t. Balancing
the long-time diffusive term – B3/⇠p with the exponential term in t results ⌧trans. Balancing
the remaining linear t term with the exponential term gives ⌧rot.
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Since In changes monotonically as a function of the number of sides for regular polygons,
computing the relevant timescales from Eq. B.33 – B.34 will not capture the observed
crossover in relaxation ratios from simulations, as shown in Fig. B.1.

B.2.1 Frequency Correction

Solutions for the frequency extension can be obtained via an analogous set of derivation
where we employ a transformation of variables for ⇠ to ⇠p, where ⇠p = ⇠+ ⌘ (↵/I)�1/4. The
functional form of the analytical solution remains identical to Eq. B.31, but now the relevant
constants are:

127



Figure B.1 | Relaxation ratio using Eq. B.33 – B.34.
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Similarly, the relaxation times are

⌧trans = ⇠�1
p W

 
B1B

�1
2 � 1 +

�
⇠�1
p � ⇠�2

p

�
(e�2 + 2)

�B2
2B3⇠�2

p

!
(B.36)

⌧rot = ⇠�1
p W

 
B1B

�1
2 � 1 +

�
⇠�1
p � ⇠�2

p

�
(e�2 + 2)

(e�2 � 2⇠p)
�
2⇠�1 � B1B

�1
2

�
⇠�3
p

!
(B.37)

128



Bibliography
1. Alder, B. J. & Wainwright, T. E. Phase transition for a hard sphere system Nov. 1957.

http://aip.scitation.org/doi/10.1063/1.1743957.

2. Fermi, E., Pasta, P., Ulam, S. & Tsingou, M. Studies of the nonlinear problems
tech. rep. (Los Alamos Scientific Lab., N. Mex., 1955).

3. Levitt, M. & Warshel, A. Computer simulation of protein folding. Nature 253, 694–
698. ISSN: 00280836 (Feb. 1975).

4. Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H. & Teller, E.
Equation of state calculations by fast computing machines. The Journal of Chemical
Physics 21, 1087–1092 (1953).

5. Arkhipov, A., Freddolino, P. L. & Schulten, K. Stability and Dynamics of Virus
Capsids Described by Coarse-Grained Modeling. Structure 14, 1767–1777. ISSN:
0969-2126. http://www.sciencedirect.com/science/article/
pii/S0969212606004023 (2006).

6. Niethammer, C. et al. Ls1 mardyn: The massively parallel molecular dynamics code
for large systems. Journal of Chemical Theory and Computation 10, 4455–4464.
ISSN: 15499626 (Oct. 2014).

7. Noid, W. G. Perspective: Coarse-grained models for biomolecular systems. Journal
of Chemical Physics 139, 090901. ISSN: 00219606 (Sept. 2013).

8. Shi, Q., Izvekov, S. & Voth, G. A. Mixed atomistic and coarse-grained molecular dy-
namics: Simulation of a membrane-bound ion channel. Journal of Physical Chemistry
B 110, 15045–15048. ISSN: 15206106 (Aug. 2006).

9. Tozzini, V. Coarse-grained models for proteins Apr. 2005.

10. Chen, C. et al. A comparison of united atom, explicit atom, and coarse-grained simula-
tion models for poly(ethylene oxide). Journal of Chemical Physics 124, 234901. ISSN:
00219606. http://aip.scitation.org/doi/10.1063/1.2204035
(June 2006).

11. Smallenburg, F., Filion, L., Marechal, M. & Dijkstra, M. Vacancy-stabilized crys-
talline order in hard cubes. Proceedings of the National Academy of Sciences of the
United States of America 109, 17886–17890. ISSN: 00278424 (Oct. 2012).

12. Rossi, L. et al. Shape-sensitive crystallization in colloidal superball fluids. Proceed-
ings of the National Academy of Sciences of the United States of America 112, 5286–
5290. ISSN: 10916490 (Apr. 2015).

13. Henzie, J., Grünwald, M., Widmer-Cooper, A., Geissler, P. L. & Yang, P. Self-
assembly of uniform polyhedral silver nanocrystals into densest packings and exotic
superlattices. Nature Materials 11, 131–137. ISSN: 1476-1122 (2012).

14. Damasceno, P. F., Engel, M. & Glotzer, S. C. Predictive Self-Assembly of Polyhedra
into Complex Structures. Science 337, 453–457. ISSN: 0036-8075 (July 2012).

129

http://aip.scitation.org/doi/10.1063/1.1743957
http://www.sciencedirect.com/science/article/pii/S0969212606004023
http://www.sciencedirect.com/science/article/pii/S0969212606004023
http://aip.scitation.org/doi/10.1063/1.2204035


15. Damasceno, P. F., Engel, M. & Glotzer, S. C. Crystalline assemblies and densest
packings of a family of truncated tetrahedra and the role of directional entropic forces.
Acs Nano 6, 609–614 (2012).

16. Lawrence, M. C. & Colman, P. M. Shape Complementarity at Protein/Protein Inter-
faces. Journal of Molecular Biology 234, 946–950. ISSN: 0022-2836. http://www.
sciencedirect.com/science/article/pii/S0022283683716487

(1993).

17. Chandler, D., Weeks, J. D. & Andersen, H. C. Van der waals picture of liquids,
solids, and phase transformations. Science 220, 787–794. ISSN: 00368075. https:
//science.sciencemag.org/content/220/4599/787%20https:

//science.sciencemag.org/content/220/4599/787.abstract

(May 1983).

18. Onsager, L. The effects of shape on the interaction of colloidal particles. Annals of
the New York Academy of Sciences 51, 627–659. ISSN: 00778923. eprint: arXiv:
1011.1669v3 (May 1949).

19. Glotzer, S. C. & Solomon, M. J. Anisotropy of building blocks and their assembly
into complex structures. Nature Materials 6, 557–562. ISSN: 14764660 (2007).

20. Tao, A., Sinsermsuksakul, P. & Yang, P. Polyhedral Silver Nanocrystals with Distinct
Scattering Signatures. Angewandte Chemie International Edition 45, 4597–4601.
eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/
anie.200601277. https://onlinelibrary.wiley.com/doi/abs/
10.1002/anie.200601277 (2006).

21. Agarwal, U. & Escobedo, F. A. Mesophase behaviour of polyhedral particles. Nature
Materials 10, 230–235. https://doi.org/10.1038/nmat2959 (2011).

22. Sarangapani, P. S., Hudson, S. D., Jones, R. L., Douglas, J. F. & Pathak, J. A. Criti-
cal Examination of the Colloidal Particle Model of Globular Proteins. Biophysical
Journal 108, 724–737 (Feb. 2015).

23. Zhang, Z. & Glotzer, S. C. Self-Assembly of Patchy Particles. Nano Letters 4. PMID:
29048902, 1407–1413. eprint: https://doi.org/10.1021/nl0493500
(2004).

24. Fusco, D. & Charbonneau, P. Soft matter perspective on protein crystal assembly.
Colloids and Surfaces B: Biointerfaces 137. Biocolloids and Colloids in Biology,
22–31. ISSN: 0927-7765. http://www.sciencedirect.com/science/
article/pii/S0927776515300576 (2016).

25. Fusco, D., Headd, J. J., De Simone, A., Wang, J. & Charbonneau, P. Characterizing
protein crystal contacts and their role in crystallization: Rubredoxin as a case study.
Soft Matter 10, 290–302. ISSN: 17446848. www.rsc.org/softmatter (Jan.
2014).

130

http://www.sciencedirect.com/science/article/pii/S0022283683716487
http://www.sciencedirect.com/science/article/pii/S0022283683716487
https://science.sciencemag.org/content/220/4599/787%20https://science.sciencemag.org/content/220/4599/787.abstract
https://science.sciencemag.org/content/220/4599/787%20https://science.sciencemag.org/content/220/4599/787.abstract
https://science.sciencemag.org/content/220/4599/787%20https://science.sciencemag.org/content/220/4599/787.abstract
arXiv:1011.1669v3
arXiv:1011.1669v3
https://onlinelibrary.wiley.com/doi/pdf/10.1002/anie.200601277
https://onlinelibrary.wiley.com/doi/pdf/10.1002/anie.200601277
https://onlinelibrary.wiley.com/doi/abs/10.1002/anie.200601277
https://onlinelibrary.wiley.com/doi/abs/10.1002/anie.200601277
https://doi.org/10.1038/nmat2959
https://doi.org/10.1021/nl0493500
http://www.sciencedirect.com/science/article/pii/S0927776515300576
http://www.sciencedirect.com/science/article/pii/S0927776515300576
www.rsc.org/softmatter


26. Peltzer, R. M., Kolli, H. B., Stocker, A. & Cascella, M. Self-Assembly of ↵-
Tocopherol Transfer Protein Nanoparticles: A Patchy Protein Model. Journal of
Physical Chemistry B 122, 7066–7072. ISSN: 15205207. https://pubs.acs.
org/sharingguidelines (July 2018).

27. Simon, A. J. et al. Supercharging enables organized assembly of synthetic
biomolecules. Nature Chemistry 11, 204–212. ISSN: 17554349 (Mar. 2019).

28. Stradner, A. & Schurtenberger, P. Potential and limits of a colloid approach to
protein solutions. Soft Matter 16, 307–323. http://dx.doi.org/10.1039/
C9SM01953G (2 2020).

29. Durumeric, A. E. P. & Voth, G. A. Adversarial-residual-coarse-graining: Applying
machine learning theory to systematic molecular coarse-graining. The Journal of
Chemical Physics 151, 124110. eprint: https://doi.org/10.1063/1.
5097559 (2019).

30. Grigo, C. & Koutsourelakis, P.-S. A physics-aware, probabilistic machine learning
framework for coarse-graining high-dimensional systems in the Small Data regime.
Journal of Computational Physics 397, 108842. ISSN: 0021-9991 (2019).

31. Wang, J. et al. Machine Learning of Coarse-Grained Molecular Dynamics Force
Fields. ACS Central Science 5, 755–767. eprint: https://doi.org/10.1021/
acscentsci.8b00913 (2019).

32. Anderson, J. A., Glaser, J. & Glotzer, S. C. HOOMD-blue: A Python package for
high-performance molecular dynamics and hard particle Monte Carlo simulations.
Computational Materials Science 173, 109363. ISSN: 09270256 (Feb. 2020).

33. Ramasubramani, V. et al. freud: A software suite for high throughput analysis of
particle simulation data. Computer Physics Communications 254, 107275. ISSN:
00104655 (Sept. 2020).

34. Ramasubramani, V., Vo, T., Anderson, J. A. & Glotzer, S. C. A mean-field approach
to simulating anisotropic particles. The Journal of Chemical Physics 153, 084106
(Aug. 2020).

35. Adorf*, C. S., Ramasubramani*, V., Anderson, J. A. & Glotzer, S. C. How to Pro-
fessionally Develop Reusable Scientific Software—And When Not To. Computing
in Science Engineering 21. (*these authors contributed equally to this work), 66–79.
ISSN: 1521-9615 (Mar. 2019).

36. Gong*, Z. et al. Crystallization of colloidal truncated tetrahedra driven by entropic
forces. In Preparation. (*these authors contributed equally to this work).

37. Frenkel, D. Order through entropy. Nature Materials 14, 9 (2014).

38. Sciortino, F. Entropy in self-assembly. La rivista del nuovo cimento 42, 511–548
(2019).

39. Asakura, S. & Oosawa, F. On interaction between two bodies immersed in a solution
of macromolecules. The Journal of Chemical Physics 22, 1255–1256 (1954).

131

https://pubs.acs.org/sharingguidelines
https://pubs.acs.org/sharingguidelines
http://dx.doi.org/10.1039/C9SM01953G
http://dx.doi.org/10.1039/C9SM01953G
https://doi.org/10.1063/1.5097559
https://doi.org/10.1063/1.5097559
https://doi.org/10.1021/acscentsci.8b00913
https://doi.org/10.1021/acscentsci.8b00913


40. Sacanna, S. & Pine, D. J. Shape-anisotropic colloids: Building blocks for complex
assemblies. Current Opinion in Colloid & Interface Science 16, 96–105. ISSN: 1359-
0294 (2011).

41. Lee, K. J., Yoon, J. & Lahann, J. Recent advances with anisotropic particles. Current
Opinion in Colloid & Interface Science 16, 195–202. ISSN: 1359-0294 (2011).

42. Liu, B., Wu, Y. & Zhao, S. Anisotropic Colloids: From Non-Templated to Patchy
Templated Synthesis. Chemistry – A European Journal 24, 10562–10570 (2018).

43. Miszta, K. et al. Hierarchical self-assembly of suspended branched colloidal nanocrys-
tals into superlattice structures. Nature Materials 10, 872–876. ISSN: 1476-4660 (Nov.
2011).

44. Gong, J. et al. Shape-dependent ordering of gold nanocrystals into large-scale super-
lattices. Nature Communications 8. ISSN: 20411723 (Jan. 2017).

45. Nagaoka, Y. et al. Superstructures generated from truncated tetrahedral quantum dots.
Nature 561, 378–382 (2018).

46. Yethiraj, A. & van Blaaderen, A. A colloidal model system with an interaction tunable
from hard sphere to soft and dipolar. Nature 421, 513–517. ISSN: 1476-4687 (Jan.
2003).

47. Meijer, J.-M. et al. Observation of solid–solid transitions in 3D crystals of colloidal
superballs. Nature Communications 8, 14352 (2017).

48. Wood, W. W. & Jacobson, J. Preliminary results from a recalculation of the Monte
Carlo equation of state of hard spheres. The Journal of Chemical Physics 27, 1207–
1208 (1957).

49. Pusey, P. N. & Van Megen, W. Phase behaviour of concentrated suspensions of nearly
hard colloidal spheres. Nature 320, 340 (1986).

50. Engel, M. et al. Hard-disk equation of state: First-order liquid-hexatic transition
in two dimensions with three simulation methods. Physical Review E 87, 042134
(2013).

51. Thorneywork, A. L., Abbott, J. L., Aarts, D. G. & Dullens, R. P. Two-dimensional
melting of colloidal hard spheres. Physical Review Letters 118, 158001 (2017).

52. Vrij, A. Polymers at interfaces and the interactions in colloidal dispersions. Pure and
Applied Chemistry 48, 471–483 (1976).

53. Damasceno, P. F., Engel, M. & Glotzer, S. C. Predictive self-assembly of polyhedra
into complex structures. Science 337, 453–457. ISSN: 10959203 (July 2012).

54. Karas, A. S., Glaser, J. & Glotzer, S. C. Using depletion to control colloidal crystal
assemblies of hard cuboctahedra. Soft Matter 12, 5199–5204. ISSN: 17446848 (June
2016).

55. Damasceno, P. F., Karas, A. S., Schultz, B. A., Engel, M. & Glotzer, S. C. Controlling
Chirality of Entropic Crystals. Phys. Rev. Lett. 115, 158303 (15 Oct. 2015).

132



56. Van Anders, G., Klotsa, D., Ahmed, N. K., Engel, M. & Glotzer, S. C. Un-
derstanding shape entropy through local dense packing. Proceedings of the Na-
tional Academy of Sciences of the United States of America 111, E4812–21. ISSN:
1091-6490. arXiv: 1309 . 1187. http : / / www . pubmedcentral . nih .
gov / articlerender . fcgi ? artid = 4234574 % 7B % 5C & %7Dtool =

pmcentrez%7B%5C&%7Drendertype=abstract (2014).

57. Gong, Z., Hueckel, T., Yi, G.-R. & Sacanna, S. Patchy particles made by colloidal
fusion. Nature 550, 234 (2017).

58. Escobedo, F. A. Engineering entropy in soft matter: The bad, the ugly and the good.
Soft Matter 10, 8388–8400 (2014).

59. Wang, Y., Jenkins, I. C., McGinley, J. T., Sinno, T. & Crocker, J. C. Colloidal crystals
with diamond symmetry at optical lengthscales. Nature Communications 8, 14173
(2017).

60. Ducrot, É., He, M., Yi, G.-R. & Pine, D. J. Colloidal alloys with preassembled clusters
and spheres. Nature materials 16, 652 (2017).

61. He, M. et al. Colloidal diamond. Nature 585, 524–529 (Sept. 2020).

62. Schade, N. B. et al. Tetrahedral colloidal clusters from random parking of bidisperse
spheres. Physical Review Letters 110, 148303 (2013).

63. Stukowski, A. Visualization and analysis of atomistic simulation data with OVITO-
the Open Visualization Tool. Modelling and Simulation in Materials Science and
Engineering 18, 015012. ISSN: 09650393 (2010).

64. Maras, E., Trushin, O., Stukowski, A., Ala-Nissila, T. & Jónsson, H. Global tran-
sition path search for dislocation formation in Ge on Si(001). Computer Physics
Communications 205, 13–21 (Aug. 2016).

65. Cromwell, P. R. Polyhedra (Cambridge University Press, 1999).

66. Sainis, S. K., Germain, V., Mejean, C. O. & Dufresne, E. R. Electrostatic interactions
of colloidal particles in nonpolar solvents: Role of surface chemistry and charge
control agents. Langmuir 24, 1160–1164 (2008).

67. Hodeau, J. L. et al. High-pressure transformations of C60 to diamond and sp3 phases
at room temperature and to sp2 phases at high temperature. Phys. Rev. B 50, 10311–
10314 (14 Oct. 1994).

68. Romano, F. & Sciortino, F. Patterning symmetry in the rational design of colloidal
crystals. Nature Communications 3 (Jan. 2012).

69. Zygmunt, W., Teich, E. G., van Anders, G. & Glotzer, S. C. Topological order in
densely packed anisotropic colloids. Phys. Rev. E 100, 032608. https://link.
aps.org/doi/10.1103/PhysRevE.100.032608 (3 Sept. 2019).

70. Glaser, J., Karas, A. S. & Glotzer, S. C. A parallel algorithm for implicit depletant
simulations. The Journal of Chemical Physics 143, 184110 (Nov. 2015).

71. Lekkerkerker, H. N. W. & Tuinier, R. Colloids and the Depletion Interaction (Springer
Netherlands, Dordrecht, 2011).

133

https://arxiv.org/abs/1309.1187
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4234574%7B%5C&%7Dtool=pmcentrez%7B%5C&%7Drendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4234574%7B%5C&%7Dtool=pmcentrez%7B%5C&%7Drendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4234574%7B%5C&%7Dtool=pmcentrez%7B%5C&%7Drendertype=abstract
https://link.aps.org/doi/10.1103/PhysRevE.100.032608
https://link.aps.org/doi/10.1103/PhysRevE.100.032608


72. Dijkstra, M. Phase diagram of highly asymmetric binary hard-sphere mixtures. Phys-
ical Review E 59, 5744–5771 (1999).

73. Cersonsky, R. K. Pressure-tunable photonic band gaps in an entropic colloidal crystal.
Physical Review Materials 2 (2018).

74. Bolhuis, P. G. Influence of Polymer-Excluded Volume on the Phase-Behavior of
Colloid-Polymer Mixtures. Physical Review Letters 89 (2002).

75. Zhang, Y., Lu, F., van der Lelie, D. & Gang, O. Continuous Phase Transformation in
Nanocube Assemblies. Phys. Rev. Lett. 107, 135701 (13 Sept. 2011).

76. Teich, E. G., van Anders, G. & Glotzer, S. C. Identity crisis in alchemical space
drives the entropic colloidal glass transition. Nature Communications 10, 64. ISSN:
2041-1723 (Dec. 2019).

77. Anderson, J. A., Lorenz, C. D. & Travesset, A. General purpose molecular dynamics
simulations fully implemented on graphics processing units. Journal of Computa-
tional Physics 227, 5342–5359. ISSN: 0021-9991 (May 2008).

78. Glaser, J. et al. Strong scaling of general-purpose molecular dynamics simulations
on GPUs. Computer Physics Communications 192, 97–107. ISSN: 00104655. http:
//arxiv.org/abs/1412.3387%20http://linkinghub.elsevier.

com / retrieve / pii / S0010465515000867 % 20https : / / www .

sciencedirect.com/science/article/pii/S0010465515000867

(July 2015).

79. Anderson, J. A., Eric Irrgang, M. & Glotzer, S. C. Scalable Metropolis Monte Carlo
for simulation of hard shapes. Computer Physics Communications 204, 21–30. ISSN:
00104655 (July 2016).

80. Van Anders, G., Ahmed, N. K., Smith, R., Engel, M. & Glotzer, S. C. Entropically
patchy particles: Engineering valence through shape entropy. ACS Nano 8, 931–940.
ISSN: 19360851. arXiv: 1304.7545 (2014).

81. Harris, C. R. et al. Array programming with NumPy. Nature 585, 357–362 (Sept.
2020).

82. Virtanen, P. et al. SciPy 1.0: fundamental algorithms for scientific computing in
Python. Nature Methods 17, 261–272 (Feb. 2020).

83. McKinney, W. Data Structures for Statistical Computing in Python in Proceedings of
the 9th Python in Science Conference (eds van der Walt, S. & Millman, J.) (2010),
56–61. https://conference.scipy.org/proceedings/scipy2010/
mckinney.html.

84. Ramasubramani, V. & C. Glotzer, S. rowan: A Python package for working with
quaternions. Journal of Open Source Software 3, 787. https://doi.org/10.
21105/joss.00787 (2018).

85. Hunter, J. D. Matplotlib: A 2D Graphics Environment. Computing in Science and
Engineering 9, 99–104. ISSN: 15219615 (May 2007).

134

http://arxiv.org/abs/1412.3387%20http://linkinghub.elsevier.com/retrieve/pii/S0010465515000867%20https://www.sciencedirect.com/science/article/pii/S0010465515000867
http://arxiv.org/abs/1412.3387%20http://linkinghub.elsevier.com/retrieve/pii/S0010465515000867%20https://www.sciencedirect.com/science/article/pii/S0010465515000867
http://arxiv.org/abs/1412.3387%20http://linkinghub.elsevier.com/retrieve/pii/S0010465515000867%20https://www.sciencedirect.com/science/article/pii/S0010465515000867
http://arxiv.org/abs/1412.3387%20http://linkinghub.elsevier.com/retrieve/pii/S0010465515000867%20https://www.sciencedirect.com/science/article/pii/S0010465515000867
https://arxiv.org/abs/1304.7545
https://conference.scipy.org/proceedings/scipy2010/mckinney.html
https://conference.scipy.org/proceedings/scipy2010/mckinney.html
https://doi.org/10.21105/joss.00787
https://doi.org/10.21105/joss.00787


86. Adorf, C. S., Dodd, P. M., Ramasubramani, V. & Glotzer, S. C. Simple data and work-
flow management with the signac framework. Computational Materials Science 146,
220–229. ISSN: 09270256. https://www.sciencedirect.com/science/
article/pii/S0927025618300429 (Apr. 2018).

87. Ramasubramani, V., Adorf, C. S., Dodd, P. M., Dice, B. D. & Glotzer, S. C. signac:
A Python framework for data and workflow management in Proceedings of the 17th
Python in Science Conference (eds Akici, F., Lippa, D., Niederhut, D. & Pacer, M.)
(2018), 152–159.

88. Frenkel, D. & Ladd, A. J. C. New Monte Carlo method to compute the free energy of
arbitrary solids. Application to the fcc and hcp phases of hard spheres. The Journal
of Chemical Physics 81, 3188–3193 (Oct. 1984).

89. Frenkel, D. & Smit, B. Understanding molecular simulation: from algorithms to
applications ISBN: 0-12-267351-4 (2002).

90. Haji-Akbari, A., Engel, M. & Glotzer, S. C. Phase diagram of hard tetrahedra. The
Journal of Chemical Physics 135, 194101 (2011).

91. Singh, D. B. & Tripathi, T. Frontiers in protein structure, function, and dynamics
2020.

92. Goodsell, D. S. & Olson, A. J. Structural symmetry and protein function. Annual
Review of Biophysics and Biomolecular Structure 29, 105–153. ISSN: 10568700
(2000).

93. André, I., Strauss, C. E. M., Kaplan, D. B., Bradley, P. & Baker, D. Emergence of
symmetry in homooligomeric biological assemblies in Proceedings of the National
Academy of Sciences of the United States of America 105 (2008), 16148–16152.

94. Senior, A. W. et al. Improved protein structure prediction using potentials from deep
learning. Nature 577, 706–710 (2020).

95. Kmiecik, S. et al. Coarse-Grained Protein Models and Their Applications. Chemical
Reviews 116, 7898–7936. ISSN: 15206890 (July 2016).

96. Krissinel, E. & Henrick, K. Inference of Macromolecular Assemblies from Crystalline
State. Journal of Molecular Biology 372, 774–797. ISSN: 0022-2836 (2007).

97. Robertson, M. J., Tirado-Rives, J. & Jorgensen, W. L. Improved Peptide and Protein
Torsional Energetics with the OPLS-AA Force Field. Journal of Chemical Theory
and Computation 11, 3499–3509 (June 2015).

98. Kabsch, W. A solution for the best rotation to relate two sets of vectors. Acta Crystal-
lographica Section A 32, 922–923 (1976).

99. Sanner, M. F., Olson, A. J. & Spehner, J.-C. Reduced surface: An efficient way to
compute molecular surfaces. Biopolymers 38, 305–320 (1996).

100. Sinkovits, D. W., Barr, S. a. & Luijten, E. Rejection-free Monte Carlo scheme for
anisotropic particles. The Journal of Chemical Physics 136, 144111. ISSN: 1089-7690.
http://www.ncbi.nlm.nih.gov/pubmed/22502505 (Apr. 2012).

135

https://www.sciencedirect.com/science/article/pii/S0927025618300429
https://www.sciencedirect.com/science/article/pii/S0927025618300429
http://www.ncbi.nlm.nih.gov/pubmed/22502505


101. Monticelli, L. et al. The MARTINI Coarse-Grained Force Field: Extension to Proteins.
Journal of Chemical Theory and Computation 4, 819–834 (Apr. 2008).

102. Wukovitz, S. W. & Yeates, T. O. Why protein crystals favour some space-groups over
others. Nature Structural & Molecular Biology 2, 1062–1067 (Dec. 1995).

103. Geng, Y., van Anders, G., Dodd, P. M., Dshemuchadse, J. & Glotzer, S. C. Engineer-
ing entropy for the inverse design of colloidal crystals from hard shapes. Science
Advances 5 (2019).

104. Friedman, J., Hastie, T. & Tibshirani, R. The elements of statistical learning 10
(Springer series in statistics New York, 2001).

105. Gainza, P. et al. Deciphering interaction fingerprints from protein molecular surfaces
using geometric deep learning. Nature Methods. https://doi.org/10.1038%
2Fs41592-019-0666-6 (Dec. 2019).

106. Harris, R. C. Comparing the Poisson-Boltzmann Equation to Alternative Electrostatic
Theories and Improving Stochastic Techniques for Implicit Solvent Models (2012).

107. Sharp, K. A. & Honig, B. Calculating total electrostatic energies with the nonlinear
Poisson-Boltzmann equation. Journal of Physical Chemistry 94, 7684–7692 (1990).

108. Baptista, M., Schmitz, R. & Dünweg, B. Simple and robust solver for the Poisson-
Boltzmann equation. Phys. Rev. E 80, 016705 (1 July 2009).

109. Grycuk, T. Deficiency of the Coulomb-field approximation in the generalized Born
model: An improved formula for Born radii evaluation. The Journal of Chemical
Physics 119, 4817–4826 (2003).

110. Cooper, C. D., Clementi, N. C., Forsyth, G. & Barba, L. A. PyGBe: Python, GPUs
and Boundary elements for biomolecular electrostatics. Journal of Open Source
Software 1, 43. https://doi.org/10.21105/joss.00043 (2016).

111. Kyte, J. & Doolittle, R. F. A simple method for displaying the hydropathic character
of a protein. Journal of Molecular Biology 157, 105–132. ISSN: 0022-2836 (1982).

112. Martín Abadi et al. TensorFlow: Large-Scale Machine Learning on Heterogeneous
Systems 2015.

113. Sergeev, A. & Balso, M. D. Horovod: fast and easy distributed deep learning in
TensorFlow. arXiv preprint arXiv:1802.05799 (2018).

114. Allen, M. P. & Tildesley, D. J. Computer simulation of liquids 385. ISBN:
9780198556459 (Clarendon Press, 1987).

115. Freddolino, P. L., Liu, F., Gruebele, M. & Schulten, K. Ten-microsecond molecular
dynamics simulation of a fast-folding WW domain. Biophysical Journal 94, L75–
L77. ISSN: 15420086 (May 2008).

116. Shaw, D. E. et al. Millisecond-scale molecular dynamics simulations on Anton in
Proceedings of the Conference on High Performance Computing Networking, Storage
and Analysis - SC ’09 (ACM Press, New York, New York, USA, 2009), 1.

117. Warshel, A. Bicycle-pedal model for the first step in the vision process. Nature 260,
679–683. ISSN: 00280836 (1976).

136

https://doi.org/10.1038/s41592-019-0666-6
https://doi.org/10.1038/s41592-019-0666-6
https://doi.org/10.21105/joss.00043


118. Karplus, M. & McCammon, J. A. Molecular dynamics simulations of biomolecules.
Nature Structural Biology 9, 646–652. ISSN: 10728368 (2002).

119. Wei, Y. et al. The nature of strength enhancement and weakening by pentagon-
heptagon defects in graphene. Nature Materials 11, 759–763. ISSN: 14764660 (July
2012).

120. Hadley, K. R. & McCabe, C. Coarse-grained molecular models of water: a re-
view. Molecular Simulation 38, 671–681. ISSN: 0892-7022. http : / / www .
tandfonline.com/doi/abs/10.1080/08927022.2012.671942

(July 2012).

121. Zimm, B. H. Dynamics of polymer molecules in dilute solution: Viscoelasticity, flow
birefringence and dielectric loss. The Journal of Chemical Physics 24, 269–278. ISSN:
00219606. http://aip.scitation.org/doi/10.1063/1.1742462
(Feb. 1956).

122. Rouse, P. E. A theory of the linear viscoelastic properties of dilute solutions of
coiling polymers. The Journal of Chemical Physics 21, 1272–1280. ISSN: 00219606.
http://aip.scitation.org/doi/10.1063/1.1699180 (July 1953).

123. Ingólfsson, H. I. et al. The power of coarse graining in biomolecular simulations.
Wiley Interdisciplinary Reviews: Computational Molecular Science 4, 225–248. ISSN:
17590884 (2014).

124. Allen, M. P. & Germano, G. Expressions for forces and torques in molecular simula-
tions using rigid bodies. Molecular Physics 104, 3225–3235. ISSN: 00268976 (Oct.
2006).

125. Horsch, M. A., Zhang, Z. & Glotzer, S. C. Self-assembly of end-tethered nanorods in
a neat system and role of block fractions and aspect ratio. Soft Matter 6, 945–954.
ISSN: 1744683X (Feb. 2010).

126. Heine, D. R., Petersen, M. K. & Grest, G. S. Effect of particle shape and charge on
bulk rheology of nanoparticle suspensions. Journal of Chemical Physics 132, 184509.
ISSN: 00219606. arXiv: 1004.2411. http://aip.scitation.org/doi/
10.1063/1.3419071 (May 2010).

127. Nguyen, T. D., Phillips, C. L., Anderson, J. A. & Glotzer, S. C. Rigid body constraints
realized in massively-parallel molecular dynamics on graphics processing units.
Computer Physics Communications 182, 2307–2313. ISSN: 00104655 (Nov. 2011).

128. Gay, J. G. & Berne, B. J. Modification of the overlap potential to mimic a linear
site-site potential. The Journal of Chemical Physics 74, 3316–3319. ISSN: 00219606.
http://aip.scitation.org/doi/10.1063/1.441483 (Mar. 1981).

129. Berardi, R., Fava, C. & Zannoni, C. A Gay-Berne potential for dissimilar biaxial
particles. Chemical Physics Letters 297, 8–14. ISSN: 00092614 (Nov. 1998).

130. Cleaver, D. J., Care, C. M., Allen, M. P. & Neal, M. P. Extension and generalization
of the gay-berne potential. Physical Review E - Statistical Physics, Plasmas, Fluids,
and Related Interdisciplinary Topics 54, 559–567. ISSN: 1063651X (July 1996).

137

http://www.tandfonline.com/doi/abs/10.1080/08927022.2012.671942
http://www.tandfonline.com/doi/abs/10.1080/08927022.2012.671942
http://aip.scitation.org/doi/10.1063/1.1742462
http://aip.scitation.org/doi/10.1063/1.1699180
https://arxiv.org/abs/1004.2411
http://aip.scitation.org/doi/10.1063/1.3419071
http://aip.scitation.org/doi/10.1063/1.3419071
http://aip.scitation.org/doi/10.1063/1.441483


131. Lubachevsky, B. D. How to simulate billiards and similar systems. Journal of Com-
putational Physics 94, 255–283. ISSN: 10902716 (June 1991).

132. Smith, S. W., Hall, C. K. & Freeman, B. D. Molecular dynamics for polymeric fluids
using discontinuous potentials. Journal of Computational Physics 134, 16–30. ISSN:
00219991 (June 1997).

133. Alder, B. J. & Wainwright, T. E. Studies in molecular dynamics. I. General method.
The Journal of Chemical Physics 31, 459–466. ISSN: 00219606. http://aip.
scitation.org/doi/10.1063/1.1730376 (Aug. 1959).

134. Nguyen, H. D. & Hall, C. K. Molecular dynamics simulations of spontaneous fibril
formation by random-coil peptides. Proceedings of the National Academy of Sciences
101, 16180–16185. ISSN: 00278424 (Nov. 2004).

135. Cundall, P. A. & Strack, O. D. L. A discrete numerical model for granu-
lar assemblies. Géotechnique 29, 47–65. ISSN: 0016-8505. http : / / www .
icevirtuallibrary.com/doi/10.1680/geot.1979.29.1.47

(Mar. 1979).

136. Spellings, M., Marson, R. L., Anderson, J. A. & Glotzer, S. C. GPU accelerated Dis-
crete Element Method (DEM) molecular dynamics for conservative, faceted particle
simulations. Journal of Computational Physics 334, 460–467. ISSN: 10902716 (Apr.
2017).

137. Oliphant, T. E. A guide to NumPy (Trelgol Publishing, 2006).

138. Vo, T. & Glotzer, S. C. Principle of corresponding states for hard polyhedron fluids.
Molecular Physics 117, 3518–3526. ISSN: 13623028 (Dec. 2019).

139. Lu, F. et al. Unusual packing of soft-shelled nanocubes. Science Advances 5,
eaaw2399. ISSN: 23752548 (May 2019).

140. Den Bergen, G. V. A Fast and Robust GJK Implementation for Collision Detection
of Convex Objects. Journal of Graphics Tools 4, 7–25. ISSN: 1086-7651 (Jan. 1999).

141. Van den Bergen, G. J. A. Collison detection in interactive 3D environments 277.
ISBN: 9780080494234 (Elsevier, 2004).

142. Gilbert, E. G., Johnson, D. W. & Keerthi, S. S. A Fast Procedure for Computing the
Distance Between Complex Objects in Three-Dimensional Space. IEEE Journal on
Robotics and Automation 4, 193–203. ISSN: 08824967 (1988).

143. Gilbert, E. G. & Foo, C. P. Computing the Distance Between General Convex Objects
in Three-Dimensional Space 1990.

144. Montanari, M., Petrinic, N. & Barbieri, E. Improving the GJK Algorithm for Faster
and More Reliable Distance Queries Between Convex Objects. ACM Transactions on
Graphics 36, 1. ISSN: 07300301 (June 2017).

145. Larsen, P. M., Schmidt, S. & Schiøtz, J. Robust structural identification via polyhedral
template matching. Modelling and Simulation in Materials Science and Engineering
24, 055007. ISSN: 1361651X (May 2016).

138

http://aip.scitation.org/doi/10.1063/1.1730376
http://aip.scitation.org/doi/10.1063/1.1730376
http://www.icevirtuallibrary.com/doi/10.1680/geot.1979.29.1.47
http://www.icevirtuallibrary.com/doi/10.1680/geot.1979.29.1.47


146. Gottschalk, S., Lin, M. C. & Manocha, D. OBB tree: A hierarchical structure for rapid
interference detection in Proceedings of the 23rd Annual Conference on Computer
Graphics and Interactive Techniques, SIGGRAPH 1996 (Association for Computing
Machinery, Inc, Aug. 1996), 171–180. ISBN: 0897917464.

147. De Michele, C. Simulating hard rigid bodies. Journal of Computational Physics
229, 3276–3294. ISSN: 10902716. http://arxiv.org/abs/0903.1608%
20http://dx.doi.org/10.1016/j.jcp.2010.01.002 (May 2010).

148. Martyna, G. J., Tobias, D. J. & Klein, M. L. Constant pressure molecular dynamics
algorithms. The Journal of Chemical Physics 101, 4177–4189. ISSN: 00219606
(1994).

149. Ramasubramani, V., Vo, T., Anderson, J. A. & Glotzer, S. C. Brownian dynamics of
anisotropic particles. In Preparation.

150. Einstein, A. Über die von der molekularkinetischen Theorie der Wärme geforderte
Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. Annalen der Physik
322, 549–560. ISSN: 00033804. http://doi.wiley.com/10.1002/andp.
19053220806 (1905).

151. Von Smoluchowski, M. Zur kinetischen Theorie der Brownschen Molekularbewegung
und der Suspensionen. Annalen der Physik 326, 756–780. ISSN: 00033804. http:
//doi.wiley.com/10.1002/andp.19063261405 (1906).

152. Langevin, P. Sur la théorie du mouvement brownien. C. R. Acad. Sci. (Paris) 146,
530–533 (1908).

153. Uhlenbeck, G. E. & Ornstein, L. S. On the Theory of the Brownian Motion. Physical
Review 36, 823–841. ISSN: 0031-899X. https://link.aps.org/doi/10.
1103/PhysRev.36.823 (Sept. 1930).

154. Einstein, A. Zur Theorie der Brownschen Bewegung. Annalen der Physik 324,
371–381. ISSN: 15213889. https://onlinelibrary.wiley.com/doi/
full/10.1002/andp.19063240208%20https://onlinelibrary.

wiley.com/doi/abs/10.1002/andp.19063240208%20https://

onlinelibrary.wiley.com/doi/10.1002/andp.19063240208 (Jan.
1906).

155. Perrin, F. Mouvement brownien d’un ellipsoide-I. Dispersion diélectrique pour des
molécules ellipsoidales. J. Phys. Radium 5, pp. http://dx.doi.org/10.
1051/jphysrad:01934005010049700 (1934).

156. Perrin, F. Mouvement Brownien d’un ellipsoide (II). Rotation libre et dépolarisation
des fluorescences. Translation et diffusion de molécules ellipsoidales. J. Phys. Ra-
dium 7, 1–11. https://hal.archives-ouvertes.fr/jpa-00233379
(1936).

157. Brenner, H. Coupling between the translational and rotational brownian motions of
rigid particles of arbitrary shape I. Helicoidally isotropic particles. Journal of Colloid
Science 20, 104–122. ISSN: 00958522 (1965).

139

http://arxiv.org/abs/0903.1608%20http://dx.doi.org/10.1016/j.jcp.2010.01.002
http://arxiv.org/abs/0903.1608%20http://dx.doi.org/10.1016/j.jcp.2010.01.002
http://doi.wiley.com/10.1002/andp.19053220806
http://doi.wiley.com/10.1002/andp.19053220806
http://doi.wiley.com/10.1002/andp.19063261405
http://doi.wiley.com/10.1002/andp.19063261405
https://link.aps.org/doi/10.1103/PhysRev.36.823
https://link.aps.org/doi/10.1103/PhysRev.36.823
https://onlinelibrary.wiley.com/doi/full/10.1002/andp.19063240208%20https://onlinelibrary.wiley.com/doi/abs/10.1002/andp.19063240208%20https://onlinelibrary.wiley.com/doi/10.1002/andp.19063240208
https://onlinelibrary.wiley.com/doi/full/10.1002/andp.19063240208%20https://onlinelibrary.wiley.com/doi/abs/10.1002/andp.19063240208%20https://onlinelibrary.wiley.com/doi/10.1002/andp.19063240208
https://onlinelibrary.wiley.com/doi/full/10.1002/andp.19063240208%20https://onlinelibrary.wiley.com/doi/abs/10.1002/andp.19063240208%20https://onlinelibrary.wiley.com/doi/10.1002/andp.19063240208
https://onlinelibrary.wiley.com/doi/full/10.1002/andp.19063240208%20https://onlinelibrary.wiley.com/doi/abs/10.1002/andp.19063240208%20https://onlinelibrary.wiley.com/doi/10.1002/andp.19063240208
http://dx.doi.org/10.1051/jphysrad:01934005010049700
http://dx.doi.org/10.1051/jphysrad:01934005010049700
https://hal.archives-ouvertes.fr/jpa-00233379


158. Brenner, H. Coupling between the translational and rotational brownian motions of
rigid particles of arbitrary shape. II. General theory. Journal of Colloid And Interface
Science 23, 407–436. ISSN: 00219797 (1967).

159. Wegener, W. A. Diffusion coefficients for rigid macromolecules with irregular shapes
that allow rotational-translational coupling. Biopolymers 20, 303–326. ISSN: 0006-
3525. http://doi.wiley.com/10.1002/bip.1981.360200205 (Feb.
1981).

160. Harvey, S. & Garcia de la Torre, J. Coordinate Systems for Modeling the Hydro-
dynamic Resistance and Diffusion Coefficients of Irregularly Shaped Rigid Macro-
molecules. Macromolecules 13, 960–964. ISSN: 0024-9297. https://pubs.acs.
org/doi/abs/10.1021/ma60076a037 (July 1980).

161. Dickinson, E., Allison, S. A. & McCammon, J. A. Brownian dynamics with rotation-
translation coupling. Journal of the Chemical Society, Faraday Transactions 2: Molec-
ular and Chemical Physics 81, 591–601. ISSN: 03009238 (1985).

162. Kholodenko, A. L. & Douglas, J. F. Generalized Stokes-Einstein equation for spheri-
cal particle suspensions. Physical Review E 51, 1081–1090. ISSN: 1063651X (1995).

163. Han, Y. et al. Brownian a of an ellipsoid. Science 314, 626–630. ISSN: 00368075
(Oct. 2006).

164. Wojciechoski, K. W. & Frenkel, D. Tetratic Phase in the Planar Hard Square Sys-
tem? http://www.cmst.eu/articles/tetratic-phase-in-the-
planar-hard-square-system (2004).

165. Walsh, L. & Menon, N. Ordering and dynamics of vibrated hard squares. Journal
of Statistical Mechanics: Theory and Experiment 2016, 083302. https://doi.
org/10.1088%2F1742-5468%2F2016%2F08%2F083302 (Aug. 2016).

166. Gantapara, A. P., Qi, W. & Dijkstra, M. A novel chiral phase of achiral hard triangles
and an entropy-driven demixing of enantiomers. Soft Matter 11, 8684–8691. https:
//doi.org/10.1039%2Fc5sm01762a (2015).

167. Anderson, J. A., Antonaglia, J., Millan, J. A., Engel, M. & Glotzer, S. C. Shape and
symmetry determine two-dimensional melting transitions of hard regular polygons
Apr. 2017. arXiv: 1606.00687.

168. Wilson, G. et al. Best Practices for Scientific Computing. PLoS Biology 12. ISSN:
1545-7885 (Electronic)\r1544-9173 (Linking) (2014).

169. Fowler, M., Beck, K., Brant, J., Opdyke, W. & Roberts, D. Refactoring: improving
the design of existing code (Addison-Wesley Professional, 1999).

170. Fowler, M. & Highsmith, J. Manifesto for Agile Software Development http:
//agilemanifesto.org/ (2019).

171. Oliphant, T. E. Python for Scientific Computing. Computing in Science & Engineering
9, 10–20. http://ieeexplore.ieee.org/document/4160250/ (2007).

172. Towns, J. et al. XSEDE: Accelerating Scientific Discovery. Computing in Science &
Engineering 16, 62–74 (2014).

140

http://doi.wiley.com/10.1002/bip.1981.360200205
https://pubs.acs.org/doi/abs/10.1021/ma60076a037
https://pubs.acs.org/doi/abs/10.1021/ma60076a037
http://www.cmst.eu/articles/tetratic-phase-in-the-planar-hard-square-system
http://www.cmst.eu/articles/tetratic-phase-in-the-planar-hard-square-system
https://doi.org/10.1088/1742-5468/2016/08/083302
https://doi.org/10.1088/1742-5468/2016/08/083302
https://doi.org/10.1039/c5sm01762a
https://doi.org/10.1039/c5sm01762a
https://arxiv.org/abs/1606.00687
http://agilemanifesto.org/
http://agilemanifesto.org/
http://ieeexplore.ieee.org/document/4160250/


173. Martin, R. The Clean Architecture 2012. https://blog.8thlight.com/
uncle-bob/2012/08/13/the-clean-architecture.html.

174. Anderson, J. A., Jankowski, E., Grubb, T. L., Engel, M. & Glotzer, S. C. Massively
parallel monte carlo for many-particle simulations on GPUs. Journal of Computa-
tional Physics 254, 27–38. ISSN: 10902716. arXiv: 1211.1646 (Dec. 2013).

175. Plimpton, S. Fast Parallel Algorithms for Short-Range Molecular Dynamics. Journal
of Computational Physics 117, 1–19. ISSN: 0021-9991 (Mar. 1995).

176. Berendsen, H., van der Spoel, D. & van Drunen, R. GROMACS: A message-passing
parallel molecular dynamics implementation. Computer Physics Communications 91,
43–56. ISSN: 0010-4655 (Sept. 1995).

177. Humphrey, W., Dalke, A. & Schulten, K. {VMD} – {V}isual {M}olecular
{D}ynamics. Journal of Molecular Graphics 14, 33–38 (1996).

178. Foster, I. Globus online: Accelerating and democratizing science through cloud-based
services. IEEE Internet Computing 15, 70–73. ISSN: 10897801 (2011).

179. McGibbon, R. T. et al. MDTraj: A Modern Open Library for the Analysis of Molecu-
lar Dynamics Trajectories. Biophysical Journal 109, 1528–1532. ISSN: 0006-3495
(Oct. 2015).

180. Michaud-Agrawal, N., Denning, E. J., Woolf, T. B. & Beckstein, O. MDAnalysis: A
toolkit for the analysis of molecular dynamics simulations. Journal of Computational
Chemistry 32, 2319–2327. ISSN: 01928651 (July 2011).

181. Romo, T. & Grossfield, A. LOOS: An extensible platform for the structural analysis
of simulations in 2009 Annual International Conference of the IEEE Engineering in
Medicine and Biology Society (IEEE, Sept. 2009), 2332–2335.

182. Hinsen, K. The Molecular Modeling Toolkit: A New Approach to Molecular Simula-
tions. Journal of Computational Chemistry 21, 79–85. ISSN: 01928651 (2000).

183. Kabsch, W. & Sander, C. Dictionary of protein secondary structure: Pattern recog-
nition of hydrogen-bonded and geometrical features. Biopolymers 22, 2577–2637.
ISSN: 10970282 (Dec. 1983).

184. Reinhart, W. F. & Panagiotopoulos, A. Z. Crystal growth kinetics of triblock Janus
colloids. Journal of Chemical Physics 148, 124506. ISSN: 00219606 (Mar. 2018).

185. Howard, M. P. et al. Evaporation-induced assembly of colloidal crystals. Journal of
Chemical Physics 149, 094901. ISSN: 00219606 (Sept. 2018).

186. Spellings, M. & Glotzer, S. C. Machine learning for crystal identification and discov-
ery. AIChE Journal 64, 2198–2206. ISSN: 00011541 (June 2018).

187. Adorf, C. S., Antonaglia, J., Dshemuchadse, J. & Glotzer, S. C. Inverse design
of simple pair potentials for the self-assembly of complex structures. Journal of
Chemical Physics 149, 204102. ISSN: 00219606 (Nov. 2018).

188. Vansaders, B., Dshemuchadse, J. & Glotzer, S. C. Strain fields in repulsive colloidal
crystals. Physical Review Materials 2, 063604. ISSN: 24759953 (June 2018).

141

https://blog.8thlight.com/uncle-bob/2012/08/13/the-clean-architecture.html
https://blog.8thlight.com/uncle-bob/2012/08/13/the-clean-architecture.html
https://arxiv.org/abs/1211.1646


189. Antonaglia, J. A., van Anders, G. & Glotzer, S. C. Mapping Disorder in Entropically
Ordered Crystals. arXiv preprint arXiv:1803.05936 (Mar. 2018).

190. Du, C. X., van Anders, G., Newman, R. S. & Glotzer, S. C. Shape Driven Solid–Solid
Transitions in Colloids. Proceedings of the National Academy of Sciences of the
United States of America 114, E3892–E3899. ISSN: 1091-6490 (May 2016).

191. Harper, E. S., Marson, R. L., Anderson, J. A., Van Anders, G. & Glotzer, S. C. Shape
allophiles improve entropic assembly. Soft Matter 11, 7250–7256. ISSN: 17446848
(Sept. 2015).

192. Dice, B. et al. Analyzing Particle Systems for Machine Learning and Data Visual-
ization with freud in Proceedings of the 18th Python in Science Conference (2019),
27–33.

193. Roe, D. R. & Cheatham, T. E. PTRAJ and CPPTRAJ: Software for Processing and
Analysis of Molecular Dynamics Trajectory Data. Journal of Chemical Theory and
Computation 9, 3084–3095. ISSN: 1549-9618 (July 2013).

194. Case, D. A. et al. The Amber biomolecular simulation programs. Journal of Compu-
tational Chemistry 26, 1668–1688. ISSN: 0192-8651 (Dec. 2005).

195. Schrödinger, L. The PyMOL Molecular Graphics System, Version 2.3 Nov. 2019.

196. Yesylevskyy, S. O. Pteros: Fast and easy to use open-source C++ library for molecular
analysis. Journal of Computational Chemistry 33, 1632–1636. ISSN: 01928651 (July
2012).

197. Lab, G. GSD v2.0.0 2020. https://github.com/glotzerlab/gsd.

198. Lab, G. garnett v0.6.1 2020. https : / / github . com / glotzerlab /
garnett.

199. Behnel, S. et al. Cython: The Best of Both Worlds. Computing in Science & Engi-
neering 13, 31–39. ISSN: 1521-9615 (Mar. 2011).

200. Calandrini, V., Pellegrini, E., Calligari, P., Hinsen, K. & Kneller, G. nMoldyn -
Interfacing spectroscopic experiments, molecular dynamics simulations and mod-
els for time correlation functions. École thématique de la Société Française de la
Neutronique 12, 201–232. ISSN: 2107-7223 (June 2011).

201. Jones, E., Oliphant, T., Peterson, P., et al. SciPy: Open source scientific tools for
Python 2001. https://www.scipy.org/.

202. Intel. Intel Threading Building Blocks 2020. https://github.com/intel/
tbb.

203. Anaconda Software Distribution 2020. https://anaconda.com.

204. Glotzer Lab. freud Source Code Repository Ann Arbor, MI, 2020. https://
github.com/glotzerlab/freud.

205. Rycroft, C. Voro++: a three-dimensional Voronoi cell library in C++ tech. rep.
(Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA, Jan. 2009).

142

https://github.com/glotzerlab/gsd
https://github.com/glotzerlab/garnett
https://github.com/glotzerlab/garnett
https://www.scipy.org/
https://github.com/intel/tbb
https://github.com/intel/tbb
https://anaconda.com
https://github.com/glotzerlab/freud
https://github.com/glotzerlab/freud


206. Lazar, E. A., Han, J. & Srolovitz, D. J. Topological framework for local structure
analysis in condensed matter. Proceedings of the National Academy of Sciences of
the United States of America 112, E5769–E5776. ISSN: 10916490 (Oct. 2015).

207. Glotzer Lab. fresnel v0.11.0 2020. https://github.com/glotzerlab/
fresnel.

208. Steinhardt, P. J., Nelson, D. R. & Ronchetti, M. Bond-orientational order in liquids
and glasses. Physical Review B 28, 784–805 (1983).

209. Haji-Akbari, A. & Glotzer, S. C. Strong orientational coordinates and orientational
order parameters for symmetric objects. Journal of Physics A: Mathematical and
Theoretical 48, 485201. ISSN: 17518121 (2015).

210. Rein ten Wolde, P., Ruiz-Montero, M. J. & Frenkel, D. Numerical calculation of the
rate of crystal nucleation in a Lennard-Jones system at moderate undercooling. The
Journal of Chemical Physics 104, 9932–9947. ISSN: 0021-9606 (June 1996).

211. Ramachandran, P. & Varoquaux, G. Mayavi: 3D Visualization of Scientific Data.
Computing in Science & Engineering 13, 40–51 (Mar. 2011).

212. Harper, E. S., van Anders, G. & Glotzer, S. C. The entropic bond in colloidal crystals.
Proceedings of the National Academy of Sciences of the United States of America
116, 16703–16710. ISSN: 10916490 (Aug. 2019).

213. Dzugutov, M. Formation of a dodecagonal quasicrystalline phase in a simple
monatomic liquid. Physical Review Letters 70, 2924–2927. ISSN: 00319007 (May
1993).

214. Roth, J. W., Schilling, R. & Trebin, H. R. Nucleation of quasicrystals by rapid cooling
of a binary melt: A molecular-dynamics study. Physical Review B 51, 15833–15840.
ISSN: 01631829 (June 1995).

215. Roth, J. & Denton, A. R. Solid-phase structures of the Dzugutov pair potential.
Physical Review E 61, 6845–6857. ISSN: 1063-651X (June 2000).

216. Engel, M., Damasceno, P. F., Phillips, C. L. & Glotzer, S. C. Computational self-
assembly of a one-component icosahedral quasicrystal. Nature Materials 14, 109–16.
ISSN: 1476-1122 (Jan. 2015).

217. Keys, A. S., Iacovella, C. R. & Glotzer, S. C. Characterizing complex particle
morphologies through shape matching: Descriptors, applications, and algorithms.
Journal of Computational Physics 230, 6438–6463. ISSN: 0021-9991 (July 2011).

218. Karas, A. S., Dshemuchadse, J., van Anders, G. & Glotzer, S. C. Phase behavior
and design rules for plastic colloidal crystals of hard polyhedra via consideration of
directional entropic forces. Soft Matter. ISSN: 1744-683X (2019).

219. Brooks, B. R. et al. CHARMM: The biomolecular simulation program. Journal of
Computational Chemistry 30, 1545–1614. ISSN: 01928651 (July 2009).

220. Honeycutt, J. D. & Andersen, H. C. Molecular dynamics study of melting and freezing
of small Lennard-Jones clusters. The Journal of Physical Chemistry 91, 4950–4963.
ISSN: 0022-3654 (Sept. 1987).

143

https://github.com/glotzerlab/fresnel
https://github.com/glotzerlab/fresnel


221. Hagberg, A. A., Schult, D. A. & Swart, P. J. Exploring Network Structure, Dynamics,
and Function using NetworkX in Proceedings of the 7th Python in Science Conference
(eds Varoquaux, G., Vaught, T. & Millman, J.) (Pasadena, CA USA, 2008), 11–15.

144


	Dedication
	Acknowledgments
	Table of Contents
	List of Figures
	List of Appendices
	List of Abbreviations
	Abstract
	Introduction
	Coarse-grained particle simulation
	Modeling particle shape
	Outline of projects

	Crystallization of Colloidal Truncated Tetrahedra Driven by Entropic Forces
	Introduction
	Results and discussion
	Conclusion
	Methods

	Predictive Modeling of Protein Stability and Assembly
	Introduction
	Assembly of Supercharged GFP
	Using Machine Learning to Predict Protein Assembly

	A Mean-Field Approach to Simulating Anisotropic Particles
	Introduction
	Theory
	Implementation
	Results
	Conclusion

	Brownian Dynamics of Anisotropic Particles
	Introduction
	Results
	Conclusion

	How to Professionally Develop Reusable Scientific Software — and When Not To
	Introduction
	Developing computational solutions
	Principles, Tools and Practices
	Applying lazy refactoring
	The Glotzer Group Software Stack
	Training and Support
	Conclusions

	freud: A Software Suite for High Throughput Analysis of Particle Simulation Data
	Introduction
	Design
	Implementation
	Features
	Examples
	Conclusion

	Conclusions and Future Work
	Summary
	Outlook and Future Work

	Appendix
	Supplementary Information for Chapter 2
	Supplementary Information for Chapter 5
	Derivation of Anisotropic Langevin Equation
	General Solution of Anisotropic Langevin Equation

	Bibliography

