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Abstract 
 

Alicyclic amines are a prevalent motif present in a range of pharmaceutically relevant 

molecules. Conventional approaches for the synthesis of alicyclic amines require multi-step 

processes to build the alicyclic amine core. As such, accessing substituted derivatives requires 

laborious multi-step synthetic sequences. This thesis describes the research efforts centered on a 

complementary approach that utilizes late-stage C(sp3)–H functionalization at remote sites of 

alicyclic amines. This enables rapid access to a wide variety of substituted alicyclic amines in a 

single step from the pre-assembled core structure. 

Chapter 1 provides a detailed overview on the area of Pd-catalyzed C(sp3)–H 

functionalization of alicyclic amines. This chapter covers the major challenges in accessing remote 

C–H bonds of alicyclic amines as well as the various approaches others have developed to achieve 

remote C(sp3)–H functionalization of these motifs.  

Chapter 2 focuses on probing the mechanism of our previously reported Pd-catalyzed 

transannular C(sp3)–H arylation of alicyclic amines. The design, synthesis, characterization of PdII 

complexes that serve as models for catalytic intermediates in the reported methods is described in 

detail. With the synthesized PdII complexes, the transannular C–H activation step is investigated 

via H/D exchange studies. The mechanistic insights gained from these H/D exchange studies are 

reviewed. 

Chapter 3 explores the reactivity of our synthesized PdII complex towards oxidation. Our 

efforts to achieve a variety of transannular functionalizations with a diverse set of oxidants is 

described. Also detailed is the development of a practical 2-step 1-pot approach for the in situ 



 xv 

assembly of the PdII complex followed by transannular functionalization. The translation of this 

stochiometric method to catalysis is also reported. 

Chapter 4 covers our efforts to target multiple remote C–H sites of alicyclic amines core 

via our established Pd-catalyzed transannular C–H activation. The development of these catalytic 

transformations is described in detail. An in-depth investigation of this transformation is also 

conducted through the synthesis, isolation and study of reactive Pd intermediates.  

Chapter 5 presents a new direction moving from Pd- to Ni-catalyzed methods. This chapter 

aims to understand the ligand effects present in recent methodologies that merge photoredox and 

Ni catalysis to achieve C–C cross-couplings. Several aminoquinoline derivatives are synthesized, 

characterized, and tested as viable ligands in the reported transformations. The synthesis, isolation, 

and characterization of reactive NiII aminoquinoline intermediates are also discussed. Preliminary 

results and future directions are presented in this chapter.  

 



 1 

Chapter 1  Introduction 
 

1.1 Importance of Late-Stage C-H Functionalization for Drug Discovery 

 The path to discovering a lead pharmaceutical drug candidate is a labor- and time- intensive 

process.1 Identification of a lead compound typically involves synthesizing and characterizing a 

library of drug candidates. These candidates are then used for validation, optimization, screening 

and assays for therapeutic efficacy (Figure 1.1). Automation for screening the candidates has 

largely accelerated the testing process; however, the timeline for the identification of a lead 

molecule can be prolonged by the lengthy syntheses required to make thousands of compounds 

and derivatives.1,2 Further, accessing substituted derivatives of complex molecules can require 

multi-step processes to generate the core of the molecule.3 As such, it is of high interest to develop 

synthetic methods that enable the rapid late-stage derivatization of pharmaceutically relevant 

motifs. A field dedicated to streamlining synthetic strategies is C-H bond functionalization.4 

drug 
discovery

preclinical
trials

clinical 
trials

FDA 
approved

10, 000 
compounds 

250 
compounds 

5 
compounds 

1 
compound 

Figure 1.1 Number of Compounds Synthesized and Screened in Drug Development Process 
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1.2 Pd-Catalyzed C(sp2)-H and C(sp3)-H Functionalization 

C-H bond functionalization entails the development of reactions and transition metal 

catalyst systems that selectively transform a C-H bond of a complex molecule to a desired C-O, 

C-X (X = halide), C-N, C-S or C-C bond.5 In the simplest terms, the C-H bond functionalization 

pathway involves a transition metal (i.e., Ru, Rh, Ir, Pd) that can promote (i) C-H activation 

followed by (ii) functionalization of the resulting reactive intermediate.6 The following discussion 

will focus on the use of divalent Pd as the metal catalyst for C-H functionalization, as it pertains 

to the work described in Chapters 2-4 of this thesis. In Pd systems, the C-H activation step entails 

the C-H bond reacting with Pd to form a reactive Pd-C bond. At PdII centers this step is proposed 

to occur via a concerted-metalation deprotonation (CMD) pathway.7,8 Scheme 1.1 demonstrates 

the CMD pathway from a Pd-carboxylate source proceeding through the 6-membered transition 

state, 1-A, affording a concerted metalation and intramolecular deprotonation to generate a 

carboxylic acid (RCO2H) and the reactive Pd-C bond. In the presence of an oxidant and/or 

nucleophile, this reactive Pd-C bond can undergo functionalization to produce the C-FG (FG = 

functional group) bond. 

The key challenges associated with C-H bond functionalization reactions at PdII relate to  

Scheme 1.1 C–H Activation via CMD Pathway 

R3C [Pd]

X FG
oxidant/nucleophile

[Pd]
catalyst

(i) (ii)

R3C [PdII]

R3C H R3C FG

OH

R
O

Pd(OCOR)2

HOCOR

X FG

CMD transition 
state

1-A



 3 

(a) the reactivity of the C-H bonds and (b) site selectivity.6 Firstly, to compare the reactivity of 

C(sp2)-H and C(sp3)-H bonds at PdII centers, we can explore their acidities, since the CMD 

pathway fundamentally involves a deprotonation event. Generally, the pKa of C(sp2)-H bonds are 

significantly more acidic (pKa of benzene ~ 43) than unactivated C(sp3)-H bonds (pKa > 50).9 The 

more acidic C(sp2)-H bond is thermodynamically preferred for C-H activation compared to less 

acidic C(sp3)-H bond. As such, less acidic substrates are typically more challenging to activate at 

PdII centers via CMD pathways. Another challenge for C-H bond functionalization reactions is 

site selectivity. As expected, for a simple substrate with one reactive C-H bond, site selectivity is 

not a concern. However, the introduction of a highly decorated molecule with various C(sp2)-H 

and C(sp3)-H bonds open the doors to unselective and promiscuous C-H functionalizations. 

Scheme 1.2 Directed Pd-Catalyzed C–H Activation 

 

A strategy that has been used to address challenges associated with both reactivity and site 

selectivity challenges in C-H functionalization reactions since the mid-1990’s is the utilization of 

directing groups.10 The directing group approach involves tethering a ligand (i.e., directing group, 

DG) to the C-H bond containing substrate. This ligand can then coordinate to Pd, bringing the 

C-H bond of interest in close proximity to the catalyst center, thus promoting a selective C-H 

activation and formation of palladacycle 2-B (Scheme 1.2).6,11 Common directing groups for Pd 

typically consist of Lewis basic nitrogen and oxygen coordinating moieties. Specific examples of 

directing groups include amides, imines, nitriles, ketones, carboxylic acids, and heterocycles.12 

[Pd]
catalyst

[Pd]

R2C H

DG

R2C H

DG
[Pd]

CR2

DG

coordination activationC H

H

DG = directing group
 2-B
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While these directing groups all are monodentate, there are also numerous examples of bidentate 

directing groups such as bipyridines and aminoquinolines.11,13 

The utilization of directing groups for the development of Pd-catalyzed C(sp2)-H 

functionalization reactions is well-established. Yu and coworkers from the Scripps Research 

Institute highlight the utility of directing groups by enabling carboxylic acids and amides as 

directing groups to lead Pd to the desired ortho-position, despite the possibility for electrophilic 

aromatic substitution reactivity and presence of similar C(sp2)-H bonds (Scheme 1.3).14 Hence, 

by harnessing the power of directing groups, selective ortho-C(sp2)-H functionalizations of 

benzene derivatives can be achieved with various oxidants.  

Scheme 1.3 Diverse C(sp2)-H Functionalizations Enabled by Directed Pd-catalysis  

 

1.3 Directed Pd-Catalyzed C(sp3)-H Functionalization of Alicyclic Amines 

The aforementioned reports of directed Pd-catalyzed C(sp2)-H functionalization have set 

the groundwork for moving to more challenging C(sp3)-H substrates. One pharmaceutically 

relevant motif bearing C(sp3)-H bonds is piperidine, a six-membered saturated nitrogen-

containing heterocycle. Piperidine belongs to a class of alicyclic amine molecules that are among 

the most frequently encountered structures in pharmaceutical agents, with representative examples 

cat. Pd

cat. Pd
B2Pin2
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cat. Pd
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BPin
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F
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NR2
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OH
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I

DG

H

F+

BzO NR2
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shown in Figure 1.2.15 A closer analysis of piperidine-containing pharmaceuticals shows that 

substitution is most common at the a-C(2) and g-C(4) positions.16 Due to the highly acidic nature 

of the Ca-H bond (pKa ~ 16 when nitrogen is oxidized to a radical cation)17 because of its’ 

proximity to nitrogen, there is an exhaustive list of reports that selectively achieve Ca-H bond 

functionalization of alicyclic amines such as piperidine.18 In contrast, the bonds further from 

nitrogen (i.e., Cb-H and Cg-H) are less acidic and thus, comparatively inert. As such, late-stage 

methods to selectively functionalize the remote C-H bonds of alicyclic amines remain limited.  

Figure 1.2 Alicyclic Amine Core Motif Present in Pharmaceuticals 

 

1.4 Challenges in Remote C(sp3)-H Functionalization of Alicyclic Amines 

 As alluded to previously, developing methods for remote C-H bond functionalization of 

alicyclic amines is highly challenging. In the presence of transition metals and/or oxidants 

(conditions required to promote C-H activation), alicyclic amines can readily undergo many other 

reactions as shown in Scheme 1.4. First, the highly acidic nature of the Ca–H bond, as mentioned 

earlier, can lead to a-oxidation (Scheme 1.4a).19 Although this reactivity is useful when selectively 

targeting the a-site, it is problematic when targeting the inert remote C–H sites in terms of relative  
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Scheme 1.4 Side Reactions Preventing Remote C–H Functionalization   

 

rates. In other words, the rate of Ca–H functionalization can outcompete the rate of Cb–H/Cg–H 

functionalization. Additionally, the nitrogen of the amine can promote a number of other 

deleterious side reactions, including dealkylation (Scheme 1.4b), binding of Pd (Scheme 1.4c), and 

N-oxidation (Scheme 1.4d).19 It is evident that in order to achieve selective remote 

functionalization of alicyclic amines, the rate of remote Cb–H/Cg–H functionalization has to 

outcompete undesired Ca–H oxidation/N-oxidation. 

1.5 Directing Groups for Selective Remote Pd-Catalyzed C-H Functionalization of 

Alicyclic Amines 

 The concept of directing groups as employed in Pd-catalyzed C(sp2)–H functionalization 

reactions has been revisited for selective functionalization of remote C(sp3)–H bonds of alicyclic 

amines. Other strategies to achieve this include the blocking the Ca-H sites20 as well as protonation 

of the amine nitrogen21 to deactivate proximal C-H sites. As it relates to this thesis, we will focus 

on the utilization of directing group strategies to achieve Cb–H/Cg–H functionalization. The 
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directing group approach is essential in this case as it can guide Pd to the remote C–H sites to yield 

selective remote C–H functionalization over Ca–H oxidation/N-oxidation.  

Scheme 1.5 Examples of Directed Pd-Catalyzed Remote C–H Functionalization 

 

 In 2015, Gaunt and coworkers from University of Cambridge demonstrated the ability of 

the amine ring nitrogen to act as a directing group to activate the remote C(sp3)–H bonds. These 
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tethering an amide to the amine nitrogen.24 This bidentate directing group enabled Pd-catalyzed 

remote Cg–H arylation via a transannular C–H activation, which similar to the other examples, 

forms a 5-membered palladacycle 3-DG (Scheme 1.5c) that then undergoes functionalization. This 

method is attractive in that it allows for the further functionalization of the alicyclic amines, as all 

sites are open due to the directing group on the nitrogen amine.   

 Chapters 2, 3, and 4 are centered on understanding and expanding upon our group’s 

previously reported Pd-catalyzed transannular C–H arylation methodology (Scheme 1.6a). 

Specifically, Chapter 2 describes the design and development of PdII–amine complexes to 

investigate the proposed transannular C–H activation intermediate 3-DG via hydrogen/deuterium 

exchange (Scheme 1.6b). Chapter 3 leverages these PdII–amine complexes to achieve diverse 

transannular C(sp3)–H functionalizations (Scheme 1.6c). Finally, Chapter 4 exploits the 

transannular C–H activation palladacycle 3-DG to develop a Pd-catalyzed Cb–H/Cg–H multi-

functionalization of bicyclic amines (Scheme 1.6d).  

Scheme 1.6 Summary of Thesis Chapters 2, 3, and 4 
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1.6 Recent Advances in Ni-Catalyzed Cross-Couplings 

 This section entails the topic to be discussed in Chapter 5 of this thesis, which takes a leap 

on the periodic table from Pd, the central theme of the previous Chapters 2-4, to Ni. Throughout 

the years, Ni has shown the ability to serve as a valuable transition metal catalyst for numerous 

transformations.25 Moreover, as the cost of Pd increases, Ni remains inexpensive and shows high 

sustainability making it an attractive catalyst.26,27 However, the differences between Pd and Ni 

does not only lie in their monetary values, but more importantly on their reactivity differences. In 

general, Pd catalysis is limited to two-electron redox events, where the oxidation state of Pd ranges 

from +0, +II, and +IV. However, Ni has the ability to undergo one- or two-electron redox events 

creating numerous possible intermediates in the +0, +I, +II, +III, and +IV oxidation states. This 

redox flexibility provides Ni the ability to uniquely engage in different and often more challenging 

bond forming reactions than Pd.28 Notable examples include C–C cross-couplings reactions and 

more recently, metallaphotoredox enabled cross-couplings.29,30 

Figure 1.3 Ni Catalysis Mechanistic Manifolds 

 

 With an increase in Ni-mediated reactions, there is a range of mechanistic manifolds that 

are proposed due the unique one- and two- electron redox events of Ni. The mechanistic manifolds 

most commonly proposed for Ni-catalyzed cross-couplings is the Ni0/NiII catalytic cycle, in which 

Ni species in both oxidation states are well-characterized (Figure 1.3).31 However, recently, a 

number of groups have developed Ni-catalyzed methods that invoke a NiII/NiIV and NiII/NiIII/NiIV 

catalytic cycle (Figure 1.3).32,33 However, these high-valent Ni intermediates are poorly 
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characterized and, as such, their reactivities and roles in catalysis are less well understood. This is 

an underexplored area in the field of transition-metal cross-couplings and, as such, the putative 

high-valent NiIII and NiIV intermediates as well as the role of additives (i.e., ligands, oxidants) in 

the reactions has not been well-studied.  

 The importance of understanding the complicated Ni catalytic manifolds is highlighted by 

the strong ligand effects observed in dual Ni photoredox reactions (Scheme 1.7). Fu, MacMillan, 

and Molander showcase successful C–C cross-coupling enabled by the merger of Ni and 

photoredox catalysis through a proposed NiIII intermediate.34,35 They observe that the reaction 

yields are dramatically altered based on the selection of ligand for Ni. In the presence of L2-donor 

ligands, trace yields are obtained while LX-donor ligands afford much higher yields. Due to the 

insufficient fundamental mechanistic understanding at high-valent Ni centers and how ligands can 

affect the Ni center, these effects are not understood and remain a question throughout the 

chemistry community.  

Scheme 1.7 Ligand Effects in Dual Ni Photoredox Catalysis Examples  
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 Chapter 5 will describe our approach to investigate the strong LX-type ligand effects 

reported in the aforementioned photoredox and Ni-catalyzed reactions. Additionally, this chapter 

will provide preliminary results on the path to mechanistic elucidation of the high-valent Ni 

intermediates.  
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Chapter 2  Model Complexes for the Palladium-Catalyzed Transannular Cg–H 
Functionalization of Alicyclic Amines 

 
Note: This Chapter is based on work published in Aguilera, E. Y.; Sanford, M. S.* “Model 
Complexes for the Palladium-Catalyzed Transannular C-H Functionalization of Alicyclic 
Amines” Organometallics 2019, 38, 138-142. 

2.1 Introduction 

 Alicyclic amines appear in a wide variety of biologically active molecules.1 As such, there 

is great interest in developing synthetic methods for the late-stage functionalization of these 

motifs.2 In 2016, our group reported the transannular Cg–H arylation of piperidines and other 

alicyclic amines (Scheme 2.1).3a This transformation is unusual in that it enables highly selective 

functionalization of the Cg–H bond in lieu of the more activated Ca–H bonds at the 2-position.4 In 

our original report,3a we proposed that this selectivity derives from bidentate coordination of the 

amine nitrogen and the tethered amide5 of substrate I at PdII to form an intermediate of general 

structure II (Scheme 2.1, step i).3a Subsequent isomerization to the boat conformer then positions  

Scheme 2.1 Proposed Mechanism for the Transannular Cg-H Arylation of Alicyclic Amines 
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the Cg–H bond proximal to the PdII center for C(sp3)–H activation to form III (step ii), followed 

by functionalization with ArI and ligand exchange to release the product (step iii). 

 The proposed transannular C(sp3)–H activation (step ii) is unusual in that it forms a strained 

bicyclo[2.2.1]palladacyclic intermediate (III). Only one example of this type of structure has been 

generated and characterized from a C–H activation reaction.6 Recent DFT calculations suggest that 

complex III is approximately 20 kcal/mol uphill from II,7 indicating that this transannular C(sp3)–

H activation at PdII is highly thermodynamically unfavorable. This stands in contrast to the vast 

majority of reported C(sp3)–H cyclopalladation reactions, which generally produce isolable 5-

membered palladacycles under relatively mild conditions.8,9 

 We sought to interrogate the C–H activation step of the proposed catalytic cycle by 

isolating and studying key intermediates along this pathway. Herein we demonstrate that amines 

of general structure I bind to Pd in a bidentate fashion to form isolable intermediates in which the 

Cg–H bond is in close proximity to both the Pd center and the carboxylate ligand. Furthermore, we 

show that these complexes react stoichiometrically with aryl iodides to afford C–H arylation 

products. Finally, we demonstrate that these synthesized PdII complexes participate in H/D 

exchange with d10-tert-butanol at temperatures as low as 40 ºC. Overall these studies support the 

mechanism proposed in Scheme 2.1 and provide new insights into the transannular C(sp3)–H 

activation step of this catalytic cycle. 

2.2 Results and Discussion 

Part A. Studying Pd-catalyzed Transannular C–H Arylation/Activation 

Design and Synthesis of PdII Complexes 

 We initially focused on synthesizing the putative catalytic intermediate I. Two different 

alicyclic amine cores were selected for these studies, 3-azabicyclo[3.1.0]hexane (A) and 2,3,4,5-
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tetrahydro-1H-1,5-methano-3-benzazepine (B), as both are effective substrates for the catalytic C–

H arylation reaction.3a Under a variety of conditions, the reaction between A/B and various PdII 

sources yielded complex mixtures of products that could not be definitively isolated or 

characterized (Scheme 2.2). We hypothesized that complex II might be stabilized by the 

incorporation of a monodentate pyridine ligand to generate the pyridine adduct 2.  

Scheme 2.2 Attempted Synthesis of II and Hypothesis for Stabilization with Pyridine 
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H activation is expected to take place. The reactive C(sp3)–H (H1) is 3.411 Å from the C=O of the 

pivalate ligand and 4.421 Å from the Pd center in complex 1-A1 (Table 2.1). 

Scheme 2.3 Synthesis of Complex Isomers 1-A1 and 1-A2 

 

Figure 2.1 X-Ray Crystal Structures of 1-A1, 1-A2 and 1-B 
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transannular C–H bond (H1) pointing towards the Pd center and pivalate ligand (Figure 2.1). In 

this case the Pd–H1 and O2–H1 distances are even shorter at 3.694 Å, and 2.711 Å, respectively 

(Table 2.1).  

Scheme 2.4 Synthesis of Complex 1-B 

 

 Reactivity of PdII Complexes Towards Arylation 

 We next explored the reactivity of complexes 1-A and 1-B towards C–H activation and 

functionalization with PhI (Scheme 2.1, steps ii and iii). A key question for these studies is whether 

1 serves as a viable model system for catalytic intermediate II, or whether the presence of the 

pyridine impedes C–H activation and/or functionalization. To test this, each complex was treated 

with PhI under catalytically relevant conditions (3 equiv of CsOPiv, 3 equiv of PhI in t-amyl 

alcohol at 100 ºC for 18 h).3b The reactions were then cooled to room temperature, quenched with 

hydrazine to cleave the ligands and precipitate palladium black, and analyzed by GC to quantify 

the Cg–H arylation products (Scheme 2.5). The reactions of 1-A and 1-B afforded the C–H arylat- 

Scheme 2.5 Complexes 1-A and 1-B under Arylation Conditions 
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ion products 2-A and 2-B in 98% and 72% yield, respectively, confirming that these model 

complexes are competent for the C–H activation/arylation sequence. 

H/D Exchange Studies with PdII Complexes 

 As discussed above, DFT calculations suggest that transannular C(sp3)–H activation at II 

to form s-alkyl complex III is highly thermodynamically unfavorable.7 Consistent with these 

calculations, attempts to observe or isolate palladacyclic analogues of III under a variety of 

conditions (with and without added base) were unsuccessful. Thus, we turned to 

hydrogen/deuterium (H/D) exchange experiments11 as a method to interrogate C–H activation at 

1-A and 1-B. H/D exchange studies were carried out using the solvent d10-tert-butanol (C4D9OD) 

as the source of deuterium. Complexes 1-A and 1-B were initially heated at 100 ºC for 18 h in 

C4D9OD in the presence of 3 equiv of CsOPiv. The reactions were then cooled to room 

temperature, quenched with hydrazine, and analyzed by GCMS as well as 1H and 2H NMR 

spectroscopy. Both 1-A and 1-B reacted under these conditions to form mono-deuterated amine 

products with 65% and 81% deuterium incorporation, respectively (Table 2.2, entries 1 and 7). 

NMR spectroscopic analysis of the products showed that the deuterium is site- and 

stereoselectively incorporated at the expected transannular site on the amine core to form A-d and 

B-d. These results demonstrate that transannular C–H activation is reversible and that it occurs in 

the absence of the aryl iodide oxidant. 

 We next probed the role of CsOPiv in this H/D exchange process. Literature studies suggest 

that C–H activation at PdII–carboxylate complexes proceeds via a concerted-metalation 

deprotonation (CMD) pathway, in which the carboxylate ligand acts as an intramolecular base 

(TS-I in Figure 2.2).6,12 As such, we hypothesized that the added carboxylate should not be 
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required for the H/D exchange. Indeed, nearly identical yields of A-d and B-d were obtained under 

otherwise identical conditions, but in the absence of CsOPiv (Table 2.2, entries 2 and 8). 

Table 2.2 H/D Exchange at Complexes 1-A and 1-B 
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 The CMD transition state TS-I requires an open coordination site for interaction between 

the Cg–H bond and the Pd center. As such, this pathway is expected to require pyridine dissociation 

from complexes 1 prior to C–H activation. To test for this possibility, we next examined whether 

the addition of exogeneous pyridine inhibits H/D exchange in these systems. Consistent with this 

proposal, the addition of 2 equiv of pyridine resulted in a significant decrease in the % deuterium 

incorporation for both amines (Table 2.2, compare entries 2 and 8 to entries 3 and 9, respectively).  

Figure 2.2 Proposed Transition State for C–H Activation via CMD Mechanism 

  

 Next, we investigated the temperature required for transannular C–H activation in these 

systems. As shown in Table 2.2, H/D exchange was observed after 18 h at temperatures as low as 
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Scheme 2.6 Pd-Catalyzed H/D Exchange  
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Scheme 2.7 Synthesis of Complex 1-C via Ligand Exchange 
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development of new, mild methods for the late-stage functionalization of alicyclic amine 

substrates. 

2.4 Experimental Procedures and Characterization of Compounds 

2.4.1 General Procedures, Materials and Methods 

General Procedures 

 NMR spectra were obtained on a Varian VNMR 700 (699.76 MHz for 1H and 2H; 175.95 

MHz for 13C) or a Varian VNMR 500 (500.09 MHz for 1H; 470.56 MHz for 19F) spectrometer. 1H, 

2H and, 13C chemical shifts are reported in parts per million (ppm) relative to TMS, with the 

residual solvent peak used as an internal reference. 19F chemical shifts are reported in ppm and are 

referenced on a unified scale to the frequency of the residual solvent peak in the 1H NMR spectrum. 

Abbreviations used in the NMR data: s, singlet; d, doublet; t, triplet; q, quartet; dt, doublet of 

triplets; bq, broad quartet. Elemental analyses were conducted by Midwest Microlabs. X-ray 

crystallographic data were collected on a Bruker SMART APEX-I CCD-based X-ray 

diffractometer. Flash chromatography was conducted using a Biotage Isolera One system with 

cartridges containing high performance silica gel. Melting points were conducted on a OptiMelt 

automated melting point system. 

Materials and Methods 

 Pd(OAc)2 was purchased from Pressure Chemical Company. Cesium pivalate and 

iodobenzene were purchased from Aldrich. tert-Amyl alcohol and 4-iodoanisole were purchased 

from Acros Organics. Pyridine, dichloromethane, and hexane were obtained from Fisher. 

Deuterated solvents were purchased from Cambridge Isotope Laboratories. Hydrazine 

monohydrate was purchased from Alfa Aesar. All commercial reagents were stored under ambient 

conditions unless otherwise stated. All commercial reagents were used without further 
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purification/drying unless explicitly stated in the experimental section. All reactions were 

performed in air unless stated in experimental section. Reaction vessels were sealed with either a 

septum (flask) or a Teflon-lined cap (4 mL, 10 mL or 20 mL vial) with Teflon tape wrapped around 

the cap. 

2.4.2 Synthesis and Characterization of Starting Material 

 

Synthesis of S3: A round bottomed flask was charged with 2,3,5,6-tetrafluoro-4-

(trifluoromethyl)aniline S2 (2.50 g, 10.7 mmol, 1.0 equiv) and anhydrous toluene (30 mL). To this 
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condenser was attached and capped with a drying tube packed with cotton and K2CO3. The reaction 

mixture was heated at 140 °C for 18 h. The resulting mixture was allowed to cool to room 

temperature and then concentrated under reduced pressure. The solid was recrystallized from hot 
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literature.3 
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anhydrous acetonitrile (13 mL). The vial was capped and heated at 60 °C. After 18 h, the reaction 

was cooled to room temperature and filtered through silica gel, and the silica gel was washed with 

ethyl acetate. The filtrate was concentrated under reduced pressure. The crude material was 

purified by flash chromatography on silica gel (gradient elution from 0% to 20% EtOAc in 

hexanes). The product (A) was obtained as a white solid (700 mg, 72% yield). The NMR data for 

the product match those reported in the literature.3a 

 

Synthesis of B: A 20 mL vial was charged with S5 (500 mg, 2.62 mmol, 1 equiv), a-

bromopropanamide S3 (980 mg, 2.62 mmol, 1.0 equiv), K2CO3 (1.16 g, 8.38 mmol, 3.2 equiv), 

and NaI (196 mg, 1.31 mmol, 0.5 equiv), followed by the addition of anhydrous acetonitrile (13 

mL). The vial was capped, and heated at 60 °C. After 18 h, the reaction was cooled to room 

temperature and filtered through silica gel, and the silica gel was washed with ethyl acetate.  The 

filtrate was concentrated under reduced pressure. The crude material was purified by flash 

chromatography on silica gel (gradient elution from 0% to 20% EtOAc in hexanes). The product 

(B) was obtained as a white solid (840 mg, 70% yield). The NMR data for the product match those 

reported in the literature.3 

2.4.3 Synthesis and Characterization of Pd Complexes 
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Synthesis of 1-A: A 20 mL vial was charged with A (100 mg, 0.26 mmol, 1.0 equiv), Pd(OAc)2 

(58.5 mg, 0.26 mmol, 1.0 equiv), and cesium pivalate (182 mg, 0.78 mmol, 3.0 equiv) followed 

by the addition of tert-amyl alcohol (~4 mL). The vial was capped, and the mixture was stirred at 

room temperature to allow for the cesium pivalate to solubilize. After 5 min, the vial was opened 

and pyridine (42 μL, 0.52 mmol, 2.0 equiv) was added. The vial was sealed and heated at 100 °C. 

After 2 h, the reaction was cooled to room temperature, and the solvent was removed under 

vacuum. The resulting solid was dissolved in dichloromethane (~10 mL), and the solution was 

filtered through a plug of Celite. The filtrate was concentrated under vacuum, the resulting solid 

was dissolved in a minimum quantity of dichloromethane, and hexane (~15 mL) was added. This 

solution was filtered through a plug of Celite, and the solvent was removed under vacuum (repeat 

twice). The resulting dark yellow solid was washed with cold hexanes to yield 1-A as a light yellow 

solid (148 mg, 85% yield). The product was obtained as a 1:1 mixture of two isomers: 1-A1 and 

1-A2. The 1H NMR spectrum of this mixture of isomers is in Figure 2.3. COSY and HSQC 

experiments were conducted to identify the protons corresponding to each of the two isomers, and 

these are labelled C and D in the NMR spectrum above. However, the specific isomer associated 

with each set of peaks could not be definitively identified by NMR spectroscopy. 
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Figure 2.3 1H NMR Spectrum of Complex 1-A1 and 1-A2 in CDCl3 (500 MHz) 

 

1H NMR (500 MHz, CDCl3, 23 ºC): δ 8.54 (d, JHH = 5.2 Hz, 2H), 8.44 (d, JHH = 5.2 Hz, 2H), 7.62 

(t, JHH = 7.1 Hz, 2H), 7.13 (q, JHH = 7.1 Hz, 4H), 3.73 (d, JHH = 14.1 Hz, 2H), 3.40 (dd, JHH = 14.1, 

3.0 Hz, 2H), 1.97 (app s, 2H, C), 1.67 (dt, JHH = 10.2, 3.0, 2H, D), 1.11 (q, JHH = 7.6 Hz, 1H, C), 

1.00 (q, JHH = 7.6 Hz, 1H, D), 0.93 (s, 6H), 0.89 (s, 9H), 0.78 (q, JHH = 4.4 Hz, 1H, D), 0.34 (q, 

JHH = 4.4 Hz, 1H, C). 

13C NMR (176 MHz, CDCl3, 23 ºC, mixture of isomers): δ 185.4, 185.0, 179.4, 152.0, 138.5, 

124.6, 73.6, 70.3, 58.3, 39.0, 28.0, 24.8, 21.9, 20.8, 18.9. 

19F NMR (470 MHz, CDCl3, 23 ºC): δ –56.1 (t, 3H), –143.5 (m, 2H), –143.6 (m, 2H). 

HRMS-electrospray (m/z): [M]+ calcd. for C21H19F7N3O2Pd (1-A minus pivalate ligand), 

568.0451; found, 568.0452.  
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Elemental Analysis calcd for C26H28F7N3O3Pd, C: 46.61; H: 4.21; N: 6.27; found, C: 46.52; H: 

4.12; N: 6.03. 

 

Synthesis of 1-B: A 20 mL vial was charged with B (100 mg, 0.22 mmol, 1.0 equiv), Pd(OAc)2 

(50.0 mg, 0.22 mmol, 1.0 equiv), and cesium pivalate (155 mg, 0.66 mmol, 3.0 equiv) followed 

by the addition of tert-amyl alcohol (~4 mL). The vial was capped, and the mixture was stirred at 

room temperature to allow for the cesium pivalate to solubilize. After 5 min, the vial was opened 

and pyridine (36 μL, 0.44 mmol, 2.0 equiv) was added. The reaction vial was sealed and heated at 

100 °C. After 2 h, the reaction was cooled, and solvent was removed under vacuum. The resulting 

solid was dissolved in dichloromethane (~10 mL), and this solution was filtered through a plug of 

Celite. The filtrate was concentrated under vacuum. The resulting solid was then dissolved in a 

minimum quantity of dichloromethane, and hexane (~15 mL) was added. This solution was filtered 

through a plug of Celite and then through a plug of silica gel that was further washed with ethyl 

acetate (50 mL). The solvent was removed under vacuum, and the resulting yellow solid was 

washed with cold hexanes to yield 1-B as a light yellow solid (63 mg, 40% yield). NMR 

spectroscopic analysis at room temperature shows a single isomer (Figure 2.4). 
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Figure 2.4 1H NMR Spectrum of Complex 1-B in CDCl3 (700 MHz) 

 

1H NMR (700 MHz, DCl3, 23 ºC): δ 8.53 (d, JHH = 5.7 Hz, 2H), 7.63 (t, JHH = 7.7 Hz, 1H), 7.17 

(app s, 6H), 4.67 (app s, 1H), 3.18 (t, JHH = 5.0 Hz, 2H), 2.95 (d, JHH = 13.4 Hz, 2H), 2.80 (d, JHH 

= 10.5 Hz, 2H), 2.28 (dt, JHH = 10.5, 5.0 Hz, 1H), 1.33 (s, 6H), 0.99 (s, 9H). 

13C NMR (176 MHz, CDCl3, 23 ºC): δ 185.2, 179.4, 152.2, 146.4, 138.5, 127.9, 124.8, 123.0, 75.7, 

56.9, 39.9, 39.1, 35.3, 28.0. 

19F NMR (470 MHz, CDCl3, 23 ºC): δ –56.1 (t, 3H), –143.4 (m, 2H), –143.6 (m, 2H). 

HRMS-electrospray (m/z): [M]+ calcd. for C27H23F7N3OPd (1-B minus pivalate ligand), 644.0764; 

found, 644.0774. 

Elemental Analysis calcd for C32H32F7N3O3Pd, C: 51.52; H: 4.32; N: 5.63; found, C: 51.22; H: 

4.11; N: 5.45. 
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2.4.4 Arylation Reactions with Pd Complexes 

 

A 4 mL vial was charged with 1-A (10 mg, 0.015 mmol, 1.0 equiv), cesium pivalate (10.5 mg, 

0.045 mmol, 3.0 equiv), aryl iodide (5.0 μL, 0.045 mmol, 3.0 equiv), and tert-amyl alcohol (0.30 

mL). The vial was sealed with a Teflon-lined cap and heated at 100 °C. After 18 h, the reaction 

was cooled, diluted with EtOAc, and quenched with hydrazine (6 drops). The reaction was stirred 

at room temperature for 10 min. The resulting suspension was filtered through a plug of Celite and 

concentrated under vacuum. The product (2-A) was obtained in 98% yield as determined by gas 

chromatography with 1,3,5-trimethoxybenzene added as a standard. 

 

A 4 mL vial was charged with 1-B (10.0 mg, 0.0134 mmol, 1.0 equiv), cesium pivalate (9.4 mg, 

0.402 mmol, 3.0 equiv), aryl iodide (4.5 μL, 0.0402 mmol, 3.0 equiv), and tert-amyl alcohol (0.30 

mL). The vial was sealed with a Teflon-lined cap and heated at 100 °C. After 18 h, the reaction 

was cooled, diluted with EtOAc, and quenched with hydrazine (6 drops). This mixture was stirred 

at room temperature for 10 min. The resulting suspension was filtered through a plug of Celite and 

concentrated under vacuum. The product (2-B) was obtained in 72% yield as determined by gas 

chromatography with 1,3,5-trimethoxybenzene added as a standard. 
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2.4.5 Hydrogen/Deuterium Exchange with Pd Complexes 

 

A 10 mL vial was charged with 1-A (10 mg, 0.015 mmol, 1.0 equiv), cesium pivalate (9.4 mg, 

0.0402 mmol, 3.0 equiv), and C4D9OD (0.30 mL). The vial was sealed with a Teflon-lined cap and 

heated at 100 °C (or the appropriate temperature listed in Table 2.2). After 18 h, the reaction was 

cooled, diluted with EtOAc, and quenched with hydrazine (6 drops). This mixture was stirred at 

room temperature for 10 min. The resulting suspension was filtered through a plug of Celite and 

concentrated under vacuum. The product (A-d) was obtained without further purification as a 

white solid (65% deuterium incorporation at 100 ºC with CsOPiv added). The 1H and 2H NMR 

spectra are shown in Figure 2.5 (the star indicates the deuteration site). 

Figure 2.5 From Bottom to Top Spectra: 1H NMR Spectrum of A in CDCl3 (700 MHz). 1H 
NMR spectrum of A-d in CDCl3 (700 MHz). 2H NMR Spectrum of A-d in CHCl3 with 1 drop of 
CDCl3 (700 MHz) 
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HRMS-electrospray (m/z): [M]+ calcd. for C16H13D2F7N2O, 386.1198; found, 386.1217 

Melting point: 103-105 °C. 

 

A 10 mL vial was charged with 1-B (10.0 mg, 0.0134 mmol, 1.0 equiv), cesium pivalate (9.4 mg, 

0.0402 mmol, 3.0 equiv) an C4D9OD (0.30 mL). The vial was sealed with a Teflon-lined cap and 

heated at 100 °C. After 18 h, the reaction was cooled, diluted with EtOAc, and quenched with 

hydrazine (6 drops). This mixture was stirred at room temperature for 10 min. The resulting 

suspension was filtered through a plug of Celite and concentrated under vacuum. The product (B-

d) was obtained without further purification as a white solid (81% deuterium incorporation). 1H 

and 2H NMR spectrum shown in Figure 2.6 (star indicates deuteration site).  
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Figure 2.6 From Bottom to Top Spectra: 1H NMR Spectrum of B in CDCl3 (700 MHz). 1H NMR 
Spectrum of B-d in CDCl3 (700 MHz). 2H NMR Spectrum of B-d in CHCl3 with 1 drop of 

CDCl3 (700 MHz) 

 

HRMS-electrospray (m/z): [M]+ calcd. for C22H17D2F7N2O, 462.1511; found, 462.1522. 

Melting point: 115-117 °C 

2.4.6 X-Ray Crystallography Data 

X-Ray Crystallography Experimental Data of 1-A 



 37 

Figure 2.7 X-Ray Crystal Structure of Complex 1-A1 and 1-A2. Hydrogen Atoms expect H1 are 
Omitted for Clarity 

 

Yellow blocks of 1-A were grown by vapor diffusion of a dichloromethane/hexanes solution of 

the compound at 25 deg. C.  A crystal of dimensions 0.15 x 0.14 x 0.13 mm was mounted on a 

Rigaku AFC10K Saturn 944+ CCD-based X-ray diffractometer equipped with a low temperature 

device and Micromax-007HF Cu-target micro-focus rotating anode (λ = 1.54187 A) operated at 

1.2 kW power (40 kV, 30 mA).  The X-ray intensities were measured at 225(1) K with the detector 

placed at a distance 42.00 mm from the crystal.  A total of 2028 images were collected with an 

oscillation width of 1.0° in ω.  The exposure times were 1 sec. for the low angle images, 5 sec. for 

high angle.  Rigaku d*trek images were exported to CrysAlisPro for processing and corrected for 

absorption.  The integration of the data yielded a total of 41954 reflections to a maximum 2θ value 

of 138.61° of which 10145 were independent and 9929 were greater than 2σ(I).  The final cell 

constants (Table 2.3) were based on the xyz centroids of 26720 reflections above 10σ(I).  Analysis 

of the data showed negligible decay during data collection.  The structure was solved and refined 

with the Bruker SHELXTL (version 2016/6) software package, using the space group P1bar with 

Z = 4 for the formula C26H28N3O3F7Pd.  All non-hydrogen atoms were refined anisotropically 

with the hydrogen atoms placed in idealized positions.  Full matrix least-squares refinement based 

on F2 converged at R1 = 0.0449 and wR2 = 0.1193 [based on I > 2sigma(I)], R1 = 0.0457 and 

wR2 = 0.1198 for all data.  Additional details are presented in Table 2.3 and are given as 
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Supporting Information in a CIF file.  Acknowledgement is made for funding from NSF grant 

CHE-0840456 for X-ray instrumentation. 

G.M. Sheldrick (2015) "Crystal structure refinement with SHELXL", Acta Cryst., C71, 3-8 

 (Open Access). 

CrystalClear Expert 2.0 r16, Rigaku Americas and Rigaku Corporation (2014),  

Rigaku Americas, 9009, TX, USA 77381-5209, Rigaku Tokyo, 196-8666, Japan. 

CrysAlisPro 1.171.38.41 (Rigaku Oxford Diffraction, 2015). 

Table 2.3 Crystal Data and Structural Refinement for 1-A 

Empirical Formula C26H28F7N3O3Pd 

Formula Weight 669.91 

Temperature 225 (2) K 

Wavelength 1.54184 A 

Crystal System triclinic 

Space Group P-1 

Unit Cell Dimensions a = 11.9284(2) Å, α = 90.6890(10)° 

b = 15.2060(3) Å, β = 91.8040(10)° 

c = 16.0712(2) Å, γ = 106.135(2)° 

Volume 2798.18(8) A3 

Z 4 

Calculated Density 1.590 Mg/m3 

Absorption Coefficient 6.071 mm-1 

F(000) 1352 

Crystal Size 0.15x0.14x0.13 mm 

Theta Range for Data Collection 2.751 to 69.303 

Limiting Indices -14≤h≤14, -17≤k≤18, -19≤l≤19 

Reflections Collected 41954 

Independent Reflections 10145 

Completeness to Theta 97.9% 
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Absorption Correction Semi-empirical from equivalents 

Max and Min Transmission 1.00000 to 0.58322 

Refinement Method Full-matrix least-squares on F2 

Data / Restraints / Parameters 10145 / 280 / 852 

Goodness-of-Fit on F2 1.076 

Final R Indices [l>2σ(l)] R1 = 0.0449, wR2 = 0.1193 

R indices (all data) R1 = 0.0457, wR2 = 0.1198 

Extinction Coefficient 0.00559(19) 

Largest Difference Peak and Hole 0.707 and -1.106 A-3 

 

X-Ray Crystallography Experimental Data of 1-B 

Figure 2.8 X-Ray Crystal Structure of Complex 1-B. Hydrogen Atoms expect H1 are Omitted 
for Clarity 

 

Yellow plates of 1-B were grown from a dichloromethane/pentane solution of the compound at 22 

deg. C.  A crystal of dimensions 0.17 x 0.13 x 0.10 mm was mounted on a Rigaku AFC10K Saturn 

944+ CCD-based X-ray diffractometer equipped with a low temperature device and Micromax-

007HF Cu-target micro-focus rotating anode (λ = 1.54187 A) operated at 1.2 kW power (40 kV, 

30 mA).  The X-ray intensities were measured at 85(1) K with the detector placed at a distance 

42.00 mm from the crystal.  A total of 2028 images were collected with an oscillation width of 

1.0° in ω.  The exposure times were 1 sec. for the low angle images, 5 sec. for high angle.  Rigaku 

d*trek images were exported to CrysAlisPro for processing and corrected for absorption.  The 
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integration of the data yielded a total of 46436 reflections to a maximum 2θ value of 138.75° of 

which 5754 were independent and 5746 were greater than 2σ(I).  The final cell constants (Table 

2.4) were based on the xyz centroids 36972 reflections above 10σ(I).  Analysis of the data showed 

negligible decay during data collection.  The structure was solved and refined with the Bruker 

SHELXTL (version 2014/6) software package, using the space group P2(1)/c with Z = 4 for the 

formula C32H32N3O3F7Pd.  All non-hydrogen atoms were refined anisotropically with the 

hydrogen atoms placed in idealized positions.  The carbons of the t-butyl portion of the pivalate 

ligand are rotationally disordered.  Full matrix least-squares refinement based on F2 converged at 

R1 = 0.0255 and wR2 = 0.0255 [based on I > 2sigma(I)], R1 = 0.0678 and wR2 = 0.0678 for all 

data.  Additional details are presented in Table 2.4 and are given as Supporting Information in a 

CIF file.  Acknowledgement is made for funding from NSF grant CHE-0840456 for X-ray 

instrumentation. 

Sheldrick, G.M. SHELXTL, v. 2014/6; Bruker Analytical X-ray, Madison, WI, 2014. 

CrystalClear Expert 2.0 r16, Rigaku Americas and Rigaku Corporation (2014), Rigaku Americas, 9009, 

TX, USA 77381-5209, Rigaku Tokyo, 196-8666, Japan. 

CrysAlisPro 1.171.38.41 (Rigaku Oxford Diffraction, 2015). 

Table 2.4 Crystal Data and Structural Refinement for 1-B 

Empirical Formula C32H32F7N3O3Pd 

Formula Weight 746.00 

Temperature 85 (2) K 

Wavelength 1.54184 A 

Crystal System Monoclinic  

Space Group P2(1)/c 
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Unit Cell Dimensions a = 11.93742(6) Å, α = 90 ° 

b = 17.17739(10) Å, β = 99.4512(5) ° 

c = 15.29186(8) Å, γ = 90 ° 

Volume 3093.09(3) A3 

Z 4 

Calculated Density 1.602 Mg/m3 

Absorption Coefficient 5.563 mm-1 

F(000) 1512 

Crystal Size 0.170 x 0.130 x 0.100 mm 

Theta Range for Data Collection 4.553 to 69.377 ° 

Limiting Indices -14≤h≤14, -20≤k≤20, -18≤l≤18 

Reflections Collected 46436 

Independent Reflections 5754 

Completeness to Theta 99.9% 

Absorption Correction Semi-empirical from equivalents 

Max and Min Transmission 1.00000 to 0.64683 

Refinement Method  Full-matrix least-squares on F2 

Data / Restraints / Parameters 5754 / 42 / 451 

Goodness-of-Fit on F2 1.094 

Final R Indices [l>2σ(l)] R1 = 0.0255, wR2 = 0.0678 

R indices (all data) R1 = 0.0255, wR2 = 0.0678 

Extinction coefficient 0.00103(8) 

Largest Difference Peak and Hole 0.590 and -0.757 A-3 
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Chapter 3  Investigating Diverse Oxidants for Pd-Mediated Transannular 
Functionalization of Alicyclic Amines 

 

Note: This Chapter is based on work published in Aguilera, E. Y.; Sanford, M. S.* “Palladium-
Mediated Cg-H Functionalization of Alicyclic Amines” Angew. Chem. Int. Ed. 2021, 
10.1002/anie.202101782.  

3.1 Introduction 

 Alicyclic amines bearing various substitution patterns are common structural motifs in 

bioactive molecules.1 Conventional synthetic routes to these structures require multi-step 

sequences to assemble the appropriately functionalized alicyclic amine cores.2 Approaches 

involving the late-stage C–H functionalization of pre-assembled alicyclic amines would 

complement existing synthetic routes and thus streamline the diversification of these motifs. Over 

the past several decades, numerous methods have been developed for functionalization at the 

activated Ca–H position of alicyclic amines (Scheme 3.1a, ka).3 These studies have shown that the 

proximity of the Ca–H bond to nitrogen greatly enhances its reactivity towards oxidative 

functionalization.4 For example, C(sp3)–H bonds a to nitrogen have relatively low bond 

dissociation energies (~90 kcal/mol).5 Furthermore, oxidation of nitrogen to a radical cation 

renders the Ca–H site highly acidic (pKa ~ 16) relative to unactivated C(sp3)–H bonds (pKa > 50).6 

In contrast, the C(sp3)–H bonds that are remote from nitrogen (for example, Cg–H) are typically 

much less reactive than Ca–H, making it significantly more challenging to selectively target these 

sites. 
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 Conceptually, the selective g-functionalization of alicyclic amines requires controlling the 

relative reactivity of the Ca–H (Scheme 3.1a, ka) versus Cg–H sites (Scheme 3.1a, kg). To date, 

most successful efforts have achieved selectivity through modification of the substrate. Common 

strategies involve (a) blocking the Ca–H sites with other substituents (thus decreasing ka),7 (b) 

protonating the amine nitrogen to electronically deactivate Ca–H (thus decreasing ka),8 or (c) 

employing a directing group to accelerate Cg–H functionalization (increasing kg).9 In an example 

of the latter, our group recently demonstrated that installing a directing group on the amine nitrogen 

can enable transannular Cg–H activation via a boat-like intermediate (Int-1, Scheme 3.1b).10 When 

the Pd catalyst for this transformation is paired with a mild aryl iodide (ArI) oxidant, kg is 

significantly greater than ka. As such, directed transannular C–H arylation outcompetes 

background a-functionalization (Scheme 3.1b, entry I). 

Scheme 3.1 (a) Competing Ca–H versus Cg–H (b) Our Strategy 
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replacing the aryl iodide with an alternative oxidant (oxidant–X) that is designed to transfer the 

functional group of interest (X). However, in practice, changing to alternative, more kinetically 

reactive oxidants (for example, N-halosuccinimides, hypervalent iodine reagents, electrophilic 

fluorinating reagents) results in a dramatic increase in ka, such that the background a-

functionalization pathway predominates (Scheme 3.1b, entry II; vide infra for examples). In this 

chapter, we present a strategy to address this challenge that leverages the stoichiometric in situ 

formation of Pd(II) amine complexes to enable selective transannular Cg–H functionalization with 

a wide range of oxidants. 

3.2 Results and Discussion 

 Initial studies targeted the Pd-catalyzed transannular Cg–H bromination of 1-A with N-

bromosuccinimide (NBS). Notably, NBS has been successfully employed in related Pd-catalyzed 

ligand-directed C(sp3)–H bromination reactions (of non-amine containing substrates),11 while 1-A 

was shown to be an effective substrate for transannular C–H arylation with PhI. At 100 °C in tert-

amyl alcohol, 1-A reacts with PhI to afford the Cg–H phenylation product in 30% yield, with no 

detectable background a-functionalization products (ka << kg). However, when NBS was used in 

place of PhI under otherwise analogous catalytic conditions, none of the Cg–H bromination product 

g-Br was detected (Scheme 3.2). Instead, a-oxidation products a-N and a-O were formed in 30%  
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Scheme 3.2 Pd-Catalyzed Bromination with NBS 

 

and 30% yield, respectively (Scheme 3.2). When this reaction was conducted in the absence of Pd 

catalyst, a-N and a-O were obtained in nearly identical yields of 25% and 31%, respectively. 

These results demonstrate that with NBS, the rate of background a-oxidation (ka) is significantly 

greater than that of Pd-catalyzed g-oxidation (kg). 
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 To render this approach more practical, we next pursued a 2-step 1-pot approach to the in 

situ assembly/g-functionalization of a 1-A/Pd complex. First, 1 equiv of 1-A, 1 equiv of Pd(OAc)2, 

and 1 equiv of pyridine were stirred at 100 °C for 1 h in MeCN. NBS (1 equiv) was then added 

and the mixture was heated at 100 °C for an additional 18 h. This afforded a modest 22% yield of 

g-Br with <1% of a-N/a-O (Scheme 3.3b). A control reaction without added pyridine gave 70% 

yield of g-Br, and the addition of 1 equiv of DMSO further improved the yield to 75% while 

maintaining high selectivity (<1% of a-N/a-O).13 

Scheme 3.3 (a) g-Br with Complex 2-A (b) In situ Method for g-Br (c) Proposed Pathway 
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  A proposed pathway for this sequence based on literature precedent for the individual steps 

is shown in Scheme 3.3c. Initial coordination of 1-A to Pd(OAc)2 affords 2-B with L = MeCN or 

DMSO.12 Acetate-assisted transannular Cg–H activation10c, 14 (Scheme 3.3c, i) is followed by 

oxidation of this s-alkyl PdII intermediate to PdIV with NBS (Scheme 3.3c, ii).15 C(sp3)–Br bond-

forming reductive elimination from this highly reactive PdIV center16 then proceeds via an inner 

sphere mechanism with retention of configuration at carbon17 to afford the product g-Br (Scheme 

3.3c, iii).  

Figure 3.1 g-Functionalizations with in situ Method 
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 We next explored the use of a series of different oxidants in this 2-step, 1-pot protocol in 

order to install diverse functional groups at the g-position. As shown in Figure 3.1, this approach 

enabled the formation of C–O, C–S, C–N, C–F, C–Cl, C–I, and C–B bonds in high g-selectivity 

and modest to good isolated yield. The site- and stereoselectivity of each functionalization was 

established via 1H NMR spectroscopy (all products) as well as X-ray crystallography (for g-I, g-F, 

g-OAc). In all cases, the major product derived from Cg–H functionalization.18  

 

Scheme 3.4 Scope of Cg-BPin Functionalization 
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bonds).19 As shown in Scheme 3.4, substrates bearing electron deficient (1-BPin) and halide 

containing compounds (3-BPin) were tolerant under these conditions. Of note, free and protected 

amines (2-BPin and 4-BPin, respectively) provided sufficient yields of the borylated product. 

More complex functionalities, such as morpholine groups (5-BPin) and bicyclic compounds (6-

BPin) were also suitable for this transformation. Varenicline (7-BPin) and its CF3-substituted 

derivative (8-BPin) were well tolerated in 28% and 57% yield, respectively. Cytisine (9-BPin) 

also worked yielding 36%. In addition, the amitifadine core (10-BPin) was tolerated, albeit in low 

yields. In cases with simple piperidines as the substrate, only starting material and a-

functionalization was observed. 

 Finally, we aimed to translate our stoichiometric g-borylation studies to a catalytic 

approach. Altering the Pd loading from 1 equiv to 10 mol % under otherwise identical conditions 

afforded g-BPin in 15% yield with the remaining mass balance as 1-A (Table 3.1). This result 

reveals that catalyst turnover is a key challenge under these conditions. As such, we hypothesized 

that since the reaction undergoes a concerted-metalation deprotonation mechanism adding a base 

should facilitate more turnovers. Carbonate and carboxylate bases were therefore investigated (see 

Table 3.2 in Experimental Procedures) with Li2CO3 providing an improved yield of 50% (Table 

3.1). Lastly, increasing the reaction temperature to 100 to 130 °C gave an optimized yield of 60% 

for g-BPin. Substrates from Scheme 3.4 were performed under the catalytic conditions and low 

yields were observed with unreacted starting material remaining in all cases. While this method 

did not translate well to a broader substrate scope, it serves as a proof-of-concept of rapidly 

translating a stoichiometric approach to catalysis.  
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Table 3.1 Pd-Catalyzed g-Borylation  

 

additive temperature (°C) g-BPin 

none 100 15% 

Li2CO3 100 50% 

Li2CO3 130 55% 

3.3 Conclusions 

 In summary, this chapter describes a strategy for the selective Cg–H oxidation of alicyclic 

amine substrates via pre-formation of amine-Pd complexes. This pre-complexation increases the 

relative rate of the desired Cg–H activation versus competing background Ca–H oxidation. This 

work adds to a growing suite of methods in which the use of stoichiometric Pd enables selective 

late-stage diversification of complex organic molecules.20 While catalytic processes are often 

favored by the organic chemistry community, this stoichiometric approach provides rapid and 

selective access to numerous challenging-to-synthesize alicyclic amine derivatives. In the context 

of, for example, medicinal chemistry, the speed, selectivity, and diversity of products generated 

via this approach counterbalance the cost of the Pd. Ultimately, we anticipate that pre-

complexation could prove valuable for tuning selectivity in other reactions of alicyclic amines as 

well as in metal-mediated C–H functionalizations of more diverse substrates.  
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3.4 Outlook 

 We are interested in developing Pd-catalyzed g-functionalization methods from select 

stoichiometric functionalizations described above. Initial attempts focused on Pd-catalyzed g-

fluorination due to its’ importance in pharmaceuticals and positron emission tomography (PET) 

imaging. Our preliminary optimization results show that by pre-stirring substrate 1-A, 20 mol % 

Pd(OAc)2, 20 mol% of ligand 1, and NaOAc in MeCN for 1 h followed by sequential addition of 

NSFI, g-F was achieved in 40% yield with unreacted 1-A remaining (Scheme 3.5). Further 

optimization will attempt to lower the loading of Pd to 10 mol %. Additionally, we are currently 

investigating this catalytic method towards pharmaceutical drugs such as Chantix.  

Scheme 3.5 Pd-Catalyzed g-Fluorination 
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NMR spectra were obtained on a Varian VNMR 700 (699.76 MHz for 1H; 175.95 MHz for 13C) 

or a Varian VNMR 500 (500.09 MHz for 1H; 470.56 MHz for 19F) or a Varian NMR 400 (128.38 

MHz for 11B NMR) spectrometer. 1H and 13C chemical shifts are reported in parts per million 

(ppm) relative to TMS, with the residual solvent peak (most commonly CDCl3) used as an internal 

reference. 19F chemical shifts are reported in ppm and are referenced on a unified scale to the 

frequency of the residual solvent peak in the 1H NMR spectrum. 1H and 19F multiplicities are 

reported as follows: singlet (s), doublet (d), doublet of doublets (dd), doublet of doublets of 

doublets (ddd), doublet of triplets (dt), triplet (t), quartet (q), and multiplet (m). High resolution 

mass spectra were obtained at the University of Michigan core facility. X-ray crystallographic data 

were collected on a Bruker SMART APEX-I CCD-based X-ray diffractometer conducted by 

Midwest Microlab, Indianapolis, IN. Flash chromatography was conducted on a Biotage Isolera 

One chromatography system using preloaded high-performance silica gel columns (10 g, 25 g, 50 

g, or 100 g as appropriate). GC-FID was conducted on a Shimadzu CG-17A system. Melting points 

were obtained on a OptiMelt automated melting point system.  

Materials and Methods  

All reagents were obtained from a commercial vendor (Aldrich, CombiBlocks, Oakwood, 

Synthonix, Enamine, Carbosynth, Pressure Chemicals, Matrix, SantaCruz Biotech, or Ontario 

Chemicals). Pd(OAc)2 was purchased from Pressure Chemical. Acetronitrile and 

dimethylsulfoxide were purchased from Sigma-Aldrich. Hydrazine monohydrate was purchased 

from Alfa Aesar. All commercial reagents were used without further purification/drying unless 

explicitly stated in the experimental section. All reactions were performed under ambient 

atmosphere unless stated in experimental section. The manipulation of solid reagents was 
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conducted on the benchtop unless otherwise stated. Reactions were conducted under ambient 

atmosphere unless otherwise stated. Reaction vessels were sealed with either a septum (flask) or a 

Teflon-lined cap (4 mL or 20 mL vial) with Teflon tape wrapped around the cap. Reactions 

conducted at elevated temperatures were heated on a hot plate using an aluminum block. 

Temperature was regulated using an external thermocouple 

3.5.2 Synthesis of Starting Materials 

 

Synthesis of C: α-Bromo propanamide C was synthesized following a literature procedure10a 

from starting materials A and B. 

Amine Starting Material Syntheses (D-2 through D-8)  

Amine starting materials without experimental procedures were purchased from commercial 

vendors. 

Synthesis of D-2: Using a patented procedure,21 compound D-2 was obtained as a white solid. The 

1H NMR spectrum matched that reported in the literature.21 D-2 was used as the starting material 

to prepare substrate 1-B.  
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Synthesis of D-3: Using a patented procedure,21 compound D-3 was obtained as a white solid. The 

1H NMR spectrum matched that reported in the literature.21 D-3 was used as the starting material 

to prepare substrate 1-C.  

 

Synthesis of D-4: Using a patented procedure,21 compound D-4 was obtained as a white solid. 

The 1H NMR spectrum matched that reported in the literature.21 D-4 was used as the starting 

material to prepare substrate 1-E. 

 

Synthesis of D-5: D-5 was prepared using a modified literature procedure.22 In a 20 mL 

scintillation vial, E (2.0 g, 0.0078 mol, 1.0 equiv) was dissolved in hexafluoro-2-propanol (HFIP, 

10 mL). To this stirred solution, N-chlorosuccinimide (1.0 g, 0.0078 mol, 1.0 equiv) was added, 

and the reaction vial was sealed. The reaction mixture was stirred at 60 °C for 24 h. The reaction 

was allowed to cool to rt and was then concentrated under reduced pressure. Purification via 

column chromatography (gradient elution of 50% EtOAc in hexanes) afforded I as a white solid 
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(1.5 g, 67% yield). The 1H NMR spectrum of I matched that reported in the literature.21 Compound 

D-5 was prepared from I using a literature procedure.21 Product D-5 was obtained as a white solid 

(1.1 g, 92% yield), and the 1H NMR spectrum matched that reported in the literature.21 D-5 was 

used as the starting material to prepare substrate 1-D.  

 

Synthesis of D-6: D-6 was prepared using a modified literature procedure.23 Under ambient 

atmosphere, a 20 mL vial was charged with E (1.0 g, 3.9 mmol, 1.0 equiv), rhodium on carbon 

(39.7 mg, 0.39 mmol, 10%), and iPrOH (12 mL). The 20 mL vial was placed in a Parr Reactor, 

where the reaction was pressurized under 5 atm of hydrogen. The reaction was stirred in the Parr 

Reactor for 24 h at 60 °C. The reaction was allowed cool to rt and was then removed from the Parr 

Reactor. The solution was filtered through a pad of Celite, and the filtrate was concentrated under 

reduced pressure. The crude material was purified by silica gel chromatography (gradient elution 

of 15% to 30% EtOAc in hexanes), which afforded J as a white solid (800 mg, 78% yield). 

Compound J (800 mg, 3.0 mmol, 1.0 equiv) and Na2CO3 (650 mg, 6.0 mmol, 2.0 equiv) were 

added to a 20 mL vial followed by a 2:1 MeOH (10 mL)/H2O (5 mL) mixture. The reaction was 

stirred at 70 °C for 24 h and then concentrated under reduced pressure. The solid was dissolved in 

CH2Cl2, and an aqueous extraction was performed. The organic layers were combined and 
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concentrated. Product D-6 was obtained as a colorless oil without further purification (480 mg, 

97% yield). D-6 was used as the starting material to prepare substrate 1-G.  

Synthesis of D-7: D-7 was prepared using a modified literature procedure.22,24 In a 20 mL 

scintillation vial, E (1.0 g, 3.9 mmol, 1.0 equiv) was dissolved in HFIP (10 mL). To this stirred 

solution, N-bromosuccinimide (69.5 mg, 3.9 mmol, 1.0 equiv) was added, and the reaction vial 

was sealed. The reaction mixture was stirred at 60 °C for 24 h. The reaction was allowed to cool 

to rt and then concentrated under reduced pressure. Final purification via column chromatography 

(gradient elution of 50% EtOAc in hexanes) afforded K as a white solid (700 mg, 54% yield). 

Under a nitrogen atmosphere, a 20 mL scintillation vial was charged with K (700 mg, 2.1 mmol, 

1.0 equiv), Pd2(dba)3 (38.4 mg, 0.042 mmol, 4 mol%), BINAP (52.2 mg, 0.084 mmol, 4 mol%), 

and NaOtBu (282 mg, 2.9 mmol, 1.4 equiv). The solids in the vial were dissolved in toluene (15 

mL) and then morpholine (217 µL, 2.5 mmol, 1.2 equiv) was added. The vial was sealed, and the 

reaction mixture was stirred at 80 °C for 24 h. The reaction was allowed to warm to rt and then 

diluted with diethyl ether. An aqueous extraction was performed, and the organic layers were 

collected and concentrated under reduced pressure. The crude material was purified via silica gel 

chromatography (gradient elution of 50% EtOAc in hexanes), and compound L was obtained as a 

white solid (500 mg, 70% yield). Compound L (500 mg, 1.5 mmol, 1.0 equiv) and Na2CO3 (350 

mg, 3.0 mmol, 2.0 equiv) were dissolved in a 2:1 MeOH (10 mL)/H2O (5 mL) mixture in a 20 mL 

vial. The reaction was stirred at 70 °C for 24 h. The reaction solution was then concentrated under 

reduced pressure. The resulting solids was dissolved in CH2Cl2, and an aqueous extraction was 
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performed. The organic layers were combined and concentrated. Product D-7 was obtained as a 

colorless oil and was used without further purification to prepare substrate 1-F.  

 

Synthesis of D-8: D-8 was prepared from compound M using a literature procedure.25 1H and 19F 

NMR spectra of D-8 matched that reported in the literature.25 D-8 was used as the starting 

material to prepare substrate 1-I. 

Directing Group Installation Procedure10a 

 

A 20 mL scintillation vial was charged with D-1 (254 mg, 1.30 mmol, 1.0 equiv), α-bromo 

propanamide C (497 mg, 1.30 mmol, 1.0 equiv), K2CO3 (574 mg, 4.16 mmol, 3.2 equiv), and NaI 

(96.2 mg, 0.65 mmol, 0.5 equiv). Anhydrous acetonitrile (15 mL) was then added. The vial was 

sealed, and the vial was heated to an external temperature of 60 °C. After 18 h, the reaction was 

cooled to rt, diluted with EtOAc (~5 mL), and filtered through silica gel. The filtrate was 

concentrated under reduced pressure. Final purification via column chromatography (gradient 

elution from 0% to 20% EtOAc in hexanes) afforded product 1-A (447 mg, 75% yield) as a white 

solid.1 Amine derivatives 1-B through 1-K were prepared in an analogous manner using the 

appropriate amine starting material (D-2 through D-8). Substrate-specific are included below. 
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Characterization of Directing Group Installation Products (1-B through 1-K) 

1-B: Isolated yield: 950 mg, 54% (white solid) 

1H NMR (700 MHz, CDCl3, 23 ºC): δ 8.08-8.04 (multiple peaks, 2H), 7.44 
(br s, 1H), 7.36 (d, J = 8.1 Hz, 1H), 3.36 (t, J = 7.2 Hz, 2H), 2.89 (t, J = 
10.9 Hz, 2H), 2.78 (t, J = 10.3 Hz, 2H), 2.40 (app s, 1H), 1.87 (d, J = 10.9 
Hz, 1H), 1.25 (s, 6H). 
13C NMR (176 MHz, CDCl3, 23 ºC): δ 175.2, 153.5, 147.7, 147.6, 123.1, 

122.2, 116.9, 64.2, 50.6, 50.2, 44.0, 41.2, 41.1, 22.2, 20.7. Carbon resonances associated with 
perfluoroaryl group are not observed.10 
19F NMR (470 MHz, CDCl3, 23 ºC): δ –56.1 (t, 3F), –140.8 (app. s, 2F), –143.7 (app. s, 2F).  
HRMS-electrospray (m/z): [M]+ calcd. for C22H18F7N3O3, 506.1309; found, 506.1316. Melting 
point: 125-127 °C 
Chromatography conditions: 10% EtOAc in hexanes 
 

1-C: Isolated yield: 580 mg, 26% (off-white solid) 
1H NMR (700 MHz, CDCl3, 23 ºC): δ 7.80 (br s, NH of amide, variable 
integrations), 6.92 (d, J = 7.7 Hz, 1H), 6.52 (d, J = 2.2 Hz, 1H), 6.36 (dd, J 
= 7.7, 2.2 Hz, 1H), 3.46 (s, 2H), 3.10 (dt, J = 13.6, 4.5 Hz, 2H), 2.81-2.72 
(multiple peaks, 2H), 2.69-2.61 (multiple peaks, 2H), 2.26 (m, 1H), 1.70 
(d, J = 10.3 Hz, 1H), 1.22 (s, 3H), 1.21 (s, 3H). 

13C NMR (176 MHz, CDCl3, 23 ºC): δ 176.5, 147.0, 145.7, 135.4, 122.3, 112.9, 109.5, 63.8, 50.8, 
50.7, 43.8, 41.4, 40.4, 21.9, 21.7. Carbon resonances associated with perfluoroaryl group are not 
observed.10 
19F NMR (470 MHz, CDCl3, 23 ºC): δ –56.1 (t, 3F), –141.9 (m, 2F), –143.0 (m, 2F).       
HRMS-electrospray (m/z): [M]+ calcd. for C22H20F7N3O, 476.1567; found, 476.1577.  
Melting point: 114-115 °C 
Chromatography conditions: 5% EtOAc in hexanes 
 

1-D: Isolated yield: 550 mg, 22% (white solid) 
1H NMR (700 MHz, CDCl3, 23 ºC): δ 7.56 (br s, 1H), 7.15-7.07 (multiple 
peaks, 3H), 3.21 (dd, J = 11.7, 7.2 Hz, 2H), 2.84 (dd, J = 10.5, 4.0 Hz, 1H), 
2.76 (dd, J = 10.5, 4.0 Hz, 1H), 2.73-2.67 (multiple peaks, 2H), 2.32 (m, 
1H), 1.76 (d, J = 10.6 Hz, 1H), 1.23 (s, 3H), 1.21 (s, 3H). 

13C NMR (176 MHz, CDCl3, 23 ºC): δ 179.9, 147.7, 144.2, 132.4, 126.9, 122.9, 122.3, 63.9, 50.8, 
50.2, 43.8, 41.2, 40.7, 22.5, 20.9. Carbon resonances associated with perfluoroaryl group are not 
observed.10 

19F NMR (470 MHz, CDCl3, 23 ºC): δ –56.1 (t, 3F), –141.4 (m, 2F), –143.3 (m, 2F).      
HRMS-electrospray (m/z): [M]+ calcd. for C22H18ClF7N2O, 495.1069; found, 495.1083.  
Melting point: 90-92 °C 
Chromatography conditions: 5% EtOAc in hexanes 
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1-E: Isolated yield: 660 mg, 69% (white solid) 
1H NMR (700 MHz, CD3OD, 23 ºC): δ 7.53 (br s, 1H), 7.19 (app. t, 2H), 
3.22 (s, 1H), 3.17 (s, 1H), 2.93 (d, J = 10.6 Hz, 1H), 2.79 (d, J = 10.6 Hz, 
1H), 2.75 (d, J = 10.5 Hz, 2H), 2.28 (m, 1H), 1.98 (s, 3H), 1.82 (d, J = 
10.5 Hz, 1H), 1.24 (s, 3H), 1.19 (s, 3H). 
 Note in CD3OD, amide H’s are not observed.  
13C NMR (176 MHz, CD3OD, 23 ºC): δ 178.5, 170.9, 147.5, 142.7, 138.9, 

122.9, 119.2, 114.6, 64.8, 52.3, 50.7, 44.5, 42.7, 42.2, 24.4, 23.5, 19.8. Carbon resonances 
associated with perfluoroaryl group are not observed.10 

19F NMR (470 MHz, CDCl3, 23 ºC): δ –56.0 (t, 3F), –141.8 (m, 2F), –143.1 (m, 2F).       
HRMS-electrospray (m/z): [M]+ calcd. for C24H22F7N3O2, 518.1673; found, 518.1676. Melting 
point: 145-151°C 

Chromatography conditions: 10% EtOAc in hexanes 
 

1-F: Isolated yield: 406 mg, 55% (white solid) 
1H NMR (700 MHz, CDCl3, 23 ºC): δ 7.06 (d, J = 8.0 Hz, 1H), 6.76 (d, J = 2.3 
Hz, 1H), 6.58 (dd, J = 8.0, 2.3 Hz, 1H), 3.75 (dd, J = 5.4, 4.2 Hz, 4H), 3.15 (d, 
J = 6.2 Hz, 2H), 2.95 (q, J = 4.3 Hz, 4H), 2.83-2.73 (multiple peaks, 2H), 2.68 
(t, J = 10.0 Hz, 2H), 2.29 (m, 1H), 1.73 (d, J = 10.5 Hz, 1H), 1.22 (s, 3H), 1.21 
(s, 3H). Note in this spectrum, amide H is not observed.  
13C NMR (176 MHz, CDCl3, 23 ºC): δ 176.4, 150.9, 146.8, 137.1, 122.1, 113.6, 

110.3, 67.0, 63.8, 51.0, 50.5, 49.9, 43.9, 41.7, 40.5, 22.6, 21.1. Carbon resonances associated with 
perfluoroaryl group are not observed.10 

19F NMR (470 MHz, CDCl3, 23 ºC): δ –56.0 (t, 3F), –141.6 (m, 2F), –142.7 (m, 2F). 
HRMS-electrospray (m/z): [M]+ calcd. for C26H26F7N3O2, 546.1986; found, 546.1989. Melting 
point: 142-145 °C 

Chromatography conditions: 10% EtOAc in hexanes 
 

1-G: Isolated yield: 615 mg, 33% (white solid) 
1H NMR (700 MHz, CD3OD, 23 ºC): δ 2.90 (d, J = 10.5 Hz, 2H), 2.48 (dd, 
J = 10.5, 2.0 Hz, 2H), 2.10 (s, 2H), 2.00-1.94 (multiple peaks, 4H), 1.79 (d, 
J = 8.5 Hz, 2H), 1.62-1.54 (multiple peaks, 2H), 1.43-1.35 (multiple peaks, 
8H), 1.31 (d, J = 10.5 Hz, 2H). Note in CD3OD, amide H is not observed.  

13C NMR (176 MHz, CDCl3, 23 ºC): δ 175.2, 64.9, 48.4, 39.6, 38.5, 37.5, 20.6, 20.4, 20.1. Carbon 
resonances associated with perfluoroaryl group are not observed.10 

19F NMR (470 MHz, CDCl3, 23 ºC): δ –56.1 (t, 3F), –141.0 (m, 2F), –143.2 (m, 2F).  
HRMS-electrospray (m/z): [M]+ calcd. for C22H25F7N2O, 467.1928; found, 467.1941.  
Melting point: 78-83°C 
Chromatography conditions: 5% EtOAc in hexanes 
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 1-H: The 1H, 13C, and 19F NMR spectral data for 1-H matched that reported 
in the literature.10a  
 
 
 
 

 
1-I: Isolated yield: 405 mg, 20% (off-white solid) 
1H NMR (700 MHz, CDCl3, 23 ºC): δ 8.88 (d, J = 1.8 Hz, 1H), 8.83 (d, 
J = 1.8 Hz, 1H), 8.01 (s, 1H), 7.38 (s, 1H), 3.98 (app s, 1H), 3.56 (app. 
s, 1H), 3.14 (m, 1H), 3.01 (d, J = 10.6 Hz, 1H), 2.89 (d, J = 10.6 Hz, 
2H), 2.41 (d, J = 11.0 Hz, 1H), 2.00 (d, J = 11.0 Hz, 1H), 1.24 (s, 3H), 
1.21 (s, 3H). 

13C NMR (176 MHz, CDCl3, 23 ºC): δ 174.4, 150.1, 149.1, 145.0, 144.1, 143.0, 140.3, 124.9, 
124.5 (q, J = 276.0 Hz), 121.1 (q, J = 30.1 Hz), 64.2, 51.9, 51.6, 42.2, 41.4, 40.8, 21.5, 21.5. 
Carbon resonances associated with perfluoroaryl group are not observed.10 
19F NMR (470 MHz, CDCl3, 23 ºC): δ –55.4 (app. s, 3F), –56.1 (t, 3F), –141.5 (m, 2F), –144.9 (m, 
2F).  
HRMS-electrospray (m/z): [M]+ calcd. for C25H18F10N4O, 581.1394; found, 581.1384.  
Melting point: 178-184 °C 

Chromatography conditions: 20% EtOAc in hexanes 
 

1-J: The 1H, 13C, and 19F NMR spectral data for 1-J matched those reported 
in the literature.10a  
 
 
 

 
1-K:  The 1H, 13C, and 19F NMR spectral data for 1-K matched those 
reported in the literature.10a  
 
 

 

Synthesis of 2-A: Pd complex 2-A was synthesized from 1-A and Pd(OAc)2 following a 

literature procedure.12 
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3.5.3 Pd-Catalyzed g-Functionalization Attempts 

General Procedure A (adapted from reference 10): A 4 mL vial was charged with substrate 1-

A (10.1 mg, 0.022 mmol, 1.0 equiv), Pd(OAc)2 (0.50 mg, 0.0022 mmol, 10 mol %), and CsOPiv 

(15.4 mg, 0.066 mmol, 3.0 equiv) followed by the addition of the desired oxidant (0.066 mmol, 

3.0 equiv). With a syringe, t-amylOH (0.3 mL) was added. The vial was sealed, and the mixture 

was stirred at 100 °C. After 18 h at this temperature, the reaction was cooled, diluted with EtOAc, 

and quenched with hydrazine (3 drops). The resulting mixture was stirred at rt for 10 min. The 

suspension was then filtered through a plug of Celite, concentrated under vacuum, and analyzed 

via GC-FID analysis using 1,3,5-trimethoxybenzene as internal standard (0.022 mmol, 1.0 equiv). 

1 equiv  Pd(OAc)2
3 equiv CsOPiv
2 equiv pyridine

t-amylOH, 60 °C, 24 h

(1-A) (2-A)

N
O
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N

N
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Table 3.2 Attempts at Pd-Catalyzed g-Functionalization 

 

 

 

N

X

γ-X

α-N α-Oγ-X

NO O

Br

(1-A)

N
O

HN C7F7
N

O

10 mol % Pd(OAc)2
3 equiv oxidant
3 equiv CsOPiv

N
N

O

C7F7

+

t-amylOH
100 ºC,18 h

α-N α-O

O

HN C7F7

O

HN C7F7

oxidant X

PhI Ph

NO O

Cl

NO O

I

IMes
OAc

OAc

B2Pin2

S2Ph2

Br

Cl

I

OAc

BPin

SPh

30% 0% 0%

0%

0%

0%

0%

0%

0%

30% 30%

10% 0%

15% 15%

10% 30%

<1% 0%

0% 0%
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Table 3.3 Controls Reactions with No Pd 

 

 

 

a-N: General Procedure A was followed using N-bromosuccinimide as the 
oxidant and Pd(OAc)2. 
Isolated yield: 2.0 mg, 20% (colorless oil)  
1H NMR (700 MHz, CDCl3, 23 ºC): δ 7.19 (dd, J = 6.9, 1.3 Hz, 2H), 7.14 (td, 

J = 6.9, 2.2 Hz, 1H), 6.76 (d, J = 7.3 Hz, 1H), 5.03 (s, 1H), 3.17 (s, 1H), 3.07-3.02 (m, 1H), 2.95 
(d, J = 5.7 Hz, 1H), 2.90-2.84 (m, 1H), 2.55 (ddd, J = 11.5, 5.5, 3.8 Hz, 1H), 1.93 (d, J = 11.5 
Hz, 1H), 1.14 (s, 3H), 0.70 (s, 3H). 
13C NMR (176 MHz, CDCl3, 23 ºC): δ 175.7, 146.7, 141.1, 127.56, 126.8, 123.5, 122.0, 60.0, 45.7, 
43.0, 42.0, 40.8, 29.9, 22.8, 19.3. Carbon resonances associated with perfluoroaryl group are not 
observed.10 
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19F NMR (470 MHz, CDCl3, 23 ºC): δ –56.2 (t, 3F), –136.3 (m, 1F), –139.1 (m, 1F), –140.5 (m, 
1F), –143.2 (m, 1F). 
HRMS-electrospray (m/z): [M]+ calcd. for C22H17F7N2O, 459.1302; found, 459.1303.  
Chromatography conditions: 7% EtOAc in hexanes 
 

 a-O: General Procedure A was followed using N-bromosuccinimide as the 
oxidant and Pd(OAc)2. 
Isolated yield: 2.5 mg, 24% (off-white solid)  
1H NMR (700 MHz, CDCl3, 23 ºC): δ 7.38 (dd, J = 11.7, 7.3 Hz, 2H), 
7.25 (dd, J = 7.3, 1.2 Hz, 1H), 7.20 (td, J = 7.5, 1.2 Hz, 1H), 6.56 (br s, 

1H), 3.71 (d, J = 4.0 Hz, 1H), 3.66 (dd, J = 10.9, 4.0 Hz, 1H), 3.58 (t, J = 4.4 Hz, 1H), 3.31 (dt, J 
= 10.9, 1.5 Hz, 1H), 2.53 (ddd, J = 11.8, 7.1, 2.9 Hz, 1H), 2.28 (d, J = 11.1 Hz, 1H), 1.54 (s, 3H), 
1.33 (s, 3H). 
13C NMR (176 MHz, CDCl3, 23 ºC): δ 172.5, 172.1, 144.0, 143.7, 128.4, 127.8, 122.9, 122.9, 61.9, 
49.9, 49.5, 39.9, 37.9, 24.1, 21.5. Carbon resonances associated with perfluoroaryl group are not 
observed.10 
19F NMR (470 MHz, CDCl3, 23 ºC): δ –56.0 (t, 3F), –141.5 (m, 2F), –143.8 (m, 2F). 
HRMS-electrospray (m/z): [M]+ calcd. for C22H17F7N2O2, 475.1251; found, 475.1237.  
Melting point: 199-202 °C 
Chromatography conditions: 35% EtOAc in hexanes 

3.5.4 g-Functionalization with Pre-Formed Pd(II) Complex 

 

A 4 mL vial was charged with 2-A (20.0 mg, 0.026 mmol, 1.0 equiv) and N-bromosuccinimide 

(NBS) (4.6 mg, 0.026 mmol, 1.0 equiv) followed by the addition of MeCN (0.5 mL). The vial was 

sealed, and the mixture was stirred at 100 °C. After 18 h at this temperature, the reaction was 

cooled, diluted with EtOAc, and quenched with hydrazine (6 drops). This mixture was stirred at rt 

for 10 min. The resulting suspension was filtered through a plug of Celite and concentrated under 

MeCN, 100 °C, 18 h
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vacuum. The product (g-Br) was purified via silica gel column chromatography. Characterization 

and yield for g-Br is shown below.  

3.5.5 In-situ Generation of Pd(II) Complex for g-Functionalization 

 
Procedure A: A 4 mL vial was charged with substrate 1-A (20.0 mg, 0.0435 mmol, 1.0 equiv), 

Pd(OAc)2 (10.0 mg, 0.0435 mmol, 1.0 equiv), and acetonitrile (0.6 mL). With a syringe, dimethyl 

sulfoxide (3.0 µL, 0.0435 mmol, 1.0 equiv) was added. The vial was sealed wih a Teflon-lined 

cap, and the mixture was stirred at 100 °C. After 1 h at this temperature, the vial was allowed to 

cool, the cap was removed, and the corresponding oxidant (0.0435 mmol, 1.0 equiv) was added. 

The vial was re-sealed, and the mixture was heated to 100 °C. After 18 h at this temperature, the 

reaction was cooled, diluted with EtOAc, and quenched with hydrazine (6 drops). This mixture 

was stirred at rt for 10 min. The resulting suspension was filtered through a plug of Celite and 

concentrated under vacuum. The crude material was purified via silica gel column 

chromatography.  

 

Procedure B: A 4 mL vial was charged with substrate 1-A (20.0 mg, 0.0435 mmol, 1.0 equiv), 

Pd(OAc)2 (10.0 mg, 0.0435 mmol, 1.0 equiv), and acetonitrile (0.6 mL). With a syringe, dimethyl 

sulfoxide (9.3 µL, 0.13 mmol, 3.0 equiv) was added. The vial was sealed with a Teflon-lined cap, 

and the mixture was stirred at 100 °C. After 1 h at this temperature, the vial was allowed to cool, 

the cap was removed, and the corresponding oxidant (0.0435 mmol, 1.0 equiv) was added. The 

1) 1 equiv Pd(OAc)2
1 equiv DMSO
MeCN, 100 °C, 1 h
2) 1 equiv oxidant
100 °C, 18 h
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vial was re-sealed, and the mixture was stirred and heated to 100 °C. After 18 h at this temperature, 

the reaction was cooled, diluted with EtOAc, and quenched with hydrazine (6 drops). This mixture 

was stirred at rt for 10 min. The resulting suspension was filtered through a plug of Celite and 

concentrated under vacuum. The crude material was purified via silica gel column 

chromatography.  

 

Procedure C: A 4 mL vial was charged with substrate 1-A (20.0 mg, 0.0435 mmol, 1.0 equiv), 

Pd(OAc)2 (10.0 mg, 0.0435 mmol, 1.0 equiv), and dimethyl sulfoxide (0.6 mL). The vial was 

sealed with a Teflon-lined cap, and the mixture was stirred at 100 °C. After 1 h at this temperature, 

the vial was allowed to cool, the cap was removed, and the corresponding oxidant (0.13 mmol, 3.0 

equiv) was added. The vial was re-sealed, and the mixture was stirred and heated to 100 °C. After 

18 h at this temperature, the reaction was cooled, diluted with EtOAc, filtered through a plug of 

Celite, and concentrated under vacuum. The crude material was purified via silica gel column 

chromatography. 

g-Br: Procedure B was followed using N-bromosuccinimide as the 
oxidant.  
Isolated yield: 15.5 mg, 66% (off-white solid)  
1H NMR (700 MHz, CDCl3, 23 ºC): δ 7.46 (br s, 1H), 7.23-7.20 
(multiple peaks, 2H), 7.16 (dd, J = 5.4, 3.2 Hz, 2H), 4.57 (t, Jab = 4.5 

Hz, 1H), 3.30 (d, J = 11.0 Hz, 2H), 3.26 (t, J = 4.5 Hz, 2H), 2.69 (dd, J = 11.0, 3.7 Hz, 2H), 1.27 
(s, 6H). 
Note: Jab value matches the expected J value of ~ 4 Hz in a 5- and 6-membered ring where Ha 
and Hb are equatorial and trans to each other.26  
13C NMR (176 MHz, CDCl3, 23 ºC): δ 175.8, 142.8, 127.8, 122.0, 64.0, 55.5, 45.2, 44.3, 21.8. 
Carbon resonances associated with perfluoroaryl group are not observed.10 
19F NMR (470 MHz, CDCl3, 23 ºC): δ –56.1 (t, 3F), –141.3 (m, 2F), –143.1 (m, 2F). 
HRMS-electrospray (m/z): [M]+ calcd. for C22H18BrF7N2O, 539.0491; found, 539.0560.  

1) 1 equiv Pd(OAc)2
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Melting point: 99-101 °C 
Chromatography conditions: 5% EtOAc in hexanes 
 

g-Cl: Procedure B was followed using N-chlorosuccinimide as the 
oxidant.  
Isolated yield: 10.8 mg, 50% (white solid) 
1H NMR (700 MHz, CDCl3, 23 ºC): δ 7.46 (br s, 1H), 7.23 (dd, J = 5.4, 
3.1 Hz, 2H), 7.17 (dd, J = 5.4, 3.1 Hz, 2H), 4.45 (t, Jab = 4.6 Hz, 1H), 

3.27 (d, J = 12.1 Hz, 2H), 3.24 (t, J = 4.6 Hz, 2H), 2.64 (dd, J = 11.1, 3.7 Hz, 2H), 1.27 (s, 6H). 
13C NMR (176 MHz, CDCl3, 23 ºC): δ 175.9, 142.6, 127.8, 122.3, 64.0, 62.1, 45.3, 43.3, 21.8. 
Carbon resonances associated with perfluoroaryl group are not observed.10 
19F NMR (470 MHz, CDCl3, 23 ºC): δ –56.1 (t, 3F), –141.4 (m, 2F), –143.1 (m, 2F). 
HRMS-electrospray (m/z): [M]+ calcd. for C22H18ClF7N2O, 495.0996; found, 495.1065.  
Melting point: 112-114 °C  
Chromatography conditions: 5% EtOAc in hexanes 
 

g-F: Procedure A was followed using N-fluorobenzenesulfonimide 
(NFSI) as the oxidant.  
Isolated yield: 9.2 mg, 44% (white solid) 
1H NMR (700 MHz, CDCl3, 23 ºC): δ 7.53 (br s, 1H), 7.23 (dd, J = 5.4, 
3.3 Hz, 2H), 7.19 (dd, J = 5.4, 3.3 Hz, 2H), 4.97 (dt, JH,F = 56.0, Jab = 

5.1 Hz, 1H), 3.32 (t, J = 4.4 Hz, 2H), 3.08 (dd, J = 11.0, 3.3 Hz, 2H), 2.65 (dt, J = 11.0, 3.7 Hz, 
2H), 1.25 (s, 6H). 
13C NMR (176 MHz, CDCl3, 23 ºC): δ 175.9, 140.5, 128.1, 123.0, 91.0 (d, J = 201.4 Hz), 63.9, 
43.5 (d, J = 17.4 Hz), 43.4 (d, J = 2.5 Hz), 21.8. Carbon resonances associated with perfluoroaryl 
group are not observed.10 
19F NMR (470 MHz, CDCl3, 23 ºC): δ –63.7 (t, 3F), –149.1 (m, 2F), –150.7 (m, 2F),      
–198.4 (dt, J = 56.0, 3.8, 1F).  
HRMS-electrospray (m/z): [M]+ calcd. for C22H18F8N2O, 479.1291; found, 479.1364.  
Melting point: 125-127 °C 
Chromatography conditions: 3% EtOAc in hexanes 
 

g-I: Procedure B was followed using N-iodosuccinimide as the oxidant.  
Isolated yield: 6.0 mg, 24% (off-white solid)  
1H NMR (700 MHz, CDCl3, 23 ºC): δ 7.44 (br s, 1H), 7.21 (dd, J = 5.3, 
3.1 Hz, 2H), 7.13 (dd, J = 5.3, 3.1 Hz, 2H), 4.68 (t, Jab = 4.4 Hz, 1H), 
3.27 (d, J = 10.7 Hz, 2H), 3.21 (t, J = 3.8 Hz, 2H), 2.77 (dd, J = 11.4, 

3.8 Hz, 2H), 1.28 (s, 6H). 
13C NMR (176 MHz, CDCl3, 23 ºC): δ 175.8, 142.7, 127.6, 121.6, 63.9, 46.2, 45.4, 37.1, 21.9. 
Carbon resonances associated with perfluoroaryl group are not observed.10 
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19F NMR (470 MHz, CDCl3, 23 ºC): δ –56.1 (t, 3F), –141.4 (m, 2F), –143.1 (m, 2F). 
HRMS-electrospray (m/z): [M]+ calcd. for C22H18F7IN2O, 587.0352; found, 587.0423.  
Melting point: 107-110 °C 
Chromatography conditions: 5% EtOAc in hexanes 
 

g-OAc: Procedure A was followed using iodomesitylene diacetate as 
the oxidant.  
Isolated yield: 11.9 mg, 53% (off-white solid) 
1H NMR (700 MHz, CDCl3, 23 ºC): δ 7.49 (br s, NH of amide, variable 
integrations), 7.22 (dd, J = 5.4, 3.1 Hz, 2H), 7.16 (dd, J = 5.4, 3.1 Hz, 

2H), 5.03 (t, Jab = 4.8 Hz, 1H), 3.34 (t, J = 4.1 Hz, 2H), 2.99 (d, J = 10.7 Hz, 2H), 2.63 (dd, J = 
10.7, 3.7 Hz, 2H), 2.20 (s, 3H), 1.25 (s, 6H). 
13C NMR (176 MHz, CDCl3, 23 ºC): δ 176.0, 170.3, 141.7, 127.8, 122.6, 74.6, 63.9, 43.7, 42.7, 
29.9, 21.7, 21.3. Carbon resonances associated with perfluoroaryl group are not observed.10 

19F NMR (470 MHz, CDCl3, 23 ºC): δ –56.1 (t, 3F), –141.4 (m, 2F), –143.1 (m, 2F). 
HRMS-electrospray (m/z): [M]+ calcd. for C24H21F7N2O3, 519.1440; found, 519.1509.  
Melting point: 110-112 °C 
Chromatography conditions: 10% EtOAc in hexanes 
 

g-BPin: Procedure C was followed using bis(pinacolato) diboron as the 
oxidant.  
Isolated yield: 14.7 mg, 57% (off-white solid)  
1H NMR (401 MHz, CDCl3, 23 ºC): δ 7.52 (br s, NH of amide, variable 
integrations), 7.15 (dd, J = 5.3, 3.1 Hz, 2H), 7.03 (dd, J = 5.3, 3.1 Hz, 

2H), 3.36 (t, J = 4.0 Hz, 2H), 2.89 (d, J = 10.5 Hz, 2H), 2.69 (dd, J = 10.5, 2.8 Hz, 2H), 1.94 (t, Jab 
= 4.0 Hz, 1H), 1.32 (s, 12H), 1.19 (s, 6H). 
13C NMR (176 MHz, CDCl3, 23 ºC): δ 176.4, 147.4, 126.5, 121.2, 83.6, 63.9, 48.6, 42.8, 29.9, 
25.1, 21.7. Carbon resonances associated with perfluoroaryl group are not observed.10 
19F NMR (470 MHz, CDCl3, 23 ºC): δ –56.1 (t, 3F), –141.6 (m, 2F), –143.0 (m, 2F). 
11B NMR (128 MHz, CDCl3, 23 °C): δ 32.8.  
HRMS-electrospray (m/z): [M]+ calcd. for C28H30BF7N2O3, 587.2238; found, 587.2310.  
Melting point: 149-153 °C  
Chromatography conditions: 5% EtOAc in hexanes 
 

g-SPh: Procedure C was followed with phenyl disulfide as the oxidant.  
Isolated yield: 18.7 mg, 75% (off-white solid) 
1H NMR (700 MHz, CDCl3, 23 ºC): δ 7.49 (br s, 1H), 7.44 (d, J = 7.5 
Hz, 2H), 7.31 (t, J = 7.5 Hz, 2H), 7.25 (d, J = 8.1 Hz, 1H), 7.20 (multiple 
peaks, 2H), 7.12 (d, J = 10.1 Hz, 2H), 3.86 (t, Jab = 3.5 Hz, 1H), 3.28 

(d, J = 10.0 Hz, 4H), 2.66 (d, J = 10.9 Hz, 2H), 1.28 (s, 6H). 
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13C NMR (176 MHz, CDCl3, 23 ºC): δ 176.0, 144.7, 131.1, 129.3, 127.3, 127.1, 122.0, 64.0, 56.6, 
44.6, 44.5, 29.9, 21.9. Carbon resonances associated with perfluoroaryl group are not observed.10 
19F NMR (470 MHz, CDCl3, 23 ºC): δ –56.7 (t, 3F), –142.0 (m, 2F), –143.7 (m, 2F). 
HRMS-electrospray (m/z): [M]+ calcd. for C28H23F7N2OS, 569.1419; found, 569.1492.  
Melting point: 70-75 °C  
Chromatography conditions: 5% EtOAc in hexanes 
 

g-Mor: Procedure C was followed with morpholino benzoate as the 
oxidant. 
Isolated yield: 8.9 mg, 38% (white solid) 
1H NMR (700 MHz, CDCl3, 23 ºC): δ 7.53 (br s, NH of amide, variable 
integrations), 7.19 (dd, J = 5.3, 3.1 Hz, 2H), 7.12 (dd, J = 5.3, 3.1 Hz, 
2H), 3.79 (t, J = 4.3 Hz, 4H), 3.24 (t, J = 4.0 Hz, 2H), 3.15 (d, J = 10.0 
Hz, 2H), 2.60 (t, Jab = 4.3 Hz, 1H), 2.53 (s, 4H), 2.48 (dd, J = 10.0, 3.8 

Hz, 2H), 1.24 (s, 6H). 
13C NMR (176 MHz, CDCl3, 23 ºC): δ 176.3, 144.2, 127.2, 122.4, 70.3, 67.1, 63.9, 50.9, 43.3, 
41.8, 21.7. Carbon resonances associated with perfluoroaryl group are not observed.10  
19F NMR (470 MHz, CDCl3, 23 ºC): δ –56.1 (t, 3F), –141.6 (m, 2F), –143.1 (m, 2F). 
HRMS-electrospray (m/z): [M]+ calcd. for C26H26F7N3O2, 546.1913; found, 546.1989.  
Melting point: 107-109 °C  
Chromatography conditions: 75% EtOAc in hexanes 

3.5.6 Scope of Pd-Mediated g-Borylation Reaction 

 

General Procedure: A 4 mL vial was charged with the corresponding substrate (1.0 equiv) and 

Pd(OAc)2 (1.0 equiv). Dimethyl sulfoxide (0.6 mL) was added with a syringe. The vial was sealed 

with a Teflon-lined cap, and the mixture was stirred at 100 °C. After 1 h at this temperature, the 

vial was allowed to cool, the cap was removed, and B2Pin2 (3.0 equiv) was added. The vial was 

re-sealed, and the mixture was stirred and heated at 100 °C. After 3 h at this temperature, the 

reaction was cooled, diluted with dichloromethane, and stirred at rt for 10 min. The resulting 

suspension was filtered through a plug of Celite and concentrated under vacuum overnight. The 

1) 1 equiv Pd(OAc)2
 DMSO, 100 °C, 1 h

2) 3 equiv B2Pin2
100 °C, 3 h
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crude material was purified via silica gel column chromatography. See substrate-specific notes 

below.  

1-BPin: The general procedure was followed using substrate 1-B (20.0 
mg, 0.040 mmol, 1.0 equiv), Pd(OAc)2 (9.0 mg, 0.040 mmol, 1.0 
equiv), and B2Pin2 (30.5 mg, 0.120 mmol, 3.0 equiv) as starting 
materials.  
Isolated yield: 12.9 mg, 52% (white solid) 
1H NMR (700 MHz, CDCl3, 23 ºC): δ 8.03 (dd, J = 7.9, 2.1 Hz, 1H), 

8.00 (d, J = 2.1 Hz, 1H), 7.47 (br s, 1H), 7.32 (d, J = 8.0 Hz, 1H), 3.47 (dt, J = 14.7, 4.1 Hz, 2H), 
3.01-2.93 (multiple peaks, 2H), 2.77 (ddd, J = 21.7, 9.9, 4.1 Hz, 2H), 2.01 (t, Jab = 4.8 Hz, 1H), 
1.33 (s, 12H), 1.22 (s, 3H), 1.21 (s, 3H). 
13C NMR (176 MHz, CDCl3, 23 ºC): δ 175.3, 155.3, 149.4, 147.3, 122.8, 121.6, 116.3, 83.9, 64.2, 
48.5, 48.1, 42.8, 42.7, 25.1, 22.2, 20.6. Carbon resonances associated with perfluoroaryl group 
are not observed.10  
19F NMR (470 MHz, CDCl3, 23 ºC): δ –56.1 (t, 3F), –140.8 (m, 2F), –143.7 (m, 2F).    
11B NMR (128 MHz, CDCl3, 23 °C): 32.7.    
HRMS-electrospray (m/z): [M]+ calcd. for C28H29BF7N3O5, 632.2161; found, 632.2155.  
Melting point: 115-120 °C 
Chromatography conditions: 15% EtOAc in hexanes 
 

2-BPin: The general procedure was followed using substrate 1-C (20.0 
mg, 0.042 mmol, 1.0 equiv), Pd(OAc)2 (9.5 mg, 0.042 mmol, 1.0 
equiv), and B2Pin2 (32.0 mg, 0.126 mmol, 3.0 equiv) as starting 
materials.  
Isolated yield: 8.8 mg, 35% (white solid) 
1H NMR (700 MHz, CDCl3, 23 ºC): δ 7.81 (br s, 1H), 6.91 (d, J = 7.7 

Hz, 1H), 6.51 (d, J = 2.1 Hz, 1H), 6.33 (dd, J = 7.7, 2.1 Hz, 1H), 3.44 (app. s, 2H), 3.24 (dt, J = 
12.0, 4.2 Hz, 2H), 2.84 (dd, J = 15.2, 10.6 Hz, 2H), 2.70-2.59 (multiple peaks, 2H), 1.89 (t, Jab = 
4.1 Hz, 1H), 1.31 (s, 12H), 1.19 (s, 3H), 1.19 (s, 3H). 
13C NMR (176 MHz, CDCl3, 23 ºC): δ 176.5, 148.8, 145.3, 137.2, 121.7, 112.4, 109.2, 83.5, 63.9, 
48.7, 48.6, 43.0, 42.0, 25.1, 21.9, 21.6. Carbon resonances associated with perfluoroaryl group 
are not observed.10 
19F NMR (470 MHz, CDCl3, 23 ºC): δ –56.0 (t, 3F), –141.9 (m, 2F), –143.1 (m, 2F).  
11B NMR (128 MHz, CDCl3, 23 °C): 33.9. 
HRMS-electrospray (m/z): [M]+ calcd. for C28H31BF7N3O3, 602.2419; found, 602.2417.  
Melting point: 107-110 °C 
Chromatography conditions: 20% EtOAc in hexanes 
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3-BPin: The general procedure was followed using substrate 1-D (20.0 
mg, 0.040 mmol, 1.0 equiv), Pd(OAc)2 (9.0 mg, 0.040 mmol, 1.0 
equiv), and B2Pin2 (30.5 mg, 0.120 mmol, 3.0 equiv) as starting 
materials. 
Isolated yield: 10.8 mg, 44% (clear oil) 
1H NMR (700 MHz, CDCl3, 23 ºC): δ 7.59 (br s, 1H), 7.10 (d, J = 7.8 

Hz, 2H), 7.06 (dd, J = 7.8, 2.0 Hz, 1H), 3.34 (dt, J = 13.7, 4.2 Hz, 2H), 2.89 (t, J = 11.4 Hz, 2H), 
2.72 (dd, J = 10.7, 4.2 Hz, 1H), 2.65 (dd, J = 10.7, 4.2 Hz, 1H), 1.94 (t, Jab = 4.2 Hz, 1H), 1.32 (s, 
12H), 1.21 (s, 3H), 1.19 (s, 3H). 
13C NMR (176 MHz, CDCl3, 23 ºC): δ 175.9, 149.5, 146.0, 132.0, 126.5, 122.3, 121.8, 83.7, 64.0, 
48.7, 48.1, 42.9, 42.4, 25.1, 25.0, 22.4, 20.8. Carbon resonances associated with perfluoroaryl 
group are not observed.10 
19F NMR (470 MHz, CDCl3, 23 ºC): δ –56.1 (t, 3F), –141.4 (m, 2F), –143.3 (m, 2F). 
11B NMR (128 MHz, CDCl3, 23 °C): 33.6.  
HRMS-electrospray (m/z): [M]+ calcd. for C28H29BClF7N2O3, 621.1921; found, 621.1920.  
Chromatography conditions: 10% EtOAc in hexanes 
 

4-BPin: The general procedure was followed using substrate 1-E (20.0 
mg, 0.039 mmol, 1.0 equiv), Pd(OAc)2 (8.8 mg, 0.039 mmol, 1.0 
equiv), and B2Pin2 (29.7 mg, 0.117 mmol, 3.0 equiv) as starting 
materials.  
Isolated yield: 17.3 mg, 69% (white solid) 
1H NMR (700 MHz, CDCl3, 23 ºC): δ 7.68 (br s, 1H), 7.48 (d, J = 2.0 
Hz, 1H), 7.12-7.04 (multiple peaks, 2H), 7.00 (dd, J = 7.8, 2.0 Hz, 1H), 

3.34-3.30 (multiple peaks, 2H), 2.87 (dd, J = 13.0, 11.0 Hz, 2H), 2.74-2.62 (multiple peaks, 2H), 
2.04 (s, 3H), 1.92 (t, Jab = 4.3 Hz, 1H), 1.31 (s, 12H), 1.20 (s, 3H), 1.17 (s, 3H). 
13C NMR (176 MHz, CDCl3, 23 ºC): δ 176.1, 167.9, 148.3, 143.3, 136.6, 121.4, 117.5, 113.5, 83.6, 
63.9, 48.8, 48.2, 43.0, 42.4, 25.1, 25.0, 24.3, 22.7, 20.7. Carbon resonances associated with 
perfluoroaryl group are not observed.10  
19F NMR (470 MHz, CDCl3, 23 ºC): δ –56.0 (t, 3F), –141.9 (m, 2F), –143.1 (m, 2F).  
11B NMR (128 MHz, CDCl3, 23 °C): 31.7. 
HRMS-electrospray (m/z): [M]+ calcd. for C30H33BF7N3O4, 644.2525; found, 644.2519.  
Melting point: 60-65 °C 
Chromatography conditions: 25% EtOAc in hexanes 
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5-BPin: The general procedure was followed using substrate 1-F (20.0 
mg, 0.037 mmol, 1.0 equiv), Pd(OAc)2 (8.3 mg, 0.037 mmol, 1.0 
equiv), and B2Pin2 (28.2 mg, 0.111 mmol, 3.0 equiv) as starting 
materials. 
Isolated yield: 13.1 mg, 53% (white solid) 
1H NMR (700 MHz, CDCl3, 23 ºC): δ 7.75 (br s, NH of amide, variable 
integrations), 7.04 (d, J = 8.0 Hz, 1H), 6.74 (d, J = 2.3 Hz, 1H), 6.54 
(dd, J = 8.0, 2.3 Hz, 1H), 3.75 (ddd, J = 5.8, 3.8, 2.1 Hz, 4H), 3.29 (dt, 

J = 15.1, 3.8 Hz, 2H), 2.95 (dddd, J = 17.5, 11.7, 9.5, 4.7 Hz, 4H), 2.91-2.84 (multiple peaks, 2H), 
2.67 (ddd, J = 30.5, 10.7, 4.1 Hz, 2H), 1.91 (t, Jab = 4.0, 1H), 1.32 (s, 12H), 1.19 (s, 3H), 1.18 (s, 
3H). 
13C NMR (176 MHz, CDCl3, 23 ºC): δ 176.4, 150.6, 148.5, 139.0, 121.6, 113.0, 110.0, 83.6, 67.0, 
63.8, 49.9, 48.9, 48.4, 43.3, 42.1, 25.1, 22.4, 21.1. Carbon resonances associated with 
perfluoroaryl group are not observed.10 
19F NMR (470 MHz, CDCl3, 23 ºC): δ –56.0 (t, 3F), –141.6 (m, 2F), –142.7 (m, 2F).  
11B NMR (128 MHz, CDCl3, 23 °C): 33.2.  
HRMS-electrospray (m/z): [M]+ calcd. for C32H37BF7N3O4, 672.2838; found, 672.2829.  
Melting point: 168-171 °C 
Chromatography conditions: 15% EtOAc in hexanes 
 

6-BPin: The general procedure was followed using substrate 1-G (20.0 
mg, 0.043 mmol, 1.0 equiv), Pd(OAc)2 (9.7 mg, 0.043 mmol, 1.0 
equiv), and B2Pin2 (32.8 mg, 0.129 mmol, 3.0 equiv) as starting 
materials. 
Isolated yield: 12.3 mg, 48% (white solid) 

1H NMR (700 MHz, CD3OD, 23 ºC): δ 2.74 (dt, J = 10.7, 2.2 Hz, 2H), 2.70 (dd, J = 10.7, 1.9 Hz, 
2H), 2.20 (s, 2H), 2.02-1.88 (multiple peaks, 5H), 1.77 (d, J = 8.3 Hz, 2H), 1.38 (s, 6H), 1.29 (d, 
J = 1.0 Hz, 15H), 1.13 (t, Jab = 4.1 Hz, 1H). Note in CD3OD, amide H is not observed.  
13C NMR (176 MHz, CDCl3, 23 ºC): δ 175.4, 83.2, 65.1, 46.1, 41.4, 40.4, 25.2, 20.6, 20.6, 20.4. 
Carbon resonances associated with perfluoroaryl group are not observed.10 
19F NMR (470 MHz, CDCl3, 23 ºC): δ –56.1 (t, 3F), –141.1 (m, 2F), –143.2 (m, 2F). 
11B NMR (128 MHz, CDCl3, 23 °C): 31.7. 
HRMS-electrospray (m/z): [M]+ calcd. for C28H36BF7N2O3, 593.2780; found, 593.2774.  
Melting point: 50-53 °C 
Chromatography conditions: 5% EtOAc in hexanes 
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7-BPin: The general procedure was followed using substrate 1-H (20.0 
mg, 0.039 mmol, 1.0 equiv), Pd(OAc)2 (8.8 mg, 0.039 mmol, 1.0 
equiv), and B2Pin2 (29.7 mg, 0.117 mmol, 3.0 equiv) as starting 
materials. 
Isolated yield: 7.0 mg, 28% (white solid) 
1H NMR (700 MHz, CDCl3, 23 ºC): δ 8.71 (app. s, 2H), 7.77 (app. s, 
2H), 7.46 (br s, 1H), 3.63 (t, J = 4.0 Hz, 2H), 3.06 (d, J = 11.0 Hz, 2H), 

2.89 (dd, J = 11.0, 4.0 Hz, 2H), 2.05 (t, Jab = 4.0 Hz, 1H), 1.35 (s, 12H), 1.19 (s, 6H). 
13C NMR (176 MHz, CDCl3, 23 ºC): δ 175.2, 151.5, 144.0, 143.2, 120.4, 83.9, 64.1, 49.7, 42.8, 
25.1, 21.5. Carbon resonances associated with perfluoroaryl group are not observed.10 
19F NMR (470 MHz, CDCl3, 23 ºC): δ –56.1 (s, 3F), –141.4 (m, 2F), –144.3 (m, 2F).  
11B NMR (128 MHz, CDCl3, 23 °C): 32.7. 
HRMS-electrospray (m/z): [M]+ calcd. for C30H30BF7N4O3, 639.2372; found, 639.2355. 
Melting point: 110-115 °C 
Chromatography conditions: 30% EtOAc in pentanes 
 

8-BPin: The general procedure was followed using substrate 1-I (20.0 
mg, 0.035 mmol, 1.0 equiv), Pd(OAc)2 (7.9 mg, 0.035 mmol, 1.0 
equiv), and B2Pin2 (26.7 mg, 0.105 mmol, 3.0 equiv) as starting 
materials. 
Isolated yield: 14.1 mg, 57% (colorless oil) 
1H NMR (700 MHz, CDCl3, 23 ºC): δ 8.86 (d, J = 1.8 Hz, 1H), 8.82 (d, 
J = 1.8 Hz, 1H), 7.97 (s, 1H), 7.43 (s, 1H), 4.11 (m, 1H), 3.66 (m, 1H), 

3.11-2.99 (multiple peaks, 3H), 2.89 (dd, J = 11.0, 4.5 Hz, 1H), 2.02 (t, Jab = 4.0 Hz 1H), 1.35 (s, 
12H), 1.21 (s, 3H), 1.19 (s, 3H). 
13C NMR (176 MHz, CDCl3, 23 ºC): δ 174.5, 151.8, 150.8, 144.8, 144.1, 142.8, 140.1, 125.2 (q, 
J = 276.3 Hz), 124.1, 120.6 (q, J = 29.7 Hz), 84.1, 64.2, 49.7, 49.4, 43.1, 42.4, 25.1, 25.1, 21.41, 
21.4. Carbon resonances associated with perfluoroaryl group are not observed.10 
19F NMR (470 MHz, CDCl3, 23 ºC): δ –55.4 (app. s, 3F), –56.0 (t, 3F), –141.6 (m, 2F), –144.8 (m, 
2F).  
11B NMR (128 MHz, CDCl3, 23 °C): 35.5. 
HRMS-electrospray (m/z): [M]+ calcd. for C31H29BF10N4O3, 707.2246; found, 707.2246.  
Chromatography conditions: 25% EtOAc in hexanes 
 

9-BPin: The general procedure was followed using substrate 1-J (20.0 
mg, 0.041 mmol, 1.0 equiv), Pd(OAc)2 (9.2 mg, 0.041 mmol, 1.0 
equiv), and B2Pin2 (31.2 mg, 0.123 mmol, 3.0 equiv) as starting 
materials. 
Isolated yield: 9.1 mg, 36% (light yellow solid) 
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1H NMR (700 MHz, CDCl3, 23 ºC): δ 7.71 (s, 1H), 7.03 (dd, J = 9.2, 6.8 Hz, 1H), 6.33 (dd, J = 
9.2, 1.4 Hz, 1H), 5.95 (d, J = 7.1 Hz, 1H), 4.18 (d, J = 15.4 Hz, 1H), 3.91 (dd, J = 15.4, 6.4 Hz, 
1H), 3.24 (m, 1H), 3.02 (d, J = 11.3 Hz, 1H), 2.79 (d, J = 10.8 Hz, 1H), 2.77 – 2.70 (multiple 
peaks, 2H), 2.66 (d, J = 11.3 Hz, 1H), 1.31 (s, 12H), 1.28 (s, 3H), 1.26 (app. d, Jab = 4.9 Hz, 1H), 
1.18 (s, 3H). 
13C NMR (176 MHz, CDCl3, 23 ºC): δ 175.0, 163.3, 151.3, 138.4, 117.1, 104.6, 84.4, 64.6, 54.4, 
51.8, 51.2, 36.9, 29.9, 29.6, 25.0, 25.0, 23.8, 17.4. Carbon resonances associated with 
perfluoroaryl group are not observed.10 
19F NMR (470 MHz, CDCl3, 23 ºC): δ –56.1 (t, 3F), –141.0 (m, 2F), –142.8 (m, 2F). 
11B NMR (128 MHz, CDCl3, 23 °C): 31.7. 
HRMS-electrospray (m/z): [M]+ calcd. for C28H31BF7N3O4, 618.2369; found, 618.2370.  
Melting point: 67-72 °C 
Chromatography conditions: 60% EtOAc in hexanes 
 

10-BPin: The general procedure was followed using substrate 1-K (20.0 
mg, 0.052 mmol, 1.0 equiv), Pd(OAc)2 (11.7 mg, 0.052 mmol, 1.0 
equiv), and B2Pin2 (40.0 mg, 0.156 mmol, 3.0 equiv) as starting 
materials. 
Isolated yield: 5.2 mg, 20% (colorless oil) 

1H NMR (700 MHz, CDCl3, 23 ºC): δ 9.92 (br s, 1H), 3.04 (d, J = 8.5 Hz, 2H), 2.70 (dt, J = 8.5, 
2.1 Hz, 2H), 1.74-1.70 (multiple peaks, 2H), 1.31 (s, 6H), 1.13 (s, 12H), 0.02 (t, Jab = 8.5 Hz, 1H). 
13C NMR (176 MHz, CDCl3, 23 ºC): δ 176.3, 83.3, 61.8, 47.0, 25.5, 24.7, 20.9, 19.9. Carbon 
resonances associated with perfluoroaryl group are not observed.10 
19F NMR (470 MHz, CDCl3, 23 ºC): δ –56.0 (t, 3F), –141.5 (m, 2F), –142.8 (m, 2F). 
11B NMR (128 MHz, CDCl3, 23 °C): 33.8. 
HRMS-electrospray (m/z): [M]+ calcd. for C22H26BF7N2O3, 511.1997; found, 511.1995.  
Chromatography conditions: 5% EtOAc in pentanes. Performed on water-deactivated silica gel.  
 

Table 3.4 Substrates that did not undergo Pd-Mediated g-Borylation under these conditions 
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3.5.7 Pd-Catalyzed g-Functionalizations 

Pd-Catalyzed g-Borylation 

 

General Procedure A: A 4 mL vial was charged with substrate 1-A (10.1 mg, 0.022 mmol, 1.0 

equiv), Pd(OAc)2 (0.50 mg, 0.0022 mmol, 10 mol%), and base (0.022 mmol, 1.0 equiv) followed 

by the addition of B2Pin2 (16.8 mg, 0.066 mmol, 3.0 equiv). With a syringe, DMSO (0.3 mL) was 

added. The vial was sealed, and the mixture was stirred at 100 °C. After 3 h at this temperature, 

the reaction was cooled, diluted with EtOAc, and the resulting suspension was filtered through a 

plug of Celite and concentrated under vacuum and analyzed via GC-FID analysis using 

trimethoxybenzene as internal standard (0.022 mmol, 1.0 equiv).  

 
Table 3.5 Evaluation of carboxylate and carbonate bases 

Base g-BPin 

CsOPiv 20% 

CsOAc 35% 

Cs2CO3 10% 

K2CO3 5% 

KOAc 25% 

NaOAc 35% 

LiOAc 40% 

1-A N

BPin

DG

γ-BPin

10 mol% Pd(OAc)2
3 equiv B2Pin2
1 equiv Base

DMSO, 100 °C, 3 h
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Li2CO3 50% 

 

Pd-Catalyzed g-Fluorination 

 

General Procedure B: A 4 mL vial was charged with substrate 1-A (10.1 mg, 0.022 mmol, 1.0 

equiv), Pd(OAc)2 (1.0 mg, 0.0044 mmol, 20 mol%), and NaOAc (1.8 mg, 0.022 mmol, 1.0 equiv) 

followed by MeCN (0.3 mL). With a syringe, ligand 1 (0.5 µL, 0.0044 mmol, 20 mol%) was 

added. The vial was sealed, and the mixture was stirred at 100 °C. After 1 h at this temperature, 

the reaction was cooled. Once cooled, the vial was open and NFSI (3.5 mg, 0.011 mmol, 50 mol%) 

was added. Again, the vial was sealed, and the mixture was stirred at 100 °C. After 1 h at this 

temperature, the reaction was cooled and then the vial was open and NFSI (3.5 mg, 0.011 mmol, 

50 mol%) was added. The vial was sealed, and the mixture was stirred at 100 °C for 18 h. After 

18 h, the reaction was cooled, diluted with EtOAc, and quenched with hydrazine (3 drops). This 

mixture was stirred at rt for 10 min. The resulting suspension was filtered through a plug of Celite 

and concentrated under vacuum and analyzed via 19F NMR using 1,3,5-trifluorobenzene as internal 

standard (0.022 mmol, 1.0 equiv) to afford 40% yield.  

Additional Pd-Catalyzed g-Functionalizations 

Results shown in Table 3.3 for oxidants evaluated in General Procedures A and B.  

 

1-A N

F

DG

γ-F, 40%

1) 20 mol% Pd(OAc)2
20 mol% ligand 1
1 equiv NaOAc
MeCN, 100 °C, 1 h

2) 50 mol% NFSI
100 °C, 1 h
3) 50 mol% NFSI
100 °C, 18 h

S
O

S N S
O

O
Ph

F
Ph

O

O

ligand 1 NFSI
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Table 3.6 Oxidant Screen in our Pd-catalyzed g-Functionalization Procedures 

oxidant General Procedure A General Procedure B 

N-bromosuccinimide g-Br, trace g-Br, 0% 

N- chlorosuccinimide g-Cl, 0% g-Cl, 20% 

N-iodosuccinimide g-I, 0% g-I, trace 

MesI(OAc)2 g-OAc, 0% g-OAc, trace 

 

3.5.8 X-Ray Crystallography Data 

X-Ray Crystallography Experimental Data of g-F 

Colorless needles of g-F were grown from a hexane solution of the 

compound at 23 ºC.  A crystal of dimensions 0.10 x 0.02 x 0.02 mm was 

mounted on a Rigaku AFC10K Saturn 944+ CCD-based X-ray 

diffractometer equipped with a low temperature device and Micromax-007HF Cu-target micro-

focus rotating anode (λ = 1.54187 A) operated at 1.2 kW power (40 kV, 30 mA). The X-ray 

intensities were measured at 85(1) K with the detector placed at a distance 42.00 mm from the 

crystal.  A total of 2028 images were collected with an oscillation width of 1.0° in w. The exposure 

times were 7 s for the low angle images, 40 s for high angle. Rigaku d*trek images were exported 

to CrysAlisPro for processing and corrected for absorption. The integration of the data yielded a 

total of 30204 reflections to a maximum 2θ value of 141.14° of which 3836 were independent and 

2148 were greater than 2θ(I). The final cell constants (Table 3.1) were based on the xyz centroids 

of 2665 reflections above 10σ(I). Analysis of the data showed negligible decay during data 

collection. The structure was solved and refined with the Bruker SHELXTL (version 2016/6) 

software package, using the space group P2(1)/n with Z = 4 for the formula C22H18F8N2O. All non-

N

F

O

HN C7F7

(γ-F)
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hydrogen atoms were refined anisotropically with the hydrogen atoms placed in a combination of 

idealized and refined positions. Full matrix least-squares refinement based on F2 converged at R1 

= 0.0911 and wR2 = 0.2445 [based on I > 2sigma(I)], R1 = 0.1491 and wR2 = 0.3127 for all data. 

Additional details are presented in Table 3.1 and are given as Supporting Information in a CIF file. 

Acknowledgement is made for funding from NSF grant CHE-0840456 for X-ray instrumentation. 

G.M. Sheldrick (2015) "Crystal structure refinement with SHELXL", Acta Cryst., C71, 3-8 

 (Open Access). 

CrystalClear Expert 2.0 r16, Rigaku Americas and Rigaku Corporation (2014), Rigaku Americas, 

 9009, TX, USA 77381-5209, Rigaku Tokyo, 196-8666, Japan. 

Table 3.7 Crystal Data and Structural Refinement for g-F 

Empirical Formula C22H18F8N2O 

Formula Weight 478.38 

Temperature 85 (2) K 

Wavelength 1.54184 Å 

Crystal System monoclinic 

Space Group P2(1)/n 

Unit Cell Dimensions a = 6.6001(7) Å, α = 90° 

b = 18.5833(15) Å, β = 94.564(9)° 

c = 16.9595(13) Å, γ = 90° 

Volume 2073.5(3) Å3 

Z 4 

Calculated Density 1.532 Mg/m3 

Absorption Coefficient 1.278 mm-1 
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F(000) 976 

Crystal Size 0.100 x 0.020 x 0.020 mm 

Theta Range for Data Collection 3.534 to 70.712 

Limiting Indices -7≤h≤7, -22≤k≤22, -20≤l≤20 

Reflections Collected 30204 

Independent Reflections 3836 

Completeness to Theta 99.5% 

Absorption Correction Semi-empirical from equivalents 

Max and Min Transmission 1.00000 to 0.42936 

Refinement Method Full-matrix least-squares on F2 

Data / Restraints / Parameters 3836 / 0 / 304 

Goodness-of-Fit on F2 1.046 

Final R Indices [l>2σ(l)] R1 = 0.0911, wR2 = 0.2445 

R indices (all data) R1 = 0.1491, wR2 = 0.3127 

Extinction Coefficient N/A 

Largest Difference Peak and Hole 0.349 and -0.406 Å-3 

 

X-Ray Crystallography Experimental Data of g-OAc 

Colorless needles of g -OAc were grown from an acetone solution of the 

compound at 23 °C. A crystal of dimensions 0.20 x 0.12 x 0.10 mm was 

mounted on a Rigaku AFC10K Saturn 944+ CCD-based X-ray 

diffractometer equipped with a low temperature device and Micromax-007HF Cu-target micro-

focus rotating anode (λ = 1.54187 A) operated at 1.2 kW power (40 kV, 30 mA). The X-ray 

N

OAc

O

HN C7F7

(γ-OAc)
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intensities were measured at 85(1) K with the detector placed at a distance 42.00 mm from the 

crystal.  A total of 2028 images were collected with an oscillation width of 1.0° in ω. The exposure 

times were 1 sec. for the low angle images, 4 sec. for high angle. Rigaku d*trek images were 

exported to CrysAlisPro for processing and corrected for absorption. The integration of the data 

yielded a total of 33169 reflections to a maximum 2θ value of 138.49° of which 4179 were 

independent and 4103 were greater than 2σ(I). The final cell constants (Table 3.2) were based on 

the xyz centroids of 19361 reflections above 10σ(I). Analysis of the data showed negligible decay 

during data collection.  The structure was solved and refined with the Bruker SHELXTL (version 

2016/6) software package, using the space group P2(1)/n with Z = 4 for the formula C24H21F7N2O3. 

All non-hydrogen atoms were refined anisotropically with the hydrogen atoms placed in a 

combination of idealized and refined positions.  Full matrix least-squares refinement based on F2 

converged at R1 = 0.0503 and wR2 = 0.1307 [based on I > 2sigma(I)], R1 = 0.0508 and wR2 = 

0.1311 for all data. Additional details are presented in Table 3.2 and are given as Supporting 

Information in a CIF file. Acknowledgement is made for funding from NSF grant CHE-0840456 

for X-ray instrumentation. 

G.M. Sheldrick (2015) "Crystal structure refinement with SHELXL", Acta Cryst., C71, 3-8 (Open 

Access). 

CrystalClear Expert 2.0 r16, Rigaku Americas and Rigaku Corporation (2014), Rigaku Americas, 

9009, TX, USA 77381-5209, Rigaku Tokyo, 196-8666, Japan. 

CrysAlisPro 1.171.38.41 (Rigaku Oxford Diffraction, 2015) 

Table 3.8 Crystal Data and Structural Refinement for g-OAc 

Empirical Formula C24H21F7N2O3 

Formula Weight 518.43 



 84 

Temperature 85 (2) K 

Wavelength 1.54184 A 

Crystal System monoclinic 

Space Group P2(1)/n 

Unit Cell Dimensions a = 13.6948(2) Å, α = 90 ° 

b = 9.15070(10) Å, β = 102.8070(10)° 

c = 18.4622(2) Å, γ = 90 ° 

Volume 2256.07(5) Å3 

Z 4 

Calculated Density 1.526 Mg/m3 

Absorption Coefficient 1.226 mm-1 

F(000) 1064 

Crystal Size 0.200 x 0.120 x 0.100 mm 

Theta Range for Data Collection 3.658 to 69.245 ° 

Limiting Indices -16≤h≤16, -11≤k≤11, -22≤l≤22 

Reflections Collected 33169 

Independent Reflections 4179 

Completeness to Theta 99.9% 

Absorption Correction Semi-empirical from equivalents 

Max and Min Transmission 1.00000 to 0.77789 

Refinement Method Full-matrix least-squares on F2 

Data / Restraints / Parameters 4179 / 0 / 333 

Goodness-of-Fit on F2 1.064 
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Final R Indices [l>2σ(l)] R1 = 0.0503, wR2 = 0.1307 

R indices (all data) R1 = 0.0508, wR2 = 0.1311 

Extinction Coefficient 0.0036(3) 

Largest Difference Peak and Hole 0.851 and -0.545 Å-3 

 

X-Ray Crystallography Experimental Data of g-I 

Colorless needles of g-I were grown from a hexanes solution of the 

compound at 23 deg. C.  A crystal of dimensions 0.18 x 0.05 x 0.02 mm was 

mounted on a Rigaku AFC10K Saturn 944+ CCD-based X-ray 

diffractometer equipped with a low temperature device and Micromax-

007HF Cu-target micro-focus rotating anode (λ = 1.54187 A) operated at 1.2 kW power (40 kV, 

30 mA).  The X-ray intensities were measured at 85(1) K with the detector placed at a distance 

42.00 mm from the crystal.  A total of 2028 images were collected with an oscillation width of 

1.0° in ω.  The exposure times were 1 sec. for the low angle images, 3 sec. for high angle.  Rigaku 

d*trek images were exported to CrysAlisPro for processing and corrected for absorption.  The 

integration of the data yielded a total of 32312 reflections to a maximum 2θ value of 138.72° of 

which 4126 were independent and 3860 were greater than 2σ(I). The final cell constants (Table 

3.3) were based on the xyz centroids of 14962 reflections above 10σ(I). Analysis of the data 

showed negligible decay during data collection. The structure was solved and refined with the 

Bruker SHELXTL (version 2016/6) software package, using the space group P2(1)/c with Z = 4 

for the formula C22H18N2OF7I. All non-hydrogen atoms were refined anisotropically with the 

hydrogen atoms placed in idealized positions.  Full matrix least-squares refinement based on F2 

converged at R1 = 0.0769 and wR2 = 0.2065 [based on I > 2sigma(I)], R1 = 0.0795 and wR2 = 
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0.2238 for all data. Additional details are presented in Table 3.3 and are given as Supporting 

Information in a CIF file. Acknowledgement is made for funding from NSF grant CHE-0840456 

for X-ray instrumentation. 

G.M. Sheldrick (2015) "Crystal structure refinement with SHELXL", Acta Cryst., C71, 3-8  

(Open Access). 

CrystalClear Expert 2.0 r16, Rigaku Americas and Rigaku Corporation (2014), Rigaku Americas,  

9009, TX, USA 77381-5209, Rigaku Tokyo, 196-8666, Japan. 

CrysAlisPro 1.171.38.41 (Rigaku Oxford Diffraction, 2015). 

Table 3.9 Crystal Data and Structural Refinement for g-I 

Empirical Formula C22H18F7IN2O 

Formula Weight 586.28 

Temperature 85 (2) K 

Wavelength 1.54184 A 

Crystal System monoclinic 

Space Group P2(1)/c 

Unit Cell Dimensions a = 20.9907(7) Å, α = 90 ° 

b = 6.6416(2) Å, β = 108.394(4)° 

c = 16.8750(8) Å, γ = 90 ° 

Volume 2232.38(15) Å3 

Z 4 

Calculated Density 1.744 Mg/m3 

Absorption Coefficient 11.974 mm-1 

F(000) 1152 
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Crystal Size 0.180 x 0.050 x 0.020 mm 

Theta Range for Data Collection 5.264 to 69.362 ° 

Limiting Indices -25≤h≤25, -8≤k≤7, -20≤l≤18 

Reflections Collected 32312 

Independent Reflections 4126 

Completeness to Theta 99.7% 

Absorption Correction Semi-empirical from equivalents 

Max and Min Transmission 1.00000 to 0.31704 

Refinement Method Full-matrix least-squares on F2 

Data / Restraints / Parameters 4126 / 0 / 300 

Goodness-of-Fit on F2 1.152 

Final R Indices [l>2σ(l)] R1 = 0.0769, wR2 = 0.2065 

R indices (all data) R1 = 0.0795, wR2 = 0.2238 

Extinction Coefficient n/a 

Largest Difference Peak and Hole 2.541 and -0.477 Å-3 
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Chapter 4 Leveraging Transient Alkenes for Divergent Functionalization at Multiple 
C-H Sites 

 

Note: This work was performed in collaboration with Dr. Scott M. Thullen.  

4.1 Introduction 

 Alicyclic amines appear in a wide variety of bioactive compounds.1 In particular, six-

membered alicyclic scaffolds are the single most common heterocyclic system observed in 

pharmaceutically relevant compounds.2 In order to access these complex molecular architectures 

more efficiently, a diverse set of modular reactivity is required to rapidly diversify the core 

structure at multiple C-H sites.3 Thus, it would be highly desirable to achieve the functionalization 

of multiple sites of these motifs in a single synthetic operation. 

Scheme 4.1 (a) Our Goal (b) Previously Reported Pd-Catalyzed Transannular Arylation 

 

(a)

N
R

N
R

N
DG

N
DG

α-oxidation

our goal

alicyclic amine
motif

Acheiving multiple
functionalizations

in a single operation

α

β

β

γ

γ
N
H

O
C7F7

Me
Me

DG

transannular
C-H activation

N
DG

10 mol % Pd(OAc)2
10 mol % quinaldic acid

CsOPiv
I N

DG
Ar

(b)

t-amylOH
1-A 1-B



 92 

 A desirable method for late-stage diversification is through C(sp3)-H functionalization.4 

The majority of C-H functionalizations of alicyclic amines have focused on the functionalization 

of a single C–H bond. In particular, the highly activated C(sp3)–H bond a to nitrogen is the most 

commonly activated and functionalized (Scheme 4.1a).5 In contrast, the remote Cb–H and Cg–H 

sites are relatively less activated and therefore are challenging to access. Recently, our group has 

addressed this challenge by developing a directed Pd-catalyzed transannular C–H activation 

sequence that enables selective Cg–H arylation of alicyclic amines (Scheme 4.1b).6-8 Of 

importance, by installing the directing group on the amine nitrogen, the alicyclic amine core 

remains available for other possible C-H functionalizations. As such, we were inspired to leverage 

this transannular C–H activation to achieve multi-site C–H functionalization of these motifs 

(Scheme 4.1).  

 Herein, we report a Pd-catalyzed remote functionalization at multiple C(sp3)–H sites on 

alicyclic amines via transannular C–H activation in combination with traditionally overlooked Pd-

mediated pathways to enable the rapid diversification of these cores. Moreover, we provide 

mechanistic insight into this transformation through isolation and study of a PdI-PdI dimer.  

4.2 Results and Discussion 

Exploring Multiple C(sp3)–H Site Functionalizations 

 We started these investigations with our previously reported Pd-catalyzed arylation 

reaction7 of substrate 1-A (Scheme 4.1b). By varying reaction additives (specifically bases and 

acids), we obtained mixtures of products including g-arylation product 1-B and allylic arylation 

product 1-C. Notably, the generation of 1-C involves the functionalization of three different 

unactivated C(sp3)–H bonds. We confirmed the structure of 1-C via 1H NMR spectroscopic 
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analysis and X-ray crystallography. Both confirm that the aryl group is installed at the axial Cb 

position (Scheme 4.2). The optimal reaction conditions for allylic arylation were established to be  

10 mol % of Pd(OAc)2, 10 mol % of L1, 2 equiv of aryl iodide, 3 equiv of acetic acid, and Cs2CO3 

in tert-amylOH for 18 h at 140 °C. Under these conditions, 1-C is formed in 64% isolated yield. 

With this method in hand, the scope of this reaction with respect to the aryl iodide component was 

explored. Scheme 4.2 demonstrates that aryl iodides bearing both electron-withdrawing and 

electron-donating substituents affords products such as 2-C and 3-C in 71% and 45% isolated 

yield, respectively. Di-substituted aryl iodides also reacted to afford 5-C in 69% yield. Sterically 

bulky ortho-substituted aryl iodides were also effective substrates, for instance, providing 8-C in 

56% yield. (Hetero)aryl iodides were also well tolerated, for example affording 60% of 9-C.  

Scheme 4.2 Scope of Aryl Iodides for Allylic Arylation  

 We hypothesized that potentially different allylic functionalizations could be achieved by 
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oxidant, we observed allylic acetoxylation product 1-D in <5% yield. Inspired by work from the 

White lab,9 we explored alternative weakly nucleophilic oxidants, and ultimately identified 

benzoquinone as the optimal oxidant with acetic acid as the nucleophile. Under these conditions, 

product 1-D was obtained in 55% isolated yield. Under these conditions, we found that the reaction 

worked with various carboxylic acids ranging in sterics from ethyl-, isopropyl-, and tert-butyl- 

affording moderate yields of 2-D, 3-D, and 4-D, respectively. Electronically diverse benzoic acid 

derivatives also reacted to afford 6-D, 7-D, and 8-D in 64%, 39%, and 24% isolated yield, 

respectively. All products were characterized via 1H and 13C NMR spectroscopic analysis. In 

addition, the X-ray crystal structure of compound 2-D further confirms the installation of the 

carboxylate at the b-site in the axial position.  

Scheme 4.3 Scope of Allylic Acetoxylation Reaction 
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Mechanistic Investigations of Allylic Functionalization Transformations 

 With optimal conditions and an established scope of allylic arylation and acetoxylation in 

hand, we sought to investigate the mechanism of their formation. As demonstrated in Chapters 2 

and 3 of this thesis, we envisioned that we could gain insight into these transformations by isolation 

of a PdII-amine complex. Applying analogous conditions from our previously synthesized PdII 

complexes,8 substrate 1-A was stirred with Pd(OAc)2 in the presence of 1 equiv of CsOPiv in 

MeCN at 60 °C. After 24 h, this reaction resulted in the formation of a bright orange solid (Figure 

4.1a). 1H NMR spectroscopic analysis and X-ray crystallography established that this orange solid 

is the PdI-PdI dimer Dimer-1. Each PdI center is coordinated to the two nitrogens of the directing 

group and then bridged by an alkene from the adjacent Pd center. The Pd-bound alkenes show 

diagnostic resonances between the 4.0 ppm to 5.5 ppm region via 1H NMR spectroscopy.   

Figure 4.1 Mechanistic Studies with Dimer-1 
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 Dimer-1 was tested to see if it is a competent intermediate for allylic arylation and allylic 

acetoxylation (Figure 4.1b). Subjecting Dimer-1 to the allylic arylation conditions (1 equiv of L1, 

2 of equiv PhI in t-amylOH) resulted in the formation of 1-C in 78% yield. Similarly, treating 

Dimer-1 to the allylic acetoxylation conditions (1 equiv of L1, 1 equiv of Benzoquinone, and 5 

equiv of HOAc in t-amylOH) afforded product 1-D in 40% yield. Moreover, when Dimer-1 was 

subjected to analogous conditions in the absence of an oxidant, the alkene 1-E was released in 

81% yield. 

 We next probed whether an alkene intermediate is detectable during allylic acetoxylation.  

As shown in Figure 4.1c, we observe the growth and then decay of alkene product, 1-E, during the 

reaction. These data are consistent with dehydrogenated compound 1-E serving as an intermediate 

en route to 1-D. 

 A potential mechanism that accounts for the observed reactivity is shown in Scheme 4.4. 

A PdII catalyst binds to substrate 1-A in a bidentate orientation between the substrate nitrogen atom 

and the deprotonated amide.8 1-A undergoes a conformational change to the chair conformer, 

which places the g-C–H bond in close proximity to the PdII center. The Pd center with a carboxylate 

ligand then participates in C–H activation via a concerted-metalation deprotonation (CMD) 

mechanism8,10,11 to form Int-1. We propose a β-hydride elimination12,13 event can occur to form a 

Pd-bound alkene followed by the loss of HOAc. The alkene can then be liberated from the Pd 

center via protonation or ligand exchange, generating the dehydrogenated product, 1-E, and a Pd0 

center that can reenter the catalytic cycle upon re-oxidation. 
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Scheme 4.4 Proposed Mechanism of Transformations 
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4.3 Conclusions 

 In summary, we disclose Pd-catalyzed transannular C–H functionalization methodology 

that accesses multiple remote C(sp3)–H sites of alicyclic amines in a single synthetic operation. In 

both allylic arylation and acetoxylation transformations, we achieve a wide scope of aryl iodides 

and carboxylic acids, respectively. Both transformations showed the oxidant/nucleophile 

selectively installed at the axial Cb position. Moreover, the alkene provides a handle for further 

reactivity allowing for facile access to highly decorated alicyclic amines.  

 Additionally, we showcase the use of isolated Dimer-1 for mechanistic insight into these 

transformations. From our studies, it is revealed that our transformations occur via a transient 

alkene released from Dimer-1, in which the dimer allows for further Pd-mediated pathways to 

enable the rapid diversification of alicyclic amines.  

4.4 Experimental Procedures 

4.4.1 General Procedures, Materials and Methods 

General Procedures 

NMR spectra were obtained on a Varian VNMR 700 (699.76 MHz for 1H; 175.95 MHz for 13C) 

or a Varian VNMR 500 (500.09 MHz for 1H; 470.56 MHz for 19F) or a Varian NMR 400 (128.38 

MHz for 11B NMR) spectrometer. 1H and 13C chemical shifts are reported in parts per million 

(ppm) relative to TMS, with the residual solvent peak (most commonly CDCl3) used as an internal 

reference. 19F chemical shifts are reported in ppm and are referenced on a unified scale to the 

frequency of the residual solvent peak in the 1H NMR spectrum. 1H and 19F multiplicities are 

reported as follows: singlet (s), doublet (d), doublet of doublets (dd), doublet of doublets of 

doublets (ddd), doublet of triplets (dt), triplet (t), quartet (q), and multiplet (m). High resolution 
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mass spectra were obtained at the University of Michigan core facility. X-ray crystallographic data 

were collected on a Bruker SMART APEX-I CCD-based X-ray diffractometer. Elemental analyses 

were conducted by Midwest Microlabs. Flash chromatography was conducted on a Biotage Isolera 

One chromatography system using preloaded high-performance silica gel columns (10 g, 25 g, 50 

g, or 100 g as appropriate). GC-FID was conducted on a Shimadzu CG-17A system. Melting points 

were obtained on a OptiMelt automated melting point system.  

 

Materials and Methods 

 All reagents were obtained from a commercial vendor (Aldrich, CombiBlocks, Oakwood, 

Synthonix, Enamine, Carbosynth, Pressure Chemicals, Matrix, SantaCruz Biotech, or Ontario 

Chemicals). 8-Azabicyclo[3.2.1]octane hydrochloride was purchased from PharmaBlock. 

Pd(OAc)2 was purchased from Pressure Chemical Company. Acetonitrile and tert-amyl alcohol 

were purchased from Sigma-Aldrich. Hydrazine monohydrate was purchased from Alfa Aesar. All 

commercial reagents were used without further purification/drying unless explicitly stated in the 

experimental section. The manipulation of solid reagents was conducted on the benchtop unless 

otherwise stated. Reactions were conducted under ambient atmosphere unless otherwise stated. 

Reaction vessels were sealed with either a septum (flask) or a Teflon-lined cap (4 mL or 20 mL 

vial) with Teflon tape wrapped around the cap. Reactions conducted at elevated temperatures were 

heated on a hot plate using an aluminum block. Temperature was regulated using an external 

thermocouple. 
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4.4.2 Synthesis of Starting Materials 

 

 
 
 
Synthesis of C: α-Bromo propanamide C was synthesized following a literature procedure6,7 from 
starting materials A and B. 
Directing Group Installation Procedures6,7  

 

 

 

A 20 mL scintillation vial was charged with D1 (250 mg, 1.70 mmol, 1.0 equiv), α-bromo 

propanamide C (650 mg, 1.70 mmol, 1.0 equiv), K2CO3 (752 mg, 5.44 mmol, 3.2 equiv), and NaI 

(127 mg, 0.85 mmol, 0.5 equiv). To the solids, anhydrous acetonitrile (15 mL) was added. The 

vial was sealed, and the reaction was stirred at an external temperature of 60 °C. After 18 h, the 

reaction was cooled to rt, diluted with EtOAc (~5 mL), and filtered through silica gel. The filtrate 

was concentrated under reduced pressure. Final purification via column chromatography (gradient 

elution from 0% to 5% EtOAc in hexanes) afforded product S1 (450 mg, 64% yield) as a white 

solid.2 Amine derivatives S1–S3 were prepared in an analogous manner using the appropriate 

amine starting material. 

Characterization of Directing Group Installation Products (S1 through S3) 

S1: The 1H, 13C, 19F NMR spectral data for S1 matched that reported in 
the literature.6,7 
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S2: The 1H, 13C, 19F NMR spectral data for S2 matched that reported in 
the literature.6,7 

 

S3: Directing Group Installation Procedure was followed using 3-Oxa-
9-azabicyclo[3.3.1]nonane hydrochloride as the substrate. 
Isolated yield: 350 mg, 48% (white solid) 
1H NMR (700 MHz, CDCl3, 23 ºC): δ 9.54 (br s, 1H), 3.98 (t, J = 2.6 
Hz, 1H), 3.97 (t, J = 2.6 Hz, 1H), 3.89 (d, J = 1.2 Hz, 1H), 3.88 (d, J = 

1.2 Hz, 1H), 3.00 (s, 2H), 2.60 (qt, J = 13.2, 6.4 Hz, 1H), 2.02 (tt, J = 13.6, 5.2 Hz, 2H), 1.82-1.70 
(multiple peaks, 3H), 1.53 (s, 6H). 
13C NMR (176 MHz, CDCl3, 23 ºC): δ 176.3, 72.3, 65.1, 50.0, 29.1, 25.7, 20.2. Carbon resonances 
associated with perfluoroaryl group are not observed.6,7 

19F NMR (470 MHz, CDCl3, 23 ºC): δ –56.0 (t, 3F), –141.0 (m, 2F), –143.6 (m, 2F). 
HRMS-electrospray (m/z): [M]+ calcd. for C18H19F7N2O2, 429.1408; found, 429.1407. 
Melting point: 135-137°C 

Chromatography conditions: 5% EtOAc in hexanes 

4.4.3 Scope and Isolation of Allylic Arylation 

General Procedure A: Under ambient conditions, a 0.02 M stock solution of Pd(OAc)2 (22.5 mg 

Pd(OAc)2 in 5 mL DCM) and 0.02 M stock solution of L2 (19.1 mg of L2 in 5 mL MeOH) were 

prepared. To a 4 mL vial, an aliquot of the L2 solution (150 µL, 0.003 mmol, 10 mol%) was added 

and MeOH was removed at 70 °C for 5 min. To the same 4 mL vial, an aliquot of the Pd(OAc)2 

solution (150 µL, 0.003 mmol Pd, 10 mol%) was added and DCM was removed at 40 °C for 5 

min. In the 4 mL vial with Pd(OAc)2 and L2, substrate S1 (12.37 mg, 0.03 mmol, 1.0 equiv) and 

Cs2CO3 (10.67 mg, 0.033 mmol, 1.1 equiv) were added. If the aryl iodide is a solid, it was added 

(0.06 mmol, 2.0 equiv) before solvent, if liquid, it was added after. The reaction mixture was then 

diluted with t-amylOH (0.30 mL). Acetic acid (5.1 µL, 0.09 mmol, 3 equiv). A stirbar was added 

to the vial and the vial was sealed with a Teflon-lined screw cap. The vial was heated to 140 °C 

for 18 h. After, the reaction was allowed to cool to room temperature and diluted with DCM (3.0 

mL). The reaction solution was then filtered through a Celite pipette and washed with DCM. The 

 

(S3)
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volatiles were removed under reduced pressure, and the residue was purified via column 

chromatography to obtain the desired product 1-C through 10-C. 

 
1-C: General Procedure A was followed using iodobenzene as the coupling 
partner.  
Isolated yield: 9.3 mg, 64% (white solid). Procedures repeated with 
diphenyliodonium chloride (73%), potassium phenyltrifluoroborate (48%), and 
bromobenzene (23%) 

1H NMR (700 MHz, CDCl3, 23 ºC): δ 8.98 (br s, 1H), 7.25 (s, 2H), 7.17 (t, J = 7.6 Hz, 2H), 6.90 
(t, J = 7.3 Hz, 1H), 6.34 (ddd, J = 9.5, 5.9, 1.5 Hz, 1H), 5.58 (ddd, J = 9.5, 4.0, 1.5 Hz, 1H), 3.71 
(t, J = 5.5 Hz, 1H), 3.63 (d, J = 7.5 Hz, 1H), 3.34 (d, J = 4.0 Hz, 1H), 2.15 (tdd, J = 11.1, 7.5, 3.0 
Hz, 1H), 2.02 (ddd, J = 12.2, 9.4, 3.1 Hz, 1H), 1.96 (tt, J = 11.6, 5.9 Hz, 1H), 1.89 (ddd, J = 15.5, 
9.6, 6.1 Hz, 1H), 1.26 (s, 3H), 1.03 (s, 3H). 
13C NMR (176 MHz, CDCl3, 23 ºC): δ 175.4, 143.7, 136.5, 128.6, 128.0, 126.0, 124.4, 63.6, 63.3, 
56.9, 53.0, 35.1, 31.1, 23.7, 23.6. Carbon resonances associated with perfluoroaryl group are not 
observed 6,7 
19F NMR (470 MHz, CDCl3, 23 ºC): δ –56.0 (m, 3F), –142.0 (apparent s, 2F), –143.3 (apparent s, 
2F). 
HRMS-electrospray (m/z): [M]+ calcd. for C24H21F7N2O, 487.1542; found, 487.1615. 
Melting point: 97-100 °C 

Chromatography conditions: Gradient elution from 2% to 5% EtOAc in hexanes 
 

2-C: General Procedure A was followed using 1-iodo-4-methoxybenzene as the 
coupling partner.  
Isolated yield: 11.0 mg, 71% (white solid) 
1H NMR (600 MHz, CDCl3) δ 8.82 (s, 1H), 7.16 (m, 2H), 6.65 (m, 2H), 6.30 (ddd, 
J = 9.5, 6.0, 1.5 Hz, 1H), 5.54 (ddd, J = 9.5, 4.0, 1.4 Hz, 1H), 3.77 (t, J = 5.8 Hz, 
1H), 3.58 (s, 3H), 3.55 (d, J = 7.5 Hz, 1H), 3.28 (d, J = 3.5 Hz, 1H), 2.14 (ddd, J 

= 12.9, 6.4, 3.5 Hz, 1H), 2.01 (ddd, J = 12.1, 9.3, 2.8 Hz, 1H), 1.94 (dd, J = 11.6, 5.8 Hz, 1H), 1.85 
(m, 1H), 1.29 (s, 3H), 1.14 (s, 3H). 
13C NMR (151 MHz, CDCl3) δ 175.1, 158.0, 136.0, 128.8, 124.3, 113.6, 64.1, 63.3, 56.2, 54.8, 
52.0, 35.0, 30.6, 24.8, 22.1. Carbon resonances associated with perfluoroaryl group are not 
observed. 6,7 
19F NMR (564 MHz, CDCl3) δ –56.1 (dt, J = 74.8, 21.7 Hz, 3F), –142.2 (m, 2F), –143.2 (td, J = 
13.6, 6.2 Hz, 2F). 
Chromatography conditions: Gradient elution from 0% to 5% EtOAc in hexanes 
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3-C: General Procedure A was followed using 4-iodotrifluorotoluene as the 
coupling partner. 
Isolated yield: 7.48 mg, 45% (white solid). Isolated with an impurity of alkene 
product of N3. 
19F NMR (564 MHz, CDCl3) δ –56.3 (t, 3F), –62.6 (s, 3F), –141.5 (m, 2F), –144.1 
(m, 2F). 

Chromatography conditions: Gradient elution from 0% to 5% EtOAc in hexanes 
 

4-C: General Procedure A was followed using 1-iodo-4-trifluoromethoxybenzene 
as the coupling partner.  
Isolated yield: 10.1 mg, 59% (white solid) 
1H NMR (600 MHz, CDCl3) δ 8.88 (s, 1H), 7.28 (d, J = 8.6 Hz, 2H), 7.04 (d, J = 
8.2 Hz, 2H), 6.36 (ddd, J = 9.4, 5.9, 1.4 Hz, 1H), 5.55 (ddd, J = 9.5, 4.0, 1.4 Hz, 
1H), 3.71 (t, J = 5.7 Hz, 1H), 3.61 (d, J = 7.6 Hz, 1H), 3.34 (d, J = 3.5 Hz, 1H), 
2.15 (m, 1H), 1.95 (m, 4H), 1.26 (s, 3H), 1.03 (s, 3H). 

13C NMR (151 MHz, CDCl3) δ 175.0, 142.1, 136.8, 129.2, 123.8, 120.6, 63.3, 63.2, 56.8, 52.0, 
34.8, 30.9, 23.5, 23.4. Carbon resonances associated with perfluoroaryl group are not observed.6,7 
19F NMR (564 MHz, CDCl3) δ –56.3 (t, J = 21.7 Hz, 3F), –58.33 (s, 3F), –141.5 (qd, J = 21.7, 
13.8 Hz), -143.7 (td, J = 13.4, 5.9 Hz, 2F). 
Chromatography conditions: Gradient elution from 0% to 5% EtOAc in hexanes 
 

5-C: General Procedure A was followed using 1-iodo-3,5-dimethylbenzene 
as the coupling partner. 
Isolated yield: 10.6 mg, 69% (white solid) 
1H NMR (600 MHz, CDCl3) δ 8.81 (s, 1H), 6.84 (s, 2H), 6.33 (m, 2H), 5.55 
(ddd, J = 9.5, 4.0, 1.4 Hz, 1H), 3.81 (t, J = 5.7 Hz, 1H), 3.59 (d, J = 7.5 Hz, 
1H), 3.25 (d, J = 3.4 Hz, 1H), 2.16 (ddd, J = 13.0, 6.5, 3.7 Hz, 1H), 2.12 (s, 

6H), 2.02 (ddd, J = 12.0, 9.3, 2.7 Hz, 1H), 1.94 (dt, J = 17.5, 5.9 Hz, 1H), 1.84 (m, 1H), 1.31 (s, 
3H), 1.20 (s, 3H). 
13C NMR (151 MHz, CDCl3) δ 175.00, 143.4, 138.3, 136.1, 126.9, 125.7, 124.1, 64.4, 63.4, 55.8, 
52.5, 35.1, 30.8, 25.4, 21.4, 20.8. Carbon resonances associated with perfluoroaryl group are not 
observed.6,7 

19F NMR (564 MHz, CDCl3) δ –56.0 (td, J = 21.7, 6.5 Hz, 3F), –142.4 (m, 2F), –143.2 (td, J = 
13.8, 6.6 Hz, 2F). 
Chromatography conditions: Gradient elution from 0% to 5% EtOAc in hexanes 
 

N
DG

CF3

N
DG

OCF3

N
DG

Me Me



 104 

6-C: General Procedure A was followed using 1-iodo-3-methylbenzene as the 
coupling partner. 
Isolated yield: 7.1 mg, 52% (white solid) 
1H NMR (600 MHz, CDCl3) δ 8.88 (s, 1H), 7.08 – 6.97 (m, 3H), 6.60 (d, J = 7.3 
Hz, 1H), 6.33 (ddd, J = 9.5, 6.0, 1.5 Hz, 1H), 5.56 (ddd, J = 9.5, 4.0, 1.4 Hz, 1H), 
3.76 (t, J = 5.7 Hz, 1H), 3.61 (d, J = 7.6 Hz, 1H), 3.29 (d, J = 3.5 Hz, 1H), 2.18 (s, 

3H), 2.16 (dd, J = 10.6, 2.2 Hz, 1H), 2.02 (ddd, J = 12.1, 9.4, 2.9 Hz, 1H), 1.94 (ddd, J = 17.4, 
11.5, 5.9 Hz, 1H), 1.90 – 1.82 (m, 1H), 1.28 (s, 3H), 1.12 (s, 3H). 
13C NMR (151 MHz, CDCl3) δ 175.1, 143.5, 138.3, 136.2, 128.7, 128.3, 126.3, 124.8, 124.1, 63.9, 
63.2, 56.3, 52.7, 35.0, 30.8, 24.5, 22.3, 21.0. Carbon resonances associated with perfluoroaryl 
group are not observed.6,7 
19F NMR (564 MHz, CDCl3) δ –56.0 (t, J = 21.7 Hz, 3F), –142.3 (m, 2F), –143.3 (td, J = 13.9, 6.6 
Hz, 2F). 
Chromatography conditions: Gradient elution from 0% to 5% EtOAc in hexanes 
 

 
7-C: General Procedure A was followed using 1-iodo-4-phenoxybenzene as the 
coupling partner.  
Isolated yield: 6.8 mg, 39% (white solid) 
1H NMR (600 MHz, CDCl3) δ 8.99 (s, 1H), 7.28 (td, 2H), 7.23 (d, 2H), 7.06 (t, J 
= 7.4 Hz, 1H), 6.85 (m, 4H), 6.33 (ddd, J = 9.4, 5.9, 1.3 Hz, 1H), 5.57 (ddd, J = 
9.5, 4.0, 1.3 Hz, 1H), 3.70 (t, J = 5.7 Hz, 1H), 3.62 (d, J = 7.6 Hz, 1H), 3.33 (d, J 

= 3.6 Hz, 1H), 2.14 (dd, J = 10.6, 2.0 Hz, 1H), 1.99 (m, 2H), 1.90 (dd, J = 11.1, 7.8 Hz, 1H), 1.27 
(s, 3H), 1.06 (s, 3H). 
13C NMR (151 MHz, CDCl3) δ 175.2, 157.4, 155.5, 138.6, 136.3, 129.6, 129.1, 124.2, 123.0, 
119.3, 118.1, 63.4, 63.1, 56.9, 52.1, 34.9, 30.7, 23.7, 23.4. Carbon resonances associated with 
perfluoroaryl group are not observed. 6,7 
19F NMR (564 MHz, cdcl3) δ –55.94 (t, J = 21.7 Hz, 3F), –141.6 (m, 2F), –143.5 (td, J = 13.5, 6.0 
Hz, 2F). 
Chromatography conditions: Gradient elution from 0% to 5% EtOAc in hexanes 
 

8-C: General Procedure A was followed using 1-iodo-2-isopropylbenzene 
as the coupling partner.  
Isolated yield: 8.9 mg, 56% (white solid) Isolated with an 8% impurity of 
dehydrogenated product 1-E. 
1H NMR (600 MHz, CDCl3) δ 9.05 (s, 1H), 7.22 (m, 2H), 6.91 (dtd, J = 

28.7, 7.4, 1.2 Hz, 2H), 6.35 (ddd, J = 9.4, 6.0, 1.6 Hz, 1H), 5.51 (ddd, J = 9.4, 4.0, 1.4 Hz, 1H), 
3.74 (t, J = 5.7 Hz, 1H), 3.55 (d, J = 3.6 Hz, 1H), 3.48 (d, J = 7.5 Hz, 1H), 3.15 (m, 1H), 2.16 (m, 
1H), 1.95 (m, 3H), 1.55 (s, 1H), 1.33 (d, J = 6.8 Hz, 3H), 1.27 (s, 3H), 1.18 (d, J = 6.8 Hz, 3H), 
1.02 (s, 3H). 
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13C NMR (151 MHz, CDCl3) δ 175.2, 146.7, 139.2, 136.0, 127.6, 126.4, 126.0, 125.32, 125.25, 
63.1, 62.4, 56.7, 49.2, 35.0, 31.1, 28.3, 25.2, 23.7, 23.3, 22.9. Carbon resonances associated with 
perfluoroaryl group are not observed. 6,7 
19F NMR (564 MHz, CDCl3) δ –56.0 (t, J = 21.7 Hz, 3F), –142.0 (m, 2F), –142.95 (td, J = 13.7, 
6.3 Hz, 2F). 
Chromatography conditions: Gradient elution from 0% to 5% EtOAc in hexanes 
 

9-C: General Procedure A was followed using 5-iodo-2-methylbenzofuran as the 
coupling partner.  
Isolated yield: 9.7 mg, 60% (white solid) 
1H NMR (600 MHz, cdcl3) δ 8.64 (s, 1H), 7.33 (s, 1H), 7.09 (d, J = 1.6 Hz, 2H), 
6.33 (ddd, J = 9.5, 6.0, 1.5 Hz, 1H), 6.22 (s, 1H), 5.60 (ddd, J = 9.5, 4.0, 1.5 Hz, 
1H), 3.86 (t, J = 5.8 Hz, 1H), 3.60 (d, J = 7.5 Hz, 1H), 3.41 (d, J = 3.7 Hz, 1H), 
2.33 (s, 3H), 2.18 (m, 1H), 2.04 (ddd, J = 11.8, 9.3, 2.6 Hz, 1H), 1.94 (dd, J = 11.5, 

5.8 Hz, 1H), 1.91 – 1.83 (m, 1H), 1.30 (s, 3H), 1.21 (s, 3H). 
13C NMR (151 MHz, CDCl3) δ 174.9, 156.3, 153.1, 137.7, 136.1, 129.4, 124.3, 123.4, 119.1, 
110.4, 102.0, 65.0, 63.4, 55.7, 52.6, 35.1, 30.6, 25.9, 20.9, 13.5. Carbon resonances associated 
with perfluoroaryl group are not observed. 6,7 
19F NMR (564 MHz, cdcl3) δ –55.86 (t, J = 21.7 Hz, 3F), –142.55 (m, 2F), –142.91 (m, 2F). 
Chromatography conditions: Gradient elution from 0% to 5% EtOAc in hexanes 
 

 
10-C: General Procedure A was followed using 6-iodo-2,3-
dihydrobenzo[1,4]dioxine as the coupling partner. 
Isolated yield: 10.8 mg, 66% (white solid) 
1H NMR (600 MHz, CDCl3) δ 9.07 (s, 1H), 6.75 (d, J = 2.1 Hz, 1H), 6.71 (dd, J = 
8.2, 2.0 Hz, 1H), 6.61 (d, J = 8.2 Hz, 1H), 6.29 (ddd, J = 9.4, 5.9, 1.4 Hz, 1H), 
5.51 (ddd, J = 9.5, 4.0, 1.4 Hz, 1H), 4.08 (ddd, J = 21.6, 7.7, 3.7 Hz, 4H), 3.71 (t, 

J = 5.7 Hz, 1H), 3.58 (d, J = 7.6 Hz, 1H), 3.22 (d, J = 3.6 Hz, 1H), 2.11 (m, 1H), 1.96 (m, 2H), 
1.83 (m, 1H), 1.26 (s, 3H), 1.10 (s, 3H). 
13C NMR (151 MHz, cdcl3) δ 175.4, 143.5, 141.8, 136.9, 136.1, 124.3, 120.5, 117.0, 116.7, 64.0, 
64.0, 63.6, 63.1, 56.5, 52.0, 34.9, 30.6, 24.0, 23.0. Carbon resonances associated with 
perfluoroaryl group are not observed. 6,7 
19F NMR (564 MHz, CDCl3) δ –56.1 (t, J = 21.7 Hz, 3F), –141.9 (m, 2F), –143.1 (td, J = 13.9, 6.5 
Hz, 2F). 
Chromatography conditions: Gradient elution from 0% to 5% EtOAc in hexanes 

N
DG

O
Me

N
DG

O
O



 106 

4.4.4 Scope and Isolation of Allylic Acetoxylation 

General Procedure B (For isolations): In a 4 mL vial, substrate S1 (25.0 mg, 0.06 mmol, 1.0 

equiv), Pd(OAc)2 (1.4 mg, 0.006 mmol, 10 mol%), and L2 (1.2 mg, 0.006 mmol, 10 mol%) was 

added. To the same 4 mL vial, Cs2CO3 (21.0 mg, 0.066 mmol, 1.1 equiv) and 1,4-Benzoquinone 

(6.5 mg, 0.06 mmol, 1.0 equiv) was added followed by the addition of the desired carboxylic acid 

(0.30 mmol, 5.0 equiv). The reaction mixture was then diluted with t-amylOH (0.60 mL). A stirbar 

was added to the vial and the vial was sealed with a Teflon-lined screw cap. The vial was heated 

to 140 °C for 4 h. During the 4 h reaction course for every 30 min, the vial was taken off heating, 

cooled, and the cap was open to expose the reaction to the air. The reaction vial would then be 

capped and sealed until the next time point. After, the reaction was allowed to cool to room 

temperature and diluted with DCM (3.0 mL). The reaction solution was then filtered through a 

Celite pipette and washed with DCM. The volatiles were removed under reduced pressure, and the 

residue was purified via column chromatography to obtain the desired product 1-D. 

General Procedure C (Smaller scale): Under ambient conditions, a 0.02 M stock solution of 

Pd(OAc)2 (22.5 mg Pd(OAc)2 in 5 mL DCM) and 0.02 M stock solution of L2 (19.1 mg of L2 in 

5 mL MeOH) were prepared. To a 4 mL vial, an aliquot of the L2 solution (150 µL, 0.003 mmol, 

10 mol%) was added and MeOH was removed at 70 °C for 5 min. To the same 4 mL vial, an 

aliquot of the Pd(OAc)2 solution (150 µL, 0.003 mmol Pd, 10 mol%) was added and DCM was 

removed at 40 °C for 5 min. In the 4 mL vial with Pd(OAc)2 and L2, substrate S1 (12.37 mg, 0.03 

mmol, 1.0 equiv) and Cs2CO3 (10.67 mg, 0.033 mmol, 1.1 equiv) were added. Next, 1,4-

Benzoquinone (3.3 mg, 0.03 mmol, 1.0 equiv) and the desired carboxylic acid (0.15 mmol, 5.0 

equiv) were added. The reaction mixture was then diluted with t-amylOH (0.30 mL). A stirbar was 

added to the vial and the vial was sealed with a Teflon-lined screw cap. The vial was heated to 140 
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°C for 18 h. After, the reaction was allowed to cool to room temperature and diluted with DCM 

(3.0 mL). The reaction solution was then filtered through a Celite pipette and washed with DCM.  

 
1-D: General Procedure B was followed using Acetic acid as the carboxylic 
acid.  
Isolated yield: 15.4 mg, 55% (white solid)  
1H NMR (700 MHz, CDCl3, 23 ºC): δ 9.71 (br s, 1H), 6.38 (dd, J = 9.5, 5.9 Hz, 
1H), 5.57 (ddd, J = 9.5, 4.3, 1.5 Hz, 1H), 4.88 (dd, J = 4.3, 2.0 Hz, 1H), 3.82 

(d, J = 8.1 Hz, 1H), 3.71 (t, J = 5.9 Hz, 1H), 2.03 (m, 1H), 1.94 (s, 3H), 1.87 (ddt, J = 17.7, 11.8, 
6.2 Hz, 1H), 1.75 (ddd, J = 12.3, 9.2, 3.0 Hz, 1H), 1.60 (m, 1H), 1.37 (s, 3H), 1.35 (s, 3H). 
13C NMR (176 MHz, CDCl3, 23 ºC): δ 176.1, 170.3, 140.2, 121.4, 73.5, 62.9, 58.4, 56.5, 31.3, 
25.9, 24.9, 22.9, 21.1. Carbon resonances associated with perfluoroaryl group are not observed.6,7 
19F NMR (470 MHz, CDCl3, 23 ºC): δ –56.0 (t, 3F), –141.1 (m, 2F), –143.5 (m, 2F).  
HRMS-electrospray (m/z): [M]+ calcd. for C20H19F7N2O3, 469.1357; found, 469.1358. 
Melting point: 121-123 °C 

Chromatography conditions: Gradient elution from 5% to 10% EtOAc in hexanes 
 

2-D: General Procedure B was followed using Propionic acid as the 
carboxylic acid.  
Isolated yield: 17.4 mg, 60% (white solid)  
1H NMR (700 MHz, CDCl3, 23 ºC): δ 9.71 (br s, 1H), 6.38 (dd, J = 9.4, 5.9 
Hz, 1H), 5.57 (m, 1H), 4.89 (dd, J = 4.4, 1.9 Hz, 1H), 3.82 (d, J = 8.2 Hz, 1H), 
3.68 (t, J = 5.9 Hz, 1H), 2.19 (ddt, J = 37.0, 16.4, 8.2 Hz, 2H), 2.03 (m, 1H), 

1.86 (tt, J = 11.7, 6.0 Hz, 1H), 1.75 (ddd, J = 12.3, 9.1, 3.0 Hz, 1H), 1.62 (m, 1H), 1.37 (s, 3H), 
1.34 (s, 3H), 1.09 (t, J = 7.6 Hz, 3H). 
13C NMR (176 MHz, CDCl3, 23 ºC): δ 176.2, 173.8, 140.1, 121.6, 73.3, 62.9, 58.3, 56.6, 31.3, 
27.7, 26.0, 25.2, 22.7, 9.2. Carbon resonances associated with perfluoroaryl group are not 
observed.6,7 
19F NMR (470 MHz, CDCl3, 23 ºC): δ –56.0 (m, 3F), –141.1 (m, 2F), –143.5 (m, 2F).  
HRMS-electrospray (m/z): [M]+ calcd. for C21H21F7N2O3, 483.1513; found, 483.1514. 
Melting point: 120-123 °C 
Chromatography conditions: Gradient elution from 2% to 8% EtOAc in hexanes 
 

3-D: General Procedure B was followed using Isobutyric acid as the carboxylic 
acid. 
 Isolated yield: 18.2 mg, 62% (clear oil)  
1H NMR (700 MHz, CDCl3, 23 ºC): δ 9.71 (br s, 1H), 6.39 (dd, J = 9.5, 5.8 Hz, 
1H), 5.57 (ddd, J = 9.5, 4.2, 1.4 Hz, 1H), 4.87 (dd, J = 4.2, 1.9 Hz, 1H), 3.85 

(d, J = 8.1 Hz, 1H), 3.65 (t, J = 6.0 Hz, 1H), 2.39 (hept, J = 7.0 Hz, 1H), 2.03 (dddd, J = 13.7, 
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11.2, 8.1, 3.1 Hz, 1H), 1.88 (tt, J = 11.6, 5.7 Hz, 1H), 1.75 (ddd, J = 12.4, 9.0, 3.2 Hz, 1H), 1.63 
(ddd, J = 14.5, 9.0, 5.7 Hz, 1H), 1.38 (s, 3H), 1.33 (s, 3H), 1.12 (dd, J = 7.0, 4.8 Hz, 6H). 
13C NMR (176 MHz, CDCl3, 23 ºC): δ 176.5, 176.2, 140.1, 121.7, 73.1, 62.8, 58.0, 56.8, 34.2, 
31.3, 26.1, 25.7, 22.2, 19.1, 19.1. Carbon resonances associated with perfluoroaryl group are not 
observed.6,7 
19F NMR (470 MHz, CDCl3, 23 ºC): δ –56.0 (m, 3F), –141.1 (m, 2F), –143.5 (m, 2F). 
HRMS-electrospray (m/z): [M]+ calcd. for C22H23F7N2O3, 497.1670; found, 497.1670. 
Chromatography conditions: Gradient elution from 2% to 6% EtOAc in hexanes 
 

4-D: General Procedure B was followed using Pivalic acid as the carboxylic 
acid. 
Isolated yield: 17.8 mg, 58% (white solid)  
1H NMR (700 MHz, CDCl3, 23 ºC): δ 9.68 (br s, 1H), 6.40 (dd, J = 9.4, 5.8 Hz, 
1H), 5.57 (ddd, J = 9.4, 4.3, 1.4 Hz, 1H), 4.84 (dd, J = 4.3, 1.9 Hz, 1H), 3.89 

(d, J = 8.0 Hz, 1H), 3.58 (t, J = 6.0 Hz, 1H), 2.02 (dddd, J = 13.6, 11.3, 8.0, 3.2 Hz, 1H), 1.89 
(m,1H), 1.73 (m, 1H), 1.65 (m, 1H), 1.40 (s, 3H), 1.31 (s, 3H), 1.18 (s, 9H). 
13C NMR (176 MHz, CDCl3, 23 ºC): δ 178.0, 176.3, 140.1, 122.0, 73.1, 62.7, 57.4, 38.9, 34.9, 
31.3, 29.8, 27.3, 26.6, 26.3, 23.8, 21.4. Carbon resonances associated with perfluoroaryl group 
are not observed.6,7 
19F NMR (470 MHz, CDCl3, 23 ºC): δ –56.0 (t, 3F), –141.1 (m, 2F), –143.7 (m, 2F).  
HRMS-electrospray (m/z): [M]+ calcd. for C23H25F7N2O3, 511.1826; found, 511.1827. 
Melting point: 102-105 °C 

Chromatography conditions: Gradient elution from 2% to 6% EtOAc in hexanes 
 

5-D: General Procedure B was followed using 2-Phenylisobutyric acid as the 
carboxylic acid. 
Isolated yield: 8.2 mg, 24% (clear oil)  
1H NMR (700 MHz, CDCl3, 23 ºC): δ 9.28 (br s, 1H), 7.24-7.21 (multiple 
peaks, 2H), 7.13 (t, J = 7.8 Hz, 2H), 6.98 (t, J = 7.4 Hz, 1H), 6.34 (dd, J = 9.5, 
5.9 Hz, 1H), 5.58 (ddd, J = 9.5, 4.2, 1.4 Hz, 1H), 4.86 (dd, J = 4.2, 1.9 Hz, 
1H), 3.73 (d, J = 8.1 Hz, 1H), 3.46 (t, J = 5.9 Hz, 1H), 1.97 (dddd, J = 13.8, 

11.3, 8.1, 3.1 Hz, 1H), 1.83 (tt, J = 11.6, 5.9 Hz, 1H), 1.69 (ddd, J = 12.3, 9.3, 3.1 Hz, 1H), 1.61 
(s, 1H), 1.57 (s, 3H), 1.52 (s, 3H), 1.16 (s, 3H), 1.08 (s, 3H). 
13C NMR (176 MHz, CDCl3, 23 ºC): δ 176.2, 176.1, 144.6, 140.2, 128.6, 128.3, 126.5, 125.9, 
125.4, 121.4, 73.5, 62.5, 57.2, 56.9, 46.6, 31.2, 26.8, 26.5, 26.1, 26.1, 21.2. Carbon resonances 
associated with perfluoroaryl group are not observed.6,7 
19F NMR (470 MHz, CDCl3, 23 ºC): δ –56.0 (t, 3F), –141.2 (m, 2F), –143.7 (m, 2F). 
HRMS-electrospray (m/z): [M]+ calcd. for C28H27F7N2O3, 573.1983; found, 573.1980. 
Chromatography conditions: Gradient elution from 2% to 8% EtOAc in hexanes 
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6-D: General Procedure B was followed using Benzoic acid as the carboxylic 
acid. 
Isolated yield: 20.2 mg, 64% (white solid)  
1H NMR (700 MHz, CDCl3, 23 ºC): δ 9.66 (br s, 1H), 7.84 (d, J = 6.9, 2H), 
7.41 (tt, J = 7.4, 1.5 Hz, 1H), 7.25 (t, J = 7.8 Hz, 2H), 6.47 (dd, J = 9.4, 6.1 Hz, 
1H), 5.63 (ddd, J = 9.4, 4.2, 1.5 Hz, 1H), 5.10 (dd, J = 4.2, 2.0 Hz, 1H), 3.96-
3.84 (multiple peaks, 2H), 2.10 (dddd, J = 13.6, 10.8, 8.0, 3.0 Hz, 1H), 1.88 (tt, 

J = 11.6, 6.1 Hz, 1H), 1.82 (ddd, J = 12.1, 9.0, 3.0 Hz, 1H), 1.66 (m, 1H), 1.38 (s, 3H), 1.35 (s, 
3H). 
13C NMR (176 MHz, CDCl3, 23 ºC): δ 175.7, 165.8, 140.8, 133.4, 129.8, 129.2, 128.2, 120.9, 74.5, 
63.3, 60.1, 55.9, 31.5, 25.6, 25.2, 22.2. Carbon resonances associated with perfluoroaryl group 
are not observed. 6,7 
19F NMR (470 MHz, CDCl3, 23 ºC): δ –56.2 (m, 3F), –141.0 (m, 2F), –143.9 (m, 2F). 
HRMS-electrospray (m/z): [M]+ calcd. for C25H21F7N2O3, 531.1513; found, 531.1515. 
Melting point: 135-137 °C 
Chromatography conditions: Gradient elution from 2% to 6% EtOAc in hexanes 

7-D: General Procedure B was followed using 4-(Trifluoromethyl)benzoic acid 
as the carboxylic acid.  
Isolated yield: 13.9 mg, 39% (white solid) 
1H NMR (700 MHz, CDCl3, 23 ºC): δ 9.60 (br s, 1H), 8.01 (d, J = 8.1 Hz, 2H), 
7.58 (d, J = 8.1 Hz, 2H), 6.50 (dd, J = 9.5, 6.0 Hz, 1H), 5.66 (ddd, J = 9.5, 4.2, 
1.5 Hz, 1H), 5.13 (dd, J = 4.4, 2.0 Hz, 1H), 3.96 (d, J = 8.0 Hz, 1H), 3.87 (t, J 
= 6.0 Hz, 1H), 2.12 (m, 1H), 1.91 (tq, J = 11.7, 6.0, 5.6 Hz, 1H), 1.83 (ddd, J = 
12.1, 9.1, 2.9 Hz, 1H), 1.69 (m, 1H), 1.38 (s, 3H), 1.37 (s, 3H). 

13C NMR (176 MHz, CDCl3, 23 ºC): δ 175.7, 164.7, 141.1, 135.0 (q, J = 32.7 Hz), 133.1, 129.8, 
125.4 (q, J = 3.7 Hz), 123.5 (q, J = 274.0 Hz), 120.8, 75.0, 59.4, 56.3, 31.4, 29.9, 25.8, 24.2, 23.5. 
Carbon resonances associated with perfluoroaryl group are not observed.6,7 
19F NMR (470 MHz, CDCl3, 23 ºC): δ –56.3 (app s, 3F), –63.5 (app s, 3F), –141.2 (m, 2F), –143.4 
(m, 2F). 
HRMS-electrospray (m/z): [M]+ calcd. for C26H20F10N2O3, 599.1314; found, 599.1389. 
Melting point: 158-160 °C 
Chromatography conditions: Gradient elution from 4% to 8% EtOAc in hexanes 
 

8-D: General Procedure B was followed using 4-Methoxybenzoic acid as the 
carboxylic acid. 
Isolated yield: 4.0 mg, 24% (white solid)  
1H NMR (700 MHz, CDCl3, 23 ºC): δ 9.68 (br s, 1H), 7.79 (d, J = 8.3 Hz, 2H), 
6.71 (d, J = 8.8 Hz, 2H), 6.45 (dd, J = 9.4, 6.0 Hz, 1H), 5.62 (m, 1H), 5.06 (s, 
1H), 3.97-3.83 (multiple peaks, 2H), 3.79 (s, 3H), 2.10 (d, J = 11.4 Hz, 1H), 
1.84 (dt, J = 19.8, 12.4 Hz, 2H), 1.65 (dt, J = 14.6, 7.3 Hz, 1H), 1.39 (s, 3H), 
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1.35 (s, 3H). 
13C NMR (176 MHz, CDCl3, 23 ºC): δ 165.5, 163.3, 140.5, 131.3, 121.9, 121.1, 113.4, 106.5, 74.2, 
60.3, 55.4, 31.6, 29.9, 25.6, 25.3, 22.1, 14.3. Carbon resonances associated with perfluoroaryl 
group are not observed. 6,7 
19F NMR (470 MHz, CDCl3, 23 ºC): δ –56.2 (m, 3F), –141.8 (app s, 2F), –143.1 (app s, 2F). 
HRMS-electrospray (m/z): [M]+ calcd. for C26H23F7N2O4, 561.1619; found, 561.1623. 
Melting point: 117-119 °C 
Chromatography conditions: Gradient elution from 2% to 8% EtOAc in hexanes 

4.4.5 Synthesis and Isolation of Dimer-1 

 

 

 

General Procedure for Synthesis of Dimer-1. A 4 mL vial was charged with substrate S1 (20.6 

mg, 0.05 mmol, 1.0 equiv), Pd(OAc)2 (11.3 mg, 0.05 mmol, 1.0 equiv), CsOPiv (35.1 mg, 0.15 

mmol, 3.0 equiv) and a stirbar. To this vial, t-amylOH or MeCN (1.0 mL) was added. The reaction 

was stirred at 60 °C forming a bright orange reaction mixture. After 24 h, the reaction was cooled 

to room temperature and the solvent was concentrated under reduced pressure. The reaction was 

then diluted with DCM (10 mL) and filtered through a Celite plug. The supernatant was kept and 

concentrated under reduced pressure. Minimal DCM (2 mL) was then added to dissolve the solid 

followed by the addition of pentanes (10 mL) allowing the formation of a bright orange precipitate. 

The mixture was filtered through a Celite plug where the supernatant was discarded, and the 

precipitate was collected at the top of the Celite plug. In a 20 mL vial, the precipitate was dissolved 

and flused through the Celite plug using DCM (5 mL). Volatiles were evaporated under reduced 

pressure. This step was repeated 2-3 more times to afford Dimer-1 as a bright orange solid.  

N Me
Me

ON
C7F7

PdI
N

Me
Me

O N
C7F7

PdIN O
HN

C7F7

1 equiv Pd(OAc)2
3 equiv CsOPiv
t-amylOH or MeCN
60 °C, 24 h

(S1) Dimer 1
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Dimer-1: Isolated yield: 18 mg, 35% (orange solid) 
1H NMR (700 MHz, CD3CN, 23 ºC): δ 5.26 (ddd, J = 7.7, 3.9, 1.9 Hz, 
2H), 4.87 (t, J = 3.9 Hz, 2H), 4.41 (t, J = 6.8 Hz, 2H), 3.99 (dd, J = 18.1, 
4.8 Hz, 2H), 3.64 (t, J = 6.0 Hz, 2H), 2.54 (dd, J = 18.1, 6.0 Hz, 2H), 1.30 
(s, 6H). 
19F NMR (470 MHz, CD3CN 3, 23 ºC): δ –56.2 (t, 3F), –145.5 (m, 2F), –

148.8 (m, 1F), –149.5 (m, 1F).  
Elemental Analysis calcd for C37H36F14N4O3Cl2Pd2, C:39.17; H: 3.20; N: 4.94; found, C: 39.75; 
H: 3.23; N: 4.72.  

4.4.6 Scope and Isolation of Alkene  

General Procedure D: Ligand Optimization with S1. Under ambient conditions, a 0.02 M stock 

solution of Pd(OAc)2 (22.5 mg Pd(OAc)2 in 5 mL DCM) and 0.02 M stock solution of LX (in 

MeOH) was prepared. To a 4 mL vial, an aliquot of the LX solution (0.003 mmol, 10 mol%) was 

added and MeOH was removed at 70 °C for 5 min. To the same 4 mL vial, an aliquot of the 

Pd(OAc)2 solution (150 µL, 0.003 mmol Pd, 10 mol%) was added and DCM was removed at 40 

°C for 5 min. In the 4 mL vial with Pd(OAc)2 and LX, substrate S1 (12.37 mg, 0.03 mmol, 1.0 

equiv) and Cs2CO3 (10.67 mg, 0.033 mmol, 1.1 equiv) were added. The reaction mixture was then 

diluted with t-amylOH (0.30 mL) followed by the addition of acetic acid (18 µL, 0.30 mmol, 10 

equiv). A stirbar was added to the vial and the vial was sealed with a Teflon-lined screw cap. The 

vial was heated to 140 °C for 18 h. After, the reaction was allowed to cool to room temperature 

and diluted with DCM (3.0 mL) followed by the addition of hydrazine monohydrate (50 µL). The 

reaction was then stirred at room temperature for 10-15 min. During this time, a 0.2 M stock 

solution of 1,3,5-methoxybenzene (168 mg, 1 mmol) dissolved in ethyl acetate (5 mL) was 

prepared. An aliquot of this solution (150 µL, 0.03 mmol) was added to the reaction as the GC 

standard. The reaction solution was then filtered through a Celite pipette and analyzed via GC-

FID. Yields were determined based on a calibration curve. Table 4.1 showcases the ligands 

screened. 
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Table 4.1 Ligand Optimization of 1-E 

 

Variations of this procedure were used in all optimization reactions where the yield was 

determined by GC-FID. Ligand loading, solvent, acetic acid, base, and temperature were all 

parameters investigated.  

 

 

 

Optimized General Procedure E: Under ambient conditions, a 0.02 M stock solution of 

Pd(OAc)2 (22.5 mg Pd(OAc)2 in 5 mL DCM) and 0.02 M stock solution of L2 (7.64 mg of L2 in 

2 mL MeOH) were prepared. To a 4 mL vial, an aliquot of the L2 solution (100 µL, 0.002 mmol, 

8 mol%) was added and MeOH was removed at 70 °C for 5 min. To the same 4 mL vial, an aliquot 

of the Pd(OAc)2 solution (150 µL, 0.003 mmol Pd, 10 mol%) was added and DCM was removed 

at 40 °C for 5 min. In the 4 mL vial with Pd(OAc)2 and L2, substrate S1 (12.37 mg, 0.03 mmol, 

1.0 equiv) and Cs2CO3 (10.67 mg, 0.033 mmol, 1.1 equiv) were added. The reaction mixture was 
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then diluted with t-amylOH (0.30 mL) followed by the addition of acetic acid (50 µL). A stirbar 

was added to the vial and the vial was sealed with a Teflon-lined screw cap. The vial was heated 

to 150 °C for 18 h. After, the reaction was allowed to cool to room temperature and diluted with 

DCM (3.0 mL) followed by the addition of hydrazine monohydrate (50 µL). The reaction was then 

stirred at room temperature for 10-15 min.  

For GC-FID analysis: During this time, a 0.2 M stock solution of 1,3,5-methoxybenzene (168 

mg, 1 mmol) dissolved in ethyl acetate (5 mL) was prepared. An aliquot of this solution (150 µL, 

0.03 mmol) was added to the reaction as the GC standard. The reaction solution was then filtered 

through a Celite pipette and analyzed via GC-FID. Yields were determined based on a calibration 

curve.  

For isolation: The reaction solution was then filtered through a Celite pipette and washed with 

DCM. The volatiles were removed under reduced pressure, and the residue was purified via 

column chromatography (0% to 5% EtOAc in hexanes) to afford the desired product 1-E.  

 
1-E: General Procedure E was followed using S1 as the substrate. 
Isolated yield: 7.8 mg, 63% (white solid) 
1H NMR (700 MHz, CD3CN, 23 ºC): δ 9.75 (br s, 1H), 6.05 (m, 1H), 5.53 (m, 
1H), 3.66 (d, J = 6.9 Hz, 1H), 3.54 (t, J = 5.4 Hz, 1H), 2.66 (d, J = 17.7 Hz, 
1H), 2.12 (d, J = 13.6 Hz, 3H), 1.91 (m, 1H), 1.68 (m, 1H), 1.42 (s, 3H), 1.37 

(s, 3H). 
13C NMR (176 MHz, CD3CN, 23 ºC): δ 177.3, 135.5, 124.2, 63.5, 55.7, 55.2, 36.8, 36.3, 31.7, 
25.0, 23.1. Carbon resonances associated with perfluoroaryl group are not observed.6,7 
19F NMR (470 MHz, CD3CN, 23 ºC): δ –56.8 (t, 3F), –144.1 (m, 2F), –145.3 (m, 2F).   
HRMS-electrospray (m/z): [M]+ calcd. for C18H17F7N2O, 411.1302; found, 411.1291.  
Melting point: 101-104 °C 

Chromatography conditions: Gradient elution from 0% to 4% EtOAc in hexanes 
 

N O
HN

C7F7(1-E)
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2-E: General Procedure E was followed using S2 as the substrate.  
Isolated yield: 7.3 mg, 57% (white Solid) 
1H NMR (600 MHz, CDCl3) δ 9.80 (s, 1H), 5.99 (m, 1H), 5.78 (m, 1H), 3.45 
(m, 1H), 3.28 (s, 1H), 2.38 (m, 1H), 1.85 (m, 3H), 1.76 (ddd, J = 12.5, 8.4, 
4.0 Hz, 1H), 1.68 (dd, J = 6.3, 2.6 Hz, 1H), 1.56 (m, 2H), 1.43 (s, 3H), 1.38 

(s, 3H). 
13C NMR (151 MHz, CDCl3) δ 176.6, 129.6, 128.3, 65.0, 50.3, 46.9, 35.8, 29.7, 28.5, 24.6, 22.9, 
16.5. Carbon resonances associated with perfluoroaryl group are not observed. 6,7 
19F NMR (564 MHz, cdcl3) δ –56.0 (t, J = 21.7 Hz, 3F), –141.3 (m, 2F), –143.7 (td, J = 13.7, 6.2 
Hz, 2F).   
Chromatography conditions: 5% EtOAc in hexanes 
 

3-E: General Procedure E was followed using S3 as the substrate. Isolated 
yield: 11.5 mg, 90% (white solid) 
1H NMR (700 MHz, CDCl3, 23 ºC): δ 9.59 (s, 1H), 6.10 (dt, J = 10.0, 3.5 Hz, 
1H), 5.90 (ddt, J = 10.0, 4.8, 2.3 Hz, 1H), 3.92 (d, J = 2.2 Hz, 2H), 3.77 (dd, 
J = 10.7, 2.2 Hz, 1H), 3.64 (dd, J = 10.7, 1.7 Hz, 1H), 3.31 – 3.23 (m, 1H), 

3.19 – 3.13 (m, 1H), 2.50 – 2.41 (m, 1H), 2.16 (ddd, J = 18.8, 4.2, 2.1 Hz, 1H), 1.46 (s, 3H), 1.41 
(s, 3H). 
13C NMR (176 MHz, CDCl3, 23 ºC): δ 175.8, 129.4, 127.4, 76.4, 89.8, 65.0, 51.8, 48.8, 28.1, 24.1, 
22.9. Carbon resonances associated with perfluoroaryl group are not observed.6,7 
19F NMR (470 MHz, CDCl3, 23 ºC): δ –56.9 (m, 3F), –141.0 (s, 2F), –143.9 (m, 2F).  
HRMS-electrospray (m/z): [M]+ calcd. for C18H17F7N2O2, 427.1251; found, 427.1250. 
Melting point: 150-152 °C 

Chromatography conditions: Gradient elution from 8% to 12% EtOAc in hexanes 

4.4.7 X-Ray Crystallography Data 

Compound 1-C 

Colorless needles of 1-C were grown from a 

dichloromethane/hexanes solution of the compound at 22 deg. 

C.  A crystal of dimensions 0.12 x 0.04 x 0.04 mm was mounted 

on a Rigaku AFC10K Saturn 944+ CCD-based X-ray 

diffractometer equipped with a low temperature device and 

Micromax-007HF Cu-target micro-focus rotating anode (λ = 

1.54187 A) operated at 0.3 kW power (30 kV, 10 mA).  The X-

1-C 

N O
HN

C7F7(2-E)

N O
HN

C7F7(3-E)O
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ray intensities were measured at 85(1) K with the detector placed at a distance 42.00 mm from the 

crystal.  A total of 2028 images were collected with an oscillation width of 1.0° in ω.  The exposure 

times were 1 sec. for the low angle images, 3 sec. for high angle.  Rigaku d*trek images were 

exported to CrysAlisPro for processing and corrected for absorption.  The integration of the data 

yielded a total of 32406 reflections to a maximum 2θ value of 139.77° of which 3913 were 

independent and 3721 were greater than 2σ(I).  The final cell constants were based on the xyz 

centroids of 17682 reflections above 10σ(I).  Analysis of the data showed negligible decay during 

data collection.  The structure was solved and refined with the Bruker SHELXTL (version 2018/3) 

software package, using the space group P2(1)/c with Z = 4 for the formula C24H21N2OF7.  All 

non-hydrogen atoms were refined anisotropically with the hydrogen atoms placed in a combination 

of refined and idealized positions.  The crystal was determined to be a pseudo-merohedral twin.  

Twin law [-1 0 0 0 -1 0 0 0 1], refined twin scale factor 0.235(3).  Full matrix least-squares 

refinement based on F2 converged at R1 = 0.0850 and wR2 = 0.2531 [based on I > 2sigma(I)], R1 

= 0.0884 and wR2 = 0.2648 for all data.  Additional details are presented in Table 4.2 and are 

given as Supporting Information in a CIF file.  Acknowledgement is made for funding from NSF 

grant CHE-0840456 for X-ray instrumentation. 

G.M. Sheldrick (2015) "Crystal structure refinement with SHELXL", Acta Cryst., C71, 3-8  

(Open Access). 

CrystalClear Expert 2.0 r16, Rigaku Americas and Rigaku Corporation (2014), Rigaku Americas, 

 9009, TX, USA 77381-5209, Rigaku Tokyo, 196-8666, Japan. 

CrysAlisPro 1.171.40.53 (Rigaku Oxford Diffraction, 2019). 

Table 4.2 Crystal Data and Structural Refinement for 1-C   

Empirical Formula C24H21F7N2O 
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Formula Weight 486.43 

Temperature 85 (2) K 

Wavelength 1.54184 Å 

Crystal System Monoclinic 

Space Group P2(1)/c  

Unit Cell Dimensions a = 7.7054 (3) Å, α = 90 ° 

b = 12.5541 (4) Å, β = 90.196 (3)° 

c = 22.0120 (8) Å, γ = 90 ° 

Volume 2129.30 (13) Å3 

Z 4 

Calculated Density 1.517 Mg/m3 

Absorption Coefficient 1.185 mm-1 

F(000) 1000 

Crystal Size 0.120 x 0.040 x 0.040 mm 

Theta Range for Data Collection 3.520 to 69.883 ° 

Limiting Indices -8≤h≤8, -15≤k≤15, -26≤l≤25 

Reflections Collected 32406 

Independent Reflections 3913 

Completeness to Theta 98.6% 

Absorption Correction Semi-empirical from equivalents 

Max and Min Transmission 1.00000 to 0.54488 

Refinement Method Full-matrix least-squares on F2 

Data / Restraints / Parameters 3913 / 0 / 314 
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Goodness-of-Fit on F2 1.138 

Final R Indices [l>2σ(l)] R1 = 0.0850, wR2 = 0.2531 

R indices (all data) R1 = 0.0884, wR2 = 0.2648 

Extinction Coefficient N/A 

Largest Difference Peak and Hole 0.401 and -0.514 Å-3 

 
Compound 1-D  
 
Colorless prisms of 1-D were grown from a 

dichloromethane/hexanes solution of the 

compound at 22 deg. C.  A crystal of dimensions 

0.22 x 0.22 x 0.22 mm was mounted on a Rigaku AFC10K Saturn 944+ CCD-based X-ray 

diffractometer equipped with a low temperature device and Micromax-007HF Cu-target micro-

focus rotating anode (λ = 1.54187 A) operated at 0.3 kW power (30 kV, 10 mA).  The X-ray 

intensities were measured at 85(1) K with the detector placed at a distance 42.00 mm from the 

crystal.  A total of 2028 images were collected with an oscillation width of 1.0° in ω.  The exposure 

times were 1 sec. for all images.  Rigaku d*trek images were exported to CrysAlisPro for 

processing and corrected for absorption.  The integration of the data yielded a total of 30908 

reflections to a maximum 2θ value of 138.62° of which 3800 were independent and 3722 were 

greater than 2σ(I).  The final cell constants were based on the xyz centroids of 20201 reflections 

above 10σ(I).  Analysis of the data showed negligible decay during data collection.  The structure 

was solved and refined with the Bruker SHELXTL (version 2018/3) software package, using the 

space group P2(1)/n with Z = 4 for the formula C21H21N2O3F7.  All non-hydrogen atoms were 

refined anisotropically with the hydrogen atoms placed in a combination of refined and idealized 

1-D 
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positions.  Full matrix least-squares refinement based on F2 converged at R1 = 0.0425 and wR2 = 

0.1047 [based on I > 2sigma(I)], R1 = 0.0434 and wR2 = 0.1061 for all data.  Additional details 

are presented in Table 4.3 and are given as Supporting Information in a CIF file.  

Acknowledgement is made for funding from NSF grant CHE-0840456 for X-ray instrumentation. 

G.M. Sheldrick (2015) "Crystal structure refinement with SHELXL", Acta Cryst., C71, 3-8 (Open 

Access). 

CrystalClear Expert 2.0 r16, Rigaku Americas and Rigaku Corporation (2014), Rigaku Americas, 

9009, TX, USA 77381-5209, Rigaku Tokyo, 196-8666, Japan. 

CrysAlisPro 1.171.40.53 (Rigaku Oxford Diffraction, 2019). 

Table 4.3 Crystal Data and Structural Refinement for 1-D 

Empirical Formula C21H21F7N2O3 

Formula Weight 482.40 

Temperature 85 (2) K 

Wavelength 1.54184 Å 

Crystal System Monoclinic 

Space Group P2(1)/n  

Unit Cell Dimensions a = 11.17206 (13) Å, α = 90 ° 

b = 16.78418 (16) Å, β = 100.8711 (9)° 

c = 11.27108 (10) Å, γ = 90 ° 

Volume 2075.55 (4) Å3 

Z 4 

Calculated Density 1.544 Mg/m3 

Absorption Coefficient 1.281 mm-1 
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F(000) 992 

Crystal Size 0.220 x 0.220 x 0.220 mm 

Theta Range for Data Collection 4.786 to 69.314 ° 

Limiting Indices -10≤h≤12, -20≤k≤20, -13≤l≤13 

Reflections Collected 30908 

Independent Reflections 3800 

Completeness to Theta 98.3% 

Absorption Correction Semi-empirical from equivalents 

Max and Min Transmission 1.00000 to 0.81320 

Refinement Method Full-matrix least-squares on F2 

Data / Restraints / Parameters 3800 / 6 / 333 

Goodness-of-Fit on F2 1.048 

Final R Indices [l>2σ(l)] R1 = 0.0425, wR2 = 0.1047 

R indices (all data) R1 = 0.0434, wR2 = 0.1061 

Extinction Coefficient 0.0020 (2) 

Largest Difference Peak and Hole 0.428 and -0.269 Å-3 

 
Dimer-1 

 
Orange needles of Dimer-1 were grown from 

a hexanes/dichloromethane solution of the 

compound at 23 deg. C.  A crystal of 

dimensions 0.10 x 0.02 x 0.02 mm was 

mounted on a Rigaku AFC10K Saturn 944+ CCD-based X-ray diffractometer equipped with a low 

Dimer-1 
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temperature device and Micromax-007HF Cu-target micro-focus rotating anode (λ = 1.54187 A) 

operated at 1.2 kW power (40 kV, 30 mA).  The X-ray intensities were measured at 85(1) K with 

the detector placed at a distance 42.00 mm from the crystal.  A total of 2028 images were collected 

with an oscillation width of 1.0° in ω.  The exposure times were 1 sec. for the low angle images, 

3 sec. for high angle.  Rigaku d*trek images were exported to CrysAlisPro for processing and 

corrected for absorption.  The integration of the data yielded a total of 30119 reflections to a 

maximum 2θ value of 138.53° of which 7222 were independent and 6743 were greater than 2σ(I).  

The final cell constants were based on the xyz centroids of 14261 reflections above 10σ(I).  

Analysis of the data showed negligible decay during data collection.  The structure was solved and 

refined with the Bruker SHELXTL (version 2016/6) software package, using the space group 

P1bar with Z = 2 for the formula C37H36N4O3F14Cl2Pd2.  All non-hydrogen atoms were refined 

anisotropically with the hydrogen atoms placed in a combination of idealized and refined positions.  

Full matrix least-squares refinement based on F2 converged at R1 = 0.0406 and wR2 = 0.1129 

[based on I > 2sigma(I)], R1 = 0.0429 and wR2 = 0.1164 for all data.  Additional details are 

presented in Table 4.4 and are given as Supporting Information in a CIF file.  Acknowledgement 

is made for funding from NSF grant CHE-0840456 for X-ray instrumentation. 

G.M. Sheldrick (2015) "Crystal structure refinement with SHELXL", Acta Cryst., C71, 3-8 (Open 

Access). 

CrystalClear Expert 2.0 r16, Rigaku Americas and Rigaku Corporation (2014), Rigaku Americas, 

9009, TX, USA 77381-5209, Rigaku Tokyo, 196-8666, Japan. 

CrysAlisPro 1.171.38.41 (Rigaku Oxford Diffraction, 2015). 

Table 4.4 Crystal Data and Structural Refinement for Dimer-1  

Empirical Formula C37H36Cl2F14N4O3Pd2 
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Formula Weight 1134.40 

Temperature 85 (2) K 

Wavelength 1.54184 Å 

Crystal System Triclinic 

Space Group P-1  

Unit Cell Dimensions a = 12.1394 (3) Å, α = 85.100(2)° 

b = 12.7800 (4) Å, β = 79.236 (2)° 

c = 13.9061 (3) Å, γ = 70.699 (2)° 

Volume 1999.68 (9) Å3 

Z 2 

Calculated Density 1.884 Mg/m3 

Absorption Coefficient 9.482 mm-1 

F(000) 1124 

Crystal Size 0.100 x 0.020 x 0.020 mm 

Theta Range for Data Collection 3.236 to 69.269 ° 

Limiting Indices -14≤h≤14, -15≤k≤15, -14≤l≤16 

Reflections Collected 30119 

Independent Reflections 7222 

Completeness to Theta 97.7% 

Absorption Correction Semi-empirical from equivalents 

Max and Min Transmission 1.00000 to 0.46518 

Refinement Method Full-matrix least-squares on F2 

Data / Restraints / Parameters 7222 / 3 / 571 
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Goodness-of-Fit on F2 1.070 

Final R Indices [l>2σ(l)] R1 = 0.0406, wR2 = 0.1129 

R indices (all data) R1 = 0.0429, wR2 = 0.1164 

Extinction Coefficient N/A 

Largest Difference Peak and Hole 1.181 and -1.347 Å-3 
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Chapter 5 Ni Aminoquinoline Complexes as Catalysts for Cross-Coupling Reactions 
 

5.1 Introduction 

 Nickel has showcased an outstanding ability to catalyze challenging bond formations in 

the field of organic synthesis.1 This is highlighted by the prominent achievements of Ni-catalyzed 

cross-couplings, such as the Kumada and Negishi couplings.2 These cross-couplings typically 

proceed via two-electron redox pathways involving Ni0/NiII catalytic cycles. Many of the NiII and 

Ni0 intermediates have been well-characterized, thus providing a detailed mechanistic picture of 

their reaction mechanisms.3  

Scheme 5.1 Reports of Dual Photoredox and Ni-Catalyzed Cross-Couplings 
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coupling methodologies, in which Ni0/NiII/NiIII and Ni0/NiI/NiIII mechanistic manifolds have been 

proposed.5,6 Due to the instability of the high-valent NiIII and NiIV species, the isolation and 

characterization of these intermediates are rare.7 As such, there is much less experimental insight 

into the mechanism of catalytic reactions invoking high-valent Ni, which results in poor 

understanding in the role of additives (i.e., ligands, oxidants). Examples of photoredox/Ni-

catalyzed cross-couplings that highlight this gap of knowledge are those developed by the 

Fu/MacMillan groups8 (Scheme 5.1a) and the Molander group9 (Scheme 5.1b). Both reports 

demonstrate challenging C-C cross-couplings that are enabled by anionic LX-donor ligands. In 

contrast, the use of related neutral L2-donor ligands resulted in dramatically lower to trace yields 

of the desired cross-coupling products. These significant ligand effects demonstrate the need for 

mechanistic elucidation of high-valent Ni chemistry to understand the role of the ligands and to 

tune the catalyst system for a target transformation.  

 Herein, we propose the use of aminoquinoline (AQ) derived scaffolds as LX-donor 

supporting ligands to assist in the isolation and study of high-valent Ni species to gain mechanistic 

insight into the role of ligands in these transformations (Scheme 5.2). Isolation of a high-valent 

Ni-AQ species will give us the opportunity to study their reactivity and could thus lead to new 

method developments. We hypothesize AQs can provide sufficient stability for isolation of high-

valent Ni species, as our lab has shown them to be effective supporting ligands for other NiIII and 

NiIV complexes.7d Further impetus for examining AQs as ligands in these systems is provided by 

the numerous transition-metal catalyzed reactions employing these as both a substrate and ligand.10  
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Scheme 5.2 Proposal of AQs to Study High-Valent Ni Intermediates 

 

Moreover, the modular nature of the AQ scaffold allows for easy synthetic variations, including 

modifications preventing the AQ scaffold from acting as a substrate. This chapter will detail 

preliminary work towards these studies. 

5.2 Results and Discussion 

Synthesis of Aminoquinoline (AQ) ligand library  

 Initial electronic and steric modifications of AQ ligand scaffolds were performed by 

varying the R1 group (Scheme 5.2). A series of ligands was synthesized in one-step from readily 

available starting materials (see Section 5.5.2). Table 5.1 shows the AQ ligands AQ-1 through 

AQ-13 synthesized, bearing ranging from alkyl (AQ-1 through AQ-7) or aryl groups at R1 (AQ-

8 through AQ-13). Of note, ligand AQ-9 differs in atom connectivity, and would be expected to 

form a 6-membered chelate with Ni as compared to the 5-membered chelate with the other shown 

AQ scaffolds.11  
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Table 5.1 Aminoquinoline (AQ) Ligands Synthesized 

 

Evaluation of AQ Ligands in Ni-Catalyzed Cross-Couplings 

 Next, we sought out to test AQs as ligands for photoredox/Ni-catalyzed cross-couplings. 

We selected the method established by the Fu and MacMillan groups (Scheme 5.1a, Reaction 1)  
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AQ-4 11 

AQ-5 2 

AQ-6 3 

AQ-7 <1 

AQ-8 4 

AQ-9 2 

AQ-10 <1 

AQ-11 14 

AQ-12 8 

AQ-13 0 

 

to reproduce the reported transformation.8 First, we performed the reaction with the reported LX-

ligand, corrin, and obtained 24% yield of 1-A (see Section 5.5.3). Notably, the literature reported 

yield with corrin of 1-A is 70%. We continue to work on optimization to assess the origin of this 

significant difference. However, our yields are consistent and reproducible over four runs, which 

led us to explore the AQ derivatives, while comparing the yield to that with the corrin benchmark. 

 With the 24% yield as a benchmark, we assessed the synthesized AQ derivatives in 

Reaction 1 as shown in Table 5.2. Among the alkyl-substituted AQs, AQ-1, AQ-3, and AQ-4 

afforded similar yields of product 1-A (7-11%). The aryl-substituted AQs AQ-8 and AQ-12 gave 

4% and 8% yield of 1-A, respectively. AQ-11 provided the best yield of 1-A at 14%. From these 

results, there is not a clear trend between R1 and yield. However the data do show that AQs are 

viable LX-donor ligands for this Ni-catalyzed cross-coupling reaction. In addition, the data provide 

some guidance into which AQ ligands to initially explore for the synthesis of NiII-AQ complexes. 
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Synthesis of NiII-AQ Complexes  

 Based on the AQ ligand evaluation results in Table 5.2, we chose AQ-1, AQ-7, AQ-8, and 

AQ-11 as the ligands for the synthesis of NiII-AQ complexes. The pairs of ligands AQ-1 and AQ-

7, and pair AQ-8, and AQ-11 were selected as they have dramatic steric differences that can be 

compared and studied when bound to Ni. Dr. Abebu Kassie, a postdoctoral scholar in our lab, has 

focused on the synthesis and characterization of these NiII-AQ complexes. Currently, NiII-AQ 

complexes with AQ-1 and AQ-7 ligands have been synthesized and their structures have been 

established by X-ray crystallography and 1H NMR spectroscopy analyses.  

 Complex Ni-1 was synthesized from AQ-1 in the presence of KOtBu followed by the 

addition of Ni(acac)2 in THF at 25 °C (Scheme 5.3a). 1H NMR spectroscopic analysis of the Ni 

product is inconclusive, but we tentatively assign this as the paramagnetic high spin NiII complex 

Ni-1. This is consistent with data obtained from previous studies using AQs in Ni catalysis.11 

Under analogous conditions using AQ-7, complex Ni-2 was synthesized and isolated (Scheme 

5.3b). Complex Ni-2 was characterized by 1H NMR spectroscopy (also a paramagnetic, high spin 

NiII) and X-ray crystallography confirming the bis-chelation of the AQ ligand.  

Scheme 5.3 Synthesis of Ni-1 and Ni-2 
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Evaluation of NiII-AQ Complexes in Dual Photoredox and Ni Catalysis Methods 

 With complexes Ni-1 and Ni-2 in hand, we evaluated their catalytic activity in the same 

reaction as described above. As shown in Table 5.3, complex Ni-1 affords 42% of 1-A, significant- 

Table 5.3 Evaluation of Complexes Ni-1 and Ni-2 

 

Ni complex 1-A yield (%) 

Ni(acac)2 20 

Ni-1 42 

Ni-2 17 

 

ly higher than that of complex Ni-2, which yielded 17% yield of 1-A. Performing a control with 

Ni(acac)2 (the NiII precursor of both complexes) we observed 20% yield of 1-A, indicating it can 

catalyze the reaction and thus highlighting the requirement of highly pure Ni complexes. These 

preliminary results show that both Ni-1 and Ni-2 can catalyze this reaction, with Ni-1 serving as 

the optimal catalyst. Again, this suggests that AQs serve as viable ligands for a Ni-catalyzed cross-

coupling, therefore NiII-AQ complexes can be used for further mechanistic investigations of the 

reaction. 

5.3 Conclusions 

 In summary, we describe the design and synthesis of AQ derivatives, and their 

corresponding NiII-AQ complexes for evaluation in photoredox and Ni-catalyzed cross-couplings. 

Our preliminary results suggest that AQs are viable ligands for Ni-catalyzed cross-couplings, in 
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particular for the Fu/MacMillan report (Reaction 1). As such, AQs and their complexes can be 

employed to gain mechanistic insight into the strong LX-donor ligand effects in these reactions.   

5.4 Outlook 

 The preliminary results detailed in this chapter provide numerous directions for this work, 

in that an appropriate reaction, AQ ligands, and NiII-AQ complexes have been identified. The 

continuation of this work will focus on the synthesis of more NiII-AQ complexes with AQ-1, AQ-

7, AQ-8, and AQ-11. From here, as outlined in Scheme 5.2, the reactivity of these NiII-AQ 

complexes towards one-electron oxidation will be studied to achieve an isolable high-valent Ni 

intermediate.  

 Meanwhile, all complexes will be tested in the Fu/MacMillan reaction to assess their 

viability as catalysts for the reaction. Moreover, with these complexes in hand, they will be 

evaluated in numerous other Ni-catalyzed cross-couplings2b,9 that are known to demonstrate clear 

ligand effects (e.g., Scheme 5.1b) as well as in improving the reaction yields and scope for difficult 

substrates in these cross-couplings. Overall, the stoichiometric studies with the isolated Ni 

complexes can allow us to generally study the mechanistic workings of Ni-catalyzed cross-

coupling to understand the role of additives.  

5.5 Experimental Procedures 

5.5.1 General Procedures, Materials and Methods 

General Procedures 

NMR spectra were obtained on a Varian VNMR 700 (699.76 MHz for 1H; 175.95 MHz for 13C) 

or a Varian VNMR 500 (500.09 MHz for 1H; 470.56 MHz for 19F) or a Varian NMR 400 (128.38 

MHz for 11B NMR) spectrometer. 1H and 13C chemical shifts are reported in parts per million 
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(ppm) relative to TMS, with the residual solvent peak (most commonly CDCl3) used as an internal 

reference. 19F chemical shifts are reported in ppm and are referenced on a unified scale to the 

frequency of the residual solvent peak in the 1H NMR spectrum. 1H and 19F multiplicities are 

reported as follows: singlet (s), doublet (d), doublet of doublets (dd), doublet of doublets of 

doublets (ddd), doublet of triplets (dt), triplet (t), quartet (q), and multiplet (m). High resolution 

mass spectra were obtained at the University of Michigan core facility. X-ray crystallographic data 

were collected on a Bruker SMART APEX-I CCD-based X-ray diffractometer. Flash 

chromatography was conducted on a Biotage Isolera One chromatography system using preloaded 

high-performance silica gel columns (10 g, 25 g, 50 g, or 100 g as appropriate). GC-FID was 

conducted on a Shimadzu CG-17A system. Melting points were obtained on a OptiMelt automated 

melting point system.  

Materials and Methods  

All commercial reagents were used as received without further purification unless otherwise noted. 

The following reagents were purchased from Aldrich: 8-aminoquinoline, NiCl2·glyme (note: 

hygroscopic), ligand (S,S)-6, cesium carbonate (anhydrous), and DME (anhydrous). Other 

reagents were purchased from Aldrich, Alfa Aesar, ChemImpex, Combi-Blocks, Oakwood, and 

Strem. All other reaction solvents were purified by passage through columns of activated alumina. 

All glassware used in the glovebox was dried in an oven at 150 °C for at least 6 h and cooled under 

an inert atmosphere. Photoredox reactions were irradiated by blue LED lamps, and performed in 

a water bath and with a fan. Reaction vessels were sealed with either a septum (flask) or a Teflon-

lined cap with Teflon tape wrapped around the cap. All experiments and synthetic procedures were 

carried out under an inert atmosphere of nitrogen unless otherwise noted.  
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5.5.2 Synthesis of Ligands 

All ligands were synthesized under General Procedure A expect AQ-2 and AQ-9. 

 

General Procedure A (Performed under air): A round bottomed flask was charged with the 

desired acid chloride (7.0 mmol, 1.0 equiv), CH2Cl2 (10 mL), and a magnetic stir bar. This flask 

was cooled down in an ice bath to 0 °C. In a 20 mL vial, A (1.0 g, 7 mmol, 1 equiv) and CH2Cl2 

(10 mL) were added followed by the addition of Et3N (2.3 mL, 16.8 mmol, 2.4 equiv). This 

solution was added to the round bottomed flask dropwise via syringe and was allowed warm to 

room temperature. After 16 h, the mixture was extracted with CH2Cl2 (20 mL) and aq. Na2HCO3 

(15 mL). The combined organic phases were washed with 1M HCl aq. solution (20 mL), dried 

over anhydrous sodium sulfate, and concentrated in vacuo. The crude residue was dissolved in 

minimal CH2Cl2 and purified via flash chromatography using ethyl acetate/hexanes gradient 

elution. Removal of solvent afforded the desired AQ.  

 

General Procedure B12 (Performed under air): A round bottomed flask was charged with A (720 

mg, 5 mmol, 1 equiv), CH2Cl2 (10 mL), and a magnetic stir bar. This flask was cooled down in an 

ice bath to 0 °C. to This flask, trifluoroacetic anhydride (TFAA) (755 uL, 5.5 mmol, 1.1 equiv) 

was added dropwise via syringe. Once added, the reaction was allowed warm to room temperature. 

After 16 h, the mixture was extracted with CH2Cl2 (15 mL) and aq. Na2HCO3 (10 mL). The 

combined organic phases were washed with a saturated NaCl aq. solution (15 mL) and water (15 
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mL). The combined organic phases were dried over anhydrous sodium sulfate and concentrated in 

vacuo. The crude residue was dissolved in minimal CH2Cl2 and purified via flash chromatography 

using ethyl acetate/hexanes gradient elution (5-10%). Removal of solvent afforded AQ-2. 

 

 

General Procedure C (Performed under air): A round bottomed flask was charged with C (247 

µL, 2.7 mmol, 1.0 equiv), Et3N (1.0 mL, 5.6 mmol, 2.0 equiv), CH2Cl2 (7 mL), and a magnetic stir 

bar. This flask was cooled down in an ice bath to 0 °C. In a 20 mL vial, B (540 mg, 2.8 mmol, 1.1 

equiv) and CH2Cl2 (10 mL) were added. This solution was added to the round bottomed flask 

dropwise via syringe and was allowed warm to room temperature. After 16 h, the reaction was 

concentrated in vacuo. The crude residue was dissolved in minimal CH2Cl2 and purified via flash 

chromatography using ethyl acetate/hexanes gradient elution. Removal of solvent afforded the 

desired AQ-9. 

AQ-1: General Procedure A was followed using Acetyl chloride.  
The 1H, 13C, and 19F NMR spectral data for AQ-1 matched that reported in the 
literature.13 
 

 

AQ-2: General Procedure B was followed.  
The 1H, 13C, and 19F NMR spectral data for AQ-2 matched that reported in the 
literature.12 
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AQ-3: General Procedure A was followed using 3,3,3-Trifluoropropionyl 
chloride. 
Isolated yield: 150 mg, 12% (yellow solid) 
1H NMR (700 MHz, CDCl3, 23 ºC): δ 10.12 (br s, 1H), 8.82 (d, J = 4.3 Hz, 1H), 
8.75 (dd, J = 6.5, 2.2 Hz, 1H), 8.19 (d, J = 8.4 Hz, 1H), 7.60-7.53 (multiple peaks, 

2H), 7.49 (dd, J = 8.4, 4.3 Hz, 1H), 3.42 (q, J = 10.4 Hz, 2H). 
19F NMR (470 MHz, CDCl3, 23 ºC): δ – 62.9 (t, 3F). 
Chromatography conditions: 15% EtOAc in hexanes 
 

AQ-4: General Procedure A was followed using Trimethyl acetyl chloride. 
The 1H, 13C, and 19F NMR spectral data for AQ-4 matched that reported in the 
literature.14 
 

 

AQ-5: General Procedure A was followed using Cyclohexane carbonyl chloride. 
The 1H, 13C, and 19F NMR spectral data for AQ-5 matched that reported in the 
literature.15 
 

 

 

AQ-6: General Procedure A was followed using Perfluorocyclohexane 
carbonyl chloride. 
Isolated yield: 160 mg, 12% (white solid) 
1H NMR (700 MHz, CDCl3, 23 ºC): δ 11.05 (br s, 1H), 8.87 (dd, J = 4.2, 1.6 Hz, 
1H), 8.75 (dd, J = 7.6, 1.3 Hz, 1H), 8.21 (dd, J = 8.3, 1.6 Hz, 1H), 7.66 (dd, J = 
8.3, 1.3 Hz, 1H), 7.59 (t, J = 8.0 Hz, 1H), 7.52 (dd, J = 8.3, 4.2 Hz, 1H). 

19F NMR (470 MHz, CDCl3, 23 ºC): δ –119.1 (dd, 2F), –122.2 (m, 1F), –122.9 (m, 2F), –131.3 
(dd, 2F), –138.5 (dd, 2F), –141.0 (d, 1F), –178.8 (m, 1F). 
Chromatography conditions: 4% EtOAc in hexanes 
 

AQ-7: General Procedure A was followed using 1-Adamantanecarbonyl chloride.  
The 1H, 13C, and 19F NMR spectral data for AQ-7 matched that reported in the 
literature.16 
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AQ-8: General Procedure A was followed using Benzoyl chloride. 
The 1H, 13C, and 19F NMR spectral data for AQ-8 matched that reported in the 
literature.14 
 

 

AQ-9: General Procedure C was followed.  
The 1H, 13C, and 19F NMR spectral data for AQ-9 matched that reported in the 
literature.17 
 

 

AQ-10: General Procedure A was followed using 2-Chloro-6-Fluorobenzoyl 
chloride.  
Isolated yield: 280 mg, 41% (white solid) 
1H NMR (700 MHz, CDCl3, 23 ºC): δ 10.15 (br s, 1H), 8.96 (dd, J = 6.6, 2.4 
Hz, 1H), 8.78 (dd, J = 4.2, 1.7 Hz, 1H), 8.19 (dd, J = 8.3, 1.7 Hz, 1H), 7.66-7.56 
(multiple peaks, 2H), 7.47 (dd, J = 8.3, 4.2 Hz, 1H), 7.39 (td, J = 8.2, 5.9 Hz, 

1H), 7.31 (dt, J = 8.1, 1.1 Hz, 1H), 7.14 (td, J = 8.5, 1.1 Hz, 1H). 
19F NMR (470 MHz, CDCl3, 23 ºC): δ –112.3 (dd, 1F). 
Chromatography conditions: 8% EtOAc in hexanes 
 

AQ-11: General Procedure A was followed using 2,4,6-Trimethyl benzoyl 
chloride.  
The 1H, 13C, and 19F NMR spectral data for AQ-11 matched that reported in the 
literature.15 
 

 

 

AQ-12: General Procedure A was followed using 4-phenylbenzoyl chloride.  
The 1H, 13C, and 19F NMR spectral data for AQ-12 matched that reported in the 
literature.18 
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AQ-13: General Procedure A was followed using 1-Naphthoyl chloride. 
The 1H, 13C, and 19F NMR spectral data for AQ-13 matched that reported in the 
literature.19 
 

5.5.3 Reaction Procedures: Evaluation of Ligands 

General Procedure D (Adapted from literature)8: In a glovebox, NiCl2•glyme (1.1 mg, 0.0050 

mmol, 2 mol %), AQ (0.0055 mmol, 2.2 mol %), and anhydrous 1,2-dimethoxyethane (DME, 1.0 

mL) were added to a 4 mL vial equipped with a stir bar. The vial was sealed with a teflon-lined 

septum cap, and the mixture was stirred vigorously for 30 min. Meanwhile, to a 40 mL vial 

equipped with a stir bar, the following chemicals were added: Ir[dF(CF3)ppy]2(dtbbpy)(PF6) (5.5 

mg, 0.0050 mmol, 2 mol %); tetrabutylammonium iodide (9.2 mg, 0.025 mmol, 0.1 equiv); D 

(88.0 mg, 0.38 mmol, 1.5 equiv); anhydrous cesium carbonate (150 mg, 0.46 mmol, 1.85 equiv), 

E (46 mg, 0.25 mmol, 1.0 equiv), and anhydrous toluene (22.5 mL). Next, the Ni/ligand slurry was 

transferred via syringe to the 40 mL vial. The 4 mL vial that had contained the Ni/ligand slurry 

was rinsed with DME (1.5 mL), and the rinse was added to the 40 mL reaction vial via syringe. 

The vial was sealed with a teflon-lined septum cap, transferred out of the glovebox, and the 

reaction mixture was stirred vigorously under blue LED lights at 18 °C. The reaction time was 36 

h. Next, the reaction mixture was transferred to a 250 mL separatory funnel, rinsed/diluted with 

100 mL ether, and washed with 100 mL deionized water (twice) and finally 100 mL brine. The 
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organic phase was concentrated under vacuum. Internal standard, 4-Chlorobiphenyl (47 mg, 0.25 

mmol, 1.0 equiv) was used for GC analysis. The desired product 1-A was observed as well as 1-B 

and 1-C as reported in Table 5.4. Please note product yields 1-A and 1-C have be combined for 

simplicity in Table 5.2. 

1-A: The 1H, 13C, and 19F NMR spectral data for 1-A matched that reported in the literature.8 

GC-MS Spectrum Analysis: Example of a GC-MS spectrum after reaction work-up 
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Table 5.4 General Procedure D Yields with AQ Ligands 

 

5.5.4 Synthesis of Ni-1 and Ni-2 

 

To a solution of the desired AQ (0.33 mmol, 1.0 equiv) in THF (3.0 mL) was added a solution of 

KOtBu (37.0 mg, 0.33 mmol, 1.0 equiv) in THF (2.0 mL). Upon addition of KOtBu, a bright 

yellow precipitate formed, which was added dropwise via syringe to a solution of Ni(acac)2 (84.0 

mg, 0.33 mmol, 1.0 equiv) in THF (3.0 mL). This solution was stirred at 25 °C. After 16 h, the 
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brown solution was filtered through a pad of celite, removed solvent in vacuo, and recrystallized 

from diethyl ether in the freezer to afford the desired Ni complex.  

5.5.5 X-Ray Crystallography Data 

X-Ray Crystallography Experimental Data of Ni-2 

Orange plates of Ni-2 were grown from a benzene-d6/diethyl ether solution of the compound at 22 

deg. C.  A crystal of dimensions 0.22 x 0.14 x 0.14 mm was mounted on a Rigaku AFC10K Saturn 

944+ CCD-based X-ray diffractometer equipped with a low temperature device and Micromax-

007HF Cu-target micro-focus rotating anode (λ = 1.54187 A) operated at 1.2 kW power (40 kV, 

30 mA).  The X-ray intensities were measured at 85(1) K with the detector placed at a distance 

42.00 mm from the crystal.  A total of 2028 images were collected with an oscillation width of 

1.0° in ω.  The exposure times were 1 sec. for the low angle images, 3 sec. for high angle.  Rigaku 

d*trek images were exported to CrysAlisPro for processing and corrected for absorption. The 

integration of the data yielded a total of 26767 reflections to a maximum 2θ value of 138.75° of 

which 6499 were independent and 6357 were greater than 2σ(I).  The final cell constants (Table 

1) were based on the xyz centroids of 20619 reflections above 10σ(I).  Analysis of the data showed 

negligible decay during data collection.  The structure was solved and refined with the Bruker 

SHELXTL (version 2018/3) software package, using the space group P1bar with Z = 2 for the 

formula C44H52N4O3Ni. All non-hydrogen atoms were refined anisotropically with the hydrogen 

atoms placed in idealized positions.  Full matrix least-squares refinement based on F2 converged 

at R1 = 0.0391 and wR2 = 0.1031 [based on I > 2sigma(I)], R1 = 0.0397 and wR2 = 0.1037 for all 

data.  Additional details are presented in Table 1 and are given as Supporting Information in a CIF 

file.  Acknowledgement is made for funding from NSF grant CHE-0840456 for X-ray 

instrumentation. 
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G.M. Sheldrick (2015) "Crystal structure refinement with SHELXL", Acta Cryst., C71, 3-8 (Open 

Access). 

CrystalClear Expert 2.0 r16, Rigaku Americas and Rigaku Corporation (2014), Rigaku Americas, 

9009, TX, USA 77381-5209, Rigaku Tokyo, 196-8666, Japan. 

CrysAlisPro 1.171.40.53 (Rigaku Oxford Diffraction, 2019). 

 
Table 5.5 Crystal Data and Structural Refinement for Ni-2 

Empirical Formula C44H52N4NiO3 

Formula Weight 743.60 

Temperature 85 (2) K 

Wavelength 1.54184 A 

Crystal System triclinic 

Space Group P-1 

Unit Cell Dimensions a = 10.5310(4) Å, α = 69.749(4) ° 

b = 13.2916(5) Å, β = 87.584(4) ° 

c = 13.7266(6) Å, γ = 87.504(3) ° 

Volume 1800.15(14) Å3 

Z 2 

Calculated Density 1.372 Mg/m3 

Absorption Coefficient 1.150 mm-1 

F(000) 782 

Crystal Size 0.220 x 0.140 x 0.140 mm 

Theta Range for Data Collection 3.433 to 69.377 ° 
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Limiting Indices -12≤h≤12, -16≤k≤15, -15≤l≤16 

Reflections Collected 26767 

Independent Reflections 6499 

Completeness to Theta 97.7% 

Absorption Correction Semi-empirical from equivalents 

Max and Min Transmission 1.00000 to 0.68750 

Refinement Method Full-matrix least-squares on F2 

Data / Restraints / Parameters 6499 / 0 / 472 

Goodness-of-Fit on F2 1.084 

Final R Indices [l>2σ(l)] R1 = 0.0391, wR2 = 0.1031 

R indices (all data) R1 = 0.0397, wR2 = 0.1037 

Extinction Coefficient 0.0061(3) 

Largest Difference Peak and Hole 0.383 and -0.536 Å-3 
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