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Summary

In medical research, the Brier score (BS) and the area under the receiver operat-
ing characteristic (ROC) curves (AUC) are two common metrics used to evaluate
prediction models of a binary outcome, such as using biomarkers to predict the
risk of developing a disease in the future. The assessment of an existing predic-
tion models using data with missing covariate values is challenging. In this article,
we propose inverse probability weighted (IPW) and augmented inverse probabil-
ity weighted (AIPW) estimates of AUC and BS to handle the missing data. An
alternative approach uses multiple imputation (MI), which requires a model for the
distribution of themissing variable.We evaluated the performance of IPWandAIPW
in comparison with MI in simulation studies under missing completely at random
(MCAR), missing at random (MAR), and missing not at random (MNAR) scenar-
ios. When there are missing observations in the data, MI and IPW can be used to
obtain unbiased estimates of BS and AUC if the imputation model for the missing
variable or the model for the missingness is correctly specified. MI is more efficient
than IPW. Our simulation results suggest that AIPW can be more efficient than IPW,
and also achieves double robustness from miss-specification of either the missing-
ness model or the imputation model. The outcome variable should be included in the
model for the missing variable under all scenarios, while it only needs to be included
in missingness model if the missingness depends on the outcome. We illustrate these
methods using an example from prostate cancer.
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1 INTRODUCTION

In clinical research, patient information such as clinical features, diagnostic tests and biomarkers are often used to help with
diagnosis or to provide prognosis of a future outcome for a patient with disease. When the outcome of interest is binary, a typical
prediction model will numerically combine the covariates, for example using a linear combination, to estimate the predicted
probability of the binary outcome. The evaluation of an existing prediction model in a different populations is of considerable
interest. If a model is to be transportable to other populations, it needs to be validated, which is usually thought of as meaning
that it has similar and good performance in other populations. The performance of existing prediction models can be assessed
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using a variety of metrics, such as the Brier score to indicate accuracy of the probabilistic predictions, and area under the receiver
operating characteristic (ROC) curve (or the concordance statistic) for discriminative ability.1 Very often, a covariate may be
partially missing, i.e. the values will be missing for some patients. The assessment of prediction models in data with missing
covariate values is a challenge. The context we are considering is that the existing model or models were developed on other
datasets, which we call the external data, and are already completely specified. We do not have access to the data used to develop
these models. Rather, our goal is to assess the performance of the existing model in an available dataset, which we call the
internal data, that has missing values for some covariates and we want to get valid and efficient estimates of the BS and the AUC.
In general there are two types of methods for estimation in the presence of missing data, one is based on multiple imputa-

tion (MI) and the other is based on inverse probability weighting (IPW). For MI, a model for the distribution of the missing
variable, or variables, needs to be specified. For IPW method, a model for the probability of missingness needs to be specified,
which is also called the weight model. For multiple imputation,M completed datasets are created andM model performance
measures can be estimated from each of the completed dataset and then averaged.2 Alternatively, an overall measure of model
performance can be estimated directly from a simple completed dataset that includes the average of theM predictions for each
missing value. As previously recommended,3 the former is preferred. The analysis of only the observations with complete data
is frequently biased, and in a cleverly titled article Janssen et al.4 showed that to impute is generally better than to ignore.
Alternatively inverse probability weighting is a commonly used approach to correct their bias.5 IPW is also used to adjust for
unequal sampling fractions in sample surveys and causal inference.6,7 Augmented inverse probability weighting (AIPW) has
been proposed as an extension of IPW. It is a double-robust method that is robust to the misspecification of either a model for
the missingness mechanism or a model for the distribution of the variables with missing values (but not both).8 Willamson et
al. present AIPW estimators that account for both confounding in causal inference and missing data.7 AIPW generally results
in improved efficiency compared to IPW, although this is not guaranteed to be the case.
When analyzing data with missing values an important consideration is the missingness mechanism, and the mechanism

will impact the properties and merits of different methods. Missing complete at random (MCAR) is when the probability of
any variable being missing for a subject does not depend on the value of any of the the variables. Generally all methods will
work under MCAR. Analysis of the complete cases will be unbiased, but are frequently quite inefficient compared to other
methods, depending on the amount of missingness. Missing at random (MAR) is when the probability of being missing can
depend on other covariates, but only those that are observed. In general MI, IPW and AIPW are valid under MAR, if models are
appropriately specified. Complete case analysis is frequently biased under MAR. Missing Not at Random (MNAR) is when the
probability of missing depends on the value of variables that are fully observed, including the unobserved value of the variable
itself. Generally all methods are biased under MNAR.
A basic question for all the above MI, IPW and AIPW methods is whether the observed data for the outcome variable should

be included in the required imputation models or weight models. This is also related to how the covariate is missing, whether the
missingness is completely at random, or depend on other covariates and/or the outcome, or the covariate itself. The argument
in favor of including the outcome variable in these models is from the theoretical developments associated with missing data
and multiple imputation. In general, it is well known that for inference about a quantity of interest it is necessary to include the
outcome variable as one of the variables in the imputationmodel when developing a new predictionmodel. Omitting the outcome
variable can lead to biased estimates.9 In general notation, if Q is the quantity of interest, andD = (Dobs, Dmis) is the data where
Dobs andDmis denote the observed andmissing data, then from a Bayesian perspective, inference aboutQ is based on its posterior
distribution P (Q|Dobs). This posterior distribution can be written as P (Q|Dobs) = ∫ P (Q|Dobs, Dmis)P (Dmis|Dobs)pDmis, and
this applies whether Q is a simple parameter in a model or a more complex function i.e. such as the Brier Score or the AUC.
This formula is the recipe for multiple imputation and motivates imputation of the missing data using P (Dmis|Dobs), followed
by inference for Q using the complete data (Dobs, Dmis), and repeating these steps many times and averaging them. Since in our
setting the outcome variable is part ofDobs, it is clear that the outcome variable should be used as part of the imputation scheme.
In practice, the general recommendation for MI is that the imputation model should include every variable that predicts the
incomplete variable, and sometimes the imputation model can contain more variables than will be used in the final analysis.10
The intuitive argument against including the outcome variable in the models used for imputation is the belief that there is some

circularity. Since we are trying to evaluate how good a model is at predicting outcome, the thinking is that we don’t want to use
the outcome to help impute the missing covariates, because then we will make the model look better than it really is. However,
Moons et al. argued that imputation of missing values using all other information will not create information. It only makes
use of the strength of associations between predictors and outcomes present in the complete cases, to enable valid analyses.9
The additional intuitive argument against using the outcome variable is that the intended use of these models is in the situation
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where we want to make a prediction for a single patient and we only have covariates available and the outcome is not known.
It is certainly a challenge of how to make a prediction for a single patient if some of the covariates are missing, but this is a
different situation than ours of evaluating a existing prediction model using a new dataset.
In this paper, we propose IPW and AIPW estimates of AUC and Brier score to handle the missing data and evaluate their

prediction performance in comparison with MI by simulation. We focus on including the outcome or not in the weight models or
imputation models. The missing mechanisms could be MCAR, MAR and MNAR. We consider a variety of existing prediction
models including ones that are both consistent with and not consistent with the internal data distribution, and ones that depend
on a subset of the covariates. An example from prostate cancer is used as an illustration of the proposed methods.

2 METHODS

We consider the setting in which we have available an internal dataset of size N , consisting of binary outcome Y and p-
dimensional vector of covariates X. Let Ri = 1 if there are no missing X values for subject i, else Ri = 0 if there are missing
values, and Ri’s are conditionally independent. Assume there is an existing external model, that requires as input the variables
X or a subset of the variables, and produces as output an estimate of the probability that Y = 1, denoted by p̂(Y = 1|X). We
use notation I to denote distributions associated with the available or internal data, and E to denote the distributions associated
with the external data that was used to build the existing model. Let FI (X) and FI (Y |X) denote the true probability distribution
functions for the internal data. Thus FI (X) is the density of X if X is continuous and FI (Y = y|X = x) = PI (Y = y|X = x).
Let FE(X) and FE(Y |X) denote the true distributions for the external data. We would expect some of the X’s to be correlated
with each other.
The existing model p̂(Y = 1|X) is an approximation to FE(Y = 1|X), and it is usually a monotonic function of a weighted

combination of covariates, denoted as g(�X). The estimates of � could be good estimates if, for example, the external dataset is
large and good methods were used, or they could be poor estimates if the external dataset is small or poor methods were used.
From the internal dataset with sample sizeN that are sampled from FI (X) and FI (Y |X), we can calculate the Brier score and
AUC. The BS is given by

BS = 1
N

N
∑

i=1
(Yi − p̂i)2 (1)

where p̂i =P(Y = 1|Xi) is obtained from the existing model.
The Area Under the Curve (AUC), which is equivalent to the Concordance-index (C-index) for a binary outcome, is estimated

using

AUC∕C − index =

N
∑

i=1

N
∑

j=1
I(�Xi > �Xj)I(Yi > Yj)

N
∑

i=1

N
∑

j=1
I(Yi > Yj)

(2)

An alternative way to estimate the AUC is to first estimate the ROC curve and then calculate the area under it. Let n1 denote
the number of cases, n0 denote the number of controls, and n1+n0 = N . LetX1 denote the covariates in cases andX0 denote the
covariates in controls. The ROC curve depicts relative trade-offs between true positive rate (TPR) and false positive rate(FPR),

TPR(c) = Pr(�X1 ≥ c) = 1
n1

n1
∑

i=1
I(�Xi ≥ c)

FPR(c) = Pr(�X0 ≥ c) = 1
n0

N
∑

j=n1+1
I(�Xj ≥ c)

ROC(c) = TPR(FPR−1(c))

AUC =

1

∫
0

ROC(c)dc

(3)

The integration of ROC to calculate the AUC is performed numerically. The quantities called BS and AUC given above are
estimates of population quantities, which we call T rueBrierI (p̂) and T rueAUCI (p̂). Given the distribution FI (X) and FI (Y |X),
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for any existing formula p̂ that provides a probability that Y=1 given X, the true Brier Score (BS) is defined as

T rueBrierI (p̂) =
1
∑

Y=0
∫
X

(Y − p̂)2FI (Y |X)FI (X)dX (4)

For covariates in casesX1 and controlsX0, denote their distributions as FI (X1) = FI (X|Y = 1) and FI (X0) = FI (X|Y = 0),
respectively. Then the true AUC is

T rueAUCI (p̂) = Pr(�X1 > �X0) = ∫
X1

∫
X0

I(�X1 > �X0)FI (X1)FI (X0)dX1dX0 (5)

Equation 4 and 5 give the true values of BS and AUC for a fixed �. The goal is to get good estimates of these population
quantities TrueAUCI (p̂) and TrueBrierI (p̂), using the available data in the internal dataset of size N . A good estimate is one
that has small bias, low variability and is robust to misspecification of any models that are used in the estimation procedure.
Also note from equation 4 that the true value depends on both FI (Y |X) and FI (X), and similarly for equation 5. This makes

it clear that even if the existing prediction model for Y given X is correct for the internal distribution, it will not usually lead to
the same AUC and BS because these depend on theX distribution as well. In practice it would seem likely that the internal and
external distributions of the X’s do differ.
In real data analysis with large sample size, missing data are a common occurrence. Suppose our dataset has missing values

for some covariates ofX, and the missingness may be MCAR, MAR or MNAR. The practical question we are trying to address
is how to get a good estimate of TrueAUCI (p̂) and TrueBrierI (p̂) from the available dataset with missing covariates. The best
conceivable estimates are the ones that would have been obtained using equations 1,2 and 3 if there had been no missing data.

2.1 Complete case analysis
Using only complete cases (i.e Ri = 1) the simplest estimates are

BSCC =

N
∑

i=1
(Yi − p̂i)2Ri

∑N
i=1Ri

(6)

C − indexCC =

N
∑

i=1

N
∑

j=1
I(�Xi > �Xj)I(Yi > Yj)RiRj

N
∑

i=1

N
∑

j=1
I(Yi > Yj)RiRj

(7)

For AUC,

TPRCC (c) =

n1
∑

i=1
I(�Xi ≥ c)Ri

n1
∑

i=1
Ri

FPRCC (c) =

n0
∑

j=1
I(�Xj ≥ c)Rj

n0
∑

j=1
Rj

(8)

However, these estimates may be biased in MAR and MNAR settings and may lack efficiency in MCAR situations.

2.2 Multiple Imputation
When there is partially missing in X, we can do Multiple Imputation (MI) to impute the missing values based on the available
data, then average the predicted BS and AUC from the multiple imputed datasets using Rubin’s rule. The first step is to impute
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the missing values by drawing a value of Xmis from a model either for F (Xmis|Xobs, Y ) or for F (Xmis|Xobs), and then apply
the external model on the imputed complete data to get the predictions of Y and calculate BS and AUC. The models used
for imputation are typically linear regression for continuous Xmis, logistic regression for binary Xmis, polytomous regression
for unordered categorical Xmis, and proportional odds model for ordered categorical Xmis, although more complicated models
could be used. After repeating the first step for M times (we use M=5), the average of the estimates of BS and AUC from the
multiple imputed datasets gives the final single point estimate. When there is more than one covariate with missing values, a
chained equation approach is used to impute the missing values sequentially.10 The program mice() in R is used to implement
the multiple imputations and the different models mentioned above can be built with different options.

2.3 Inverse Probability Weighting
Inverse Probability Weighting (IPW) weights the complete cases in the calculation of the quantity of interest. The weight (Wi)
is the inverse probability of the observation being complete (Ri = 1) under different assumptions, so either Wi = 1∕Pr(Ri =
1|Xi, Yi) orWi = 1∕Pr(Ri = 1|Xi). We use logistic regression to build the model of either Pr(Ri = 1|Xi, Yi) or Pr(Ri = 1|Xi)
conditional on the fully observed covariates and outcome to get the estimates of the weight. Then

BSIPW =

N
∑

i=1
(Yi − p̂i)2RiWi

N
∑

i=1
RiWi

(9)

C − indexIPW =

N
∑

i=1

N
∑

j=1
I(�Xi > �Xj)I(Yi > Yj)RiWiRjWj

N
∑

i=1

N
∑

j=1
I(Yi > Yj)RiWiRjWj

(10)

For AUC,

TPRIPW (c) =

n1
∑

i=1
I(�Xi ≥ c)RiWi

n1
∑

i=1
RiWi

FPRIPW (c) =

n0
∑

j=1
I(�Xj ≥ c)RjWj

n0
∑

j=1
RjWj

(11)

With the TPRIPW and FPRIPW , ROCIPW and AUCIPW can be calculated following (3).

2.4 Augmented Inverse Probability Weighting
The IPW method only uses the complete cases, and ignores the subjects with missing data. One way to improve it is to include
information from subjects with missing data, which is called Augmented Inverse Probability Weighting (AIPW). For ease of
notation we describe the method in the situation of only one covariate having missing values. In the Appendix we describe
how to apply it when multiple covariates have missing values. First we build a model for the covariate with missing values
on all the other covariates, i.e. F (Xmis|Xobs, Y ) or F (Xmis|Xobs), to get the predicted mean X∗

mis, which is E(Xmis|Xobs, Y ) or
E(Xmis|Xobs). This is a single imputation of the mean and is different from multiple imputation which incorporates random
variation. TheX∗

mis is created for that variable for all subjects and is different fromMI which only imputes missing values. Then
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applying the external model to the dataset withX replaced byX∗ = (X∗
mis, Xobs) gives p̂i

∗. Combining this model with a model
for the weight, the proposed AIPW estimator of the BS is

BSAIPW = 1
N

N
∑

i=1
(Yi − p̂i)2RiWi + (Yi − p̂i

∗)2(1 − RiWi), (12)

A subject with complete data has Ri = 1, and contributes (Yi − p̂i)2Wi + (Yi − p̂i
∗)2(1 −Wi). A subject with missing values has

Ri = 0 and contributes (Yi− p̂i
∗)2. Because all the subjects with complete data or missing values are evaluated, the denominator

isN .
For the C-index,

C − indexAIPW =

N
∑

i=1

N
∑

j=1
I(Yi > Yj)

{

I(�Xi > �Xj)RiWiRjWj + I(�X∗
i > �X

∗
j )(1 − RiWiRjWj)

}

N
∑

i=1

N
∑

j=1
I(Yi > Yj)

(13)

A pair of cases and controlsXi, Xj that are both complete has Ri = 1, Rj = 1, and contributes I(�Xi > �Xj)WiWj + I(�X∗
i >

�X∗
j )(1 −WiWj). Otherwise, a pair of cases and controls that has missing value i.e Ri = 0 and/or Rj = 0 contributes I(�X∗

i >
�X∗

j ).
For the area under the ROC curve method of calculating the AUC,

TPRAIPW (c) = 1
n1

n1
∑

i=1
I(�Xi ≥ c)RiWi + I(�X∗

i ≥ c)(1 − RiWi)

FPRAIPW (c) = 1
n0

n0
∑

j=1
I(�Xj ≥ c)RjWj + I(�X∗

j ≥ c)(1 − RjWj)
(14)

A subject with complete data has Ri = 1, and contributes I(�Xi ≥ c)Wi + I(�X∗
i ≥ c)(1 −Wi). A subject with missing value

has Ri = 0 and contributes I(�X∗
i ≥ c). With the TPRAIPW and FPRAIPW , ROCAIPW and AUCAIPW can be calculated

following (3).

2.5 Consistency of IPW and AIPW estimators
Considering the C-index using the IPW method. Let

Uij(�, 
1) = �I(Yi > Yj)RiWiRjWj − I(Yi > Yj)I(�Xi > �Xj)RiWiRjWj ,

whereWi depends on the weight model which has parameters 
1. LetUN (�, 
1) = 0.5N−2
N
∑

i=1

N
∑

j=1

[

Uij(�, 
1)+Uji(�, 
1)
]

, then it

is straight forward to show thatC−indexIPW is the solution ofUN (�, 
1) = 0. LetUE = E(UN ) = 0.5E
[

Uij(�, 
1)+Uji(�, 
1)
]

.
Let 
∗1 be the large sample limit of 
̂1 using the weight model Pr(R = 1|Xobs, Y ; 
1). When the weight model is correctly
specified, i.e. Pr(R = 1|Xobs, Y ; 
∗1 ) = Pr(R = 1|Xobs, Y ), and Ri’s are conditionally independent, then E(RiWiRjWj) = 1,
and it is clear that UE(�, 
∗1 ) = 0. Because UN (�, 
1) converges uniformly to UE(�, 
1), C − indexIPW is a consistent estimator.
The proof for AIPW estimators is similar. Here we mimic the proof in Long et al.,11 and first demonstrate double robustness

for a slightly different estimator, which we label C − indexAIPW ∗ with

C − indexAIPW ∗ =

N
∑

i=1

N
∑

j=1
I(Yi > Yj)

{

I(�Xi > �Xj)RiWiRjWj + E[I(�Xi > �Xj)](1 − RiWiRjWj)
}

N
∑

i=1

N
∑

j=1
I(Yi > Yj)

Let

Vij(�, 
1, 
2) = �I(Yi > Yj) − I(Yi > Yj)
{

I(�Xi > �Xj)RiWiRjWj + E[I(�Xi > �Xj)](1 − RiWiRjWj)
}
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whereWi depend on weight model Pr(R = 1|Xobs, Y ; 
1) with parameters 
1 and in E[I(�Xi > �Xj)] the expectation is with
respect to the distribution of the missing covariates and depends on the model F (Xmis|Xobs, Y ; 
2) which has parameters 
2. Let

VN (�, 
1, 
2) = 0.5N−2
N
∑

i=1

N
∑

j=1

[

Vij(�, 
1, 
2) + Vji(�, 
1, 
2)
]

, then it is straightforward to see that C − indexAIPW ∗ is the value

of � that solves VN (�, 
1, 
2) = 0. Let VE = E(VN ) = 0.5E
[

Vij(�, 
1, 
2) + Vji(�, 
1, 
2)
]

. It is easy to see that VN (�, 
1, 
2)
converges uniformly to VE(�, 
1, 
2), thus the solution to VN (�, 
1, 
2) = 0 converges to the solution of VE(�, 
1, 
2) = 0.
Let 
∗1 be the probability limits of 
1 using the weight model Pr(R = 1|Xobs, Y ; 
1). When the weight model is correctly

specified, i.e. Pr(R = 1|Xobs, Y ; 
∗1 ) = Pr(R = 1|Xobs, Y ), and Ri’s are conditionally independent, then E(RiWiRjWj) = 1. Let

∗2 be the probability limits of 
2 using the model for the missing covariates F (Xmis|Xobs, Y ; 
2). When the model is correctly
specified, i.e., E(Xmis|Xobs, Y ; 
∗2 ) = E(Xmis|Xobs, Y ), then E

{

I(Yi > Yj){E[I(�Xi > �Xj)] − I(�Xi > �Xj)}
}

= 0.
When either working model is correctly specified, it is clear that VE(�, 
1, 
2) = 0, and that the � that solves VE(�, 
1, 
2) = 0

is the true AUC. Because VN converges uniformly to VE , C − indexAIPW ∗ is a consistent estimator.
The estimator we describe in section 2.4, C − indexAIPW is an approximation to C − indexAIPW ∗, in which instead of

calculating the conditional expectation E[I(�Xi > �Xj)], we propose to use I(�X∗
i > �X

∗
j ).

The proof of consistency is similar for Brier score and is shown in the Appendix.

3 SIMULATION STUDIES

In this section, we present results of numerical studies to investigate the performance of the proposed methods under different
settings. We consider three covariates and denote them as X1, X2, X3. We consider situations where the given external model
is based on all ofX1,X2 andX3, and situations where it is only based onX1 andX2. The true distribution for the internal data,
FI (Y |X), is defined as

logit(Pr(Y = 1)) = 0.25 + 0.7X1 + 0.6X2 − 0.5X3

The internal data are sampled from the abovemodel.X1, X2, X3 are sampled fromN(0, 1) and about 40-50% ofX1 is missing.
The covariates can be independent, or correlated with cor(X1, X3) = −0.5. Four different external models are evaluated using
the "internal" data; (M1) the true model withX1, X2 andX3; (M2) the best model based on justX1 andX2; (M3) a poor model
based on X1, X2 and X3 with wrong coefficients; and (M4) an incorrect intercept model.
The simulation is conducted as follows:
(a) ForM1, we use the true coefficients,M1 = (0.25, 0.70, 0.60,−0.50). ForM2, we obtain the coefficients for the external

model by generating a data set of 100000 observations from the true model, and fitting a logistic model based on X1 and
X2. For independent covariates, M2 = (0.25, 0.67, 0.58, 0). For cor(X1, X3) = −0.5,M2 = (0.25, 0.91, 0.58, 0). It is noted
that with independent covariates, the estimated coefficients are biased toward the null compared to the true model12. With
correlatedX1, X3 andX3 is omitted, the estimates of the coefficients forX1, X2 are biased in opposite directions in the reduced
model. ForM3, we obtain the coefficients by generating an external dataset with sample size 50. For independent covariates,
M3 = (0.26, 0.66, 0.90, 0.39), and for correlated covariates,M3 = (0.53,−0.40, 0.88,−0.75). With such small sample size, the
estimated coefficients are not close to the true values. For M4, we set different prevalence’s for the external data and internal
data, andM4 = (1.00, 0.70, 0.60,−0.50).
(b) Based on the distributions FI (X), FI (Y |X), get the true AUC and BS for each of M1,M2,M3 and M4 using their

coefficients and equations 4 and 5. We label these as the true target values.
(c) Sample internal data withN = 1000, and evaluate the external modelsM1,M2,M3,M4 on the internal data. Use different

methods to handle the missing covariates in the internal data to estimate AUC and BS, repeat 1000 times to get the mean and
standard deviation, and compare with each other and with the true target value calculated in (b).
We consider four different missingness mechanisms. For MCAR, the missing ofX1 is randomwith probability 0.4, i.e., Pr(X1

is missing)=0.4. For MAR(X2, X3), the missing of X1 depends on other covariates X2, X3 with about 45% missing, Pr(X1 is
missing)= expit(−0.5 + 2X2 − 2X3). For MAR(X2, Y ), the missing of X1 depends on both covariate X2 and outcome Y with
about 50% missing, Pr(X1 is missing)= expit(−0.5+2X2+Y ). For MNAR, the missing ofX1 depends on the value ofX1 with
about 45% missing, Pr(X1 is missing)= expit(−0.5 + 3X1).
As listed in Table 1, we compared the validation of external models on the full internal data without missing values (Full),

on complete cases only (CC), IPW with the weight model excluding outcome Y (IPW1) or including outcome Y (IPW2), MI
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with the imputation model excluding outcome Y (MI1) or including outcome Y (MI2). When calculating AUC by AIPW, the
two methods, which are based on the C-index and the area under the ROC curve respectively, gave similar results in terms of
bias and efficiency with 40-50% missing of X1, thus we show the results for the C-index using a weight model that excludes
the outcome Y (AIPW1, AIPW3) or includes the outcome Y (AIPW2, AIPW4) and using an imputation model that excludes
the outcome Y (AIPW1, AIPW2) or includes the outcome Y (AIPW3, AIPW4). For the IPW and AIPW methods the weight
models are regarded as mis-specified in theMAR(X2, Y ) situation if they don’t include Y , i.e. IPW1, AIPW1 and AIPW3, and
all IPW and AIPW weight models are mis-specified in the MNAR situation.
In this simulation, mice() in R with linear regression using bootstrap is used to implement MI for the missing continuous

covariates. glm() with logistic link was used to build weight models and lm() was used to calculate the predicted X∗
1 in the

AIPW method.

3.1 Simulation results
Fig.1 and Fig.2 show the simulation results of AUC and BS for existing modelM1 with independent covariates under MCAR,
MAR(X2, X3), MAR(X2, Y ), and MNAR(X1). The left column shows the bias of the various methods. As expected the full
data analysis does achieve the true target AUC and BS. However, the complete case analysis is unbiased only in the MCAR
setting. MI with Y (MI2) is unbiased under MCAR and MAR, but without Y (MI1) the bias is more than 10% for both AUC
and Brier score. All the IPW and AIPW methods are unbiased under MCAR and MAR(X2, X3), regardless of whether Y is
included or not. Under MAR(X2, Y ) when Y is related to the missingness, the only unbiased IPW method (IPW2) is the one
including Y , which indicates the importance of correct specification of the weight model. For AIPW2 and AIPW4, when the
weight model includes Y , the results are unbiased. Without Y in the weight model, AIPW3 includes Y in the imputing model,
and the results are unbiased too. However, when both weight model and imputing model exclude Y , as in AIPW1, the results
are biased, especially for AUC. For the double robustness of AIPW, as least one of the weight model and imputing model need
to be correctly specified. Under MNAR for which the missingness depend on X1, all the methods are biased.
The right column shows the relative SD of the methods comparing with full data estimation. As expected all values are equal

to 1.0 or larger. The variance of IPW is always the largest, since it only weights the complete cases. The variance of AIPW is
between IPW and MI, and is much smaller than IPW under MAR.
For the model M2 with omitted covariate X3, under all scenarios, the reduced model M2 has lower AUC and higher Brier

score compared with true target values for modelM1. This is to be expected since omitting an important covariate will generally
lead to an inferior external model. As shown in Fig.3 and Fig.4 the full model results do achieve the target true value forM2,
and they represent the best that could be achieved forM2. The relative performance of the various MI, IPW and AIPWmethods
for the handling the missing data compared to the full model results are quite similar to those shown in Fig.1 and Fig.2, both for
bias and SD.
We also considered using a poor external modelM3 with wrong coefficients. The results are shown in Fig.5 and Fig.6. Again

in comparison with full data analysis, the MI2, IPW2, AIPW2 and AIPW4 appear to give no bias, except in the MNAR case.
The variability of the MI2 method is the smallest.
For the scenario when external data and internal data have different prevalence, we consider an existing model with the

intercept=1 while the other coefficients are the same as the true model. The changed intercept in M4 has no influence on the
AUC compared to the true value, since changing the intercept does not change the discrimination ability. The results are identical
to those shown in Fig.1. The values of BS increased compared to situationM1. As shown in Fig.7 the relative merits of the MI,
IPW and AIPW methods are similar to the other scenarios.
Overall, for the situations presented here, considering both bias and variability the best methods are MI2 and AIPW4. For

correlated covariates, the conclusions are the same (see Appendix). With multiple missing covariates, the findings are broadly
similar, but with some differences depending on the missingness pattern. The simulation results shown in the Appendix, suggest
that here MI2 is the best method. The findings from additional simulations investigating the impact of sample size and percent
missingness are also described in the Appendix.
We note that the model used to impute the missing X in MI2 and create X∗ in AIPW3 and AIPW4 is slightly misspecified.

Although it does regressX1 onX2, X3 and Y , the assumed linear model is not the same as the true distribution forX1|X2, X3, Y
based on how the data was generated from the true model. Furthermore, as noted in the consistency proof, we use an approx-
imation to a doubly robust AIPW estimator, specifically we use I(�X∗

i > �X∗
j ) to approximate E[I(�Xi > �Xj)]. These two

facts may explain the small bias in the AIPW3 method for the MAR(X2, Y ) case, because in fact neither the weight model nor
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the imputing model is correctly specified. However, the misspecified imputing model does not give any noticeable bias for the
MI2 method. It is feasible to consider other approximations of E[I(�Xi > �Xj)]. Willamson et al.7 suggested a Monte Carlo
approximation for general AIPWmethods with missing covariates. However, in our settings we found that this lead to more bias
and greater variability of the AIPW estimates than using the I(�X∗

i > �X
∗
j ) approximation. We were surprised by this finding

and do not have a satisfactory explanation of why it occurred.

4 APPLICATION

In this section, we applied the proposed methods to evaluate the performance of an existing model for the risk of recurrence in
men with Prostate Cancer. The Cancer of the Prostate Risk Assessment (CAPRA) score was published in 2005 and was based on
an initial cohort consisting of >1400 men from the University of California, San Francisco (UCSF).13 A Cox proportional haz-
ards regression model identified age, pretreatment Prostate-Specific Antigen (PSA), Gleason score, percentage of biopsy cores
positive for cancer (PPC), and clinical stage as significant factors associated with biochemical recurrence (BCR) or secondary
treatment. Based on the results of the Cox analysis, points were assigned as in Table 2 to indicate relative risk. For each patient
the points would be added to give an overall CAPRA score. The CAPRA score ranges from 0 to 10, and every 2-point increase
in the score represents an approximate doubling of the risk. The distribution of the score and the 3 year recurrence-free survival
(RFS) rate were reported in the publication, and are shown in Table 3. The AUC can be calculated from the CAPRA score itself,
but the BS requires the predicted probabilities from Table 3.
We sought to estimate the performance of CAPRA using a separate dataset from the Mayo Clinic. The 1268 patients were

treated with surgery between 2008 and 2012 and all patients before 2010 and half patients later were missing PPC values. So in
total 90% of the patients were missing PPC.We considered 3-year RFS as a binary outcome. We included in our analysis all men
who were followed more than 3 years or developed progression in 3 years. In total, 314 of the 1268 patients had a recurrence
in 3 years. To validate the prediction of CAPRA score, we compared the CAPRA score with the outcome to get the AUC, and
compared the RFS rate for each CAPRA score as in Table 3 with the outcome to get Brier score. Because 90% patients have
missingness in PPC, we used PSA, Gleason Score, T-stage, Age and/or the outcome to build the weight model for missingness
and the imputation model of PPC in the IPW, AIPW, and MI methods. In the data analysis, mice() in R with logistic regression
is used to implement MI for the missing binary PPC. glm() with logistic link was used to build weight models and glm() with
logistic link was used to calculate the predicted PPC in AIPW. A bootstrap was used to give 95% confidence intervals for AUC
and BS.
Fig.8 shows the analysis results of different methods. The AUC ranged from 0.73 to 0.79, which is similar to other external

validation studies of the CAPRA score for which the c-index for BCR ranged from 0.66 to 0.81.14 On the other hand, the BS
values were around 0.16 except for complete case analysis and IPW with the weight model excluding the outcome variable,
which were above 0.4. The complete case analysis and IPW methods have much wider confidence intervals, while the MI
and AIPW methods have comparable confidence intervals. Little’s test was used and indicated the missingness is not MCAR
(p<0.001),15 thus complete case analysis is not an optimal choice. The Odds Ratio of PPC not missing and RFS observed was
24.1, indicating the missingness was strongly related to the outcome. Thus the methods in which the weight model includes the
outcome should be more reliable. The imputing model of PPC was built only on the 10% of patients with non-missing data and
was used to impute the other 90% later on, and there could be a large variation in the model, which could explain the ignorable
difference between the two MI methods with or without outcome. The results for AUC and BS are different, probably because
some CAPRA scores have the same RFS rate.
These results indicate the approaches to handlemissing data can result in fairly large variation inmodel performance estimates.

Based on the theoretical considerations and the simulation results, we believe the results from MI using the outcome (MI2) and
AIPW using the outcome in the weight model and the imputation model (AIPW4) are the best to use, and they give very similar
estimates for both BS and AUC in this example.

5 DISCUSSION

We developed new AIPW estimators for predictive model performance metrics in the setting of missing data. This AIPW
approach is shown to have good properties. We note that an AIPW estimator of the AUC has been previously proposed,11 but
for a different setting with auxiliary variables. Adapting this published approach to our setting does not lead to equation (13),
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but rather an estimator with weights in the denominator as in equation (10). When the weight model is correctly specified and
with assumed independence of cases and controls, the expectation of the denominator in equation (10) is equivalent to the
denominator in equation (13) .
When there are missing observations in the internal data, MI and IPW can both be used to obtain unbiased estimates of BS

and AUC if the imputation model or weight model is correctly specified. When the missingness doesn’t depend on Y , IPW
doesn’t need to include Y in the weight model, while MI does need to include Y in the imputation model. When the missingness
depends on Y , both IPW and MI need to include Y . The outcome variable should be included in the imputation model under
all scenarios, because it provides information of the missing covariates. For IPW, the outcome only needs to be included in the
weight model if the missingness depends on the outcome in order to get the correctly specified weight model. The findings in
this paper clearly support inclusion of the outcome variable Y in models that handle the missing covariates when evaluating an
existing prediction model. Thus overall, even though in some situations for the IPW and AIPWmethods it is not necessary, very
little harm arose from including Y and there is the potential for considerable gain.
Our simulation results suggest that under small to moderate missingness AIPW can bemore efficient than IPW, and also obtain

approximate double robustness to mis-specification of the weight model or the imputing model. Even when both models are
mis-specified, resulting estimates are still less biased than IPW or MI with the wrong weight model or imputing model. Further
simulation shows that in terms of bias, AIPW is also less sensitive to the sample size or extreme weights comparing to IPW.
Under all scenarios, MI has the best efficiency comparing to full data analysis. Under MCAR, AIPW has the same efficiency as
MI, while under MAR, AIPW is less efficient than MI.
One limitation of the IPW and AIPW methods is when there are multiple covariates missing. In this situation there are

different possible ways in which the weight model and the imputation model can be constructed. In the special cases of blocked
missingness or monotone missingness there are natural ways to construct these models, and in the simulation study we found
similar performance to that of the situation with a single missing covariate. When the missingness is scattered there are more
choice of how to implement the imputation model, and our simulation results suggest that AIPW can in fact be a less desirable
method than IPW. It is possible that further research may suggest alternative ways of using the weights or alternative ways
of defining the AIPW estimator, that has improved performance in this and other more challenging situations. With multiple
missing covariates the MI methods are still relatively easy to apply by using the chained equation approach to impute the missing
values sequentially, and the simulation results suggest it is clearly more efficient.
The derivations in this paper revealed that the true values of AUC and Brier Score are population quantities that depend on

both the distribution of the X covariates and the Y |X distribution in the population. So one should not necessarily expect the
AUC and Brier Score to be the same from one population to the next. This is perhaps well known to others, and in fact obvious
for the AUC. If one population has a much narrower range of X values, then it will be harder to discriminate subjects in that
population, so the AUC will be lower, even if the model is an accurate description of the Y |X distribution in both populations.
The problem we consider in this paper is how to estimate the correct AUC and BS for a different population than the one that

was used to develop the prediction model, when (i) we do not have access to the data that was used to develop the model and (ii)
the dataset we have from the different population has some missing covariate values. There are a broad set of other problems
associated with missing covariates and risk prediction models. One is how to develop a model, for which a much cited reference
is Moons et al.9 Another set of problems is how to implement an existing risk prediction model for an individual subject when
that subject has some missing covariates, and also will not have the outcome known. Different situations and possibilities exist
here. The model developer may have set up methods to use in the case of missing data for the individual subject, such as 2k
different models, one for each pattern of missingness. It is our observation that developers of models rarely provide explicit
rules for producing predicted probabilities for an individual subject with missing covariates. So implicit in the intended use of
their model is that all the required input covariates will be available or attainable for the specific subject. If a particular required
input covariate is known to be hard to obtain, then it would seem that the onus is on the developer of the model to provide a
rule or a guidance on how their model should be used for an individual subject. In practice we think that it will frequently be
the case that all the required covariates will be available because they can probably be attained at that point in time by ordering
further tests or taking further measurements. Alternatively for a subject with missing values the user of the model may simply
try a range of values for the missing variables, to give a range of predicted probabilities for the specific subject, analogous to
sensitivity analysis. If the user of the model has access to the training data, then the question becomes how to make use of these
data. Alternatively, the user of the model may have access to their own dataset, with information on both the covariates and
outcomes for people in this dataset, and if the individual subject can be considered as coming from the same population as this
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dataset, then the question again is how to make use of these data. These different challenges have received limited attention in
the statistical literature,16,17 but have been expounded upon in a recent publication.18
A challenge related to the one considered in this paper is how to evaluate an existing prediction model in a different population

when the data from this population has missing values in some of the X variables, but also in the outcome Y for some subjects.
We did not study this situation, but one option is to simply remove the people with missing values before calculating AUC and
BS. Other options are to apply a multiple imputation approach or develop an extension of the IPW and AIPW methods. We
hypothesize that these options would give better estimates of AUC and BS than the option of removing subjects.
Another situation worthy of study, is how to evaluate an existing prediction model, in a different population, when that

different population does not have measured one of the needed input variables for the prediction model. This would seem to be an
impossible task, unless extra information is available, either in the form of additional data or knowledge of the joint distribution
of the missing variable with the other variables.
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TABLE 1 List of methods for comparison. * indicates methods for which the weight model is misspecified under MAR(X,Y).
† indicates methods for which the imputation model is misspecified.

True target true value based on internal data distribution
Full data without missing
CC complete cases analysis
IPW1* weight model uses X
IPW2 weight model uses X & Y
MI1† imputation model uses X
MI2 imputation model uses X & Y
AIPW1*† weight model uses X, imputation model uses X
AIPW2† weight model uses X & Y, imputation model uses X
AIPW3* weight model uses X, imputation model uses X & Y
AIPW4 weight model uses X & Y, imputation model uses X & Y

TABLE 2 CAPRA score

Variable Level Points

PSA

2.0-6 0
6.1-10 1
10.1-20 2
20.1-30 3
>30 4

Gleason Score
(Primary/Secondary)

1-3/1-3 0
1-3/4-5 1
4-5/1-5 3

T stage T1/T2 0
T3a 1

Percent positive biopsy <34% 0
≥ 34% 1

Age <50 0
≥50 1
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TABLE 3 CAPRA score distribution and predicted probabilities derived from the CAPRA score.

CAPRA Score CAPRA score distribution 3-Yr RFS rate
0-1 27.9% 0.91
2 30.0% 0.89
3 20.6% 0.81
4 10.8% 0.81
5 5.8% 0.69
6 3.0% 0.54
7 or Greater 2.0% 0.24
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FIGURE 1 Simulation results of mean and relative SD of AUC for existing model M1: correct model. Column left denotes
mean AUC. Column right denotes SD relative to full data analysis. The four rows are different missingness mechanisms.
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FIGURE 2 Simulation results of mean and relative SD of Brier score for existing modelM1: correct model. Column left denotes
mean BS. Column right denotes SD relative to full data analysis. The four rows are different missingness mechanisms.
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FIGURE 3 Simulation results of mean and relative SD of AUC for existing model M2: best model based on just X1, X2.
Column left denotes mean AUC. Column right denotes SD relative to full data analysis. The four rows are different missingness
mechanisms.
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FIGURE 4 Simulation results of mean and relative SD of BS for existing model M2: best model based on just X1, X2. Col-
umn left denotes mean BS. Column right denotes SD relative to full data analysis. The four rows are different missingness
mechanisms.

0.
60

0.
65

0.
70

0.
75

True target Full CC IPW1 IPW2 MI1 MI2 AIPW1 AIPW2 AIPW3 AIPW4

M
C

A
R

Mean of AUC

0
1

2
3

4

True target Full CC IPW1 IPW2 MI1 MI2 AIPW1 AIPW2 AIPW3 AIPW4

Relative SD

0.
60

0.
65

0.
70

0.
75

True target Full CC IPW1 IPW2 MI1 MI2 AIPW1 AIPW2 AIPW3 AIPW4

M
A

R
(X

)

0
1

2
3

4

True target Full CC IPW1 IPW2 MI1 MI2 AIPW1 AIPW2 AIPW3 AIPW4

0.
60

0.
65

0.
70

0.
75

True target Full CC IPW1 IPW2 MI1 MI2 AIPW1 AIPW2 AIPW3 AIPW4

M
A

R
(X

,Y
)

0
1

2
3

4

True target Full CC IPW1 IPW2 MI1 MI2 AIPW1 AIPW2 AIPW3 AIPW4

0.
60

0.
65

0.
70

0.
75

True target Full CC IPW1 IPW2 MI1 MI2 AIPW1 AIPW2 AIPW3 AIPW4

M
N

A
R

0
1

2
3

4

True target Full CC IPW1 IPW2 MI1 MI2 AIPW1 AIPW2 AIPW3 AIPW4

FIGURE 5 Simulation results of mean and relative SD of AUC for existing model M3: poor model based on X1, X2, X3.
Column left denotes mean AUC. Column right denotes SD relative to full data analysis. The four rows are different missingness
mechanisms.
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FIGURE 6 Simulation results of mean and relative SD of BS for existing model M3: poor model based on X1, X2, X3. Col-
umn left denotes mean BS. Column right denotes SD relative to full data analysis. The four rows are different missingness
mechanisms.
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FIGURE 7 Simulation results of mean and relative SD of BS for existing model M4: different intercept model. Column left
denotes mean BS. Column right denotes SD relative to full data analysis. The four rows are different missingness mechanisms.
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FIGURE 8Varying estimates of mean and 95% confidence interval of AUC and Brier Scores for prostate cancer example, based
on how missing data are handled
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APPENDIX

A DIFFERENCES BETWEEN OPTIMIZING THE LIKELIHOOD, THE AUC AND THE BRIER
SCORE

Brier score measures the mean squared difference between the predicted probability and the actual outcome of an event across
all subjects. The lower the Brier score is for a set of predictions, the better the predictions are calibrated. When we evaluate an
existing model such as a logistic model on the internal dataset, the Brier score will be minimized when the external model is
the same as internal model, i.e, FE(Y |X) = FI (Y |X).

Proof. Assume the FI (Y |X) as expit(�X) and FE(Y |X) as expit(�X).
Brier score
=
∑

Y ∫x(Y − p̂)2FI (Y |X)FI (X)dX
=
∑

Y ∫X(Y − 1
1+exp(−�X)

)2( 1
1+exp(−�X)

)Y ( exp(−�X)
1+exp(−�X)

)(1−Y )FI (X)dX

= ∫X
[

( exp(−�X)
1+exp(−�X)

)2 1
1+exp(−�X)

+ ( 1
1+exp(−�X)

)2 exp(−�X)
1+exp(−�X)

]

FI (X)dX

= ∫X
exp(−�X)+exp(−�X)2

(1+exp(−�X))2(1+exp(−�X))
FI (X)dX

If for any X, exp(−�X)+exp(−�X)2

(1+exp(−�X))2(1+exp(−�X))
is minimized, then the integral over X will be minimized.

let A = exp(−�X), B = exp(−�X), then the function can be written as

A + B2

(1 + B)2(1 + A)
Take derivative w.r.t B, we get:

2B(1 + B)2(1 + A) − (A + B2)2(1 + B)(1 + A)
(1 + B)4(1 + A)2

=
2(B − A)

(1 + B)3(1 + A)
When B < A, the function will decrease, When B > A, the function will increase. Thus it will be minimized at B = A, i.e,

when FE(Y |X) = FI (Y |X).

AUC, which measures the area under the ROCCurve, indicates howwell the predicted probabilities for the cases are separated
from the controls. The question is under logistic models will the AUC be maximized when the external model is same as
the internal model, i.e. FE(Y |X) = FI (Y |X)? The answer is it depends. The coefficients in the logistic regression model are
not chosen to maximize the AUC, rather the coefficients are chosen to maximize the likelihood. In practice, these two sets of
coefficients will frequently, but not always, be quite similar. However, if complete discrimination is possible, the maximum
likelihood logistic regression coefficients will estimate the coefficients which separate the population19,20.

B CONSISTENCY OF IPW AND AIPW ESTIMATORS FOR BRIER SCORE

Considering the Brier score using the IPW method. Let

Ui(�, 
1) = �RiWi − (Yi − p̂i)2RiWi,

whereWi depend on weight model with parameters 
1. Let UN (�, 
1) = N−1
N
∑

i=1
Ui(�, 
1), and it is straight forward that BSIPW

is the solution of UN (�, 
1) = 0. Let UE = E(UN ) = E(Ui(�, 
1)).
Let 
∗1 be the probability limits of 
1 using the weight model Pr(R = 1|Xobs, Y ; 
1) . When the weight model is correctly

specified, Pr(R = 1|Xobs, Y ; 
∗1 ) = Pr(R = 1|Xobs, Y ), then E(RiWi) = 1, and it is clear that UE(�, 
1) = 0. Because UN (�, 
1)
converges uniformly to UE(�, 
1), BSIPW is a consistent estimator.
The proof is similar for AIPW estimator. We first demonstrate consistency for a slightly modified estimator, which we call

BSAIPW ∗ with
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BSAIPW ∗ =
1
N

N
∑

i=1
(Yi − p̂i)2RiWi + E[(Yi − p̂i)2](1 − RiWi)

Let
Vi(�, 
1, 
2) = � −

{

(Yi − p̂i)2RiWi + E[(Yi − p̂i)2](1 − RiWi)
}

,
whereWi depend on weight model with parameters 
1 andE[(Yi−p̂i)2] depend on the model for missing covariates with parame-

ters 
2. LetVN (�, 
1, 
2) = N−1
N
∑

i=1
Vi(�, 
1, 
2), then it is straightforward to see thatBSAIPW ∗ is the solution ofVN (�, 
1, 
2) = 0.

Let VE = E(VN ) = E(Vi(�, 
1, 
2)). It is easy to see that VN (�, 
1, 
2) converges uniformly to VE(�, 
1, 
2), thus the solution to
VN (�, 
1, 
2) = 0 converges to the solution of VE(�, 
1, 
2) = 0.
Let 
∗1 be the probability limits of 
1 using the weight model Pr(R = 1|Xobs, Y ; 
1) . When the weight model is correctly spec-

ified, Pr(R = 1|Xobs, Y ; 
∗1 ) = Pr(R = 1|Xobs, Y ), then E(RiWi) = 1. Let 
∗2 be the probability limits of 
2 using the model for
the missing covariates F (Xmis|Xobs, Y ; 
2). When the model is correctly specified, i.e., F (Xmis|Xobs, Y ; 
∗2 ) = F (Xmis|Xobs, Y ),
then E{E[(Yi − p̂i)2] − (Yi − p̂i)2} = 0. When either working model is correctly specified, it is clear that VE(�, 
1, 
2) = 0, and
that the � that solves VE(�, 
1, 
2) = 0 is the true BS. Because VN converges uniformly to VE ,BSAIPW ∗ is a consistent estimator.
For the actual estimator BSAIPW described in section 2.4 instead of calculating E[(Yi − p̂i)2] where the expectation is over

the distribution F (Xmis|Xobs, Y ; 
∗2 ), we propose to use (Yi − p̂i
∗)2 as an approximation.

C ADDITIONAL SIMULATION RESULTS FOR CORRELATED COVARIATES
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FIGURE C1 Simulation results of mean and relative SD of AUC for existing model M1: cor(X1, X3) = −0.5. Column left
denotes mean AUC. Column right denotes SD relative to full data analysis. The four rows are different missingness mechanisms.
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FIGUREC2 Simulation results of mean and relative SD of BS for existing modelM1: cor(X1, X3) = −0.5. Column left denotes
mean BS. Column right denotes SD relative to full data analysis. The four rows are different missingness mechanisms.

D IMPLEMENTING AIPW AND IPW ESTIMATORS WHENMORE THAN ONE VARIABLE
HAS MISSING VALUES

We propose the IPW and AIPW estimates of AUC and BS for a single missing covariate in the main text and extend it here to
more than one variable with missingness. We discuss how to build weight models and models for the missing covariates under
different missing patterns.
First, we consider the block missing of covariates. Without loss of generality, consider the model with outcome Y and covari-

ates X1, X2, X3, and both X2, X3 are missing in some subjects. Let R2 indicate X2 is observed and R3 indicate X3 is observed,
then Pr(R = 1) = Pr(R2 = 1, R3 = 1). The weight model can be built by Pr(R = 1|X1, Y ) or Pr(R = 1|X1), using the fully
observed covariates with the outcome or not. The models to impute X∗

2 and X∗
3 can be built separately, with F (X2|X1, Y ),

F (X3|X1, Y ) or F (X2|X1),F (X3|X1) from the data of subjects with R = 1, and then obtain the predictions of X∗
2 and X∗

3 for
all the subjects.
Next we look at a scattered pattern of missingness in the covariates. Use the same notation above withX1 fully observed and

X2, X3 are missing in some subjects. The weight model can be built by Pr(R = 1|X1, Y ) which indicate the complete cases
without any missing, but may not capture the missingness for each covariate. Alternatively we can assume that the missingness
of X2 and X3 are independent, then Pr(R = 1) = Pr(R2 = 1)Pr(R3 = 1). The weight models for R2 and R3 can be built
separately by Pr(R2 = 1|X1, Y ), Pr(R3 = 1|X1, Y ) or Pr(R2 = 1|X1), Pr(R3 = 1|X1), using the fully observed covariates with
the outcome or not. The models to impute X∗

2 and X∗
3 can be built separately as in block missingness. In numerical studies we

found the best results when the model to impute X2 was built from the observations with R2 = 1 and the model to impute X3
was built from the observations with R3 = 1.
For themonotonemissingness,X1 is fully observed and bothX2, X3 aremissing in some subjects. For those withX2 observed,

X3 is missing in some subjects too, with the probability of missingX3 can depend on the value ofX2 under the MAR scenario.
Now Pr(R = 1) = Pr(R3 = 1|R2 = 1)Pr(R2 = 1) and we can build the model for R2 using all the subjects and the model for
R3 using the subjects with X2 observed. The models to impute X∗

2 and X∗
3 can be built separately as in block missing using the

fully observed covariate X1 with the outcome or not. Alternatively, the model to impute X∗
2 can be built with F (X2|X1, Y ) or

F (X2|X1) from subjects with R2 = 1 and get the predictions of X∗
2 for all the subjects. Then the model to impute X∗

3 can be
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built with F (X3|X1, X2, Y ) or F (X2|X1, X2) from subjects withR3 = 1 and get the predictions ofX∗
3 usingX

∗
2 as the predictor

covariate for all the subjects.

E SIMULATION RESULTS WHENMORE THAN ONE VARIABLE HAS MISSING VALUES

We consider the same model with true coefficients as forM1 and the covariates are independent. For block missing, similar to
the single covariate missing, we consider MCAR: block missing of X2, X3 with probability of 0.4; MAR (X1): block missing
ofX2, X3 depends on the value of fully observed covariateX1; MAR (X1, Y ): block missing ofX2, X3 depends on the value of
X1, Y ; MNAR: block missing ofX2, X3 depends on the value ofX2, X3. The fraction of observations that are fully observed in
these four situations are 60%, 60%, 50% and 60%. Fig E1 shows the simulation results with 1000 replications for AUC, and the
results are similar to Fig 1 for the single covariate missing situation.
For scattered missingness, we assume the missing ofX2 andX3 are conditionally independent. For MCAR: missing ofX2 has

probability of 0.4 and missing of X3 has probability of 0.2; MAR (X1): missing of X2 depends on the value of fully observed
covariate X1 and missing of X3 depends on X1 too with a different probability; MAR (X1, Y ): missing of X2 and X3 depends
on the value ofX1, Y with different probabilities; MNAR: missing ofX2 depends on the value ofX2 and missing ofX3 depends
on the value ofX3. The fraction of observations that are fully observed in these four situations are 48%, 40%, 30% and 33%. As
shown in Fig E2, under MCAR, MAR(X) and MAR(X,Y), the IPW and AIPW methods can get unbiased estimates when the
models for Pr(R2 = 1),Pr(R3 = 1) or the model to calculate X∗

2 , X
∗
3 are correctly specified. But the variance are much higher

in comparison to MI methods, especially for AIPW under MAR(X,Y).
For monotone missing, we assume the subjects with missing in X2 have missing in X3 and some subjects with X2 observed

have missing in X3 too. For MCAR: missing of X2 has probability of 0.4 and for those with X2 observed, missing of X3 has
probability of 0.5; MAR (X1): missing of X2 depends on the value of fully observed covariate X1, and for those with X2
observed, missing of X3 depends on X1 and X2; MAR (X1, Y ): missing of X2 depends on the value ofX1 and Y , and for those
with X2 observed, missing of X3 depends on X1, X2 and Y ; MNAR: missing of X2 depends on the value of X2, and for those
with X2 observed, missing of X3 depends on the value of X3. The fraction of observations that are fully observed in these four
situations are 30%, 40%, 50% and 30%. We compared different choices for the models to obtain X∗

3 , either it includes X2 or
independent of X2, and we saw no difference of the simulation results. In further simulations we saw that using X∗

2 to predict
X∗

3 does not help whenX2, X3 are correlated. As shown in Fig E3, under MCAR, MAR(X) and MAR(X,Y), the IPW and AIPW
methods can get unbiased estimates when the weight model of Pr(R2 = 1),Pr(R3 = 1|R2 = 1) or the model to calculateX∗

2 , X
∗
3

are correctly specified. The AIPW methods are more efficient than IPW methods.
In conclusion, the extension of the IPW and AIPW methods to multiple covariates missing is feasible and have good

performance under block missing and monotone missing.
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FIGURE E1 Simulation results of mean and relative SD of AUC for existing model with block missingness of two covariates.
Column left denotes mean AUC. Column right denotes SD relative to full data analysis. The four rows are different missingness
mechanisms.
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FIGUREE2 Simulation results of mean and relative SD of AUC for existingmodel with scatteredmissingness of two covariates.
Column left denotes mean AUC. Column right denotes SD relative to full data analysis. The four rows are different missingness
mechanisms.
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FIGURE E3 Simulation results of mean and relative SD of AUC for existing model with monotone missingness of two covari-
ates. Column left denotes mean AUC. Column right denotes SD relative to full data analysis. The four rows are different
missingness mechanisms.
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F FINDINGS FROM SIMULATIONS WHERE SAMPLE SIZE AND AMOUNT OF
MISSINGNESS IS VARIED

In further work we investigated the impact of sample size and percent missingness on the performance of the methods, and also
considered an alternative AIPW estimator. With smaller sample size, we observed that IPW2 is slightly biased under MAR and
that the SD of IPW methods are smaller and similar to AIPW methods. On the other hand, with bigger sample size, the SD of
IPW is a lot larger than that of AIPW. We found that small sample size has most impact on the IPW and AIPW performance in
situations where there are some extreme weights. Truncating the very high weights does reduce the variability of the IPW and
AIPW methods, but also increase their bias.
In the simulations presented in Figures 1 to 7, the missingness rate of X1 is about 40-50%. With less missingness of X1, the

differences between the methods are smaller under all missing mechanisms. With 80% missing of X1 the performance of the
IPW and AIPWmethods do deteriorate. For theM1 setting IPW2 is biased for both AUC and BS under MAR. For AUC, AIPW3
is more biased than AIPW1 under MAR(X2, Y ), and SD of AIPW1 and AIPW2 is larger than IPW. The worse performance is
strongly affected by the distribution of the weights, and deteriorates substantially when there are extreme weights.
For the results presented in the paper we found very little difference between the alternative ways of calculating the AUC, that

is either using the C-index or by calculating the area under the estimated ROC curve via equation 14. With 80% missingness
rate for X1 we did find differences between the methods. The ROC version AUCAIPW results in more biased AUC than the
C-index version AUCAIPW under MAR, and furthermore AIPW2 and AIPW4 showed some bias.
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