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SUMMARY: In Web Appendix A, we generalize the inferential procedure in Algorithm 1 in the main manuscript to
testing general topological structure of a time-varying graph. The theoretical results for the general framework are
presented in Theorems S1 and S2. In Web Appendix B, we present a U-statistic type estimator for the case when there
are multiple subjects. In Web Appendix C, we define some notation that will be used throughout the supplementary.
The proofs of the results in 5.1 of the main manuscript are in Web Appendix D. The proof of Theorem 2 in the
main manuscript is in Web Appendix F. Theorems 3 and 4 in the main manuscript are special cases of Theorems S1
and S2, respectively. Therefore, their proofs follow directly and are ommited. We collect the proofs of Theorems S1
and S2 in Web Appendix G and Web Appendix H, respectively. In Web Appendix I, we collect a series of lemmas
on covering number for various functions. Finally, some technical lemmas on empirical process are presented in Web

Appendix J.
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Web Appendix A. Inference on Topological Structure of Time-Varying Graph

In this section, we generalize Algorithm 1 in the main manuscript to testing various graph
structures that satisfy the monotone graph property. In Web Appendix A.1, we briefly
introduce some concepts on graph theory. These include the notion of isomorphism, graph
property, monotone graph property, and critical edge set. In Web Appendix A.2, we provide a
test statistic and an estimate of the quantile of the proposed test statistic using the Gaussian
multiplier bootstrap. We then develop an algorithm to test the dynamic topological structure

of a time-varying graph which satisfies the monotone graph property.

Web Appendix A.1 Graph Theory

Let G = (V, E) be an undirected graph where V' = {1,...,d} is aset of nodesand E C V xV
is a set of edges connecting pairs of nodes. Let G be the set of all graphs with the same number
of nodes. For any two graphs G = (V, E) and G’ = (V, E'), we write G C G" if G is a subgraph
of G’, that is, if £ C E’. We start with introducing some concepts on graph theory (see, for

instance, Chapter 4 of Lovész, 2012).

DEFINITION S1: Two graphs G = (V, E) and G’ = (V, E’) are said to be isomorphic if

there exists permutations 7 : V' — V such that (j, k) € E if and only if {n(j),n(k)} € E'.

The notion of isomorphism is used in the graph theory literature to quantify whether two
graphs have the same topological structure, up to any permutation of the vertices (see
Chapter 1.2 of Bondy and Murty, 1976). We provide two concrete examples on the notion

of isomorphism in Figure S1.
[Figure 1 about here.|

Next, we introduce the notion of graph property. A graph property is a property of graphs
that depends only on the structure of the graphs, that is, a graph property is invariant under

permutation of vertices. A formal definition is given as follows.
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DEFINITION S2: For two graphs G and G’ that are isomorphic, a graph property is a
function P : G — {0, 1} such that P(G) = P(G’). A graph G satisfies the graph property P

if P(G) =1.

Some examples of graph property are that the graph is connected, the graph has no more
than k connected components, the maximum degree of the graph is larger than k, the graph
has no more than k isolated nodes, the graph contains a clique of size larger than k, and
the graph contains a triangle. For instance, the two graphs in Figures S1(i) and S1(ii) are

isomorphic and satisfy the graph property of being connected.

DEFINITION S3: For two graphs G C G’, a graph property P is monotone if P(G) = 1

implies that P(G’) = 1.

In other words, we say that a graph property is monotone if the graph property is preserved
under the addition of new edges. Many graph property that are of interest such as those given
in the paragraph immediately after Definition S2 are monotone. In Figure S2, we present
several examples of graph property that are monotone by showing that adding additional
edges to the graph does not change the graph property. For instance, we see from Figure S2(a)
that the existing graph with gray edges are connected. Adding the red edges to the existing
graph, the graph remains connected and therefore the graph property is monotone. Another
example is the graph with maximum degree at least three as in Figure S2(c). We see that
adding the red dash edges to the graph preserves the graph property of having maximum

degree at least three.
[Figure 2 about here.|

For a given graph G = (V, ), we define the class of edge sets satisfying the graph property

P as

P ={ECVxV|PG) =1}. (S1)



Finally, we introduce the notion of critical edge set in the following definition.

DEFINITION S4: Given any edge set £ C V x V| we define the critical edge set of E for

a given monotone graph property P as

C(E,P)={e|e¢d E, there exists E' D E such that £’ € & and E'\{e} ¢ #}.  (S2)

For a given monotone graph property P, the critical edge set is the set of edges that will
change the graph property of the graph once added to the existing graph. We provide
two examples in Figure S3. Suppose that P is the graph property of being connected. In
Figure S3(a), we see that the graph is not connected, and thus P(G) = 0. Adding any of the

red dash edges in Figure S3(b) changes P(G) =0 to P(G) = 1.

[Figure 3 about here.|

Web Appendix A.2 An Algorithm for Topological Inference

Throughout the rest of the paper, we denote G(z) = {V, E(z)} as the graph at Z = z. We
consider hypothesis testing problem of the form

Hy: P{G(z)} =0 for all z € [0, 1]
(S3)

H; : there exists a zy € [0, 1] such that P{G(z0)} = 1,
where G/(-) is the true underlying graph and P is a given monotone graph property as defined

in Definition S3. We provide two concrete examples of the hypothesis testing problem in (S3).

ExXAMPLE S1: Number of connected components:

Hy : for all z € [0,1], the number of connected components is greater than k,

H; : there exists a zg € [0, 1] such that the number of connected components is not greater than k.

ExAMPLE S2: Maximum degree of the graph:

Hy : for all z € [0,1], the maximum degree of the graph is not greater than k,

H; : there exists a zy € [0, 1] such that the maximum degree of the graph is greater than k.
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We now propose an algorithm to test the topological structure of a time-varying graph.
The proposed algorithm is very general and is able to test the hypothesis problem of the form
in (S3). Our proposed algorithm is motivated by the step-down algorithm in Romano and
Wolf (2005) for testing multiple hypothesis simultaneously. The main crux of our algorithm
is as follows. By Definition S4, the critical edge set C{F;_1(z), P} contains edges that may
change the graph property from P{G(z)} = 0 to P{G(z)} = 1. Thus, at the ¢-th iteration
of the proposed algorithm, it suffices to test whether the edges on the critical edge set
C{E;_1(z), P} are rejected. Let Ey(2) = Ei—1(2) U R(z), where R(z) is the rejected edge set
from the critical edge set C{F;_1(z), P}. Since P is a monotone graph property, if there exists
a zg € [0, 1] such that Ei(z)) € &, we directly reject the null hypothesis Hy : P{G(z)} =0
for all z. This is due to the definition of monotone graph property that adding more edges
does not change the graph property. If E;(z9) ¢ &, we repeat this process until the null
hypothesis is rejected or no more edges in the critical edge set are rejected. We summarize
the procedure in Algorithm S1.

Finally, we generalize the theoretical results in Theorems 3 and 4 to the general testing

procedure in Algorithm S1. Given a monotone graph property P, let
Go = (O(:) € Us s | P[G{O(2)}] =0 for all z € [0, 1]).

We now show that the type I error of the proposed inferential method in Algorithm S1 can

be controlled at a pre-specified level a.

THEOREM S1: Under the same conditions in Theorem 2, we have

lim sup Pe() (Yo =1) < a.
Tl—}O()@()GgO

In order to study the power analysis for testing graph structure that satisfies the monotone

graph property, we define signal strength of a precision matrix © as

Sig(®) := in |©,]. S4
18(9) = by P 1O (54)



Algorithm S1 Dynamic skip-down method.

Input: A monotone graph property P; @de(z) for z € [0, 1].
Initialize: t = 1; Ey(z) = 0 for z € [0, 1].

Repeat:

(1) Compute the critical edge set C{E;_1(z),P} for z € [0,1] and the conditional quantile
{1 — a,C(E_1,P)} = inf (t ER|P[TL, o <t1 UXi Y0 Z) i) 21— a), where
Té? £,_,p) 1s the bootstrap statistic defined in (10) with the maximum taken over the edge
set C{E;-1(2),P}.

(2) Construct the rejected edge set

R(2) = |e € C{E_1(2), P} | Vah - |82 (2)] - > Ku(Zi—2)/n > c{l — a,C(Ei_1,P)}
i€[n]

(3) Update the rejected edge set Ey(z) < E;_1(z) UR(z) for z € [0, 1].

(4) t«t+ 1.

Until: There exists a 2o € [0, 1] such that Fi(zy) € &, or Ey(z) = E;_1(2) for z € [0, 1].

Output: ¢, = 1 if there exists a zy € [0, 1] such that E;(z) € & and v, = 0 otherwise.

Under H; : there exists a zp € [0, 1] such that P{G(z0)} = 1, we define the parameter space

Gi(0:P) = (@(-) e Uy ( PIG{O(20)}] = 1 and Sig{©(z0)} = 6 for some 2, € [0, 1]).

(S5)
Again, we emphasize that the signal strength defined in (S4) is weaker than the typical
minimal signal strength for testing a single edge in a graph min.cpo)|©.|. Sig(®) only
requires that there exists a subgraph satisfying the property of interest such that the minimal
signal strength on that subgraph is above certain level. For example, for P(G) = 1 if and
only if G is connected, it suffices for © belongs to G;(0; P) if the minimal signal strength on
a spanning tree is larger than 6. The following theorem presents the power analysis of our

test.
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THEOREM S2: Assume that the same conditions in Theorem 2 hold and select the smooth-
ing parameter h = o(1/n='/%). Assume that 0 > C+/log(dn)/n?/> for some sufficiently large

constant C. Under the alternative hypothesis Hy : P(G) =1 in (S3), we have

li inf P =1)=1
nl—>nolo @egll(e;P) ®(¢ ) (86)

for any fized o € (0,1).
Thus, we have shown in Theorem S2 that the power of the proposed inferential method

increases to one asymptotically.

Web Appendix B. A U-Statistic Type Estimator

The main manuscript primarily concerns the case when there are two subjects. In this section,
we present a U-statistic type inter-subject covariance to accommodate the case when there
are more than two subjects. First, we note that the same natural stimuli is given to all

subjects. This motivates the following statistical model for each Z = z:
XD =8+ EY S|Z=2~N{0,%(2)}, EYZ =2~ Ny{0,LY(2)},

where X, E®_ and L(K)(z) are the data, subject specific effect, and the covariance matrix
for the subject specific effect for the fth subject, respectively. Suppose that there N subjects.
Then, the following U-statistic type inter-subject covariance matrix can be constructed to

U = T €

(S7)
2
We leave the theoretical analysis of the above estimator for future work.

Web Appendix C. Preliminaries

In this section, we define some notation that will be used throughout the Appendix. Let
[n] denote the set {1,...,n} and let [d] denote the set {1,...,d}. For two scalars a,b, we

define a V b = max(a, b). We denote the {;-norm for the vector v as [[vlly = 3¢ |v;|9)Y/a



for 1 < ¢ < oo. In addition, we let supp(v) = {j : v; # 0}, ||[v|o = |supp(v)|, and
| V]|so = maxjcpq |v;|, where [supp(v)] is the number of non-zero elements in v. For a matrix
A ¢ R™ ™ we denote the jth column as A;. We denote the Frobenius norm of A by
IANE = D icinn 2o jepa) A% the max norm [|Allnax = maXieqn,) jefns) [Aij], and the operator
norm [[Allz = supjyj,—1 [[Av|l2. Given a function f, let f and f be the first and second-
order derivatives, respectively. For 1 < p < oo, let ||f|l, = ([ f?)'/? denote the L, norm
of f and let ||f|le = sup, |f(z)|- The total variation of f is defined as | f|lrv = [ |f]. We

use the Landau symbol a, = O(b,) to indicate the existence of a constant C' > 0 such that

a, < C - b, for two sequences a,, and b,. We write a,, = o(b,) if lim, . a,/b, — 0. Let

C,C1,C,. .. be generic constants whose values may vary from line to line.
Let
1
Po(f) ==Y f(X) and  Gu(f)=vn:[Pu(f) - E{f(X)}] (S8)
i€[n]

For notational convenience, for fixed j, k € [d], let

Gz56(Ziy, Xij, Yie) = Kn(Z; — 2) XYk, w,(Z;) = Kp(Z; — 2), (S9)
Cji(Ziy Xij, Yin) = 9250(Ziy Xij, Yie) — E{9:.16(Z, X5, Ya) }, (S10)

and let
ko (2)) = w.(Z) — B{w.(2)}. (S11)

Recall from 5 that K(-) can be any symmetric kernel function that satisfies (12) and that
Kin(Z; — z) = K{(Z; — z)/h}/h. By the definition of 3(z) in (S7), we have

Zie[n] 9=k (Zis Xij, Yir) ~ Pu(9-k)

Sin(z) = (S12)

In addition, let

J(l)

2,7k

(Zi, X, Y ) = Vh-{0;(2)} - [Kn(Zi — 2) XY —E{Kp(Z — 2)XY"}] - Ok(2),

(S13)
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JEUZ) =V A8 () - [Kn(Zi = 2) —E{K(Z — 2)}] - £(2) - Ox(2), (814)
Jou(Zi, X3,Y ;) = Jz(g)k(Zu X, YY) — ‘]z(,Qj)k(Zi)v (S15)
and let
W.1(Zi, Xij, Yir) = Vh - {Ky(Z; — 2) XY, — Kn(Zi — 2)Zj(2)} - (S16)
For two functions f and g, we define its convolution as

(f*9)( /f xr—2z)g (S17)

In our proofs, we will use the following property of the derivative of a convolution
2, -

Finally, our proofs use the following inequality

/0 " VIog(ba/e)de < \/br - \/ /0 og(ba/e)de = by - /T + loglba/br),  (S19)

where the first inequality holds by an application of Jensen’s inequality.

Web Appendix D. Proof of Results in 5.1

In this section, we establish the uniform rate of convergence for f](z) and @(z) over z € [0, 1].

To prove Theorem 1, we first observe that

3(2) - £(2)

< sup max ‘Ejk(z)—E{ijk( )}‘—l— sup max ‘E{ijk(z)}—zjk(z) :

sup
max  z¢fo,1] J:k€ld] 2€[0,1] J-k€Eld]

z€[0,1]

(520)
The first term is known as the variance term and the second term is known as the bias term
in the kernel smoothing literature (see, for instance, Chapter 2 of Pagan and Ullah, 1999).
Both the variance and bias terms involve evaluating the quantity ]E{fljk(z)} From (S12), we
see that ijk(z) involves the quotient of two averages and it is not straightforward to evaluate

its expectation. The following lemma quantifies E{ijk(z)} in terms of the expectations of

its numerator and its denominator.




LEMMA S1: Under the following conditions

G (w.) ‘

<1 and  E{P,(w.)} £0, (S21)
E{2u()} = Tt o o [B{Gu(w) - Gule)} +E{G2G)] . G22)

We note that (S22) only holds under the two conditions in (S21). In the proof of Theorem 1,
we will show that the two conditions in (S21) hold for n sufficiently large. To obtain upper

bounds for the bias and variance terms in (520), we use the following intermediate lemmas.

LEMMA S2:  Assume that h = o(1). Under Assumptions 1-2, we have

sup max [E{Pa(g-0)} — f2(2)u(2)| = O(2), (23)
z€[0,1] Jke[d]
sup [E{P(w:)} = f2(2)] = 007, (524)
1
Sup max ‘E{ (92,k) - G (wz)H =0 <E) , (525)
and
sup lIEQ{((S?Q(wZ)} =0 (i) . (S26)
z€l0,1] T " nh

LEMMA S3: Assume that h = o(1) and log®(d/h)/(nh) = o(1). Under Assumptions 1-2,
there exists a universal constant C' > 0 such that

log(d/h)

o (S27)

sup max |G, (w,)V Gn(gmk)‘ <C-
26[0,1] ]vke[d]

with probability at least 1 — 3/d.

The proofs of Lemmas S1-S3 are deferred to Sections S1-S3, respectively. We now provide a

proof of Theorem 1.
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Web Appendix D.1 Proof of Theorem 1
Recall from (S20) that

sup HZ E(z)‘

z€[0,1]

< sup max ‘fljk(z)—E{fJ]k(z)} + sup max ‘E{ijk(z)}—Ejk(z)

max zE[O,l] j7k€[d] ZE[O,I] jvke[d}
== Il -+ IQ.
It suffices to obtain upper bounds for I; and Is.

We first verify that the two conditions in (S21) hold. By Lemma S2, we have
E{P.(w.)}| = O + f2(2) > 1 ,() > 0,

where the last inequality follows from Assumption 1. Moreover,
G ( 1 1
G, (w,)] -
R <O v oo
log(d/h) 1
nh fz(z) + O(h?)

<O

<1,

for sufficiently large n, where the first inequality is obtained by an application of Lemma S2,
the second inequality is obtained by an application of Lemma S3, and the last inequality is

obtained by the scaling assumptions h = o(1) and log(d/h)/(nh) = o(1).

Upper bound for [;: By (S35) in the proof of Lemma S1, we have

§k<z) G, (gzjk) E{P (gzﬂc)} Gn(wz)E{Pn(gZ,jk)}
J VIEA{P, (w.)}  E{P,(w.)}  VnEX{P,(w.)}

Thus, by Lemma S1, we have

+%(’) [{Gn(wz)Gn(gj,zk)} + Gi(gzﬂ"“)} ’

Culga)  Gulw) - E{Pu(g.0)
I = - =+
L e | E R} BB} (528)
111 112

< sup max {1 + [Tao] + |11s]}
z€[0,1] J:k€ld

where I3 = O{G,(w,)Gn(gj21)} + G2(925k) + E{Gp(w.) - G, (gj:x)} + E{G2(g.,xr)}]/n.

We now provide upper bounds for 11, 15, and [13. By an application of Lemmas S2 and
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S3, we obtain

Gn (92,41 log(d/h)
sup max |I;;] <n Y?. sup max ) <Oy —=—1—=. S29
zE[Opl]Jke[d]| 1 ze[Opl ikeld | fz(z) + O(h?) nh (529)
Similarly, we have
G (gz )1 f2(2) 20 (2) + O(h*)} ’ log(d/h)
sup max |Ip| <n 2. sup max o J <C =L
ze[(]pl] Jike(d] el ZE[OI,)I] Jikeld] {fz(2) + O(h?)}? nh
(S30)
For I35, we have
sup max |[13] < sup max lO [{Gn(wz) -Gn(gzjk)} + Gi(gzjk)} ‘ + 0O ( L )
z€[0,1] J-k€Eld] z€[0,1] Sk€Eld] |1 ’ ’ nh
<c.logld/h) (L (S31)
nh nh
o Josld/n)
nh

where the first and second inequalities follow from Lemmas S2 and S3, respectively. Com-
bining (529), (S30), and (S31), we have
log(d/)

L <C- YA (S32)
with probability at least 1 — 3/d.
Upper bound for /5: By Lemmas S1 and S2, we have
I, = zsel[%)l,)l] max W — Yi(z) + %(’3 [E{Gn(wz) : Gn(gz,jk)} +E {Gi(gz,jk)}} ‘
< Sup e fz(f)z( )< s a0 2)<h2) — Z(z) + %(’) [E{Gn<wz> : Gn(Qz,jk)} +E{Gi(gz,jk)}} ‘
2
-z |2 o e+ 0 (55
- = s (o @ ()

1
2 —
<C- (h —i—nh)

where the first inequality follows from (S23) and (S24), the second equality follows from

(S33)

(S25) and (S26), and the last inequality follows from the assumption that h = o(1).
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Combining the upper bounds (S32) and (S33), we obtain
“c. { v 1og<d/h>}

sup
z€[0,1]

() — Z(z)‘

nh

max

with probability at least 1 — 3/d.

Web Appendix E. Proof of Technical Lemmas in Appendix Web Appendix D

In this section, we provide the proofs of Lemmas S1-S3.

Web Appendix E.1 Proof of Lemma S1

The proof of the lemma uses the following fact

(1+z)'=1—2+0(? for any |z| < 1. (S34)
From (S12), we have
Sik(2) = Pnlgegn)
I P, (w,)
_ Pr(9zk) — EA{Pn(gz0)} + EA{Pn(gz,x)} ) {E {]P)n(wz)}}
EA{P,(w.)} P (w;)
_ n~l2. Gn(gz,jk) +E {Pn(gz,jk)} ) {1 P,(w.) —E [Pn<w2>]} -
EA{P,(w.)} E [P, (w.)]
_ n= 2 G(ge k) + E [Pa(g:n)] _ [1 n Gy (w;) }1
E{P,(w.)} Vi E{Pa(w:)}]
Under the conditions (S21) and by applying (S34), we have
S n'?. Gr(9z,8) + E{Pn(gz0)} G (w;) Gy (w:)
2jn(2) = E (P, (0.)} - (1 VR BB} O {n B2 {Pn<wz>}]>

 Gulgegr) E{Pn(g:jn)}  Gn(w)E{Pu(g:yn)} | 1 . | .
a \/ﬁE {]P)n<wz)} " E{Pn(wz)} \/HEQ{]P)H(U]Z)} + nO [{Gn< Z>Gn<gz’]k)} T G"<gz’]k)] ’

(S35)
Note that E{G,(f)} = 0 by the definition of G, (f) in (S8). Taking expectation on both

sides of (S35), we obtain

B{24()} = Tt b L0 [B{Gu(w) - Galgu)} + E (G20}

as desired.
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Web Appendix E.2 Proof of Lemma S2

To prove Lemma S2, we write the expectation as an integral and apply Taylor expansion to
the density function and the covariance function. We will show that the higher-order terms
of the Taylor expansion can be bounded by O(h?). We start by proving (523).

Proof of (S23): Recall from (S9) the definition of g, jx(Z;, Xij, Yir) = Kn(Z; — 2)X;;Yik.

Thus, we have

E{P,(g:1)} ZE{%K (Z;Z> ij’“}
-2 (5 s )
:E{%K (Z;Z> E(S; 5k | Z>} (S36)
:E{%K Z;Z> Ejk(Z)}

= /K(u)ij(uh + 2) fz(uh + 2)du,
where the third equality hold using the fact that the subject-specific effects are independent
between two subjects, and the last equality holds by a change of variable, u = (Z — 2)/h.
Applying Taylor expansions to X, (uh + z) and fz(uh + z), we have
Ejk(u + Zh) = E]k(Z) + uh - Ejk(Z) + U2h2 . ﬁ]jk(z/) (837)
and

fz(u+ zh) = fz(2) +uh - f7(2) + u*h? - f5(2"), (S38)

where 2" and 2" are between z and uh+z. Substituting (S37) and (S38) into the last expression

of (S36), we have

/K ) uh - $(2) +uth? S b { () Fuh f(2) 1 ()} du.
(339)

By (12), we have [uK(u)du =0 and [ 'K (u)du < oo for [ = 1,2,3,4. By Assumptions 1
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and 2, we have

B2 / CE (S5 (2) f(2)du < BROM, Jy = O(h?),
h? / u’ K (u)Xjk(2) f2(2)du < B*CM, fz = O(h?), (S40)
hz/uzK(u)Ejk(z)fz(z”)du < W*CM, [, = O(h?).

Substituting (S40) into (S39) and bounding the other higher-order terms by O(h?), we obtain
E{Pn(g:58)} = Zj(2) f2(2) + O(h?),
for all z € [0,1] and j,k € [d]. This implies that
sup  max [E{Pn(g. )} — Zju(2)fz(2)] = O(h?).

z€[0,1] J:k€ld]

The proof of (S24) follows from the same set of argument.

Proof of (S25): Recall from (S9) the definition of w,(Z;) = K(Z; — z). Thus, we have

“B{Culg.0) Gn<wz>}

= E{Pu(g..n) - Ba(w2) | = E{Ba(g.0)} - E{Pa(w.)}
=B [{ S KulZ— )XV b S Kz ~ E{Pa(g-0)} - E{Pa(w:)}
ze[n] ze[n]

= %E{K,%( — 2)5;Sk} —i— E Z ZKh — 2)Kin(Zi — 2) XY ¢ — E{Pu(gz 1)} - E{Pn(w.)}

i€ln] i'#i
- %E{K,w— S Z —2)} - E{KL(Z = 2)S5(2)}] — B{Po(g- ) YE{P, (w.)}
_ %E (K27 — 2)S(2)) - EE{M@ZJQ}E{PA%)},

-~ -~

Il 12
(S41)
where the second to the last equality follows from the fact that Z; and Z; are independent.

We now obtain an upper bound for /;. By (12) and Assumptions 1-2, we have

1 1 7 —z 1 3 1 Z — 1
I, = — EKQ ( - ) Yi(Z)f2(Z)dZ < " 'MU'fZ/EKQ ( n ) iz =0 (nh) ’
(542)




where the last equality holds by a change of variable. Moreover, by (S23) and (5S24), we have

L= {800 + O} - () + 0N =0 (). 5w

n
Substituting (S42) and (S43) into (S41), and taking the supreme over z € [0, 1] and j, k € [d]
on both sides of the equation, we obtain

1 1 1 1
o el -0 (5) +o (7) -0 ().

where the last equality holds by the scaling assumption of A = o(1). The proof of (526)

sup max
z€[0,1] J-k€ld]

follows from the same set of argument.

Web Appendix E.3 Proof of Lemma S8

The proof of Lemma S3 involves obtaining upper bounds for the supreme of the empir-
ical processes G, (w,) and G, (g, r). To this end, we apply the Talagrand’s inequality in
Lemma S20. Let F be a function class. In order to apply Talagrand’s inequality, we need to

evaluate the quantities  and 72 such that

sup || flleo <1 and  sup Var(f(X)) < 7%
fer feF

Talagrand’s inequality in Lemma S20 provides an upper bound for the supreme of an
empirical process in terms of its expectation. By Lemma S21, the expectation can then
be upper bounded as a function of the covering number of the function class F, denoted as
N{F, Ly(Q),€}. The following lemmas provide upper bounds for the supreme of the empir-
ical processes G,(w,) and G, (g, k), respectively. The proofs are deferred to Sections Web

Appendix E.3.1 and Web Appendix E.3.2, respectively.

LEMMA S4:  Assume that h = o(1) and log(d/h)/(nh) = o(1). Under Assumptions 1-2,

for sufficiently large n, there exists a universal constant C' > 0 such that

sup |Gp(w,)| < C - M, (S44)

z€[0,1] h

with probability at least 1 —1/d.

15
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LEMMA S5:  Assume that h = o(1) and log*(d/h)/(nh) = o(1). Under Assumptions 1-2,
for sufficiently large n, there exists a universal constant C' > 0 such that

log(d/h
sup max |G, (g, 1) < C - —og( / ), (S45)
z€[0,1] J-k€ld] h

with probability at least 1 — 2/d.

Applying Lemmas S4 and S5, we obtain

sup max |Gu(w:) V Gulgen)| < sup [Galw:)| + sup max [Go(g,n)
z€[0,1] J-k€ld] z€[0,1] z€[0,1] J-k€ld]

<o.“%fml

with probability at least 1 — 3/d, as desired.

Web Appendix E.3.1 Proof of Lemma S/ . The proof of Lemma S4 uses the set of
arguments as detailed in the beginning of Web Appendix E.3. Recall from (S9) and (S11)
the definition of w,(Z;) = Kn(Z; — z) and k.(Z;) = w,(Z;) — E{w.(Z)}, respectively. We

consider the class of function
K=A{k,|z€]|0,1]}. (S46)

First, note that

Sup ||kzfloe = sup [Jw.(Z;) — E{w.(2)} |l

2€[0,1] 2€[0,1]

1 _
< Ko+ Fz + O(1) (547)

2
< 21K
where the first inequality holds by (12) and Lemma S2, and the last inequality holds by the

scaling assumption h = o(1) for sufficiently large n.

Next, we obtain an upper bound for the variance of k,(Z;). Note that

sup Var{k,(Z)} = sup E ([wZ(Z) — E{wz(Z)}]z)

z€[0,1] z€[0,1]

< sup 2E{w?(Z)} + sup 2E*{w,(2)},
z€[0,1] z€[0,1]

I 1P

J/
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where we apply the inequality (z — y)? < 222 + 2y? for two scalars z,y. By Lemma S2, we
have I, < 2{fz + O(h?)}2. Also, by a change of variable and second-order Taylor expansion

on the marginal density fz(-), we have

1 7 —z
I, =2 K? Z\dZ
=2 [ (57) s

=2 sup E/Kz(u)fz(uh%—z)du

ZE[O 1 (848)
=2 sup /K2 2) + uhfz(z )+u2h2fz(z’)}du for 2’ € (z,u + zh)
z€[0,1]
2z 2
< S TAIKI+0(1) + O(h)
Thus, for sufficiently large n and the assumption that h = o(1), we have
3 -
sup Var{k,(Z)} < <5 fz - |K]5. (S49)
2€[0,1]
By Lemma S16, the covering number for the function class IC satisfies
K C’4/5 1/5
sup N{K, L2(Q).} < ( e G . (550)

We are now ready to obtain an upper bound for the supreme of the empirical process,
sup.c) [Gn(w.)]. By Lemma S21 with A = 2+ |K]|lpv - C&° - £/ Klloos |F o) =
2 |Klloo/h, V =5, 0% =3 fz-|K|?%/h, for sufficiently large n, we obtain

1 1
E{ sup]ﬁﬂGn(wz)!} =E| sup —|> [w.(Z) — E{w.(2)}]

z€[0,1 z€l0,1] T iel]

nh n

<c. { log(L/h) log(l/h)} (S51)

log(1/h)

<C- ,
nh

where C' > 0 is some sufficiently large constant. By Lemma S20 with 72 = 3f, - || K||2/h,

n=2-|K|w/h, E[Y] < C-+/log(1/h)/(nh), and picking ¢ = \/log(d)/n, for sufficiently
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large n, we have

1 1
sup ——=- |Gn(wz)| = sup — (wz(Zi) - E{WZ(Z)}
e0.1] V1 z€0,1] M Ze%

o \/logélh/h)_l_\/loigld).\/le /logél}i/h)+loigd)
<C. /1og7(5l/h)7

with probability 1—1/d, where the last expression holds by the assumption that log(d/h)/(nh) =

o(1) and h = o(1). Multiplying both sides of the above equation by /n completes the proof

of Lemma S4.

Web Appendix E.3.2 Proof of Lemma S5 . The proof of Lemma S5 uses the set of
arguments as detailed in the beginning of Web Appendix E.3. For convenience, we prove
Lemma S5 by conditioning on the event

A= {max max max(|X;;|, |Y;;]) < Mx - +/log d} . (S52)

i€[n] jeld]

Since X;; and Y;; conditioned on Z are Gaussian random variables, the event 4 occurs with
probability at least 1 — 1/d for sufficiently large constant Mx > 0.

Recall from (S9) and (S10) the definition of g, jx(Z;, Xij, Yir) = Kn(Z; — 2)X;Yix and
Qgk(Zi, Xij, Yin) = 9256(Zi, Xij, Yir) — E{9:6(Z, X;,Y%)}, respectively. We consider the

function class

Q = {qz,jk | S [07 1}7]7]{ S [d]} . <S53)
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We first obtain an upper bound for the function class

sup max [|¢. jillo = sup max |lg. ;x(Zi, Xij, Yir) = E{g: (2, X, Vi) Hloo
z€[0,1] J-k€ld] lgz.ell 2€0,1] J-k€ld] 19234 j» Yi) {923 3+ Yi) Hl

< sup max ||g: jx(Zi; Xij, Yie) |l + sup - max [|E{g. jx(Z, Xj, Yi) }|oo
z€[0,1] J.keld] z€[0,1] Ji.keld]

< sup max [|Ky(Z; — 2) XYkl + f7 - My + O(R?)

sefo1] Skeld
1 _

< 7 M3 || K||oo - logd + fz - M, + O(h?)
2

< n M3 - || K| - logd,

(Sh4)
where the second inequality holds by Assumptions 1-2 and Lemma S2, the third inequality
holds by (12) and by conditioning on the event .4, and the last inequality holds by the scaling
assumption h = o(1) for sufficiently large n.

Next, we obtain an upper bound for the variance of ¢, jx(Z;, Xi;, Yix). Note that

sup max Var{q.;x(Z, X;,Ys)} = sup max E [(gz,jk(Z, X;, V) —E{g.x(Z, Xj,Yk)})Q}
z€[0,1] J.k€ld] 2€[0,1] Jk€ld]

< sup max 2E {ggjk(Z, X;,Y)} 4 sup max 2E*{g. ;1(Z, X;,Ys)},
z€[0,1] J.keld] ’ z€[0,1] J.k€ld]

I Iz

J/

where we apply the inequality (z — y)? < 222 + 2y? for two scalars z,y. By Lemma S2,
we have [, < 2 { fz - M, + O(hZ)}Q. Also, by a change of variable and second-order Taylor

expansion on the marginal density fz(-) as in (S48), we have

I, = 2 sup max E{K,%(Z —z)-E (X?Y/? | Z)}
z€[0,1] Jikeld]

<2k sup E{K};(Z - z)}
z€[0,1]

2k =
<= o KR+ 0(1) + Oh),

where the first inequality follows from the fact that |[E(X?Y}? | Z)| < & for some £ < oo since

these are Gaussian random variables, and the second inequality follows from (S48). Thus,
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for sufficiently large n and the assumption that h = o(1), we have

3k =
sup max Var{g. ;u(Z, X;, Yi)} < = fz - [|K]f3. (S55)
2€[0,1] J-ke€ld] h

By Lemma S17, the covering number for the function class Q satisfies

(S56)

_ 5
A|K||lpy - CP - FYP M @10 MY 1og?t d
Sup N{Q, L»(Q), e} < ( e he — '

We now obtain an upper bound for the supreme of the empirical process, sup rrlga[}é} |G (92,55 |-
z€0,1] k€
By Lemma S21 with A = 2. ||Kl|ry - C/ - F}/” - My” - d'1 /|| K|oo, | F | ey = 2 1K oo
M2 -logd/h, V =5, 0% = (3k/h) - fz - | K||?, for sufficiently large n, we obtain
1 1
E< sup max —= - [Gpn(g.ji)| p =E | sup max —- Y g, w(Zi, Xij, Yie) — Bl j(Z, X, Vi) }]

sel0.) d-keld] /1 selo,y Sheld n | £

<c. { log(d/h) 1og<d/h>}

nh n

<C. /10gr(lcz/h)7

where the last inequality holds by the assumption log(d/h)/nh = o(1). By Lemma S20 with

(S57)

T =3k fz-[|K|3/h,n =2+ |||l - M% -log d/h, E[Y] < C'- \/log(d/h)/(nh), and picking

t = y/logd/n, for sufficiently large n, we have

1 1
Sup max = Ga(g-g0)| = sup max — - | > (g, u(Zs, Xij, Vir) = B{g: 0 (Z, X, Yi)}]

z€[0,1] Jk€ld] 2€[0,1] JR€Eld] 1 ey

log(d/h) log d [log(d/h)  log®d
< . oV 7 o . .
s¢ \/ nh + nh L+ logd nh + nh
<. flod/h)

nh

with probability at least 1 — 2/d. The second inequality holds by the assumption that

log?(d/h)/(nh) = o(1). Multiplying both sides of the equation by /n, we completed the

proof of Lemma S5.
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Web Appendix F. Proof of Theorem 2

In this section, we provide the proof of Theorem 2. To prove Theorem 2, we use a similar
set of arguments in the series of work on Gaussian multiplier bootstrap of the supreme of
empirical process (see, for instance, Chernozhukov et al., 2013, 2014a,b). Recall from (9) and
(10) that

Tp = sup max Vnh- @j,:(z) — O;i(2)

z€[0,1] UR)EE(2)

P (w,) (S58)

and

, (559)

. T ~
Yicin 1©93(2)  Kn(Zi — 2) | XY Op(2) —ep, p &i/n
TE = sup (ir)laéc()\/nh- e[]{ } T{ }
z € A -
v {8} =)

respectively, where & ~ N (0, 1). Note that for notational convenience, we drop the subscript
E from T and TE throughout the proof.

We aim to show that 77 is a good approximation of 7. However, 7' and T'? are not exact
averages. To apply the results in Chernozhukov et al., 2014a, we define four intermediate
processes:

Ty = sup max Vnh- Z{@ N K, (Z = 2){X, Y] —%(2)} ©r(2)/n|;  (S60)

z€[0,1] (k)EE(2) e

Too = sup max VvVn

z€[0,1] (4R)EE(2)

Z{@ N Ky (Z; — 2) {XiY;TF—E(z)}@k(z)/n

i€[n]
- {0 ([BEMZ - XYT) - B2 - }200)] ) @)/

(S61)

' = selon] GRCEL) Vol %;] [{G)j (I (2= 2) {XVT - 3(e) 9’“(2)] §ifn|, (562)
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TH = sup max Vn

ze[0,1] GK)EE(2)

h | {0, Kz - ) {XYT — ()} @n(z)/n

i€[n]
~ {0, ([B(EWZ — )XY}~ B{KW(Z - 2)}2(2)] )@ul2) } - &/n];

(363)

where & & N(0,1).

To prove Theorem 2, we show that Ty is a good approximation of 7" and that T is a
good approximation of T”. We then show that there exists a Gaussian process W such that
both T;% and Ty can be accurately approximated by W. This is done by applications of
Theorems A.1 and A.2 in Chernozhukov et al. (2014a). The following summarizes the chain

of empirical and Gaussian processes that we are going to study

T Ty +— Top — W 5 TP +— TP,

The following lemma provides an approximation error between the statistic 7" and the

intermediate empirical process Tog.

LEMMA S6: Assume that h? + \/log(d/h)/nh = o(1). Under Assumptions 1-2, for suf-

ficiently large n, there exists a universal constant C' > 0 such that

T — Too| < C- {\/nh5 + s V/nhd + %\/ﬁhm +os-h? log(d/h)} ,
n

with probability at least 1 — 1/d.

Proof. The proof is deferred to Web Appendix F.2.

We now apply Theorems A.1 and A.2 in Chernozhukov et al. (2014a) to show that there
exists a Gaussian process W such that the quantities |Tpo — W] and |TZ — W/| can be

controlled, respectively. The results are stated in the following lemmas.

LEMMA S7: Assume that log®s - log*(d/h)/(nh) = o(1). Under Assumptions 1-2, for
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sufficiently large n, there exists universal constants C,C" > 0 such that

[Too = W] > C- {log‘"’(s) log"(d/h) }”8 o {bg%) log*(d/h) }1/8

nh nh

Proof. The proof is deferred to Web Appendix F.3.

LEMMA S8: Assume that log*(s) - log®(d/h)/(nh) = o(1). Under Assumptions 1-2, for

sufficiently large n, there exists universal constants C,C" > 0 such that

%~ W[ > C- {10g4<s) -nlzg%d/h)}”s (XY n}] Con {1og4<s> 'nlzg?’(d/h)}l/g’

with probability at least 1 — 3/n.

Proof. The proof is deferred to Web Appendix F.4.

Finally, the following lemma provides an upper bound on the difference between 7% and

T3, conditioned on the data {(Z, X, )}y

LEMMA S9:  Assume that s - \/h3log®(d/h) + s - \/10g4(d/h)/nh2 + /hPlogn = o(1).
Under Assumptions 1-2, for sufficiently large n, there exists universal constants C,C" > 0

such that, with probability at least 1 — 1/d,

P|T? —TE| > C - /h3log?(d/h) + log d/h + /I logn

Proof. The proof is deferred to Web Appendix F.5.

{(Zi, X:,Y:)} <2/d+1/n.

1€[n]

With Lemmas S6-S9, we are now ready to prove Theorem 2.

Web Appendix F.1 Proof of Theorem 2
Recall that for notational convenience, we drop the subscript E from T and T8 throughout
the proof. In this section, we show that 7" can be well-approximated by the (1—a)-conditional

quantile of TZ, i.e., P{T > ¢(1 — &)} < «. For notational convenience, we let r = 11 + 1o +
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r3 + r4, where

-1
— /nhb & s - /nhd + s - log(d/h) + s h% - /log(d/h)

Vnh
{log6 s -log*(d/h) }1/8
o =
nh
{log4 s-log®(d/h) }1/8
rs =
nh

= \/h3log*(d/h) + s - \/wg;(# + Vh’logn.

These are the scaling that appears in Lemmas S6-S9. By Lemmas S6 and S7, it can be shown

that
(lT W| 27"2) NS (|T T00| + |T00 — W| 27”2) 27“2, (864)

since ro > r; and 1o > 1/d. With some abuse of notation, throughout the proof, we write

P¢(T? > t) to indicate P[T? >t | {(Z;, X, Y ) }iepn))- By Lemmas S8 and S9, we have
Pe(|TP = W| = 2ry) < Pe(|TP = Tgg| + [Tys — W = 2r9) < 21, (S65)
since 1o > 13 and 19 > 2/d + 1/n. Define the event
E = (P[|T0% —W|>ry | {(Zi, X5, Y3) biep) < 7“2]) )

and note that P(£) > 1 — 2/d — 4/n by Lemmas S8 and S9. Throughout the proof, we
condition on the event &£.
By the triangle inequality, we obtain
PIT<cl-—a)}21-P{T—-W+W+2ry,>c(l—a)+2r}
>1— P(|T = W| = 2ry) — P{W > ¢(1 — a) — 2y} (566)
> P{|W| < c(l —a)—2ry} — 2r,
where the last inequality follows from (S64). By a similar argument and by (S65), we have

P{W < (1 —a) —2r} = PAT? < (1 — @) — dry} — 21y
(S67)

> PAT? < c(1—a)} —2ry — PA|T? — (1 — a)| < 1y},
where the last inequality follows from the fact that P(X <t—e)—P(X <1t) > —P(|X—t| <
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€) for any € > 0. Thus, combining (S66) and (S67), we obtain
PT<c(l1—a)} 2 1—a—dry— PA|T? —c(1 —a)| <} (S68)

It remains to show that the quantity P{|T® — ¢(1 — a)| < r2} converges to zero as we
Increase n.

By the definition of Ty and from (S15), we have

Too = su max— Jo(Zi, X3, Y and Tay = sup max —— J.(Z X0 Y|
00 ze[opl]J’fG[d} Z Jk ) 00 = zeop1 ]ke[d]\/—z gk IS

Let o2 k= =3, ij(ZZ,XZ,Y )/n be the conditional variance, and let o = inf, 7, jx

i€[n]

and ¢ = sup, ;; 0., By Lemma A.1 of Chernozhukov et al. (2014b) and Theorem 3

of Chernozhukov et al. (2013), we obtain

PAIT? — c(1—a)| < ra}

<C-5/o-ry-{E[T” | {(Z;, Xi,Y ) }iep] + /1 V1og(a/ra)}

<C-ofa-ro{B[T | {(Zi, X0, Y i) Yiew] + EIT? = Tl | {(Zi, X0, Y i) Yiep] + V1V log(a/r2)}.

(S69)
We first calculate the quantity . By (S90), we have
sup max ||J2 . (Zi, Xi,Yi)|o < C - log?s/h. (S70)
z€[0,1] J:k€d]
Moreover, by (S90), we have
sup max E[J! (Z;, X;,Y;)] < C-log*s/h*. (S71)

2€[0,1] J:k€d]

Define the function class J' = {J? ;(-) | z € [0,1], 4,k € [d]}. By Lemmas S15, S18 and S19,

we have

24
d\7/24 o3/t
°8 (S72)

Sgp N{T', Ly(Q),e} < C - d&?- ( RIL/12 . ¢
Thus, applying Lemma S21 with 0% = C - log*s/h? and ||F||p,@,) < C - d? - (d7/** .
log®4 d/h1/12)24 e have

log®(d/h)

E | sup max— Z 2(Zi X Y) —B{J2,(Z, X, Y)}| <C- —

z€[0,1] Jk€ld



26 Biometrics, 000 0000

By an application of the Markov’s inequality, we obtain

>C- {10%5(‘1/")}1/4> <c. {log5(d/h)}1/4‘

nh? nh?

F JZ Z,X,Y EJ ; Z,)K,)
( bl[lp . ]rna[x] n g[ : ik 7 i ) { Z»Jk( 2 i z)}

Thus, we have with probability at least 1 — C' - {10g5(d/h)/(nh2)}1/4,

9 log®(d/h) 1/4 2
6° = sup max — J2 (Z;, X:,Y;) < sup max E J2 (Zi, Xi, Y )+ C - {7} < C-log”s,
ze[opl]J heig n Z] Wk ) < zE[Opl]J hety { Jk( )} nh2 g

(S74)
where the last inequality follows from (S95) for sufficiently large n. By Lemma S10, we have

inf, ;, E{J? ..(Z,X,Y)} > ¢ > 0. Therefore, we have

2J

:1nf—z 20(Zi, XY ;) > c—sup — Z 220 X3 Y ) —B{J2 (2, X Y)}H = ¢/2 >0,

z,5:k M~ zykn

with probability at least 1 — C - {log®(d/h) /(m?)}” ‘
Next, we calculate the quantity E[T% | {(Z;, X;,Y)}iepm)- By Dudley’s inequality (see,
e.g., Corollary 2.2.8 in Van Der Vaart and Wellner, 1996) and (S96), we obtain
E[To | {(Zi, X5, Y i) biep)] < C - log s - y/log(d/h). (S75)
Moreover, by Lemma S9, we have

N
E[T2 — TB| | {(Z1, X:, Y ) biew] < C -/ h3log*(d/h) + og’ d/h VR logn < 7,

(S76)
with probability at least 1 — 2/d — 1/n. Substituting (S74), (S75), and (S76) into (S69), we

obtain

(S77)

log®* s - log®(d/h) e
nh

PAIT" - i - ) << C- |

Thus, substituting (S77) into (S68), we have

log®? s - log®(d/h)
nh )

P{T<c(l—a)}>21—a—4ry—

By the scaling assumptions, 7, = o(1) and log* s - log®(d/h)/(nh) = o(1). Thus, this implies

that

lim P{T <c¢(l—a)} >21—a,

n—oo



which implies that

lim P{T > ¢(1 —a)} < «,

n—oQ

as desired.

Web Appendix F.2 Proof of Lemma S6

In this section, we show that |T" — Tpg| is upper bounded by the quantity

c. {m+s.m+%#+.s.h2.Wgwh)}

with high probability for sufficiently large constant C' > 0. By the triangle inequality, we
have |T'— Tyo| < |T"— To| + |To — Too|- Thus, is suffices to obtain upper bounds for the terms

|T — T0| and |TQ — T()()l.

~ R R . . A\T
Upper Bound for |T' — Ty|: Let O = (G)U€7 OG0k, Ok, Ok, - - @dk> € RY.
Then, the statistics T can be rewritten as

T = sup max Vnh- (:)j,j(z) - (-)jk(z)‘ P (w,)

2e(0.1] GREE()

= sup max Vnh- @)jk(z) — Oji(z) — 7 P (w,)
R j,k)EE (2 ~ a
€[0,1] (GR)EE(2) {93(2) E](z) (878)
~ T ¢ ~
= sup ('glaé(( : vnh - ’ 7 P, (w,)
2 Kk)ebk(z o S
<ol v {8,} =)
To obtain an upper bound on the difference between T" and Tj, we make use of the following
inequality:
<2y 542 -y for any [3] < - (S79)
119 Y x4y r—y T any 9

Recall from (S60) that

To= su Deat O;( Kn(Z; — 2){X. Y] —3(2)} O(2)/n
’ zG[Opl](JkEE(Z g[;]{ )} K )1 (2)} On(z)/

Applying (S79) with z = {©;(2)}7{Z(2)O — ex}, 6 = {0,;(2)}7E;(2) — 1, and y =

27
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{@j(z)}T{i(z) — 3(2)}Og(z), and by the triangle inequality, we have

|T — To|

[8,)) {8081 —ex} - Pu .

) Z?[g’)l] GOSEC) v {@1(2) Tflj(Z) . 7@%] (O )} K2 {X Y }G’“
{éj(z) T f}z)@k—ek} .

< e Yk EYENETE ~ {0, {£(2) ~ 2()} O4(2)| - [Pu(u2)]

<2swp e Vi (0,617 {26) - 2@} 0ue)- {8561} 200 1] Putwn)

z€l0,1] (4,k)EE(2)

~ T ¢ ~ ~
c2mp g, - ({80} {308 e} - 0,01 (S0 -z} evo - 7
Iz
(S80)
It remains to obtain upper bounds for I; and I, in (S80).
Upper bound for [;: By Corollary 1, we have
= T a log(d/h)
sup max G)»Z}E-z—l <O |24y =2 S81
s max (8,1} 801 “ (ss1)

Moreover, by Lemmas S4 and S2, we have

sup [Pu(ws)] < [E{Pu(ws)}] +C Mzmo{m M} (s82)

2€[0,1] nh nh
with probability at least 1 — 1/d. Thus, by Holder’s inequality, we have

L<2sw s Vi ‘{éj(;:)}T S5(2) - 1\ Pa(wo)]- [{©,(2)}7 {S(2) - =(2) } ©u(2)|

< 2 sup max
ze[0,1] U-R)EE(2)

Vi [{8,)} " £56) = 1] 1P w2l 10, - IE) — B(:) e

<2.M2.m.c.{hz+W}. fz+0{h2+ 1g<c;l/h>} .{W lg«i/m} .

<C~x/%.{h2+ bgfi/h)} ,

with probability greater than 1 —4/d, where the third inequality holds by Theorem 1, (S81),
and (S82).

Upper bound for I5: To obtain an upper bound for Iy, we first decompose the quantity
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Vnh - {0;(2)}T{2(2)O — e} into the following
Vnh - {@](z)}T {f](z)ék - ek}
= Vah- {c?)j<z)}Ti(z) [6u(2) - G);Az)}j—ﬂ- {@j(z)}T{

-~

Iz

\g);

(2) — z(z)} Oi(2).

22

\

~

Next, we show that I5; converges to zero and that the difference between I5, and the term

Vil - {0;(2)}T{2(z) — %(2)}O4(2) is small.

Upper bound for I5;: By Holder’s inequality and Corollary 1, we have

Tal < sup s Vb H (2) OO.H(ak(z)—G)k(z)Hl
2, [log(d/h)
<5 A0 2R (84

g, s-logld/h) = o o
<c.{s.M+ U s \/1g<d/h>},

with probability at least 1 — 1/d.

Decomposition of I5: By adding and subtracting terms, we have

Iy = m {@j(z) . @j(z)}T {f:(z) . E(z)} Ou(2) +@. (0,(2)}" {i(z) - E(z)} O4(2).

Lo Iz
(S85)
Similar to (S84), we have
Lt < sup max vk [8,(2) = ©,2)|| - |[£¢) - =) - 10(2)1
z€[0,1] Gk)EE(2) 1 max
2
1
<C-\/nh-M-s-{h2+ Mh/h)} (S86)
n

<C- {s- nh9+%\/%/h)+s-h2'\/10g(d/h)}a

where the second inequality holds by Holder’s inequality, Corollary 1, and the fact that

@(Z) € Z/{&M.
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Combining the results (S84)-(S86), we have

L=2sup max Vnh- [{ ()}T{fl(z)ék—ek}—{@j(z)}T{f](z)—Z(z)}@k(z)} B, (w,)]

z€(0,1] (HRIEE(2)

<2 sup |Pu(w,)| - [Ia1 + Loo]
z€[0,1]

fz+0 {h2 + %}] (o1 + Ioo1)

C-{S.W+%\/é_z/h>+s~h2. log(d/h)},

(S87)

where the third inequality follows from (S82).

Combining the upper bounds for 7; in (S83) and I in (S87), we have

|T—Toy<0-{s-m+%\/(_z/h>+s-h2- log(d/h)}, (S88)

with probability at least 1 — 1/d.

Upper bound for |7y — Tyo|: Recall from (S61) the definition of Ty

Vol - | Y {0;(2)} Kin(Zi — 2) {X;Y] = £(2)} ©(2)/n

i€[n]
(0,1} [E{mz COXYT) - EB{K(Z - z)}zm] O(2)/nl;

Using the triangle inequality ||z| — |y|| < |z — y|, we obtain

Too = sup max
z€[0,1] G:k)EE(2)

Ty — Too| < Vth- sup  max ’{@ [E{Kh(z —)XYTY —E{K\(Z — z)}z(z)} @k(z)(

ZE[O 1} (j k EE(Z

<Vah-osup max (10;(2)]1 - [|©k(2) 1 - [E{KW(Z — 2)X;Yi} = E{KW(Z — 2)} - S (2)]

z€0,1] (k)EE(2)

<Vnh-M?- sup max |E{Kn(Z — 2) XY} —E{Ky(Z — 2)} - Zji(2)]

z€[0,1] (HRIEE(2)
= Vi M2 |f2(2) Bal2) + OUF) = [2(2) - Bn(z) + 2n(2) - O02)]
< M2 ’ MO‘ : W,

(S89)

where the second inequality follows from an application of Holder’s inequality, the third
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inequality follows from the fact that ©(z) € U; ar, the first equality follows by an application
of Lemma S2, and the last inequality follows from Assumption 2 and that k% = o(1).

Thus, combining (S88) and (S89), there exists a constant C' > 0 such that

T — Too| < C - {\/nh5 + s Vnhd + %\/_Z/h) toso b2 log(d/h)} :
n

with probability at least 1 — 1/d.

Web Appendix F.3 Proof of Lemma S7
Recall from (S61) the definition

Too = sup max Vnh- Z{@ N K, (Z i —2) {X0Y] —%(2)} Op(z)/n

z€[0,1] (4,k)EE(z) il

{0,(z))" [E{KM C XY} - (KL (Z - z>}2<z>] Ou()/n|.

(Zi, X3, Y ) — T2

2,7k

Recall from (S15) that J, jx(Z;, X;,Y ;) = 7Y

2,0k

(Z;), where J w(Zi, X3, Y3)
and JZ(ZJ)k(ZZ) are as defined in (S13) and (S14), respectively. Let J = {J, jx | z € [0,1], j, k € [d]}.

Then the intermediate empirical average Tyo can be written as

Too = sup  max \/_ijjk Zi, X, Y|

z€[0,1] (4,R)EE(z icin]

In this section, we show that there exists a Gaussian process W such that

(R 1/8
T — W] <C‘{log s - log (d/h)}

nh
with high probability. To this end, we apply Theorem A.1 in Chernozhukov et al. (2014a),

which involves the following quantities

e upper bound for sup max ||J, ;x(Zi, X, Y ) oo;
z€[0,1] J:k€ld]

e upper bound for sup max IE{ (2, X Y)}
z€[0,1] Jk€ld]

e covering number for the function class J.

Let Sj(z) and Si(z) to be the support of ©;(z) and O(z), respectively. Note that the

cardinality for both sets are less than s. We now obtain the above quantities.
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Upper bound for sup 'r%a[};l} |2 k(Zis X4, Y ;)||co: We have with probability at least
2€[0,1] J:RE

1—1/(2s),

sup max ||/, x(Zi, X3, Y3)||so
2€[0,1] j,ke€ld]

<V s max 105 1Ol (g max ool + Mo )

z€[0,1] J-k€ld] (2),kESK (2
2 2
T S I LN (s90)
4 2 2
< ﬁM My - M, - || K| - log(2s)
— O, - log s

N

where the first inequality follows by Holder’s inequality and the definition of ¢, ;, and k. and
the second inequality follows from (S47) and (S54). Note that since we are only taking max

over the set S;(2) and Si(2), instead of a log d factor from (S54), we obtain a log(2s) factor.

Upper bound for sup Igaﬁ{q E{ijk(Z,X,Y)}: By an application of the inequality
ze[0,1] k€ ’

(x —y)? < 222 + 22, we have

(2, X,Y)—J

Sy ]

2 2
< 2sup max E {{Jib?k(Z,X,Y)} ] +2sup max E {{Jz(?]?k(Z)} ] .

z€[0,1] J-keld] 2€(0,1] JkEld]

sup max E{J% (Z,X,Y)} = su maXE{{J(I)
zE[OI,)l} J:keld] { Jk( )} ZE[OI,)I] J:keld] =gk

J/

I I
To obtain an upper bound for I;, we need an upper bound for sup max E{ max qi j ot

2€[0,1] HREld]  FES;(2),kESK(2)
Recall from (S9) the definition of g, jx(Z;, Xi;, Yir) = Kn(Zi—2)X;;Yi, and that q. jx(Z;, Xij, Yir) =

G2.k(Zi, Xij, Yie) — E{g. jx(Z, X;,Yy)}. Thus, we have

sup max E max 3 = sup max E max e — E(g, ; 2}
s kel {jesxz),kesk(z) K ’”’“} sl kel Le&(zmesk(z)e[d] {92t = Elgge)}
< 2 sup maXIE{ max gg-}+2sup max E*(g. %),
2€(0,1] J:k€[d] §€S; () ke (eld ~ z€[0,1] J-keld] (9:.5¢)
(S91)

where we apply the fact that (x—y)? < 22?4+ 2y? to obtain the last inequality. By Lemma S2,
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we have 2 sup max E?(g. ;) < 2{fz- M, + (’)(hQ)}2. Moreover, we have
z€[0,1] J-k€ld]

2 sup max E max 2 }:2511 maXIE{ max KQZ—ZXgYQ}
ooy kel {jes]«z),kesk(z)e[d] Jz.ak el kel ies; () ke ()eld A JXGY

< 2- My -log?(2s) sup max E{K}(Z —z)}
sef0.] Skeld

<2 d o) {1 o K3+ 00) + 007 |

log?(25)
h Y
with probability at least 1 —1/(2s), where the second inequality follows from an application

<3 [z K- My -

of Lemma S2.

Thus, by Holder’s inequality, we have

I <2-h- sup max E
2€[0,1] J-k€ld]

{1e6 Ioneil - max 1o} ]

JES;(2),kES

<2-h-M*- sup max E{ max qijk}

2€[0,1] J,ked] J€S;(2),keSK(2) (892)
_ logZ(2 _
<2 ho Mt {3'fZ'HKH§'M§<' ! S)+2{fZ'Mo+O(h2)}2}
<8 M*- fr - My - ||K||3 - log*(2s),
where the second inequality holds by the fact that ©(z) € Us .
Similarly, to obtain an upper bound for I, we use the fact from (S49) that
2 3 2
sp E {12} < 2 fy - K (593)
z€[0,1]
By Holder’s inequality, we have
2
I, <2 -h- E O, -|© . 3, |k,
c< 2 s max B {10, - 1Ou ) max | [E(2) -k ]
<2-h-M4-M3- sup E(kz) (594)
z€[0,1]

<6-M7- M- fr-||K]3,
where the second inequality holds by Assumption 2 and by the fact that ©(2) € Us a, and

the last inequality holds by (S93).
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Combining the upper bounds for ; (S92) and I (S94), we have

sup rgaﬁ]E{ P2 X Y)F <8 M- [z ||K|5- { M2+ My -log*(2s)} < C-log’s = a7,
2€[0,1] JRE

(S95)

for sufficiently large C' > 0.

Covering number of the function class 7: First, we note that the function class J is

generated from the addition of two function classes

g0 ={/ e} ad P ={s8 201},
Thus, to obtain the covering number of 7, we first obtain the covering number for the

function classes j o and T (2) . Then, we apply Lemma S15 to obtain the covering number

of the function class J. From Lemma S18, we have with probability at least 1 — 1/d,

4/ log?/? d) 6

NI 12(Q), }<c-( N

Moreover, from Lemma S19, we have

d1/6 6
{Jk7 2(Q )7€}<C'<W> :

Applying Lemma S15 with a; = d** - log®*d/h'/?, v, = 6, ay = d"/S/h*/3 and vy = 6, we

have

12
dY7/24 o3/t d
o , (596)

N{J,Ly(Q),e} < C-d*- ( P12 . ¢
where we multiply d? on the right hand side since the function class J is taken over all

J, k € [d].

Application of Theorem A.1l in Chernozhukov et al. (2014a): Applying Theorem
A.1 in Chernozhukov et al. (2014a) with a = d%/2* . log”/*d/h' /"2 b = C - logs/Vh,

oy =C-logs, and

K, =A-{logn Vlog(ab/o;)} = C -log(d/h),
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for sufficiently large constant A, C' > 0, there exists a random process W such that for any

7€ (0,1),
<o (o)
n
for some absolute constant C’. Picking v = {log®s - log4(d/h)/(nh)}l/8, we have

6 ¢ 1ngd 1/8 6 14 18
Too—W| > ¢ o8 s 108 (d/h) o [logs loat @/

|T00 —W| 2 C

bE,  (ba))' 2K 0BT K
' (yn)1/2 ~1/2p1/4 + ~1/3p1/6

as desired.

Web Appendix F.4 Proof of Lemma S8

Recall from the proof of Lemma S7 that

1
00 sup  max ~ E ikl )

z€[0,1] (J,k)EE(z) iem

We note that

1
TB - — Jz j Zi7 Xi7 YZ YA
o0 = Sup  max o |vn ZZ g )€

z€[0,1] (GR)EE(
where & "~ N (0,1). To show that the term |[W — T;%| can be controlled, we apply Theorem

A.2 in Chernozhukov et al. (2014a).

/ 2 ¢ 25 K3 1/4 25 K3 1/4 1
Q;Dn - u + (b ) and 771(5) = (b ) + -,
n n 5 n n

as defined in Theorem A.2 in Chernozhukov et al. (2014a). From the proof of Lemma S7,

Let

we have b = C - logs/vh, K,, = C -log(d/h), and o; = C - logs. Since 1’K,, = C - log®s -
log(d/h)/h < n -log® s for sufficiently large n, there exists a constant C” > 0 such that
P (118 = W >+ | {(Z0 X0, Y bie] < € 7u(0),

with probability at least 1 — 3/n. Choosing § = {log*(s) - logg(d/h)/(nh)}l/8, we have

: {10g4(3) 'nlzgg(d/h) }1/8 ) {(Z, X0, Y ) Yiep | < C"- {10g4(3) .nl;g?»(d/h) }1/8

T8 —W|>C

with probability at least 1 — 3/n.
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Web Appendix F.5 Proof of Lemma S9

In this section, we show that |77 — T;Z| is upper bounded by the quantity

1 4
s-\/h3log3(d/h)+8'\/%+ h®logn

with high probability for sufficiently large constant C' > 0. Throughout the proof of this
lemma, we conditioned on the data {(Z;, X;,Y;)}icn. By the triangle inequality, we have

TP — T8 < |TP —TE|+ TP — TE|. Thus, it suffices to obtain upper bounds for the terms

TP — TP| and TP — T

Upper bound for |T? — TP|: Recall from (S59) and (S62) that

~ T —~
Y oicm 195(2) ¢ Kn(Zi — 2) X, Y7Ou(2) — ey &/n
TB: sup (E_;laé(()\/nh 6[]{ J } T{ } 7
z K)EL(Z ~ ~
e {8,0)} %)

and that

TP = Sl[lp]( inax Vnh - Z [{@ N Ky (Z; — 2) {XZ-Y;TF—E(Z)}GIC(Z)} &/nl,
z€[0,1] GR)EE i€[n]

respectively. Using the triangle inequality, we have

IT? —T| < Vnh -

st[lp] Ing( | [1 Z {@j(z)}TKh(Zi —z) {XlYZT(:)k(z) — ek} / {C:)j(z)}T flj(z)
ze0,1] (GRk)EE(2 icm]

_ = Z {©,(2)}" Kn(Z; ){XiYZT—Z(Z)}Gk(Z):|€i

<2vnh | sup Z { i(z } Kn(Zi — 2) {Xin‘T—E(Z)}ek(Z)gi

zelo,1] (4, k)GE( )n

I;

+2Vnh-| sup  max Z{e N Kn(Zi — )X YT (@k(z)—@k(z))&

ze[o 1] G,R)EE(2) N

Iz

zE[O 1]

#2Vah| sup max Z{G N Kn(Zi— ) { XY - 2(2) | Oul2)é

I3

(S97)

where the second inequality holds by another application of the triangle inequality and
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inequality in (S79). We now obtain upper bounds for Iy, I5, and I3.

Upper bound for [;: By an application of Holder’s inequality, we have

1 < sup max ‘
z€0,1] J-k€[d]

©;(2) = ©;(2)]|, - 1©w()ll - Vah | sup max fZ{Kh i = )XY~ Kn(Zi - 2)Z3u(2)} &

€[o0,1] J:k€ld] M

gM,C.S.{hu 1g<d/h>}m

1
o sup max — Z {Kn(Z; — 2)Xi;Yir — Kn(Z; — 2)2,,(2)} &

z€[0,1] J-k€E[d] T

i1€[n]

)

(S98)

where the last inequality follows from the fact that ©(z) € U, )y and by an application of

Corollary 1. For notational convenience, we use the notation as defined in (S16)
W, (Zi, Xij, Yie) = Vh - {KW(Zi — 2) XY — Kn(Zi — 2)Z6(2)} - (S99)
Then, we have

\/jZ{Kh X Y Kh(ZZ ) Jk( )}51_ \/—ZWij ZzaXmaY;k) &i-

i€[n] i€[n]

We note that conditioned on the data {(Z;, X;,Y;)}icin), the above expression is a Gaussian

process. It remains to bound the supreme of the Gaussian process

\/— ZWZJk Zzaijay;k:) ~ O - Z 2,5k ZzaszY;k)

ze[n

in probability.
To this end, we apply the Dudley’s inequality (see, e.g., Corollary 2.2.8 in Van Der Vaart
and Wellner, 1996) and the Borell’s inequality (see, e.g., Proposition A.2.1 in Van Der Vaart

and Wellner, 1996), which involves the following quantities:

W2

e upper bound on the conditional variance Z S ik

(Zm Xija Y;k)/n;

i€[n]

e the covering number of the function class
W = {W.;(-) | 2 €[0,1], j, k € [d]}

under the Ly norm on the empirical measure.

Upper bound for the conditional variance } " W2, (Z;, Xij,Yi)/n : By the
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definition of W, ;1(Z;, X;;, Yir) in (S99), we have

Z 7o X Vi) = & SRR Zi = 2)X Vs~ KlZs — 2) S2))’

i€[n]

< h-max {Ky(Z; — 2) XY — Kn(Zi — 2)20(2)}

i€[n]
3100
< 20 -max {K}(Z )XEJK,%—l—KfL(Zi—z)E?k(z)} (8100)
<zh-(ﬁuffuzo- toghd-+ g KT 2)
log?d
<C ’
D

with probability at least 1 — 1/d. Note that the second inequality holds by the fact that
(r —y)? < 222 + 232, and the third inequality holds by (12) and Assumption 2, and the fact

that max(X,;,Y;;) < Mx - vlogd with probability at least 1 —1/d.

Covering number of the function class W: To obtain the covering number of the
function class W under the L, norm on the empirical measure, it suffices to obtain the
covering number sup N{W, Ly(Q), ¢}. First, we note that W,_jx = vVh-{g.jr — w. - Z;r(2)}.

From Lemma S16, we have K; = {w,(-) | z € [0,1]} and that

4
sup N{K+1, Lo(Q), e} < (2'0K}-LHKHTV) |
@ €

Also, From Lemma S17, we have Gy jr = {g.x(-) | z € [0, 1]} and that

2-M% -logd - Ck - ||K||TV)4
he '

Sgp N{ngk, LZ(Q)a 6} < (

Moreover, by Assumption 2, 3;.(z) is M,-Lipschitz. Thus, applying Lemmas S14 and S15,

we obtain

9 9
10g4/ 9d 10g4/ 9d
Sgp N{W7L2(Q>7€} < 222M0M)8(C§(||K||8TV||K||20(12<h17/18€ :Od2 )

where the term d? appear on the right hand side because the function class W is over

J, k € [d].
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Applying Dudley’s inequality and Borell’s inequality: Applying Dudley’s inequality

(see Corollary 2.2.8 in Van Der Vaart and Wellner, 1996) with (S100) and (S101), we have

Oy o5 d2/9 - log"° d
E<{ sup max —ZWZJk Zi, Xig, Yie) - & p < C'/ log RLT/18¢ de.
0

z€[0,1] Jk€ld]
Applying (S19) with b = C - y/log?d/h and by = d®/? - log®® d/h'7/'8, we have

log®(d/h)

E Sup max —— ZWZ]]C ZqupY;k) f < C- i )

z€[0,1] Jk€Eld]

(S102)

for some sufficiently large C' > 0.
By Borell’s inequality (see Proposition A.2.1 in Van Der Vaart and Wellner, 1996), for

A > 0, we have

log®(d/h)
P |:221i10p1]]£é%)(() T ;]Wzﬂc Z’L7X’Lj7)/lk) f 20 T"’)‘ {(217X7~7Y )}ze[n]
2
where % is the upper bound on the conditional variance. Picking A = C'- logs(#, we have
log®(d/h) 1
P su max ——= WZ ZleZ 7}/; >C - 7 ZMXZ)YZ el | < 5-
%ﬁhﬂﬂﬂvﬁE% " # Yan) & h { Jhiew | <3
(5103)
Thus, substituting (S103) into (S98), we have
log(d/h log®(d/h
L<C M.s dp2y Jlostd/m) | [log(d/h)
nh h
(S104)

s-1/h3log*(d/h) + C - s - “l(wg;(#’

with probability 1 — 1/d.
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Upper bound for /5: By an application of Holder’s inequality, we have

I, <Vnh- sup max H@,(z) — @j(z)Hl . H(:)k(z)H -

z€[0,1] J,k€[d] 1

1
sup max E AZ[] {Kh(Z, — Z)X”Y;k}&

z€[0,1] J-k€[d]

sup max [H@k(z)—@k(z)ul+||@k(z)||1] 'C~s~{h2+ IOg(d/h)}

z€[0,1] 4:k€Eld] nh

N

(S105)

1
x Vnh - | sup max]EZ{Kh(zi—z)Ximk}si

z€[0,1] J,k€ld by

gC.M.S.{,m laclgm}n

I

1
sup max] E .;] {K;L(Zi — Z)X”Y;k}fz

z€[0,1] J,k€[d

where the second inequality holds by triangle inequality and Corollary 1, and the last inequal-

ity holds by another application of Corollary 1 and the assumption that h?>++/log(d/h)/(nh) =
o(1).

Recall the definition of g, jx(Z;, Xij, Yir) = Kn(Z; — 2)X;;Yik. Conditioned on the data
{(Zi, X;,Y ;) }icp), we note that
L
vn

Similar to the upper bound for I, we apply Dudley’s inequality and Borell’s inequality to

h
Z \/ﬁ'gz,jk:(ZhXija Yig)-&i ~ N {0, n Z gijk(ZiaXija Yir)

1€[n] i€[n]

\/gz {Kh(Zi - Z)Xijyik}fi =

i€[n]

bound the supreme of the Gaussian process in the last expression.
To this end, we need to obtain an upper bound for the conditional covariance. By (S54),
we have

h 1
=3 g2l Z Xy, Ya) < - M- KL - log”d, (S106)

1€[n]

with probability at least 1 — 1/d. In addition, by an application of Lemma S17, the covering

number for the class of function {Vh - g. jx(-) | z € [0,1], 4,k € [d]} is

2. M2 -logd - Cx - ||K||TV)4

sup N [{\/ﬁ-gz,jk(.) | 2€0,1], j, k€ [d]} ,LQ(Q),E] < d2.( T

(S107)

By an application of Dudley’s inequality, we have

VM K o7 12 ]
< C’-/ : ' \/log (w>de.
0

hl/2¢

1
E<{ sup max NG Z V- g, (Ziy Xij, Vi) - &
1€[n]

2€[0,1] Sk€ld]
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Applying (S19) with b; = \/M§( K ||4, - log* d/h and by = d'/? -log d/h'/?, we have

log*(d/h)

. (S108)

E sup max _Z\/_ 9z.5k ZuXUasz:) 5 gc

2€[0,1] J,keld] TL

By Borell’s inequality (see Proposition A.2.1 in Van Der Vaart and Wellner, 1996), we have

3
p[z;ﬂ”%é ¢72%vf'%]azl&]xw ST CRRVEL S LA ﬂzhxhyahQJ
<2 exp( 22>
X
Picking A = C - \/log (d/h) we have
log®(d/h) 1
P * g9z ZMXZ7}/; 20 - 7 ZHXZaYl i€ln g_-
ziﬁfi]jgéﬁi j%: ik i Yir) - & N {( ) Yien) P
(S109)
Thus, by (S105) and (S109), we have
log(d/h log®(d/h
12<0.M.5.{h2+ og(/)} o0/
(S110)

s -1/ h3log(d/h) + \/log d/h)

with probability at least 1 — 1/d.

Upper bound for I3: By an application of Holder’s inequality, we have

2

k-

1

fouc

sup max — Z {Kn(Zi — 2)Xi;Yie — Kn(Zs — 2)251(2)} &

I3 < sup max
z€[0,1] J:kE€Md] N

z€0,1] J€ld]

{60} 86) e

<M3-O-s~{h2+ log(d/h)}\/@-

1
o sup max — > {Kn(Zi — 2)Xi;Yik — Kn(Zi — 2)Z5k(2)} &

ze[0,1] J:k€ld] N i)

h

s-1/h3log®(d/h) +C - s- log d/h)

<cwﬁ.y{#+ log Wh} %m@wm>

(S111)

where the second inequality holds by the fact that ©(z) € U,y and by an application of

Corollary 1, and the third inequality holds by (S103).
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Thus, combining (S104), (S110), and (S111), we have

Ilog(d/h
T —TE| < C-s-\/h3log’(d/h) +C - s- 1¥§£§;_l (S112)

with probability at least 1 — 3/d.

Upper bound for |[T}? — TB|: Recall from (S63) that

T = sup max Vn

z€[0,1] (hR)EE(2)

| (1052 Kz = 2) {XYT = B(2)} ©(2)

i€[n]
—{0;(2)}" [E{EM(Z - )XY}~ E{K\(Z - 2)}2(2)|04(2)) - &/n].

By the triangle inequality, we have

|T(f3 — T£| <Vnh- sup max
ze[o 1] (4,k)EE(2)

% > (105" [E{Kn(Zi = )X, YT} ~ E{Ku(Zi - 2)}5(2)| k() - &
i€[n]

< Vnh- sup max

2€0.1] (R)EE(2)

{©,(2)}" [E {Kh(Z - z)XYT} “E{Kn(Z — z)}z(z)] @k(z)‘ :

Ly
i€[n]

<Vnh-M?.C- K%

Za

16[ ]

)

(S113)

where the last inequality holds by applying Holder’s inequality and Lemma S2. Since §; RS-

N(0,1), by the Gaussian tail inequality, we have

1 2logn 1
P |- il >/ < —.
nz:5 n n

i€[n]

Thus, substituting the above expression into (S113), we obtain

21
TB — TB < Vnh - M2 C -2y =22 < - /B logn, (S114)
n

with probability at least 1 — 1/n.

Combining the upper bounds: Combining the upper bounds (S112) and (S114), and
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applying the union bound, we have

B B 37403 log4(d/h) 5
P||T” =Tyl = C-s-y/h3log’>(d/h)+C - s- 2 + C - +/hologn
log*(d/h)
‘T _TE ‘+’TO —T00’>C s-1/h3log®(d/h) + —L2 g c /i logn | {
‘T _TB ‘>C’ s 1/h3log?(d/h) + log d/h

{(Zi, X, Y ) }icin

Zu Xi7 Yz)}zG[n]:|

{(Zi, X, Yi)}ie[n]:|

+P ‘Tf —T(f)’ >C-\/IPlogn {(Zi,Xi,Yi)}ie[n]}
<2/d+1/n,
as desired.

Web Appendix F.6 Lower Bound of the Variance

We aim to show that the variance of J, j;, defined in (S15) is bounded from below.

LEMMA S10: Under the same conditions of Theorem 2, there exists a constant ¢ > 0

such that inf, min; ; Var(J, jz) = ¢ > 0.

Proof. In this proof, we will apply Isserlis’ theorem (Isserlis, 1918). Given T ~ N(0,3),
Isserlis’ theorem implies that for any vectors u, v € R?,
E{(u"TT"v)*} = E{(u"T)*}E{(v'T)*} + 2{E(u"Tv'T)}*
= (W'Zu)(vIZv) + 2(u'Zv)? (S115)

According to the definition of J, jj, in (S15), it can be decomposed into J, jx(Z;, X;, Y ;) =

JN(Z2,X,,Y) — JP)(Z)). Recall that
J! jk(zl, X, Y) =Vh-{0,(2)} - [Kn(Z — 2) X, YT —E{K\(Z - 2)XYT}] - ©4(2),

and
JOZ) =V {0;(2)}T - [Kn(Zi — 2) — E{KW(Z — 2)}] - B(2) - O(2).

D(Z.X.Y),J%)(Z)} sep-

’ Y z,gk

We will calculate Var{JZ(?j)k(Z)} Var{ k(Z X,Y)}, and Cov{

2,j 2,j

arately.

We first calculate Var{Jz(i.)k(Z)}. Following a similar method as the proof of Lemma S2,
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we have E{K,(Z — 2)} = fz(z) + O(h?) and E{K}(Z — 2)} = h™' fz(2) | K*(u)du + O(1).

This implies that
Var{J")(2)} = ©%(2) - f2(2) / K2(u)du+ O(h). (S116)

Next, we proceed to calculate the variance of J (1) (Z). By a change of variable and Taylor’s

2,7k

expansion, we obtain
O;(2) " E{Kn(Z — 2)%(Z)}O(z)

= 0,(2)T {/ K (u)X(z + uh) f2(z + uh)du} O(2)

= 0,(2)" [/ K(u){2(2) + uhX(2) + u?h*E(2)VH f2(2) + uhfz(2) + u*h2 f1(2)Ydu| O(2).

(S117)
Note that each term in the integrant that involves [ uK (u)du is equal to zero since [ uK (u)du =

0 by assumption. For terms with (z), we have
0, B84 (2) [ K(u){f2(2) + uhfz(2) + 0l fo()du
= 0,i(2){f2(2) + O(h?)}.

For terms that involve 3(z) and 3(2'), we have
0,(2) ()04 (2) < M, [©,(=):104(2)]l> < p*M, = O(1),

since the maximum eigenvalue of ©(z) is bounded by p by assumption. Thus, combining the

above into (S117), we have

0;(2)TE{Kn(Z — 2)B(2)}Or(2) = ©j(2) f2(2) + O(h?). (S118)
Next, we bound the second moment. By the Isserlis’ theorem in (S115), and by taking the
conditional expectation, we have
E[K}(Z — 2){©;(z)" XY ©,(2)}*]
=E(Ki(Z - 2)[{0;(2)"2(2)0;(2) HOw(2) 2(2)O4(2)} + 2{0;(2)" 2(2)Ok(2)}]).

(S119)



Following a similar argument as in (S118), we can derive

E[K}(Z-2){,(:)" XYTO,()}] = {©,,(2)O(2)+20% ()} fo (= / K2 (u)dutO(1)
(S120)

Thus, we have

Var {J0(2) } = {0;5(2)O1e(2) + 20% ()} 2(2) / K2(u)du + O(h). (S121)

Now we begin to bound the Cov{.J; Jk( ), Jz(Qj)k( )}. By using a similar argument as (S118),

we have

E[O©;1(2)Ki(Z — 2){0;(2)" XY O(2)}] = ©,(2) - h™' fz(2) / K*(u)du + O(1), (S122)

Combining with (S122) and (S118), and using the covariance formula, we have that

COV{ ij ) ij } @ (2)fz(2) /Kz(u)du + O(h). (S123)
Using (S116), (S121) and (S123), we have
Var{ . w(2)} = Var(J.5,(2)) + Var {J5,(2)} = 2 Cov {JL5,(2), J5,(2)}
—{©,(2)0u () + B4 2(2) [ K(u)du+ O(h) > .

where the last inequality is because p is smaller than the minimum eigenvalue of ¥(z) for

any z € [0,1] and inf.ep1 fz(2) = f, > 0 by Assumption 1. Since the lower bound above

is uniformly true over z, 7, k, the lemma is proven.

Web Appendix G. Proof of Theorem S1

In this section, we show that the proposed procedure in Algorithm 1 is able to control the
type I error below a pre-specified level . We first define some notation that will be used
throughout the proof of Theorem 3. Let E*(z) be the true edge set at Z = z. That is,

E*(z) is the set of edges induced by the true inverse covariance matrix ©(z). Recall from
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Definition S4 that the critical edge set is defined as

C{E(z),P} ={e| e d E(z), there exists E'(z) D E(z) such that F'(z) € & and E'(z)\{e} ¢ £},
(S124)
where & = {E CV x V| P(G) = 1} is the class of edge sets satisfying the graph property
P.
Suppose that Algorithm 1 rejects the null hypothesis at the T'th iteration. That is, there
exists zg € [0,1] such that Ep(z) € & but Er_i(z0) ¢ . To prove Theorem 3, we state

the following two lemmas on the properties of critical edge set.

LEMMA S11: Let Er(z9) € & for some zy € [0,1]. Then, at least one rejected edge in

Er(z0) is in the critical edge set C{E*(z),P}.

LEMMA S12: Let € € C{E*(2),P} be the first rejected edge in the critical edge set
C{E*(z0),P}. Suppose that € is rejected at the lth step of Algorithm 1. Then, C{E*(z),P} C

C{Ei_1(z), P} for all z € 0,1].

The proofs of Lemmas S11 and S12 are deferred to Sections Web Appendix G.2 and Web

Appendix G.3, respectively. We now provide the proof of Theorem 3.

Web Appendix G.1 Proof of Theorem 3

Suppose that Algorithm 1 rejects the null hypothesis at the T'th iteration. That is, Fr(zg) €
P and Er_1(z) ¢ <. By Lemma S11, there is at least one edge in Er(z) that is also in
the critical edge set C{E*(29), P}. We denote the first rejected edge in the critical edge set

as €, i.e., € € C{E*(z), P} and suppose that € is rejected at the {th iteration of Algorithm 1.



We note that [ is not necessarily 7. Thus, we have

z€[0,1] e€C{E*(2),P}

sup  max \/nh'C:)je(z) : ZKh(Zi—z)/n> Vnh-@):e(zo) : ZKh(Zi—zo)/n
i€[n]

i€n]
>c{l—a,C(E_1,P)}
>c{l—a,C(E*,P)},
where the first inequality follows by Lemma S11, the second inequality follows from the [th
step of Algorithm 1, and the last inequality follows directly from Lemma S12.

Under the null hypothesis, ©.(z) = 0 for any e € C{E*(z), P}. By Theorem 2, we have

lim sup Por)(va =1)

n—oo @(_)ego

~de
< lim sup P|sup max Vnh-1©,(2)]-Y KiZ —2)/n>c{l —a,CEP
n—o0 @(‘)Ego ZE[O,I] GGC{E*(z),’P} | ]k( >| Zez[n] ( )/ { ( )}

< a,

as desired.

Web Appendix G.2 Proof of Lemma S11

To prove Lemma S11, it suffices to show that the intersection between the two sets Er(zo)
and C{E*(z),P} is not an empty set, i.e., Ep(z) N C{E*(20), P} # 0. To this end, we
let F' = Er(z0) U E*(z0) and let Ep(z0) \ E*(20) = {e1,ea,...,ex}. We note that the set
Er(20) \ E*(z) is not an empty set since Er(z) € & but E*(z) ¢ 2.

Using the fact that P is monotone and that Er(zg) € &2, we have F € & since adding

additional edges to Er(zp) does not change the graph property of Er(z). Then, we have
E*(Zo) Q E*(Z(]> U {61} Q E*(ZQ> U {61,62} Q cee g E*<Zo) U {61, ey ek} =F.

Since E*(z9) ¢ & and F € &, there must exists an edge set {e1,...,eg } for kg < k that
changes the graph property of E*(zy) from E*(2) ¢ & to E*(z0) U{e1,...,ex} € L.

Thus, there must exists at least an edge € € {ey, ..., ek} such that e € C{E*(2y), P} since

47
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adding the set of edges {ey,...,ex, } changes the graph property of E*(z). Also, € € Er(2o)

by construction. Thus, we conclude that Er(zo) N C{E*(z), P} # 0.

Web Appendix G.3 Proof of Lemma S12

Let e € C{E*(z), P} be the first rejected edge in the critical edge set C{E*(2y), P} for
some z € [0, 1]. Suppose that € is rejected at the (th step of Algorithm 1. We want to show
that C{E*(z), P} C C{E;_1(z), P} for all z € [0,1]. It suffices to show that C{E*(z9), P} C
C{E;_1(20),P}. In other words, we want to prove that for any ¢ € C{E*(z),P}, € €
C{E_1(20), P}. We first note the following fact

El_l(zo) N C{E*(Zo),P} = @ and El—l(ZO) é P, (8125)

By the definition of the critical edge set (S124), we construct a set E’ such that E*(z9) 2 F’,
E' € &, and E'\ {e'} ¢ &, for any ¢ € C{E*(z),P}. By the definition of monotone
property, we have E' U E;_1(29) € . Since C{E" U E;_1(2), P} C C{Ei_1(20), P}, to show
that € € C{E;_1(z),P}, it is equivalent to showing ¢’ € C{E' U E;_1(z), P}. That is, we

want to show

{E"UEi1(20)} \ {e'} ¢ 2.
This is equivalent to showing
{E"\ e} U{E1(20) \ E'} ¢ 2. (5126)

There are two cases: (1) E;_1(20) \ E' = (0 and (2) E;_1(20) \ E’ # (). For the first case, (5126)
is true by the construction of E’. For the second case, we prove by contradiction.

Suppose that (E'\ €) U{Ei_1(z) \ '} € Z. Let Ei_1(2) \ E' = {€},...,. }. By the
definition of monotone property, we have
E\{e'} € (E"\{e'})u{e} C -+ C (E"\{e'H)U{er 65, e} = (E"\{' ) U(Ei-1(20) \ E).

Since E'\ {€'} ¢ & by construction, and that (E'\ {€'}) U (Ei_1(z0) \ E') € &, there must
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exists an edge set {ey, ..., ek} for kg < k that changes the graph property of E'\ {¢'} ¢ &
o(E'\{e})ufel,...,e € 2.
Since €j, € Ei_1(2%) \ E' and that E*(z) C E' by construction, we have e, ¢ E*(z).

Thus, e, € C{E*(20), P}. This contradicts the fact that

El_1<210) N C{E* (Zo), 7)} - @

Web Appendix H. Proof of Theorem S2
By the definition in (S5), if ©(-) € G1(0;P), there exists an edge set E and 2z, € [0, 1]

satisfying
E) C E{O(z)},P(E;) = 1 and m}zn |®.(z0)] > C\/log(d/h)/nh, (S127)
ec (')

and we will determine the magnitude tf constant C' later. We aim to show that P{E{ N
C(0,P)} = P(E}) = 1. First, there exists a subgraph Ejj C Ej, such that P(Ey) = P(E}) =1
and for any EC EY, P(E) = 0. We can construct such E{ by deleting edges from Ej until
it is impossible to further deleting any edge such that the property P is still true. By
Definition S4, Ej C C(0,P) and therefore Ej C Ej N C(,P). By monotone property, we

have P{E,NC(0,P)} = P(E}) = 1 since P(E}) = P(E;) = 1. Consider the following event

& = [ min \/_|® ZKh i — 20)/n > {1 —«,C(0, 73)}]

€ E/NC(0,P)

According to Algorithm 1, the rejected set in the first iteration at zg is

El(zo):[GGC(@ )\/_|@ ZKh »—zo/n>c{1—aC(@P)}]

1€[n]

Under the event &, we have Ej NC(0,P) C E1(z) and since P{E,NC(D, P)} = P(E}), we

have P{E,(z9)} = P(E}) = 1. Therefore,

P(¢o = 1) > P(E). (S128)
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It suffices to bound P(&;) then. We consider two events

= |:H€11En\/_‘@ 20 ZKh i — 20 /n> 26{1—01 C(@ P)}:|,
€ i€[n]

532[63%\/_\@( ;}Kh .~ 20)/ <c{1—a,0(@,7>>}]

We have P(&;) > P(€, U &;). By Lemmas S2 and S3, we have

IP{ sup,

S Kn(Zi = 2)Jn — f2(2)] > log(d/h)/nh} < 3/d. (S129)

Combining with (14) in Corollary 1, we have with probability at least 1 — 6/d,

sup max \/_|® ZKh z)/n < C\/log(d/h)/nh - V/nh.

5 eeVxV

For any fixed o € (0,1) and sufficiently large d,n, as C(0,P) CV x V, we have
{1 —a,C0,P)} < c(1—a,V x V)< Cy/log(d/h)/nh - Vnh
Thus P(&3) > 1 — 6/d. Similarly, we also have P(&) > 1 — 3/d. By (S128), we have
Pl = 1) > P(£) > P(E U &) > 1 - 9/d.

Therefore, we complete the proof of the theorem.

Web Appendix I. Technical Lemmas on Covering Number

In this section, we present some technical lemmas on the covering number of some function
classes. Lemma S13 provides an upper bound on the covering number for the class of function
of bounded variation. Lemma S14 provides an upper bound on the covering number of a
class of Lipschitz function. Lemma S15 provides an upper bound on the covering numbers

for function classes generated from the product and addition of two function classes.

LEMMA S13: (Lemma 3 in Giné and Nickl, 2009) Let K : R — R be a function of
bounded variation. Define the function class F, = [K {(t —-)/h)} | t € R]. Then, there exists

Ck < oo independent of h and of K such that for all 0 < e <1,
2-Ck - HKHTV)4

€

Sgp N{Fh’LQ(Q)ae} < (
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where ||K ||y is the total variation norm of the function K.

LEMMA S14: Let f(l) be a Lipschitz function defined on [0, 1] such that |f(l) — f(I")] <
Ly |l =U| for any I,I' € [0,1]. We define the constant function class F = {g; := f(I) | | €

[0,1]}. For any probability measure Q, the covering number of the function class F satisfies

Ly

N{‘F’I@(Q)?E} < B

where € € (0,1).
Proof. Let N = {i—; li=1,..., %} By definition of N, for any [ € [0, 1], there exists
an " € N such that |l —'| < ¢/Ls. Thus, we have
fO = fO<Ly-[I-V|<e

This implies that {g; | [ € N'} is an e-cover of the function class F. To complete the proof,

we note that the cardinality of the set |[N| < Ly/e.

LEMMA S15: Let Fy and Fy be two function classes satisfying
N{fl, LQ(Q), CL1€} < Clﬁ_vl and N{Fg, LQ(Q), (126} < Cgﬁ_w

for some Cy,Ca, ay, ag,v,v2 >0 and any 0 < € < 1. Define ||Fy|lo = sup ||f|loc for € =1,2
fere
and U = ||Fil|loo V | F2lloo- For the function classes Fx = {fifa | f € F1, fo € F2} and

Fo=A{fh+fo| i € F, f2 € Fa}, we have for any € € (0, 1),

2a;U\ " 2a,U \ 2
N{‘FX7L2(Q)7E}<01'CQ'( 61 ) ( 2 )

€

and

2@1 2(12

N{F., Lo(Q), ey < C1 - Cs - (—) : (—)

€ €

LEMMA S16: Let w,(u) = Kp(u — z). We define the function classes

Ki={w,()|z€[0,1]} and Ky = [E{w.(2)}|z€0,1].
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Given Assumptions 1-2, we have for any e € (0, 1),

2'C'K'||K||Tv>4

Slclgp N{K1, L2(Q), €} < < he

and
9 B
sgp N{Ks, Ly(Q), €} < 7o | K|ty - fz-

Moreover, let k,(u) = w,(u) — E{w,(Z)} and let K = {k.(-) | z € [0,1]}. We have

4/5 z1/5\ °
4-||K]lry - CL° - f
he '

Sup N{K, L(Q), ¢} < <

Proof. The covering number for the function class I; is obtained by an application of
Lemma S13. To obtain the covering number for Ky, we show that the constant function
E{w,(Z)} is Lipschitz. The covering number is obtained by applying Lemma S14. Finally,
we note that the function class IC is generated from the addition of the two function classes
K1 and Ky. The covering number can be obtained by an application of Lemma S15. The

details are deferred to Web Appendix I.1.

LEMMA S17:  Let g, jx(u, Xij, Yir) = Kp(u — 2)X;;Yi,. We define the function classes
Gk ={9:56() [ 2 €[0,1]}  and  Gojp = [E{g.jx(Z, X;, Vi) } [ 2 € [0,1]].

Given Assumptions 1-2, for all € € (0,1),

2. M2 -logd - Ck - HKHTV)4

sup N{G1 jk, L2(Q), €} < ( h
o €

and

9 ~
Sgp N{Gsji; L2(Q), €} < e | Kllrv - fz - Mo,
with probability at least 1—1/d. Moreover, let q, ji(u, Xij, Yir) = gz i (u, Xij, Yie)—E{g. 1 (Z, X;, Y1) }

and let G, = {q.;x(:) | z € [0,1]}. We have
_ 5
| Kl - O 7 - Mol MY - log” d)

sup N{Gji, L2(Q), €} < ( h
" €

with probability at least 1 — 1/d.

Proof. The proof uses the same set of argument as in the proof of Lemma S16. The
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probability statement comes from the fact that we upper bound the random variable X; by

My - v/log d for some constant My > 0. The details are deferred to Web Appendix 1.2.

LEMMA S18: LetJ

2,0k
O.(2) and let L’fj(,j) = {szjk | z € [0,1]}. Given Assumptions 1-2, for all € € (0,1)
& 1ogh? d
Vh-e ’

with probability at least 1 — 1/d, where C' > 0 is a generic constant that does not depend on

(u, X5, Y3) = VR {0;(2)} [Kn(u — )X, YT —E{K\(Z - 2)XYT}]-

sSup N{%(;),LQ(Q),E} < C- <
Q

d, h, and n.

Proof. The proof is deferred to Web Appendix 1.3.

LEMMA S19:  Let J\ ) (u) = Vi -{©;(2)}" - [Kn(u — 2) — E{K,(Z — 2)}] - 2(2) - O(2)
and let jk = { jk | z € [0,1]}. Given Assumptions 1-2, for all probability measures @ on

R and all 0 < e <1,

d1/6 6
VIR L@ < O (e )

where C' > 0 1s a generic constant that does not depend on d, h, and n.

Proof. We first note that g2 " 1s afunction class generated from the product of two function
classes K as in Lemma S16 and O, = {®,x(2) | z € [0, 1]}. To obtain the covering number
of O}, we show that the constant function ©,;(2) is Lipschitz and apply Lemma S14. We
then apply Lemma S15 to obtain the covering number of jj(,f ). The details are deferred to

Web Appendix 1.4.

Web Appendix 1.1 Proof of Lemma S16
Let w,(u) = Kp(u — z) and that k,(u) = w,(u) — E{w,(Z)}. We first obtain the covering

number for the function classes

Ky ={w.(:) | z€]0,1]} and Ky = [E{w.(Z2)} |z € [0,1]].



54 Biometrics, 000 0000
Then, we apply Lemma S15 to obtain the covering number of the function class
K ={k()]z€l0,1]}.

Covering number for /C;: By an application of Lemma S13, the covering number for Ky

is

1
- (S130)

Covering number for K,: First, note that E{w.(Z)} = [ Ky(z — 2) f2(Z)dZ = (K}, *

2.0w - |IK 4
sgpN{/cl,LxQ),e}g( k| HTV) |

fz)(z) is a function of z generated by the convolution (K} * fz)(z). By the property of the

derivative of a convolution as in (S18), we have

JEfu.(2)) R f2(20)| = || (B 120 < |- 1720w,

sup
Z()E[O,l]

= 8sup
20€10,1]

z2=2z0

(S131)

where the last expression is obtained by an application of Young’s inequality. The expression

in (S131) depends on the quantity ||K}||;, which is equal to the following expression

. 1
|, =/ =

where the second inequality holds by a change of variable, and || K|y is the total variation

K (Z;Z> ’ 07 - %/’K(u)‘ du = % Ky, (S132)

of the function K(-). Substituting (S132) into (S131) and by Assumption 1, we have

sup
20€[0,1]

S E(w.(2))

1 _
< Iy ($133)

Thus, for any 21, 29 € [0, 1], we have

1 _
[E{w:, (2)} = B{w(Z)} < - 1K ley - fz2 - 21 = 2],
implying that E{w.(Z)} is a Lipschitz continuous function with Lipschitz constant h~' -

| K|ty - fz. By Lemma S14, an upper bound for the covering number of K, is

9 B
Sgp N{Ks, Ly(Q), e} < e K|ty - fz- (5134)

Covering number of the function class K: The function class K can be written as

K={fi—-fol i €Ki, f2€Ks}.

By an application of Lemma S15 with C; = (2- Ck - [|[K|ltv)*, Co = 2+ fz - [|K]|1v, a1 =
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as = h™', vy =4, and vy = 1, along with (S130) and (S134), we obtain

. A5 715\ P
sup N{,C,LQ(Q),E} < <4 HKHTV CK Z ) )
Q

he

Web Appendix 1.2 Proof of Lemma S17

Throughout the proof, we condition on the event

A= {max max max (| Xy, |Yi;]) < Mx - /log d} . (S135)

i€[n] jeld]

Since X and Y conditioned on Z are Gaussian random variables, the event A occurs with
probability at least 1 — 1/d for sufficiently large constant Mx > 0.

Recall that g, ji(u, Xi;,Yie) = Kp(u — 2)X;;Yi and that g, jk(u, Xij, Yie) = Kp(u —

159 K

2)Xi;Yi — E{Kx(Z — 2) XY} }. We first obtain the covering number of the function classes
Gk = {9z6(") | 2 € [0, 1]}
and
Gojr. = [E{g:x(Z, X;, Vi) } | 2 € [0,1]].
Then, we apply Lemma S15 to obtain the covering number of the function class
Git = {a=5%(") | 2 € [0,1], 4, k € [d]}.
Covering number for G, j;: Conditioned on the event A in (S135), we have
Gk (0, Xij, Yig) = Kp(u — 2) X;;Yig < M)Q( logd - Kp(u— 2).

By an application of Lemma S13, the covering number for Gy j; is

2. M2 -logd- C - HKHTV)4
he '

sup N{G1 51, 12(Q). o} < ( (S136)

Covering number for G, ;.: We now obtain the covering number for G, j; by showing

that the function E{g. jx(Z, X;,Ys)} is Lipschitz. First, note that
E{g=1(Z, X, Vi) } = B{KW(Z — 2) - 5 (2)} = /Kh(z — Z) - pie(2)dZ = (Kn x i) (2),

where p;i(Z) = f2(Z) - X;,(Z) and Kj, * p;y, is the convolution between K, and ¢jj. Similar
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to (S131)-(S133), we have

0
sup max &E{gz,jk(Z7Xj7Yk‘)}

= sup ma>§] ’(Kh*gojk)(zo)‘

ZoE[O,l] j7k€[d} Z=Zz0 ZOE[O,].] j,ke[
— max ||[(F, % o, ZH
max | (K x o)) 1
< K| - el
7 max [l

1 _
< 7 K|ty - fz - Mo,

where the first inequality is obtained by an application of Young’s inequality, and the last
expression is obtained by (S132) and Assumptions 1-2.

Equation S137 implies that for any z1, 2 € [0, 1],

E4ge k(2 X, Y0} — Edgny (2,5, YO < 5 Kl - fo- My - |21 — 2,
implying that E{g, ;x(Z, X;,Ys)} is a Lipschitz continuous function with Lipschitz constant
h=t - ||K|ltv - fz - My. By an application of Lemma S14, we have

4p N{Go . Lo(@). ¢} < - Kl - - M, ($135)

Covering number of the function class Gj;: The function class G;;, can be written as

Gik = {fujr — fagi | frin € Gijks fajn € Gajr, J,k € [d]}
By an application of Lemma S15 with C; = (2-Ck - | K||rv - M%)*, Cy = 2+ f7 - | K||rv - My,

a; =h7'-logd, ap = h™', v; = 4, and v, = 1, along with (S136) and (S138), we obtain
_ 5
4Kl - CM% 7Y /5 A5 10015 g
( |Kllzy G- 1 Wlogd) T gy

sup N{Gjk, L2(Q), €} < h
o €

as desired.

Web Appendix 1.3 Proof of Lemma S18

Similar to the proof of Lemma S17, we condition on the event

A= {max max max(|X;;|, |Yi;]) < Mx - \/logd} :

i€[n] jE€[d]

The event A holds with probability at least 1 —1/d.

Recall that J) (u, X;,Y;) = Vh-{0;(2)}" - [Kn(u — 2) X, YT ~E{K\(Z - 2)XYT}] -
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Oy (z) and let %(g) = { ok 12 €10, 1]} To obtain the covering number of the function class
.7j(k1 ), we consider bounding the covering number of a larger class of function. To this end, we
define @ (u, X;,Y;) = Vh- [Ky(u — 2)X; Y] —E{Ky(Z — 2)XY"}] to be a dxd matrix.
We denote the (j, k)th element of @&1)(% X, Y, as @&gk(u Xij, Yig) = \/ﬁ-qw,jk(u, Xij, Yir),
where q,, i (u, Xij, Yie) = Kp(u—w)X;;Yi, —E{K}(Z —w) XY} }. We aim to obtain an e-cover

g

N for the following function class
T = [{8,(:)) @V ()O(2) | w, = € [0,1]] .
In other words, we show that for any (w;, 21) € [0, 1]?, there exists (ws, 22) € N'*) such that

< e

CHOIE SIS o STHORSCHEINE ST o SICHE] HIN

Given any 7,k € [d], w,w', 2,2’ € [0, 1], by the triangle inequality, we have

{020} L) (1, X1, Y1)@r(21) — {©(22)} 8L (1, X, Y 1) O (22)

L2(Q)
) — @ (2N D (4 X Y . 2 Wy, Wy XY, o’
S [CHESECHENEE SRS S SLNCH IS [CHENER LT S ORL ST 8 S XCHEN] e
Iy Iy
+ @i 8w X Yo {Orz) — Ot}
I3
(S140)
We now obtain the upper bounds for Iy, I5, and 1.
Upper bound for I; and I3: First, we note that by Holder’s inequality, we have
1)
1< 1105(2) = ©,(2)l, - max @) X V)| - 1©4()]h
Since O(z) € U(s, M, p), we have
sup max [|©;(z)]; < M. (S141)

z€[0,1] J€ld]
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Moreover, for any z1, 2o € [0, 1], we have

sup 1©(21) = ©;(22) |1 < Vd - [©(21) — O(2)]|
jeld

<V [0(z0)]2 - [1a — B(21)O(22) 2
<VA- [0 [0() 2 [B() = S() s M)
<Vd-p - d- | 2(21) = B(22) | mas
< d3/2~p2 M, - \21 _ z2|’
where the second to the last inequality follows from the fact that ©(z) € U(s, M, p) and

the last inequality follows from Assumption 2. Finally, from (S54) and the definition of
w1 _]k( ) \/_ qwl jk( ) we haVe

o

w1,7k

2
< —= M3 - ||K||oo - log d. S143
o S 7 M KT ($143)

max ‘
J,keld]

Combining (S141)-(S143), we have

XY, H
(u, k) Lt

L <d** logd-p* My -M-M:-|K|s % |21 — 2. (S144)
We note that I3 can be upper bounded the same way as I;.
Upper bound for I5: Recall from (S140) that
I = [{©;(z2)}" {80 (u, X, Yy) — @D (u, X0, Yi) | ©il=1)) o

< 1@z €52l - mi |V {aigu (ot X Vi) = (1. X, Vi)

where the inequality holds by Holder’s inequality and the definition of ®(u, X;,Y;). Let

Sg) = {\/_ Quwjk(-) |w €10, 1]} and recall from Lemma S17 that we constructed an e-cover

5
. N ) OB L5 L5 /5 10gd/
N [0, 1] for the function class éﬁ) with cardinality ‘J\/’(1 )| = (4 [ Kiev-Ci¢ fz\/ﬁ = My og” Sd) .

Since the construction of the e-cover in Lemma S17 is independent of the indices 7 and k,

we have that for any j, k € [d] and w; € [0, 1], there exists a wy € N'") such that

]Hk}g[}j] H \/E : {qLUl,ij(u? XZ]a }/;,k) - ng,jk;(ua X’L]; sz)

Thus, by (S141) and (S145), we have

<e S145
o (S145)

I < M? - (S146)
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Covering number of the function class jj Since J, ) jj(kl ), the covering num-

ber of jj(kl) is upper bounded by the covering number of jj,;l ). It suffices to construct

an e-cover of the function class .7j(,€1/). In the following, we show that N = A7) x
{i ce-vVhli=1,..., ﬁﬁ} is an e-cover of jj(kl,). For any (wi,21) € [0,1]?, there exists

(wy, ) € N) such that (S145) holds and that |z, — 23| < V/h - e. Thus, combining (S144)

and (S146), we have

|{8,(:0) (1, X0, Y 0)Ou(21) — {©,(22)} L (0, X1, Y 0)Oi(22)

L2(Q)

<2 logd-p? My M- M2 |K|lw - —= |21 — 20| + M? - €

(S147)

<4'd3/2'10gd~p2~Mg-M~M)2(‘HKHOO~ e+ M?. ¢

Sl S

<C-d%?% logd -,
where C' > 0 is a generic constant that does not depend on d, h, and n.

Thus, we have

4/5 /5 1/5 8/5 5
N{T La(Q), C-d** log d-e} < ‘N“’) < (4'”K||TV'CK/ My My '10g4/5d> :

Vh-e Vi€

Since jj( C j ik , the above expression implies that

54 1..3/2 7\ °
w> 7 (S148)

N{T}, L2(Q), e} < N{T, L(Q )7€}<C'< Vh-e

as desired.

Web Appendix 1.4 Proof of Lemma S19
First, we note that
N T
JE ) = Vi -{8;(2)}7 - [Kn(u—2) = E{Kn(Z = 2)}] - (2) - O4(2)
=Vh-k.(u) - O,k (2),
where k,(u) = Kp(u—2) —E{K(Z—2)}. Let J j(,f) = {Jz(?j)k | z €0, 1]} Furthermore, recall

that £ = {k,(-) | z € [0,1|} and let O, = x(2) ] 2 €0,1]}. e function class J.;.” can
hat K = {k.(-) | = € [0, 1]} and let Oy = {©(2) | = € [0,1]}. The f lass 7,
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be written as

jk _{\/_ fl f?]klflEIC f2jk}€ jk}~

It suffices to obtain the covering number for K and (2, and apply Lemma S15.

Covering number of the function class K: By Lemma S16, we have

Ky - CL° -
< .
N{K, Lo(Q), ¢} < ( -

(S149)

Covering number of the function class ©;;: We show that ©;;(z) is Lipschitz, and
apply Lemma S14 to obtain the covering number for ©;;. Similar to (S142), for any z;, 2o €

[0, 1], we have
1©(21) = O(22)[|lmax < [[©(21)]l2 - |©(22) - {5(21) — B(22) }]2
<O(z1)l2 - [©(22) ]2 - [|5(21) — B(z2)]2
<P d- |2 (21) = B(22) lmax
<pPd- My - |2 — 2,
where the last inequality follows from Assumption 2. Since © () is p*- d - M,-Lipschitz, by

Lemma S14, we have

N{Oji, L»(Q), e} < Mo -p?-d (S150)

€

Covering number of the function class \7](]3 ): We now apply Lemma S15 to obtain the
covering number of j.(2). Applying Lemma S15 with a; = d, vy = 1, C; = M, - p?, ay = h™*,
vy =5, Cy = ( NEK |y - CH - 1/5) ,and U = 2 - || K||o, along with (S149) and (S150),

we have

d1/6 6
{Jk7 2(Q )a\/ﬁ'ﬁ}<c'<m) ;

where C' > 0 is a generic constant that does not depend on n,d, and h. This implies that

d1/6 6
N{J k?LQ( )7€}<C'<W> ,

as desired.
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Web Appendix J. Technical Lemmas on Empirical Process

In this section, we present some existing tools on empirical process. The following lemma
states that the supreme of any empirical process is concentrated near its mean. It follows

directly from Theorem 2.3 in Bousquet (2002).

LEMMA S20: (Theorem A.1 in Van de Geer, 2008) Let X, ..., X, be independent ran-

dom variables and let F be a function class such that there exists n and T2 satisfying

1
sup || flloo <7 and sup — ZVar{f(Xi)} < 72
Jer fer IS

Define

Then, for anyt >0,

Py > EW)+ty/2{r + 2E(Y)} + 275277/3] < exp (—nt?) |

The above inequality involves evaluating the expectation of the supreme of the empirical
process. The following lemma follows directly from Theorem 3.12 in Koltchinskii (2011). It
provides an upper bound on the expectation of the supreme of the empirical process as a

function of its covering number.

LEMMA S21: (Lemma F.1 in Lu et al., 2015) Assume that the functions in F defined on
X are uniformly bounded by a constant U and F(-) is the envelope of F such that |f(x)| <
F(x) for allw € X and f € F. Let 0% = sup E(f?). Let Xy,..., X, be ii.d. copies of the

feFr

random variables X. We denote the empirical measure as P, = %Zie[n] Ox,. If for some

A,V >0 and for all e > 0 and n > 1, the covering entropy satisfies

v
AHFHLQW)

€

N{F. Lo(B,). ) < (

then for anyi.i.d. sub-gaussian mean zero random variables &1, . . ., &,, there exists a universal
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constant C' such that

! JY A|lF VU . [A|F
E ¢ sup — Z&f(Xi) < C’{ —Up\/log < I ||L2(IF’)) n log ( I ||L2(IP’)> } .
fer N n e - -

1€[n]

Furthermore, we have

o g0 -] o () (1))

1€[n]
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Figure S1.

Graphs (i) and (ii) are isomorphic. Graphs (iii) and (iv) are not isomorphic.
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(a) (b) (c) (d)
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Figure S2. Some examples on graph property that are monotone. The gray edges are the
original edges and the red dash edges are additional edges added to the existing graph. (a)
Graph that is connected. (b) Graph that has no more than three connected components.

(c¢) Graph with maximum degree at least three. (d) Graph with no more than two isolated
nodes. Adding the red dash edges to the existing graphs does not change the graph property.
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(a) (b) (c) (d)
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Figure S3. Let P be the graph property of being connected. Gray edges are the original
edges of a graph GG and the red dash edges are the critical edges that will change the graph
property from P(G) = 0 to P(G) = 1. (a) The graph satisfies P(G) = 0. (b) The graph
property changes from P(G) = 0 to P(G) = 1 if some red dash edges are added to the
graph. (c¢) The graph satisfies P(G) = 0. (d) The graph property changes from P(G) = 0 to
P(G) =1 if some red dash edges are added to the existing graph.



