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Web Appendix A. Inference on Topological Structure of Time-Varying Graph

In this section, we generalize Algorithm 1 in the main manuscript to testing various graph

structures that satisfy the monotone graph property. In Web Appendix A.1, we briefly

introduce some concepts on graph theory. These include the notion of isomorphism, graph

property, monotone graph property, and critical edge set. In Web Appendix A.2, we provide a

test statistic and an estimate of the quantile of the proposed test statistic using the Gaussian

multiplier bootstrap. We then develop an algorithm to test the dynamic topological structure

of a time-varying graph which satisfies the monotone graph property.

Web Appendix A.1 Graph Theory

Let G = (V,E) be an undirected graph where V = {1, . . . , d} is a set of nodes and E ⊆ V ×V

is a set of edges connecting pairs of nodes. Let G be the set of all graphs with the same number

of nodes. For any two graphs G = (V,E) and G′ = (V,E ′), we write G ⊆ G′ if G is a subgraph

of G′, that is, if E ⊆ E ′. We start with introducing some concepts on graph theory (see, for

instance, Chapter 4 of Lovász, 2012).

Definition S1: Two graphs G = (V,E) and G′ = (V,E ′) are said to be isomorphic if

there exists permutations π : V → V such that (j, k) ∈ E if and only if {π(j), π(k)} ∈ E ′.

The notion of isomorphism is used in the graph theory literature to quantify whether two

graphs have the same topological structure, up to any permutation of the vertices (see

Chapter 1.2 of Bondy and Murty, 1976). We provide two concrete examples on the notion

of isomorphism in Figure S1.

[Figure 1 about here.]

Next, we introduce the notion of graph property. A graph property is a property of graphs

that depends only on the structure of the graphs, that is, a graph property is invariant under

permutation of vertices. A formal definition is given as follows.
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Definition S2: For two graphs G and G′ that are isomorphic, a graph property is a

function P : G → {0, 1} such that P(G) = P(G′). A graph G satisfies the graph property P

if P(G) = 1.

Some examples of graph property are that the graph is connected, the graph has no more

than k connected components, the maximum degree of the graph is larger than k, the graph

has no more than k isolated nodes, the graph contains a clique of size larger than k, and

the graph contains a triangle. For instance, the two graphs in Figures S1(i) and S1(ii) are

isomorphic and satisfy the graph property of being connected.

Definition S3: For two graphs G ⊆ G′, a graph property P is monotone if P(G) = 1

implies that P(G′) = 1.

In other words, we say that a graph property is monotone if the graph property is preserved

under the addition of new edges. Many graph property that are of interest such as those given

in the paragraph immediately after Definition S2 are monotone. In Figure S2, we present

several examples of graph property that are monotone by showing that adding additional

edges to the graph does not change the graph property. For instance, we see from Figure S2(a)

that the existing graph with gray edges are connected. Adding the red edges to the existing

graph, the graph remains connected and therefore the graph property is monotone. Another

example is the graph with maximum degree at least three as in Figure S2(c). We see that

adding the red dash edges to the graph preserves the graph property of having maximum

degree at least three.

[Figure 2 about here.]

For a given graph G = (V,E), we define the class of edge sets satisfying the graph property

P as

P = {E ⊆ V × V | P(G) = 1}. (S1)
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Finally, we introduce the notion of critical edge set in the following definition.

Definition S4: Given any edge set E ⊆ V × V , we define the critical edge set of E for

a given monotone graph property P as

C(E,P) = {e | e 6∈ E, there exists E ′ ⊇ E such that E ′ ∈P and E ′\{e} /∈P}. (S2)

For a given monotone graph property P , the critical edge set is the set of edges that will

change the graph property of the graph once added to the existing graph. We provide

two examples in Figure S3. Suppose that P is the graph property of being connected. In

Figure S3(a), we see that the graph is not connected, and thus P(G) = 0. Adding any of the

red dash edges in Figure S3(b) changes P(G) = 0 to P(G) = 1.

[Figure 3 about here.]

Web Appendix A.2 An Algorithm for Topological Inference

Throughout the rest of the paper, we denote G(z) = {V,E(z)} as the graph at Z = z. We

consider hypothesis testing problem of the form

H0 : P{G(z)} = 0 for all z ∈ [0, 1]

H1 : there exists a z0 ∈ [0, 1] such that P{G(z0)} = 1,

(S3)

where G(·) is the true underlying graph and P is a given monotone graph property as defined

in Definition S3. We provide two concrete examples of the hypothesis testing problem in (S3).

Example S1: Number of connected components:

H0 : for all z ∈ [0, 1], the number of connected components is greater than k,

H1 : there exists a z0 ∈ [0, 1] such that the number of connected components is not greater than k.

Example S2: Maximum degree of the graph:

H0 : for all z ∈ [0, 1], the maximum degree of the graph is not greater than k,

H1 : there exists a z0 ∈ [0, 1] such that the maximum degree of the graph is greater than k.
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We now propose an algorithm to test the topological structure of a time-varying graph.

The proposed algorithm is very general and is able to test the hypothesis problem of the form

in (S3). Our proposed algorithm is motivated by the step-down algorithm in Romano and

Wolf (2005) for testing multiple hypothesis simultaneously. The main crux of our algorithm

is as follows. By Definition S4, the critical edge set C{Et−1(z),P} contains edges that may

change the graph property from P{G(z)} = 0 to P{G(z)} = 1. Thus, at the t-th iteration

of the proposed algorithm, it suffices to test whether the edges on the critical edge set

C{Et−1(z),P} are rejected. Let Et(z) = Et−1(z) ∪ R(z), where R(z) is the rejected edge set

from the critical edge set C{Et−1(z),P}. Since P is a monotone graph property, if there exists

a z0 ∈ [0, 1] such that Et(z0) ∈P, we directly reject the null hypothesis H0 : P{G(z)} = 0

for all z. This is due to the definition of monotone graph property that adding more edges

does not change the graph property. If Et(z0) /∈ P, we repeat this process until the null

hypothesis is rejected or no more edges in the critical edge set are rejected. We summarize

the procedure in Algorithm S1.

Finally, we generalize the theoretical results in Theorems 3 and 4 to the general testing

procedure in Algorithm S1. Given a monotone graph property P , let

G0 = (Θ(·) ∈ Us,M | P [G{Θ(z)}] = 0 for all z ∈ [0, 1]).

We now show that the type I error of the proposed inferential method in Algorithm S1 can

be controlled at a pre-specified level α.

Theorem S1: Under the same conditions in Theorem 2, we have

lim
n→∞

sup
Θ(·)∈G0

PΘ(·) (ψα = 1) 6 α.

In order to study the power analysis for testing graph structure that satisfies the monotone

graph property, we define signal strength of a precision matrix Θ as

Sig(Θ) := max
E′⊆E(Θ),P(E′)=1

min
e∈E′
|Θe|. (S4)
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Algorithm S1 Dynamic skip-down method.

Input: A monotone graph property P ; Θ̂
de

(z) for z ∈ [0, 1].

Initialize: t = 1; E0(z) = ∅ for z ∈ [0, 1].

Repeat:

(1) Compute the critical edge set C{Et−1(z),P} for z ∈ [0, 1] and the conditional quantile

c{1 − α, C(Et−1,P)} = inf
(
t ∈ R | P [TBC(Et−1,P) 6 t | {(X i,Y i, Zi)}i∈[n]] > 1− α

)
, where

TBC(Et−1,P) is the bootstrap statistic defined in (10) with the maximum taken over the edge

set C{Et−1(z),P}.

(2) Construct the rejected edge set

R(z) =

e ∈ C{Et−1(z),P} |
√
nh · |Θ̂

de

e (z)| ·
∑
i∈[n]

Kh(Zi − z)/n > c{1− α, C(Et−1,P)}

 .
(3) Update the rejected edge set Et(z)← Et−1(z) ∪R(z) for z ∈ [0, 1].

(4) t← t+ 1.

Until: There exists a z0 ∈ [0, 1] such that Et(z0) ∈P, or Et(z) = Et−1(z) for z ∈ [0, 1].

Output: ψα = 1 if there exists a z0 ∈ [0, 1] such that Et(z0) ∈P and ψα = 0 otherwise.

Under H1 : there exists a z0 ∈ [0, 1] such that P{G(z0)} = 1, we define the parameter space

G1(θ;P) =
(
Θ(·) ∈ Us,M

∣∣∣P [G{Θ(z0)}] = 1 and Sig{Θ(z0)} > θ for some z0 ∈ [0, 1]
)
.

(S5)

Again, we emphasize that the signal strength defined in (S4) is weaker than the typical

minimal signal strength for testing a single edge in a graph mine∈E(Θ) |Θe|. Sig(Θ) only

requires that there exists a subgraph satisfying the property of interest such that the minimal

signal strength on that subgraph is above certain level. For example, for P(G) = 1 if and

only if G is connected, it suffices for Θ belongs to G1(θ;P) if the minimal signal strength on

a spanning tree is larger than θ. The following theorem presents the power analysis of our

test.
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Theorem S2: Assume that the same conditions in Theorem 2 hold and select the smooth-

ing parameter h = o(1/n−1/5). Assume that θ > C
√

log(dn)/n2/5 for some sufficiently large

constant C. Under the alternative hypothesis H1 : P(G) = 1 in (S3), we have

lim
n→∞

inf
Θ∈G1(θ;P)

PΘ(ψα = 1) = 1 (S6)

for any fixed α ∈ (0, 1).

Thus, we have shown in Theorem S2 that the power of the proposed inferential method

increases to one asymptotically.

Web Appendix B. A U-Statistic Type Estimator

The main manuscript primarily concerns the case when there are two subjects. In this section,

we present a U -statistic type inter-subject covariance to accommodate the case when there

are more than two subjects. First, we note that the same natural stimuli is given to all

subjects. This motivates the following statistical model for each Z = z:

X(`) = S + E(`), S|Z = z ∼ Nd{0,Σ(z)}, E(`)|Z = z ∼ Nd{0,L(`)(z)},

where X(`), E(`), and L(`)(z) are the data, subject specific effect, and the covariance matrix

for the subject specific effect for the `th subject, respectively. Suppose that there N subjects.

Then, the following U -statistic type inter-subject covariance matrix can be constructed to

estimate Σ(z):

Σ̂U(z) =
1(
N
2

) ∑
16`<`′6N

[∑
i∈[n] Kh(Zi − z)X

(`)
i {X

(`′)
i }T∑

i∈[n] Kh(Zi − z)

]
. (S7)

We leave the theoretical analysis of the above estimator for future work.

Web Appendix C. Preliminaries

In this section, we define some notation that will be used throughout the Appendix. Let

[n] denote the set {1, . . . , n} and let [d] denote the set {1, . . . , d}. For two scalars a, b, we

define a ∨ b = max(a, b). We denote the `q-norm for the vector v as ‖v‖q = (
∑

j∈[d] |vj|q)1/q
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for 1 6 q < ∞. In addition, we let supp(v) = {j : vj 6= 0}, ‖v‖0 = |supp(v)|, and

‖v‖∞ = maxj∈[d] |vj|, where |supp(v)| is the number of non-zero elements in v. For a matrix

A ∈ Rn1×n2 , we denote the jth column as Aj. We denote the Frobenius norm of A by

‖A‖2
F =

∑
i∈[n1]

∑
j∈[n2]A

2
ij, the max norm ‖A‖max = maxi∈[n1],j∈[n2] |Aij|, and the operator

norm ‖A‖2 = sup‖v‖2=1 ‖Av‖2. Given a function f , let ḟ and f̈ be the first and second-

order derivatives, respectively. For 1 6 p < ∞, let ‖f‖p = (
∫
fp)1/p denote the Lp norm

of f and let ‖f‖∞ = supx |f(x)|. The total variation of f is defined as ‖f‖TV =
∫
|ḟ |. We

use the Landau symbol an = O(bn) to indicate the existence of a constant C > 0 such that

an 6 C · bn for two sequences an and bn. We write an = o(bn) if limn→∞ an/bn → 0. Let

C,C1, C2, . . . be generic constants whose values may vary from line to line.

Let

Pn(f) =
1

n

∑
i∈[n]

f(Xi) and Gn(f) =
√
n · [Pn(f)− E{f(Xi)}]. (S8)

For notational convenience, for fixed j, k ∈ [d], let

gz,jk(Zi, Xij, Yik) = Kh(Zi − z)XijYik, wz(Zi) = Kh(Zi − z), (S9)

qz,jk(Zi, Xij, Yik) = gz,jk(Zi, Xij, Yik)− E{gz,jk(Z,Xj, Yk)}, (S10)

and let

kz(Zi) = wz(Zi)− E{wz(Z)}. (S11)

Recall from 5 that K(·) can be any symmetric kernel function that satisfies (12) and that

Kh(Zi − z) = K{(Zi − z)/h}/h. By the definition of Σ̂(z) in (S7), we have

Σ̂jk(z) =

∑
i∈[n] gz,jk(Zi, Xij, Yik)∑

i∈[n] wz(Zi)
=

Pn(gz,jk)

Pn(wz)
. (S12)

In addition, let

J
(1)
z,jk(Zi,X i,Y i) =

√
h · {Θj(z)}T ·

[
Kh(Zi − z)X iY

T
i − E

{
Kh(Z − z)XY T

}]
·Θk(z),

(S13)
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J
(2)
z,jk(Zi) =

√
h · {Θj(z)}T · [Kh(Zi − z)− E {Kh(Z − z)}] ·Σ(z) ·Θk(z), (S14)

Jz,jk(Zi,X i,Y i) = J
(1)
z,jk(Zi,X i,Y i)− J (2)

z,jk(Zi), (S15)

and let

Wz,jk(Zi, Xij, Yik) =
√
h · {Kh(Zi − z)XijYik −Kh(Zi − z)Σjk(z)} . (S16)

For two functions f and g, we define its convolution as

(f ∗ g)(x) =

∫
f(x− z)g(z)dz. (S17)

In our proofs, we will use the following property of the derivative of a convolution

∂

∂x
(f ∗ g) =

∂f

∂x
∗ g. (S18)

Finally, our proofs use the following inequality∫ b1

0

√
log(b2/ε)dε 6

√
b1 ·

√∫ b1

0

log(b2/ε)dε = b1 ·
√

1 + log(b2/b1), (S19)

where the first inequality holds by an application of Jensen’s inequality.

Web Appendix D. Proof of Results in 5.1

In this section, we establish the uniform rate of convergence for Σ̂(z) and Θ̂(z) over z ∈ [0, 1].

To prove Theorem 1, we first observe that

sup
z∈[0,1]

∥∥∥Σ̂(z)−Σ(z)
∥∥∥

max
6 sup

z∈[0,1]

max
j,k∈[d]

∣∣∣Σ̂jk(z)− E
{

Σ̂jk(z)
}∣∣∣+ sup

z∈[0,1]

max
j,k∈[d]

∣∣∣E{Σ̂jk(z)
}
−Σjk(z)

∣∣∣ .
(S20)

The first term is known as the variance term and the second term is known as the bias term

in the kernel smoothing literature (see, for instance, Chapter 2 of Pagan and Ullah, 1999).

Both the variance and bias terms involve evaluating the quantity E{Σ̂jk(z)}. From (S12), we

see that Σ̂jk(z) involves the quotient of two averages and it is not straightforward to evaluate

its expectation. The following lemma quantifies E{Σ̂jk(z)} in terms of the expectations of

its numerator and its denominator.
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Lemma S1: Under the following conditions∣∣∣∣ Gn(wz)√
n · E {Pn(wz)}

∣∣∣∣ < 1 and E {Pn(wz)} 6= 0, (S21)

we have

E
{

Σ̂jk(z)
}

=
E {Pn(gz,jk)}
E {Pn(wz)}

+
1

n
O
[
E
{
Gn(wz) ·Gn(gz,jk)

}
+ E

{
G2
n(gz,jk)

}]
. (S22)

We note that (S22) only holds under the two conditions in (S21). In the proof of Theorem 1,

we will show that the two conditions in (S21) hold for n sufficiently large. To obtain upper

bounds for the bias and variance terms in (S20), we use the following intermediate lemmas.

Lemma S2: Assume that h = o(1). Under Assumptions 1-2, we have

sup
z∈[0,1]

max
j,k∈[d]

∣∣∣E{Pn(gz,jk)} − fZ(z)Σjk(z)
∣∣∣ = O(h2), (S23)

sup
z∈[0,1]

∣∣∣E{Pn(wz)} − fZ(z)
∣∣∣ = O(h2), (S24)

sup
z∈[0,1]

max
j,k∈[d]

1

n

∣∣∣E{Gn(gz,jk) ·Gn(wz)
}∣∣∣ = O

(
1

nh

)
, (S25)

and

sup
z∈[0,1]

1

n
E
{
G2
n(wz)

}
= O

(
1

nh

)
. (S26)

Lemma S3: Assume that h = o(1) and log2(d/h)/(nh) = o(1). Under Assumptions 1-2,

there exists a universal constant C > 0 such that

sup
z∈[0,1]

max
j,k∈[d]

∣∣∣Gn(wz) ∨Gn(gz,jk)
∣∣∣ 6 C ·

√
log(d/h)

h
, (S27)

with probability at least 1− 3/d.

The proofs of Lemmas S1-S3 are deferred to Sections S1-S3, respectively. We now provide a

proof of Theorem 1.
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Web Appendix D.1 Proof of Theorem 1

Recall from (S20) that

sup
z∈[0,1]

∥∥∥Σ̂(z)−Σ(z)
∥∥∥

max
6 sup

z∈[0,1]

max
j,k∈[d]

∣∣∣Σ̂jk(z)− E
{

Σ̂jk(z)
}∣∣∣+ sup

z∈[0,1]

max
j,k∈[d]

∣∣∣E{Σ̂jk(z)
}
−Σjk(z)

∣∣∣
= I1 + I2.

It suffices to obtain upper bounds for I1 and I2.

We first verify that the two conditions in (S21) hold. By Lemma S2, we have∣∣∣E{Pn(wz)}
∣∣∣ = O(h2) + fZ(z) > f

Z
(z) > 0,

where the last inequality follows from Assumption 1. Moreover,∣∣∣∣ Gn(wz)√
n · E {Pn(wz)}

∣∣∣∣ 6 C · 1√
n
|Gn(wz)| ·

1

fZ(z) +O(h2)

6 C1 ·
√

log(d/h)

nh
· 1

fZ(z) +O(h2)

< 1,

for sufficiently large n, where the first inequality is obtained by an application of Lemma S2,

the second inequality is obtained by an application of Lemma S3, and the last inequality is

obtained by the scaling assumptions h = o(1) and log(d/h)/(nh) = o(1).

Upper bound for I1: By (S35) in the proof of Lemma S1, we have

Σ̂jk(z) =
Gn(gz,jk)√
nE {Pn(wz)}

+
E{Pn(gz,jk)}
E {Pn(wz)}

−Gn(wz)E{Pn(gz,jk)}√
nE2{Pn(wz)}

+
1

n
O
[{

Gn(wz)Gn(gj,zk)
}

+ G2
n(gz,jk)

]
.

Thus, by Lemma S1, we have

I1 = sup
z∈[0,1]

max
j,k∈[d]

∣∣∣∣∣∣∣∣∣
Gn(gz,jk)√

n · E {Pn(wz)}︸ ︷︷ ︸
I11

− Gn(wz) · E{Pn(gz,jk)}√
n · E2{Pn(wz)}︸ ︷︷ ︸

I12

+I13

∣∣∣∣∣∣∣∣∣
6 sup

z∈[0,1]

max
j,k∈[d]

{|I11|+ |I12|+ |I13|} ,

(S28)

where I13 = O[{Gn(wz)Gn(gj,zk)}+ G2
n(gz,jk) + E{Gn(wz) ·Gn(gj,zk)}+ E{G2

n(gz,jk)}]/n.

We now provide upper bounds for I11, I12, and I13. By an application of Lemmas S2 and
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S3, we obtain

sup
z∈[0,1]

max
j,k∈[d]

|I11| 6 n−1/2 · sup
z∈[0,1]

max
j,k∈[d]

∣∣∣∣ Gn(gz,jk)

fZ(z) +O(h2)

∣∣∣∣ 6 C ·
√

log(d/h)

nh
. (S29)

Similarly, we have

sup
z∈[0,1]

max
j,k∈[d]

|I12| 6 n−1/2 · sup
z∈[0,1]

max
j,k∈[d]

∣∣∣∣Gn(gz,jk){fZ(z)Σjk(z) +O(h2)}
{fZ(z) +O(h2)}2

∣∣∣∣ 6 C ·
√

log(d/h)

nh
.

(S30)

For I13, we have

sup
z∈[0,1]

max
j,k∈[d]

|I13| 6 sup
z∈[0,1]

max
j,k∈[d]

∣∣∣∣ 1nO [{Gn(wz) ·Gn(gz,jk)
}

+ G2
n(gz,jk)

]∣∣∣∣+O
(

1

nh

)
6 C · log(d/h)

nh
+O

(
1

nh

)
6 C · log(d/h)

nh
,

(S31)

where the first and second inequalities follow from Lemmas S2 and S3, respectively. Com-

bining (S29), (S30), and (S31), we have

I1 6 C ·
√

log(d/h)

nh
, (S32)

with probability at least 1− 3/d.

Upper bound for I2: By Lemmas S1 and S2, we have

I2 = sup
z∈[0,1]

max
j,k∈[d]

∣∣∣∣E {Pn(gz,jk)}
E {Pn(wz)}

−Σjk(z) +
1

n
O
[
E
{
Gn(wz) ·Gn(gz,jk)

}
+ E

{
G2
n(gz,jk)

}]∣∣∣∣
6 sup

z∈[0,1]

max
j,k∈[d]

∣∣∣∣fZ(z)Σjk(z) +O(h2)

fZ(z) +O(h2)
−Σjk(z) +

1

n
O
[
E
{
Gn(wz) ·Gn(gz,jk)

}
+ E

{
G2
n(gz,jk)

}]∣∣∣∣
= sup

z∈[0,1]

max
j,k∈[d]

∣∣∣∣fZ(z)Σjk(z) +O(h2)

fZ(z) +O(h2)
−Σjk(z) +O

(
1

nh

)∣∣∣∣
= sup

z∈[0,1]

max
j,k∈[d]

∣∣∣∣ O(h2)Σjk(z)

fZ(z) +O(h2)
+O

(
1

nh

)∣∣∣∣
6 C ·

(
h2 +

1

nh

)
,

(S33)

where the first inequality follows from (S23) and (S24), the second equality follows from

(S25) and (S26), and the last inequality follows from the assumption that h = o(1).
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Combining the upper bounds (S32) and (S33), we obtain

sup
z∈[0,1]

∥∥∥Σ̂(z)−Σ(z)
∥∥∥

max
6 C ·

{
h2 +

√
log(d/h)

nh

}
with probability at least 1− 3/d.

Web Appendix E. Proof of Technical Lemmas in Appendix Web Appendix D

In this section, we provide the proofs of Lemmas S1-S3.

Web Appendix E.1 Proof of Lemma S1

The proof of the lemma uses the following fact

(1 + x)−1 = 1− x+O(x2) for any |x| < 1. (S34)

From (S12), we have

Σ̂jk(z) =
Pn(gz,jk)

Pn(wz)

=
Pn(gz,jk)− E {Pn(gz,jk)}+ E {Pn(gz,jk)}

E {Pn(wz)}
·
[
E {Pn(wz)}
Pn(wz)

]
=
n−1/2 ·Gn(gz,jk) + E {Pn(gz,jk)}

E {Pn(wz)}
·
[
1 +

Pn(wz)− E [Pn(wz)]

E [Pn(wz)]

]−1

=
n−1/2 ·Gn(gz,jk) + E [Pn(gz,jk)]

E {Pn(wz)}
·
[
1 +

Gn(wz)√
n · E {Pn(wz)}

]−1

.

Under the conditions (S21) and by applying (S34), we have

Σ̂jk(z) =
n−1/2 ·Gn(gz,jk) + E {Pn(gz,jk)}

E {Pn(wz)}
·
(

1− Gn(wz)√
n · E {Pn(wz)}

+O
[

G2
n(wz)

n · E2 {Pn(wz)}

])
=

Gn(gz,jk)√
nE {Pn(wz)}

+
E{Pn(gz,jk)}
E {Pn(wz)}

− Gn(wz)E{Pn(gz,jk)}√
nE2{Pn(wz)}

+
1

n
O
[{

Gn(wz)Gn(gz,jk)
}

+ G2
n(gz,jk)

]
.

(S35)

Note that E{Gn(f)} = 0 by the definition of Gn(f) in (S8). Taking expectation on both

sides of (S35), we obtain

E
{

Σ̂jk(z)
}

=
E {Pn(gz,jk)}
E {Pn(wz)}

+
1

n
O
[
E
{
Gn(wz) ·Gn(gz,jk)

}
+ E

{
G2
n(gz,jk)

}]
,

as desired.
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Web Appendix E.2 Proof of Lemma S2

To prove Lemma S2, we write the expectation as an integral and apply Taylor expansion to

the density function and the covariance function. We will show that the higher-order terms

of the Taylor expansion can be bounded by O(h2). We start by proving (S23).

Proof of (S23): Recall from (S9) the definition of gz,jk(Zi, Xij, Yik) = Kh(Zi − z)XijYik.

Thus, we have

E{Pn(gz,jk)} = E
{

1

h
K

(
Z − z
h

)
XjYk

}
= E

{
1

h
K

(
Z − z
h

)
E(XjYk | Z)

}
= E

{
1

h
K

(
Z − z
h

)
E(SjSk | Z)

}
= E

{
1

h
K

(
Z − z
h

)
Σjk(Z)

}
=

∫
1

h
K

(
Z − z
h

)
Σjk(Z)fZ(Z)dZ

=

∫
K(u)Σjk(uh+ z)fZ(uh+ z)du,

(S36)

where the third equality hold using the fact that the subject-specific effects are independent

between two subjects, and the last equality holds by a change of variable, u = (Z − z)/h.

Applying Taylor expansions to Σjk(uh+ z) and fZ(uh+ z), we have

Σjk(u+ zh) = Σjk(z) + uh · Σ̇jk(z) + u2h2 · Σ̈jk(z
′) (S37)

and

fZ(u+ zh) = fZ(z) + uh · ḟZ(z) + u2h2 · f̈Z(z′′), (S38)

where z′ and z′′ are between z and uh+z. Substituting (S37) and (S38) into the last expression

of (S36), we have∫
K(u)

{
Σjk(z) + uh · Σ̇jk(z) + u2h2 · Σ̈jk(z

′)
}
·
{
fZ(z) + uh · ḟZ(z) + u2h2 · f̈Z(z′′)

}
du.

(S39)

By (12), we have
∫
uK(u)du = 0 and

∫
ulK(u)du < ∞ for l = 1, 2, 3, 4. By Assumptions 1
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and 2, we have

h2

∫
u2K(u)Σ̈jk(z

′)fZ(z)du 6 h2CMσf̄Z = O(h2),

h2

∫
u2K(u)Σ̇jk(z)ḟZ(z)du 6 h2CMσf̄Z = O(h2),

h2

∫
u2K(u)Σjk(z)f̈Z(z′′)du 6 h2CMσf̄Z = O(h2).

(S40)

Substituting (S40) into (S39) and bounding the other higher-order terms by O(h2), we obtain

E{Pn(gz,jk)} = Σjk(z)fZ(z) +O(h2),

for all z ∈ [0, 1] and j, k ∈ [d]. This implies that

sup
z∈[0,1]

max
j,k∈[d]

|E{Pn(gz,jk)} −Σjk(z)fZ(z)| = O(h2).

The proof of (S24) follows from the same set of argument.

Proof of (S25): Recall from (S9) the definition of wz(Zi) = Kh(Zi − z). Thus, we have

1

n
E
{
Gn(gz,jk) ·Gn(wz)

}
= E

{
Pn(gz,jk) · Pn(wz)

}
− E{Pn(gz,jk)} · E{Pn(wz)}

= E

 1

n

∑
i∈[n]

Kh(Zi − z)XijYik

 ·
 1

n

∑
i∈[n]

Kh(Zi − z)


− E{Pn(gz,jk)} · E{Pn(wz)}

=
1

n
E
{
K2
h(Z − z)SjSk

}
+

1

n2
E

∑
i∈[n]

∑
i′ 6=i

Kh(Zi − z)Kh(Zi′ − z)XijYik

− E{Pn(gz,jk)} · E{Pn(wz)}

=
1

n
E
{
K2
h(Z − z)Σjk(Z)

}
+
n− 1

n
[E {Kh(Z − z)} · E {Kh(Z − z)Σjk(Z)}]− E{Pn(gz,jk)}E{Pn(wz)}

=
1

n
E
{
K2
h(Z − z)Σjk(Z)

}︸ ︷︷ ︸
I1

− 1

n
E{Pn(gz,jk)}E{Pn(wz)}︸ ︷︷ ︸

I2

,

(S41)

where the second to the last equality follows from the fact that Zi and Zi′ are independent.

We now obtain an upper bound for I1. By (12) and Assumptions 1-2, we have

I1 =
1

nh

∫
1

h
K2

(
Z − z
h

)
Σjk(Z)fZ(Z)dZ 6

1

nh
·Mσ · f̄Z

∫
1

h
K2

(
Z − z
h

)
dZ = O

(
1

nh

)
,

(S42)
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where the last equality holds by a change of variable. Moreover, by (S23) and (S24), we have

I2 =
1

n

{
fZ(z)Σjk(z) +O(h2)

}
· {fZ(z) +O(h2)} = O

(
1

n

)
. (S43)

Substituting (S42) and (S43) into (S41), and taking the supreme over z ∈ [0, 1] and j, k ∈ [d]

on both sides of the equation, we obtain

sup
z∈[0,1]

max
j,k∈[d]

∣∣∣∣ 1nE{Gn(gz,jk) ·Gn(wz)
}∣∣∣∣ = O

(
1

nh

)
+O

(
1

n

)
= O

(
1

nh

)
,

where the last equality holds by the scaling assumption of h = o(1). The proof of (S26)

follows from the same set of argument.

Web Appendix E.3 Proof of Lemma S3

The proof of Lemma S3 involves obtaining upper bounds for the supreme of the empir-

ical processes Gn(wz) and Gn(gz,jk). To this end, we apply the Talagrand’s inequality in

Lemma S20. Let F be a function class. In order to apply Talagrand’s inequality, we need to

evaluate the quantities η and τ 2 such that

sup
f∈F
‖f‖∞ 6 η and sup

f∈F
Var(f(X)) 6 τ 2.

Talagrand’s inequality in Lemma S20 provides an upper bound for the supreme of an

empirical process in terms of its expectation. By Lemma S21, the expectation can then

be upper bounded as a function of the covering number of the function class F , denoted as

N{F , L2(Q), ε}. The following lemmas provide upper bounds for the supreme of the empir-

ical processes Gn(wz) and Gn(gz,jk), respectively. The proofs are deferred to Sections Web

Appendix E.3.1 and Web Appendix E.3.2, respectively.

Lemma S4: Assume that h = o(1) and log(d/h)/(nh) = o(1). Under Assumptions 1-2,

for sufficiently large n, there exists a universal constant C > 0 such that

sup
z∈[0,1]

|Gn(wz)| 6 C ·
√

log(d/h)

h
, (S44)

with probability at least 1− 1/d.
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Lemma S5: Assume that h = o(1) and log2(d/h)/(nh) = o(1). Under Assumptions 1-2,

for sufficiently large n, there exists a universal constant C > 0 such that

sup
z∈[0,1]

max
j,k∈[d]

|Gn(gz,jk)| 6 C ·
√

log(d/h)

h
, (S45)

with probability at least 1− 2/d.

Applying Lemmas S4 and S5, we obtain

sup
z∈[0,1]

max
j,k∈[d]

∣∣∣Gn(wz) ∨Gn(gz,jk)
∣∣∣ 6 sup

z∈[0,1]

|Gn(wz)|+ sup
z∈[0,1]

max
j,k∈[d]

|Gn(gz,jk)|

6 C ·
√

log(d/h)

h
,

with probability at least 1− 3/d, as desired.

Web Appendix E.3.1 Proof of Lemma S4 . The proof of Lemma S4 uses the set of

arguments as detailed in the beginning of Web Appendix E.3. Recall from (S9) and (S11)

the definition of wz(Zi) = Kh(Zi − z) and kz(Zi) = wz(Zi) − E{wz(Z)}, respectively. We

consider the class of function

K = {kz | z ∈ [0, 1]} . (S46)

First, note that

sup
z∈[0,1]

‖kz‖∞ = sup
z∈[0,1]

‖wz(Zi)− E{wz(Z)}‖∞

6
1

h
‖K‖∞ + f̄Z +O(h2)

6
2

h
‖K‖∞,

(S47)

where the first inequality holds by (12) and Lemma S2, and the last inequality holds by the

scaling assumption h = o(1) for sufficiently large n.

Next, we obtain an upper bound for the variance of kz(Zi). Note that

sup
z∈[0,1]

Var{kz(Z)} = sup
z∈[0,1]

E
(
[wz(Z)− E{wz(Z)}]2

)
6 sup

z∈[0,1]

2E{w2
z(Z)}︸ ︷︷ ︸

I1

+ sup
z∈[0,1]

2E2{wz(Z)}︸ ︷︷ ︸
I2

,
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where we apply the inequality (x − y)2 6 2x2 + 2y2 for two scalars x, y. By Lemma S2, we

have I2 6 2{f̄Z +O(h2)}2. Also, by a change of variable and second-order Taylor expansion

on the marginal density fZ(·), we have

I1 = 2 sup
z∈[0,1]

∫
1

h2
K2

(
Z − z
h

)
fZ(Z)dZ

= 2 sup
z∈[0,1]

1

h

∫
K2(u)fZ(uh+ z)du

= 2 sup
z∈[0,1]

1

h

∫
K2(u)

{
fZ(z) + uhḟZ(z) + u2h2f̈Z(z′)

}
du for z′ ∈ (z, u+ zh)

6
2

h
f̄Z‖K‖2

2 +O(1) +O(h).

(S48)

Thus, for sufficiently large n and the assumption that h = o(1), we have

sup
z∈[0,1]

Var{kz(Z)} 6 3

h
· f̄Z · ‖K‖2

2. (S49)

By Lemma S16, the covering number for the function class K satisfies

sup
Q

N{K, L2(Q), ε} 6

(
4 · ‖K‖TV · C4/5

K · f̄ 1/5
Z

hε

)5

. (S50)

We are now ready to obtain an upper bound for the supreme of the empirical process,

supz∈[0,1] |Gn(wz)|. By Lemma S21 with A = 2 · ‖K‖TV · C4/5
K · f̄ 1/5

Z /‖K‖∞, ‖F‖L2(Pn) =

2 · ‖K‖∞/h, V = 5, σ2
P = 3 · f̄Z · ‖K‖2

2/h, for sufficiently large n, we obtain

E

{
sup
z∈[0,1]

1√
n
· |Gn(wz)|

}
= E

 sup
z∈[0,1]

1

n

∣∣∣∣∣∣
∑
i∈[n]

[wz(Zi)− E{wz(Z)}]

∣∣∣∣∣∣


6 C ·

{√
log(1/h)

nh
+

log(1/h)

n

}

6 C ·
√

log(1/h)

nh
,

(S51)

where C > 0 is some sufficiently large constant. By Lemma S20 with τ 2 = 3f̄Z · ‖K‖2
2/h,

η = 2 · ‖K‖∞/h, E[Y ] 6 C ·
√

log(1/h)/(nh), and picking t =
√

log(d)/n, for sufficiently
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large n, we have

sup
z∈[0,1]

1√
n
· |Gn(wz)| = sup

z∈[0,1]

1

n

∣∣∣∣∣∣
∑
i∈[n]

(wz(Zi)− E{wz(Z)}

∣∣∣∣∣∣
6 C ·

√ log(1/h)

nh
+

√
log(d)

nh
·

√
1 +

√
log(1/h)

nh
+

log(d)

nh


6 C ·

√
log(d/h)

nh
,

with probability 1−1/d, where the last expression holds by the assumption that log(d/h)/(nh) =

o(1) and h = o(1). Multiplying both sides of the above equation by
√
n completes the proof

of Lemma S4.

Web Appendix E.3.2 Proof of Lemma S5 . The proof of Lemma S5 uses the set of

arguments as detailed in the beginning of Web Appendix E.3. For convenience, we prove

Lemma S5 by conditioning on the event

A =

{
max
i∈[n]

max
j∈[d]

max(|Xij|, |Yij|) 6MX ·
√

log d

}
. (S52)

Since Xij and Yij conditioned on Z are Gaussian random variables, the event A occurs with

probability at least 1− 1/d for sufficiently large constant MX > 0.

Recall from (S9) and (S10) the definition of gz,jk(Zi, Xij, Yik) = Kh(Zi − z)XijYik and

qz,jk(Zi, Xij, Yik) = gz,jk(Zi, Xij, Yik) − E{gz,jk(Z,Xj, Yk)}, respectively. We consider the

function class

Q = {qz,jk | z ∈ [0, 1], j, k ∈ [d]} . (S53)
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We first obtain an upper bound for the function class

sup
z∈[0,1]

max
j,k∈[d]

‖qz,jk‖∞ = sup
z∈[0,1]

max
j,k∈[d]

‖gz,jk(Zi, Xij, Yik)− E{gz,jk(Z,Xj, Yk)}‖∞

6 sup
z∈[0,1]

max
j,k∈[d]

‖gz,jk(Zi, Xij, Yik)‖∞ + sup
z∈[0,1]

max
j,k∈[d]

‖E{gz,jk(Z,Xj, Yk)}‖∞

6 sup
z∈[0,1]

max
j,k∈[d]

‖Kh(Zi − z)XijYik‖∞ + f̄Z ·Mσ +O(h2)

6
1

h
·M2

X · ‖K‖∞ · log d+ f̄Z ·Mσ +O(h2)

6
2

h
·M2

X · ‖K‖∞ · log d,

(S54)

where the second inequality holds by Assumptions 1-2 and Lemma S2, the third inequality

holds by (12) and by conditioning on the event A, and the last inequality holds by the scaling

assumption h = o(1) for sufficiently large n.

Next, we obtain an upper bound for the variance of qz,jk(Zi, Xij, Yik). Note that

sup
z∈[0,1]

max
j,k∈[d]

Var{qz,jk(Z,Xj, Yk)} = sup
z∈[0,1]

max
j,k∈[d]

E
[
(gz,jk(Z,Xj, Yk)− E{gz,jk(Z,Xj, Yk)})2]

6 sup
z∈[0,1]

max
j,k∈[d]

2E
{
g2
z,jk(Z,Xj, Yk)

}
︸ ︷︷ ︸

I1

+ sup
z∈[0,1]

max
j,k∈[d]

2E2{gz,jk(Z,Xj, Yk)}︸ ︷︷ ︸
I2

,

where we apply the inequality (x − y)2 6 2x2 + 2y2 for two scalars x, y. By Lemma S2,

we have I2 6 2
{
f̄Z ·Mσ +O(h2)

}2
. Also, by a change of variable and second-order Taylor

expansion on the marginal density fZ(·) as in (S48), we have

I1 = 2 sup
z∈[0,1]

max
j,k∈[d]

E
{
K2
h(Z − z) · E

(
X2
j Y

2
k | Z

)}
6 2κ sup

z∈[0,1]

E
{
K2
h(Z − z)

}
6

2κ

h
· f̄Z · ‖K‖2

2 +O(1) +O(h),

where the first inequality follows from the fact that |E(X2
j Y

2
k | Z)| 6 κ for some κ <∞ since

these are Gaussian random variables, and the second inequality follows from (S48). Thus,
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for sufficiently large n and the assumption that h = o(1), we have

sup
z∈[0,1]

max
j,k∈[d]

Var{qz,j,k(Z,Xj, Yk)} 6
3κ

h
· f̄Z · ‖K‖2

2. (S55)

By Lemma S17, the covering number for the function class Q satisfies

sup
Q

N{Q, L2(Q), ε} 6

(
4‖K‖TV · C4/5

K · f̄ 1/5
Z ·M1/5

σ · d1/10 ·M2/5
X · log2/5 d

hε

)5

. (S56)

We now obtain an upper bound for the supreme of the empirical process, sup
z∈[0,1]

max
j,k∈[d]

|Gn(gz,jk)|.

By Lemma S21 with A = 2 · ‖K‖TV ·C4/5
K · f̄ 1/5

Z ·M1/5
σ · d1/10/‖K‖∞, ‖F‖L2(Pn) = 2 · ‖K‖∞ ·

M2
X · log d/h, V = 5, σ2

P = (3κ/h) · f̄Z · ‖K‖2
2, for sufficiently large n, we obtain

E

{
sup
z∈[0,1]

max
j,k∈[d]

1√
n
· |Gn(gz,jk)|

}
= E

 sup
z∈[0,1]

max
j,k∈[d]

1

n
·

∣∣∣∣∣∣
∑
i∈[n]

[gz,jk(Zi, Xij, Yik)− E{gz,jk(Z,Xj, Yk)}]

∣∣∣∣∣∣


6 C ·

{√
log(d/h)

nh
+

log(d/h)

n

}

6 C ·
√

log(d/h)

nh
,

(S57)

where the last inequality holds by the assumption log(d/h)/nh = o(1). By Lemma S20 with

τ 2 = 3 ·κ · f̄Z · ‖K‖2
2/h, η = 2 · ‖K‖∞ ·M2

X · log d/h, E[Y ] 6 C ·
√

log(d/h)/(nh), and picking

t =
√

log d/n, for sufficiently large n, we have

sup
z∈[0,1]

max
j,k∈[d]

1√
n
· |Gn(gz,jk)| = sup

z∈[0,1]

max
j,k∈[d]

1

n
·

∣∣∣∣∣∣
∑
i∈[n]

[gz,jk(Zi, Xij, Yik)− E{gz,jk(Z,Xj, Yk)}]

∣∣∣∣∣∣
6 C ·


√

log(d/h)

nh
+

√
log d

nh
·

√
1 + log d ·

√
log(d/h)

nh
+

log2 d

nh


6 C ·

√
log(d/h)

nh
,

with probability at least 1 − 2/d. The second inequality holds by the assumption that

log2(d/h)/(nh) = o(1). Multiplying both sides of the equation by
√
n, we completed the

proof of Lemma S5.
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Web Appendix F. Proof of Theorem 2

In this section, we provide the proof of Theorem 2. To prove Theorem 2, we use a similar

set of arguments in the series of work on Gaussian multiplier bootstrap of the supreme of

empirical process (see, for instance, Chernozhukov et al., 2013, 2014a,b). Recall from (9) and

(10) that

TE = sup
z∈[0,1]

max
(j,k)∈E(z)

√
nh ·

∣∣∣Θ̂de

jk(z)−Θjk(z)
∣∣∣ · Pn(wz) (S58)

and

TBE = sup
z∈[0,1]

max
(j,k)∈E(z)

√
nh ·

∣∣∣∣∣∣∣
∑

i∈[n]

{
Θ̂j(z)

}T
Kh(Zi − z)

{
X iY

T
i Θ̂k(z)− ek

}
ξi/n{

Θ̂j(z)
}T

Σ̂j(z)

∣∣∣∣∣∣∣ , (S59)

respectively, where ξi ∼ N(0, 1). Note that for notational convenience, we drop the subscript

E from TE and TBE throughout the proof.

We aim to show that TB is a good approximation of T . However, T and TB are not exact

averages. To apply the results in Chernozhukov et al., 2014a, we define four intermediate

processes:

T0 = sup
z∈[0,1]

max
(j,k)∈E(z)

√
nh ·

∣∣∣∣∣∣
∑
i∈[n]

{Θj(z)}T Kh(Zi − z)
{
X iY

T
i −Σ(z)

}
Θk(z)/n

∣∣∣∣∣∣ ; (S60)

T00 = sup
z∈[0,1]

max
(j,k)∈E(z)

√
nh ·

∣∣∣∣∑
i∈[n]

{Θj(z)}T Kh(Zi − z)
{
X iY

T
i −Σ(z)

}
Θk(z)/n

− {Θj(z)}T
([

E{Kh(Z − z)XY T} − E{Kh(Z − z)}Σ(z)
])

Θk(z)/n

∣∣∣∣;
(S61)

TB0 = sup
z∈[0,1]

max
(j,k)∈E(z)

√
nh·

∣∣∣∣∣∣
∑
i∈[n]

[
{Θj(z)}T Kh(Zi − z)

{
X iY

T
i −Σ(z)

}
Θk(z)

]
ξi/n

∣∣∣∣∣∣ , (S62)
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TB00 = sup
z∈[0,1]

max
(j,k)∈E(z)

√
nh ·

∣∣∣∣∑
i∈[n]

{
{Θj(z)}T Kh(Zi − z)

{
X iY

T
i −Σ(z)

}
Θk(z)/n

− {Θj(z)}T
([

E{Kh(Z − z)XY T} − E{Kh(Z − z)}Σ(z)
])

Θk(z)
}
· ξi/n

∣∣∣∣;
(S63)

where ξi
i.i.d.∼ N(0, 1).

To prove Theorem 2, we show that T00 is a good approximation of T and that TB00 is a

good approximation of TB. We then show that there exists a Gaussian process W such that

both TB00 and T00 can be accurately approximated by W . This is done by applications of

Theorems A.1 and A.2 in Chernozhukov et al. (2014a). The following summarizes the chain

of empirical and Gaussian processes that we are going to study

T ←→ T0 ←→ T00 ←→ W ←→ TB00 ←→ TB0 ←→ TB.

The following lemma provides an approximation error between the statistic T and the

intermediate empirical process T00.

Lemma S6: Assume that h2 +
√

log(d/h)/nh = o(1). Under Assumptions 1-2, for suf-

ficiently large n, there exists a universal constant C > 0 such that

|T − T00| 6 C ·
{√

nh5 + s ·
√
nh9 +

s · log(d/h)√
nh

+ ·s · h2 ·
√

log(d/h)

}
,

with probability at least 1− 1/d.

Proof. The proof is deferred to Web Appendix F.2.

We now apply Theorems A.1 and A.2 in Chernozhukov et al. (2014a) to show that there

exists a Gaussian process W such that the quantities |T00 − W | and |TB00 − W | can be

controlled, respectively. The results are stated in the following lemmas.

Lemma S7: Assume that log6 s · log4(d/h)/(nh) = o(1). Under Assumptions 1-2, for



23

sufficiently large n, there exists universal constants C,C ′ > 0 such that

P

[
|T00 −W | > C ·

{
log6(s) · log4(d/h)

nh

}1/8
]
6 C ′ ·

{
log6(s) · log4(d/h)

nh

}1/8

.

Proof. The proof is deferred to Web Appendix F.3.

Lemma S8: Assume that log4(s) · log3(d/h)/(nh) = o(1). Under Assumptions 1-2, for

sufficiently large n, there exists universal constants C,C ′′ > 0 such that

P

[
|TB00 −W | > C ·

{
log4(s) · log3(d/h)

nh

}1/8 ∣∣∣ {(Zi,X i,Y i)}i∈[n]

]
6 C ′′·

{
log4(s) · log3(d/h)

nh

}1/8

,

with probability at least 1− 3/n.

Proof. The proof is deferred to Web Appendix F.4.

Finally, the following lemma provides an upper bound on the difference between TB and

TB00, conditioned on the data {(Zi,X i,Y i)}i∈[n].

Lemma S9: Assume that s ·
√
h3 log3(d/h) + s ·

√
log4(d/h)/nh2 +

√
h5 log n = o(1).

Under Assumptions 1-2, for sufficiently large n, there exists universal constants C,C ′′ > 0

such that, with probability at least 1− 1/d,

P

[
|TB − TB00| > C ·

√
h3 log3(d/h) + s ·

√
log4(d/h)

nh2
+
√
h5 logn

∣∣∣ {(Zi,Xi,Y i)}i∈[n]

]
6 2/d+ 1/n.

Proof. The proof is deferred to Web Appendix F.5.

With Lemmas S6-S9, we are now ready to prove Theorem 2.

Web Appendix F.1 Proof of Theorem 2

Recall that for notational convenience, we drop the subscript E from TE and TBE throughout

the proof. In this section, we show that T can be well-approximated by the (1−α)-conditional

quantile of TB, i.e., P{T > c(1− α)} 6 α. For notational convenience, we let r = r1 + r2 +
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r3 + r4, where

r1 =
√
nh5 + s ·

√
nh9 +

s · log(d/h)√
nh

+ ·s · h2 ·
√

log(d/h)

r2 =

{
log6 s · log4(d/h)

nh

}1/8

r3 =

{
log4 s · log3(d/h)

nh

}1/8

r4 =

√
h3 log3(d/h) + s ·

√
log4(d/h)

nh2
+
√
h5 log n.

These are the scaling that appears in Lemmas S6-S9. By Lemmas S6 and S7, it can be shown

that

P (|T −W | > 2r2) 6 P (|T − T00|+ |T00 −W | > 2r2) 6 2r2, (S64)

since r2 > r1 and r2 > 1/d. With some abuse of notation, throughout the proof, we write

Pξ(T
B > t) to indicate P [TB > t | {(Zi,X i,Y i)}i∈[n]]. By Lemmas S8 and S9, we have

Pξ(|TB −W | > 2r2) 6 Pξ(|TB − TB00|+ |TB00 −W | > 2r2) 6 2r2, (S65)

since r2 > r3 and r2 > 2/d+ 1/n. Define the event

E =
(
P [|TB00 −W | > r2 | {(Zi,X i,Y i)}i∈[n] 6 r2]

)
,

and note that P (E) > 1 − 2/d − 4/n by Lemmas S8 and S9. Throughout the proof, we

condition on the event E .

By the triangle inequality, we obtain

P{T 6 c(1− α)} > 1− P{T −W +W + 2r2 > c(1− α) + 2r2}

> 1− P (|T −W | > 2r2)− P{W > c(1− α)− 2r2}

> P{|W | 6 c(1− α)− 2r2} − 2r2,

(S66)

where the last inequality follows from (S64). By a similar argument and by (S65), we have

P{W 6 c(1− α)− 2r2} > Pξ{TB 6 c(1− α)− 4r2} − 2r2

> Pξ{TB 6 c(1− α)} − 2r2 − Pξ{|TB − c(1− α)| 6 r2},
(S67)

where the last inequality follows from the fact that P (X 6 t−ε)−P (X 6 t) > −P (|X−t| 6
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ε) for any ε > 0. Thus, combining (S66) and (S67), we obtain

P{T 6 c(1− α)} > 1− α− 4r2 − Pξ{|TB − c(1− α)| 6 r2}. (S68)

It remains to show that the quantity Pξ{|TB − c(1 − α)| 6 r2} converges to zero as we

increase n.

By the definition of T00 and from (S15), we have

T00 = sup
z∈[0,1]

max
j,k∈[d]

1√
n

∣∣∣∣∣∣
∑
i∈[n]

Jz,jk(Zi,X i,Y i)

∣∣∣∣∣∣ and TB00 = sup
z∈[0,1]

max
j,k∈[d]

1√
n

∣∣∣∣∣∣
∑
i∈[n]

Jz,jk(Zi,X i,Y i)ξi

∣∣∣∣∣∣ .
Let σ̂2

z,jk =
∑n

i=1 J
2
z,jk(Zi,X i,Y i)/n be the conditional variance, and let σ = infz,jk σ̂z,jk

and σ̄ = supz,jk σ̂z,jk. By Lemma A.1 of Chernozhukov et al. (2014b) and Theorem 3

of Chernozhukov et al. (2013), we obtain

Pξ{|TB − c(1− α)| 6 r2}

6 C · σ̄/σ · r2 · {E[TB | {(Zi,X i,Y i)}i∈[n]] +
√

1 ∨ log(σ/r2)}

6 C · σ̄/σ · r2 · {E[TB00 | {(Zi,X i,Y i)}i∈[n]] + E[|TB − TB00| | {(Zi,X i,Y i)}i∈[n]] +
√

1 ∨ log(σ/r2)}.

(S69)

We first calculate the quantity σ̄. By (S90), we have

sup
z∈[0,1]

max
j,k∈[d]

‖J2
z,jk(Zi,X i,Y i)‖∞ 6 C · log2 s/h. (S70)

Moreover, by (S90), we have

sup
z∈[0,1]

max
j,k∈[d]

E[J4
z,jk(Zi,X i,Y i)] 6 C · log4 s/h2. (S71)

Define the function class J ′ = {J2
z,jk(·) | z ∈ [0, 1], j, k ∈ [d]}. By Lemmas S15, S18 and S19,

we have

sup
Q

N{J ′, L2(Q), ε} 6 C · d2 ·

(
d17/24 · log3/4 d

h11/12 · ε

)24

. (S72)

Thus, applying Lemma S21 with σ2
P = C · log4 s/h2 and ‖F‖L2(Pn) 6 C · d2 · (d17/24 ·

log3/4 d/h11/12)24, we have

E

 sup
z∈[0,1]

max
j,k∈[d]

1

n

∣∣∣∣∣∣
∑
i∈[n]

J2
z,jk(Zi,X i,Y i)− E{J2

z,jk(Z,X,Y )}

∣∣∣∣∣∣
 6 C ·

√
log5(d/h)

nh2
.
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By an application of the Markov’s inequality, we obtain

P

 sup
z∈[0,1]

max
j,k∈[d]

 1

n

∑
i∈[n]

J2
z,jk(Zi,Xi,Y i)− E{J2

z,jk(Zi,Xi,Y i)}

 > C ·
{

log5(d/h)

nh2

}1/4
 6 C ·

{
log5(d/h)

nh2

}1/4

.

(S73)

Thus, we have with probability at least 1− C ·
{

log5(d/h)/(nh2)
}1/4

,

σ̄2 = sup
z∈[0,1]

max
j,k∈[d]

1

n

∑
i∈[n]

J2
z,jk(Zi,Xi,Y i) 6 sup

z∈[0,1]
max
j,k∈[d]

E{J2
z,jk(Zi,Xi,Y i)}+ C ·

{
log5(d/h)

nh2

}1/4

6 C · log2 s,

(S74)

where the last inequality follows from (S95) for sufficiently large n. By Lemma S10, we have

infz,j,k E{J2
z,jk(Z,X,Y )} > c > 0. Therefore, we have

σ2 = inf
z,j,k

1

n

n∑
i=1

J2
z,jk(Zi,X i,Y i) > c−sup

z,j,k

1

n

n∑
i=1

[J2
z,jk(Zi,X i,Y i)−E{J2

z|(j,k)(Z,X,Y )}] > c/2 > 0,

with probability at least 1− C ·
{

log5(d/h)/(nh2)
}1/4

.

Next, we calculate the quantity E[TB00 | {(Zi,X i,Y i)}i∈[n]]. By Dudley’s inequality (see,

e.g., Corollary 2.2.8 in Van Der Vaart and Wellner, 1996) and (S96), we obtain

E[TB00 | {(Zi,X i,Y i)}i∈[n]] 6 C · log s ·
√

log(d/h). (S75)

Moreover, by Lemma S9, we have

E[|TB − TB00| | {(Zi,X i,Y i)}i∈[n]] 6 C ·
√
h3 log3(d/h) + s ·

√
log4(d/h)

nh2
+
√
h5 log n 6 r2,

(S76)

with probability at least 1− 2/d− 1/n. Substituting (S74), (S75), and (S76) into (S69), we

obtain

Pξ{|TB − c(1− α)| 6 r2} 6 C ·
{

log22 s · log8(d/h)

nh

}1/8

. (S77)

Thus, substituting (S77) into (S68), we have

P{T 6 c(1− α)} > 1− α− 4r2 −
log22 s · log8(d/h)

nh
.

By the scaling assumptions, r2 = o(1) and log22 s · log8(d/h)/(nh) = o(1). Thus, this implies

that

lim
n→∞

P{T 6 c(1− α)} > 1− α,
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which implies that

lim
n→∞

P{T > c(1− α)} 6 α,

as desired.

Web Appendix F.2 Proof of Lemma S6

In this section, we show that |T − T00| is upper bounded by the quantity

C ·
{√

nh5 + s ·
√
nh9 +

s · log(d/h)√
nh

+ ·s · h2 ·
√

log(d/h)

}
with high probability for sufficiently large constant C > 0. By the triangle inequality, we

have |T −T00| 6 |T −T0|+ |T0−T00|. Thus, is suffices to obtain upper bounds for the terms

|T − T0| and |T0 − T00|.

Upper Bound for |T − T0|: Let Θ̃k =
(
Θ̂1k, . . . , Θ̂(j−1)k,Θjk, Θ̂(j+1)k, . . . , Θ̂dk

)T
∈ Rd.

Then, the statistics T can be rewritten as

T = sup
z∈[0,1]

max
(j,k)∈E(z)

√
nh ·

∣∣∣Θ̂de

jk(z)−Θjk(z)
∣∣∣ · Pn(wz)

= sup
z∈[0,1]

max
(j,k)∈E(z)

√
nh ·

∣∣∣∣∣∣∣Θ̂jk(z)−Θjk(z)−

{
Θ̂j(z)

}T {
Σ̂(z)Θ̂k − ek

}
{

Θ̂j(z)
}T

Σ̂j(z)

∣∣∣∣∣∣∣ · Pn(wz)

= sup
z∈[0,1]

max
(j,k)∈E(z)

√
nh ·

∣∣∣∣∣∣∣
{

Θ̂j(z)
}T {

Σ̂(z)Θ̃k − ek

}
{

Θ̂j(z)
}T

Σ̂j(z)

∣∣∣∣∣∣∣ · Pn(wz).

(S78)

To obtain an upper bound on the difference between T and T0, we make use of the following

inequality: ∣∣∣∣ x

1 + δ
− y
∣∣∣∣ 6 2 · y · |δ|+ 2 · |x− y| for any |δ| 6 1

2
. (S79)

Recall from (S60) that

T0 = sup
z∈[0,1]

max
(j,k)∈E(z)

√
nh ·

∣∣∣∣∣∣
∑
i∈[n]

{Θj(z)}T Kh(Zi − z)
{
X iY

T
i −Σ(z)

}
Θk(z)/n

∣∣∣∣∣∣ .
Applying (S79) with x = {Θ̂j(z)}T{Σ̂(z)Θ̃k − ek}, δ = {Θ̂j(z)}T Σ̂j(z) − 1, and y =
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{Θj(z)}T{Σ̂(z)−Σ(z)}Θk(z), and by the triangle inequality, we have

|T − T0|

6 sup
z∈[0,1]

max
(j,k)∈E(z)

√
nh ·

∣∣∣∣∣
{

Θ̂j(z)
}T {

Σ̂(z)Θ̃k − ek
}
· Pn(wz){

Θ̂j(z)
}T

Σ̂j(z)
− 1

n

∑
i∈[n]

{Θj(z)}T Kh(Zi − z)
{
XiY

T
i −Σ(z)

}
Θk(z)

∣∣∣∣∣
6 sup
z∈[0,1]

max
(j,k)∈E(z)

√
nh ·

∣∣∣∣∣
{

Θ̂j(z)
}T {

Σ̂(z)Θ̃k − ek
}

{
Θ̂j(z)

}T
Σ̂j(z)

− {Θj(z)}T
{

Σ̂(z)−Σ(z)
}

Θk(z)

∣∣∣∣∣ · |Pn(wz)|

6 2 sup
z∈[0,1]

max
(j,k)∈E(z)

√
nh ·

[
{Θj(z)}T

{
Σ̂(z)−Σ(z)

}
Θk(z) ·

∣∣∣∣{Θ̂j(z)
}T

Σ̂j(z)− 1

∣∣∣∣] · |Pn(wz)|︸ ︷︷ ︸
I1

+ 2 sup
z∈[0,1]

max
(j,k)∈E(z)

√
nh ·

[{
Θ̂j(z)

}T {
Σ̂(z)Θ̃k − ek

}
− {Θj(z)}T

{
Σ̂(z)−Σ(z)

}
Θk(z)

]
· |Pn(wz)|︸ ︷︷ ︸

I2

.

(S80)

It remains to obtain upper bounds for I1 and I2 in (S80).

Upper bound for I1: By Corollary 1, we have

sup
z∈[0,1]

max
j∈[d]

∣∣∣∣{Θ̂j(z)
}T

Σ̂j(z)− 1

∣∣∣∣ 6 C ·

[
h2 +

√
log(d/h)

nh

]
. (S81)

Moreover, by Lemmas S4 and S2, we have

sup
z∈[0,1]

|Pn(wz)| 6 |E {Pn(wz)}|+ C ·
√

log(d/h)

nh
= f̄Z +O

{
h2 +

√
log(d/h)

nh

}
, (S82)

with probability at least 1− 1/d. Thus, by Holder’s inequality, we have

I1 6 2 sup
z∈[0,1]

max
(j,k)∈E(z)

√
nh ·

∣∣∣∣{Θ̂j(z)
}T

Σ̂j(z)− 1

∣∣∣∣ · |Pn(wz)| ·
∣∣∣{Θj(z)}T

{
Σ̂(z)−Σ(z)

}
Θk(z)

∣∣∣
6 2 sup

z∈[0,1]
max

(j,k)∈E(z)

√
nh ·

∣∣∣∣{Θ̂j(z)
}T

Σ̂j(z)− 1

∣∣∣∣ · |Pn(wz)| · ‖Θj(z)‖21 · ‖Σ̂(z)−Σ(z)‖max

6 2 ·M2 ·
√
nh · C ·

{
h2 +

√
log(d/h)

nh

}
·

[
f̄Z +O

{
h2 +

√
log(d/h)

nh

}]
·

{
h2 +

√
log(d/h)

nh

}

6 C ·
√
nh ·

{
h2 +

√
log(d/h)

nh

}2

,

(S83)

with probability greater than 1−4/d, where the third inequality holds by Theorem 1, (S81),

and (S82).

Upper bound for I2: To obtain an upper bound for I2, we first decompose the quantity
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√
nh · {Θ̂j(z)}T{Σ̂(z)Θ̃k − ek} into the following

√
nh ·

{
Θ̂j(z)

}T {
Σ̂(z)Θ̃k − ek

}
=
√
nh ·

{
Θ̂j(z)

}T
Σ̂(z)

{
Θ̃k(z)−Θk(z)

}
︸ ︷︷ ︸

I21

+
√
nh ·

{
Θ̂j(z)

}T {
Σ̂(z) −Σ(z)

}
Θk(z)︸ ︷︷ ︸

I22

.

Next, we show that I21 converges to zero and that the difference between I22 and the term

√
nh · {Θj(z)}T{Σ̂(z)−Σ(z)}Θk(z) is small.

Upper bound for I21: By Holder’s inequality and Corollary 1, we have

|I21| 6 sup
z∈[0,1]

max
(j,k)∈E(z)

√
nh ·

∥∥∥∥{Θ̂j(z)
}T

Σ̂−j(z)

∥∥∥∥
∞
·
∥∥∥Θ̂k(z)−Θk(z)

∥∥∥
1

6 C ·
√
nh · s ·

{
h2 +

√
log(d/h)

nh

}2

6 C ·
{
s ·
√
nh9 +

s · log(d/h)√
nh

+ s · h2 ·
√

log(d/h)

}
,

(S84)

with probability at least 1− 1/d.

Decomposition of I22: By adding and subtracting terms, we have

I22 =
√
nh ·

{
Θ̂j(z)−Θj(z)

}T {
Σ̂(z)−Σ(z)

}
Θk(z)︸ ︷︷ ︸

I221

+
√
nh · {Θj(z)}T

{
Σ̂(z)−Σ(z)

}
Θk(z)︸ ︷︷ ︸

I222

.

(S85)

Similar to (S84), we have

|I221| 6 sup
z∈[0,1]

max
(j,k)∈E(z)

√
nh ·

∥∥∥Θ̂j(z)−Θj(z)
∥∥∥

1
·
∥∥∥Σ̂(z)−Σ(z)

∥∥∥
max
· ‖Θk(z)‖1

6 C ·
√
nh ·M · s ·

{
h2 +

√
log(d/h)

nh

}2

6 C ·
{
s ·
√
nh9 +

s · log(d/h)√
nh

+ s · h2 ·
√

log(d/h)

}
,

(S86)

where the second inequality holds by Holder’s inequality, Corollary 1, and the fact that

Θ(z) ∈ Us,M .
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Combining the results (S84)-(S86), we have

I2 = 2 sup
z∈[0,1]

max
(j,k)∈E(z)

√
nh ·

[{
Θ̂j(z)

}T {
Σ̂(z)Θ̃k − ek

}
− {Θj(z)}T

{
Σ̂(z)−Σ(z)

}
Θk(z)

]
· |Pn(wz)|

6 2 · sup
z∈[0,1]

|Pn(wz)| · [I21 + I221]

6 2 ·

[
f̄Z +O

{
h2 +

√
log(d/h)

nh

}]
· (I21 + I221)

6 C ·
{
s ·
√
nh9 +

s · log(d/h)√
nh

+ s · h2 ·
√

log(d/h)

}
,

(S87)

where the third inequality follows from (S82).

Combining the upper bounds for I1 in (S83) and I2 in (S87), we have

|T − T0| 6 C ·
{
s ·
√
nh9 +

s · log(d/h)√
nh

+ s · h2 ·
√

log(d/h)

}
, (S88)

with probability at least 1− 1/d.

Upper bound for |T0 − T00|: Recall from (S61) the definition of T00

T00 = sup
z∈[0,1]

max
(j,k)∈E(z)

√
nh ·

∣∣∣∣∑
i∈[n]

{Θj(z)}T Kh(Zi − z)
{
X iY

T
i −Σ(z)

}
Θk(z)/n

− {Θj(z)}T
[
E{Kh(Z − z)XY T} − E{Kh(Z − z)}Σ(z)

]
Θk(z)/n

∣∣∣∣;
Using the triangle inequality ||x| − |y|| 6 |x− y|, we obtain

|T0 − T00| 6
√
nh · sup

z∈[0,1]

max
(j,k)∈E(z)

∣∣∣{Θj(z)}T
[
E{Kh(Z − z)XY T} − E{Kh(Z − z)}Σ(z)

]
Θk(z)

∣∣∣
6
√
nh · sup

z∈[0,1]

max
(j,k)∈E(z)

‖Θj(z)‖1 · ‖Θk(z)‖1 · |E{Kh(Z − z)XjYk} − E{Kh(Z − z)} ·Σjk(z)|

6
√
nh ·M2 · sup

z∈[0,1]

max
(j,k)∈E(z)

|E{Kh(Z − z)XjYk} − E{Kh(Z − z)} ·Σjk(z)|

=
√
nh ·M2 ·

∣∣fZ(z) ·Σjk(z) +O(h2)− fZ(z) ·Σjk(z) + Σjk(z) · O(h2)
∣∣

6M2 ·Mσ ·
√
nh5,

(S89)

where the second inequality follows from an application of Holder’s inequality, the third
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inequality follows from the fact that Θ(z) ∈ Us,M , the first equality follows by an application

of Lemma S2, and the last inequality follows from Assumption 2 and that h2 = o(1).

Thus, combining (S88) and (S89), there exists a constant C > 0 such that

|T − T00| 6 C ·
{√

nh5 + s ·
√
nh9 +

s · log(d/h)√
nh

+ ·s · h2 ·
√

log(d/h)

}
,

with probability at least 1− 1/d.

Web Appendix F.3 Proof of Lemma S7

Recall from (S61) the definition

T00 = sup
z∈[0,1]

max
(j,k)∈E(z)

√
nh ·

∣∣∣∣∑
i∈[n]

{Θj(z)}T Kh(Zi − z)
{
X iY

T
i −Σ(z)

}
Θk(z)/n

− {Θj(z)}T
[
E{Kh(Z − z)XY T} − E{Kh(Z − z)}Σ(z)

]
Θk(z)/n

∣∣∣∣.
Recall from (S15) that Jz,jk(Zi,X i,Y i) = J

(1)
z,jk(Zi,X i,Y i)−J (2)

z,jk(Zi), where J
(1)
z,jk(Zi,X i,Y i)

and J
(2)
z,jk(Zi) are as defined in (S13) and (S14), respectively. Let J = {Jz,jk | z ∈ [0, 1], j, k ∈ [d]}.

Then the intermediate empirical average T00 can be written as

T00 = sup
z∈[0,1]

max
(j,k)∈E(z)

∣∣∣∣∣∣ 1√
n

∑
i∈[n]

Jz,jk(Zi,X i,Y i)

∣∣∣∣∣∣ .
In this section, we show that there exists a Gaussian process W such that

|T00 −W | 6 C ·
{

log6 s · log4(d/h)

nh

}1/8

with high probability. To this end, we apply Theorem A.1 in Chernozhukov et al. (2014a),

which involves the following quantities

• upper bound for sup
z∈[0,1]

max
j,k∈[d]

‖Jz,jk(Zi,X i,Y i)‖∞;

• upper bound for sup
z∈[0,1]

max
j,k∈[d]

E
{
J2
z,jk(Z,X,Y )

}
;

• covering number for the function class J .

Let Sj(z) and Sk(z) to be the support of Θj(z) and Θk(z), respectively. Note that the

cardinality for both sets are less than s. We now obtain the above quantities.
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Upper bound for sup
z∈[0,1]

max
j,k∈[d]

‖Jz,jk(Zi,X i,Y i)‖∞: We have with probability at least

1− 1/(2s),

sup
z∈[0,1]

max
j,k∈[d]

‖Jz,jk(Zi,X i,Y i)‖∞

6
√
h · sup

z∈[0,1]

max
j,k∈[d]

‖Θj(z)‖1 · ‖Θk(z)‖1 ·
(

max
j∈Sj(z),k∈Sk(z)

‖qz,jk‖∞ +Mσ · ‖kz‖∞
)

6
√
h ·M2 ·

{
2

h
·M2

X · ‖K‖∞ · log(2s) +Mσ ·
2

h
· ‖K‖∞

}
6

4√
h
·M2 ·M2

X ·Mσ · ‖K‖∞ · log(2s)

= C1 ·
log s√
h
,

(S90)

where the first inequality follows by Holder’s inequality and the definition of qz,jk and kz and

the second inequality follows from (S47) and (S54). Note that since we are only taking max

over the set Sj(z) and Sk(z), instead of a log d factor from (S54), we obtain a log(2s) factor.

Upper bound for sup
z∈[0,1]

max
j,k∈[d]

E{J2
z,jk(Z,X,Y )}: By an application of the inequality

(x− y)2 6 2x2 + 2y2, we have

sup
z∈[0,1]

max
j,k∈[d]

E
{
J2
z,jk(Z,X,Y )

}
= sup

z∈[0,1]

max
j,k∈[d]

E
[{
J

(1)
z,jk(Z,X,Y )− J (2)

z,jk(Z)
}2
]

6 2 sup
z∈[0,1]

max
j,k∈[d]

E
[{
J

(1)
z,jk(Z,X,Y )

}2
]

︸ ︷︷ ︸
I1

+ 2 sup
z∈[0,1]

max
j,k∈[d]

E
[{
J

(2)
z,jk(Z)

}2
]

︸ ︷︷ ︸
I2

.

To obtain an upper bound for I1, we need an upper bound for sup
z∈[0,1]

max
j,k∈[d]

E{ max
j∈Sj(z),k∈Sk(z)

q2
z,jk}.

Recall from (S9) the definition of gz,jk(Zi, Xij, Yik) = Kh(Zi−z)XijYik and that qz,jk(Zi, Xij, Yik) =

gz,jk(Zi, Xij, Yik)− E{gz,jk(Z,Xj, Yk)}. Thus, we have

sup
z∈[0,1]

max
j,k∈[d]

E
{

max
j∈Sj(z),k∈Sk(z)

q2
z,jk

}
= sup

z∈[0,1]

max
j,k∈[d]

E
[

max
j∈Sj(z),k∈Sk(z)∈[d]

{gz,jk − E(gz,jk)}2

]
6 2 sup

z∈[0,1]

max
j,k∈[d]

E
{

max
j∈Sj(z),k∈Sk(z)∈[d]

g2
z,jk

}
+ 2 sup

z∈[0,1]

max
j,k∈[d]

E2(gz,jk),

(S91)

where we apply the fact that (x−y)2 6 2x2 +2y2 to obtain the last inequality. By Lemma S2,
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we have 2 sup
z∈[0,1]

max
j,k∈[d]

E2(gz,jk) 6 2
{
f̄Z ·Mσ +O(h2)

}2
. Moreover, we have

2 sup
z∈[0,1]

max
j,k∈[d]

E
{

max
j∈Sj(z),k∈Sk(z)∈[d]

g2
z,jk

}
= 2 sup

z∈[0,1]

max
j,k∈[d]

E
{

max
j∈Sj(z),k∈Sk(z)∈[d]

K2
h(Z − z)X2

j Y
2
k

}
6 2 ·M4

X · log2(2s) sup
z∈[0,1]

max
j,k∈[d]

E
{
K2
h(Z − z)

}
6 2 ·M4

X · log2(2s) ·
{

1

h
· f̄Z · ‖K‖2

2 +O(1) +O(h2)

}
6 3 · f̄Z · ‖K‖2

2 ·M4
X ·

log2(2s)

h
,

with probability at least 1− 1/(2s), where the second inequality follows from an application

of Lemma S2.

Thus, by Holder’s inequality, we have

I1 6 2 · h · sup
z∈[0,1]

max
j,k∈[d]

E

[{
‖Θj(z)‖1 · ‖Θk(z)‖1 · max

j∈Sj(z),k∈Sk(z)
|qz,jk|

}2
]

6 2 · h ·M4 · sup
z∈[0,1]

max
j,k∈[d]

E
{

max
j∈Sj(z),k∈Sk(z)

q2
z,jk

}
6 2 · h ·M4 ·

[
3 · f̄Z · ‖K‖2

2 ·M4
X ·

log2(2s)

h
+ 2

{
f̄Z ·Mσ +O(h2)

}2
]

6 8 ·M4 · f̄Z ·M4
X · ‖K‖2

2 · log2(2s),

(S92)

where the second inequality holds by the fact that Θ(z) ∈ Us,M .

Similarly, to obtain an upper bound for I2, we use the fact from (S49) that

sup
z∈[0,1]

E
{
k2
z

}
6

3

h
· f̄Z · ‖K‖2

2. (S93)

By Holder’s inequality, we have

I2 6 2 · h · sup
z∈[0,1]

max
j,k∈[d]

E

[{
‖Θj(z)‖1 · ‖Θk(z)‖1 · max

(j,k)∈E(z)
|Σjk(z)| · |kz|

}2
]

6 2 · h ·M4 ·M2
σ · sup

z∈[0,1]

E
(
k2
z

)
6 6 ·M2

σ ·M4 · f̄Z · ‖K‖2
2,

(S94)

where the second inequality holds by Assumption 2 and by the fact that Θ(z) ∈ Us,M , and

the last inequality holds by (S93).
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Combining the upper bounds for I1 (S92) and I2 (S94), we have

sup
z∈[0,1]

max
j,k∈[d]

E
{
J2
z,jk(Z,X,Y )

}
6 8 ·M4 · f̄Z · ‖K‖2

2 ·
{
M2

σ +M4
X · log2(2s)

}
6 C · log2 s = σ2

J ,

(S95)

for sufficiently large C > 0.

Covering number of the function class J : First, we note that the function class J is

generated from the addition of two function classes

J (1)
jk =

{
J

(1)
z,jk | z ∈ [0, 1]

}
and J (2)

jk =
{
J

(2)
z,jk | z ∈ [0, 1]

}
.

Thus, to obtain the covering number of J , we first obtain the covering number for the

function classes J (1)
jk and J (2)

jk . Then, we apply Lemma S15 to obtain the covering number

of the function class J . From Lemma S18, we have with probability at least 1− 1/d,

N{J (1)
jk , L2(Q), ε} 6 C ·

(
d5/4 · log3/2 d√

h · ε

)6

.

Moreover, from Lemma S19, we have

N{J (2)
jk , L2(Q), ε} 6 C ·

(
d1/6

h4/3 · ε

)6

.

Applying Lemma S15 with a1 = d5/4 · log3/2 d/h1/2, v1 = 6, a2 = d1/6/h4/3, and v2 = 6, we

have

N{J , L2(Q), ε} 6 C · d2 ·

(
d17/24 · log3/4 d

h11/12 · ε

)12

, (S96)

where we multiply d2 on the right hand side since the function class J is taken over all

j, k ∈ [d].

Application of Theorem A.1 in Chernozhukov et al. (2014a): Applying Theorem

A.1 in Chernozhukov et al. (2014a) with a = d65/24 · log7/4 d/h17/12, b = C · log s/
√
h,

σJ = C · log s, and

Kn = A · {log n ∨ log(ab/σJ)} = C · log(d/h),
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for sufficiently large constant A,C > 0, there exists a random process W such that for any

γ ∈ (0, 1),

P

[
|T00 −W | > C ·

{
bKn

(γn)1/2
+

(bσJ)1/2K
3/4
n

γ1/2n1/4
+
b1/3σ

2/3
J K

2/3
n

γ1/3n1/6

}]
6 C ′ ·

(
γ +

log n

n

)
for some absolute constant C ′. Picking γ =

{
log6 s · log4(d/h)/(nh)

}1/8
, we have

P

[
|T00 −W | > C ·

{
log6 s · log4(d/h)

nh

}1/8
]
6 C ′ ·

{
log6 s · log4(d/h)

nh

}1/8

,

as desired.

Web Appendix F.4 Proof of Lemma S8

Recall from the proof of Lemma S7 that

T00 = sup
z∈[0,1]

max
(j,k)∈E(z)

∣∣∣∣∣∣ 1√
n

∑
i∈[n]

Jz,jk(Zi,X i,Y i)

∣∣∣∣∣∣ .
We note that

TB00 = sup
z∈[0,1]

max
(j,k)∈E(z)

∣∣∣∣∣∣ 1√
n

∑
i∈[n]

Jz,jk(Zi,X i,Y i) · ξi

∣∣∣∣∣∣ ,
where ξi

i.i.d.∼ N(0, 1). To show that the term |W − TB00| can be controlled, we apply Theorem

A.2 in Chernozhukov et al. (2014a).

Let

ψn =

√
σ2
JKn

n
+

(
b2σ2

JK
3
n

n

)1/4

and γn(δ) =
1

δ

(
b2σ2

JK
3
n

n

)1/4

+
1

n
,

as defined in Theorem A.2 in Chernozhukov et al. (2014a). From the proof of Lemma S7,

we have b = C · log s/
√
h, Kn = C · log(d/h), and σJ = C · log s. Since b2Kn = C · log2 s ·

log(d/h)/h 6 n · log2 s for sufficiently large n, there exists a constant C ′′ > 0 such that

P
[
|TB00 −W | > ψn + δ

∣∣∣ {(Zi,X i,Y i)}i∈[n]

]
6 C ′′ · γn(δ),

with probability at least 1− 3/n. Choosing δ =
{

log4(s) · log3(d/h)/(nh)
}1/8

, we have

P

[
|TB00 −W | > C ·

{
log4(s) · log3(d/h)

nh

}1/8 ∣∣∣ {(Zi,X i,Y i)}i∈[n]

]
6 C ′′·

{
log4(s) · log3(d/h)

nh

}1/8

,

with probability at least 1− 3/n.
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Web Appendix F.5 Proof of Lemma S9

In this section, we show that |TB − TB00| is upper bounded by the quantity

C ·

s ·
√
h3 log3(d/h) + s ·

√
log4(d/h)

nh2
+
√
h5 log n


with high probability for sufficiently large constant C > 0. Throughout the proof of this

lemma, we conditioned on the data {(Zi,X i,Y i)}i∈[n]. By the triangle inequality, we have

|TB − TB00| 6 |TB − TB0 |+ |TB0 − TB00|. Thus, it suffices to obtain upper bounds for the terms

|TB − TB0 | and |TB0 − TB00|.

Upper bound for |TB − TB0 |: Recall from (S59) and (S62) that

TB = sup
z∈[0,1]

max
(j,k)∈E(z)

√
nh ·

∣∣∣∣∣∣∣
∑

i∈[n]

{
Θ̂j(z)

}T
Kh(Zi − z)

{
X iY

T
i Θ̂k(z)− ek

}
ξi/n{

Θ̂j(z)
}T

Σ̂j(z)

∣∣∣∣∣∣∣ ,
and that

TB0 = sup
z∈[0,1]

max
(j,k)∈E(z)

√
nh ·

∣∣∣∣∣∣
∑
i∈[n]

[
{Θj(z)}T Kh(Zi − z)

{
X iY

T
i −Σ(z)

}
Θk(z)

]
ξi/n

∣∣∣∣∣∣ ,
respectively. Using the triangle inequality, we have

|TB − TB0 | 6
√
nh ·

∣∣∣∣∣ sup
z∈[0,1]

max
(j,k)∈E(z)

[
1

n

∑
i∈[n]

{
Θ̂j(z)

}T
Kh(Zi − z)

{
XiY

T
i Θ̂k(z)− ek

}
/
{

Θ̂j(z)
}T

Σ̂j(z)

− 1

n

∑
i∈[n]

{Θj(z)}T Kh(Zi − z)
{
XiY

T
i −Σ(z)

}
Θk(z)

]
ξi

∣∣∣∣∣
6 2
√
nh ·

∣∣∣∣∣∣ sup
z∈[0,1]

max
(j,k)∈E(z)

1

n

∑
i∈[n]

{
Θ̂j(z)−Θj(z)

}T
Kh(Zi − z)

{
XiY

T
i −Σ(z)

}
Θk(z)ξi

∣∣∣∣∣∣︸ ︷︷ ︸
I1

+ 2
√
nh ·

∣∣∣∣∣∣ sup
z∈[0,1]

max
(j,k)∈E(z)

1

n

∑
i∈[n]

{Θj(z)}T Kh(Zi − z)XiY
T
i

(
Θ̂k(z)−Θk(z)

)
ξi

∣∣∣∣∣∣︸ ︷︷ ︸
I2

+ 2
√
nh ·

∣∣∣∣∣∣ sup
z∈[0,1]

max
(j,k)∈E(z)

1

n

∑
i∈[n]

{Θj(z)}T Kh(Zi − z)
{
XiY

T
i −Σ(z)

}
Θk(z)ξi

∣∣∣∣∣∣ ·
∣∣∣∣{Θ̂j(z)

}T
Σ̂j(z)− 1

∣∣∣∣︸ ︷︷ ︸
I3

,

(S97)

where the second inequality holds by another application of the triangle inequality and
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inequality in (S79). We now obtain upper bounds for I1, I2, and I3.

Upper bound for I1: By an application of Holder’s inequality, we have

I1 6 sup
z∈[0,1]

max
j,k∈[d]

∥∥∥Θ̂j(z)−Θj(z)
∥∥∥
1
· ‖Θk(z)‖1 ·

√
nh ·

∣∣∣∣∣∣ sup
z∈[0,1]

max
j,k∈[d]

1

n

∑
i∈[n]

{Kh(Zi − z)XijYik −Kh(Zi − z)Σjk(z)} ξi

∣∣∣∣∣∣
6M · C · s ·

{
h2 +

√
log(d/h)

nh

}
·
√
nh ·

∣∣∣∣∣∣ sup
z∈[0,1]

max
j,k∈[d]

1

n

∑
i∈[n]

{Kh(Zi − z)XijYik −Kh(Zi − z)Σjk(z)} ξi

∣∣∣∣∣∣ ,
(S98)

where the last inequality follows from the fact that Θ(z) ∈ Us,M and by an application of

Corollary 1. For notational convenience, we use the notation as defined in (S16)

Wz,jk(Zi, Xij, Yik) =
√
h · {Kh(Zi − z)XijYik −Kh(Zi − z)Σjk(z)} . (S99)

Then, we have√
h

n

∑
i∈[n]

{Kh(Zi − z)XijYik −Kh(Zi − z)Σjk(z)} ξi =
1√
n

∑
i∈[n]

Wz,jk(Zi, Xij, Yik) · ξi.

We note that conditioned on the data {(Zi,X i,Y i)}i∈[n], the above expression is a Gaussian

process. It remains to bound the supreme of the Gaussian process

1√
n

∑
i∈[n]

Wz,jk(Zi, Xij, Yik) · ξi ∼ N

0,
1

n

∑
i∈[n]

W 2
z,jk(Zi, Xij, Yik)


in probability.

To this end, we apply the Dudley’s inequality (see, e.g., Corollary 2.2.8 in Van Der Vaart

and Wellner, 1996) and the Borell’s inequality (see, e.g., Proposition A.2.1 in Van Der Vaart

and Wellner, 1996), which involves the following quantities:

• upper bound on the conditional variance
∑

i∈[n] W
2
z,jk(Zi, Xij, Yik)/n;

• the covering number of the function class

W = {Wz,jk(·) | z ∈ [0, 1], j, k ∈ [d]}

under the L2 norm on the empirical measure.

Upper bound for the conditional variance
∑n

i=1 W
2
z,jk(Zi, Xij, Yik)/n : By the
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definition of Wz,jk(Zi, Xij, Yik) in (S99), we have

1

n

n∑
i=1

W 2
z,jk(Zi, Xij, Yik) =

h

n
·
∑
i∈[n]

{Kh(Zi − z)XijYik −Kh(Zi − z)Σjk(z)}2

6 h ·max
i∈[n]

{Kh(Zi − z)XijYik −Kh(Zi − z)Σjk(z)}2

6 2h ·max
i∈[n]

{
K2
h(Zi − z)X2

ijY
2
ik +K2

h(Zi − z)Σ2
jk(z)

}
6 2h ·

(
1

h2
· ‖K‖2

∞ ·M4
X · log2 d+

1

h2
· ‖K‖2

∞ ·M2
σ

)
6 C · log2 d

h
,

(S100)

with probability at least 1 − 1/d. Note that the second inequality holds by the fact that

(x− y)2 6 2x2 + 2y2, and the third inequality holds by (12) and Assumption 2, and the fact

that max(Xij, Yij) 6MX ·
√

log d with probability at least 1− 1/d.

Covering number of the function class W: To obtain the covering number of the

function class W under the L2 norm on the empirical measure, it suffices to obtain the

covering number sup
Q

N{W , L2(Q), ε}. First, we note that Wz,jk =
√
h · {gz,jk − wz ·Σjk(z)}.

From Lemma S16, we have K1 = {wz(·) | z ∈ [0, 1]} and that

sup
Q
N{K1, L2(Q), ε} 6

(
2 · CK · ‖K‖TV

hε

)4

.

Also, From Lemma S17, we have G1,jk = {gz,jk(·) | z ∈ [0, 1]} and that

sup
Q

N{G1,jk, L2(Q), ε} 6
(

2 ·M2
X · log d · CK · ‖K‖TV

hε

)4

.

Moreover, by Assumption 2, Σjk(z) is Mσ-Lipschitz. Thus, applying Lemmas S14 and S15,

we obtain

sup
Q

N{W , L2(Q), ε} 6 222·Mσ ·M8
X ·C8

K ·‖K‖8
TV ·‖K‖5

∞·d2·

(
log4/9 d

h17/18ε

)9

= C ·d2·

(
log4/9 d

h17/18ε

)9

,

(S101)

where the term d2 appear on the right hand side because the function class W is over

j, k ∈ [d].
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Applying Dudley’s inequality and Borell’s inequality: Applying Dudley’s inequality

(see Corollary 2.2.8 in Van Der Vaart and Wellner, 1996) with (S100) and (S101), we have

E

 sup
z∈[0,1]

max
j,k∈[d]

1√
n

∑
i∈[n]

Wz,jk(Zi, Xij, Yik) · ξi

 6 C ·
∫ C·

√
log2 d
h

0

√√√√log

(
d2/9 · log4/9 d

h17/18ε

)
dε.

Applying (S19) with b1 = C ·
√

log2 d/h and b2 = d2/9 · log4/9 d/h17/18, we have

E

 sup
z∈[0,1]

max
j,k∈[d]

1√
n

∑
i∈[n]

Wz,jk(Zi, Xij, Yik) · ξi

 6 C ·

√
log3(d/h)

h
, (S102)

for some sufficiently large C > 0.

By Borell’s inequality (see Proposition A.2.1 in Van Der Vaart and Wellner, 1996), for

λ > 0, we have

P

∣∣∣∣∣∣ sup
z∈[0,1]

max
j,k∈E(z)

1√
n

∑
i∈[n]

Wz,jk(Zi, Xij , Yik) · ξi

∣∣∣∣∣∣ > C ·
√

log3(d/h)

h
+ λ

∣∣∣∣∣ {(Zi,Xi,Y i)}i∈[n]


6 2 · exp

(
− λ2

2σ2
X

)
,

where σ2
X is the upper bound on the conditional variance. Picking λ = C ·

√
log3(d/h)

h
, we have

P

∣∣∣∣∣∣ sup
z∈[0,1]

max
j,k∈[d]

1√
n

∑
i∈[n]

Wz,jk(Zi, Xij, Yik) · ξi

∣∣∣∣∣∣ > C ·

√
log3(d/h)

h

∣∣∣∣∣ {(Zi,X i,Y i)}i∈[n]

 6
1

d
.

(S103)

Thus, substituting (S103) into (S98), we have

I1 6 C ·M · s ·

{
h2 +

√
log(d/h)

nh

}
·

√
log3(d/h)

h

6 C · s ·
√
h3 log3(d/h) + C · s ·

√
log4(d/h)

nh2
,

(S104)

with probability 1− 1/d.
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Upper bound for I2: By an application of Holder’s inequality, we have

I2 6
√
nh · sup

z∈[0,1]
max
j,k∈[d]

∥∥∥Θ̂j(z)−Θj(z)
∥∥∥
1
·
∥∥∥Θ̂k(z)

∥∥∥
1
·

∣∣∣∣∣∣ sup
z∈[0,1]

max
j,k∈[d]

1

n

∑
i∈[n]

{Kh(Zi − z)XijYik} ξi

∣∣∣∣∣∣
6 sup
z∈[0,1]

max
j,k∈[d]

[∥∥∥Θ̂k(z)−Θk(z)
∥∥∥
1

+ ‖Θk(z)‖1
]
· C · s ·

{
h2 +

√
log(d/h)

nh

}

×
√
nh ·

∣∣∣∣∣∣ sup
z∈[0,1]

max
j,k∈[d]

1

n

∑
i∈[n]

{Kh(Zi − z)XijYik} ξi

∣∣∣∣∣∣
6 C ·M · s ·

{
h2 +

√
log(d/h)

nh

}
·
√
nh ·

∣∣∣∣∣∣ sup
z∈[0,1]

max
j,k∈[d]

1

n

∑
i∈[n]

{Kh(Zi − z)XijYik} ξi

∣∣∣∣∣∣ ,

(S105)

where the second inequality holds by triangle inequality and Corollary 1, and the last inequal-

ity holds by another application of Corollary 1 and the assumption that h2+
√

log(d/h)/(nh) =

o(1).

Recall the definition of gz,jk(Zi, Xij, Yik) = Kh(Zi − z)XijYik. Conditioned on the data

{(Zi,X i,Y i)}i∈[n], we note that√
h

n

∑
i∈[n]

{Kh(Zi − z)XijYik} ξi =
1√
n

∑
i∈[n]

√
h·gz,jk(Zi, Xij, Yik)·ξi ∼ N

0,
h

n

∑
i∈[n]

g2
z,jk(Zi, Xij, Yik)

 .

Similar to the upper bound for I1, we apply Dudley’s inequality and Borell’s inequality to

bound the supreme of the Gaussian process in the last expression.

To this end, we need to obtain an upper bound for the conditional covariance. By (S54),

we have

h

n

∑
i∈[n]

g2
z,jk(Zi, Xij, Yik) 6

1

h
·M4

X · ‖K‖4
∞ · log2 d, (S106)

with probability at least 1− 1/d. In addition, by an application of Lemma S17, the covering

number for the class of function {
√
h · gz,jk(·) | z ∈ [0, 1], j, k ∈ [d]} is

sup
Q

N
[{√

h · gz,jk(·) | z ∈ [0, 1], j, k ∈ [d]
}
, L2(Q), ε

]
6 d2·

(
2 ·M2

X · log d · CK · ‖K‖TV√
hε

)4

.

(S107)

By an application of Dudley’s inequality, we have

E

 sup
z∈[0,1]

max
j,k∈[d]

1√
n

∑
i∈[n]

√
h · gz,jk(Zi, Xij, Yik) · ξi

 6 C·
∫ √

M4
X ·‖K‖4∞·

log2 d
h

0

√
log

(
d1/2 · log d

h1/2ε

)
dε.
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Applying (S19) with b1 =
√
M4

X · ‖K‖4
∞ · log2 d/h and b2 = d1/2 · log d/h1/2, we have

E

 sup
z∈[0,1]

max
j,k∈[d]

1√
n

∑
i∈[n]

√
h · gz,jk(Zi, Xij, Yik) · ξi

 6 C ·

√
log3(d/h)

h
. (S108)

By Borell’s inequality (see Proposition A.2.1 in Van Der Vaart and Wellner, 1996), we have

P

∣∣∣∣∣∣ sup
z∈[0,1]

max
j,k∈[d]

1√
n

∑
i∈[n]

√
h · gz,jk(Zi, Xij , Yik) · ξi

∣∣∣∣∣∣ > C ·
√

log3(d/h)

h
+ λ

∣∣∣∣∣ {(Zi,Xi,Y i)}i∈[n]


6 2 · exp

(
− λ2

2σ2
X

)
.

Picking λ = C ·
√

log3(d/h)
h

, we have

P

∣∣∣∣∣∣ sup
z∈[0,1]

max
j,k∈[d]

1√
n

∑
i∈[n]

√
h · gz,jk(Zi, Xij, Yik) · ξi

∣∣∣∣∣∣ > C ·

√
log3(d/h)

h

∣∣∣∣∣ {(Zi,X i,Y i)}i∈[n]

 6
1

d
.

(S109)

Thus, by (S105) and (S109), we have

I2 6 C ·M · s ·

{
h2 +

√
log(d/h)

nh

}
·

√
log3(d/h)

h

6 C · s ·
√
h3 log3(d/h) + C · s ·

√
log4(d/h)

nh2
,

(S110)

with probability at least 1− 1/d.

Upper bound for I3: By an application of Holder’s inequality, we have

I3 6 sup
z∈[0,1]

max
j∈[d]

∥∥∥∥{Θ̂j(z)
}T

Σ̂(z)− ej

∥∥∥∥
∞

∥∥∥Θ̂k(z)
∥∥∥2
1
·
√
nh ·

∣∣∣∣∣∣ sup
z∈[0,1]

max
j,k∈[d]

1

n

∑
i∈[n]

{Kh(Zi − z)XijYik −Kh(Zi − z)Σjk(z)} ξi

∣∣∣∣∣∣

6M3 · C · s ·

{
h2 +

√
log(d/h)

nh

}
√
nh ·

∣∣∣∣∣∣ sup
z∈[0,1]

max
j,k∈[d]

1

n

∑
i∈[n]

{Kh(Zi − z)XijYik −Kh(Zi − z)Σjk(z)} ξi

∣∣∣∣∣∣

6 C ·M3 · s ·

{
h2 +

√
log(d/h)

nh

}
·
√

log3(d/h)

h

6 C · s ·
√
h3 log3(d/h) + C · s ·

√
log4(d/h)

nh2
,

(S111)

where the second inequality holds by the fact that Θ(z) ∈ Us,M and by an application of

Corollary 1, and the third inequality holds by (S103).
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Thus, combining (S104), (S110), and (S111), we have

|TB − TB0 | 6 C · s ·
√
h3 log3(d/h) + C · s ·

√
log4(d/h)

nh2
(S112)

with probability at least 1− 3/d.

Upper bound for |TB0 − TB00|: Recall from (S63) that

TB00 = sup
z∈[0,1]

max
(j,k)∈E(z)

√
nh ·

∣∣∣∣∑
i∈[n]

(
{Θj(z)}T Kh(Zi − z)

{
X iY

T
i −Σ(z)

}
Θk(z)/n

− {Θj(z)}T
[
E{Kh(Z − z)XY T} − E{Kh(Z − z)}Σ(z)

]
Θk(z)

)
· ξi/n

∣∣∣∣.
By the triangle inequality, we have

|TB0 − TB00| 6
√
nh · sup

z∈[0,1]
max

(j,k)∈E(z)

∣∣∣∣∣∣ 1n
∑
i∈[n]

(
{Θj(z)}T

[
E
{
Kh(Zi − z)XiY

T
i

}
− E{Kh(Zi − z)}Σ(z)

]
Θk(z)

)
· ξi

∣∣∣∣∣∣
6
√
nh · sup

z∈[0,1]
max

(j,k)∈E(z)

∣∣∣{Θj(z)}T
[
E
{
Kh(Z − z)XY T

}
− E{Kh(Z − z)}Σ(z)

]
Θk(z)

∣∣∣ ·
∣∣∣∣∣∣ 1n
∑
i∈[n]

ξi

∣∣∣∣∣∣
6
√
nh ·M2 · C · h2 ·

∣∣∣∣∣∣ 1n
∑
i∈[n]

ξi

∣∣∣∣∣∣ ,
(S113)

where the last inequality holds by applying Holder’s inequality and Lemma S2. Since ξi
i.i.d.∼

N(0, 1), by the Gaussian tail inequality, we have

P

∣∣∣∣∣∣ 1n
∑
i∈[n]

ξi

∣∣∣∣∣∣ >
√

2 log n

n

 6
1

n
.

Thus, substituting the above expression into (S113), we obtain

|TB0 − TB00| 6
√
nh ·M2 · C · h2 ·

√
2 log n

n
6 C ·

√
h5 log n, (S114)

with probability at least 1− 1/n.

Combining the upper bounds: Combining the upper bounds (S112) and (S114), and
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applying the union bound, we have

P

[∣∣∣TB − TB00∣∣∣ > C · s ·
√
h3 log3(d/h) + C · s ·

√
log4(d/h)

nh2
+ C ·

√
h5 logn

∣∣∣∣∣ {(Zi,Xi,Y i)}i∈[n]

]

6 P

[∣∣∣TB − TB0 ∣∣∣+
∣∣∣TB0 − TB00∣∣∣ > C · s ·

√
h3 log3(d/h) + C · s ·

√
log4(d/h)

nh2
+ C ·

√
h5 logn

∣∣∣∣∣ {(Zi,Xi,Y i)}i∈[n]

]

6 P

[∣∣∣TB − TB0 ∣∣∣ > C · s ·
√
h3 log3(d/h) + C · s ·

√
log4(d/h)

nh2

∣∣∣∣∣ {(Zi,Xi,Y i)}i∈[n]

]

+ P

[∣∣∣TB0 − TB00∣∣∣ > C ·
√
h5 logn

∣∣∣∣∣ {(Zi,Xi,Y i)}i∈[n]

]

6 2/d+ 1/n,

as desired.

Web Appendix F.6 Lower Bound of the Variance

We aim to show that the variance of Jz,jk defined in (S15) is bounded from below.

Lemma S10: Under the same conditions of Theorem 2, there exists a constant c > 0

such that infz minj,k Var(Jz,jk) > c > 0.

Proof. In this proof, we will apply Isserlis’ theorem (Isserlis, 1918). Given T ∼ N(0,Σ),

Isserlis’ theorem implies that for any vectors u,v ∈ Rd,

E{(uTTTTv)2} = E{(uTT)2}E{(vTT)2}+ 2{E(uTTvTT)}2

= (uTΣu)(vTΣv) + 2(uTΣv)2 (S115)

According to the definition of Jz,jk in (S15), it can be decomposed into Jz,jk(Zi,X i,Y i) =

J
(1)
z,jk(Z,X i,Y i)− J (2)

z,jk(Zi). Recall that

J
(1)
z,jk(Zi,X i,Y i) =

√
h · {Θj(z)}T ·

[
Kh(Zi − z)X iY

T
i − E

{
Kh(Z − z)XY T

}]
·Θk(z),

and

J
(2)
z,jk(Zi) =

√
h · {Θj(z)}T · [Kh(Zi − z)− E {Kh(Z − z)}] ·Σ(z) ·Θk(z).

We will calculate Var{J (2)
z,jk(Z)}, Var{J (1)

z,jk(Z,X,Y )}, and Cov{J (1)
z,jk(Z,X,Y ), J

(2)
z,jk(Z)} sep-

arately.

We first calculate Var{J (2)
z,jk(Z)}. Following a similar method as the proof of Lemma S2,
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we have E{Kh(Z − z)} = fZ(z) +O(h2) and E{K2
h(Z − z)} = h−1fZ(z)

∫
K2(u)du+O(1).

This implies that

Var{J (2)
z,jk(Z)} = Θ2

jk(z) · fZ(z)

∫
K2(u)du+O(h). (S116)

Next, we proceed to calculate the variance of J
(1)
z,jk(Z). By a change of variable and Taylor’s

expansion, we obtain

Θj(z)TE
{
Kh(Z − z)Σ(Z)}Θk(z)

= Θj(z)T
{∫

K(u)Σ(z + uh)fZ(z + uh)du

}
Θk(z)

= Θj(z)T
[∫

K(u){Σ(z) + uhΣ̇(z) + u2h2Σ̈(z′)}{fZ(z) + uhḟZ(z) + u2h2f̈Z(z)}du
]

Θk(z).

(S117)

Note that each term in the integrant that involves
∫
uK(u)du is equal to zero since

∫
uK(u)du =

0 by assumption. For terms with Σ(z), we have

Θj(z)TΣ(z)Θk(z)

∫
K(u){fZ(z) + uhḟZ(z) + u2h2f̈Z(z)}du

= Θjk(z){fZ(z) +O(h2)}.

For terms that involve Σ̇(z) and Σ̈(z′), we have

Θj(z)T Σ̇(z)Θk(z) 6Mσ‖Θj(z)‖2‖Θk(z)‖2 6 ρ2Mσ = O(1),

since the maximum eigenvalue of Θ(z) is bounded by ρ by assumption. Thus, combining the

above into (S117), we have

Θj(z)TE
{
Kh(Z − z)Σ(Z)}Θk(z) = Θjk(z)fZ(z) +O(h2). (S118)

Next, we bound the second moment. By the Isserlis’ theorem in (S115), and by taking the

conditional expectation, we have

E
[
K2
h(Z − z){Θj(z)TXY TΘk(z)}2

]
= E

(
K2
h(Z − z)[{Θj(z)TΣ(Z)Θj(z)}{Θk(z)TΣ(Z)Θk(z)}+ 2{Θj(z)TΣ(Z)Θk(z)}2]

)
.

(S119)
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Following a similar argument as in (S118), we can derive

E
[
K2
h(Z−z){Θj(z)TXY TΘk(z)}2

]
= {Θjj(z)Θkk(z)+2Θ2

jk(z)}fZ(z)h−1

∫
K2(u)du+O(1)

(S120)

Thus, we have

Var
{
J

(1)
z,jk(Z)

}
= {Θjj(z)Θkk(z) + 2Θ2

jk(z)}fZ(z)

∫
K2(u)du+O(h). (S121)

Now we begin to bound the Cov{J (1)
z,jk(Z), J

(2)
z,jk(Z)}. By using a similar argument as (S118),

we have

E
[
Θjk(z)K2

h(Z − z){Θj(z)TXY TΘk(z)}
]

= Θ2
jk(z) · h−1fZ(z)

∫
K2(u)du+O(1), (S122)

Combining with (S122) and (S118), and using the covariance formula, we have that

Cov
{
J

(1)
z,jk(Z), J

(2)
z,jk(Z)

}
= Θ2

jk(z)fZ(z)

∫
K2(u)du+O(h). (S123)

Using (S116), (S121) and (S123), we have

Var{Jz,jk(Z)} = Var(J
(1)
z,jk(Z)) + Var{J (2)

z,jk(Z)} − 2 Cov
{
J

(1)
z,jk(Z), J

(2)
z,jk(Z)

}
= {Θjj(z)Θkk(z) + Θ2

jk(z)}fZ(z)

∫
K2(u)du+O(h) > ρ2f

Z
,

where the last inequality is because ρ is smaller than the minimum eigenvalue of Σ(z) for

any z ∈ [0, 1] and infz∈[0,1] fZ(z) > f
Z
> 0 by Assumption 1. Since the lower bound above

is uniformly true over z, j, k, the lemma is proven.

Web Appendix G. Proof of Theorem S1

In this section, we show that the proposed procedure in Algorithm 1 is able to control the

type I error below a pre-specified level α. We first define some notation that will be used

throughout the proof of Theorem 3. Let E∗(z) be the true edge set at Z = z. That is,

E∗(z) is the set of edges induced by the true inverse covariance matrix Θ(z). Recall from
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Definition S4 that the critical edge set is defined as

C{E(z),P} = {e | e 6∈ E(z), there exists E ′(z) ⊇ E(z) such that E ′(z) ∈P and E ′(z)\{e} /∈P},

(S124)

where P = {E ⊆ V × V | P(G) = 1} is the class of edge sets satisfying the graph property

P .

Suppose that Algorithm 1 rejects the null hypothesis at the T th iteration. That is, there

exists z0 ∈ [0, 1] such that ET (z0) ∈ P but ET−1(z0) /∈ P. To prove Theorem 3, we state

the following two lemmas on the properties of critical edge set.

Lemma S11: Let ET (z0) ∈ P for some z0 ∈ [0, 1]. Then, at least one rejected edge in

ET (z0) is in the critical edge set C{E∗(z0),P}.

Lemma S12: Let ē ∈ C{E∗(z0),P} be the first rejected edge in the critical edge set

C{E∗(z0),P}. Suppose that ē is rejected at the lth step of Algorithm 1. Then, C{E∗(z),P} ⊆

C{El−1(z),P} for all z ∈ [0, 1].

The proofs of Lemmas S11 and S12 are deferred to Sections Web Appendix G.2 and Web

Appendix G.3, respectively. We now provide the proof of Theorem 3.

Web Appendix G.1 Proof of Theorem 3

Suppose that Algorithm 1 rejects the null hypothesis at the T th iteration. That is, ET (z0) ∈

P and ET−1(z0) /∈ P. By Lemma S11, there is at least one edge in ET (z0) that is also in

the critical edge set C{E∗(z0),P}. We denote the first rejected edge in the critical edge set

as ē, i.e., ē ∈ C{E∗(z0),P} and suppose that ē is rejected at the lth iteration of Algorithm 1.
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We note that l is not necessarily T . Thus, we have

sup
z∈[0,1]

max
e∈C{E∗(z),P}

√
nh · Θ̂

de

e (z) ·
∑
i∈[n]

Kh(Zi − z)/n >
√
nh · Θ̂

de

ē (z0) ·
∑
i∈[n]

Kh(Zi − z0)/n

> c{1− α, C(El−1,P)}

> c{1− α, C(E∗,P)},

where the first inequality follows by Lemma S11, the second inequality follows from the lth

step of Algorithm 1, and the last inequality follows directly from Lemma S12.

Under the null hypothesis, Θe(z) = 0 for any e ∈ C{E∗(z),P}. By Theorem 2, we have

lim
n→∞

sup
Θ(·)∈G0

PΘ(·)(ψα = 1)

6 lim
n→∞

sup
Θ(·)∈G0

P

 sup
z∈[0,1]

max
e∈C{E∗(z),P}

√
nh · |Θ̂

de

jk(z)| ·
∑
i∈[n]

Kh(Zi − z)/n > c{1− α, C(E∗,P)}


6 α,

as desired.

Web Appendix G.2 Proof of Lemma S11

To prove Lemma S11, it suffices to show that the intersection between the two sets ET (z0)

and C{E∗(z0),P} is not an empty set, i.e., ET (z0) ∩ C{E∗(z0),P} 6= ∅. To this end, we

let F = ET (z0) ∪ E∗(z0) and let ET (z0) \ E∗(z0) = {e1, e2, . . . , ek}. We note that the set

ET (z0) \ E∗(z0) is not an empty set since ET (z0) ∈P but E∗(z0) /∈P.

Using the fact that P is monotone and that ET (z0) ∈ P, we have F ∈ P since adding

additional edges to ET (z0) does not change the graph property of ET (z0). Then, we have

E∗(z0) ⊆ E∗(z0) ∪ {e1} ⊆ E∗(z0) ∪ {e1, e2} ⊆ · · · ⊆ E∗(z0) ∪ {e1, . . . , ek} = F.

Since E∗(z0) /∈ P and F ∈ P, there must exists an edge set {e1, . . . , ek0} for k0 6 k that

changes the graph property of E∗(z0) from E∗(z0) /∈P to E∗(z0) ∪ {e1, . . . , ek0} ∈P.

Thus, there must exists at least an edge ē ∈ {e1, . . . , ek0} such that ē ∈ C{E∗(z0),P} since
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adding the set of edges {e1, . . . , ek0} changes the graph property of E∗(z0). Also, ē ∈ ET (z0)

by construction. Thus, we conclude that ET (z0) ∩ C{E∗(z0),P} 6= ∅.

Web Appendix G.3 Proof of Lemma S12

Let ē ∈ C{E∗(z0),P} be the first rejected edge in the critical edge set C{E∗(z0),P} for

some z0 ∈ [0, 1]. Suppose that ē is rejected at the lth step of Algorithm 1. We want to show

that C{E∗(z),P} ⊆ C{El−1(z),P} for all z ∈ [0, 1]. It suffices to show that C{E∗(z0),P} ⊆

C{El−1(z0),P}. In other words, we want to prove that for any e′ ∈ C{E∗(z0),P}, e′ ∈

C{El−1(z0),P}. We first note the following fact

El−1(z0) ∩ C{E∗(z0),P} = ∅ and El−1(z0) /∈P. (S125)

By the definition of the critical edge set (S124), we construct a set E ′ such that E∗(z0) ⊇ E ′,

E ′ ∈ P, and E ′ \ {e′} /∈ P, for any e′ ∈ C{E∗(z0),P}. By the definition of monotone

property, we have E ′ ∪ El−1(z0) ∈P. Since C{E ′ ∪ El−1(z0),P} ⊆ C{El−1(z0),P}, to show

that e′ ∈ C{El−1(z0),P}, it is equivalent to showing e′ ∈ C{E ′ ∪ El−1(z0),P}. That is, we

want to show

{E ′ ∪ El−1(z0)} \ {e′} /∈P.

This is equivalent to showing

{E ′ \ e′} ∪ {El−1(z0) \ E ′} /∈P. (S126)

There are two cases: (1) El−1(z0)\E ′ = ∅ and (2) El−1(z0)\E ′ 6= ∅. For the first case, (S126)

is true by the construction of E ′. For the second case, we prove by contradiction.

Suppose that (E ′ \ e′) ∪ {El−1(z0) \ E ′} ∈ P. Let El−1(z0) \ E ′ = {e′1, . . . ,′k }. By the

definition of monotone property, we have

E ′\{e′} ⊆ (E ′\{e′})∪{e′1} ⊆ · · · ⊆ (E ′\{e′})∪{e′1, e′2, . . . , e′k} = (E ′\{e′})∪(El−1(z0)\E ′).

Since E ′ \ {e′} /∈P by construction, and that (E ′ \ {e′}) ∪ (El−1(z0) \E ′) ∈P, there must
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exists an edge set {e1, . . . , ek0} for k0 6 k that changes the graph property of E ′ \ {e′} /∈P

to (E ′ \ {e′}) ∪ {e′1, . . . , e′k0} ∈P.

Since e′k0 ∈ El−1(z0) \ E ′ and that E∗(z0) ⊆ E ′ by construction, we have e′k0 /∈ E∗(z0).

Thus, e′k0 ∈ C{E
∗(z0),P}. This contradicts the fact that

El−1(z0) ∩ C{E∗(z0),P} = ∅.

Web Appendix H. Proof of Theorem S2

By the definition in (S5), if Θ(·) ∈ G1(θ;P), there exists an edge set E ′0 and z0 ∈ [0, 1]

satisfying

E ′0 ⊆ E{Θ(z0)},P(E ′0) = 1 and min
e∈E′0
|Θe(z0)| > C

√
log(d/h)/nh, (S127)

and we will determine the magnitude tf constant C later. We aim to show that P{E ′0 ∩

C(∅,P)} = P(E ′0) = 1. First, there exists a subgraph E ′′0 ⊂ E ′0 such that P(E ′′0 ) = P(E ′0) = 1

and for any Ẽ ⊂ E ′′0 , P(Ẽ) = 0. We can construct such E ′′0 by deleting edges from E ′0 until

it is impossible to further deleting any edge such that the property P is still true. By

Definition S4, E ′′0 ⊆ C(∅,P) and therefore E ′′0 ⊆ E ′0 ∩ C(∅,P). By monotone property, we

have P{E ′0 ∩ C(∅,P)} = P(E ′0) = 1 since P(E ′′0 ) = P(E ′0) = 1. Consider the following event

E1 =
[

min
e∈E′0∩C(∅,P)

√
nh|Θ̂

de

e (z0)| ·
∑
i∈[n]

Kh(Zi − z0)/n > c{1− α, C(∅,P)}
]
.

According to Algorithm 1, the rejected set in the first iteration at z0 is

E1(z0) =
[
e ∈ C(∅,P) :

√
nh|Θ̂

de

e (z0)| ·
∑
i∈[n]

Kh(Zi − z0)/n > c{1− α, C(∅,P)}
]
.

Under the event E1, we have E ′0 ∩ C(∅,P) ⊆ E1(z0) and since P{E ′0 ∩ C(∅,P)} = P(E ′0), we

have P{E1(z0)} = P(E ′0) = 1. Therefore,

P(ψα = 1) > P(E1). (S128)
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It suffices to bound P(E1) then. We consider two events

E2 =
[

min
e∈E′0

√
nh|Θe(z0)| ·

∑
i∈[n]

Kh(Zi − z0)/n > 2c{1− α, C(∅,P)}
]
;

E3 =
[

max
e∈V×V

√
nh|Θ̂

de

e (z0)−Θe(z0)| ·
∑
i∈[n]

Kh(Zi − z0)/n 6 c{1− α, C(∅,P)}
]
.

We have P(E1) > P(E2 ∪ E3). By Lemmas S2 and S3, we have

P
{

supz

∣∣∣∑i∈[n] Kh(Zi − z)/n− fZ(z)
∣∣∣ >√log(d/h)/nh

}
< 3/d. (S129)

Combining with (14) in Corollary 1, we have with probability at least 1− 6/d,

sup
z

max
e∈V×V

√
nh|Θ̂

de

e (z)−Θe(z)| ·
∑
i∈[n]

Kh(Zi − z)/n 6 C
√

log(d/h)/nh ·
√
nh.

For any fixed α ∈ (0, 1) and sufficiently large d, n, as C(∅,P) ⊆ V × V , we have

c{1− α, C(∅,P)} 6 c(1− α, V × V ) 6 C
√

log(d/h)/nh ·
√
nh.

Thus P(E3) > 1− 6/d. Similarly, we also have P(E2) > 1− 3/d. By (S128), we have

P(ψα = 1) > P(E1) > P(E2 ∪ E3) > 1− 9/d.

Therefore, we complete the proof of the theorem.

Web Appendix I. Technical Lemmas on Covering Number

In this section, we present some technical lemmas on the covering number of some function

classes. Lemma S13 provides an upper bound on the covering number for the class of function

of bounded variation. Lemma S14 provides an upper bound on the covering number of a

class of Lipschitz function. Lemma S15 provides an upper bound on the covering numbers

for function classes generated from the product and addition of two function classes.

Lemma S13: (Lemma 3 in Giné and Nickl, 2009) Let K : R → R be a function of

bounded variation. Define the function class Fh = [K {(t− ·)/h)} | t ∈ R]. Then, there exists

CK <∞ independent of h and of K such that for all 0 < ε < 1,

sup
Q

N{Fh, L2(Q), ε} 6
(

2 · CK · ‖K‖TV

ε

)4

,
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where ‖K‖TV is the total variation norm of the function K.

Lemma S14: Let f(l) be a Lipschitz function defined on [0, 1] such that |f(l)− f(l′)| 6

Lf · |l − l′| for any l, l′ ∈ [0, 1]. We define the constant function class F = {gl := f(l) | l ∈

[0, 1]}. For any probability measure Q, the covering number of the function class F satisfies

N{F , L2(Q), ε} 6 Lf
ε
,

where ε ∈ (0, 1).

Proof. Let N =
{

iε
Lf
| i = 1, . . . ,

Lf
ε

}
. By definition of N , for any l ∈ [0, 1], there exists

an l′ ∈ N such that |l − l′| 6 ε/Lf . Thus, we have

|f(l)− f(l′)| 6 Lf · |l − l′| 6 ε.

This implies that {gl | l ∈ N} is an ε-cover of the function class F . To complete the proof,

we note that the cardinality of the set |N | 6 Lf/ε.

Lemma S15: Let F1 and F2 be two function classes satisfying

N{F1, L2(Q), a1ε} 6 C1ε
−v1 and N{F2, L2(Q), a2ε} 6 C2ε

−v2

for some C1, C2, a1, a2, v1, v2 > 0 and any 0 < ε < 1. Define ‖F`‖∞ = sup
f∈F`
‖f‖∞ for ` = 1, 2

and U = ‖F1‖∞ ∨ ‖F2‖∞. For the function classes F× = {f1f2 | f1 ∈ F1, f2 ∈ F2} and

F+ = {f1 + f2 | f1 ∈ F1, f2 ∈ F2}, we have for any ε ∈ (0, 1),

N{F×, L2(Q), ε} 6 C1 · C2 ·
(

2a1U

ε

)v1
·
(

2a2U

ε

)v2
and

N{F+, L2(Q), ε} 6 C1 · C2 ·
(

2a1

ε

)v1
·
(

2a2

ε

)v2
.

Lemma S16: Let wz(u) = Kh(u− z). We define the function classes

K1 = {wz(·) | z ∈ [0, 1]} and K2 = [E{wz(Z)} | z ∈ [0, 1]] .
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Given Assumptions 1-2, we have for any ε ∈ (0, 1),

sup
Q

N{K1, L2(Q), ε} 6
(

2 · CK · ‖K‖TV

hε

)4

and

sup
Q

N{K2, L2(Q), ε} 6 2

hε
· ‖K‖TV · f̄Z .

Moreover, let kz(u) = wz(u)− E{wz(Z)} and let K = {kz(·) | z ∈ [0, 1]}. We have

sup
Q

N{K, L2(Q), ε} 6

(
4 · ‖K‖TV · C4/5

K · f̄ 1/5
Z

hε

)5

.

Proof. The covering number for the function class K1 is obtained by an application of

Lemma S13. To obtain the covering number for K2, we show that the constant function

E{wz(Z)} is Lipschitz. The covering number is obtained by applying Lemma S14. Finally,

we note that the function class K is generated from the addition of the two function classes

K1 and K2. The covering number can be obtained by an application of Lemma S15. The

details are deferred to Web Appendix I.1.

Lemma S17: Let gz,jk(u,Xij, Yik) = Kh(u− z)XijYik. We define the function classes

G1,jk = {gz,jk(·) | z ∈ [0, 1]} and G2,jk = [E{gz,jk(Z,Xj, Yk)} | z ∈ [0, 1]] .

Given Assumptions 1-2, for all ε ∈ (0, 1),

sup
Q

N{G1,jk, L2(Q), ε} 6
(

2 ·M2
X · log d · CK · ‖K‖TV

hε

)4

and

sup
Q

N{G2,jk, L2(Q), ε} 6 2

hε
· ‖K‖TV · f̄Z ·Mσ,

with probability at least 1−1/d. Moreover, let qz,jk(u,Xij, Yik) = gz,jk(u,Xij, Yik)−E{gz,jk(Z,Xj, Yk)}

and let Gjk = {qz,jk(·) | z ∈ [0, 1]}. We have

sup
Q

N{Gjk, L2(Q), ε} 6

(
4 · ‖K‖TV · C4/5

K · f̄ 1/5
Z ·M1/5

σ ·M8/5
X · log4/5 d

hε

)5

.

with probability at least 1− 1/d.

Proof. The proof uses the same set of argument as in the proof of Lemma S16. The
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probability statement comes from the fact that we upper bound the random variable Xj by

MX ·
√

log d for some constant MX > 0. The details are deferred to Web Appendix I.2.

Lemma S18: Let J
(1)
z,jk(u,X i,Y i) =

√
h·{Θj(z)}T ·

[
Kh(u− z)X iY

T
i − E

{
Kh(Z − z)XY T

}]
·

Θk(z) and let J (1)
jk = {J (1)

z,jk | z ∈ [0, 1]}. Given Assumptions 1-2, for all ε ∈ (0, 1)

sup
Q

N{J (1)
jk , L2(Q), ε} 6 C ·

(
d5/4 · log3/2 d√

h · ε

)6

,

with probability at least 1− 1/d, where C > 0 is a generic constant that does not depend on

d, h, and n.

Proof. The proof is deferred to Web Appendix I.3.

Lemma S19: Let J
(2)
z,jk(u) =

√
h · {Θj(z)}T · [Kh(u− z)− E {Kh(Z − z)}] ·Σ(z) ·Θk(z)

and let J (2)
jk = {J (2)

z,jk | z ∈ [0, 1]}. Given Assumptions 1-2, for all probability measures Q on

R and all 0 < ε < 1,

N{J (2)
jk , L2(Q), ε} 6 C ·

(
d1/6

h4/3 · ε

)6

,

where C > 0 is a generic constant that does not depend on d, h, and n.

Proof. We first note that J (2)
jk is a function class generated from the product of two function

classes K as in Lemma S16 and Θjk = {Θjk(z) | z ∈ [0, 1]}. To obtain the covering number

of Θjk, we show that the constant function Θjk(z) is Lipschitz and apply Lemma S14. We

then apply Lemma S15 to obtain the covering number of J (2)
jk . The details are deferred to

Web Appendix I.4.

Web Appendix I.1 Proof of Lemma S16

Let wz(u) = Kh(u − z) and that kz(u) = wz(u) − E{wz(Z)}. We first obtain the covering

number for the function classes

K1 = {wz(·) | z ∈ [0, 1]} and K2 = [E{wz(Z)} | z ∈ [0, 1]].
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Then, we apply Lemma S15 to obtain the covering number of the function class

K = {kz(·) | z ∈ [0, 1]}.

Covering number for K1: By an application of Lemma S13, the covering number for K1

is

sup
Q

N{K1, L2(Q), ε} 6
(

2 · CK · ‖K‖TV

hε

)4

. (S130)

Covering number for K2: First, note that E{wz(Z)} =
∫
Kh(z − Z)fZ(Z)dZ = (Kh ∗

fZ)(z) is a function of z generated by the convolution (Kh ∗ fZ)(z). By the property of the

derivative of a convolution as in (S18), we have

sup
z0∈[0,1]

∣∣∣∣ ∂∂zE{wz(Z)}
∣∣∣
z=z0

∣∣∣∣ = sup
z0∈[0,1]

∣∣∣K̇h ∗ fZ(z0)
∣∣∣ =

∥∥∥(K̇h ∗ fZ)(z)
∥∥∥
∞

6
∥∥∥K̇h

∥∥∥
1
· ‖fZ‖∞,

(S131)

where the last expression is obtained by an application of Young’s inequality. The expression

in (S131) depends on the quantity ‖K̇h‖1, which is equal to the following expression∥∥∥K̇h

∥∥∥
1

=

∫
1

h2

∣∣∣∣K̇ (Z − zh

)∣∣∣∣ dZ =
1

h

∫ ∣∣∣K̇(u)
∣∣∣ du =

1

h
· ‖K‖TV, (S132)

where the second inequality holds by a change of variable, and ‖K‖TV is the total variation

of the function K(·). Substituting (S132) into (S131) and by Assumption 1, we have

sup
z0∈[0,1]

∣∣∣∣ ∂∂zE{wz(Z)}
∣∣∣
z=z0

∣∣∣∣ 6 1

h
· ‖K‖TV · f̄Z . (S133)

Thus, for any z1, z2 ∈ [0, 1], we have

|E{wz1(Z)} − E{wz2(Z)}| 6 1

h
· ‖K‖TV · f̄Z · |z1 − z2|,

implying that E{wz(Z)} is a Lipschitz continuous function with Lipschitz constant h−1 ·

‖K‖TV · f̄Z . By Lemma S14, an upper bound for the covering number of K2 is

sup
Q

N{K2, L2(Q), ε} 6 2

hε
· ‖K‖TV · f̄Z . (S134)

Covering number of the function class K: The function class K can be written as

K = {f1 − f2 | f1 ∈ K1, f2 ∈ K2}.

By an application of Lemma S15 with C1 = (2 · CK · ‖K‖TV)4, C2 = 2 · f̄Z · ‖K‖TV, a1 =
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a2 = h−1, v1 = 4, and v2 = 1, along with (S130) and (S134), we obtain

sup
Q

N{K, L2(Q), ε} 6

(
4 · ‖K‖TV · C4/5

K · f̄ 1/5
Z

hε

)5

.

Web Appendix I.2 Proof of Lemma S17

Throughout the proof, we condition on the event

A =

{
max
i∈[n]

max
j∈[d]

max(|Xij|, |Yij|) 6MX ·
√

log d

}
. (S135)

Since X and Y conditioned on Z are Gaussian random variables, the event A occurs with

probability at least 1− 1/d for sufficiently large constant MX > 0.

Recall that gz,jk(u,Xij, Yik) = Kh(u − z)XijYik and that qz,jk(u,Xij, Yik) = Kh(u −

z)XijYik − E{Kh(Z − z)XjYk}. We first obtain the covering number of the function classes

G1,jk = {gz,jk(·) | z ∈ [0, 1]}

and

G2,jk = [E{gz,jk(Z,Xj, Yk)} | z ∈ [0, 1]].

Then, we apply Lemma S15 to obtain the covering number of the function class

Gjk = {qz,jk(·) | z ∈ [0, 1], j, k ∈ [d]}.

Covering number for G1,jk: Conditioned on the event A in (S135), we have

gz,jk(u,Xij, Yik) = Kh(u− z)XijYik 6M2
X · log d ·Kh(u− z).

By an application of Lemma S13, the covering number for G1,jk is

sup
Q

N{G1,jk, L2(Q), ε} 6
(

2 ·M2
X · log d · CK · ‖K‖TV

hε

)4

. (S136)

Covering number for G2,jk: We now obtain the covering number for G2,jk by showing

that the function E{gz,jk(Z,Xj, Yk)} is Lipschitz. First, note that

E{gz,jk(Z,Xj, Yk)} = E{Kh(Z − z) ·Σjk(Z)} =

∫
Kh(z − Z) · ϕjk(Z)dZ = (Kh ∗ ϕjk)(z),

where ϕjk(Z) = fZ(Z) ·Σjk(Z) and Kh ∗ϕjk is the convolution between Kh and ϕjk. Similar
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to (S131)-(S133), we have

sup
z0∈[0,1]

max
j,k∈[d]

∣∣∣∣ ∂∂zE{gz,jk(Z,Xj, Yk)}
∣∣∣
z=z0

∣∣∣∣ = sup
z0∈[0,1]

max
j,k∈[d]

∣∣∣(K̇h ∗ ϕjk)(z0)
∣∣∣

= max
j,k∈[d]

∥∥∥(K̇h ∗ ϕjk)(z)
∥∥∥
∞

6
∥∥∥K̇h

∥∥∥
1
· max
j,k∈[d]

‖ϕjk‖∞

6
1

h
· ‖K‖TV · f̄Z ·Mσ,

(S137)

where the first inequality is obtained by an application of Young’s inequality, and the last

expression is obtained by (S132) and Assumptions 1-2.

Equation S137 implies that for any z1, z2 ∈ [0, 1],

|E{gz1,jk(Z,Xj, Yk)} − E{gz2,jk(Z,Xj, Yk)}| 6
1

h
· ‖K‖TV · f̄Z ·Mσ · |z1 − z2|,

implying that E{gz,jk(Z,Xj, Yk)} is a Lipschitz continuous function with Lipschitz constant

h−1 · ‖K‖TV · f̄Z ·Mσ. By an application of Lemma S14, we have

sup
Q

N{G2,jk, L2(Q), ε} 6 2

hε
· ‖K‖TV · f̄Z ·Mσ. (S138)

Covering number of the function class Gjk: The function class Gjk can be written as

Gjk = {f1,jk − f2,jk | f1,jk ∈ G1,jk, f2,jk ∈ G2,jk, j, k ∈ [d]}.

By an application of Lemma S15 with C1 = (2 ·CK · ‖K‖TV ·M2
X)4, C2 = 2 · f̄Z · ‖K‖TV ·Mσ,

a1 = h−1 · log d, a2 = h−1, v1 = 4, and v2 = 1, along with (S136) and (S138), we obtain

sup
Q

N{Gjk, L2(Q), ε} 6

(
4 · ‖K‖TV · C4/5

K · f̄ 1/5
Z ·M1/5

σ ·M8/5
X · log4/5 d

hε

)5

, (S139)

as desired.

Web Appendix I.3 Proof of Lemma S18

Similar to the proof of Lemma S17, we condition on the event

A =

{
max
i∈[n]

max
j∈[d]

max(|Xij|, |Yij|) 6MX ·
√

log d

}
.

The event A holds with probability at least 1− 1/d.

Recall that J
(1)
z,jk(u,X i,Y i) =

√
h · {Θj(z)}T ·

[
Kh(u− z)X iY

T
i − E

{
Kh(Z − z)XY T

}]
·
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Θk(z) and let J (1)
jk =

{
J

(1)
z,jk | z ∈ [0, 1]

}
. To obtain the covering number of the function class

J (1)
jk , we consider bounding the covering number of a larger class of function. To this end, we

define Φ(1)
ω (u,X i,Y i) =

√
h·
[
Kh(u− z)X iY

T
i − E

{
Kh(Z − z)XY T

}]
to be a d×d matrix.

We denote the (j, k)th element of Φ
(1)
ω (u,X i,Y i) as Φ

(1)
ω,jk(u,Xij, Yik) =

√
h ·qω,jk(u,Xij, Yik),

where qω,jk(u,Xij, Yik) = Kh(u−ω)XijYik−E{Kh(Z−ω)XjYk}. We aim to obtain an ε-cover

N (1′) for the following function class

J (1′)
jk =

[
{Θj(z)}TΦ(1)

ω (·)Θk(z) | ω, z ∈ [0, 1]
]
.

In other words, we show that for any (ω1, z1) ∈ [0, 1]2, there exists (ω2, z2) ∈ N (1′) such that

∥∥∥{Θj(z)}TΦ(1)
ω (u,X i,Y i)Θk(z)− {Θj(z

′)}TΦ
(1)
ω′ (u,X i,Y i)Θk(z

′)
∥∥∥
L2(Q)

6 ε.

Given any j, k ∈ [d], ω, ω′, z, z′ ∈ [0, 1], by the triangle inequality, we have

∥∥∥{Θj(z1)}TΦ(1)
ω1

(u,Xi,Y i)Θk(z1)− {Θj(z2)}TΦ(1)
ω2

(u,Xi,Y i)Θk(z2)
∥∥∥
L2(Q)

6
∥∥∥{Θj(z1)−Θj(z2)}T Φ(1)

ω1
(u,Xi,Y i)Θk(z1)

∥∥∥
L2(Q)︸ ︷︷ ︸

I1

+
∥∥∥{Θj(z2)}T

{
Φ(1)
ω1

(u,Xi,Y i)−Φ(1)
ω2

(u,Xi,Y i)
}

Θk(z1)
∥∥∥
L2(Q)︸ ︷︷ ︸

I2

+
∥∥∥{Θj(z2)}T Φ(1)

ω2
(u,Xi,Y i) {Θk(z1)−Θk(z2)}

∥∥∥
L2(Q)︸ ︷︷ ︸

I3

.

(S140)

We now obtain the upper bounds for I1, I2, and I3.

Upper bound for I1 and I3: First, we note that by Holder’s inequality, we have

I1 6 ‖Θj(z1)−Θj(z2)‖1 · max
j,k∈[d]

∥∥∥Φ
(1)
ω1,jk

(u,Xij, Yik)
∥∥∥
L2(Q)

· ‖Θk(z1)‖1.

Since Θ(z) ∈ U(s,M, ρ), we have

sup
z∈[0,1]

max
j∈[d]
‖Θj(z)‖1 6M. (S141)
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Moreover, for any z1, z2 ∈ [0, 1], we have

sup
j∈[d]

‖Θj(z1)−Θj(z2)‖1 6
√
d · ‖Θ(z1)−Θ(z2)‖2

6
√
d · ‖Θ(z1)‖2 · ‖Id −Σ(z1)Θ(z2)‖2

6
√
d · ‖Θ(z1)‖2 · ‖Θ(z2)‖2 · ‖Σ(z1)−Σ(z2)‖2

6
√
d · ρ2 · d · ‖Σ(z1)−Σ(z2)‖max

6 d3/2 · ρ2 ·Mσ · |z1 − z2|,

(S142)

where the second to the last inequality follows from the fact that Θ(z) ∈ U(s,M, ρ) and

the last inequality follows from Assumption 2. Finally, from (S54) and the definition of

Φ
(1)
ω1,jk

(·) =
√
h · qω1,jk(·), we have

max
j,k∈[d]

∥∥∥Φ
(1)
ω1,jk

(u,Xij, Yik)
∥∥∥
L2(Q)

6
2√
h
·M2

X · ‖K‖∞ · log d. (S143)

Combining (S141)-(S143), we have

I1 6 d3/2 · log d · ρ2 ·Mσ ·M ·M2
X · ‖K‖∞ ·

2√
h
· |z1 − z2|. (S144)

We note that I3 can be upper bounded the same way as I1.

Upper bound for I2: Recall from (S140) that

I2 =
∥∥∥{Θj(z2)}T

{
Φ(1)
ω1

(u,X i,Y i)−Φ(1)
ω2

(u,X i,Y i)
}

Θk(z1)
∥∥∥
L2(Q)

6 ‖Θk(z1)‖ · ‖Θj(z2)‖1 · max
j,k∈[d]

∥∥∥√h · {qω1,jk(u,Xij, Yik)− qω2,jk(u,Xij, Yik)}
∥∥∥
L2(Q)

,

where the inequality holds by Holder’s inequality and the definition of Φ(1)
ω (u,X i,Y i). Let

Φ
(1)
jk =

{√
h · qω,jk(·) | ω ∈ [0, 1]

}
and recall from Lemma S17 that we constructed an ε-cover

N (1′′) ⊂ [0, 1] for the function class Φ
(1)
jk with cardinality

∣∣N (1′′)
∣∣ =

(
4·‖K‖TV·C

4/5
K ·f̄1/5Z ·M1/5

σ ·M8/5
X ·log4/5 d√

h·ε

)5

.

Since the construction of the ε-cover in Lemma S17 is independent of the indices j and k,

we have that for any j, k ∈ [d] and ω1 ∈ [0, 1], there exists a ω2 ∈ N (1′′) such that

max
j,k∈[d]

∥∥∥√h · {qω1,jk(u,Xij, Yik)− qω2,jk(u,Xij, Yik)}
∥∥∥
L2(Q)

6 ε. (S145)

Thus, by (S141) and (S145), we have

I2 6M2 · ε. (S146)
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Covering number of the function class J (1)
jk : Since J (1)

jk ⊂ J
(1′)
jk , the covering num-

ber of J (1)
jk is upper bounded by the covering number of J (1′)

jk . It suffices to construct

an ε-cover of the function class J (1′)
jk . In the following, we show that N (1′) = N (1′′) ×{

i · ε ·
√
h | i = 1, . . . , 1

ε·
√
h

}
is an ε-cover of J (1′)

jk . For any (ω1, z1) ∈ [0, 1]2, there exists

(ω2, z2) ∈ N (1′) such that (S145) holds and that |z1 − z2| 6
√
h · ε. Thus, combining (S144)

and (S146), we have∥∥∥{Θj(z1)}TΦ(1)
ω1

(u,X i,Y i)Θk(z1)− {Θj(z2)}TΦ(1)
ω2

(u,X i,Y i)Θk(z2)
∥∥∥
L2(Q)

6 2 · d3/2 · log d · ρ2 ·Mσ ·M ·M2
X · ‖K‖∞ ·

2√
h
· |z1 − z2|+M2 · ε

6 4 · d3/2 · log d · ρ2 ·Mσ ·M ·M2
X · ‖K‖∞ ·

2√
h
· ε+M2 · ε

6 C · d3/2 · log d · ε,

(S147)

where C > 0 is a generic constant that does not depend on d, h, and n.

Thus, we have

N{J (1′)
jk , L2(Q), C·d3/2·log d·ε} 6

∣∣∣N (1′)
∣∣∣ 6 (4 · ‖K‖TV · C4/5

K · f̄ 1/5
Z ·M1/5

σ ·M8/5
X · log4/5 d√

h · ε

)5

· 1√
h · ε

.

Since J (1)
jk ⊂ J

(1′)
jk , the above expression implies that

N{J (1)
jk , L2(Q), ε} 6 N{J (1′)

jk , L2(Q), ε} 6 C ·

(
d5/4 · log3/2 d√

h · ε

)6

, (S148)

as desired.

Web Appendix I.4 Proof of Lemma S19

First, we note that

J
(2)
z,jk(u) =

√
h · {Θj(z)}T · [Kh(u− z)− E {Kh(Z − z)}] ·Σ(z) ·Θk(z)

=
√
h · kz(u) ·Θjk(z),

where kz(u) = Kh(u−z)−E{Kh(Z−z)}. Let J (2)
jk =

{
J

(2)
z,jk | z ∈ [0, 1]

}
. Furthermore, recall

that K = {kz(·) | z ∈ [0, 1]} and let Θjk = {Θjk(z) | z ∈ [0, 1]}. The function class J (2)
jk can
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be written as

J (2)
jk = {

√
h · f1 · f2,jk | f1 ∈ K, f2,jk ∈ Ωjk}.

It suffices to obtain the covering number for K and Ωjk, and apply Lemma S15.

Covering number of the function class K: By Lemma S16, we have

N{K, L2(Q), ε} 6

(
4 · ‖K‖TV · C4/5

K · f̄ 1/5
Z

hε

)5

. (S149)

Covering number of the function class Θjk: We show that Θjk(z) is Lipschitz, and

apply Lemma S14 to obtain the covering number for Θjk. Similar to (S142), for any z1, z2 ∈

[0, 1], we have

‖Θ(z1)−Θ(z2)‖max 6 ‖Θ(z1)‖2 · ‖Θ(z2) · {Σ(z1)−Σ(z2)}‖2

6 ‖Θ(z1)‖2 · ‖Θ(z2)‖2 · ‖Σ(z1)−Σ(z2)‖2

6 ρ2 · d · ‖Σ(z1)−Σ(z2)‖max

6 ρ2 · d ·Mσ · |z1 − z2|,

where the last inequality follows from Assumption 2. Since Θjk(z) is ρ2 · d ·Mσ-Lipschitz, by

Lemma S14, we have

N{Θjk, L2(Q), ε} 6 Mσ · ρ2 · d
ε

. (S150)

Covering number of the function class J (2)
jk : We now apply Lemma S15 to obtain the

covering number of J (2)
jk . Applying Lemma S15 with a1 = d, v1 = 1, C1 = Mσ · ρ2, a2 = h−1,

v2 = 5, C2 =
(

4 · ‖K‖TV · C4/5
K · f̄ 1/5

Z

)5

, and U = 2
h
· ‖K‖∞, along with (S149) and (S150),

we have

N{J (2)
jk , L2(Q),

√
h · ε} 6 C ·

(
d1/6

h11/6 · ε

)6

,

where C > 0 is a generic constant that does not depend on n, d, and h. This implies that

N{J (2)
jk , L2(Q), ε} 6 C ·

(
d1/6

h4/3 · ε

)6

,

as desired.
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Web Appendix J. Technical Lemmas on Empirical Process

In this section, we present some existing tools on empirical process. The following lemma

states that the supreme of any empirical process is concentrated near its mean. It follows

directly from Theorem 2.3 in Bousquet (2002).

Lemma S20: (Theorem A.1 in Van de Geer, 2008) Let X1, . . . , Xn be independent ran-

dom variables and let F be a function class such that there exists η and τ 2 satisfying

sup
f∈F
‖f‖∞ 6 η and sup

f∈F

1

n

∑
i∈n

Var{f(Xi)} 6 τ 2.

Define

Y = sup
f∈F

∣∣∣∣∣∣ 1n
∑
i∈[n]

[f(Xi)− E{f(Xi)}]

∣∣∣∣∣∣ .
Then, for any t > 0,

P
[
Y > E(Y ) + t

√
2 {τ 2 + 2ηE(Y )}+ 2t2η/3

]
6 exp

(
−nt2

)
.

The above inequality involves evaluating the expectation of the supreme of the empirical

process. The following lemma follows directly from Theorem 3.12 in Koltchinskii (2011). It

provides an upper bound on the expectation of the supreme of the empirical process as a

function of its covering number.

Lemma S21: (Lemma F.1 in Lu et al., 2015) Assume that the functions in F defined on

X are uniformly bounded by a constant U and F (·) is the envelope of F such that |f(x)| 6

F (x) for all x ∈ X and f ∈ F . Let σ2
P = sup

f∈F
E(f 2). Let X1, . . . , Xn be i.i.d. copies of the

random variables X. We denote the empirical measure as Pn = 1
n

∑
i∈[n] δXi. If for some

A, V > 0 and for all ε > 0 and n > 1, the covering entropy satisfies

N{F , L2(Pn), ε} 6
(
A‖F‖L2(Pn)

ε

)V
,

then for any i.i.d. sub-gaussian mean zero random variables ξ1, . . . , ξn, there exists a universal
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constant C such that

E

sup
f∈F

1

n

∣∣∣∣∣∣
∑
i∈[n]

ξif(Xi)

∣∣∣∣∣∣
 6 C

{√
V

n
σP

√
log

(
A‖F‖L2(P)

σP

)
+
V U

n
log

(
A‖F‖L2(P)

σP

)}
.

Furthermore, we have

E

sup
f∈F

1

n

∣∣∣∣∣∣
∑
i∈[n]

[f(Xi)− E{f(Xi)}]

∣∣∣∣∣∣
 6 C

{√
V

n
σP

√
log

(
A‖F‖L2(P)

σP

)
+
V U

n
log

(
A‖F‖L2(P)

σP

)}
.
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Figure S1. Graphs (i) and (ii) are isomorphic. Graphs (iii) and (iv) are not isomorphic.
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(a) (b) (c) (d)

Figure S2. Some examples on graph property that are monotone. The gray edges are the
original edges and the red dash edges are additional edges added to the existing graph. (a)
Graph that is connected. (b) Graph that has no more than three connected components.
(c) Graph with maximum degree at least three. (d) Graph with no more than two isolated
nodes. Adding the red dash edges to the existing graphs does not change the graph property.
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(a) (b) (c) (d)

Figure S3. Let P be the graph property of being connected. Gray edges are the original
edges of a graph G and the red dash edges are the critical edges that will change the graph
property from P(G) = 0 to P(G) = 1. (a) The graph satisfies P(G) = 0. (b) The graph
property changes from P(G) = 0 to P(G) = 1 if some red dash edges are added to the
graph. (c) The graph satisfies P(G) = 0. (d) The graph property changes from P(G) = 0 to
P(G) = 1 if some red dash edges are added to the existing graph.


