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Abstract 

The ability of the new coronavirus SARS-CoV-2 to spread and contaminate is one of the 

determinants of the COVID-19 pandemic status. SARS-CoV-2 has been detected in 

saliva consistently, with similar sensitivity as observed in nasopharyngeal swabs. 

We conducted ultrasound-guided postmortem biopsies in COVID-19 fatal cases. 

Samples of salivary glands (SG; Parotid, Submandibular and Minor) were obtained. We 

analyzed samples using RT-qPCR, immunohistochemistry, electron microscopy and 

histopathological analysis, to identify the SARS-CoV-2 and elucidate qualitative and 

quantitative viral profiles in salivary glands. The study included 13 female and 11 male 

patients, with a mean age of 53.12 years (range 8–83). RT-qPCR for SARS-CoV-2 was 

positive in 30 SG samples from 18 patients (60% of total SG samples and 75% of all 

cases). Ultrastructural analyses showed spherical 70–100 nm viral particles, consistent 

in size and shape with the Coronaviridae family, in the ductal lining cell cytoplasm, acinar 

cells, and ductal lumen of SG. There was also degeneration of organelles in infected 

cells and the presence of a cluster of nucleocapsids, which suggests viral replication in 

SG cells. 

Qualitative histopathological analysis showed morphologic alterations in the duct lining 

epithelium characterized by cytoplasmic and nuclear vacuolization, as well as nuclear 

pleomorphism. Acinar cells showed degenerative changes of the zymogen granules and 

enlarged nuclei. Ductal epithelium and serous acinar cells showed intense expression 

of ACE2 and TMPRSS receptors. An anti-SARS-CoV-2 antibody was positive in 8 (53%) 

of the 15 tested cases in duct lining epithelial cells and acinar cells of major SG. Only 2 

minor salivary glands were positive for SARS-CoV-2 by immunohistochemistry. 
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Salivary glands are a reservoir for SARS-CoV-2 and provide a pathophysiological 

background for studies that indicate the use of saliva as a diagnostic method for 

COVID19 and highlight this biological fluid's role in spreading the disease. 

Keywords: COVID-19; Autopsy; Infection Control; Salivary Gland; RT-PCR, SARS-

CoV-2; Saliva 
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Introduction 

Since WHO declared a pandemic status for COVID-19, governments and health 

care organizations created a series of strategies to mitigate the spread of its etiological 

agent the SARS-CoV-2. The contagion occurs through infected droplets that are 

disseminated directly by coughing and sneezing [1].  Salivary secretions are the main 

components of small speech droplets, and thus, play an essential role in the 

contamination pattern of COVID-19. The presence of SARS-CoV-2 RNA in saliva 

droplets has been demonstrated consistently for different stages of the disease and have 

been used as a reliable COVID-19 diagnostic tool [2,3]. In a series of 70 COVID-19 

patients Iwasaki and colleagues detected more copies of SARS-CoV-2 RNA in saliva 

samples than in the gold standard diagnostic method, the nasopharyngeal smear 

samples [4].  

Saliva is a complex biological fluid composed of salivary gland secretion, 

crevicular fluid, respiratory secretion, and exfoliated epithelial cells. The presence of 

SARS-CoV-2 in saliva may be related to viral proliferation and RNA secretion in any cells 

and tissues involved in production of salivary components, such as periodontal tissue, 

salivary glands and cells of the upper respiratory tract [5]. For instance, we have 

previously demonstrated the presence of SARS-CoV-2 RNA in periodontal tissue [6]. 

Determining how each tissue contributes as a reservoir for SARS-CoV-2 may be a path 

towards better understanding the SARS-CoV-2 profile in saliva, and for developing 

strategies for improving diagnosis, as well as for mitigating contamination through 

salivary droplets. 

SARS-CoV-2 infection of the host’s cells depends on the cleavage of one of its 

spike subunits by furin [7], thus allowing the cleaved spike protein to interact with 

angiotensin-converting enzyme 2 (ACE2) and transmembrane serine protease 2 

(TMPRSS) receptors. These interactions initiate cell endocytosis and begin the viral 
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replication cycle [8]. Animal studies have shown the interaction of these receptors and 

SARS-CoV-2, suggesting that ACE2, TMPRSS and furin present in salivary gland tissues 

are early targets of coronavirus infection [9]  

Therefore, to better understand the basis of transmission patterns, it is crucial to 

verify whether SARS-CoV-2 RNA in the saliva is related to viral infection and replication 

within glandular epithelial cells or is related, instead, only to the respiratory secretion and 

periodontal component of saliva.  

 

Material and methods   

We conducted postmortem biopsies of the major (parotid and submandibular) and 

minor salivary glands (lower lip) during Ultrasound Guided Minimally Invasive Autopsy 

(US-MIA) of patients who died of COVID-19. Institutional and federal review boards 

approved this study under protocol number 30364720.0.0000.0068. We performed the 

US-MIA after obtaining the informed consent of the next-of-kin. The procedure consisted 

of a verbal autopsy questionnaire to gather clinical and medical information followed by 

ultrasound-guided post-mortem biopsies to obtain samples, following established safety 

protocols described previously [10].  

In each autopsy, we identified the parotid and submandibular glands using a 

portable SonoSite M-Turbo R (Fujifilm, Bothell, WA, USA) ultrasound system with a 

HFL38X (13-6 MHz Linear) transducer. We perform postmortem biopsies using Tru-Cut© 

semi-automatic percutaneous 14G coaxial needles (20 cm) (supplementary material, 

Figure S1). Punctures were made by percutaneous access to avoid the risk of salivary 

contamination. In order to access the minor salivary glands, initially we wiped the inner 

lip mucosa area using a gauze soaked in an enzymatic detergent (Riozyme – 

Rioquímica, São Jose do Rio Preto, Sao Paulo, Brazil) to clean all superficial 

contamination, and we performed the biopsy using a 0.3 mm punch.  
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Samples were frozen and stored at −80 °C. Tissue samples were macerated, and 

nucleic acid extracted using the TRIzol® reagent (Invitrogen, Carlsbad, CA, USA). 

Molecular detection of SARS-CoV-2 was performed using the SuperScriptTM III 

PlatinumTM One-Step RT-qPCR Kit (Invitrogen) and primers/probes sets for E, and N 

(N1) genes amplification [11]. 

The Human RNase P gene was also amplified as nucleic acid extraction control 

[3]. RT–qPCR reactions were performed using the 7500 Fast Real-Time PCR System 

(Applied Biosystems, Foster City, CA, USA). They consisted of a step of reverse 

transcription at 55 °C for 10 min then 95 °C for 3 min, followed by 45 cycles of 95 °C for 

15 s and 58 °C (E gene)/ 55 °C (N and RNAse P genes)/ for 30 s. 

Additional samples were fixed in buffered 10% formalin solution and were 

embedded in paraffin wax. We prepared 3 µm thick sections and mounted them on glass 

slides for H&E staining and immunohistochemistry for identification of SARS-CoV-2, 

ACE2 and TMPRSS (protocol details are available in Supplementary materials and 

methods). 

To perform ultrastructural analyses, we reprocessed the formalin-fixed paraffin-

embedded biological tissue. This procedure is especially suitable whenever it is desirable 

to select a specific area from the sample for transmission electron microscopy. 

We identified ductal and acinar areas with pathological tissue derangement on 

H&E stained slides of the parotid and submandibular salivary glands and marked them 

using a fiber tip marker on the glass. By macroscopic comparison, we identified 

corresponding regions on paraffin block surfaces. The target areas were cut out using a 

razor blade. The resulting small fragments were deparaffinized in xylene, rehydrated 

through a graded alcohol series, and re-fixed using 2% glutaraldehyde in 0.15 M 

phosphate buffer pH 7.2, followed by post-fixation in 1% OsO4, and staining in 1% 

aqueous uranyl acetate overnight. The specimens were then embedded in an epoxy 
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resin. Ultrathin sections were cut using a Leica-Reichert ultratome (Leica, Wetzlar, 

Giessen, Germany) and double-stained using uranyl acetate and lead citrate. 

Micrographs were obtained using a Gatan 792 BioScan 1K by 1K wide angle CCD 

camera (Gatan, Pleasanton, CA, USA) coupled to a JEOL JEM 1010, 80 kV electron 

microscope (JEOL, Tokyo, Japan). 

 

Results and discussion 

For all patients, the diagnosis was confirmed by RT-qPCR of nasopharyngeal 

swab specimens. We evaluated 45 salivary glands (SG) samples (20 parotid, 15 

submandibular, and 10 minor SG) from 24 deceased patients. In selected cases, we also 

performed immunohistochemistry for SARS-CoV-2, ACE2 and TMPRSS receptors (15 

cases), and electron microscopy (2 cases). (see Supplementary materials and methods 

for details). 

The study included 13 female and 11 male patients, with a mean age of 53.12 

years (range 8–83). The mean timespan between symptoms onset and death was 21.12 

days (range 4–47 days). RT-qPCR for SARS-CoV-2 was positive in 30 SG samples from 

18 patients (60% of total SG samples and 75% of all COVID-19 cases). 

Ultrastructural analyses showed spherical 70–100nm viral particles, consistent in 

size and shape with the Coronaviridae family, in the ductal lining cell cytoplasm, acinar 

cells, and ductal lumen of SG (Figure 1A,B). There was also degeneration of organelles 

in what appeared to be virally infected cells (Figure 1C). Although cellular degeneration 

may occur due to the fact that we are using postmortem samples from paraffin blocks, 

the high abundance of particles indicates that the damage was probably at least partially 

due to viral infection.   

Qualitative histopathological analysis showed morphologic alterations in the duct 

lining epithelium characterized by cytoplasmic and nuclear vacuolization, as well as 
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nuclear pleomorphism. Acinar cells showed degenerative changes of the zymogen 

granules and enlarged nuclei (Figure 2A, B) when qualitatively compared to controls 

(Figure 2C,D). By immunohistochemistry, both ductal epithelium and serous acinar cells 

showed intense expression of ACE2 and TMPRSS receptors (Figure 2E,F). The anti-

SARS-CoV-2 antibody was positive in 8 (53%) of the 15 tested cases in duct lining 

epithelial cells and acinar cells of major SG (Figure 2G,H). Only 2 (13%) of minor salivary 

glands were positive for SARS-CoV-2 by immunohistochemistry.  

The study of SARS-CoV-2 organotropism is important for understanding the 

disease's pathogenesis and infection patterns [12]. Salivary glands were reported as a 

virus reservoir for prevalent diseases such as herpes simplex, EBV, HHV-7 and 

Cytomegalovirus [5,13]. Viral replication within the SG seems to be an efficient 

dissemination strategy since the contaminated droplets expelled during coughs, sneezes 

and speech are mainly composed of saliva excreta [14]. Even patients from our study 

who died from non-respiratory causes - including tumors, neurologic events, and 

vascular causes, presented SARS-CoV-2 infections in salivary gland cells.  

  For the first time and using different methods, we demonstrate the presence of 

SARS-CoV-2 infection and its replication in the major and minor salivary glands. We also 

present the expression of the cellular viral targets, ACE2 and TMPRSS receptors, in 

patients with severe COVID-19. Our findings demonstrate that salivary glands are a 

reservoir for SARS-CoV-2 and provide a pathophysiology background to the recent 

studies that indicate the use of saliva as a diagnostic method for COVID-19 and highlight 

this biological fluid's role in spreading the disease. 
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FIGURE LEGENDS 

 

Figure 1  

Postmortem biopsy histological findings: (A) Low magnification electron micrograph of 

an intralobular duct of the submandibular gland. The ductal epithelium consists of a 

single layer of cuboidal cells that have a centrally located nucleus (N). The ductal lumen 

was almost completely obliterated by accumulation of debris (asterisk), including an 

isolated cell nucleus (arrow). Bar: 2 µm. (B) Electron micrograph showing the apical zone 

of a ductal epithelial cell of the parotid gland. In addition to the viral particles (arrowheads) 

inside the ductal lumen (Lu), there is a viral particle leaving the cell by budding through 

the membrane (arrow). Bar = 200 nm. (C) The electron micrograph shows part of an 

acinar cell of the submandibular gland. On the left side of the image, the cytoplasm 

contains seromucous secretory granules (G) typically formed by strongly stained 

spherules surrounded by an unstained component. On the right side, the cytoplasm 

shows degeneration, with viral particles (arrowhead) and microsomal vesicles (arrows). 

The inset shows a mature viral particle (arrowhead). Bar = 500 nm; inset bar = 200 nm. 

   

Figure 2  

Postmortem biopsy histological findings: (A) Parotid COVID-19 patient - H&E. (B) 

Submandibular COVID-19 patient - H&E; duct lining epithelium characterized by nuclear 

pleomorphism. Acinar cells showing enlarged nuclei (Arrows); condensation of zymogen 

granules. (C) Parotid control patient – H&E. (D) Submandibular control patient – H&E. 

(E) ACE2 receptor - parotid immunohistochemistry targeting the human ACE2 protein 
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(brown) showed staining in acinar cells. (F) TMPRSS receptor - submandibular 

immunohistochemistry targeting the human ACE2 protein (brown) showed staining in 

acinar and ductal cells. Immunohistochemistry targeting SARS-CoV-2. (G) Parotid 

showing positive staining for SARS-CoV-2 in intercalated duct and striated duct. Acinar 

cell staining characterized by an apical localization. (H) Submandibular SG showing 

diffuse positive staining for SARS-CoV-2 in a striated duct. Scale bars: 50 µm. 
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SUPPLEMENTARY MATERIAL ONLINE 
 
Supplementary materials and methods 

 

Supplementary figure legends 

 

Figure S1. Postmortem salivary gland ultrasound and biopsy procedure showing the Tru-

Cut© needle 

 

Figure S2. Salivary gland morphology and immunohistochemistry for SARS-CoV-2 

 

Table S1. Clinical information of patients included 

 

Table S2. Summary of RT-qPCR from all samples (cycle threshold values) 

 

Table S3. Summary of immunohistochemistry results for SARS-CoV-2 
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