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Abstract

We develop interactive algorithms to find a strict total order for a set of discrete alternatives for two different
value functions: linear and quasiconcave. The algorithms first construct a preference matrix and then find a
strict total order. Based on the ordering, they select a meaningful pair of alternatives to present the decision
maker (DM) for comparison. We employ methods to find all implied preferences of the DM, after he or
she makes a preference. Considering all the preferences of the DM, the preference matrix is updated and a
new strict total order is obtained until the termination conditions are met. We test the algorithms on several
instances. The algorithms show fast convergence to the exact total order for both value functions, and eliciting
preference information progressively proves to be efficient.

Keywords: interactive; strict total order; discrete alternative; convex cone; multiple criteria; transitivity; linear value
function; quasiconcave value function

1. Introduction

Ordering a set of alternatives from “best” to “worst” considering multiple criteria has many applica-
tions in real life. Ranking countries, universities, MBA programs, places to visit are some examples.
There are different approaches addressing this problem in the literature. Korhonen and Soismaa
(1981) developed an algorithm that first estimates the weights of a linear value function and then
produces a ranking of alternatives. Korhonen (1986) extended this approach considering a hierarchy
of criteria and allowing for qualitative criteria. Köksalan and Tuncer (2009) and Ekiz and Tuncer
Şakar (2020) used data envelopment analysis (DEA)-based scalarization for ranking alternatives
with multiple criteria. Köksalan et al. (2010) developed a mathematical model that results in a
flexible ranking based on a linear value function. They allow the weights assigned to each criterion
to vary in favor of each alternative and observe how much the ranks can change. Karsu et al.
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(2018) developed an algorithm that attempts to distribute a “resource” among different parties in
an equitable manner. They treat parties as criteria and different possible ways of distributing the
resource as solution alternatives. They incorporate decision maker’s (DM) preferences to obtain a
partial or strict order of alternatives.

Multicriteria sorting is a variation of the ranking problem. In this problem, rather than producing
a ranking, alternatives are sorted into predefined, preference-ordered classes. A variety of interactive
approaches have been developed for the sorting problem. Köksalan and Ulu (2003), Köksalan and
Özpeynirci (2009), Buğdacı et al. (2013), and Köksalan et al. (2017) developed approaches to sort
alternatives into classes assuming that the DM’s preferences are consistent with an underlying linear
value function. Ulu and Köksalan (2001, 2014) sort alternatives under a more general underlying
quasiconcave value function. Sobrie et al. (2019) develop an outranking-based algorithm to structure
a sorting model.

Placing all alternatives to a strict preference order is a difficult problem. In the absence of a
known value function, it requires substantial preference information from the DM. Dehnokhalaji
et al. (2014) produce an estimated preference order (ranking) of alternatives for a DM who has a
quasiconcave value function, and a set of preference information of the DM is available a priori.
The accuracy of their ranking is sensitive to the available information, as expected.

In this paper, we consider ranking all alternatives without any prior information on the preferences
of the DM. We develop theory and interactive algorithms to find the ranking of alternatives under
multiple criteria for the cases of underlying linear and quasiconcave value functions separately. We
develop procedures to choose the pair of alternatives to present the DM for his or her preference
at each iteration in order to improve the efficiency of the algorithm. We also develop mechanisms
to capture implied preferences (based on transitivity and the properties of the underlying value
function) every time we obtain new preference information from the DM. The algorithms keep
acquiring information progressively and guarantee obtaining the exact total order consistent with
the underlying value function of the DM at termination. The algorithms can also be terminated
prematurely with an estimated preference order. We conduct computational experiments to demon-
strate the performances of the algorithms. We compare our algorithms with that of Dehnokhalaji
et al. (2014) and demonstrate that it produces rankings closer to the exact total order for the same
amount of preference information.

The paper unfolds as follows. We give some preliminary information in Section 2 and develop
interactive algorithms for both value functions in Section 3. We conduct experiments and discuss
their results in Section 4, and conclude in Section 5.

2. Background

Consider a discrete, finite, deterministic multiple criteria evaluation problem where a DM compares
a set of n alternatives with respect to m criteria, given on a ratio scale. The set � of alterna-
tives includes vectors Xt = (xt1, xt2, . . . , xtm) ∈ �m, t ∈ N = {1, 2, . . . , n}, with elements xtk > 0,
for all k. Without loss of generality, we assume that more is better in each criterion. We take
most of the below definitions from Dehnokhalaji et al. (2014) directly as we will build upon their
work.
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D. Tezcaner Öztürk and M. Köksalan / Intl. Trans. in Op. Res. 28 (2021) 3513–3535 3515

Definition 1. A vector X ∗ ∈ � ⊂ �m is nondominated iff (if and only if) there does not exist another
X ∈ � such that X ≥ X ∗ and X �= X ∗.

Definition 2. The function f : � → �, X ∗ ∈ � ⊂ �m is called a value function if it has the following
properties:

i. f (X ∗) > f (X ), if X ∗ dominates X ;
ii. f (X ∗) > f (X ), iff X ∗ is preferred to X ;

iii. f (X ∗) ≥ f (X ), if X ∗ is at least as preferred as X .

Property 1 implies that function f is strictly increasing in set �.
We use the symbol “
” to denote the relationship “is preferred to” and “�” to denote “is at least

as preferred as.” The DM’s preferences are expressed by the set P = {(Xr, Xs)|Xr 
 Xs, r, s ∈ N}.
Thus, P defines a strict partial order in S (an asymmetric, transitive, binary relation over S). We
define a preference subset, a preference cone, and a preference polyhedron as follows.

Definition 3. Let X1, . . . , Xk−1, Xk, . . . , Xl be l (distinct) points with the property that Xt 
 Xk for
t = 1, . . . , l and t �= k. Then

i. the set including alternatives X1, . . . , Xk−1, Xk, . . . , Xl is called a preference subset of P and is
denoted by {X1, . . . , Xl ; Xk};

ii. the cone with vertex Xk is defined as

Ck =
⎧⎨
⎩X |X = Xk +

l∑
t=1,t �=k

μt

(
Xk − Xt

)
, μt ≥ 0, t = 1, . . . , l, t �= k

⎫⎬
⎭,

and is called a preference cone. Let Tk = {1, . . . , k, . . . , l} be the set of indices of alternatives that
generate cone Ck.

iii. The polyhedron spanned by the points X1, . . . , Xl is defined as

H
(
X1, . . . , Xl

) =
{

X |X =
l∑

t=1

μtXt,

l∑
t=1

μt = 1, μt ≥ 0, t = 1, . . . , l

}
,

and is called a preference polyhedron.

For any Z ∈ Ck, Z �= Xk, it can be shown that f (Xt ) > f (Xk) ≥ f (Z) for t = 1, . . . , l and t �= k,
which implies that Xk � Z and Xt 
 Z, t �= k. Point Z or any point V dominated by Z is called cone
dominated. Also, if Y ∈ H (X1, . . . , Xl ), then from the definition of quasiconcavity it follows that
f (Y ) ≥ f (Xk) and this in turn implies that Y � Xk (for more details, see Korhonen et al., 1984).

Definition 4. A binary relation R is a strict total order over A iff the following statements hold for all
a, b, c ∈ A:

i. If (a, b) ∈ R then (b, a) /∈ R (asymmetric).
ii. If (a, b) ∈ R and (b, c) ∈ R then (a, c) ∈ R (transitive).

iii. If a �= b, then either (a, b) ∈ R or (b, a) ∈ R (connected).
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3. Interactive algorithms to obtain a strict total order

We present a general structure (interactive algorithm) to find the strict total order of a DM and
then develop specific algorithms for the cases where the DM’s preferences are consistent with linear
and quasiconcave value functions.

Similar to Dehnokhalaji et al. (2011, 2014), we construct and update a preference matrix P∗ =
[p∗

i j ], where p∗
i j is a preference measure of alternative Xi over alternative Xj , throughout the algorithm.

The values of p∗
i j vary between 0 and 1, where 0 (1) indicates that Xi is at most (at least) as preferred as

Xj . Larger values of p∗
i j indicate that Xi is closer to being preferred to Xj . Dehnokhalaji et al. (2011,

2014) develop several procedures for determining p∗
i j for a DM whose preferences are consistent with

a quasiconcave value function. We build upon their procedures for quasiconcave value functions,
and develop new procedures for linear value functions.

In each iteration, our algorithm asks the DM to compare a pair of alternatives and produces
a strict total order using all previous preferences. The algorithm continues until a termination
criterion is satisfied.

We next give a general interactive algorithm that can be applied to any underlying value
function. We later develop it for the special cases of linear and quasiconcave value functions
separately.

A general interactive algorithm

Step 0. Initialization. Find p∗
i j for i = 1, . . . , n, j = 1, . . . , n and construct P∗.

Step 1. Total order. Obtain a strict total order using P∗. If the termination criterion is satisfied, stop.
Otherwise, go to Step 2.

Step 2. Selection. Select two alternatives, Xi∗ and Xj∗ .
Step 3. Comparison. Ask the DM to compare alternatives Xi∗ and Xj∗ . Update P∗. Go to Step 1.

There are multiple ways of conducting each step. We next explain the specifics of our method
for linear and quasiconcave value functions separately. In order to cover the necessary back-
ground corresponding to each case, we briefly discuss the relevant aspects of Dehnokhalaji et al.
(2014).

3.1. An interactive algorithm for underlying linear value functions

We next develop various mechanisms of the interactive algorithm for underlying weighted linear
value functions. We identify the weight sets for which each of a pair of alternatives is favored over
the other. We quantify the likelihood of Xi being preferred to Xj based on the relative hypervolume
of the feasible weights that favor Xi over Xj .We present our procedure (Partitioning the weight space)
and the weight-hypervolume computations (H-V algorithm) next. This procedure forms the basis
of constructing the preference matrix in Steps 0 and 3 of the general interactive algorithm. In Step
1, we obtain a strict total order solving an integer programming problem developed by Bowman
and Colantoni (1973). To update the preference matrix in Step 3, we use Algorithm Lin explained
next. This algorithm first extracts all implied preferences from the comparison of alternatives Xi∗

C© 2019 The Authors.
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and Xj∗ , and then partitions the feasible weight space between all alternative pairs Xi and Xj to
calculate p∗

i j .
We next explain each mechanism in detail.

3.1.1. Partitioning the weight space
Let Xt = (xt1, xt2, . . . , xtm), ω = (ω1, ω2, . . . , ωm), and f (Xt ) = ∑

k ωkxtk be the form of the DM’s
underlying value function, where ωk denotes the weight of criterion k. The possible weight values
have to be consistent with the preference information provided by the DM, that is, ω ∈ W =
{ω : ωk ≥ 0 ∀k,

∑
k ωk = 1, f (Xr) ≥ f (Xs) for all (Xr, Xs) ∈ P}. If we had exact information on

ωk values, then constructing the exact strict total order would be straightforward. However, at
the beginning of the interactive algorithm, we do not have any preference information. The only
information we have on the values of the weights is their scaling and normalization: without loss of
generality, we scale weight values between 0 and 1 and set their sum to 1. As we progress, using the
responses of the DM, we impose further restrictions on the possible values of weights. The more we
restrict the weights, the better we estimate the p∗

i j values.
Let Wi j = {ω : ω ∈ W, f (Xi) ≥ f (Xj )}. The optimality region for each alternative is a (m − 1)-

polytope in Rm−1, as given in Theorem 2 of Kim et al. (2006). We show an example plot of the weight
space in Fig. 1 for the 3-objective case. The graph shows ω1 and ω2 values, and ω3 = 1− ω1 − ω2.
The shaded area in Fig. 1a represents the original feasible weights (W ) prior to obtaining any
preference information. For two alternatives (say Xi and Xj), there are three different possibilities:
(a) Wi j = ∅,Wji = W , (b) Wi j = W,Wji = ∅, and (c) Wi j,Wji �= ∅. Let V (Wi j ) = vi j denote the
hypervolume of Wi j (area in the 3-objective case shown in Fig. 1). Note that, if any weight vector
in the feasible weight space is equally likely, then we expect the likelihood that Xi is preferred
to Xj to be proportional to the hypervolume of weights favoring Xi over Xj relative to the total

hypervolume of the feasible weights. That is p∗
i j = vi j

V (W )
and p∗

ji = 1 − p∗
i j , where V (W ) = vi j + v ji.

Figure 1b demonstrates the weight sets for which Xi and Xj are preferred to each other prior to
any preference information. In Fig. 1c, a preference constraint is imposed on the weight space
( f (Xr) ≥ f (Xs)). In this case, Wi j and Wji shrink as we need to consider only those portions that
satisfy the imposed constraint. As we introduce additional preference constraints, we expect the
feasible weight space to keep shrinking and p∗

i j to approach 1(0) if the DM in fact prefers Xi(Xj) to
Xj(Xi).

We narrow down the feasible weight range each time we acquire new preference information from
the DM. For example, in Fig. 1, if the DM prefers Xi to Xj , the new feasible weight set, W , is
equal to Wi j of Fig. 1b. In this case, p∗

i j = 1 and p∗
ji = 0. We need to keep comparing alternative

pairs that will be favored in some parts of the new feasible space until termination conditions are
satisfied.

3.1.2. Constructing a strict total order
We discussed in Definition 4 that P∗ has to be asymmetric, transitive, and connected in order to
define a strict total order. An intuitive simple rule could be to rank Xi before Xj whenever p∗

i j > p∗
ji.

However, such a rule has the risk of violating transitivity and preventing the construction of a strict
total order. Model 1 developed by Bowman and Colantoni (1973) produces a strict total order
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Fig. 1. Partitioning the weight space.

among n alternatives based on P∗ = [p∗
i j ] even when transitivity is violated by the above rule. As in

Dehnokhalaji et al. (2014), we also use this model.

Model 1

max
∑n

i, j=1 p∗
i jai j

s.t. ai j + aji = 1 i, j = 1, 2, . . . , n
ahi + ai j + ajh ≤ 2 i, j, h = 1, 2, . . . , n

ai j ∈ {0, 1} i, j = 1, 2, . . . , n

3.1.3. Updating P∗

Consider that we would like to estimate the likelihood of an alternative, say Xa, to be preferred to
another alternative, say Xb. We first solve Model 2 (that has an artificial objective function of a
constant value zero) to see if there are any feasible weights consistent with past responses of the

C© 2019 The Authors.
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DM that would make Xa at least as preferred as Xb. If Model 2 is feasible, we conclude that there
are such weights.

Model 2

Max 0
s.t.

∑
k ωk(xrk − xsk) ≥ 0 (Xr, Xs) ∈ P∑

k ωk(xak − xbk) ≥ 0∑
k ωk = 1

0 ≤ ωk ≤ 1 ∀k

In this case, we estimate the likelihood of Xa being preferred to Xb using the procedure suggested
in Kim et al. (2006). The likelihood estimate depends on the relative hypervolume of the feasible
weight space that favors Xa over Xb. For m criteria, the weight space can be represented in m − 1
dimensions due to the normalization of the weights. Additional constraints derived from the past
preferences of the DM reduce the feasible weight space. The weight space is always a polytope by
construction. If a pair of alternatives can outperform each other under certain feasible weight values,
we can partition the feasible polytope of weights into two half-spaces (polytopes), each favoring one
of the two alternatives. We can use the relative hypervolumes of the two polytopes as measures of
the likelihoods of alternatives being preferred to each other. A hypervolume computation requires
integration over m − 1 dimensions. The procedure employed by Kim et al. (2006) uses the vertices
of the polytope based on Büeler et al.’s (2000) approach. We use the same approach and present its
steps next.

H-V algorithm (hypervolume computation)

Step 1. Find a minimal vertex representation (V-representation) of the convex polytope.
In this representation, the polytope is defined by its vertices, yl , l = 1, . . . , m − 1.

Step 2. Divide the convex polytope into r simplices using Delaunay triangulation algorithm.
Each simplice, q, is defined by a subset of the vertices, yq

l .
Step 3. Calculate the volume of each simplice q, Vq, and add all volumes to find the total volume of

the convex polytope, vi j , using the following equations. Here, yq
lk indicates the kth criterion value

of vertex l of simplice q.

Vq = 1
(m − 1)!

det

∣∣∣∣∣∣∣∣∣

1 yq
11 . . . yq

1,m−1

1 yq
21 . . . yq

2,m−1

. . .

1 yq
t1 . . . yq

t,m−1

∣∣∣∣∣∣∣∣∣
vi j =

r∑
q=1

Vq

After obtaining a preference from the DM (Xr 
 Xs), we use Algorithm Lin to update P∗. We use the
new preference Xr 
 Xs to add a constraint and narrow down the weight space in Model 2. Based
on the results of Model 2, we update the p∗

i j values of all alternative pairs that have not already been

C© 2019 The Authors.
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set to 0 or 1. In case Model 2 is infeasible, the p∗
i j values are set to 0 or 1 for all relations implied

with this infeasibility. If it is feasible for both a = i, b = j and a = j, b = i, we use H-V algorithm
to calculate p∗

i j .

Algorithm Lin

Step 0. Set i = 1 and j = 2.
Step 1. Set a = i, b = j, and c = 1.
Step 2. If p∗

ab ∈ {0, 1}, go to Step 5. Otherwise, solve Model 2. If Model 2 is infeasible, set p∗
ba = 1 and

p∗
ab = 0. For all t = 1, . . . , n, if p∗

tb = 1 and p∗
ta �= 1, set p∗

ta = 1 and p∗
at = 0. For all t = 1, . . . , n

and for all u = 1, . . . , n, if p∗
ta = 1, p∗

au = 1 and p∗
tu �= 1, set p∗

tu = 1 and p∗
ut = 0. Go to Step 5.

If Model 2 is feasible, go to Step 3.
Step 3. Set c ← c + 1. If c = 3, go to Step 4. Otherwise, set a = j and b = i, and go to Step 2.
Step 4. Calculate vi j using the H-V algorithm. Set p∗

i j = vi j

V (W )
. Set p∗

ji = 1 − p∗
i j . Go to Step 5.

Step 5. Set j ← j + 1. If j = n + 1, go to Step 6. Otherwise, go to Step 1.
Step 6. Set i ← i + 1. If i = n, terminate the algorithm. Otherwise, set j = i + 1 and go to Step 1.

Consider a strict total order Xj1

 Xj2


 · · · 
 XjN
. Let Ri denote the index of the alternative at rank

i (Ri = ji) and Oj denote the rank of alternative Xj (Oji
= i). We terminate the algorithm when

a predefined precision condition that is specified by the two parameters, ε and limit, is satisfied.
The algorithm keeps improving the preference relations between pairs of alternatives by getting
additional preference information from the DM as necessary. We next present the steps of the
interactive algorithm.

Algorithm IntLin

Step 0. Initialization.
Set the values of ε and limit. Set p∗

ii = 0.5, i ∈ N, p∗
i j = vi j

V (W )
, p∗

ji = v ji

V (W )
for all (i, j), i �= j.

Step 1. Total order.
Solve Model 1 to find a strict total order. If p∗

i j values of at least ε% of the consecutively-ranked
alternatives are greater than limit, stop. That is, if at least ε% of p∗

Rk,
Rk+1

, k = 1, . . . , n − 1, are
greater than limit, stop. Otherwise, go to Step 2.

Step 2. Selection.
Identify alternative pairs whose relative preference measures are inconsistent with their rel-
ative ranks in the produced strict total order in Step 1, and place them in set I , that
is, I = {(i, j)|p∗

i j > p∗
ji, Oi > Oj}. If I �= ∅, let (i∗, j∗) = argmax(i, j)∈I{|p∗

i j − p∗
ji|}. If I = ∅, let

(i∗, j∗) = argmini=1,...,n, j=1,...,n,i �= j{|p∗
i j − p∗

ji|}.
Step 3. Comparison.

Ask for comparison between alternatives Xi∗ and Xj∗ , denote the index of the preferred and
inferior alternatives as r and s, respectively. Update P∗ using Algorithm Lin and update W ,
W = Wrs. Go to Step 1.

In Step 0, we start with a feasible weight set, W , that includes all possible weights (see Fig. 1a for
a 3-criteria example). The initial hypervolume of W , V (W ), is 0.5 for this example (since all weights
are scaled between 0 and 1). To find the hypervolume vi j for each (i, j), i �= j, we divide the region
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by a hyperplane, introducing the constraint
∑

k ωk(xik − xjk) ≥ 0, as shown in Fig. 1b. We then find
Wi j and Wji for all (i, j), i �= j, as in Fig. 1b. In Step 2, if there are alternative pairs having relative
preference measure values inconsistent with their relative ranks in the produced strict total order in
Step 1, we choose one of those pairs to present the DM in order to rectify this inconsistency. We
choose the pair that has the largest inconsistency in their relative preference measures. If relative
preference measures of all pairs are consistent with their ranks, then we choose the pair having the
minimum difference in the relative preference measures. Our motivation here is to disclose the true
preference relation of a pair for which we have the least information.

3.2. An interactive algorithm for underlying quasiconcave value functions

In this section, we develop the specifics of the interactive algorithm for underlying quasiconcave
value functions. We quantify the likelihood of Xi being preferred to Xj by measuring how far Xi
is from being provably inferior to Xj and how far Xi is to being provably preferred to Xj . For
these two measures, we utilize the previous preferences and implied preferences (as captured by the
constructed cones) of the DM. We explain how we update the cones in Algorithm Cone update and
how we utilize the cone information in constructing P∗ in Algorithm Qsq. Algorithm Qsq is inspired
by the algorithm developed in Dehnokhalaji et al. (2014) that is explained next. We then discuss the
other mechanisms in detail.

3.2.1. Background on constructing P∗

Dehnokhalaji et al. (2014) develop Algorithms PM and (i,j) to construct a strict total order among
alternatives using an available set of preferences of the DM. Their approach consists of two stages:
constructing the preference matrix P∗ = [p∗

i j ] and constructing a strict total order using P∗.
In the first stage, they calculate p∗

i j , for all i, j ∈ N, using Algorithm (i,j) defined in Dehnokhalaji
et al. (2014). They use two measures: (a) shortest radial1 distance-to-domination, |αi j|, and (b)
shortest radial distance-to-dominate, |βi j|, to determine the value of p∗

i j . These measures can be
interpreted as the smallest deterioration percentage of alternative Xi to be dominated by Xj and the
smallest improvement percentage of alternative Xi to dominate Xj , respectively, on the radial ray
passing through alternative Xi in the objective function space.

In order to find the initial values of αi j and βi j , they solve and use the optimal objective function
values of Models 3 and 4, respectively.

Model 3 Model 4

max ωi j min γi j
s.t. Xj ≥ (1 + ωi j )Xi s.t. Xj ≤ (1 + γi j )Xi

Let solutions to Models 3 and 4 yield ω∗
i j and γ ∗

i j , where the former is the shortest radial distance
of Xi to the quadrant dominated by Xj (made of all points dominated by Xj ) and the latter is the

1Radial means that the objective values of the solution are changed proportionately.
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3522 D. Tezcaner Öztürk and M. Köksalan / Intl. Trans. in Op. Res. 28 (2021) 3513–3535

Fig. 2. Finding preference measure of Xi over Xj.

shortest radial distance of Xi to the quadrant dominating Xj (made of all points dominating Xj ).
Then αi j = ω∗

i j and βi j = γ ∗
i j . We illustrate the measures for Xi and Xj in Fig. 2. Xi should move to

point W j
i in order to be dominated by Xj , and should move to point Bi in order to dominate Xj .

Here, |ω∗
i j| corresponds to W j

i Xi
OXi

and |γ ∗
i j | corresponds to BiXi

OXi
.

When incorporating preference information, they discuss two cases separately.

Case 1: Finding p∗
i j where Xj is the vertex of a cone.

After setting the initial values of αi j and βi j , they check if these values can be improved based on
the available preference information and update these values if necessary. Assume that there is a
single pairwise comparison information available from the DM. That is, for some specific k, j ∈ N
the preference set is P = {(Xk, Xj )|Xk 
 Xj} and leads to cone Cj . They find the radial distance of
Xi to the cone-dominated region of Cj and to the region that dominates any convex combination of
the cone generators of Cj . If the radial distance of Xi to the cone-dominated region of Cj , ρ∗

i j is less
than |αi j |, they set αi j = ρ∗

i j . Similarly, if the radial distance of Xi to the region that dominates any
convex combination of the cone generators of Cj , ϕ∗

i j is less than |βi j|, they set βi j = ϕ∗
i j . The values

of ρ∗
i j and ϕ∗

i j are the optimal objective function values for Models 5 and 6, respectively. Model 5
constructs a cone having vertex Xj and the remaining generators Xt, t ∈ Tj − { j} that are preferred
to Xj . If ρ∗

i j is positive, then Xi is dominated by cone Cj and all cone generators, including Xj , are
preferred to Xi. If ρ∗

i j is zero, then Xj is at least as preferred as Xi, and Xt, t ∈ Tj − { j} are preferred
to Xi. If ρ∗

i j is negative, then Cj does not provide a conclusive preference information about Xi;
however, ρ∗

i j can be used to set the value of p∗
i j . Model 6, on the other hand, checks if Xi can be

represented as a convex combination of cone generators, t ∈ Tj . If ϕ∗
i j is negative, then Xi dominates

some convex combinations of cone generators and hence is preferred to the vertex of cone Cj , Xj .
If ϕ∗

i j is zero, then Xi is a convex combination of the cone generators of Cj . If ϕ∗
i j is positive, there is

no conclusive preference information but its magnitude serves as a measure of how close Xi is to the
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closest point that dominates convex combinations of cone generators. This is used in determining
p∗

i j .

Model 5 Model 6

max ρi j min ϕi j
s.t. Xj + ∑

t∈Tj−{ j} μt (Xj − Xt ) ≥ (1 + ρi j )Xi s.t.
∑

t∈Tj
μtXt ≤ (1 + ϕi j )Xi

μt ≥ 0, t ∈ Tj − { j} ∑
t∈Tj

μt = 1, μt ≥ 0, t ∈ Tj

In Fig. 2, W j′
i shows the closest point to Xi in the radial direction that is cone dominated by Cj .

Since point W j′
i is closer to Xi than point W j

i , |αi j | is set to ρ∗
i j . The optimal solution of Model 6

turns out to be equal to that of Model 4 for the case in Fig. 2 and there is no need to update βi j .

Case 2: Finding p∗
ik where alternative Xk is a nonvertex generator of cone Cj and Xi is not a generator

of cone Cj

In Fig. 2, Xk is a nonvertex cone generator and Xi is not a cone generator. Initially, W k
i is found as

the point on the radial ray passing through Xi, which is closest to the dominating region of Xk. Using
cone Cj , Model 5 yields that the closest point to Xi which is cone dominated in the radial direction

from Xi is W j′
i , with the optimal objective function value ρ∗

i j . Since Xj is at least as preferred as W j′
i

and Xk is preferred to Xj , it is known that Xk is preferred to W j′
i . Since ρ∗

i j < |αik| = W k
i Xi

OXi
, they set

αik = ρ∗
i j .

After calculating the αi j and βi j values, the preference measure of Xi over Xj , p∗
i j , is set to

|αi j |
|αi j |+|βi j | .

After constructing P∗, they form the strict total order in the second stage using Model 1.

3.2.2. Progressive construction of P∗

In this section, we describe our approach to update P∗ progressively based on the preference
information obtained from the DM. We first develop the necessary theory for constructing P∗ and
updating the cones.

Theorem 1. Let T ′
j = Tj ∪ {i}. If ϕ∗

i j ≤ 0 in Model 6, then C′
j ≡ Cj.

Proof. ϕ∗
i j ≤ 0 implies Xi � Xj . Suppose we evaluate alternatives Xk and Xj . We first solve Models

5 and 6 to find the preference measure of Xk over Xj . Let the dual of Model 5 be Model 5′. Setting
ν̄ = −δ̄ and adding the redundant constraint ν̄(Xj − Xj ) ≥ 0, we obtain Model 5′′.

Model 5′ Model 5′′

min ρk j = δ̄(Xk − Xj ) min ρk j = ν̄(Xj − Xk)

s.t. δ̄(Xj − Xt ) ≥ 0 t ∈ Tj − { j} s.t. ν̄(Xt − Xj ) ≥ 0 t ∈ Tj

−δ̄Xk = 1 ν̄Xk = 1
δ̄ ≤ 0 ν̄ ≥ 0
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If alternative Xi is also included in the cone, we would additionally have the following constraint
in Model 5′′: ν̄(Xi − Xj ) ≥ 0.

Since ϕ∗
i j ≤ 0 in Model 6, we know that Xi is a convex combination or dominates some

convex combinations of the generators of cone Cj; Xi ≥ ∑
t∈Tj

μtXt, for some μt satisfying∑
t∈Tj

μt = 1, μt ≥ 0, t ∈ Tj .

Since ν̄Xt ≥ ν̄Xj for all t ∈ Tj from Model 5′′ then ν̄
∑

t∈Tj
μtXt ≥ ν̄Xj , for any μt satisfying∑

t∈Tj
μt = 1, μt ≥ 0, t ∈ Tj . Since Xi ≥ ∑

t∈Tj
μtXt, for some μt, we have ν̄Xi ≥ ν̄

∑
t∈Tj

μtXt ≥ ν̄Xj

for
∑

t∈Tj
μt = 1, μt ≥ 0 ∀t ∈ Tj . Therefore, ν̄(Xi − Xj ) ≥ 0 is redundant in Model 5′′.

Similarly, let the dual of Model 6 be Model 6′. Setting τ̄ = −σ̄ , we obtain Model 6′′.

Model 6′ Model 6′′

max ϕk j = σ̄Xk + π max ϕk j = π − 1
s.t. σ̄Xt + π ≤ 0 t ∈ Tj s.t. π ≤ τ̄Xt t ∈ Tj

−σ̄Xk = 1 τ̄Xk = 1
σ̄ ≤ 0, π unrestricted in sign τ̄ ≥ 0, π unrestricted in sign

If alternative Xi is also included in the cone, we have the following additional constraint: π ≤ τ̄Xi.
Since π ≤ τ̄Xt for all t ∈ Tj from Model (6′′), π ≤ τ̄

∑
t∈Tj

μtXt for any μt satisfying∑
t∈Tj

μt = 1, μt ≥ 0, t ∈ Tj . Since Xi ≥ ∑
t∈Tj

μtXt for some μt satisfying
∑

t∈Tj
μt = 1, μt ≥ 0,

t ∈ Tj , π ≤ τ̄Xi. The additional constraint, π ≤ τ̄Xi, is always satisfied and hence is a redundant
constraint in Model 6′′.

For both Models 5′′ and 6′′, we do not obtain any additional information from the implied
preference Xi � Xj , and C′

j ≡ Cj . �
Theorem 1 implies that there is no gain in including an alternative that is a convex combination

or dominates some convex combinations of cone generators (and hence is found to be at least as
preferred as the vertex of that cone) as a cone generator. Therefore, we do not include Xi that is
a convex combination or dominates some convex combinations of cone generators as a new cone
generator in Tj .

We next show that if Xi is a convex combination or dominates some convex combinations of
the generators of cone Cj , and if Xj is a nonvertex generator of cone Ck, then Xi is also a convex
combination of or dominates some convex combinations of the generators of cone Ck. Thus, since
including Xi as a cone generator in Cj is not necessary due to Theorem 1, then including Xi as a
cone generator in Ck is also not necessary.

Corollary 1. If
∑

t∈Tj
μtXt ≤ Xi, for some

∑
t∈Tj

μt = 1, μt ≥ 0, t ∈ Tj and if j ∈ Tk then∑
t∈Tk

μtXt ≤ Xi, for some
∑

t∈Tk
μt = 1, μt ≥ 0, t ∈ Tk, j �= k.

Proof. Since j ∈ Tk, Tj ⊂ Tk. If ϕ∗
i j ≤ 0 in Model 6, then ϕ∗

ik ≤ 0 in Model 6 as well. �
We develop Algorithm Qsq that processes all relevant cones and updates P∗ after obtaining new
preference information (e.g., Xr 
 Xs) from the DM. Algorithm Qsq requires to update cones
regularly and we develop this phase separately (as Algorithm Cone update) in order to simplify

C© 2019 The Authors.
International Transactions in Operational Research C© 2019 International Federation of Operational Research Societies
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presentation. We first present Algorithm Cone update. Let U be the set of indices of the vertexes of
the cones that are assigned new nonvertex generators. Let(i, j) be the indexes of alternative pairs
such that j ∈ U, i ∈ N and 0 < p∗

i j < 1. We place all such pairs in a set, Q. Both sets, U and Q, will
be constructed by Algorithm Cone update.

Algorithm Cone update

Step C.1. Set p∗
rs = 1 and p∗

sr = 0. Set Q = ∅.
Step C.2. Update Ts ← Ts ∪ {r}. Set U = {s}.
Step C.3. For all i = 1, . . . , n, if p∗

ir = 1 and p∗
is �= 1, set p∗

is = 1 and p∗
si = 0. If i ∈ Tr, set Ts ← Ts ∪ {i}

and set U ← U ∪ {s}.
Step C.4. For all i = 1, . . . , n and for all j = 1, . . . , n, if p∗

is = 1, p∗
s j = 1 and p∗

i j �= 1, set
p∗

i j = 1 and p∗
ji = 0. If i ∈ Ts, set Tj ← Tj ∪ {i} and set U ← U ∪ { j}.

Step C.5. Set Q ← Q ∪ {(i, j) : j ∈ U, i ∈ N, 0 < p∗
i j < 1}.

In the first step, we set the preference measures based on DM’s response. In Step C.2, we include
alternative Xr as a generator to the cone with vertex Xs. Due to transitivity, in Steps C.3 and C.4, we
update all related cones. We first update the preference values of all alternatives that are preferred
to Xr but not yet preferred to Xs. If those alternatives are also cone generators of Cr, they are
included as cone generators of cone Cs as well. We consider a similar case in Step C.4. In both
steps, we only include the alternatives that provide additional information as cone generators (i.e.,
we do not include those that are redundant due to Corollary 1). The indexes of the cones that are
updated are included in set U in Steps C.2–C.4. In the last step, we include the alternative pairs
whose preference values have the potential to be improved to set Q, based on the updated cones.
Algorithm Qsq requires C.1–C.5 to be executed at the start, C.2–C.5 to be executed whenever a
cone-dominated alternative is identified, and C.3–C.5 to be executed whenever an alternative that
dominates convex combinations of the generators of a cone is identified. Each case leads to further
updating of P∗.

We next present Algorithm Qsq that updates all cones and P∗ after obtaining preference infor-
mation (Xr 
 Xs) from the DM. The algorithm starts with the current values of p∗

i j and the optimal
objective function values of Models 3 and 4 (ω∗

i j and γ ∗
i j , respectively). If Xj was a vertex of a cone

in a previous iteration, then we also retrieve the optimal objective function values of Models 5 and
6 (ρ∗

i j and ϕ∗
i j , respectively) from that iteration.

Algorithm Qsq

Step 1. Use Algorithm Cone update to update all related cones.
Step 2. Set i ← a, j ← b, where (a, b) ∈ Q. Set Q ← Q − {(a, b)}. Go to Step 2.1.

Step 2.1. Solve Model 5 to check for the status of Xi relative to cone Cj .

� If ρ∗
i j ≥ 0, then Xi falls into cone Cj and hence Xj � Xi. Set p∗

ji = 1 and p∗
i j = 0. Set r = j,

s = i, execute Steps C.2–C.5 of Algorithm Cone update. If Q = ∅, go to Step 3; otherwise,
go to Step 2.

� If ρ∗
i j < 0, go to Step 2.2.
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Step 2.2. Solve Model 6 to check for the status of Xi relative to the generators of cone Cj .

� If ϕ∗
i j ≤ 0, then Xi � Xj . Set p∗

i j = 1 and p∗
ji = 0. Set r = i, s = j,U = ∅, execute Steps C.3–

C.5 of Algorithm Cone update. If Q = ∅, go to Step 3; otherwise, go to Step 2.
� If ϕ∗

i j > 0, go to Step 3 if Q = ∅ and go to Step 2, otherwise.

Step 3. For all i = 1, . . . , n and j = 1, . . . , n, i �= j, if 0 < p∗
i j < 1 and if Xj is not a vertex of a cone,

set αi j = ω∗
i j and βi j = γ ∗

i j . If 0 < p∗
i j < 1 and if Xj is a vertex of a cone, update αi j and βi j as

follows:

αi j ← max
{
ω∗

i j, ρ
∗
i j

}
βi j ← min

{
γ ∗

i j, ϕ
∗
i j

}
Step 4. For all i = 1, . . . , n, j = 1, . . . , n and h = 1, . . . , n, i �= j, i �= h, if p∗

jh = 1, 0 < p∗
i j, p∗

ih < 1,
and αi j < αih, set αi j = αih.

Step 5. For all i = 1, . . . , n, j = 1, . . . , n, i �= j, if 0 < p∗
i j < 1, set p∗

i j = −αi j

βi j−αi j
.

In the first step, we update all cones using the stated preference of the DM. If new generators
have been added to the cone that has vertex Xj , in Step 2, we update the objective function values
of Models 5 and 6 for all pairs (i, j) ∈ Q. In Step 2.1, we solve Model 5 to update ρ∗

i j . In this
step, ρ∗

i j ≥ 0 implies that alternative Xj is at least as preferred as alternative Xi. In this case, we
update cone Ci by adding Xj as well as all alternatives preferred to Xj as nonvertex cone generators
to Ti. If ρ∗

i j < 0, we go to Step 2.2 to update ϕ∗
i j . In this step, we may find an exact preference

relation between Xi and Xj . In this case, we do not include alternative Xi as a cone generator since
it provides redundant information (see Theorem 1). Therefore, in case ϕ∗

i j ≤ 0, we go to Step C.3
in Algorithm Cone update. At each execution of Algorithm Cone update, we identify index pairs
(i, j) of alternatives whose p∗

i j values have the potential to be updated based on the cones and place
them in set Q. At the end of Step 2, we have the ρ∗

i j and ϕ∗
i j values for all (i, j) ∈ Q. In Step 3, we set

the shortest radial distance-to-domination (αi j ) and the shortest radial distance-to-dominate (βi j )

values for all alternative pairs. The shortest radial distance-to-domination equals either ω∗
i j (if Xj

is not a vertex of a cone) or the maximum of ω∗
i j and ρ∗

i j (if Xj is the vertex of a cone). Similarly,
the shortest radial distance-to-dominate equals either γ ∗

i j (if Xj is not a vertex of a cone) or the
minimum of γ ∗

i j and ϕ∗
i j (if Xj is the vertex of a cone). In this step, we start from scratch as if there

is no relation between Xi and Xj , even if αi j or βi j had been updated in previous iterations, as those
values could be obsolete due to recent preference information. To demonstrate this, assume that Xj
was a nonvertex generator of a cone at some iteration for which Xi was not a cone generator. In this
case, assume that αi j value was set using the said cone. In the current iteration, with new preference
information Xi might also become a nonvertex generator of the same cone. In this case, the old cone
information cannot be used to set the αi j value and thus we set αi j to its initial value, ω∗

i j .
In Step 4, we check if we can find a better estimate for the shortest radial distance-to-domination.

We demonstrate how we update αi j in Fig. 3.
Suppose that, at an iteration in the interactive algorithm, we only have the cone information

Th = { f , h}. Since Xj dominates a convex combination of the cone generators of Ch, Model 6 results
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Fig. 3. Illustration of Algorithm Qsq—Step 4.

in ϕ∗
jh < 0. Therefore, we set p∗

jh to 1 and p∗
h j to 0. However, we do not include Xj as a cone generator

to Ch since adding this implied preference leads to redundant information (see Theorem 1).
Suppose we try to find p∗

i j next. According to Model 3, the closest point to Xi in the radial
direction that is dominated by Xj is Wi. However, the closest point to Xi in the radial direction that
is dominated by cone Ch is Wi

′, and we update the shortest radial distance-to-domination, αi j , to
W ′

i Xi
OXi

. In Step 4, we use available information to update the shortest distance-to-domination using
all available preferences together with all dominance and cone-dominance relations.

In Step 5 of Algorithm Qsq, we update all preference measures.

3.2.3. Using the interactive algorithm for quasiconcave value functions
We next consider each step of the interactive algorithm and explain the specifics for implementing
it for quasiconcave value functions. Steps 1 and 2 are same as the linear case but Steps 0 and 3 use
information derived for quasiconcave value functions.

Algorithm IntQsq

Step 0. Initialization.
Set the values of ε and limit. Set Tj = { j}, j ∈ N. Set p∗

ii = 0.5, i ∈ N. For all (i, j), i �= j, solve

Models 3 and 4. Set αi j = ω∗
i j, βi j = γ ∗

i j , and p∗
i j = −αi j

βi j−αi j
.

Step 1. Total order.
Solve Model 1 to find a strict total order. If the p∗

i j values of at least ε% of the consecutively-ranked
alternatives are greater than limit, stop. That is, if at least ε% of p∗

Rk,
Rk+1

, k = 1, . . . , n − 1, are
greater than limit, stop. Otherwise, go to Step 2.

Step 2. Selection.
Identify alternative pairs whose relative preference measures are inconsistent with their rel-
ative ranks in the produced strict total order in Step 1 and place them in set I , i.e., I =
{(i, j)|p∗

i j > p∗
ji, Oi > Oj}. If I �= ∅, let (i∗, j∗) = argmax(i, j)∈I{|p∗

i j − p∗
ji|}. If I = ∅, let (i∗, j∗) =

argmini=1,...,n, j=1,...,n,i �= j{|p∗
i j − p∗

ji|}.
C© 2019 The Authors.
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Step 3. Comparison.
Ask for comparison between alternatives Xi∗ and Xj∗ , denote the index of the preferred and
inferior alternatives as r and s, respectively. Update P∗ using Algorithm Qsq. Go to Step 1.

3.3. Differences from existing approaches

For the linear underlying value function case, we utilize Büeler et al.’s (2000) approach as in Kim
et al. (2006) to calculate the relative hypervolumes of the weight space between pairs of alternatives.
Kim et al. (2006) use the calculated values in a totally different context. They develop a measure
based on relative hypervolumes to compare the qualities of different solution sets. In contrast, we
use relative hypervolumes to construct an exact total order of alternatives. We create mechanisms
for obtaining preference information progressively to speed up the convergence of our interactive
algorithm and use the available preference information to derive all implied preferences exploiting
the properties of a linear underlying value function.

For the quasiconcave underlying value function, we utilize some of the procedures developed by
Dehnokhalaji et al. (2014). Algorithm Qsq is a variation of Algorithm (i,j) of Dehnokhalaji et al.
(2014). Algorithm Qsq is invoked by our interactive algorithm to revise P∗ every time new preference
information is obtained. Algorithm (i,j) is static and creates a preference matrix corresponding to
a set, P, of available preferences. In Algorithm (i,j), relationships between all alternative pairs are
extracted based on preference and cone-dominance information. In Algorithm Qsq, we first update
the preference cones utilizing the new preference information. Then we reevaluate and update the
preference measures of all alternative pairs that could have been influenced by the new preference
information. Another difference is that Algorithm Qsq utilizes the cone-dominance information
more effectively than Algorithm (i,j) does. More specifically, in Algorithm (i,j), additional informa-
tion for αi j only comes from the cones for which Xj is a nonvertex generator, whereas Algorithm
Qsq considers a more general case by considering the dominance or cone-dominance relations of Xj
with other alternatives as well. This allows Algorithm Qsq to update more distance-to-domination
values compared to Algorithm (i,j). Additionally, we try to choose the alternative pair for the DM
to compare in such a way to improve the efficiency of the algorithm.

3.4. Scaling and setting the parameters

The alternatives are evaluated by their criteria values, and different criteria typically have different
ranges; in some cases the differences could be substantial. In order to imply meaningful information,
these criteria should be scaled to have similar ranges. Scaling could be done by normalizing the
values using the minimum and maximum values of the nondominated points.

The termination condition parameters, ε and limit, can be set by the DM before running the
algorithm. If the DM wishes to guarantee obtaining the exact total order he/she should set the
values to 100 and 1, respectively. This results in a preference matrix with all indices 0 or 1 for i �= j
at termination. Alternatively, the algorithm can be terminated at an intermediate step with ε and
limit, values less than 100 and 1, respectively. Higher values of ε and limit will result in rankings
closer to the exact total order at the expense of more computations and preference information.
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4. Computational results

We present our results in three parts. First, we compare the results of our algorithms IntLin and
IntQsq with those of Dehnokhalaji et al. (2014; we refer to their algorithm as D-et al.). In the
second part, we consider the progress of our algorithms’ rankings as we increase the number of
comparisons. Finally, we evaluate the results of varying the termination conditions on randomly
generated problems.

4.1. Comparison with D-et al.

In D-et al., they test the strict total order for four different cases: 10- and 20-alternative problems,
each with 3 and 4 criteria. For each case, they generate 25 different sets of preferences obtained
from the DM (simulated by an underlying value function), each set having either 9 or 15 pairwise
comparisons for 10-alternative problems and 20 or 40 pairwise comparisons for 20-alternative
problems.

We solve the same four problems with IntQsq using the same underlying value functions to be
maximized (Dehnokhalaji et al., 2014):

Three criteria:

Linear: f (X ) = f
(
x1, x2, x3

) = 0.5x1 + 0.3x2 + 0.2x3.

Quadratic: f (X ) = f
(
x1, x2, x3

) = − (1.2x1−1000)
2+(x2−1000)

2+(x3−1000)
2

1000 .

Four criteria:

Linear: f (X ) = f
(
x1, x2, x3, x4

) = 0.3x1 + 0.25x2 + 0.25x3 + 0.2x4.

Quadratic: f (X ) = f
(
x1, x2, x3, x4

) = − (1.2x1−1000)
2+(x2−1000)

2+(x3−1000)
2+(0.6x4−1000)

2

1000 .

We implemented our algorithm in C++ using CPLEX for Models 1–6 setting ε to 100 and limit
to 1.0.

We terminate IntQsq after exactly the same number of comparisons used in D-et al. for each
case, to have a fair comparison between the two algorithms. We test the correlation between the
exact total order and the order we obtain at termination using Kendall’s Tau (Daniel, 1990, p. 365).
Kendall’s Tau (τ ) values range between −1 and 1, where bigger values indicate better match with
the exact total order. We report the results of D-et al. and IntQsq in Table 1. In the fifth column, we
present 95% confidence intervals of the rank correlations of 25 different preference sets (reported
by Dehnokhalaji et al., 2014). The corresponding results when the same problems are solved with
IntQsq are given in the sixth column. Only for the 10-alternative problem with 3 criteria and 9
comparisons, the τ value of IntQsq falls inside the 95% confidence interval of Dehnokhalaji et al.’s
(2014) results. Except this case, the rank correlations of IntQsq are larger than the upper bounds
of the 95% confidence intervals in all cases. For the case of 15 comparisons and 10 alternatives
with 3 and 4 criteria, IntQsq already finds the exact order before the 15th comparison, and either
terminates before the 15th comparison or continues since all p∗

i j values are not equal to 0 or 1 until
the 15th comparison.

C© 2019 The Authors.
International Transactions in Operational Research C© 2019 International Federation of Operational Research Societies
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Table 1
Rank correlations (τ ) between the true and generated total orders—IntQsq

Number of
criteria

Number of
alternatives

Number of
pairwise
comparisons

Value
function

D-et al.—95% confidence
interval for rank
correlations

IntQsq—
rank
correlations

3 10 9 Linear [0.653,0.775] 0.689
Quadratic [0.663,0.743] 0.867

15 Linear [0.766,0.825] 1.000
Quadratic [0.782,0.845] 1.000

20 20 Linear [0.621,0.683] 0.737
Quadratic [0.610,0.667] 0.695

40 Linear [0.758,0.802] 0.905
Quadratic [0.788,0.828] 0.842

4 10 9 Linear [0.740,0.812] 0.911
Quadratic [0.695,0.775] 0.867

15 Linear [0.787,0.864] 1.000
Quadratic [0.751,0.826] 1.000

20 20 Linear [0.589,0.673] 0.758
Quadratic [0.609,0.672] 0.726

40 Linear [0.761,0.819] 0.926
Quadratic [0.783,0.827] 0.874

Table 2
Rank correlations (τ ) between the true and generated total orders—IntLin

Number of
criteria

Number of
alternatives

Number of
pairwise
comparisons

D-et al.—95% confidence
interval for rank
correlations

IntLin—rank
correlations

3 10 9 [0.653,0.775] 1.000
15 [0.766,0.825] 1.000

20 20 [0.621,0.683] 1.000
40 [0.758,0.802] 1.000

4 10 9 [0.740,0.812] 0.911
15 [0.787,0.864] 1.000

20 20 [0.589,0.673] 0.979
40 [0.761,0.819] 1.000

Had we known the underlying value function is linear, we could have used our IntLin algorithm
in order to converge faster. To observe the results under these conditions, we also solve the problems
that are evaluated with a linear underlying value function using IntLin. In order to make the
hypervolume computations over the weight space with its built in functions, we implemented the
algorithm in MATLAB in this case. We call CPLEX from MATLAB whenever we need to solve
Models 1 and 2. We report the results in Table 2. For 3-criteria problems, IntLin terminates in 8 and
15 comparisons for 10- and 20-alternative problems, respectively, after obtaining 0 or 1 value for
each off-diagonal element of P∗. Hence, it guarantees that the resulting order is the exact total order.
The results are similar for 4-criteria test problems. For these problems, we find the exact total orders
in 13 and 22 questions for 10- and 20-alternative problems, respectively. The τ values are very close
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Fig. 4. Progress of τ values with comparisons—IntLin.

to 1.0 in 9 questions for 10-alternative, and in 20 questions for 20-alternative problems. Comparing
the results with those of D-et al., we observe that our rank correlations are always larger than the
upper bounds of the 95% confidence intervals of the corresponding rank correlations obtained from
D-et al.

The results show that the interactive algorithms perform well on all problems, approximating the
total order within a reasonable number of comparisons.

4.2. Progress of τ with number of comparisons in the interactive algorithm

In this section, we show the test results on the progress of τ values as we acquire more information
from the DM. Specifically, we monitor the τ values for the ranking obtained each time the DM
makes a comparison. For this purpose, we generate 25 different 10- and 20-alternative sets with
both 3- and 4-criteria. The criteria scores are generated from a discrete uniform distribution between
1 and 100. For all alternative sets, we make sure that all alternatives are nondominated and the
underlying value function scores are distinct. To achieve these, we discard the generated alternative
if it is dominated by or its value score is identical to a previously generated alternative.

We use the same underlying linear and quadratic value functions as in the previous section to
simulate the responses of the DM.

The results for IntLin can be seen in Fig. 4. We start reporting the rank correlations at the
fifth comparison as there is a need for a minimum amount of preference information to produce a
meaningful order. For 10-alternative, 3- and 4-criteria problems, the algorithm terminates in at most
11 and 12 comparisons, respectively. The corresponding values are 18 and 22, for 20-alternative, 3-
and 4-criteria problems, respectively. The average τ values are above 0.75 at the fifth comparison for
all problems and monotonically increase with each additional comparison, approaching to 1 quickly.

C© 2019 The Authors.
International Transactions in Operational Research C© 2019 International Federation of Operational Research Societies
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Fig. 5. Improvement in τ values with comparisons—IntQsq.

We find the rankings of the same alternative sets using IntQsq. We use the quadratic underlying
value functions given in the previous section to simulate the preferences of the DM. The average τ

values with varying number of comparisons are given in Fig. 5. As in the linear case, the average
τ values increase monotonically with each comparison and reach above 0.9 after 15, 13, 35, and
42 comparisons for 10-alternative 3-criteria, 10-alternative 4-criteria, 20-alternative 3-criteria, and
20-alternative 4-criteria problems, respectively.

4.3. Results for different termination parameters

The termination of the interactive algorithm is based on two parameters: limit (the minimum pi j
value of consecutively ranked alternatives) and ε (the minimum percentage of the consecutively
ranked alternatives satisfying limit). If ε and limit are set to 100 and 1.0, respectively, then the
algorithm guarantees to find the exact total order.

In this section, we solve the 25 problem sets explained in the previous section, each time terminat-
ing the algorithm using ε = 100 and varying the limit values between 0.6 and 1.0. We do not consider
smaller limit values than 0.6, since smaller pi j values are not meaningful to indicate preference of
Xi over Xj .

We present the results for linear and quasiconcave underlying value functions in Tables 3 and 4,
respectively. For all cases, the average rank correlations are greater than 0.90. If τ = 0.90 is acceptable
(which gives a ranking very close to the exact ranking), it is sufficient to set ε = 100 and limit =
0.6 in general. For these termination parameters, the number of comparisons is rather small in all
cases.
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Table 3
Rank correlations (τ ) between the true and generated total orders and number of comparisons made if the algorithm
terminates when 100% of the consecutive p∗

Rk,
Rk+1

values are above limit—IntLin

Average no. of comparisons Average rank correlations

3-Criteria 4-Criteria 3-Criteria 4-Criteria

limit
10
Alternatives

20
Alternatives

10
Alternatives

20
Alternatives

10
Alternatives

20
Alternatives

10
Alternatives

20
Alternatives

0.6 5.36 10.44 6.84 14.92 0.964 0.994 0.929 0.991
0.7 6.56 11.28 8.52 16.44 0.991 1.000 0.968 0.998
0.8 7.04 11.84 9.20 16.96 0.995 1.000 0.989 1.000
0.9 7.60 12.16 9.80 17.36 0.998 1.000 0.995 1.000
1.0 8.24 13.20 10.88 19.16 1.000 1.000 1.000 1.000

Table 4
Rank correlations (τ ) between the true and generated total orders and number of comparisons made if the algorithm
terminates when 100% of the consecutive p∗

Rk,
Rk+1

values are above limit—IntQsq

Average no. of comparisons Average rank correlations

3-Criteria 4-Criteria 3-Criteria 4-Criteria

limit
10
Alternatives

20
Alternatives

10
Alternatives

20
Alternatives

10
Alternatives

20
Alternatives

10
Alternatives

20
Alternatives

0.6 12.88 38.96 15.48 48.08 0.909 0.939 0.968 0.948
0.7 14.92 41.84 16.68 52.48 0.945 0.952 0.986 0.976
0.8 16.44 45.48 17.48 55.64 0.979 0.975 0.998 0.992
0.9 17.92 49.16 18.16 57.48 0.995 0.994 1.000 0.999
1.0 19.04 51.44 18.44 58.20 1.000 1.000 1.000 1.000

5. Conclusions

Finding a total order of alternatives under multiple criteria is a difficult problem and may require a
lot of preference information. In this study, we develop interactive algorithms to find a total order
while keeping the preference information at a reasonable level. We develop the necessary theory and
separate interactive algorithms for linear and quasiconcave underlying value function cases.

We test the performance of the algorithms on randomly generated instances with different char-
acteristics. The results show that interactive algorithms work well on all these problems. We observe
that acquiring preference information progressively, rather than using a priori preference informa-
tion, yields good results in estimating the rankings. This is expected since the progressive approach
utilizes the past information in determining what type of information to gather next. Both interac-
tive algorithms show fast convergence to the exact total orders. The algorithm for linear underlying
value functions reaches good results with less preference information, thanks to the more restrictive
form of the value function. The average performances of both algorithms monotonically improve
with additional preference information in our experiments, as expected. This is a desirable property
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indicating the robustness of the algorithms. Furthermore, terminating the algorithms prematurely
before guaranteeing the exact total orders causes only slight deviations from the exact total orders.

There could be several variations that can be considered in different steps of the algorithms and
these variations may affect the convergence of the algorithms. An important decision is the pair
for which the DM’s preference is asked for in each iteration. Different variations of selecting these
pairs may be tried as a future research. The method we employ in constructing the P∗ matrix for
quasiconcave underlying value functions measures radial distances as in data envelopment analysis.
New measures to represent the distance-to-dominate and distance-to-domination values can be
considered.

The interactive algorithms can be applied to other value functions and function-specific rules can
be developed. The interactive algorithm developed for the linear case can be used as an approxi-
mation for the cases where the underlying value function is nonlinear. When the structure of the
underlying value function is not known in advance, a combination of the two algorithms can be
developed, and the answers of the DM may guide in selecting the algorithm to use.
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