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36

37 ABSTRACT

38 A period of isolation in allopatry typically precedes local adaptation and 

39 subsequent divergence among lineages. Alternatively, locally adapted phenotypes may 

40 arise and persist in the face of gene flow, resulting in strong correlations between 

41 ecologically-relevant phenotypic variation and corresponding environmental gradients. 

42 Quantifying genetic, ecological, and phenotypic divergence in such lineages can provide 

43 insights into the abiotic and biotic mechanisms that structure populations and drive the 

44 accumulation of phenotypic and taxonomic diversity. Low-vagility organisms whose 

45 distributions span ephemeral geographic barriers present the ideal evolutionary context 

46 within which to address these questions. Here, we combine genetic (mtDNA and 

47 genome-wide SNPs) and phenotypic data to investigate the divergence history of 

48 caecilians (Amphibia: Gymnophiona) endemic to the oceanic island of São Tomé in the 

49 Gulf of Guinea archipelago. Consistent with a previous mtDNA study, we find two 

50 phenotypically and genetically distinct lineages that occur along a north-to-south axis 

51 with extensive admixture in the centre of the island. Demographic modelling supports 

52 divergence in allopatry (~300 kya) followed by secondary contact (~95 kya). 

53 Consequently, in contrast to a morphological study that interpreted latitudinal phenotypic 

54 variation in these caecilians as a cline within a single widespread species, our analyses 

55 suggest a history of allopatric lineage divergence and subsequent hybridization that may 

56 have blurred species boundaries. We propose that late Pleistocene volcanic activity 

57 favoured allopatric divergence between these lineages with local adaptation to climate 

58 maintaining a stable hybrid zone in the centre of São Tomé Island. Our study joins a 

59 growing number of systems demonstrating lineage divergence on volcanic islands with 

60 stark environmental transitions across small geographic distances.

61
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63 Um período de isolamento em alopatria geralmente precede adaptação local e divergência 

64 subsequente entre linhagens evolutivas. Alternativamente, fenótipos adaptados 

65 localmente podem surgir e persistir apesar de fluxo gênico, resultando em fortes 

66 correlações entre variação fenotípica ecologicamente relevante e os gradientes ambientais 

67 correspondentes. Quantificar divergência genética, ecológica e fenotípica em tais 

68 linhagens pode ajudar a clarificar os mecanismos abióticos e bióticos que estruturam as 

69 populações e levam ao acúmulo de diversidade fenotípica e taxonômica. Organismos de 

70 baixa vagilidade, cujas áreas de distribuição incluem barreiras geográficas efêmeras, 

71 representam um contexto evolutivo ideal para abordar essas questões. Neste estudo, 

72 combinamos dados genéticos (mtDNA e SNPs genômicos) e fenotípicos para investigar a 

73 história de divergência de cecílias endêmicas da ilha oceânica de São Tomé, no 

74 arquipélago do Golfo da Guiné. Consistentemente com um estudo anterior de mtDNA, 

75 encontramos duas linhagens fenotipicamente e geneticamente distintas que ocorrem ao 

76 longo de um eixo norte-sul, com extensa mistura genética no centro da ilha. Modelagem 

77 demográfica suportou um cenário de divergência em alopatria (~ 300 mil anos atrás) 

78 seguida de contato secundário (~ 95 mil anos atrás). Ao contrário de um estudo 

79 morfológico que interpretou a variação fenotípica latitudinal nessas cecílias como uma 

80 clina dentro de uma única espécie amplamente difundida, nossas análises sugerem uma 

81 história de divergência de linhagens em alopatria e subsequente hibridização que pode ter 

82 confundido os limites das espécies. Propomos que atividade vulcânica durante o 

83 Pleistoceno tardio favoreceu divergência alopátrica entre essas linhagens, com adaptação 

84 local ao clima mantendo uma zona híbrida estável no centro da Ilha de São Tomé. Nosso 

85 estudo se une a um número crescente de sistemas que demonstram divergência entre 

86 linhagens em ilhas vulcânicas com transições ambientais marcantes ao longo de 

87 distâncias geográficas curtas.

88
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94

95 INTRODUCTION

96 A period of isolation in allopatry typically precedes local adaptation and 

97 subsequent lineage divergence that may ultimately result in speciation (Losos & Ricklefs, 

98 2009; Mayr, 1963). Secondary contact of lineages following transient periods of 

99 allopatric divergence can result in lineage fusion or promote reproductive isolation 

100 through reinforcement (Servidio & Noor, 2003; Choi, Purugganan, & Stacy 2020). 

101 Alternatively, locally adapted phenotypes may arise and persist in the face of gene flow 

102 resulting in strong correlations between ecologically-relevant phenotypic variation and 

103 corresponding environmental gradients (Thorpe, Barlow & Surget-Groba 2015). 

104 Quantifying genetic, ecological, and phenotypic variation in these nascent lineages can 

105 provide insights into the abiotic and biotic mechanisms that structure populations and 

106 ultimately drive the accumulation of species richness and phenotypic diversity. 

107 Organisms with low dispersal potential whose distributions span ephemeral geographic 

108 barriers present the ideal evolutionary context within which to understand the relative 

109 contributions of these evolutionary processes. Here we investigate the divergence history 

110 of the enigmatic and fossorial caecilians (Amphibia: Gymnophiona) endemic to the 

111 small, volcanic island of São Tomé. 

112 Physical barriers such as rivers (Vences, Wollenberg, Vieites, & Lees, 2009; 

113 Welton et al., 2010), sea level changes (Esselstyn, Timm, & Brown, 2009; O’Connell, 

114 Hamidy, Kurniawan, Smith, & Fujita, 2018), or volcanic lava flows (Bloor, Kemp, & 

115 Brown, 2008; Brochmann, 1984; Nater et al, 2011) often contribute to allopatric 

116 divergence. Landscapes are dynamic, however, and the elimination of such barriers can 

117 lead to population expansion, secondary contact, hybridization, and fusing of incipient 

118 species, particularly on small oceanic islands (García‐Olivares et al., 2017; Garrick et al., 

119 2014; Gow, Peichel, & Taylor, 2006; Grant & Grant, 1996; MacLeod et al., 2015; 

120 Roderick, Croucher, Vandergast & Gillespie, 2012; Sardell & Uy, 2016; Taylor et al., 

121 2006). Spatial environmental gradients such as differences in rainfall, temperature, or soil 

122 type may further reinforce divergence in allopatry (Losos & Schluter, 2000; Rundle & 

123 Nosil, 2005). These environmental transitions can also lead to stable hybrid zones if 

124 lineages that meet secondarily are locally adapted (Barton & Hewitt, 1985). 
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125 Consequently, genetic and phenotypic differentiation along environmental gradients can 

126 be difficult to distinguish from isolation by distance (Bradburd, Coop, & Ralph, 2018; 

127 Myers et al., 2019) or allopatric divergence and secondary contact (Portik et al., 2017); 

128 however, genomic data paired with demographic modelling approaches can help 

129 differentiate among alternative historical scenarios such as divergence in allopatry versus 

130 divergence with gene flow (Excoffier, Dupanloup, Huerta-Sánchez, Sousa, & Foll, 2013; 

131 Gutenkunst, Hernandez, Williamson, & Bustamante, 2009). Likewise, quantifying 

132 ecological divergence of lineages in the early stages of speciation can reveal the roles of 

133 environmental adaptation and geographic isolation in promoting population divergence 

134 and reproductive isolation (Marques et al., 2016; Losos & Schluter, 2000; Seehausen, 

135 Van Alphen, & Lande, 2001). Small oceanic islands are a compelling study system for 

136 addressing the role of previous isolation versus local and/or ongoing selection in shaping 

137 biodiversity because they often exhibit more transient geographic barriers to gene flow 

138 coupled with stark environmental transitions across small geographic distances (e.g., 

139 Stenson, Malhotra, & Thorpe 2002; Suárez, Pestano, & Brown 2014; Brown Paterson & 

140 Risse 2016).

141 Growing evidence suggests that both environmental gradients and a dynamic 

142 landscape history shaped species diversification on São Tomé, a volcanic island ~225 km 

143 off the coast of West-Central Africa in the Gulf of Guinea archipelago. The island 

144 emerged from the sea floor ~13 Mya, and despite its small size (~850 km2), it is 

145 topographically complex, with its highest peak at 2024 m (Gillespie & Clague, 2009). 

146 Correspondingly, São Tomé exhibits environmental gradients ranging from drier and 

147 open habitat in the north to wetter and forested habitat in the south (de Lima et al., 2017; 

148 Soares, 2017). Despite the island’s long geologic history, many studies of taxonomic 

149 diversification within São Tomé have inferred that divergence occurred during the 

150 Pliocene or Pleistocene (Bell et al., 2015; Daniels & Klaus, 2018; Stoelting, Measey, & 

151 Drewes, 2014), which coincides with a period of extensive volcanic activity (Barfod & 

152 Fitton, 2014). Further, a history of in situ divergence in allopatry followed by secondary 

153 contact and hybridization was inferred in São Tomé Drosophila (Coyne, Kim, Chang, 

154 Lachaise, & Elwyn, 2002; Matute & Coyne, 2010) and Hyperolius reed frogs (Bell, 

155 Drewes, & Zamudio, 2015; Bell & Irian, 2019). By contrast, both adaptation along 
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156 environmental gradients and allopatric divergence have been proposed to explain 

157 phenotypic (Nussbaum & Pfrender, 1998) and genetic (Stoelting et al., 2014) variation in 

158 the São Tomé Caecilian (Schistometopum thomense). Due to their low vagility and strong 

159 associations with particular soil types and climates (Gundappa, Balakrishna, & 

160 Shakuntala 1981; Jones, Loader & Gower 2006; Torres-Sánchez et al. 2019; Kouete & 

161 Blackburn 2019), caecilians may provide novel insights into the mechanisms that 

162 generate and maintain lineage divergence on small oceanic islands.

163  Globally, caecilians are distributed throughout the tropics yet are poorly known 

164 relative to most vertebrate groups due to their secretive lifestyles and because they are 

165 sometimes rare (Heyer, Donnelly, Foster, & Mcdiarmid, 2014; Measey, 2004; Measey, 

166 Gower, Oommen, & Wilkinson, 2003). However, S. thomense is amenable to study 

167 because it is active above and below ground and is abundant across São Tomé, where it 

168 occupies diverse habitats from 0–1440 m elevation (Measey & Van Dongen, 2006; 

169 Nussbaum & Pfrender, 1998; Stoelting et al., 2014). Morphological variation in this 

170 species roughly follows a latitudinal cline, with a yellow unflecked morph in the north 

171 and a brown, flecked morph in the south (Haft, 1992; Measey & Van Dongen, 2006; 

172 Nussbaum & Pfrender, 1998; Stoelting et al., 2014; Taylor, 1965). This morphological 

173 variation led to the description of flecked individuals as a separate species, S. ephele 

174 (Taylor, 1965); however, Nussbaum & Pfrender (1998) interpreted this variation as a 

175 phenotypic cline in a single widespread species and synonymized S. ephele with S. 

176 thomense. More recently, Stoelting et al. (2014) detected two distinct mitochondrial 

177 haplotype groups that roughly correspond to “S. ephele” and S. thomense with a narrow 

178 zone of putative admixture in the centre of the island, which they interpreted as evidence 

179 of allopatric divergence and secondary contact. In addition, Stoelting et al. (2014) noted 

180 that the putative admixture zone coincided with the transition between volcanic flows 

181 indicating that volcanism may have played an important role in the evolutionary history 

182 of these lineages. In the present study, we revisit these two alternative hypotheses of 

183 demographic history using phenotypic and genetic (mtDNA and genome wide SNPs) 

184 data. Specifically, we (1) leverage demographic modelling to test for historical 

185 divergence in allopatry versus divergence with continuous gene flow, (2) quantify the 

186 temporal and geographic extent of gene flow in the putative admixture zone, and (3) 
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187 contextualize the evolutionary history of the species with respect to environmental 

188 gradients and volcanic activity across its range.

189

190 MATERIALS AND METHODS

191

192 Field and museum specimen sampling and colour pattern assessment

193 For genetic analyses, we included 85 samples from 21 localities across the island 

194 (Table S1). Among them, 12 samples were collected by the authors between 2012 and 

195 2016 at three localities including Obo National Park, which had not previously been 

196 sampled. Tissue samples (liver) were preserved in 95% ethanol or RNAlater for 

197 subsequent DNA extraction and genetic analyses. Additionally, we selected a subset of 

198 73 specimens from the Stoelting et al. (2014) mtDNA study from which to collect 

199 nuDNA SNP data (see below). This sampling spans the type locality of S. thomense 

200 (Bocage 1873), which is only specified to the level of the entire island (“Ile Saint 

201 Thomé”) but our sampling spans most accessible settlements from the colonial period, 

202 and the type locality for “S. ephele” Taylor 1965 (“Agua Izé, 400-700 m, Ilha São 

203 Thomé”), which is likely between Água Izé, a coastal community on the eastern side of 

204 the island, and the community of Java at ~600 m that is directly inland of Água Izé (pers 

205 comm G. Doria, Museo Civico di Storia Naturale “G. Doria”, Genova; Fig. 1). For all 

206 samples, we extracted DNA using a DNeasy Blood and Tissue Kit (Qiagen Inc.,Valencia, 

207 CA, USA) and quantified DNA yield using a QUBIT 2.0 Fluorometer (Life 

208 Technologies, Grand Island, NY, USA). All specimens are accessioned at the California 

209 Academy of Sciences.

210 Following previous studies (Nussbaum & Pfrender, 1998; Stoelting et al., 2014), 

211 one author (LAS) scored the coloration of all individuals included in the nuclear dataset 

212 as flecked or unflecked. For the newly collected specimens (n=12), we compared 

213 coloration between photographs in life and the voucher specimens after > 3 years of 

214 preservation to assess consistency. The remaining individuals were only scored as 

215 museum specimens following 13–18 years of preservation. Because colours fade in 

216 preservative, we were unable to score individuals with light versus dark brown flecking 
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217 or light versus dark yellow hue as previous authors have done; the presence or absence of 

218 flecking, however, remained prominent in older specimens. 

219

220 Mitochondrial DNA sequencing and haplotype network estimation

221 To place the 12 newly sampled specimens within the Stoelting et al. (2014) 

222 dataset, we amplified a partial fragment of the NADH dehydrogenase 4 (ND4) gene 

223 following their methods. We assembled both reads and edited sequences in Geneious 

224 v.11.0 (Kearse et al., 2014) and combined them with sequences (n = 137) generated by 

225 Stoelting et al. (2014) downloaded from Genbank (Table S1). We aligned sequences 

226 using ClustalW v.2.1 (Larkin et al., 2007) and estimated a haplotype network using the 

227 TCS algorithm (Clement, Posada, & Crandall, 2000) implemented in PopART (Leigh & 

228 Bryant, 2015).

229

230 SNP dataset collection

231 We generated double-digest restriction site associated DNA (ddRAD) libraries 

232 (Peterson, Weber, Kay, Fisher, & Hoekstra, 2012) as described in the Supplementary 

233 Methods. Briefly, extractions were digested with the restriction enzymes SbfI and MspI, 

234 and the resulting fragments were tagged with individual barcodes, multiplexed into 

235 groups of 11 uniquely barcoded individuals and size selected for fragments between 434–

236 538 bp. Barcode groups were PCR amplified, pooled, and sequenced on an Illumina® 

237 2500 (SE 150 bp).

238 Raw data were processed using ipyrad v.0.7.30 (Eaton & Overcast, 2020). After 

239 demultiplexing, we removed seven samples with < 200,000 reads and one duplicate 

240 sample that was inadvertently sequenced twice. With the remaining 77 samples, we 

241 trimmed the first six bp to remove the restriction site, allowing a maximum of five low-

242 quality base calls per read. We followed Ilut et al. (Ilut, Nydam, & Hare, 2014) to 

243 determine an optimal clustering threshold of 0.96 and up to 16 SNPs per 150 bp locus (at 

244 which additional SNPs per locus plateaued). We allowed no barcode mismatches and 

245 used the “strict” adapter filtering option, leaving all other parameters as default values. 

246 We required each site to be present in at least 70% (55/77) of samples, and dropped three 
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247 samples missing >90% of loci. To maximize sampling of independent SNP histories, we 

248 extracted one SNP per locus, producing a final dataset of 6772 SNPs for 74 individuals.

249

250 Characterizing population structure and the extent of hybridization

251 Using the 6772 SNP dataset we explored genomic structure using principal 

252 component analysis (PCA) with the dudi.pca function implemented in ‘Ade4’ v.1.7.11 

253 (Drawy & Dufour, 2007). To determine the number of genetic demes and degree of 

254 admixture among demes we implemented the maximum likelihood approach 

255 implemented in ADMIXTURE V.1.3.0 (Alexander, Novembre, & Lange, 2009) with a range 

256 of K values (1–10) and five iterations per K value. Following the recommendation of 

257 Linck and Battey (Linck & Battey, 2019), we filtered our dataset for minor allele count = 

258 3 using VCFtools v.0.1.15 (Danecek et al., 2011) to produce a dataset for ADMIXTURE 

259 analyses that contained 3270 SNPs.

260 To quantify the extent of hybridization between S. thomense and “S. ephele”, we 

261 used a maximum likelihood approach implemented in the R package ‘HIest’ v.2.0 

262 (Fitzpatrick, 2012). This method jointly infers the ancestry index (S; the proportion of an 

263 individual’s alleles descending from alleles in one parental lineage) and interclass 

264 heterozygosity (H; the proportion of an individual’s loci that have one allele from each 

265 ancestral lineage). H values close to one indicate recent hybridization (F1, F2, or 

266 backcross generations) and values closer to 0 indicate hybridization in the more distant 

267 past. Considering both values together allowed us to quantify the temporal (in 

268 generations) and geographic extent of hybridization between lineages. Following 

269 developer recommendations to retain ancestry-informative markers, we identified 10 

270 individuals from each lineage with strong concordance between genomic, mitochondrial, 

271 and morphological data (Q > 0.9 or < 0.1 in the ADMIXTURE analysis) and <10% missing 

272 data in the 3270 SNP dataset. Based on these reference “parental” samples, we estimated 

273 allele frequencies for each locus using VCFtools and only retained loci fixed between 

274 lineages (parental allele frequencies > 0.95 or < 0.05). We removed individuals missing > 

275 50% of sites (13 individuals) and loci missing > 50% of individuals (one locus) resulting 

276 in a final dataset of 41 SNPs and 64 individuals. We estimated S and H using the ‘SANN’ 

277 method, with 1000 MCMC iterations, a starting grid = 99, and surf = TRUE. ‘HIest’ 
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278 assumes a continuous model of hybridization but also includes a function to compare the 

279 fit of the model when classifying each individual as one of the six standard genotype 

280 frequency classes (parental, F1, F2 and backcrosses) with that of the continuous model. 

281 To differentiate between recent and historical hybridization, we used the function 

282 ‘HIclass’ to estimate likelihoods for early generation hybrids (F1, F2, backcrosses), and 

283 ‘HItest’ to compare likelihoods to those from the continuous model. 

284

285 Testing alternative demographic histories

286 To test alternative models of diversification history, we used the diffusion 

287 approximation method implemented in δaδi (Gutenkunst, 2009). We tested 18 historical 

288 demographic models from Portik et al., (2017) including divergence in allopatry versus 

289 divergence with continuous gene flow, secondary contact versus contemporary isolation, 

290 and instantaneous size change (full range of models shown in Portik et al., (2017); Table 

291 S2). We generated a folded two-dimensional Site Frequency Spectrum (2D-SFS) from 

292 the VCF format output from ipyrad (https://github.com/isaacovercast/easySFS). To 

293 account for missing data among individuals, we down-projected our SNP dataset to 25 

294 diploid individuals with 3570 SNPs for S. thomense and 25 diploid individuals with 4377 

295 SNPs for “S. ephele”. We also ran the analysis without putative hybrid individuals 

296 (>10% admixed) to ensure that these individuals did not bias model selection (S. 

297 thomense: 19 diploid individuals with 3109 SNPs; “S. ephele”: 15 diploid individuals 

298 with 3617 SNPs). 

299 Following Portik et al. (2017) and Barratt et al. (2018), we used modified scripts 

300 from dadi_pipeline (https://github.com/dportik/dadi_pipeline) to perform five iterations 

301 of each model consisting of four rounds of optimizations with multiple replicates (see 

302 below). We used search parameter estimates from the best scoring replicate (highest log-

303 likelihood) to seed searches in the following round. We used the following settings for 

304 each round of dadi_pipeline: grid size = 50, 60, 70; replicates = 10, 20, 30, 40; maxiter = 

305 3, 5, 10, 15; fold = 3, 2, 2, 1. We optimized parameters using the Nelder-Mead approach 

306 (optimize_log_fmin), and used the optimized parameter sets of each replicate to simulate 

307 the 2D-SFS. The log-likelihood of each 2D-SFS was estimated for each model using a 

308 multinominal approach, we identified the best-supported model using log-likelihood and 
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309 AIC, and used the ΔAIC scores to calculate Akaike model weights (ωi). Goodness of fit 

310 tests were performed following Barratt et al., (2018) and were based on 250 simulated 

311 frequency spectra.

312 We estimated the divergence time between S. thomense and “S. ephele” using the 

313 Bayesian coalescent-based program G-PhoCS v.1.3 (Gronau, Hubisz, Gulko, Danko, & 

314 Siepel, 2011). By incorporating entire loci (as opposed to SNPs), G-PhoCS facilitates the 

315 conversion of posterior estimates to years using locus-based mutation rates. Due to 

316 computational constraints and developer recommendations, we used 2,000 loci and 10 

317 individuals per lineage. To reduce potential biases introduced by admixed individuals or 

318 missing data, we sampled individuals with ancestry coefficients corresponding to > 95% 

319 of the assigned lineage and sequence data for > 90% of the loci. The δaδi model with the 

320 highest support indicated that divergence occurred in the absence of gene flow (see 

321 Results); thus we applied no migration bands in G-PhoCS. We followed Prates et al., 

322 (2018) to estimate prior ranges in G-PhoCS (scripts available at 

323 https://github.com/ivanprates/2018_Anolis_EcolEvol); we applied a gamma distribution 

324 to the θ (genetic diversity) and τ (root age) priors given by shape α = 1 and rate β = 275 

325 (mean = 0.00363). We ensured our distribution encompassed a range of θ values from 

326 0.002 to 0.00568 based on an island-wide Ne estimate of 500,000 individuals 

327 (extrapolated from Measey (2006)), which we converted to θ based on the equation 

328 4*Ne* using upper and lower bounds for mutation rates: 1.42 x 10-9 and 2.14 x 10-9 

329 substitutions per site per year (estimated for two frog genera by Allio, Donega, Galtier, & 

330 Nabholz, (2017)). To improve chain mixing, we applied a 500,000 generation burnin and 

331 ran the analysis for 2,000,000 generations sampling every 10,000 generations and 

332 checked Markov chain mixing in Tracer v.1.6 (Rambaut, Drummon, Xie, Baele, & 

333 Suchard, 2018). We converted our posterior estimate of the root using the mean of the 

334 two amphibian mutation rates from Allio et al., (2017), and a generation time of two 

335 years (Haft & Franzen, 1996). 

336

337 Environmental variation across sampling sites

338 To examine whether the two lineages of São Tomé caecilians are ecologically 

339 divergent, we assessed associations for admixed and non-admixed individuals (>90% 
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340 assignments) with landscape gradients of climate, topography, land cover, and soil 

341 type/age (both associated with periods of underlying volcanic activity). We extracted 

342 bioclimatic variables from the WorldClim database (Hijmans, Cameron, Parra, Jones, & 

343 Jarvis, 2005) that describe spatial patterns of temperature and precipitation variation. 

344 Moreover, we included geomorphological variables that likely impact fossorial 

345 organisms: elevation, land cover, and soil type/age (Caldeira & Munhá, 2002; Soares, 

346 2017; Stoelting et al., 2014). Values were extracted from the collection sites of samples 

347 (only those for which we generated genomic data) using QGIS v.2.18.15 (available at 

348 https://github.com/qgis/QGIS). Due to the logistical difficulty of surveying the south-

349 eastern quadrant of the island, this region remains largely uncharacterised for most 

350 variables and no caecilian specimens from this region were available for study. For 

351 continuous variables (precipitation, temperature, and elevation) we fitted ANOVAs 

352 grouping by S. thomense, “S. ephele”, and admixed individuals, and used a Tukey Honest 

353 Significant Differences test to calculate adjusted P values for group mean comparisons. 

354

355 RESULTS

356 Phenotypic variation in São Tomé caecilians

357 With few exceptions, flecked and unflecked phenotypes were geographically 

358 separated across São Tomé Island, with phenotypic turnover around the latitudinal 

359 midpoint of the island (Fig. 1; S1A). Only four out of 21 localities included in this study 

360 contained both phenotypes (Bom Sucesso, Contador South, Santa Luzia, and Lemba). 

361

362 Geographic structure and evidence of hybridization

363 The mtDNA haplotypes from the combined datasets were consistent with the 

364 clear northern and southern haplotype groups in Stoelting et al. (2014) and overlap zone 

365 in the centre of the island, where both haplotypes were present at four localities (Anselmo 

366 Andrade, Bombaim, Java, and Santa Luzia; Figs. 1B, C; S1B, C). 

367 A genetic PCA based on the SNP dataset identified two clusters that largely 

368 corresponded to morphological and mitochondrial patterns, with the exception of 

369 individuals around the putative contact zone (Fig. 1A,B). Cross-validation of our 

370 ADMIXTURE analysis inferred roughly equal support for K = 2–4 (Fig. S2C), with K = 2 
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371 splitting individuals into northern and southern groups corresponding to the PCA group 

372 assignments and the deepest split in the mitochondrial network. We assigned individuals 

373 to S. thomense (north) or “S. ephele” (south) based on ancestry coefficients >0.90, and 

374 considered those individuals with lower coefficients as admixed for downstream analyses 

375 (restricted to Contador South, Java, Lemba, Santa Fe, and Santa Luzia; Fig. 1A). Higher 

376 K values (K = 3–4) further subdivided S. thomense but did not correspond to the fine-

377 scale mtDNA structure recovered by Stoelting et al. (2014; Fig. S2).

378 HIest analyses based on the set of 41 ancestry-informative SNPs assigned 22 

379 individuals to non-admixed S. thomense (S value < 0.1), 14 individuals as non-admixed 

380 “S. ephele” (S value > 0.9) and 28 individuals as admixed (Fig. 2A, Table S1). H values 

381 for admixed individuals ranged from 0 to 0.65 (Table S1), consistent with multiple 

382 generations of hybridization. Plotting H values relative to latitude indicated that 

383 hybridization is restricted to the centre of the island (Fig. 2B; S3). In all individuals, 

384 hybrid classifications under the continuous model were at least 2 log-likelihood units 

385 better than the best classification of early hybrid classes (F1, F2, backcrosses), thus 

386 rejecting early hybrid classes in all cases.

387

388 Demographic history of São Tomé caecilians 

389 Demographic modelling using δaδi based on SNP data from all samples supported 

390 a model of divergence in isolation, followed by instantaneous expansion in both lineages 

391 and secondary contact with ongoing symmetric migration (Fig. 3; Table S2; ΔAIC = 

392 83.5, ωi = 1.0). The second-best model was a three epoch model of divergence in 

393 isolation, followed by instantaneous expansion in both lineages and secondary contact 

394 with ongoing symmetric migration, followed by isolation in the recent past. When 

395 admixed individuals were excluded, this same three epoch model was best-supported 

396 (ΔAIC = 10, ωi = 1.0). Because there are no SNP-based mutation rate estimates for 

397 caecilians we refrain from converting our unscaled parameters here; however, several 

398 inferences can still be made. First, historical effective population size before and after 

399 expansion was larger for “S. ephele” than for S. thomense and S. thomense experienced a 

400 greater magnitude change in population size (~5x) relative to “S. ephele” (~2x; Table 

401 S2). Second, the relative time between secondary contact and the present (unscaled value 
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402 of 0.24) was about half that between initial divergence and secondary contact (0.52). 

403 Parameter estimates were consistent between the two and three epoch models (Table S2). 

404 Goodness of fit tests showed that our empirical values fell slightly outside simulated 

405 distributions, indicating a poor fit of the best-supported model to the data (Fig. S4). Poor 

406 model fit suggests that our cohort of models may be over-simplistic to capture the true 

407 evolutionary history of these caecilians (Excoffier et al., 2013). Future studies testing 

408 more complex models will benefit from more comprehensive sampling of genomic 

409 variation and additional sampling localities in the southern half of São Tomé. 

410  Divergence time estimates using G-PhoCS (based on entire loci with locus-based 

411 mutation rates) indicated that initial divergence between S. thomense and “S. ephele” 

412 occurred ~303.4 kya (280.9–325.8 kya). We used this mean divergence date to convert 

413 our scaled time estimates from δaδi to infer that secondary contact occurred ~95.1 kya 

414 (88.0–101.1 kya; Fig. 3).

415

416 Environmental variation across sampling sites 

417 We inferred that caecilians occupy a broad environmental space on São Tomé, 

418 ranging from habitats receiving between 800 and > 1400 mm/yr of precipitation (Fig. 4). 

419 Our sampling indicated that caecilians occur in most soil types/ages on the island (Fig. 4), 

420 and in all vegetation types (Fig. 4). The two lineages segregated strongly in 

421 environmental space, particularly along a gradient of precipitation (Fig. 4), with S. 

422 thomense occurring in drier habitats than admixed and “S. ephele” caecilians (adjusted P 

423 < 0.001). Although S. thomense appear to inhabit a wider range of elevations and 

424 temperatures than “S. ephele”, occurrence with respect to these two variables does not 

425 differ between the species (Fig. S5; adjusted P > 0.05). The distribution of S. thomense 

426 encompasses the younger basaltic lavas (<1 Mya) that dominate the central and northern 

427 half of the island and the contact zone between the lineages roughly coincides with the 

428 transition between the younger (<1 Mya) and older (3–8 Mya) basaltic lavas in the centre 

429 of the island. Schistometopum thomense were also associated with alluvial soils in the 

430 northern coastal plain (Fig. 4) whereas, “S. ephele” were associated with the older 

431 basaltic lavas (3–8 Mya) and volcanic cone formations on the southern half of the island. 

432 Caecilians occupied non-forested habitats across the island, but S. thomense and admixed 
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433 individuals were primarily found in shaded plantation and non-forested habitats, whereas 

434 “S. ephele” were found in native forest, secondary forest, and shaded plantation but not 

435 in non-forested habitat (Fig. 4). 

436

437 DISCUSSION

438 Our genetic and phenotypic data support a history of within-island divergence in 

439 allopatry for São Tomé caecilians, followed by secondary contact and hybridization that 

440 have blurred lineage boundaries rather than a history of divergence with gene flow along 

441 an ecological gradient. The common ancestor of S. thomense and “S. ephele” arrived on 

442 the island recently, having diverged from its East African sister species S. gregorii ~1 

443 Mya (Loader et al., 2007). Correspondingly, using coalescent methods we estimated that 

444 subsequent in situ divergence occurred ~300 kya, which is comparable to previous 

445 estimates derived from analyses of mitochondrial sequence data (Stoelting et al., 2014). 

446 Several other São Tomé organisms with contiguous contemporary distributions have a 

447 history of in situ diversification during the Pleistocene, including reed frogs 1.7–0.5 Mya 

448 (Bell et al., 2015), freshwater crabs 1.5–0.5 Mya (Daniels & Klaus, 2018), and fruit flies 

449 ~400 kya (Llopart, Elwyn, Lachaise, & Coyne, 2002; Llopart, Lachaise, & Coyne, 2005). 

450 These estimates broadly coincide with the most recent period of volcanic eruptive activity 

451 on São Tomé from 36–860 kya (Barfod & Fitton, 2014). Thus, lineage divergence across 

452 co-distributed groups may be associated with catastrophic late Pleistocene volcanic lava 

453 flows fragmenting species distributions and interrupting gene flow. These findings are 

454 consistent with the hypothesis that volcanic flows are an important but ephemeral 

455 mechanism for allopatric divergence in volcanic island systems (Juan, Emerson, Oromı́, 

456 & Hewitt, 2000), as has been documented in a variety of taxa, including flowering plants 

457 (Brochmann, 1984), lizards (Bloor et al., 2008), birds (Milá et al., 2010) and orangutans 

458 (Nater et al, 2011).  

459 Besides imposing transient physical barriers to gene flow, volcanic eruptions may 

460 also favour divergence through local adaptation when populations become isolated in 

461 distinct environments. This hypothesis is consistent with associations of the two caecilian 

462 lineages within distinct precipitation regimes and habitats across the island (Fig. 4), 

463 which may reflect local adaptation to specific soil microhabitats (Torres-Sánchez et al., 

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



16

This article is protected by copyright. All rights reserved

464 2019) as demonstrated in other fossorial vertebrates (Martín, López, & García, 2013; 

465 Fouquet et al., 2021). Associations between habitat type and lineage divergence were also 

466 reported in reed frogs (Bell & Irian, 2019) and fruit flies (Coyne et al., 2002; Matute & 

467 Coyne, 2010) on São Tomé, suggesting that this pattern may be widespread across a 

468 variety of organisms on the island, although the specific mechanisms of local adaptation 

469 are likely to differ between fossorial versus surface-dwelling taxa. These observations 

470 may be somewhat confounded by the strong correlation between geography and 

471 environmental variation on São Tomé; however, similar associations have also been 

472 documented in organisms from other small volcanic islands including lizards from the 

473 Canary Islands (Brown, Woods, & Thorpe, 2017; Gübitz, Thorpe, & Malhotra, 2005; 

474 Pestano & Brown, 1999; Suárez, et al., 2014) and birds from Réunion (Gabrielli, 

475 Nabholz, Leroy, Milá, & Thébaud, 2020). Studies of climate-dependent competitive 

476 outcomes (e.g., Comeault & Matute 2021) and functional genomic variation may provide 

477 deeper insights as to the relative contributions of geographic barriers and environmental 

478 variation to lineage diversification on small (< 2500 km2) oceanic islands (e.g., Brown et 

479 al., 2016). 

480 Secondary contact may be pervasive when allopatric divergence results from 

481 ephemeral barriers on small oceanic islands (e.g. Brown et al., 2017). Accordingly, 

482 historical demographic analyses inferred that the São Tomé caecilian lineages came into 

483 secondary contact ~95 kya and that both lineages have experienced recent population 

484 expansion, with a greater magnitude of expansion in S. thomense (Fig. 3A; Table S2). 

485 This difference in expansion is consistent with more extensive and recent volcanic 

486 activity across the northern half of the island where S. thomense occurs (Barfod & Fitton, 

487 2014). We hypothesize that secondary contact and population size change occurred 

488 following the expansion of suitable habitat after the erosion of lava flows, thus 

489 facilitating contact between previously separated lineages. Hybrid zones are maintained 

490 by selection against hybrid phenotypes, particularly when parental species are locally 

491 adapted (Barton & Hewitt, 1985; Mallet & Barton, 1989; Kisel & Barraclough, 2010). 

492 Consequently, small islands with distinct habitat transitions may result in particularly 

493 narrow hybrid zones (Cooper, Sedghifar, Nash, Comeault, & Matute, 2018). 
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494 In São Tomé caecilians, the contact zone appears to coincide with the transition 

495 between the younger (<1 Mya) and older (3–8 Mya) basaltic lavas in the centre of the 

496 island but we did not find a clear association between the parental species or hybrids with 

497 our broad classifications of soil type. By contrast, we found significant associations 

498 between parental species and hybrids with precipitation (Fig 4. B,C) suggesting there 

499 may be selection against hybrids in the driest parts of the island resulting in a stable 

500 hybrid zone in the centre of the island. In addition, S. thomense lack flecking and occur in 

501 drier habitats, while “S. ephele” and most hybrid individuals are flecked and occur in 

502 wetter habitats indicating there may be habitat-associated selection for divergence in 

503 coloration (Lemoine et al., 2019). Divergence in coloration between xeric and mesic 

504 habitats across small spatial scales is prevalent in other small island study systems 

505 including Anolis lizards in the Lesser Antilles (e.g., Lazell, 1972, Muñoz et al., 2013, 

506 Thorpe et al., 2015), lizards in the Canary Islands (Thorpe & Brown, 1989; Brown, 

507 Thorpe & Báez, 1991; Suárez et al., 2014; Brown et al., 2016), and Galapagos land snails 

508 (Kraemer, Philip, Ranken & Parent, 2018). Experimental approaches may clarify whether 

509 divergent and strong natural selection for locally adapted physiology and/or camouflage 

510 underlie correlations between coloration and environment in São Tomé Caecilians. 

511 Differences in mate choice among incipient/recent species can also be an 

512 important mechanism for reproductive isolation (Mayr, 1963; Richie, 2007) and 

513 reinforcement can lead to greater divergence in such traits when hybridization is 

514 maladaptive (Butlin, 1987). Courtship behaviour and potential pre-zygotic or post-

515 zygotic reproductive barriers in caecilians are very poorly understood, but molecular 

516 analyses by Torres-Sánchez et al., (2020) suggest the potential for both sexes to use 

517 species-specific peptide pheromones for species recognition and mate choice. 

518 Quantifying the peptide pheromone composition of São Tomé caecilians and their 

519 hybrids may provide further insights into this signalling modality and its role in 

520 speciation. Further, caecilians exhibit internal fertilization via an intromittent organ 

521 formed by an eversible portion of the cloaca that varies in shape and ornamentation 

522 among species (Gower & Wilkinson, 2002; Wake, 1972). Characterizing variation in 

523 phallus morphology among and within lineages of Schistometopum on São Tomé and in 

524 their East African relatives may clarify whether this structure plays an analogous role in 
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525 reproductive isolation to the baculum in placental mammals (Ramm, 2007) and 

526 hemipenes in squamate reptiles (Klaczko, Ingram, & Losos, 2015). 

527

528 Conclusions

529 Our study joins a growing number of systems demonstrating speciation at small 

530 spatial scales on islands (Savolainen et al., 2006; Kisel & Barraclough, 2010; Heaney et 

531 al., 2018; Bourgeois et al., 2020; Gabrielli et al., 2020; Osborne et al., 2020). We propose 

532 that transient geographic barriers coupled with local adaption across environmental 

533 gradients can contribute to the accumulation of phenotypic and taxonomic diversity. Our 

534 integrative morphological and genetic analyses support two discrete lineages 

535 corresponding to S. thomense and “S. ephele” with a narrow zone of admixture in the 

536 centre of São Tomé Island. Demographic modelling supports a history of allopatric 

537 divergence in the late Pleistocene followed by secondary contact and hybridization, rather 

538 than a scenario of divergence with continuous gene flow. Based on this evolutionary 

539 history, we recommend recognizing these lineages as distinct species and remove S. 

540 ephele Taylor 1965 from synonymy with S. thomense (Bocage 1873). 

541
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947 Figure Legends

948 Figure 1: Schistometopum sampling on São Tomé Island. A) Map shows distribution of 

949 genomic samples with the size of circles proportional to the number of individuals at that 

950 site. Individuals with at least 90% ancestry assigned to S. thomense are shown in purple, 
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951 90% ancestry assigned to “S. ephele” in green, and admixed individuals in orange. Site 

952 abbreviations are as follows: AA = Anselmo Andrade, BO = Bombaim, BS = Bom 

953 Sucesso, CN = Contador Valley North, CS = Contador Valley South, CV = Canavial, JA 

954 = Java + Abade, LB = Lemba River, ML = Rio Maria Luisa, ON = Obo National Park, 

955 PA = Porto Alegre, QI = Quisinda, RD = Rio d’Ouro, SF = Santa Fe, SL = Santa Luzia. 

956 The type locality of “ S. ephele” (Água Izé, 400-700m) is likely between the coastal 

957 community of Água Izé (indicated by black star) and Java. B) Plot of ancestry 

958 coefficients estimated with ADMIXTURE V.1.3.0 (Alexander et al., (2009) for K = 2. 

959 Circles above the plot show the haplotype of each individual from the mitochondrial ND4 

960 locus, and morphological assignment (yellow, unflecked = yellow; brown, flecked = 

961 gray). C) ND4 haplotype network for new samples and previously published data 

962 (Stoelting et al., 2014) estimated in PopART (Leigh & Bryant, 2015). 26 mutations 

963 separate the haplotype groups. D) Principal component analysis of SNP data with 

964 individuals coloured according to their ancestry assignment from (B). Photo credits: A. 

965 Stanbridge.

966

967 Figure 2: Results of the ‘HIest’ v.2.0 (Fitzpatrick, 2012) analysis. A) Joint maximum 

968 likelihood estimates of ancestry (S value) and interclass heterozygosity (H value) for S. 

969 thomense and “S. ephele” for 41 diagnostic SNPs. A) Individuals are coloured by 

970 morphology (yellow, unflecked = yellow; brown, flecked = gray) indicating that most 

971 admixed individuals (intermediate S and H values) are flecked. B) H values plotted 

972 against latitude show that admixed individuals are restricted to the centre of the island at 

973 the contact zone. Individuals are coloured according to S values (>0.9 or <0.1).

974

975 Figure 3: Results of demographic modelling (δaδi; Gutenkunst et al., 2009) and 

976 demographic parameter estimation (G-PhoCS; Gronau et al., 2011) analyses. A) Stylized 

977 representation of the best supported model from δaδi with parameters superimposed from 

978 G-PhoCS. B) The fit between the best-supported model and the data is shown using the 

979 two-dimensional site frequency spectrum (2D-SFS) and plots of the residuals. 

980
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981 Figure 4: Summary of environmental space occupancy analyses. A) Photos of habitat in 

982 representative dry (top) and wet (bottom) regions of São Tomé Island. B) Violin plot of 

983 precipitation values at sites for pure and admixed caecilians (top), bar plots of land cover 

984 (middle), and bar plots of soil types and ages (bottom). C) Annual precipitation (mm) 

985 across the island, with drier habitat in the north and wetter habitat in the south (top), land 

986 cover across the island, adapted from Soares (2017; middle), and soil types and ages 

987 across the island, adapted from Caldeira & Munhá (2002) and Stoelting et al. (2014; 

988 bottom). Photo credits: J. Shevock, A. Stanbridge. 

989

990 Supporting Information

991

992 Figure S1: A) Distribution of phenotypes for individuals included in the genomic 

993 analyses (yellow, unflecked = yellow; brown, flecked = gray). Map shows elevation. B) 

994 Distribution of mtDNA haplotypes for 152 individuals. Adjacent contact zone localities 

995 (Bombaim, Java and Abade; Santa Luzia, Macambrara, and Radio Antenna) are grouped 

996 together for clarity. Sequence data generated for this study are designated with black 

997 arrows, all other sequences were generated by Stoelting et al. (2014). ND4 haplotype 

998 network estimated in PopART (Leigh & Bryant, 2015). 26 mutations separate the 

999 haplotype groups.

1000

1001 Figure S2: A) Map and plot of ancestry coefficients estimated from 3270 SNP dataset 

1002 analysed with ADMIXTURE V.1.3.0 (Alexander et al., 2009) for K = 3, and B) K = 4. 

1003 Additional K values do not correspond to the additional mitochondrial lineages inferred 

1004 by Stoelting et al. (2014). C) Cross validation error plots from ADMIXTURE analysis 

1005 showing roughly equal support for K = 2–4.

1006

1007 Figure S3: Ancestry (S value) estimated in ‘HIest’ v.2.0 (Fitzpatrick, 2012) plotted 

1008 against latitude showing that individuals with intermediate ancestry values (likely 

1009 admixed) are restricted to the centre of the island at the contact zone. Individuals are 

1010 coloured according to S values (>0.9 or <0.1).
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1012 Figure S4: Visualization of goodness of fit test from demographic modelling analyses 

1013 showing empirical result (blue bar) plotted on the distribution of simulated values across 

1014 100 simulations (gray bars) for log likelihood (A) and log-transformed chi-squared test 

1015 statistic (B). Empirical values outside of the simulated distribution suggest poorer model 

1016 fit.

1017

1018 Figure S5: Summary of additional environmental space occupancy analyses. A) Violin 

1019 plot of elevation (m) at sites for pure (>0.9 or <0.1) and admixed caecilians, and B) map 

1020 of elevation. C) Violin plot of temperature at sites for pure and admixed caecilians, and 

1021 D) map of temperature.

1022

1023 Table S1: Locality, catalogue number, and summary data for samples included in this 

1024 study.

1025

1026 Table S2: Output summary for demographic modelling (δaδi; Gutenkunst et al., 2009) 

1027 analyses. In all cases nu1 = S. thomense and nu2 = “S. ephele”
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