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Phenotypic variation among populations, as seen in the signaling traits of many species, 64 

provides an opportunity to test whether similar factors generate repeated phenotypic patterns 65 

in different parts of a species’ range. We investigated whether genetic divergence, abiotic 66 

gradients, and sympatry with closely related species explain variation in the dewlap colors of 67 

Amazon Slender Anoles, Anolis fuscoauratus. To this aim, we characterized dewlap diversity in 68 

the field with respect to population genetic structure and evolutionary relationships, assessed 69 

whether dewlap phenotypes are associated with climate or landscape variables, and tested for 70 

non-random associations in the distributions of A. fuscoauratus phenotypes and sympatric 71 

Anolis species. We found that dewlap colors vary among but not within sites in A. fuscoauratus. 72 

Regional genetic clusters included multiple phenotypes, while populations with similar dewlaps 73 

were often distantly related. Phenotypes did not segregate in environmental space, providing no 74 

support for optimized signal transmission at a local scale. Instead, we found a negative 75 

association between certain phenotypes and sympatric Anolis species with similar dewlap color 76 

attributes, suggesting that interactions with closely related species promoted dewlap 77 

divergence among A. fuscoauratus populations. Amazon Slender Anoles emerge as a promising 78 

system to address questions about parallel trait evolution and the contribution of signaling 79 

traits to speciation. 80 

 81 

Keywords: Anolis, dewlap, polytypism, reproductive isolation, parallel evolution, species 82 

interactions.  83 
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Introduction 84 

Phenotypic variation within species is pervasive. This variation can occur in the form of 85 

polymorphism, when conspecific individuals in the same locality exhibit alternative traits (e.g., 86 

Sinervo and Lively 1996; Galeotti et al. 2013). Alternatively, phenotypes can vary between 87 

localities across a species’ range, a situation traditionally referred to as polytypism (Mayr, 1963). 88 

Polytypic species show marked population differences in traits such as coloration, vocalization, 89 

and chemical defenses, which often vary across short geographic distances (e.g., Schiotz 1971; 90 

Galeotti et al. 2003; Seehausen et al. 2008; Prates et al. 2019). Some remarkable cases of 91 

polytypism involve sexual signals, used by organisms to attract, identify, and choose suitable 92 

mates (Hill 1994; Kwiatkowski and Sullivan 2002; Jiggins et al. 2011). Within-species variation 93 

in sexual signals might be unexpected because it could disrupt mate choice (Jiggins et al. 2011; 94 

Hoskin et al. 2005; Gleason and Ritchie 1998). Nevertheless, population differences in visual 95 

and acoustic signaling traits have been reported in many organisms (e.g., Ryan et al. 1996; 96 

Arnqvist and Kolm 2010; Maan and Cummings 2008; Scordato and Safran 2014). Given the 97 

potential contribution of sexual signals to premating reproductive isolation, uncovering the 98 

factors behind signaling trait divergence can provide insight into how new species arise. In 99 

particular, widespread species that show repeated variation in sexual signals in different parts 100 

of their range provide promising evolutionary and ecological replicates for testing hypotheses 101 

about the origins of trait diversity. 102 

Several hypotheses have been proposed to explain how polytypic signaling traits 103 

originate. Empirical and theoretical studies have proposed that geographically structured 104 

phenotypes can evolve through non-adaptive processes, such as genetic drift in isolated 105 

populations or isolation-by-distance across continuously distributed populations (Lande 1982; 106 

Campbell et al. 2010; Tazzyman and Iwasa 2010; Gehara et al. 2013). This hypothesis is 107 
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consistent with observations that signal divergence scales directly with time since population 108 

divergence and inversely with gene flow in several species (e.g., Ryan et al. 1996; Bernal et al. 109 

2005; Warwick et al. 2015). An alternative hypothesis postulates that signaling trait diversity 110 

can be adaptive, particularly when these traits vary along abiotic and biotic landscape gradients 111 

(Boughman 2002). For instance, colorful signals vary with the light environment in birds and 112 

fishes (Marchetti 1993; Boughman 2001; Seehausen et al. 2008), suggesting optimized signal 113 

transmission at a local scale in both terrestrial and aquatic habitats. Lastly, it has been proposed 114 

that sexual signals might diverge via reproductive character displacement, particularly when 115 

two closely related lineages overlap geographically (Grant 1972). For instance, studies in frogs 116 

have found that closely related lineages produce similar calls in allopatry and divergent calls in 117 

sympatry (Höbel and Gerhardt 2003; Hoskin et al. 2005), which suggests that biotic interactions 118 

may select for increased signal discrimination at a local scale. Although studies focusing on 119 

different organisms have provided support for each of these hypotheses, few empirical 120 

investigations have attempted to explore their relative contributions to signaling trait diversity 121 

within a single polytypic species. 122 

Variable colorful signals are common in visually-oriented diurnal organisms, including 123 

several lizard clades (Stuart-Fox et al. 2007; Stuart-Fox and Moussaili 2008; Edwards et al. 124 

2015). An iconic example of a diverse sexual signal is the dewlap, a colorful and extensible flap 125 

of skin positioned along the underside of the throat in some groups of lizards (reviewed in 126 

Tokarz 1995). The largest diversity of dewlap color and pattern is seen in Anolis, which perform 127 

dewlap displays in courtship and agonistic interactions (Nicholson et al. 2007; Losos 2009). 128 

Behavioral and physiological experiments, as well as visual modeling, indicate that anole lizards 129 

have excellent color discrimination (Hodgkinson and Still, 1980; Macedonia and Stamps, 1994; 130 

Fleishman and Persons, 2001; Loew et al., 2002; Macedonia et al., 2013; Baruch et al., 2016; 131 

Fleishman et al., 2016), although visual acuity decreases with increasing distances (Fleishman et 132 
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al., 2020). It has been hypothesized that dewlap coloration is associated with optimizing signal 133 

transmission in relation to the light environment (Ng et al. 2013a). In support of this hypothesis, 134 

Caribbean anole species that inhabit shaded forests more often have dewlaps with white or 135 

yellow skin color (Fleishman 1992), which reflect a high total number of photons and are thus 136 

brighter (Fleishman et al. 2009). By contrast, species from open habitats more frequently have 137 

dewlaps with red or blue skin color (Fleishman 1992), which are less reflective and, thus, 138 

darker (Fleishman et al. 2009). However, other studies have hypothesized that dewlap 139 

coloration diversity in Anolis has evolved through selection for reduced phenotypic overlap 140 

among sympatric species, leading to reproductive character displacement (Webster and Burns 141 

1973; Nicholson et al. 2007; Lambert et al. 2013). This hypothesis is consistent with the 142 

observation that sympatric anoles rarely share the same dewlap pattern (Rand and Williams 143 

1970). In this case, dewlap divergence might be particularly important for co-distributed 144 

species with more similar dorsal coloration and body sizes (Fleishman et al. 2009). 145 

Despite the presumed role of dewlap coloration in mate choice and reproductive 146 

isolation, some anole species show geographic dewlap variation (e.g., Vanhooydonck et al. 2009; 147 

Ng and Glor 2011; Prates et al. 2015; Driessens et al. 2017; Ng et al. 2017; White et al. 2019). 148 

Among them is Anolis fuscoauratus, the Amazon Slender Anoles. Taxonomic compendiums have 149 

reported that males of this species have dewlaps with grayish, yellowish, or reddish shades 150 

(Avila-Pires, 1995). However, there has been no attempt to systematically characterize dewlap 151 

color variation over this species’ expansive range, and it is unclear whether different 152 

phenotypes are geographically restricted. If populations that share a given dewlap pattern are 153 

more closely related to each other than to populations with distinct phenotypes, dewlap 154 

variation in A. fuscoauratus may reflect genetic divergence and the formation of incipient 155 

species. Alternatively, because widespread South American anole species span pronounced 156 

environmental gradients (Prates et al. 2018), divergent dewlap phenotypes may have been 157 
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selected to increase signal transmission at a local scale. Finally, dewlap color diversity might 158 

reflect character displacement, because A. fuscoauratus co-occurs with at least 11 other Anolis 159 

species across its distribution in lowland South American rainforests (Avila-Pires 1995; Ribeiro-160 

Júnior et al. 2015; Prates et al. 2017). The apparent dewlap coloration polytypism of A. 161 

fuscoauratus provides a promising system to test hypotheses about how similar factors acting in 162 

different parts of a species’ range might have generated repeated phenotypic patterns. 163 

This study seeks to test whether evolutionary divergence, landscape gradients, and the 164 

composition of local Anolis assemblages explain sexual signal variation in Amazon Slender 165 

Anoles. We first comprehensively surveyed dewlap diversity and geographic variation on the 166 

basis of herpetological inventories that we performed over the last two decades in South 167 

America. After confirming that dewlap coloration shows large variation across the range of A. 168 

fuscoauratus, we proceeded to test the hypothesis that populations with similar dewlaps are 169 

more closely related. To this end, we generated genome-wide data through a reduced 170 

representation method to infer patterns of genetic structure and evolutionary relationships. To 171 

test the hypothesis that dewlap coloration in Amazon Slender Anoles varies as a function of 172 

landscape gradients due to locally adapted signals, we estimated multidimensional 173 

environmental space occupancy by different dewlap phenotypes based on geospatial 174 

descriptors of climate, topography, and vegetation. Lastly, we leveraged the results of our 175 

extensive herpetological inventories to test the hypothesis that dewlap colors in A. fuscoauratus 176 

vary as a function of local co-occurrences with other Anolis species, consistent with a scenario of 177 

reproductive character displacement. 178 

 179 

Material and Methods 180 

 181 
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Field assessment of dewlap variation and anole assemblage composition 182 

Anolis fuscoauratus is found in both primary and secondary rainforests in South 183 

America, where it usually is the most abundant Anolis species locally. To characterize 184 

geographic dewlap color variation in this species, we used data from our comprehensive 185 

herpetofaunal inventories in Amazonia and the Atlantic Forest over the last two decades. To this 186 

purpose, we sampled individuals by hand or pitfall traps. No quantitative color data (e.g., 187 

spectrometric measurements) were obtained due to constraints of field sampling and 188 

infrastructure. Therefore, in our environmental and species co-occurrence analyses we only 189 

included 32 sites for which dewlap color information was available (pictures or field notes) 190 

from the 63 sites that were included in genetic analyses (see below). 191 

One of the goals of this study was to test whether dewlap variation in A. fuscoauratus is 192 

linked to the presence of other Anolis species across regions. To test this hypothesis, we 193 

obtained data on species presence at a given site based on our field inventory data. To reduce 194 

the chance of undetected species, we only included data from surveys that lasted a minimum of 195 

one week and involved at least three herpetologists searching for animals both night and day. 196 

We found all Anolis species expected to occur in the sampled regions based on species ranges 197 

(Avila-Pires 1995; Ribeiro-Junior 2015). Attesting to the thoroughness of our sampling, over the 198 

course of our expeditions we sampled two Anolis species thought to have been extinct and one 199 

new to science (Prates et al. 2017, 2020). The final dataset included occurrence data for 11 200 

other anole species at the 32 sites for which A. fuscoauratus dewlap coloration data were 201 

available: Anolis auratus, A. chrysolepis, A. dissimilis, A. nasofrontalis, A. ortonii, A. planiceps, A. 202 

punctatus, A. scypheus, A. tandai, A. trachyderma, and A. transversalis (Table S1). 203 

 204 

Genetic sampling and data collection 205 
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For genetic analyses, sampled individuals were euthanized by injection of 5% lidocaine 206 

solution, fixed in 10% formalin, and preserved in 70% ethanol. Prior to fixation, a sample of 207 

liver or muscle tissue was removed and preserved in 95% ethanol. Animal handling procedures 208 

were approved by the Institutional Animal Care and Use Committee of the City University of 209 

New York and Smithsonian National Museum of Natural History. Voucher specimens were 210 

deposited in the collections of the Herpetology Laboratory and Museum of Zoology of the 211 

University of São Paulo and the Federal University of Acre. 212 

To improve inferences of genetic structure and phylogenetic relationships in Amazon 213 

Slender Anoles, we included in the genetic analyses samples from sites with both known and 214 

unknown male dewlap coloration, as well as females, which have rudimentary dewlaps in A. 215 

fuscoauratus. Our combined sampling for genetic analyses included 164 individuals of A. 216 

fuscoauratus sampled at 63 sites (Fig. 2A), encompassing most of the species' distribution 217 

(Ribeiro-Júnior 2015). Most of these samples came from sites where dewlap coloration was 218 

known (N = 108). We used Anolis auratus (N = 2), A. brasiliensis (1), A. chrysolepis (2), A. 219 

meridionalis (1), A. ortonii (1), A. planiceps (2), A. polylepis (1), A. quaggulus (1), A. scypheus (1), 220 

and A. trachyderma (1) as outgroups for phylogenetic analyses (see below) based on 221 

relationships found by Poe et al. (2017). Specimen and locality information are given in Table 222 

S2. 223 

Genomic DNA was extracted from each tissue sample through a protein precipitation 224 

extraction protocol following proteinase K and RNAase treatment (Text S1). After examining 225 

DNA fragment size using agarose gels, DNA concentration was measured using a Qubit 226 

fluorometer (Invitrogen, Waltham) and diluted to ensure a final concentration of 20–50 ng DNA 227 

per µl in a total volume of 15 µl (in TE buffer). A double-digest restriction site associated DNA 228 

library (ddRAD) (Peterson et al. 2012) was generated at the University of Wisconsin 229 
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Biotechnology Center. Briefly, DNA extractions were digested with the restriction enzymes PstI 230 

and MspI, and the resulting fragments were tagged with individual barcodes, PCR-amplified, 231 

multiplexed, and sequenced in a single lane on an Illumina HiSeq 2500 platform. The number of 232 

paired-end reads ranged from ~1.15 to 8.85 million per individual, with a read length of 100 233 

base pairs. De-multiplexed raw sequence data were deposited in the Sequence Read Archive 234 

(BioProject PRJNA492310; BioSample accessions SAMN18340748-18340924). 235 

 236 

Inferring population genetic structure and evolutionary relationships 237 

We used Ipyrad v. 0.7.30 (Eaton and Overcast 2020) to de-multiplex and assign reads to 238 

individuals based on sequence barcodes (allowing no mismatches from individual barcodes), 239 

perform de novo read assembly (minimum clustering similarity threshold = 0.95), align reads 240 

into loci, and call single nucleotide polymorphisms (SNPs). A minimum Phred quality score (= 241 

33), sequence coverage (= 6x), read length (= 35 bp), and maximum proportion of heterozygous 242 

sites per locus (= 0.5) were enforced, while ensuring that variable sites had no more than two 243 

alleles (i.e., a diploid genome). Moreover, for inclusion in the final datasets, we ensured that 244 

each locus was present in at least 70% of the sampled individuals. Following the de-245 

multiplexing step in Ipyrad, read quality and length were ensured for each sample using FastQC 246 

(available at http://www.bioinformatics.babraham.ac.uk/projects/fastqc/). 247 

To estimate population genetic structure and admixture in A. fuscoauratus, we 248 

generated in Ipyrad a final dataset composed of 118,434 SNPs at 16,368 loci (including no 249 

outgroups). A single SNP was then extracted from each locus to minimize sampling of linked 250 

SNPs. We used VCFtools v. 0.1.16 (Danecek et al. 2011) to filter out SNPs whose minor allele 251 

frequency (MAF) was lower than 0.05 (Ahrens et al. 2018). After the filtering steps, 2,157 SNPs 252 

were retained across 162 individuals, with around 23 % missing data across samples. To 253 
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quantify missing data, we used the Matrix Condenser tool (Medeiros and Farrell 2018). Based 254 

on the SNP data, we estimated the best-fit number of genetic clusters (K) using sNMF (Sparse 255 

Nonnegative Matrix Factorization) (Frichot et al. 2014) as implemented in the R package LEA v. 256 

2 (Frichot and François 2015). We tested K = 1–12, with 100 replicates for each K. The run with 257 

the lowest entropy value, estimated by masking 5% of the samples, was considered to identify 258 

the best K (Frichot et al. 2014). To examine the robustness of sNMF to the regularization 259 

parameter (alpha), we ran preliminary analyses with alpha = 1, 25, 50, 100, 200, 400, 800, 1600, 260 

and 3200. Best-fit K were consistent across values of alpha, with remarkably similar model fit 261 

(entropy score range = 0.49–0.52). 262 

We implemented a phylogenetic approach to assess whether individuals with similar 263 

dewlaps are more closely related to each other than to other color phenotypes across the range 264 

of A. fuscoauratus. We refrained from using species-tree methods because these approaches 265 

assume that shared molecular polymorphisms among lineages reflect incomplete lineage 266 

sorting and not gene flow. Our clustering analyses identified six broad geographic demes (see 267 

Results), and treating sampled sites as “species” would split localities inferred to belong to the 268 

same genetic pool. In addition, treating those six demes as “species” would not address our 269 

question of whether lizards with similar dewlaps are more closely related, because each deme 270 

included multiple phenotypes (see Results). Consequently, we implemented an individual-based 271 

phylogenetic approach that allows us to identify finer levels of phylogenetic structure and test 272 

whether phenotypically similar individuals cluster together in the phylogeny. To this end, we 273 

generated in Ipyrad a second dataset composed of 135,952 SNPs at 17,302 RAD loci (now 274 

including outgroup taxa and linked SNPs), ensuring that each locus was present in at least 70% 275 

of the sampled individuals. We performed phylogenetic inference under Maximum Likelihood 276 

on the concatenated dataset using RaxML-HPC v. 8.2.12 (Stamatakis 2014) through the CIPRES 277 
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Science Gateway (Miller et al. 2010). The GTRCAT model of nucleotide evolution was used and 278 

node support was estimated with 1,000 bootstrap replicates. 279 

 280 

Estimating environmental space occupancy across phenotypes 281 

Previous studies that performed spectral measurements in situ suggested that ambient 282 

light varies between forest strata (Fleishman et al. 1997; but see Fleishman et al. 2009 for a 283 

negative result). Thus, selection for dewlap detectability might vary with microhabitat use in 284 

anoles. In the case of Amazon Slender Anoles, previous studies found uniform microhabitat use 285 

among populations across the Amazon basin, with individuals preferably foraging on low vines, 286 

small twigs in the understory, and at the base of tree trunks (Avila-Pires 1995; Vitt et al. 2003a; 287 

Duellmann 2005). Therefore, geographic dewlap variation in A. fuscoauratus does not appear to 288 

be explained by differential microhabitat use among populations. We thus focused on whether 289 

sexual signal variation in this species is linked to landscape gradients at large spatial scales, an 290 

approach that found local adaptation in the dewlap colors of the Caribbean Anolis distichus (Ng 291 

et al. 2013a). Specifically, we tested whether populations that show distinct dewlap colors 292 

segregate in a multidimensional environmental space defined by vegetation cover, climate, and 293 

topography. While vegetation cover variables are expected to more closely reflect local light 294 

environments, they may not capture all of the variation in vegetation composition and structure 295 

across the distribution of A. fuscoauratus. We therefore included climate and topography 296 

variables in our analyses because these factors are known to strongly affect spatial vegetation 297 

patterns across the Amazon basin (ter Steege et al. 2006; Butt et al. 2008; Laurance et al. 2010). 298 

We used 17 variables in environmental analyses (Table S3): cover of evergreen 299 

broadleaf trees, deciduous broadleaf trees, shrubs, herbaceous vegetation, and regularly flooded 300 

vegetation, annual cloud cover, elevation, slope, terrain roughness, and terrain ruggedness 301 
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(Robinson et al. 2014; Tuanmu and Jetz 2014; Wilson and Jetz 2016; Amatulli et al. 2018), all 302 

obtained from the EarthEnv database (http://www.earthenv.org). As climatic variables, we 303 

used annual mean temperature, maximum temperature of the warmest month, mean 304 

temperature of the warmest quarter, annual precipitation, precipitation of the wettest month, 305 

and precipitation of the wettest quarter (Karger et al. 2017), obtained from the Chelsa database 306 

(http://chelsa-climate.org), as well as the climatic moisture index, a metric of relative wetness 307 

(Title and Bemmels 2018), obtained from the ENVIREM database (http://envirem.github.io). 308 

Values were extracted for each environmental variable from the 32 sites for which A. 309 

fuscoauratus dewlap color information was available using the Point Sampling Tool plugin in 310 

QGIS v. 3.4.5. Because certain variables were correlated (i.e., Pearson correlation coefficient > 311 

0.7), and to more easily visualize and compare environmental space occupancy across the range 312 

of A. fuscoauratus, we performed a principal component analysis (PCA) on the environmental 313 

variables and retained the three first principal components (PC) for downstream analyses. 314 

Environmental variables were standardized before applying PCA using a z-score 315 

transformation. Based on the three first PCs, we generated violin and scatter plots using R (R 316 

Core Team 2020) and compared mean values between dewlap phenotypes based on an analysis 317 

of variance (ANOVA) using the aov R function. We visually inspected quantile-quantile (Q-Q) 318 

plots to detect outliers and verify that model residuals were normally distributed. To account 319 

for evolutionary relationships in these analyses, we also performed a phylogenetic ANOVA 320 

(Garland et al. 1993) using the phytools R package (Revell, 2012) based on our SNP-based 321 

phylogenetic tree (pruned to include one random terminal sample per site) and 1,000 322 

simulations to estimate significance. Lastly, we repeated these analyses by focusing only on the 323 

vegetation cover variables (i.e., not including climate or topography) given the potentially more 324 

direct effect of vegetation on the light environment. 325 

http://www.earthenv.org/
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 326 

Testing patterns of species co-occurrence 327 

 To perform a quantitative test of whether A. fuscoauratus dewlaps vary geographically 328 

as a function of co-occurrences with other Anolis species, we used the probabilistic model 329 

implemented in the cooccur package in R (Veech 2013; Griffith et al. 2016). To test for negative 330 

or positive associations between classes (e.g., species), this method calculates the observed and 331 

expected frequencies of co-occurrence between pairs of classes; the expected frequencies are 332 

calculated assuming that the distribution of a class is independent of, and random relative to, 333 

that of another class. The method returns the probabilities that lower or higher values of co-334 

occurrence (relative to expected values) could have been obtained by chance (Griffith et al. 335 

2016). Our field surveys of dewlap color diversity and variation in A. fuscoauratus found three 336 

phenotypes over this species’ range: gray, yellow, and pink (see Results). We treated each of 337 

these phenotypes as a distinct class in all co-occurrence analyses. 338 

We initially ran an analysis to test for negative co-occurrences between each of the three 339 

A. fuscoauratus color phenotypes (gray, N = 11 sites; pink, N = 12 sites; yellow, N = 9 sites) and 340 

each of the five most common co-distributed Anolis species. Each of these species was detected 341 

in at least eight of the 32 sites where A. fuscoauratus dewlap data were available and represent a 342 

broad range of dewlap coloration, as follows: A. ortonii (red dewlap background, N = 12 sites), A. 343 

punctatus (yellow, N = 19 sites), A. tandai (blue, N = 12 sites), A. trachyderma (yellow and 344 

orange, N = 8 sites), and A. transversalis (yellow, N = 13 sites). Behavioral and physiological 345 

experiments and visual modeling have shown that anole lizards can perceive and discriminate 346 

all of the colors present in the dewlaps of A. fuscoauratus and co-distributed Anolis species 347 

(Hodgkinson and Still, 1980; Macedonia and Stamps, 1994; Fleishman and Persons, 2001; Loew 348 

et al., 2002; Macedonia et al., 2013; Baruch et al., 2016; Fleishman et al., 2016). 349 
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We performed a second analysis grouping all 11 Anolis species detected in sympatry 350 

with A. fuscoauratus into two groups: one group (N = 24 sites) of species where males have 351 

dewlaps with brighter, more reflective background skin colors (as per Fleishman 1992; 352 

Fleishman et al. 2009), namely A. dissimilis (white), A. planiceps (orange), A. punctatus (yellow), 353 

A. trachyderma (yellow and orange), and A. transversalis (yellow); and a second group (N = 20 354 

sites) of species whose dewlaps have relatively darker, less reflective background skin colors 355 

(Fleishman 1992; Fleishman et al. 2009), namely A. auratus (blue), A. chrysolepis (blue), A. 356 

nasofrontalis (pinkish-brown), A. ortonii (red), A. scypheus (red and blue), and A. tandai (blue). 357 

By grouping species into color classes, we were able to incorporate data from species with 358 

narrow distributions that were represented by fewer than eight sites (namely A. auratus, A. 359 

planiceps, A. dissimilis, A. nasofrontalis, A. planiceps, and A. scypheus). Moreover, this approach 360 

accommodates the possibility that the dewlaps of A. fuscoauratus are influenced by multiple 361 

similar Anolis species jointly, rather than individual species only. 362 

In a third analysis, we grouped the 11 sympatric Anolis species based on relative dewlap 363 

background color brightness and degree of overall morphological similarity to A. fuscoauratus. 364 

In South America, Anolis species belong to two major clades: Draconura (Poe et al. 2017), 365 

represented in our study area by generally small, slender, brown or gray anoles including A. 366 

fuscoauratus and seven other species (A. auratus, A. chrysolepis, A. ortonii, A. planiceps, A. 367 

scypheus, A. tandai, and A. trachyderma); and Dactyloa (Poe et al. 2017), represented in our 368 

study area by four anoles with generally green or greenish-gray bodies (A. dissimilis, A. 369 

nasofrontalis, A. punctatus, and A. transversalis, the latter two attaining larger body sizes than all 370 

other sampled Anolis). Based on overall morphological similarity (which correlates with clade 371 

membership), we expected that dewlap variation in A. fuscoauratus might be more strongly 372 

affected by sympatric Draconura than Dactyloa species. Therefore, in this third co-occurrence 373 

analysis, we grouped Anolis species into three classes: Draconura with bright background 374 
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dewlaps colors (N = 9 sites), Draconura with darker background dewlap colors (N = 19 sites), 375 

and Dactyloa (N = 23 sites). 376 

Environmental data, species co-occurrence data, filtered genetic data, and detailed 377 

specimen information are available as Supplementary Information online and through the 378 

Dryad Digital Repository (available at https://doi.org/10.5061/dryad.0zpc866x8) and GitHub 379 

(available at github.com/ivanprates/2021_fusco_dewlaps). R and Unix shell scripts used to 380 

prepare and filter the data and perform all analyses are available online through GitHub. 381 

 382 

Results 383 

 384 

Dewlap variation among populations of Anolis fuscoauratus 385 

 Our field inventories found remarkable geographic turnover in dewlap color over the 386 

range of Anolis fuscoauratus. Across South American lowland forests, we found three dewlap 387 

phenotypes, each present at multiple sites: gray, pink, and yellow (Fig. 1). Each of these three 388 

phenotypes was sampled in regions separated by hundreds to thousands of kilometers (Fig. 2A). 389 

Individuals from sites close to each other often had similar dewlap colors, but there were also 390 

instances of phenotypic turnover within tens of kilometers. Based on samples from two to 24 391 

individuals per site (mean = 8.3; sample sizes given in Table S1), intra-site variation was small 392 

(Fig. 1). In no circumstance did we observe more than one color phenotype (gray, pink, yellow) 393 

at the same site. Among the 32 sites with documented dewlap information, anoles from 11 sites 394 

had gray dewlaps, those from 12 had pink dewlaps, and those from nine had yellow dewlaps. 395 

Three sites were visited twice over six years, at the same time of the year (January); local 396 
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dewlap patterns remained the same over time. Dewlap color at sites was consistent between 397 

juvenile and adult males, suggesting no ontogenetic changes. 398 

Dewlap coloration was consistent across sites in all of the other anole species that co-399 

occur with A. fuscoauratus, with the exception of two populations of A. punctatus (Amazon green 400 

anoles). Across most of the range of A. punctatus, individuals have yellow dewlaps; however, in 401 

one population from the Içá River (state of Amazonas, Brazil), the lizards had light green 402 

dewlaps, and in one from the Aripuanã River (state of Mato Grosso, Brazil) they had creamy-403 

white dewlaps (Rodrigues et al. 2002). Of the two unique A. punctatus populations, only the Içá 404 

River population overlapped with the known A. fuscoauratus dewlaps and was included in the 405 

co-occurrence analyses (both light-green and yellow were classified as bright dewlap colors). 406 

 407 

Patterns of genetic structure 408 

 Cluster analyses using sNMF inferred six major genetic clusters across the geographic 409 

distribution of A. fuscoauratus (Fig. 2B-C), with some admixture or mixed assignments (as 410 

indicated by the ancestry coefficients of individuals) across clusters. Dewlap phenotypes (gray, 411 

pink, yellow) did not compose distinct genetic clusters; instead, all six clusters were made up of 412 

anoles with two or three different dewlap color phenotypes, and each phenotype was found in 413 

three to six genetic clusters. The three dewlap phenotypes occurred in both admixed and non-414 

admixed individuals. 415 

Inferred genetic clusters segregated in geographic space (Fig. 2B–C). Samples from the 416 

coastal Atlantic Forest formed one cluster (represented by lighter green in Fig. 2B–C), whereas 417 

the five remaining clusters occur in different parts of Amazonia: 1) the Guiana Shield in 418 

northern South America (cream); 2) westernmost Brazilian Amazonia (blue); 3) southwestern 419 
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Brazilian Amazonia, west of the Madeira river (lighter purple); 4) south-central Brazilian 420 

Amazonia, east of the Madeira river and west of the Tapajós river (darker purple); and 5) 421 

central Amazonia south of the Amazon river, extending to Ecuador in the west and to the Xingu 422 

River in the east (darker green). Admixture was inferred primarily between clusters that have 423 

adjacent geographic distributions (Fig. 2C). 424 

 425 

Phylogenetic patterns 426 

Similar to the genetic cluster analyses, phylogenetic analyses inferred that none of the 427 

three A. fuscoauratus dewlap phenotypes (gray, pink, and yellow) forms a clade. Instead, each 428 

phenotype is located in multiple parts of the tree (Fig. 2D; a phylogeny including outgroup taxa 429 

and support for all nodes is provided in Text S2). Samples from the same site shared the same 430 

dewlap coloration and grouped together. At deeper phylogenetic levels, major clades included 431 

samples having two or three different dewlap phenotypes; within each major clade, samples 432 

with the same phenotype often were not closely related (Fig. 2D). 433 

Mirroring the results from the genetic cluster analyses, major clades corresponded to 434 

different parts of the geographic distribution of A. fuscoauratus. Samples from the Atlantic 435 

Forest (indicated in lighter green in Fig. 2) and Guiana Shield in northern Amazonia (cream) 436 

group together. The clade formed by these samples is sister to a clade formed by the remaining 437 

Amazonian samples. Within the latter clade, samples from westernmost Brazilian Amazonia (in 438 

western Acre; blue) group together, as do samples from southwestern Brazilian Amazonia (in 439 

eastern Acre; lighter purple) and south-central Brazilian Amazonia (in Rondônia; darker 440 

purple). Samples from central Brazilian Amazonian (darker green) comprise two primary clades 441 

that together are paraphyletic relative to the other Amazonian clades. Relationships among 442 

these major clades generally received high bootstrap support (Fig. 2D). 443 
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 444 

Environmental space occupancy 445 

Climate, topography, and vegetation cover vary over the distribution of A. fuscoauratus. 446 

For instance, annual mean temperature at sampled sites ranged from 20.2 to 26.4 oC, annual 447 

precipitation from 1258 to 3511 mm, elevation from 22.5 to 913.0 m, and cover of evergreen 448 

broadleaf trees from 3 to 100 % (raw data for all 17 environmental variables are presented in 449 

Fig. S1). After implementing PCA on the environmental data, the first three principal 450 

components explained 37, 22, and 15 % (total of 74 %) of the environmental variation across 451 

sampled sites, respectively (PCA loadings presented in Table S4). PC1 increased with higher 452 

elevation, higher topographic complexity, and lower temperature, describing a lowland to 453 

highland axis; PC2 increased with higher precipitation and cloud cover, describing a dry to wet 454 

axis; and PC3 increased with more open and deciduous vegetation, describing an axis of 455 

evergreen forest to savanna and deciduous forest. 456 

Plots of these first three PC axes indicated that each of the three dewlap phenotypes of 457 

A. fuscoauratus occur at localities that together exhibit a similar range of environmental 458 

conditions, with large overlap in environmental space (Fig. 3). An ANOVA based on all sampled 459 

sites found no significant differences between phenotypes in PC1 (F2,29 = 0.28; p = 0.76), PC2 460 

(F2,29 = 1.68; p = 0.20), or PC3 (F2,29 = 2.38; p = 0.11). After eliminating four outlier sites based on 461 

the inspection of Q-Q plots, there was a statistically significant difference in PC3 (savannah and 462 

deciduous forest to evergreen forest) across phenotypes (F2,25 = 3.47; p = 0.047); however, post-463 

hoc analyses using Tukey’s test did not support significant differences between groups in 464 

pairwise comparisons (p > 0.05 in all tests). 465 

The same pattern of environmental overlap between color phenotypes was found when 466 

accounting for evolutionary relationships within A. fuscoauratus (phylogenetic ANOVA, PC1: 467 
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F2,29 = 0.28; p = 0.81, PC2: F2,29 = 1.68; p = 0.28, PC3: F2,29 = 2.38; p = 0.16). Likewise, there were 468 

no significant differences between phenotypes when focusing on vegetation cover alone (i.e., 469 

not including climate or topography) when accounting for evolutionary relationships 470 

(phylogenetic ANOVA, PC1: F2,29 = 0.96; p = 0.45, PC2: F2,29 = 0.02; p = 0.99, PC3: F2,29 = 0.69; p = 471 

0.6) or not (ANOVA, PC1: F2,29 = 0.96; p = 0.40, PC2: F2,29 = 0.02; p = 0.98, PC3: F2,29 = 0.69; p = 472 

0.51). 473 

 474 

Species co-occurrences 475 

Co-occurrence analyses (Fig. 4) invariably found each of the three A. fuscoauratus 476 

phenotypes to be negatively associated with one another (p < 0.010), reflecting our field 477 

observation of a single phenotype at each sampled site. 478 

Analyses including the three A. fuscoauratus dewlap phenotypes and the other five most 479 

common sympatric Anolis species (Fig. 4A) found a negative association between A. 480 

fuscoauratus with yellow dewlaps and A. trachyderma (p = 0.047); these two classes never co-481 

occurred. Anolis trachyderma and A. fuscoauratus both exhibit brown dorsal coloration, slender 482 

bodies, and yellowish dewlaps. The distributions of the other two A. fuscoauratus phenotypes 483 

(gray and pink) were not associated negatively or positively with the five most common 484 

sympatric Anolis species (p-values ranging from 0.104 to 1). This analysis also found a positive 485 

association between the occurrences of A. tandai (blue dewlaps) and A. transversalis (yellow 486 

dewlaps) (p = 0.003), as well as between A. ortonii (red dewlaps) and A. punctatus (yellow 487 

dewlaps) (p = 0.005), consistent with the observation that these species pairs frequently co-488 

occurred at sampled sites. 489 
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 When grouping the other 11 Anolis species based solely on dewlap coloration (Fig. 4B), 490 

we found a negative association between A. fuscoauratus with gray dewlaps and anole species 491 

that have dewlaps with darker colors (p = 0.005). Other relationships were not significant (p-492 

values ranging from 0.059 to 0.994). When grouping the other 11 Anolis species considering 493 

both relative color brightness and Anolis clade (Draconura: small, slender, brown anoles more 494 

similar to A. fuscoauratus; Dactyloa: greenish anoles that often attain larger body sizes than A. 495 

fuscoauratus) (Fig. 4C), we found a negative association between A. fuscoauratus with gray 496 

dewlaps and Draconura species that have darker dewlap colors (p = 0.011). We also found a 497 

negative association between A. fuscoauratus with yellow dewlaps and Draconura species that 498 

have brighter dewlap colors (p = 0.029). Other relationships were not significant (p-values 499 

ranging from 0.071 to 1). 500 

 501 

Discussion 502 

On the basis of biodiversity inventories at dozens of rainforest sites in northern South 503 

America, we found extensive dewlap color variation in A. fuscoauratus among sites, but limited 504 

variation within sites (Fig. 1). Similar dewlaps occur at sites hundreds to thousands of 505 

kilometers apart. In some cases, these sites are separated by unsuitable habitat; for instance, 506 

yellow and gray dewlaps occur in both Amazonia and the Atlantic Forest, two rainforest regions 507 

separated by open and dry grasslands and scrublands in which Amazon Slender Anoles do not 508 

occur (Fig. 2). A reduced representation genomic dataset indicated that phenotypically similar 509 

populations are often not closely related (Fig. 2), consistent with a history of repeated origin (or 510 

loss) of each of the three dewlap phenotypes. Moreover, a genetic cluster analysis indicated 511 

mismatches between dewlap phenotype and genetic structure: genetic clusters were composed 512 

of individuals with different dewlap colors, and each dewlap phenotype was distributed across 513 
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multiple genetic clusters (Fig. 2). Estimates of environmental space occupancy found no 514 

separation by phenotype (Fig. 3), providing no clear support for the hypothesis of local 515 

adaptation to abiotic landscape gradients. By contrast, dewlap variation was associated with the 516 

presence of other Anolis species across the geographic distribution of A. fuscoauratus. 517 

Specifically, co-occurrence analyses found that A. fuscoauratus with yellow (bright) and gray 518 

(darker) dewlaps occur less frequently than expected at sites where sympatric species have 519 

relatively brighter or darker dewlap colors, respectively (Fig. 4). 520 

 521 

Population isolation and sexual signal divergence 522 

A pattern of geographically clustered phenotypic variation, as we report in Amazon 523 

Slender Anoles, could be generated by genetic isolation between populations due to stochastic 524 

or non-adaptive evolutionary processes. For instance, genetic drift can lead to the fixation of 525 

alternative phenotypes in isolated populations, a process that has been invoked to explain 526 

sexual signal divergence in island species (Gehara et al. 2013). This scenario predicts genetic 527 

discontinuity (i.e., allele frequency differences) between phenotypically distinct populations. 528 

However, our analyses often inferred different phenotypes of A. fuscoauratus as part of the same 529 

genetic cluster, which contradicts the hypothesis of phenotypic divergence between genetically 530 

isolated populations. Alternatively, trait diversity can arise as a result of isolation-by-distance. 531 

In this case, phenotypic divergence is predicted to correlate with geographic separation 532 

(Campbell et al. 2010). However, our field surveys found dewlap turnover among sites that 533 

were assigned to the same genetic cluster and are separated by only tens of kilometers of 534 

rainforest habitat, with no apparent geographic features that would constitute barriers to gene 535 

flow. Moreover, distinct genetic clusters occurring in distant geographic regions often showed 536 

similar phenotypes. Taken together, these findings suggest that genetic or geographic isolation 537 
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is insufficient to explain the sexual signal diversity seen in Amazon Slender Anoles. Discordance 538 

between population genetic divergence and geographic trait variation has been documented in 539 

many studies investigating phenotypes ranging from bird bill morphology and plumage (Mason 540 

and Taylor 2015) to fish body shape (Faulks et al. 2015). Such mismatches between genetic and 541 

phenotypic structure have been attributed to phenotypic plasticity or convergent local 542 

adaptation (reviewed by Zamudio et al. 2016), two processes that might also contribute to 543 

dewlap polytypism in A. fuscoauratus (see below). 544 

 545 

Environmental factors and sexual signal variation 546 

A pattern of phenotypic divergence not accompanied by genetic divergence, as seen in A. 547 

fuscoauratus, can result from environmental factors that vary geographically. For instance, 548 

dewlap color variation might stem from local differences in diet. In birds and fishes, pigments 549 

that bestow yellow, orange, and red coloration depend on dietary sources of carotenoids, in 550 

certain cases leading to geographic population variation (Endler 1980; Hill et al. 2002; Hill 551 

2008). In the case of anoles, these colors can also be produced via endogenously synthesized 552 

pteridins (Macedonia et al. 2000; Steffen and McGraw 2007; Alfonso et al. 2013). Experiments 553 

with A. distichus and Anolis sagrei found no change in dewlap color or pattern under alternative 554 

dietary regimes of carotenoid supplementation (Steffens et al. 2010; Ng et al. 2013b). Moreover, 555 

breeding experiments showed that dewlap coloration is heritable in A. distichus and A. sagrei 556 

(Ng et al. 2013b; Cox et al. 2017). While these studies suggest that dewlap colors are genetically 557 

determined and not plastic in Anolis, no such data are currently available for A. fuscoauratus. 558 

Future experimental studies could elucidate whether dietary pigments contribute to dewlap 559 

diversity in Amazon Slender Anoles, which show higher levels of geographic color variation than 560 

the previously studied species. 561 
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Alternatively, mismatches between genetic and phenotypic structure, as seen in Amazon 562 

Slender Anoles, may stem from adaptive divergence with gene flow (reviewed in Zamudio et al. 563 

2016). In Caribbean anoles, highly reflective (brighter) dewlap colors (e.g., white and yellow) 564 

are more frequent in species that inhabit dense forests, while less reflective (darker) dewlap 565 

colors (e.g., red and blue) appear more common in species from dry scrublands (Fleishman 566 

1992). A similar pattern may hold for populations within species. In Anolis cristatellus and A. 567 

distichus, for instance, dewlap spectral properties co-vary with habitat type at the intraspecific 568 

level, suggesting that signaling traits are locally adapted for increased detectability (Leal and 569 

Fleishman 2004; Ng et al. 2013a). Importantly, local adaptation in sexual signals can disrupt 570 

mate choice and promote reproductive isolation among populations, leading to speciation 571 

through sensory drive (reviewed in Boughman 2002). However, we found no association 572 

between dewlap color and spatial gradients of climate, topography, and vegetation cover in A. 573 

fuscoauratus. This result is inconsistent with the hypothesis that local adaptation to landscape 574 

gradients was a driver of sexual signal diversity in this species. It is worth noting that Amazon 575 

Slender Anoles are restricted to moist forests; the driest habitats where we sampled this species 576 

were forest patches in forest-savanna transitional areas (e.g., in Brazil’s state of Roraima). By 577 

contrast, previously studied anole species with locally adapted dewlaps have ranges that span 578 

mesic forests to open xeric habitats (Leal and Fleishman 2004; Ng et al. 2013a). Therefore, 579 

environmental factors may be a more important driver of dewlap variation in Anolis species that 580 

are more ecologically diverse than is A. fuscoauratus (e.g., Fleishman et al. 2009). Likewise, 581 

iconic cases of locally adapted phenotypes occur along pronounced environmental transitions, 582 

including dorsal coloration matching dark versus light soils in lizards and rodents (Rosemblum 583 

2006; Hoekstra et al. 2006) and armor plate patterning in conspecific freshwater and marine 584 

fish populations (Colosimo et al. 2015). Consequently, if phenotypic and environmental 585 
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variation are coupled across the distribution of A. fuscoauratus, it may be challenging to detect 586 

this relationship if the relevant spatial abiotic gradients are subtle. 587 

 588 

Species co-occurrence and sexual signal divergence 589 

Our results suggest that sexual signal variation in Amazon Slender Anoles may be tied to 590 

spatial turnover in the composition of ecological assemblages. Specifically, we found negative 591 

associations between the distributions of the gray and yellow A. fuscoauratus phenotypes and 592 

Anolis species with similarly bright or dark dewlap colors. These associations may be influenced 593 

by the degree of overall morphological similarity among species. For instance, we found 594 

negative associations between A. fuscoauratus dewlap phenotypes with other Amazonian 595 

Draconura species, which also have brown or gray dorsa and slender bodies, but not with the 596 

more distantly related Amazonian Dactyloa species, which are green and stockier. These 597 

findings suggest that dewlap colors in A. fuscoauratus may adapt to reduce sexual signal 598 

similarity with co-distributed species at a local scale, potentially decreasing the frequency of 599 

cross-species interactions (e.g., Rand and Williams 1970; Webster and Burns 1973; Lambert et 600 

al. 2013). Other studies have invoked reproductive character displacement to explain divergent 601 

signaling traits among closely related lineages in sympatry. This is the case, for instance, with 602 

colorful signals in Australian agamid lizards (Edwards et al. 2016) and vocalizations in birds 603 

and frogs (Wallin 1986; Höbel and Gerhardt 2003; Hoskin et al. 2005; Kirshel et al. 2009). 604 

Moreover, our results are consistent with studies showing that local selective regimes can lead 605 

to phenotypic mosaics when species interactions vary geographically (Thompson 2005; Brodie 606 

Jr et al. 2002). 607 

Our co-occurrence results pose the question of why A. fuscoauratus seems to be the only 608 

Amazonian Anolis whose signaling traits vary as a function of the distributions of closely related 609 
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species whereas the vast majority of other species have uniform dewlap coloration. One 610 

possibility is that dewlap diversity in Amazon Slender Anoles is related to relationships of 611 

behavioral dominance among species. Anolis fuscoauratus is the smallest and most slender of 612 

lowland Amazonian anole species (Avila-Pires 1995; Prates et al. 2017, 2020). By evolving 613 

divergent dewlaps, A. fuscoauratus might reduce agonistic interspecific interactions and thus 614 

avoid aggression from its larger relatives. Integrative behavioral and phenotypic experimental 615 

approaches could be used to test the hypothesis that body size predicts dominance (or 616 

subordination) and dewlap coloration divergence among sympatric Anolis species, in Amazonia 617 

and elsewhere. 618 

In contrast to the gray and yellow dewlaps, we found no evidence of geographic 619 

associations between A. fuscoauratus with pink dewlaps and co-distributed Anolis species. This 620 

pattern may indicate that pink dewlaps have intrinsic spectral properties that result in lower 621 

interference with sympatric anoles (e.g., Fleishman 1992; Fleishman et al. 2009). For instance, 622 

beyond relative brightness, Anolis dewlap colors vary along additional axes that contribute to 623 

signaling, such as chroma (“colorfulness”) (Fleishman et al. 2009). Furthermore, pink dewlaps 624 

might be associated with factors not considered in this investigation, including signal detection 625 

by non-target viewers. For instance, geographic differences in predation intensity have led to 626 

polytypic signaling traits in fishes and frogs (Trillo et al. 2013; Heinen-Kay et al 2015; Johnson 627 

and Candolin 2017), albeit not in brown anoles, A. sagrei (Baeckens et al. 2018). Future studies 628 

of A. fuscoauratus will benefit from characterizing dewlap color spectra, identifying key 629 

predators, and quantifying differences in predation intensity among dewlap color phenotypes 630 

and localities, for instance using clay models (Steffen 2009; Paemelaere et al. 2013). 631 

 632 

Sexual signal divergence and reproductive isolation 633 
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Our genetic analyses suggest that patterns of genetic structure do not match phenotypic 634 

structure among populations of Amazon Slender Anoles, contradicting the expectation that 635 

populations with distinct sexual signals are reproductively isolated. Yet, it is widely accepted 636 

that the dewlap plays a key role in premating reproductive isolation in Anolis lizards (reviewed 637 

by Tokarz 1995; Losos 2009). Supporting this view, behavioral experiments with A. cybotes, A. 638 

marcanoi, and A. grahami found stronger responses of individuals to dewlap displays of their 639 

own species than to those of other species (Losos 1985; Macedonia and Stamps 1994). 640 

Nevertheless, it is unclear whether dewlap divergence can ultimately disrupt gene flow between 641 

lineages. In the case of Amazon Slender Anoles, multiple dewlap phenotypes are present within 642 

each of the six genetic clusters across the species range, suggesting that genetic divergence 643 

within A. fuscoauratus is not associated with differences in dewlap coloration at broad or 644 

narrow spatial scales. It is worth noting that, despite dewlap color variation, populations across 645 

the range of A. fuscoauratus have homogeneous hemipenes, a trait linked to reproductive 646 

isolation in lizards (D’Angiolella et al. 2016). Signal variation among interbreeding populations, 647 

as seen in A. fuscoauratus, has been documented in other Anolis species (Thorpe and Stenson 648 

2003; Stapley et al. 2011; Ng and Glor 2011; Ng et al. 2017) as well as other organisms that rely 649 

on visual signals, such as birds and fishes (Hermansen et al. 2011; Morgans et al. 2014). These 650 

studies support the idea that divergent signaling traits do not necessarily impose strong 651 

barriers to interbreeding and gene flow, even when sexual signals are locally adapted (Muñoz et 652 

al. 2013; Ng et al. 2016). 653 

 654 

Concluding remarks 655 

On the basis of phenotypic, genetic, and ecological data, we found evidence that certain 656 

dewlap colors in a widespread anole lizard species are negatively associated with the local 657 
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occurrence of phenotypically similar closely related species. Our finding of extensive 658 

mismatches between genetic and phenotypic structure in Amazon Slender Anoles at both broad 659 

and narrow spatial scales raises questions about the presumed role of the dewlap in 660 

reproductive isolation in anole lizards (Tokarz 1995; Losos 2009). Correspondingly, our results 661 

also call into question the extent to which dewlap coloration is informative for species 662 

delimitation and taxonomy in Anolis, as previously suggested based on other anole species 663 

complexes (Prates et al. 2015). 664 

This investigation highlights several knowledge gaps to be addressed by future studies. 665 

First, we still know little about how divergent visual signals affect agonistic interactions and 666 

mate choice in Anolis, which will require additional behavioral experimentation (e.g., Losos 667 

1995). Moreover, the genetic basis of dewlap color variation remains unclear. Genomic analyses 668 

of phenotypically diverse species can elucidate the genetic mechanisms behind parallel trait 669 

evolution, including the contribution of standing genetic variation (reviewed in Zamudio et al. 670 

2016) and differential gene flow across genomic regions in the face of selection (reviewed in 671 

Harrison 2012; Harrison and Larson 2014). The geographically variable dewlaps of Amazon 672 

Slender Anoles emerge as a promising system to address these questions. Future investigations 673 

of this compelling system will benefit from quantitative assessments of sexual signal variation, 674 

behavioral experiments, and comparative genomic analyses. 675 

 676 
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 1020 

Figure Legends 1021 

 1022 

Fig. 1. Dewlap phenotypes in Amazon Slender Anoles (Anolis fuscoauratus) and examples of 1023 

limited intra-site dewlap coloration variation. (A) The three dewlap phenotypes recorded in our 1024 

field inventories: yellow, pink, and gray. (B) Intra-site variation in Rio Branco, Acre, Brazil. (C) 1025 

Intra-site variation in Senador Guiomard, Acre, Brazil. These two sites are separated by around 1026 

25 km of continuous Amazonian rainforest. 1027 

 1028 

Fig. 2. Spatial patterns of genetic and phenotypic structure in Amazon Slender Anoles. (A) 1029 

Geographic dewlap color variation based on field inventories performed over the last two 1030 

decades in South American rainforests. (B) Distribution of the six genetic clusters inferred from 1031 
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genetic cluster analysis (each cluster shown in a different color); pies indicate the average 1032 

proportions of alleles (i.e., ancestry proportions) from each cluster at a given site (based on all 1033 

individuals sampled at that site). Light green background on the maps depicts rainforest 1034 

distribution. (C) Ancestry proportions from genetic cluster analyses; each bar represents an 1035 

individual. When known, dewlap color is indicated with colored circles below each individual 1036 

bar. (D) Phylogenetic relationships among samples inferred under a Maximum Likelihood 1037 

framework based on the SNP data. For clarity, nodal support is shown only for the relationships 1038 

between major groups inferred by genetic cluster analyses (a complete phylogeny, including 1039 

outgroups, with support for all nodes is provided in Text S2). Asterisks indicate bootstrap 1040 

support > 95. 1041 

 1042 
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Fig. 3. Environmental space occupancy and overlap between dewlap phenotypes in Amazon 1043 

Slender Anoles. (A) Violin plots showing, for each phenotype, the probability densities of the 1044 

first three axes from an environmental PCA. PC1 describes a lowland to highland axis; PC2 1045 

describes a dry to wet axis; and PC3 describes an evergreen forest to deciduous forest and 1046 

savanna axis. (B) Overlap in environmental space occupancy among dewlap phenotypes based 1047 

on biplots of PC1, PC2, and PC3. 1048 

 1049 

Fig. 4. Results of co-occurrence tests between Anolis fuscoauratus dewlap phenotypes and 1050 

sympatric Anolis species. Each square represents a pairwise comparison between each of the 1051 

three A. fuscoauratus phenotypes (gray, pink, yellow) and: (A) each of five co-distributed and 1052 

common Anolis species (detected in at least eight out of 32 sites); (B) 11 Anolis species that 1053 

occur sympatrically with A. fuscoauratus grouped into dewlaps with relatively brighter (yellow, 1054 

orange, white) or darker (blue, red, pinkish-brown) colors; and (C) the same 11 species grouped 1055 

based on both relative dewlap color reflectivity and major Anolis clade (Draconura: brown or 1056 

gray small, slender anoles, more similar and more closely related to A. fuscoauratus; Dactyloa: 1057 



 

 

 

This article is protected by copyright. All rights reserved. 

49 

 

greenish larger, stockier anoles, less similar and more distantly related to A. fuscoauratus). The 1058 

dewlaps of the five anole species most frequently found in sympatry with A. fuscoauratus are 1059 

also illustrated: (D) Anolis ortonii, (E) Anolis tandai, and (F) Anolis trachyderma (all three in the 1060 

Draconura clade); and (G) Anolis punctatus and (H) Anolis transversalis (both in the Dactyloa 1061 

clade). 1062 

 1063 

 1064 

 1065 

 1066 

 1067 

 1068 
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Figure S1. Violin plots depicting the ranges of all 17 environmental variables. 1073 
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Table S1. Locality information for Anolis fuscoauratus and sympatric Anolis species used in the 1075 

co-occurrence analyses. 1076 
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 1081 
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Text S2. Phylogenetic tree including node support values and outgroup taxa. 1086 


