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32 Abstract

33 Trait-based approaches have been extensively used in community ecology to provide a 

34 mechanistic understanding of the drivers of community assembly. However, a foundational 

35 assumption of the trait framework – traits relate to performance – has been mainly examined 

36 through univariate relationships that simplify the complex phenotypic integration of organisms. 

37 We evaluate a conceptual framework in which traits are organized hierarchically combining trait 

38 information at the individual- and species-level from biomass allocation and organ-level traits. 

39 We focus on photosynthetic traits and predict that the positive effects of increasing plant leaf 

40 mass on growth depend on species-level leaf traits. We modeled growth data on more than 1,500 

41 seedlings from 97 seedling species from a tropical forest in China. We found that seedling 

42 growth increases with allocation to leaves (high leaf area ratio and leaf mass fraction) and this 

43 effect is accentuated for species with high specific leaf area and leaf area. Also, we found that 

44 light has a significant effect on growth, and this effect is additive with leaf allocation traits. Our 

45 work offers an approach to gain further understanding of the effects of traits on the whole plant 

46 level growth via a hierarchical framework including organ-level and biomass allocation traits at 

47 species- and individual-levels.

48

49 Keywords: Biomass allocation traits, canopy openness, China, leaf area, leaf thickness, 

50 seedlings, specific leaf area, relative growth rates.

51

52 Introduction

53 Tropical forests harbor the majority of Earth’s tree diversity, yet ecologists still have a limited 

54 understanding of forest dynamics and factors determining community structure in these regions. 

55 A promising approach for predicting changes in community structure and dynamics is the use of 

56 functional traits –morphological and physiological features that have an impact on organisms' 

57 performance (growth, survival, reproduction) (Arnold 1983, McGill et al. 2006, Violle et al. 

58 2007). However, previous analytical approaches examining the trait-performance relationship 

59 have been largely focused on examining univariate relationships in which tree performance is 

60 predicted from individual traits (Poorter et al. 2008, Wright et al. 2010, Paine et al. 2015), but 
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61 traits typically work in combination with other traits to achieve particular functions (Olson and 

62 Miller 1958). Thus, the univariate approach is an inaccurate representation of organismal 

63 function (Berg 1960, Arnold 1983, Armbruster et al. 2014, Laughlin and Messier 2015). It is 

64 therefore important to develop models that integrate the effect of different traits to drive 

65 performance (Laughlin and Messier 2015, Yang et al. 2018).

66 Among all plant traits, leaf traits are the best studied (Reich et al. 1999, Bonser 2006, 

67 Poorter 2009); however, surprisingly, their ability to predict plant demographic rates has been, 

68 generally modest (Sterck et al. 2006, Poorter et al. 2008, Adler et al. 2014, Paine et al. 2015). 

69 Leaf traits are mostly responsible for carrying out photosynthesis that results in carbon gain for 

70 the plant and, therefore, should contribute to increasing plant size (i.e. plant growth). While this 

71 prediction has been corroborated by previous studies showing that leaf traits such as specific leaf 

72 area relate positively to maximum photosynthetic rates (Reich et al. 1999, Wright et al. 2004) 

73 and tree growth (Sterck et al. 2006), the effects of these organ-level leaf traits on carbon gain and 

74 plant demography have been rarely integrated at the whole organism level (Sterck et al. 2011). 

75 The total carbon gain of a given tree does not only depend on the photosynthetic capacity of 

76 individual leaves, but also on the total biomass/area allocated to photosynthetic tissues (foliage) 

77 (Poorter and Remkes 1990, Garnier 1991, Niklas and Enquist 2001, Niinemets et al. 2002). For 

78 instance, species with high specific leaf area (SLA, leaf area divided by dry mass) that allocate 

79 high biomass to photosynthetic tissues should obtain higher total carbon than a species with the 

80 same SLA, but that allocate less biomass to photosynthetic tissues. The combined effect of traits 

81 (biomass allocation and organ-level leaf traits) could lead to important variations in total carbon 

82 gain and tree demography that should be considered when studying trait-performance 

83 relationships (Yang et al. 2018).

84 The integrated effects of different traits on tree performance have been often represented 

85 through a hierarchical framework in which traits at low levels of organization have effects on 

86 traits at higher levels of organization that in turn have effects on performance (Arnold 1983, 

87 Marks and Lechowicz 2006, Marks 2007). This framework could be applied to build a 

88 hierarchical arrangement of trait interactions in which the effect of traits at lower organizational 

89 levels (i.e. organ-level traits, such as SLA) is scaled up at the whole organism level via another 

90 set of traits (i.e. biomass allocation traits) and, ultimately, to performance. In other words, theory 

91 on carbon economy states that relative growth rate depends on the biomass allocated to tissues 
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92 for capturing carbon (Evans 1972, Poorter 1989a, Garnier 1991). As biomass allocation traits 

93 tend to be quite plastic in response to environmental variation and show a high variation within 

94 species (Umaña et al. 2018), the growth-allocation trait relationships should be defined at the 

95 individual level. These growth-allocation trait relationships may, in turn, vary by species 

96 depending on whether species have conservative or acquisitive traits for resource acquisition 

97 (Lambers and Poorter 1992, Poorter and van der Werf 1998). This species-level variation along 

98 the acquisitive-conservative spectrum for carbon processing is defined by organ-level leaf 

99 economics traits (Reich et al. 1999, Wright et al. 2004) that tend to be more variable across 

100 species than within species (Messier et al. 2010, 2017b, Umaña et al. 2018). This multilevel 

101 organization depicting the trait effects on performance not only represents a more realistic 

102 approach to understand the trait relationships in which a distinction in different organization 

103 levels (species and individuals) and trait types is explicitly considered, but also could explain the 

104 existence of the diverse range of phenotypes found in tropical regions and that seem to represent 

105 alternative ecological strategies (i.e., combinations of different traits such as biomass allocation 

106 and organ-level traits, that lead to equivalent performance) (Laughlin et al. 2018, Umaña et al. 

107 2020a, Worthy et al. 2020).

108 An additional factor that needs to be considered when modeling growth as a function of 

109 traits is the role of the environmental conditions (Grime 1979, Violle et al. 2007). Micro-

110 environmental variation in abiotic factors has shown to have significant effects on plant 

111 demography (Blonder et al. 2018). In particular, for aboveground strategies, light availability is 

112 one of the most important resources determining plant strategies and functional diversity (Poorter 

113 and van der Werf 1998, Poorter and Rozendaal 2008, Umaña et al. 2020a). Further, for tropical 

114 forests, light in the understory is highly limiting and key for determining the successful 

115 recruitment and establishment of seedlings (Chazdon and Fetcher 1984, Denslow 1987, Umaña 

116 et al. 2020b). Therefore, predictions of plant demography should consider light heterogeneity in 

117 the understory when modeling plant growth rates as a function of functional traits. 

118 Here, we study trait-growth relationships in a plant-level integrated framework, using a 

119 combination of organ-level and biomass allocation traits. Our model also accounts for potential 

120 effects of light heterogeneity in the understory on plant performance. To do this, we use growth 

121 data on over 1,500 seedlings from tree seedling species distributed across > 200 1m2 plots in a 

122 tropical forest in China. All seedlings in these plots were monitored for growth for one year and 
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123 collected for trait measurements at the end of the study. We paired these measurements with 

124 information on canopy openness (a proxy for light availability in the understory) that was 

125 assessed for all plots. 

126 We hypothesize that biomass allocation to leaves will result in increased growth rates, but 

127 this effect will be magnified when species have acquisitive traits –high specific leaf area, high 

128 leaf area, or low leaf thickness (Poorter and Nagel 2000). Biomass allocation traits, unlike organ-

129 level traits, exhibit higher variability across individuals of the same species than across species 

130 that is attributed to the ability of species to adjust their ecological strategies to maximize 

131 resource acquisition (Poorter et al., 2012; Umaña, Zhang, Cao, Lin, & Swenson, 2018). Organ-

132 level traits, on the other hand, exhibit higher variation across, than within species (Umaña et al., 

133 2018).  The heterogeneity in the degrees of trait variation between trait types is likely the result 

134 of different ecological and evolutionary constraints operating on these two types of traits 

135 (Armbruster 1991, Armbruster and Schwaegerle 1996). We propose a multi-level approach to 

136 account for this differential variation in traits by implementing a hierarchical framework. We 

137 modify a recent approach that modeled adult tree growth as a function of individual-level tree 

138 crown and leaf area index (LAI) data (LAI is a measure of the total area of leaves per unit of 

139 ground area) and species-level leaf mass per area (LMA) (Yang et al., 2020). Here, we 

140 implement community-level analyses for seedlings that include individual-level biomass 

141 allocation and species-level organ-level traits. We also compare the performance of our 

142 hierarchical models with models that evaluate the interaction between species-level organ-level 

143 traits and biomass allocation (Poorter 1989b, Garnier 1991). These (interaction) models, do not 

144 consider the differential degree of variation between both types of traits and assume that biomass 

145 allocation traits are species-specific fixed values. 

146

147 Material and methods

148 Study Site

149 The study was conducted in a seasonal tropical rainforest in Xishuangbanna, Yunnan province in 

150 China (101 340 E, 21 360 N), where we established 218 1m2 seedling plots. The site is 

151 characterized by a monsoonal climate, with distinct seasons, the dry season (November to April), 

152 and the wet season (May to October). The annual average temperature is 21oC and the annual 

153 mean rainfall is 1493 mm which mainly occurs in the wet season (a total of 1256 mm, 84% of 
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154 the annual average rainfall) (Cao et al. 2008). Seedling plots were spaced every 10 m covering an 

155 approximate area of 2-ha. In each plot, we identified and tagged all free-standing woody 

156 seedlings with a maximum height lower than 50 cm and we monitored all individuals for growth 

157 and survival during 1 year between April 2013 and April 2014 (Umaña, Zhang, Cao, Lin, & 

158 Swenson, 2015).

159

160 Relative growth rates and trait measurements

161 We calculated the relative growth rate of each individual by computing the change in log-

162 transformed height over one year. For functional traits, we collected trait data from all 

163 individuals that were monitored in the seedling plots. All seedlings were harvested at the end of 

164 the study period by excavating the soil surrounding the seedlings with a shovel. Next, we put 

165 them in plastic bags with water and transported them to the lab. Once in the lab, the seedlings 

166 were carefully cleaned, dissected, and measured for traits (additional details can be found in 

167 (Umaña et al. 2015)). The traits included biomass allocation traits (leaf area ratio, and leaf mass 

168 fraction,) and organ-level leaf functional traits (specific leaf area, leaf area, and leaf thickness). 

169 Leaf area ratio (LAR, cm2 g-1) represents the amount of leaf area per unit of plant mass (Poorter 

170 et al. 2012). Leaf mass fraction (LMF, g g-1) represents the biomass organ fraction. Specific leaf 

171 area (SLA, cm g-1) is a leaf economics trait that describes carbon acquisition and processing 

172 strategies in which species with high SLA are more acquisitive than species with low SLA 

173 (Wright et al. 2004, Díaz et al. 2016). Leaf area (LA cm2) reflects the photosynthetic area 

174 displayed to capture light (Poorter and Rozendaal 2008) and leaf thickness is a mechanical trait 

175 (Th, mm) (Onoda et al. 2011). For all organ-level traits, we calculated the species average trait 

176 values and this value was used in posterior analyses. We also checked for trait correlations for 

177 biomass allocation and organ-level traits (Appendix S1: Tables S1 and S2).

178

179 Light availability in the understory

180 To measure light conditions in the understory we took hemispherical photographs at the center of 

181 each seedling plot. The photos were taken at 1 m above the ground using a Nikon FC-E8 lens 

182 attached to a Nikon Coolpix 4500 camera (Japan, Nikon). All photographs were taken with 

183 uniform light conditions before sunrise between March and April 2014 and posteriorly analyzed 

184 using Gap Light Analyzer software (Frazer et al. 2000) (http://www.caryinstitute.org/science-
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185 program/our-scientists/dr-charles-d-canham/gap-light-analyzer-gla). The analysis consisted of 

186 classifying all pixels in the photograph into two categories: sky and vegetation. After the 

187 classification, the program calculated the percentage of light in each photograph.

188

189 Analyses

190 To evaluate the relationship between traits and performance we constructed a hierarchical 

191 Bayesian model. At the first level, we modeled the expected individual-level relative growth rate 

192 of tree i of species j in a plot p as a power function of individual-level biomass allocation traits 

193 (BAT) (i.e., LAR or LMF) and canopy openness (Light) (equation 1). We also included seedling 

194 maximum height (MH) (measured per seedling) in the first level since size can affect seedling 

195 demography (Comita and Hubbell 2009). At the second level, we specified species-specific 

196 intercepts (  and slopes (  as linear functions of species-level organ-level leaf traits (OLT, �0) �1)

197 which are SLA, LA, or leaf thickness) (equation 2). Our multispecies approach allows us to 

198 account for between-species variation in growth that is explained by organ-level leaf traits, as 

199 well as other unexplained factors shared by individuals of the same species (via the random 

200 effects). In total, we fitted 6 models that considered all possible combinations of individual-level 

201 biomass allocation and species-level leaf traits.

202 (1)���(����,�,�) = �0,� + �1,� × BAT�,� + �2 × Light� +  �3 × MH�,�,� +  �� +  ��,�
203  (n = 0, 1 in Eq. 1) (2)��,� =  �0 +  �1 ×  ���� +  ��,� 
204 The intercept, , represents the log-transformed seedling relative growth rate of species �0,�
205 j for the community average values of BAT, Light, and MH. The slope of BAT ( represents �1,�) 

206 the effects of biomass allocation traits on seedling growth (RGR). The slope between OLT �1 

207 and species-specific slope of  BAT (  represents the relationship between species-specific �1,�)
208 OLT and the slope of the RGR–BAT relationship. The slope between OLT and species-�1 

209 specific intercept (  represents the species-specific OLT effect on RGR at community �0,�)
210 average BAT, Light, and MH.   represents plot random effects,  represents species random �� ��,�
211 effects and  represents individual residuals; random effects and residuals are normally ��,� 
212 distributed.

213 We compared the performance of our hierarchical models with models that included an 

214 interaction effect between species-level BAT and OLT (hereafter referred as to species-level 
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215 interaction models) using Leave-One-Out Information Criterion (LOOIC) (function 

216 "loo_compare" from package "loo" in R (Vehtari et al. 2017a)). LOO uses log-likelihoods from 

217 posterior simulations of the parameter values to estimate point-wise out-of-sample prediction 

218 accuracy and determine the relative predictive performance of the model to the data. The lower 

219 LOOIC the higher the predictive accuracy (Vehtari et al. 2017b). 

220 We also considered another set of models that included an interacting term between 

221 biomass allocation trait (BAT) and light in the first level, instead of considering these terms as 

222 separate factors. However, these models performed worse (higher LOOIC values) than the first 

223 set of models and were no longer considered for discussion (Appendix S1: Table S3).

224 Before the analyses, we log-transformed SLA, LA, and Th in order to reduce skewness 

225 and centered all the traits, MH, and Light (mean = 0 and standard deviation = 1) for easy 

226 interpretation and comparison. All analyses were performed using Stan via the R package "rstan" 

227 (R Development Core Team 2017, Stan Team 2020). Each model was fitted using uninformative 

228 priors (all details can be found in Data S1), 4 chains with 3,000 iterations, and a warmup of 

229 1,500 iterations. To assess parameter convergence, we used the Gelman and Rubin's convergence 

230 diagnostics (cut-off= 1.01). The code used to run the model and diagnostics are included as 

231 supplementary information (Data S1 and Appendix S2).

232

233 Results 

234 Overview

235 In total, we analyzed growth rates of 1,574 seedlings from 97 species. The mean seedling relative 

236 growth rate was around 0.19 cmcm-1year-1 but there was a high variation across species 

237 (Appendix S1: Figure S1). Our dataset consists of many species that were rare with less than 15 

238 individuals per species and few common species (Appendix S1: Table S4 includes the 

239 abundances for the species used in the analyses). Also, the percentage of canopy openness in our 

240 study site ranged between 0.66 to 10.10 (coefficient of variation = 0.49, Appendix S1: Figure 

241 S2), and this variable had a significant effect on seedling growth across all models (Table 1). 

242

243 Comparing hierarchical and species-level interaction models

244 We compared two sets of models, the hierarchical models –which used a combination of 

245 individual-level and species-level trait information– and the interaction models –that used 
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246 species-level trait information. Consistently, the hierarchical models outperformed the 

247 interaction models (Table 2). Below, we only describe the results of the hierarchical models.

248

249 Effects of biomass allocation on seedling growth

250 We found that increases in leaf mass per area (LMF) and leaf area ratio (LAR) result in higher 

251 seedling growth (��1) (Figure 1, Appendix S1: Table S5). 

252

253 Effects of species-level leaf traits on seedling growth at mean biomass allocation trait

254 For models using leaf area (LA), we found non-significant effects on growth when LAR and 

255 LMF were at their mean community values (Figure 2, Appendix S1: Table S5). For models using 

256 specific leaf area (SLA), instead, we found that species with low SLA grew slower than species 

257 with high SLA when LAR and LMF were at their mean community values (intercept) (Figure 2, 

258 Appendix S1: Table S5). For models using leaf thickness, we found non-significant effects on 

259 growth when LAR and LMF were at their mean community values (95% credible intervals 

260 overlapped zero).

261

262 Effects of species-level leaf traits on biomass allocation trait-growth effect

263 We found that the positive effect of LAR on seedling growth was significant and positively 

264 related to species-level LA, with large-leaved species exhibiting the highest growth rates (Figure 

265 3, Appendix S1: Table S5). Similarly, we found that the positive effect of LMF on seedling 

266 growth was positively related to species LA and SLA with species having acquisitive traits (i.e., 

267 high LA and SLA) exhibiting the highest growth, but was only significant for SLA (Figure 3, 

268 Appendix S1: Table S5). Species-level leaf thickness was not related to biomass allocation trait 

269 effect on seedling growth for any of the biomass allocation traits used (LAR, and LMF) (Figure 

270 3, Appendix S1: Table S5).

271

272 Discussion

273 In this study, we implement an approach that moves beyond the univariate trait classical 

274 analytical methods to contribute to an integrated understanding of the effect of leaf traits on 

275 performance using a hierarchical framework for plant communities. We show that seedling 

276 growth results from the integrated effect of individual-level and species-level leaf traits in which 
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277 increased biomass allocation to leaves and high values of SLA and LA result in high plant 

278 growth. Our findings represent a multi-level perspective on trait integration and highlight the 

279 importance of combining biomass allocation and organ-level trait information at the individual 

280 and species-level to gain further insights about the whole plant level strategies in species-rich 

281 tropical forests. 

282

283 Increased allocation to leaves leads to high seedling growth

284 As predicted, we found that allocation to leaves results in high relative growth rates for tropical 

285 seedlings suggesting that the more the plants invest in photosynthetic tissues, the more the 

286 carbon gain that contributes to seedling growth. These results agree with previous findings that 

287 indicate that fast-growing plants are those that allocate more biomass to leaf tissues (Garnier 

288 1991, Lambers and Poorter 1992). In particular, our results show that the strength of the LAR 

289 effect in growth was larger than the models with LMF and suggest that LAR is a predominant 

290 factor explaining variation in RGR. These results are concordant with the conclusions presented 

291 by Poorter (1989a) who suggested that the amount of area allocated to leaves for a given dry 

292 mass is more relevant for determining plant growth than the allocation to dry weight into leaves 

293 (LMF). 

294 Further, we found a positive and significant effect of light availability on seedling growth 

295 that agrees with previous findings on other tropical forests and highlights the importance of this 

296 resource for seedling performance (Augspurger 1984, Popma and Bongers 1988). Yet, the effect 

297 of light interacting with allocation traits did not improve the model fit, which suggests that 

298 variation in growth is better predicted by a consistent effect of leaf allocation traits that does not 

299 depend on the light conditions. Although previous studies have reported similar results in which 

300 light effects are independent of trait effects, other studies have reported an interactive effect of 

301 both factors (reviewed by Poorter & Nagel 2000). Combined, our results indicate that in our 

302 study site, light is one of the main resources limiting seedling growth, and those organisms that 

303 allocate more biomass to leaf tissues have a demographic advantage.

304  

305 Species-level leaf traits relate to seedling growth 

306 We observed that species-level leaf area and leaf thickness were not directly related to seedlings 

307 RGR (at mean community LAR and LMF), whereas species with high SLA (more acquisitive 
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308 carbon processing strategies) grew faster than seedlings with low SLA. While the SLA result 

309 agrees with our predictions, the LA and thickness results do not, as we predicted that species 

310 displaying larger areas for light acquisition and lower leaf thickness should attain high seedling 

311 growth. One potential explanation for this is that LA and thickness are structural traits involved 

312 in several functions that may lead to conflicting responses to enhance growth. For example, 

313 having large leaves is beneficial for capturing light but may bring costs for mechanical support 

314 that impair performance (Niklas 1992, 1999), self-shading (Sterck and Bongers 2001), or costs in 

315 transpiration (McDonald et al. 2003). For leaf thickness, although leaves with thick mesophyll 

316 layers may display low photosynthetic capacity, these leaves might be more resistant to drought 

317 and herbivore damage that ultimately is advantageous for growth (Onoda et al. 2011). We 

318 suggest that different trade-offs involved in the variation of these traits may obscure their direct 

319 effect on RGR. However, as discussed below, the effects of LA were better captured via the 

320 integrated effect on biomass allocation traits. On the other hand, results for SLA were consistent 

321 with our predictions. SLA is more strongly linked to physiological functions as maximum 

322 photosynthetic rate and carbon processing strategies than LA and Lth (Wright et al. 2004) and, as 

323 such, it is expected that SLA will show stronger effects on carbon gain that is ultimately 

324 translated into seedling growth than of compared to LA or leaf thickness. 

325

326 Species-level leaf traits mediate the effect of leaf allocation on growth

327 Consistent with our predictions we found that the positive effects of LAR and LMF on growth 

328 were magnified for species with more acquisitive traits, high LA, and SLA (Figure 3). Our 

329 results agree with previous studies showing that higher values of SLA and LA may lead to higher 

330 plant growth (Sterck et al. 2006, Poorter et al. 2008). Yet, our analyses go one step further by 

331 indicating that the positive effects of acquisitive species-level leaf traits on plant demography 

332 depend and can be modified by individual-level leaf allocation traits. Our approach allows to 

333 model the integrated effect of different traits via a hierarchical arrangement to predict variation 

334 in plant growth across distinct organizational levels (within and across species). This approach 

335 has important implications in terms of defining functional trade-offs for species, given that if we 

336 only focus on examining one trait –SLA– for classifying species as acquisitive and conservative 

337 for resource uptake we will be ignoring important information regarding how these strategies are 

338 modified by foliage allocation. The combined effect of SLA and leaf allocation traits could result 
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339 in alternative phenotypes with equivalent carbon gains and therefore equivalent performance 

340 (Hirose and Werger 1995, Marks 2007, Worthy et al. 2020).

341 Although trait integration has long been studied in ecological and evolutionary studies 

342 (Olson and Miller 1958, Berg 1960, Cheverud and Cheverud 1982, Schlichting 1989), there are 

343 still a limited number of studies that examine the integrated effects of traits on performance for 

344 communities with high species diversity species (but see, Yang et al., 2020, Freschet et al., 2015; 

345 Messier et al., 2017). Some key results from previous studies show that trait effects on plant 

346 performance can be contingent to the effects of other traits (Wildová et al. 2007, Blonder et al. 

347 2018, Pistón et al. 2019, Worthy et al. 2020) and suggest that variations in plant performance are 

348 highly sensitive to the interactive effect of functional traits. Our results suggest that we can gain 

349 additional insights about the role of traits predicting variation in growth not only by accounting 

350 for trait interactions but by considering the different patterns of trait variation (individual- and 

351 species-level) across trait types (Armbruster 1991) using hierarchical approaches (Marks 2007) 

352 (Table 2). The individual-level traits would represent the adjustability to local conditions 

353 showing high intraspecific variation (biomass allocation) (Umaña et al. 2020b), while the 

354 species-level traits are likely subject to different types of constraints that makes them less 

355 variable within species than across species (i.e. SLA) (Umaña et al., 2018). We suggest, 

356 therefore, that traits should be modeled by recognizing differences in constraints across trait 

357 types such that biomass allocation traits display high within species variation, have a more direct 

358 effect on performance, and interact with organ-level traits.

359 Among all species-level leaf traits studied here, leaf thickness showed the weakest effects 

360 on growth. We expected that higher leaf thickness would result in lower seedling growth given 

361 that high leaf thickness implies higher construction cost (high carbon investments) (Chabot et al. 

362 1979, Poorter et al. 2006). However, none of the relationships examined in this study were 

363 significant or close to being significant for any of the models tested. We infer from this that leaf 

364 thickness might not strongly and directly affect carbon processing strategies and this would 

365 explain the weak relationships we found. Instead, leaf thickness, as a mechanical trait, might 

366 relate to structural resistance but less directly to photosynthetic functions that can translate into 

367 carbon gain (Onoda et al. 2011). 

368

369 Conclusion 
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370 The integration of functional traits to understand variations in plant demography is central for 

371 building a robust predictive functional framework. Here, we propose a hierarchical framework 

372 that combines two trait types measured at two organization levels – individual-level biomass 

373 allocation and species-level leaf traits– to predict seedling growth. Our results indicate that the 

374 effects of species-level leaf traits on demography depend on the individual variation in biomass 

375 allocation traits. This study represents an effort for describing the complex relationships between 

376 traits that underly organisms' function. We suggest that recognizing and explicitly accounting for 

377 the differences in trait variation across organization levels and trait types reveals functional 

378 interactions that improve our understanding of the link between plant functionality and variation 

379 in performance for species-rich communities.

380
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603 TABLES

604 Table 1. Posterior mean of light and seedling height effects on seedling growth, 95% credible 

605 interval, and Gelman-Rubin diagnostic value (Rhat). Light effect on seedling growth rates for all 

606 six models. LAR – leaf area ratio, LMF – leaf mass fraction, LA – leaf area, SLA – specific leaf 

607 area, Thickness –leaf thickness. 

Model Parameter Mean 2.50% 97.50% Rhat

LAR & LA Height -0.35 -0.43 -0.26 1.00

Light 0.20 0.12 0.29 1.00

LAR & SLA Height -0.36 -0.45 -0.28 1.00

Light 0.21 0.12 0.29 1.00

LAR & Thickness Height -0.36 -0.44 -0.27 1.00

Light 0.21 0.12 0.29 1.00

LMF & LA Height -0.40 -0.49 -0.31 1.00

Light 0.19 0.11 0.27 1.00
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LMF & SLA Height -0.40 -0.48 -0.32 1.00

Light 0.20 0.11 0.28 1.00

LMF & Thickness Height -0.41 -0.49 -0.32 1.00

Light 0.19 0.11 0.27 1.00

608

609

610 Table 2. Pairwise comparisons between hierarchical models and species-level interaction 

611 models. Trait codes are the same as in Table 1. looic (-2 * eldp)  is the leave-one-out cross-

612 validation information criterion, eldp_diff is the difference in eldp for a pair hierarchical and 

613 interaction models, se_diff is the standard error of component-wide differences of eldp between a 

614 pair of models. If elpd difference (elpd_diff) is small than 4, the difference between models is not 

615 significant. If the elpd_diff is larger than 4, then we compare the difference in standard error 

616 (se_diff). In all cases, elpd_diff for the interaction model was > 2 times higher compared to 

617 se_diff.

Traits Model type looic elpd_diff se_diff

LAR-LA Hierarchical 6397.2 0 0

Interaction 6419.1 -11.1 4.9

LAR-SLA Hierarchical 6395.0 0 0

Interaction 6419.7 -13.2 4.7

LAR-Thickness Hierarchical 6395.8 0 0

Interaction 6420.2 -12.6 4.7

LMF-LA Hierarchical 6396.0 0 0

Interaction 6420.4 -11.7 4.9

LMF-SLA Hierarchical 6392.9 0 0

Interaction 6421.6 -14.2 4.7

LMF-Thickness Hierarchical 6397.9 0 0

Interaction 6420.3 -12.6 4.7

618  

619 FIGURE LEGENDS
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621 Figure 1. Histograms of species-level posterior means of biomass allocation trait effects (�1) on 

622 seedling relative growth rate (RGR, cmcm-1year-1) for seedling communities in a tropical forest 

623 in China. The title in each plot corresponds to the biomass allocation trait used in the first level 

624 of the model and to the species-level organ-level trait used in the second level. Trait codes are 

625 the same as in Table 1.

626

627 Figure 2. Species-level leaf trait effects on seedling relative growth rate (RGR, cmcm-1year-1) 

628 at community-mean biomass allocation trait (intercept, �0). BAT refers to biomass allocation 

629 trait –LAR, or LMF. Black circles and gray lines indicate the means and the 95% credible 

630 intervals of the species-specific coefficients respectively. Black lines represent fitted significant 

631 relationships (95% credible intervals did not cross zero, see Appendix S1: Table S5). Trait codes 

632 are the same as in Table 1.

633

634 Figure 3. Species-level leaf trait effects on the relationship between biomass allocation trait 

635 (LAR or LMF) and relative growth rate (RGR, cmcm-1year-1). Black circles and gray lines 

636 indicate the means and the 95% credible intervals of the species-specific coefficients 

637 respectively. The solid black line represents fitted significant relationships (95% credible 

638 intervals crossed zero, see Appendix S1: Table S5). Dashed line represents fitted significant 

639 relationships (90% credible intervals did not cross zero). Trait codes are the same as in Table 1. 
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