anuscr **Nuth**

This is the author manuscript accepted for publication and has undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the <u>Version of Record</u>. Please cite this article as <u>doi:</u> <u>10.1111/ZSC.12477</u>

1	Corresponding Author: Richard Harrington, 21 Sachem Street, Room 356 Environmental
2	Science Center, Yale University, New Haven, CT, USA, 06511. Phone: 203-432-7168.
3	Email: richard.harrington @ yale.edu
4	
5	Title: Phylogenomic resolution of the monotypic and enigmatic Amarsipus, the Bagless
6	Glassfish (Teleostei, Amarsipidae)
7	()
8	Authors: RICHARD C. HARRINGTON, MATT FRIEDMAN, MASAKI MIYA,
9	THOMAS J. NEAR, MATTHEW <u>A.</u> CAMPBELL.
10	
11	Running Title: Phylogenomic resolution of Amarsipidae.
12	Harrington et al.
13	
14	m
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	

31	Abstract:	
32	Amarsipus carlsbergi is a rare mesopelagic fish distributed in the Indian and Pacific	
33	Oceans, and is the only species classified in the family Amarsipidae. Since its description in	
34	1969, phylogenetic hypotheses have varied regarding its relationship with other	
35	percomorph lineages, but most have indicated a close relationship with the traditional	Deleted: hypotheses
36	suborder Stromateoidei. Molecular phylogenies place families previously classified in	Deleted: However, molecular
37	Stromateoidei within a diverse clade- Pelagiaria- that includes fishes such as tunas,	
38	cutlassfishes, and pomfrets. A recent analysis of a small number of loci resolved a clade	Deleted: phylogenetic analyses do not support monophyly of
39	containing Amarsipus and the stromateoid lineage Tetragonurus. A subsequent high-	families previously classified in Stromateoidei as being most
40	throughput sequence phylogeny based on ultraconserved elements (UCEs) of Pelagiaria	inclusive clade Pelagiaria that include fishes such as tunas, utlage fishes and nomfarts
41	lacked Amarsipus, but revealed both strong support for stromateoid paraphyly and high	Deleted: nuclear
42	levels of gene tree incongruence. We gathered UCE sequence data for 610 UCE loci from	
43	Amarsipus and integrate these with samples from all remaining pelagiarian families. This	
44	provides a taxonomically comprehensive phylogenomic framework to test the evolutionary	Deleted: in order to provide a
45	relationships of Amarsipus, and evaluate the support for stromateoid monophyly. As in	
46	previous studies, our analyses find high levels of gene tree topological discordance with	Deleted: O
47	regard to some deeper pelagiarian inter-relationships. However, we resolve Amarsipus as	
48	the sister lineage of a clade containing Tetragonurus and a family not considered a	
49	stromateoid lineage, Chiasmodontidae. This relationship is supported by both high gene	
50	tree concordance and node support. Our analyses also provide strong support for the	Deleted: , as well as
51	paraphyly of Stromateoidei, casting uncertainty on previous hypotheses of the evolution of	
52	morphological traits across members of Pelagiaria.	Deleted: .
53		
54		
55		
56		
57		
58		
59		
60		

74 Introduction 75 76 Acanthomorph (spiny rayed) fishes represent an exceptionally diverse clade that comprise more than 19,000 species and 320 families (Fricke, Eschmeyer, & van der Laan, 77 2020), and pose many challenges for ichthyologists interested in their phylogenetic 78 relationships. While acanthomorph phylogenetic uncertainty spans both ancient and more 79 80 recent divergences, some of the most pernicious challenges involve the resolution of deep interrelationships where identification of shared derived morphological features among 81 82 lineages with long, independent evolutionary histories can be difficult (Johnson, 1993; 83 Nelson, et al., 2016; Girard et al., 2020). The application of molecular phylogenetics has 84 advanced many aspects of our understanding of acanthomorph relationships (e.g., Near et 85 al., 2013; Betancur-R et al., 2013; Thacker et al., 2015; Alfaro et al., 2018; Hughes et al., 86 2018), but it has also highlighted challenging areas where evolutionary phenomena such as 87 incomplete lineage sorting (ILS) or limited phylogenetic informativeness pose barriers to phylogenetic analysis with relatively small numbers of loci (Harrington et al., 2016). This 88 challenge is conspicuous for Pelagiaria, an acanthomorph subclade of mostly pelagic, open-89 ocean fishes that includes some of the most extensively studied species from a 90 91 morphological standpoint (e.g., Scombridae, the tunas and mackerels) as well as less 92 familiar and deep-sea lineages (e.g., the Ragfish, Icosteus aenigmaticus and swallowers of the family Chiasmodontidae). Our understanding of the interrelationships among 93 pelagiarian families remains clouded by numerous opposing systematic hypotheses 94 95 informed by either morphological or molecular data. 96 Hints that the morphologically disparate lineages comprising Pelagiaria share 97 common ancestry appeared in several early molecular phylogenetic studies that lacked 98 consistent taxonomic coverage of pelagiarian lineages (e.g., Chen et al., 2003; Smith & 99 Craig, 2007; Yagashita et al., 2009). A mitogenomic study by Miya et al. (2013) provided 100 the first comprehensive synthesis that included nearly all relevant families and defined 101 Pelagiaria as a clade, uniting sixteen families previously classified among six different percomorph suborders. Christened Pelagia by Miya et al. (2013), the clade included 102 members of two fixtures of 20th century acanthomorph classifications: the Scombroidei 103

Deleted: rapidly expanding field **Deleted:** phylogenetics

106	(Scombridge, Scombrolabracidge, Gempylidge, and Trichiuridge) and the Stromateoidei	
107	(Amarsinidae Ariommatidae Centrolophidae Nomeidae Stromateidae and	
108	Tetragonuridae) (e.g. Regan 1902: Greenwood 1966: Johnson 1984) The hillfishes	
109	Xinhiidae and Istionhoridae long classifed in Scombroidei are resolved as distantly related	
110	to all other pelagarians in molecular phylogenies (e.g., Orell et al., 2006: Harrington et al.,	
111	2016: Alfaro et al., 2018: Hughes et al., 2018). Despite strong support for monophyly of	
112	Pelagiaria across diverse molecular phylogenetic studies, the monophyly of either the	
113	traditional Scrombroidei or Stromateoidei as subgroups within Pelagiaria is not supported	Deleted: io
114	(Near et al., 2013, Betancur-R et al., 2013, Orrell et al., 2006, Little et al., 2010, Miya et al.,	
115	2013; Alfaro et al., 2018; Hughes et al., 2018; Friedman et al., 2019). The lack of support	
116	for stromateoid monophyly was an unanticipated result of molecular analyses due to the	
117	presence of a compelling morphological character shared among these fishes: the	
118	pharyngeal sac, a variously toothed sac-like structure located behind the gill arches, and	
119	hypothesized to facilitate the processing of gelatinous zooplankton such as jellyfish or salps	
120	that comprise the diet of many stromateoid species (Mansueti, 1963; Janssen & Harbison,	Deleted: stromatioid
121	1981).	
122	Amarsipus carlsbergi (Fig. 1) is the only species in the family Amarsipidae and has	Deleted: described
123	been classified in Stromateoidei since its discovery and description (Haedrich, 1969).	Deleted: i
124	Although Amarsipus lacks the pharyngeal sac that is typical of other stromateoids, this rare	
125	species from the Indo-Pacific was allied with the stromateoids on the basis of several	
126	morphological features thought to be typical for the group, but of questionable systematic	
127	value: uniserial teeth in the jaws, an expanded lacrimal bone, and an extensively developed	
128	subdermal canal system (Haedrich, 1969). Subsequent phylogenetic hypotheses based on	
129	morphology resolved Amarsipus as either sister to all stromateoids (e.g. Haedrich, 1971;	
130	Horn, 1984), nested within stromateoids (Doiuchi et al., 2004), or proposed that it is not	
131	even a member of the clade (Springer & Johnson, 2004) (Fig. 2). DNA samples for	
132	Amarsipus did not become available for molecular analyses until 2018, and phylogenetic	
133	analysis of several nuclear protein-coding loci and mitochondrial 16S RNA resolved	
134	Amarsipus and the stromateoid Tetragonurus as sister lineages (Campbell et al., 2018) (Fig.	Deleted:
135	2). As in previous molecular analyses (Near et al., 2013; Betancur-R et al., 2013; Miya et	

141	al., 2013), deeper nodes in Pelagiaria were poorly supported, and this molecular analysis
142	did not resolve Stromateoidei as a monophyletic group.
143	A phylogenomic analysis of nearly 1000 ultra-conserved elements (UCEs) that
144	included 15 of the 16 families of Pelagaria, lacking only Amarsipus, revealed substantial
145	gene tree discordance that hampered resolution of deeper nodes in the phylogeny (Friedman
146	et al., 2019). This was reflected by incongruent phylogenetic trees resulting from different
147	methods of phylogenetic inference. While the phylogenomic analyses resolved a majority
148	of stromateoid species in a strongly supported 'core' clade that contains Ariommatidae,
149	Nomeidae, and Stromateidae; the resolution of Centrolophidae and Tetragonurus in
150	Pelagaria rendered Stromateoidei polyphyletic with varying degrees of node support. The
151	placement of Centrolophidae was variable and had low node support across species tree-
152	and concatenation-based analyses. However, the UCE phylogenies consistently resolved
153	with strong support a sister relationship between Tetragonurus and Chiasmodontidae, a
154	family that lacks a pharyngeal sac and previously had not been hypothesized to belong to
155	the stromateoid group.
156	The evolutionary history of Amarsipus carlsbergi is important in evaluating the
157	phylogenetic relationships of Stromateoidei and is critical to the assessment of the
158	evolution of the pharyngeal sac among lineages of Pelagiaria. With Amarsipus lacking in
159	the analyses of Friedman et al. (2019), it remained unknown whether genomic-scale data
160	would corroborate the relationship between Amarsipus and Tetragonurus as inferred with a
161	smaller number of loci (Campbell et al., 2018), or if this putative stromateoid lineage would
162	resolve in a group with core stromateoids or with other pelagiarian lineages. In this study,
163	we assess the phylogenetic relationships of Amarsipus carlsbergi using an expanded UCE
164	dataset that includes all families of Pelagiaria (Friedman et al., 2019).
165	Methods
166	
167	Generation of UCE Loci from Whole Genome Sequencing Data
168	
169	We extracted UCE sequences from paired-end Illumina sequence data obtained

لسبا

170 from a single individual of Amarsipus carlsbergi (CBM-ZF 17750; NCBI SRA

Deleted: stromateoid)
Deleted: contains	
Deleted:	
Deleted: ,	

Deleted: assessing

SRX4707127) that was previously analyzed in Campbell et al. (2018). Details on quality 176 control protocols for the removal of low-quality bases, adapter contamination, and 177 178 combination of overlapping paired-end reads can be found in Campbell et al. (2018). Post quality-control reads were mapped to reference assemblies resulting from target capture of 179 180 UCEs from Friedman et al. (2019). Museum voucher accession information, as well as 181 NCBI Sequence Read Archive (SRA) BioProject and BioSample accession numbers for 182 each specimen are provided in Supplemental Table 1. We performed three mappings to 183 different pelagiarian species in order to confirm the fidelity of Amarsipus UCE data. These 184 replicates were mapped against Icosteus aenigmaticus, Kali normani and Thunnus 185 orientalis, the three samples that had the highest overall completeness in the 95% complete 186 dataset of Friedman et al. (2019). Mapping was conducted with Burrows-Wheeler Aligner 187 (BWA) version 0.7.7-r441 using the MEM algorithm for both paired sequences and 188 unpaired reads (Li & Durbin, 2009). The resulting Binary Alignment Map (BAM) files were processed with SAMTools version 1.3 (Li et al., 2009) to combine separate paired and 189 unpaired BAM files and to filter for a minimum alignment score (MAPQ) of 30 (99.90% 190 191 accuracy, -q 30). Consensus sequences for each UCE locus in the reference assembly were generated from the filtered BAM file with the proovread version 2.14 bam2cns subprogram 192 (Hackl et al., 2014). The resulting consensus sequences were refined by removing bases 193 194 with quality scores of less than 30 with seqtk version 1.3-r106 (https://github.com/lh3/seqtk). Resulting consensus sequences were aligned to the 95% 195 complete UCE matrix from Friedman et al. (2019) with MAFFT version 7.130B (Katoh et 196 al., 2002; Katoh et al., 2013). Although the T. orientalis reference assembly had the third 197 198 most UCEs (610), it presented the most assembled bases (346,792) and largest mean contig length (568.51). The T. orientalis assembly was selected for use in all downstream 199 200 phylogenetic analyses, although preliminary phylogenies were inferred with all three 201 assemblies in order to verify the equivalent phylogenetic position of the mapping. 202 Phylogenetic Analyses 203 204 We used both concatenated supermatrix and species tree approaches. All phylogenies were inferred with a set of UCE loci that have 95% taxonomic completeness, 205

Deleted: inferred phylogenies of *Amarsipus* and Pelagiaria using...

and all of which contain sequence data for Amarsipus. Although previous studies 208 demonstrated sensitivity of the deepest pelagiarian relationships to both the loci used and 209 data matrix completeness (e.g., Miya et al., 2013, Campbell et al., 2018, Friedman et al., 210 211 2019), we restricted our analyses to this data matrix in order to reduce uncertainty in the resolution of Amarsipus by the inclusion of loci that lack coverage for this species. For 212 analyses of concatenated data, we first determined partitioning schemes using 213 214 PartitionFinder2 v2.1.1 (Lanfear et al., 2016) using the relaxed hierarchical clustering 215 search algorithm (Lanfear et al., 2014) and Bayesian Information Criterion for partitioning 216 scheme selection, and a GTR-Gamma model of molecular evolution. We conducted 217 partitioned Bayesian tree inference using ExaBayes v1.5 (Aberer et al., 2014), with an 218 analysis consisting of 4 Markov chain Monte Carlo (MCMC) runs for 10 million 219 generations and trees and parameters sampled every 1000 generations. We discarded the 220 first 50% of sampled trees as burn-in, and summarized the consensus tree using the 221 Exabayes consens program. Topological convergence was assessed by ensuring that average standard deviation of split frequencies was below 5%. To confirm convergence in 222 223 other parameter estimates, we used Tracer v1.7.1 (Rambaut et al., 2018), ensuring effective 224 sample sizes above 200 and no post-burnin directional trends in parameter traces. We also 225 performed a partitioned maximum likelihood tree search on the concatenated data matrix 226 using IQTree v 1.6.12 (Nguyen et al., 2015). This was conducted with the ultrafast bootstrap approximation and nearest-neighbor interchange optimization (Hoang et al., 227 2018) with 1000 bootstrap replicates. 228 229 We implemented a summary species tree inference with ASTRAL-III v5.6.3 (Zhang 230 et al., 2018), based on individual gene trees estimated for each UCE locus using IQTree v 231 1.6.12. For each locus, we determined the optimal model of molecular evolution using the 232 ModelFinder Plus (Kalyaanamoorthy et al., 2017) option within IQTree. Individual-locus 233 tree searches were conducted using Shimodaira-Hasegawa approximate likelihood ratio test 234 (SH-aLRT) with 1,000 bootstrap replicates. Summary species tree analyses may be 235 susceptible to influence from nodes that have marginal support within individual gene trees, and contracting branches that subtend weakly supported partitions has been shown to 236 improve accuracy of species tree inference (Zhang et al., 2018). The relatively short UCE 237

loci in our analysis (average length of 672 base pairs, and 259 parsimony informative sites 238 per locus) may result in gene trees that contain low-support nodes among some taxa. In 239 order to assess the influence of low-support gene tree nodes on our species tree topology, 240 particularly with regard to the placement of Amarsipus and the status of stromateoid 241 monophyly, we generated a series of species trees using gene trees for which branches were 242 243 collapsed across a range of thresholds, corresponding to 15, 30, and 45% bootstrap support. 244 Hypothesis Testing 245 246 We examined evidence for three hypotheses present in the post-burnin tree sample 247 generated by ExaBayes as described in the previous section. The three hypotheses 248 evaluated were: (1) monophyly of Stromateoidei as classically recognized (e.g., Haedrich,

249 1969), (2) the presence of a clade comprising Amarsipidae, Tetragonuridae, and

250 Chiasmodontidae, and (3) monophyly of pelagiarians with a pharyngeal sac (i.e., classical 251 Stromateoidei excluding Amarsipidae). Trees from ExaBayes were imported into R version 252 3.6.1 with the read.nexus function of *ape* version 5.3. The number of times each hypothesis 253 was present in the post-burnin tree sample was calculated with the is.monophyletic function of ape and the corresponding posterior probability generated by dividing this number by the 254 255 number of trees examined. We then calculated Bayes factors by dividing the posterior 256 probabilities of Stromateoidei monophyly and the monophyly of fishes with a pharyngeal sac by the posterior probability of a clade composed of Amarsipidae, Tetragonuridae, and 257 Chiasmodontidae. 258

259 Analysis of Concordance

260

We used BUCKy (Ané et al., 2007) to analyze the topological concordance across the set of gene trees inferred for each individual UCE locus. BUCKy summarizes the occurrence of topological partitions in the posterior distribution of gene trees from each loci's Bayesian gene tree search, and provides concordance factors, which are estimates of the probability that any particular bipartition among taxa reflects the true topology of loci in the dataset. For this analysis, we generated gene tree distributions using MrBayes v. 3.2.7 (Ronquist et al., 2012). In each MrBayes analysis, we ran four MCMC chains of 2 million

generations in length, with a sampling frequency of 2000 generations, and a GTR-Gamma 268 model of molecular evolution. Using the BUCKy program mbsum, branching patterns 269 270 within each loci's posterior tree distribution were summarized, excluding the first 75% of the distribution as burn-in. Increases in the number of species in a phylogeny result in non-271 linear increases in possible topologies, which can be computationally intractable for 272 273 BUCKy when dealing with large taxonomic datasets. To reduce the computational burden 274 of summarizing partition patterns across our dataset, we conducted our BUCKy 275 concordance factors analysis using a single representative of each of the 16 pelagiarian 276 families, selecting individuals from each family with the highest representation in the UCE 277 gene trees (Supplemental Table 2). We estimated concordance factors in BUCKy using an 278 alpha level (prior parameter for expectation of locus linkage across the dataset) of 1.0, but 279 also compared concordance values when alpha was set to 0.75 and 0.5. 280 While BUCKy concordance factors provide a convenient method to assess the 281 topological agreement across a multi-locus dataset, they do not explicitly reveal the node 282 support from individual loci in the dataset. We used the program Phyparts (Smith et al., 2015) to summarize the statistical node support from individual UCE gene trees in our 283 dataset. Given a reference tree topology for a set of taxa (e.g, our ASTRAL-III species tree 284 285 or ExaBayes concatenated tree) and a set of gene trees, Phyparts summarizes the number of 286 loci for which a node in the reference tree receives strong support, as well as the number of loci that strongly support alternative topologies or are uninformative to a particular 287 relationship. For the Phyparts summary analysis, we used the IQTree-inferred gene trees 288 289 generated for our species tree analyses (described above). As in BUCKy concordance 290 factors analyses, we reduced computational burden of examining partition variation across 291 many taxa by pruning our reference trees and individual UCE locus trees to a set of 42 taxa, 292 with two representatives per family (unless the family is monotypic or for which we had 293 only a single representative) (Supplemental Table 3). This allowed us to summarize support 294 for relationships among major pelagiarian lineages without attempting to summarize 295 support for intrafamilial variation. We estimated support for partitions that occurred in our ASTRAL-III and concatenated IQTree analyses, with bootstrap support observed in 296 individual UCE gene trees of 50 or 80 as the 'significant' threshold. While bootstrap values 297

of 50 or 80 are not traditionally considered especially strong support in molecular gene 298 trees, we were interested in the relative number of loci that exceed these thresholds for 299 300 competing alternative relationships. Results 301 302 303 Alignment of reads and UCE sequence generation 304 After filtering for a minimum alignment quality score (MAPQ \geq 30), 123,054 of the 305 258,232,994 paired reads and 80,050 of the 181,354,946 unpaired reads present after initial 306 307 quality control processing aligned to the Thunnus orientalis reference UCEs. The resulting 308 average per-site coverage across reference Thunnus orientalis UCEs is 30.13. After 309 removing bases with a quality score of less than 30, the consensus sequences contained 310 337,705 bases with an average length of 553.61 across 610 UCE loci. After alignment with 311 all samples, total length of the concatenated 610 UCE locus dataset is 410,063 base pairs, with a mean of 672 base pairs per individual locus. 312 313 UCE placement of Amarsipus and relationship of stromateoid families 314 315 The topology inferred from the concatenated, partitioned 610 UCE locus dataset is 316 identical between the Exabayes and IQTree analyses, and patterns of Bayesian posterior probability (BPP) and maximum likelihood bootstrap (BS) node support are also highly 317 similar between analyses (Fig. 3). Amarsipus was inferred as sister to a clade containing 318 319 Tetragonurus and Chiasmodontidae with maximum node support (BPP of 1.0; BS of 100), 320 as was the sister relationship between Tetragonurus and Chiasmodontidae. This clade 321 containing Amarsipus, Tetragonurus, and Chiasmodontidae is resolved as sister to 322 Scombridae with strong support (BPP 1.0; BS 96). Other aspects of this topology that are 323 strongly supported and are similar to what was reported in Friedman et al. (2019), and 324 include: a sister-group relationship between Bramidae and Caristiidae; a clade containing 325 Scombrolabrax, Gempylidae, and Trichiuridae; and a 'core stromateoid' clade that contains Ariommatidae, Nomeidae, and Stromateidae. As in Friedman et al. (2019), Gempylidae 326 327 was rendered paraphyletic due to the placement of Lepidocybium, which is sister to a Deleted: was

329	lineage containing the remainder of Gempylidae and Trichiuridae. The primary differences
330	between our topology and that of Friedman et al. (2019) involve the families identified by
331	those authors as 'rogue' taxa; Arripidae, Icosteus, Centrolophidae, and Pomatomus. These,
332	were shown to be highly sensitive to analytical framework or data filtering approach. While
333	our concatenated analyses find strong support for a clade uniting Pomatomus and
334	Centrolophidae (BPP 1.0; BS 95), the nodes subtending its relationship to 'core
335	stromateoids' and the remaining pelagiarian families- particularly Arripidae and Icosteus-
336	all received relatively low support.
337	Our series of ASTRAL-III species tree analyses resulted in two topologies that
338	correspond to whether or not the input gene trees were subjected to branch contraction at
339	various thresholds of node bootstrap support (Fig. 4). The topology of species trees whose
340	gene trees' branches were collapsed for nodes not exceeding 15, 30, or 45% BS, all
341	converged on an identical topology, and ASTRAL-III's metric of node support (local
342	posterior probability [LPP]) differed slightly among these replicates. We present the tree
343	and node support from the 15% threshold of node contraction in Figure 2C. Across all
344	species tree analyses, Amarsipus was inferred as sister to a clade including Tetragonurus
345	and Chiasmodontidae with strong LPP support (Fig. 4). As in the concatenated analysis, we
346	also observed consistently high support for a Scombrolabrax-gempylid-trichiurid clade and
347	a 'core stromateoid' clade, which appeared in each of the replicate ASTRAL-III analyses.
348	A primary difference is that the node-collapsed species trees find Icosteus is sister to a
349	clade containing Pomatomus + Centrolophiidae and 'core stromateoids', and this entire
350	group sister to a clade containing Arripidae and Scombridae. In the species tree generated
351	without filtering based on node bootstrap support, Scombridae is sister to the clade
352	Amarsipus + Tetragonurus + Chiasmodontidae, which is similar to the topology from
353	concatenation analyses.
354	Examination of the posterior tree distribution of the concatenated ExaBayes analysis
355	reveals that the clade comprising Amarsipus, Tetragonurus, and Chiasmodontidae was
356	present in all posterior trees examined (BPP = 1.00). The resulting Bayes factors, which
357	consider the monophyly of Stromateoidei (BPP= 0.00 , Bayes factor = $0.00/1.00 = 0.00$) and

358 the monophyly of fishes with a pharyngeal sac (BPP=0.00, Bayes factor = 0.00/1.00 =

-(Deleted: ,
•(Deleted: which
•(Deleted: shown
(Deleted: and which included Arripidae, <i>Icosteus</i> , Centrolophidae, and <i>Pomatomus</i>

Deleted: Stromateoids'

365	0.00), strongly support the clade comprising Amarsipus, Tetragonurus, and	Deleted: monophyly of
366	Chiasmodontidae.	
367	Concordance of Loci, and measures of UCE support	
368		
369	The close relationship between Amarsipus, Tetragonurus, and Chiasmodontidae is	
370	supported by relatively high sample-wide concordance among topologies of individual	
371	UCE gene trees. A partition containing these three taxa occurs in 44.8% of loci (95% CI:	
372	42.3-47.3%) (Fig. 5, Table 1). The interrelationships between these three lineages exhibit a	Deleted: 4
373	moderate level of discordance, with similar percentages of loci inferring the three	
374	alternative topologies and with overlapping 95% credible intervals. In our dataset, a sister	
375	relationship between Tetragonurus and Chiasmodontidae, to the exclusion of Amarsipus, is	
376	present in 25.5% [95% CI: 22.3-28.8%] of loci. The alternative topologies, where	
377	Amarsipus occurs in a partition with either Tetragonurus or Chiasmodontidae, to the	
378	exclusion of the other, occur in 20.1% [95% CI: 16.9-23.4%] and 19.4% [95% CI: 16.4-	
379	22.6%] of loci, respectively. By contrast, the percentage of loci for which Amarsipus occurs	
380	in a partition with any of the other individual families of Pelagiaria is substantially lower,	
381	ranging between 0.9 to 3.5% (Fig. 5).	
382	In contrast to the similar concordance factors estimated for gene tree topologies that	
383	are nearly equally divided between the three alternative sets of relationships among	
384	Amarsipus, Tetragonurus, and Chiasmodontidae (with the highest number resolving	
385	Tetragonurus + Chiasmodontidae), only the clade uniting Tetragonurus and	
386	Chiasmodontidae receives strong bootstrap support in more than a handful of individual	
387	UCE gene trees. A sister relationship between these two lineages, to the exclusion of	
388	Amarsipus, meets the threshold of 50% and 80% bootstrap support in 91 (15% of loci) and	
389	38 (6% of loci) gene trees, respectively (Table 1). A sister relationship between Amarsipus	
390	and Tetragonurus meets the 50% bootstrap support in 4 gene trees, and 80% in one 1 tree	
391	(0.7% and 0.1% of loci, respectively). Similarly, only 4 gene trees have at least 50%	
392	bootstrap support for a sister relationship between Amarsipus and Chiasmodontidae, with	
393	only a single of these loci surpassing the 80% bootstrap threshold (representing 0.7% for	
394	BS of 50, and 0.1% of loci for BS of 80).	

	
397	Patterns of sample-wide topological concordance among the remaining pelagiarian
398	families are similar to those reported in Friedman et al. (2019). For instance, our dataset has
399	a relatively high frequency of occurrence for partitions that include Trichiuridae and
400	Gempylidae (50.7% [95CI: 48.1-53.5], versus 48.2% [95CI: 45.8-51.0] in Friedman et al.
401	(2019)) and Ariommatidae-Nomeidae (45.1% [95CI: 42.3-47.8], versus 44.5% [95CI: 42.0-
402	47.2] in Friedman et al. (2019)). The 'rogue' lineages of Arripidae, Icosteus,
403	Centrolophidae, and Pomatomidae appeared in partitions with overlapping 95% confidence
404	intervals with at least 7 of other pelagiarian families. For example, concordance estimates
405	for a partition containing Arripidae and each of nine other pelagiarian families have
406	overlapping 95% credible intervals, ranging between 3.1 - 6.7% of loci containing these
407	alternative relationships. Scombridae, which in all of our molecular phylogenetic analyses
408	is resolved as a sister lineage of a clade containing Amarsipus, Tetragonurus, and
409	Chiasmodontidae (but with only modest support), has concordance factors with overlapping
410	95% credible intervals for eight pelagiarian families.
411	A clade composed of only the families traditionally classified as belonging to
412	Stromateoidei appears in the MrBayes-generated posterior tree distributions of three UCE
413	loci, although at a frequency low enough such that BUCKy estimates a probability that it
414	reflects the true topology of none of these loci (concordance factor of $0.00 [95\% CI = 0.0-$
415	0.003]). A clade containing all traditional stromateoid families plus Chiasmodontidae, to
416	the exclusion of all other pelagiarian families, receives only a slightly higher concordance
417	factor of 0.003 [95% $CI = 0.0-0.008$], occurring in the posterior distribution of 8 loci, and
418	has a 0.975 probability of representing the true topology of only three loci. Likewise, a
419	clade that includes only the stromateoid lineages_that are known to have pharyngeal sacs
420	(i.e., Tetragonurus, Ariommatidae, Centrolophidae, Nomeidae, and Stromateidae) receives
421	a concordance factor estimate of 0.00.
422	Discussion
423	
424	This study provides the first genomic-scale analysis of the phylogenetic

relationships of *Amarsipus*, and the second molecular study to contain sufficient taxonomic

426 sampling of Pelagiaria to evaluate the relationships of taxonomic families classified in the

Deleted: presents

Stromateoidei. We present several phylogenies inferred using concatenation and coalescent 428 species tree summary methods (Figs 3 and 4), and explore concordance among loci to 429 430 highlight confidence for a clade containing Amarsipus, Tetragonurus, and Chiasmodontidae. The rapid increase in high-throughput sequencing for phylogenetic 431 analyses has sparked debate about the most appropriate approaches for tree inference and 432 interpretation of node support with large, genomic-scale datasets (e.g., Gatesy & Springer, 433 434 2014; Mendes & Hahn, 2018; Gatesy et al., 2019). Although coalescent species tree 435 analyses attempt to model the independent evolutionary history of many unlinked loci, 436 species tree accuracy is affected by high levels of ILS or erroneous gene tree inference-437 phenomena that can be exacerbated by 'anomaly zone' scenarios of rapid, deep divergences 438 (Degnan & Rosenberg, 2006; Walker et al., 2018; Gatesy et al., 2019). Fossil-calibrated 439 divergence time estimates from Alfaro et al. (2018) and Friedman et al. (2019) support a 440 scenario of rapid diversification of major pelagiarian lineages beginning around the 441 Cretaceous-Paleogene boundary (66 million years ago) and extending through the 442 Paleocene. A series of rapid, successive divergence events among major lineages early in pelagiarian history create a phylogenetic scenario that is difficult to resolve with the simple 443 addition of more loci and analyzed in traditional concatenated or coalescent species tree 444 analytical frameworks (e.g., Campbell et al., 2017; Campbell et al., 2020). This is reflected 445 446 in the relatively high levels of gene tree discordance, low node support, and inferred topologies that are inconsistent with regard to the relationships among the oldest nodes 447 within the pelagiarian phylogeny (Fig 2). 448 Campbell et al. (2018) provided the first molecular phylogenetic study of 449 450 Amarsipus, which resolved it and Tetragonurus as sister lineages as well as non-monophyly 451 of the Stromateoidei. The subsequent study by Friedman et al. (2019) investigated the 452 relationships of Pelagiaria with a phylogenomic analysis utilizing nearly 1000 UCE loci, 453 and identified several 'rogue' lineages (e.g., Arripidae, Icosteus, and Pomatomus)_due to 454 the prevalence of discordant UCE gene tree topologies that resulted in their variable and 455 weakly supported phylogenetic resolution across analyses. However, Friedman et al. (2019) 456 did not include Amarsipus in their phylogenomic analyses.

Deleted: i

458	The phylogenomic analysis of UCE data demonstrates that the phylogenetic	
459	resolution of Amarsipus as the sister lineage of a clade containing Tetragonurus and	
460	Chiasmodontidae is one of the most robustly supported relationships among major	
461	pelagiarian lineages by metrics of node support and gene tree topological concordance	
462	(Figs 3, 4, and 5). Thus Amarsipus is not a 'rogue' lineage. While the topologies of	Deleted: 1
463	individual UCE loci in our dataset contain partitions for each of the three possible	Deleted: and
464	relationships among Amarsipus, Tetragonurus, and Chiasmodontidae at nearly equal	Deleted: 2
465	frequency, the only topology that garnered strong bootstrap support from more than four	
466	loci was the sister relationship between Tetragonurus and Chiasmodontidae, which had	
467	bootstrap support greater than 50% in 91 loci (Table 1). This asymmetry between the nearly	
468	equal frequency of these alternative topologies versus disproportionate number of these	
469	gene trees inferred with strong support for a partition containing Tetragonurus and	
470	Chiasmodontidae may reflect that these two lineages have a longer, shared evolutionary	Deleted: share a longer unique
471	history relative to Amarsipus, during which they would have accumulated concordant	
472	mutations that increase gene tree node support metrics. Among the remaining stromateoid	
473	lineages, the core clade of Ariommatidae, Nomeidae, and Stromateidae also receives	
474	consistent and strong molecular support (Campbell et al., 2018; Friedman et al., 2019).	
475	While across the more inclusive pelagiarian clade some relationships may remain	
476	unresolved, the phylogenetic resolution of Amarispus and the non-monophyly of	Deleted: t
477	Stromateoidei are strongly supported in the phylogenomic analyses.	
478	Previous phylogenetic analyses of morphological data resulted in different	
479	hypotheses regarding relationships of Amarsipus and the remaining stromateoid lineages.	
480	Haedrich (1969) and Horn (1984) hypothesized that Amarsipus is sister to all remaining	
481	stromateoids, a relationship that is consistent with a single origin of the modified	
482	stromateoid pharyngeal sac (Fig. 2A). Doiuchi et al. (2004) analyzed a larger	
483	morphological dataset (36 characters, rather than the 27 <u>considered in Horn's 1984 study</u>)	Deleted: analyzed
484	and concluded that Amarsipus was nested within the stromateoids and represented a	
485	secondary loss of the pharyngeal sac (Fig 2B). As with the early molecular phylogenetic	
486	studies of Pelagiaria, an unforeseen but key weakness of these morphological analyses was	
487	insufficient taxonomic coverage of non-stromateoid pelagiarian lineages, and only <u>Doiuchi</u>	Deleted: Diouchi

-

496	et al. (2004) included one such representative, <u>Arripis</u> . Regardless of their lack of broader	 Deleted: Arripus
497	sampling within Pelagiaria, none of the previous morphological hypotheses are congruent	
498	with our UCE-based results in which the six families traditionally classified as stromateoids	
499	represent a polyphyletic group that variously share most recent common ancestry with	
500	Arripidae, Icosteidae, Pomatomidae, Scombridae, and perhaps the all other lineages of	 Deleted: Arripus
501	Pelagiaria (Figs <u>3</u> and <u>4</u>).	 Deleted:
502	In contrast to the historical uncertainty regarding the position of Amarsipus among	Deleted: 1
503	acanthomorph fishes, our analysis of UCE loci provides clear support for a close	Deleted: 2
504	relationship between Amarsipus, Tetragonurus, and Chiasmodontidae and the non-	
505	monophyly of the traditional suborder Stromateoidei. The striking ecological and	
506	anatomical differences within the clade comprising Tetragonurus and Chiasmodontidae has	
507	been noted previously (Freidman et al., 2019), and resolution of Amarsipus as the sister	
508	lineage to this group only amplifies these contrasts. Unfortunately, our analyses do not	
509	resolve all of the backbone of pelagarian phylogeny, and there is phylogenetic uncertainty	
510	regarding the sister lineage of the strongly supported clade uniting Amarsipus,	
511	Tetragonurus, and Chiasmodontidae. The pharyngeal sacs that are a feature of five of the	
512	six stromateoid families have a long history of being interpreted as evidence of shared	
513	evolutionary history among these lineages (Haedrich, 1971; Horn, 1984; Doiuchi et al.,	
514	2004). Strong support for the clade containing Amarsipus, Tetragonurus, and	
515	Chiasmodontidae, and the associated non-monophyly of stromateoids highlights a more	
516	complicated evolutionary history of the pharyngeal sac. Although multiple losses or origins	Deleted: history in the evolution
517	of the pharyngeal sac (and other morphological features of stromateoids) were	 Deleted: While
518	unanticipated prior to the application of molecular phylogenetics, the lack of thorough	
519	taxonomic coverage in comparative morphological studies of pelagiarian lineages has left a	
520	gap in our understanding of the origin of these key morphological traits. This gap in	
521	comparative morphological examination of Pelagiaria remains, but represents an important	
522	area of inquiry for advancing the understanding of pelagiarian relationships. With modest	 Deleted: direction in
523	diversity, mature genomic resources, and many anatomically well-documented lineages,	
524	Pelagiaria is an ideal candidate for integrative studies that seek to reconcile the contrasting	
525	phylogenetic signals of morphological and molecular datasets (<u>e.g.</u> , Girard et al., 2020).	

+

- 563 Betancur-R., R., Broughton, R.E., Wiley, E.O., Carpenter, K., López, J.A., Li, C., Holcroft,
- 564 N.I., Arcila, D., Sanciangco, M., Cureton, J.C., II, Zhang, F., Buser, T., Campbell, M.C.,
- 565 Ballesteros, J.A., Roa-Varon, A., Willis, S., Borden, W.C., Rowley, T., Reneau, P.C.,
- 566 Hough, D.J., Lu, G., Grande, T., Arratia, G., & Ortí, G. 2013 The tree of life and a new
- 567 classification of bony fishes. PLOS Currents 5,
- 568 ecurrents.tol.53ba26640df26640ccaee26675bb26165c26648c26288.
- 569 https://doi.org/10.1371/currents.tol.53ba26640df0ccaee75bb165c8c26288
- 571 Campbell, M.A., Alfaro, M.E., Belasco, M., López, J.A. 2017. Early-branching euteleost
- 572 relationships: areas of congruence between concatenation and coalescent model
- 573 inferences. *PeerJ* 5:e3548 https://doi.org/10.7717/peerj.3548
- 574

580

584

570

- 575 Campbell, M.A., Sado, T., Shinzato, C., Koyanagi, R., Okamoto, & M., Miya, M., 2018.
- 576 Multilocus phylogenetic analysis of the first molecular data from the rare and monotypic
- 577 Amarsipidae places the family within the Pelagia and highlights limitations of existing data
- 578 sets in resolving pelagian interrelationships. Molecular Phylogenetics and Evolution 172-
- 579 180. https://doi.org/10.1016/j.ympev.2005.10.007
- 581 Campbell, M.A., Buser, T.J., Alfaro, M.E., López, J.A. 2020. Addressing incomplete
- 582 <u>lineage sorting and paralogy in the inference of uncertain salmonid phylogenetic</u>
- 583 relationships. *PeerJ*. 8:e9389. https://doi.org/10.7717/peerj.9389
- 585 Chen, W.-J., Bonillo, C., & Lecointre, G. 2003. Repeatability of clades as a criterion of
- reliability: a case study for molecular phylogeny of Acanthomorpha (Teleostei) with larger
- 587 number of taxa. Molecular Phylogenetics and Evolution 26, 262–288.
- 588 https://doi.org/10.1016/S1055-7903(02)00371-8
- 589
- 590 Doiuchi, R., Tomoyasu, S., & Nakabo, T. 2004. Phylogenetic relationships of the
- stromateoid fishes (Perciformes). Ichthyological Research 51: 202-212.
- 592

Formatted: Default Paragraph Font, Font: (Default) +Body (Calibri), Font color: Text 1, English (UK) Formatted: English (US)

593	Fricke, R., Eschmever, W. N., & van der Laan, R. (eds) 2020. Eschmever's Catalog of	
594	Fishes: Genera. Species. References.	
595	(http://researcharchive.calacademy.org/research/ichthyology/catalog/fishcatmain.asp).	
596	Electronic version accessed 25 August 2020.	
597		
598	Friedman, M., Feilich, K.L., Beckett, H.T., Alfaro, M.E., Faircloth, B.C., Černý, D., Miya,	
599	M., Near, T.J., & Harrington, R.C. 2019. A phylogenomic framework for pelagiarian fishes	
600	(Acanthomorpha: Percomorpha) highlights mosaic radiation in the open ocean.	
601	Proceedings of the Royal Society B 286: 2091502. https://doi.org/10.1098/rspb.2019.1502	
602		
603	Gatesy, J., & Springer, M.S. 2014. Phylogenetic analysis at deep timescales: unreliable	Formatted: Line spacing: 1.5 lines
604	gene trees, bypassed hidden support, and the coalescent/concatenation conundrum.	
605	Molecular Phylogenetics and Evolution 80: 231-266.	
606	https://doi.org/10.1016/j.ympev.2014.08.013	Formatted: Default Paragraph Font, Font: (Default) Times
607		New Roman, 12 pt, Font color. Auto
608	Gatesy, J., Sloan, D.B., Warren, J.M., Baker, R.H., Simmons, M.P., Springer, M.S. 2019.	
609	Partitioned coalescence support reveals biases in species-tree methods and detects gene	
610	trees that determine phylogenomic conflicts. Molecular Phylogenetics and Evolution 139:	
611	https://doi.org/10.1016/j.ympev.2019.106539	
612		
613	Girard, M.G., Davis, M.P. and Smith, W.L. 2020. The Phylogeny of Carangiform Fishes:	
614	Morphological and Genomic Investigations of a New Fish Clade. Copeia, 108(2), pp.265-	
615	298. https://doi.org/10.1643/CI-19-320	
616		
617	Hackl, T., Hedrich, R., Schultz, J., Förster, F., 2014. proovread : large-scale high-accuracy	
618	PacBio correction through iterative short read consensus. <i>Bioinformatics</i> 30, 3004–3011.	
619	https://doi.org/10.1093/bioinformatics/btu392	
620		
621	Haedrich, R.L. 1967. The stromateoid fishes: systematics and classification. Bulletin of the	Deleted: stromadeoid
622	Museum of Comparative Zoology at Harvard College 135: 31-139.	

624	
625	Horn, M.H. 1984. Stromateoidei: Development and relationships. In: Richards, W.J.,
626	Cohen, D.M., Fahay, M.P., Kendall, A.W., & Richardson, S.L. (Eds). Ontogeny and
627	Systematics of Fishes. Special Publication. American Society of Ichthyologists and
628	Herpetologists, Lawrence, Kansas, pp. 620-628.
629	
630	Harrington, R.C., Faircloth, B.C., Eytan, R.I., Smith, W.L., Near, T.J., Alfaro, M.E. &
631	Friedman, M. 2016. Phylogenomic analysis of carangimorph fishes reveals flatfish
632	asymmetry arose in a blink of the evolutionary eye. BMC Evolutionary Biology 16, 224.
633	https://doi.org/10.1186/s12862-016-0786-x
634	
635	Hoang, D.T., Chernomor, O., von Haeseler, A., Minh, B.Q., & Vinh, L.S. 2018. UFBoot2:
636	Improving the ultrafast bootstrap approximation. Molecular Biolology and Evolution
637	35:518-522. https://doi.org/10.1093/molbev/msx281
638	
639	Hughes, L., Ortí, G., Huang, Y., Sun, Y., Baldwin, C., Thompson, A.W., Arcila, D.,
640	Betancur-R., R., Li, C., Becker, L., Bellora, N., Zhao, X., Li, X., Wang, M., Fang, C., Xie,
641	B., Zhou, Z., Huang, H., Chen, S., Venkatesh, B., & Shi, Q. 2018 Comprehensive
642	phylogeny of ray-finned fishes (Actinopterygii) based on transcriptomic and genomic data.
643	Proceedings of the National Academy of Sciences of the USA 115: 6249-6254.
644	https://doi.org/10.1073/pnas.1719358115
645	
646	Janssen, J., & Harbison, G.R. 1981. Fish in salps: the association of squaretails
647	(Tetragonurus spp.) with pelagic tunicates. Journal of the Marine Biological Association of
648	the United Kingdom. 61: 917-927. https://doi.org/10.1017/S0025315400023055
649	
650	Johnson, G.D. 1993. Percomorph phylogeny: progress and problems. Bulletin of Marine
651	<i>Science</i> 52: 3-28.
652	

653	Katoh, K., Misawa, K., Kuma, K., & Miyata, T. 2002. MAFFT: a novel method for rapid				
654	multiple sequence alignment based on fast Fourier transform. Nucleic Acids Research 30:				
655	3059–3066. https://doi.org/10.1093/nar/gkf436				
656					
657	Katoh, K., & Standley, D.M. 2013. MAFFT Multiple Sequence Alignment Software				
658	Version 7: Improvements in Performance and Usability. Molecular Biology and Evolution				
659	30: 772-780. https://doi.org/10.1093/molbev/mst010				
660					
661	Lanfear, R., Calcott, B., Kainer, D., Mayer, C., & Stamatakis, A. 2014. Selecting optimal				
662	partitioning schemes for phylogenomic datasets. BMC Evolutionary Biology, 14(1), 82.				
663	https://doi.org/10.1186/1471-2148-14-82				
664					
665	Lanfear, R., Frandsen, P. B., Wright, A. M., Senfeld, T., & Calcott, B. 2016.				
666	PartitionFinder 2: new methods for selecting partitioned models of evolution for molecular				
667	and morphological phylogenetic analyses. <i>Molecular Biology and Evolution</i> 34: 772-773.				
668	https://doi.org/10.1093/molbev/msw260				
669					
670	Li, H., & Durbin, R., 2009. Fast and accurate short read alignment with Burrows–Wheeler				
671	transform. Bioinformatics 25, 1754-1760. https://doi.org/10.1093/bioinformatics/btp324				
672					
673	Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Abecasis,				
674	G., Durbin, R., & 1000 Genome Project Data Processing Subgroup. 2009. The sequence				
675	alignment/map format and SAMtools. Bioinformatics 25, 2078–2079.				
676	https://doi.org/10.1093/bioinformatics/btp352				
677					
678	Mansueti, R. 1963. Symbiotic behavior between small fishes and jellyfishes, with new data				
679	on that between the stromateid, Peprilus alepidotus, and the Scyphomedusa, Chrysaora	Format	ed: Font: Ital	c	
680	guinquecirrha. Copeia 1963: 40-80. https://doi.org/10.2307/1441273.	Format	ed: Font: Ital	.c	
681		Format	ed: Font: Ital	с іс	

- 682 Miya, M., Friedman, M., Satoh, T.O., Takeshima, H., Sado, T., Iwasaki, W., Yamanoue,
- 683 Y., Nakatani, M., Mabuchi, K., Inoue, J.G., Poulsen, J.Y., Fukunaga, T., Sato, Y., &
- 684 Nishida, M. 2013. Evolutionary origin of the Scombridae (tunas and mackerels): members
- of a Paleogene adaptive radiation with 14 other pelagic fish families. *PLoS ONE* 8, e73535.
 https://doi.org/10.1371/journal.pone.0073535
- 687
- 688 Near, T.J., Dornburg, A., Eytan, R.I., Keck, B.P., Smith, W.L., Kuhn, K.L., Moore, J.A.,
- 689 Price, S.A., Burbrink, F.T., Friedman, M., & Wainwright, P.C. 2013. Phylogeny and tempo
- 690 of diversification in the superradiation of spiny-rayed fishes. Proceedings of the National
- 691 *Academy of Sciences of the USA* 110: 12738-12743.
- 692 https://doi.org/10.1073/pnas.1304661110

- 693
- Nelson, J.S., Grande, T.C., & Wilson, M.V.H. 2016. Fishes of the World. 5th Edition, John
 Wiley and Sons, Hoboken, New Jersey. https://doi.org/10.1002/9781119174844
- 696

697 Nguyen, L.T., Schmidt, H.A., von Haeseler, A., & Minh, B.Q. 2015. IQ-TREE: A fast and

- 698 effective stochastic algorithm for estimating maximum likelihood phylogenies. Molecular
- 699 *Biology and Evolution* 32: 268-274. https://doi.org/10.1093/molbev/msu300 700
- 701 Rambaut A, Drummond, A.J., Xie, D., Baele, G., & Suchard, M.A. 2018. Posterior
- summarisation in Bayesian phylogenetics using Tracer 1.7. Systematic Biology 67: 901-
- 703 904. https://doi.org/10.1093/sysbio/syy032
- 704
- 705 Ronquist, F., Teslenko, M., Van Der Mark, P., Ayers, D.L., Darling, A., Hohna, S., Larget,
- 706 B., Liu, L., Suchard, M.A., & Huelsenbeck, J.P. 2012. MrBayes 3.2: efficient Bayesian
- 707 phylogenetic inference and model choice across a large model space. Systematic Biology
- 708 61: 539-542. https://doi.org/10.1093/sysbio/sys029
- 709
- 710 Smith, S.A., Moore, M.J., Brown, J.W., & Yang, Y. 2015. Analysis of phylogenomic
- 711 datasets reveals conflict, concordance, and gene duplications with examples from animals

	Harrington et al. 23
710	and months BMC Evolution and Biology 15, 150 https://doi.org/10.1186/s12962.015.0422
712	and plants. <i>BMC Evolutionary Biology</i> . 13: 150. https://doi.org/10.1186/s12862-013-0425-
713	
714	
715	Smith, W.L., Craig, M.I., & Quattro, J.M. 2007. Casting the percomorph net broadly: the
716	importance of broad taxonomic sampling in the search for placement of the Serranid and $(15.1 \pm 0.007, 25.55, 14, -1/1)$
/1/	percid fishes. <i>Copeta</i> 2007: 35-55. https://doi.org/10.1643/0045-
718	8511(2007)7[35:C1PNW1]2.0.CO;2
/19	
720	Thacker, C.E., Satoh, T.P., Katayama, E., Harrington, R.C., Eytan, R.I., & Near, T.J. 2015.
721	Molecular phylogeny of Percomorpha resolves <i>Trichonotus</i> as sister to Gobioidei
722	(Teleostei: Gobiiformes) and confirms the polyphyly of Trachinoidei. <i>Molecular</i>
723	Phylogenetics and Evolution 93: 172-179. https://doi.org/10.1016/j.ympev.2015.08.001
724	
725	Walker, J.F., Brown, J.W., & Smith, S.A. 2018. Analyzing contentious relationships and
726	outlier genes in phylogenomics. <i>Sytematic Biology</i> 67: 916-924.
727	https://doi.org/10.1093/sysbio/syy043
728	
729	Yagashita, N., Miya, M., Yamanoue, Y., Shirai, S.M., Nakayama, K., Suzuki, N., Satoh,
730	T.P., Mabuchi, K., Nishida, M., & Nakabo, T. 2009. Mitogenomic evaluation of the unique
731	facial nerve pattern as a phylogenetic marker within the perciform fishes (Teleostei:
732	Percomorpha). Molecular Phylogenetics and Evolution 53: 258-266.
733	https://doi.org/10.1016/j.ympev.2009.06.009
734	
735	Zhang, C., Rabiee, M., Sayyari, E., & Mirarab, S. 2018. ASTRAL-III: Polynomial Time
736	Species Tree Reconstruction from Partially Resolved Gene Trees. BMC Bioinformatics 19:
737	153. https://doi.org/10.1186/s12859-018-2129-y
738	
739	
740	
741	

		
742	Figure Legends	 Deleted: ¶
l 743		
744	Figure 1. Amarsipus carlsbergi, photographed on 7 February 2019, Romblon, Phillipines.	9
745	Photograph provided by courtesy of Linda Ianniello.	Deleted: ,
746		 Deleted: provided
747	Figure 2. Previous phylogenetic hypotheses of Amarsipus carlsbergi. (A) Horn, 1984,	
748	topology inferred from cladistic analysis of 27 morphological traits; (B) Doiuchi et al.,	
749	2004, topology inferred from 36 morphological traits; (C) Campbell et al., 2018, topology	
750	inferred from analysis of 10 genetic loci.	
751		
752	Figure 3. <u>A-B.</u> Phylogeny of Pelagiaria inferred by analysis of <u>610, concatenated</u>	 Deleted: partitioned,
753	partitioned UCE loci in Exabayes and IQTree. (A) Phylogenetic tree with branch lengths	 Deleted: 610
754	drawn relative to number of substitutions; (B) Same tree as in A, but with ultrametric	
755	branch length transformation and annotated to illustrate Bayesian and Maximum	
756	Likelihood node support. Support values are shown adjacent to each node, with ExaBayes	
757	Bayesian posterior probability (BPP) first, followed by IQTree maximum likelihood	
758	bootstrap support (BS). Nodes with both maximum BPP and BS support are indicated with	
759	an asterisk. Amarsipus is highlighted in yellow, and stromateoid families bearing a	 Deleted: ,
760	pharyngeal sac are highlighted in blue.	
761		
762	Figure 4. A-C. Topologies inferred from concatenation and species tree analyses annotated	
763	with node support, concordance factors, and number of loci strongly supporting each	
764	node. (A) IQTree analysis of partitioned, concatenated UCE loci; (B) ASTRAL-III species	
765	tree analysis conducted without node-support filtering; (C) ASTRAL-III species tree	
766	conducted with gene trees for which nodes that have lower than 15% bootstrap support are	
767	collapsed. Support values are indicated with colored discs on nodes, with black	
768	representing 95-100% bootstrap support (BS) for IQTree or 0.95-1.0 Local Posterior	
769	Probability (LPP); gray indicating 80-95% BS or 0.8-0.95 LPP; and white representing	
770	nodes with support values lower than 80% BS or 0.8 LPP. BUCKy-estimated concordance	

794 proportion of loci for which the partition was estimated to be the true topology, as

795 estimated in BUCKy with MrBayes-inferred gene tree distributions. The proportion of loci

797 inferred gene trees for each UCE locus.

	Amarsipus -	Amarsipus -	Tetragonurus –	
	Tetragonurus	Chiasmodontidae	Chiasmodontidae	
Sample-wide concordance factor	0.201	0.194	0.255	
Proportion of loci with > 50 BS	0.007	0.007	0.149	
Proportion of loci with > 80 BS	0.002	0.003	0.062	

820

Harrington et al. 27

