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Summary

Background: The genetic underpinnings of glycemic traits have been understudied in

adolescent and Hispanic/Latino (H/L) populations in comparison to adults and

populations of European ancestry.

Objective: To identify genetic factors underlying glycemic traits in an adolescent H/L

population.

Methods: We conducted a genome-wide association study (GWAS) of fasting glucose

(FG) and fasting insulin (FI) in H/L adolescents from the Santiago Longitudinal Study.

Results: We identified one novel variant positioned in the CSMD1 gene on chromosome

8 (rs77465890, effect allele frequency = 0.10) that was associated with FI (β = −0.299,

SE = 0.054, p = 2.72×10−8) and was only slightly attenuated after adjusting for body mass

index z-scores (β = −0.252, SE = 0.047, p = 1.03×10−7). We demonstrated directionally

consistent, but not statistically significant results in African and Hispanic adults of the

Population Architecture Using Genomics and Epidemiology Consortium. We also identi-

fied secondary signals for two FG loci after conditioning on known variants, which dem-

onstrate allelic heterogeneity in well-known glucose loci.

Abbreviations: AMR, admixed American reference panel; ARIC, Atherosclerosis Risk in Communities Study; BMIz, body mass index z-scores; BP, base pair position (hg19 build); CARDIA,

Coronary Artery Risk Development in Young Adults Study; CHR, chromosome; EA/OA, effect allele/ other allele; EAF, effect allele frequency; FG, fasting glucose; FI, fasting insulin; GWAS,

genome-wide association study; H/L, Hispanic/Latino; HCHS/SOL, Hispanic Community Health Study/ Study of Latinos; HOMA-IR, homeostatic model assessment of insulin resistance; LD,

linkage disequilibrium; MAGIC, Meta-Analysis of Glucose and Insulin-related Traits Consortium; MEC, Multiethnic Cohort Study; MEGA, Multiethnic Genotyping Array; NASH, Nonalcoholic

Steatohepatitis Study; PAGE, Population Architecture using Genomics and Epidemiology Consortium; PCs, principal components; QC, quality control; SE, standard error; SLS, Santiago

Longitudinal Study; SNP, single nucleotide polymorphism; T2D, type 2 diabetes; WHI, Women's Health Initiative.
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Conclusion: Our results exemplify the importance of including populations with

diverse ancestral origin and adolescent participants in GWAS of glycemic traits to

uncover novel risk loci and expand our understanding of disease aetiology.
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1 | INTRODUCTION

The prevalence of type 2 diabetes (T2D) among adults has been rising

globally,1,2 especially among low- and middle-income countries,2 and is pro-

jected to increase from an estimated 8.8% in 2015 to over 10% by 2040.3

Alarmingly, T2D is increasingly common among adolescents and young

adults, particularly in Hispanic/Latinos (H/L).4 Diet and physical activity

changes from urbanization and rapid socioeconomic improvement in Chile

have resulted in �75% of its population over age 15 being overweight or

obese5 and a prevalence of T2D among the highest in South America.3

Insulin resistance and elevated blood glucose often precede T2D

and increase the risk of developing T2D over time.6,7 In addition to

well-established factors like obesity, poor diet, and physical inactivity,

genetic factors also contribute to variation in glycemic traits and T2D

risk.8,9 Genetic underpinnings of these traits, however, have been

understudied in adolescents and H/L populations, despite shouldering

an increasing burden of obesity and T2D.

Studying populations at distinct periods across the life-course, that

are ancestrally diverse, and that have heightened disparities of disease

risk is important for several reasons. First, the literature for complex

traits, including for T2D-related traits like insulin resistance, suggests

that there may be distinct genetic effects present during adoles-

cence.10-13 Second, it allows for identification of variants unique to

genetically admixed populations, which may be absent or rare in other

populations. Third, generalizing previously identified associations in a

different population provides stronger evidence that the genetic effect

is relevant across multiple populations and gene-environment contexts.

We therefore conducted a genome-wide association study

(GWAS) of glycemic traits—fasting glucose (FG) and fasting insulin

(FI)—measured during adolescence in Chileans of the Santiago Longi-

tudinal Study (SLS). Our aims were to (1) determine if novel large

effects were segregating in this population and (2) describe the associ-

ation of known loci for these traits in a diverse H/L population.

2 | METHODS

2.1 | Study population

The SLS is a cohort of participants from Santiago, Chile followed from

infancy to adulthood. The parent study—details of which are described

elsewhere—recruited 1798 infants from 1991 to 1996 born at term,

weighing at least 3.0 kg, and with no major health issues, to participate

in a randomized trial of iron supplementation to prevent iron deficiency

anaemia.14 Families of participants were literate and low- to middle-

income.14,15 Participants were followed during infancy and at ages

5, 10, 16 or 17, and 21 or 22 years and assessed for a variety of out-

comes.16,17 Parents provided informed consent for all visits occurring

during childhood; participants also provided assent at the age 10 and

adolescent visits and informed consent at 21 or 22 years. A total of

679 of the original participants were included in an ancillary cardiovas-

cular health study during the adolescent visits, which included traits of

interest described below. This number decreased after excluding indi-

viduals for whom we did not have genetic data, genetic data did not

pass quality control (QC) measures or the traits were unavailable for

these individuals. This study has been approved by Institutional Review

Boards at the University of California at San Diego, University of Michi-

gan, University of North Carolina at Chapel Hill, and the Institute of

Nutrition and Food Technology, University of Chile.

2.2 | Trait measurements

2.2.1 | Glycemic traits

After fasting overnight for 8–12 h before the adolescent visits occur-

ring at age 16–17, participants' blood was drawn to assess FG and FI

levels. Glucose was measured with an enzymatic colorimetric assay

(QCA S.A., Amposta, Spain), and insulin was measured with radioim-

munoassay (RIA DCP Diagnostic Products Corporation, LA, USA). We

additionally considered estimates of homeostatic model assessment

of insulin resistance (HOMA-IR) using the following formula18:

fasting insulin μIU
ml

� �
× fasting glucose mmol

l

� �

22:5
:

2.2.2 | Anthropometric traits

A study nurse or physician used standard techniques to measure

height to the nearest 0.1 cm with a Holtain stadiometer and weight to
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the nearest 0.1 kg with a SECA scale. Body mass index (BMI) was cal-

culated as weight/height2 (kg/m2), then transformed into z-scores

(BMIz) relative to Centers for Disease Control anthropometric refer-

ence data (2007–2010).19

2.3 | Genotyping and identifying known loci

DNA was extracted from participants' blood, genotyped using the

Illumina Multiethnic Genotyping Array (MEGA) which includes a

GWAS scaffold designed to tag both common and low frequency

variants in global populations, and imputed using the 1000

Genomes Phase III admixed American reference panel (AMR). QC

exclusions included individual call rate > 90%, single nucleotide

polymorphism (SNP) call rate > 95%, imputation quality <0.5,

minor allele count >10, gender mismatch, and ancestry outliers. To

assess novelty and generalization of SNP-phenotype effects, we

identified previously reported SNP associations with FG, FI and

HOMA-IR at the conventionally accepted GWAS level of signifi-

cance (p < 5×10−8) in adults and/or children from publications

listed in the NHGRI-EBI GWAS Catalog,20 as of June 19, 2018, as

well as from the literature; this included 78 known FG variants in

43 loci, 32 known FI variants in 22 loci, and 9 known HOMA-IR

variants in 9 loci.21-24

2.4 | Statistical analysis

2.4.1 | Genome-wide association study

Glycemic traits of interest (FG, FI, and HOMA-IR) displayed a non-

normal distribution. Therefore, FI and HOMA-IR were natural log-

transformed, and one FG outlier was Winsorized to the next lowest

value (assessed using SAS v9.4).25 For genetic association testing, we

conducted linear regression of each of the three traits assuming an

additive genetic model and adjusting for sex and population substruc-

ture using the first five principal components (PCs) calculated in

EIGENSTRAT26 with genome-wide data. Sensitivity analyses also

adjusted for BMIz. All participants were essentially the same age

[mean 16.8 years (SD = 0.3)]. Age was initially considered for inclusion

but did not appear to have a meaningful effect and was dropped from

the regression models. Association analyses were conducted using

SUGEN,27 with clumping into independent loci using the EasyStrata R

package.28

2.4.2 | Interrogation of known associations

We also examined how previously reported SNP-trait associations for

glycemic traits generalized to our cohort. As these associations are

already established, we considered generalizations of known loci

when effect estimates were directionally consistent and nominally sig-

nificant (p < 0.05).

2.4.3 | Conditional analysis

To identify secondary signals in known loci, we evaluated any SNP-

trait associations that displayed suggestive significance (p < 5 × 10−6)

and were positioned within the 1 Mb region (+/−500 kb) of a previ-

ously reported SNP. Signals were considered to be attenuated if the

p-value decreased below the suggestive level of significance or the

beta decreased by more than 10%. Significance of secondary signals

was defined using Bonferroni correction for the number of indepen-

dent SNPs in each 1 Mb interval of the evaluated loci (linkage disequi-

librium [LD]-pruned at r2 < 0.10) and provide evidence of allelic

heterogeneity at known loci.

2.4.4 | Validation analyses

To validate novel associations reaching suggestive or genome-wide sig-

nificance in SLS participants, we interrogated SNP-trait associations in

several published and unpublished study populations. First, we down-

loaded summary statistics from the 2010 study entitled “New genetic

loci implicated in fasting glucose homeostasis and their impact on T2D

risk,” published in Nature Genetics 42 (2): 105-16 for our FI and HOMA-

IR variants.29 The studies participating in Meta-Analyses of Glucose and

Insulin-Related Traits Consortium (MAGIC) contributed a total of 38 238

individuals for FI and 37 037 for HOMA-IR, from up to 17 population-

based cohort studies and four case-control studies and 28 population-

based and five case-control studies in the MAGIC discovery and replica-

tion stages, respectively. Exclusion criteria included pregnancy, non-

fasting individuals, type 1 diabetes and outliers ±3 SD of distribution for

either FG or FI. FG was measured from fasting whole blood, plasma,

serum or a combination of these. HOMA-IR was derived from paired

fasting glucose and insulin measures. Commercial genome-wide arrays

were used for genotyping individual studies. Additional autosomal SNPs

were imputed from the HapMap CEU (European ancestry) reference

panel using MACH,30 IMPUTE31 or BIMBAM32 software.

Second, we looked up results in the Nonalcoholic Steatohepatitis

(NASH) Clinical Research Network (CRN) in the Nonalcoholic Fatty

Liver Disease (NAFLD) Database Study.33 Participants in this prospec-

tive, longitudinal cohort were self-identified Hispanic adolescent

males with liver biopsies that met exclusion criteria ruling out other

contributors to NAFLD (n = 234). Only males were included in order

to limit heterogeneity in the sample.

Lastly, we assessed the evidence for association in our multi-ethnic

cohort, the Population Architecture using Genomics and Epidemiology

(PAGE) Consortium. PAGE participants without diabetes from the Ath-

erosclerosis Risk in Communities (ARIC) Study, the Coronary Artery Risk

Development in Young Adults (CARDIA) Study, the Multiethnic Cohort

(MEC) Study, the Hispanic Community Health Study/Study of Latinos

and the Women's Health Initiative (WHI) were included in the FI analy-

sis. The PAGE populations were genotyped in two ways: 21 430 partici-

pants with FI measurements were genotyped using the MEGA array,

and another 26 965 participants with FI measurements from ARIC,

CARDIA, MEC and WHI were previously genotyped using either
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Illumina or Affymetrix arrays within each individual study and imputed

to the 1000 Genome Phase 3 panel. Variants with an effective N within

study greater than 30 were tested for association with Blom-

transformed natural-log transformed FI, adjusted for age, sex, age-sex

interaction, self-reported race/ethnicity, study center, the top 10 PCs

for genetic ancestry, and BMI (in secondary analyses). Association ana-

lyses for each study were performed using SUGEN.27 Subsequently,

fixed-effects models with inverse variance weighting were used to pool

study-specific SNP effect estimates and their SEs by race/ethnicity,

using METAL.34 After QC, data were available for validation analysis of

rs77465890 for 44 280 PAGE participants, most of whom were of

European (n = 18 637), Hispanic (n = 14 270), or African (n = 7683)

ancestry and imputation information >0.8.

3 | RESULTS

3.1 | Descriptive statistics

After phenotypic and genotypic QC assessment, data were available for

543 SLS individuals (47.7% female) participating in the adolescent car-

diometabolic exam. Descriptive statistics are shown in Table 1. Impor-

tantly, given the young age of our study participants, none were classified

as T2D. Mean BMI was 23.8 kg/m2. FG was in the normal range (below

prediabetic levels of 100 mg/dl) for most participants (91.2%) and mean

FG was 88.44 mg/dl (SD = 9.78). Mean FI was 8.11 μUI/dl (SD = 5.57),

and mean HOMA-IR was 1.80 (SD = 1.34). PCs of ancestry revealed

admixture in the sample, with ancestry most closely resembling European

(CEU), Colombian (CLM), Mexican American (MXL), and Puerto Rican

(PUR) reference populations from the 1000 Genomes Project35 (Figure 1).

3.2 | Genome-wide association study

We identified one novel locus with genome-wide significant evidence

for association with FI (β = −0.299, SE = 0.054, p = 2.72×10−8) at

rs77465890 (effect allele frequency = 0.10) on chromosome 8, positioned

within the CUB and Sushi Multiple Domains 1 and Sushi Multiple

Domains 1 gene (CSMD1). We also identified 24 FG and 14 FI loci with

suggestive evidence of association (p < 5×10−6) (Table 2). The top variants

for two of the suggestive FG loci (rs28589776 and rs147515244) were

within the 1 Mb region of previously reported GWAS-significant variants

(rs770828522 r2 = 0.0009 and rs14339976736 r2 = 0.0007, respectively in

the 1000 Genomes AMR population). Conditioning on these known vari-

ants did not materially change the effect estimates; β changed from

−11.561 (p = 3.49×10−6) to −11.351 (p = 5.00×10−6) for rs28589776,

and from 6.727 (p = 1.27×10−6) to 6.724 (p = 1.29×10−6) for

rs147515244. Both rs28589776 and rs147515244 (Bonferroni-corrected

significance level = 0.05/3383 = 1.48×10−5 and 0.05/3619 = 1.38×10−5,

respectively) represent significant evidence for allelic heterogeneity in

well-known glucose loci. None of the top FI variants was within the 1 Mb

region of previously reported GWAS-significant variants for these traits.

HOMA-IR results are provided in the supplement (Table S1).

3.2.1 | Sensitivity analysis

Results from the main analysis remained similar after adjusting for

BMIz (Table S2). No associations reached GWAS-significance; how-

ever, the GWAS-significant variant from the unadjusted analysis

(rs77465890) remained the most significant variant for FI (β = −0.252,

SE = 0.047, p = 1.03 × 10−7) after BMIz adjustment. Three more of

the FI variants were still suggestive after BMIz adjustment, and

15 additional FI variants achieved suggestive significance after BMIz

adjustment that had not reached this threshold before adjustment. All

24 of the original suggestive FG variants and one additional variant

were also suggestive for FG after BMIz adjustment. A well-known

concern of adjustment for highly correlated variables is collider

bias.37,38 For this reason, analyses adjusting for BMIz should be inter-

preted with caution.

TABLE 1 Characteristics of Santiago Longitudinal Study
participants (n = 543) at adolescent assessments

Characteristic n (%) or mean (SD)

Female 259 (47.7)

Age (years) 16.8 (0.3)

Body mass index (BMI) (kg/m2) 23.8 (4.6)

BMI Z-scores 0.53 (0.99)

Fasting glucose (mg/dl) 88.44 (9.78)

Fasting insulin (μUI/dl) 8.11 (5.57)

HOMA-IR (glucose × insulin/405) 1.80 (1.34)

Note: No participants were considered diabetic or on treatment for

diabetes at this time.

F IGURE 1 Principal components of ancestry for study sample of
Santiago Longitudinal Study (SLS) participants plotted with reference
populations from the 1000 Genomes project. (Chile: SLS participants;
CEU: Utah residents with Northern and Western European ancestry;
CHB: Han Chinese in Beijing, China; YRI: Yoruba in Ibadan, Nigeria;
CLM: Colombians from Medellin, Colombia; MXL: Mexican ancestry
from Los Angeles, USA; PUR: Puerto Ricans)
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3.3 | Known loci generalizations

Table 3 reports the six variants that generalized from 78 known FG

variants in 43 loci at nominal significance level (p < 0.05) and with a

consistent direction of effect as previously reported. Two of these

variants were positioned near one another in the glucose-

6-phosphatase catalytic subunit 2 (G6PC2) gene on chromosome

2. No known variants for FI (out of 32 known FI variants in 22 loci)

TABLE 2 Top independent signals in the Santiago Longitudinal Study for fasting glucose and fasting insulin

Trait Gene/nearest gene* SNP CHR BP EA/OA EAF β SE p

GWAS-significant loci (p < 5 × 10−8)

FI CSMD1 rs77465890 8 3 628 570 C/T 0.10 −0.299 0.054 2.72E-8

Suggestive loci (p < 5 × 10−6)

FG RP11-147G16.1* rs10157848 1 82 996 068 C/G 0.96 7.241 1.578 4.00E-6

LOC101927665 rs6748653 2 200 528 810 T/A 0.21 3.025 0.643 2.57E-6

AC010149.4* rs113214710 2 231 442 593 T/G 0.07 −5.021 1.097 4.75E-6

AC009223.2* rs138154342 2 41 452 492 G/A 0.01 −14.366 2.974 1.37E-6

GBA3 rs79399931 4 22 714 327 A/C 0.02 −11.391 2.298 7.20E-7

UCHL1-AS1 rs66475765 4 41 230 618 T/C 0.03 −8.212 1.770 3.51E-6

CCSER1 rs79947031 4 91 829 969 C/T 0.11 4.110 0.882 3.19E-6

RP11-541P9.3* rs189776108 5 162 420 388 T/C 0.05 5.880 1.283 4.63E-6

ZBED3-AS1 rs28589776 5 76 406 470 T/C 0.01 −11.561 2.492 3.49E-6

DCBLD1 rs117533208 6 117 855 911 C/T 0.02 10.537 2.289 4.14E-6

MAN1A1 rs62418805 6 119 508 342 C/T 0.32 3.054 0.602 4.00E-7

AC004535.2* rs141226872 7 10 748 548 G/A 0.01 12.042 2.622 4.38E-6

RPL7* rs12546395 8 74 194 405 A/T 0.62 −2.569 0.533 1.46E-6

SLC24A2 rs79818403 9 19 669 933 T/C 0.01 14.970 3.080 1.17E-6

WNK2 rs147515244 9 96 046 087 A/T 0.05 6.727 1.389 1.27E-6

RP11-432B10.1* rs7476984 10 109 170 924 A/G 0.40 2.826 0.540 1.65E-7

AL157931.1* rs117292932 13 23 574 827 A/T 0.02 10.006 2.066 1.28E-6

RTN4RL1 rs11656601 17 1 924 911 T/C 0.25 −3.509 0.731 1.56E-6

ATP9B rs7226934 18 76 904 665 C/T 0.16 3.354 0.729 4.21E-6

NLRP12* rs139295665 19 54 336 151 A/G 0.01 −17.046 3.621 2.50E-6

RP11-560A15.4* rs6092424 20 55 672 544 A/G 0.49 −2.659 0.534 6.22E-7

TAF4* rs6061420 20 60 654 074 G/A 0.07 −6.014 1.274 2.35E-6

RP5-839B4.8* rs80352176 20 9 952 118 G/A 0.09 −4.991 1.038 1.54E-6

PARVG* rs139198 22 44 606 772 C/T 0.22 3.036 0.662 4.60E-6

FI NFIA rs7535730 1 61 871 356 G/A 0.18 0.225 0.046 1.00E-6

NCKAP5 rs528181067 2 134 374 835 A/T 0.01 −0.776 0.164 2.31E-6

IQCB1 rs2331964 3 121 542 898 C/T 0.67 0.166 0.036 4.14E-6

RP11-769 N22.1* rs184687999 4 29 046 057 C/T 0.05 0.382 0.082 3.12E-6

SPEF2 rs2361394 5 35 800 547 G/A 0.08 0.298 0.064 3.43E-6

CSMD1* rs35051650 8 4 859 203 A/C 0.13 0.248 0.052 1.60E-6

AKR1C3 rs117400599 10 5 143 717 G/T 0.04 0.443 0.091 1.27E-6

PTPRO rs7315300 12 15 610 293 A/T 0.24 0.207 0.040 2.12E-7

RCOR1 rs12884198 14 103 155 465 A/G 0.02 0.801 0.147 5.58E-8

LOC727924 rs181412737 15 22 367 512 C/T 0.01 0.766 0.167 4.35E-6

MCTP2* rs12441824 15 94 738 631 A/G 0.48 −0.232 0.043 7.12E-8

CNTNAP4 rs62051249 16 76 459 093 A/G 0.02 0.659 0.143 4.39E-6

TIAM1* rs2833275 21 32 489 757 T/C 0.62 −0.170 0.037 4.45E-6

CTA-992D9.7* rs4820743 22 27 512 801 T/C 0.78 0.189 0.041 4.71E-6

*Refers to the genes that the variant is near but not actually in. Abbreviations: BP, base pair position (hg19 build); CHR, chromosome; EA, effect allele;
EAF, effect allele frequency; FG, fasting glucose; FI, fasting insulin; OA, other allele; p, p-value; SE, standard error; SNP, single nucleotide polymorphism; β,
beta coefficient.
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generalized in our cohort. Our look-up of all known FG and FI loci that

did not generalize in our cohort is reported in Tables S3 and S4,

respectively. While two of the FG variants (rs13387347 and

rs13179048) reported in Table S3 displayed nominal statistical signifi-

cance, the effect was directionally inconsistent.

3.4 | Validation results

Many of our top signals were not present at high enough allele counts

in the MAGIC or NASH studies. We did observe directional consis-

tency in 6 of 11 FG variants and 5 out of 9 FI variants that were avail-

able in these studies (Table S5). None of these results, however, was

nominally significant.

We did not validate our genome-wide significant finding for the

rs77465890 FI association in the PAGE study overall or by race/eth-

nicity stratified analyses (Table S6). Although we identified a

directionally consistent effect in the African ancestry, Hispanic ances-

try, and overall group (with and without BMI adjustment), these asso-

ciations were not statistically significant. Because the HOMA-IR trait

was not readily available in PAGE, we did not evaluate it for associa-

tion with rs77465890.

4 | DISCUSSION

The discovery of genetic mechanisms influencing glycemic traits has

the potential to identify important pathways to disease pathogenesis

and therefore for disease prediction, prevention and treatment. Yet,

the bulk of genetic epidemiological research has focused on European

ancestry middle-aged adults, with very few genetic studies of ances-

trally diverse, admixed populations.44 It is important to include under-

represented groups in genetic studies, not only because they often

have a higher disease or risk factor burden than their European ances-

try counterparts, but also because they may have variants that are

simply not present at high enough frequencies in European

populations to detect meaningful associations. There is also little

understanding of how genetic effects vary across the life-course.

Although some studies have shown that the influence of genetic vari-

ation changes with age for other traits like leptin,45 BMI,46,47 and

gene-environment interactions between physical activity and FI,48

ours is the first study to our knowledge to identify a novel FI locus in

a Chilean sample during adolescence.

Here, we demonstrate novel effects for glycemic traits in a young

H/L population living in Chile, a country with high T2D prevalence.

We identified a novel locus for FI with rs77465890 on chromosome

8. The effect allele for this SNP was present at a frequency of 0.10 in

our study participants, comparable to that in the AMR population

(0.11); the effect allele frequency was much lower in AFR (0.016) and

EUR (0.0099) 1000 Genomes reference populations,49 perhaps

explaining why this variant's association with FI has not been previ-

ously identified. BMIz appeared to slightly attenuate this association

(with β values changing by approximately 15% after BMIz adjustment).

However, this SNP remained the most statistically significant signal

for FI, showing that this association is not mediated by BMIz alone.

Although we did not validate this locus in adult participants of the

PAGE study with statistically significant results, we demonstrated

directionally consistent β values in the Hispanic and African ancestry

strata and overall PAGE group. Rs77465890 is positioned within an

intronic region of CSMD1, a large gene spanning approximately

2 Mb.50 The biological function of CSMD1 is unclear; it has been asso-

ciated with several diseases (including smallpox and benign adult

familial myoclonic epilepsy), as well as potentially serving as a sup-

pressor of squamous cell carcinomas, although evidence is con-

flicting.50-53 Based on sequence orthology evidence from the Gene

Ontology Resource, CSMD1 may also be involved in glucose homeo-

stasis.54 Furthermore, Csmd1 knockout mice display a complex neuro-

psychological phenotype also characterized by increased weight gain

and lower glycemia after glucose challenges compared to wild-type

mice.55 This provides support for the biologic plausibility of our results

TABLE 3 Loci reported in other studies to have GWAS-significant associations with fasting glucose that were generalized in the Santiago
Longitudinal Study at nominal significance (p < 0.05) and with the same direction of effect

Gene/nearest gene* SNP PMID CHR BP EA/OA EAF β SE p

G6PC2 rs492594 2562528239 2 169 764 176 C/G 0.60 1.262 0.545 0.021

rs560887a 19060907,40 20081858,29 28270201,36 2 169 763 148 C/T 0.83 2.233 0.694 0.001

LOC101929710 rs6234 25625282,39 5 95 728 974 C/G 0.18 −1.627 0.730 0.026

GCK rs2908290b 28905132,21 7 44 216 137 A/G 0.38 1.193 0.541 0.027

MTNR1B rs10830963 20081858,29 11 92 708 710 G/C 0.20 1.685 0.681 0.013

C2CD4B* rs11071657 20081858,29 15 62 433 962 G/A 0.53 −1.106 0.540 0.041

Abbreviations: BP, base pair position (hg19 build); CHR, chromosome; EA, effect allele; EAF, effect allele frequency; OA, other allele; p, p-value; PMID,

Pubmed ID for previously reported association; SE, standard error; SNP, single nucleotide polymorphism; β, beta coefficient.

*Refers to the genes that the variant is near but not actually in.
aPublished findings for GWAS-significant associations for this SNP were inconsistent. One publication showed an opposite direction of effect from what we report

in the table (PMID: 2258122841), and two others (PMID: 1845126542 and 1906091043) reported the effect of a third allele (A) at this position instead of C or T.
bThe direction of effect was consistent with the transethnic meta-analysis and in most population subgroups in this publication (AA, H/L and ASN) for this

association, but opposite direction of effect from the AI/AN subgroup.
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for this locus. Neither rs77465890 nor the 18 variants in highest LD

with it (LD ≥ 0.6 in AMR populations in HaploReg v4.156) were

reported in the GTEx Portal to have any eQTL or splice QTL effects,

although the majority of study participants are European ancestry in

GTEx.57

In addition to the GWAS-significant variant in CSMD1, we identi-

fied several other variants that displayed suggestive evidence for an

association with our traits. We also potentially identified novel sec-

ondary signals in two well-established loci for FG. Some of the sug-

gestive SNPs are located in genes with potential biological relevance

to our traits of interest. According to the GeneCards Human Gene

Database, the Glucosylceramidase Beta 3 gene (GBA3) on chromo-

some 4 is involved in galactose metabolism pathways; the Solute Car-

rier Family 24 Member 2 gene (SLC24A2) and the WNK Lysine

Deficient Protein Kinase 2 gene (WNK2) on chromosome 9, and the

ATPase phospholipid transporting 9B gene (ATP9B) on chromosome

18 are involved in transport of glucose and other sugars.50 Thus, repli-

cation for these suggestive signals is warranted. Interestingly, the vari-

ant on ATP9B was one of those showing the same β direction in the

NASH validation.

Six associations for previously reported FG variants generalized in

our cohort (Table 3). Although none was GWAS-significant, they dis-

played consistent direction of effect and may be involved in a biologi-

cal process that affects the FG phenotype. In contrast, many of the

published FG and FI SNPs did not generalize in our cohort at a nomi-

nal level of significance (p < 0.05). Our small sample size was most

likely the deterministic factor, but other possible reasons include

ancestry and/or age specific differences, and unique patterns of gene-

gene and gene-environment effects.

The systematic evaluation of previously reported loci in our Chil-

ean study revealed heterogeneity of allelic effects between H/L and

European ancestry populations. We identified two FG loci with signifi-

cant evidence for allelic heterogeneity. At the WNK2 locus on chro-

mosome 9, the A effect allele at rs147515244 is found at 5%

frequency in our Chilean population and is monomorphic in all other

populations listed in dbSNP.58 This finding demonstrates the impor-

tance of GWAS discovery in ancestrally diverse populations, especially

given that this locus is already known. In contrast, the T effect allele

at rs28589776 is found at 1% in our Chilean data but is similarly rare

in other reported populations in dbSNP (T allele in EUR = 2%;

AFR = 3%).58 Thus, given the rarity of this SNP, it would likely be mis-

sed by GWAS in Europeans as well. Taken together, the consideration

of non-European populations in GWAS discovery is critical for us to

obtain a more complete picture of the genetic architecture of glyce-

mic traits.

Our sample size limited the power to detect the small effects that

have been mapped for glycemic traits. Despite this limitation, we were

able to generalize previously reported loci, identify novel secondary

signals in known loci and identify a novel locus for FI. We were also

limited to the glycemic traits that were measured (FG and FI) or

derived from these traits (HOMA-IR). Including other phenotypes,

such as 2-h plasma glucose as part of an oral glucose tolerance test,

may have provided more comprehensive results but were not

measured in the SLS. Another study limitation is that HOMA-IR,

which is calculated from FG and FI measurements, is not necessarily a

precise measurement of insulin resistance, since it cannot differentiate

between increased secretion by pancreatic beta cells or decreased

clearing of insulin, either of which could increase the HOMA-IR

value.59 However, HOMA-IR shows reasonably good correlations

with insulin resistance indices derived from both oral and intravenous

glucose challenges, or the euglycemic-hyperinsulinaemic clamp.60 The

euglycemic-hyperinsulinaemic clamp would provide more information

but is more invasive and impractical in epidemiologic studies, was

therefore not used in SLS participants. For this reason, our primary

analysis considered two traits (FG and FI) but additionally provided

HOMA-IR results in the supplement as a courtesy for those inter-

ested. The glycemic traits considered herein are a strength to our

study in that they are clinically relevant, commonly utilized, and

allowed for comparisons of our results to those of other studies. An

important inclusion criterion for the original SLS parent study was

birth weight > 3 kg; since low birthweight has been associated with

increased risk of T2D later in life,61 it is possible that excluding those

infants with low birth weight could have affected our results.

In conclusion, our study of H/L adolescents identified a novel

locus significantly associated with FI. Our study findings demonstrate

the importance of expanding genetic epidemiological studies to

include populations with diverse genetic ancestry that have been tra-

ditionally underrepresented in research. Since most GWAS focus on

adults rather than adolescents, we also demonstrate the importance

of including younger study populations that might show genetic

effects that vary with age.
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