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Preliminary Thermoluminescent Dosimeter GlowCurve Analysis with AutomatedGlow
Peak Identification for LiF:Mg,Ti

Jack H. Thiesen, Jeremy M. Hepker, Wenjin Yu, Keegan D. Pombier, and Kimberlee J. Kearfott1
Abstract—When appropriately analyzed, thermoluminescent do-
simeter glow curve analysis allows for improved quantification
of thermoluminescent material behavior while flagging abnor-
malities. Themathematical separation of a glow curve into contri-
butions from energetically unique trap states, or glow curve
analysis, may be used to remove undesired effects of signal fading
for complex materials. A generalized glow curve analysis software
for the separation of glow curves is presented in this paper. Writ-
ten in C++, the software uses the first-order kinetics model with
automatic peak identification. The automatic identification of
peaks is achieved through a unique peak-finding algorithm. The
program was performance tested using experimental glow curve
data from LiF:Mg,Ti, and comparative results are presented.
Health Phys. 120(00):000–000; 2021
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INTRODUCTION

THERMOLUMINESCENT DOSIMETERS (TLDs) are broadly used
for environmental and external personnel radiation dosim-
etry. The thermoluminescence (TL) properties of many
materials are known. Analysis of the behavior of TL mate-
rial benefits from the separation of individual glow curves
of the emitted TL spectra called glow curve analysis
(GCA). Glow curve analysis is also useful for quality con-
trol, neutron-gamma dosimetry, and surface dose estimation
(Horowitz and Moscovitch 1986; Horowitz and Yossian
1995; Basun et al. 2003).

While the exact mathematical function of TL spectra is
a subject of debate, many GCA programs have been written
using the first-order kinetics model (Moscovitch et al. 1983;
Lilley andMcKeever 2000). The first-order kinetics model is
often fit to experimental data using the Levenberg-Marquardt
algorithm (LMA) (Kitis et al. 1998; Harvey et al. 2011). The
earliest GCA codes were developed using programming lan-
guages, but more recent work employed mathematics parsing
platforms such as MATLAB. Mathematics parsing platforms
are difficult to integrate into portable embedded systems.Most
importantly, the overwhelming majority of GCA programs
require the manual input of initial peak-fitting parameters.
This approach is susceptible to convergence failures and er-
rors, turning the process of creating accurate glow curves into
more of an art form than a science.

This paper presents a new Glow Curve Analysis (GCA)
software that automates the identification and fitting of indi-
vidual glow peaks for TLD eliminating human intervention.
The code is based on the first-order kinetics model because
of its simplicity and universal application. The fitting is
implemented using the Levenberg-Marquardt algorithm
because of its stability. The program’s performance on a
variety of TLD input is presented. Additionally, the GCA
software in this paper uses only C++ and its standard librar-
ies, ensuring portability.
METHODS AND MATERIALS

Physics methods
First-order kinetics model.Models explaining the na-

ture of TL glow curves have been developed with parame-
ters determined using experimental data for many TLD
materials. A first-order kinetics (FOK) model for TL glow
curves is (Kitis et al. 1998):
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where I(T) is the peak intensity I at temperature T in K, Im is
the intensity at the peak maximum, E is the activation en-
ergy in eV, k is Boltzmann constant in eV K−1, and Tm is
the temperature at the peak maximum in K, D is 2kT(E)−1,
and Dm is 2kTm(E)

−1.
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Activation energy. The activation energy, E, is approx-
imated as (Chen 1969):

E ¼ Ct
kT2

m

t
−b 2kTmð Þ; ð2Þ

whereCt is1.5+[3� (mg)−0.42];bis1.48+[4.2� (mg)−0.42];
mg is

wl
wr
, where wl and wr are the half-width at the low tem-

perature side of the peak; and the half-width toward the fall
of the glow peak, respectively, t is T2 − T1. The first-order
kinetics model parameters are shown explicitly in Fig. 1.

Software methods
Overview. The GCA software in this paper is written

for C/C++17 (ISO Standard 2017). C++ was chosen for its
quick processing speeds, cross-platform compatibility, and
lightweight distribution. This software utilizes the Standard
Template Library (STL). The software accepts a directory of
comma-separated values (CSV) files as input. This is a popu-
lar format for TLD readers, and file conversion to CSV is eas-
ily achieved. The software consists of a five-stage process:
batch file handling, data noise reduction, automated peak
detection, curve fitting, and output. This process flow is vi-
sualized in Fig. 2. Additionally, the software offers the user
the option to input initial peak values, which will override
the automated peak detection portion of the code.

Time complexity. In this paper, the time complexity
(sometimes called the “complexity”) of various algorithms
will be given approximately. The time complexity of an al-
gorithm or program is defined as how many operations are
performed before completion, sometimes as a function of
the input. Thus, the time complexity is an effective method
of measuring the speed of a function or of a program as a
whole (Cobham 1965).
Fig. 1. The parameters of the first-order kinetics model. IM is the
maximum intensity of the glow peak, and TM is the temperature at
which it occurs. T1 is the temperature where the left full-width half
maximum of the glow curve is found, and T2 is the temperature at
which the right full-width half maximum is located. E corresponds
to the activation energy of the glow peak, directly related to the width
of the full-width half maximum. The arrow below the activation en-
ergy is intended to indicate that this parameter determines the width
of the glow peak in the first-order kinetics model.
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Batch file handling. The GCA software begins by re-
questing user input of a directory containing the CSV input
files. Using the C++17 Filesystem library, the software ac-
cesses the number of CSV files present in the root directory
recursively and prompts the user to confirm its findings.
The files are then opened one at a time, with raw data saved
into the corresponding vectors. The time complexity of the
batch handling process implemented for this code is deter-
mined by the number of files, n, and the number of lines
in those files, m, for a time complexity of O(nm).

Data noise reduction. A preliminary analysis indi-
cated that data containing large amounts of noise or sudden
spikes in the signal caused convergence failure. As a result,
a number of smoothing methods were explored and tested.
The moving average smoothing algorithm was chosen to
smooth the data (Klopfenstein 1998). This average smooth-
ing algorithm averages values based on a variable number of
neighbors. In this implementation, the five nearest neigh-
bors are used. One iteration of the average smoothing algo-
rithm has a time complexity of O(n). A moving average
algorithm is then run iteratively five times, making the com-
plexity O(n5).

Automated peak detection. The most unique feature
of this GCA software is the automatic identification of glow
peaks and their associated fitting parameters. Historically,
this has been the step in GCA software that requires the
most human attention, requiring the researcher to analyze
individual spectra one at a time. A researcher would esti-
mate the temperature at each glow peak maximum and in-
tensity and then approximate the activation energy for
each of the glow peaks. The presented GCA software em-
ploys an automatedmethod for determining glow peak loca-
tions and fitting parameter estimates.

Peak detection through subtraction.The first attempt
at identifying glow peaks was based purely on the identifi-
cation of global maxima and subtraction of the globally
largest peaks from the signal. Preliminary results indicated
that this was not effective. Often, subtracted peaks were
found to be in the wrong location, resulting in too many
or too few identified peaks.

Peak detection through derivatives and subtraction.

Peak identification begins instead by finding all local maxima,
minima, and inflection points. These features are identified
using first and second derivatives of the input. Derivatives
are created in O(n) time using the one-dimensional five-
point stencil method (Mai-Duy and Tran-Cong 2013). The lo-
calmaxima and inflection points are then subject to an iterative
filtration process, eliminating any maxima or inflection points
resulting from noise. Next, all peaks remaining are passed
to the FOK model and subtracted from the original signal.
If the integrated counts after this subtraction are above a
sics.com
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Fig. 2. Flow chart detailing the process flow of the glow curve analysis software.
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threshold, the maxima, minima, and inflection points of the
remaining signal are again identified and vetted. Each suc-
cessively identified peak is passed to the FOK model and
subtracted from the remaining signal. This process is itera-
tively repeated until the remaining signal is reduced below
a threshold. Finally, the initial guesses for peak parameters
are then passed into the LMA.

Peak fitting using Levenberg-Marquardt algorithm

(LMA). The peak identification method described above
generates approximate peak parameters, similar to human
input. For analysis, these initial parameters must be refined,
presenting a non-linear least squares minimization problem.
LMA is a common solution to such problems and relies
heavily on matrix mathematics (Moré 2006; Bellavia et al.
2018). The software uses a modified iterative LMA, which
minimizes the error between the original emission spectra
www.health-phy
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and the summation of the fitted glow peaks. LMA is run it-
eratively until convergence is met or failure occurs due to it-
erative exhaustion.

Figure-of-merit. The chief metric used to assess the
goodness of a glow curve fitting is called the figure-of-
merit (FOM) (Balian and Eddy 1977; Bos et al. 1993). This
FOM is the average of the percent difference between the
fitted points and measurements, as given by:

FOM ¼
Xjstop
jstart

yj−y xj
� �

j

��� ���
A

� 100; ð3Þ

where jstart is the initial temperature in the fit region, jstop
is the ending temperature in the fit region, yj is the
photomultiplier tube (PMT) current at temperature j, y(xj)
is the value of the fit function at temperature j, and A is
sics.com
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the area under the peak for glow curves. The original pub-
lication on this FOM for GCA describes a “good fit” to
have a FOM less than 3% (Balian and Eddy 1977), while
others describe a “few percent” as a good fit (Horowitz and
Yossian 1995).

Output.Upon completion of the LMA algorithm, a list
of identified peaks and their respective curve areas are cre-
ated. The separated peaks are written to an output file in
CSV format and placed in an automatically created batch
output folder. The output file can be easily plotted. A batch
statistics file is also created, containing a list of information
pertaining to each input file, including sample barcode,
heating rate, FOM, total curve area, and a list of the areas
under each glow peak. This batch file is intended to allow
for the analysis of trends among samples.

Materials
Thermoluminescent dosimeters. The thermolumines-

cent dosimeters (TLDs) used in this paper were LiF:Mg,Ti
chips (TLD-100; ThermoFisher Scientific, Waltham, MA).
These chip-type TLDs have dimensions of 3.2 mm wide by
3.2 mm long by 0.89 mm high. A single set of 100 TLDs
was used to create all data in the time-temperature profile
and dose variation experiments. A number of historical
glow curves from LiF:Mg,Ti and CaF2:Dy (TLD-200) do-
simeters were used for the time complexity experiment de-
scribed below.

Thermoluminescent dosimeter reader. The Rexon
UL-320-FDR thermoluminescent reader (UL-320-FDR;
Rexon, Beachwood, OH) was used to obtain the glow curves
analyzed in this paper. This reader automates the TLD read-
out process through the use of contact heated planchets with
an infrared temperature feedback system (Kuchta et al.
2020). This TLD reader integrates photon counts over time
intervals of 0.1 s during heating for all measurements used
in this paper.

Irradiation process. An ~269 GBq 137Cs irradiator
(Model 28-8A Irradiator; J.L. Shepherd and Associates, San
Fernando, CA) that had been fully characterized (Boria et al.
2017; Mapes et al. 2018) and undergone thorough quality
control (Noey et al. 2021) was used for the experiment.
Doses ranging between 2.4 mGy and 30 mGy were delivered,
corresponding to irradiation times of 5.5 min to 68 min,
respectively. Dosimeters were irradiated on a standard 40-cm �
40-cm � 15-cm-thick polymethyl methacrylate (PMMA)
irradiation phantom (Parker et al. 2011) located at 1 m from
the source.

Personal computer. All results reported in this paper
were generated using a stock 2015 Macbook Pro (A1398,
Apple Inc, Cupertino, CA) running macOSCatalina version
10.15.7 using the Terminal application with clang version
www.health-phy

Copyright © 2021 by the Health Physics Society. Unau
12.0.0. All runtime measurements were taken using the on-
board real-time clock. The code was also tested and per-
formed equivalently on Windows and Linux systems.

GlowFit. A freely downloadable first-order kinetics GCA
software based on Levenberg-Marquardt minimization was
used to provide a point of comparison for the presented
GCA software’s performance. The software used for com-
parison is called GlowFit (Puchalska and Bilski 2006). It
was chosen for its pleasant graphical interface and ease of
download.
Experimental methods
Experimental motivation. For any piece of software,

it is critical to assess its performance under real conditions.
Two factors that cause variance in TLD output signals are
the dose applied and the heating rate used at readout. If a
lower dose is applied, the glow peaks have a lower intensity.
Conversely, if a higher dose is delivered, the peaks will have
a higher intensity. Furthermore, if a higher heating rate is
used, the glow peaks will appear to be closer together be-
cause TLD readers have a fixed sampling rate. The opposite
is true of lower heating rates. Thus, in order to test the GCA
program on the most diverse set of inputs, two experimental
datasets were created to test both of these factors.

Time-temperature profile variation experiment.

The first dataset was generated to test the GCA program’s
performance on a variety of heating rates. The set of 100
LiF:Mg,Ti chips were annealed at 400°C for 1 h in a bench-
top muffle furnace (Thermolyne Type 1300; ThermoFisher
Scientific, Waltham, MA). This set of 100 TLDs was then ir-
radiated on the phantom to an air kerma of approximately 15
mGy. The 100 TLDs were grouped into 10 sets of 10 TLDs,
and each set was then read out at differing time-temperature
profiles (TTPs). This process was repeated three times, repre-
senting 30 sets of 10 files. However, only 22 sets of 10 were
used for this analysis, representing 220 files. The TTPs used
in this experiment began with a 5 s increase to 40°C. Next, a
linear heating rate between 1°C s−1 and 6°C s−1 increased
the temperature to 250°C. All TTPs ended with a 5 s hold
at 250°C. Due to the variable readout length, the minimum
time between irradiation and readout was 10 min, and the
maximum time was 24 h. A mild correction was applied
to account for this. The reader settings during the experi-
ment were held constant throughout. The photomultiplier
tube high voltage was 1,200 V with a max dark current of
50 counts and a maximum light current of 1,000,000 counts.
Thermoelectric contact heating was employed, with a recom-
mended continuous flow of N2 gas with a pressure of 20 psi
used to decrease chemoluminescence and maintain a low
dark current for all measurements (Kuchta et al. 2020). The
resulting dataset of TLD signals was then processed using
sics.com
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the GCA software running on the MacBook Pro previously
described. This dataset was also fed to GlowFit for contrast.

Dose variation experiment. The second dataset was
generated to test the performance dependence on dose.
The same 100 TLDs were oven annealed as described
above. TLDs were then irradiated on the phantom in groups
of 10 for between 5.5 min and 68 min. These times corre-
spond to air kerma values between 2.4 mGy and 30 mGy.
The time between irradiation and readout was between
30min and 4 h. All readoutswere conducted under the same
TTP for this experiment. This TTP begins with a 5-s preheat
to 40°C, then a 155-s linear rise to 250°C, and finally, a 5-s
hold at 250°C. The reader settings described in the previous
section were used for this experiment also. As in the first exper-
iment, these files were used as a testing dataset for the GCA
program and also processed using GlowFit for comparison.

Time complexity motivation. During preliminary test-
ing, it was discovered that the runtime of the GCA software
has a strong dependence on three factors: the number of input
files, the length of the input files, and the noisiness of the in-
put files. Therefore, a dataset using a large number of files to
test the relation between file length and runtime was created.
The noisiness of a specific file was not measured or calculated
directly; however, files showing prohibitively long runtimes
were visually examined and removed from the dataset.

Time complexity experiment. A total of 2,377 input
files were used for the purpose of testing the average
runtime and time complexity of the GCA program. These
spectra were procured from the same TLD reader used in
the previous two experiments. These data come from a large
Fig. 3. The glow curve analysis program process flow, showing (a) initial
signal (light gray) and the input signal after smoothing (black), (b) the identif
(dark grey diamonds), (c) the first three identified glow peaks (black and dar
ference in signal (black) between the first three identified glow peaks and the
(e) the fourth identified glow peak (black), (f ) the remaining signal differenc
be below a set threshold; thus the peak identification algorithm terminates)
grey; these peaks are now passed into Levenberg-Marquardt algorithm for ite
signal (light grey), the fitted glow peaks, (grey) and their sum (black). The

www.health-phy
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number of experiments using a variety of reader settings and
TLDs. TLD-100 glow curves constitute 87% of this dataset,
with the remainder consisting of TLD-200. In this dataset,
TLDs received a variable amount of air kerma andwere read
out with a diverse assortment of TTPs. This dataset was run
only with the GCA program. First, the GCA software was
fed a variable number of files from the large dataset in
random order. Total runtimes were measured to determine
any relationship between the number of files input and the
total runtime. Second, the entire dataset was run, each file
runtime was measured, and the number of rows in the file
counted.
RESULTS

The total size of the GCA program accompanying this
paper is 339 kB, which is incredibly lightweight. Fig. 3 out-
lines the intermediate steps of the glow curve analysis soft-
ware. First, the initial signal is read into the software. Next,
the data are smoothed, as depicted in Fig. 3a. In Fig. 3b—f,
an example peak identification process is portrayed. These
figures include identification of local maxima and inflection
points, the initial identification of only three glow peaks,
and the signals remaining after subtraction of those identified
peaks. Fig. 3g shows the final output of the peak identifica-
tion process with all four commonly identified TLD-100
glow peaks correctly found (Harvey et al. 2011; Horowitz
andYossian 1995). Fig. 3h illustrates the GCA output follow-
ing LMA with well-fit glow peak output. The TL signal is
closely approximated by the summation of the separated
peaks with a FOM of 2.25%.
operation of the average smoothing algorithm with the original input
ied local maxima (light grey circles) and inflection points after vetting
k grey) after initial fitting parameters have been generated, (d) the dif-
original signal with the nearby inflection points and maxima (grey),
e (black) after the subtraction of the fourth peak (this signal is found to
, (g) four peaks recognized by the peak identification algorithm (dark
rative fitting), (h) the final program output depicting the original input
final fitting has a figure-of-merit of 2.25%.

sics.com
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Fig. 4. Fractional figure-of-merit among the 220 files used in the time-temperature profile variation experiment. The dark grey bars behave as bins
with a thickness of 1, containing FOM values within 0.5 of the number shown. Values are placed in the upper bin if the value is 0.4999 greater than
the bin number. One file having a FOM of 29.8% was omitted from this figure, it was determined to be a noisy outlier. Shown in light grey is the
cumulative percentage of files having FOM below selected values. Notably, 91% of the data has a FOM of 3.5% or lower.

6 Health Physics Month 2021, Volume 120, Number 00
Time-temperature profile (TTP) variation experiment
The glow curve analysis of the acquired signals using

the experimental method above was completed in less than
an hour with a 100% convergence rate. The peak identifica-
tion algorithm successfully located the four observed glow
peaks of TLD-100 for 97.7% of the input spectra. There
were five spectra for which the GCA program did not find
four peaks. Three spectra separated into five glow peaks,
and two spectra finished with three peaks. A minor modifi-
cation of the peak identification algorithm might resolve
this 2.3% misidentification rate. The average FOM was
2.6%. The FOMs ranged from 1.9% to 29.8%. This final
value is an outlier stemming from excessively noisy input
data. The next highest FOM is 9.8%, as shown in Fig. 4,
which details the distribution of FOM for the whole dataset
Fig. 5. Fractional FOM as a function of heating rate, demonstrating that the
mance and the TLD reader’s consistency.

www.health-phy
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without the highest outlier. It is notable that 91% of the
dataset has a FOM of 3.5% or less. The average FOM of
each group of 10 TLDs is plotted as a function of the linear
heating rate in Fig. 5. This result demonstrates that there is
no relationship between FOM and heating rate for the
GCA program. GlowFit also processed this dataset and pro-
duced an average FOM of 2.9% based on user-created ini-
tial guesses and ranges. GlowFit failed to produce any
output for the noisy outlier commented on previously. This
result is extremely close to the 2.6% average found by the
GCA software. This demonstrates that the GCA program
presented is comparable to other previously published GCA
programs of the same type. The low value of the average
FOM and high peak identification rate indicate that the
GCA software is very successful for TLD-100 at a dose of
heating rate does not affect the glow curve analysis software’s perfor-
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15 mGy, irrespective of the readout process. This experi-
ment effectively demonstrates the robustness of the GCA
software for variations in TLD-100 glow peak locations.
F7

F8
Dose variation experiment
The glow curve analysis of these 100 TLD spectra was

completed in under an hour with a 98% convergence rate.
The two files for which it did not converge contained sig-
nals below a set threshold for peak identification. The peak
identification algorithm correctly located four glow peaks in
68% of the spectra. It incorrectly found that 4% had two
peaks, 12% had three peaks, and 15% had five peaks. There
is a correlation between low doses and the number of peaks
identified, as shown in Fig. 6a, indicating that the peak iden-
tification algorithm should be modified to better assess air
kermas lower than 7 mGy. Above 7 mGy, there is no clear
correlation between dose and the number of peaks identi-
fied. The average figure-of-merit was 5.5%, with a mini-
mum FOM of 1.93% and a maximum of 25.21% (again a
noisy outlier). As dose varied from 2.4 mGy to 30 mGy,
the relationship between FOM and dose was graphed in
Fig. 6b. It is clear from this plot that below 7 mGy, there
is a correlation between FOM and dose. There may be a
weak relation between higher dose and lower FOM; how-
ever, such a statement is outside of the uncertainty interval
of this experiment. GlowFit produced an average FOM of
7.5% for this dataset. Again, the presented average FOM
of 5.5% compares well to this number. Based on these re-
sults, the GCA performs as intended above 7 mGy. How-
ever, it is not recommended that this GCA program be
used for TLD-100 at doses below 7mGywithout human in-
put. For doses above 7 mGy, this experiment definitively
shows the reliability of the GCA software for variations in
TLD-100 glow peak height.
Fig. 6. Results of the dose variation experiment. Shown are (a) the average
lationship between FOM and dose. It is notable that there is a dramatic drop i
little to no change in the number of peaks identified. As a result, the files b
identified, and at higher doses, the change in FOM is lower than the uncert

www.health-phy
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Time complexity experiment
The overall runtime of this program depends strongly

on the number of input files and input file length. For this
work, 2,377 CSV input files having an average length of
1,168 rows were processed. The distribution of input file
length is shown in Fig. 7a. The convergence rate was ap-
proximately 95%. The files that did not converge were
overly noisy and had a runtime that was prohibitively long.
For example, the Levenberg-Marquardt algorithm took more
than 39 min to run one iteration successfully on the signal
plotted in Fig. 7b. When visually examined, it is clear that
the data in these files is primarily resultant from non-TLD
phenomena. For this reason, this signal and others like it were
aborted during glow curve analysis. The average number of
peaks identified for this dataset was 3.87. Fig. 7c shows the
distribution of the number of files that presented between 1
and 8 glow peaks. Analysis of this distribution indicates that
the average number of glow peaks identified in the TLD-100
files was 4.1 peaks. Approximately 63% of the TLD-100 in-
put files successfully found 4 glow peaks. For the TLD-200
spectra, the average number of identified peaks was 2.5. This
clearly indicates that the peak identification algorithm is not
well calibrated for TLD-200. However, a large number of
these spectra are the result of aberrant readout conditions.
As a result, this does not measure the effectiveness of the
peak identification process properly. The average FOM of
this dataset was found to be 9.4%. A histogram of FOM is
shown in Fig. 7d. This distribution is multimodal, resulting
from the heterogeneity of the input. These results are pre-
sented only for reference; they are not suggested to demon-
strate the performance of the GCA software due to the
abnormality of the dataset.

The total runtime of the software is directly linear with
respect to the number of files input. This result is shown in
Fig. 8a. The average length of a file in this dataset is 1,168
number of discovered peaks as a function of the dose, and (b) the re-
n the number of peaks identified below 7 mGy. Above 7 mGy, there is
elow 7 mGy have higher FOM owing to the lower number of peaks
ainty.
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Fig. 7. Statistics regarding the challenging nature of the time complexity dataset, including (a) the distribution of the lengths of the input files in
terms of rows (the bars in this plot behave as bins with a thickness of 200 centered around the number given), (b) an example of a highly aberrant
signal that caused exorbitantly long convergence timewhen passing through the Levenberg-Marquardt algorithm, (c) the quantity of files for which
a certain number of peaks was identified (because the number of identified peaks are integers, there is no width to these bins), and (d) the distri-
bution of FOM over this large heterogeneous dataset (dark grey) with the cumulative percent of files at each bin (light grey). It is noted that such
a dataset would be inappropriately challenging for algorithm performance testing.
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rows, and the corresponding average runtime was fit to be
approximately 14.7 s with a standard error of 0.046 s. The
Levenberg-Marquardt algorithm dominates file runtime.
This is clearly demonstrated when the individual file runtimes
are recorded. Runtimes of files with the same length were
averaged to create Fig. 8b. The function describing the in-
crease in runtime is exponential with respect to the number
of rows. As previously mentioned, the GCA software proc-
essed TLD-100 and TLD-200 spectra differently. The prin-
cipal difference pertains to the number of identified and
therefore fit peaks. On average, TLD-200 spectra had 1.6
fewer identified peaks. Therefore, TLD-200 spectra are,
on average, processed faster than TLD-100 spectra due to
Fig. 8. The runtime of the program (a) as a function of the number of input
same length with trendlines added to guide the eye. The upper curve shows
lower curve displaying an exponential increase in runtime for CaF2:Dy spe
spectra, the black triangles primarily are resultant from CaF2:Dy spectra, an

www.health-phy
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fewer Levenberg-Marquardt steps. This is an important re-
sult, indicating that the runtime of any file is strongly linked
to the number of rows input as well as the number of glow
peaks being fit.
CONCLUSION

The GCA software tool described in this paper is the
first step toward fully-automated glow curve analysis. The
software is incredibly lightweight and is compatible with
all major operating systems running C++17. The GCA tool
is fast, with an average runtime of approximately 15 s for a
1,200-row input file. The runtime of the program depends
files, demonstrating a linear increase, and (b) averaged for files of the
the exponential increase in runtime for LiF:Mg,Ti spectra versus the
ctra; the black circular points are primarily resultant from LiF:Mg,Ti
d the grey squares are a mix of these spectra.
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linearly on the number of input files. The runtime of a spe-
cific file depends on the number of rows exponentially.
Runtimes also depend on the number of glow peaks being
fit per file and the noisiness of the input files. The output
quality is comparable to those produced by other available
GCA software. The GCA program has a 98% correct peak
identification rate for TLD-100 at 15 mGy, independent of
the readout heating rate. This software is not recommended
for use at doses below 7 mGy without human input. This
code presents a framework for future research and improve-
ment in fully-automated peak identification.
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