Adaptive and maladaptive expression plasticity underlying herbicide resistance in an
agricultural weed.
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otypic responses to environmental change are common, yet we lack a clear

ot the fitness consequences of these plastic responses. Here, we use the evolution of
herbicideresistance in the common morning glory (Ipomoea purpurea) as a model for understanding the
relative importance of adaptive and maladaptive gene expression responses to herbicide. Specifically, we
compare leg gene expression changes caused by herbicide to the expression changes that evolve in

response t selection for herbicide resistance. We identify a number of genes that show plastic

and evolved es to herbicide and find that for the majority of genes with both plastic and evolved

responses, g§ponses appear to be adaptive. We also find that selection for herbicide response
increases genc expression plasticity. Overall, these results show the importance of adaptive plasticity for
herbicide r n a common weed and that expression changes in response to strong environmental
change can ive.

=

Impact stateme

Predicting whether and how organisms will adapt to environmental change is a crucial goal.

However, thisg@@al can be complicated because environmental change can alter traits, in a process called
“& tent and fitness consequences of plasticity will have important effects on the adaptive

process. In tht , we use adaptation to herbicide in the agricultural weed, the common morning
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glory, as a model for understanding the extent and fitness consequences of plasticity in gene expression.
We find evidence that gene expression plasticity is adaptive in the presence of herbicide, suggesting that
understanding plasticity is crucial for understanding how organisms adapt to new environments.

Introducti

D ctemmimimg the fitness consequences of plastic responses is crucial for predicting response to
selection [1=understanding the maintenance of variation for phenotypes [2], and breeding plants for new,
challenging ents [3,4]. Theoretical and empirical evidence show that environments that fluctuate
predictably g sucl¥a way that there is no optimum phenotype across time will favor adaptive plasticity
[5,6]. Plasti es that reduce fitness, or ‘maladaptive plasticity’, can occur when stressful
environments oyerwhelm organisms’ ability to maintain fitness [5] or new environments expose cryptic

0
S

variation, a yptic variation can also be beneficial [7]. The presence of adaptive plasticity can

allow popu persist in the face of stressful conditions, [8] and either reduce the strength of

selection b additive genetic variation or contribute to adaptation in novel environments [9].
Whether or not adgtive plasticity will facilitate or constrain genetic responses to selection depends on
how close ic response gets individuals to the optimum phenotype [5]. However, despite the clear
importance, angling adaptive from maladaptive plasticity, we lack a clear view of how the plastic
responses afect fitness [5,10-12]. In particular, despite hypotheses and evidence that gene expression

changes underlie many plastic responses in traditional phenotypes, the fitness consequences of gene

expression mare unknown [13,14].
A nuInb€of approaches have been used to describe the fitness consequences of plasticity. For

exampl s have measured fitness in organisms where a specific plastic response has or has
not been indu evaluate whether the plastic response increases fitness in the environments that
induce it > However, many plastic responses, including expression level, are not amenable to these

types o
comparing the fitness of genetically distinct individuals that exhibit different levels of plasticity, if there is

s. An alternative approach to understanding the fitness consequences of plasticity is

natural gengtic variation for plasticity [17-21]. In this study we focus on an alternative approach that

allows us t lly investigate gene expression variation, since it is a crucial component of plastic
responses.

He termine whether plastic changes in gene expression are adaptive or maladaptive by
comparing i ression changes elicited by an environment with the expression changes that evolve

during adapation to that environment. If plasticity is adaptive and increases fitness in the new

environ ection of plastic responses is expected to match the direction of evolved responses.
Alternat%icity is maladaptive, we expect plastic responses to be opposite that of adaptive
responses. Previous applications of this approach have found that plastic expression changes tend to be
maladaptive in gupRy brain expression response to predation environments [22] and Drosophila gene
expression to diet [23]. An analysis of the previously mentioned guppy study along with studies
trom Escherichia coda

nd yeast also found a preponderance of maladaptive expression plasticity [24,25].
proach has not been widely applied beyond these few studies.

cially evolved glyphosate-resistant lineages of the common morning glory, Ipomoea
purpurea, as a model for examining the fitness consequences of plastic changes in gene expression. There
is a long history of using pesticide resistance evolution as models for adaptation [26,27] and the fitness
costs of adaptation [27-29] but there is a significant gap in our understanding of the role of plasticity in

shaping resistance evolution. Resistance to glyphosate (i.e., the active ingredient in the herbicide
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RoundUp) can involve either ‘target-site’ or ‘non-target site’ mutations [30]. In the former case, the genes
that are the target of the herbicide contain mutations that lead to resistance whereas in the latter case any
other gene that is not the target of the herbicide may be involved [27]. Non-target site resistance can be a

subset o“stic responses to abiotic stress and often involves multiple genes [31].

T
the role of 4

n morning glory provides an excellent study system for examining questions about
us maladaptive plasticity on the process of herbicide resistance evolution. Natural
populatians of L purpurea vary in the level of glyphosate resistance [32], with non-target site herbicide
resistance tlae most likely explanation for resistance in this species [33]. There is strong evidence of fitness
costs associ il resistance in L. purpurea, which is consistent with the idea that resistance incurs a
trade-off [34685]. ldowever, the specific role of plasticity in resistance evolution in I. purpurea, or any other
weedy species is unknhown.

In
increased h@rbi€ide

, we used seeds from an experimental evolution experiment designed to select for
sistance in plants descending from a single population [35]. Unlike previous studies
that used thisTappfoach, the population these plants were collected from did occasionally experience the
new enviro rbicide treatment and displayed additive genetic variation for resistance. However,
despite pasm ce of herbicide, artificial selection for resistance did successfully increase survival in
herbicide treatments [33]. We compared leaf transcriptomes of plants from the experimentally evolved
resistant ht@ from control, non-evolved lineages that were exposed to glyphosate along with

rephcates o ection line that were not treated with the herbicide. We used these transcriptomes to

o gplastic expression responses to glyphosate aligned with the expression changes that

tion for resistance. We also investigated whether selection in the herbicide

environme fl increased plasticity. Overall, our results demonstrate a preponderance of adaptive
gene ex ticity in response to herbicide and that selection for increased resistance increases
plasticity.

Methods

Study W‘WL

wrea (L.) Roth (Convolvulaceae) is a short-lived annual vine with a relatively rapid
ne

Ipo

generation planted seed to producing seed within six weeks [36]) that is typically found
growing on roadsides and in agricultural settings or areas of high disturbance [37]. Native to the central
highlands exico [38], this noxious invasive is found in every state within the US but it is particularly
trouble ricultural fields within the southeast and Midwestern US [32]. It has a mixed-mating

system (avige ou'rossing rate = 0.5) with outcrossing rates that vary from highly selfing to highly

outcrossingracross populations [39].

s used in the experiment descended from a single population at the previous site of the
University of Gedf@la Plant Sciences Farm in Oconee, GA in 2000. We haphazardly sampled seeds from
122 maternal individuals at approximately every 1 meter on a transect in this population. The offspring of
this sample (Generation 0 or GO) were screened for high or low glyphosate resistance in a greenhouse

[40] and the offspring of the top 20% highly resistant lines (24 families) were used to be the parents for
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two resistant selection lines (12 parents each) and 24 parents were randomly chosen from the whole
population to be the parents of two control lines. Individuals from each set of parents were grown up
(Generation 1 or G1) and another generation of artificial selection was performed in the resistant
selectiong i “family selection” design by propagating siblings of the individuals in the top 20%
of herbicide resistance in the population. Random individuals within each control line were chosen for
the next geenerate Generation 2 or G2 seeds. Another identical round of selection was
performed gamdividuals to generate G3 progeny. In all crosses, individuals were used as both the

pollen agg gjjadegpasient. See [35] for additional details. In a field trial, G3 plants from the resistant lines
had higher Srvival than control lines after hetbicide treatment [35].

Aftgmthaficld screening of G3 seeds, the 3 most resistant families were chosen from each of the
selection lifes and d@eds from the G2 parents of these six families were crossed to each other (across
lines) to gene utcrossed seeds and crossed to themselves to generate selfed seeds. The same
procedure mto generate seeds from the G2 control parents.

Expmmmi

0 replicate seeds from each maternal line into two blocks and two treatments
(herb1c1de no herbicide) in a randomized block design in a fenced one acre agricultural field at the
Matthaei B ardens (MBGNA) at the University of Michigan in the spring of 2015. There are no
natural L p 1v1duals anywhere on or surrounding MBGNA. Throughout the experiment, we

watered pla needed to prevent wilting. After 6 weeks of growth, we applied 0.84 kg ai/ha
glyphosate (sigh®higher than 2 the suggested field dose of 1.54 kg ai/ha) to the plants in the herbicide
treatme » sprayer. We used a relatively low level of herbicide to cause stress but avoid killing
the plants.

leaf tissue from seeds at two time points post-herbicide application: 8 and 32 hours

after spraying. Within each time point we randomly chose two individuals per family (one replicate

in liquid ni 1 tissue at a given time point was collected and frozen within one hour.

individual gtii erated from selfing and one from outcrossing per maternal line) and froze 1-2 young leaves

Transcriptome neration

sttracted RNA from leaf tissue with Qiagen RINAeasy kits. We individually indexed libraries
using th Useq96 indexer mRINA stranded kit. Pooled libraries were run on 7 lanes of 50bp,
single e i on the Ilumina HiSeq 4000 resulting in an average of 28 million reads per
individuals.

Wemingle-end (1x52nt) adapter-trimmed Illumina RNA-seq reads separately for all

oea purpurea v 2.0 genome [41] using the splice aware STAR aligner in its basic two-

enome annotation for STAR was generated using GATK's CreateSequenceDictionary
Is' v1.3 faidx function [44] and STAR's genomeGenerate option together with an
Augustus-derive I3 annotation [45] provided with the v.2.0 assembly. The resulting sorted bam
alignment files were used for measuring RNA-seq digital gene expression using the provided GFF3 gene

annotation and the featureCounts tool in the SubRead package [40].
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Homologs in A. thaliana were found based on protein homology (TAIR10 v.20101214,
https:/ /www.arabidopsis.otg/download_files/Proteins/TAIR10_protein_lists/TAIR10_pep_20101214),
with the blastp mode of blastall (INCBI v.2.2.26) used to find the closest matching thaliana protein to each

Augustu“. purpurea protein sequence with an upper limit p-value for reporting a homolog of

le-6. :

Different?¥ e nalysis

We used E ByExpr function with the default settings (minimum 10 counts-per-million per gene)
to filter theffCne sc@to 25,534 genes [47] We calculated normalization factors that scale each sample by
raw library it Edgr’s calcNormFactors function [48-50]. Read counts were transformed with the
voom functign iglimma and we used Limma to run linear models that estimated differential expression
between sa%—iﬂ.

W ed the following comparisons for differential expression:

tifying genes with plastic responses by comparing non-selected control lines in
icide spray (n=10) to non-selected control lines not sprayed with herbicide (n=15).
ﬁ: comparison identifies plasticity in the original population before selection but note
these lines were grown in lab conditions for three generations, so drift or lab
glgction could affect our observations of plasticity. We also conducted these
% nparisons within the two timepoints tested, so we compared leaves collected 8 hours
t spray (n=8) to leaves from unsprayed plants collected at the same time (n=8) and

es collected 32 hours after spray (n=8) to leaves from unsprayed plants collected at
e same time (n=7).

tifying genes with evolved responses after selection for herbicide resistance by
comparing resistance selection lines not sprayed (n=15) to original lines not sprayed
(n=15).

tifying genes with evolved expression responses in the herbicide environment after

ection for herbicide resistance by comparing resistance selection lines in spray

a ditions (n=15) to original lines in spray conditions (n=15).

We ed GO enrichment with PANTHER on pantherdb.org [54] using the Fisher’s exact
test with a fdlse discovery rate analysis. We compared genes that had increased expression in herbicide
(3,789 a es) or decreased expression (N annotated genes) to all expressed genes from the

sample (Mated genes).

-

Plastic and evolved excplession responses to herbicide

Result

We measured plastic responses to herbicide in control plants that had not been artificially
selected for herbicide resistance (Figure 1). Morning glory leaf gene expression responded plastically to
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herbicide, both 8 and 32 hours after herbicide application. Out of the 27,037 genes tested, 3,519 genes
had higher expression and 2,841 genes had lower expression 8 hours after spray (FDR < 0.1) and 5,732
genes had higher expression and 5,285 genes had lower expression 32 hours after spray (FDR < 0.1). The
log fold Hpression changes caused by spray was correlated across the 8 and 32 hour

or coeff = 0.614, p < 0.001, Figure S1). There were only 137 genes with significant (FDR
ses to spray at both time points where the direction of response differed between the

measuremen
< 0.1) plast

8 hour and B mme points. Because of the similarity of response at 8 and 32 hours after spray, we
pooled gatagt@ughiiare analyses.
A\ rom both time points was pooled to estimate plastic responses to spray in general,

5,734 genes Jaad lagger expression in response to pesticide spray and 6,171 had increased expression in
response tagspray R < 0.1, Figure 2). Genes with increased expression after spray were enriched for a
number of ogical processes at FDR < 0.01, including a number of terms related to abiotic and

biotic intera@#i able S1). In contrast, genes with reduced expression after spray were enriched for
GO terms d & photosynthesis (Table S2).

on for herbicide resistance, 166 genes showed decreased expression and 133 genes

Ge sion in L. purpurea leaves responded to selection for resistance (Figure 2). After three
generations

showed increased expression (FDR < 0.1, Figure 2A). These genes were not significantly enriched for any
GO terms.s

(O

responses 1n the same direction as evolved responses, consistent with adaptive plasticity (Binomial p = 1.7
x 10, Figure 2B). Overall, with the majority of genes showing plastic responses in the same direction as
evolved res§nses, these results show that more of the expression responses in response to herbicide are

adaptive th ptive. We only looked at selection in non-sprayed conditions to avoid confounding

selective re d plasticity [55].

Th n of adaptive plasticity was also evident for gene expression in samples collected at 8
hours after ere 44 out of 56 genes with plastic and evolved responses showed adaptive plasticity
(binomial 2x10-5), and marginally significant at 32 hours after spray, where 44 of 71 genes with
significa nd plastic responses exhibited adaptive plasticity (binomial p = 0.057, Figure S2A,
B). Whi more genes that showed evidence of either maladaptive or adaptive plasticity 32

changing direction ffom adaptive after 8 hours to maladaptive after 32 hours.

hours after j directionality of the response were broadly consistent, with only one of the genes

Specific g8 % g adaptive and maladaptive plasticity for expression

It was possible to annotate 41 of the 68 genes with evidence of adaptive plasticity based on
homology to Arabidopsis thaliana (Table S3). Potential genes of interest included the homolog of ATR7,
which is associated with oxidative stress tolerance [56] and PRL1, which is associated with growth and
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immunity [57]. However, many genes identified as having adaptive plasticity did not have homologs with
obvious links to processes important for herbicide or other stress responses (Table S3).

W?ere a'e to identify homologs from A. thaliana for 24 of the 26 genes with evidence of
maladaptivé®plasticity. Many of the genes that show increased plastic expression during spray but

decreased @ y after selection for resistance were homologs of three A. #haliana leucine-rich repeat
protein king8e tamil proteins (Figure 3, Table S3). Leucine-rich repeat protein kinases are often involved

in responses to stress [58—61]. Many of these genes were located near each other in the L purpurea
H

reference ggnome, suggesting that they are recent tandem duplicates. The observed patterns of expression
changes su& selection for herbicide resistance reduced the expression of these genes, providing a

potential fuw for understanding the mechanisms of adaptation to herbicides.

Selection for Qerbigitle Msistance increases plasticity.

If ic expression changes that occur in response to spray are adaptive, selection for
increased herbicidefiesistance should increase the extent and magnitude of expression changes in
response t e. Consistent with this prediction, more genes had plastic expression responses to
herbicide af] ion for resistance compared to control lines (FDR < 0.1, Figure 3A). Similarly, 59%

of all genes\§tudied had a greater expression response to herbicide after selection for resistance than in
control line 3B). However, across all genes, plastic responses to selection were correlated in

control an lines, suggesting that selection for resistance did not drastically alter patterns of
plasticity (Higu Figure S3).

Discussion

cre, we have shown that the gene expression plasticity of Ipomoea purpurea after glyphosate
application shows patterns consistent with being adaptive. The plastic gene expression changes we
identified gﬁSerally align in the same direction as evolved changes after artificial selection for increased
herbicide r
plasticity ap,

difference.

“These results differ from those of other systems, where maladaptive gene expression
@ be more common [22-25]. There are a number of potential explanations for this

population studied here may exist in a set of conditions where plasticity is predicted
to be adaptivc156,62,63]. For example, the ancestors of the lines used in this study were collected in
2000, after ing intermittent glyphosate application for at least 8 years [64], so fluctuating
selection fr erbicide use may have selected for plastic responses to herbicide. In addition, tolerance
and resistange to glphosate were present in 1. purpurea before the use of glyphosate, suggesting that these
plastic tereiotropic with plastic responses to other stresses [65]. While in agricultural settings,
herbicide is applied once per generation, the timing of application could vary year-by-year
relative to weed deyglopmental timing. If the physiological effects of herbicide differ across development,

this treatm contribute to fluctuating selection, a process that can select for adaptive plasticity [5].

atc a number of potential consequences of widespread adaptive plasticity. Adaptive
plasticity

adaptation to occur

cotldgfacilitate adaptation to new conditions by allowing populations to persist long enough for
but it could also hinder local adaptation by masking genetic variation from selection
[5]. Which process occurs depends on how close the plastic response is to the phenotypic optimum [5,8].
In this study, despite evidence of potential adaptive gene expression plasticity, the population was still

able to evolve increased resistance to herbicide [35], suggesting that the plastic responses do not
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completely move plants to the optimum trait value. Interestingly, the results here suggest that further
adaptation to herbicide treatment increased the number of genes with expression plasticity and the
magnitude of this plasticity.

It i! unclear if and how the results of this study would change if evolutionary changes in
expression

selected po .m

those in élatural Eogulations [66]. An additional limitation for all studies in non-model systems is that we
t

uated in natural populations that have evolved resistance instead of in artificially

he responses to selection that occur in experimental evolution will differ from
are reliant erms for homologs in Arabidopsis thaliana, a distantly related species. A lack of gene or
funcdonalu

jon will erode our ability to make conclusions about gene function from this data.

There are dlso limitations to using leaf gene expression as a trait in studies of plasticity. First,
leaves are m f multiple tissues, so variation in different tissue types, instead of direct increases in
the transcripgo enes within cells, could drive changes in gene expression [67]. Second, the
expression levalfof different genes is not independent and observations of many genes changing in
expression could stem from one or a few trans-regulatory factors [68]. Incorporating information about

how regula orks respond to environmental changes and stresses will be an important next step to
understandi ks between selection, plasticity, and adaptation to stressful environments.
Thi rst paper to directly investigate the adaptive potential of plastic expression changes in

response toWerbicide. Previous work has found evidence of gene expression changes in response to
herbicide, often 1n genes not previously known to be important for herbicide response [69—74], but these

in this species. work using an artificially evolved population is any guide for resistance evolution in

natural ons, it suggests that selection for increased resistance may reduce expression of some
genes, perhaps those with environment-sensing functions (e.g. leucine rich repeat protein kinases), while

also leading to increased plasticity in other genes.

In , we have shown that L purpurea gene expression responds plastically to herbicide

application 3 plutionarily to selection for resistance. Crucially, plastic expression responses generally

go in the sa ion as evolved responses, consistent with the idea that this plasticity is adaptive. We

also showed onsistent selection for resistance can increase plasticity, suggesting plasticity is a key
componen ide resistance in I purpurea. All together, this work demonstrates the importance of

adaptive plagticity for the evolution of resistance to environmental stressors.

-
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Figure captions

Figure 1: !!lncep!ual figure of the experimental design. This figure shows the breeding scheme that was used
to generate
expression i

used in this study. Plastic expression changes were measured by comparing gene
plants from a control treatment and from the glyphosate treatment. Evolved expression

changes wert paring control treatment plants from the control and resistance populations.
I I
Glyphosate
3 generations of
selection

Resistant
population

Glyphosate
resistance

Natural

population

Control
population

UoN|OAT

Ayoysoid

evolved changes in expression: A) The x axis shows plastic responses to glyphosate,

d change in expression between sprayed and nonsprayed conditions where positive values
indicate increased expression in herbicide spray. The y axis shows the log fold difference in expression between
lines selected for increased resistance to herbicide and lines that were not selected (‘original lines’), where

positive Valgs indicate increased expression in the resistance selection lines. Each point represents one gene,

colored by y have significant (FDR < 0.1) plastic expression responses, evolved expression
responses or The same as (A), but only genes with significant responses to selection and treatment are
shown.
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