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Objectives
To compare clinical outcomes between patients with locally advanced (unresectable) or metastatic urothelial carcinoma
(aUC) in the upper and lower urinary tract receiving immune checkpoint inhibitors (ICIs).
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Patients and Methods
We performed a retrospective cohort study collecting clinicopathological, treatment, and outcome data for patients with
aUC receiving ICIs from 2013 to 2020 across 24 institutions. We compared the objective response rate (ORR), overall
survival (OS), and progression-free survival (PFS) between patients with upper and lower tract UC (UTUC, LTUC). Uni-
and multivariable logistic and Cox regression were used to assess the effect of UTUC on ORR, OS, and PFS. Subgroup
analyses were performed stratified based on histology (pure, mixed) and line of treatment (first line, subsequent line).

Results
Out of a total of 746 eligible patients, 707, 717, and 738 were included in the ORR, OS, and PFS analyses, respectively. Our
results did not contradict the hypothesis that patients with UTUC and LTUC had similar ORRs (24% vs 28%; adjusted
odds ratio [aOR] 0.73, 95% confidence interval [CI] 0.43–1.24), OS (median 9.8 vs 9.6 months; adjusted hazard ratio [aHR]
0.93, 95% CI 0.73–1.19), and PFS (median 4.3 vs 4.1 months; aHR 1.01, 95% CI 0.81–1.27). Patients with mixed-histology
UTUC had a significantly lower ORR and shorter PFS vs mixed-histology LTUC (aOR 0.20, 95% CI 0.05–0.91 and aHR
1.66, 95% CI 1.06–2.59), respectively).

Conclusion
Overall, patients with UTUC and LTUC receiving ICIs have comparable treatment response and outcomes. Subgroup
analyses based on histology showed that those with mixed-histology UTUC had a lower ORR and shorter PFS compared to
mixed-histology LTUC. Further studies and evaluation of molecular biomarkers can help refine patient selection for
immunotherapy.
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Introduction
Urothelial carcinoma (UC) is the sixth most common
malignancy in the USA and fifth most common malignancy in
Europe. In 2020, bladder cancer is estimated to result in 17 980
deaths in the USA and 49 185 deaths in Europe [1,2]. About 90–
95% of UCs arise in the lower urinary tract (bladder and
urethra), while the remaining 5–10% arise from the upper
urinary tract (renal pelvis and ureter). Despite morphological
similarities, lower and upper tract UC (LTUC, UTUC) have
differences in epidemiology, tumour behaviour, molecular
characteristics, and prognosis [3–5]. These differences may stem
from distinct embryological origins, anatomical location, genetic
features, discordant staging, and practical considerations in
diagnosis and management [6,7]. Data regarding the
management of UTUC are limited due to its lower prevalence.
As a result, UTUC and LTUC are often treated as one entity with
treatment decisions for UTUCs often informed based on data
from LTUC-predominant populations, especially in the advanced
disease setting. This approach may be suboptimal given the
poorer outcomes for UTUC relative to LTUC with conventional
LTUC-based therapies, when adjusted for stage [3].

The introduction of immune checkpoint inhibitors (ICIs) led to a
paradigm shift in the treatment of locally advanced/unresectable
or metastatic (a)UC for cisplatin-ineligible patients or after

platinum-based chemotherapy [8]. Five ICIs have been approved
by the United States Food and Drug Administration (FDA) for
treatment of aUC in the USA, with pembrolizumab showing
longer overall survival (OS) when compared to salvage
chemotherapy (platinum-refractory setting) and avelumab plus
best supportive care showing longer OS relative to best
supportive care alone (post-platinum switch maintenance setting)
[9,10]. UTUC representation in ICI trials has been variable,
ranging from 14% to 30% [9–18]. Data from subgroup analyses
between UTUC and LTUC have been limited and conflicting,
with a number of trials showing a higher objective response rate
(ORR) in UTUC with atezolizumab [12], while others favoured
higher ORR in LTUC with pembrolizumab and avelumab
[15,17]. To address this knowledge gap, we compared the ORR,
progression-free survival (PFS), and overall survival (OS) between
patients with advanced UTUC and LTUC receiving ICIs, using a
multi-institution retrospective cohort. We hypothesised that
given similarities in the pathogenesis, treatment response and
outcomes would be similar in advanced UTUC and LTUC.

Patients and Methods
Patient Selection and Data Collection

After Institutional Review Board approval, we performed a
retrospective cohort study comparing oncological outcomes
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between patients with UTUC and LTUC. Patients with pure-
or mixed-histology aUC receiving ICI monotherapy for this
indication were included. Those receiving ICIs as part of a
clinical trial, in combination with another agent, for an
indication other than aUC, or those who received multiple
lines of ICIs were excluded. Patients with pure non-urothelial
histology were also excluded. Each participating institution
identified patients using provider driven and electronic health
record search algorithms to allow for consecutive evaluation.
The collected data included baseline characteristics
(demographics, clinicopathological, and laboratory variables),
treatment response, and long-term clinical outcomes. Data
were collected by chart abstraction using secure, web-based,
standardised REDCap electronic data capture tools hosted at
the Institute of Translational Health Sciences [19]. Data
collected via alternative methods were uploaded into REDCap
for secure storage and standardisation of variables.

All patients underwent standard of care imaging as per
treating provider. The evaluation of both best response and
progression were determined according to the chart
abstractor’s assessment based on best available information
from clinical notes and radiographic studies and did not
include a blinded central radiology review. Similarly,
pathology assessment was based on chart abstraction and did
not include central pathology review. The ORR was calculated
as the sum of patients with investigator-designated (complete
or partial) response divided by the total number of patients
with available data. The OS was measured from the date of
ICI initiation until the date of death; patients that were still
alive were censored at the date of last follow-up visit. The
PFS was measured from the date of ICI initiation until the
date of radiographic and/or clinical progression, or death;
patients without progression or death were censored at the
date of last follow-up visit.

Statistical Analysis

Baseline characteristics were summarised with descriptive
statistics and compared with chi-square test and Student’s t-
test for categorical and continuous variables, respectively.
Univariable and multivariable logistic regression was used to
estimate the odds ratio (OR) and 95% CI for ORR between
UTUC and LTUC. In the multivariable analysis, we used two
different a priori specified models based on the Bellmunt risk
factors [20] – one adjusting for liver metastases, haemoglobin
<100 g/L, and Eastern Cooperative Oncology Group (ECOG)
performance status >0, individually; and the second model
adjusting for the calculated Bellmunt score (i.e. liver
metastases, haemoglobin <100 g/L, and ECOG performance
status >0).

We used the Kaplan–Meier method for survival curves and to
estimate median (m)OS and median (m)PFS. Cox regression
was used to determine the effect of tumour location on OS

and PFS; differences between groups were expressed as
hazard ratios (HRs) and 95% CIs. Similar to above, for the
multivariable analysis, we used two different a priori specified
models adjusting for individual Bellmunt risk factors [20] or
for the calculated Bellmunt score.

Additional subgroup analyses were performed to compare
outcomes between patients with LTUC and UTUC stratified
by treatment line (first line and subsequent/salvage), histology
(pure- and mixed-histology UC), and specific tumour location
(renal pelvis, ureter, bladder, urethra) for all outcomes of
interest. Statistical significance was set at P < 0.05; all P
values were two-tailed. All statistical analyses were performed
using Stata IC 16.0 (StataCorp LLC, College Station, TX,
USA).

Results
Patient Selection and Characteristics

A total of 984 patients with aUC received ICIs monotherapy
between 2013 and 2020 across 24 different institutions. After
excluding ineligible patients, 746 patients were included in
our population (Fig. 1). A breakdown of patients according to
institution is provided in Table S1. Baseline patient
characteristics are presented in Table 1. Men comprised 76%
of patients with LTUC and 62% with UTUC; 71% had
smoking history within LTUC and 59% within UTUC. Liver
metastases were found in 18% of patients with LTUC and
29% of patients with UTUC. A breakdown of the mixed-
histology UC variants for each group is provided in Table S2.

Objective Response Rate

A total of 707 patients were included in the ORR evaluable
population, with 83% having LTUC and 17% UTUC. Our
results did not contradict the hypothesis that patients with
UTUC and LTUC had similar ORRs (24% vs 28%; OR 0.81,
95% CI 0.52–1.27, P = 0.36; Table 2). Similarly, this
hypothesis was not contradicted in either of the two
multivariable logistic regression models or when further
stratifying for either specific tumour location (not shown) or
treatment line.

In the subgroup analysis according to histology, patients with
mixed-histology UTUC (n = 28) had a significantly lower
ORR compared to those with mixed-histology LTUC
(n = 170) (11% vs 29%; model 1: adjusted (a)OR 0.20, 95%
CI 0.05–0.91, P = 0.03/model 2: aOR 0.28, 95% CI 0.08–0.98,
P = 0.047).

Overall Survival

A total of 717 patients were included in the OS analysis, with
82% having LTUC and 18% UTUC. Our results did not
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contradict the hypothesis that patients with UTUC and
LTUC had similar OS (mOS 9.8 months, 95% CI 7.9–
14.3 months vs 9.6 months, 95% CI 8.2–11.4 months; HR
0.97, 95% CI 0.76–1.25, P = 0.84; Fig. 2A, Table 3). This
remained true following adjustment in multivariable models
(model 1: adjusted (a)HR 0.92, 95% CI 0.69–1.21, P = 0.53/
model 2: aHR 0.93, 95% CI 0.73–1.19, P = 0.58) or after
stratifying by specific tumour location (not shown), line of
therapy, or histology.

Progression-Free Survival

A total of 738 patients were included in the PFS analysis,
with 83% and 17% with LTUC and UTUC, respectively. The
mPFS was 4.1 months (95% CI 3.5–4.9 months) in the LTUC
group and 4.3 months (95% CI 3.2–5.9 months) in the
UTUC group (Fig. 2B, Table 4). Our results did not
contradict the hypothesis that patients with UTUC and
LTUC had similar PFS with univariable (HR 1.05, 95% CI
0.84–1.32; P = 0.65) and multivariable Cox regression, or

after stratifying by specific tumour location (not shown) or
line of therapy.

In the subgroup analysis according to histology, patients with
mixed-histology LTUC (n = 178) had mPFS of 4.3 months
(95% CI 3.0–7.4 months), compared to 2.2 months (95% CI
1.6–5.9 months) in patients with mixed-histology UTUC
(n = 30); mixed-histology UTUC was associated with shorter
PFS in the multivariable Cox regression adjusting for the
calculated Bellmunt score (aHR 1.66, 95% CI 1.06–2.59;
P = 0.03).

Discussion
In the present multicentre retrospective cohort study of
patients with aUC receiving ICIs, our data did not
contradict the null hypothesis that the ORR, OS, and PFS
were similar between patients with UTUC and LTUC.
However, patients with mixed-histology UTUC had a lower
ORR and shorter PFS compared to patients with mixed-
histology LTUC.

Patients included (n = 746)

ORR analysis (n = 707)
Excluded from ORR
analysis (n = 39)

OS analysis (n = 717)
Excluded from OS analysis
(n = 29)

Missing response
information (n = 39)

Missing vital status
(n = 28)

PFS analysis (n = 738)
Excluded from PFS
analysis (n = 8)

Missing progression
information (n = 8)

Unknown ICI start
date (n = 1)

Patients with aUC treated with ICIs
(n = 984)

Excluded (n = 238)
Receiving ICI as part of a trial or in combination with a 
different agent (n = 164)
Non-UC (n = 26)
Missing site of primary tumour (n = 22)
Multiple ICI lines (n = 16)
No ICI  or ICI for a different indication (n = 10)

Fig. 1 Consolidated Standards of Reporting Trials (CONSORT) diagram of patient selection.
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Previous clinical trials investigating the safety and efficacy of
ICIs in aUC have provided conflicting data about the
outcomes of ICI treatment for patients with advanced UTUC.
In the cisplatin-ineligible cohort of the IMvigor210 Phase II
trial on atezolizumab, the ORR was numerically higher in

UTUC (39%, 13/33) compared to LTUC (16%, 14/85) [12].
In contrast, the ORR of UTUC was numerically lower
compared to LTUC in the platinum-refractory cohort of the
IMVigor210 trial (UTUC: 13%[ seven of 52] vs LTUC: 23%
[39/168]) [21], the IMvigor211 Phase III trial on
atezolizumab (UTUC: 11% [10/94] vs LTUC: 18% [44/245])
[21], the KEYNOTE-052 Phase II trial of pembrolizumab
(UTUC: 22% [13/59] vs LTUC: 28% [70/247]) [15], and the
JAVELIN Phase I trial of avelumab (UTUC: 11% [four of 36]
vs LTUC: 18% [23/125]) [17]. In regards to OS, UTUC and
LTUC had comparable mOS according to an updated analysis
of the platinum-refractory cohort of the IMvigor210 trial
(UTUC vs LTUC: 7.9 vs 7.6 months) [25] and a post hoc
analysis of the IMvigor211 trial (UTUC vs LTUC: 10.9 vs
9.7 months) [19]. The exploratory subset analysis of the
KEYNOTE 045 Phase III trial suggested that pembrolizumab
prolonged OS in both UTUC (HR 0.53, 95% CI 0.28–1.01)
and LTUC (HR 0.77, 95% CI 0.60–0.97) compared to
chemotherapy [9]. In our present study, the ORR, OS, and
PFS were similar between the two groups. The exact tumour
location in the urinary tract did not influence the results,
although previous reports have shown differences in genomic
features between renal pelvis and ureteric tumours [22].

In our present cohort, patients with mixed-histology UTUC
histology had a significantly lower ORR (11%) compared to
those with mixed-histology LTUC (29%). The breakdown of
the mixed-histology UC variants among the two subgroups
was largely similar. Prior prospective and retrospective studies
have not suggested worse outcomes with ICI treatment for
those with variant histology. In a recent Phase II trial of dual
immune checkpoint blockade with nivolumab/ipilimumab in
rare genitourinary malignancies, the ORR among the 19
patients with variant histology bladder cancer was 37% [23].
Furthermore, a previous retrospective analysis using a smaller
size cohort in our multicentre database only noted
neuroendocrine histology to be associated with worse
outcomes with ICI therapy, while other variants showed no
significant differences [24]. In our present study, patients with
mixed-histology UTUC had a significantly lower ORR than
mixed-histology LTUC after adjusting for Bellmunt score.

Table 1 Baseline patients’ characteristics.

Characteristic UTUC LTUC P

Number of patients 130 616
Age, years, mean (SD) 70 (10) 69 (10) 0.39
Men, n (%) 80 (62) 469 (76) <0.001
White Race, n (%) 99 (76) 456 (74) 0.61
Smoking history, n (%) 77 (59) 434 (71) 0.01
Previous cystectomy/(nephro)ureterectomy, n (%)
Yes 80 (62) 300 (52) 0.05
Missing information N/A 39/616

Prior platinum-based (cisplatin or
carboplatin) chemotherapy, n (%)

80 (62) 406 (66) 0.34

Site of primary tumour, n (%)
Bladder N/A 610 (99)
Urethra N/A 6 (1)
Upper genitourinary system (unspecified) 45 (35) N/A
Renal pelvis 58 (45) N/A
Ureter 27 (21) N/A

Histology, n (%)
Pure urothelial 100 (77) 438 (71) 0.20
Mixed urothelial 30 (23) 176 (29)

Haemoglobin <100 g/L, n (%) 33 (27) 163 (27) 0.92
Liver metastasis, n (%) 37 (29) 112 (18) 0.01
ECOG performance status, n (%)
0 26 (24) 120 (21) 0.86
1 58 (54) 304 (54)
2 20 (19) 121 (22)
3 4 (4) 16 (3)
4 0 (0) 2 (1)
Missing information, n/N 22/130 53/616

Bellmunt risk factors, n (%)
0 20 (15) 90 (15) 0.27
1 57 (44) 310 (50)
2 42 (32) 187 (30)
3 11 (9) 29 (5)

Type of ICI, n (%)
Atezolizumab 49 (38) 292 (48) 0.18
Pembrolizumab 67 (52) 252 (41)
Nivolumab 9 (7) 44 (7)
Durvalumab 3 (2) 17 (3)
Avelumab 0 (0) 5 (1)

Statistically significant values denoted in bold.

Table 2 ORR according to tumour location.

Analysis Location ORR, % (95% CI) Univariable,
OR (95% CI)

Multivariable 1,
OR (95% CI)

Multivariable 2,
OR (95% CI)

Primary LTUC (n = 584) 28 (25–32) Reference Reference Reference
UTUC (n = 123) 24 (18–33) 0.81 (0.52–1.27) 0.73 (0.43–1.24) 0.83 (0.53–1.31)

Subgroup by histology Pure LTUC (n = 414) 28 (24–33) Reference Reference Reference
Pure UTUC (n = 95) 28 (20–38) 1.02 (0.62–1.67) 1.00 (0.56–1.78) 1.06 (0.65–1.75)
Mixed LTUC (n = 170) 29 (23–37) Reference Reference Reference
Mixed UTUC (n = 28) 11 (4–29) 0.29 (0.09–1.00) 0.20 (0.05–0.91) 0.28 (0.08–0.98)

Subgroup by line of therapy First-line LTUC (n = 328) 31 (26–36) Reference Reference Reference
First-line UTUC (n = 57) 35 (24–48) 1.23 (0.68–2.23) 1.17 (0.58–2.37) 1.25 (0.69–2.28)
Subsequent-line LTUC (n = 256) 26 (21–32) Reference Reference Reference
Subsequent-line UTUC (n = 66) 15 (8–26) 0.51 (0.25–1.06) 0.51 (0.22–1.20) 0.53 (0.25–1.09)
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Therefore, we hypothesise that this difference may be
attributed to inherent biological differences rather than
confounding prognostic factors; however, this hypothesis
needs to be further tested. Notably, previous studies have
reported significant differences in the genomic makeup,
transcriptomic profile, and immunogenicity context between
UTUC and LTUC [4,5,25], and among the different mixed-
histology UC variants [26]. This may suggest that patients
with variant histology in UTUC are a particularly high-risk
population.

There are several potential underlying mechanisms behind the
differences in the response to ICIs among individuals. As
with many solid tumours, the degree of T-cell infiltration in
the tumour microenvironment has prognostic value in aUC
[27]. Specifically, the non-T-cell-inflamed tumour phenotype
has been associated with poor response to ICI and worse
prognosis [28]. Most patients with UTUC express the non-T-

cell-inflamed phenotype, which may account for the lower
ORR and inferior survival of patients with UTUC in several
clinical trials [15,17,21,25]. Molecular pathways associated
with the non-T-cell-inflamed phenotype include the b-
catenin, peroxisome proliferator-activated receptor gamma
(PPAR-c), and fibroblast growth factor receptor 3 (FGFR3)-
driven pathways [29]. Many UTUC tumours may have
FGFR3 mutation or fusion (up to 40–60% in high-grade, up
to 74% low-grade), significantly higher compared to LTUC,
which may be associated with the non-T-cell-inflamed
phenotype [22,25,30,31]. However, the prognostic and
predictive (regarding benefit with ICI) value of FGFR3
activating mutation or fusion is still uncertain [32,33]. On the
other hand, UTUC is associated with an only slightly higher
rate of microsatellite instability (MSI) compared to LTUC
[22,34]. Tumours with MSI seem to have better response to
ICI [12,35]. Epigenetic factors may also account for
differences in response to ICI [6].

Despite the demonstrated activity of ICIs in the platinum-
refractory space, patients receiving ICIs for aUC still have a
poor prognosis. As with previous clinical trials, the ORR to
ICI therapy in our present study was <30% regardless of
tumour location. In addition, the mPFS and mOS did not
exceed 5 and 10 months, respectively, implying that most
patients have progression in a short amount of time and die
from the disease a few months later. Therefore, more work is
needed to identify biomarkers, new therapy targets, and other
strategies to guide therapy selection and optimise outcomes.
While clinical models to predict response or survival have
been proposed [36,37], much work remains to identify and
prospectively validate predictive tools. Newer techniques, such
as ‘liquid biopsy’ may also provide a minimally invasive
alternative to conventional tumour tissue analysis for next-
generation sequencing [38–41]. In addition, there are
strategies aiming to improve the efficacy of ICIs in aUC by
combining them with (i) other ICIs, (ii) anti-FGFR3 targeted
agents, (iii) platinum-based chemotherapy, (iv) localised
treatments (e.g. radiotherapy), and (v) antibody-drug
conjugates (e.g. enfortumab vedotin, sacituzumab govitecan),
among others [42–44]. As with many combination regimens,
we should carefully consider whether potential improvement
of outcomes is the result of drug independence (which may
address tumour heterogeneity among patients) rather than
true additivity or synergism (which may address intra-tumour
heterogeneity in an individual patient) [45].

The strengths of our present study include a large sample size
and diverse patient population originating from multiple
institutions across North America and Europe, approaching
in a ‘real world’ setting. Nonetheless, limitations still apply
and warrant careful interpretation of our present results. Our
present study was retrospective in nature and lacked patient
randomisation, matching, or other adjustments to fully
address potential confounding or selection biases. ECOG
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performance status, which may affect survival with ICI
therapy in aUC [46], was missing in a proportion of patients.
We were unable to examine differences in T-cell infiltration/
density, biomarker expression (e.g. programmed death-ligand
1 [PD-L1], gene expression profiling, DNA damage response
gene mutations, MSI status, tumour mutational burden),
across different subgroups, which may be related to ICI
response [25,47]. There could have been heterogeneity in data
collection and treatment (and surveillance) practices across
participating institutions. For example, imaging to assess
progression was performed based on routine care rather than
standardised time intervals. In addition, there was no central
radiology review to provide standardisation. In particular,
treatment response was assessed according to investigator
evaluation instead of central review, which may account for
the slightly higher ORR observed in our present study
compared to clinical trials [15,17]. The lack of central
pathology review precluded us from obtaining important
histopathological information, such as the percentage of
variant histology among different specimens.
Histopathological assessment was performed according to the
standard practices of each participating institution; however,
all the institutions have focussed pathology expertise in UC as
tertiary referral centres. These practices may have significantly
varied among institutions, due to differences in the size,
source, and quality of tumour specimens, the percentages of
tumour content, urothelial and variant tumour tissue, as well

as inter-observer variability. Finally, we were unable to obtain
granular data on the breakdown of locally advanced
(unresectable) vs metastatic disease in each group, response to
previous therapy, and time interval from last dose of previous
therapy to ICI initiation.

Conclusion
Clinical trial data on response and outcomes of ICIs in
UTUC are conflicting. In our present study, patients with
UTUC and LTUC receiving ICIs were noted to have a similar
ORR, OS, and PFS. However, mixed-histology UTUC had a
significantly lower ORR and shorter PFS compared to mixed-
histology LTUC. Further studies and evaluation of molecular
biomarkers can help optimise patient selection for ICI
therapy.
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