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S1 Derivation of depth-integrated torque (M) and shear (Q) at10

the terminus11

S1.1 Depth-integrated torque12

We here evaluate the depth-integrated torque integral M =
∫
F × r dr described in section 2.213

of the main article. F is the force per unit width acting on the terminus due to ice or water14

pressure p. Using vector components and the linear undercut geometry shown in Fig. 1b of the15

main article, on the terminus above the water we have F = [p, 0, 0] dz, r = [u, 0, z − H/2] and16

F × r = −p [0, z − H/2, 0] dz. The angle of the calving front below the water, measured from17

the horizontal, is tan θ = d/u. Below the water, therefore, we have F = p [1, 0,−1/ tan θ] dz,18

r = [z/ tan θ, 0, z −H/2] and F × r = −p [0, z/ sin2 θ−H/2, 0] dz. The pressure moment due to ice19
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pressure pi = ρig(H − z) both above and below the water is then20
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The pressure moment due to water pressure pw = ρwg(H − z) is21
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So that the overall moment for the linear undercut case is as in Eq. 9 of the main article, given by22
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In the uniformly undercut case, the calving front has three parts: vertical under water, horizontal23

and vertical above water (Fig. 1c of the main article). Over the vertical under water part, F =24

[p dz, 0, 0], r = [0, 0, z −H/2] and F × r = [0,−p (z −H/2) dz, 0]. The contribution to the moment25

is26
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Over the horizontal part, F = [0, 0,−p] dx, r = [x, 0, d − H/2] and F × r = [0,−p x, 0] dx. The27

contribution to the moment is28
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Over the vertical above water part, F = [p, 0, 0] dz, r = [u, 0, z − H/2] and F × r = [0,−p (z −29
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H/2) dz, 0]. The contribution to the moment is30
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The total moment in the uniformly undercut case is then31
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S1.2 Depth-integrated shear32

To derive the expression for the depth-mean shear stress over the undercut region, consider a block33

of linearly undercut ice with the left side of the block a distance x from the grounding line and34

the right side at the calving front (Fig. 1b of the main article). Note 0 ≤ x ≤ u. In the main35

article, only the case where the left hand side of the block is at the grounding line (x = 0) is36

considered, but here we retain the dependence on x so that we can later show (section S2) that the37

depth-mean shear is almost always greatest at the grounding line. Over its length, the block has a38

mean thickness of39
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and, therefore, the weight of the block per unit width of glacier is40
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The mean thickness of the submerged part of the block is41
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(S10)

and, therefore, the weight of water displaced by the block is42

ρwg (u− x)
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2u
(S11)
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The depth-integrated shear stress within the ice at the left-hand side of the block can be expressed43

as the product of the depth-mean shear stress, q, and the ice thickness at that point44

q
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Finally, the depth-integrated shear stress must compensate for the imbalance between the weight45

of the block of ice and the weight of the water it displaces, which after some rearrangement gives46
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If the left hand side of the block is taken to be at the grounding line (x = 0), the left hand side47

of the equation is Q, and the right hand side of the equation simplifies to give Eq. 7 of the main48

article49
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The equivalent analysis for the uniformly undercut block (Fig. 1c of the main article) is more50

straightforward. The weight of the block as a function of x is51

ρig (u− x) (H − d) (S15)

and the block displaces no water. The thickness of the left-hand side of the block is H − d and the52

depth-mean shear stress is then given by53

(H − d) q = ρig(u− x) (H − d) (S16)

when the left hand side of the block is taken to be at the grounding line, the left hand side of the54

equation becomes Q and the right hand side simplifies to give the expression in the main article55

Q = ρigu (H − d) (S17)

4



Figure S1: Various undercut shapes for which expressions for torque and shear are given. The
part-linear and part-uniform shapes are plotted with a fraction a = 1/2.

S1.3 Other calving front shapes56

We here list the torque and shear expressions for the other undercut shapes shown in Fig. S1.57

For part-linear undercutting extending to a fraction a of the water depth (such that a = 0 is a58

vertical calving front and a = 1 is the linear undercutting considered in the main article) we have59
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For part-uniform undercutting extending to a fraction a of the water depth (such that a = 0 is a61

vertical calving front and a = 1 is the uniform undercutting considered in the main article) we have62
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63

Q = ρigu (H − ad) − ρwgud (1 − a) (S21)

5



Figure S2: (a) Phase space plot of the surface tensile stress maximum versus the depth-mean shear
stress at the grounding line as a function of undercut shape (marker style) and undercut length
(marker colour). The calving thresholds of 1 MPa for tensile failure and 0.5 MPa for shear failure
are shown as dashed grey lines. (b) The equivalent phase space plot of the depth-integrated torque
M versus the depth-integrated shear Q. All results assume an ice thickness of H = 500 m and a
water depth such that the ice is at flotation. The part-linear and part-uniform results assume a
shape fraction a = 1/2.

Fig. S2 shows the phase space for tensile versus depth-mean shear stress and depth-integrated torque64

versus depth-integrated shear as a function of undercut shape and length. It is seen that uniform65

undercutting extending over the full water depth is the shape most likely to undergo shear failure:66

as undercutting proceeds, the shear stress increases very quickly without a significant increase in67

the surface tensile stress (Fig. S2a). For linear and part-linear undercutting, the surface tensile68

stress increases quickly without significant increase in the shear stress, hence these undercut shapes69

promote rotational failure. Part-uniform undercutting lies in-between. Considering the depth-70

integrated quantities M and Q provides a similar picture (Fig. S2b), but it can be additionally71

noted that the depth-integrated quantities are less sensitive to the undercut shape, especially for72

little to moderate undercutting.73
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S2 Depth-mean shear stress along the undercut74

In the main article we consider only the depth-mean shear stress at the grounding line. Of course, it75

is possible that serac failure could occur at any point along the undercut, not just at the grounding76

line, particularly if the depth-mean shear stress is larger at that point than at the grounding line.77

For linear undercutting, the depth-mean shear stress at any point along the undercut, q(x), is given78

by Eq. S13 and is plotted in Fig. S3a for various fractional water depths.79

Figure S3: (a) Depth-mean shear as a function of fractional distance along the undercut for various
fractional water depths from d/H = 0 (no water) to d/H = 0.88 (flotation). (b) Comparison of
the maximum shear at any point along the undercut with the shear at the grounding line, both as
a function of fractional water depth.

For all fractional water depths excepting those where the glacier is close to flotation, it is seen that80

the maximum depth-mean shear stress is located at the grounding line. When the fractional water81

depth is such that the glacier is close to flotation, the value of the shear stress at the grounding line82

remains a very good approximation of the maximum (Fig. S3b), but the location of the maximum83

is instead located at approximately three-quarters of the distance from the grounding line to the84

calving front (Fig. S3a). If serac failure were to occur at this position, it would change the undercut85

shape from linearly undercut, potentially influencing the next calving event. But, as is discussed in86

the main article, glaciers close to flotation undergoing linear undercutting are unlikely to experience87

serac failure (e.g. Fig. 9a of the main article) and so this difficulty can be avoided in the analysis,88

and it remains sufficient to assume that serac failure always occurs at the grounding line.89
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For uniform undercutting, it is easily seen from Eq. S16 that the depth-mean shear stress has its90

maximum at the grounding line. Thus, for both linear and uniform undercutting, only the shear91

at the grounding line is considered in the main article.92

S3 An alternative failure mechanism for uniform undercutting:93

cantilever failure94

For uniform undercutting, the overhanging ice beyond the grounding line essentially forms a can-95

tilever beam (Fig. 1c of the main article). In the main article we have considered how this may96

calve at the grounding line due to high shear stress, but an alternative failure mechanism is calving97

due to high tensile stress associated with the downward bending of this cantilever beam. Referring98

to this failure mechanism as ‘cantilever’ failure, it may be analysed by solving Eq. 1 of the main99

article for a beam of thickness H − d and that is not in contact with the bed (so that k = 0). The100

resulting deflection of the beam from w = 0 at the grounding line is101

w(x) = − (1 − ν2)ρig

2E(H − d)2
(6u2x2 − 4ux3 + x4) (S22)

and the tensile stress on the beam surface is102

σc(x) =
3ρig

H − d
(u− x)2 (S23)

The maximum of the tensile stress is, therefore, at the grounding line (x = 0) with magnitude103

σc =
3ρigu

2

H − d
(S24)

and the critical undercut length at which cantilever failure occurs is104

uc =

√
H − d

3ρig
σmaxr (S25)
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Figure S4: The same as Fig. 8 of the main article, but with the addition of the ‘cantilever’ failure
length uc for uniform undercutting.

where σmaxr = 1 MPa, as in the main article. For uniform undercutting, uc is plotted on Fig. S4.105

It is seen that the cantilever failure undercut length is very similar to the shear failure undercut106

length for uniform undercutting. Since both mechanisms imply failure at the same position (i.e.107

the grounding line), distinguishing between these mechanisms does not affect the main conclusions108

of the article. Extending this cantilever analysis to the linear undercut case is not straightforward109

because the large gradient of the ice thickness over the length of the cantilever makes it inappropriate110

to apply thin beam theory.111

S4 Basal longitudinal stress associated with bending112

Similarly to Eq. 3 of the main article, the basal longitudinal stress associated with bending of the113

glacier is given by114
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This basal longitudinal stress will be most positive when the terminus wants to rotate bottom-115

forwards into the ocean, and this tendency is maximised when M is as large as possible (e.g. Fig. 3116

of the main article and surrounding discussion) and when Q is as small as possible (although we117
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do not consider the case Q < 0). To maximise M and minimise Q we set u = 0 and d = 0 (i.e no118

undercutting and no water), which gives119
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Now for x < 0, we have exp
(
x
λ

)
< 1 and cos

(
x
λ

)
− sin

(
x
λ

)
< 2, so that the basal longitudinal120

stress is at most ρigH. The total stress, accounting for the basal stress resulting from bending and121

the cryostatic pressure (also ρigH), is therefore smaller than 0 and is always compressive for the122

situations considered in this study.123

S5 Sensitivity to surface stress threshold124

Figure S5: The sensitivity of the critical length scales for rotational calving and the calving mul-
tiplier to varying surface stress threshold. Results assume linear undercutting and a glacier of
thickness 500 m at flotation.

The sensitivity of the critical length scales for rotational calving and the calving multiplier to varying125

surface stress threshold is shown in Fig. S5. The critical lengths for rotational failure are not defined126

for σmaxr < 0.2 MPa because even a vertical calving front induces longitudinal stress at the glacier127

surface that exceeds this threshold. Above 0.2 MPa, the critical undercut length increases with the128

stress threshold because greater undercutting is required to generate sufficient stress at the glacier129

surface. In the main article we argued that the surface stress σr scales approximately as u2/H, and130

hence under variation in the surface stress threshold we would expect the critical undercut length131
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to scale approximately as (σmaxr )1/2, as seen in Fig. S5. In contrast, the upstream distance to the132

stress maximum is controlled largely by the characteristic length λ (e.g. Eq. 5 and Fig. 10b of the133

main article), itself a function of the bed and ice strength and the ice thickness. The upstream134

distance to the stress maximum is, therefore, relatively insensitive to the stress threshold (Fig. S5).135

Lastly, since the calving multiplier is the ratio of the total calving length to the undercut length, the136

calving multiplier decreases with increasing surface stress threshold, with the approximate scaling137

β ∼ (σmaxr )−1/2.138

While the values adopted for parameters in this study are within the ranges used by previous139

studies, these parameters are also rather idealised notions that assume the ice and bed are perfect140

and uniform. In reality, the ice will have crevasses and smaller imperfections and inhomogeneities141

and may display some viscous deformation. The bed will not be uniform and flat and subglacial142

water may influence the ice-bed contact. As a result, in a real-world application of our results, such143

as to form a calving parameterisation, a pragmatic choice would be to choose the values of these144

parameters to best match observations.145
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