Ryan Andrew (Orcid ID: 0000-0002-2566-7763)

Improving Target Price Calculations in Medicare Bundled Payment
Programs

Benjamin A. Y. Cher?, MS, Baris Gulseren®3, MS, Andrew M. Ryan?2, PhD

Author Affiliations:

1. University of Michigan Medical School, Ann Arbor, Ml

2. University of Michigan School of Public Health, Ann Arbor, M
3. Center for Evaluating Health Reform, Ann Arbor, Ml

Corresponding Author:
Andrew M. Ryan

M3124 SPHII

1415 Washington Heights
Ann Arbor, MI 48109
amryan@umich.edu
Phone: 734-936-1311

Acknowledgements: None.
Word Count: 3,211
Table: 1

Number of Figures: 3

This is the author manuscript accepted for publication and has undergone full peer
review but has not been through the copyediting, typesetting, pagination and
proofreading process, which may lead to differences between this version and the
Version of Record. Please cite this article as doi: 10.1111/1475-6773.13675

This article is protected by copyright. All rights reserved.


http://orcid.org/0000-0002-2566-7763
mailto:amryan@umich.edu
http://dx.doi.org/10.1111/1475-6773.13675
http://dx.doi.org/10.1111/1475-6773.13675

Abstract

Word count: 200

Objective: To compare the predictive accuracy of two approaches to target price calculations
under Bundled Payments for Care Improvement-Advanced (BPCI-A): the traditional Centers for
Medicare and Medicaid Services (CMS) methodology and an empirical Bayes approach

designed to mitigate the effects of regression to the mean.

Data Sources: Medicare fee-for-service claims for beneficiaries discharged from acute care

hospitals between 2010 and 2016.

Study Design: We used data from a baseline period (discharges between January 1, 2010 and
September 30, 2013) to predict spending in a performance period (discharges between October 1,
2015 and June 30, 2016). For 23 clinical episode types in BPCI-A, we compared the average
prediction error across hospitals associated with each statistical approach. We also calculated an

average across all clinical episode types and explored differences by hospital size.

Data collection/extraction methods: We used a 20% sample of Medicare claims, excluding

hospitals and episode types with small numbers of observations.

Principal Findings: The empirical Bayes approach resulted in significantly more accurate

episode spending predictions for 19 of 23 clinical episode types. Across all episode types,



prediction error averaged $8,456 for the CMS approach versus $7,521 for the empirical Bayes

approach. Greater improvements in accuracy were observed with increasing hospital size.

Conclusions: CMS should consider using empirical Bayes methods to calculate target prices for

BPCI-A.

Key Words
bundled payments, target prices, spending predictions, health policy, regression to the mean,

Bayesian shrinkage

A. What is known on this topic:
e The U.S. Centers for Medicare and Medicaid Services (CMS) implemented the
voluntary Bundled Payments for Care Improvement-Advanced (BPCI-A) program in
2018.
e Prior work demonstrates that target price calculations used by BPCI-A do not account

for regression to the mean over time in hospital spending.



e BPCI-A may lead to undue financial losses for CMS because hospitals are more
likely to join the program if they are offered higher target prices — but hospitals
offered higher target prices are more likely to experience decreases in spending and
therefore achieve shared savings due to statistical artifact.

B. What this study adds:

e Empirical Bayes estimation, which accounts for regression to the mean, can be used
to predict hospital spending and set BPCI-A target prices.

e When applied to BPCI-A, empirical Bayes estimation improved target price accuracy
for the majority of BPCI-A clinical episode types, and calculated target prices were
generally lower.

e CMS should consider using empirical Bayes estimation to set BPCI-A target prices.



Introduction

The Centers for Medicare and Medicaid Services (CMS) implemented the voluntary
Bundled Payments for Care Improvement-Advanced (BPCI-A) program in 2018.* Bundled
payment models seek to reduce spending by making providers responsible for spending that
occurs throughout a predefined clinical episode.? For 29 inpatient clinical episode types, CMS
defines target prices for each participating hospital for a particular measurement period. If
hospital spending in the performance period is below the target price, a hospital earns shared
savings. However, spending above the target price leads to penalties. Target prices are
calculated for a particular hospital by applying a discount to that hospital’s predicted spending
for a particular episode.® Predicted spending is based on risk-adjusted spending during prior
years and peer-group spending trends. For BPCI-A to function appropriately, target prices should
achieve a balance between incentivizing spending reductions and encouraging program
participation. The ability for CMS to save money in voluntary programs like BPCI-A stems
almost entirely from setting an appropriate target price.

However, the best way to set target prices under bundled payment is unknown. Predicting
provider spending, while necessary for alternative payment models, is challenging.*® Hospital
spending is susceptible to a statistical phenomenon known as regression to the mean, where
hospital spending that is unusually high in a particular year is likely to decrease in following
years, and hospital spending that is unusually low in a particular year is likely to increase in
following years.® In essence, random noise can obscure policymakers’ ability to observe
hospitals’ true spending performance. Evaluating hospitals’ expected spending trends, and
incorporating them into predictions, is another challenge. Inaccurate predictions may lead to

CMS failing to reward some deserving hospitals and rewarding some undeserving hospitals.



Inaccurate predictions may also discourage program participation. Setting target prices that more
accurately predict hospital spending has the potential to more appropriately balance incentives in
BPCI-A.

In this context, we developed an alternative methodology to calculate target prices under
BPCI-A. Specifically, we used empirical Bayes estimation to mitigate the effects of regression to
the mean. Empirical Bayes estimation addresses regression to the mean by “shrinking”
predictions of spending for any particular hospital to average spending across other similar
hospitals.* Using national Medicare data, we calculated target prices using the standard CMS
approach and our alternative approach. We then compared the predictive accuracy of target

prices calculated using the standard CMS approach and our alternative method.

Methods

Data Source and Definitions

We used inpatient and outpatient physician claims and 20% MEDPAR files for patients
discharged from acute care hospitals. We also used Provider of Service (POS), Academic
Medical Center (AMC) list, Provider Specific Files (PSF), and American Hospital Association
Annual Survey (AHA) for hospital characteristics.

For each inpatient clinical episode, BPCI-A determines target prices for a single year
based on hospital performance during a prior period spanning multiple years. We mirrored this
approach using index admissions between January 1, 2010 and September 30, 2013 to define a

baseline period and index admissions between October 1, 2015 and June 30, 2016 to define a



performance period. We evaluated these baseline and performance periods because they
preceded the announcement of BPCI-A. As a result, our assessment of the accuracy of alternative
approaches to set target prices would not be affected by hospitals’ attempts to reduce episode
spending as a result of the program. Towards this end, we also excluded hospitals that
participated in the same episode under the BPCI program.

Following CMS methodology, we excluded hospitals with fewer than 40 cases during the
baseline period for each clinical episode. This resulted in the exclusion of one clinical episode.
We also excluded clinical episodes for which fewer than 20 hospitals met the case requirement,
resulting in the exclusion of 5 clinical episodes.

Data on hospital characteristics came from the American Hospital Association Data

Annual Survey between 2010 and 2013.

Target price calculation using current CMS approach

We calculated target prices for each clinical episode using the current CMS approach.
CMS calculates a benchmark price which incorporates observed spending, expected spending
based on case mix, and peer-group spending trends. Then, benchmark prices are converted to
target prices using a formula that incorporates a 3% discount. The formula accounts for inflation;
results are reported in 2013 dollars. The CMS approach is described in detail in Appendix

Figure Al.

Target price calculation using empirical Bayes estimation

We also calculated target prices for each clinical episode using empirical Bayes

estimation. This approach derives two separate appraisals of hospitals’ episode spending: (1) one



that is determined by a hospital’s own risk-adjusted spending in the baseline period; and (2)
another that is a hospital’s expected spending, estimated by the hospital’s characteristics.
Throughout this paper we refer to appraisal (1) as “historical spending” and appraisal (2) as
“expected spending.”

A weight, based on the reliability of a hospital’s risk-adjusted baseline (appraisal 1), is
then derived and applied to each appraisal of spending. Generally, reliability increases as
hospital case volume increases. If risk-adjusted spending is highly reliable, it will receive much
of the weight. This approach was developed to profile hospital quality,” has been shown to have
greater predictive accuracy than other common approaches to measure quality,®** and is used by
agencies such as Leapfrog for quality reporting.*? The formula for the weights is described in
detail in the Technical Appendix. Essentially, weights are derived from a ratio of signal to
noise. When hospital spending predictions are more reliable, they receive more weight.

To implement the empirical Bayes approach, we first employed random forest machine
learning estimation to select independent variables to predict hospital spending. The goal of this
approach was to develop the best possible predictive model of hospital spending during the
performance period. Importance weights of variables in our model are presented in Appendix
Figure A2. These variables were then used to estimate linear models for each clinical episode. In
contrast to the traditional CMS methodology, we incorporated peer-group spending trends as
simply another factor that could predict future spending. The two separate appraisals of hospital
episode spending were then developed and combined using the derived reliability weights. How
the empirical Bayes approach affects target prices can be seen in Appendix Figure A3, where

the median estimate is lower and extreme values are shrunk towards the mean. Further



description of the methodology is provided in the Technical Appendix and Appendix Figure

Al.

Statistical Analyses

Our analysis sought to compare the predictive accuracy of the CMS and empirical Bayes
approaches. For each clinical episode type, at each hospital, we calculated the risk-adjusted
spending in the performance period. This was our “gold standard” — the value that target prices
sought to estimate. We then calculated the mean absolute prediction error, defined as the
difference between risk-adjusted spending in the performance period and target prices. Mean
absolute prediction error was calculated using both the CMS and empirical Bayes approaches.
We compared the mean absolute prediction error between these approaches across all hospitals.
We then conducted a sensitivity analysis where we evaluated hospitals separately by size,
categorized as follows: small (0-250 beds), medium (251-500 beds), large (501-850 beds), and
extra-large (>850 beds).

We then created a measure of overall performance to compare the CMS and empirical
Bayes estimators across all clinical episodes by calculating the unweighted mean absolute
prediction error across all 23 episodes. We recalculated this value for 1,000 bootstrap resamples
of the data and compared the bootstrap distribution between the CMS and empirical Bayes
approach. We then repeated this approach separately by hospital size, categorized as above.
Standard errors were clustered by hospital.

Our empirical Bayes estimation differed in how it incorporated peer-group spending
trends into target price calculations (Appendix Figure Al). To understand the extent to which

changes in predictive accuracy were due to shrinkage itself versus the modifications to how peer-



group trends were incorporated into the model, we conducted additional sensitivity analyses
(Appendix Figure A4). First, we used the traditional CMS methodology with the peer-adjusted
trend factor removed from the calculation (Sensitivity Analysis A). Second, we left the “peer-
adjusted trend” as-is and excluded peer-group spending trends from the calculation of expected
spending used by the empirical Bayes estimator (Sensitivity Analysis B). Third, we excluded all
information about peer-group spending trends (Sensitivity Analysis C).

Because some hospitals may use more recent data to inform their decisions related to
alternative payment models, we conducted a sensitivity analysis where we extended the baseline
period until December 31, 2014. To examine possible distributional effects related to the
accuracy of target price predictions, supplemental analysis also examined differences in the
accuracy of target prices across hospital size, teaching status, profit status, urban versus rural,
and region.

All p-values were two-sided, and alpha = 0.05 was set as the threshold for significance.

Analyses were performed using Stata version 16.0 (Stata Corp, College Station, TX).

Results

The study sample included 2,589 hospitals across 23 BPCI-A clinical episodes. During
the baseline period (2010-2013), there were 1,837,861 clinical episodes with average spending of
$20,039 per hospital-episode (Appendix Table Al).

Allocation of weight between hospitals’ historical spending versus expected spending

was similar across episodes included in BPCI-A (Appendix Table A2). For 22 of 23 episodes,

10



between 28% and 33% of the weight was applied to hospitals’ historical spending. For acute
myocardial infarction, 45% of the weight for the empirical Bayes approach was based on the
historical spending, and 55% was based on expected spending.

The empirical Bayes approach had a lower mean target price for all 23 clinical episode
types (Table 1). For cardiac valve, there was a very large difference in mean target price — mean
target price was $11,716 higher under the traditional CMS methodology than under the empirical
Bayes methodology. For the remaining clinical episodes, the difference in mean target price
ranged from $343 for urinary tract infection to $2,757 for coronary artery bypass graft surgery.

The empirical Bayes approach had significantly lower mean absolute prediction error
than the CMS approach for 19 out of 23 clinical episodes (Table 1, Figure 1). The largest
improvement was for cardiac valve (A=$11,716). For coronary artery bypass graft surgery
(A=$2,757), major bowel procedure (A=$2,579), spinal fusion (A=$2,472), and sepsis
(A=%$1,752), the empirical Bayes estimator outperformed the CMS estimator by a wide margin.
For 4 clinical episode types (lower extremity and humerus procedure, cardiac defibrillator,
cervical spinal fusion, and cellulitis), there was no significant difference in mean absolute
prediction error between both approaches. The fact that target prices were generally both lower
and more accurate under the empirical Bayes methodology suggests that the CMS methodology
was systematically over-predicting spending during the performance period.

In sensitivity analysis by hospital size, we observed similar results for hospitals of all
sizes (Appendix Figure A5). In sensitivity analysis including the year 2014, results did not
differ substantially, and absolute and relative prediction errors were relatively similar (Appendix

Figure A6).
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Across all clinical episodes, mean absolute prediction error was $7,521 for the empirical
Bayes approach versus $8,456 for the CMS approach (p<0.001, Figure 2). There was not a
single bootstrap iteration in which the CMS approach outperformed the empirical Bayes
approach. For all four hospital size categories, mean absolute prediction error was higher when
using the CMS estimator than when using the empirical Bayes approach (p<0.001 for all
categories, Appendix Figure A7).

The traditional CMS methodology resulted in higher prediction error for large hospitals
than small hospitals; mean absolute prediction error was $9,042 for large hospitals versus $8,437
for small hospitals (Figure 3). The empirical Bayes methodology improved prediction accuracy
for all hospital size categories. There were greater improvements for large hospitals than for
small hospitals, so that compared with the traditional CMS methodology, the relationship
between hospital size and prediction error was reversed. Using empirical Bayes estimation,
prediction error was higher for small hospitals than for large hospitals; mean absolute prediction
error was $7,982 for small hospitals versus $6,846 for large hospitals. Lastly, improvements in
accuracy for larger hospitals were generally higher for surgical episodes than medical episodes.
Five of the 6 episodes with greatest improvements in prediction accuracy were surgical episodes.
Hospital size was the only hospital characteristic for which the accuracy of target prices varied
substantially between the traditional CMS methodology and the empirical Bayes methodology
(Appendix Table A3).

Decreases in mean absolute prediction error were due to the shrinkage aspect of the
empirical Bayes model to a greater extent than modifications of how the peer-adjusted trend
factor was incorporated into the predictive methodology. When the peer-adjusted trend factor

was removed from the traditional CMS methodology (Sensitivity Analysis A), mean error did
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not decrease substantially ($8,470 for Sensitivity Analysis A vs. $8,456 for traditional CMS
methodology). When the peer-adjusted trend factor was left as-is and peer-group trends were
excluded from the calculation of expected spending used by the empirical Bayes estimator
(Sensitivity Analysis B), mean absolute prediction error decreased substantially and was similar
to the empirical Bayes estimator used in the primary analysis ($7,681 for Sensitivity Analysis B
versus $7,684 for the primary empirical Bayes analysis). When all information about peer-group
spending trends was excluded, mean prediction error was similar $7,686, similar to Sensitivity

Analysis B and the primary empirical Bayes analysis.

Discussion

In this national study comparing the accuracy of target prices for BPCI-A between the
current CMS approach and a modified approach using empirical Bayes estimation, we report
three main findings. First, there was substantial prediction error in BPCI-A target prices
calculated using the traditional CMS methodology, and target prices were generally too high.
Second, the empirical Bayes estimator statistically outperformed the CMS estimator for 19 of 23
clinical episodes. Performance was not statistically different for the remaining 4 episodes, and
there were no episodes where the CMS estimator outperformed the empirical Bayes estimator.
Third, the empirical Bayes estimator outperformed the CMS approach for hospitals of all sizes,

and improvements were greatest for larger hospitals. Together, these findings suggest an
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empirical Bayes approach could improve the ability of BPCI-A to set accurate target prices that
balance incentivizing spending reductions with encouraging program participation.

Our results are consistent with other research showing the benefits of empirical Bayes
estimation for profiling hospital spending® and quality outcomes.*”*® However, ours is the first
to apply empirical Bayes estimation to the problem of setting target prices under BPCI-A. We
also provide insight into where improvements in the predictive accuracy of target prices are most
likely to be observed. We found greatest improvements for larger hospitals, who are more likely
to participate in voluntary bundled payment programs than smaller hospitals.** We still found
improved spending predictions for smaller hospitals, whose spending is more susceptible to
regression to the mean. Improvements were generally larger for surgical conditions, which are
more susceptible to influence by bundled payment programs'® than medical conditions.

CMS should consider incorporating empirical Bayes estimation into target price setting
for BPCI-A. This may be especially helpful for particular episode types, such as cardiac valve
and coronary artery bypass grafting, where we observed the highest improvements in predictive
accuracy when employing empirical Bayes estimation. There is a precedent for using empirical
Bayes estimation in other CMS incentive programs, including the construction of the PSI-90 for
the Hospital Acquired Conditions Reduction Program.2®?! Both the Hospital Readmission
Reductions Program?? and Hospital Compare?® use Bayesian Shrinkage to profile hospital
readmission and mortality rates. The primary advantage of the using the empirical Bayes
approach for BPCI-A is that it addresses the issue that hospitals with high target prices may join
the program and experience unwarranted financial gains through regression to the mean.® More
accurate target prices could also address issues such as low participation rates,?#2° high drop-out

rates,>*? inequitable distribution of risk-sharing,? and substantial differences in hospital
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characteristics between participants and non-participants.?’-?® Savings associated with BPCI-A
have been modest™?° in prior years; lower target prices resulting from empirical Bayes estimation
would further encourage hospitals to lower spending and achieve shared savings with CMS.
Lastly, our finding that current target prices are too high suggests that CMS may be losing
money both because hospitals are more likely to join the program if they are offered higher target
prices and because CMS is paying unnecessarily high target prices to hospitals who are already
participating in the program. Additionally, even if BPCI-A participation were made mandatory —
a policy solution suggested by many researchers® — the program would continue to result in
financial loss for CMS if there are no substantial changes in the target price formula. Of note,
while our analysis suggests how the accuracy of spending predictions may be improved, an
additional policy question is whether 3% is the appropriate discount factor between the
benchmark price and target price. Further research can explore the implications of different
discount rates for hospital behavior and reconciliation payments under bundled payment
programs.

The empirical Bayes approach may have disadvantages. Shrinkage may reduce incentives
for small hospitals to change behavior, since target prices are less dependent on their own
spending.®® In addition, empirical Bayes estimation is limited by the ability of hospital
characteristics to explain spending. Contrary to other applications of empirical Bayes
estimation,° such as profiling hospital mortality, we found greater improvements in accuracy for
larger hospitals than for smaller hospitals. This was likely because of stronger relationships
between hospital characteristics and spending for larger hospitals than for smaller hospitals.

Even though the empirical Bayes estimator was designed to help smaller hospitals specifically,

there was more room for improvement in spending predictions for larger hospitals than for
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smaller hospitals. Nevertheless, the substantial errors observed for our application of empirical
Bayes estimation suggests that hospital spending predictions could be improved further,
enhancing target prices set under BPCI-A and other alternative payment programs.

Our study had limitations. First, we used a 20% sample of Medicare claims rather than
the 100% sample used by CMS to determine target prices. However, the 100% sample is only
available to researchers working under contract for CMS. In addition, sensitivity analysis found
that the empirical Bayes approach outperformed the CMS approach for all hospital size
categories, suggesting that it would similarly outperform the CMS approach when using 100%
files. Second, we used data between 2010 and 2016, which are older than the data that will be
used for BPCI-A, and hospitals may have changed their clinical operations between the baseline
and performance period because of the influence of other value-based purchasing programs. To
address this, we excluded hospitals that participated in similar clinical episodes in BPCI, the
precursor program to BPCI-A. Additional limitations derive from minor differences in our
replication of the CMS approach to calculating target prices. For instance, we used generalized
linear models instead of compound lognormal regression. We also did not include spending on
home health and durable medical equipment, which are a small component of episode
spending.t® These minor differences are unlikely to materially affect our conclusions. Finally, we
were not able to observe the “true spending” of hospitals, instead relying on the ability of
alternative estimators to predict future spending as a proxy for relative accuracy. While
imperfect, this strategy allowed us to examine estimator accuracy using actual data (rather than
simulated data) under the plausible assumption that an estimator that is better able to predict
observed future spending provides a more accurate estimate of true spending, which is

unobserved.
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Conclusions
Effective alternative payment programs depend on the ability of program sponsors to set
accurate and appropriate targets for quality and spending. Empirical Bayes estimation has the

potential to enhance BPCI-A by improving target price setting under the program.
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Table 1. Target price, mean absolute prediction error, and percent error comparing
traditional CMS methodology and empirical Bayes methodology, for all clinical episode

types

Traditional CMS Methodology Empirical Bayes Methodology
Mean Mean Mean Mean

Mean Absolute Absolute Absolute Absolute

Target Prediction Prediction Mean Target  Prediction Prediction
BPCI-A Episode Price ($)  Error ($) Error (%) Price ($) Error ($) Error (%)
Cardiac Valve 65,548.3  19,870.6 30.3 50,654.7 8,154.9 16.1
Cardiac defibrillator 50,770.2 15,716.5 31.0 37,706.9 14,454.0 38.3
Coronary artery bypass graft
surgery 44,005.8  11,756.2 26.7 37,936.4 8,999.7 23.7
Spinal fusion (non-Cervical) 38,009.2 9,963.9 26.2 31,347.4 7,491.8 23.9
Hip and femur procedures
except major joint 35,7495 9,266.1 25.9 32,675.9 8,503.2 26.0
Major bowel procedure 34,506.3 12,3284 35.7 28,861.9 9,749.9 33.8
Sepsis 28,812.0 8,951.2 31.1 23,858.5 7,199.4 30.2
Lower extremity and humerus
procedure except hip, foot,
femur 28,694.0 8,531.3 29.7 24,285.8 6,907.9 284
Stroke 26,588.7 8,879.3 334 23,169.0 7,844.5 33.9
Pacemaker 26,116.1  9,239.2 35.4 21,481.4 8,398.4 39.1
Cervical spinal fusion 26,046.7  8,271.7 31.8 22,202.2 7,358.3 33.1
Major joint replacement of the
lower extremity 24,707.5  6,940.3 28.1 21,795.9 5,991.7 27.5
Acute myocardial infarction 23,4153 9,322.4 39.8 20,042.7 8,417.9 42.0
Percutaneous coronary
intervention 22,746.0  7,267.2 319 18,839.7 6,866.3 36.4
Renal failure 21,906.4  8,000.1 36.5 18,513.6 7,300.9 394
Congestive heart failure 21,582.6  8,208.0 38.0 18,256.4 7,646.3 41.9
Simple pneumonia and
respiratory infections 19,586.9  8,504.0 43.4 16,9715 7,892.0 46.5
Gastrointestinal hemorrhage 18,103.5 8,177.5 45.2 15,155.5 7,601.3 50.2
Cellulitis 17,892.6  9,309.8 52.0 15,351.7 8,966.4 58.4
Urinary tract infection 17,717.0  7,806.7 44.1 15,537.6 7,463.5 48.0

Chronic obstructive pulmonary 17,1025 7,827.9 45.8 14,542.8 7,282.2 50.1



disease, bronchitis/asthma
Gastrointestinal obstruction

Cardiac arrhythmia

15,810.1

15,371.7

7,591.9

7,046.5

48.0

45.8

13,3255

12,893.9

6,826.2

6,634.3

51.2

51.5
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Figure Legends

Figure 1. Difference in prediction error between traditional CMS methodology and empirical
Bayes estimation, for all clinical episode types

Figure 2. Mean prediction error for all hospitals, averaged across all clinical episodes

Figure 3. Mean prediction error across all clinical episodes, by hospital size, using traditional
CMS estimation and empirical Bayes estimation
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Technical Appendix

General Approach

As described in the manuscript, we extracted a 20% sample of Medicare fee-for-service claims
for beneficiaries discharged from acute care hospitals during a baseline period (between 1/1/2010
and 9/30/2013) and a performance period (between 10/1/15 and 6/30/16). We used data from the
baseline period to calculate target prices for the performance period. We evaluated prediction
accuracy by comparing calculated target prices with observed spending during the performance
period.

Traditional CMS approach to calculating target prices

We first extracted spending during the baseline period for each clinical episode. Let Cg; be the
cost per beneficiary for a particular clinical episode at hospital j during the baseline period B. We
then estimated target prices for each hospital using the traditional CMS method, published by
CMS! and summarized in Appendix Figure Al. For each clinical episode, let ﬁ]-_CMS be the
estimated target price at each hospital j calculated using the traditional CMS methodology.

Modified approach using Bayesian Shrinkage to account for mean reversion

We then estimated target prices for each hospital using empirical Bayes estimation. This
technique is used to address random variation in health metrics and resultant mean reversion over
time. The estimator is a weighted average of two quantities: (1) risk-adjusted spending and (2)
expected spending conditioned on a variety of hospital-level factors.2 Throughout this paper, (1)
is referred to as “historical hospital spending” and (2) is referred to as “expected spending.” The
estimator distributes weight between quantities (1) and (2) based on a measure of the reliability
of risk-adjusted spending. The reliability measure depends on hospital volume and signal-to-
noise measurements. When risk-adjusted spending is less reliable, less weight is applied to the
estimate, so it is “shrunk” towards the conditional mean. Thus, for smaller hospitals, estimated
spending depends to a greater extent on spending at other hospitals.

To implement the estimator, we first estimated patient episode spending as a function of

hospital characteristics (Quantity 2 as described above). We selected independent variables using
a random forest machine learning algorithm (Appendix Figure A2). We implemented the
estimator separately for each clinical episode. For each clinical episode, we estimated the
following linear model for patient i, in hospital j, in quarter t:

Cijt =Bo+ p1ln (Volumej) + X +
ps Timet+ 4 Timet- Xj+ [  Seasont +eijt

Where C;;; is episode spending, Volume; is the number of times the episode is performed at
hospital j, X is a vector of hospital characteristics (academic, urban, safety net, census, bed size),
Time is a quarterly time trend, and Season is a vector of dummy variables for each season.
Explanatory variables were defined as in the traditional CMS methodology.*

We then calculated Cj_ad justea, the risk-adjusted spending at hospital j for each clinical episode

during the baseline period (Quantity 1 as described above). To accomplish this, we took the ratio
of predicted episode spending based on case mix (using the same HCCs and HCC interactions as
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in Step 3 of the traditional CMS process?) to observed spending at each hospital for each clinical
episode. Then we multiplied this value by the average of C; across all hospitals.

We used the empirical Bayes estimator to create shrunk estimates of the benchmark prices at
each hospital:

" Empirial Bayes j = Cj aajusteaW) + (G)(1 — W)

where Empm/caBayesj is the estimated benchmark price. In brief, W; is the ratio of signal
variance to total variance in residual spending. Signal variance is derived from a regression of
hospital spending on hospital volume. Noise variance is derived from the mean-squared error of
a regression of spending on hospital fixed effects to the number of observations for each hospital.
This is described in detail in the statistical appendix of Ryan et al., 20123, W; is generally
inversely associated with hospital volume.

We converted the benchmark price to the target price using the traditional CMS formula, which
involved application of a 3% discount. For each clinical episode, let I%_empirical_Bayes be the
target price at hospital j calculated using the empirical Bayes estimator.

We evaluated hospital performance by comparing the estimated target prices (13j_CM5 and
I%_empirical_Bayes) to risk-adjusted spending during the performance period. Let Cp j adjustea D€
risk-adjusted cost per beneficiary for a particular clinical episode at hospital j during the
performance period P. We calculated Cp j_adjustea USINg the same risk-adjustment procedure as
Ci adjustea €xplained above.

For each clinical episode, at each hospital, we determined the absolute value of the difference
(“error”) between cost/beneficiary during the performance period and the target price, using both
traditional CMS methodology and the empirical Bayes methodology. Error using CMS
methodology was Ej cys = |P; cus — Cpj aajustea|- EYTOr Using the empirical Bayes estimator

was Ej_empirical_Bayes = |Pj_empirical_Bayes - CPj_adjustedl-
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Appendix Figure Al. Methodology for calculating BCPI-A target prices for a given clinical
episode, comparing traditional CMS method (A) versus modified method incorporating
empirical Bayes estimation to account for mean reversion (B)

(A) Traditional CMS Method (B) Modified method incorporating empirical Bayes estimation

Predicted

Expected ° Expected
Observed spending gferj'gﬁ Observed spending
spending based on pesrgroup spending based on
case mix trends case mix
(oo
Predicted /
clinical /
episode )
spending / Average
- [ ] spending
Ratio Product across
hospitals
Hospital
v character- Peer-group
) istics®, spending
Efficiency Dollar including trends
measure amount volume
- [ unearregression |
v ' vy 4 3 v
Standardized Peer- Risk- E’:’?ficmddsWEdi“Q!i |
baseline PCMA adjusted adjusted ;on ! " m:lar DE odsp' a
price trend factor spending characteristics” and peer-
group spending trends
v v v v v
[ Product ] [ Dimick-Staiger Bayesian Shrinkage Estimator J
Benchmark Price Benchmark Price
A 4
( Traditional CMS Formula (3% Discount) ( Traditional CMS Formula (3% Discount) ]
Target Price Target Price

*Risk-adjustment based on age, sex, race, and HCCs.
**Hospital characteristics include volume (number of patients undergoing that particular clinical
episode), academic vs non-academic medical center, urban vs rural, safety net hospital versus
non-safety net hospital, census division (9 categories), proportion of Medicare days, proportion
of Medicaid days, and bed size (small [0-250 beds], medium [251-500 beds], large [501-850
beds], extra-large [>850 beds])
***PCMA = patient case mix adjustment. This is based on realized case mix during the
performance period.
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Appendix Figure A2. Importance weights for random forest machine learning estimation
used to model hospital expected spending

volume
mcripdtoipdtot
mcdipdtoipdtot
bed_size_medium.1
season_q2
cens_div 2.1
for_profit.1

bed size_small.1
season_q3
non_profit.1
season_gd
cens_div 3.1
cens_div_9.1
teach_hosp.1
cens_div 5.1
cens_div 7.1
urban.1
bed_size_large.1
cens_div 4.1
cens_div_8.1
cens_div 6.1

wnlllll““““

T T T T T
20 40 60 80 100

o

Importance

NOTES:
Volume is a continuous variable, representing the number of cases for a particular clinical

episode at a particular hospital. Micripdtoipdtot is a hospital’s proportion of Medicare days.
Mcdipdtoipdtot is a hospital’s proportion of Medicaid days. Bed size is categorized as follows:
small [0-250 beds], medium [251-500 beds], large [501-850 beds], extra-large [>850 beds].
Cens_div is United States census division.
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Appendix Figure A3. Distribution of target prices for simple pneumonia and respiratory
infections, comparing traditional CMS methodology versus empirical Bayes estimation

20

154

Percent

T T T T T
10000 20000 30000 40000

50000 60000

Target price for empirical Bayes estimator Target price for CMS estimator

Note: simple pneumonia and respiratory infections is the most common episode in BCPI-A.
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Appendix Figure A4: Sensitivity analysis to address drivers of changes in prediction
accuracy between traditional CMS methodology and empirical Bayes approach

Sensitivity Analysis A: Traditional Sensitivity Analysis B: Leave the *““peer-adjusted trend”
CMS methodology with the peer- as-is and apply the empirical Bayes estimation to the
adjusted trend factor removed from benchmark price as calculated using the traditional CMS
the calculation methodology
Expected
Observed spending Predicted
spending based on Expectad OIE ratio
case mix* Obser\fed spending based on
spending based on
] case mix* peer-group
| trends i
a \
i Predicted 3 i
i clinical ! Predicted !
] crisese — e
i spending § spending
Ratio i | Ratio i
Average Average
across across
hospitals hospitals
e | [ Dot oo | [ oo
measure amount !
Ad v istics®,
v including
Standardized Peer- volume
Standardized baseline PCMA adjusted
baseline PCMA price trend factor [ neer et ]
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¥ ¥ ¥ v
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¥ v
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Target Price
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Sensitivity Analysis C: Exclude all information about peer-group spending trends
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Observed spending
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Appendix Table Al: Number of episodes and spending per episode, comparing the baseline
period (2010-2013) and the performance period (2015-2016), for all clinical episodes

Baseline Period (2010-2013)

Performance Period (2015-2016)

Mean number of

Mean spending

Mean number of

Mean spending

Number of annual episodes  per episode, $ annual episodes  per episode, $

Episode hospitals (SD) (SD) (SD) (SD)
All Episodes 459465.3

2589 (54418.25) 20,039 (18,209) 185527.0 (99198.6) 19,717 (17,782)
Acute myocardial
infarction 523 8550 (1277.87) 20,587 (18,696) 3481 (1656.04) 19,178 (18,632)
Cardiac Valve 206 4454 (389.06) 52,283 (25,543) 2480 (1429.77) 47,001 (22,244)
Cardiac
arrhythmia 1367 31453.5 (4280.71) 13,495 (14,540) 11479 (5648.37) 13,942 (14,817)
Cardiac
defibrillator 79 1128.75 (337.48) 39,058 (19,813) 208.5 (89.8) 45,195 (24,181)
Cellulitis 472 7543 (1032.16) 16,007 (15,916) 2647.5 (1317.34) 15,945 (15,019)
Cervical spinal
fusion 40 512.75 (25.53) 22,906 (16,259) 238 (121.62) 23,352 (18,139)
Chronic
obstructive
pulmonary
disease,
bronchitis/asthma 1800 46141 (7165.02) 15,406 (15,650) 14504 (8571.55) 15,131 (15,383)
Congestive heart
failure 1822 50988.5 (7301.79) 19,127 (18,659) 21187.5 (11156.02) 19,073 (18,324)
Coronary artery
bypass graft
surgery 256 4247.75 (744.28) 39,056 (20,107) 1543.5 (801.15) 37,294 (17,668)
Gastrointestinal
hemorrhage 1142 22018.75 (2574.33) 15,947 (15,563) 8152 (4091.32) 15,848 (15,415)
Gastrointestinal
obstruction 610 4463 (528.37) 13,951 (15,149) 1627 (885.3) 12,779 (15,563)
Hip and femur
procedures
except major joint 436 9790.25 (1261.59) 33,378 (17,706) 4003 (1920.5) 32,307 (16,936)
Lower extremity
and humerus
procedure except
hip, foot, femur 23 304 (53.97) 24,900 (18,109) 95.5 (51.62) 25,395 (15,595)
Major bowel
procedure 436 7065 (773.08) 29,803 (22,993) 2804.5 (1529.47) 26,096 (20,355)
Major joint
replacement of
the lower
extremity 1467 48990.5 (4916.42) 21,700 (12,686) 23147 (12440.84) 18,931 (11,752)
Pacemaker 360 5760 (1073.15) 22,180 (14,432) 1659 (975.81) 22,906 (15,080)
Percutaneous
coronary
intervention 892 25583.75 (4917.18) 19,539 (14,423) 7861.5 (4198.09) 21,818 (16,321)
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Renal failure

Sepsis

Simple
pneumonia and
respiratory
infections

Spinal fusion
(non-cervical)

Stroke

Urinary tract
infection

NOTES: SD = standard deviation.

1142

1569

2139

238

1066

1357

23037.5 (2855.65)

42402.5 (3513.01)

59388.25 (7433.74)

4015 (435.84)

23162.75 (2321.05)

28464.75 (4305.53)

19,168 (18,019)

24,700 (22,750)

17,863 (16,905)

32,493 (15,900)

23,863 (20,780)

16,282 (15,311)

9675 (5170.36)

26273 (14062.94)

20866.5 (12304.37)

1803 (919.24)

10009 (5109.55)

9782 (4747.51)

18,548 (16,953)

22,569 (20,891)

17,353 (16,770)

31,588 (15,615)

22,456 (19,347)

16,094 (15,114)
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Appendix Table A2. Weights applied to historical hospital spending and expected spending
used by the empirical Bayes estimator, for each clinical episode

Weight applied to expected

Weight applied to spending, conditioned on
risk-adjusted hospital characteristics and
spending, mean peer-group spending trends,

BPCI -A Clinical Episode across hospitals (SD) mean across hospitals (SD)

Acute myocardial infarction
Cardiac Valve

Cardiac arrhythmia
Cardiac defibrillator
Cellulitis

Cervical spinal fusion

Chronic obstructive pulmonary disease, bronchitis/asthma

Congestive heart failure

Coronary artery bypass graft surgery
Gastrointestinal hemorrhage
Gastrointestinal obstruction

Hip and femur procedures except major joint
Lower extremity and humerus procedure
Major bowel procedure

Major joint replacement of the lower extremity
Pacemaker

Percutaneous coronary intervention

Renal failure

Sepsis

Simple pneumonia and respiratory infections
Spinal fusion (non-Cervical)

Stroke

Urinary tract infection

0.4529 (0.0456)
0.323 (0.0292)

0.2974 (0.0415)
0.3252 (0.0274)
0.2907 (0.0474)
0.318 (0.0551)

0.2928 (0.0469)
0.2954 (0.0445)
0.3249 (0.0303)
0.2948 (0.045)

0.301 (0.0458)

0.3155 (0.0385)
0.3075 (0.0474)
0.3103 (0.0387)
0.3286 (0.0461)
0.3191 (0.0344)
0.3181 (0.0315)
0.2996 (0.0445)
0.3004 (0.0512)
0.2903 (0.0501)
0.325 (0.0398)

0.2957 (0.0469)
0.2884 (0.0465)

0.5471 (0.0456)
0.677 (0.0292)

0.7026 (0.0415)
0.6748 (0.0274)
0.7093 (0.0474)
0.682 (0.0551)

0.7072 (0.0469)
0.7046 (0.0445)
0.6751 (0.0303)
0.7052 (0.045)

0.699 (0.0458)

0.6845 (0.0385)
0.6925 (0.0474)
0.6897 (0.0387)
0.6714 (0.0461)
0.6809 (0.0344)
0.6819 (0.0315)
0.7004 (0.0445)
0.6996 (0.0512)
0.7097 (0.0501)
0.675 (0.0398)

0.7043 (0.0469)
0.7116 (0.0465)
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Appendix Figure A5. Difference in prediction error between traditional CMS methodology

and empirical Bayes estimation, for all clinical episodes, by hospital size

Small hospitals (0-250 beds)

BPCI-A
i . mor
Episode Offeenco mmeansbsoe S Empnca gayes
Overall > 454 8 (366 4, 543 1) 84371 79823
Cardiac Valve —_—— 66971 (1813.0, 11581 1) 15383 88859
Spinal fusion (non-Cervical) —e— 17617 (336.4,3186.9) 92371 7475.4
Major bowel procedure e— 1367.3 (-278.8, 3013.4) 127741 11406.8
Sepsis . 10147 (6013, 14282) 88705 7855.8
Pacemaker T 838.8 (6365 23140) 91475 8308.7
Stroke id 785.0 (269.3, 1300.7) 91301 83451
Coronary artery bypass graft surgery T 6415 (-788.9,20719) 103843 97428
Acute myocardial infarction e 6315(-1785,14416) 99122 9280.7
Major joint replacement of the lower extremity d 610.5 (340.5, 880.6) 6834.8 6224.2
Hip and femur procedures except major joint = 577.3(-100.0, 12546) 100709 094936
Gastrointestinal hemorrhage . 428.5(74.0,783.0) 88046 8456.1
Simple pneumonia and respiratory infections . 416.9 (232.9, 600.9) 9044 3 8627.4
Percutaneous coronary intervention . 395.1 (-65.6, 855.8) 75383 71432
Gastrointestinal obstruction -~ 360.1 (-768 3, 1488 6) 74396 70795
Chronic obstructive pulmonary disease, bronchitis/asthma p 269.7 (48.9, 490 6) 82187 7949
Cardiac arrhythmia P 2366 (-20.9, 494 1) 7186.1 69495
Urinary tract infection P 212.4(:23.0, 447 8) 8154.1 7941.8
Renal failure p 2064 (-1819, 594.8) 83989 81924
Cellulitis r 172.0 (-427.4, 771.3) 11584.8 114129
Congestive heart failure 1597 (-97.0, 416 4) 82744 81147
Cervical spinal fusion s -232.3(-3503.0,3038.5) 6134.9 6367.1
Cardiac defibrillator —_—— -544 4 (5878 9, 4790.0) 82351 871795
I T
-5000 0 15000
€—  Favors CMS estimator Favors Empirical Bayes estimator  —>>
Medium hospitals (251-500 beds)
BPCI-A
e Dreswenmengisase  ER Empncalsaves
Overall g 950.1 (8171, 1083.1) 8168.1 2179
Cardiac Valve —— 92958 (6243.4,12348.1) 174764 81806
Lower extremity and humerus procedure except hip, foot, femur 3994 0 (-18156.2, 26144.1) 10671 6677
Sepsis . 2149.0 (14965, 28016) 87461 6597.1
Coronary artery bypass graft surgery . 1622 8 (355.6, 2890.0) 11256 96332
Major bowel procedure o 15009 (457 3, 2562 6) 15738 100638
Major joint replacement of the lower extremity . 1464.5 (975.4,1953.7)  6634.1 5169.6
Spinal fusion (non-Cervical) te- 11240 (-337.5,25854) 93613 8237.4
Stroke . 1117.3 (618.7, 1615.8) 9067.5 7950.2
Congestive heart failure . 1099 4 (608.0, 1590.9) 83965 7297
Simple pneumonia and respiratory infections g 9647 (5552, 1374.2) 74045 64399
Cervical spinal fusion —f— 887.1(-5689.6, 7463.8)  7059.8 61727
Chronic obstructive pulmanary disease, branchitis/asthma . 779.0 (412.7, 1145.4) 6828.7 6049.6
Renal failure 3 634.6 (168.5, 1100.8) 7520.3 68947
Cardiac arrhythmia 3 614.7 (263.0, 066.4) 6284.6 5669.0
Urinary tract infection . 601.0 (2556, 946.3) 7809.5 7208.5
Gastrointestinal obstruction 3 5216 (-240.1, 1283.2) 8052.6 7531
Gastrointestinal hemorrhage 3 518.0 (126 2, 909.8) 76817 7163.7
Acute myocardial infarction > 513.7 (-235.9, 1263.2) 91487 8635.1
Pacemaker 3 4896 (-336.6, 1315.5) 9303 30903.4
Cellulitis 152.4 (-387.7, 692.5) 8520.1 83767
Percutaneous coronary intervention 100.8 (-382.5, 584.1) 7260.3 7159.5
Hip and femur procedures except major joint -12.9 (-659.8, 634.0) 8644.1 8657
Cardiac defibrillator — -2274.3(6552.4,20038) 145637 16838
I I
-20000 0 25000

<—  Favors CMS estimator

Favors Empirical Bayes estimator —=

Page 12 of 19



Large hospitals (501 - 850 beds)

BPCI-A

Fpisode Difference in mean absolute Emar Eror
prediction error (95% Cl) CMs Empirical Bayes

Overall 2196.5(10148,24750) 90424 88459

—— 14846 5 (11843 5, 17449 5) 224772 78307
5018.5 (2611.0, 7426.1) 11079 6060.4
4607.7 (25143, 6701.1) 125421 79344
4117 7(2939 .0, 5296 4) 9827 5 57098
36133 (22862, 4940 4) 123933 8780
24905 (13009, 3680.1) 9390 68905
23203 (1417.5,3223.1) 89934 66731
20565 (M117.7, 2099.4) 81073 60488
20215 (-1350.7, 5393.7) 122511 102296
17414 (744 3, 2738 5) 80351 62936
1916.4 (573.5, 2459.2) 72417 57254
1361.0 (418.7, 2303.4) 68255 5464.5
13467 (-33 5, 2726 8) 75038 61571

Cardiac Valve

Spinal fusion (non-Cervical)

Coronary artery bypass graft surgery

Sepsis

Major bowel procedure

Hip and femur procedures except major joint
Acute myocardial infarction

Renal failure

Lower extremity and humerus procedure except hip, foot, femur -1
Chronic obstructive pulmonary disease, bronchitis/asthma
Simple pneumonia and respiratory infections

Congestive heart failure

Gastrointestinal obstruction

Ioo?f‘*#+¢¢+t¢‘+++++ .

Major joint replacement of the lower extremity 1294 4 (60.6, 2528.2) 8816.5 73221
Stroke 1118.0 (37.8, 2198.2) 7875 6757
Gastrointestinal hemorrhage 1074.9 (199.8, 1950.1) 74512 6376.3
Pacemaker 990.7 (-426.3, 2407 6) 85831 75924
Percutaneous coronary intervention 9180 (-138 8, 1974 8) 6817.8 58908
Cellulitis 907.4 (61.0, 1753.9) 77838 6881.3
Cardiac arrhythmia 810.9(100.3, 1521.4) 9379.8 8568.9
Cardiac defibrillator — 538.1(-4433.3 5600.5) 154975 148503
Urinary tract infection 216 (6723, 715.5) 66145 65929
Cervical spinal fusion — -177.6 (-2917.4,2562.3) 79536 81312
T T
-5000 0 19000
€—  Favors CMS estimator Favors Empirical Bayes estimator  —=>
BPCI-A
Episode Difference in mean absolute Error g
prediction eror (95% CI) CMs Empinical Bayes
Qverall - 3139.9(2545.2, 37346) 94883 6358.4

|

15021 5 (8950.3, 21092 7) 23568 1 8546 6
79976 (48711, 11124.0)  15860.8 78633
7359.5(567.1, 14151.9) 199691 12609.6
7338.3(2674.1, 12002.6) 14669.1 73308
50267 (2564 1, 74893) 10056 1 5029 4
3643.0(-363 2, 7649 2) 114737 78307
35807 (-256 0, 7435 4) 11589.3 79996
3493.0(734.2,6251.8) 9894 64011
3180.8(13335,50281) 79189 47381
3070.0 (86186, 5278 .8) 89711 59011

Cardiac Valve

Major bowel procedure

Cardiac defibrillator

Coronary artery bypass graft surgery

Sepsis

Cervical spinal fusion

Spinal fusion (non-Cervical)

Hip and femur procedures except major joint
Major joint replacement of the lower extremity
Congestive heart failure

Renal failure 29335 (1191.4, 46755) 77106 47772
Stroke 2676.3(806.2,49462) 73834 4507.1
Pacemaker 2553.1(-363.2, 54695) 103872 78341

17745 (-321 4, 3870 4) 78523 60778
1750.7 (-280.7, 3782.1) 6555 48043
14046 (4852, 3204 4) 74778 6073.1
13756 (40.1,2711.2) 59147 4539.1
12469 (-1901.0,43949) 52357 39888
7813 (-86886,22311) 5593 8 48124

Chronic obstructive pulmenary disease, bronchitis/asthma
Percutaneous coronary intervention

Gastrointestinal hemorrhage

Gastrointestinal obstruction

Lower extremity and humerus procedure except hip, foot, femur -
Urinary tract infection

EREEEEEER:
T

Cellulitis -1 7485 (-1236 0, 2732 9) 86184 78899
Acute myocardial infarction - 475.9(-1694.9,2646.7)  8898.4 84225
Simple pneumonia and respiratory infections — 718(-26503 24066) 70318 71087
Cardiac arrhythmia - -3294(-18976, 1238 8) 4880 52093
] I
-5000 0 19000
€—  Favors CMS estimator Favors Empirical Bayes estimator  —>
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Appendix Figure A6: Difference in prediction error between traditional CMS methodology
and empirical Bayes estimation, for all clinical episodes, including data from the year 2014

BPCI-A Traditional CMS Methodology Empirical Bayes Methodology
Episode r?\zfgrzeggseo‘ﬂte rediction Target  Error Error Target Error  Error
error in $ (35%Cl) Price 3) (%) Price () (%)
Cardiac Valve - 10102 (8559, 11646) 63,928 18,607 29 49,700 8,505 17
Coronary artery bypass graft surgery . 2701 (1913, 3489) 44009 11,885 27 38031 9184 24
Major bowel procedure Ld 2343 (1650, 3035) 34,293 12,782 kT 28,495 10439 37
Spinal fusion (non-cervical) - 2125 (1287, 2963) 36,402 10,579 28 31,678 6454 27
Cardiac defibrillator —— 2107 (-370, 4584) 51,087 16,585 32 38,269 14478 38
Lower extremity and humerus procedure except hip, foot, femur = 1730 (299, 3161) 28,937 12721 44 25312 10991 43
Sepsis L] 1588 (1284, 1891) 26,180 9104 32 23,368 7517 32
Pacemaker . 1098 (566, 1630) 26,280 9,568 36 21,545 8470 39
Major joint replacement of the lower extremity L 960 (722, 1199) 24763 7,061 29 21698 6,100 28
Stroke . 956 (639, 1278) 26177 9557 7 22723 859 38
Gastrointestinal obstruction . 852 (397, 1308) 16,103 7,930 49 13,291 7078 83
Hip and femur procedures except major joint o 740 (359, 1120) 35952 10241 28 32,522 9,501 29
Renal failure . 675 (415, 936) 21624 88657 40 18,280 7,982 44
Simple pneumonia and respiratory infections » 618 (446, 791) 19586 8648 44 16,857 8,029 48
Gastrointestinal hemorrhage . 616 (376, 856) 18,117 8615 43 15,010 7,999 53
Congestive heart failure d 607 (381, 834) 21561 8,581 40 18,071 7973 44
Cervical spinal fusion - 598 (-814, 2009) 25622 7,702 30 22,156 7,104 32
Percutaneous corenary intervention o 597 (279, 916) 23,107 7810 34 19,003 7212 38
Chronic obstructive pulmenary disease, bronchitis/asthma » 483 (294, 671) 16,988 8,086 48 14320 7603 53
Acute myocardial infarction » 482 (65, 900) 23,499 10286 44 19,919 9,804 49
Cardiac arrhythmia . 421 (231, 611) 15483 7373 48 12979 6952 54
Cellulitis . 403 (94, 713) 17,887 10,168 57 15250 9764 64
Urinary tract infection . 371 (192, 550) 17629 8135 46 15360 7.764 51
! T
-5000 0O 19000
<—  Favors traditional CMS estimator Favars Empirical Bayes estimator ——>
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Appendix Figure A7. Mean prediction error for all hospitals averaged across all clinical
episode types, across 1,000 bootstrap iterations, by hospital size

Small hospitals (0-250 beds)
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Appendix Table A3: Distribution of absolute prediction error, comparing traditional CMS
methodology and empirical Bayes estimation, stratifying by hospital characteristics

Hospital characteristics Percentile  Traditional CMS Estimation  Empirical Bayes Estimation

Hospital size

Small (0-250 beds) 25p 3,039.1 2,706.8
50p 6,210.6 5,560.1
75p 10,387.9 9,294.8
Medium (251-500 beds) 25p 2,943.8 2,424.9
50p 6,159.4 5,085.1
75p 10,459.3 8,741.6
Large (501-850 beds) 25p 3,257.7 2,187.0
50p 6,771.9 4,679.6
75p 11,754.4 8,401.7
Extra-large (> 850 beds) 25p 3,693.5 2,090.1
50p 7,291.7 4,455.8
75p 13,163.6 8,175.5
Teaching status
Teaching 25p 4,003.3 2,369.2
50p 8,231.6 5,069.9
75p 13,616.6 8,926.4
Non-teaching 25p 2,928.2 2,533.3
50p 6,018.1 5,280.7
75p 10,130.2 8,952.4
Profit status
For-profit 25p 2,982.8 2,862.2
50p 6,162.6 5,916.0
75p 10,773.5 9,726.3
Not-for-profit 25p 3,070.4 2,472.1
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Other

Urban/Rural status

Urban

Rural

Region Category

Midwest

Northeast

South

West

50p
75p
25p
50p

75p

25p
50p
75p
25p
50p

75p

25p
50p
75p
25p
50p
75p
25p
50p
75p
25p
50p

75p

6,299.5
10,625.2
3,008.8
6,257.4

10,625.6

3,046.2
6,290.6
10,686.4
3,073.4
5,830.4

9,504.4

2,965.2
5,992.8
9,964.0
3,327.5
6,973.3
12,044.7
2,701.8
5,586.3
9,551.9
4,165.6
8,346.7

13,086.4

5,161.7
8,838.8
2,304.8
4,984.4

8,658.5

2,499.4
5,254.9
8,950.9
2,596.3
5,146.7

9,111.3

2,532.7
5,217.3
8,831.6
2,565.3
5,337.9
9,141.1
2,436.1
5,138.4
8,952.4
2,591.5
5,460.2

8,915.7
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Figure 1. Difference in prediction error between traditional CMS methodology and
empirical Bayes estimation, for all clinical episode types

BPCI-A

Episode Difference in mean absolute
prediction error in $ (95%Cl)

Cardiac Valve —e—  11715.7 (9874.9, 13556.5)

2756.5 (1794.0, 3719.1)
2578.5 (1838.3, 3318.7)
2472.1 (1491.6, 3452.6)
1751.8 (1413.6, 2090.0)
1623.4 (-548.5, 3795.3)

1262.5 (-1599.6, 4124.7)

Coronary artery bypass graft surgery
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Lower extremity and humerus procedure except hip, foot, femur 4
Cardiac defibrillator —

Stroke

Major joint replacement of the lower extremity
Cervical spinal fusion

Acute myocardial infarction
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Gastrointestinal obstruction

Hip and femur procedures except major joint
Renal failure

Simple pneumonia and respiratory infections
Gastrointestinal hemorrhage

Congestive heart failure

Chronic obstructive pulmonary disease, bronchitis/asthma
Cardiac arrhythmia

Percutaneous coronary intervention

Cellulitis

Urinary tract infection
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3433 (-16.5, 703.2)
343.2 (153.7, 532.7)

|
-5000 0

<€— Favors tradidional CMS estimator

15000

Favors Empirical Bayes estimator ——=»



Figure 2. Mean prediction error for all hospitals, averaged across all clinical episodes
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NOTES: Figure based on 1,000 bootstrap iterations. Mean absolute prediction error is

unweighted mean error across all episodes. Mean prediction error for traditional CMS estimator
= $8,455.7. Mean prediction error for empirical Bayes estimator = $7,521.4.



Figure 3. Mean prediction error across all clinical episodes, by hospital size, using
traditional CMS estimation and empirical Bayes estimation
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NOTES: Figure based on 1,000 bootstrap iterations. Mean absolute prediction error is
unweighted mean error across all episodes. Hospital size defined as follows: small (0-250 beds),
medium (251-500 beds), large (501-850 beds), and extra-large (>850 beds).
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