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Abstract
Background: Use of targeted exome-arrays with common, rare variants and function-
ally enriched variation has led to discovery of new genes contributing to population 
variation in risk factors. Plasminogen activator-inhibitor 1 (PAI-1), tissue plasminogen 
activator (tPA), and the plasma product D-dimer are important components of the 
fibrinolytic system. There have been few large-scale genome-wide or exome-wide 
studies of PAI-1, tPA, and D-dimer.
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Objectives: We sought to discover new genetic loci contributing to variation in these 
traits using an exome-array approach.
Methods: Cohort-level analyses and fixed effects meta-analyses of PAI-1 (n = 15 603), 
tPA (n = 6876,) and D-dimer (n = 19 306) from 12 cohorts of European ancestry with 
diverse study design were conducted, including single-variant analyses and gene-
based burden testing.
Results: Five variants located in NME7, FGL1, and the fibrinogen locus, all associated 
with D-dimer levels, achieved genome-wide significance (P < 5 × 10−8). Replication 
was sought for these 5 variants, as well as 45 well-imputed variants with P < 1 × 10−4 
in the discovery using an independent cohort. Replication was observed for three 
out of the five significant associations, including a novel and uncommon (0.013 al-
lele frequency) coding variant p.Trp256Leu in FGL1 (fibrinogen-like-1) with increased 
plasma D-dimer levels. Additionally, a candidate-gene approach revealed a suggestive 
association for a coding variant (rs143202684-C) in SERPINB2, and suggestive asso-
ciations with consistent effect in the replication analysis include an intronic variant 
(rs11057830-A) in SCARB1 associated with increased D-dimer levels.
Conclusion: This work provides new evidence for a role of FGL1 in hemostasis.

K E Y W O R D S

computational biology, exome, fibrinogen, fibrinolysis, genetic association study

1  |  INTRODUC TION

The use of targeted gene arrays with rare variants and function-
ally enhanced variation has led to the discovery of new genetic 
loci contributing to population variation in risk factors including 
lipids; blood pressure; and hematology traits including platelet, 
red cell and white cell measurements, clotting factors, and plate-
let aggregation.1-6 Fibrin D-dimer, tissue plasminogen activator 
(tPA), and plasminogen activator-inhibitor 1 (PAI-1) are important 
biomarkers and regulators of hemostasis. Plasma PAI-1 degrades 
tPA, as well as urinary plasminogen activator, and inhibits the con-
version of plasminogen to plasmin, thus inhibiting downstream 
fibrinolysis. Levels and activity of PAI-1 are causally linked to risk 
of coronary artery disease (CAD), as demonstrated by Mendelian 
randomization analysis.7 Due to its ability to potently activate 
fibrinolysis, tPA is an effective treatment when administered 
soon after stroke events.8 As the major byproduct of fibrinoly-
sis, plasma D-dimer level reflects fibrin formation and reactive 
fibrinolysis. Higher D-dimer is a risk factor for venous thrombo-
embolism (VTE), stroke, and CAD.9

Given their importance as biomarkers and regulators of 
clot formation and degradation, deciphering the genetic ar-
chitecture of these traits may have clinical relevance and may 
help improve our understanding of fibrinolytic and clotting 
mechanisms. However, there are few large-scale, population-
based, genome-wide or exome-wide studies of plasma levels 

of PAI-1, tPA, and D-dimer. These previous works identi-
fied 1p21.3 (upstream of F3), 1q24.2 (encompassing F5 and 
NME7 ), and 4q32.1 (fibrinogen locus, between FGG and FGA) 
associated with D-dimer levels;10 7q22.1 (SERPINE1 promoter 
and near MUC3A) and 11p15.3 (within ARNTL) associated with 
PAI-1 levels;11 and 6q24.3 (within STXBP5), 8p11.21 (POLB-
PLAT locus), and 12q24.33 (within STX2) associated with tPA 
levels.12 Here, we leveraged an exome-wide variant array de-
signed to capture an enriched portion of functional and rare 
variation to find new genetic determinants of PAI-1, tPA, and 
D-dimer.

Essentials

•	 D-dimer, plasminogen activator-inhibitor 1 (PAI-1), and 
tissue plasminogen activator (tPA) levels are important 
biomarkers and regulators of hemostasis.

•	 We performed an exome-wide association study of 
these three traits in up to 19,300 individuals.

•	 A novel FGL1 variant was associated with D-dimer and 
replicated in an independent cohort.

•	 Our study provides new evidence for a role of FGL1 in 
hemostasis.
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2  |  METHODS

This project derives from the Cohorts for Heart and Aging Research 
in Genomic Epidemiology (CHARGE) Consortium hemostasis work-
ing group and involves participants from 12 cohorts of European an-
cestry (ARIC, CHS, FHS, GABC, GeneSTAR, HABC, Inter99, LURIC, 
MARTHA, MESA, PROCARDIS, and SCARF).13 Plasma levels (ng/
mL or IU/mL) of D-dimer were measured in 7 studies (N = 19 306), 
tPA in 7 studies (N = 6876), and PAI-1 in 11 studies (N = 15 603). 
Participants using anticoagulant therapy at the time of phlebotomy 
were excluded. A description of each cohort is given in Table S1 and 
Methods S1 in supporting information. All studies were approved by 
their respective institutional review board and participants provided 
informed consent.

Genotypes were assayed using the Illumina HumanExome 
BeadChip v1.0 or v1.2 (Illumina, Inc.) in accordance with the manu-
facturer’s instructions. Single nucleotide polymorphism (SNP) calling 
and quality control procedures were conducted by each study fol-
lowing a common protocol, which has been described previously.1,14

Each study performed statistical analyses independently fol-
lowing a common protocol. Phenotype measurements were log 
transformed and analyses were adjusted for age, sex, principal com-
ponents (PCs) derived from genotypes, and study-design variables. 
PCs were selected for adjustment if they were significantly asso-
ciated with the trait analyzed in an age- and sex-adjusted model. 
Sex-stratified analyses were also performed for all cohorts except 
Inter99, and adjusted for age, PCs, and study-specific variables. Both 
single SNP and multiple SNP (gene-level) association analyses were 
conducted with the seqMeta R library (https://github.com/Davis​
Brian/​seqMeta). The results of individual studies were combined 
using an inverse variance weighted fixed-effect meta-analysis with 
seqMeta. Conditional analyses were conducted with GCTA-COJO,15 
and linkage disequilibrium estimation was performed with PLINK16 
in the FHS cohort.

For the single SNP analysis, only variants with a minimal allele 
count greater than five across cohorts were interrogated. A total 
of 101,541 SNPs were considered for association with D-dimer 
levels, 95,138 SNPs with PAI-1 levels, and 68,725 SNPs with tPA 
levels. We used both an agnostic and candidate-gene approach in-
volving genes related to the coagulation pathway referenced by the 
KEGG pathway hsa04610 (Table S2 in supporting information). For 
the agnostic approach, the threshold for significance was set using 
the Bonferroni method at P < 1.88 × 10−7 (0.05/265,404). A repli-
cation step to validate the results was performed in the Caerphilly 
Prospective Study (CaPS),17 composed of European males, with 
genotypes imputed using the HRC 1.1 dataset.18 Both significant 
and suggestive (P < 1 × 10−4) associations from the discovery meta-
analysis were tested in CaPS with a one-sided hypothesis, with a 
threshold for significance at nominal P-value (.05).

However, single variants tests lack power to identify associa-
tions of rare variants, which constitute a large part of the Exome 
chip. To assess the effect of these rare variants, we performed gene-
based tests, which allow for each gene to test the joint effect of rare 

variants contained in each gene. Two distinct methods were applied: 
Sequence Kernel Association Test (SKAT)19 and the classical burden 
test.20 For both tests, the joint effect of variants with minimal allele 
frequency (MAF) < 0.05 were considered. Only genes with >1 SNP 
were tested. For each trait, about 15,000 genes were considered 
for these analyses, and the threshold for significance was set at 
P < 1.09 × 10−6 (0.05/45 833).

Results from all single-variant and gene-based analyses are pub-
licly available on the GRASP portal (https://grasp.nhlbi.nih.gov/FullR​
esults.aspx).

3  |  RESULTS

3.1  |  Single variant analyses

Manhattan and quantile-quantile (Q-Q) plots representing the re-
sults of the discovery meta-analysis of single-SNP associations are 
provided for D-dimer (Figure S1-S2 in supporting information), PAI-1 
(Figure S3-S4 in supporting information), and tPA (Figure S5-S6 in 
supporting information). No single variant exceeded the threshold 
of genome-wide significance for tPA or PAI-1 plasma levels. The 
single-SNP analysis of D-dimer revealed five genome-wide signifi-
cant associations at three distinct regions: FGL1, NME7 and the fi-
brinogen coding loci (encompassing FGG, FGA, and FGB) (Table 1). At 
the FGL1 locus, two missense variants rs2653414-A (p. Trp256Leu, 
MAF  =  0.013, β  =  0.21, P  =  3.93  ×  10−11) and rs3739406-T (p. 
Ile72Val, MAF = 0.32, β = 0.05, P = 3.71 × 10−9) were associated with 
higher D-dimer levels. The two FGL1 variants were in partial linkage 
disequilibrium (r2 = 0.02; D’ = 1.0), but after conditioning the analy-
sis on rs2653414, the association of rs3739406 with D-dimer levels 
remained high (P = 9.40 × 10−7), implying independent associations. 
The phenotypic variance explained by rs2653414 and rs3739406 is 
0.23% and 0.18%, respectively. The associations observed at NME7 
(rs16861990-C, MAF = 0.070, β  = 0.12, P  = 1.17 × 10−11) and up-
stream of FGA (rs13109457-A, MAF = 0.25, β = 0.05, P = 1.24 × 10−7) 
were previously described in a genome-wide association study 
(GWAS) of plasma D-dimer levels,10 while the FGG missense 
variant (rs148685782-C, p. Ala108Gly, MAF  =  0.004, β  =  −0.38, 
P = 6.75 × 10−11) was previously associated with fibrinogen level.21

We then sought to replicate the significant associations from 
the discovery meta-analysis in CaPS. The results from the replica-
tion analysis are presented in Table 1. We observed a replication for 
three out of the five significant associations with D-dimer levels, one 
at each locus: rs16861990 (β = 0.13, p = .001) in NME7, rs2653414 
(β = 0.23, p = .04) in FGL1, and rs13109457 (β = 0.07, p = .001) at the 
fibrinogen locus, upstream of FGA. Additionally, we investigated all 
suggestive associations (P < 1 × 10−4) with D-dimer, tPA, or PAI-1 
levels from the discovery analysis in CaPS. Of the 79 variants sug-
gestively associated in the discovery, 45 were available in CaPS. We 
observed directionally consistent results for three associations, one 
with tPA levels and a missense variant in MTFR1L (rs201393961, p. 
Thr83Met), and two with D-dimer levels: an intronic SCARB1 variant 

https://github.com/DavisBrian/seqMeta
https://github.com/DavisBrian/seqMeta
https://grasp.nhlbi.nih.gov/FullResults.aspx
https://grasp.nhlbi.nih.gov/FullResults.aspx
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(rs11057830), and rs7681423 upstream of FGG (Table  1). These 
variants all had high imputation quality (RSQ >0.9), except for the 
MTFR1L variant, which had moderate quality (RSQ = 0.68).

All significant and suggestive associations from the discovery 
analysis as well as the results of the replication analysis are provided 
in Table S3 in supporting information. As D-dimer levels can be re-
lated to thrombotic events, we also inspected the association of the 
novel replicated variant (FGL1 rs2653414) and other novel variants 
of interest (FGL1 rs3739406, SCARB1 rs11057830) with VTE risk in 
the INVENT GWAS dataset,22 but none of these variants were found 
to be associated (Table S4 in supporting information).

3.2  |  Single variant analyses restricted to 
candidate genes

We also applied a candidate gene approach to retrieve associations 
implicating genes involved in the coagulation pathway (as listed 
in Table  S2) that did not meet the exome-wide single SNP signifi-
cance threshold. This approach revealed two missense variants sug-
gestively associated with D-dimer: rs201909029-C (p. Lys178Asn, 
MAF = 0.007, β = −0.72, P = 1.25 × 10−6) located in FGB at the fi-
brinogen locus, not previously associated with D-dimer or fibrino-
gen, and rs143202684-C (p. Gly218Ala, MAF  =  0.001, β  =  −0.41, 
P  =  8.10  ×  10−5) located in SERPINB2, which encodes the PAI-2 
protein. The poor imputation quality of these two rare variants 
(RSQ < 0.1) prevented our effort to investigate these suggestive as-
sociations further in CaPS.

3.3  |  Gene-based burden analyses

The gene-based analysis revealed two genes significantly associ-
ated with plasma D-dimer: FGL1 and FGG. The results of these 
two associations were similar for both SKAT and T5 methods, 
and were mainly driven by the variants associated with D-dimer 
in the single-SNP analysis (the details of single variant associa-
tions involved in both FGL1 and FGG gene-based tests are given 
in Table S5 in supporting information). For each method and for 
each trait analyzed, the results of the three most significant gene-
based associations are presented in Table 2, while the results of all 
associations with P < .0001 are provided in Table S6 in supporting 
information.

3.4  |  Sex-stratified analyses

As previous studies have reported that genetic associations with 
hemostatic factors can differ between males and females, we 
conducted sex-stratified analyses of the three traits.23 The single 
variant analyses yielded two significant associations: one between 
D-dimer levels in women and the FGG variant rs148685782, previ-
ously identified in the main analysis, and one between tPA levels 

in women and a rare missense variant in KIAA1432 (rs143886234-
G, p. Pro443Arg, MAF  =  0.001, minor allele count [MAC] = 
6, β  =  1.53, P  =  3.14  ×  10−8). However, with a total of only six 
minor alleles supporting this signal, in three out of the six stud-
ies with sex-stratified D-dimer results, it could be a false positive. 
Unfortunately, we were unable to verify this signal in an independ-
ent cohort, as our only replication dataset was CaPS, which is only 
composed of men. We also retrieved the sex-specific effects for 
all associations identified in the main analyses. The associations 
at NME7/F5 region, FGG, FGL1, FGA, SCARB1, and SERPINB2 all 
reached at least nominal significance in both sexes, and no signifi-
cant difference in effect was observed between sex. The associa-
tion at FGB did not reach nominal significance in men, most likely 
because of its rare frequency. The details of these associations are 
available in Table S7 in supporting information.

Gene-based sex-specific analyses also revealed a novel gene, 
ENOX2, associated with D-dimer levels in men, according to the 
results of the SKAT analysis (Table  S8 in supporting information). 
However, after further inspection of the ENOX2 variants, only two 
variants with MAF  <  0.05 were considered for this test (Table  S9 
in supporting information), and the gene-based association with D-
dimer levels in men was driven by only one of them: rs200194256 
(MAF = 0.0001, MAC = 2, P = 1.19 × 10−7).

3.5  |  FGL1 investigation

As FGL1 possesses a fibrinogen C-terminus domain, we investigated 
its similarity with the fibrinogen subunits proteins. We observed 
that the FGL1 C-terminus domain is homologous to the fibrinogen 
gamma subunit (46% according to Clustal2.1), and the variant whose 
D-dimer association was replicated in CaPS (rs2653414) is located in 
a codon encoding a tryptophan amino acid conserved in the fibrino-
gen subunit (Figure  S7 in supporting information). The rs2653414 
variant has not been previously associated with any phenotype or 
transcript levels (see annotations in Table S3). However, it was re-
cently found to be associated with decreased levels of the FGL1 pro-
tein in serum (β = −1.62, P = 4.22 × 10−47).24

4  |  DISCUSSION

In order to discover new functional and rare genetic determinants 
of plasma tPA, PAI-1, and D-dimer levels, we performed both single- 
and multi-variant meta-analyses using exome-wide marker genotype 
data from 12 cohorts. For D-dimer, we identified three associations 
previously observed in genome-wide studies of D-dimer levels or 
fibrinogen,10,21 and two novel associations of variants in FGL1, of 
which one was replicated in CaPS. The analyses of tPA and PAI-1 
levels did not reveal any exome-chip--wide significant associations, 
and overall the sex-stratified analyses did not yield strong evidence 
supporting different genetic effects in men and women at most of 
the loci we observed.
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FGL1, which encodes the fibrinogen-like 1 protein, is expressed 
mainly in the liver and can be found circulating in plasma. It has been 
linked to various biological processes including mitogenic activity in 
hepatocytes promoting liver growth,25 acute phase reactant upregu-
lated by IL6 during inflammation,26 and more recently immunity.27 A 
role in coagulation has previously been hypothesized because of its 
similarity with FGG and FGB C-terminal domains,28 but was mainly 
rejected because of its lack of sites necessary for fibrin clot forma-
tion. However, subsequent studies reported FGL1 to bind fibrin 
clots in plasma,29,30 although it is not known how this occurs. The 
replicated FGL1 variant (rs2653414) associated with higher levels of 
D-dimer has been recently found associated with lower serum levels 
of the FGL1 protein in an exome-chip analysis of protein levels,24 
but there is no evidence that transcript levels of FGL1 levels are af-
fected according to eQTL resources such as GTeX (Table S3). This 
discrepancy could be first explained by an impact of the variant on 
the protein structure, which could either affect the stability of the 
protein and reduce its levels, or it could alter the epitope of the pro-
tein and affect its detection by the proteomic assay. Additionally, 
because most eQTL resources are based on GWAS arrays they may 
lack appropriate coverage for this variant. This conclusion seems 
consistent with the fact that prior large GWAS studies of D-dimer 
did not discover an association with FGL1. Furthermore, an associa-
tion of an FGL1 variant with D-dimer levels was previously observed 
in an exome study of a Finnish population,31 in which an uncommon 
insertion causing a frameshift in FGL1 (rs201941547, p. Asn182 fs, 
MAF = 0.037, β = 0.21, P = 6.12 × 10−6) was associated with higher 
D-dimer, but the authors were unable to replicate their results due 
to a lack of D-dimer phenotype in their replication sample. This 
frameshift variant most likely implicates a loss of function of FGL1, 
and the similar increase of D-dimer levels observed in our analysis 
for a missense variant strongly tied to lower circulating FGL1 levels 
suggests that impaired FGL1 levels or function may generally result 
in higher D-dimer. Therefore, while the specific role of this protein in 

the coagulation process is unclear, the associations of FGL1 missense 
variants identified in our study together with the results from the 
Finnish study31 provide strong evidence for the implication of this 
gene in the modulation of D-dimer levels.

Additionally, we observed two suggestive associations with D-
dimer which could be of interest if further validated. First, a rare 
SERPINB2 missense variant (p. Gly218Ala) was associated with lower 
D-dimer. However, similar to FGL1, the role of PAI-2 in the coagula-
tion process is not clearly established. Early investigations showed 
that PAI-2 could act as an inhibitor of urokinase plasminogen activa-
tor (uPA) in vitro and it was found associated to fibrin clots.32 More re-
cently a study reported that deep venous thrombosis models of mice 
lacking Serpinb2 had increased uPA activity and enhanced venous 
thrombosis resolution.33 Second, an intronic SCARB1 variant was 
associated with higher D-dimer, which was replicated in CaPS. This 
gene encodes a scavenger receptor protein of class B, which medi-
ates cholesterol transfer in and out of lipoproteins. This variant was 
previously associated with risk of CAD,34 a condition often having a 
component of altered fibrinolytic function. Interestingly, Scarb1−/− 
mice had increased risk of venous thrombosis.35 Furthermore, ex-
pressing endothelial Scarb1 protected mice against atherosclerosis, 
and in an ApoE4−/− background decreased aortic lesion size ~24% at 
8 months, suggesting roles in lipid metabolism and other biological 
functions at the level of vessel walls where fibrinolysis also occurs.36

Previous genetic analyses of D-dimer, PAI-1, and tPA were con-
ducted on a genome-wide scale using imputed datasets. The use of 
exome chip data in the present study permitted us to confirm some 
of these previous findings, and more importantly, it allowed us to 
focus on new associations involving less common variants that are 
often absent or poorly imputed in GWAS datasets. However, this also 
impaired our ability to replicate several associations in CaPS, such as 
the rare SERPINB2 variant, and it will be of future interest to repli-
cate these associations in new exome chip or sequencing studies. 
Furthermore, we observed inter-cohort variability in measurements, 

TA B L E  2  Most significant results from the gene-based analyses for plasma PAI-1, tPA and D-dimer levels

T5 (MAF < 0.05) SKAT (MAF < 0.05)

Gene p β SE Cmaf Nsnp Gene p Cmaf Nsnp

PAI−1 (N = 15 063)

STAT3 9.65E−05 −1.63 0.42 0.0001 3 STAT3 5.82E−06 0.0001 3

AKAP11 1.07E−04 −0.08 0.02 0.0451 44 USP38 9.89E−06 0.0010 8

KIF1B 3.40E−04 −0.06 0.02 0.0763 24 GPN3 2.99E−05 0.0021 3

tPA (N = 6876)

SH2D6 3.15E−06 −0.73 0.16 0.0009 4 STX2 2.96E−05 0.0271 7

CRCP 2.49E−05 −0.49 0.12 0.0011 3 SH2D6 3.17E−05 0.0009 4

SGCG 2.91E−05 −0.39 0.09 0.0025 7 ZBTB41 4.01E−05 0.0062 9

D-dimer (N = 19 306)

FGG 3.75E−08 −0.19 0.03 0.0120 9 FGG 4.47E−09 0.0120 9

FGL1 2.60E−07 0.05 0.01 0.0910 17 FGL1 2.86E−08 0.0910 17

EIF2AK3 2.02E−06 −0.22 0.05 0.0069 9 EIF2AK3 5.98E−06 0.0069 9

Abbreviations: Cmaf, Cumulative MAF; Nsnp, Number of SNPs used in the gene-based test; SE, Standard Error.
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due in part to the specificity of each population studied, and also 
as a result of the different assays used to measure plasma levels of 
D-dimer, PAI-1, and tPA by each study. This could reduce our power 
to detect genetic associations. However, to reduce this variability, 
measurements were log-transformed, and we systematically verified 
that the direction of effect for all significant and suggestive associ-
ations were concordant across cohorts, which substantiate the va-
lidity of these associations. Finally, our study and findings are also 
limited at this time to European ancestry populations, so it remains 
to be seen if these loci are observed in other populations.

In conclusion, we were able to replicate a significant associa-
tion implicating the locus FGL1 in the modulation of D-dimer lev-
els, and we discovered two suggestive associations of interest at 
the SERPINB2 and SCARB1 loci. Most notably, these results provide 
additional evidence for a role of SERPINB2 and FGL1 in the coag-
ulation system, two genes previously suspected to play a role in 
hemostasis.
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