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Essentials

 D-dimer, PAI-1 and tPA levels are important biomarkers and regulators of hemostasis

 We performed an Exome-Wide association study of these 3 traits in up to 19,300 

individuals
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 A novel FGL1 variant was associated with D-dimer and replicated in an independent 

cohort

 Our study provides new evidence for a role of FGL1 in hemostasis

Abstract

Background: Use of targeted exome-arrays with common, rare variants and functionally 

enriched variation has led to discovery of new genes contributing to population variation in risk 

factors. Plasminogen activator-inhibitor 1 (PAI-1), tissue plasminogen activator (tPA), and the 

plasma product D-dimer are important components of the fibrinolytic system. There have been 

few large-scale genome-wide or exome-wide studies of PAI-1, tPA and D-dimer. 

Objectives: We sought to discover new genetic loci contributing to variation in these traits using 

an exome-array approach. 

Methods: Cohort level analyses and fixed effects meta-analyses of PAI-1 (n = 15,603), tPA (n = 

6,876) and D-dimer (n = 19,306) from 12 cohorts of European ancestry with diverse study 

design were conducted, including single-variant analyses and gene-based burden testing. 

Results: Five variants located in NME7, FGL1 and the fibrinogen locus, all associated with D-

dimer levels, achieved genome-wide significance (P < 5 × 10-8). Replication was sought for these 

5 variants, as well as 45 well-imputed variants with P < 1 × 10-4 in the discovery using an 

independent cohort. Replication was observed for 3 out of the 5 significant associations, 

including a novel and uncommon (0.013 allele frequency) coding variant p.Trp256Leu in FGL1 

(Fibrinogen-Like-1) with increased plasma D-dimer levels. Additionally, a candidate-gene 

approach revealed a suggestive association for a coding variant (rs143202684-C) in SERPINB2, 

and suggestive associations with consistent effect in the replication analysis include an intronic 

variant (rs11057830-A) in SCARB1 associated with increased D-dimer levels. 

Conclusion: This work provides new evidence for a role of FGL1 in hemostasis. 

Keywords

Computational Biology; Exome; Fibrinogen; Fibrinolysis; Genetic Association Study
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Introduction

The use of targeted gene arrays with rare variants and functionally-enhanced variation has 

led to the discovery of new genetic loci contributing to population variation in risk factors 

including lipids, blood pressure, hematology traits including platelet, red cell and white cell 

measurements, clotting factors, and platelet aggregation [1–6]. Fibrin D-dimer, tissue 

plasminogen activator (tPA) and plasminogen activator-inhibitor 1 (PAI-1) are important 

biomarkers and regulators of hemostasis. Plasma PAI-1 degrades tPA, as well as urinary 

plasminogen activator, and inhibits the conversion of plasminogen to plasmin, thus inhibiting 

downstream fibrinolysis. Levels and activity of PAI-1 are causally linked to risk of coronary 

artery disease (CAD), as demonstrated by Mendelian Randomization analysis [7]. Due to its 

ability to potently activate fibrinolysis, tPA is an effective treatment when administered soon 

after stroke events [8]. As the major byproduct of fibrinolysis, plasma D-dimer level reflects 

fibrin formation and reactive fibrinolysis. Higher D-dimer is a risk factor for venous 

thromboembolism (VTE), stroke and coronary artery disease [9].

Given their importance as biomarkers and regulators of clot formation and degradation, 

deciphering the genetic architecture of these traits may have clinical relevance and may help 

improve our understanding of fibrinolytic and clotting mechanisms. However, there are few 

large-scale, population-based genome-wide or exome-wide studies of plasma levels of PAI-1, 

tPA and D-dimer. These previous works identified 1p21.3 (upstream of F3), 1q24.2 

(encompassing F5 and NME7) and 4q32.1 (fibrinogen locus, between FGG and FGA) associated 

with D-dimer levels [10], 7q22.1 (SERPINE1 promoter and near MUC3A) and 11p15.3 (within 

ARNTL) associated with PAI-1 levels [11], and 6q24.3 (within STXBP5), 8p11.21 (POLB-PLAT 

locus) and 12q24.33 (within STX2) associated with tPA levels [12]. Here, we leveraged an 

exome-wide variant array designed to capture an enriched portion of functional and rare 

variation to find new genetic determinants of PAI-1, tPA, and D-dimer. 

Methods

This project derives from the Cohorts for Heart and Aging Research in Genomic 

Epidemiology (CHARGE) Hemostasis Working group and involves participants from twelve 
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cohorts of European ancestry (ARIC, CHS, FHS, GABC, GeneSTAR, HABC, Inter99, LURIC, 

MARTHA, MESA, PROCARDIS and SCARF) [13]. Plasma levels (ng/mL or IU/mL) of D-dimer were 

measured in 7 studies (N = 19,306), tPA in 7 studies (N = 6,876) and PAI-1 in 11 studies (N = 

15,603). Participants using anticoagulant therapy at the time of phlebotomy were excluded. A 

description of each cohort is given in Supplementary Table 1 and Supplementary Methods. All 

studies were approved by their respective institutional review board and participants provided 

informed consent.

Genotypes were assayed using the Illumina HumanExome Beadchip v1.0 or v1.2 

(Illumina, Inc., San Diego, CA) in accordance with the manufacturer’s instructions. Single 

nucleotide polymorphism (SNP) calling and quality control procedures were conducted by each 

study following a common protocol, which has been described previously [1,14].

Each study performed statistical analyses independently following a common protocol. 

Phenotype measurements were log transformed and analyses were adjusted for age, sex, 

principal components (PCs) derived from genotypes and study-design variables. PCs were 

selected for adjustment if they were significantly associated with the trait analyzed in an age 

and sex adjusted model. Sex-stratified analyses were also performed for all cohorts except 

Inter99, and adjusted for age, PCs and study-specific variables. Both single SNP and multiple 

SNP (gene level) association analyses were conducted with the seqMeta R library 

(https://github.com/DavisBrian/seqMeta). The results of individual studies were combined 

using an inverse variance weighted fixed-effect meta-analysis with seqMeta. Conditional 

analyses were conducted with GCTA-cojo [15], and linkage disequilibrium estimation was 

performed with PLINK [16] in the FHS cohort.

For the single SNP analysis, only variants with a minimal allele count greater than 5 

across cohorts were interrogated. A total of 101,541 SNPs were considered for association with 

D-dimer levels, 95,138 SNPs with PAI-1 levels and 68,725 SNPs with tPA levels. We used both an 

agnostic and candidate-gene approach involving genes related to the coagulation pathway 

referenced by the KEGG pathway hsa04610 (Supplemental Table 2). For the agnostic approach, 

the threshold for significance was set using the Bonferroni method at P < 1.88 × 10-7 (0.05 / 

265,404). A replication step to validate the results was performed in the Caerphilly Prospective 

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t

https://github.com/DavisBrian/seqMeta


THIS ARTICLE IS PROTECTED BY COPYRIGHT. ALL RIGHTS RESERVED

Study (CaPS) [17], composed of European males, with genotypes imputed using the HRC 1.1 

dataset [18]. Both significant and suggestive (P < 1 × 10-4) associations from the discovery meta-

analysis were tested in CaPS with a one-sided hypothesis, with a threshold for significance at 

nominal p-value (0.05). 

However, single variants tests lack power to identify associations of rare variants, which 

constitute a large part of the Exome chip. To assess the effect of these rare variants, we 

performed gene-based tests, which allow for each gene to test the joint effect of rare variants 

contained in each gene. Two distinct methods were applied: Sequence Kernel Association Test 

(SKAT) [19] and the classical burden test [20]. For both tests, the joint effect of variants with 

minimal allele frequency (MAF) < 0.05 were considered. Only genes with > 1 SNP were tested. 

For each trait, about 15,000 genes were considered for these analyses, and the threshold for 

significance was set at P < 1.09 × 10-6 (0.05 / 45,833).

Results from all single-variant and gene-based analyses are publicly available on the 

GRASP portal (https://grasp.nhlbi.nih.gov/FullResults.aspx). 

Results

Single variant analyses

Manhattan and QQ plots representing the results of the discovery meta-analysis of 

single-SNP associations are provided for D-dimer (Supplementary Figure 1-2), PAI-1 

(Supplementary Figure 3-4), and tPA (Supplementary Figure 5-6). No single variant exceeded 

the threshold of genome-wide significance for tPA or PAI-1 plasma levels. The single-SNP 

analysis of D-dimer revealed 5 genome-wide significant associations at 3 distinct regions: FGL1, 

NME7 and the fibrinogen coding loci (encompassing FGG, FGA and FGB) (Table 1). At the FGL1 

locus, two missense variants rs2653414-A (p.Trp256Leu, Minor Allele Frequency (MAF) = 0.013, 

 = 0.21, P = 3.93 × 10-11) and rs3739406-T (p.Ile72Val, MAF = 0.32,  = 0.05, P = 3.71 × 10-9) � �
were associated with higher D-dimer levels. The 2 FGL1 variants were in partial linkage 

disequilibrium (r2 = 0.02; D’ = 1.0), but after conditioning the analysis on rs2653414, the 

association of rs3739406 with D-dimer levels remained high (p = 9.40 × 10-7), implying 

independent associations. The phenotypic variance explained by rs2653414 and rs3739406 is 

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



THIS ARTICLE IS PROTECTED BY COPYRIGHT. ALL RIGHTS RESERVED

0.23% and 0.18%, respectively. The associations observed at NME7 (rs16861990-C, MAF = 

0.070,  = 0.12, P = 1.17 × 10-11) and upstream of FGA (rs13109457-A, MAF = 0.25,  = 0.05, P = � �
1.24 × 10-7) were previously described in a GWAS of plasma D-dimer levels [10], while the FGG 

missense variant (rs148685782-C, p.Ala108Gly, MAF = 0.004,  = -0.38, P = 6.75 × 10-11) was �
previously associated with fibrinogen level [21].

We then sought to replicate the significant associations from the discovery meta-

analysis in CaPS. The results from the replication analysis are presented in Table 1. We 

observed a replication for 3 out of the 5 significant associations with D-dimer levels, one at 

each locus: rs16861990 (  = 0.13, P = 0.001) in NME7, rs2653414 (  = 0.23, P = 0.04) in FGL1 � �
and rs13109457 (  = 0.07, P = 0.001) at the fibrinogen locus, upstream of FGA. Additionally, we �
investigated all suggestive associations (P < 1 × 10-4) with D-dimer, tPA or PAI-1 levels from the 

discovery analysis in CaPS. Of the 79 variants suggestively associated in the discovery, 45 were 

available in CaPS. We observed directionally consistent results for 3 associations, one with tPA 

levels and a missense variant in MTFR1L (rs201393961, p.Thr83Met), and 2 with D-dimer levels: 

an intronic SCARB1 variant (rs11057830), and rs7681423 upstream of FGG (Table 1). These 

variants all had high imputation quality (RSQ > 0.9), except for the MTFR1L variant which had 

moderate quality (RSQ = 0.68).

All significant and suggestive associations from the discovery analysis as well as the 

results of the replication analysis are provided in Supplementary Table 3. As D-dimer levels can 

be related to thrombotic events, we also inspected the association of the novel replicated 

variant (FGL1 rs2653414) and other novel variants of interest (FGL1 rs3739406, SCARB1 

rs11057830) with VTE risk in the INVENT GWAS dataset [22], but none of these variants were 

found associated (Supplementary Table 4).

Single variant analyses restricted to candidate genes

We also applied a candidate gene approach to retrieve associations implicating genes 

involved in the coagulation pathway (as listed in the Supplementary Table 2) that did not meet 

the exome-wide single SNP significance threshold. This approach revealed 2 missense variants 

suggestively associated with D-dimer: rs201909029-C (p.Lys178Asn, MAF = 0.007,  = -0.72, P = �
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1.25 × 10-6) located in FGB at the fibrinogen locus, not previously associated with D-dimer or 

fibrinogen, and rs143202684-C (p.Gly218Ala, MAF = 0.001,  = -0.41, P = 8.10 × 10-5) located in �
SERPINB2, which encodes the PAI-2 protein. The poor imputation quality of these two rare 

variants (RSQ < 0.1) prevented our effort to investigate these suggestive associations further in 

CaPS. 

Gene-based burden analyses

The gene-based analysis revealed 2 genes significantly associated with plasma D-dimer: 

FGL1 and FGG. The results of these 2 associations were similar for both SKAT and T5 methods, 

and were mainly driven by the variants associated with D-dimer in the single-SNP analysis (the 

detail of single variant associations involved in both FGL1 and FGG gene-based tests is given in 

Supplementary Table 5). For each method and for each trait analyzed, the results of the 3 most 

significant gene-based associations are presented in Table 2, while the results of all associations 

with P < 0.0001 are provided in Supplementary Table 6. 

Sex-stratified analyses

As previous studies have reported that genetic associations with hemostatic factors can 

differ between males and females, we conducted sex-stratified analyses of the 3 traits [23]. The 

single variant analyses yielded 2 significant associations: one between D-dimer levels in women 

and the FGG variant rs148685782, previously identified in the main analysis, and one between 

tPA levels in women and a rare missense variant in KIAA1432 (rs143886234-G, p.Pro443Arg, 

MAF = 0.001, MAC=6,  = 1.53, P = 3.14 × 10-8). However, with a total of only 6 minor alleles �
supporting this signal, in 3 out of the 6 studies with sex-stratified D-dimer results, it could be a 

false positive. Unfortunately, we were unable to verify this signal in an independent cohort, as 

our only replication dataset was CaPS, which is only composed of men. We also retrieved the 

sex specific effects for all associations identified in the main analyses. The associations at 

NME7/F5 region, FGG, FGL1, FGA, SCARB1 and SERPINB2 all reached at least nominal 

significance in both sexes, and no significant difference in effect was observed between sex.  
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The association at FGB did not reach nominal significance in men, most likely because of its rare 

frequency. The detail of these associations is available in Supplementary Table 7. 

Gene-based sex-specific analyses also revealed a novel gene, ENOX2, associated with D-

dimer levels in men, according to the results of the SKAT analysis (Supplementary Table 8). 

However, after further inspection of the ENOX2 variants, only 2 variants with MAF < 0.05 were 

considered for this test (Supplementary Table 9), and the gene-based association with D-dimer 

levels in men was driven by only one of them: rs200194256 (MAF = 0.0001, MAC = 2, p = 1.19 × 

10-7).

FGL1 investigation

As FGL1 possesses a fibrinogen C-terminus domain, we investigated its similarity with 

the fibrinogen subunits proteins. We observed that the FGL1 C-terminus domain is homologous 

to the fibrinogen gamma subunit (46% according to Clustal2.1), and the variant whose D-dimer 

association was replicated in CaPS (rs2653414) is located in a codon encoding a tryptophan 

amino acid conserved in the fibrinogen subunit (Supplementary Figure 7). The rs2653414 

variant has not been previously associated with any phenotype or transcript levels (see 

annotations in Supplementary Table 3). However, it was recently found associated with 

decreased levels of the FGL1 protein in serum (  = -1.62, P = 4.22 × 10-47) [24]. �
Discussion

In order to discover new functional and rare genetic determinants of plasma tPA, PAI-1 

and D-dimer levels, we performed both single- and multi-variant meta-analyses using exome-

wide marker genotype data from 12 cohorts. For D-dimer, we identified 3 associations 

previously observed in genome-wide studies of D-dimer levels or fibrinogen [10,21], and 2 

novel associations of variants in FGL1, of which one was replicated in CaPS. The analyses of tPA 

and PAI-1 levels did not reveal any exome-chip wide significant associations, and overall the 

sex-stratified analyses did not yield strong evidence supporting different genetic effects in men 

and women at most of the loci we observed.
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FGL1, which encodes the fibrinogen-like 1 protein, is expressed mainly in the liver and 

can be found circulating in plasma. It has been linked to various biological processes including 

mitogenic activity in hepatocytes promoting liver growth [25], acute phase reactant 

upregulated by IL6 during inflammation [26], and more recently immunity [27]. A role in 

coagulation has previously been hypothesized because of its similarity with FGG and FGB C-

terminal domains [28], but was mainly rejected because of its lack of sites necessary for fibrin 

clot formation. However, subsequent studies reported FGL1 to bind fibrin clots in plasma 

[29,30], although it is not known how this occurs. The replicated FGL1 variant (rs2653414) 

associated with higher levels of D-dimer has been recently found associated with lower serum 

levels of the FGL1 protein in an exome-chip analysis of protein levels [24], but there is no 

evidence that transcript levels of FGL1 levels are affected according to eQTL resources such as 

GTeX (see Supplemental Table 3). This discrepancy could be first explained by an impact of the 

variant on the protein structure, which could either affect the stability of the protein and 

reduce its levels, or it could alter the epitope of the protein and affect its detection by the 

proteomic assay. Additionally, since most eQTL resources are based on GWAS arrays they may 

lack appropriate coverage for this variant. This conclusion seems consistent with the fact that 

prior large GWAS studies of D-dimer did not discover an association with FGL1.  Furthermore, 

an association of an FGL1 variant with D-dimer levels was previously observed in an exome 

study of a Finnish population [31], where an uncommon insertion causing a frameshift in FGL1 

(rs201941547, p.Asn182fs, MAF = 0.037,  = 0.21, P = 6.12 × 10-6) was associated with higher D-�
dimer, but the authors were unable to replicate their results due to a lack of D-dimer 

phenotype in their replication sample. This frameshift variant most likely implicates a loss of 

function of FGL1, and the similar increase of D-dimer levels observed in our analysis for a 

missense variant strongly tied to lower circulating FGL1 levels suggests that impaired FGL1 

levels or function may generally result in higher D-dimer. Therefore, while the specific role of 

this protein in the coagulation process is unclear, the associations of FGL1 missense variants 

identified in our study together with the results from the Finnish study [31] provide strong 

evidence for the implication of this gene in the modulation of D-dimer levels. 
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Additionally, we observed two suggestive associations with D-dimer which could be of 

interest if further validated. First, a rare SERPINB2 missense variant (p.Gly218Ala) was 

associated with lower D-dimer. However, similar to FGL1, the role of PAI-2 in the coagulation 

process is not clearly established. Early investigations showed that PAI-2 could act as an 

inhibitor of urokinase plasminogen activator (uPA) in vitro and it was found associated to fibrin 

clots [32]. More recently a study reported that deep venous thrombosis models of mice lacking 

Serpinb2 had increased uPA activity and enhanced venous thrombosis resolution [33]. Second, 

an intronic SCARB1 variant was associated with higher D-dimer, which was replicated in CaPS. 

This gene encodes a scavenger receptor protein of class B, which mediates cholesterol transfer 

in and out of lipoproteins. This variant was previously associated with risk of coronary artery 

disease [34], a condition often having a component of altered fibrinolytic function. 

Interestingly, Scarb1-/- mice had increased risk of venous thrombosis [35]. Furthermore, 

expressing endothelial Scarb1 protected mice against atherosclerosis, and in an ApoE4-/- 

background decreased aortic lesion size ~24% at 8 months, suggesting roles in lipid metabolism 

and other biological functions at the level of vessel walls where fibrinolysis also occurs [36].

Previous genetic analyses of D-dimer, PAI-1 and tPA were conducted on a genome-wide 

scale using imputed datasets. The use of exome chip data in the present study permitted us to 

confirm some of these previous findings, and more importantly, it allowed us to focus on new 

associations involving less common variants that are often absent or poorly imputed in GWAS 

datasets. However, this also impaired our ability to replicate several associations in CaPS, such 

as the rare SERPINB2 variant, and it will be of future interest to replicate these associations in 

new exome chip or sequencing studies. Furthermore, we observed inter-cohort variability in 

measurements, due in part to the specificity of each population studied, and also as a result of 

the different assays used to measure plasma levels of D-dimer, PAI-1 and tPA by each study. 

This could reduce our power to detect genetic associations. However, to reduce this variability, 

measurements were log-transformed, and we systematically verified that the direction of effect 

for all significant and suggestive associations were concordant across cohorts, which 

substantiate the validity of these associations. Finally, our study and findings are also limited at 
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this time to European ancestry populations, so it remains to be seen if these loci are observed 

in other populations.

In conclusion, we were able to replicate a significant association implicating the locus 

FGL1 in the modulation of D-dimer levels, and we discovered two suggestive associations of 

interest at the SERPINB2 and SCARB1 loci. Most notably, these results provide additional 

evidence for a role of SERPINB2 and FGL1 in the coagulation system, two genes previously 

suspected to play a role in hemostasis.
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Tables

Table 1: Results of the Discovery and replication analyses

Discovery (meta-analysis) Replication (CaPS)

Chr:Position dbSNPID Gene EA/NEA MAF N  � SE Pa MAF  � SE Pb RSQ

D-dimer (N=1,112)

1:169135127 rs16861990
NME7

(intronic)
C/A 0.070 15733 0.119 0.018 1.17E-11 0.061 0.135 0.044 0.0010 0.98

8:17726069 rs2653414
FGL1 

(p.Trp256Leu)
A/C 0.013 19306 0.213 0.032 3.93E-11 0.006 0.233 0.133 0.0404 0.97

4:155533035 rs148685782
FGG 

(p.Ala108Gly)
C/G 0.004 19306 -0.384 0.059 6.75E-11 0.001 -0.112 0.386 0.3854 0.48

8:17739538 rs3739406
FGL1 

(p.Ile72Val)
T/C 0.325 19306 0.047 0.008 3.71E-09 0.291 0.003 0.023 0.4467 1.00

4:155514879 rs13109457
3kb 5' of FGA 

(intergenic)
A/G 0.249 18607 0.047 0.009 1.24E-07 0.246 0.072 0.024 0.0012 1.00

4:155542248 rs7681423

8.3kb 5' of 

FGG 

(intergenic)

T/C 0.238 18607 0.045 0.009 5.58E-07 0.228 0.072 0.024 0.0013 0.99 *

12:125307053 rs11057830
SCARB1 

(intronic)
A/G 0.158 15733 0.058 0.012 3.62E-06 0.146 0.071 0.030 0.0087 0.98 *

tPA (N=1,111)

1:26153114 rs201393961
MTFR1L 

(p.Thr83Met)
T/C 0.001 3346 0.676 0.162 3.11E-05 0.001 0.536 0.260 0.0196 0.68 *

EA=Effect Allele; NEA=Non Effect Allele; MAF=Minor Allele Frequency; SE=Standard Error; 

RSQ=Imputation Quality

a In the discovery meta-analysis, the threshold for significant associations was set using the 

Bonferroni method to 1.88 × 10-7
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b In the replication analysis, associations below the nominal p-value were deemed significant 

under a one-sided hypothesis.

* Suggestive associations from the discovery with same effect direction in CaPS and p < 0.05

Table 2: Most significant results from the gene-based analyses for plasma PAI-1, tPA and D-

dimer levels

T5 (MAF < 0.05) SKAT (MAF < 0.05)

Gene P � SE Cmaf Nsnp Gene P Cmaf Nsnp

PAI-1 (N=15,063)

STAT3 9.65E-05 -1.63 0.42 0.0001 3 STAT3 5.82E-06 0.0001 3

AKAP11 1.07E-04 -0.08 0.02 0.0451 44 USP38 9.89E-06 0.0010 8

KIF1B 3.40E-04 -0.06 0.02 0.0763 24 GPN3 2.99E-05 0.0021 3

tPA (N=6,876)

SH2D6 3.15E-06 -0.73 0.16 0.0009 4 STX2 2.96E-05 0.0271 7

CRCP 2.49E-05 -0.49 0.12 0.0011 3 SH2D6 3.17E-05 0.0009 4

SGCG 2.91E-05 -0.39 0.09 0.0025 7 ZBTB41 4.01E-05 0.0062 9

D-dimer (N=19,306)

FGG 3.75E-08 -0.19 0.03 0.0120 9 FGG 4.47E-09 0.0120 9

FGL1 2.60E-07 0.05 0.01 0.0910 17 FGL1 2.86E-08 0.0910 17

EIF2AK3 2.02E-06 -0.22 0.05 0.0069 9 EIF2AK3 5.98E-06 0.0069 9

SE=Standard Error; Nsnp=Number of SNPs used in the gene-based test; Cmaf=Cumulative MAF
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