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Appendix S4: Analysis of model with dose-dependent rates

In this appendix, we analytically compute how disease prevalence in the focal host de-pends 
on the density of a second host. These analytical calculations to provide additional support for 
our predictions and conclusions about the signs and magnitudes of the slopes of the curves we 
computed with our numerical simulations. The first outlines our approach, assumptions, and 
some terminology. In the following sections we apply the method to the different models.

Section S1 Methods, assumptions, and terminology

Approach & Assumptions: Let (S∗
1 , S

∗
2 , I

∗
1 , I

∗
2 , P

∗) denote the equilibrium host and infec-
tious propagule densities. Mathematically, we compute the derivative d(I∗1/N

∗
1 )/dN∗

2 , which
defines how equilibrium infection prevalence in the focal host (I∗1/N

∗
1 ) changes with a small

change in the density of the second host (N∗
2 ). Disease prevalence in the focal host increases

with increased density of the second host when d(I∗1/N
∗
1 )/dN∗

2 > 0 and decreases with in-
creased density of the second host when d(I∗1/N

∗
1 )/dN∗

2 < 0. The derivative is computed by
taking the ratio of the derivatives ∂(I∗1/N

∗
1 )/∂r2 and ∂N∗

2/∂r2 (Abrams and Cortez, 2015;
Roberts and Heesterbeek, 2018), which are in turn computed using the Jacobian-based ap-
proach in Bender et al. (1984), Yodzis (1988), Novak et al. (2011), and Cortez and Abrams
(2016). The specific equations defining each derivative are

∂S∗
1

∂r2
= −(−1)2+1N∗

2 |M21|/|J | (S1)

∂S∗
2

∂r2
= −(−1)2+2N∗

2 |M22|/|J | (S2)

∂I∗1
∂r2

= −(−1)2+3N∗
2 |M23|/|J | (S3)

∂I∗2
∂r2

= −(−1)2+4N∗
2 |M24|/|J | (S4)

∂(I∗1/N
∗
1 )

∂r2
=

1

(N∗
1 )2

(
S∗
1

∂I∗1
∂r2
− I∗1

∂S∗
1

∂r2

)
(S5)

∂N∗
2

∂r2
=
∂S∗

2

∂r2
+
∂I∗2
∂r2

(S6)

d(I∗1/N
∗
1 )

dN∗
2

=

(
∂(I∗1/N

∗
1 )

∂r2

)/(
∂N∗

2

∂r2

)
. (S7)
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where J is the Jacobian, Mij is the submatrix of the Jacobian where the ith row and jth
column have been removed, |A| denotes the determinant of matrix A, and equation (S5) was
simplified using the quotient rule for differentiation.

Throughout this appendix we assume the following. First, because we focus on stable
equilibria, we assume the determinant of the Jacobian is negative when evaluated at an
equilibrium, i.e., |J | < 0. Second, we assume host 1 experiences negative density depen-
dence at equilibrium due to intraspecific competition. Mathematically, this means that the
growth rate of population one at equilibrium decreases with increased conspecific density,
i.e., (∂/∂S1)(dS1/dt) < 0 and (∂/∂I1)(dS1/dt) < 0. This assumption is expected to hold in
most empirical systems. It is violated only in systems where the pathogen reduces the den-
sity of host 1 to very low values. Third, we assume that increasing the exponential growth
rate of host 2 causes its total density to increase, i.e.,

∂N∗
2

∂r2
> 0. We expect this assumption

to hold in most empirical systems. The only exceptions are those where the population is ex-
periencing a hydra effect, i.e., decreased mortality (higher r2) causes lower density,

∂N∗
2

∂r2
< 0

(Abrams, 2009). Hydra effects are possible in our model, but we did not observe them in
any of our numerical simulations.

Fourth, while our approach only focuses on small changes in the density of the second
host, we will interpret our results in terms of the relationship between infection prevalence in
host 1 and host 2 density for large changes in host density. This interpretation is reasonable
because (i) under the assumption that ∂N∗

2/∂r2 has fixed sign, the sign of d(I∗1/N
∗
1 )/dN∗

2 will
only depend on the sign of ∂(I∗1/N

∗
1 )/∂r2; (ii) the sign of ∂(I∗1/N

∗
1 )/∂r2 changes smoothly

with increases in r2 because it only depends on the product of Jacobian entries, all of which
change smoothly with increases in r2; and (iii) the sign of ∂(I∗1/N

∗
1 )/∂r2 will only change

a small number of times as r2 is increased because most of the Jacobian entries have fixed
signs.

Terminology: We will describe infected hosts of each population in terms of whether
they are sinks or sources of infections propagules. Intuitively, a source host has larger values
of xi and smaller values of fi and a sink has smaller values of xi and larger values of fi.
Mathematically, sink and source are defined by the net per capita rate of production of
infectious propagules by infected hosts at equilibrium, i.e., Xi = xi − P ∗fi. A host is a
sink (at equilibrium) if infected individuals produce fewer infectious propagules than they
uptake (Xi = xi − P ∗fi < 0). A host is a source (at equilibrium) if infected individuals
produce more infectious propagules than they uptake (Xi = xi − P ∗fi > 0). We say that
host i is a larger or smaller source than host j if Xi > Xj and Xi < Xj, respectively. A
similar definition applies to smaller and larger sinks. We note two things: (i) if a host does
not excrete infectious propagules (xi = 0), then that host is necessarily a sink for infectious
propagules and (ii) for any equilibrium with positive infectious propagule density, at least
one host species must be a source.
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Section S2 Analysis of model with dose-dependent in-

fection rates

The model with dose-dependent infection rates is

dSi
dt

= Ni(ri − αi1N1 − αi2N2)− βi(fiP )kiSi

dIi
dt

= βi(fiP )kiSi −miIi

dP

dt
= x1I1 + x2I2 − µP − f1N1P − f2N2P

(S8)

where Ni = Si + Ii. Let (S∗
1 , S

∗
2 , I

∗
1 , I

∗
2 , P

∗) be a stable equilibrium point of model (S8).
The Jacobian of model (S8) evaluated at the equilibrium is

J =


J11 −α12N

∗
1 J13 −α12N

∗
1 −β1(f1P )k1k1S

∗
1/P

∗

−α21N
∗
2 J22 −α21N

∗
2 J24 −β2(f2P ∗)k2k2S

∗
2/P

∗

β1(f1P
∗)k1 0 −m1 0 β1(f1P

∗)k1k1S
∗
1/P

∗

0 β2(f2P
∗)k2 0 −m2 β2(f2P

∗)k2k2S
∗
2/P

∗

−f1P ∗ −f2P ∗ x1 − P ∗f1 x2 − P ∗f2 −U − µ

 (S9)

where J11 = r1 − 2α11N
∗
1 − α12N

∗
2 − β1(f1P

∗)k1 , J13 = r1 − 2α11N
∗
1 − α12N

∗
2 , J22 = r2 −

α21N
∗
1 − 2α22N

∗
2 − β2(f2P ∗)k2 , and J24 = r2−α21N

∗
1 − 2α22N

∗
2 , and U = N∗

1 f1 +N∗
2 f2 is the

total per infectious propagule uptake rate by hosts at equilibrium. Our assumption that host
1 experiences negative density dependence due to intraspecific competition implies that J11
and J13 are negative. We simplify some of the Jacobian entries using the fact that dIi/dt = 0
at equilibrium means βi(fiP

∗)kiS∗
i = miI

∗
i . This yields,

J |ρ =


J11 −α12N

∗
1 J13 −α12N

∗
1 −k1m1I

∗
1/P

∗

−α21N
∗
2 J22 −α21N

∗
2 J24 −k2m2I

∗
2/P

∗

m1I
∗
1/S

∗
1 0 −m1 0 k1m1I

∗
1/P

∗

0 m2I
∗
2/S

∗
2 0 −m2 k2m2I

∗
2/P

∗

−I∗1P ∗ −I∗2P ∗ X1 X2 −U − µ

 (S10)

where Xi = xi − fiP ∗ is the net per capita rate of production of infectious propagules by
host i.

Evaluating equation (S5) yields

∂(I∗1/N
∗
1 )

∂r2
=k1

N∗
2m1I

∗
1m2

(N∗
1 )2S∗

2P
∗|J |︸ ︷︷ ︸

−

[
α12N

∗
1N

∗
2 (X1I

∗
1 − f1P ∗S∗

1) + (I∗1J13 + J11S
∗
1)︸ ︷︷ ︸

−

(X2I
∗
2 − f2P ∗S∗

2)

]
(S11)

The equation defining ∂N∗
2/∂r2 is much longer and not included here; the full equation is

given in the accompanying Maple worksheets. The main thing to know is that its magnitude
is not proportional to k1.
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Equation (S11) shows the following. First, the magnitude of ∂(I∗1/N
∗
1 )/∂r2 is proportional

to k1 and the sign of ∂(I∗1/N
∗
1 )/∂r2 is not directly affected by the value of k1. Second, the

sign of ∂(I∗1/N
∗
1 )/∂r2 depends on the terms XiI

∗
i − fiS

∗
i P

∗. The sign of ∂(I∗1/N
∗
1 )/∂r2 is

more positive when X1 is more negative (i.e., host 1 is a smaller source or larger sink) and
X2 is more positive (i.e., host 2 is large source). In addition, in the special case where
X1I

∗
1 − f1S∗

1P
∗ = X2I

∗
2 − f2S∗

2P
∗ (which must necessarily be positive), the terms in brackets

simplify to

(X1I
∗
1 − f2S∗

2P
∗)[−N∗

1 (r1 − α12N
∗
2 )− α11(N

∗
1 )2 − β1(f1P )k1S∗

1 ] < 0 (S12)

In total, we expect ∂(I∗1/N
∗
1 )/∂r2 will be negative when host 2 is a sink or much smaller

source of infectious propagules than host 1 (i.e., X2 much smaller than X1) and positive
otherwise.

After recalling that d(I∗1/N
∗
1 )/dN∗

2 is the ratio of ∂(I∗1/N
∗
1 )/∂r2 and ∂N∗

2/∂r2 > 0 and
combining the above, we predict:

• A negative relationship between infection prevalence in host 1 and host 2 density
(d(I∗1/N

∗
1 )/dN∗

2 < 0) when host 2 is a sink or a sufficiently smaller source of infectious
propagules than host 1.

• A positive relationship between infection prevalence in host 1 and host 2 density
(d(I∗1/N

∗
1 )/dN∗

2 > 0) when host 2 is a sufficiently larger source of infectious propagules.
In particular, we expect a positive relationship whenever host 2 is an equal or larger
source of infectious propagules than host 1.

• The slope of the relationship between infection prevalence in host 1 and host 2 density
(i.e., the magnitude of d(I∗1/N

∗
1 )/dN∗

2 ) will be greater for larger values of k. The slope
will also be larger in magnitude if host 1 is a much larger or much smaller source than
host 2, and vice versa (i.e., X1 and X2 of opposite signs or X1 and X2 both positive
with one much larger than the other).

These predictions qualitatively match the results from our simulations in the middle column
of figure 4.
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Section S3 Analysis of model with dose-dependent ex-

cretion rates

The model with dose-dependent infection and excretion rates is

dSi
dt

= Ni(ri − αi1N1 − αi2N2)− βi(fiP )kiSi

dIi
dt

= βi(fiP )kiSi −miIi

dP

dt
= x1

(
1

2
+

f1P

2f1P1

)γ1
I1 + x2

(
1

2
+

f2P

2f2P2

)γ2
I2 − µP − f1N1P − f2N2P

(S13)

where Ni = Si + Ii. Let (S∗
1 , S

∗
2 , I

∗
1 , I

∗
2 , P

∗) be a stable equilibrium point of model (S13).
The Jacobian of model (S13) evaluated at the equilibrium is

J =


J11 −α12N

∗
1 J13 −α12N

∗
1 −β1(f1P )k1k1S

∗
1/P

∗

−α21N
∗
2 J22 −α21N

∗
2 J24 −β2(f2P ∗)k2k2S

∗
2/P

∗

β1(f1P
∗)k1 0 −m1 0 β1(f1P

∗)k1k1S
∗
1/P

∗

0 β2(f2P
∗)k2 0 −m2 β2(f2P

∗)k2k2S
∗
2/P

∗

−f1P ∗ −f2P ∗ X1 X2 Q− U − µ

 (S14)

where J11 = r1 − 2α11N
∗
1 − α12N

∗
2 − β1(f1P

∗)k1 , J13 = r1 − 2α11N
∗
1 − α12N

∗
2 , J22 = r2 −

α21N
∗
1 − 2α22N

∗
2 − β2(f2P ∗)k2 , J24 = r2 − α21N

∗
1 − 2α22N

∗
2 , U = N∗

1 f1 + N∗
2 f2 is the total

per infectious propagule uptake rate by hosts at equilibrium,

Q =
x1γ1I

∗
1

2P1

(
1

2
+
f1P

∗

2f1P1

)γ1−1

+
x2γ2I

∗
2

2P2

(
1

2
+

f2P
∗

2f2P ∗
2

)γ2−1

(S15)

and we redefine Xi as

Xi = xi

(
1

2
+
fiP

∗

2fiPi

)γi
− P ∗fi (S16)

which is still interpreted as the net production (at equilibrium) of infectious propagules by
infected hosts in population i. Our assumption that host 1 experiences negative density de-
pendence due to intraspecific competition implies that J11 and J13 are negative. Simplifying
the Jacobian entries using βi(fiP

∗)kiS∗
i = miI

∗
i produces

J |ρ =


J11 −α12N

∗
1 J13 −α12N

∗
1 −k1m1I

∗
1/P

∗

−α21N
∗
2 J22 −α21N

∗
2 J24 −k2m2I

∗
2/P

∗

m1I
∗
1/S

∗
1 0 −m1 0 k1m1I

∗
1/P

∗

0 m2I
∗
2/S

∗
2 0 −m2 k2m2I

∗
2/P

∗

−I∗1P ∗ −I∗2P ∗ X1 X2 Q− U − µ

 (S17)

Notice that matrix (S17) is nearly identical in form to the Jacobian (S10) for model (S8).
The only differences are that X1 and X2 are defined by equation (S16) and the J55 entry of
matrix (S17) contains the extra term Q.
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Because of the similarity of the Jacobians for models (S8) and (S13), the equations
defining ∂(I∗/N∗

1 )/∂r2 and ∂N∗
2/∂r2 are identical except that X1 and X2 are defined by

equation (S16) and all instances of U + µ are replaced with −Q+U + µ. As a consequence,
all of our predictions for model (S13) are the same as those for model (S8). Specifically, we
predict:

• A negative relationship between infection prevalence in host 1 and host 2 density
(d(I∗1/N

∗
1 )/dN∗

2 < 0) when host 2 is a sink or a sufficiently smaller source of infectious
propagules than host 1.

• A positive relationship between infection prevalence in host 1 and host 2 density
(d(I∗1/N

∗
1 )/dN∗

2 > 0) when host 2 is a sufficiently larger source of infectious propagules.
In particular, we expect a positive relationship whenever host 2 is an equal or larger
source of infectious propagules than host 1.

• The slope of the relationship between infection prevalence in host 1 and host 2 density
(i.e., the magnitude of d(I∗1/N

∗
1 )/dN∗

2 ) will be greater for larger values of k. The slope
will also be larger in magnitude if host 1 is a much larger or much smaller source than
host 2, and vice versa (i.e., X1 and X2 of opposite signs or X1 and X2 both positive
with one much larger than the other).

These predictions qualitatively match the results from our simulations in figure 4.
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Section S4 Analysis of model with dose-dependent mor-

tality rates

The model with dose-dependent infection and mortality rates is

dSi
dt

= Ni(ri − αi1N1 − αi2N2)− βi(fiP )kiSi

dIi
dt

= βi(fiP )kiSi −mminIi −mi,doseIi

dP

dt
= x1I1 + x2I2 − µP − f1N1P − f2N2P

(S18)

where Ni = Si + Ii, mi,dose = (mi −mmin)(fiP/fiPi)
ρi is the dose-dependent mortality rate.

Let (S∗
1 , S

∗
2 , I

∗
1 , I

∗
2 , P

∗) be a stable equilibrium point of model (S8).
The Jacobian of model (S18) evaluated at the equilibrium is

J =


J11 −α12N

∗
1 J13 −α12N

∗
1 −β1(f1P )k1k1S

∗
1/P

∗

−α21N
∗
2 J22 −α21N

∗
2 J24 −β2(f2P ∗)k2k2S

∗
2/P

∗

β1(f1P
∗)k1 0 −mmin −m1,dose 0

β1(f1P ∗)k1k1S∗
1

P ∗ − ρ1m1,doseI
∗
1

P ∗

0 β2(f2P
∗)k2 0 −mmin −m2,dose

β2(f2P ∗)k2k2S∗
2

P ∗ − ρ2m2,doseI
∗
2

P ∗

−f1P ∗ −f2P ∗ x1 − P ∗f1 x2 − P ∗f2 −U − µ


(S19)

where J11 = r1 − 2α11N
∗
1 − α12N

∗
2 − β1(f1P

∗)k1 , J13 = r1 − 2α11N
∗
1 − α12N

∗
2 , J22 = r2 −

α21N
∗
1 − 2α22N

∗
2 − β2(f2P ∗)k2 , and J24 = r2−α21N

∗
1 − 2α22N

∗
2 , and U = N∗

1 f1 +N∗
2 f2 is the

total per infectious propagule uptake rate by hosts at equilibrium. Our assumption that host
1 experiences negative density dependence due to intraspecific competition implies that J11
and J13 are negative. We simplify some of the Jacobian entries using the fact that dIi/dt = 0
at equilibrium means βi(fiP

∗)kiS∗
i = mminI

∗
i +mi,doseI

∗
i . This yields,

J =


J11 −α12N

∗
1 J13 −α12N

∗
1 −kI

∗
1

P∗ (mmin +m1,dose)

−α21N
∗
2 J22 −α21N

∗
2 J24 −kI

∗
2

P∗ (mmin +m2,dose)

(mmin +m1,dose)I
∗
1/S

∗
1 0 −mmin −m1,dose 0

k1I
∗
1

P∗ (mmin +m1,dose)− ρ1I
∗
1m1,dose

P

0 (mmin +m2,dose)I
∗
2/S

∗
2 0 −mmin −m2,dose

k2I
∗
2

P∗ (mmin +m2,dose)− ρ2I
∗
2m2,dose

P
−I∗1P ∗ −I∗2P ∗ X1 X2 −U − µ


(S20)

where Xi = xi − fiP ∗ is the net per capita rate of production of infectious propagules by
host i.
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Evaluating equation (S5) yields

∂(I∗1/N
∗
1 )

∂r2
=

(
(k1 − ρ1)m1,dose + k1mmin

)
I∗1N

∗
2 (mmin +m2,dose)

(N∗
1 )2S∗

2P
∗|J |︸ ︷︷ ︸

−

[
α12N

∗
1N

∗
2 (X1I

∗
1 − f1P ∗S∗

1)

+ (I∗1J13 + J11S
∗
1)︸ ︷︷ ︸

−

(X2I
∗
2 − f2P ∗S∗

2)

]
.

(S21)

The equation defining
∂N∗

2

∂r2
is very long and not included here; the full equation is given in

the accompanying Maple worksheets. The main thing to know is that its magnitude is not
proportional to (k1 − ρ1)m1,dose + k1mmin.

Equation (S21) shows the following. First, the magnitude of ∂(I∗1/N
∗
1 )/∂r2 is (i) pro-

portional to (k1 − ρ1)m1,dose + k1mmin and (ii) depends on the magnitudes and signs of the
XiI

∗
i −fiP ∗S∗

i . Second, the sign of ∂(I∗1/N
∗
1 )/∂r2 depends on (i) the sign of (k1−ρ1)m1,dose+

k1mmin and (ii) the terms in brackets in equation (S21). The sign of (k1−ρ1)m1,dose+k1mmin

is negative when ρ1 is sufficiently larger than k1 and positive otherwise. Using the same cal-
culation from appendix S2.1, the terms in brackets are positive when host 2 is a sink or much
smaller source of host 1 (i.e., X2 much smaller than X1) and negative otherwise.

Recalling that d(I∗1/N
∗
1 )/dN∗

2 is the ratio of ∂(I∗1/N
∗
1 )/∂r2 and ∂N∗

2/∂r2 > 0 and com-
bining the above produces the following predictions.

• If k greater than or equal to ρ, or ρ is insufficiently larger than k, then we predict:

• A negative relationship between infection prevalence in host 1 and host 2 density
(d(I∗1/N

∗
1 )/dN∗

2 < 0) when host 2 is a sink or a sufficiently smaller source of
infectious propagules than host 1.

• A positive relationship between infection prevalence in host 1 and host 2 den-
sity (d(I∗1/N

∗
1 )/dN∗

2 > 0) when host 2 is a sufficiently larger source of infectious
propagules. In particular, we expect a positive relationship whenever host 2 is an
equal or larger source of infectious propagules than host 1.

• If ρ is sufficiently larger than k, then we predict:

• A positive relationship between infection prevalence in host 1 and host 2 density
(d(I∗1/N

∗
1 )/dN∗

2 < 0) when host 2 is a sink or a sufficiently smaller source of
infectious propagules than host 1.

• A negative relationship between infection prevalence in host 1 and host 2 den-
sity (d(I∗1/N

∗
1 )/dN∗

2 > 0) when host 2 is a sufficiently larger source of infectious
propagules. In particular, we expect a positive relationship whenever host 2 is an
equal or larger source of infectious propagules than host 1.
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• The slope of the relationship between infection prevalence in host 1 and host 2 density
(i.e., the magnitude of d(I∗1/N

∗
1 )/dN∗

2 ) will be greater when (i) ρ is much larger than
k or vice versa and (ii) host 1 is a much larger or much smaller source than host 2,
and vice versa (i.e., X1 and X2 of opposite signs or X1 and X2 both positive with one
much larger than the other).

These predictions qualitatively match the results from our simulations in figure 5.
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